

8 Managing a Materialized View Replication Environment

Materialized view replication provides the flexibility to build data sets to meet the needs of your users and front-end applications, while still meeting the requirements of your security configuration. This chapter describes how to manage materialized view sites with the replication management API.

This chapter contains these topics:

	
Refreshing Materialized Views

	
Changing a Materialized View Group's Master Site

	
Dropping Materialized View Groups and Objects

	
Managing Materialized View Logs

	
Performing an Offline Instantiation of a Materialized View Site Using Export/Import

	
Using a Group Owner for a Materialized View Group

Refreshing Materialized Views

Refreshing a materialized view synchronizes the data in the materialized view's master(s) and the data in the materialized view. You can either refresh all of the materialized views in a refresh group at once, or you can refresh materialized views individually. If you have applications that depend on more than one materialized view at a materialized view site, then Oracle recommends using refresh groups so that the data is transactionally consistent in all of the materialized views used by the application.

The following example refreshes the hr_refg refresh group:

EXECUTE DBMS_REFRESH.REFRESH ('hr_refg');

The following example refreshes the hr.departments_mv materialized view:

BEGIN
 DBMS_MVIEW.REFRESH (
 list => 'hr.departments_mv',
 method => '?');
END;
/

	
Note:

Do not use the DBMS_MVIEW.REFRESH_ALL_MVIEWS or the DBMS_MVIEW.REFRESH_DEPENDENT procedure to refresh materialized views used in a replication environment. Instead, use the DBMS_REFRESH.REFRESH or the DBMS_MVIEW.REFRESH procedure to refresh materialized views in a replication environment.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_MVIEW package

Changing a Materialized View Group's Master Site

To change the master site of a materialized view group at a level 1 materialized view site to another master site, call the SWITCH_MVIEW_MASTER procedure in the DBMS_REPCAT package, as shown in the following example:

BEGIN
 DBMS_REPCAT.SWITCH_MVIEW_MASTER (
 gname => 'hr_repg',
 master => 'orc3.world');
END;
/

In this example, the master site for the hr_repg replication group is changed to the orc3.world master site. You must call this procedure at the materialized view site whose master site you want to change. The new database must be a master site in the replication environment. When you call this procedure, Oracle uses the new master to perform a full refresh of each materialized view in the local materialized view group. Make sure you have set up the materialized view site to use the new master site before you run the SWITCH_MVIEW_MASTER procedure.

The entries in the SYS.SLOG$ table at the old master site for the switched materialized view are not removed. As a result, the materialized view log (MLOG$ table) of the switched updatable materialized view at the old master site has the potential to grow indefinitely, unless you purge it by calling DBMS_MVIEW.PURGE_LOG.

	
Note:

You cannot switch the master of materialized views that are based on other materialized views (level 2 and greater materialized views). Such a materialized view must be dropped and re-created if you want to base it on a different master.

	
See Also:

"Setting Up Materialized View Sites"

Dropping Materialized View Groups and Objects

You might need to drop replication activity at a materialized view site for a number of reasons. Perhaps the data requirements have changed or an employee has left the company. In any case, as a DBA you will need to drop the replication support for the target materialized view site.

This section contains the following sections:

	
Dropping a Materialized View Group Created with a Deployment Template

	
Dropping a Materialized View Group or Objects Created Manually

	
Cleaning Up a Master Site or Master Materialized View Site

Dropping a Materialized View Group Created with a Deployment Template

If a materialized view group was created with a deployment template, then, before you drop the materialized view group at the remote materialized view site, you need to execute the DROP_SITE_INSTANTIATION procedure at the target master site of the materialized view group. In addition to removing the metadata relating to the materialized view group, this procedure also removes the related deployment template data regarding this site.

The DROP_SITE_INSTANTIATION procedure has a public and a private version. The public version allows the owner of the materialized view group to drop the materialized view site, while the private version allows the replication administrator to drop a materialized view site on behalf of the materialized view group owner.

Using the Public Version of DROP_SITE_INSTANTIATION

Meet the following requirements to complete these actions:

Executed As:

	
Materialized View Group Owner at Master Site

	
Materialized View Administrator at Materialized View Site

Executed At:

	
Master Site for Target Materialized View Site

	
Materialized View Site

Replication Status: Normal

Complete the following steps to drop a materialized view group created with a deployment template.

	
Note:

If you are viewing this document online, then you can copy the text from the "BEGINNING OF SCRIPT" line after this note to the "END OF SCRIPT" line into a text editor and then edit the text to create a script for your environment.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect to the master site as the materialized view group owner.

*/

SET ECHO ON

SPOOL drop_mv_group_public.out

CONNECT hr/hr@orc3.world

/*

Step 2 Drop the instantiated materialized view site from the master site.

*/

BEGIN
 DBMS_REPCAT_INSTANTIATE.DROP_SITE_INSTANTIATION(
 refresh_template_name => 'hr_refg_dt',
 site_name => 'mv4.world');
END;
/

/*

Step 3 Connect to the remote materialized view site as the materialized view administrator.

*/

CONNECT mviewadmin/mviewadmin@mv4.world

/*

If you are not able to connect to the remote materialized view site, then the target materialized view group cannot refresh, but the existing data still remains at the materialized view site.

Step 4 Drop the materialized view group.

*/

BEGIN
 DBMS_REPCAT.DROP_MVIEW_REPGROUP (
 gname => 'hr_repg',
 drop_contents => TRUE);
END;
/

/*

If you want to physically remove the contents of the materialized view group from the materialized view database, then be sure that you specify TRUE for the drop_contents parameter.

Step 5 Remove the refresh group.

Connect as the refresh group owner and remove the refresh group.

*/

CONNECT hr/hr@mv4.world

BEGIN
 DBMS_REFRESH.DESTROY (
 name => 'hr_refg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Using the Private Version of DROP_SITE_INSTANTIATION

The following steps are to be performed by the replication administrator on behalf of the materialized view group owner. Meet the following requirements to complete these actions:

Executed As:

	
Replication Administrator at Master Site

	
Materialized View Administrator at Materialized View Site

Executed At:

	
Master Site for Target Materialized View Site

	
Materialized View Site

Replication Status: Normal

Complete the following steps to drop a materialized view group created with a deployment template.

	
Note:

If you are viewing this document online, then you can copy the text from the "BEGINNING OF SCRIPT" line after this note to the "END OF SCRIPT" line into a text editor and then edit the text to create a script for your environment.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect to the master site as the replication administrator.

*/

SET ECHO ON

SPOOL drop_mv_group_private.out

CONNECT repadmin/repadmin@orc1.world

/*

Step 2 Drop the instantiated materialized view site from the master site.

*/

BEGIN
 DBMS_REPCAT_RGT.DROP_SITE_INSTANTIATION (
 refresh_template_name => 'hr_refg_dt',
 user_name => 'hr',
 site_name => 'mv4.world');
END;
/

/*

Step 3 Connect to the remote materialized view site as the materialized view administrator.

*/

CONNECT mviewadmin/mviewadmin@mv4.world

/*

If you are unable to connect to the remote materialized view site, then the target materialized view group cannot refresh, but the existing data still remains at the materialized view site.

Step 4 Drop the materialized view group.

*/

BEGIN
 DBMS_REPCAT.DROP_MVIEW_REPGROUP (
 gname => 'hr_repg',
 drop_contents => TRUE,
 gowner => 'hr');
END;
/

/*

If you want to physically remove the contents of the materialized view group from the materialized view database, then be sure that you specify TRUE for the drop_contents parameter.

Step 5 Remove the refresh group.

Connect as the refresh group owner and remove the refresh group.

*/

CONNECT hr/hr@mv4.world

BEGIN
 DBMS_REFRESH.DESTROY (
 name => 'hr_refg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Dropping a Materialized View Group or Objects Created Manually

The most secure method of removing replication support for a materialized view site is to physically drop the replicated objects or groups at the materialized view site. The following two sections describe how to drop these objects and groups while connected to the materialized view group.

Ideally, these procedures should be executed while the materialized view is connected to its target master site or master materialized view site. A connection ensures that any related metadata at the master site or master materialized view site is removed. If a connection to the master site or master materialized view site is not possible, then be sure to complete the procedure described in "Cleaning Up a Master Site or Master Materialized View Site" to manually remove the related metadata.

Dropping a Materialized View Group Created Manually

When it becomes necessary to remove a materialized view group from a materialized view site, use the DROP_MVIEW_REPGROUP procedure to drop a materialized view group. When you execute this procedure and are connected to the target master site or master materialized view site, the metadata for the target materialized view group at the master site or master materialized view site is removed. If you cannot connect, then see "Cleaning Up a Master Site or Master Materialized View Site" for more information.

Meet the following requirements to complete these actions:

Executed As: Materialized View Administrator

Executed At: Remote Materialized View Site

Replication Status: N/A

Complete the following steps to drop a materialized view group at a materialized view site:

Step 1 Connect to the materialized view site as the materialized view administrator.

CONNECT mviewadmin/mviewadmin@mv1.world

Step 2 Drop the materialized view group.

BEGIN

 DBMS_REPCAT.DROP_MVIEW_REPGROUP (
 gname => 'hr_repg',
 drop_contents => TRUE);
END;
/

If you want to physically remove the contents of the materialized view group from the materialized view database, then be sure that you specify TRUE for the drop_contents parameter.

Dropping Objects at a Materialized View Site

When it becomes necessary to remove an individual materialized view from a materialized view site, use the DROP_MVIEW_REPOBJECT procedure API to drop a materialized view. When you execute this procedure and are connected to the target master site or master materialized view site, the metadata for the target materialized view at the master site or master materialized view site is removed. If you cannot connect, then see "Cleaning Up a Master Site or Master Materialized View Site" for more information.

Meet the following requirements to complete these actions:

Executed As: Materialized View Administrator

Executed At: Remote Materialized View Site

Replication Status: N/A

Complete the following steps to drop an individual materialized view at a materialized view site.

Step 1 Connect to the materialized view site as the materialized view administrator.

CONNECT mviewadmin/mviewadmin@mv1.world

Step 2 Drop the materialized view.

BEGIN

 DBMS_REPCAT.DROP_MVIEW_REPOBJECT (
 sname => 'hr',
 oname => 'employees_mv1',
 type => 'SNAPSHOT',
 drop_objects => TRUE);
END;
/

If you want to physically remove the contents of the materialized view from the materialized view database, then be sure that you specify TRUE for the drop_contents parameter.

Cleaning Up a Master Site or Master Materialized View Site

If you are unable to drop a materialized view group or materialized view object while connected to the target master site or master materialized view site, then you must remove the related metadata at the master site or master materialized view site manually. Cleaning up the metadata also ensures that you are not needlessly maintaining master table or master materialized view changes to a materialized view log. The following sections describe how to clean up your master site or master materialized view site after dropping a materialized view group or object.

Cleaning Up After Dropping a Materialized View Group

If you have executed the steps described in "Dropping a Materialized View Group Created Manually" and were not connected to the master site or master materialized view site, then you are encouraged to complete the following steps to clean up the target master site or master materialized view site.

Meet the following requirements to complete these actions:

Executed As: Replication Administrator

Executed At: Master Site or Master Materialized View Site for Target Materialized View Site

Replication Status: Normal

Complete the following steps to clean up a master site or master materialized view site after dropping a materialized view group:

	
Note:

If you are viewing this document online, then you can copy the text from the "BEGINNING OF SCRIPT" line after this note to the "END OF SCRIPT" line into a text editor and then edit the text to create a script for your environment.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect to the master site or master materialized view site as the replication administrator.

*/

SET ECHO ON

SPOOL cleanup_master1.out

CONNECT repadmin/repadmin@orc1.world

/*

Step 2 Unregister the materialized view groups.

*/

BEGIN
 DBMS_REPCAT.UNREGISTER_MVIEW_REPGROUP (
 gname => 'hr_repg',
 mviewsite => 'mv1.world');
END;
/

/*

Step 3 Purge the materialized view logs of the entries that were marked for the target materialized views.

Execute the PURGE_MVIEW_FROM_LOG procedure for each materialized view that was in the materialized view groups you unregistered in Step 2.

	
Note:

If for some reason unregistering the materialized view group fails, then you should still complete this step.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_MVIEW package

*/

BEGIN
 DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (
 mviewowner => 'hr',
 mviewname => 'countries_mv1',
 mviewsite => 'mv1.world');
END;
/

BEGIN
 DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (
 mviewowner => 'hr',
 mviewname => 'departments_mv1',
 mviewsite => 'mv1.world');
END;
/

BEGIN
 DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (
 mviewowner => 'hr',
 mviewname => 'employees_mv1',
 mviewsite => 'mv1.world');
END;
/

BEGIN
 DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (
 mviewowner => 'hr',
 mviewname => 'jobs_mv1',
 mviewsite => 'mv1.world');
END;
/

BEGIN
 DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (
 mviewowner => 'hr',
 mviewname => 'job_history_mv1',
 mviewsite => 'mv1.world');
END;
/

BEGIN
 DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (
 mviewowner => 'hr',
 mviewname => 'locations_mv1',
 mviewsite => 'mv1.world');
END;
/

BEGIN
 DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (
 mviewowner => 'hr',
 mviewname => 'regions_mv1',
 mviewsite => 'mv1.world');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Cleaning Up Individual Materialized View Support

If you have executed the steps described in "Dropping Objects at a Materialized View Site" and were not connected to the master site or master materialized view site, then you are encouraged to complete the following steps to clean up the target master site or master materialized view site.

Meet the following requirements to complete these actions:

Executed As: Replication Administrator

Executed At: Master Site or Master Materialized View Site for Target Materialized View Site

Replication Status: Normal

Complete the following steps to clean up a master site or master materialized view site after dropping an individual materialized view.

	
Note:

If you are viewing this document online, then you can copy the text from the "BEGINNING OF SCRIPT" line after this note to the "END OF SCRIPT" line into a text editor and then edit the text to create a script for your environment.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect to the master site or master materialized view site as the replication administrator.

*/

SET ECHO ON

SPOOL cleanup_master2.out

CONNECT repadmin/repadmin@orc1.world

/*

Step 2 Unregister the materialized view.

*/

BEGIN
 DBMS_MVIEW.UNREGISTER_MVIEW (
 mviewowner => 'hr',
 mviewname => 'employees_mv1',
 mviewsite => 'mv1.world');
END;
/

/*

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_MVIEW package

Step 3 Purge the associated materialized view log of the entries that were marked for the target materialized views.

	
Note:

If for some reason unregistering the materialized view fails, then you should still complete this step.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_MVIEW package

*/

BEGIN
 DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (
 mviewowner => 'hr',
 mviewname => 'employees_mv1',
 mviewsite => 'mv1.world');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Managing Materialized View Logs

The following sections explain how to manage materialized view logs:

	
Altering Materialized View Logs

	
Managing Materialized View Log Space

	
Reorganizing Master Tables that Have Materialized View Logs

	
Dropping a Materialized View Log

Altering Materialized View Logs

After creating a materialized view log, you can alter its storage parameters and support for corresponding materialized views. The following sections explain more about altering materialized view logs. Only the following users can alter a materialized view log:

	
The owner of the master table or master materialized view.

	
A user with the SELECT privilege for the master table or master materialized view and ALTER privilege on the MLOG$_master_name, where master_name is the name of the master for the materialized view log. For example, if the master table is employees, then the materialized view log table name is MLOG$_employees.

Altering Materialized View Log Storage Parameters

To alter a materialized view log's storage parameters, use the ALTER MATERIALIZED VIEW LOG statement. For example, the following statement alters a materialized view log on the employees table in the hr schema:

ALTER MATERIALIZED VIEW LOG ON hr.employees
 PCTFREE 25
 PCTUSED 40;

Altering a Materialized View Log to Add Columns

To add new columns to a materialized view log, use the SQL statement ALTER MATERIALIZED VIEW LOG. For example, the following statement alters a materialized view log on the customers table in the sales schema:

ALTER MATERIALIZED VIEW LOG ON hr.employees
 ADD (department_id);

	
See Also:

Oracle Database Advanced Replication for more information about adding columns to a materialized view log

Managing Materialized View Log Space

Oracle automatically tracks which rows in a materialized view log have been used during the refreshes of materialized views, and purges these rows from the log so that the log does not grow endlessly. Because multiple simple materialized views can use the same materialized view log, rows already used to refresh one materialized view might still be needed to refresh another materialized view. Oracle does not delete rows from the log until all materialized views have used them.

For example, suppose two materialized views were created against the customers table in a master site. Oracle refreshes the customers materialized view at the spdb1 database. However, the server that manages the master table and associated materialized view log does not purge the materialized view log rows used during the refresh of this materialized view until the customers materialized view at the spdb2 database also refreshes using these rows.

Because Oracle must wait for all dependent materialized views to refresh before purging rows from a materialized view log, unwanted situations can occur that cause a materialized view log to grow indefinitely when multiple materialized views are based on the same master table or master materialized view.

For example, such situations can occur when more than one materialized view is based on a master table or master materialized view and one of the following conditions is true:

	
One materialized view is not configured for automatic refreshes and has not been manually refreshed for a long time.

	
One materialized view has an infrequent refresh interval, such as every year (365 days).

	
A network failure has prevented an automatic refresh of one or more of the materialized views based on the master table or master materialized view.

	
A network or site failure has prevented a master table or master materialized view from becoming aware that a materialized view has been dropped.

	
Note:

If you purge or TRUNCATE a materialized view log before a materialized view has refreshed the changes that were deleted, then the materialized view must perform a complete refresh.

Purging Rows from a Materialized View Log

Always try to keep a materialized view log as small as possible to minimize the database space that it uses. To remove rows from a materialized view log and make space for newer log records, you can perform one of the following actions:

	
Refresh the materialized views associated with the log so that Oracle can purge rows from the materialized view log.

	
Manually purge records in the log by deleting rows required only by the nth least recently refreshed materialized views.

To manually purge rows from a materialized view log, execute the PURGE_LOG procedure of the DBMS_MVIEW package at the database that contains the log. For example, to purge entries from the materialized view log of the customers table that are necessary only for the least recently refreshed materialized view, execute the following procedure:

BEGIN
 DBMS_MVIEW.PURGE_LOG (
 master => 'hr.employees',
 num => 1,
 flag => 'DELETE');
END;
/

Only the owner of a materialized view log or a user with the EXECUTE privilege for the DBMS_MVIEW package can purge rows from the materialized view log by executing the PURGE_LOG procedure.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_MVIEW package

Truncating a Materialized View Log

If a materialized view log grows and allocates many extents, then purging the log of rows does not reduce the amount of space allocated for the log. In such cases, you should truncate the materialized view log. Only the owner of a materialized view log or a user with the DELETE ANY TABLE system privilege can truncate a materialized view log.

To reduce the space allocated for a materialized view log by truncating it, complete the following steps:

Step 1 Acquire an exclusive lock on the master table or master materialized view to prevent updates during the following process.

For example, issue a statement similar to the following:

LOCK TABLE hr.employees IN EXCLUSIVE MODE;

Step 2 Using a second database session, copy the rows in the materialized view log (in other words, the MLOG$ table) to a temporary table.

For example, issue a statement similar to the following:

CREATE TABLE hr.templog AS SELECT * FROM hr.MLOG$_employees;

Step 3 Using the second session, truncate the log using the SQL statement TRUNCATE TABLE.

For example, issue a statement similar to the following:

TRUNCATE TABLE hr.MLOG$_employees;

Step 4 Using the second session, reinsert the old rows.

Perform this step so that you do not have to perform a complete refresh of the dependent materialized views.

For example, issue statements similar to the following:

INSERT INTO hr.MLOG$_employees SELECT * FROM hr.templog;

DROP TABLE hr.templog;

Step 5 Using the first session, release the exclusive lock on the master table or master materialized view.

You can accomplish this by performing a rollback:

ROLLBACK;

	
Note:

Any changes made to the master table or master materialized view between the time you copy the rows to a new location and when you truncate the log do not appear until after you perform a complete refresh.

Reorganizing Master Tables that Have Materialized View Logs

To improve performance and optimize disk use, you can periodically reorganize master tables. This section describes how to reorganize a master and preserve the fast refresh capability of associated materialized views.

	
Note:

These sections do not discuss online redefinition of tables. Online redefinition is not allowed on master tables with materialized view logs, master materialized views, or materialized views. Online redefinition is allowed only on master tables that do not have materialized view logs. See the Oracle Database Administrator's Guide for more information about online redefinition of tables.

Reorganization Notification

When you reorganize a table, any ROWID information of the materialized view log must be invalidated. Oracle detects a table reorganization automatically only if the table is truncated as part of the reorganization.

If the table is not truncated, then Oracle must be notified of the table reorganization. To support table reorganizations, two procedures in the DBMS_MVIEW package, BEGIN_TABLE_REORGANIZATION and END_TABLE_REORGANIZATION, notify Oracle that the specified table has been reorganized. The procedures perform clean-up operations, verify the integrity of the logs and triggers that the fast refresh mechanism needs, and invalidate the ROWID information in the table's materialized view log. The inputs are the owner and name of the master to be reorganized. There is no output.

	
See Also:

"Method 2 for Reorganizing Table employees"

Truncating Masters

When a table is truncated, its materialized view log is also truncated. However, for primary key materialized views, you can preserve the materialized view log, allowing fast refreshes to continue. Although the information stored in a materialized view log is preserved, the materialized view log becomes invalid with respect to rowids when the master is truncated. The rowid information in the materialized view log will seem to be newly created and cannot be used by rowid materialized views for fast refresh.

The PRESERVE MATERIALIZED VIEW LOG option is the default. Therefore, if you specify the PRESERVE MATERIALIZED VIEW LOG option or no option, then the information in the master's materialized view log is preserved, but current rowid materialized views can use the log for a fast refresh only after a complete refresh has been performed.

	
Note:

To ensure that any previously fast refreshable materialized view is still refreshable, follow the guidelines in "Methods of Reorganizing a Database Table".

If the PURGE MATERIALIZED VIEW LOG option is specified, then the materialized view log is purged along with the master.

Examples

Either of the following two statements preserves materialized view log information when the master table named employees is truncated:

TRUNCATE TABLE hr.employees PRESERVE MATERIALIZED VIEW LOG;
TRUNCATE TABLE hr.employees;

The following statement truncates the materialized view log along with the master table:

TRUNCATE TABLE hr.employees PURGE MATERIALIZED VIEW LOG;

Methods of Reorganizing a Database Table

Oracle provides four table reorganization methods that preserve the capability for fast refresh. These appear in the following sections. Other reorganization methods require an initial complete refresh to enable subsequent fast refreshes.

	
Note:

Do not use Direct Loader during a reorganization of a master. Direct Loader can cause reordering of the columns, which could invalidate the log information used in subquery and LOB materialized views.

Method 1 for Reorganizing Table employees

Complete the following steps:

	
Call DBMS_MVIEW.BEGIN_TABLE_REORGANIZATION for table employees.

	
Rename table employees to employees_old.

	
Create table employees as SELECT * FROM employees_old.

	
Call DBMS_MVIEW.END_TABLE_REORGANIZATION for new table employees.

	
Caution:

When a table is renamed, its associated PL/SQL triggers are also adjusted to the new name of the table.

Ensure that no transaction is issued against the reorganized table between calling BEGIN_TABLE_REORGANIZATION and END_TABLE_REORGANIZATION.

Method 2 for Reorganizing Table employees

Complete the following steps:

	
Call DBMS_MVIEW.BEGIN_TABLE_REORGANIZATION for table employees.

	
Export table employees.

	
Truncate table employees with PRESERVE MATERIALIZED VIEW LOG option.

	
Import table employees using conventional path.

	
Call DBMS_MVIEW.END_TABLE_REORGANIZATION for new table employees.

	
Caution:

When you truncate masters as part of a reorganization, you must use the PRESERVE MATERIALIZED VIEW LOG clause of the truncate table DDL.

Ensure that no transaction is issued against the reorganized table between calling BEGIN_TABLE_REORGANIZATION and END_TABLE_REORGANIZATION.

Method 3 for Reorganizing Table employees

Complete the following steps:

	
Call DBMS_MVIEW.BEGIN_TABLE_REORGANIZATION for table employees.

	
Export table employees.

	
Rename table employees to employees_old.

	
Import table employees using conventional path.

	
Call DBMS_MVIEW.END_TABLE_REORGANIZATION for new table employees.

	
Caution:

When a table is renamed, its associated PL/SQL triggers are also adjusted to the new name of the table.

Ensure that no transaction is issued against the reorganized table between calling BEGIN_TABLE_REORGANIZATION and END_TABLE_REORGANIZATION.

Method 4 for Reorganizing Table employees

Complete the following steps:

	
Call DBMS_MVIEW.BEGIN_TABLE_REORGANIZATION for table employees.

	
Select contents of table employees to a flat file.

	
Rename table employees to employees_old.

	
Create table employees with the same shape as employees_old.

	
Run SQL*Loader using conventional path.

	
Call DBMS_MVIEW.END_TABLE_REORGANIZATION for new table employees.

	
Caution:

When a table is renamed, its associated PL/SQL triggers are also adjusted to the new name of the table.

Ensure that no transaction is issued against the reorganized table between calling BEGIN_TABLE_REORGANIZATION and END_TABLE_REORGANIZATION.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_MVIEW package

Dropping a Materialized View Log

You can delete a materialized view log regardless of its master or any existing materialized views. For example, you might decide to drop a materialized view log if one of the following conditions is true:

	
All materialized views of a master have been dropped.

	
All materialized views of a master are to be refreshed using complete refresh, not fast refresh.

	
A master no longer supports materialized views that require fast refreshes.

Here, a master can be a master table or a master materialized view. To delete a materialized view log, execute the DROP MATERIALIZED VIEW LOG statement in SQL*Plus. For example, the following statement deletes the materialized view log for a table named customers in the sales schema:

DROP MATERIALIZED VIEW LOG ON hr.employees;

Only the owner of the master or a user with the DROP ANY TABLE system privilege can drop a materialized view log.

Performing an Offline Instantiation of a Materialized View Site Using Export/Import

Adding a new materialized view site to your replication environment can cause network traffic. The network traffic is caused by propagating the entire contents of tables or materialized views through the network to the new materialized view site.

To minimize such network traffic, you can add a new materialized view site using offline instantiation procedure. With offline instantiation, you can create a new materialized view group at a materialized view site. Offline instantiation uses of Oracle's Export and Import utilities, which allow you to create an export file and transfer the data to the new site through a storage medium, such as CD-ROM, tape, and so on. Offline instantiation is especially useful for materialized views, because the target computer could be a laptop using a modem connection.

The following script performs an offline instantiation for a new materialized view group at a new materialized view site. The materialized view group is based on an existing master group at a master site. Meet the following requirements to complete these actions:

Executed As:

	
Replication Administrator at Master Site

	
Materialized View Administrator at New Materialized View Site

Executed At:

	
Master Site for Target Materialized View Site

	
New Materialized View Site

Replication Status: Normal

Materialized View Site:

	
Set up materialized view site. In this example, the materialized view site is mview.world and the master site is orc1.world.

	
Make sure that the appropriate schema has been created before the offline instantiation of your materialized view site.

	
Create proxy users at the master site if they do not exist.

	
Note:

You can use either Data Pump export/import or original export/import to perform exports and imports in an Advanced Replication environment. General references to export/import in this document refer to both Data Pump and original export/import.

	
See Also:

	
For more information on setting up a master site and creating proxy users at a master site, see "Setting Up Master Sites"

	
For more information on setting up materialized view sites, see "Setting Up Materialized View Sites"

Complete the following steps to set up a materialized view site named mview.world.

	
Note:

If you are viewing this document online, then you can copy the text from the "BEGINNING OF SCRIPT" line after this note to the "END OF SCRIPT" line into a text editor and then edit the text to create a script for your environment.

/************************ BEGINNING OF SCRIPT *********************************

Step 1 Connect to the master site as the replication administrator.

*/

SET ECHO ON

SPOOL offline.out

CONNECT repadmin/repadmin@orc1.world

/*

Step 2 Create the necessary materialized view logs, if they do not exist.

If materialized view logs do not already exist for the relevant master tables, then create them at the master site.

*/

CREATE MATERIALIZED VIEW LOG ON hr.countries;
CREATE MATERIALIZED VIEW LOG ON hr.departments;
CREATE MATERIALIZED VIEW LOG ON hr.employees;
CREATE MATERIALIZED VIEW LOG ON hr.jobs;
CREATE MATERIALIZED VIEW LOG ON hr.job_history;
CREATE MATERIALIZED VIEW LOG ON hr.locations;
CREATE MATERIALIZED VIEW LOG ON hr.regions;

/*

Step 3 Create a temporary schema at the master site for the materialized views.

To prepare materialized views for export, you must create the schema that contains the replicated objects.

In this example, create a temporary schema temp_schema.

*/

CONNECT SYSTEM/MANAGER@orc1.world

CREATE TABLESPACE offline_mview
 DATAFILE 'offline_mview.dbf' SIZE 10M AUTOEXTEND ON
 EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

CREATE TEMPORARY TABLESPACE offline_temp_mview
 TEMPFILE 'offline_temp_mview.dbf' SIZE 5M AUTOEXTEND ON;

CREATE USER temp_schema IDENTIFIED BY temp_schema;

ALTER USER temp_schema DEFAULT TABLESPACE offline_mview
 QUOTA UNLIMITED ON offline_mview;

ALTER USER temp_schema TEMPORARY TABLESPACE offline_temp_mview;

GRANT ALTER SESSION, CREATE CLUSTER, CREATE DATABASE LINK, CREATE SEQUENCE,
 CREATE SESSION, CREATE SYNONYM, CREATE TABLE, CREATE VIEW, CREATE INDEXTYPE,
 CREATE OPERATOR, CREATE PROCEDURE, CREATE TRIGGER, CREATE TYPE,
 CREATE MATERIALIZED VIEW, SELECT ANY TABLE
TO temp_schema;

CONNECT temp_schema/temp_schema@orc1.world;

/*

Step 4 Create temporary materialized views at the master site in the separate schema you created in Step 3.

These materialized views contain the data that you transfer to your new materialized view site using the Export utility.

	
Note:

Make sure the SELECT statements include the database link. In this example, the database link is orc1.world.

*/

CREATE MATERIALIZED VIEW temp_schema.countries
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT *
 FROM hr.countries@orc1.world;

CREATE MATERIALIZED VIEW temp_schema.departments
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT *
 FROM hr.departments@orc1.world;

CREATE MATERIALIZED VIEW temp_schema.employees
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT *
 FROM hr.employees@orc1.world;

CREATE MATERIALIZED VIEW temp_schema.jobs
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT *
 FROM hr.jobs@orc1.world;

CREATE MATERIALIZED VIEW temp_schema.job_history
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT *
 FROM hr.job_history@orc1.world;

CREATE MATERIALIZED VIEW temp_schema.locations
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT *
 FROM hr.locations@orc1.world;

CREATE MATERIALIZED VIEW temp_schema.regions
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT *
 FROM hr.regions@orc1.world;

/*

Step 5 Create a directory object at each database.

Each database involved in this operation must have a directory object to hold the Data Pump dump file, and the user who will perform the export or import must have READ and WRITE privileges on this directory object. In this example, a Data Pump export is performed at the master site, and a Data Pump import is performed at the materialized view site.

While connected in SQL*Plus to a database as an administrative user who can create directory objects using the SQL statement CREATE DIRECTORY, create a directory object to hold the Data Pump dump file and log files. For example:

*/

CONNECT SYSTEM/MANAGER@orc1.world

CREATE DIRECTORY DPUMP_DIR AS '/usr/dpump_dir';

CONNECT SYSTEM/MANAGER@mview.world

CREATE DIRECTORY DPUMP_DIR AS '/usr/dpump_dir';

/*

Make sure you complete these actions at both databases involved in the operation. In this example, SYSTEM user creates the directory objects and performs all exports and imports. If a user who does not own the directory object will perform the export or import, then grant the user READ and WRITE privileges on the directory object.

Step 6 Perform a schema-level export of the schema containing the materialized views.

On a command line, perform the export that will contain all data and metadata for the materialized views. This example connects as the SYSTEM user. The following is an example Data Pump export command:

expdp system/manager SCHEMAS=temp_schema DIRECTORY=DPUMP_DIR
DUMPFILE=temp_schema.dmp

	
See Also:

Oracle Database Utilities for information about performing a Data Pump export

*/

PAUSE Press <RETURN> to continue when the export is complete.

/*

Step 7 Connect to the new materialized view site as SYSTEM user.

*/

CONNECT SYSTEM/MANAGER@mview.world

/*

Step 8 Drop the hr User

This example creates the materialized views in the hr schema at the materialized view site. This schema is created when Oracle is installed. This step drops the schema, but the schema will be re-created and populated with materialized views later in this example.

*/

DROP USER hr CASCADE;

/*

Step 9 Create necessary schema and database link at the materialized view site, if they do not exist.

Before you perform the offline instantiation of your materialized views, create the schema that will contain the materialized views at the new materialized view site and the database link from the materialized view site to the master site. The materialized views must be in the same schema that contains the master objects at the master site. If the schema exists, then grant the necessary privileges and create the database link.

*/

CREATE TABLESPACE demo_mview
 DATAFILE 'demo_mview.dbf' SIZE 10M AUTOEXTEND ON
 EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

CREATE TEMPORARY TABLESPACE temp_mview
 TEMPFILE 'temp_mview.dbf' SIZE 5M AUTOEXTEND ON;

CREATE USER hr IDENTIFIED BY hr;

ALTER USER hr DEFAULT TABLESPACE demo_mview
 QUOTA UNLIMITED ON demo_mview;

ALTER USER hr TEMPORARY TABLESPACE temp_mview;

GRANT
 CREATE SESSION,
 CREATE TABLE,
 CREATE PROCEDURE,
 CREATE SEQUENCE,
 CREATE TRIGGER,
 CREATE VIEW,
 CREATE SYNONYM,
 ALTER SESSION,
 CREATE MATERIALIZED VIEW,
 ALTER ANY MATERIALIZED VIEW,
 CREATE DATABASE LINK
TO hr;

CONNECT hr/hr@mview.world

CREATE DATABASE LINK orc1.world CONNECT TO hr IDENTIFIED by hr;

/*

Step 10 Connect to the new materialized view site as the materialized view administrator.

*/

CONNECT mviewadmin/mviewadmin@mview.world

/*

Step 11 Create an empty materialized view group.

Run the DBMS_REPCAT.CREATE_MVIEW_REPGROUP procedure at the new materialized view site to create an empty materialized view group into which you will add your materialized views.

*/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPGROUP (
 gname => 'hr_repg',
 master => 'orc1.world',
 propagation_mode => 'ASYNCHRONOUS');
END;
/

/*

Step 12 Create an empty refresh group.

All materialized views that are added to a particular refresh group are refreshed at the same time. This ensures transactional consistency between the related materialized views in the refresh group.

*/

BEGIN
 DBMS_REFRESH.MAKE (
 name => 'mviewadmin.hr_refg',
 list => '',
 next_date => SYSDATE,
 interval => 'SYSDATE + 1/24',
 implicit_destroy => FALSE,
 rollback_seg => '',
 push_deferred_rpc => TRUE,
 refresh_after_errors => FALSE);
END;
/

/*

Step 13 In a separate terminal window, transfer the export dump file to the new materialized view site.

Using the DBMS_FILE_TRANSFER package, FTP or some other method, transfer the export dump file to the new materialized view site.

*/

PAUSE Press <RETURN> to continue after transferring the dump file.

/*

Step 14 In a separate terminal window, import the materialized views to the owner at the new materialized view site.

On a command line, perform the import of the file that you exported in Step 5. This example connects as the SYSTEM user.

If you use Data Pump, then make sure that you import your data using the REMAP_SCHEMA parameter to import the data from the temporary user you created at the master site to the owner of the materialized views at the materialized view site. In this example, the temporary user at the master site is temp_schema and the materialized view owner at the materialized view site is hr. If you use original export/import, then use the FROMUSER and TOUSER parameters.

Also, if you use Data Pump, then you can use the REMAP_TABLESPACE parameter if the tablespace is different at the master site and the materialized view site. In this example, the tablespace at the master site is offline_mview (created in Step 3) and the tablespace at the materialized view site is demo_mview (created in Step 9). If you use original export/import, then using a different tablespace at the master site and materialized view site is possible, but it involves multiple steps.

The following is an example import command:

impdp system/manager DIRECTORY=DPUMP_DIR DUMPFILE=temp_schema.dmp
REMAP_SCHEMA=temp_schema:hr REMAP_TABLESPACE=offline_mview:demo_mview

Only users with the DBA role or the IMP_FULL_DATABASE role can import using the REMAP_SCHEMA parameter.

	
See Also:

Oracle Database Utilities for information about performing a Data Pump import

*/

PAUSE Press <RETURN> to continue when the import is complete.

/*

Step 15 Add materialized views to the materialized view group.

Execute the DBMS_REPCAT.CREATE_MVIEW_REPOBJECT procedure to add the materialized views to the materialized view group you created in Step 9.

*/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'countries',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'departments',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'employees',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'jobs',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'job_history',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'locations',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'regions',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

/*

Step 16 Add the materialized views to the refresh group.

All of the materialized view group objects that you add to the refresh group are refreshed at the same time to preserve referential integrity between related materialized views. Execute the DBMS_REFRESH.ADD procedure to add the materialized views to the refresh group you created in Step 12.

*/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.countries',
 lax => TRUE);
END;
/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.departments',
 lax => TRUE);
END;
/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.employees',
 lax => TRUE);
END;
/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.jobs',
 lax => TRUE);
END;
/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.job_history',
 lax => TRUE);
END;
/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.locations',
 lax => TRUE);
END;
/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.regions',
 lax => TRUE);
END;
/

/*

Step 17 Refresh materialized views to register them at master site.

In addition to retrieving the latest changes from the master tables, refreshing the materialized views at the new materialized view site registers the offline instantiated materialized views at the target master site.

*/

EXECUTE DBMS_REFRESH.REFRESH ('hr_refg');

/*

Step 18 Connect to the master site as SYSTEM user.

*/

CONNECT SYSTEM/MANAGER@orc1.world

/*

Step 19 Drop the temporary schema to delete the temporary materialized views you created in Step 4 at the master site.

*/

DROP USER temp_schema CASCADE;

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Using a Group Owner for a Materialized View Group

Specifying a group owner when you define a new materialized view group and its related objects enables you to create multiple materialized view groups based on the same replication group at a single materialized view site. Also, specifying group owners enables you to create multiple materialized view groups that are based on the same replication group at a master site or master materialized view site. You accomplish this by creating the materialized view groups under different schemas at the materialized view site. This example uses the schemas bob and jane as group owners and assumes that these schemas exist at the materialized view site.

Executed As:

	
Materialized View Administrator at New Materialized View Site

Executed At:

	
Materialized View Site

Replication Status: Normal

Materialized View Site:

	
Set up materialized view site. In this example, the materialized view site is mv1.world and the master site is orc1.world.

	
Create proxy users at the master site if they do not exist.

	
Create materialized view logs for the tables in the hr schema at the master site if they do not exist.

Complete the following steps to use a group owner.

	
Note:

If you are viewing this document online, then you can copy the text from the "BEGINNING OF SCRIPT" line after this note to the "END OF SCRIPT" line into a text editor and then edit the text to create a script for your environment.

	
See Also:

	
Oracle Database Advanced Replication for a complete description of using group owners and the advantages of using multiple data sets

	
For more information on setting up a master site and creating proxy users at a master site, see "Setting Up Master Sites"

	
For more information on setting up materialized view sites, see "Setting Up Materialized View Sites"

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Create a database link from the hr schema to the master site

Before building your materialized view group, you must make sure that the replicated schema exists at the remote materialized view site and that the necessary database links have been created.

In this example, if the hr schema does not exist, then create the schema. If the hr schema already exists at the materialized view site, then grant any necessary privileges.

*/

CONNECT SYSTEM/MANAGER@mv1.world

CREATE TABLESPACE demo_mv1
 DATAFILE 'demo_mv1.dbf' SIZE 10M AUTOEXTEND ON
 EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

CREATE TEMPORARY TABLESPACE temp_mv1
 TEMPFILE 'temp_mv1.dbf' SIZE 5M AUTOEXTEND ON;

CREATE USER hr IDENTIFIED BY hr;

ALTER USER hr DEFAULT TABLESPACE demo_mv1
 QUOTA UNLIMITED ON demo_mv1;

ALTER USER hr TEMPORARY TABLESPACE temp_mv1;

GRANT
 CREATE SESSION,
 CREATE TABLE,
 CREATE PROCEDURE,
 CREATE SEQUENCE,
 CREATE TRIGGER,
 CREATE VIEW,
 CREATE SYNONYM,
 ALTER SESSION,
 CREATE MATERIALIZED VIEW,
 ALTER ANY MATERIALIZED VIEW,
 CREATE DATABASE LINK
 TO hr;

/*

If it does not already exist, then create the database link for the replicated schema.

Before building your materialized view group, you must make sure that the necessary database links exist for the replicated schema. The owner of the materialized views needs a database link pointing to the proxy_refresher that was created when the master site was set up.

*/

SET ECHO ON

SPOOL mv_group_owner.out

CONNECT hr/hr@mv1.world

CREATE DATABASE LINK orc1.world
 CONNECT TO proxy_refresher IDENTIFIED BY proxy_refresher;

/*

Step 2 Connect to the materialized view site as the materialized view administrator.

*/

CONNECT mviewadmin/mviewadmin@mv1.world

/*

Step 3 Create materialized view group with group owner (gowner) bob using the CREATE_MVIEW_REPGROUP procedure.

The replication group that you specify in the gname parameter must match the name of the replication group that you are replicating at the target master site or master materialized view site. The gowner parameter enables you to specify an additional identifier that lets you create multiple materialized view groups based on the same replication group at the same materialized view site.

In this example, materialized view groups are created for the group owners bob and jane, and these two materialized view groups are based on the same replication group.

*/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPGROUP (
 gname => 'hr_repg',
 master => 'orc1.world',
 propagation_mode => 'ASYNCHRONOUS',
 gowner => 'bob');
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPGROUP (
 gname => 'hr_repg',
 master => 'orc1.world',
 propagation_mode => 'ASYNCHRONOUS',
 gowner => 'jane');
END;
/

/*

Step 4 Create the materialized views owned by bob.

The gowner value used when creating your materialized view objects must match the gowner value specified when you created the materialized view group in the previous procedures. After creating the materialized view groups, you can create materialized views based on the same master in the hr_repg materialized view group owned by bob and jane. This example assumes that these users exist.

	
Caution:

Each object must have a unique name. When using a gowner to create multiple materialized view groups, duplicate object names could become a problem. To avoid any object-naming conflicts, you might want to append the gowner value to the end of the object name that you create, as illustrated in the following procedures (that is, create materialized view hr.countries_bob). Such a naming method ensures that you do not create any objects with conflicting names.

Whenever you create a materialized view, always specify the schema name of the table owner in the query for the materialized view. In the following examples, hr is specified as the owner of the table in each query.

*/

CREATE MATERIALIZED VIEW hr.countries_bob
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.countries@orc1.world;

CREATE MATERIALIZED VIEW hr.departments_bob
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.departments@orc1.world;

CREATE MATERIALIZED VIEW hr.employees_bob
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.employees@orc1.world;

CREATE MATERIALIZED VIEW hr.jobs_bob
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.jobs@orc1.world;

CREATE MATERIALIZED VIEW hr.job_history_bob
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.job_history@orc1.world;

CREATE MATERIALIZED VIEW hr.locations_bob
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.locations@orc1.world;

CREATE MATERIALIZED VIEW hr.regions_bob
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.regions@orc1.world;

/*

Step 5 Create the materialized views owned by jane.

*/

CREATE MATERIALIZED VIEW hr.departments_jane
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.departments@orc1.world;

CREATE MATERIALIZED VIEW hr.employees_jane
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.employees@orc1.world;

/*

Step 6 Add the materialized views owned by bob to the materialized view group.

*/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'countries_bob',
 type => 'SNAPSHOT',
 min_communication => TRUE,
 gowner => 'bob');
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'departments_bob',
 type => 'SNAPSHOT',
 min_communication => TRUE,
 gowner => 'bob');
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'employees_bob',
 type => 'SNAPSHOT',
 min_communication => TRUE,
 gowner => 'bob');
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'jobs_bob',
 type => 'SNAPSHOT',
 min_communication => TRUE,
 gowner => 'bob');
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'job_history_bob',
 type => 'SNAPSHOT',
 min_communication => TRUE,
 gowner => 'bob');
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'locations_bob',
 type => 'SNAPSHOT',
 min_communication => TRUE,
 gowner => 'bob');
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'regions_bob',
 type => 'SNAPSHOT',
 min_communication => TRUE,
 gowner => 'bob');
END;
/

/*

Step 7 Add the materialized views owned by jane to the materialized view group.

*/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'departments_jane',
 type => 'SNAPSHOT',
 min_communication => TRUE,
 gowner => 'jane');
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'employees_jane',
 type => 'SNAPSHOT',
 min_communication => TRUE,
 gowner => 'jane');
END;
/

SET ECHO OFF

SPOOL OFF

/*

Step 8 Add your materialized views to a refresh group.

	
See Also:

Chapter 5, "Create Materialized View Group" (Step 6) for more information about adding materialized views to a refresh group

/************************* END OF SCRIPT **********************************/

17 DBMS_REFRESH

DBMS_REFRESH enables you to create groups of materialized views that can be refreshed together to a transactionally consistent point in time.

This chapter contains this topic:

	
Summary of DBMS_REFRESH Subprograms

Summary of DBMS_REFRESH Subprograms

Table 17-1 DBMS_REFRESH Package Subprograms

	Subprogram	Description
	
"ADD Procedure"

	
Adds materialized views to a refresh group.

	
"CHANGE Procedure"

	
Changes the refresh interval for a refresh group.

	
"DESTROY Procedure"

	
Removes all of the materialized views from a refresh group and deletes the refresh group.

	
"MAKE Procedure"

	
Specifies the members of a refresh group and the time interval used to determine when the members of this group should be refreshed.

	
"REFRESH Procedure"

	
Manually refreshes a refresh group.

	
"SUBTRACT Procedure"

	
Removes materialized views from a refresh group.

ADD Procedure

This procedure adds materialized views to a refresh group.

	
See Also:

Step 6, "Add objects to the refresh group.", and Oracle Database Advanced Replication for more information

Syntax

DBMS_REFRESH.ADD (
 name IN VARCHAR2,
 { list IN VARCHAR2,
 | tab IN DBMS_UTILITY.UNCL_ARRAY, }
 lax IN BOOLEAN := false);

	
Note:

This procedure is overloaded. The list and tab parameters are mutually exclusive.

Parameters

Table 17-2 ADD Procedures Parameters

	Parameter	Description
	

name

	
Name of the refresh group to which you want to add members, specified as [schema_name.]refresh_group_name. If the schema is not specified, then the current user is the default.

	

list

	
Comma-delimited list of materialized views that you want to add to the refresh group. Synonyms are not supported.

Each materialized view is specified as [schema_name.]materialized_view_name. If the schema is not specified, then the refresh group owner is the default.

	

tab

	
Instead of a comma-delimited list, you can supply a PL/SQL index-by table of type DBMS_UTILITY.UNCL_ARRAY, where each element is the name of a materialized view. The first materialized view should be in position 1. The last position must be NULL.

Each materialized view is specified as [schema_name.]materialized_view_name. If the schema is not specified, then the refresh group owner is the default.

	

lax

	
A materialized view can belong to only one refresh group at a time. If you are moving a materialized view from one group to another, then you must set the lax flag to true to succeed. Oracle then automatically removes the materialized view from the other refresh group and updates its refresh interval to be that of its new group. Otherwise, the call to ADD generates an error message.

CHANGE Procedure

This procedure changes the refresh interval for a refresh group.

	
See Also:

Oracle Database Advanced Replication for more information about refresh groups

Syntax

DBMS_REFRESH.CHANGE (
 name IN VARCHAR2,
 next_date IN DATE := NULL,
 interval IN VARCHAR2 := NULL,
 implicit_destroy IN BOOLEAN := NULL,
 rollback_seg IN VARCHAR2 := NULL,
 push_deferred_rpc IN BOOLEAN := NULL,
 refresh_after_errors IN BOOLEAN := NULL,
 purge_option IN BINARY_INTEGER := NULL,
 parallelism IN BINARY_INTEGER := NULL,
 heap_size IN BINARY_INTEGER := NULL);

Parameters

Table 17-3 CHANGE Procedures Parameters

	Parameter	Description
	

name

	
Name of the refresh group for which you want to alter the refresh interval.

	

next_date

	
Next date that you want a refresh to occur. By default, this date remains unchanged.

	

interval

	
Function used to calculate the next time to refresh the materialized views in the refresh group. This interval is evaluated immediately before the refresh. Thus, you should select an interval that is greater than the time it takes to perform a refresh. By default, the interval remains unchanged.

	

implicit_destroy

	
Allows you to reset the value of the implicit_destroy flag. If this flag is set, then Oracle automatically deletes the group if it no longer contains any members. By default, this flag remains unchanged.

	

rollback_seg

	
Allows you to change the rollback segment used. By default, the rollback segment remains unchanged. To reset this parameter to use the default rollback segment, specify NULL, including the quotes. Specifying NULL without quotes indicates that you do not want to change the rollback segment currently being used.

	

push_deferred_rpc

	
Used by updatable materialized views only. Set this parameter to true if you want to push changes from the materialized view to its associated master table or master materialized view before refreshing the materialized view. Otherwise, these changes might appear to be temporarily lost. By default, this flag remains unchanged.

	

refresh_after_errors

	
Used by updatable materialized views only. Set this parameter to true if you want the refresh to proceed even if there are outstanding conflicts logged in the DEFERROR view for the materialized view's master table or master materialized view. By default, this flag remains unchanged.

	

purge_option

	
If you are using the parallel propagation mechanism (that is, parallelism is set to 1 or greater), then:

	
0 = do not purge

	
1 = lazy (default)

	
2 = aggressive

In most cases, lazy purge is the optimal setting. Set purge to aggressive to trim back the queue if multiple master replication groups are pushed to different target sites, and updates to one or more replication groups are infrequent and infrequently pushed. If all replication groups are infrequently updated and pushed, then set purge to do not purge and occasionally execute PUSH with purge set to aggressive to reduce the queue.

	

parallelism

	
0 specifies serial propagation.

n > 1 specifies parallel propagation with n parallel processes.

1 specifies parallel propagation using only one parallel process.

	

heap_size

	
Maximum number of transactions to be examined simultaneously for parallel propagation scheduling. Oracle automatically calculates the default setting for optimal performance.

Note: Do not set this parameter unless directed to do so by Oracle Support Services.

DESTROY Procedure

This procedure removes all of the materialized views from a refresh group and delete the refresh group.

	
See Also:

Oracle Database Advanced Replication for more information refresh groups

Syntax

DBMS_REFRESH.DESTROY (
 name IN VARCHAR2);

Parameters

Table 17-4 DESTROY Procedure Parameters

	Parameter	Description
	

name

	
Name of the refresh group that you want to destroy.

MAKE Procedure

This procedure specifies the members of a refresh group and the time interval used to determine when the members of this group should be refreshed.

	
See Also:

Step 4, "Create the refresh group.", and Oracle Database Advanced Replication for more information

Syntax

DBMS_REFRESH.MAKE (
 name IN VARCHAR2
 { list IN VARCHAR2,
 | tab IN DBMS_UTILITY.UNCL_ARRAY,}
 next_date IN DATE,
 interval IN VARCHAR2,
 implicit_destroy IN BOOLEAN := false,
 lax IN BOOLEAN := false,
 job IN BINARY INTEGER := 0,
 rollback_seg IN VARCHAR2 := NULL,
 push_deferred_rpc IN BOOLEAN := true,
 refresh_after_errors IN BOOLEAN := false
 purge_option IN BINARY_INTEGER := NULL,
 parallelism IN BINARY_INTEGER := NULL,
 heap_size IN BINARY_INTEGER := NULL);

	
Note:

This procedure is overloaded. The list and tab parameters are mutually exclusive.

Parameters

Table 17-5 MAKE Procedure Parameters

	Parameter	Description
	

name

	
Unique name used to identify the refresh group, specified as [schema_name.]refresh_group_name. If the schema is not specified, then the current user is the default. Refresh groups must follow the same naming conventions as tables.

	

list

	
Comma-delimited list of materialized views that you want to refresh. Synonyms are not supported. These materialized views can be located in different schemas and have different master tables or master materialized views. However, all of the listed materialized views must be in your current database.

Each materialized view is specified as [schema_name.]materialized_view_name. If the schema is not specified, then the refresh group owner is the default.

	

tab

	
Instead of a comma-delimited list, you can supply a PL/SQL index-by table of names of materialized views that you want to refresh using the datatype DBMS_UTILITY.UNCL_ARRAY. If the table contains the names of n materialized views, then the first materialized view should be in position 1 and the n + 1 position should be set to NULL.

Each materialized view is specified as [schema_name.]materialized_view_name. If the schema is not specified, then the refresh group owner is the default.

	

next_date

	
Next date that you want a refresh to occur.

	

interval

	
Function used to calculate the next time to refresh the materialized views in the group. This field is used with the next_date value.

For example, if you specify NEXT_DAY(SYSDATE+1, "MONDAY") as your interval, and if your next_date evaluates to Monday, then Oracle refreshes the materialized views every Monday. This interval is evaluated immediately before the refresh. Thus, you should select an interval that is greater than the time it takes to perform a refresh.

	

implicit_destroy

	
Set this to true if you want to delete the refresh group automatically when it no longer contains any members. Oracle checks this flag only when you call the SUBTRACT procedure. That is, setting this flag still enables you to create an empty refresh group.

	

lax

	
A materialized view can belong to only one refresh group at a time. If you are moving a materialized view from an existing group to a new refresh group, then you must set this to true to succeed. Oracle then automatically removes the materialized view from the other refresh group and updates its refresh interval to be that of its new group. Otherwise, the call to MAKE generates an error message.

	

job

	
Needed by the Import utility. Use the default value, 0.

	

rollback_seg

	
Name of the rollback segment to use while refreshing materialized views. The default, NULL, uses the default rollback segment.

	

push_deferred_rpc

	
Used by updatable materialized views only. Use the default value, true, if you want to push changes from the materialized view to its associated master table or master materialized view before refreshing the materialized view. Otherwise, these changes might appear to be temporarily lost.

	

refresh_after_errors

	
Used by updatable materialized views only. Set this to 0 if you want the refresh to proceed even if there are outstanding conflicts logged in the DEFERROR view for the materialized view's master table or master materialized view.

	

purge_option

	
If you are using the parallel propagation mechanism (in other words, parallelism is set to 1 or greater), then 0 = do not purge; 1 = lazy (default); 2 = aggressive. In most cases, lazy purge is the optimal setting.

Set purge to aggressive to trim back the queue if multiple master replication groups are pushed to different target sites, and updates to one or more replication groups are infrequent and infrequently pushed. If all replication groups are infrequently updated and pushed, then set purge to do not purge and occasionally execute PUSH with purge set to aggressive to reduce the queue.

	

parallelism

	
0 specifies serial propagation.

n > 1 specifies parallel propagation with n parallel processes.

1 specifies parallel propagation using only one parallel process.

	

heap_size

	
Maximum number of transactions to be examined simultaneously for parallel propagation scheduling. Oracle automatically calculates the default setting for optimal performance.

Note: Do not set this parameter unless directed to do so by Oracle Support Services.

REFRESH Procedure

This procedure manually refreshes a refresh group.

	
See Also:

Oracle Database Advanced Replication for more information about refresh groups

Syntax

DBMS_REFRESH.REFRESH (
 name IN VARCHAR2);

Parameter

Table 17-6 REFRESH Procedure Parameter

	Parameter	Description
	

name

	
Name of the refresh group that you want to refresh manually.

SUBTRACT Procedure

This procedure removes materialized views from a refresh group.

	
See Also:

Oracle Database Advanced Replication for more information about refresh groups

Syntax

DBMS_REFRESH.SUBTRACT (
 name IN VARCHAR2,
 { list IN VARCHAR2,
 | tab IN DBMS_UTILITY.UNCL_ARRAY, }
 lax IN BOOLEAN := false);

	
Note:

This procedure is overloaded. The list and tab parameters are mutually exclusive.

Parameters

Table 17-7 SUBTRACT Procedure Parameters

	Parameter	Description
	

name

	
Name of the refresh group from which you want to remove members.

	

list

	
Comma-delimited list of materialized views that you want to remove from the refresh group. (Synonyms are not supported.) These materialized views can be located in different schemas and have different master tables or master materialized views. However, all of the listed materialized views must be in your current database.

	

tab

	
Instead of a comma-delimited list, you can supply a PL/SQL index-by table of names of materialized views that you want to refresh using the datatype DBMS_UTILITY.UNCL_ARRAY. If the table contains the names of n materialized views, then the first materialized view should be in position 1 and the n + 1 position should be set to NULL.

	

lax

	
Set this to false if you want Oracle to generate an error message if the materialized view you are attempting to remove is not a member of the refresh group.

26 Materialized View and Refresh Group Views

This chapter lists the following data dictionary views, which provide information about materialized views and materialized view refresh groups.

	ALL_ Views	DBA_ Views	USER_ Views
	ALL_BASE_TABLE_MVIEWS	DBA_BASE_TABLE_MVIEWS	USER_BASE_TABLE_MVIEWS
	-	DBA_MVIEW_LOG_FILTER_COLS	-
	ALL_MVIEW_LOGS	DBA_MVIEW_LOGS	USER_MVIEW_LOGS
	ALL_MVIEW_REFRESH_TIMES	DBA_MVIEW_REFRESH_TIMES	USER_MVIEW_REFRESH_TIMES
	ALL_MVIEWS	DBA_MVIEWS	USER_MVIEWS
	-	DBA_RCHILD	-
	ALL_REFRESH	DBA_REFRESH	USER_REFRESH
	ALL_REFRESH_CHILDREN	DBA_REFRESH_CHILDREN	USER_REFRESH_CHILDREN
	ALL_REGISTERED_MVIEWS	DBA_REGISTERED_MVIEWS	USER_REGISTERED_MVIEWS
	-	DBA_RGROUP	-

	
See Also:

	
Oracle Database Reference for more information about these views

	
Chapter 10, "Monitoring a Replication Environment" for example queries that use some of these views

19 DBMS_REPCAT_INSTANTIATE

DBMS_REPCAT_INSTANTIATE package instantiates deployment templates.

This chapter contains this topic:

	
Summary of DBMS_REPCAT_INSTANTIATE Subprograms

Summary of DBMS_REPCAT_INSTANTIATE Subprograms

Table 19-1 DBMS_REPCAT_INSTANTIATE Package Subprograms

	Subprogram	Description
	

DROP_SITE_INSTANTIATION Procedure

	
Public procedure that removes the target site from the DBA_REPCAT_TEMPLATE_SITES view.

	

INSTANTIATE_OFFLINE Function

	
Public function that generates a script at the master site that is used to create the materialized view environment at the remote materialized view site while offline.

	

INSTANTIATE_ONLINE Function

	
Public function that generates a script at the master site that is used to create the materialized view environment at the remote materialized view site while online.

DROP_SITE_INSTANTIATION Procedure

This procedure drops a template instantiation at a target site. This procedure removes all related metadata at the master site and disables the specified site from refreshing its materialized views. You must execute this procedure as the user who originally instantiated the template. To see who instantiated the template, query the ALL_REPCAT_TEMPLATE_SITES view.

Syntax

DBMS_REPCAT_INSTANTIATE.DROP_SITE_INSTANTIATION(
 refresh_template_name IN VARCHAR2,
 site_name IN VARCHAR2);

Parameters

Table 19-2 DROP_SITE_INSTANTIATION Procedure Parameters

	Parameter	Description
	

refresh_template_name

	
The name of the deployment template to be dropped.

	

site_name

	
Identifies the master site where you want to drop the specified template instantiation.

INSTANTIATE_OFFLINE Function

This function generates a file at the master site that is used to create the materialized view environment at the remote materialized view site while offline. This generated file is an offline instantiation file and should be used at remote materialized view sites that are not able to remain connected to the master site for an extended amount of time.

This is an ideal solution when the remote materialized view site is a laptop. Use the packaging interface in the Replication Management tool to package the generated file and data into a single file that can be posted on an FTP site or loaded to a CD-ROM, floppy disk, and so on. You can also transfer the file using the DBMS_FILE_TRANSFER package.

The script generated by this function is stored in the USER_REPCAT_TEMP_OUTPUT temporary view and is used by several Oracle tools, including the Replication Management tool, during the distribution of deployment templates. The number returned by this function is used to retrieve the appropriate information from the USER_REPCAT_TEMP_OUTPUT view.

The user who executes this public function becomes the "registered" user of the instantiated template at the specified site.

	
Note:

This function is used in performing an offline instantiation of a deployment template.
This function should not be confused with the procedures in the DBMS_OFFLINE_OG package (used for performing an offline instantiation of a master table). See the documentation for this package for more information on their usage.

	
See Also:

	
"Packaging a Deployment Template for Instantiation"

	
Oracle Database Advanced Replication

	
The Replication Management tool's online help

Syntax

DBMS_REPCAT_INSTANTIATE.INSTANTIATE_OFFLINE(
 refresh_template_name IN VARCHAR2,
 site_name IN VARCHAR2,
 runtime_parm_id IN NUMBER := -1e-130,
 next_date IN DATE := SYSDATE,
 interval IN VARCHAR2 := 'SYSDATE + 1',
 use_default_gowner IN BOOLEAN := true)
 return NUMBER;

Parameters

Table 19-3 INSTANTIATE_OFFLINE Function Parameters

	Parameter	Description
	

refresh_template_name

	
The name of the deployment template to be instantiated.

	

site_name

	
The name of the remote site that is instantiating the deployment template.

	

runtime_parm_id

	
If you have defined runtime parameter values using the INSERT_RUNTIME_PARMS procedure, specify the identification used when creating the runtime parameters (the identification was retrieved by using the GET_RUNTIME_PARM_ID function).

	

next_date

	
The next refresh date value to be used when creating the refresh group.

	

interval

	
The refresh interval to be used when creating the refresh group.

	

use_default_gowner

	
If true, then any materialized view groups created are owned by the default user PUBLIC. If false, then any materialized view groups created are owned by the user performing the instantiation.

Exceptions

Table 19-4 INSTANTIATE_OFFLINE Function Exceptions

	Exception	Description
	

miss_refresh_template

	
The deployment template name specified is invalid or does not exist.

	

dupl_template_site

	
The deployment template has already been instantiated at the materialized view site. A deployment template can be instantiated only once at a particular materialized view site.

	

not_authorized

	
The user attempting to instantiate the deployment template is not authorized to do so.

Returns

Table 19-5 INSTANTIATE_OFFLINE Function Returns

	Return Value	Description
	
<system-generated number>

	
Specifies the generated system number for the output_id when you select from the USER_REPCAT_TEMP_OUTPUT view to retrieve the generated instantiation script.

INSTANTIATE_ONLINE Function

This function generates a script at the master site that is used to create the materialized view environment at the remote materialized view site while online. This generated script should be used at remote materialized view sites that are able to remain connected to the master site for an extended amount of time, as the instantiation process at the remote materialized view site might be lengthy (depending on the amount of data that is populated to the new materialized views).

The script generated by this function is stored in the USER_REPCAT_TEMP_OUTPUT temporary view and is used by several Oracle tools, including the Replication Management tool, during the distribution of deployment templates. The number returned by this function is used to retrieve the appropriate information from the USER_REPCAT_TEMP_OUTPUT view.

The user who executes this public function becomes the "registered" user of the instantiated template at the specified site.

	
See Also:

	
"Packaging a Deployment Template for Instantiation"

	
Oracle Database Advanced Replication

	
The Replication Management tool's online help

Syntax

DBMS_REPCAT_INSTANTIATE.INSTANTIATE_ONLINE(
 refresh_template_name IN VARCHAR2,
 site_name IN VARCHAR2,
 runtime_parm_id IN NUMBER := -1e-130,
 next_date IN DATE := SYSDATE,
 interval IN VARCHAR2 := 'SYSDATE + 1',
 use_default_gowner IN BOOLEAN := true)
 return NUMBER;

Parameters

Table 19-6 INSTANTIATE_ONLINE Function Parameters

	Parameter	Description
	

refresh_template_name

	
The name of the deployment template to be instantiated.

	

site_name

	
The name of the remote site that is instantiating the deployment template.

	

runtime_parm_id

	
If you have defined runtime parameter values using the INSERT_RUNTIME_PARMS procedure, specify the identification used when creating the runtime parameters (the identification was retrieved by using the GET_RUNTIME_PARM_ID function).

	

next_date

	
Specifies the next refresh date value to be used when creating the refresh group.

	

interval

	
Specifies the refresh interval to be used when creating the refresh group.

	

use_default_gowner

	
If true, then any materialized view groups created are owned by the default user PUBLIC. If false, then any materialized view groups created are owned by the user performing the instantiation.

Exceptions

Table 19-7 INSTANTIATE_ONLINE Function Exceptions

	Exception	Description
	

miss_refresh_template

	
The deployment template name specified is invalid or does not exist.

	

dupl_template_site

	
The deployment template has already been instantiated at the materialized view site. A deployment template can be instantiated only once at a particular materialized view site.

	

not_authorized

	
The user attempting to instantiate the deployment template is not authorized to do so.

Returns

Table 19-8 INSTANTIATE_ONLINE Function Returns

	Return Value	Description
	
<system-generated number>

	
Specifies the generated system number for the output_id when you select from the USER_REPCAT_TEMP_OUTPUT view to retrieve the generated instantiation script.

11 Introduction to the Replication Management API Reference

All installations of Advanced Replication include the replication management application programming interface (API). This replication management API is a collection of PL/SQL packages that administrators use to configure and manage replication features at each site. The Replication Management tool in the Oracle Enterprise Manager Console also uses the procedures and functions of each site's replication management API to perform work.

This chapter contains these topics:

	
Examples of Using Oracle's Replication Management API

	
Issues to Consider When Using the Replication Management API

	
The Replication Management Tool and the Replication Management API

	
Abbreviations for Datetime and Interval Datatypes

	
Note:

Some of the PL/SQL procedures and functions described in the chapters in this part are overloaded. That is, two or more procedures or functions have the same name in a single package, but their formal parameters differ in number, order, or datatype family. When a procedure or function is overloaded, it is noted in the description. See the Oracle Database PL/SQL User's Guide and Reference for more information about overloading and for more information about PL/SQL in general.

Examples of Using Oracle's Replication Management API

To use Oracle's replication management API, you issue procedure or function calls using a query tool such as SQL*Plus or Enterprise Manager SQL Worksheet. For example, the following call to the DBMS_REPCAT.CREATE_MASTER_REPOBJECT procedure creates a new replicated table hr.employees in the hr_repg replication group:

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'TABLE',
 oname => 'employees',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

To call a replication management API function, you must provide an environment to receive the return value of the function. For example, the following anonymous PL/SQL block calls the DBMS_DEFER_SYS.DISABLED function in an IF statement.

BEGIN
 IF DBMS_DEFER_SYS.DISABLED ('inst2') THEN
 DBMS_OUTPUT.PUT_LINE('Propagation to INST2 is disabled.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Propagation to INST2 is enabled.');
 END IF;
END;
/

Issues to Consider When Using the Replication Management API

For many procedures and functions in the replication management API, there are important issues to consider. For example:

	
Some procedures or functions are appropriate to call only from the master definition site in a multimaster configuration.

	
To perform some administrative operations for master groups, you must first suspend replication activity for the group before calling replication management API procedures and functions.

	
The order in which you call different procedures and functions in Oracle's replication management API is extremely important. See the next section for more information about learning how to correctly issue replication management calls.

The Replication Management Tool and the Replication Management API

The Replication Management tool uses the replication management API to perform most of its functions. Using the Replication Management tool is much more convenient than issuing replication management API calls individually because the utility:

	
Provides a GUI interface to type in and adjust API call parameters

	
Automatically orders numerous, related API calls in the proper sequence

	
Displays output returned from API calls in message boxes and error files

Abbreviations for Datetime and Interval Datatypes

Many of the datetime and interval datatypes have names that are too long to be used with the procedures and functions in the replication management API. Therefore, you must use abbreviations for these datatypes instead of the full names. The following table lists each datatype and its abbreviation. No abbreviation is necessary for the DATE and TIMESTAMP datatypes.

	Datatype	Abbreviation
	TIMESTAMP WITH TIME ZONE	TSTZ
	TIMESTAMP LOCAL TIME ZONE	TSLTZ
	INTERVAL YEAR TO MONTH	IYM
	INTERVAL DAY TO SECOND	IDS

For example, if you want to use the DBMS_DEFER_QUERY.GET_datatype_ARG function to determine the value of a TIMESTAMP LOCAL TIME ZONE argument in a deferred call, then you substitute TSLTZ for datatype. Therefore, you run the DBMS_DEFER_QUERY.GET_TSLTZ_ARG function.

14 DBMS_DEFER_SYS

DBMS_DEFER_SYS procedures manage default replication node lists. This package is the system administrator interface to a replicated transactional deferred remote procedure call facility. Administrators and replication daemons can execute transactions queued for remote nodes using this facility, and administrators can control the nodes to which remote calls are destined.

This chapter contains this topic:

	
Summary of DBMS_DEFER_SYS Subprograms

Summary of DBMS_DEFER_SYS Subprograms

Table 14-1 DBMS_DEFER_SYS Package Subprograms

	Subprogram	Description
	
"ADD_DEFAULT_DEST Procedure"

	
Adds a destination database to the DEFDEFAULTDEST view.

	
"CLEAR_PROP_STATISTICS Procedure"

	
Clears the propagation statistics in the DEFSCHEDULE data dictionary view.

	
"DELETE_DEFAULT_DEST Procedure"

	
Removes a destination database from the DEFDEFAULTDEST view.

	
"DELETE_DEF_DESTINATION Procedure"

	
Removes a destination database from the DEFSCHEDULE view.

	
"DELETE_ERROR Procedure"

	
Deletes a transaction from the DEFERROR view.

	
"DELETE_TRAN Procedure"

	
Deletes a transaction from the DEFTRANDEST view.

	
"DISABLED Function"

	
Determines whether propagation of the deferred transaction queue from the current site to a specified site is enabled.

	
EXCLUDE_PUSH Function

	
Acquires an exclusive lock that prevents deferred transaction PUSH.

	
"EXECUTE_ERROR Procedure"

	
Reexecutes a deferred transaction that did not initially complete successfully in the security context of the original receiver of the transaction.

	
"EXECUTE_ERROR_AS_USER Procedure"

	
Reexecutes a deferred transaction that did not initially complete successfully in the security context of the user who executes this procedure.

	
"PURGE Function"

	
Purges pushed transactions from the deferred transaction queue at your current master site or materialized view site.

	
"PUSH Function"

	
Forces a deferred remote procedure call queue at your current master site or materialized view site to be pushed to a remote site.

	
"REGISTER_PROPAGATOR Procedure"

	
Registers the specified user as the propagator for the local database.

	
"SCHEDULE_PURGE Procedure"

	
Schedules a job to purge pushed transactions from the deferred transaction queue at your current master site or materialized view site.

	
"SCHEDULE_PUSH Procedure"

	
Schedules a job to push the deferred transaction queue to a remote site.

	
"SET_DISABLED Procedure"

	
Disables or enables propagation of the deferred transaction queue from the current site to a specified destination site.

	
"UNREGISTER_PROPAGATOR Procedure"

	
Unregisters a user as the propagator from the local database.

	
"UNSCHEDULE_PURGE Procedure"

	
Stops automatic purges of pushed transactions from the deferred transaction queue at a master site or materialized view site.

	
"UNSCHEDULE_PUSH Procedure"

	
Stops automatic pushes of the deferred transaction queue from a master site or materialized view site to a remote site.

ADD_DEFAULT_DEST Procedure

This procedure adds a destination database to the DEFDEFAULTDEST data dictionary view.

Syntax

DBMS_DEFER_SYS.ADD_DEFAULT_DEST (
 dblink IN VARCHAR2);

Parameters

Table 14-2 ADD_DEFAULT_DEST Procedure Parameters

	Parameter	Description
	

dblink

	
The fully qualified database name of the node that you want to add to the DEFDEFAULTDEST view.

Exceptions

Table 14-3 ADD_DEFAULT_DEST Procedure Exceptions

	Exception	Description
	

ORA-23352

	
The dblink that you specified is already in the default list.

CLEAR_PROP_STATISTICS Procedure

This procedure clears the propagation statistics in the DEFSCHEDULE data dictionary view. When this procedure is executed successfully, all statistics in this view are returned to zero and statistic gathering starts fresh.

Specifically, this procedure clears statistics from the following columns in the DEFSCHEDULE data dictionary view:

	
TOTAL_TXN_COUNT

	
AVG_THROUGHPUT

	
AVG_LATENCY

	
TOTAL_BYTES_SENT

	
TOTAL_BYTES_RECEIVED

	
TOTAL_ROUND_TRIPS

	
TOTAL_ADMIN_COUNT

	
TOTAL_ERROR_COUNT

	
TOTAL_SLEEP_TIME

Syntax

DBMS_DEFER_SYS.CLEAR_PROP_STATISTICS (
 dblink IN VARCHAR2);

Parameters

Table 14-4 CLEAR_PROP_STATISTICS Procedure Parameters

	Parameter	Description
	

dblink

	
The fully qualified database name of the node whose statistics you want to clear. The statistics to be cleared are the statistics for propagation of deferred transactions from the current node to the node you specify for dblink.

DELETE_DEFAULT_DEST Procedure

This procedure removes a destination database from the DEFDEFAULTDEST view.

Syntax

DBMS_DEFER_SYS.DELETE_DEFAULT_DEST (
 dblink IN VARCHAR2);

Parameters

Table 14-5 DELETE_DEFAULT_DEST Procedure Parameters

	Parameter	Description
	

dblink

	
The fully qualified database name of the node that you want to delete from the DEFDEFAULTDEST view. If Oracle does not find this dblink in the view, then no action is taken.

DELETE_DEF_DESTINATION Procedure

This procedure removes a destination database from the DEFSCHEDULE view.

Syntax

DBMS_DEFER_SYS.DELETE_DEF_DESTINATION (
 destination IN VARCHAR2,
 force IN BOOLEAN := false);

Parameters

Table 14-6 DELETE_DEF_DESTINATION Procedure Parameters

	Parameter	Description
	

destination

	
The fully qualified database name of the destination that you want to delete from the DEFSCHEDULE view. If Oracle does not find this destination in the view, then no action is taken.

	

force

	
When set to true, Oracle ignores all safety checks and deletes the destination.

DELETE_ERROR Procedure

This procedure deletes a transaction from the DEFERROR view.

Syntax

DBMS_DEFER_SYS.DELETE_ERROR(
 deferred_tran_id IN VARCHAR2,
 destination IN VARCHAR2);

Parameters

Table 14-7 DELETE_ERROR Procedure Parameters

	Parameter	Description
	

deferred_tran_id

	
Identification number from the DEFERROR view of the deferred transaction that you want to remove from the DEFERROR view. If this parameter is NULL, then all transactions meeting the requirements of the other parameter are removed.

	

destination

	
The fully qualified database name from the DEFERROR view of the database to which the transaction was originally queued. If this parameter is NULL, then all transactions meeting the requirements of the other parameter are removed from the DEFERROR view.

DELETE_TRAN Procedure

This procedure deletes a transaction from the DEFTRANDEST view. If there are no other DEFTRANDEST or DEFERROR entries for the transaction, then the transaction is deleted from the DEFTRAN and DEFCALL views as well.

Syntax

DBMS_DEFER_SYS.DELETE_TRAN (
 deferred_tran_id IN VARCHAR2,
 destination IN VARCHAR2);

Parameters

Table 14-8 DELETE_TRAN Procedure Parameters

	Parameter	Description
	

deferred_tran_id

	
Identification number from the DEFTRAN view of the deferred transaction that you want to delete. If this is NULL, then all transactions meeting the requirements of the other parameter are deleted.

	

destination

	
The fully qualified database name from the DEFTRANDEST view of the database to which the transaction was originally queued. If this is NULL, then all transactions meeting the requirements of the other parameter are deleted.

DISABLED Function

This function determines whether propagation of the deferred transaction queue from the current site to a specified site is enabled. The DISABLED function returns true if the deferred remote procedure call (RPC) queue is disabled for the specified destination.

Syntax

DBMS_DEFER_SYS.DISABLED (
 destination IN VARCHAR2)
 RETURN BOOLEAN;

Parameters

Table 14-9 DISABLED Function Parameters

	Parameter	Description
	

destination

	
The fully qualified database name of the node whose propagation status you want to check.

Exceptions

Table 14-10 DISABLED Function Exceptions

	Exception	Description
	

NO_DATA_FOUND

	
Specified destination does not appear in the DEFSCHEDULE view.

Returns

Table 14-11 DISABLED Function Return Values

	Value	Description
	

true

	
Propagation to this site from the current site is disabled.

	

false

	
Propagation to this site from the current site is enabled.

EXCLUDE_PUSH Function

This function acquires an exclusive lock that prevents deferred transaction PUSH (either serial or parallel). This function performs a commit when acquiring the lock. The lock is acquired with RELEASE_ON_COMMIT => true, so that pushing of the deferred transaction queue can resume after the next commit.

Syntax

DBMS_DEFER_SYS.EXCLUDE_PUSH (
 timeout IN INTEGER)
 RETURN INTEGER;

Parameters

Table 14-12 EXCLUDE_PUSH Function Parameters

	Parameter	Description
	

timeout

	
Timeout in seconds. If the lock cannot be acquired within this time period (either because of an error or because a PUSH is currently under way), then the call returns a value of 1. A timeout value of DBMS_LOCK.MAXWAIT waits indefinitely.

Returns

Table 14-13 EXCLUDE_PUSH Function Return Values

	Value	Description
	

0

	
Success, lock acquired.

	

1

	
Timeout, no lock acquired.

	

2

	
Deadlock, no lock acquired.

	

4

	
Already own lock.

EXECUTE_ERROR Procedure

This procedure reexecutes a deferred transaction that did not initially complete successfully in the security context of the original receiver of the transaction.

Syntax

DBMS_DEFER_SYS.EXECUTE_ERROR (
 deferred_tran_id IN VARCHAR2,
 destination IN VARCHAR2);

Parameters

Table 14-14 EXECUTE_ERROR Procedure Parameters

	Parameter	Description
	

deferred_tran_id

	
Identification number from the DEFERROR view of the deferred transaction that you want to reexecute. If this is NULL, then all transactions queued for destination are reexecuted.

	

destination

	
The fully qualified database name from the DEFERROR view of the database to which the transaction was originally queued. This must not be NULL. If the provided database name is not fully qualified or is invalid, no error will be raised.

Exceptions

Table 14-15 EXECUTE_ERROR Procedure Exceptions

	Exception	Description
	

ORA-24275 error

	
Illegal combinations of NULL and non-NULL parameters were used.

	

badparam

	
Parameter value missing or invalid (for example, if destination is NULL).

	

missinguser

	
Invalid user.

EXECUTE_ERROR_AS_USER Procedure

This procedure reexecutes a deferred transaction that did not initially complete successfully. Each transaction is executed in the security context of the connected user.

Syntax

DBMS_DEFER_SYS.EXECUTE_ERROR_AS_USER (
 deferred_tran_id IN VARCHAR2,
 destination IN VARCHAR2);

Parameters

Table 14-16 EXECUTE_ERROR_AS_USER Procedure Parameters

	Parameter	Description
	

deferred_tran_id

	
Identification number from the DEFERROR view of the deferred transaction that you want to reexecute. If this is NULL, then all transactions queued for destination are reexecuted.

	

destination

	
The fully qualified database name from the DEFERROR view of the database to which the transaction was originally queued. This must not be NULL.

Exceptions

Table 14-17 EXECUTE_ERROR_AS_USER Procedure Exceptions

	Exception	Description
	

ORA-24275 error

	
Illegal combinations of NULL and non-NULL parameters were used.

	

badparam

	
Parameter value missing or invalid (for example, if destination is NULL).

	

missinguser

	
Invalid user.

PURGE Function

This function purges pushed transactions from the deferred transaction queue at your current master site or materialized view site.

Syntax

DBMS_DEFER_SYS.PURGE (
 purge_method IN BINARY_INTEGER := purge_method_quick,
 rollback_segment IN VARCHAR2 := NULL,
 startup_seconds IN BINARY_INTEGER := 0,
 execution_seconds IN BINARY_INTEGER := seconds_infinity,
 delay_seconds IN BINARY_INTEGER := 0,
 transaction_count IN BINARY_INTEGER := transactions_infinity,
 write_trace IN BOOLEAN := NULL);
 RETURN BINARY_INTEGER;

Parameters

Table 14-18 PURGE Function Parameters

	Parameter	Description
	

purge_method

	
Controls how to purge the deferred transaction queue: purge_method_quick costs less, while purge_method_precise offers better precision.

Specify the following for this parameter to use purge_method_quick:

dbms_defer_sys.purge_method_quick

Specify the following for this parameter to user purge_method_precise:

dbms_defer_sys.purge_method_precise

If you use purge_method_quick, deferred transactions and deferred procedure calls that have been successfully pushed can remain in the DEFTRAN and DEFCALL data dictionary views for longer than expected before they are purged. See "Usage Notes" for more information.

	

rollback_segment

	
Name of rollback segment to use for the purge, or NULL for default.

	

startup_seconds

	
Maximum number of seconds to wait for a previous purge of the same deferred transaction queue.

	

execution_seconds

	
If > 0, then stop purge cleanly after the specified number of seconds of real time.

	

delay_seconds

	
Stop purge cleanly after the deferred transaction queue has no transactions to purge for delay_seconds.

	

transaction_count

	
If > 0, then shut down cleanly after purging transaction_count number of transactions.

	

write_trace

	
When set to true, Oracle records the result value returned by the PURGE function in the server's trace file. When set to false, Oracle does not record the result value.

Returns

Table 14-19 Purge Function Returns

	Value	Description
	

result_ok

	
OK, terminated after delay_seconds expired.

	

result_startup_seconds

	
Terminated by lock timeout while starting.

	

result_execution_seconds

	
Terminated by exceeding execution_seconds.

	

result_transaction_count

	
Terminated by exceeding transaction_count.

	

result_errors

	
Terminated after errors.

	

result_split_del_order_limit

	
Terminated after failing to acquire the enqueue in exclusive mode. If you receive this return code, then retry the purge. If the problem persists, then contact Oracle Support Services.

	

result_purge_disabled

	
Queue purging is disabled internally for synchronization when adding new master sites without quiesce.

Exceptions

Table 14-20 PURGE Function Exceptions

	Exception	Description
	

argoutofrange

	
Parameter value is out of a valid range.

	

executiondisabled

	
Execution of purging is disabled.

	

defererror

	
Internal error.

Usage Notes

When you use the purge_method_quick for the purge_method parameter in the DBMS_DEFER_SYS.PURGE function, deferred transactions and deferred procedure calls can remain in the DEFCALL and DEFTRAN data dictionary views after they have been successfully pushed. This behavior occurs in replication environments that have more than one database link and the push is executed to only one database link.

To purge the deferred transactions and deferred procedure calls, perform one of the following actions:

	
Use purge_method_precise for the purge_method parameter instead of the purge_method_quick. Using purge_method_precise is more expensive, but it ensures that the deferred transactions and procedure calls are purged after they have been successfully pushed.

	
Using purge_method_quick for the purge_method parameter, push the deferred transactions to all database links. The deferred transactions and deferred procedure calls are purged efficiently when the push to the last database link is successful.

PUSH Function

This function forces a deferred remote procedure call (RPC) queue at your current master site or materialized view site to be pushed (propagated) to a remote site using either serial or parallel propagation.

Syntax

DBMS_DEFER_SYS.PUSH (
 destination IN VARCHAR2,
 parallelism IN BINARY_INTEGER := 0,
 heap_size IN BINARY_INTEGER := 0,
 stop_on_error IN BOOLEAN := false,
 write_trace IN BOOLEAN := false,
 startup_seconds IN BINARY_INTEGER := 0,
 execution_seconds IN BINARY_INTEGER := seconds_infinity,
 delay_seconds IN BINARY_INTEGER := 0,
 transaction_count IN BINARY_INTEGER := transactions_infinity,
 delivery_order_limit IN NUMBER := delivery_order_infinity)
 RETURN BINARY_INTEGER;

Parameters

Table 14-21 PUSH Function Parameters

	Parameter	Description
	

destination

	
The fully qualified database name of the master site or master materialized view site to which you are forwarding changes.

	

parallelism

	
0 specifies serial propagation.

n > 1 specifies parallel propagation with n parallel processes.

1 specifies parallel propagation using only one parallel process.

	

heap_size

	
Maximum number of transactions to be examined simultaneously for parallel propagation scheduling. Oracle automatically calculates the default setting for optimal performance.

Note: Do not set the parameter unless so directed by Oracle Support Services.

	

stop_on_error

	
The default, false, indicates that the executor should continue even if errors, such as conflicts, are encountered. If true, then stops propagation at the first indication that a transaction encountered an error at the destination site.

	

write_trace

	
When set to true, Oracle records the result value returned by the function in the server's trace file. When set to false, Oracle does not record the result value.

	

startup_seconds

	
Maximum number of seconds to wait for a previous push to the same destination.

	

execution_seconds

	
If > 0, then stop push cleanly after the specified number of seconds of real time. If transaction_count and execution_seconds are zero (the default), then transactions are executed until there are no more in the queue.

The execution_seconds parameter only controls the duration of time that operations can be started. It does not include the amount of time that the transactions require at remote sites. Therefore, the execution_seconds parameter is not intended to be used as a precise control to stop the propagation of transactions to a remote site. If a precise control is required, use the transaction_count or delivery_order parameters.

	

delay_seconds

	
Do not return before the specified number of seconds have elapsed, even if the queue is empty. Useful for reducing execution overhead if PUSH is called from a tight loop.

	

transaction_count

	
If > 0, then the maximum number of transactions to be pushed before stopping. If transaction_count and execution_seconds are zero (the default), then transactions are executed until there are no more in the queue that need to be pushed.

	

delivery_order_limit

	
Stop execution cleanly before pushing a transaction where delivery_order >= delivery_order_limit.

Returns

Table 14-22 PUSH Function Returns

	Value	Description
	

result_ok

	
OK, terminated after delay_seconds expired.

	

result_startup_seconds

	
Terminated by lock timeout while starting.

	

result_execution_seconds

	
Terminated by exceeding execution_seconds.

	

result_transaction_count

	
Terminated by exceeding transaction_count.

	

result_delivery_order_limit

	
Terminated by exceeding delivery_order_limit.

	

result_errors

	
Terminated after errors.

	

result_push_disabled

	
Push was disabled internally. Typically, this return value means that propagation to the destination was set to disabled internally by Oracle for propagation synchronization when adding a new master site to a master group without quiescing the master group. Oracle will enable propagation automatically at a later time.

	

result_split_del_order_limit

	
Terminated after failing to acquire the enqueue in exclusive mode. If you receive this return code, then retry the push. If the problem persists, then contact Oracle Support Services.

Exceptions

Table 14-23 PUSH Function Exceptions

	Exception	Description
	

incompleteparallelpush

	
Serial propagation requires that parallel propagation shuts down cleanly.

	

executiondisabled

	
Execution of deferred remote procedure calls (RPCs) is disabled at the destination.

	

crt_err_err

	
Error while creating entry in DEFERROR.

	

deferred_rpc_quiesce

	
Replication activity for replication group is suspended.

	

commfailure

	
Communication failure during deferred remote procedure call (RPC).

	

missingpropagator

	
A propagator does not exist.

REGISTER_PROPAGATOR Procedure

This procedure registers the specified user as the propagator for the local database. It also grants the following privileges to the specified user (so that the user can create wrappers):

	
CREATE SESSION

	
CREATE PROCEDURE

	
CREATE DATABASE LINK

	
EXECUTE ANY PROCEDURE

Syntax

DBMS_DEFER_SYS.REGISTER_PROPAGATOR (
 username IN VARCHAR2);

Parameter

Table 14-24 REGISTER_PROPAGATOR Procedure Parameter

	Parameter	Description
	

username

	
Name of the user.

Exceptions

Table 14-25 REGISTER_PROPAGATOR Procedure Exceptions

	Exception	Description
	

missinguser

	
Specified user does not exist.

	

alreadypropagator

	
Specified user is already the propagator.

	

duplicatepropagator

	
There is already a different propagator.

SCHEDULE_PURGE Procedure

This procedure schedules a job to purge pushed transactions from the deferred transaction queue at your current master site or materialized view site. You should schedule one purge job.

	
See Also:

Oracle Database Advanced Replication for information about using this procedure to schedule continuous or periodic purge of your deferred transaction queue

Syntax

DBMS_DEFER_SYS.SCHEDULE_PURGE (
 interval IN VARCHAR2,
 next_date IN DATE,
 reset IN BOOLEAN := NULL,
 purge_method IN BINARY_INTEGER := NULL,
 rollback_segment IN VARCHAR2 := NULL,
 startup_seconds IN BINARY_INTEGER := NULL,
 execution_seconds IN BINARY_INTEGER := NULL,
 delay_seconds IN BINARY_INTEGER := NULL,
 transaction_count IN BINARY_INTEGER := NULL,
 write_trace IN BOOLEAN := NULL);

Parameters

Table 14-26 SCHEDULE_PURGE Procedure Parameters

	Parameter	Description
	

interval

	
Allows you to provide a function to calculate the next time to purge. This value is stored in the interval field of the DEFSCHEDULE view and calculates the next_date field of this view. If you use the default value for this parameter, NULL, then the value of this field remains unchanged. If the field had no previous value, it is created with a value of NULL. If you do not supply a value for this field, you must supply a value for next_date.

	

next_date

	
Allows you to specify a time to purge pushed transactions from the site's queue. This value is stored in the next_date field of the DEFSCHEDULE view. If you use the default value for this parameter, NULL, then the value of this field remains unchanged. If this field had no previous value, it is created with a value of NULL. If you do not supply a value for this field, then you must supply a value for interval.

	

reset

	
Set to true to reset LAST_TXN_COUNT, LAST_ERROR, and LAST_MSG to NULL.

	

purge_method

	
Controls how to purge the deferred transaction queue: purge_method_quick costs less, while purge_method_precise offers better precision.

Specify the following for this parameter to use purge_method_quick:

dbms_defer_sys.purge_method_quick

Specify the following for this parameter to user purge_method_precise:

dbms_defer_sys.purge_method_precise

If you use purge_method_quick, deferred transactions and deferred procedure calls that have been successfully pushed can remain in the DEFTRAN and DEFCALL data dictionary views for longer than expected before they are purged. For more information, see "Usage Notes". These usage notes are for the DBMS_DEFER_SYS.PURGE function, but they also apply to the DBMS_DEFER_SYS.SCHEDULE_PURGE procedure.

	

rollback_segment

	
Name of rollback segment to use for the purge, or NULL for default.

	

startup_seconds

	
Maximum number of seconds to wait for a previous purge of the same deferred transaction queue.

	

execution_seconds

	
If >0, then stop purge cleanly after the specified number of seconds of real time.

	

delay_seconds

	
Stop purge cleanly after the deferred transaction queue has no transactions to purge for delay_seconds.

	

transaction_count

	
If > 0, then shut down cleanly after purging transaction_count number of transactions.

	

write_trace

	
When set to true, Oracle records the result value returned by the PURGE function in the server's trace file.

SCHEDULE_PUSH Procedure

This procedure schedules a job to push the deferred transaction queue to a remote site. This procedure performs a COMMIT.

	
See Also:

Oracle Database Advanced Replication for information about using this procedure to schedule continuous or periodic push of your deferred transaction queue

Syntax

DBMS_DEFER_SYS.SCHEDULE_PUSH (
 destination IN VARCHAR2,
 interval IN VARCHAR2,
 next_date IN DATE,
 reset IN BOOLEAN := false,
 parallelism IN BINARY_INTEGER := NULL,
 heap_size IN BINARY_INTEGER := NULL,
 stop_on_error IN BOOLEAN := NULL,
 write_trace IN BOOLEAN := NULL,
 startup_seconds IN BINARY_INTEGER := NULL,
 execution_seconds IN BINARY_INTEGER := NULL,
 delay_seconds IN BINARY_INTEGER := NULL,
 transaction_count IN BINARY_INTEGER := NULL);

Parameters

Table 14-27 SCHEDULE_PUSH Procedure Parameters

	Parameter	Description
	

destination

	
The fully qualified database name of the master site or master materialized view site to which you are forwarding changes.

	

interval

	
Allows you to provide a function to calculate the next time to push. This value is stored in the interval field of the DEFSCHEDULE view and calculates the next_date field of this view. If you use the default value for this parameter, NULL, then the value of this field remains unchanged. If the field had no previous value, it is created with a value of NULL. If you do not supply a value for this field, then you must supply a value for next_date.

	

next_date

	
Allows you to specify a time to push deferred transactions to the remote site. This value is stored in the next_date field of the DEFSCHEDULE view. If you use the default value for this parameter, NULL, then the value of this field remains unchanged. If this field had no previous value, then it is created with a value of NULL. If you do not supply a value for this field, then you must supply a value for interval.

	

reset

	
Set to true to reset LAST_TXN_COUNT, LST_ERROR, and LAST_MSG to NULL.

	

parallelism

	
0 specifies serial propagation.

n > 1 specifies parallel propagation with n parallel processes.

1 specifies parallel propagation using only one parallel process.

	

heap_size

	
Maximum number of transactions to be examined simultaneously for parallel propagation scheduling. Oracle automatically calculates the default setting for optimal performance.

Note: Do not set the parameter unless so directed by Oracle Support Services.

	

stop_on_error

	
The default, false, indicates that the executor should continue even if errors, such as conflicts, are encountered. If true, then stops propagation at the first indication that a transaction encountered an error at the destination site.

	

write_trace

	
When set to true, Oracle records the result value returned by the function in the server's trace file.

	

startup_seconds

	
Maximum number of seconds to wait for a previous push to the same destination.

	

execution_seconds

	
If >0, then stop execution cleanly after the specified number of seconds of real time. If transaction_count and execution_seconds are zero (the default), then transactions are executed until there are no more in the queue.

	

delay_seconds

	
Do not return before the specified number of seconds have elapsed, even if the queue is empty. Useful for reducing execution overhead if PUSH is called from a tight loop.

	

transaction_count

	
If > 0, then the maximum number of transactions to be pushed before stopping. If transaction_count and execution_seconds are zero (the default), then transactions are executed until there are no more in the queue that need to be pushed.

SET_DISABLED Procedure

To disable or enable propagation of the deferred transaction queue from the current site to a specified destination site. If the disabled parameter is true, then the procedure disables propagation to the specified destination and future invocations of PUSH do not push the deferred remote procedure call (RPC) queue. SET_DISABLED eventually affects a session already pushing the queue to the specified destination, but does not affect sessions appending to the queue with DBMS_DEFER.

If the disabled parameter is false, then the procedure enables propagation to the specified destination and, although this does not push the queue, it permits future invocations of PUSH to push the queue to the specified destination. Whether the disabled parameter is true or false, a COMMIT is required for the setting to take effect in other sessions.

Syntax

DBMS_DEFER_SYS.SET_DISABLED (
 destination IN VARCHAR2,
 disabled IN BOOLEAN := true,
 catchup IN RAW := '00',
 override IN BOOLEAN := false);

Parameters

Table 14-28 SET_DISABLED Procedure Parameters

	Parameter	Description
	

destination

	
The fully qualified database name of the node whose propagation status you want to change.

	

disabled

	
By default, this parameter disables propagation of the deferred transaction queue from your current site to the specified destination. Set this to false to enable propagation.

	

catchup

	
The extension identifier for adding new master sites to a master group without quiescing the master group. The new master site is the destination. Query the DEFSCHEDULE data dictionary view for the existing extension identifiers.

	

override

	
A false setting, the default, specifies that Oracle raises the cantsetdisabled exception if the disabled parameter is set to false and propagation was disabled internally by Oracle.

A true setting specifies that Oracle ignores whether the disabled state was set internally for synchronization and always tries to set the state as specified by the disabled parameter.

Note: Do not set this parameter unless directed to do so by Oracle Support Services.

Exceptions

Table 14-29 SET_DISABLED Procedure Exceptions

	Exception	Description
	

NO_DATA_FOUND

	
No entry was found in the DEFSCHEDULE view for the specified destination.

	

cantsetdisabled

	
The disabled status for this site is set internally by Oracle for synchronization during adding a new master site to a master group without quiescing the master group. Ensure that adding a new master site without quiescing finished before invoking this procedure.

UNREGISTER_PROPAGATOR Procedure

To unregister a user as the propagator from the local database. This procedure:

	
Deletes the specified propagator from DEFPROPAGATOR.

	
Revokes privileges granted by REGISTER_PROPAGATOR from the specified user (including identical privileges granted independently).

	
Drops any generated wrappers in the schema of the specified propagator, and marks them as dropped in the replication catalog.

Syntax

DBMS_DEFER_SYS.UNREGISTER_PROPAGATOR (
 username IN VARCHAR2
 timeout IN INTEGER DEFAULT DBMS_LOCK.MAXWAIT);

Parameters

Table 14-30 UNREGISTER_PROPAGATOR Procedure Parameters

	Parameter	Description
	

username

	
Name of the propagator user.

	

timeout

	
Timeout in seconds. If the propagator is in use, then the procedure waits until timeout. The default is DBMS_LOCK.MAXWAIT.

Exceptions

Table 14-31 UNREGISTER_PROPAGATOR Procedure Exceptions

	Parameter	Description
	

missingpropagator

	
Specified user is not a propagator.

	

propagator_inuse

	
Propagator is in use, and thus cannot be unregistered. Try later.

UNSCHEDULE_PURGE Procedure

This procedure stops automatic purges of pushed transactions from the deferred transaction queue at a master site or materialized view site.

Syntax

DBMS_DEFER_SYS.UNSCHEDULE_PURGE();

Parameters

None

UNSCHEDULE_PUSH Procedure

This procedure stops automatic pushes of the deferred transaction queue from a master site or materialized view site to a remote site.

Syntax

DBMS_DEFER_SYS.UNSCHEDULE_PUSH (
 dblink IN VARCHAR2);

Parameters

Table 14-32 UNSCHEDULE_PUSH Procedure Parameters

	Parameter	Description
	

dblink

	
Fully qualified path name for the database at which you want to unschedule periodic execution of deferred remote procedure calls.

Exceptions

Table 14-33 UNSCHEDULE_PUSH Procedure Exceptions

	Exception	Description
	

NO_DATA_FOUND

	
No entry was found in the DEFSCHEDULE view for the specified dblink.

Part I

Configuring Your Replication Environment

Part I contains instructions for using the replication management API to set up both multimaster replication and materialized view replication. This part also contains instructions for configuring conflict resolution methods using the replication management API.

Part I contains the following chapters:

	
Chapter 1, "Overview of Replication"

	
Chapter 2, "Create Replication Site"

	
Chapter 3, "Create a Master Group"

	
Chapter 4, "Create a Deployment Template"

	
Chapter 5, "Create Materialized View Group"

	
Chapter 6, "Configure Conflict Resolution"

6 Configure Conflict Resolution

This chapter illustrates how to define conflict resolution methods for your replication environment.

This chapter contains these topics:

	
Preparing for Conflict Resolution

	
Creating Conflict Resolution Methods for Update Conflicts

	
Creating Conflict Resolution Methods for Uniqueness Conflicts

	
Creating Conflict Avoidance Methods for Delete Conflicts

	
Using Dynamic Ownership Conflict Avoidance

	
Auditing Successful Conflict Resolution

Preparing for Conflict Resolution

Though you might design your database and front-end application to avoid conflicts between multiple sites in a replication environment, you might not be able to completely eliminate the possibility of conflicts. One of the most important aspects of replication is to ensure data convergence at all sites participating in the replication environment.

When data conflicts occur, you need a mechanism to ensure that the conflict is resolved in accordance with your business rules and that the data converges correctly at all sites.

Advanced Replication lets you define a conflict resolution system for your database that resolves conflicts in accordance with your business rules. If you have a unique situation that Oracle's prebuilt conflict resolution methods cannot resolve, then you have the option of building and using your own conflict resolution methods.

Before you begin implementing conflict resolution methods for your replicated tables, analyze the data in your system to determine where the most conflicts can occur. For example, static data such as an employee number might change very infrequently and is not subject to a high occurrence of conflicts. An employee's customer assignments, however, might change often and would therefore be prone to data conflicts.

After you have determined where the conflicts are most likely to occur, you need to determine how to resolve the conflict. For example, do you want the latest change to have precedence, or should one site have precedence over another?

As you read each of the sections describing the different conflict resolution methods, you will learn what each method is best suited for. So, read each section and then think about how your business would want to resolve any potential conflicts.

After you have identified the potential problem areas and have determined what business rules would resolve the problem, use Oracle's conflict resolution methods (or one of your own) to implement a conflict resolution system.

	
See Also:

Oracle Database Advanced Replication for conceptual information about conflict resolution methods and detailed information about data convergence for each method

Creating Conflict Resolution Methods for Update Conflicts

The most common data conflict occurs when the same row at two or more different sites are updated at nearly the same time, or before the deferred transaction from one site was successfully propagated to the other sites.

One method to avoid update conflicts is to implement a synchronous replication environment, though this solution requires large network resource.

The other solution is to use the Oracle conflict resolution methods to deal with update conflicts that can occur when the same row receives two or more updates.

	
Note:

The instructions in the following sections specify that you must quiesce your master group to add conflict resolution methods. However, if your master site is running Oracle8i Database release 8.1.7 or later in a single master environment, then you might not need to quiesce the master group to add conflict resolution methods.

Overwrite and Discard Conflict Resolution Methods

The overwrite and discard methods ignore the values from either the originating or destination site and therefore can never guarantee convergence with more than one master site. These methods are designed to be used by a single master site and multiple materialized view sites, or with some form of a user-defined notification facility.

The overwrite method replaces the current value at the destination site with the new value from the originating site. Conversely, the discard method ignores the new value from the originating site.

	
See Also:

"ADD_conflicttype_RESOLUTION Procedure" and Oracle Database Advanced Replication for more information about overwrite and discard

Complete the following steps to create an overwrite or discard conflict resolution method. This example illustrates the use of the discard conflict resolution method at the master site. Therefore, in the event of a conflict, the data from a materialized view site is discarded and the master site data remains.

	
Note:

If you are viewing this document online, then you can copy the text from the "BEGINNING OF SCRIPT" line after this note to the "END OF SCRIPT" line into a text editor and then edit the text to create a script for your environment.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect as the replication administrator.

The procedures in the following steps must be executed by the replication administrator.

*/

SET ECHO ON

SPOOL discard_conflictres.out

CONNECT repadmin/repadmin@orc1.world

/*

Step 2 Quiesce the master group that contains the table to which you want to apply the conflict resolution method.

Before you define overwrite or discard conflict resolution methods, quiesce the master group that contains the table to which you want to apply the conflict resolution method. In a single master replication environment, quiescing the master group might not be required. See "Note" for more information.

*/

BEGIN
 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

/*

Step 3 Create a column group for your target table.

All Oracle conflict resolution methods are based on logical column groupings called column groups.

*/

BEGIN
 DBMS_REPCAT.MAKE_COLUMN_GROUP (
 sname => 'hr',
 oname => 'departments',
 column_group => 'dep_cg',
 list_of_column_names => 'manager_id,location_id');
END;
/

/*

Step 4 Define the conflict resolution method for a specified table.

This example creates an OVERWRITE conflict resolution method.

*/

BEGIN
 DBMS_REPCAT.ADD_UPDATE_RESOLUTION (
 sname => 'hr',
 oname => 'departments',
 column_group => 'dep_cg',
 sequence_no => 1,
 method => 'DISCARD',
 parameter_column_name => 'manager_id,location_id');
END;
/

/*

Step 5 Regenerate replication support for the table that received the conflict resolution method.

*/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'departments',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 6 Resume master activity after replication support has been regenerated.

*/

BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Minimum and Maximum Conflict Resolution Methods

When Advanced Replication detects a conflict with a column group and calls either the minimum or maximum value conflict resolution methods, it compares the new value from the originating site with the current value from the destination site for a designated column in the column group. You must designate this column when you define your conflict resolution method.

If the new value of the designated column is less than or greater than (depending on the method used) the current value, then the column group values from the originating site are applied at the destination site, assuming that all other errors were successfully resolved for the row. Otherwise the rows remain unchanged.

Complete the following steps to create an maximum or minimum conflict resolution method.

	
Note:

If you are viewing this document online, then you can copy the text from the "BEGINNING OF SCRIPT" line after this note to the "END OF SCRIPT" line into a text editor and then edit the text to create a script for your environment.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect as the replication administrator.

The procedures in the following steps must be executed by the replication administrator.

*/

SET ECHO ON

SPOOL min_conflictres.out

CONNECT repadmin/repadmin@orc1.world

/*

Step 2 Quiesce the master group that contains the table to which you want to apply the conflict resolution method.

Before you define maximum or minimum conflict resolution methods, quiesce the master group that contains the table to which you want to apply the conflict resolution method. In a single master replication environment, quiescing the master group might not be required. See "Note" for more information.

*/

BEGIN
 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

/*

Step 3 Create a column group for your target table.

All Oracle conflict resolution methods are based on logical column groupings called column groups.

*/

BEGIN
 DBMS_REPCAT.MAKE_COLUMN_GROUP (
 sname => 'hr',
 oname => 'jobs',
 column_group => 'job_minsal_cg',
 list_of_column_names => 'min_salary');
END;
/

/*

Step 4 Define the conflict resolution method for a specified table.

This example creates a MINIMUM conflict resolution method.

*/

BEGIN
 DBMS_REPCAT.ADD_UPDATE_RESOLUTION (
 sname => 'hr',
 oname => 'jobs',
 column_group => 'job_minsal_cg',
 sequence_no => 1,
 method => 'MINIMUM',
 parameter_column_name => 'min_salary');
END;
/

/*

Step 5 Regenerate replication support for the table that received the conflict resolution method.

*/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'jobs',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 6 Resume replication activity.

*/

BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Timestamp Conflict Resolution Methods

The earliest timestamp and latest timestamp methods are variations on the minimum and maximum value methods. To use the timestamp method, you must designate a column in the replicated table of type DATE. When an application updates any column in a column group, the application must also update the value of the designated timestamp column with the local SYSDATE. For a change applied from another site, the timestamp value should be set to the timestamp value from the originating site.

Two elements are needed to make timestamp conflict resolution work well:

	
Synchronized time settings between computers

	
Timestamp field and trigger to automatically record timestamp

Complete the following steps to create a timestamp conflict resolution method.

	
Note:

If you are viewing this document online, then you can copy the text from the "BEGINNING OF SCRIPT" line after this note to the "END OF SCRIPT" line into a text editor and then edit the text to create a script for your environment.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect as the replication administrator.

The procedures in the following steps must be executed by the replication administrator.

*/

SET ECHO ON

SPOOL timestamp_conflictres.out

CONNECT repadmin/repadmin@orc1.world

/*

Step 2 Quiesce the master group that contains the table to which you want to apply the conflict resolution method.

Before defining timestamp conflict resolution methods, quiesce the master group that contains the table to which you want to apply the conflict resolution method. In a single master replication environment, quiescing the master group might not be required. See "Note" for more information.

*/

BEGIN
 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

/*

Step 3 Add an additional column to your table to record the timestamp value when a row is inserted or updated.

If the target table does not already contain a timestamp field, then add an additional column to your table to record the timestamp value when a row is inserted or updated. You must use the ALTER_MASTER_REPOBJECT procedure to apply the DDL to the target table. Simply issuing the DDL might cause the replicated object to become invalid.

*/

BEGIN
 DBMS_REPCAT.ALTER_MASTER_REPOBJECT (
 sname => 'hr',
 oname => 'countries',
 type => 'TABLE',
 ddl_text => 'ALTER TABLE hr.countries ADD (timestamp DATE)');
END;
/

/*

Step 4 Regenerate replication support for the altered table.

*/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'countries',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 5 Create a trigger that records the timestamp when a row is either inserted or updated.

This recorded value is used in the resolution of conflicts based on the Timestamp method. Instead of directly executing the DDL, you should use the DBMS_REPCAT.CREATE_MASTER_REPOBJECT procedure to create the trigger and add it to your master group.

	
Note:

You cannot use columns of datetime and interval datatypes for priority group conflict resolution.

*/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'TRIGGER',
 oname => 'insert_time',
 sname => 'hr',
 ddl_text => 'CREATE TRIGGER hr.insert_time
 BEFORE
 INSERT OR UPDATE ON hr.countries FOR EACH ROW
 BEGIN
 IF DBMS_REPUTIL.FROM_REMOTE = FALSE THEN
 :NEW.TIMESTAMP := SYSDATE;
 END IF;
 END;');
END;
/

/*

Step 6 Create a column group for your target table.

All Oracle conflict resolution methods are based on logical column groupings called column groups.

*/

BEGIN
 DBMS_REPCAT.MAKE_COLUMN_GROUP (
 sname => 'hr',
 oname => 'countries',
 column_group => 'countries_timestamp_cg',
 list_of_column_names => 'country_name,region_id,timestamp');
END;
/

/*

Step 7 Define the conflict resolution method for a specified table.

This example specifies the LATEST TIMESTAMP conflict resolution method using the timestamp column that you created earlier.

*/

BEGIN
 DBMS_REPCAT.ADD_UPDATE_RESOLUTION (
 sname => 'hr',
 oname => 'countries',
 column_group => 'countries_timestamp_cg',
 sequence_no => 1,
 method => 'LATEST TIMESTAMP',
 parameter_column_name => 'timestamp');
END;
/

/*

Step 8 Regenerate replication support for the table that received the conflict resolution method.

*/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'countries',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 9 Resume replication activity.

*/

BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Additive and Average Conflict Resolution Methods

The additive and average methods work with column groups consisting of a single numeric column only. Instead of "accepting" one value over another, this conflict resolution method either adds the two compared values together or takes an average of the two compared values.

Complete the following steps to create an additive or average conflict resolution method. This example averages the commission percentage for an employee in the event of a conflict.

	
Note:

If you are viewing this document online, then you can copy the text from the "BEGINNING OF SCRIPT" line after this note to the "END OF SCRIPT" line into a text editor and then edit the text to create a script for your environment.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect as the replication administrator.

The procedures in the following steps must be executed by the replication administrator.

*/

SET ECHO ON

SPOOL average_conflictres.out

CONNECT repadmin/repadmin@orc1.world

/*

Step 2 Quiesce the master group that contains the table to which you want to apply the conflict resolution method.

Before you define additive and average conflict resolution methods, quiesce the master group that contains the table to which you want to apply the conflict resolution method. In a single master replication environment, quiescing the master group might not be required. See "Note" for more information.

*/

BEGIN
 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

/*

Step 3 Create a column group for your target table.

All Oracle conflict resolution methods are based on logical column groupings called column groups.

*/

BEGIN
 DBMS_REPCAT.MAKE_COLUMN_GROUP (
 sname => 'hr',
 oname => 'employees',
 column_group => 'commission_average_cg',
 list_of_column_names => 'commission_pct');
END;
/

/*

Step 4 Define the conflict resolution method for a specified table.

This example specifies the AVERAGE conflict resolution method using the sal column.

*/

BEGIN
 DBMS_REPCAT.ADD_UPDATE_RESOLUTION (
 sname => 'hr',
 oname => 'employees',
 column_group => 'commission_average_cg',
 sequence_no => 1,
 method => 'AVERAGE',
 parameter_column_name => 'commission_pct');
END;
/

/*

Step 5 Regenerate replication support for the table that received the conflict resolution method.

*/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'employees',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 6 Resume replication activity.

*/

BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Priority Groups Conflict Resolution Methods

Priority groups allow you to assign a priority level to each possible value of a particular column. If Oracle detects a conflict, then Oracle updates the table whose "priority" column has a lower value using the data from the table with the higher priority value.

Complete the following steps to create a priority groups conflict resolution method.

	
Note:

If you are viewing this document online, then you can copy the text from the "BEGINNING OF SCRIPT" line after this note to the "END OF SCRIPT" line into a text editor and then edit the text to create a script for your environment.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect as the replication administrator.

The procedures in the following steps must be executed by the replication administrator.

*/

SET ECHO ON

SPOOL priority_groups_conflictres.out

CONNECT repadmin/repadmin@orc1.world

/*

Step 2 Quiesce the master group that contains the table to which you want to apply the conflict resolution method.

Before you define a priority groups conflict resolution method, quiesce the master group that contains the table to which you want to apply the conflict resolution method. In a single master replication environment, quiescing the master group might not be required. See "Note" for more information.

*/

BEGIN
 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

/*

Step 3 Make sure that the job_id column is part of the column group for which your site priority conflict resolution mechanism is used.

Use the ADD_GROUPED_COLUMN procedure to add this column to an existing column group. If you do not already have a column group, then you can create a new column group using the DBMS_REPCAT.MAKE_COLUMN_GROUP procedure.

*/

BEGIN
 DBMS_REPCAT.MAKE_COLUMN_GROUP (
 sname => 'hr',
 oname => 'employees',
 column_group => 'employees_priority_cg',
 list_of_column_names => 'manager_id,hire_date,salary,job_id');
END;
/

/*

Step 4 Before you begin assigning a priority value to the values in your table, create a priority group that holds the values you defined.

*/

BEGIN
 DBMS_REPCAT.DEFINE_PRIORITY_GROUP (
 gname => 'hr_repg',
 pgroup => 'job_pg',
 datatype => 'VARCHAR2');
END;
/

/*

Step 5 Define a priority value for all possible table values.

The DBMS_REPCAT.ADD_PRIORITY_datatype procedure is available in several different versions. There is a version for each available datatype (NUMBER, VARCHAR2, and so on). Execute this procedure as often as necessary until you have defined a priority value for all possible table values.

	
See Also:

"ADD_PRIORITY_datatype Procedure" for more information

*/

BEGIN
 DBMS_REPCAT.ADD_PRIORITY_VARCHAR2(
 gname => 'hr_repg',
 pgroup => 'job_pg',
 value => 'ad_pres',
 priority => 100);
END;
/

BEGIN
 DBMS_REPCAT.ADD_PRIORITY_VARCHAR2(
 gname => 'hr_repg',
 pgroup => 'job_pg',
 value => 'sa_man',
 priority => 80);
END;
/

BEGIN
 DBMS_REPCAT.ADD_PRIORITY_VARCHAR2(
 gname => 'hr_repg',
 pgroup => 'job_pg',
 value => 'sa_rep',
 priority => 60);
END;
/

BEGIN
 DBMS_REPCAT.ADD_PRIORITY_VARCHAR2(
 gname => 'hr_repg',
 pgroup => 'job_pg',
 value => 'pu_clerk',
 priority => 40);
END;
/

BEGIN
 DBMS_REPCAT.ADD_PRIORITY_VARCHAR2(
 gname => 'hr_repg',
 pgroup => 'job_pg',
 value => 'st_clerk',
 priority => 20);
END;
/

/*

Step 6 Add the PRIORITY GROUP resolution method to your replicated table.

The following example shows that it is the second conflict resolution method for the specified column group (sequence_no parameter).

*/

BEGIN
 DBMS_REPCAT.ADD_UPDATE_RESOLUTION (
 sname => 'hr',
 oname => 'employees',
 column_group => 'employees_priority_cg',
 sequence_no => 2,
 method => 'PRIORITY GROUP',
 parameter_column_name => 'job_id',
 priority_group => 'job_pg');
END;
/

/*

Step 7 Regenerate replication support for the table that received the conflict resolution method.

*/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'employees',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 8 Resume replication activity.

*/

BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Site Priority Conflict Resolution Methods

Site priority is a specialized form of a priority group. Therefore, many of the procedures associated with site priority behave similarly to the procedures associated with priority groups. Instead of resolving a conflict based on the priority of a field's value, the conflict is resolved based on the priority of the sites involved.

For example, if you assign orc2.world a higher priority value than orc1.world and a conflict arises between these two sites, then the value from orc2.world is used.

Complete the following steps to create a site priority conflict resolution method.

	
Note:

If you are viewing this document online, then you can copy the text from the "BEGINNING OF SCRIPT" line after this note to the "END OF SCRIPT" line into a text editor and then edit the text to create a script for your environment.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect as the replication administrator.

The procedures in the following steps must be executed by the replication administrator.

*/

SET ECHO ON

SPOOL site_priority_conflictres.out

CONNECT repadmin/repadmin@orc1.world

/*

Step 2 Quiesce the master group that contains the table to which you want to apply the conflict resolution method.

Before you define a site priority conflict resolution method, quiesce the master group that contains the table to which you want to apply the conflict resolution method. In a single master replication environment, quiescing the master group might not be required. See "Note" for more information.

*/

BEGIN
 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

/*

Step 3 Add a site column to your table to store the site value.

Use the DBMS_REPCAT.ALTER_MASTER_REPOBJECT procedure to apply the DDL to the target table. Simply issuing the DDL might cause the replicated object to become invalid.

*/

BEGIN
 DBMS_REPCAT.ALTER_MASTER_REPOBJECT (
 sname => 'hr',
 oname => 'regions',
 type => 'TABLE',
 ddl_text => 'ALTER TABLE hr.regions ADD (site VARCHAR2(20))');
END;
/

/*

Step 4 Regenerate replication support for the affected object.

*/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'regions',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 5 Create a trigger that records the global name of the site when a row is either inserted or updated.

This recorded value is used in the resolution of conflicts based on the site priority method. Instead of directly executing the DDL, you should use the DBMS_REPCAT.CREATE_MASTER_REPOBJECT procedure to create the trigger and add it to your master group.

*/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'TRIGGER',
 oname => 'insert_site',
 sname => 'hr',
 ddl_text => 'CREATE TRIGGER hr.insert_site
 BEFORE
 INSERT OR UPDATE ON hr.regions FOR EACH ROW
 BEGIN
 IF DBMS_REPUTIL.FROM_REMOTE = FALSE THEN
 SELECT global_name INTO :NEW.SITE FROM GLOBAL_NAME;
 END IF;
 END;');
END;
/

/*

Step 6 Make sure the new column is part of the column group for which your site priority conflict resolution mechanism is used.

Use the ADD_GROUPED_COLUMN procedure to add this column to an existing column group. If you do not already have a column group, then you can create a new column group using the DBMS_REPCAT.MAKE_COLUMN_GROUP procedure.

*/

BEGIN
 DBMS_REPCAT.MAKE_COLUMN_GROUP (
 sname => 'hr',
 oname => 'regions',
 column_group => 'regions_sitepriority_cg',
 list_of_column_names => 'region_id,region_name,site');
END;
/

/*

Step 7 Before assigning a site priority value to the sites in your replicated environment, create a site priority group that holds the values you defined.

*/

BEGIN
 DBMS_REPCAT.DEFINE_SITE_PRIORITY (
 gname => 'hr_repg',
 name => 'regions_sitepriority_pg');
END;
/

/*

Step 8 Define the priority value for each of the sites in your replication environment.

Execute this procedure as often as necessary until you have defined a site priority value for each of the sites in our replication environment.

*/

BEGIN
 DBMS_REPCAT.ADD_SITE_PRIORITY_SITE (
 gname => 'hr_repg',
 name => 'regions_sitepriority_pg',
 site => 'orc1.world',
 priority => 100);
END;
/

BEGIN
 DBMS_REPCAT.ADD_SITE_PRIORITY_SITE (
 gname => 'hr_repg',
 name => 'regions_sitepriority_pg',
 site => 'orc2.world',
 priority => 50);
END;
/

BEGIN
 DBMS_REPCAT.ADD_SITE_PRIORITY_SITE (
 gname => 'hr_repg',
 name => 'regions_sitepriority_pg',
 site => 'orc3.world',
 priority => 25);
END;
/

/*

Step 9 Add the SITE PRIORITY resolution method to your replicated table.

The following example shows that it is the third conflict resolution method for the specified column group (sequence_no parameter).

*/

BEGIN
 DBMS_REPCAT.ADD_UPDATE_RESOLUTION (
 sname => 'hr',
 oname => 'regions',
 column_group => 'regions_sitepriority_cg',
 sequence_no => 1,
 method => 'SITE PRIORITY',
 parameter_column_name => 'site',
 priority_group => 'regions_sitepriority_pg');
END;
/

/*

Step 10 Regenerate replication support for the table that received the conflict resolution method.

*/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'regions',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 11 Resume replication activity.

*/

BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Creating Conflict Resolution Methods for Uniqueness Conflicts

In a replication environment, you might have situations where you encounter a conflict on a unique constraint, often resulting from an insert. If your business rules allow you to delete the duplicate row, then you can define a resolution method with Oracle's prebuilt conflict resolution methods.

More often, however, you probably want to modify the conflicting value so that it no longer violates the unique constraint. Modifying the conflicting value ensures that you do not lose important data. Oracle's prebuilt uniqueness conflict resolution method can make the conflicting value unique by appending a site name or a sequence number to the value.

An additional component that accompanies the uniqueness conflict resolution method is a notification facility. The conflicting information is modified by Oracle so that it can be inserted into the table, but you should be notified so that you can analyze the conflict to determine whether the record should be deleted, or the data merged into another record, or a completely new value be defined for the conflicting data.

A uniqueness conflict resolution method detects and resolves conflicts encountered on columns with a UNIQUE constraint. The example in this section uses the employees table in the hr sample schema, which has the unique constraint emp_email_uk on the email column.

	
Note:

To add unique conflict resolution method for a column, the name of the unique index on the column must match the name of the unique or primary key constraint.

Complete the following steps to create a uniqueness conflict resolution method.

	
Note:

If you are viewing this document online, then you can copy the text from the "BEGINNING OF SCRIPT" line after this note to the "END OF SCRIPT" line into a text editor and then edit the text to create a script for your environment.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect as the replication administrator.

*/

SET ECHO ON

SPOOL unique_conflictres.out

CONNECT repadmin/repadmin@orc1.world

/*

Step 2 Quiesce the master group that contains the table to which you want to apply the conflict resolution method.

Before you define a uniqueness conflict resolution method, make sure the master group that contains the table to which you want to apply the conflict resolution method is quiesced.

*/

BEGIN
 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

/*

Step 3 Create a table that stores the messages received from your notification facility.

In this example, the table name is conf_report.

*/

BEGIN
 DBMS_REPCAT.EXECUTE_DDL (
 gname => 'hr_repg',
 ddl_text => 'CREATE TABLE hr.conf_report (
 line NUMBER(2),
 txt VARCHAR2(80),
 timestamp DATE,
 table_name VARCHAR2(30),
 table_owner VARCHAR2(30),
 conflict_type VARCHAR2(7))');
END;
/

/*

Step 4 Connect as the owner of the table you created in Step 3.

*/

CONNECT hr/hr@orc1.world

/*

Step 5 Create a package that sends a notification to the conf_report table when a conflict is detected.

In this example, the package name is notify.

	
See Also:

Appendix B, "User-Defined Conflict Resolution Methods" describes the conflict resolution notification package that is created in this script

*/

CREATE OR REPLACE PACKAGE notify AS
 FUNCTION emp_unique_violation (email IN OUT VARCHAR2,
 discard_new_values IN OUT BOOLEAN)
 RETURN BOOLEAN;
END notify;
/

CREATE OR REPLACE PACKAGE BODY notify AS
 TYPE message_table IS TABLE OF VARCHAR2(80) INDEX BY BINARY_INTEGER;
 PROCEDURE report_conflict(conflict_report IN MESSAGE_TABLE,
 report_length IN NUMBER,
 conflict_time IN DATE,
 conflict_table IN VARCHAR2,
 table_owner IN VARCHAR2,
 conflict_type IN VARCHAR2) IS
 BEGIN
 FOR idx IN 1..report_length LOOP
 BEGIN
 INSERT INTO hr.conf_report
 (line, txt, timestamp, table_name, table_owner, conflict_type)
 VALUES (idx, SUBSTR(conflict_report(idx),1,80), conflict_time,
 conflict_table, table_owner, conflict_type);
 EXCEPTION WHEN others THEN NULL;
 END;
 END LOOP;
 END report_conflict;
 FUNCTION emp_unique_violation(email IN OUT VARCHAR2,
 discard_new_values IN OUT BOOLEAN)
 RETURN BOOLEAN IS
 local_node VARCHAR2(128);
 conf_report MESSAGE_TABLE;
 conf_time DATE := SYSDATE;
 BEGIN
 BEGIN
 SELECT global_name INTO local_node FROM global_name;
 EXCEPTION WHEN others THEN local_node := '?';
 END;
 conf_report(1) := 'UNIQUENESS CONFLICT DETECTED IN EMPLOYEES ON ' ||
 TO_CHAR(conf_time, 'MM-DD-YYYY HH24:MI:SS');
 conf_report(2) := ' AT NODE ' || local_node;
 conf_report(3) := 'ATTEMPTING TO RESOLVE CONFLICT USING' ||
 ' APPEND SITE NAME METHOD';
 conf_report(4) := 'EMAIL: ' || email;
 conf_report(5) := NULL;
 report_conflict(conf_report,5,conf_time,'employees','hr','UNIQUE');
 discard_new_values := FALSE;
 RETURN FALSE;
 END emp_unique_violation;
END notify;
/

/*

Step 6 Connect as the replication administrator.

*/

CONNECT repadmin/repadmin@orc1.world

/*

Step 7 Replicate the package you created in Step 5 to all of the master sites in your replication environment.

This step ensures that the notification facility is available at all master sites.

*/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'PACKAGE',
 oname => 'notify',
 sname => 'hr');
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'PACKAGE BODY',
 oname => 'notify',
 sname => 'hr');
END;
/

/*

Step 8 Add the notification facility as one of your conflict resolution methods.

Add it even though it only notifies of a conflict. The following example demonstrates adding the notification facility as a USER FUNCTION.

*/

BEGIN
 DBMS_REPCAT.ADD_UPDATE_RESOLUTION (
 sname => 'hr',
 oname => 'employees',
 constraint_name => 'emp_email_uk',
 sequence_no => 1,
 method => 'USER FUNCTION',
 comment => 'Notify DBA',
 parameter_column_name => 'email',
 function_name => 'hr.notify.emp_unique_violation');
END;
/

/*

Step 9 Add the actual conflict resolution method to your table.

The following example demonstrates adding the APPEND SITE NAME uniqueness conflict resolution method to your replicated table.

*/

BEGIN
 DBMS_REPCAT.ADD_UPDATE_RESOLUTION (
 sname => 'hr',
 oname => 'employees',
 constraint_name => 'emp_email_uk',
 sequence_no => 2,
 method => 'APPEND SITE NAME',
 parameter_column_name => 'email');
END;
/

/*

Step 10 Regenerate replication support for the table that received the conflict resolution methods.

*/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'employees',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 11 Resume replication activity.

*/

BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Creating Conflict Avoidance Methods for Delete Conflicts

Unlike update conflicts, where there are two values to compare, simply deleting a row makes the update conflict resolution methods described in the previous section ineffective because only one value would exist.

The best way to deal with deleting rows in a replication environment is to avoid the conflict by marking a row for deletion and periodically purging the table of all marked records. Because you are not physically removing this row, your data can converge at all master sites if a conflict arises because you still have two values to compare, assuming that no other errors have occurred. After you are sure that your data has converged, you can purge marked rows using a replicated purge procedure.

When developing the front-end application for your database, you probably want to filter out the rows that have been marked for deletion, because doing so makes it appear to your users as though the row was physically deleted. Simply exclude the rows that have been marked for deletion in the SELECT statement for your data set.

For example, a select statement for a current employee listing might be similar to the following:

SELECT * FROM hr.locations WHERE remove_date IS NULL;

This section describes how to prepare your replicated table to avoid delete conflicts. You also learn how to use procedural replication to purge those records that have been marked for deletion.

Complete the following steps to create a conflict avoidance method for delete conflicts.

	
Note:

If you are viewing this document online, then you can copy the text from the "BEGINNING OF SCRIPT" line after this note to the "END OF SCRIPT" line into a text editor and then edit the text to create a script for your environment.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect as the replication administrator at the master definition site.

*/

SET ECHO ON

SPOOL delete_conflictres.out

CONNECT repadmin/repadmin@orc1.world

/*

Step 2 Quiesce the master group that contains the table to which you want to apply the conflict resolution method.

*/

BEGIN
 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

/*

Step 3 Add a column to the replicated table that stores the mark for deleted records.

It is advisable to use a timestamp to mark your records for deletion (timestamp reflects when the record was marked for deletion). Because you are using a timestamp, the new column can be a DATE datatype. Use the DBMS_REPCAT.ALTER_MASTER_REPOBJECT procedure to add the remove_date column to your existing replicated table.

*/

BEGIN
 DBMS_REPCAT.ALTER_MASTER_REPOBJECT (
 sname => 'hr',
 oname => 'locations',
 type => 'TABLE',
 ddl_text => 'ALTER TABLE hr.locations ADD (remove_date DATE)');
END;
/

/*

Step 4 Regenerate replication support for the altered table.

*/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'locations',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 5 Create a package that is replicated to all of the master sites in your replication environment.

This package purges all marked records from the specified table.

*/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'PACKAGE',
 oname => 'purge',
 sname => 'hr',
 ddl_text => 'CREATE OR REPLACE PACKAGE hr.purge AS
 PROCEDURE remove_locations(purge_date DATE);
 END;');
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'PACKAGE BODY',
 oname => 'purge',
 sname => 'hr',
 ddl_text => 'CREATE OR REPLACE PACKAGE BODY hr.purge AS
 PROCEDURE remove_locations(purge_date IN DATE) IS
 BEGIN
 DBMS_REPUTIL.REPLICATION_OFF;
 LOCK TABLE hr.locations IN EXCLUSIVE MODE;
 DELETE hr.locations WHERE remove_date IS NOT NULL
 AND remove_date < purge_date;
 DBMS_REPUTIL.REPLICATION_ON;
 EXCEPTION WHEN others THEN
 DBMS_REPUTIL.REPLICATION_ON;
 END;
 END;');
END;
/

/*

Step 6 Generate replication support for each package and package body.

After generating replication support, a synonym is created for you and added to your master group as a replicated object. This synonym is labeled as defer_purge.remove_locations.

*/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'purge',
 type => 'PACKAGE',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'purge',
 type => 'PACKAGE BODY',
 min_communication => TRUE);
END;
/

/*

Step 7 In a separate terminal window, manually push any administrative requests at all other master sites.

You might need to execute the DO_DEFERRED_REPCAT_ADMIN procedure in the DBMS_REPCAT package several times, because some administrative operations have multiple steps. The following is an example:

*/

BEGIN
 DBMS_REPCAT.DO_DEFERRED_REPCAT_ADMIN (
 gname => 'hr_repg',
 all_sites => FALSE);
END;
/

*/

PAUSE Press <RETURN> to continue when you have verified that there are no
pending administrative requests in the DBA_REPCATLOG data dictionary view.

/*

Step 8 Resume replication activity.

*/

BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Using Dynamic Ownership Conflict Avoidance

This section describes a more advanced method of designing your applications to avoid conflicts. This method, known as token passing, is similar to the workflow method described in the following sections. Although this section describes how to use this method to control the ownership of an entire row, you can use a modified form of this method to control ownership of the individual column groups within a row.

Both workflow and token passing allow dynamic ownership of data. With dynamic ownership, only one site at a time is allowed to update a row, but ownership of the row can be passed from site to site. Both workflow and token passing use the value of one or more "identifier" columns to determine who is currently allowed to update the row.

Workflow

With workflow partitioning, you can think of data ownership as being "pushed" from site to site. Only the current owner of the row is allowed to push the ownership of the row to another site, by changing the value of the "identifier" columns.

Take the simple example of separate sites for ordering, shipping, and billing. Here, the identifier columns are used to indicate the status of an order. The status determines which site can update the row. After a user at the ordering site has entered the order, the user updates the status of this row to ship. Users at the ordering site are no longer allowed to modify this row — ownership has been pushed to the shipping site.

After shipping the order, the user at the shipping site updates the status of this row to bill, thus pushing ownership to the billing site, and so on.

To successfully avoid conflicts, applications implementing dynamic data ownership must ensure that the following conditions are met:

	
Only the owner of the row can update the row.

	
The row is never owned by more than one site.

	
Ordering conflicts can be successfully resolved at all sites.

With workflow partitioning, only the current owner of the row can push the ownership of the row to the next site by updating the "identifier" columns. No site is given ownership unless another site has given up ownership; thus ensuring there is never more than one owner.

Because the flow of work is ordered, ordering conflicts can be resolved by applying the change from the site that occurs latest in the flow of work. Any ordering conflicts can be resolved using a form of the priority conflict resolution method, where the priority value increases with each step in the work flow process. The priority conflict resolution method successfully converges for more than one master site as long as the priority value is always increasing.

Token Passing

Token passing uses a more generalized approach to meeting these criteria. To implement token passing, instead of the "identifier" columns, your replicated tables must have owner and epoch columns. The owner column stores the global database name of the site currently believed to own the row.

Once you have designed a token passing mechanism, you can use it to implement a variety of forms of dynamic partitioning of data ownership, including workflow.

You should design your application to implement token passing for you automatically. You should not allow the owner or epoch columns to be updated outside this application.

Whenever you attempt to update a row, your application should:

	
Locate the current owner of the row.

	
Establish ownership of the row.

	
Lock the row to prevent updates while ownership is changing.

	
Perform the update.

Oracle releases the lock when you commit your transaction.

For example, Figure 6-1 illustrates how ownership of employee 100 passes from the acct_sf database to the acct_ny database.

Figure 6-1 Grabbing the Token

[image: Description of Figure 6-1 follows]

Locating the Owner of a Row

To obtain ownership, the acct_ny database uses a simple recursive algorithm to locate the owner of the row. The sample code for this algorithm is shown as follows:

-- Sample code for locating the token owner.
-- This is for a table TABLE_NAME with primary key PK.
-- Initial call should initialize loc_epoch to 0 and loc_owner
-- to the local global name.
get_owner(PK IN primary_key_type, loc_epoch IN OUT NUMBER,
 loc_owner IN OUT VARCHAR2)
{
 -- use dynamic SQL (dbms_sql) to perform a select similar to
 -- the following:
 SELECT owner, epoch into rmt_owner, rmt_epoch
 FROM TABLE_NAME@loc_owner
 WHERE primary_key = PK FOR UPDATE;
 IF rmt_owner = loc_owner AND rmt_epoch >= loc_epoch THEN
 loc_owner := rmt_owner;
 loc_epoch := rmt_epoch;
 RETURN;
 ELSIF rmt_epoch >= loc_epoch THEN
 get_owner(PK, rmt_epoch, rmt_owner);
 loc_owner := rmt_owner;
 loc_epoch := rmt_epoch;
 RETURN;
 ELSE
 raise_application_error(-20000, 'No owner for row');
 END IF;}

Obtaining Ownership

After locating the owner of the row, the acct_ny site gets ownership from the acct_sf site by completing the following steps:

	
Lock the row at the sf site to prevent any changes from occurring while ownership is being exchanged.

This operation ensures that only one site considers itself to be the owner at all times. The update at the sf site should not be replicated using DBMS_REPUTIL.REPLICATION_OFF. The replicated change of ownership at the ny site in Step 4 will ultimately be propagated to all other sites in the replication environment, including the sf site, where it will have no effect.

	
Synchronously update the owner information at both the sf and ny sites.

	
Update the row information at the new owner site, ny, with the information from the current owner site, sf.

This data is guaranteed to be the most recent. This time, the change at the ny site should not be replicated. Any queued changes to this data at the sf site are propagated to all other sites in the usual manner. When the sf change is propagated to ny, it is ignored because of the values of the epoch numbers, as described in the next bullet point.

	
Update the epoch number at the new owner site to be one greater than the value at the previous site.

Perform this update at the new owner only, and then asynchronously propagate this update to the other master sites. Incrementing the epoch number at the new owner site prevents ordering conflicts.

When the sf changes (that were in the deferred queue in Step 2 preceding) are ultimately propagated to the ny site, the ny site ignores them because they have a lower epoch number than the epoch number at the ny site for the same data.

As another example, suppose the hq site received the sf changes after receiving the ny changes, the hq site would ignore the sf changes because the changes applied from the ny site would have the greater epoch number.

Applying the Change

You should design your application to implement this method of token passing for you automatically whenever you perform an update. You should not allow the owner or epoch columns to be updated outside this application. The lock that you grab when you change ownership is released when you apply your actual update. The changed information, along with the updated owner and epoch information, are asynchronously propagated to the other sites in the usual manner.

Auditing Successful Conflict Resolution

Whenever Oracle detects and successfully resolves an update, delete, or uniqueness conflict, you can view information about what method was used to resolve the conflict by querying the ALL_REPRESOLUTION_STATISTICS data dictionary view. This view is updated only if you have enabled conflict resolution statistics gathering for the table involved in the conflict.

	
See Also:

The ALL_REPRESOLUTION_STATISTICS view for more information

Collecting Conflict Resolution Statistics

Use the REGISTER_STATISTICS procedure in the DBMS_REPCAT package to collect information about the successful resolution of update, delete, and uniqueness conflicts for a table. The following example gathers statistics for the employees table in the hr schema:

BEGIN
 DBMS_REPCAT.REGISTER_STATISTICS (
 sname => 'hr',
 oname => 'employees');
END;
/

Viewing Conflict Resolution Statistics

After calling REGISTER_STATISTICS for a table, each conflict that is successfully resolved for that table is logged in the ALL_REPRESOLUTION_STATISTICS data dictionary view. Information about unresolved conflicts is always logged in the DEFERROR view, whether the object is registered or not.

	
See Also:

The ALL_REPRESOLUTION_STATISTICS view and the DEFERROR view for more information

Canceling Conflict Resolution Statistics

Use the CANCEL_STATISTICS procedure in the DBMS_REPCAT package if you no longer want to collect information about the successful resolution of update, delete, and uniqueness conflicts for a table. The following example cancels statistics gathering on the employees table in the hr schema:

BEGIN
 DBMS_REPCAT.CANCEL_STATISTICS (
 sname => 'hr',
 oname => 'employees');
END;
/

Clearing Statistics Information

If you registered a table to log information about the successful resolution of update, delete, and uniqueness conflicts, then you can remove this information from the DBA_REPRESOLUTION_STATISTICS data dictionary view by calling the PURGE_STATISTICS procedure in the DBMS_REPCAT package.

The following example purges the statistics gathered about conflicts resolved due to inserts, updates, and deletes on the employees table between January 1 and March 31:

BEGIN
 DBMS_REPCAT.PURGE_STATISTICS (
 sname => 'hr',
 oname => 'employees',
 start_date => '01-JAN-2001',
 end_date => '31-MAR-2001');
END;
/

16 DBMS_RECTIFIER_DIFF

The DBMS_RECTIFIER_DIFF package contains APIs used to detect and resolve data inconsistencies between two replicated sites.

This chapter contains this topic:

	
Summary of DBMS_RECTIFIER_DIFF Subprograms

Summary of DBMS_RECTIFIER_DIFF Subprograms

Table 16-1 DBMS_RECTIFIER_DIFF Package Subprograms

	Subprogram	Description
	
"DIFFERENCES Procedure"

	
Determines the differences between two tables.

	
"RECTIFY Procedure"

	
Resolves the differences between two tables.

DIFFERENCES Procedure

This procedure determines the differences between two tables. It accepts the storage table of a nested table.

	
Note:

This procedure cannot be used on LOB columns, nor on columns based on user-defined types.

Syntax

DBMS_RECTIFIER_DIFF.DIFFERENCES (
 sname1 IN VARCHAR2,
 oname1 IN VARCHAR2,
 reference_site IN VARCHAR2 := '',
 sname2 IN VARCHAR2,
 oname2 IN VARCHAR2,
 comparison_site IN VARCHAR2 := '',
 where_clause IN VARCHAR2 := '',
 { column_list IN VARCHAR2 := '',
 | array_columns IN DBMS_UTILITY.NAME_ARRAY, }
 missing_rows_sname IN VARCHAR2,
 missing_rows_oname1 IN VARCHAR2,
 missing_rows_oname2 IN VARCHAR2,
 missing_rows_site IN VARCHAR2 := '',
 max_missing IN INTEGER,
 commit_rows IN INTEGER := 500);

	
Note:

This procedure is overloaded. The column_list and array_columns parameters are mutually exclusive.

Parameters

Table 16-2 DIFFERENCES Procedure Parameters

	Parameter	Description
	

sname1

	
Name of the schema at reference_site.

	

oname1

	
Name of the table at reference_site.

	

reference_site

	
Name of the reference database site. The default, NULL, indicates the current site.

	

sname2

	
Name of the schema at comparison_site.

	

oname2

	
Name of the table at comparison_site.

	

comparison_site

	
Name of the comparison database site. The default, NULL, indicates the current site.

	

where_clause

	
Only rows satisfying this clause are selected for comparison. The default, NULL, indicates all rows are compared.

	

column_list

	
A comma-delimited list of one or more column names being compared for the two tables. You must not have any spaces before or after a comma. The default, NULL, indicates that all columns will be compared.

	

array_columns

	
A PL/SQL index-by table of column names being compared for the two tables. Indexing begins at 1, and the final element of the array must be NULL. If position 1 is NULL, then all columns are used.

	

missing_rows_sname

	
Name of the schema containing the tables with the missing rows.

	

missing_rows_oname1

	
Name of an existing table at missing_rows_site that stores information about the rows in the table at reference_site that are missing from the table at comparison_site, and information about the rows at comparison_site site that are missing from the table at reference_site.

	

missing_rows_oname2

	
Name of an existing table at missing_rows_site that stores information about the missing rows. This table has three columns: the R_ID column shows the rowid of the row in the missing_rows_oname1 table, the PRESENT column shows the name of the site where the row is present, and the ABSENT column shows name of the site from which the row is absent.

	

missing_rows_site

	
Name of the site where the missing_rows_oname1 and missing_rows_oname2 tables are located. The default, NULL, indicates that the tables are located at the current site.

	

max_missing

	
Integer that specifies the maximum number of rows that should be inserted into the missing_rows_oname table. If more than max_missing rows are missing, then that many rows are inserted into missing_rows_oname, and the routine then returns normally without determining whether more rows are missing. This parameter is useful if the fragments are so different that the missing rows table has too many entries and there is no point in continuing. Raises exception badnumber if max_missing is less than 1 or NULL.

	

commit_rows

	
Maximum number of rows to insert to or delete from the reference or comparison table before a COMMIT occurs. By default, a COMMIT occurs after 500 inserts or 500 deletes. An empty string (' ') or NULL indicates that a COMMIT should be issued only after all rows for a single table have been inserted or deleted.

Exceptions

Table 16-3 DIFFERENCES Procedure Exceptions

	Exception	Description
	

nosuchsite

	
Database site could not be found.

	

badnumber

	
The commit_rows parameter is less than 1.

	

missingprimarykey

	
Column list must include primary key (or SET_COLUMNS equivalent).

	

badname

	
NULL or empty string for table or schema name.

	

cannotbenull

	
Parameter cannot be NULL.

	

notshapeequivalent

	
Tables being compared are not shape equivalent. Shape refers to the number of columns, their column names, and the column datatypes.

	

unknowncolumn

	
Column does not exist.

	

unsupportedtype

	
Type not supported.

	

dbms_repcat.commfailure

	
Remote site is inaccessible.

	

dbms_repcat.missingobject

	
Table does not exist.

Restrictions

The error ORA-00001 (unique constraint violated) is issued when there are any unique or primary key constraints on the missing rows table.

RECTIFY Procedure

This procedure resolves the differences between two tables. It accepts the storage table of a nested table.

	
Note:

This procedure cannot be used on LOB columns, nor on columns based on user-defined types.

Syntax

DBMS_RECTIFIER_DIFF.RECTIFY (
 sname1 IN VARCHAR2,
 oname1 IN VARCHAR2,
 reference_site IN VARCHAR2 := '',
 sname2 IN VARCHAR2,
 oname2 IN VARCHAR2,
 comparison_site IN VARCHAR2 := '',
 { column_list IN VARCHAR2 := '',
 | array_columns IN dbms_utility.name_array, }
 missing_rows_sname IN VARCHAR2,
 missing_rows_oname1 IN VARCHAR2,
 missing_rows_oname2 IN VARCHAR2,
 missing_rows_site IN VARCHAR2 := '',
 commit_rows IN INTEGER := 500);

	
Note:

This procedure is overloaded. The column_list and array_columns parameters are mutually exclusive.

Parameters

Table 16-4 RECTIFY Procedure Parameters

	Parameter	Description
	

sname1

	
Name of the schema at reference_site.

	

oname1

	
Name of the table at reference_site.

	

reference_site

	
Name of the reference database site. The default, NULL, indicates the current site.

	

sname2

	
Name of the schema at comparison_site.

	

oname2

	
Name of the table at comparison_site.

	

comparison_site

	
Name of the comparison database site. The default, NULL, indicates the current site.

	

column_list

	
A comma-delimited list of one or more column names being compared for the two tables. You must not have any spaces before or after a comma. The default, NULL, indicates that all columns will be compared.

	

array_columns

	
A PL/SQL index-by table of column names being compared for the two tables. Indexing begins at 1, and the final element of the array must be NULL. If position 1 is NULL, then all columns are used.

	

missing_rows_sname

	
Name of the schema containing the tables with the missing rows.

	

missing_rows_oname1

	
Name of the table at missing_rows_site that stores information about the rows in the table at reference_site that are missing from the table at comparison_site, and information about the rows at comparison_site that are missing from the table at reference_site.

	

missing_rows_oname2

	
Name of the table at missing_rows_site that stores information about the missing rows. This table has three columns: the rowid of the row in the missing_rows_oname1 table, the name of the site at which the row is present, and the name of the site from which the row is absent.

	

missing_rows_site

	
Name of the site where the missing_rows_oname1 and missing_rows_oname2 tables are located. The default, NULL, indicates that the tables are located at the current site.

	

commit_rows

	
Maximum number of rows to insert to or delete from the reference or comparison table before a COMMIT occurs. By default, a COMMIT occurs after 500 inserts or 500 deletes. An empty string (' ') or NULL indicates that a COMMIT should be issued only after all rows for a single table have been inserted or deleted.

Exceptions

Table 16-5 RECTIFY Procedure Exceptions

	Exception	Description
	

nosuchsite

	
Database site could not be found.

	

badnumber

	
The commit_rows parameter is less than 1.

	

badname

	
NULL or empty string for table or schema name.

	

dbms_repcat.commfailure

	
Remote site is inaccessible.

	

dbms_repcat.missingobject

	
Table does not exist.

A Security Options

This appendix contains these topics:

	
Security Setup for Multimaster Replication

	
Security Setup for Materialized View Replication

Security Setup for Multimaster Replication

Nearly all users should find it easiest to use the Replication Manager Setup Wizard when configuring multimaster replication security. However, in certain cases you might need to use the replication management API to perform these setup operations.

To configure a replication environment, the database administrator must connect with DBA privileges to grant the necessary privileges to the replication administrator.

First set up user accounts at each master site with the appropriate privileges to configure and maintain the replication environment and to propagate and apply replicated changes. You must also define links for users at each master site.

In addition to the end users who access replicated objects, there are three special categories of "users" in a replication environment:

	
Replication administrators, who are responsible for configuring and maintaining a replication environment.

	
Propagators, who are responsible for propagating deferred transactions.

	
Receivers at remote sites, who are responsible for applying these transactions.

Typically, a single user acts as administrator, propagator, and receiver. However, you can have separate users perform each of these functions. You can choose to have a single, global replication administrator or, if your replication groups do not span schema boundaries, you might prefer to have separate replication administrators for different schemas. Note, however, that you can have only one registered propagator for each database.

Table A-1 describes the necessary privileges that must be assigned to these specialized accounts. Most privileges needed by these users are granted to them through calls to the replication management API. You also must grant certain privileges directly, such as the privileges required to connect to the database and manage database objects.

Trusted Compared with Untrusted Security

In addition to the different types of users, you also need to determine which type of security model you will implement: trusted or untrusted. With a trusted security model, the receiver has access to all local master groups. Because the receiver performs database activities at the local master site on behalf of the propagator at the remote site, the propagator also has access to all master groups at the receiver's site. Remember that a single receiver is used for all incoming transactions.

For example, consider the scenario in Figure A-1. Even though only Master Groups A and C exist at Master Site B, the propagator has access to Master Groups A, B, C, and D at Master Site A because the trusted security model has been used. While this greatly increases the flexibility of database administration, due to the mobility of remote database administration, it also increases the chances of a malicious user at a remote site viewing or corrupting data at the master site.

Regardless of the security model used, Oracle automatically grants the appropriate privileges for objects as they are added to or removed from a replication environment.

Figure A-1 Trusted Security: Multimaster Replication

[image: Description of Figure A-1 follows]

Untrusted security assigns only the privileges to the receiver that are required to work with specified master groups. The propagator, therefore, can only access the specified master groups that are local to the receiver. Figure A-2 illustrates an untrusted security model. Because Master Site B contains only Master Groups A and C, the receiver at Master Site A has been granted privileges for Master Groups A and C only, thereby limiting the propagator's access at Master Site A.

Figure A-2 Untrusted Security: Multimaster Replication

[image: Description of Figure A-2 follows]

Typically, master sites are considered trusted and therefore the trusted security model is used. If, however, your remote master sites are untrusted, then you might want to use the untrusted model and assign your receiver limited privileges. A site might be considered untrusted, for example, if a consulting shop performs work for multiple customers. Use the appropriate API call listed for the receiver in Table A-1 to assign the different users the appropriate privileges.

Table A-1 Required User Accounts

	User	Privileges
	
global replication administrator

	
DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA

	
schema-level replication administrator

	
DBMS_REPCAT_ADMIN.GRANT_ADMIN_SCHEMA

	
propagator

	
DBMS_DEFER_SYS.REGISTER_PROPAGATOR

	
receiver

	
See "REGISTER_USER_REPGROUP Procedure" for details.

Trusted:

DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP
privilege => 'receiver'
list_of_gnames => NULL,
...

Untrusted:

DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP
privilege => 'receiver'
list_of_gnames => 'mastergroupname',
...

After you have created these accounts and assigned the appropriate privileges, create the following private database links, including username and password between each site:

	
From the local replication administrator to the remote replication administrator.

	
From the local propagator to the remote receiver.

Assuming you have designated a single user account to act as replication administrator, propagator, and receiver, you must create N(N-1) links, where N is the number of master sites in your replication environment.

After creating these links, you must call DBMS_DEFER_SYS.SCHEDULE_PUSH and DBMS_DEFER_SYS.SCHEDULE_PURGE, at each location, to define how frequently you want to propagate your deferred transaction queue to each remote location, and how frequently you wish to purge this queue. You must call DBMS_DEFER_SYS.SCHEDULE_PUSH multiple times at each site, once for each remote location.

A sample script for setting up multimaster replication between hq.world and sales.world is shown as follows:

/*--- Create global replication administrator at HQ ---*/
CONNECT SYSTEM/MANAGER@hq.world
CREATE USER repadmin IDENTIFIED BY repadmin;
EXECUTE DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA(username => 'repadmin');

/*--- Create global replication administrator at Sales ---*/
CONNECT SYSTEM/MANAGER@sales.world
CREATE USER repadmin IDENTIFIED BY repadmin;
EXECUTE DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA(username => 'repadmin');

/*--- Create single user to act as both propagator and receiver at HQ ---*/
CONNECT SYSTEM/MANAGER@hq.world
CREATE USER prop_rec IDENTIFIED BY prop_rec;
/*--- Grant privileges necessary to act as propagator ---*/
EXECUTE DBMS_DEFER_SYS.REGISTER_PROPAGATOR(username => 'prop_rec');
/*--- Grant privileges necessary to act as receiver ---*/
BEGIN
 DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP(
 username => 'prop_rec',
 privilege_type => 'receiver',
 list_of_gnames => NULL);
END;
/

/*--- Create single user to act as both propagator and receiver at Sales ---*/
CONNECT SYSTEM/MANAGER@sales.world
CREATE USER prop_rec IDENTIFIED BY prop_rec;
/*--- Grant privileges necessary to act as propagator ---*/execute
EXECUTE DBMS_DEFER_SYS.REGISTER_PROPAGATOR(username => 'prop_rec');
/*--- Grant privileges necessary to act as receiver ---*/
BEGIN
 DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP(
 username => 'prop_rec',
 privilege_type => 'receiver',
 list_of_gnames => NULL);
END;
/

/*--- Create public link from HQ to Sales with necessary USING clause ---*/
CONNECT SYSTEM/MANAGER@hq.world
CREATE PUBLIC DATABASE LINK sales.world USING 'sales.world';

/*--- Create private repadmin to repadmin link ---*/
CONNECT repadmin/repadmin@hq.world
CREATE DATABASE LINK sales.world CONNECT TO repadmin IDENTIFIED BY repadmin;

/*--- Schedule replication from HQ to Sales ---*/
BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PUSH(
 destination => 'sales.world',
 interval => 'sysdate + 1/24',
 next_date => sysdate,
 stop_on_error => FALSE,
 parallelism => 1);
END;
/

/*--- Schedule purge of def tran queue at HQ ---*/
BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PURGE(
 next_date => sysdate,
 interval => 'sysdate + 1',
 delay_seconds => 0,
 rollback_segment => '');
END;
/

/*--- Create link from propagator to receiver for scheduled push ---*/
CONNECT prop_rec/prop_rec@hq.world
CREATE DATABASE LINK sales.world CONNECT TO prop_rec IDENTIFIED BY prop_rec;

/*--- Create public link from Sales to HQ with necessary USING clause ---*/
CONNECT system/manager@sales.world
CREATE PUBLIC DATABASE LINK hq.world USING 'hq.world';

/*--- Create private repadmin to repadmin link ---*/
CONNECT repadmin/repadmin@sales.world
CREATE DATABASE LINK hq.world CONNECT TO repadmin IDENTIFIED BY repadmin;

/*--- Schedule replication from Sales to HQ ---*/
BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PUSH(
 destination => 'hq.world',
 interval => 'sysdate + 1/24',
 next_date => sysdate,
 stop_on_error => FALSE,
 parallelism => 1);
END;
/

/*--- Schedule purge of def tran queue at Sales ---*/
BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PURGE(
 next_date => sysdate,
 interval => 'sysdate + 1',
 delay_seconds => 0,
 rollback_segment =>'');
END;
/

/*--- Create link from propagator to receiver for scheduled push ---*/
CONNECT prop_rec/prop_rec@sales.world
CREATE DATABASE LINK hq.world connect TO prop_rec IDENTIFIED BY prop_rec;

Security Setup for Materialized View Replication

Nearly all users should find it easiest to use the Replication Manager Setup Wizard when configuring materialized view replication security. However, for certain specialized cases, you might need to use the replication management API to perform these setup operations. To configure a replication environment, the database administrator must connect with DBA privileges to grant the necessary privileges to the replication administrator.

First set up user accounts at each materialized view site with the appropriate privileges to configure and maintain the replication environment and to propagate replicated changes. You must also define links for these users to the associated master site or master materialized view site. You might need to create additional users, or assign additional privileges to users at the associated master site or master materialized view site.

In addition to end users who will be accessing replicated objects, there are three special categories of "users" at a materialized view site:

	
Replication administrators, who are responsible for configuring and maintaining a replication environment.

	
Propagators, who are responsible for propagating deferred transactions.

	
Refreshers, who are responsible for pulling down changes to the materialized views from the associated master tables or master materialized views.

Typically, a single user performs each of these functions. However, there might be situations where you need different users performing these functions. For example, materialized views can be created by a materialized view site administrator and refreshed by another end user.

Table A-2 describes the privileges needed to create and maintain a materialized view site.

Table A-2 Required Materialized View Site User Accounts

	User	Privileges
	
Materialized view site replication administrator

	
DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA

	
Propagator

	
DBMS_DEFER_SYS.REGISTER_PROPAGATOR

	
Refresher

	
CREATE ANY MATERIALIZED VIEW ALTER ANY MATERIALIZED VIEW

In addition to creating the appropriate users at the materialized view site, you might need to create additional users at the associated master site or master materialized view site, as well. Table A-3 on describes the privileges need by master site or master materialized view site users to support a new materialized view site.

Trusted Compared with Untrusted Security

In addition to the different users at the master site or master materialized view site, you also need to determine which type of security model you will implement: trusted or untrusted. With a trusted security model, the receiver and proxy materialized view administrator have access to all local replication groups. The receiver and proxy materialized view administrator perform database activities at the local master site or master materialized view site on behalf of the propagator and materialized view administrator, respectively, at the remote materialized view site. Therefore, the propagator and materialized view administrator at the remote materialized view site also have access to all replication groups at the master site or master materialized view site. Remember that a single receiver is used for all incoming transactions.

For example, consider the scenario in Figure A-3. Even though Materialized View Groups A and C exist at the materialized view site (based on Master Groups A and C at the Master Site), the propagator and materialized view administrator have access to Master Groups A, B, C, and D at the Master Site because the trusted security model has been used. While this greatly increases the flexibility of database administration, because the DBA can perform administrative functions at any of these remote sites and have these changes propagated to the master sites, it also increases the chances of a malicious user at a remote site viewing or corrupting data at the master site.

Regardless of the security model used, Oracle automatically grants the appropriate privileges for objects as they are added to or removed from a replication environment.

Figure A-3 Trusted Security: Materialized View Replication

[image: Description of Figure A-3 follows]

Untrusted security assigns only the privileges to the proxy materialized view administrator and receiver that are required to work with specified replication groups. The propagator and materialized view administrator, therefore, can only access these specified replication groups at the Master Site. Figure A-4 illustrates an untrusted security model with materialized view replication. Because the Materialized View Site contains Materialized View Groups A and C, access to only Master Groups A and C are required. Using untrusted security does not allow the propagator or the materialized view administrator at the Materialized View Site to access Master Groups B and D at the Master Site.

Figure A-4 Untrusted Security: Materialized View Replication

[image: Description of Figure A-4 follows]

Typically, materialized view sites are more vulnerable to security breaches and therefore the untrusted security model is used. There are very few reasons why you would want to use a trusted security model with your materialized view site and it is recommended that you use the untrusted security model with materialized view sites.

One reason you might choose to use a trusted security model is if your materialized view site is considered a master site in every way (security, constant network connectivity, resources) but is a materialized view only because of data subsetting requirements. Remember that row and column subsetting are not supported in a multimaster configuration.

Use the appropriate API calls listed for the proxy materialized view administrator and receiver in Table A-3 to assign the different users the appropriate privileges.

Table A-3 Required Master Site or Master Materialized View Site User Accounts

	User	Privileges
	
proxy materialized view site administrator

	
See "REGISTER_USER_REPGROUP Procedure" for details.

Trusted:

DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP
privilege => 'proxy_snapadmin'
list_of_gnames => NULL,
...

Untrusted:

DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP
privilege => 'proxy_snapadmin'
list_of_gnames => 'mastergroupname',
...

	
receiver

	
See "REGISTER_USER_REPGROUP Procedure" for details.

Trusted:
DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP
privilege => 'receiver'
list_of_gnames => NULL,
...

Untrusted:

DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP
privilege => 'receiver'
list_of_gnames => 'mastergroupname',
...

	
proxy refresher

	
Trusted:

Grant CREATE SESSION Grant SELECT ANY TABLE

Untrusted:

Grant CREATE SESSION Grant SELECT on necessary master tables or master materialized views and materialized view logs

After creating the accounts at both the materialized view and associated master sites or master materialized view sites, you need to create the following private database links, including username and password, from the materialized view site to the master site or master materialized view site:

	
From the materialized view replication administrator to the proxy materialized view replication administrator.

	
From the propagator to the receiver.

	
From the refresher to the proxy refresher.

	
From the materialized view owner to the master site or master materialized view site for refreshes.

Assuming you have designated a single user account to act as materialized view administrator, propagator, and refresher, you must create one link for each materialized view site for those functions. You do not need a link from the master site or master materialized view site to the materialized view site.

After creating these links, you must call DBMS_DEFER_SYS.SCHEDULE_PUSH and DBMS_DEFER_SYS.SCHEDULE_PURGE at the materialized view site to define how frequently you want to propagate your deferred transaction queue to the associated master site or master materialized view site, and how frequently you wish to purge this queue. You must also call DBMS_REFRESH.REFRESH at the materialized view site to schedule how frequently to pull changes from the associated master site or master materialized view site.

9 Managing Replication Objects and Queues

This chapter illustrates how to manage the replication objects and queues in your replication environment using the replication management API.

This chapter contains these topics:

	
Altering a Replicated Object

	
Modifying Tables without Replicating the Modifications

	
Converting a LONG Column to a LOB Column in a Replicated Table

	
Determining Differences Between Replicated Tables

	
Managing the Deferred Transactions Queue

	
Managing the Error Queue

Altering a Replicated Object

As your database needs change, you might need to modify the characteristics of your replicated objects. It is important that you do not directly execute DDL to alter your replicated objects. Doing so might cause your replication environment to fail.

	
Note:

If the logical structure of a master table is altered (for example, if a column name or type is changed), then all dependent materialized views must be rebuilt.

Altering a Replicated Object in a Quiesced Master Group

Use the ALTER_MASTER_REPOBJECT procedure in the DBMS_REPCAT package to alter the characteristics of your replicated objects in a quiesced master group. From the example following, notice that you simply include the necessary DDL within the procedure call (see the ddl_text parameter).

If any master site is lower than 9.0.1 compatibility level, then you must use the following procedure. That is, the master group must be quiesced to modify a replicated object. You control the compatibility level of a database with the COMPATIBLE initialization parameter.

Meet the following requirements to complete these actions:

Executed As: Replication Administrator

Executed At: Master Definition Site

Replication Status: Quiesced

Complete the following steps to alter a replicated object in a quiesced master group.

	
Note:

	
If your master site is running Oracle8i Database release 8.1.7 or later in a single master environment and you are making a safe change to a replicated object, then you might not need to quiesce the master group. See the "ALTER_MASTER_REPOBJECT Procedure" for information about when quiesce is not required.

	
If you are viewing this document online, then you can copy the text from the "BEGINNING OF SCRIPT" line after this note to the "END OF SCRIPT" line into a text editor and then edit the text to create a script for your environment.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect to the master definition site as the replication administrator.

*/

SET ECHO ON

SPOOL alter_rep_object.out

CONNECT repadmin/repadmin@orc1.world

/*

Step 2 If necessary, then quiesce the master group.

See the "ALTER_MASTER_REPOBJECT Procedure" for information about when quiesce is not required.

*/

BEGIN
 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

/*

Step 3 In a separate SQL*Plus session, check the status of the master group you are quiescing.

Do not proceed until the group's status is QUIESCED.

To check the status, run the following query:

SELECT GNAME, STATUS FROM DBA_REPGROUP;

*/

PAUSE Press <RETURN> to continue when the master group's status is QUIESCED.

/*

Step 4 Alter the replicated object.

*/

BEGIN
 DBMS_REPCAT.ALTER_MASTER_REPOBJECT (
 sname => 'hr',
 oname => 'employees',
 type => 'TABLE',
 ddl_text => 'ALTER TABLE hr.employees ADD (timestamp DATE)');
END;
/

/*

Step 5 Regenerate replication support for the altered object.

*/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'employees',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 6 In a separate SQL*Plus session, check if DBA_REPCATLOG is empty.

Do not proceed until this view is empty.

Execute the following SELECT statement in another SQL*Plus session to monitor the DBA_REPCATLOG view:

SELECT * FROM DBA_REPCATLOG WHERE GNAME = 'HR_REPG';

*/

PAUSE Press <RETURN> to continue when DBA_REPCATLOG is empty.

/*

Step 7 Resume replication activity.

*/

BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Modifying Tables without Replicating the Modifications

You might have a situation in which you need to modify a replicated object, but you do not want this modification replicated to the other sites in the replication environment. For example, you might want to disable replication in the following situations:

	
When you are using procedural replication to propagate a change, always disable row-level replication at the start of your procedure.

	
You might need to disable replication in triggers defined on replicated tables to avoid replicating trigger actions multiple times. See "Ensuring that Replicated Triggers Fire Only Once".

	
Sometimes when you manually resolve a conflict, you might not want to replicate this modification to the other copies of the table.

You might need to do this, for example, if you need to correct the state of a record at one site so that a conflicting replicated update will succeed when you reexecute the error transaction. Or, you might use an unreplicated modification to undo the effects of a transaction at its origin site because the transaction could not be applied at the destination site. In this example, you can use the Replication Management tool to delete the conflicting transaction from the destination site.

To modify tables without replicating the modifications, use the REPLICATION_ON and REPLICATION_OFF procedures in the DBMS_REPUTIL package. These procedures take no arguments and are used as flags by the generated replication triggers.

	
Note:

To enable and disable replication, you must have the EXECUTE privilege on the DBMS_REPUTIL package.

Disabling Replication

The DBMS_REPUTIL.REPLICATION_OFF procedure sets the state of an internal replication variable for the current session to false. Because all replicated triggers check the state of this variable before queuing any transactions, modifications made to the replicated tables that use row-level replication do not result in any queued deferred transactions.

	
Caution:

Turning replication on or off affects only the current session. That is, other users currently connected to the same server are not restricted from placing committed changes in the deferred transaction queue.

If you are using procedural replication, then call REPLICATION_OFF at the start of your procedure, as shown in the following example. This ensures that the replication facility does not attempt to use row-level replication to propagate the changes that you make.

CREATE OR REPLACE PACKAGE update_objects AS
 PROCEDURE update_emp(adjustment IN NUMBER);
END;
/

CREATE OR REPLACE PACKAGE BODY update_objects AS
 PROCEDURE update_emp(adjustment IN NUMBER) IS
 BEGIN
 --turn off row-level replication for set update
 DBMS_REPUTIL.REPLICATION_OFF;
 UPDATE emp . . .;
 --reenable replication
 DBMS_REPUTIL.REPLICATION_ON;
 EXCEPTION WHEN OTHERS THEN
 . . .
 DBMS_REPUTIL.REPLICATION_ON;
 END;
END;
/

Reenabling Replication

After resolving any conflicts, or at the end of your replicated procedure, be certain to call DBMS_REPUTIL.REPLICATION_ON to resume normal replication of changes to your replicated tables or materialized views. This procedure takes no arguments. Calling REPLICATION_ON sets the internal replication variable to true.

Ensuring that Replicated Triggers Fire Only Once

If you have defined a replicated trigger on a replicated table, then you might need to ensure that the trigger fires only once for each change that you make. Typically, you only want the trigger to fire when the change is first made, and you do not want the remote trigger to fire when the change is replicated to the remote site.

You should check the value of the DBMS_REPUTIL.FROM_REMOTE package variable at the start of your trigger. The trigger should update the table only if the value of this variable is false.

Alternatively, you can disable replication at the start of the trigger and reenable it at the end of the trigger when modifying rows other than the one that caused the trigger to fire. Using this method, only the original change is replicated to the remote sites. Then the replicated trigger fires at each remote site. Any updates performed by the replicated trigger are not pushed to any other sites.

Using this approach, conflict resolution is not invoked. Therefore, you must ensure that the changes resulting from the trigger do not affect the consistency of the data.

Converting a LONG Column to a LOB Column in a Replicated Table

LOB columns can be replicated, but LONG columns cannot be replicated. You can convert the datatype of a LONG column to a CLOB column and the datatype of a LONG_RAW column to a BLOB column.

Converting a LONG column to a LOB column can result in increased network bandwidth requirements because the data in such a column is replicated after conversion. Make sure you have adequate network bandwidth before completing the procedure in this section.

	
See Also:

Oracle Database Application Developer's Guide - Large Objects for more information about applications and LONG to LOB conversion

Complete the following steps to convert a LONG column to a LOB column in a replicated table:

Step 1 Make sure the data in the LONG column is consistent at all replication sites.

If a table containing a LONG column is configured as a master table, then Oracle does not replicate changes to the data in the LONG column. Therefore, the data in the LONG column might not match at all of your replication sites. You must make sure the data in the LONG column matches at all master sites before proceeding.

Step 2 Connect to the master definition site as the replication administrator.

CONNECT repadmin/repadmin@orc1.world

Step 3 If the replication status is normal, then change the status to quiesced.

BEGIN

 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'sales_mg');
END;
/

Step 4 Convert the LONG column to a LOB column.

BEGIN

 DBMS_REPCAT.ALTER_MASTER_REPOBJECT (
 sname => 'staff',
 oname => 'positions',
 type => 'TABLE',
 ddl_text => 'ALTER TABLE staff.positions MODIFY (job_desc CLOB)');
END;
/

A LONG_RAW column can be converted to a BLOB column using a similar ALTER TABLE statement.

Step 5 Regenerate replication support for the altered master table.

BEGIN

 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'staff',
 oname => 'positions',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

Step 6 Resume replication.

BEGIN

 DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'sales_mg');
END;
/

Step 7 If materialized views are based on the altered table at any of the master sites, then rebuild these materialized views.

Rebuild materialized views if necessary.

Determining Differences Between Replicated Tables

It is possible for the differences to arise in replicated tables. When administering a replication environment, you might want to check, periodically, whether the contents of two replicated tables are identical. The following procedures in the DBMS_RECTIFIER_DIFF package let you identify, and optionally rectify, the differences between two tables.

Using the DIFFERENCES Procedure

The DIFFERENCES procedure compares two replicas of a table, and determines all rows in the first replica that are not in the second and all rows in the second that are not in the first. The output of this procedure is stored in two user-created tables. The first table stores the values of the missing rows, and the second table is used to indicate which site contains each row.

Using the RECTIFY Procedure

The RECTIFY procedure uses the information generated by the DIFFERENCES procedure to rectify the two tables. Any rows found in the first table and not in the second are inserted into the second table. Any rows found in the second table and not in the first are deleted from the second table.

To restore equivalency between all copies of a replicated table, complete the following steps:

Step 1 Select one copy of the table to be the "reference" table.

This copy will be used to update all other replicas of the table as needed.

Step 2 Determine if it is necessary to check all rows and columns in the table for differences, or only a subset.

For example, it might not be necessary to check rows that have not been updated since the last time that you checked for differences. Although it is not necessary to check all columns, your column list must include all columns that make up the primary key (or that you designated as a substitute identity key) for the table.

Step 3 After determining which columns you will be checking in the table, create two tables to hold the results of the comparison.

You must create one table that can hold the data for the columns being compared. For example, if you decide to compare the employee_id, salary, and department_id columns of the employees table, then your CREATE statement would need to be similar to the following:

CREATE TABLE hr.missing_rows_data (
 employee_id NUMBER(6),
 salary NUMBER(8,2),
 department_id NUMBER(4));

You must also create a table that indicates where the row is found. This table must contain three columns with the datatypes shown in the following example:

CREATE TABLE hr.missing_rows_location (
 present VARCHAR2(128),
 absent VARCHAR2(128),
 r_id ROWID);

Step 4 Suspend replication activity for the replication group containing the tables that you want to compare.

Although suspending replication activity for the group is not a requirement, rectifying tables that were not quiesced first can result in inconsistencies in your data.

CONNECT repadmin/repadmin

BEGIN
 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

Step 5 At the site containing the "reference" table, call the DIFFERENCES procedure.

For example, if you wanted to compare the employees tables at the New York and San Francisco sites, then your procedure call would look similar to the following:

BEGIN
 DBMS_RECTIFIER_DIFF.DIFFERENCES (
 sname1 => 'hr',
 oname1 => 'employees',
 reference_site => 'ny.world',
 sname2 => 'hr',
 oname2 => 'employees',
 comparison_site => 'mv4.world',
 where_clause => '',
 column_list => 'employee_id,salary,department_id',
 missing_rows_sname => 'hr',
 missing_rows_oname1 => 'missing_rows_data',
 missing_rows_oname2 => 'missing_rows_location',
 missing_rows_site => 'ny.world',
 max_missing => 500,
 commit_rows => 50);
END;
/

Figure 9-1 shows an example of two replicas of the employees table and what the resulting missing rows tables would look like if you executed the DIFFERENCES procedure on these replicas.

Figure 9-1 Determining Differences Between Replicas

[image: Description of Figure 9-1 follows]

Notice that the two missing rows tables are related by the ROWID and r_id columns.

Step 6 Rectify the table at the "comparison" site to be equivalent to the table at the "reference" site.

BEGIN

 DBMS_RECTIFIER_DIFF.RECTIFY (
 sname1 => 'hr',
 oname1 => 'employees',
 reference_site => 'ny.world',
 sname2 => 'hr',
 oname2 => 'employees',
 comparison_site => 'mv4.world',
 column_list => 'employee_id,salary,department_id',
 missing_rows_sname => 'hr',
 missing_rows_oname1 => 'missing_rows_data',
 missing_rows_oname2 => 'missing_rows_location',
 missing_rows_site => 'ny.world',
 commit_rows => 50);
END;
/

The RECTIFY procedure temporarily disables replication at the "comparison" site while it performs the necessary insertions and deletions, as you would not want to propagate these changes. RECTIFY first performs all of the necessary DELETE operations and then performs all of the INSERT operations. This ensures that there are no violations of a PRIMARY KEY constraint.

After you have successfully executed the RECTIFY procedure, your missing rows tables should be empty.

	
Caution:

If you have any additional constraints on the "comparison" table, then you must ensure that they are not violated when you call RECTIFY. You might need to update the table directly using the information in the missing rows table. If so, then be sure to DELETE the appropriate rows from the missing rows tables.

Step 7 Repeat Steps 5 and 6 for the remaining copies of the replicated table.

Remember to use the same "reference" table each time to ensure that all copies are identical when you complete this procedure.

Step 8 Resume replication activity for the master group.

BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

Managing the Deferred Transactions Queue

Typically, Advanced Replication is configured to push and purge the deferred transaction queue automatically. At times, however, you might need to push or purge the deferred transaction queue manually. The process for pushing the deferred transaction queue is the same at master sites and materialized view sites.

Pushing the Deferred Transaction Queue

Master sites are configured to push the deferred transaction queue automatically at set intervals. At materialized view sites, if you do not automatically propagate the transactions in your deferred transaction queue during the refresh of your materialized view, then you must complete the following steps to propagate changes made to the updatable materialized view to its master table or master materialized view.

This example illustrates pushing the deferred transaction queue at a materialized view site, but the process is the same at master sites and materialized view sites.

Executed As: Materialized View Administrator

Executed At: Materialized View Site

Complete the following steps:

Step 1 Connect to the materialized view site as the materialized view administrator.

CONNECT mviewadmin/mviewadmin@mv1.world

Step 2 Execute the following SELECT statement to view the deferred transactions and their destinations.

Propagation of the deferred transaction queue is based on the destination of the transaction. Each distinct destination and the number of transactions pending for the destination will be displayed.

SELECT DISTINCT(dblink), COUNT(deferred_tran_id)
 FROM deftrandest GROUP BY dblink;

Step 3 Execute the DBMS_DEFER_SYS.PUSH function for each site that is listed as a destination for a deferred transaction.

DECLARE
 temp INTEGER;
BEGIN
 temp := DBMS_DEFER_SYS.PUSH (
 destination => 'orc1.world',
 stop_on_error => FALSE,
 delay_seconds => 0,
 parallelism => 0);
END;
/

Run the PUSH procedure for each destination that was returned in the SELECT statement you ran in Step 2.

Purging the Deferred Transaction Queue

If your system is not set to automatically purge the successfully propagated transactions in your deferred transaction queue periodically, then you must complete the following steps to purge them manually.

This example illustrates purging the deferred transaction queue at a materialized view site, but the process is the same at master sites and materialized view sites.

Executed As: Materialized View Administrator

Executed At: Materialized View Site

Complete the following steps:

Step 1 Connect to the materialized view site as the materialized view administrator.

CONNECT mviewadmin/mviewadmin@mv1.world

Step 2 Purge the deferred transaction queue.

DECLARE

 temp INTEGER;
BEGIN
 temp := DBMS_DEFER_SYS.PURGE (
 purge_method => DBMS_DEFER_SYS.PURGE_METHOD_QUICK);
END;
/

	
Note:

If you use the purge_method_quick parameter, deferred transactions and deferred procedure calls that have been successfully pushed can remain in the DEFTRAN and DEFCALL data dictionary views for longer than expected before they are purged. See the "Usage Notes" for DBMS_DEFER_SYS.PURGE for details.

Using the ANYDATA Type to Determine the Value of an Argument in a Deferred Call

If you are using column objects, collections, or REFs in a replicated table, then you can use the GET_ANYDATA_ARG function in the DBMS_DEFER_QUERY package to determine the value of an argument in a deferred call that involves one of these user-defined types.

The following example illustrates how to use the GET_ANYDATA_ARG function. This example uses the following user-defined types in the oe sample schema.

CREATE TYPE phone_list_typ AS VARRAY(5) OF VARCHAR2(25);
/

CREATE TYPE warehouse_typ AS OBJECT
 (warehouse_id NUMBER(3),
 warehouse_name VARCHAR2(35),
 location_id NUMBER(4)
);
/

CREATE TYPE inventory_typ AS OBJECT
 (product_id NUMBER(6),
 warehouse warehouse_typ,
 quantity_on_hand NUMBER(8)
);
/

CREATE TYPE inventory_list_typ AS TABLE OF inventory_typ;
/

The following procedure retrieves the argument value for collection, object, and REF instances of calls stored in the deferred transactions queue. This procedure assumes that the call number and transaction id are available.

The user who creates the procedure must have EXECUTE privilege on the DBMS_DEFER_QUERY package and must have CREATE PROCEDURE privilege. This example uses the oe sample schema. Therefore, to run the example, you must grant the oe user these privileges.

CONNECT SYSTEM/MANAGER AS SYSDBA

GRANT EXECUTE ON DBMS_DEFER_QUERY TO oe;

GRANT CREATE PROCEDURE TO oe;

CONNECT oe/oe@orc1.world

CREATE OR REPLACE PROCEDURE get_userdef_arg AS
 call_no NUMBER := 0;
 txn_id VARCHAR2(128) := 'xx.xx.xx';
 anydata_val ANYDATA;
 t ANYTYPE;
 data_pl phone_list_typ; -- varray
 data_ntt inventory_list_typ; -- nested table type
 data_p warehouse_typ; -- object type
 ref1 REF inventory_typ; -- REF type
 rval PLS_INTEGER; -- return value
 tc PLS_INTEGER; -- return value
 prec PLS_INTEGER; -- precision
 scale PLS_INTEGER; -- scale
 len PLS_INTEGER; -- length
 csid PLS_INTEGER; -- character set id
 csfrm PLS_INTEGER; -- character set form
 cnt PLS_INTEGER; -- count of varray elements or number of
 -- object attributes
 sname VARCHAR2(35); -- schema name
 type_name VARCHAR2(35); -- type name
 version VARCHAR2(35);
BEGIN
 FOR i IN 1 .. 5 LOOP
 anydata_val := DBMS_DEFER_QUERY.GET_ANYDATA_ARG(call_no, i, txn_id);
 -- Get the type information, including type name.
 tc := anydata_val.GetType(t);
 tc := t.GetInfo(prec, scale, len, csid, csfrm, sname, type_name,
 version, cnt);
 -- Based on the type name, convert the anydata value to the appropriate
 -- user-defined types.
 IF type_name = 'PHONE_LIST_TYP' THEN
 -- The anydata_val contains phone_list_typ varray instance.
 rval := anydata_val.GetCollection(data_pl);
 -- Do something with data_pl.
 ELSIF type_name = 'INVENTORY_LIST_TYP' THEN
 -- anydata_val contains inventory_list_typ nested table instance.
 rval := anydata_val.GetCollection(data_ntt);
 -- Do something with data_ntt.
 ELSIF type_name = 'WAREHOUSE_TYP' THEN
 -- The anydata_val contains warehouse_typ object instance.
 rval := anydata_val.GetObject(data_p);
 -- Do something with data_p.
 ELSIF type_name = 'INVENTORY_TYP' THEN
 -- The anydata_val contains a reference to inventory_typ object instance.
 rval := anydata_val.GetRef(ref1);
 -- Do something with ref1.
 END IF;
 END LOOP;
END;
/

	
See Also:

	
"GET_datatype_ARG Function"

	
Oracle Database SQL Reference, Oracle Database Application Developer's Guide - Object-Relational Features, and Oracle Database PL/SQL Packages and Types Reference for more information about the ANYDATA datatype

Managing the Error Queue

As an administrator of a replication environment, you should regularly monitor the error queue to determine if any deferred transactions were not successfully applied at the target master site.

To check the error queue, issue the following SELECT statement (as the replication administrator) when connected to the target master site:

SELECT * FROM deferror;

If the error queue contains errors, then you should resolve the error condition and reexecute the deferred transaction. You have two options when reexecuting a deferred transaction: you can reexecute in the security context of the user who received the deferred transaction, or you can reexecute the deferred transaction with an alternate security context.

	
Caution:

If you have multiple error transactions and you want to make sure they are reexecuted in the correct order, then you can specify NULL for the deferred_tran_id parameter in the procedures in the following sections. If you do not specify NULL, then reexecuting individual transactions in the wrong order can cause conflicts.

Reexecuting Error Transaction as the Receiver

The following procedure reexecutes a specified deferred transaction in the security context of the user who received the deferred transaction. This procedure should not be executed until the error situation has been resolved.

Meet the following requirements to complete these actions:

Executed As: Replication Administrator

Executed At: Site Containing Errors

Replication Status: Normal

Complete the following steps:

Step 1 Connect to the master site as the replication administrator.

CONNECT repadmin/repadmin@orc2.world

Step 2 Reexecute the error transaction.

BEGIN

 DBMS_DEFER_SYS.EXECUTE_ERROR (
 deferred_tran_id => '1.12.2904',
 destination => 'ORC2.WORLD');
END;
/

Reexecuting Error Transaction as Alternate User

The following procedure reexecutes a specified deferred transaction in the security context of the currently connected user. This procedure should not be executed until the error situation has been resolved.

Meet the following requirements to complete these actions:

Executed As: Connected User

Executed At: Site Containing Errors

Replication Status: Normal

Complete the following steps:

Step 1 Connect to the master site as the alternate user.

CONNECT hr/hr@orc2.world

Step 2 Reexecute the error transaction.

BEGIN

 DBMS_DEFER_SYS.EXECUTE_ERROR_AS_USER (
 deferred_tran_id => '1.12.2904',
 destination => 'ORC2.WORLD');
END;
/

18 DBMS_REPCAT

DBMS_REPCAT provides routines to administer and update the replication catalog and environment.

This chapter contains this topic:

	
Summary of DBMS_REPCAT Subprograms

Summary of DBMS_REPCAT Subprograms

Table 18-1 DBMS_REPCAT Package Subprograms

	Subprogram	Description
	
"ADD_GROUPED_COLUMN Procedure"

	
Adds members to an existing column group.

	
"ADD_MASTER_DATABASE Procedure"

	
Adds another master site to your replication environment.

	
"ADD_NEW_MASTERS Procedure"

	
Adds the master sites in the DBA_REPSITES_NEW data dictionary view to the replication catalog at all available master sites.

	
"ADD_PRIORITY_datatype Procedure"

	
Adds a member to a priority group.

	
"ADD_SITE_PRIORITY_SITE Procedure"

	
Adds a new site to a site priority group.

	
"ADD_conflicttype_RESOLUTION Procedure"

	
Designates a method for resolving an update, delete, or uniqueness conflict.

	
"ALTER_CATCHUP_PARAMETERS Procedure"

	
Alters the values for parameters stored in the DBA_REPEXTENSIONS data dictionary view.

	
"ALTER_MASTER_PROPAGATION Procedure"

	
Alters the propagation method for a specified replication group at a specified master site.

	
"ALTER_MASTER_REPOBJECT Procedure"

	
Alters an object in your replication environment.

	
"ALTER_MVIEW_PROPAGATION Procedure"

	
Alters the propagation method for a specified replication group at the current materialized view site.

	
"ALTER_PRIORITY Procedure"

	
Alters the priority level associated with a specified priority group member.

	
"ALTER_PRIORITY_datatype Procedure"

	
Alters the value of a member in a priority group.

	
"ALTER_SITE_PRIORITY Procedure"

	
Alters the priority level associated with a specified site.

	
"ALTER_SITE_PRIORITY_SITE Procedure"

	
Alters the site associated with a specified priority level.

	
"CANCEL_STATISTICS Procedure"

	
Stops collecting statistics about the successful resolution of update, uniqueness, and delete conflicts for a table.

	
"COMMENT_ON_COLUMN_GROUP Procedure"

	
Updates the comment field in the ALL_REPCOLUMN_GROUP view for a column group.

	
"COMMENT_ON_MVIEW_REPSITES Procedure"

	
Updates the SCHEMA_COMMENT field in the ALL_REPGROUP view for a materialized view site.

	
"COMMENT_ON_PRIORITY_GROUP Procedures"

	
Updates the comment field in the ALL_REPPRIORITY_GROUP view for a priority group.

	
"COMMENT_ON_REPGROUP Procedure"

	
Updates the comment field in the ALL_REPGROUP view for a master group.

	
"COMMENT_ON_REPOBJECT Procedure"

	
Updates the comment field in the ALL_REPOBJECT view for a replicated object.

	
"COMMENT_ON_REPSITES Procedure"

	
Updates the comment field in the ALL_REPSITE view for a replicated site.

	
"COMMENT_ON_SITE_PRIORITY Procedure"

	
Updates the comment field in the ALL_REPPRIORITY_GROUP view for a site priority group.

	
"COMMENT_ON_conflicttype_RESOLUTION Procedure"

	
Updates the comment field in the ALL_REPRESOLUTION view for a conflict resolution routine.

	
"COMPARE_OLD_VALUES Procedure"

	
Specifies whether to compare old column values at each master site for each nonkey column of a replicated table for updates and deletes.

	
"CREATE_MASTER_REPGROUP Procedure"

	
Creates a new, empty, quiesced master group.

	
"CREATE_MASTER_REPOBJECTProcedure"

	
Specifies that an object is a replicated object.

	
"CREATE_MVIEW_REPGROUP Procedure"

	
Creates a new, empty materialized view group in your local database.

	
"CREATE_MVIEW_REPOBJECT Procedure"

	
Adds a replicated object to a materialized view group.

	
"DEFINE_COLUMN_GROUP Procedure"

	
Creates an empty column group.

	
"DEFINE_PRIORITY_GROUP Procedure"

	
Creates a new priority group for a master group.

	
"DEFINE_SITE_PRIORITY Procedure"

	
Creates a new site priority group for a master group.

	
"DO_DEFERRED_REPCAT_ADMIN Procedure"

	
Executes the local outstanding deferred administrative procedures for the specified master group at the current master site, or for all master sites.

	
"DROP_COLUMN_GROUP Procedure"

	
Drops a column group.

	
"DROP_GROUPED_COLUMN Procedure"

	
Removes members from a column group.

	
"DROP_MASTER_REPGROUP Procedure"

	
Drops a master group from your current site.

	
"DROP_MASTER_REPOBJECT Procedure"

	
Drops a replicated object from a master group.

	
"DROP_MVIEW_REPGROUP Procedure"

	
Drops a replicated object from a master group.

	
"DROP_MVIEW_REPGROUP Procedure"

	
Drops a materialized view site from your replication environment.

	
"DROP_MVIEW_REPOBJECT Procedure"

	
Drops a replicated object from a materialized view site.

	
"DROP_PRIORITY Procedure"

	
Drops a member of a priority group by priority level.

	
"DROP_PRIORITY_GROUP Procedure"

	
Drops a priority group for a specified master group.

	
"DROP_PRIORITY_datatype Procedure"

	
Drops a member of a priority group by value.

	
"DROP_SITE_PRIORITY Procedure"

	
Drops a site priority group for a specified master group.

	
"DROP_SITE_PRIORITY_SITE Procedure"

	
Drops a specified site, by name, from a site priority group.

	
"DROP_conflicttype_RESOLUTION Procedure"

	
Drops an update, delete, or uniqueness conflict resolution method.

	
"EXECUTE_DDL Procedure"

	
Supplies DDL that you want to have executed at each master site.

	
"GENERATE_MVIEW_SUPPORT Procedure"

	
Activates triggers and generate packages needed to support the replication of updatable materialized views or procedural replication.

	
"GENERATE_REPLICATION_SUPPORT Procedure"

	
Generates the triggers, packages, and procedures needed to support replication for a specified object.

	
"MAKE_COLUMN_GROUP Procedure"

	
Creates a new column group with one or more members.

	
"PREPARE_INSTANTIATED_MASTER Procedure"

	
Changes the global name of the database you are adding to a master group.

	
"PURGE_MASTER_LOG Procedure"

	
Removes local messages in the DBA_REPCATLOG associated with a specified identification number, source, or master group.

	
"PURGE_STATISTICS Procedure"

	
Removes information from the ALL_REPRESOLUTION_STATISTICS view.

	
"REFRESH_MVIEW_REPGROUP Procedure"

	
Refreshes a materialized view group with the most recent data from its associated master site or master materialized view site.

	
REGISTER_MVIEW_REPGROUP Procedure

	
Facilitates the administration of materialized views at their respective master sites or master materialized view sites by inserting, modifying, or deleting from DBA_REGISTERED_MVIEW_GROUPS.

	
"REGISTER_STATISTICS Procedure"

	
Collects information about the successful resolution of update, delete, and uniqueness conflicts for a table.

	
"RELOCATE_MASTERDEF Procedure"

	
Changes your master definition site to another master site in your replication environment.

	
"REMOVE_MASTER_DATABASES Procedure"

	
Removes one or more master databases from a replication environment.

	
"RENAME_SHADOW_COLUMN_GROUP Procedure"

	
Renames the shadow column group of a replicated table to make it a named column group.

	
"REPCAT_IMPORT_CHECKProcedure"

	
Ensures that the objects in the master group have the appropriate object identifiers and status values after you perform an export/import of a replicated object or an object used by the advanced replication facility.

	
"RESUME_MASTER_ACTIVITY Procedure"

	
Resumes normal replication activity after quiescing a replication environment.

	
"RESUME_PROPAGATION_TO_MDEF Procedure"

	
Indicates that export is effectively finished and propagation for both extended and unaffected replication groups existing at master sites can be enabled.

	
"SEND_OLD_VALUES Procedure"

	
Specifies whether to send old column values for each nonkey column of a replicated table for updates and deletes.

	
"SET_COLUMNS Procedure"

	
Specifies use of an alternate column or group of columns, instead of the primary key, to determine which columns of a table to compare when using row-level replication.

	
"SPECIFY_NEW_MASTERS Procedure"

	
Specifies the master sites you intend to add to an existing replication group without quiescing the group.

	
"STREAMS_MIGRATION Procedure"

	
Generates a migration script that migrates an Advanced Replication environment to a Streams environment.

	
"SUSPEND_MASTER_ACTIVITY Procedure"

	
Suspends replication activity for a master group.

	
"SWITCH_MVIEW_MASTER Procedure"

	
Changes the master site of a materialized view group to another master site.

	
"UNDO_ADD_NEW_MASTERS_REQUEST Procedure"

	
Undoes all of the changes made by the SPECIFY_NEW_MASTERS and ADD_NEW_MASTERS procedures for a specified extension_id.

	
"UNREGISTER_MVIEW_REPGROUP Procedure"

	
Facilitates the administration of materialized views at their respective master sites and master materialized view sites by inserting, modifying, or deleting from DBA_REGISTERED_MVIEW_GROUPS.

	
"VALIDATE Function"

	
Validates the correctness of key conditions of a multimaster replication environment.

	
"WAIT_MASTER_LOG Procedure"

	
Determines whether changes that were asynchronously propagated to a master site have been applied.

ADD_GROUPED_COLUMN Procedure

This procedure adds members to an existing column group. You must call this procedure from the master definition site.

Syntax

DBMS_REPCAT.ADD_GROUPED_COLUMN (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 list_of_column_names IN VARCHAR2 | DBMS_REPCAT.VARCHAR2s);

Parameters

Table 18-2 ADD_GROUPED_COLUMN Procedure Parameters

	Parameter	Description
	

sname

	
Schema in which the replicated table is located.

	

oname

	
Name of the replicated table with which the column group is associated. The table can be the storage table of a nested table.

	

column_group

	
Name of the column group to which you are adding members.

	

list_of_column_names

	
Names of the columns that you are adding to the designated column group. This can either be a comma-delimited list or a PL/SQL index-by table of column names. The PL/SQL index-by table must be of type DBMS_REPCAT.VARCHAR2. Use the single value '*' to create a column group that contains all of the columns in your table.

You can specify column objects, but you cannot specify attributes of column objects.

If the table is an object, then you can specify SYS_NC_OID$ to add the object identifier column to the column group. This column tracks the object identifier of each row object.

If the table is a storage table of a nested table, then you can specify NESTED_TABLE_ID to add the column that tracks the identifier for each row of the nested table.

Exceptions

Table 18-3 ADD_GROUPED_COLUMN Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

missingobject

	
Specified table does not exist.

	

missinggroup

	
Specified column group does not exist.

	

missingcolumn

	
Specified column does not exist in the specified table.

	

duplicatecolumn

	
Specified column is already a member of another column group.

	

missingschema

	
Specified schema does not exist.

	

notquiesced

	
Replication group to which the specified table belongs is not quiesced.

ADD_MASTER_DATABASE Procedure

This procedure adds another master site to your replication environment. This procedure regenerates all the triggers and their associated packages at existing master sites. You must call this procedure from the master definition site.

Syntax

DBMS_REPCAT.ADD_MASTER_DATABASE (
 gname IN VARCHAR2,
 master IN VARCHAR2,
 use_existing_objects IN BOOLEAN := true,
 copy_rows IN BOOLEAN := true,
 comment IN VARCHAR2 := '',
 propagation_mode IN VARCHAR2 := 'ASYNCHRONOUS',
 fname IN VARCHAR2 := NULL);

Parameters

Table 18-4 ADD_MASTER_DATABASE Procedure Parameters

	Parameter	Description
	

gname

	
Name of the replication group being replicated. This replication group must already exist at the master definition site.

	

master

	
Fully qualified database name of the new master database.

	

use_existing_objects

	
Indicate true if you want to reuse any objects of the same type and shape that already exist in the schema at the new master site.

	

copy_rows

	
Indicate true if you want the initial contents of a table at the new master site to match the contents of the table at the master definition site.

	

comment

	
This comment is added to the MASTER_COMMENT field of the DBA_REPSITES view.

	

propagation_mode

	
Method of forwarding changes to and receiving changes from new master database. Accepted values are synchronous and asynchronous.

	

fname

	
This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by Oracle Support Services.

Exceptions

Table 18-5 ADD_MASTER_DATABASE Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

notquiesced

	
Replication has not been suspended for the master group.

	

missingrepgroup

	
Replication group does not exist at the specified database site.

	

commfailure

	
New master is not accessible.

	

typefailure

	
An incorrect propagation mode was specified.

	

duplrepgrp

	
Master site already exists.

ADD_NEW_MASTERS Procedure

This procedure adds the master sites in the DBA_REPSITES_NEW data dictionary view to the master groups specified when the SPECIFY_NEW_MASTERS procedure was run. Information about these new master sites are added to the replication catalog at all available master sites.

All master sites instantiated with object-level export/import must be accessible at this time. Their new replication groups are added in the quiesced state. Master sites instantiated through full database export/import or through changed-based recovery do not need to be accessible.

Run this procedure after you run the SPECIFY_NEW_MASTERS procedure.

	
Caution:

After running this procedure, do not disable or enable propagation of the deferred transactions queue until after the new master sites are added. The DBA_REPEXTENSIONS data dictionary view must be clear before you disable or enable propagation. You can use the Replication Management tool or the SET_DISABLED procedure in the DBMS_DEFER_SYS package to disable or enable propagation.

	
Note:

You can use either Data Pump export/import or original export/import to perform exports and imports in an Advanced Replication environment. General references to export/import in this document refer to both Data Pump and original export/import.

	
See Also:

	
"SPECIFY_NEW_MASTERS Procedure"

	
"Adding New Master Sites" for more information about adding master sites to a master group

Syntax

DBMS_REPCAT.ADD_NEW_MASTERS (
 export_required IN BOOLEAN,
 { available_master_list IN VARCHAR2,
 | available_master_table IN DBMS_UTILITY.DBLINK_ARRAY,}
 masterdef_flashback_scn OUT NUMBER,
 extension_id OUT RAW,
 break_trans_to_masterdef IN BOOLEAN := false,
 break_trans_to_new_masters IN BOOLEAN := false,
 percentage_for_catchup_mdef IN BINARY_INTEGER := 100,
 cycle_seconds_mdef IN BINARY_INTEGER := 60,
 percentage_for_catchup_new IN BINARY_INTEGER := 100,
 cycle_seconds_new IN BINARY_INTEGER := 60);

	
Note:

This procedure is overloaded. The available_master_list and available_master_table parameters are mutually exclusive.

Parameters

Table 18-6 ADD_NEW_MASTERS Procedure Parameters

	Parameter	Description
	

export_required

	
Set to true if either object-level or full database export is required for at least one of the new master sites. Set to false if you are using change-based recovery for all of the new master sites.

	

available_master_list

	
A comma-delimited list of the new master sites to be instantiated using object-level export/import. The sites listed must match the sites specified in the SPECIFY_NEW_MASTERS procedure. List only the new master sites, not the existing master sites. Do not put any spaces between site names.

Specify NULL if all masters will be instantiated using full database export/import or change-based recovery.

	

available_master_table

	
A table that lists the new master sites to be instantiated using object-level export/import. The sites in the table must match the sites specified in the SPECIFY_NEW_MASTERS procedure. Do not specify masters that will be instantiated using full database export/import or change-based recovery.

In the table that lists the master sites to be instantiated using object-level export/import, list only the new master sites for the master groups being extended. Do not list the existing master sites in the master groups being extended. The first master site should be at position 1, the second at position 2, and so on.

	

masterdef_flashback_scn

	
This OUT parameter returns a system change number (SCN) that must be used during export or change-based recovery. Use the value returned by this parameter for the FLASHBACK_SCN export parameter when you perform the export. You can find the flashback_scn value by querying the DBA_REPEXTENSIONS data dictionary view.

	

extension_id

	
This OUT parameter returns an identifier for the current pending request to add master databases without quiesce. You can find the extension_id by querying the DBA_REPSITES_NEW and DBA_REPEXTENSIONS data dictionary views.

	

break_trans_to_masterdef

	
This parameter is meaningful only if export_required is set to true.

If break_trans_to_masterdef is set to true, then existing masters can continue to propagate their deferred transactions to the master definition site for replication groups that are not adding master sites. Deferred transactions for replication groups that are adding master sites cannot be propagated until the export completes.

Each deferred transaction is composed of one or more remote procedure calls (RPCs). If set to false and a transaction occurs that references objects in both unaffected master groups and master groups that are being extended, then the transaction might be split into two parts and sent to a destination in two separate transactions at different times. Such transactions are called split-transactions. If split-transactions are possible, then you must disable integrity constraints that might be violated by this behavior until the new master sites are added.

If break_trans_to_masterdef is set to false, then existing masters cannot propagate their deferred transactions to the master definition site.

	

break_trans_to_new_masters

	
If break_trans_to_new_masters is set to true, then existing master sites can continue to propagate deferred transactions to the new master sites for replication groups that are not adding master sites.

Each deferred transaction is composed of one or more remote procedure calls (RPCs). If set to true and a transaction occurs that references objects in both unaffected master groups and master groups that are being extended, then the transaction might be split into two parts and sent to a destination in two separate transactions at different times. Such transactions are called split-transactions. If split-transactions are possible, then you must disable integrity constraints that might be violated by this behavior until the new master sites are added.

If break_trans_to_new_masters is set to false, then propagation of deferred transaction queues to the new masters is disabled.

	

percentage_for_catchup_mdef

	
This parameter is meaningful only if export_required and break_trans_to_masterdef are both set to true.

The percentage of propagation resources that should be used for catching up propagation to the master definition site. Must be a multiple of 10 and must be between 0 and 100.

	

cycle_seconds_mdef

	
This parameter is meaningful when percentage_for_catchup_mdef is both meaningful and set to a value between 10 and 90, inclusive. In this case, propagation to the master definition site alternates between replication groups that are not being extended and replication groups that are being extended, with one push to each during each cycle. This parameter indicates the length of the cycle in seconds.

	

percentage_for_catchup_new

	
This parameter is meaningful only if break_trans_to_new_masters is set to true.

The percentage of propagation resources that should be used for catching up propagation to new master sites. Must be a multiple of 10 and must be between 0 and 100.

	

cycle_seconds_new

	
This parameter is meaningful when percentage_for_catchup_new is both meaningful and set to a value between 10 and 90, inclusive. In this case, propagation to a new master alternates between replication groups that are not being extended and replication groups that are being extended, with one push to each during each cycle. This parameter indicates the length of the cycle in seconds.

Exceptions

Table 18-7 ADD_NEW_MASTERS Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

typefailure

	
The parameter value specified for one of the parameters is not appropriate.

	

novalidextreq

	
No valid extension request. The extension_id is not valid.

	

nonewsites

	
No new master sites to be added for the specified extension request.

	

notanewsite

	
Not a new site for extension request. A site was specified that was not specified when you ran the SPECIFY_NEW_MASTERS procedure.

	

dbnotcompatible

	
Feature is incompatible with database version. All databases must be at 9.0.1 or higher compatibility level.

Usage Notes

For a new master site to be instantiated using change-based recovery or full database export/import, the following conditions apply:

	
The new master sites cannot have any existing replication groups.

	
The master definition site cannot have any materialized view groups.

	
The master definition site must be the same for all of the master groups. If one or more of these master groups have a different master definition site, then do not use change-based recovery or full database export/import. Use object-level export/import instead.

	
The new master site must include all of the replication groups in the master definition site when the extension process is complete. That is, you cannot add a subset of the master groups at the master definition site to the new master site; all of the groups must be added.

	
Note:

To use change-based recovery, the existing master site and the new master site must be running under the same operating system, although the release of the operating system can differ.

For object-level export/import, before importing ensure that all the requests in the DBA_REPCATLOG data dictionary view for the extended groups have been processed without any error.

ADD_PRIORITY_datatype Procedure

This procedure adds a member to a priority group. You must call this procedure from the master definition site. The procedure that you must call is determined by the datatype of your priority column. You must call this procedure once for each of the possible values of the priority column.

	
See Also:

Chapter 6, "Configure Conflict Resolution" and Oracle Database Advanced Replication for more information about conflict resolution methods

Syntax

DBMS_REPCAT.ADD_PRIORITY_datatype (
 gname IN VARCHAR2,
 pgroup IN VARCHAR2,
 value IN datatype,
 priority IN NUMBER);

where datatype:

{ NUMBER
| VARCHAR2
| CHAR
| DATE
| RAW
| NCHAR
| NVARCHAR2 }

Parameters

Table 18-8 ADD_PRIORITY_datatype Procedure Parameters

	Parameter	Description
	

gname

	
Master group for which you are creating a priority group.

	

pgroup

	
Name of the priority group.

	

value

	
Value of the priority group member. This is one of the possible values of the associated priority column of a table using this priority group.

	

priority

	
Priority of this value. The higher the number, the higher the priority.

Exceptions

Table 18-9 ADD_PRIORITY_datatype Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

duplicatevalue

	
Specified value already exists in the priority group.

	

duplicatepriority

	
Specified priority already exists in the priority group.

	

missingrepgroup

	
Specified master group does not exist.

	

missingprioritygroup

	
Specified priority group does not exist.

	

typefailure

	
Specified value has the incorrect datatype for the priority group.

	

notquiesced

	
Specified master group is not quiesced.

ADD_SITE_PRIORITY_SITE Procedure

This procedure adds a new site to a site priority group. You must call this procedure from the master definition site.

	
See Also:

Chapter 6, "Configure Conflict Resolution" and Oracle Database Advanced Replication for more information about conflict resolution methods

Syntax

DBMS_REPCAT.ADD_SITE_PRIORITY_SITE (
 gname IN VARCHAR2,
 name IN VARCHAR2,
 site IN VARCHAR2,
 priority IN NUMBER);

Parameters

Table 18-10 ADD_SITE_PRIORITY_SITE Procedure Parameters

	Parameter	Description
	

gname

	
Master group for which you are adding a site to a group.

	

name

	
Name of the site priority group to which you are adding a member.

	

site

	
Global database name of the site that you are adding.

	

priority

	
Priority level of the site that you are adding. A higher number indicates a higher priority level.

Exceptions

Table 18-11 ADD_SITE_PRIORITY_SITE Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

missingrepgroup

	
Specified master group does not exist.

	

missingpriority

	
Specified site priority group does not exist.

	

duplicatepriority

	
Specified priority level already exists for another site in the group.

	

duplicatevalue

	
Specified site already exists in the site priority group.

	

notquiesced

	
Master group is not quiesced.

ADD_conflicttype_RESOLUTION Procedure

These procedures designate a method for resolving an update, delete, or uniqueness conflict. You must call these procedures from the master definition site. The procedure that you need to call is determined by the type of conflict that the routine resolves.

Table 18-12 ADD_conflicttype_RESOLUTION Procedures

	Conflict Type	Procedure Name
	
update

	
ADD_UPDATE_RESOLUTION

	
uniqueness

	
ADD_UNIQUE_RESOLUTION

	
delete

	
ADD_DELETE_RESOLUTION

	
See Also:

Chapter 6, "Configure Conflict Resolution" and Oracle Database Advanced Replication for more information about designating methods to resolve update conflicts, selecting uniqueness conflict resolution methods, and assigning delete conflict resolution methods

Syntax

DBMS_REPCAT.ADD_UPDATE_RESOLUTION (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 sequence_no IN NUMBER,
 method IN VARCHAR2,
 parameter_column_name IN VARCHAR2
 | DBMS_REPCAT.VARCHAR2s
 | DBMS_UTILITY.LNAME_ARRAY,
 priority_group IN VARCHAR2 := NULL,
 function_name IN VARCHAR2 := NULL,
 comment IN VARCHAR2 := NULL);

DBMS_REPCAT.ADD_DELETE_RESOLUTION (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 sequence_no IN NUMBER,
 parameter_column_name IN VARCHAR2 | DBMS_REPCAT.VARCHAR2s,
 function_name IN VARCHAR2,
 comment IN VARCHAR2 := NULL
 method IN VARCHAR2 := 'USER FUNCTION');

DBMS_REPCAT.ADD_UNIQUE_RESOLUTION(
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 constraint_name IN VARCHAR2,
 sequence_no IN NUMBER,
 method IN VARCHAR2,
 parameter_column_name IN VARCHAR2
 | DBMS_REPCAT.VARCHAR2s
 | DBMS_UTILITY.LNAME_ARRAY,
 function_name IN VARCHAR2 := NULL,
 comment IN VARCHAR2 := NULL);

Parameters

Table 18-13 ADD_conflicttype_RESOLUTION Procedure Parameters

	Parameter	Description
	

sname

	
Name of the schema containing the table to be replicated.

	

oname

	
Name of the table to which you are adding a conflict resolution routine. The table can be the storage table of a nested table.

	

column_group

	
Name of the column group to which you are adding a conflict resolution routine. Column groups are required for update conflict resolution routines only.

	

constraint_name

	
Name of the unique constraint or unique index for which you are adding a conflict resolution routine. Use the name of the unique index if it differs from the name of the associated unique constraint. Constraint names are required for uniqueness conflict resolution routines only.

	

sequence_no

	
Order in which the designated conflict resolution methods should be applied.

	

method

	
Type of conflict resolution routine that you want to create. This can be the name of one of the standard routines provided with advanced replication, or, if you have written your own routine, you should choose user function, and provide the name of your method as the function_name parameter.

The standard methods supported in this release for update conflicts are:

	
minimum

	
maximum

	
latest timestamp

	
earliest timestamp

	
additive, average

	
priority group

	
site priority

	
overwrite

	
discard

The standard methods supported in this release for uniqueness conflicts are: append site name, append sequence, and discard. There are no built-in (Oracle supplied) methods for delete conflicts.

	

parameter_column_name

	
Name of the columns used to resolve the conflict. The standard methods operate on a single column. For example, if you are using the latest timestamp method for a column group, then you should pass the name of the column containing the timestamp value as this parameter. If your are using a user function, then you can resolve the conflict using any number of columns.

For update or unique conflicts, this parameter accepts either a comma-delimited list of column names, or a PL/SQL index-by table of type DBMS_REPCAT.VARCHAR2 or DBMS_UTILITY.LNAME_ARRAY. Use DBMS_UTILITY.LNAME_ARRAY if any column name is greater than or equal to 30 bytes, which might occur when you specify the attributes of column objects.

For delete conflicts, this parameter accepts either a comma-delimited list of column names or a PL/SQL index-by table of type DBMS_REPCAT.VARCHAR2.

The single value '*' indicates that you want to use all of the columns in the table (or column group, for update conflicts) to resolve the conflict. If you specify '*', then the columns are passed to your function in alphabetical order.

LOB columns cannot be specified for this parameter.

See Also: "Usage Notes" if you are using column objects

	

priority_group

	
If you are using the priority group or site priority update conflict resolution method, then you must supply the name of the priority group that you have created.

See Chapter 6, "Configure Conflict Resolution" and Oracle Database Advanced Replication for more information. If you are using a different method, you can use the default value for this parameter, NULL. This parameter is applicable to update conflicts only.

	

function_name

	
If you selected the user function method, or if you are adding a delete conflict resolution routine, then you must supply the name of the conflict resolution routine that you have written. If you are using one of the standard methods, then you can use the default value for this parameter, NULL.

	

comment

	
This user comment is added to the DBA_REPRESOLUTION view.

Exceptions

Table 18-14 ADD_conflicttype_RESOLUTION Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

missingobject

	
Specified object does not exist as a table in the specified schema using row-level replication.

	

missingschema

	
Specified schema does not exist.

	

missingcolumn

	
Column that you specified as part of the parameter_column_name parameter does not exist.

	

missinggroup

	
Specified column group does not exist.

	

missingprioritygroup

	
The priority group that you specified does not exist for the table.

	

invalidmethod

	
Resolution method that you specified is not recognized.

	

invalidparameter

	
Number of columns that you specified for the parameter_column_name parameter is invalid. (The standard routines take only one column name.)

	

missingfunction

	
User function that you specified does not exist.

	

missingconstraint

	
Constraint that you specified for a uniqueness conflict does not exist.

	

notquiesced

	
Replication group to which the specified table belongs is not quiesced.

	

duplicateresolution

	
Specified conflict resolution method is already registered.

	

duplicatesequence

	
The specified sequence number already exists for the specified object.

	

invalidprioritygroup

	
The specified priority group does not exist.

	

paramtype

	
Type is different from the type assigned to the priority group.

Usage Notes

If you are using column objects, then whether you can specify the attributes of the column objects for the parameter_column_name parameter depends on whether the conflict resolution method is built-in (Oracle supplied) or user-created:

	
If you are using a built-in conflict resolution method, then you can specify attributes of objects for this parameter. For example, if a column object named cust_address has street_address as an attribute, then you can specify cust_address.street_address for this parameter.

	
If you are using a built-in conflict resolution method, the following types of columns cannot be specified for this parameter: LOB attribute of a column object, collection or collection attribute of a column object, REF, or an entire column object.

	
If you are using a user-created conflict resolution method, then you must specify an entire column object. You cannot specify the attributes of a column object. For example, if a column object named cust_address has street_address as an attribute (among other attributes), then you can specify only cust_address for this parameter.

ALTER_CATCHUP_PARAMETERS Procedure

This procedure alters the values for the following parameters stored in the DBA_REPEXTENSIONS data dictionary view:

	
percentage_for_catchup_mdef

	
cycle_seconds_mdef

	
percentage_for_catchup_new

	
cycle_seconds_new

These parameters were originally set by the ADD_NEW_MASTERS procedure. The new values you specify for these parameters are used during the remaining steps in the process of adding new master sites to a master group. These changes are only to the site at which it is executed. Therefore, it must be executed at each master site, including the master definition site, if you want to alter parameters at all sites.

	
See Also:

	
"ADD_NEW_MASTERS Procedure"

	
"Adding New Master Sites" for more information about adding master sites to a master group

Syntax

DBMS_REPCAT.ALTER_CATCHUP_PARAMETERS (
 extension_id IN RAW,
 percentage_for_catchup_mdef IN BINARY_INTEGER := NULL,
 cycle_seconds_mdef IN BINARY_INTEGER := NULL,
 percentage_for_catchup_new IN BINARY_INTEGER := NULL,
 cycle_seconds_new IN BINARY_INTEGER := NULL);

Parameters

Table 18-15 ALTER_CATCHUP_PARAMETERS Procedure Parameters

	Parameter	Description
	

extension_id

	
The identifier for the current pending request to add master database without quiesce. You can find the extension_id by querying the DBA_REPSITES_NEW and DBA_REPEXTENSIONS data dictionary views.

	

percentage_for_catchup_mdef

	
The percentage of propagation resources that should be used for catching up propagation to the master definition site. Must be a multiple of 10 and must be between 0 and 100.

	

cycle_seconds_mdef

	
This parameter is meaningful when percentage_for_catchup_mdef is both meaningful and set to a value between 10 and 90, inclusive. In this case, propagation to the master definition site alternates between replication groups that are not being extended and replication groups that are being extended, with one push to each during each cycle. This parameter indicates the length of the cycle in seconds.

	

percentage_for_catchup_new

	
The percentage of propagation resources that should be used for catching up propagation to new master sites. Must be a multiple of 10 and must be between 0 and 100.

	

cycle_seconds_new

	
This parameter is meaningful when percentage_for_catchup_new is both meaningful and set to a value between 10 and 90, inclusive. In this case, propagation to a new master alternates between replication groups that are not being extended and replication groups that are being extended, with one push to each during each cycle. This parameter indicates the length of the cycle in seconds.

Exceptions

Table 18-16 ALTER_CATCHUP_PARAMETERS Procedure Exceptions

	Exception	Description
	

typefailure

	
The parameter value specified for one of the parameters is not appropriate.

	

dbnotcompatible

	
Feature is incompatible with database version. All databases must be at 9.0.1 or higher compatibility level.

ALTER_MASTER_PROPAGATION Procedure

This procedure alters the propagation method for a specified replication group at a specified master site. This replication group must be quiesced. You must call this procedure from the master definition site. If the master appears in the dblink_list or dblink_table, then ALTER_MASTER_PROPAGATION ignores that database link. You cannot change the propagation mode from a master to itself.

Syntax

DBMS_REPCAT.ALTER_MASTER_PROPAGATION (
 gname IN VARCHAR2,
 master IN VARCHAR2,
 { dblink_list IN VARCHAR2,
 | dblink_table IN DBMS_UTILITY.DBLINK_ARRAY,}
 propagation_mode IN VARCHAR2 : ='ASYNCHRONOUS',
 comment IN VARCHAR2 := '');

	
Note:

This procedure is overloaded. The dblink_list and dblink_table parameters are mutually exclusive.

Parameters

Table 18-17 ALTER_MASTER_PROPAGATION Procedure Parameters

	Parameter	Description
	

gname

	
Name of the replication group to which to alter the propagation mode.

	

master

	
Name of the master site at which to alter the propagation mode.

	

dblink_list

	
A comma-delimited list of database links for which to alter the propagation method. If NULL, then all masters except the master site being altered are used by default.

	

dblink_table

	
A PL/SQL index-by table, indexed from position 1, of database links for which to alter propagation.

	

propagation_mode

	
Determines the manner in which changes from the specified master site are propagated to the sites identified by the list of database links. Appropriate values are synchronous and asynchronous.

	

comment

	
This comment is added to the DBA_REPPROP view.

Exceptions

Table 18-18 ALTER_MASTER_PROPAGATION Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

notquiesced

	
Invocation site is not quiesced.

	

typefailure

	
Propagation mode specified was not recognized.

	

nonmaster

	
List of database links includes a site that is not a master site.

ALTER_MASTER_REPOBJECT Procedure

This procedure alters an object in your replication environment. You must call this procedure from the master definition site.

This procedure requires that you quiesce the master group of the object if either of the following conditions is true:

	
You are altering a table in a multimaster replication environment.

	
You are altering a table with the safe_table_change parameter set to false in a single master replication environment.

You can use this procedure to alter non table objects without quiescing the master group.

Syntax

DBMS_REPCAT.ALTER_MASTER_REPOBJECT (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 ddl_text IN VARCHAR2,
 comment IN VARCHAR2 := '',
 retry IN BOOLEAN := false
 safe_table_change IN BOOLEAN := false);

Parameters

Table 18-19 ALTER_MASTER_REPOBJECT Procedure Parameters

	Parameter	Description
	

sname

	
Schema containing the object that you want to alter.

	

oname

	
Name of the object that you want to alter. The object cannot be a storage table for a nested table.

	

type

	
Type of the object that you are altering. The following types are supported:

FUNCTION SYNONYM
INDEX TABLE
INDEXTYPE TRIGGER
OPERATOR TYPE
PACKAGE TYPE BODY
PACKAGE BODY VIEW
PROCEDURE

	

ddl_text

	
The DDL text that you want used to alter the object. Oracle does not parse this DDL before applying it. Therefore, you must ensure that your DDL text provides the appropriate schema and object name for the object being altered.

If the DDL is supplied without specifying a schema, then the default schema is the replication administrator's schema. Be sure to specify the schema if it is other than the replication administrator's schema.

	

comment

	
If not NULL, then this comment is added to the COMMENT field of the DBA_REPOBJECT view.

	

retry

	
If retry is true, then ALTER_MASTER_REPOBJECT alters the object only at masters whose object status is not VALID.

	

safe_table_change

	
Specify true if the change to a table is safe. Specify false if the change to a table is unsafe.

You can make safe changes to a master table in a single master replication environment without quiescing the master group that contains the table. To make unsafe changes, you must quiesce the master group.

Only specify this parameter for tables in single master replication environments. This parameter is ignored in multimaster replication environments and when the object specified is not a table. In multimaster replication environments, you must quiesce the master group to run the ALTER_MASTER_REPOBJECT procedure on a table.

The following are safe changes:

	
Changing storage and extent information

	
Making existing columns larger. For example, changing a VARCHAR2(20) column to a VARCHAR2(50) column.

	
Adding non primary key constraints

	
Altering non primary key constraints

	
Enabling and disabling non primary key constraints

The following are unsafe changes:

	
Changing the primary key by adding or deleting columns in the key

	
Adding or deleting columns

	
Making existing columns smaller. For example, changing a VARCHAR2(50) column to a VARCHAR2(20) column.

	
Disabling a primary key constraint

	
Changing the datatype of an existing column

	
Dropping an existing column

If you are unsure whether a change is safe or unsafe, then quiesce the master group before you run the ALTER_MASTER_REPOBJECT procedure.

Exceptions

Table 18-20 ALTER_MASTER_REPOBJECT Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

notquiesced

	
Associated replication group has not been suspended.

	

missingobject

	
Object identified by sname and oname does not exist.

	

typefailure

	
Specified type parameter is not supported.

	

ddlfailure

	
DDL at the master definition site did not succeed.

	

commfailure

	
At least one master site is not accessible.

ALTER_MVIEW_PROPAGATION Procedure

This procedure alters the propagation method for a specified replication group at the current materialized view site. This procedure pushes the deferred transaction queue at the materialized view site, locks the materialized views, and regenerates any triggers and their associated packages. You must call this procedure from the materialized view site.

Syntax

DBMS_REPCAT.ALTER_MVIEW_PROPAGATION (
 gname IN VARCHAR2,
 propagation_mode IN VARCHAR2,
 comment IN VARCHAR2 := '',
 gowner IN VARCHAR2 := 'PUBLIC');

Parameters

Table 18-21 ALTER_MVIEW_PROPAGATION Procedure Parameters

	Parameter	Description
	

gname

	
Name of the replication group for which to alter the propagation method.

	

propagation_mode

	
Manner in which changes from the current materialized view site are propagated to its associated master site or master materialized view site. Appropriate values are synchronous and asynchronous.

	

comment

	
This comment is added to the DBA_REPPROP view.

	

gowner

	
Owner of the materialized view group.

Exceptions

Table 18-22 ALTER_MVIEW_PROPAGATION Procedure Exceptions

	Exception	Description
	

missingrepgroup

	
Specified replication group does not exist.

	

typefailure

	
Propagation mode was specified incorrectly.

	

nonmview

	
Current site is not a materialized view site for the specified replication group.

	

commfailure

	
Cannot contact master site or master materialized view site.

	

failaltermviewrop

	
Materialized view group propagation can be altered only when there are no other materialized view groups with the same master site or master materialized view site sharing the materialized view site.

ALTER_PRIORITY Procedure

This procedure alters the priority level associated with a specified priority group member. You must call this procedure from the master definition site.

	
See Also:

Chapter 6, "Configure Conflict Resolution" and Oracle Database Advanced Replication for more information about conflict resolution methods

Syntax

DBMS_REPCAT.ALTER_PRIORITY (
 gname IN VARCHAR2,
 pgroup IN VARCHAR2,
 old_priority IN NUMBER,
 new_priority IN NUMBER);

Parameters

Table 18-23 ALTER_PRIORITY Procedure Parameters

	Parameter	Description
	

gname

	
Master group with which the priority group is associated.

	

pgroup

	
Name of the priority group containing the priority that you want to alter.

	

old_priority

	
Current priority level of the priority group member.

	

new_priority

	
New priority level that you want assigned to the priority group member.

Exceptions

Table 18-24 ALTER_PRIORITY Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

duplicatepriority

	
New priority level already exists in the priority group.

	

missingrepgroup

	
Specified master group does not exist.

	

missingvalue

	
Value was not registered by a call to DBMS_REPCAT.ADD_PRIORITY_datatype.

	

missingprioritygroup

	
Specified priority group does not exist.

	

notquiesced

	
Specified master group is not quiesced.

ALTER_PRIORITY_datatype Procedure

This procedure alters the value of a member in a priority group. You must call this procedure from the master definition site. The procedure that you must call is determined by the datatype of your priority column.

	
See Also:

Chapter 6, "Configure Conflict Resolution" and Oracle Database Advanced Replication for more information about conflict resolution methods

Syntax

DBMS_REPCAT.ALTER_PRIORITY_datatype (
 gname IN VARCHAR2,
 pgroup IN VARCHAR2,
 old_value IN datatype,
 new_value IN datatype);

where datatype:

{ NUMBER
| VARCHAR2
| CHAR
| DATE
| RAW
| NCHAR
| NVARCHAR2 }

Parameters

Table 18-25 ALTER_PRIORITY_datatype Procedure Parameters

	Parameter	Description
	

gname

	
Master group with which the priority group is associated.

	

pgroup

	
Name of the priority group containing the value that you want to alter.

	

old_value

	
Current value of the priority group member.

	

new_value

	
New value that you want assigned to the priority group member.

Exceptions

Table 18-26 ALTER_PRIORITY_datatype Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

duplicatevalue

	
New value already exists in the priority group.

	

missingrepgroup

	
Specified master group does not exist.

	

missingprioritygroup

	
Specified priority group does not exist.

	

missingvalue

	
Old value does not exist.

	

paramtype

	
New value has the incorrect datatype for the priority group.

	

typefailure

	
Specified value has the incorrect datatype for the priority group.

	

notquiesced

	
Specified master group is not quiesced.

ALTER_SITE_PRIORITY Procedure

This procedure alters the priority level associated with a specified site. You must call this procedure from the master definition site.

	
See Also:

Chapter 6, "Configure Conflict Resolution" and Oracle Database Advanced Replication for more information about conflict resolution methods

Syntax

DBMS_REPCAT.ALTER_SITE_PRIORITY (
 gname IN VARCHAR2,
 name IN VARCHAR2,
 old_priority IN NUMBER,
 new_priority IN NUMBER);

Parameters

Table 18-27 ALTER_SITE_PRIORITY Procedure Parameters

	Parameter	Description
	

gname

	
Master group with which the site priority group is associated.

	

name

	
Name of the site priority group whose member you are altering.

	

old_priority

	
Current priority level of the site whose priority level you want to change.

	

new_priority

	
New priority level for the site. A higher number indicates a higher priority level.

Exceptions

Table 18-28 ALTER_SITE_PRIORITY Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

missingrepgroup

	
Specified master group does not exist.

	

missingpriority

	
Old priority level is not associated with any group members.

	

duplicatepriority

	
New priority level already exists for another site in the group.

	

missingvalue

	
Old value does not already exist.

	

paramtype

	
New value has the incorrect datatype for the priority group.

	

notquiesced

	
Master group is not quiesced.

ALTER_SITE_PRIORITY_SITE Procedure

This procedure alters the site associated with a specified priority level. You must call this procedure from the master definition site.

	
See Also:

Chapter 6, "Configure Conflict Resolution" and Oracle Database Advanced Replication for more information about conflict resolution methods

Syntax

DBMS_REPCAT.ALTER_SITE_PRIORITY_SITE (
 gname IN VARCHAR2,
 name IN VARCHAR2,
 old_site IN VARCHAR2,
 new_site IN VARCHAR2);

Parameters

Table 18-29 ALTER_SITE_PRIORITY_SITE Procedure Parameters

	Parameter	Description
	

gname

	
Master group with which the site priority group is associated.

	

name

	
Name of the site priority group whose member you are altering.

	

old_site

	
Current global database name of the site to disassociate from the priority level.

	

new_site

	
New global database name that you want to associate with the current priority level.

Exceptions

Table 18-30 ALTER_SITE_PRIORITY_SITE Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

missingrepgroup

	
Specified master group does not exist.

	

missingpriority

	
Specified site priority group does not exist.

	

missingvalue

	
Old site is not a group member.

	

notquiesced

	
Master group is not quiesced.

CANCEL_STATISTICS Procedure

This procedure stops the collection of statistics about the successful resolution of update, uniqueness, and delete conflicts for a table.

Syntax

DBMS_REPCAT.CANCEL_STATISTICS (
 sname IN VARCHAR2,
 oname IN VARCHAR2);

Parameters

Table 18-31 CANCEL_STATISTICS Procedure Parameters

	Parameter	Description
	

sname

	
Name of the schema in which the table is located.

	

oname

	
Name of the table for which you do not want to gather conflict resolution statistics.

Exceptions

Table 18-32 CANCEL_STATISTICS Procedure Exceptions

	Exception	Description
	

missingschema

	
Specified schema does not exist.

	

missingobject

	
Specified table does not exist.

	

statnotreg

	
Specified table is not currently registered to collect statistics.

COMMENT_ON_COLUMN_GROUP Procedure

This procedure updates the comment field in the DBA_REPCOLUMN_GROUP view for a column group. This comment is not added at all master sites until the next call to DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT.

Syntax

DBMS_REPCAT.COMMENT_ON_COLUMN_GROUP (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 comment IN VARCHAR2);

Parameters

Table 18-33 COMMENT_ON_COLUMN_GROUP Procedure Parameters

	Parameter	Description
	

sname

	
Name of the schema in which the object is located.

	

oname

	
Name of the replicated table with which the column group is associated.

	

column_group

	
Name of the column group.

	

comment

	
Text of the updated comment that you want included in the GROUP_COMMENT field of the DBA_REPCOLUMN_GROUP view.

Exceptions

Table 18-34 COMMENT_ON_COLUMN_GROUP Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

missinggroup

	
Specified column group does not exist.

	

missingobj

	
Object is missing.

COMMENT_ON_MVIEW_REPSITES Procedure

This procedure updates the SCHEMA_COMMENT field in the DBA_REPGROUP data dictionary view for the specified materialized view group. The group name must be registered locally as a replicated materialized view group. This procedure must be executed at the materialized view site.

Syntax

DBMS_REPCAT.COMMENT_ON_MVIEW_REPSITES (
 gowner IN VARCHAR2,
 gname IN VARCHAR2,
 comment IN VARCHAR2);

Parameters

Table 18-35 COMMENT_ON_MVIEW_REPSITES Procedure Parameters

	Parameter	Description
	

gowner

	
Owner of the materialized view group.

	

gname

	
Name of the materialized view group.

	

comment

	
Updated comment to include in the SCHEMA_COMMENT field of the DBA_REPGROUP view.

Exceptions

Table 18-36 COMMENT_ON_MVIEW_REPSITES Procedure Exceptions

	Parameter	Description
	

missingrepgroup

	
The materialized view group does not exist.

	

nonmview

	
The connected site is not a materialized view site.

COMMENT_ON_PRIORITY_GROUP Procedures

This procedure updates the comment field in the DBA_REPPRIORITY_GROUP view for a priority group. This comment is not added at all master sites until the next call to GENERATE_REPLICATION_SUPPORT.

Syntax

DBMS_REPCAT.COMMENT_ON_PRIORITY_GROUP (
 gname IN VARCHAR2,
 pgroup IN VARCHAR2,
 comment IN VARCHAR2);

Parameters

Table 18-37 COMMENT_ON_PRIORITY_GROUP Procedure Parameters

	Parameter	Description
	

gname

	
Name of the master group.

	

pgroup

	
Name of the priority group.

	

comment

	
Text of the updated comment that you want included in the PRIORITY_COMMENT field of the DBA_REPPRIORITY_GROUP view.

Exceptions

Table 18-38 COMMENT_ON_PRIORITY_GROUP Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

missingrepgroup

	
Specified master group does not exist.

	

missingprioritygroup

	
Specified priority group does not exist.

COMMENT_ON_REPGROUP Procedure

This procedure updates the comment field in the DBA_REPGROUP view for a master group. This procedure must be issued at the master definition site.

Syntax

DBMS_REPCAT.COMMENT_ON_REPGROUP (
 gname IN VARCHAR2,
 comment IN VARCHAR2);

Parameters

Table 18-39 COMMENT_ON_REPGROUP Procedure Parameters

	Parameter	Description
	

gname

	
Name of the replication group that you want to comment on.

	

comment

	
Updated comment to include in the SCHEMA_COMMENT field of the DBA_REPGROUP view.

Exceptions

Table 18-40 COMMENT_ON_REPGROUP Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

commfailure

	
At least one master site is not accessible.

COMMENT_ON_REPOBJECT Procedure

This procedure updates the comment field in the DBA_REPOBJECT view for a replicated object in a master group. This procedure must be issued at the master definition site.

Syntax

DBMS_REPCAT.COMMENT_ON_REPOBJECT (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 comment IN VARCHAR2);

Parameters

Table 18-41 COMMENT_ON_REPOBJECT Procedure Parameters

	Parameter	Description
	

sname

	
Name of the schema in which the object is located.

	

oname

	
Name of the object that you want to comment on. The object cannot be a storage table for a nested table.

	

type

	
Type of the object. The following types are supported:

FUNCTION SYNONYM
INDEX TABLE
INDEXTYPE TRIGGER
OPERATOR TYPE
PACKAGE TYPE BODY
PACKAGE BODY VIEW
PROCEDURE

	

comment

	
Text of the updated comment that you want to include in the OBJECT_COMMENT field of the DBA_REPOBJECT view.

Exceptions

Table 18-42 COMMENT_ON_REPOBJECT Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

missingobject

	
Specified object does not exist.

	

typefailure

	
Specified type parameter is not supported.

	

commfailure

	
At least one master site is not accessible.

COMMENT_ON_REPSITES Procedure

If the replication group is a master group, then this procedure updates the MASTER_COMMENT field in the DBA_REPSITES view for a master site. If the replication group is a materialized view group, this procedure updates the SCHEMA_COMMENT field in the DBA_REPGROUP view for a materialized view site.

This procedure can be executed at either a master site or a materialized view site. If you execute this procedure on a a materialized view site, then the materialized view group owner must be PUBLIC.

	
See Also:

"COMMENT_ON_conflicttype_RESOLUTION Procedure" for instructions on placing a comment in the SCHEMA_COMMENT field of the DBA_REPGROUP view for a materialized view site if the materialized view group owner is not PUBLIC

Syntax

DBMS_REPCAT.COMMENT_ON_REPSITES (
 gname IN VARCHAR2,
 [master IN VARCHAR,]
 comment IN VARCHAR2);

Parameters

Table 18-43 COMMENT_ON_REPSITES Procedure Parameters

	Parameter	Description
	

gname

	
Name of the replication group. This avoids confusion if a database is a master site in more than one replication environment.

	

master

	
The fully qualified database name of the master site on which you want to comment. If you are executing the procedure on a master site, then this parameter is required. To update comments at a materialized view site, omit this parameter. This parameter is optional.

	

comment

	
Text of the updated comment that you want to include in the comment field of the appropriate dictionary view. If the site is a master site, then this procedure updates the MASTER_COMMENT field of the DBA_REPSITES view. If the site is a materialized view site, then this procedure updates the SCHEMA_COMMENT field of the DBA_REPGROUP view.

Exceptions

Table 18-44 COMMENT_ON_REPSITES Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

nonmaster

	
Invocation site is not a master site.

	

commfailure

	
At least one master site is not accessible.

	

missingrepgroup

	
Replication group does not exist.

	

commfailure

	
One or more master sites are not accessible.

	

corrupt

	
There is an inconsistency in the replication catalog views.

COMMENT_ON_SITE_PRIORITY Procedure

This procedure updates the comment field in the DBA_REPPRIORITY_GROUP view for a site priority group. This procedure is a wrapper for the COMMENT_ON_COLUMN_GROUP procedure and is provided as a convenience only. This procedure must be issued at the master definition site.

Syntax

DBMS_REPCAT.COMMENT_ON_SITE_PRIORITY (
 gname IN VARCHAR2,
 name IN VARCHAR2,
 comment IN VARCHAR2);

Parameters

Table 18-45 COMMENT_ON_SITE_PRIORITY Procedure Parameters

	Parameter	Description
	

gname

	
Name of the master group.

	

name

	
Name of the site priority group.

	

comment

	
Text of the updated comment that you want included in the PRIORITY_COMMENT field of the DBA_REPPRIORITY_GROUP view.

Exceptions

Table 18-46 COMMENT_ON_SITE_PRIORITY Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

missingrepgroup

	
Specified master group does not exist.

	

missingprioritygroup

	
Specified priority group does not exist.

COMMENT_ON_conflicttype_RESOLUTION Procedure

This procedure updates the RESOLUTION_COMMENT field in the DBA_REPRESOLUTION view for a conflict resolution routine. The procedure that you need to call is determined by the type of conflict that the routine resolves. These procedures must be issued at the master definition site.

Table 18-47 COMMENT_ON_conflicttype_RESOLUTION Procedures

	Conflict Type	Procedure Name
	
update

	
COMMENT_ON_UPDATE_RESOLUTION

	
uniqueness

	
COMMENT_ON_UNIQUE_RESOLUTION

	
delete

	
COMMENT_ON_DELETE_RESOLUTION

The comment is not added at all master sites until the next call to GENERATE_REPLICATION_SUPPORT.

Syntax

DBMS_REPCAT.COMMENT_ON_UPDATE_RESOLUTION (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 sequence_no IN NUMBER,
 comment IN VARCHAR2);

DBMS_REPCAT.COMMENT_ON_UNIQUE_RESOLUTION (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 constraint_name IN VARCHAR2,
 sequence_no IN NUMBER,
 comment IN VARCHAR2);

DBMS_REPCAT.COMMENT_ON_DELETE_RESOLUTION (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 sequence_no IN NUMBER,
 comment IN VARCHAR2);

Parameters

Table 18-48 COMMENT_ON_conflicttype_RESOLUTION Procedure Parameters

	Parameter	Description
	

sname

	
Name of the schema.

	

oname

	
Name of the replicated table with which the conflict resolution routine is associated.

	

column_group

	
Name of the column group with which the update conflict resolution routine is associated.

	

constraint_name

	
Name of the unique constraint with which the uniqueness conflict resolution routine is associated.

	

sequence_no

	
Sequence number of the conflict resolution procedure.

	

comment

	
The text of the updated comment that you want included in the RESOLUTION_COMMENT field of the DBA_REPRESOLUTION view.

Exceptions

Table 18-49 COMMENT_ON_conflicttype_RESOLUTION Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

missingobject

	
Specified object does not exist.

	

missingresolution

	
Specified conflict resolution routine is not registered.

COMPARE_OLD_VALUES Procedure

This procedure specifies whether to compare old column values during propagation of deferred transactions at each master site for each nonkey column of a replicated table for updates and deletes. The default is to compare old values for all columns. You can change this behavior at all master sites and materialized view sites by invoking DBMS_REPCAT.COMPARE_OLD_VALUES at the master definition site.

When you use user-defined types, you can specify leaf attributes of a column object, or you can specify an entire column object. For example, if a column object named cust_address has street_address as an attribute, then you can specify cust_address.street_address for the column_list parameter or as part of the column_table parameter, or you can specify only cust_address.

When performing equality comparisons for conflict detection, Oracle treats objects as equal only if one of the following conditions is true:

	
Both objects are atomically NULL (the entire object is NULL)

	
All of the corresponding attributes are equal in the objects

Given these conditions, if one object is atomically NULL while the other is not, then Oracle does not consider the objects to be equal. Oracle does not consider MAP and ORDER methods when performing equality comparisons.

Syntax

DBMS_REPCAT.COMPARE_OLD_VALUES(
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 { column_list IN VARCHAR2,
 | column_table IN DBMS_UTILITY.VARCHAR2s | DBMS_UTILITY.LNAME_ARRAY,}
 operation IN VARCHAR2 := 'UPDATE',
 compare IN BOOLEAN := true);

	
Note:

This procedure is overloaded. The column_list and column_table parameters are mutually exclusive.

Parameters

Table 18-50 COMPARE_OLD_VALUES Procedure Parameters

	Parameter	Description
	

sname

	
Schema in which the table is located.

	

oname

	
Name of the replicated table. The table can be the storage table of a nested table.

	

column_list

	
A comma-delimited list of the columns in the table. There must be no spaces between entries.

	

column_table

	
Instead of a list, you can use a PL/SQL index-by table of type DBMS_REPCAT.VARCHAR2 or DBMS_UTILITY.LNAME_ARRAY to contain the column names. The first column name should be at position 1, the second at position 2, and so on.

Use DBMS_UTILITY.LNAME_ARRAY if any column name is greater than or equal to 30 bytes, which might occur when you specify the attributes of column objects.

	

operation

	
Possible values are: update, delete, or the asterisk wildcard '*', which means update and delete.

	

compare

	
If compare is true, the old values of the specified columns are compared when sent. If compare is false, the old values of the specified columns are not compared when sent. Unspecified columns and unspecified operations are not affected. The specified change takes effect at the master definition site as soon as min_communication is true for the table. The change takes effect at a master site or at a materialized view site the next time replication support is generated at that site with min_communication true.

	
Note:

The operation parameter enables you to decide whether or not to compare old values for nonkey columns when rows are deleted or updated. If you do not compare the old value, then Oracle assumes the old value is equal to the current value of the column at the target side when the update or delete is applied.
See Oracle Database Advanced Replication for more information about reduced data propagation using the COMPARE_OLD_VALUES procedure before changing the default behavior of Oracle.

Exceptions

Table 18-51 COMPARE_OLD_VALUES Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

missingobject

	
Specified object does not exist as a table in the specified schema waiting for row-level replication information.

	

missingcolumn

	
At least one column is not in the table.

	

notquiesced

	
Master group has not been quiesced.

	

typefailure

	
An illegal operation is specified.

	

keysendcomp

	
A specified column is a key column in a table.

	

dbnotcompatible

	
Feature is incompatible with database version. Typically, this exception arises when you are trying to compare the attributes of column objects. In this case, all databases must be at 9.0.1 or higher compatibility level.

CREATE_MASTER_REPGROUP Procedure

This procedure creates a new, empty, quiesced master group.

Syntax

DBMS_REPCAT.CREATE_MASTER_REPGROUP (
 gname IN VARCHAR2,
 group_comment IN VARCHAR2 := '',
 master_comment IN VARCHAR2 := '',
 qualifier IN VARCHAR2 := '');

Parameters

Table 18-52 CREATE_MASTER_REPGROUP Procedure Parameters

	Parameter	Description
	

gname

	
Name of the master group that you want to create.

	

group_comment

	
This comment is added to the DBA_REPGROUP view.

	

master_comment

	
This comment is added to the DBA_REPSITES view.

	

qualifier

	
Connection qualifier for master group. Be sure to use the @ sign. See Oracle Database Advanced Replication and Oracle Database Administrator's Guide for more information about connection qualifiers.

Exceptions

Table 18-53 CREATE_MASTER_REPGROUP Procedure Exceptions

	Exception	Description
	

duplicaterepgroup

	
Master group already exists.

	

norepopt

	
Advanced replication option is not installed.

	

missingrepgroup

	
Master group name was not specified.

	

qualifiertoolong

	
Connection qualifier is too long.

CREATE_MASTER_REPOBJECT Procedure

This procedure makes an object a replicated object by adding the object to a master group. This procedure preserves the object identifier for user-defined types and object tables at all replication sites.

Replication of clustered tables is supported, but the use_existing_object parameter cannot be set to false for clustered tables. In other words, you must create the clustered table at all master sites participating in the master group before you execute the CREATE_MASTER_REPOBJECT procedure. However, these tables do not need to contain the table data. So, the copy_rows parameter can be set to true for clustered tables.

Syntax

DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 use_existing_object IN BOOLEAN := true,
 ddl_text IN VARCHAR2 := NULL,
 comment IN VARCHAR2 := '',
 retry IN BOOLEAN := false,
 copy_rows IN BOOLEAN := true,
 gname IN VARCHAR2 := '');

Parameters

Table 18-54 CREATE_MASTER_REPOBJECT Procedure Parameters

	Parameters	Description
	

sname

	
Name of the schema in which the object that you want to replicate is located.

	

oname

	
Name of the object you are replicating. If ddl_text is NULL, then this object must already exist in the specified schema. To ensure uniqueness, table names should be a maximum of 27 bytes long, and package names should be no more than 24 bytes. The object cannot be a storage table for a nested table.

	

type

	
Type of the object that you are replicating. The following types are supported:

FUNCTION SYNONYM
INDEX TABLE
INDEXTYPE TRIGGER
OPERATOR TYPE
PACKAGE TYPE BODY
PACKAGE BODY VIEW
PROCEDURE

	

use_existing_object

	
Indicate true if you want to reuse any objects of the same type and shape at the current master sites. See Table 18-56 for more information.

Note: This parameter must be set to true for clustered tables.

	

ddl_text

	
If the object does not already exist at the master definition site, then you must supply the DDL text necessary to create this object. PL/SQL packages, package bodies, procedures, and functions must have a trailing semicolon. SQL statements do not end with trailing semicolon. Oracle does not parse this DDL before applying it; therefore, you must ensure that your DDL text provides the appropriate schema and object name for the object being created.

If the DDL is supplied without specifying a schema (sname parameter), then the default schema is the replication administrator's schema. Be sure to specify the schema if it is other than the replication administrator's schema.

Note: Do not use the ddl_text parameter to add user-defined types or object tables. Instead, create the object first and then add the object.

	

comment

	
This comment is added to the OBJECT_COMMENT field of the DBA_REPOBJECT view.

	

retry

	
Indicate true if you want Oracle to reattempt to create an object that it was previously unable to create. Use this if the error was transient or has since been rectified, or if you previously had insufficient resources. If this is true, then Oracle creates the object only at master sites whose object status is not VALID.

	

copy_rows

	
Indicate true if you want the initial contents of a newly replicated object to match the contents of the object at the master definition site. See Table 18-56 for more information.

	

gname

	
Name of the replication group in which you want to create the replicated object. The schema name is used as the default replication group name if none is specified, and a replication group with the same name as the schema must exist for the procedure to complete successfully in that case.

Exceptions

Table 18-55 CREATE_MASTER_REPOBJECT Procedure Exceptions

	Exceptions	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

notquiesced

	
Master group is not quiesced.

	

duplicateobject

	
Specified object already exists in the master group and retry is false, or if a name conflict occurs.

	

missingobject

	
Object identified by sname and oname does not exist and appropriate DDL has not been provided.

	

typefailure

	
Objects of the specified type cannot be replicated.

	

ddlfailure

	
DDL at the master definition site did not succeed.

	

commfailure

	
At least one master site is not accessible.

Object Creations

Table 18-56 Object Creation at Master Sites

	Object AlreadyExists?	COPY_ROWS	USE_EXISTING_OBJECTS	Result
	
yes

	

true

	

true

	
duplicatedobject message if objects do not match. For tables, use data from master definition site.

	
yes

	

false

	

true

	
duplicatedobject message if objects do not match. For tables, DBA must ensure contents are identical.

	
yes

	

true/false

	

false

	
duplicatedobject message.

	
no

	

true

	

true/false

	
Object is created. Tables populated using data from master definition site.

	
no

	

false

	

true/false

	
Object is created. DBA must populate tables and ensure consistency of tables at all sites.

CREATE_MVIEW_REPGROUP Procedure

This procedure creates a new, empty materialized view group in your local database. CREATE_MVIEW_REPGROUP automatically calls REGISTER_MIEW_REPGROUP, but ignores any errors that might have happened during registration.

Syntax

DBMS_REPCAT.CREATE_MVIEW_REPGROUP (
 gname IN VARCHAR2,
 master IN VARCHAR2,
 comment IN VARCHAR2 := '',
 propagation_mode IN VARCHAR2 := 'ASYNCHRONOUS',
 fname IN VARCHAR2 := NULL
 gowner IN VARCHAR2 := 'PUBLIC');

Parameters

Table 18-57 CREATE_MVIEW_REPGROUP Procedure Parameters

	Parameter	Description
	

gname

	
Name of the replication group. This group must exist at the specified master site or master materialized view site.

	

master

	
Fully qualified database name of the database in the replication environment to use as the master site or master materialized view site. You can include a connection qualifier if necessary. See Oracle Database Advanced Replication and Oracle Database Administrator's Guide for information about using connection qualifiers.

	

comment

	
This comment is added to the DBA_REPGROUP view.

	

propagation_mode

	
Method of propagation for all updatable materialized views in the replication group. Acceptable values are synchronous and asynchronous.

	

fname

	
This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by Oracle Support Services.

	

gowner

	
Owner of the materialized view group.

Exceptions

Table 18-58 CREATE_MVIEW_REPGROUP Procedure Exceptions

	Exception	Description
	

duplicaterepgroup

	
Replication group already exists at the invocation site.

	

nonmaster

	
Specified database is not a master site or master materialized view site.

	

commfailure

	
Specified database is not accessible.

	

norepopt

	
Advanced replication option is not installed.

	

typefailure

	
Propagation mode was specified incorrectly.

	

missingrepgroup

	
Replication group does not exist at master site.

	

invalidqualifier

	
Connection qualifier specified for the master site or master materialized view site is not valid for the replication group.

	

alreadymastered

	
At the local site, there is another materialized view group with the same group name, but different master site or master materialized view site.

CREATE_MVIEW_REPOBJECT Procedure

This procedure adds a replicated object to a materialized view group.

Syntax

DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 ddl_text IN VARCHAR2 := '',
 comment IN VARCHAR2 := '',
 gname IN VARCHAR2 := '',
 gen_objs_owner IN VARCHAR2 := '',
 min_communication IN BOOLEAN := true,
 generate_80_compatible IN BOOLEAN := true,
 gowner IN VARCHAR2 := 'PUBLIC');

Parameters

Table 18-59 CREATE_MVIEW_REPOBJECT Procedure Parameters

	Parameter	Description
	

sname

	
Name of the schema in which the object is located. The schema must be same as the schema that owns the master table or master materialized view on which this materialized view is based.

	

oname

	
Name of the object that you want to add to the replicated materialized view group.

	

type

	
Type of the object that you are replicating. The following types are supported:

FUNCTION SNAPSHOT
INDEX SYNONYM
INDEXTYPE TRIGGER
OPERATOR TYPE
PACKAGE TYPE BODY
PACKAGE BODY VIEW
PROCEDURE

Use SNAPSHOT type of the object is a materialized view.

	

ddl_text

	
For objects of type MATERIALIZED VIEW, the DDL needed to create the object. For other types, use the default:

'' (an empty string)

If a materialized view with the same name already exists, then Oracle ignores the DDL and registers the existing materialized view as a replicated object. If the master table or master materialized view for a materialized view does not exist in the replication group of the master designated for this schema, then Oracle raises a missingobject error.

If the DDL is supplied without specifying a schema, then the default schema is the replication administrator's schema. Be sure to specify the schema if it is other than the replication administrator's schema.

If the object is not of type MATERIALIZED VIEW, then the materialized view site connects to the master site or master materialized view site and pulls down the DDL text to create the object. If the object type is TYPE or TYPE BODY, then the object identifier (OID) for the object at the materialized view site is the same as the OID at the master site or master materialized view site.

	

comment

	
This comment is added to the OBJECT_COMMENT field of the DBA_REPOBJECT view.

	

gname

	
Name of the replicated materialized view group to which you are adding an object. The schema name is used as the default group name if none is specified, and a materialized view group with the same name as the schema must exist for the procedure to complete successfully.

	

gen_objs_owner

	
Name of the user you want to assign as owner of the transaction.

	

min_communication

	
This parameter is obsolete. Use the default value (true).

	

generate_80_compatible

	
Set to true if the materialized view's master site is running a version of Oracle server prior to Oracle8i Database release 8.1.5. Set to false if the materialized view's master site or master materialized view site is running Oracle8i Database release 8.1.5 or later.

	

gowner

	
Owner of the materialized view group.

Exceptions

Table 18-60 CREATE_MVIEW_REPOBJECT Procedure Exceptions

	Exception	Description
	

nonmview

	
Invocation site is not a materialized view site.

	

nonmaster

	
Master is no longer a master site or master materialized view site.

	

missingobject

	
Specified object does not exist in the master's replication group.

	

duplicateobject

	
Specified object already exists with a different shape.

	

typefailure

	
Type is not an allowable type.

	

ddlfailure

	
DDL did not succeed.

	

commfailure

	
Master site or master materialized view site is not accessible.

	

missingschema

	
Schema does not exist as a database schema.

	

badmviewddl

	
DDL was executed but materialized view does not exist.

	

onlyonemview

	
Only one materialized view for master table or master materialized view can be created.

	

badmviewname

	
Materialized view differs from master table or master materialized view.

	

missingrepgroup

	
Replication group at the master does not exist.

DEFINE_COLUMN_GROUP Procedure

This procedure creates an empty column group. You must call this procedure from the master definition site.

	
See Also:

Chapter 6, "Configure Conflict Resolution" and Oracle Database Advanced Replication for more information about conflict resolution methods

Syntax

DBMS_REPCAT.DEFINE_COLUMN_GROUP (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 comment IN VARCHAR2 := NULL);

Parameters

Table 18-61 DEFINE_COLUMN_GROUP Procedure Parameters

	Parameter	Description
	

sname

	
Schema in which the replicated table is located.

	

oname

	
Name of the replicated table for which you are creating a column group.

	

column_group

	
Name of the column group that you want to create.

	

comment

	
This user text is displayed in the DBA_REPCOLUMN_GROUP view.

Exceptions

Table 18-62 DEFINE_COLUMN_GROUP Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

missingobject

	
Specified table does not exist.

	

duplicategroup

	
Specified column group already exists for the table.

	

notquiesced

	
Replication group to which the specified table belongs is not quiesced.

DEFINE_PRIORITY_GROUP Procedure

This procedure creates a new priority group for a master group. You must call this procedure from the master definition site.

	
See Also:

Chapter 6, "Configure Conflict Resolution" and Oracle Database Advanced Replication for more information about conflict resolution methods

Syntax

DBMS_REPCAT.DEFINE_PRIORITY_GROUP (
 gname IN VARCHAR2,
 pgroup IN VARCHAR2,
 datatype IN VARCHAR2,
 fixed_length IN INTEGER := NULL,
 comment IN VARCHAR2 := NULL);

Parameters

Table 18-63 DEFINE_PRIORITY_GROUP Procedure Parameters

	Parameter	Description
	

gname

	
Master group for which you are creating a priority group.

	

pgroup

	
Name of the priority group that you are creating.

	

datatype

	
Datatype of the priority group members. The datatypes supported are: CHAR, VARCHAR2, NUMBER, DATE, RAW, NCHAR, and NVARCHAR2.

	

fixed_length

	
You must provide a column length for the CHAR datatype. All other types can use the default, NULL.

	

comment

	
This user comment is added to the DBA_REPPRIORITY view.

Exceptions

Table 18-64 DEFINE_PRIORITY_GROUP Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

missingrepgroup

	
Specified master group does not exist.

	

duplicatepriority group

	
Specified priority group already exists in the master group.

	

typefailure

	
Specified datatype is not supported.

	

notquiesced

	
Master group is not quiesced.

DEFINE_SITE_PRIORITY Procedure

This procedure creates a new site priority group for a master group. You must call this procedure from the master definition site.

	
See Also:

Chapter 6, "Configure Conflict Resolution" and Oracle Database Advanced Replication for more information about conflict resolution methods

Syntax

DBMS_REPCAT.DEFINE_SITE_PRIORITY (
 gname IN VARCHAR2,
 name IN VARCHAR2,
 comment IN VARCHAR2 := NULL);

Parameters

Table 18-65 DEFINE_SITE_PRIORITY Procedure Parameters

	Parameter	Description
	

gname

	
The master group for which you are creating a site priority group.

	

name

	
Name of the site priority group that you are creating.

	

comment

	
This user comment is added to the DBA_REPPRIORITY view.

Exceptions

Table 18-66 DEFINE_SITE_PRIORITY Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

missingrepgroup

	
Specified master group does not exist.

	

duplicate prioritygroup

	
Specified site priority group already exists in the master group.

	

notquiesced

	
Master group is not quiesced.

DO_DEFERRED_REPCAT_ADMIN Procedure

This procedure executes the local outstanding deferred administrative procedures for the specified master group at the current master site, or (with assistance from job queues) for all master sites.

DO_DEFERRED_REPCAT_ADMIN executes only those administrative requests submitted by the connected user who called DO_DEFERRED_REPCAT_ADMIN. Requests submitted by other users are ignored.

Syntax

DBMS_REPCAT.DO_DEFERRED_REPCAT_ADMIN (
 gname IN VARCHAR2,
 all_sites IN BOOLEAN := false);

Parameters

Table 18-67 DO_DEFERRED_REPCAT_ADMIN Procedure Parameters

	Parameter	Description
	

gname

	
Name of the master group.

	

all_sites

	
If this is true, then use a job to execute the local administrative procedures at each master site.

Exceptions

Table 18-68 DO_DEFERRED_REPCAT_ADMIN Procedure Exceptions

	Exception	Description
	

nonmaster

	
Invocation site is not a master site.

	

commfailure

	
At least one master site is not accessible and all_sites is true.

DROP_COLUMN_GROUP Procedure

This procedure drops a column group. You must call this procedure from the master definition site.

	
See Also:

Chapter 6, "Configure Conflict Resolution" and Oracle Database Advanced Replication for more information about conflict resolution methods

Syntax

DBMS_REPCAT.DROP_COLUMN_GROUP (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2);

Parameters

Table 18-69 DROP_COLUMN_GROUP Procedure Parameters

	Parameter	Description
	

sname

	
Schema in which the replicated table is located.

	

oname

	
Name of the replicated table whose column group you are dropping.

	

column_group

	
Name of the column group that you want to drop.

Exceptions

Table 18-70 DROP_COLUMN_GROUP Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

referenced

	
Specified column group is being used in conflict detection and resolution.

	

missingobject

	
Specified table does not exist.

	

missinggroup

	
Specified column group does not exist.

	

notquiesced

	
Master group to which the table belongs is not quiesced.

DROP_GROUPED_COLUMN Procedure

This procedure removes members from a column group. You must call this procedure from the master definition site.

	
See Also:

Chapter 6, "Configure Conflict Resolution" and Oracle Database Advanced Replication for more information about conflict resolution methods

Syntax

DBMS_REPCAT.DROP_GROUPED_COLUMN (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 list_of_column_names IN VARCHAR2 | DBMS_REPCAT.VARCHAR2);

Parameters

Table 18-71 DROP_GROUPED_COLUMN Procedure Parameters

	Parameter	Description
	

sname

	
Schema in which the replicated table is located.

	

oname

	
Name of the replicated table in which the column group is located. The table can be the storage table of a nested table.

	

column_group

	
Name of the column group from which you are removing members.

	

list_of_column_names

	
Names of the columns that you are removing from the designated column group. This can either be a comma-delimited list or a PL/SQL index-by table of column names. The PL/SQL index-by table must be of type DBMS_REPCAT.VARCHAR2.

You can specify column objects, but you cannot specify attributes of column objects.

If the table is an object, then you can specify SYS_NC_OID$ to add the object identifier column to the column group. This column tracks the object identifier of each row object.

If the table is a storage table of a nested table, then you can specify NESTED_TABLE_ID to add the column that tracks the identifier for each row of the nested table.

Exceptions

Table 18-72 DROP_GROUPED_COLUMN Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

missingobject

	
Specified table does not exist.

	

notquiesced

	
Master group that the table belongs to is not quiesced.

DROP_MASTER_REPGROUP Procedure

This procedure drops a master group from your current site. To drop the master group from all master sites, including the master definition site, you can call this procedure at the master definition site, and set all_sites to true.

Syntax

DBMS_REPCAT.DROP_MASTER_REPGROUP (
 gname IN VARCHAR2,
 drop_contents IN BOOLEAN := false,
 all_sites IN BOOLEAN := false);

Parameters

Table 18-73 DROP_MASTER_REPGROUP Procedure Parameters

	Parameter	Description
	

gname

	
Name of the master group that you want to drop from the current master site.

	

drop_contents

	
By default, when you drop the replication group at a master site, all of the objects remain in the database. They simply are no longer replicated. That is, the replicated objects in the replication group no longer send changes to, or receive changes from, other master sites. If you set this to true, then any replicated objects in the master group are dropped from their associated schemas.

	

all_sites

	
If this is true and if the invocation site is the master definition site, then the procedure synchronously multicasts the request to all masters. In this case, execution is immediate at the master definition site and might be deferred at all other master sites.

Exceptions

Table 18-74 DROP_MASTER_REPGROUP Procedure Exceptions

	Exception	Description
	

nonmaster

	
Invocation site is not a master site.

	

nonmasterdef

	
Invocation site is not the master definition site and all_sites is true.

	

commfailure

	
At least one master site is not accessible and all_sites is true.

	

fullqueue

	
Deferred remote procedure call (RPC) queue has entries for the master group.

	

masternotremoved

	
Master does not recognize the master definition site and all_sites is true.

DROP_MASTER_REPOBJECT Procedure

This procedure drops a replicated object from a master group. You must call this procedure from the master definition site.

Syntax

DBMS_REPCAT.DROP_MASTER_REPOBJECT (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 drop_objects IN BOOLEAN := false);

Parameters

Table 18-75 DROP_MASTER_REPOBJECT Procedure Parameters

	Parameter	Description
	

sname

	
Name of the schema in which the object is located.

	

oname

	
Name of the object that you want to remove from the master group. The object cannot be a storage table for a nested table.

	

type

	
Type of object that you want to drop. The following types are supported:

FUNCTION SYNONYM
INDEX TABLE
INDEXTYPE TRIGGER
OPERATOR TYPE
PACKAGE TYPE BODY
PACKAGE BODY VIEW
PROCEDURE

	

drop_objects

	
By default, the object remains in the schema, but is dropped from the master group. That is, any changes to the object are no longer replicated to other master and materialized view sites. To completely remove the object from the replication environment, set this parameter to true. If the parameter is set to true, the object is dropped from the database at each master site.

Exceptions

Table 18-76 DROP_MASTER_REPOBJECT Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

missingobject

	
Specified object does not exist.

	

typefailure

	
Specified type parameter is not supported.

	

commfailure

	
At least one master site is not accessible.

DROP_MVIEW_REPGROUP Procedure

This procedure drops a materialized view site from your replication environment. DROP_MVIEW_REPGROUP automatically calls UNREGISTER_MVIEW_REPGROUP at the master site or master materialized view site to unregister the materialized view, but ignores any errors that might have occurred during unregistration. If DROP_MVIEW_REPGROUP is unsuccessful, then connect to the master site or master materialized view site and run UNREGISTER_MVIEW_REPGROUP.

Syntax

DBMS_REPCAT.DROP_MVIEW_REPGROUP (
 gname IN VARCHAR2,
 drop_contents IN BOOLEAN := false,
 gowner IN VARCHAR2 := 'PUBLIC');

Parameters

Table 18-77 DROP_MVIEW_REPGROUP Procedure Parameters

	Parameter	Description
	

gname

	
Name of the replication group that you want to drop from the current materialized view site. All objects generated to support replication, such as triggers and packages, are dropped.

	

drop_contents

	
By default, when you drop the replication group at a materialized view site, all of the objects remain in their associated schemas. They simply are no longer replicated. If you set this to true, then any replicated objects in the replication group are dropped from their schemas.

	

gowner

	
Owner of the materialized view group.

Exceptions

Table 18-78 DROP_MVIEW_REPGROUP Procedure Exceptions

	Exception	Description
	

nonmview

	
Invocation site is not a materialized view site.

	

missingrepgroup

	
Specified replication group does not exist.

DROP_MVIEW_REPOBJECT Procedure

This procedure drops a replicated object from a materialized view site.

Syntax

DBMS_REPCAT.DROP_MVIEW_REPOBJECT (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 drop_objects IN BOOLEAN := false);

Parameters

Table 18-79 DROP_MVIEW_REPOBJECT Procedure Parameters

	Parameter	Description
	

sname

	
Name of the schema in which the object is located.

	

oname

	
Name of the object that you want to drop from the replication group.

	

type

	
Type of the object that you want to drop. The following types are supported:

FUNCTION SNAPSHOT
INDEX SYNONYM
INDEXTYPE TRIGGER
OPERATOR TYPE
PACKAGE TYPE BODY
PACKAGE BODY VIEW
PROCEDURE

Use SNAPSHOT to drop a materialized view.

	

drop_objects

	
By default, the object remains in its associated schema, but is dropped from its associated replication group. To completely remove the object from its schema at the current materialized view site, set this parameter to true. If the parameter is set to true, the object is dropped from the database at the materialized view site.

Exceptions

Table 18-80 DROP_MVIEW_REPOBJECT Procedure Exceptions

	Exception	Description
	

nonmview

	
Invocation site is not a materialized view site.

	

missingobject

	
Specified object does not exist.

	

typefailure

	
Specified type parameter is not supported.

DROP_PRIORITY Procedure

This procedure drops a member of a priority group by priority level. You must call this procedure from the master definition site.

	
See Also:

Chapter 6, "Configure Conflict Resolution" and Oracle Database Advanced Replication for more information about conflict resolution methods

Syntax

DBMS_REPCAT.DROP_PRIORITY(
 gname IN VARCHAR2,
 pgroup IN VARCHAR2,
 priority_num IN NUMBER);

Parameters

Table 18-81 DROP_PRIORITY Procedure Parameters

	Parameter	Description
	

gname

	
Master group with which the priority group is associated.

	

pgroup

	
Name of the priority group containing the member that you want to drop.

	

priority_num

	
Priority level of the priority group member that you want to remove from the group.

Exceptions

Table 18-82 DROP_PRIORITY Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

missingrepgroup

	
Specified master group does not exist.

	

missingprioritygroup

	
Specified priority group does not exist.

	

notquiesced

	
Master group is not quiesced.

DROP_PRIORITY_GROUP Procedure

This procedure drops a priority group for a specified master group. You must call this procedure from the master definition site.

	
See Also:

Chapter 6, "Configure Conflict Resolution" and Oracle Database Advanced Replication for more information about conflict resolution methods

Syntax

DBMS_REPCAT.DROP_PRIORITY_GROUP (
 gname IN VARCHAR2,
 pgroup IN VARCHAR2);

Parameters

Table 18-83 DROP_PRIORITY_GROUP Procedure Parameters

	Parameter	Description
	

gname

	
Master group with which the priority group is associated.

	

pgroup

	
Name of the priority group that you want to drop.

Exceptions

Table 18-84 DROP_PRIORITY_GROUP Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

missingrepgroup

	
Specified master group does not exist.

	

referenced

	
Specified priority group is being used in conflict resolution.

	

notquiesced

	
Specified master group is not quiesced.

DROP_PRIORITY_datatype Procedure

This procedure drops a member of a priority group by value. You must call this procedure from the master definition site. The procedure that you must call is determined by the datatype of your priority column.

	
See Also:

Chapter 6, "Configure Conflict Resolution" and Oracle Database Advanced Replication for more information about conflict resolution methods

Syntax

DBMS_REPCAT.DROP_PRIORITY_datatype (
 gname IN VARCHAR2,
 pgroup IN VARCHAR2,
 value IN datatype);

where datatype:

{ NUMBER
| VARCHAR2
| CHAR
| DATE
| RAW
| NCHAR
| NVARCHAR2 }

Parameters

Table 18-85 DROP_PRIORITY_datatype Procedure Parameters

	Parameter	Description
	

gname

	
Master group with which the priority group is associated.

	

pgroup

	
Name of the priority group containing the member that you want to drop.

	

value

	
Value of the priority group member that you want to remove from the group.

Exceptions

Table 18-86 DROP_PRIORITY_datatype Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

missingrepgroup

	
Specified master group does not exist.

	

missingprioritygroup

	
Specified priority group does not exist.

	

paramtype, typefailure

	
Value has the incorrect datatype for the priority group.

	

notquiesced

	
Specified master group is not quiesced.

DROP_SITE_PRIORITY Procedure

This procedure drops a site priority group for a specified master group. You must call this procedure from the master definition site.

	
See Also:

Chapter 6, "Configure Conflict Resolution" and Oracle Database Advanced Replication for more information about conflict resolution methods

Syntax

DBMS_REPCAT.DROP_SITE_PRIORITY (
 gname IN VARCHAR2,
 name IN VARCHAR2);

Parameters

Table 18-87 DROP_SITE_PRIORITY Procedure Parameters

	Parameter	Description
	

gname

	
Master group with which the site priority group is associated.

	

name

	
Name of the site priority group that you want to drop.

Exceptions

Table 18-88 DROP_SITE_PRIORITY Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

missingrepgroup

	
Specified master group does not exist.

	

referenced

	
Specified site priority group is being used in conflict resolution.

	

notquiesced

	
Specified master group is not quiesced.

DROP_SITE_PRIORITY_SITE Procedure

This procedure drops a specified site, by name, from a site priority group. You must call this procedure from the master definition site.

	
See Also:

Chapter 6, "Configure Conflict Resolution" and Oracle Database Advanced Replication for more information about conflict resolution methods

Syntax

DBMS_REPCAT.DROP_SITE_PRIORITY_SITE (
 gname IN VARCHAR2,
 name IN VARCHAR2,
 site IN VARCHAR2);

Parameters

Table 18-89 DROP_SITE_PRIORITY_SITE Procedure Parameters

	Parameter	Description
	

gname

	
Master group with which the site priority group is associated.

	

name

	
Name of the site priority group whose member you are dropping.

	

site

	
Global database name of the site you are removing from the group.

Exceptions

Table 18-90 DROP_SITE_PRIORITY_SITE Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

missingrepgroup

	
Specified master group does not exist.

	

missingpriority

	
Specified site priority group does not exist.

	

notquiesced

	
Specified master group is not quiesced.

DROP_conflicttype_RESOLUTION Procedure

This procedure drops an update, delete, or uniqueness conflict resolution routine. You must call these procedures from the master definition site. The procedure that you must call is determined by the type of conflict that the routine resolves.

Conflict Resolution Routines

The following table shows the procedure name for each conflict resolution routine.

Table 18-91 Conflict Resolution Routines

	Routine	Procedure Name
	
update

	
DROP_UPDATE_RESOLUTION

	
uniqueness

	
DROP_UNIQUE_RESOLUTION

	
delete

	
DROP_DELETE_RESOLUTION

Syntax

DBMS_REPCAT.DROP_UPDATE_RESOLUTION (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 sequence_no IN NUMBER);

DBMS_REPCAT.DROP_DELETE_RESOLUTION (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 sequence_no IN NUMBER);

DBMS_REPCAT.DROP_UNIQUE_RESOLUTION (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 constraint_name IN VARCHAR2,
 sequence_no IN NUMBER);

Parameters

Table 18-92 DROP_conflicttype_RESOLUTION Procedure Parameters

	Parameter	Description
	

sname

	
Schema in which the table is located.

	

oname

	
Name of the table for which you want to drop a conflict resolution routine.

	

column_group

	
Name of the column group for which you want to drop an update conflict resolution routine.

	

constraint_name

	
Name of the unique constraint for which you want to drop a unique conflict resolution routine.

	

sequence_no

	
Sequence number assigned to the conflict resolution method that you want to drop. This number uniquely identifies the routine.

Exceptions

Table 18-93 DROP_conflicttype_RESOLUTION Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

missingobject

	
Specified object does not exist as a table in the specified schema, or a conflict resolution routine with the specified sequence number is not registered.

	

notquiesced

	
Master group is not quiesced.

EXECUTE_DDL Procedure

This procedure supplies DDL that you want to have executed at some or all master sites. You can call this procedure only from the master definition site.

Syntax

DBMS_REPCAT.EXECUTE_DDL (
 gname IN VARCHAR2,
 { master_list IN VARCHAR2 := NULL,
 | master_table IN DBMS_UTILITY.DBLINK_ARRAY,}
 DDL_TEXT IN VARCHAR2);

	
Note:

This procedure is overloaded. The master_list and master_table parameters are mutually exclusive.

Parameters

Table 18-94 EXECUTE_DDL Procedure Parameters

	Parameter	Description
	

gname

	
Name of the master group.

	

master_list

	
A comma-delimited list of master sites at which you want to execute the supplied DDL. Do not put any spaces between site names. The default value, NULL, indicates that the DDL should be executed at all sites, including the master definition site.

	

master_table

	
A table that lists the master sites where you want to execute the supplied DDL. The first master should be at position 1, the second at position 2, and so on.

	

ddl_text

	
The DDL that you want to execute at each of the specified master sites. If the DDL is supplied without specifying a schema, then the default schema is the replication administrator's schema. Be sure to specify the schema if it is other than the replication administrator's schema.

Exceptions

Table 18-95 EXECUTE_DDL Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

nonmaster

	
At least one site is not a master site.

	

ddlfailure

	
DDL at the master definition site did not succeed.

	

commfailure

	
At least one master site is not accessible.

GENERATE_MVIEW_SUPPORT Procedure

This procedure activates triggers and generate packages needed to support the replication of updatable materialized views or procedural replication.You must call this procedure from the materialized view site.

	
Note:

CREATE_MVIEW_REPOBJECT automatically generates materialized view support for updatable materialized views.

Syntax

DBMS_REPCAT.GENERATE_MVIEW_SUPPORT (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 gen_objs_owner IN VARCHAR2 := '',
 min_communication IN BOOLEAN := true,
 generate_80_compatible IN BOOLEAN := true);

Parameters

Table 18-96 GENERATE_MVIEW_SUPPORT Procedure Parameters

	Parameter	Description
	

sname

	
Schema in which the object is located.

	

oname

	
The name of the object for which you are generating support.

	

type

	
Type of the object. The types supported are MATERIALIZED VIEW, PACKAGE, and PACKAGE BODY.

	

gen_objs_owner

	
For objects of type PACKAGE or PACKAGE BODY, the schema in which the generated object should be created. If NULL, the objects are created in SNAME.

	

min_communication

	
If true, then the update trigger sends the new value of a column only if the update statement modifies the column. The update trigger sends the old value of the column only if it is a key column or a column in a modified column group.

	

generate_80_compatible

	
Set to true if the materialized view's master site is running a version of Oracle server prior to Oracle8i Database release 8.1.5. Set to false if the materialized view's master site or master materialized view site is running Oracle8i Database release 8.1.5 or later.

Exceptions

Table 18-97 GENERATE_MVIEW_SUPPORT Procedure Exceptions

	Exceptions	Descriptions
	

nonmview

	
Invocation site is not a materialized view site.

	

missingobject

	
Specified object does not exist as a materialized view in the replicated schema waiting for row/column-level replication information or as a package (body) waiting for wrapper generation.

	

typefailure

	
Specified type parameter is not supported.

	

missingschema

	
Specified owner of generated objects does not exist.

	

missingremoteobject

	
Object at master site or master materialized view site has not yet generated replication support.

	

commfailure

	
Master site or master materialized view site is not accessible.

GENERATE_REPLICATION_SUPPORT Procedure

This procedure generates the triggers and packages needed to support replication for a specified object. You must call this procedure from the master definition site.

Syntax

DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 package_prefix IN VARCHAR2 := NULL,
 procedure_prefix IN VARCHAR2 := NULL,
 distributed IN BOOLEAN := true,
 gen_objs_owner IN VARCHAR2 := NULL,
 min_communication IN BOOLEAN := true,
 generate_80_compatible IN BOOLEAN := true);

Parameters

Table 18-98 GENERATE_REPLICATION_SUPPORT Procedure Parameters

	Parameter	Description
	

sname

	
Schema in which the object is located.

	

oname

	
Name of the object for which you are generating replication support.

	

type

	
Type of the object. The types supported are: TABLE, PACKAGE, and PACKAGE BODY.

	

package_prefix

	
For objects of type PACKAGE or PACKAGE BODY this value is prepended to the generated wrapper package name. The default is DEFER_.

	

procedure_prefix

	
For objects of type PACKAGE or PACKAGE BODY, this value is prepended to the generated wrapper procedure names. By default, no prefix is assigned.

	

distributed

	
This must be set to true.

	

gen_objs_owner

	
For objects of type PACKAGE or PACKAGE BODY, the schema in which the generated object should be created. If NULL, the objects are created in sname.

	

min_communication

	
This parameter is obsolete. Use the default value (true).

	

generate_80_compatible

	
Set to true if any master site is running a version of Oracle server prior to Oracle8i Database release 8.1.5. Set to false if all master sites are running Oracle8i Database release 8.1.5 or later.

Exceptions

Table 18-99 GENERATE_REPLICATION_SUPPORT Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

missingobject

	
Specified object does not exist as a table in the specified schema waiting for row-level replication information or as a package (body) waiting for wrapper generation.

	

typefailure

	
Specified type parameter is not supported.

	

notquiesced

	
Replication group has not been quiesced.

	

commfailure

	
At least one master site is not accessible.

	

missingschema

	
Schema does not exist.

	

duplicateobject

	
Object already exists.

MAKE_COLUMN_GROUP Procedure

This procedure creates a new column group with one or more members. You must call this procedure from the master definition site.

	
See Also:

Chapter 6, "Configure Conflict Resolution" and Oracle Database Advanced Replication for more information about conflict resolution methods

Syntax

DBMS_REPCAT.MAKE_COLUMN_GROUP (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 list_of_column_names IN VARCHAR2 | DBMS_REPCAT.VARCHAR2s);

Parameters

Table 18-100 MAKE_COLUMN_GROUP Procedure Parameters

	Parameter	Description
	

sname

	
Schema in which the replicated table is located.

	

oname

	
Name of the replicated table for which you are creating a new column group. The table can be the storage table of a nested table.

	

column_group

	
Name that you want assigned to the column group that you are creating.

	

list_of_column_names

	
Names of the columns that you are grouping. This can either be a comma-delimited list or a PL/SQL index-by table of column names. The PL/SQL index-by table must be of type DBMS_REPCAT.VARCHAR2. Use the single value '*' to create a column group that contains all of the columns in your table.

You can specify column objects, but you cannot specify attributes of column objects.

If the table is an object table, then you can specify SYS_NC_OID$ to add the object identifier column to the column group. This column tracks the object identifier of each row object.

If the table is the storage table of a nested table, then you can specify NESTED_TABLE_ID to add the column that tracks the identifier for each row of the nested table.

Exceptions

Table 18-101 MAKE_COLUMN_GROUP Procedure Exceptions

	Exception	Description
	

nonmasterdef

	
Invocation site is not the master definition site.

	

duplicategroup

	
Specified column group already exists for the table.

	

missingobject

	
Specified table does not exist.

	

missingcolumn

	
Specified column does not exist in the designated table.

	

duplicatecolumn

	
Specified column is already a member of another column group.

	

notquiesced

	
Master group is not quiesced.

PREPARE_INSTANTIATED_MASTER Procedure

This procedure enables the propagation of deferred transactions from other prepared new master sites and existing master sites to the invocation master site. This procedure also enables the propagation of deferred transactions from the invocation master site to the other prepared new master sites and existing master sites.

If you performed a full database export/import or a change-based recovery, then the new master site includes all of the deferred transactions that were in the deferred transactions queue at the master definition site. Because these deferred transactions should not exist at the new master site, this procedure deletes all transactions in the deferred transactions queue and error queue if full database export/import or change-based recovery was used.

For object-level export/import, ensure that all the requests in the DBA_REPCATLOG data dictionary view for the extended groups have been processed without error before running this procedure.

	
Caution:

	
Do not invoke this procedure until instantiation (export/import or change-based recovery) for the new master site is complete.

	
Do not allow any data manipulation language (DML) statements directly on the objects in the extended master group in the new master site until execution of this procedure returns successfully. These DML statements might not be replicated.

	
Do not use the DBMS_DEFER package to create deferred transactions until execution of this procedure returns successfully. These deferred transactions might not be replicated.

	
Note:

	
To use change-based recovery, the existing master site and the new master site must be running under the same operating system, although the release of the operating system can differ.

	
You can use either Data Pump export/import or original export/import to perform exports and imports in an Advanced Replication environment. General references to export/import in this document refer to both Data Pump and original export/import.

Syntax

DBMS_REPCAT.PREPARE_INSTANTIATED_MASTER (
 extension_id IN RAW);

Parameters

Table 18-102 PREPARE_INSTANTIATED_MASTER Procedure Parameters

	Parameter	Description
	

extension_id

	
The identifier for the current pending request to add master databases to a master group without quiesce. You can find the extension_id by querying the DBA_REPSITES_NEW and DBA_REPEXTENSIONS data dictionary views.

Exceptions

Table 18-103 PREPARE_INSTANTIATED_MASTER Procedure Exceptions

	Exception	Description
	

typefailure

	
The parameter value specified for one of the parameters is not appropriate.

	

dbnotcompatible

	
Feature is incompatible with database version. All databases must be at 9.0.1 or higher compatibility level.

PURGE_MASTER_LOG Procedure

This procedure removes local messages in the DBA_REPCATLOG view associated with a specified identification number, source, or master group.

To purge all of the administrative requests from a particular source, specify NULL for the id parameter. To purge all administrative requests from all sources, specify NULL for both the id parameter and the source parameter.

Syntax

DBMS_REPCAT.PURGE_MASTER_LOG (
 id IN BINARY_INTEGER,
 source IN VARCHAR2,
 gname IN VARCHAR2);

Parameters

Table 18-104 PURGE_MASTER_LOG Procedure Parameters

	Parameter	Description
	

id

	
Identification number of the request, as it appears in the DBA_REPCATLOG view.

	

source

	
Master site from which the request originated.

	

gname

	
Name of the master group for which the request was made.

Exceptions

Table 18-105 PURGE_MASTER_LOG Procedure Exceptions

	Exception	Description
	

nonmaster

	
gname is not NULL, and the invocation site is not a master site.

PURGE_STATISTICS Procedure

This procedure removes information from the DBA_REPRESOLUTION_STATISTICS view.

Syntax

DBMS_REPCAT.PURGE_STATISTICS (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 start_date IN DATE,
 end_date IN DATE);

Parameters

Table 18-106 PURGE_STATISTICS Procedure Parameters

	Parameter	Description
	

sname

	
Name of the schema in which the replicated table is located.

	

oname

	
Name of the table whose conflict resolution statistics you want to purge.

	

start_date/end_date

	
Range of dates for which you want to purge statistics. If start_date is NULL, then purge all statistics up to the end_date. If end_date is NULL, then purge all statistics after the start_date.

Exceptions

Table 18-107 PURGE_STATISTICS Procedure Exceptions

	Exception	Description
	

missingschema

	
Specified schema does not exist.

	

missingobject

	
Specified table does not exist.

	

statnotreg

	
Table not registered to collect statistics.

REFRESH_MVIEW_REPGROUP Procedure

This procedure refreshes a materialized view group with the most recent data from its associated master site or master materialized view site.

Syntax

DBMS_REPCAT.REFRESH_MVIEW_REPGROUP (
 gname IN VARCHAR2,
 drop_missing_contents IN BOOLEAN := false,
 refresh_mviews IN BOOLEAN := false,
 refresh_other_objects IN BOOLEAN := false,
 gowner IN VARCHAR2 := 'PUBLIC');

Parameters

Table 18-108 REFRESH_MVIEW_REPGROUP Procedure Parameters

	Parameter	Description
	

gname

	
Name of the replication group.

	

drop_missing_contents

	
If an object was dropped from the replication group at the master site or master materialized view site, then it is not automatically dropped from the schema at the materialized view site. It is simply no longer replicated. That is, changes to this object are no longer sent to its associated master site or master materialized view site. Materialized views can continue to be refreshed from their associated master tables or master materialized views. However, any changes to an updatable materialized view are lost. When an object is dropped from the replication group, you can choose to have it dropped from the schema entirely by setting this parameter to true.

	

refresh_mviews

	
Set to true to refresh the contents of the materialized views in the replication group.

	

refresh_other_objects

	
Set this to true to refresh the contents of the non materialized view objects in the replication group. Non materialized view objects can include the following:

	
Tables

	
Views

	
Indexes

	
PL/SQL packages and package bodies

	
PL/SQL procedures and functions

	
Triggers

	
Synonyms

	

gowner

	
Owner of the materialized view group.

Exceptions

Table 18-109 REFRESH_MVIEW_REPGROUP Procedure Exceptions

	Exception	Description
	

nonmview

	
Invocation site is not a materialized view site.

	

nonmaster

	
Master is no longer a master site or master materialized view site.

	

commfailure

	
Master site or master materialized view site is not accessible.

	

missingrepgroup

	
Replication group name not specified.

REGISTER_MVIEW_REPGROUP Procedure

This procedure facilitates the administration of materialized views at their respective master sites or master materialized view sites by inserting or modifying a materialized view group in DBA_REGISTERED_MVIEW_GROUPS.

Syntax

DBMS_REPCAT.REGISTER_MVIEW_REPGROUP (
 gname IN VARCHAR2,
 mviewsite IN VARCHAR2,
 comment IN VARCHAR2 := NULL,
 rep_type IN NUMBER := reg_unknown,
 fname IN VARCHAR2 := NULL,
 gowner IN VARCHAR2 := 'PUBLIC');

Parameters

Table 18-110 REGISTER_MVIEW_REPGROUP Procedure Parameters

	Parameter	Description
	

gname

	
Name of the materialized view group to be registered.

	

mviewsite

	
Global name of the materialized view site.

	

comment

	
Comment for the materialized view site or update for an existing comment.

	

rep_type

	
Version of the materialized view group. Valid constants that can be assigned include the following:

	
dbms_repcat.reg_unknown (the default)

	
dbms_repcat.reg_v7_group

	
dbms_repcat.reg_v8_group

	

fname

	
This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by Oracle Support Services.

	

gowner

	
Owner of the materialized view group.

Exceptions

Table 18-111 REGISTER_MVIEW_REPGROUP Procedure Exceptions

	Exception	Description
	

failregmviewrepgroup

	
Registration of materialized view group failed.

	

missingrepgroup

	
Replication group name not specified.

	

nullsitename

	
A materialized view site was not specified.

	

nonmaster

	
Procedure must be executed at the materialized view's master site or master materialized view site.

	

duplicaterepgroup

	
Replication group already exists.

REGISTER_STATISTICS Procedure

This procedure collects information about the successful resolution of update, delete, and uniqueness conflicts for a table.

Syntax

DBMS_REPCAT.REGISTER_STATISTICS (
 sname IN VARCHAR2,
 oname IN VARCHAR2);

Parameters

Table 18-112 REGISTER_STATISTICS P