




B Online Database Upgrade with Streams

This appendix describes how to perform a database upgrade of an Oracle Database with Oracle Streams. The database upgrade operation described in this appendix uses the features of Oracle Streams to achieve little or no database down time. To use Streams for a database upgrade, the database must be Oracle9i Database Release 2 (9.2) or later.

This appendix contains these topics:

	
Overview of Using Streams in the Database Upgrade Process


	
Preparing for a Database Upgrade Using Streams


	
Performing a Database Upgrade Using Streams







	
See Also:

Appendix C, "Online Database Maintenance with Streams" for information about performing other database maintenance operations with Streams









Overview of Using Streams in the Database Upgrade Process

An Oracle database upgrade is the process of transforming an existing, prior release of an Oracle Database system into the current release of the Oracle Database system. A database upgrade typically requires substantial database down time, but you can perform a database upgrade with little or no down time by using the features of Oracle Streams. To do so, you use Oracle Streams to configure a single-source replication environment with the following databases:

	
Source Database: The original database that is being upgraded.


	
Capture Database: The database where a capture process captures changes made to the source database during the upgrade.


	
Destination Database: The copy of the source database where an apply process applies changes made to the source database during the upgrade process.




Specifically, you can use the following general steps to perform a database upgrade while the database is online:

	
Create an empty destination database.


	
Configure an Oracle Streams single-source replication environment where the original database is the source database and a copy of the database is the destination database for the changes made at the source.


	
Perform the database upgrade on the destination database. During this time the original source database is available online.


	
Use Oracle Streams to apply the changes made at the source database to the destination database.


	
When the destination database has caught up with the changes made at the source database, take the source database offline and make the destination database available for applications and users.




Figure B-1 provides an overview of this process.


Figure B-1 Online Database Upgrade with Streams

[image: Description of Figure B-1 follows]








The Capture Database During the Upgrade Process

During the upgrade process, the capture database is the database where the capture process is created. Downstream capture was introduced in Oracle Database 10g Release 1 (10.1). If you are upgrading a database from Oracle Database 10g Release 1 to Oracle Database 10g Release 2 (10.2), then you have the following options:

	
A local capture process can be created at the source database during the upgrade process.


	
A downstream capture process can be created at the destination database. If the destination database is the capture database, then a propagation from the capture database to the destination database is not needed.


	
A third database can be the capture database. In this case, the third database can be Oracle Database 10g Release 1 or Oracle Database 10g Release 2.




However, if you are upgrading a database from Oracle9i Database Release 2 (9.2) to Oracle Database 10g Release 2, then downstream capture is not supported, and a local capture process must be created at the source database.

A downstream capture process reduces the resources required at the source database during the upgrade process, but a local capture process is easier to configure. Table B-1 describes which database can be the capture database during the upgrade process.


Table B-1 Supported Capture Database During Upgrade

	Existing Database Release	Capture Database Can Be Source Database?	Capture Database Can Be Destination Database?	Capture Database Can Be Third Database?
	
9.2

	
Yes

	
No

	
No


	
10.1

	
Yes

	
Yes

	
Yes











	
Note:

If you are upgrading from Oracle Database 10g Release 1, then, before you begin the upgrade, decide which database will be the capture database.










	
See Also:

"Local Capture and Downstream Capture"












Assumptions for the Database Being Upgraded

The instructions in this appendix assume that all of the following statements are true for the database being upgraded:

	
The database is not part of an existing Oracle Streams environment.


	
The database is not part of an existing logical standby environment.


	
The database is not part of an existing Advanced Replication environment.


	
No tables at the database are master tables for materialized views in other databases.


	
Any user-created queues are read-only during the upgrade process.









Considerations for Job Queue Processes and PL/SQL Package Subprograms

If possible, ensure that no job queue processes are created, modified, or deleted during the upgrade process, and that no Oracle-supplied PL/SQL package subprograms are invoked during the upgrade process that modify both user data and dictionary metadata at the same time. The following packages contain subprograms that modify both user data and dictionary metadata at the same time: DBMS_RLS, DBMS_STATS, and DBMS_JOB.

It might be possible to perform such actions on the database if you ensure that the same actions are performed on the source database and destination database in Steps 9 and 10 in "Task 5: Finishing the Upgrade and Removing Streams". For example, if a PL/SQL procedure gathers statistics on the source database during the upgrade process, then the same PL/SQL procedure should be invoked at the destination database in Step 10.








Preparing for a Database Upgrade Using Streams

The following sections describe tasks to complete before starting the database upgrade with Streams:

	
Preparing to Upgrade a Database with User-defined Types


	
Deciding Which Utility to Use for Instantiation






Preparing to Upgrade a Database with User-defined Types

User-defined types include object types, REF values, varrays, and nested tables. Currently, Streams capture processes and apply processes do not support user-defined types. This section discusses using Streams to perform a database upgrade on a database that has user-defined types.

One option is to make tables that contain user-defined types read-only during the database upgrade. In this case, these tables are instantiated at the destination database, and no changes are made to these tables during the entire operation. After the upgrade is complete, make the tables that contain user-defined types read/write at the destination database.

If tables that contain user-defined types must remain open during the upgrade, then the following general steps can be used to retain changes to these tables during the upgrade:

	
Before you begin the upgrade process described in "Performing a Database Upgrade Using Streams", create one or more logging tables to store row changes to tables at the source database that include user-defined types. Each column in the logging table must use a datatype that is supported by Streams in the source database release.


	
Before you begin the upgrade process described in "Performing a Database Upgrade Using Streams", create a DML trigger at the source database that fires on the tables that contain the user-defined datatypes. The trigger converts each row change into relational equivalents and logs the modified row in a logging table created in Step 1.


	
When the instructions in "Performing a Database Upgrade Using Streams" say to configure a capture process and propagation, configure the capture process and propagation to capture changes to the logging table and propagate these changes to the destination database. Changes to tables that contain user-defined types should not be captured or propagated.


	
When the instructions in "Performing a Database Upgrade Using Streams" say to configure a an apply process on the destination database, configure the apply process to use a DML handler that processes the changes to the logging tables. The DML handler reconstructs the user-defined types from the relational equivalents and applies the modified changes to the tables that contain user-defined types.







	
See Also:

	
Oracle Database Application Developer's Guide - Fundamentals for more information about creating triggers


	
Oracle Streams Replication Administrator's Guide for more information about creating DML handlers

















Deciding Which Utility to Use for Instantiation

Before you begin the database upgrade, decide whether you want to use the Export/Import utilities (Data Pump or original) or the Recovery Manager (RMAN) utility to instantiate the destination database during the operation. The destination database will replace the existing database that is being upgraded.

Consider the following factors when you make this decision:

	
If you use original Export/Import or Data Pump Export/Import, then you can make the destination database an Oracle Database 10g Release 2 (10.2) database at the beginning of the operation. Therefore, you do not need to upgrade the destination database after the instantiation.

If you use Export/Import for instantiation, and Data Pump is supported, then Oracle recommends using Data Pump. Data Pump can perform the instantiation faster than original Export/Import.


	
If you use the RMAN DUPLICATE command, then the instantiation might be faster than with Export/Import, especially if the database is large, but the database release must be the same for RMAN instantiation. Therefore, if the database is an Oracle9i Database Release 2 (9.2) database, then the destination database is an Oracle9i Database Release 2 database when it is instantiated. If the database is an Oracle Database 10g Release 1 (10.1) database, then the destination database is an Oracle Database 10g Release 1 database when it is instantiated. After the instantiation, you must upgrade the destination database.

Also, Oracle recommends that you do not use RMAN for instantiation in an environment where distributed transactions are possible. Doing so might cause in-doubt transactions that must be corrected manually.




Table B-2 describes whether each instantiation method is supported based on the release being upgraded, whether the platform at the source and destination databases are different, and whether the character set at the source and destination databases are different. Each instantiation method is supported when the platform and character set are the same at the source and destination databases.


Table B-2 Instantiation Methods for Database Upgrade with Streams

	Instantiation Method	Supported When Upgrading From	Different Platforms Supported?	Different Character Sets Supported?
	
Original Export/Import

	
9.2 or 10.1

	
Yes

	
Yes


	
Data Pump Export/Import

	
10.1 only

	
Yes

	
Yes


	
RMAN DUPLICATE

	
9.2 or 10.1

	
No

	
No














Performing a Database Upgrade Using Streams

This section contains instructions for performing a database upgrade using Streams. To use Streams for a database upgrade, the database must be Oracle9i Database Release 2 (9.2) or later.

Complete the following tasks to upgrade a database using Streams:

	
Task 1: Beginning the Upgrade


	
Task 2: Setting Up Streams Prior to Instantiation


	
Task 3: Instantiating the Database


	
Task 4: Setting Up Streams After Instantiation


	
Task 5: Finishing the Upgrade and Removing Streams






Task 1: Beginning the Upgrade

Complete the following steps to begin the upgrade using Oracle Streams:

	
Create an empty database. Make sure the destination database has a different global name than the source database. This example assumes that the global name of the source database is orcl.net and the global name of the destination database during the upgrade is updb.net. The global name of the destination database is changed when the destination database replaces the source database at the end of the upgrade process.

The release of the empty database you create depends on the instantiation method you decided to use in "Deciding Which Utility to Use for Instantiation":

	
If you decided to use export/import for instantiation, then create an empty Oracle Database 10g Release 2 database. This database will be the destination database during the upgrade process.

See the Oracle Database installation guide for your operating system if you need to install Oracle Database, and see the Oracle Database Administrator's Guide for information about creating a database.


	
If you decided to use RMAN for instantiation, then create an empty Oracle database that is the same release as the database you are upgrading.

Specifically, if you are upgrading an Oracle9i Database Release 2 (9.2) database, then create an Oracle9i Release 2 database. Alternatively, if you are upgrading an Oracle Database 10g Release 1 (10.1) database, then create an Oracle Database 10g Release 1 database.

This database will be the destination database during the upgrade process. Both the source database that is being upgraded and the destination database must be the same release of Oracle when you start the upgrade process.

See the Oracle installation guide for your operating system if you need to install Oracle, and see Database Administrator's Guide for the release for information about creating a database.





	
Make sure the source database is running in ARCHIVELOG mode. See the Oracle Administrator's Guide for the source database release for information about running a database in ARCHIVELOG mode.


	
Make sure the initialization parameters are set properly at each database to support a Streams environment. For the source database, see the Oracle Streams documentation for the source database release. For the destination database, see "Setting Initialization Parameters Relevant to Streams". If the capture database is a third database, then see the Oracle Streams documentation for the capture database release.


	
At the source database, make read-only any database objects that were not supported by Oracle Streams in the release you are upgrading:

	
If you are upgrading an Oracle9i Database Release 2 (9.2) database, then make tables with columns of the following datatypes read-only: NCLOB, LONG, LONG RAW, BFILE, ROWID, and UROWID, and user-defined types (including object types, REFs, varrays, and nested tables). In addition, make the following types of tables read-only: temporary tables, index-organized tables, and object tables. See Oracle9i Streams for complete information about unsupported database objects.


	
If you are upgrading an Oracle Database 10g Release 1 (10.1) database, then query the DBA_STREAMS_UNSUPPORTED data dictionary view to list the database objects that are not supported by Streams. Make each of the listed database objects read-only.




"Preparing to Upgrade a Database with User-defined Types" discusses a method for retaining changes to tables that contain user-defined types during the upgrade. If you are using this method, then tables that contain user-defined types can remain open during the upgrade.


	
At the source database, configure a Streams administrator:

	
If you are upgrading an Oracle9i Database Release 2 (9.2) database, then see Oracle9i Streams for instructions.


	
If you are upgrading an Oracle Database 10g Release 1 (10.1) database, then see the Oracle Streams Concepts and Administration book for that release for instructions.




These instructions assume that the name of the Streams administrator at the source database is strmadmin. This Streams administrator will be copied automatically to the destination database during instantiation.


	
Connect as an administrative user in SQL*Plus to the source database, and specify database supplemental logging of primary keys, unique keys, and foreign keys for all updates. For example:


CONNECT SYSTEM/MANAGER@orcl.net

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA 
   (PRIMARY KEY, UNIQUE, FOREIGN KEY) COLUMNS; 









Task 2: Setting Up Streams Prior to Instantiation

The specific instructions for setting up Streams prior to instantiation depend on which database is the capture database. Follow the instructions in the appropriate section:

	
The Source Database Is the Capture Database


	
The Destination Database Is the Capture Database


	
A Third Database Is the Capture Database







	
See Also:

"Overview of Using Streams in the Database Upgrade Process" for information about the capture database









The Source Database Is the Capture Database

Complete the following steps to set up Streams prior to instantiation when the source database is the capture database:

	
Configure your network and Oracle Net so that the source database can communicate with the destination database. See Oracle Database Net Services Administrator's Guide for instructions.


	
Connect as the Streams administrator in SQL*Plus to the source database, and create an ANYDATA queue that will stage changes made to the source database during the upgrade process. For example:


CONNECT strmadmin/strmadminpw@orcl.net

BEGIN
  DBMS_STREAMS_ADM.SET_UP_QUEUE(
    queue_table => 'strmadmin.capture_queue_table',
    queue_name  => 'strmadmin.capture_queue');
END;
/


	
While still as the Streams administrator to the source database, configure a capture process that will capture all supported changes made to the source database and stage these changes in the queue created in Step 2. Do not start the capture process. For example:


BEGIN
  DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
    streams_type       => 'capture',
    streams_name       => 'capture_upgrade',
    queue_name         => 'strmadmin.capture_queue',
    include_dml        => true,
    include_ddl        => true,
    include_tagged_lcr => false,
    source_database    => 'orcl.net',
    inclusion_rule     => true);
END;
/


"Preparing to Upgrade a Database with User-defined Types" discusses a method for retaining changes to tables that contain user-defined types during the maintenance operation. If you are using this method, then make sure the capture process does not attempt to capture changes to tables with user-defined types. See the Streams documentation for the source database for information about excluding database objects from a Streams configuration with rules.


	
Proceed to "Task 3: Instantiating the Database".









The Destination Database Is the Capture Database

The database being upgraded must be an Oracle Database 10g Release 1 database to use this option. Complete the following steps to set up Streams prior to instantiation when the destination database is the capture database:

	
Configure your network and Oracle Net so that the source database and destination database can communicate with each other. See Oracle Database Net Services Administrator's Guide for instructions.


	
Connect to the destination database as an administrative user, and create a Streams administrator. See "Configuring a Streams Administrator" for instructions.

These instructions assume that the name of the Streams administrator at the destination database is strmadmin.


	
Follow the instructions in the appropriate section based on the method you are using for instantiation:

	
Export/Import


	
RMAN





Export/Import

Complete the following steps if you are using export/import for instantiation:

	
Connect as the Streams administrator in SQL*Plus to the destination database, and create an ANYDATA queue that will stage changes made to the source database during the upgrade process. For example:


CONNECT strmadmin/strmadminpw@updb.net

BEGIN
  DBMS_STREAMS_ADM.SET_UP_QUEUE(
    queue_table => 'strmadmin.destination_queue_table',
    queue_name  => 'strmadmin.destination_queue');
END;
/


	
While still as the Streams administrator to the destination database, configure a downstream capture process that will capture all supported changes made to the source database and stage these changes in the queue created in Step a. Make sure the capture process uses a database link to the source database. The capture process can be a real-time downstream capture process or an archived-log downstream capture process. See "Creating a Capture Process". Do not start the capture process.

"Preparing to Upgrade a Database with User-defined Types" discusses a method for retaining changes to tables that contain user-defined types during the maintenance operation. If you are using this method, then make sure the capture process does not attempt to capture changes to tables with user-defined types. See the Streams documentation for the source database for information about excluding database objects from a Streams configuration with rules.





RMAN

Complete the following steps if you are using RMAN for instantiation:

	
Connect as the Streams administrator in SQL*Plus to the source database, and perform a build of the data dictionary in the redo log:


CONNECT strmadmin/strmadminpw@orcl.net

SET SERVEROUTPUT ON
DECLARE
  scn  NUMBER;
BEGIN
  DBMS_CAPTURE_ADM.BUILD(
    first_scn => scn);
  DBMS_OUTPUT.PUT_LINE('First SCN Value = ' || scn);
END;
/
First SCN Value = 1122610


This procedure displays the valid first SCN value for the capture process that will be created at the destination database. Make a note of the SCN value returned because you will use it when you create the capture process at the destination database.


	
While still as the Streams administrator to the source database, prepare the source database for instantiation:


exec DBMS_CAPTURE_ADM.PREPARE_GLOBAL_INSTANTIATION();





	
Proceed to "Task 3: Instantiating the Database".









A Third Database Is the Capture Database

To use this option, meet the following requirements:

	
The database being upgraded must be an Oracle Database 10g Release 1 database.


	
The third database must be an Oracle Database 10g Release 1 or later database.




This example assumes that the global name of the third database is thrd.net. Complete the following steps to set up Streams prior to instantiation when a third database is the capture database:

	
Configure your network and Oracle Net so that the source database, destination database, and third database can communicate with each other. See Oracle Database Net Services Administrator's Guide for instructions.


	
Connect to the third database as an administrative user, and create a Streams administrator:

	
If the third database is an Oracle Database 10g Release 1 database, then see the Oracle Streams Concepts and Administration book for that release for instructions.


	
If the third database is an Oracle Database 10g Release 2 database, then see "Configuring a Streams Administrator" for instructions.




These instructions assume that the name of the Streams administrator at the third database is strmadmin.


	
Connect as the Streams administrator in SQL*Plus to the third database, and create an ANYDATA queue that will stage changes made to the source database during the upgrade process. For example:


CONNECT strmadmin/strmadminpw@thrd.net

BEGIN
  DBMS_STREAMS_ADM.SET_UP_QUEUE(
    queue_table => 'strmadmin.capture_queue_table',
    queue_name  => 'strmadmin.capture_queue');
END;
/


	
While still connected as the Streams administrator to the third database, configure a downstream capture process that will capture all supported changes made to the source database and stage these changes in the queue created in Step 3. Make sure the capture process uses a database link to the source database. Do not start the capture process.

See the following documentation for instructions:

	
If the capture database is an Oracle Database 10g Release 1 database, then see the Oracle Streams Concepts and Administration book for that release for instructions.


	
If the capture database is an Oracle Database 10g Release 2 database, then see "Creating a Capture Process" for instructions. The capture process can be a real-time downstream capture process or an archived-log downstream capture process.




"Preparing to Upgrade a Database with User-defined Types" discusses a method for retaining changes to tables that contain user-defined types during the maintenance operation. If you are using this method, then make sure the capture process does not attempt to capture changes to tables with user-defined types. See the Streams documentation for the source database for information about excluding database objects from a Streams configuration with rules.


	
Proceed to "Task 3: Instantiating the Database".











Task 3: Instantiating the Database

"Deciding Which Utility to Use for Instantiation" discusses different options for instantiating an entire database. Complete the steps in the appropriate section based on the instantiation option you are using:

	
Instantiating the Database Using Export/Import


	
Instantiating the Database Using RMAN






Instantiating the Database Using Export/Import

Complete the following steps to instantiate the destination database using export/import:

	
Instantiate the destination database using Export/Import. See Oracle Streams Replication Administrator's Guide for more information about performing instantiations, and see Oracle Database Utilities for information about performing an export/import using the Export and Import utilities.

If you use Oracle Data Pump or original Export/Import to instantiate the destination database, then make sure the following parameters are set to the appropriate values:

	
Set the STREAMS_CONFIGURATION import parameter to n.


	
If you use original Export/Import, then set the CONSISTENT export parameter to y. This parameter does not apply to Data Pump exports.


	
If you use original Export/Import, then set the STREAMS_INSTANTIATION import parameter to y. This parameter does not apply to Data Pump imports.




If you are upgrading an Oracle9i Database Release 2 (9.2) database, then you must use original Export/Import.


	
At the destination database, disable any imported jobs that modify data that will be replicated from the source database. Query the DBA_JOBS data dictionary view to list the jobs.


	
Proceed to "Task 4: Setting Up Streams After Instantiation".









Instantiating the Database Using RMAN

Complete the following steps to instantiate the destination database using the RMAN DUPLICATE command:




	
Note:

These steps provide a general outline for using RMAN to duplicate a database. If you are upgrading an Oracle9i Release 2 database, then see the Oracle9i Recovery Manager User's Guide for detailed information about using RMAN in that release. If you upgrading an Oracle Database 10g Release 1 database, then see the Oracle Database Backup and Recovery Advanced User's Guide for that release.







	
Create a backup of the source database if one does not exist. RMAN requires a valid backup for duplication. In this example, create a backup of orcl.net if one does not exist.


	
While connected as an administrative user in SQL*Plus to the source database, determine the until SCN for the RMAN DUPLICATE command. For example:


CONNECT SYSTEM/MANAGER@orcl.net 

SET SERVEROUTPUT ON SIZE 1000000
DECLARE
  until_scn NUMBER;
BEGIN
  until_scn:= DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER;
      DBMS_OUTPUT.PUT_LINE('Until SCN: ' || until_scn);
END;
/


Make a note of the until SCN value. This example assumes that the until SCN value is 439882. You will set the UNTIL SCN option to this value when you use RMAN to duplicate the database in Step 5.


	
While connected as an administrative user in SQL*Plus to the source database, archive the current online redo log. For example:


CONNECT SYSTEM/MANAGER@orcl.net 

ALTER SYSTEM ARCHIVE LOG CURRENT;


	
Prepare your environment for database duplication, which includes preparing the destination database as an auxiliary instance for duplication. See the documentation for the release from which you are upgrading for instructions. Specifically, see the "Duplicating a Database with Recovery Manager" chapter in the Oracle9i Recovery Manager User's Guide or Oracle Database Backup and Recovery Advanced User's Guide (10.1) for instructions.


	
Use the RMAN DUPLICATE command with the OPEN RESTRICTED option to instantiate the source database at the destination database. The OPEN RESTRICTED option is required. This option enables a restricted session in the duplicate database by issuing the following SQL statement: ALTER SYSTEM ENABLE RESTRICTED SESSION. RMAN issues this statement immediately before the duplicate database is opened.

You can use the UNTIL SCN clause to specify an SCN for the duplication. Use the until SCN determined in Step 2 for this clause. Archived redo logs must be available for the until SCN specified and for higher SCN values. Therefore, Step 3 archived the redo log containing the until SCN.

Make sure you use TO database_name in the DUPLICATE command to specify the name of the duplicate database. In this example, the duplicate database is updb.net. Therefore, the DUPLICATE command for this example includes TO updb.net.

The following example is an RMAN DUPLICATE command:


rman
RMAN> CONNECT TARGET SYS/change_on_install@orcl.net
RMAN> CONNECT AUXILIARY SYS/change_on_install@updb.net
RMAN> RUN
      { 
        SET UNTIL SCN 439882;
        ALLOCATE AUXILIARY CHANNEL updb DEVICE TYPE sbt; 
        DUPLICATE TARGET DATABASE TO updb 
        NOFILENAMECHECK
        OPEN RESTRICTED;
      }


	
While connected as an administrative user in SQL*Plus to the destination database, use the ALTER SYSTEM statement to disable the RESTRICTED SESSION:


CONNECT SYSTEM/MANAGER 

ALTER SYSTEM DISABLE RESTRICTED SESSION;


	
While connected as an administrative user in SQL*Plus to the destination database, rename the database global name. After the RMAN DUPLICATE command, the destination database has the same global name as the source database, but the destination database must have its original name until the end of the upgrade. For example:


CONNECT SYSTEM/MANAGER 

ALTER DATABASE RENAME GLOBAL_NAME TO updb.net;


	
At the destination database, disable any jobs that modify data that will be replicated from the source database. Query the DBA_JOBS data dictionary view to list the jobs.


	
Upgrade the destination database to Oracle Database 10g Release 2. See the Oracle Database Upgrade Guide for instructions.


	
If you have not done so already, configure your network and Oracle Net so that the source database and destination database can communicate with each other. See Oracle Database Net Services Administrator's Guide for instructions.


	
Connect as the Streams administrator in SQL*Plus to the destination database, and create a database link to the source database. For example:


CONNECT strmadmin/strmadminpw@updb.net

CREATE DATABASE LINK orcl.net CONNECT TO strmadmin IDENTIFIED BY strmadminpw 
   USING 'orcl.net';


	
While connected as the Streams administrator in SQL*Plus to the destination database, set the instantiation SCN for the entire database and all of the database objects. The RMAN DUPLICATE command duplicates the database up to one less than the SCN value specified in the UNTIL SCN clause. Therefore, you should subtract one from the until SCN value that you specified when you ran the DUPLICATE command in Step 5. In this example, the until SCN was set to 439882. Therefore, the instantiation SCN should be set to 439882 - 1, or 439881.


CONNECT strmadmin/strmadminpw@updb.net

BEGIN
  DBMS_APPLY_ADM.SET_GLOBAL_INSTANTIATION_SCN(
    source_database_name => 'orcl.net',
    instantiation_scn    => 439881,
    recursive            => true);
END;
/


	
Proceed to "Task 4: Setting Up Streams After Instantiation".











Task 4: Setting Up Streams After Instantiation

The specific instructions for setting up Streams after instantiation depend on which database is the capture database. Follow the instructions in the appropriate section:

	
The Source Database Is the Capture Database


	
The Destination Database Is the Capture Database


	
A Third Database Is the Capture Database







	
See Also:

"Overview of Using Streams in the Database Upgrade Process" for information about the capture database









The Source Database Is the Capture Database

Complete the following steps to set up Streams after instantiation when the source database is the capture database:

	
Connect as the Streams administrator in SQL*Plus to the destination database, and remove the Streams components that were cloned from the source database during instantiation:

	
If export/import was used for instantiation, then remove the ANYDATA queue that was cloned from the source database.


	
If RMAN was used for instantiation, then remove the ANYDATA queue and the capture process that were cloned from the source database.




To remove the queue that was cloned from the source database, run the REMOVE_QUEUE procedure in the DBMS_STREAMS_ADM package. For example:


CONNECT strmadmin/strmadminpw@updb.net

BEGIN
  DBMS_STREAMS_ADM.REMOVE_QUEUE(
    queue_name              => 'strmadmin.capture_queue',
    cascade                 => false,
    drop_unused_queue_table => true);
END;
/


To remove the capture process that was cloned from the source database, run the DROP_CAPTURE procedure in the DBMS_CAPTURE_ADM package. For example:


CONNECT strmadmin/strmadminpw@updb.net

BEGIN
  DBMS_CAPTURE_ADM.DROP_CAPTURE(
    capture_name          => 'capture_upgrade',
    drop_unused_rule_sets => true);
END;
/


	
While connected as the Streams administrator in SQL*Plus to the destination database, create an ANYDATA queue. This queue will stage changes propagated from the source database. For example:


CONNECT strmadmin/strmadminpw@updb.net

BEGIN
  DBMS_STREAMS_ADM.SET_UP_QUEUE(
    queue_table => 'strmadmin.destination_queue_table',
    queue_name  => 'strmadmin.destination_queue');
END;
/


	
Connect as the Streams administrator in SQL*Plus to the source database, and create a database link to the destination database. For example:


CONNECT strmadmin/strmadminpw@orcl.net

CREATE DATABASE LINK updb.net CONNECT TO strmadmin IDENTIFIED BY strmadminpw 
   USING 'updb.net';


	
While connected as the Streams administrator in SQL*Plus to the source database, create a propagation that propagates all changes from the source queue to the destination queue created in Step 2. For example:


BEGIN
  DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES(
    streams_name            => 'to_updb',
    source_queue_name       => 'strmadmin.capture_queue',
    destination_queue_name  => 'strmadmin.destination_queue@updb.net', 
    include_dml             => true,
    include_ddl             => true,
    include_tagged_lcr      => true,
    source_database         => 'orcl.net');
END;
/


	
Connect as the Streams administrator in SQL*Plus to destination database, and create an apply process that applies all changes in the queue created in Step 2. For example:


CONNECT strmadmin/strmadminpw@updb.net

BEGIN
  DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
    streams_type       => 'apply',
    streams_name       => 'apply_upgrade',
    queue_name         => 'strmadmin.destination_queue',
    include_dml        => true,
    include_ddl        => true,
    include_tagged_lcr => true,
    source_database    => 'orcl.net');
END;
/


	
Proceed to "Task 5: Finishing the Upgrade and Removing Streams".









The Destination Database Is the Capture Database

Complete the following steps to set up Streams after instantiation when the destination database is the capture database:

	
Complete the following steps if you used RMAN for instantiation. If you used export/import for instantiation, then proceed to Step 2.

	
Connect as the Streams administrator in SQL*Plus to the destination database, and create an ANYDATA queue that will stage changes made to the source database during the upgrade process. For example:


CONNECT strmadmin/strmadminpw@updb.net

BEGIN
  DBMS_STREAMS_ADM.SET_UP_QUEUE(
    queue_table => 'strmadmin.destination_queue_table',
    queue_name  => 'strmadmin.destination_queue');
END;
/


	
While still as the Streams administrator to the destination database, configure a downstream capture process that will capture all supported changes made to the source database and stage these changes in the queue created in Step a.

Make sure you set the first_scn parameter in the CREATE_CAPTURE procedure to the value obtained for the data dictionary build in Step 3a in "The Destination Database Is the Capture Database". In this example, the first_scn parameter should be set to 1122610.

The capture process can be a real-time downstream capture process or an archived-log downstream capture process. See "Creating a Capture Process". Do not start the capture process.

"Preparing to Upgrade a Database with User-defined Types" discusses a method for retaining changes to tables that contain user-defined types during the maintenance operation. If you are using this method, then make sure the capture process does not attempt to capture changes to tables with user-defined types. See the Streams documentation for the source database for information about excluding database objects from a Streams configuration with rules.





	
Connect as the Streams administrator in SQL*Plus to destination database, and create an apply process that applies all changes in the queue used by the downstream capture process. For example:


CONNECT strmadmin/strmadminpw@updb.net

BEGIN
  DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
    streams_type       => 'apply',
    streams_name       => 'apply_upgrade',
    queue_name         => 'strmadmin.destination_queue',
    include_dml        => true,
    include_ddl        => true,
    include_tagged_lcr => true,
    source_database    => 'orcl.net');
END;
/


	
Proceed to "Task 5: Finishing the Upgrade and Removing Streams".









A Third Database Is the Capture Database

This example assumes that the global name of the third database is thrd.net. Complete the following steps to set up Streams after instantiation when a third database is the capture database:

	
Connect as the Streams administrator in SQL*Plus to the destination database, and create an ANYDATA queue. This queue will stage changes propagated from the capture database. For example:


CONNECT strmadmin/strmadminpw@updb.net

BEGIN
  DBMS_STREAMS_ADM.SET_UP_QUEUE(
    queue_table => 'strmadmin.destination_queue_table',
    queue_name  => 'strmadmin.destination_queue');
END;
/


	
Connect as the Streams administrator in SQL*Plus to the capture database, and create a database link to the destination database. For example:


CONNECT strmadmin/strmadminpw@thrd.net

CREATE DATABASE LINK updb.net CONNECT TO strmadmin IDENTIFIED BY strmadminpw 
   USING 'updb.net';


	
While connected as the Streams administrator in SQL*Plus to the capture database, create a propagation that propagates all changes from the source queue at the capture database to the destination queue created in Step 1. For example:


BEGIN
  DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES(
    streams_name            => 'to_updb',
    source_queue_name       => 'strmadmin.capture_queue',
    destination_queue_name  => 'strmadmin.destination_queue@updb.net', 
    include_dml             => true,
    include_ddl             => true,
    include_tagged_lcr      => true,
    source_database         => 'orcl.net');
END;
/


	
Connect as the Streams administrator in SQL*Plus to destination database, and create an apply process that applies all changes in the queue created in Step 1. For example:


CONNECT strmadmin/strmadminpw@updb.net

BEGIN
  DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
    streams_type       => 'apply',
    streams_name       => 'apply_upgrade',
    queue_name         => 'strmadmin.destination_queue',
    include_dml        => true,
    include_ddl        => true,
    include_tagged_lcr => true,
    source_database    => 'orcl.net');
END;
/


	
Complete the steps in "Task 5: Finishing the Upgrade and Removing Streams".











Task 5: Finishing the Upgrade and Removing Streams

Complete the following steps to finish the upgrade operation using Oracle Streams and remove Streams components:

	
Connect as the Streams administrator in SQL*Plus to the destination database, and start the apply process. For example:


CONNECT strmadmin/strmadminpw@updb.net

BEGIN
  DBMS_APPLY_ADM.START_APPLY(
    apply_name  => 'apply_upgrade');
END;
/


	
Connect as the Streams administrator in SQL*Plus to the capture database, and start the capture process. For example:


BEGIN
  DBMS_CAPTURE_ADM.START_CAPTURE(
    capture_name  => 'capture_upgrade');
END;
/


This step begins the process of replicating changes that were made to the source database during instantiation of the destination database.


	
While connected as the Streams administrator in SQL*Plus to the capture database, monitor the Streams environment until the apply process at the destination database has applied most of the changes from the source database. For example, if the name of the capture process is capture_upgrade, and the name of the apply process is apply_upgrade, then run the following query at the source database:


COLUMN ENQUEUE_MESSAGE_NUMBER HEADING 'Captured SCN' FORMAT 99999999999
COLUMN LWM_MESSAGE_NUMBER HEADING 'Applied SCN' FORMAT 99999999999

SELECT c.ENQUEUE_MESSAGE_NUMBER, a.LWM_MESSAGE_NUMBER
  FROM V$STREAMS_CAPTURE c, V$STREAMS_APPLY_COORDINATOR@updb.net a
  WHERE CAPTURE_NAME = 'CAPTURE_UPGRADE'
    AND APPLY_NAME   = 'APPLY_UPGRADE';


When the two SCN values returned by this query are nearly equal, most of the changes from the source database have been applied at the destination database, and you can proceed to the next step. At this point in the process, the values returned by this query might never be equal because the source database still allows changes.

If this query returns no results, then make sure the Streams clients in the environment are enabled by querying the STATUS column in the DBA_CAPTURE view at the capture database and the DBA_APPLY view at the destination database. If a propagation is used, you can check the status of the propagation by running the query in "Displaying the Schedule for a Propagation Job".

If a Streams client is disabled, then try restarting it. If a Streams client will not restart, then troubleshoot the environment using the information in Chapter 18, "Troubleshooting a Streams Environment".


	
Connect as the Streams administrator in SQL*Plus to the destination database, and make sure there are no apply errors by running the following query:


CONNECT strmadmin/strmadminpw@updb.net

SELECT COUNT(*) FROM DBA_APPLY_ERROR;


If this query returns zero, then proceed to the next step. If this query shows errors in the error queue, then resolve these errors before continuing. See "Managing Apply Errors" for instructions.


	
Disconnect all applications and users from the source database.


	
Connect as an administrative user in SQL*Plus to the source database, and restrict access to the database. For example:


CONNECT SYSTEM/MANAGER@orcl.net

ALTER SYSTEM ENABLE RESTRICTED SESSION;


	
Connect as an administrative user in SQL*Plus to the capture database, and repeat the query you ran in Step 3. When the two SCN values returned by the query are equal, all of the changes from the source database have been applied at the destination database, and you can proceed to the next step.


	
Connect as the Streams administrator in SQL*Plus to the destination database, and repeat the query you ran in Step 4. If this query returns zero, then move on to the next step. If this query shows errors in the error queue, then resolve these errors before continuing. See "Managing Apply Errors" for instructions.


	
If you performed any actions that created, modified, or deleted job queue processes at the source database during the upgrade process, then perform the same actions at the destination database. See "Considerations for Job Queue Processes and PL/SQL Package Subprograms" for more information.


	
If you invoked any Oracle-supplied PL/SQL package subprograms at the source database during the upgrade process that modified both user data and dictionary metadata at the same time, then invoke the same subprograms at the destination database. See "Considerations for Job Queue Processes and PL/SQL Package Subprograms" for more information.


	
Shut down the source database. This database should not be opened again.


	
While connected as an administrative user in SQL*Plus to the destination database, change the global name of the database to match the source database. For example:


ALTER DATABASE RENAME GLOBAL_NAME TO orcl.net;


	
At the destination database, enable any jobs that you disabled earlier.


	
Make the destination database available for applications and users. Redirect any applications and users that were connecting to the source database to the destination database. If necessary, reconfigure your network and Oracle Net so that systems that communicated with the source database now communicate with the destination database. See Oracle Database Net Services Administrator's Guide for instructions.


	
At the destination database, remove the Streams components that are no longer needed. Connect as an administrator with SYSDBA privilege to the destination database, and run the following procedure:




	
Note:

Running this procedure is dangerous. It removes the local Streams configuration. Make sure you are ready to remove the Streams configuration at the destination database before running this procedure.








EXEC DBMS_STREAMS_ADM.REMOVE_STREAMS_CONFIGURATION();


If you no longer need database supplemental logging at the destination database, then run the following statement to drop it:


ALTER DATABASE DROP SUPPLEMENTAL LOG DATA 
  (PRIMARY KEY, UNIQUE, FOREIGN KEY) COLUMNS;


If you no longer need the Streams administrator at the destination database, then run the following statement:


DROP USER strmadmin CASCADE;


	
If the capture database was a third database, then, at the third database, remove the Streams components that are no longer needed. Connect as an administrator with SYSDBA privilege to the third database, and run the following procedure:




	
Note:

Running this procedure is dangerous. It removes the local Streams configuration. Make sure you are ready to remove the Streams configuration at the third database before running this procedure.








EXEC DBMS_STREAMS_ADM.REMOVE_STREAMS_CONFIGURATION();


If you no longer need database supplemental logging at the third database, then run the following statement to drop it:


ALTER DATABASE DROP SUPPLEMENTAL LOG DATA 
  (PRIMARY KEY, UNIQUE, FOREIGN KEY) COLUMNS;


If you no longer need the Streams administrator at the destination database, then run the following statement:


DROP USER strmadmin CASCADE;




The database upgrade is complete.







28 Rule-Based Application Example

This chapter illustrates a rule-based application that uses the Oracle rules engine.

The examples in this chapter are independent of Streams. That is, no Streams capture processes, propagations, apply processes, or messaging clients are clients of the rules engine in these examples, and no queues are used.

This chapter contains these topics:

	
Overview of the Rule-Based Application


	
Using Rules on Nontable Data Stored in Explicit Variables


	
Using Rules on Data in Explicit Variables with Iterative Results


	
Using Partial Evaluation of Rules on Data in Explicit Variables


	
Using Rules on Data Stored in a Table


	
Using Rules on Both Explicit Variables and Table Data


	
Using Rules on Implicit Variables and Table Data


	
Using Event Contexts and Implicit Variables with Rules


	
Dispatching Problems and Checking Results for the Table Examples







	
See Also:

	
Chapter 5, "Rules"


	
Chapter 14, "Managing Rules"


	
Chapter 23, "Monitoring Rules"














Overview of the Rule-Based Application

Each example in this chapter creates a rule-based application that handles customer problems. The application uses rules to determine actions that must be completed based on the problem priority when a new problem is reported. For example, the application assigns each problem to a particular company center based on the problem priority.

The application enforces these rules using the rules engine. An evaluation context named evalctx is created to define the information surrounding a support problem. Rules are created based on the requirements described previously, and they are added to a rule set named rs.

The task of assigning problems is done by a user-defined procedure named problem_dispatch, which calls the rules engine to evaluate rules in the rule set rs and then takes appropriate action based on the rules that evaluate to TRUE.






Using Rules on Nontable Data Stored in Explicit Variables

This example illustrates how to use rules to evaluate data stored in explicit variables. This example handles customer problems based on priority and uses the following rules for handling customer problems:

	
Assign all problems with priority greater than 2 to the San Jose Center.


	
Assign all problems with priority less than or equal to 2 to the New York Center.


	
Send an alert to the vice president of support for a problem with priority equal to 1.




The evaluation context contains only one explicit variable named priority, which refers to the priority of the problem being dispatched. The value for this variable is passed to DBMS_RULE.EVALUATE procedure by the problem_dispatch procedure.

Complete the following steps:

	
Show Output and Spool Results


	
Create the support User


	
Grant the support User the Necessary System Privileges on Rules


	
Create the evalctx Evaluation Context


	
Create the Rules that Correspond to Problem Priority


	
Create the rs Rule Set


	
Add the Rules to the Rule Set


	
Query the Data Dictionary


	
Create the problem_dispatch PL/SQL Procedure


	
Dispatch Sample Problems


	
Check the Spool Results







	
Note:

If you are viewing this document online, then you can copy the text from the "BEGINNING OF SCRIPT" line after this note to the next "END OF SCRIPT" line into a text editor and then edit the text to create a script for your environment. Run the script with SQL*Plus on a computer that can connect to all of the databases in the environment.








/************************* BEGINNING OF SCRIPT ******************************





Step 1   Show Output and Spool Results

Run SET ECHO ON and specify the spool file for the script. Check the spool file for errors after you run this script.


*/

SET ECHO ON
SPOOL rules_stored_variables.out

/*



Step 2   Create the support User


*/



CONNECT SYSTEM/MANAGER AS SYSDBA;

GRANT ALTER SESSION, CREATE CLUSTER, CREATE DATABASE LINK, CREATE SEQUENCE,
  CREATE SESSION, CREATE SYNONYM, CREATE TABLE, CREATE VIEW, CREATE INDEXTYPE, 
  CREATE OPERATOR, CREATE PROCEDURE, CREATE TRIGGER, CREATE TYPE
TO support IDENTIFIED BY support;

/*



Step 3   Grant the support User the Necessary System Privileges on Rules


*/



BEGIN
  DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
    privilege    => DBMS_RULE_ADM.CREATE_RULE_SET_OBJ, 
    grantee      => 'support', 
    grant_option => false);
  DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
    privilege    => DBMS_RULE_ADM.CREATE_RULE_OBJ,
    grantee      => 'support', 
    grant_option => false);
  DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
    privilege    => DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT_OBJ, 
    grantee      => 'support', 
    grant_option => false);
END;
/

/*



Step 4   Create the evalctx Evaluation Context


*/



CONNECT support/support

SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100
SET SERVEROUTPUT ON
DECLARE
  vt SYS.RE$VARIABLE_TYPE_LIST;
BEGIN
  vt := SYS.RE$VARIABLE_TYPE_LIST(
    SYS.RE$VARIABLE_TYPE('priority', 'NUMBER', NULL, NULL));
  DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT(
    evaluation_context_name    => 'evalctx',
    variable_types             => vt,
    evaluation_context_comment => 'support problem definition');
END;
/

/*



Step 5   Create the Rules that Correspond to Problem Priority

The following code creates one action context for each rule, and one name-value pair in each action context.


*/

DECLARE
  ac  SYS.RE$NV_LIST;
BEGIN
  ac := SYS.RE$NV_LIST(NULL);
  ac.ADD_PAIR('CENTER', ANYDATA.CONVERTVARCHAR2('San Jose'));
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name      => 'r1',
    condition      => ':priority > 2',
    action_context => ac,
    rule_comment   => 'Low priority problems');
  ac := SYS.RE$NV_LIST(NULL);
  ac.ADD_PAIR('CENTER', ANYDATA.CONVERTVARCHAR2('New York'));
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name      => 'r2',
    condition      => ':priority <= 2',
    action_context => ac,
    rule_comment   => 'High priority problems');
  ac := SYS.RE$NV_LIST(NULL);
  ac.ADD_PAIR('ALERT', ANYDATA.CONVERTVARCHAR2('John Doe'));
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name      => 'r3',
    condition      => ':priority = 1',
    action_context => ac,
    rule_comment   => 'Urgent problems');
END;
/

/*



Step 6   Create the rs Rule Set


*/



BEGIN
  DBMS_RULE_ADM.CREATE_RULE_SET(
    rule_set_name      => 'rs',
    evaluation_context => 'evalctx',
    rule_set_comment   => 'support rules');
END;
/

/*



Step 7   Add the Rules to the Rule Set


*/



BEGIN
  DBMS_RULE_ADM.ADD_RULE(
    rule_name     => 'r1', 
    rule_set_name => 'rs');
  DBMS_RULE_ADM.ADD_RULE(
    rule_name     => 'r2', 
    rule_set_name => 'rs');
  DBMS_RULE_ADM.ADD_RULE(
    rule_name     => 'r3', 
    rule_set_name => 'rs');
END;
/

/*



Step 8   Query the Data Dictionary

At this point, you can view the evaluation context, rules, and rule set you created in the previous steps.


*/

COLUMN EVALUATION_CONTEXT_NAME HEADING 'Eval Context Name' FORMAT A30
COLUMN EVALUATION_CONTEXT_COMMENT HEADING 'Eval Context Comment' FORMAT A40

SELECT EVALUATION_CONTEXT_NAME, EVALUATION_CONTEXT_COMMENT
  FROM USER_EVALUATION_CONTEXTS
  ORDER BY EVALUATION_CONTEXT_NAME;

SET LONGCHUNKSIZE 4000
SET LONG 4000
COLUMN RULE_NAME HEADING 'Rule|Name' FORMAT A5
COLUMN RULE_CONDITION HEADING 'Rule Condition' FORMAT A35
COLUMN ACTION_CONTEXT_NAME HEADING 'Action|Context|Name' FORMAT A10
COLUMN ACTION_CONTEXT_VALUE HEADING 'Action|Context|Value' FORMAT A10

SELECT RULE_NAME, 
       RULE_CONDITION,
       AC.NVN_NAME ACTION_CONTEXT_NAME, 
       AC.NVN_VALUE.ACCESSVARCHAR2() ACTION_CONTEXT_VALUE
  FROM USER_RULES R, TABLE(R.RULE_ACTION_CONTEXT.ACTX_LIST) AC
  ORDER BY RULE_NAME;

COLUMN RULE_SET_NAME HEADING 'Rule Set Name' FORMAT A20
COLUMN RULE_SET_EVAL_CONTEXT_OWNER HEADING 'Eval Context|Owner' FORMAT A12
COLUMN RULE_SET_EVAL_CONTEXT_NAME HEADING 'Eval Context Name' FORMAT A25
COLUMN RULE_SET_COMMENT HEADING 'Rule Set|Comment' FORMAT A15

SELECT RULE_SET_NAME, 
       RULE_SET_EVAL_CONTEXT_OWNER,
       RULE_SET_EVAL_CONTEXT_NAME,
       RULE_SET_COMMENT
  FROM USER_RULE_SETS
  ORDER BY RULE_SET_NAME;

/*



Step 9   Create the problem_dispatch PL/SQL Procedure


*/



CREATE OR REPLACE PROCEDURE problem_dispatch (priority NUMBER) 
IS
    vv        SYS.RE$VARIABLE_VALUE;
    vvl       SYS.RE$VARIABLE_VALUE_LIST;
    truehits  SYS.RE$RULE_HIT_LIST;
    maybehits SYS.RE$RULE_HIT_LIST;
    ac        SYS.RE$NV_LIST;
    namearray SYS.RE$NAME_ARRAY;
    name      VARCHAR2(30);
    cval      VARCHAR2(100);
    rnum      INTEGER;
    i         INTEGER;
    status    PLS_INTEGER;
BEGIN
  vv  := SYS.RE$VARIABLE_VALUE('priority',
                               ANYDATA.CONVERTNUMBER(priority));
  vvl := SYS.RE$VARIABLE_VALUE_LIST(vv);
  truehits := SYS.RE$RULE_HIT_LIST();
  maybehits := SYS.RE$RULE_HIT_LIST();
  DBMS_RULE.EVALUATE(
      rule_set_name        => 'support.rs',
      evaluation_context   => 'evalctx',
      variable_values      => vvl,
      true_rules           => truehits,
      maybe_rules          => maybehits);
  FOR rnum IN 1..truehits.COUNT LOOP
    DBMS_OUTPUT.PUT_LINE('Using rule '|| truehits(rnum).rule_name);
    ac := truehits(rnum).rule_action_context;
    namearray := ac.GET_ALL_NAMES;
      FOR i IN 1..namearray.count loop
        name := namearray(i);
        status := ac.GET_VALUE(name).GETVARCHAR2(cval);
        IF (name = 'CENTER') then
          DBMS_OUTPUT.PUT_LINE('Assigning problem to ' || cval);
        ELSIF (name = 'ALERT') THEN
          DBMS_OUTPUT.PUT_LINE('Sending alert to: '|| cval);
        END IF;
      END LOOP;
  END LOOP;
END;
/

/*



Step 10   Dispatch Sample Problems


*/



EXECUTE problem_dispatch(1);
EXECUTE problem_dispatch(2);
EXECUTE problem_dispatch(3);
EXECUTE problem_dispatch(5);

/*



Step 11   Check the Spool Results

Check the rules_stored_variables.out spool file to ensure that all actions completed successfully after this script completes.


*/

SET ECHO OFF
SPOOL OFF

/*************************** END OF SCRIPT ******************************/






Using Rules on Data in Explicit Variables with Iterative Results

This example is the same as the previous example "Using Rules on Nontable Data Stored in Explicit Variables", except that this example returns evaluation results iteratively instead of all at once.

Complete the following steps:

	
Show Output and Spool Results


	
Make Sure You Have Completed the Preliminary Steps


	
Replace the problem_dispatch PL/SQL Procedure


	
Dispatch Sample Problems


	
Clean Up the Environment (Optional)


	
Check the Spool Results







	
Note:

If you are viewing this document online, then you can copy the text from the "BEGINNING OF SCRIPT" line after this note to the next "END OF SCRIPT" line into a text editor and then edit the text to create a script for your environment. Run the script with SQL*Plus on a computer that can connect to all of the databases in the environment.








/************************* BEGINNING OF SCRIPT ******************************





Step 1   Show Output and Spool Results

Run SET ECHO ON and specify the spool file for the script. Check the spool file for errors after you run this script.


*/

SET ECHO ON
SPOOL rules_stored_variables_iterative.out

/*



Step 2   Make Sure You Have Completed the Preliminary Steps

Make sure you have completed Steps 1 to 8 in the "Using Rules on Nontable Data Stored in Explicit Variables". If you have not completed these steps, then complete them before you continue.


*/ 

PAUSE Press <RETURN> to continue when the preliminary steps have been completed.

/*



Step 3   Replace the problem_dispatch PL/SQL Procedure

Replace the problem_dispatch procedure created in Step 9 with the procedure in this step. The difference between the two procedures is that the procedure created in Step 9 returns all evaluation results at once while the procedure in this step returns evaluation results iteratively.


*/

CONNECT support/support

SET SERVEROUTPUT ON
CREATE OR REPLACE PROCEDURE problem_dispatch (priority NUMBER) 
IS
    vv          SYS.RE$VARIABLE_VALUE;
    vvl         SYS.RE$VARIABLE_VALUE_LIST;
    truehits    BINARY_INTEGER;
    maybehits   BINARY_INTEGER;
    hit         SYS.RE$RULE_HIT;
    ac          SYS.RE$NV_LIST;
    namearray   SYS.RE$NAME_ARRAY;
    name        VARCHAR2(30);
    cval        VARCHAR2(100);
    i           INTEGER;
    status      PLS_INTEGER;
    iter_closed EXCEPTION;
    pragma exception_init(iter_closed, -25453);
BEGIN
  vv  := SYS.RE$VARIABLE_VALUE('priority',
                               ANYDATA.CONVERTNUMBER(priority));
  vvl := SYS.RE$VARIABLE_VALUE_LIST(vv);
  DBMS_RULE.EVALUATE(
      rule_set_name        => 'support.rs',
      evaluation_context   => 'evalctx',
      variable_values      => vvl,
      true_rules_iterator  => truehits,
      maybe_rules_iterator => maybehits);
  LOOP
    hit := DBMS_RULE.GET_NEXT_HIT(truehits);
    EXIT WHEN hit IS NULL;
    DBMS_OUTPUT.PUT_LINE('Using rule '|| hit.rule_name);
    ac := hit.rule_action_context;
    namearray := ac.GET_ALL_NAMES;
      FOR i IN 1..namearray.COUNT LOOP
        name := namearray(i);
        status := ac.GET_VALUE(name).GETVARCHAR2(cval);
        IF (name = 'CENTER') then
          DBMS_OUTPUT.PUT_LINE('Assigning problem to ' || cval);
        ELSIF (name = 'ALERT') THEN
          DBMS_OUTPUT.PUT_LINE('Sending alert to: '|| cval);
        END IF;
      END LOOP;
  END LOOP;
  -- Close iterators
  BEGIN
    DBMS_RULE.CLOSE_ITERATOR(truehits);
  EXCEPTION
    WHEN iter_closed THEN
      NULL;
  END;
  BEGIN
    DBMS_RULE.CLOSE_ITERATOR(maybehits);
  EXCEPTION
    WHEN iter_closed THEN
      NULL;
  END;
END;
/

/*



Step 4   Dispatch Sample Problems


*/



EXECUTE problem_dispatch(1);
EXECUTE problem_dispatch(2);
EXECUTE problem_dispatch(3);
EXECUTE problem_dispatch(5);

/*



Step 5   Clean Up the Environment (Optional)

You can clean up the sample environment by dropping the support user.


*/

CONNECT SYSTEM/MANAGER AS SYSDBA;

DROP USER support CASCADE;

/*



Step 6   Check the Spool Results

Check the rules_stored_variables_iterative.out spool file to ensure that all actions completed successfully after this script completes.


*/

SET ECHO OFF
SPOOL OFF

/*************************** END OF SCRIPT ******************************/






Using Partial Evaluation of Rules on Data in Explicit Variables

This example illustrates how to use partial evaluation when an event causes rules to evaluate to MAYBE instead of TRUE or FALSE. This example handles customer problems based on priority and problem type, and uses the following rules for handling customer problems:

	
Assign all problems whose problem type is HARDWARE to the San Jose Center.


	
Assign all problems whose problem type is SOFTWARE to the New York Center.


	
Assign all problems whose problem type is NULL (unknown) to the Texas Center.


	
Send an alert to the vice president of support for a problem with priority equal to 1.




Problems whose problem type is NULL evaluate to MAYBE. This example uses partial evaluation to take an action when MAYBE rules are returned to the rules engine client. In this case, the action is to assign the problem to the Texas Center.

The evaluation context contains an explicit variable named priority, which refers to the priority of the problem being dispatched. The evaluation context also contains an explicit variable named problem_type, which refers to the type of problem being dispatched (either HARDWARE or SOFTWARE). The values for these variables are passed to DBMS_RULE.EVALUATE procedure by the problem_dispatch procedure.

Complete the following steps:

	
Show Output and Spool Results


	
Create the support User


	
Grant the support User the Necessary System Privileges on Rules


	
Create the evalctx Evaluation Context


	
Create the Rules that Correspond to Problem Priority


	
Create the rs Rule Set


	
Add the Rules to the Rule Set


	
Query the Data Dictionary


	
Create the problem_dispatch PL/SQL Procedure


	
Dispatch Sample Problems


	
Clean Up the Environment (Optional)


	
Check the Spool Results







	
Note:

If you are viewing this document online, then you can copy the text from the "BEGINNING OF SCRIPT" line after this note to the next "END OF SCRIPT" line into a text editor and then edit the text to create a script for your environment. Run the script with SQL*Plus on a computer that can connect to all of the databases in the environment.








/************************* BEGINNING OF SCRIPT ******************************





Step 1   Show Output and Spool Results

Run SET ECHO ON and specify the spool file for the script. Check the spool file for errors after you run this script.


*/

SET ECHO ON
SPOOL rules_stored_variables_partial.out

/*



Step 2   Create the support User


*/



CONNECT SYSTEM/MANAGER AS SYSDBA;

GRANT ALTER SESSION, CREATE CLUSTER, CREATE DATABASE LINK, CREATE SEQUENCE,
  CREATE SESSION, CREATE SYNONYM, CREATE TABLE, CREATE VIEW, CREATE INDEXTYPE, 
  CREATE OPERATOR, CREATE PROCEDURE, CREATE TRIGGER, CREATE TYPE
TO support IDENTIFIED BY support;

/*



Step 3   Grant the support User the Necessary System Privileges on Rules


*/



BEGIN
  DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
    privilege    => DBMS_RULE_ADM.CREATE_RULE_SET_OBJ, 
    grantee      => 'support', 
    grant_option => false);
  DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
    privilege    => DBMS_RULE_ADM.CREATE_RULE_OBJ,
    grantee      => 'support', 
    grant_option => false);
  DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
    privilege    => DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT_OBJ, 
    grantee      => 'support', 
    grant_option => false);
END;
/

/*



Step 4   Create the evalctx Evaluation Context


*/



CONNECT support/support

SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100
SET SERVEROUTPUT ON
DECLARE
  vt  SYS.RE$VARIABLE_TYPE_LIST;
BEGIN
  vt := SYS.RE$VARIABLE_TYPE_LIST(
        SYS.RE$VARIABLE_TYPE('priority', 'NUMBER', NULL, NULL),
        SYS.RE$VARIABLE_TYPE('problem_type', 'VARCHAR2(30)', NULL, NULL));
  DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT(
    evaluation_context_name    => 'evalctx',
    variable_types             => vt,
    evaluation_context_comment => 'support problem definition');
end;
/

/*



Step 5   Create the Rules that Correspond to Problem Priority

The following code creates one action context for each rule, and one name-value pair in each action context.


*/

DECLARE
  ac  SYS.RE$NV_LIST;
begin
  ac := SYS.RE$NV_LIST(NULL);
  ac.ADD_PAIR('ALERT', ANYDATA.CONVERTVARCHAR2('John Doe'));
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name      => 'r1',
    condition      => ':priority = 1',
    action_context => ac,
    rule_comment   => 'Urgent problems');
  ac := sys.re$nv_list(NULL);
  ac.ADD_PAIR('TRUE CENTER', ANYDATA.CONVERTVARCHAR2('San Jose'));
  ac.ADD_PAIR('MAYBE CENTER', ANYDATA.CONVERTVARCHAR2('Texas'));
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name       => 'r2',
    condition       => ':problem_type = ''HARDWARE''',
    action_context  => ac,
    rule_comment    => 'Hardware problems');
  ac := sys.re$nv_list(NULL);
  ac.ADD_PAIR('TRUE CENTER', ANYDATA.CONVERTVARCHAR2('New York'));
  ac.ADD_PAIR('MAYBE CENTER', ANYDATA.CONVERTVARCHAR2('Texas'));
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name       => 'r3',
    condition       => ':problem_type = ''SOFTWARE''',
    action_context  => ac,
    rule_comment    => 'Software problems');
END;
/

/*



Step 6   Create the rs Rule Set


*/



BEGIN
  DBMS_RULE_ADM.CREATE_RULE_SET(
    rule_set_name      => 'rs',
    evaluation_context => 'evalctx',
    rule_set_comment   => 'support rules');
END;
/

/*



Step 7   Add the Rules to the Rule Set


*/



BEGIN
  DBMS_RULE_ADM.ADD_RULE(
    rule_name     => 'r1', 
    rule_set_name => 'rs');
  DBMS_RULE_ADM.ADD_RULE(
    rule_name     => 'r2', 
    rule_set_name => 'rs');
  DBMS_RULE_ADM.ADD_RULE(
    rule_name     => 'r3', 
    rule_set_name => 'rs');
END;
/

/*



Step 8   Query the Data Dictionary

At this point, you can view the evaluation context, rules, and rule set you created in the previous steps.


*/

COLUMN EVALUATION_CONTEXT_NAME HEADING 'Eval Context Name' FORMAT A30
COLUMN EVALUATION_CONTEXT_COMMENT HEADING 'Eval Context Comment' FORMAT A40

SELECT EVALUATION_CONTEXT_NAME, EVALUATION_CONTEXT_COMMENT
  FROM USER_EVALUATION_CONTEXTS
  ORDER BY EVALUATION_CONTEXT_NAME;

SET LONGCHUNKSIZE 4000
SET LONG 4000
COLUMN RULE_NAME HEADING 'Rule|Name' FORMAT A5
COLUMN RULE_CONDITION HEADING 'Rule Condition' FORMAT A35
COLUMN ACTION_CONTEXT_NAME HEADING 'Action|Context|Name' FORMAT A10
COLUMN ACTION_CONTEXT_VALUE HEADING 'Action|Context|Value' FORMAT A10

SELECT RULE_NAME, 
       RULE_CONDITION,
       AC.NVN_NAME ACTION_CONTEXT_NAME, 
       AC.NVN_VALUE.ACCESSVARCHAR2() ACTION_CONTEXT_VALUE
  FROM USER_RULES R, TABLE(R.RULE_ACTION_CONTEXT.ACTX_LIST) AC
  ORDER BY RULE_NAME;

COLUMN RULE_SET_NAME HEADING 'Rule Set Name' FORMAT A20
COLUMN RULE_SET_EVAL_CONTEXT_OWNER HEADING 'Eval Context|Owner' FORMAT A12
COLUMN RULE_SET_EVAL_CONTEXT_NAME HEADING 'Eval Context Name' FORMAT A25
COLUMN RULE_SET_COMMENT HEADING 'Rule Set|Comment' FORMAT A15

SELECT RULE_SET_NAME, 
       RULE_SET_EVAL_CONTEXT_OWNER,
       RULE_SET_EVAL_CONTEXT_NAME,
       RULE_SET_COMMENT
  FROM USER_RULE_SETS
  ORDER BY RULE_SET_NAME;

/*



Step 9   Create the problem_dispatch PL/SQL Procedure


*/



CREATE OR REPLACE PROCEDURE problem_dispatch (priority     NUMBER,
                                              problem_type VARCHAR2 := NULL) 
IS
    vvl       SYS.RE$VARIABLE_VALUE_LIST;
    truehits  SYS.RE$RULE_HIT_LIST;
    maybehits SYS.RE$RULE_HIT_LIST;
    ac        SYS.RE$NV_LIST;
    namearray SYS.RE$NAME_ARRAY;
    name      VARCHAR2(30);
    cval      VARCHAR2(100);
    rnum      INTEGER;
    i         INTEGER;
    status    PLS_INTEGER;
BEGIN
  IF (problem_type IS NULL) THEN 
    vvl  := SYS.RE$VARIABLE_VALUE_LIST(
            SYS.RE$VARIABLE_VALUE('priority',
                                  ANYDATA.CONVERTNUMBER(priority)));
  ELSE
    vvl  := SYS.RE$VARIABLE_VALUE_LIST(
            SYS.RE$VARIABLE_VALUE('priority',
                                  ANYDATA.CONVERTNUMBER(priority)),
            SYS.RE$VARIABLE_VALUE('problem_type',
                                  ANYDATA.CONVERTVARCHAR2(problem_type)));
  END IF;
  truehits := SYS.RE$RULE_HIT_LIST();
  maybehits := SYS.RE$RULE_HIT_LIST();
  DBMS_RULE.EVALUATE(
      rule_set_name        => 'support.rs',
      evaluation_context   => 'evalctx',
      variable_values      => vvl,
      true_rules           => truehits,
      maybe_rules          => maybehits);
  FOR rnum IN 1..truehits.COUNT LOOP
    DBMS_OUTPUT.PUT_LINE('Using rule '|| truehits(rnum).rule_name);
    ac := truehits(rnum).rule_action_context;
    namearray := ac.GET_ALL_NAMES;
      FOR i IN 1..namearray.count LOOP
        name := namearray(i);
        status := ac.GET_VALUE(name).GETVARCHAR2(cval);
        IF (name = 'TRUE CENTER') then
          DBMS_OUTPUT.PUT_LINE('Assigning problem to ' || cval);
        ELSIF (name = 'ALERT') THEN
          DBMS_OUTPUT.PUT_LINE('Sending alert to: '|| cval);
        END IF;
      END LOOP;
  END LOOP;
  FOR rnum IN 1..maybehits.COUNT LOOP
    DBMS_OUTPUT.PUT_LINE('Using rule '|| maybehits(rnum).rule_name);
    ac := maybehits(rnum).rule_action_context;
    namearray := ac.GET_ALL_NAMES;
      FOR i IN 1..namearray.count loop
        name := namearray(i);
        status := ac.GET_VALUE(name).GETVARCHAR2(cval);
        IF (name = 'MAYBE CENTER') then
          DBMS_OUTPUT.PUT_LINE('Assigning problem to ' || cval);
        END IF;
      END LOOP;
  END LOOP;
END;
/

/*



Step 10   Dispatch Sample Problems

The first problem dispatch in this step uses partial evaluation and takes an action based on the partial evaluation. Specifically, the first problem dispatch specifies that the priority is 1 and the problem_type is NULL. In this case, the rules engine returns a MAYBE rule for the event, and the problem_dispatch procedure assigns the problem to the Texas center.

The second and third problem dispatches do not use partial evaluation. Each of these problems evaluate to TRUE for a rule, and the problem is assigned accordingly by the problem_dispatch procedure.


*/

EXECUTE problem_dispatch(1, NULL);
EXECUTE problem_dispatch(2, 'HARDWARE');
EXECUTE problem_dispatch(3, 'SOFTWARE');

/*



Step 11   Clean Up the Environment (Optional)

You can clean up the sample environment by dropping the support user.


*/

CONNECT SYSTEM/MANAGER AS SYSDBA;

DROP USER support CASCADE;

/*



Step 12   Check the Spool Results

Check the rules_stored_variables_partial.out spool file to ensure that all actions completed successfully after this script completes.


*/

SET ECHO OFF
SPOOL OFF

/*************************** END OF SCRIPT ******************************/






Using Rules on Data Stored in a Table

This example illustrates how to use rules to evaluate data stored in a table. This example is similar to the example described in "Using Rules on Nontable Data Stored in Explicit Variables". In both examples, the application routes customer problems based on priority. However, in this example, the problems are stored in a table instead of variables.

The application uses the problems table in the support schema, into which customer problems are inserted. This example uses the following rules for handling customer problems:

	
Assign all problems with priority greater than 2 to the San Jose Center.


	
Assign all problems with priority less than or equal to 2 to the New York Center.


	
Send an alert to the vice president of support for a problem with priority equal to 1.




The evaluation context consists of the problems table. The relevant row of the table, which corresponds to the problem being routed, is passed to the DBMS_RULE.EVALUATE procedure as a table value.


Complete the following steps:

	
Show Output and Spool Results


	
Create the support User


	
Grant the support User the Necessary System Privileges on Rules


	
Create the problems Table


	
Create the evalctx Evaluation Context


	
Create the Rules that Correspond to Problem Priority


	
Create the rs Rule Set


	
Add the Rules to the Rule Set


	
Create the problem_dispatch PL/SQL Procedure


	
Log Problems


	
Check the Spool Results







	
Note:

If you are viewing this document online, then you can copy the text from the "BEGINNING OF SCRIPT" line after this note to the next "END OF SCRIPT" line into a text editor and then edit the text to create a script for your environment. Run the script with SQL*Plus on a computer that can connect to all of the databases in the environment.








/************************* BEGINNING OF SCRIPT ******************************





Step 1   Show Output and Spool Results

Run SET ECHO ON and specify the spool file for the script. Check the spool file for errors after you run this script.


*/

SET ECHO ON
SPOOL rules_table.out

/*



Step 2   Create the support User


*/



CONNECT SYSTEM/MANAGER AS SYSDBA;

CREATE TABLESPACE support_tbs1 DATAFILE 'support_tbs1.dbf'   SIZE 5M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

CREATE USER support
IDENTIFIED BY support
  DEFAULT TABLESPACE support_tbs1
  QUOTA UNLIMITED ON support_tbs1;

GRANT ALTER SESSION, CREATE CLUSTER, CREATE DATABASE LINK, CREATE SEQUENCE,
  CREATE SESSION, CREATE SYNONYM, CREATE TABLE, CREATE VIEW, CREATE INDEXTYPE, 
  CREATE OPERATOR, CREATE PROCEDURE, CREATE TRIGGER, CREATE TYPE
TO support;

/*



Step 3   Grant the support User the Necessary System Privileges on Rules


*/



BEGIN
  DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
    privilege    => DBMS_RULE_ADM.CREATE_RULE_SET_OBJ, 
    grantee      => 'support', 
    grant_option => false);
  DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
    privilege    => DBMS_RULE_ADM.CREATE_RULE_OBJ,
    grantee      => 'support', 
    grant_option => false);
  DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
    privilege    => DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT_OBJ, 
    grantee      => 'support', 
    grant_option => false);
END;
/

/*



Step 4   Create the problems Table


*/



CONNECT support/support

SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100
SET SERVEROUTPUT ON

CREATE TABLE problems(
  probid          NUMBER PRIMARY KEY,
  custid          NUMBER,
  priority        NUMBER,
  description     VARCHAR2(4000),
  center          VARCHAR2(100));

/*



Step 5   Create the evalctx Evaluation Context


*/



DECLARE
  ta  SYS.RE$TABLE_ALIAS_LIST;
BEGIN
  ta := SYS.RE$TABLE_ALIAS_LIST(SYS.RE$TABLE_ALIAS('prob', 'problems'));
  DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT(
    evaluation_context_name    => 'evalctx',
    table_aliases              => ta,
    evaluation_context_comment => 'support problem definition');
END;
/

/*



Step 6   Create the Rules that Correspond to Problem Priority

The following code creates one action context for each rule, and one name-value pair in each action context.


*/

DECLARE
  ac  SYS.RE$NV_LIST;
BEGIN
  ac := SYS.RE$NV_LIST(NULL);
  ac.ADD_PAIR('CENTER', ANYDATA.CONVERTVARCHAR2('San Jose'));
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name      => 'r1',
    condition      => 'prob.priority > 2',
    action_context => ac,
    rule_comment   => 'Low priority problems');
  ac := SYS.RE$NV_LIST(NULL);
  ac.ADD_PAIR('CENTER', ANYDATA.CONVERTVARCHAR2('New York'));
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name      => 'r2',
    condition      => 'prob.priority <= 2',
    action_context => ac,
    rule_comment   => 'High priority problems');
  ac := sys.RE$NV_LIST(NULL);
  ac.ADD_PAIR('ALERT', ANYDATA.CONVERTVARCHAR2('John Doe'));
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name      => 'r3',
    condition      => 'prob.priority = 1',
    action_context => ac,
    rule_comment   => 'Urgent problems');
END;
/

/*



Step 7   Create the rs Rule Set


*/



BEGIN
  DBMS_RULE_ADM.CREATE_RULE_SET(
    rule_set_name      => 'rs',
    evaluation_context => 'evalctx',
    rule_set_comment   => 'support rules');
END;
/

/*



Step 8   Add the Rules to the Rule Set


*/



BEGIN
  DBMS_RULE_ADM.ADD_RULE(
    rule_name     => 'r1', 
    rule_set_name => 'rs');
  DBMS_RULE_ADM.ADD_RULE(
    rule_name     => 'r2', 
    rule_set_name => 'rs');
  DBMS_RULE_ADM.ADD_RULE(
    rule_name     => 'r3', 
    rule_set_name => 'rs');
END;
/

/*



Step 9   Create the problem_dispatch PL/SQL Procedure


*/



CREATE OR REPLACE PROCEDURE problem_dispatch 
IS
    cursor c IS SELECT probid, rowid FROM problems WHERE center IS NULL;
    tv        SYS.RE$TABLE_VALUE;
    tvl       SYS.RE$TABLE_VALUE_LIST;
    truehits  SYS.RE$RULE_HIT_LIST;
    maybehits SYS.RE$RULE_HIT_LIST;
    ac        SYS.RE$NV_LIST;
    namearray SYS.RE$NAME_ARRAY;
    name      VARCHAR2(30);
    cval      VARCHAR2(100);
    rnum      INTEGER;
    i         INTEGER;
    status    PLS_INTEGER;
BEGIN
  FOR r IN c LOOP
    tv  := SYS.RE$TABLE_VALUE('prob', rowidtochar(r.rowid));
    tvl := SYS.RE$TABLE_VALUE_LIST(tv);
    truehits := SYS.RE$RULE_HIT_LIST();
    maybehits := SYS.RE$RULE_HIT_LIST();
    DBMS_RULE.EVALUATE(
      rule_set_name        => 'support.rs',
      evaluation_context   => 'evalctx',
      table_values         => tvl,
      true_rules           => truehits,
      maybe_rules          => maybehits);
    FOR rnum IN 1..truehits.COUNT LOOP
      DBMS_OUTPUT.PUT_LINE('Using rule '|| truehits(rnum).rule_name);
      ac := truehits(rnum).rule_action_context;
      namearray := ac.GET_ALL_NAMES;
      FOR i IN 1..namearray.COUNT LOOP
        name := namearray(i);
        status := ac.GET_VALUE(name).GETVARCHAR2(cval);
        IF (name = 'CENTER') THEN
          UPDATE PROBLEMS SET center = cval WHERE rowid = r.rowid;
          DBMS_OUTPUT.PUT_LINE('Assigning '|| r.probid || ' to ' || cval);
        ELSIF (name = 'ALERT') THEN
          DBMS_OUTPUT.PUT_LINE('Alert: '|| cval || ' Problem:' || r.probid);
        END IF;
       END LOOP;
    END LOOP;
  END LOOP;
END;
/

/*



Step 10   Log Problems


*/



INSERT INTO problems(probid, custid, priority, description)
  VALUES(10101, 11, 1, 'no dial tone');

INSERT INTO problems(probid, custid, priority, description)
  VALUES(10102, 21, 2, 'noise on local calls');

INSERT INTO problems(probid, custid, priority, description)
  VALUES(10103, 31, 3, 'noise on long distance calls');

COMMIT;

/*



Step 11   Check the Spool Results

Check the rules_table.out spool file to ensure that all actions completed successfully after this script completes.


*/

SET ECHO OFF
SPOOL OFF

/*************************** END OF SCRIPT ******************************/





	
See Also:

"Dispatching Problems and Checking Results for the Table Examples" for the steps to complete to dispatch the problems logged in this example and check the results of the problem dispatch












Using Rules on Both Explicit Variables and Table Data

This example illustrates how to use rules to evaluate data stored in explicit variables and in a table. The application uses the problems table in the support schema, into which customer problems are inserted. This example uses the following rules for handling customer problems:

	
Assign all problems with priority greater than 2 to the San Jose Center.


	
Assign all problems with priority equal to 2 to the New York Center.


	
Assign all problems with priority equal to 1 to the Tampa Center from 8 AM to 8 PM.


	
Assign all problems with priority equal to 1 to the Bangalore Center from 8 PM to 8 AM.


	
Send an alert to the vice president of support for a problem with priority equal to 1.




The evaluation context consists of the problems table. The relevant row of the table, which corresponds to the problem being routed, is passed to the DBMS_RULE.EVALUATE procedure as a table value.

Some of the rules in this example refer to the current time, which is represented as an explicit variable named current_time. The current time is treated as additional data in the evaluation context. It is represented as a variable for the following reasons:

	
It is not practical to store the current time in a table because it would have to be updated very often.


	
The current time can be accessed by inserting calls to SYSDATE in every rule that requires it, but that would cause repeated invocations of the same SQL function SYSDATE, which might slow down rule evaluation. Different values of the current time in different rules might lead to incorrect behavior.




Complete the following steps:

	
Show Output and Spool Results


	
Create the support User


	
Grant the support User the Necessary System Privileges on Rules


	
Create the problems Table


	
Create the evalctx Evaluation Context


	
Create the Rules that Correspond to Problem Priority


	
Create the rs Rule Set


	
Add the Rules to the Rule Set


	
Create the problem_dispatch PL/SQL Procedure


	
Log Problems


	
Check the Spool Results







	
Note:

If you are viewing this document online, then you can copy the text from the "BEGINNING OF SCRIPT" line after this note to the next "END OF SCRIPT" line into a text editor and then edit the text to create a script for your environment. Run the script with SQL*Plus on a computer that can connect to all of the databases in the environment.








/************************* BEGINNING OF SCRIPT ******************************





Step 1   Show Output and Spool Results

Run SET ECHO ON and specify the spool file for the script. Check the spool file for errors after you run this script.


*/

SET ECHO ON
SPOOL rules_var_tab.out

/*



Step 2   Create the support User


*/



CONNECT SYSTEM/MANAGER AS SYSDBA;

CREATE TABLESPACE support_tbs2 DATAFILE 'support_tbs2.dbf'   SIZE 5M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

CREATE USER support
IDENTIFIED BY support
  DEFAULT TABLESPACE support_tbs2
  QUOTA UNLIMITED ON support_tbs2;

GRANT ALTER SESSION, CREATE CLUSTER, CREATE DATABASE LINK, CREATE SEQUENCE,
  CREATE SESSION, CREATE SYNONYM, CREATE TABLE, CREATE VIEW, CREATE INDEXTYPE, 
  CREATE OPERATOR, CREATE PROCEDURE, CREATE TRIGGER, CREATE TYPE
TO support;

/*



Step 3   Grant the support User the Necessary System Privileges on Rules


*/



BEGIN
  DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
    privilege    => DBMS_RULE_ADM.CREATE_RULE_SET_OBJ, 
    grantee      => 'support', 
    grant_option => false);
  DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
    privilege    => DBMS_RULE_ADM.CREATE_RULE_OBJ,
    grantee      => 'support', 
    grant_option => false);
  DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
    privilege    => DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT_OBJ, 
    grantee      => 'support', 
    grant_option => false);
END;
/

/*



Step 4   Create the problems Table


*/



CONNECT support/support

SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100
SET SERVEROUTPUT ON

CREATE TABLE problems(
  probid          NUMBER PRIMARY KEY,
  custid          NUMBER,
  priority        NUMBER,
  description     VARCHAR2(4000),
  center          VARCHAR2(100));

/*



Step 5   Create the evalctx Evaluation Context


*/



DECLARE
  ta SYS.RE$TABLE_ALIAS_LIST;
  vt SYS.RE$VARIABLE_TYPE_LIST;
BEGIN
  ta := SYS.RE$TABLE_ALIAS_LIST(SYS.RE$TABLE_ALIAS('prob', 'problems'));
  vt := SYS.RE$VARIABLE_TYPE_LIST(
          SYS.RE$VARIABLE_TYPE('current_time', 'DATE', NULL, NULL));
  DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT(
    evaluation_context_name    => 'evalctx',
    table_aliases              => ta,
    variable_types             => vt,
    evaluation_context_comment => 'support problem definition');
END;
/

/*



Step 6   Create the Rules that Correspond to Problem Priority

The following code creates one action context for each rule, and one name-value pair in each action context.


*/

DECLARE
  ac SYS.RE$NV_LIST;
BEGIN
  ac := SYS.RE$NV_LIST(NULL);
  ac.ADD_PAIR('CENTER', ANYDATA.CONVERTVARCHAR2('San Jose'));
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name      => 'r1',
    condition      => 'prob.priority > 2',
    action_context => ac,
    rule_comment   => 'Low priority problems');
  ac := SYS.RE$NV_LIST(NULL);
  ac.ADD_PAIR('CENTER', ANYDATA.CONVERTVARCHAR2('New York'));
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name      => 'r2',
    condition      => 'prob.priority = 2',
    action_context => ac,
    rule_comment   => 'High priority problems');
  ac := SYS.RE$NV_LIST(NULL);
  ac.ADD_PAIR('ALERT', ANYDATA.CONVERTVARCHAR2('John Doe'));
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name      => 'r3',
    condition      => 'prob.priority = 1',
    action_context => ac,
    rule_comment   => 'Urgent problems');
  ac := SYS.RE$NV_LIST(NULL);
  ac.ADD_PAIR('CENTER', ANYDATA.CONVERTVARCHAR2('Tampa'));
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name => 'r4',
    condition => '(prob.priority = 1) and ' ||
                 '(TO_NUMBER(TO_CHAR(:current_time, ''HH24'')) >= 8) and ' ||
                 '(TO_NUMBER(TO_CHAR(:current_time, ''HH24'')) <= 20)',
    action_context => ac,
    rule_comment => 'Urgent daytime problems');
  ac := sys.RE$NV_LIST(NULL);
  ac.add_pair('CENTER', ANYDATA.CONVERTVARCHAR2('Bangalore'));
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name => 'r5',
    condition => '(prob.priority = 1) and ' ||
                 '((TO_NUMBER(TO_CHAR(:current_time, ''HH24'')) < 8) or ' ||
                 ' (TO_NUMBER(TO_CHAR(:current_time, ''HH24'')) > 20))',
    action_context => ac,
    rule_comment => 'Urgent nighttime problems');
END;
/

/*



Step 7   Create the rs Rule Set


*/



BEGIN
  DBMS_RULE_ADM.CREATE_RULE_SET(
    rule_set_name      => 'rs',
    evaluation_context => 'evalctx',
    rule_set_comment   => 'support rules');
END;
/

/*



Step 8   Add the Rules to the Rule Set


*/



BEGIN
  DBMS_RULE_ADM.ADD_RULE(
    rule_name     => 'r1', 
    rule_set_name => 'rs');
  DBMS_RULE_ADM.ADD_RULE(
    rule_name     => 'r2', 
    rule_set_name => 'rs');
  DBMS_RULE_ADM.ADD_RULE(
    rule_name     => 'r3', 
    rule_set_name => 'rs');
  DBMS_RULE_ADM.ADD_RULE(
    rule_name     => 'r4', 
    rule_set_name => 'rs');
  DBMS_RULE_ADM.ADD_RULE(
    rule_name     => 'r5', 
    rule_set_name => 'rs');
END;
/

/*



Step 9   Create the problem_dispatch PL/SQL Procedure


*/



CREATE OR REPLACE PROCEDURE problem_dispatch
IS
    cursor c  is SELECT probid, rowid FROM PROBLEMS WHERE center IS NULL;
    tv        SYS.RE$TABLE_VALUE;
    tvl       SYS.RE$TABLE_VALUE_LIST;
    vv1       SYS.RE$VARIABLE_VALUE;
    vvl       SYS.RE$VARIABLE_VALUE_LIST;
    truehits  SYS.RE$RULE_HIT_LIST;
    maybehits SYS.RE$RULE_HIT_LIST;
    ac        SYS.RE$NV_LIST;
    namearray SYS.RE$NAME_ARRAY;
    name      VARCHAR2(30);
    cval      VARCHAR2(100);
    rnum      INTEGER;
    i         INTEGER;
    status    PLS_INTEGER;
BEGIN
  FOR r IN c LOOP
    tv  := sYS.RE$TABLE_VALUE('prob', ROWIDTOCHAR(r.rowid));
    tvl := SYS.RE$TABLE_VALUE_LIST(tv);
    vv1 := SYS.RE$VARIABLE_VALUE('current_time',
                                 ANYDATA.CONVERTDATE(SYSDATE));
    vvl := SYS.RE$VARIABLE_VALUE_LIST(vv1);
    truehits := SYS.RE$RULE_HIT_LIST();
    maybehits := SYS.RE$RULE_HIT_LIST();
    DBMS_RULE.EVALUATE(
        rule_set_name        => 'support.rs',
        evaluation_context   => 'evalctx',
        table_values         => tvl,
        variable_values      => vvl,
        true_rules           => truehits,
        maybe_rules          => maybehits);
    FOR rnum IN 1..truehits.COUNT loop
      DBMS_OUTPUT.PUT_LINE('Using rule '|| truehits(rnum).rule_name);
      ac := truehits(rnum).rule_action_context;
      namearray := ac.GET_ALL_NAMES;
      FOR i in 1..namearray.COUNT LOOP
        name := namearray(i);
        status := ac.GET_VALUE(name).GETVARCHAR2(cval);
        IF (name = 'CENTER') THEN
          UPDATE problems SET center = cval
          WHERE rowid = r.rowid;
          DBMS_OUTPUT.PUT_LINE('Assigning '|| r.probid || ' to ' || cval);
        ELSIF (name = 'ALERT') THEN
          DBMS_OUTPUT.PUT_LINE('Alert: '|| cval || ' Problem:' || r.probid);
        END IF;
      END LOOP;
    END LOOP;  
  END LOOP;
END;
/

/*



Step 10   Log Problems


*/



INSERT INTO problems(probid, custid, priority, description)
  VALUES(10201, 12, 1, 'no dial tone');

INSERT INTO problems(probid, custid, priority, description)
  VALUES(10202, 22, 2, 'noise on local calls');

INSERT INTO PROBLEMS(probid, custid, priority, description)
  VALUES(10203, 32, 3, 'noise on long distance calls');

COMMIT;

/*



Step 11   Check the Spool Results

Check the rules_var_tab.out spool file to ensure that all actions completed successfully after this script completes.


*/

SET ECHO OFF
SPOOL OFF

/*************************** END OF SCRIPT ******************************/





	
See Also:

"Dispatching Problems and Checking Results for the Table Examples" for the steps to complete to dispatch the problems logged in this example and check the results of the problem dispatch












Using Rules on Implicit Variables and Table Data

This example illustrates how to use rules to evaluate implicit variables and data stored in a table. The application uses the problems table in the support schema, into which customer problems are inserted. This example uses the following rules for handling customer problems:

	
Assign all problems with priority greater than 2 to the San Jose Center.


	
Assign all problems with priority equal to 2 to the New York Center.


	
Assign all problems with priority equal to 1 to the Tampa Center from 8 AM to 8 PM.


	
Assign all problems with priority equal to 1 to the Bangalore Center after 8 PM and before 8 AM.


	
Send an alert to the vice president of support for a problem with priority equal to 1.




The evaluation context consists of the problems table. The relevant row of the table, which corresponds to the problem being routed, is passed to the DBMS_RULE.EVALUATE procedure as a table value.

As in the example illustrated in "Using Rules on Both Explicit Variables and Table Data", the current time is represented as a variable named current_time. However, this variable value is not specified during evaluation by the caller. That is, current_time is an implicit variable in this example. A PL/SQL function named timefunc is specified for current_time, and this function is invoked once during evaluation to get its value.

Using implicit variables can be useful in other cases if one of the following conditions is true:

	
The caller does not have access to the variable value.


	
The variable is referenced infrequently in rules. Because it is implicit, its value can be retrieved only when necessary, and does not need to be passed in for every evaluation.




Complete the following steps:

	
Show Output and Spool Results


	
Create the support User


	
Grant the support User the Necessary System Privileges on Rules


	
Create the problems Table


	
Create the timefunc Function to Return the Value of current_time


	
Create the evalctx Evaluation Context


	
Create the Rules that Correspond to Problem Priority


	
Create the rs Rule Set


	
Add the Rules to the Rule Set


	
Create the problem_dispatch PL/SQL Procedure


	
Log Problems


	
Check the Spool Results







	
Note:

If you are viewing this document online, then you can copy the text from the "BEGINNING OF SCRIPT" line after this note to the next "END OF SCRIPT" line into a text editor and then edit the text to create a script for your environment. Run the script with SQL*Plus on a computer that can connect to all of the databases in the environment.








/************************* BEGINNING OF SCRIPT ******************************





Step 1   Show Output and Spool Results

Run SET ECHO ON and specify the spool file for the script. Check the spool file for errors after you run this script.


*/

SET ECHO ON
SPOOL rules_implicit_var.out

/*



Step 2   Create the support User


*/



CONNECT SYSTEM/MANAGER AS SYSDBA;

CREATE TABLESPACE support_tbs3 DATAFILE 'support_tbs3.dbf'   SIZE 5M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

CREATE USER support
IDENTIFIED BY support
  DEFAULT TABLESPACE support_tbs3
  QUOTA UNLIMITED ON support_tbs3;

GRANT ALTER SESSION, CREATE CLUSTER, CREATE DATABASE LINK, CREATE SEQUENCE,
  CREATE SESSION, CREATE SYNONYM, CREATE TABLE, CREATE VIEW, CREATE INDEXTYPE, 
  CREATE OPERATOR, CREATE PROCEDURE, CREATE TRIGGER, CREATE TYPE
TO support;

/*



Step 3   Grant the support User the Necessary System Privileges on Rules


*/



BEGIN
  DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
    privilege    => DBMS_RULE_ADM.CREATE_RULE_SET_OBJ, 
    grantee      => 'support', 
    grant_option => false);
  DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
    privilege    => DBMS_RULE_ADM.CREATE_RULE_OBJ,
    grantee      => 'support', 
    grant_option => false);
  DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
    privilege    => DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT_OBJ, 
    grantee      => 'support', 
    grant_option => false);
END;
/

/*



Step 4   Create the problems Table


*/



CONNECT support/support

SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100
SET SERVEROUTPUT ON

CREATE TABLE problems(
  probid          NUMBER PRIMARY KEY,
  custid          NUMBER,
  priority        NUMBER,
  description     VARCHAR2(4000),
  center          VARCHAR2(100));

/*



Step 5   Create the timefunc Function to Return the Value of current_time


*/



CREATE OR REPLACE FUNCTION timefunc(
  eco    VARCHAR2, 
  ecn    VARCHAR2, 
  var    VARCHAR2,
  evctx  SYS.RE$NV_LIST)
RETURN SYS.RE$VARIABLE_VALUE
IS
BEGIN
  IF (var = 'CURRENT_TIME') THEN
    RETURN(SYS.RE$VARIABLE_VALUE('current_time',
                                 ANYDATA.CONVERTDATE(SYSDATE)));
  ELSE
    RETURN(NULL);
  END IF;
END;
/

/*



Step 6   Create the evalctx Evaluation Context


*/



DECLARE
  ta SYS.RE$TABLE_ALIAS_LIST;
  vt SYS.RE$VARIABLE_TYPE_LIST;
BEGIN
  ta := SYS.RE$TABLE_ALIAS_LIST(SYS.RE$TABLE_ALIAS('prob', 'problems'));
  vt := SYS.RE$VARIABLE_TYPE_LIST(
          SYS.RE$VARIABLE_TYPE('current_time', 'DATE', 'timefunc', NULL));
  DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT(
    evaluation_context_name    => 'evalctx',
    table_aliases              => ta,
    variable_types             => vt,
    evaluation_context_comment => 'support problem definition');
END;
/

/*



Step 7   Create the Rules that Correspond to Problem Priority

The following code creates one action context for each rule, and one name-value pair in each action context.


*/

DECLARE
  ac SYS.RE$NV_LIST;
BEGIN
  ac := SYS.RE$NV_LIST(NULL);
  ac.ADD_PAIR('CENTER', ANYDATA.CONVERTVARCHAR2('San Jose'));
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name      => 'r1',
    condition      => 'prob.priority > 2',
    action_context => ac,
    rule_comment   => 'Low priority problems');
  ac := SYS.RE$NV_LIST(NULL);
  ac.ADD_PAIR('CENTER', ANYDATA.CONVERTVARCHAR2('New York'));
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name      => 'r2',
    condition      => 'prob.priority = 2',
    action_context => ac,
    rule_comment   => 'High priority problems');
  ac := SYS.RE$NV_LIST(NULL);
  ac.ADD_PAIR('ALERT', ANYDATA.CONVERTVARCHAR2('John Doe'));
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name      => 'r3',
    condition      => 'prob.priority = 1',
    action_context => ac,
    rule_comment   => 'Urgent problems');
  ac := SYS.RE$NV_LIST(NULL);
  ac.ADD_PAIR('CENTER', ANYDATA.CONVERTVARCHAR2('Tampa'));
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name => 'r4',
    condition => '(prob.priority = 1) and ' ||
                 '(TO_NUMBER(TO_CHAR(:current_time, ''HH24'')) >= 8) and ' ||
                 '(TO_NUMBER(TO_CHAR(:current_time, ''HH24'')) <= 20)',
    action_context => ac,
    rule_comment   => 'Urgent daytime problems');
  ac := SYS.RE$NV_LIST(NULL);
  ac.add_pair('CENTER', ANYDATA.CONVERTVARCHAR2('Bangalore'));
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name => 'r5',
    condition => '(prob.priority = 1) and ' ||
                 '((TO_NUMBER(TO_CHAR(:current_time, ''HH24'')) < 8) or ' ||
                 ' (TO_NUMBER(TO_CHAR(:current_time, ''HH24'')) > 20))',
    action_context => ac,
    rule_comment => 'Urgent nighttime problems');
END;
/

/*



Step 8   Create the rs Rule Set


*/



BEGIN
  DBMS_RULE_ADM.CREATE_RULE_SET(
    rule_set_name      => 'rs',
    evaluation_context => 'evalctx',
    rule_set_comment   => 'support rules');
END;
/

/*



Step 9   Add the Rules to the Rule Set


*/



BEGIN
  DBMS_RULE_ADM.ADD_RULE(
    rule_name     => 'r1', 
    rule_set_name => 'rs');
  DBMS_RULE_ADM.ADD_RULE(
    rule_name     => 'r2', 
    rule_set_name => 'rs');
  DBMS_RULE_ADM.ADD_RULE(
    rule_name     => 'r3', 
    rule_set_name => 'rs');
  DBMS_RULE_ADM.ADD_RULE(
    rule_name     => 'r4', 
    rule_set_name => 'rs');
  DBMS_RULE_ADM.ADD_RULE(
    rule_name     => 'r5', 
    rule_set_name => 'rs');
END;
/

/*



Step 10   Create the problem_dispatch PL/SQL Procedure


*/



CREATE OR REPLACE PROCEDURE problem_dispatch
IS
    cursor c  IS SELECT probid, rowid FROM problems WHERE center IS NULL;
    tv        SYS.RE$TABLE_VALUE;
    tvl       SYS.RE$TABLE_VALUE_LIST;
    truehits  SYS.RE$RULE_HIT_LIST;
    maybehits SYS.RE$RULE_HIT_LIST;
    ac        SYS.RE$NV_LIST;
    namearray SYS.RE$NAME_ARRAY;
    name      VARCHAR2(30);
    cval      VARCHAR2(100);
    rnum      INTEGER;
    i         INTEGER;
    status    PLS_INTEGER;
BEGIN
  FOR r IN c LOOP
    tv  := SYS.RE$TABLE_VALUE('prob', rowidtochar(r.rowid));
    tvl := SYS.RE$TABLE_VALUE_LIST(tv);
    truehits := SYS.RE$RULE_HIT_LIST();
    maybehits := SYS.RE$RULE_HIT_LIST();
    DBMS_RULE.EVALUATE(
        rule_set_name        => 'support.rs',
        evaluation_context   => 'evalctx',
        table_values         => tvl,
        true_rules           => truehits,
        maybe_rules          => maybehits);
    FOR rnum IN 1..truehits.COUNT LOOP
      DBMS_OUTPUT.PUT_LINE('Using rule '|| truehits(rnum).rule_name);
      ac := truehits(rnum).rule_action_context;
      namearray := ac.GET_ALL_NAMES;
      FOR i IN 1..namearray.COUNT LOOP
        name := namearray(i);
        status := ac.GET_VALUE(name).GETVARCHAR2(cval);
        IF (name = 'CENTER') THEN
          UPDATE problems SET center = cval
            WHERE rowid = r.rowid;
          DBMS_OUTPUT.PUT_LINE('Assigning '|| r.probid || ' to ' || cval);
        ELSIF (name = 'ALERT') THEN
          DBMS_OUTPUT.PUT_LINE('Alert: '|| cval || ' Problem:' || r.probid);
        END IF;
      END LOOP;
    END LOOP;
  END LOOP;
END;
/

/*



Step 11   Log Problems


*/



INSERT INTO problems(probid, custid, priority, description)
  VALUES(10301, 13, 1, 'no dial tone');

INSERT INTO problems(probid, custid, priority, description)
  VALUES(10302, 23, 2, 'noise on local calls');

INSERT INTO problems(probid, custid, priority, description)
  VALUES(10303, 33, 3, 'noise on long distance calls');

COMMIT;

/*



Step 12   Check the Spool Results

Check the rules_implicit_var.out spool file to ensure that all actions completed successfully after this script completes.


*/

SET ECHO OFF
SPOOL OFF

/*************************** END OF SCRIPT ******************************/





	
See Also:

"Dispatching Problems and Checking Results for the Table Examples" for the steps to complete to dispatch the problems logged in this example and check the results of the problem dispatch












Using Event Contexts and Implicit Variables with Rules

An event context is a varray of type SYS.RE$NV_LIST that contains name-value pairs that contain information about the event. This optional information is not directly used or interpreted by the rules engine. Instead, it is passed to client callbacks such as an evaluation function, a variable value function (for implicit variables), or a variable method function.

In this example, assume every customer has a primary contact person, and the goal is to assign the problem reported by a customer to the support center to which the customer's primary contact person belongs. The customer name is passed in the event context.

This example illustrates how to use event contexts with rules to evaluate implicit variables. Specifically, when an event is evaluated using the DBMS_RULE.EVALUATE procedure, the event context is passed to the variable value function for implicit variables in the evaluation context. The name of the variable value function is find_contact, and this PL/SQL function returns the contact person based on the name of the company specified in the event context. The rule set is evaluated based on the contact person name and the priority for an event.

This example uses the following rules for handling customer problems:

	
Assign all problems that belong to Jane to the San Jose Center.


	
Assign all problems that belong to Fred to the New York Center.


	
Assign all problems whose primary contact is unknown to George at the Texas Center.


	
Send an alert to the vice president of support for a problem with priority equal to 1.




Complete the following steps:

	
Show Output and Spool Results


	
Create the support User


	
Grant the support User the Necessary System Privileges on Rules


	
Create the find_contact Function to Return a Customer's Contact


	
Create the evalctx Evaluation Context


	
Create the Rules that Correspond to Problem Priority and Contact


	
Create the rs Rule Set


	
Add the Rules to the Rule Set


	
Query the Data Dictionary


	
Create the problem_dispatch PL/SQL Procedure


	
Dispatch Sample Problems


	
Clean Up the Environment (Optional)


	
Check the Spool Results







	
Note:

If you are viewing this document online, then you can copy the text from the "BEGINNING OF SCRIPT" line after this note to the next "END OF SCRIPT" line into a text editor and then edit the text to create a script for your environment. Run the script with SQL*Plus on a computer that can connect to all of the databases in the environment.








/************************* BEGINNING OF SCRIPT ******************************





Step 1   Show Output and Spool Results

Run SET ECHO ON and specify the spool file for the script. Check the spool file for errors after you run this script.


*/

SET ECHO ON
SPOOL rules_event_context.out

/*



Step 2   Create the support User


*/



CONNECT SYSTEM/MANAGER AS SYSDBA;

GRANT ALTER SESSION, CREATE CLUSTER, CREATE DATABASE LINK, CREATE SEQUENCE,
  CREATE SESSION, CREATE SYNONYM, CREATE TABLE, CREATE VIEW, CREATE INDEXTYPE, 
  CREATE OPERATOR, CREATE PROCEDURE, CREATE TRIGGER, CREATE TYPE
TO support IDENTIFIED BY support;

/*



Step 3   Grant the support User the Necessary System Privileges on Rules


*/



BEGIN
  DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
    privilege    => DBMS_RULE_ADM.CREATE_RULE_SET_OBJ, 
    grantee      => 'support', 
    grant_option => false);
  DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
    privilege    => DBMS_RULE_ADM.CREATE_RULE_OBJ,
    grantee      => 'support', 
    grant_option => false);
  DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
    privilege    => DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT_OBJ, 
    grantee      => 'support', 
    grant_option => false);
END;
/

/*



Step 4   Create the find_contact Function to Return a Customer's Contact


*/



CONNECT support/support

SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100
SET SERVEROUTPUT ON
CREATE OR REPLACE FUNCTION find_contact(
  eco       VARCHAR2, 
  ecn       VARCHAR2, 
  var       VARCHAR2,
  evctx     SYS.RE$NV_LIST)
RETURN SYS.RE$VARIABLE_VALUE IS
  cust      VARCHAR2(30);
  contact   VARCHAR2(30);
  status    PLS_INTEGER;
BEGIN  
  IF (var = 'CUSTOMER_CONTACT') THEN
    status := evctx.GET_VALUE('CUSTOMER').GETVARCHAR2(cust);    
    IF (cust = 'COMPANY1') THEN     -- COMPANY1's contact person is Jane
      contact := 'JANE';
    ELSIF (cust = 'COMPANY2') THEN  -- COMPANY2's contact person is Fred
      contact := 'FRED';
    ELSE        -- Assign customers without primary contact person to George
      contact := 'GEORGE';
    END IF;
    RETURN SYS.RE$VARIABLE_VALUE('customer_contact',
                                 ANYDATA.CONVERTVARCHAR2(contact));
  ELSE
    RETURN NULL;
  END IF;
END;
/

/*



Step 5   Create the evalctx Evaluation Context


*/



DECLARE
  vt  SYS.RE$VARIABLE_TYPE_LIST;
BEGIN
  vt := SYS.RE$VARIABLE_TYPE_LIST(
        SYS.RE$VARIABLE_TYPE('priority', 'NUMBER', NULL, NULL),
        SYS.RE$VARIABLE_TYPE('customer_contact', 'VARCHAR2(30)', 
                             'find_contact', NULL));
  DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT(
    evaluation_context_name    => 'evalctx',
    variable_types             => vt,
    evaluation_context_comment => 'support problem definition');
END;
/

/*



Step 6   Create the Rules that Correspond to Problem Priority and Contact

The following code creates one action context for each rule, and one name-value pair in each action context.


*/

DECLARE
  ac  SYS.RE$NV_LIST;
BEGIN
  ac := SYS.RE$NV_LIST(NULL);
  ac.ADD_PAIR('CENTER', ANYDATA.CONVERTVARCHAR2('San Jose'));
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name       => 'r1',
    condition       => ':customer_contact = ''JANE''',
    action_context  => ac,
    rule_comment    => 'Jane''s customer problems');
  ac := sys.re$nv_list(NULL);
  ac.ADD_PAIR('CENTER', ANYDATA.CONVERTVARCHAR2('New York'));
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name       => 'r2',
    condition       => ':customer_contact = ''FRED''',
    action_context  => ac,
    rule_comment    => 'Fred''s customer problems');
  ac := sys.re$nv_list(NULL);
  ac.ADD_PAIR('CENTER', ANYDATA.CONVERTVARCHAR2('Texas'));
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name       => 'r3',
    condition       => ':customer_contact = ''GEORGE''',
    action_context  => ac,
    rule_comment    => 'George''s customer problems');
  ac := sys.re$nv_list(NULL);
  ac.ADD_PAIR('ALERT', ANYDATA.CONVERTVARCHAR2('John Doe'));
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name       => 'r4',
    condition       => ':priority=1',
    action_context  => ac,
    rule_comment    => 'Urgent problems');
END;
/

/*



Step 7   Create the rs Rule Set


*/



BEGIN
  DBMS_RULE_ADM.CREATE_RULE_SET(
    rule_set_name      => 'rs',
    evaluation_context => 'evalctx',
    rule_set_comment   => 'support rules');
END;
/

/*



Step 8   Add the Rules to the Rule Set


*/



BEGIN
  DBMS_RULE_ADM.ADD_RULE(
    rule_name     => 'r1', 
    rule_set_name => 'rs');
  DBMS_RULE_ADM.ADD_RULE(
    rule_name     => 'r2', 
    rule_set_name => 'rs');
  DBMS_RULE_ADM.ADD_RULE(
    rule_name     => 'r3', 
    rule_set_name => 'rs');
  DBMS_RULE_ADM.ADD_RULE(
    rule_name     => 'r4', 
    rule_set_name => 'rs');
END;
/

/*



Step 9   Query the Data Dictionary

At this point, you can view the evaluation context, rules, and rule set you created in the previous steps.


*/

COLUMN EVALUATION_CONTEXT_NAME HEADING 'Eval Context Name' FORMAT A30
COLUMN EVALUATION_CONTEXT_COMMENT HEADING 'Eval Context Comment' FORMAT A40

SELECT EVALUATION_CONTEXT_NAME, EVALUATION_CONTEXT_COMMENT
  FROM USER_EVALUATION_CONTEXTS
  ORDER BY EVALUATION_CONTEXT_NAME;

SET LONGCHUNKSIZE 4000
SET LONG 4000
COLUMN RULE_NAME HEADING 'Rule|Name' FORMAT A5
COLUMN RULE_CONDITION HEADING 'Rule Condition' FORMAT A35
COLUMN ACTION_CONTEXT_NAME HEADING 'Action|Context|Name' FORMAT A10
COLUMN ACTION_CONTEXT_VALUE HEADING 'Action|Context|Value' FORMAT A10

SELECT RULE_NAME, 
       RULE_CONDITION,
       AC.NVN_NAME ACTION_CONTEXT_NAME, 
       AC.NVN_VALUE.ACCESSVARCHAR2() ACTION_CONTEXT_VALUE
  FROM USER_RULES R, TABLE(R.RULE_ACTION_CONTEXT.ACTX_LIST) AC
  ORDER BY RULE_NAME;

COLUMN RULE_SET_NAME HEADING 'Rule Set Name' FORMAT A20
COLUMN RULE_SET_EVAL_CONTEXT_OWNER HEADING 'Eval Context|Owner' FORMAT A12
COLUMN RULE_SET_EVAL_CONTEXT_NAME HEADING 'Eval Context Name' FORMAT A25
COLUMN RULE_SET_COMMENT HEADING 'Rule Set|Comment' FORMAT A15

SELECT RULE_SET_NAME, 
       RULE_SET_EVAL_CONTEXT_OWNER,
       RULE_SET_EVAL_CONTEXT_NAME,
       RULE_SET_COMMENT
  FROM USER_RULE_SETS
  ORDER BY RULE_SET_NAME;

/*



Step 10   Create the problem_dispatch PL/SQL Procedure


*/



CREATE OR REPLACE PROCEDURE problem_dispatch (priority  NUMBER,
                                              customer  VARCHAR2) 
IS
    vvl       SYS.RE$VARIABLE_VALUE_LIST;
    truehits  SYS.RE$RULE_HIT_LIST;
    maybehits SYS.RE$RULE_HIT_LIST;
    ac        SYS.RE$NV_LIST;
    namearray SYS.RE$NAME_ARRAY;
    name      VARCHAR2(30);
    cval      VARCHAR2(100);
    rnum      INTEGER;
    i         INTEGER;
    status    PLS_INTEGER;
    evctx     SYS.RE$NV_LIST;
BEGIN
  vvl  := SYS.RE$VARIABLE_VALUE_LIST(
            SYS.RE$VARIABLE_VALUE('priority',
                                  ANYDATA.CONVERTNUMBER(priority)));
  evctx := SYS.RE$NV_LIST(NULL);
  evctx.ADD_PAIR('CUSTOMER', ANYDATA.CONVERTVARCHAR2(customer));
  truehits  := SYS.RE$RULE_HIT_LIST();
  maybehits := SYS.RE$RULE_HIT_LIST();
  DBMS_RULE.EVALUATE(
      rule_set_name        => 'support.rs',
      evaluation_context   => 'evalctx',
      event_context        => evctx,
      variable_values      => vvl,
      true_rules           => truehits,
      maybe_rules          => maybehits);
  FOR rnum IN 1..truehits.COUNT LOOP
    DBMS_OUTPUT.PUT_LINE('Using rule '|| truehits(rnum).rule_name);
    ac := truehits(rnum).rule_action_context;
    namearray := ac.GET_ALL_NAMES;
      FOR i IN 1..namearray.count LOOP
        name := namearray(i);
        status := ac.GET_VALUE(name).GETVARCHAR2(cval);
        IF (name = 'CENTER') THEN
          DBMS_OUTPUT.PUT_LINE('Assigning problem to ' || cval);
        ELSIF (name = 'ALERT') THEN
          DBMS_OUTPUT.PUT_LINE('Sending alert to: '|| cval);
        END IF;
      END LOOP;
  END LOOP;
END;
/

/*



Step 11   Dispatch Sample Problems

The first problem dispatch in this step uses the event context and the variable value function to determine the contact person for COMPANY1. The event context is passed to the find_contact variable value function, and this function returns the contact name JANE. Therefore, rule r1 evaluates to TRUE. The problem_dispatch procedure sends the problem to the San Jose office because JANE belongs to that office. In addition, the priority for this event is 1, which causes rule r4 to evaluate to TRUE. As a result, the problem_dispatch procedure sends an alert to John Doe.

The second problem dispatch in this step uses the event context and the variable value function to determine the contact person for COMPANY2. The event context is passed to the find_contact variable value function, and this function returns the contact name FRED. Therefore, rule r2 evaluates to TRUE. The problem_dispatch procedure sends the problem to the New York office because FRED belongs to that office.

The third problem dispatch in this step uses the event context and the variable value function to determine the contact person for COMPANY3. This company does not have a dedicated contact person. The event context is passed to the find_contact variable value function, and this function returns the contact name GEORGE, because GEORGE is the default contact when no contact person is found. Therefore, rule r3 evaluates to TRUE. The problem_dispatch procedure sends the problem to the Texas office because GEORGE belongs to that office.


*/

EXECUTE problem_dispatch(1, 'COMPANY1');
EXECUTE problem_dispatch(2, 'COMPANY2');
EXECUTE problem_dispatch(5, 'COMPANY3');

/*



Step 12   Clean Up the Environment (Optional)

You can clean up the sample environment by dropping the support user.


*/

CONNECT SYSTEM/MANAGER AS SYSDBA;

DROP USER support CASCADE;

/*



Step 13   Check the Spool Results

Check the rules_event_context.out spool file to ensure that all actions completed successfully after this script completes.


*/

SET ECHO OFF
SPOOL OFF

/*************************** END OF SCRIPT ******************************/






Dispatching Problems and Checking Results for the Table Examples

The following sections configure a problem_dispatch procedure that updates information in the problems table:

	
"Using Rules on Data Stored in a Table"


	
"Using Rules on Both Explicit Variables and Table Data"


	
"Using Rules on Implicit Variables and Table Data"




The steps in this section dispatch the problems by running the problem_dispatch procedure and display the results in the problems table.




Step 1   Query the Data Dictionary

View the evaluation context, rules, and rule set you created in the example:


CONNECT support/support

COLUMN EVALUATION_CONTEXT_NAME HEADING 'Eval Context Name' FORMAT A30
COLUMN EVALUATION_CONTEXT_COMMENT HEADING 'Eval Context Comment' FORMAT A40

SELECT EVALUATION_CONTEXT_NAME, EVALUATION_CONTEXT_COMMENT
  FROM USER_EVALUATION_CONTEXTS
  ORDER BY EVALUATION_CONTEXT_NAME;

SET LONGCHUNKSIZE 4000
SET LONG 4000
COLUMN RULE_NAME HEADING 'Rule|Name' FORMAT A5
COLUMN RULE_CONDITION HEADING 'Rule Condition' FORMAT A35
COLUMN ACTION_CONTEXT_NAME HEADING 'Action|Context|Name' FORMAT A10
COLUMN ACTION_CONTEXT_VALUE HEADING 'Action|Context|Value' FORMAT A10

SELECT RULE_NAME, 
       RULE_CONDITION,
       AC.NVN_NAME ACTION_CONTEXT_NAME, 
       AC.NVN_VALUE.ACCESSVARCHAR2() ACTION_CONTEXT_VALUE
  FROM USER_RULES R, TABLE(R.RULE_ACTION_CONTEXT.ACTX_LIST) AC
  ORDER BY RULE_NAME;

COLUMN RULE_SET_NAME HEADING 'Rule Set Name' FORMAT A20
COLUMN RULE_SET_EVAL_CONTEXT_OWNER HEADING 'Eval Context|Owner' FORMAT A12
COLUMN RULE_SET_EVAL_CONTEXT_NAME HEADING 'Eval Context Name' FORMAT A25
COLUMN RULE_SET_COMMENT HEADING 'Rule Set|Comment' FORMAT A15

SELECT RULE_SET_NAME, 
       RULE_SET_EVAL_CONTEXT_OWNER,
       RULE_SET_EVAL_CONTEXT_NAME,
       RULE_SET_COMMENT
  FROM USER_RULE_SETS
  ORDER BY RULE_SET_NAME;



Step 2   List the Problems in the problems Table

This SELECT statement should show the problems logged previously.


COLUMN probid HEADING 'Problem ID' FORMAT 99999
COLUMN custid HEADING 'Customer ID' FORMAT 99
COLUMN priority HEADING 'Priority' FORMAT 9
COLUMN description HEADING 'Problem Description' FORMAT A30
COLUMN center HEADING 'Center' FORMAT A10

SELECT probid, custid, priority, description, center FROM problems
  ORDER BY probid;


Your output looks similar to the following:


Problem ID Customer ID Priority Problem Description            Center
---------- ----------- -------- ------------------------------ ----------
     10301          13        1 no dial tone
     10302          23        2 noise on local calls
     10303          33        3 noise on long distance calls


Notice that the Center column is NULL for each new row inserted.


Step 3   Dispatch the Problems by Running the problem_dispatch Procedure

Execute the problem_dispatch procedure.


SET SERVEROUTPUT ON
EXECUTE problem_dispatch;



Step 4   List the Problems in the problems Table

If the problems were dispatched successfully in Step 3, then this SELECT statement should show the center to which each problem was dispatched in the Center column.


SELECT probid, custid, priority, description, center FROM problems
  ORDER BY probid;


Your output looks similar to the following:


Problem ID Customer ID Priority Problem Description            Center
---------- ----------- -------- ------------------------------ ----------
     10201          12        1 no dial tone                   Tampa
     10202          22        2 noise on local calls           New York
     10203          32        3 noise on long distance calls   San Jose





	
Note:

The output will vary depending on which example you used to create the problem_dispatch procedure.








Step 5   Clean Up the Environment (Optional)

You can clean up the sample environment by dropping the support user.


CONNECT SYSTEM/MANAGER AS SYSDBA;

DROP USER support CASCADE;





2 Streams Capture Process

This chapter explains the concepts and architecture of the Streams capture process.

This chapter contains these topics:

	
The Redo Log and a Capture Process


	
Logical Change Records (LCRs)


	
Capture Process Rules


	
Datatypes Captured


	
Types of Changes Captured


	
Supplemental Logging in a Streams Environment


	
Instantiation in a Streams Environment


	
Local Capture and Downstream Capture


	
SCN Values Relating to a Capture Process


	
Streams Capture Processes and RESTRICTED SESSION


	
Streams Capture Processes and Oracle Real Application Clusters


	
Capture Process Architecture







	
See Also:

Chapter 11, "Managing a Capture Process"









The Redo Log and a Capture Process

Every Oracle database has a set of two or more redo log files. The redo log files for a database are collectively known as the database redo log. The primary function of the redo log is to record all changes made to the database.

Redo logs are used to guarantee recoverability in the event of human error or media failure. A capture process is an optional Oracle background process that scans the database redo log to capture DML and DDL changes made to database objects. When a capture process is configured to capture changes from a redo log, the database where the changes were generated is called the source database.

A capture process can run on the source database or on a remote database. When a capture process runs on the source database, the capture process is a local capture process. When a capture process runs on a remote database, the capture process is called a downstream capture process, and the remote database is called the downstream database.






Logical Change Records (LCRs)

A capture process reformats changes captured from the redo log into LCRs. An LCR is a message with a specific format that describes a database change. A capture process captures two types of LCRs: row LCRs and DDL LCRs. Row LCRs and DDL LCRs are described in detail later in this section.

After capturing an LCR, a capture process enqueues a message containing the LCR into a queue. A capture process is always associated with a single ANYDATA queue, and it enqueues messages into this queue only. For improved performance, captured messages always are stored in a buffered queue, which is System Global Area (SGA) memory associated with an ANYDATA queue. You can create multiple queues and associate a different capture process with each queue.

Figure 2-1 shows a capture process capturing LCRs.




	
Note:

A capture process can be associated only with an ANYDATA queue, not with a typed queue.








Figure 2-1 Capture Process

[image: Description of Figure 2-1 follows]









	
See Also:

	
Oracle Streams Replication Administrator's Guide for information about managing LCRs


	
Oracle Database PL/SQL Packages and Types Reference for more information about LCR types


	
"Buffered Queues"














Row LCRs

A row LCR describes a change to the data in a single row or a change to a single LONG, LONG RAW, or LOB column in a row. The change results from a data manipulation language (DML) statement or a piecewise update to a LOB. For example, a single DML statement can insert or merge multiple rows into a table, can update multiple rows in a table, or can delete multiple rows from a table.

Therefore, a single DML statement can produce multiple row LCRs. That is, a capture process creates an LCR for each row that is changed by the DML statement. In addition, an update to a LONG, LONG RAW, or LOB column in a single row can result in more than one row LCR.

Each row LCR is encapsulated in an object of LCR$_ROW_RECORD type and contains the following attributes:

	
source_database_name: The name of the source database where the row change occurred.


	
command_type: The type of DML statement that produced the change, either INSERT, UPDATE, DELETE, LOB ERASE, LOB WRITE, or LOB TRIM.


	
object_owner: The schema name that contains the table with the changed row.


	
object_name: The name of the table that contains the changed row.


	
tag: A raw tag that can be used to track the LCR.


	
transaction_id: The identifier of the transaction in which the DML statement was run.


	
scn: The system change number (SCN) at the time when the change record was written to the redo log.


	
old_values: The old column values related to the change. These are the column values for the row before the DML change. If the type of the DML statement is UPDATE or DELETE, then these old values include some or all of the columns in the changed row before the DML statement. If the type of the DML statement is INSERT, then there are no old values.


	
new_values: The new column values related to the change. These are the column values for the row after the DML change. If the type of the DML statement is UPDATE or INSERT, then these new values include some or all of the columns in the changed row after the DML statement. If the type of the DML statement is DELETE, then there are no new values.




A captured row LCR can also contain transaction control statements. These row LCRs contain directives such as COMMIT and ROLLBACK. Such row LCRs are internal and are used by an apply process to maintain transaction consistency between a source database and a destination database.






DDL LCRs

A DDL LCR describes a data definition language (DDL) change. A DDL statement changes the structure of the database. For example, a DDL statement can create, alter, or drop a database object.

Each DDL LCR contains the following information:

	
source_database_name: The name of the source database where the DDL change occurred.


	
command_type: The type of DDL statement that produced the change, for example ALTER TABLE or CREATE INDEX.


	
object_owner: The schema name of the user who owns the database object on which the DDL statement was run.


	
object_name: The name of the database object on which the DDL statement was run.


	
object_type: The type of database object on which the DDL statement was run, for example TABLE or PACKAGE.


	
ddl_text: The text of the DDL statement.


	
logon_user: The logon user, which is the user whose session executed the DDL statement.


	
current_schema: The schema that is used if no schema is specified for an object in the DDL text.


	
base_table_owner: The base table owner. If the DDL statement is dependent on a table, then the base table owner is the owner of the table on which it is dependent.


	
base_table_name: The base table name. If the DDL statement is dependent on a table, then the base table name is the name of the table on which it is dependent.


	
tag: A raw tag that can be used to track the LCR.


	
transaction_id: The identifier of the transaction in which the DDL statement was run.


	
scn: The SCN when the change was written to the redo log.







	
Note:

Both row LCRs and DDL LCRs contain the source database name of the database where a change originated. If captured messages will be propagated by a propagation or applied by an apply process, then, to avoid propagation and apply problems, Oracle recommends that you do not rename the source database after a capture process has started capturing changes.










	
See Also:

The "SQL Command Codes" table in the Oracle Call Interface Programmer's Guide for a complete list of the types of DDL statements












Extra Information in LCRs

In addition to the information discussed in the previous sections, row LCRs and DDL LCRs optionally can include the following extra information (or LCR attributes):

	
row_id: The rowid of the row changed in a row LCR. This attribute is not included in DDL LCRs or row LCRs for index-organized tables.


	
serial#: The serial number of the session that performed the change captured in the LCR.


	
session#: The identifier of the session that performed the change captured in the LCR.


	
thread#: The thread number of the instance in which the change captured in the LCR was performed. Typically, the thread number is relevant only in a Real Application Clusters environment.


	
tx_name: The name of the transaction that includes the LCR.


	
username: The name of the current user who performed the change captured in the LCR.




You can use the INCLUDE_EXTRA_ATTRIBUTE procedure in the DBMS_CAPTURE_ADM package to instruct a capture process to capture one or more extra attributes.




	
See Also:

	
"Managing Extra Attributes in Captured Messages"


	
"Viewing the Extra Attributes Captured by Each Capture Process"


	
Oracle Database PL/SQL Packages and Types Reference for more information about the INCLUDE_EXTRA_ATTRIBUTE procedure


	
Oracle Database PL/SQL User's Guide and Reference for more information about the current user



















Capture Process Rules

A capture process either captures or discards changes based on rules that you define. Each rule specifies the database objects and types of changes for which the rule evaluates to TRUE. You can place these rules in a positive rule set or negative rule set for the capture process.

If a rule evaluates to TRUE for a change, and the rule is in the positive rule set for a capture process, then the capture process captures the change. If a rule evaluates to TRUE for a change, and the rule is in the negative rule set for a capture process, then the capture process discards the change. If a capture process has both a positive and a negative rule set, then the negative rule set is always evaluated first.

You can specify capture process rules at the following levels:

	
A table rule captures or discards either row changes resulting from DML changes or DDL changes to a particular table. Subset rules are table rules that include a subset of the row changes to a particular table.


	
A schema rule captures or discards either row changes resulting from DML changes or DDL changes to the database objects in a particular schema.


	
A global rule captures or discards either all row changes resulting from DML changes or all DDL changes in the database.







	
Note:

The capture process does not capture certain types of changes and changes to certain datatypes in table columns. Also, a capture process never captures changes in the SYS, SYSTEM, or CTXSYS schemas.










	
See Also:

	
Chapter 5, "Rules"


	
Chapter 6, "How Rules Are Used in Streams"

















Datatypes Captured

When capturing the row changes resulting from DML changes made to tables, a capture process can capture changes made to columns of the following datatypes:

	
VARCHAR2


	
NVARCHAR2


	
NUMBER


	
LONG


	
DATE


	
BINARY_FLOAT


	
BINARY_DOUBLE


	
TIMESTAMP


	
TIMESTAMP WITH TIME ZONE


	
TIMESTAMP WITH LOCAL TIME ZONE


	
INTERVAL YEAR TO MONTH


	
INTERVAL DAY TO SECOND


	
RAW


	
LONG RAW


	
CHAR


	
NCHAR


	
CLOB


	
NCLOB


	
BLOB


	
UROWID




A capture process does not capture the results of DML changes to columns of the following datatypes: BFILE, ROWID, and user-defined types (including object types, REFs, varrays, nested tables, and Oracle-supplied types). Also, a capture process cannot capture changes to columns if the columns have been encrypted using transparent data encryption. A capture process raises an error if it tries to create a row LCR for a DML change to a table containing encrypted columns or a column of an unsupported datatype.

When a capture process raises an error, it writes the LCR that caused the error into its trace file, raises an ORA-00902 error, and becomes disabled. In this case, modify the rules used by the capture process to avoid the error, and restart the capture process.




	
Note:

	
You can add rules to a negative rule set for a capture process that instruct the capture process to discard changes to tables with columns of unsupported datatypes. However, if these rules are not simple rules, then a capture process might create a row LCR for the change and continue to process it. In this case, a change that includes an unsupported datatype can cause the capture process to raise an error, even if the change does not satisfy the rule sets used by the capture process. The DBMS_STREAMS_ADM package creates only simple rules.


	
Some of the datatypes listed previously in this section might not be supported by Streams in earlier releases of Oracle. If your Streams environment includes one or more databases from an earlier release of Oracle, then make sure row LCRs do not flow into a database that does not support all of the datatypes in the row LCRs. See the Streams documentation for the earlier Oracle release for information about supported datatypes.















	
See Also:

	
"Simple Rule Conditions" for information about simple rules


	
Chapter 6, "How Rules Are Used in Streams" for more information about rule sets for Streams clients and for information about how messages satisfy rule sets


	
"Capture Process Rule Evaluation"


	
"Datatypes Applied" for information about the datatypes that can be applied by an apply process


	
Oracle Database SQL Reference for more information about datatypes

















Types of Changes Captured

A capture process can capture only certain types of changes made to a database and its objects. The following sections describe the types of DML and DDL changes that can be captured.




	
Note:

A capture process never captures changes in the SYS, SYSTEM, or CTXSYS schemas.










	
See Also:

Chapter 4, "Streams Apply Process" for information about the types of changes an apply process can apply









Types of DML Changes Captured

When you specify that DML changes made to certain tables should be captured, a capture process captures the following types of DML changes made to these tables:

	
INSERT


	
UPDATE


	
DELETE


	
MERGE


	
Piecewise updates to LOBs




The following are considerations for capturing DML changes:

	
A capture process converts each MERGE change into an INSERT or UPDATE change. MERGE is not a valid command type in a row LCR.


	
A capture process can capture changes made to an index-organized table only if the index-organized table does not contain any columns of the following datatypes:

	
ROWID


	
UROWID


	
User-defined types (including object types, REFs, varrays, and nested tables)




If an index-organized table contains a column of one of these datatypes, then a capture process raises an error when a user makes a change to the index-organized table and the change satisfies the capture process rule sets.


	
A capture process ignores CALL, EXPLAIN PLAN, or LOCK TABLE statements.


	
A capture process cannot capture DML changes made to temporary tables or object tables. A capture process raises an error if it attempts to capture such changes.


	
If you share a sequence at multiple databases, then sequence values used for individual rows at these databases might vary. Also, changes to actual sequence values are not captured. For example, if a user references a NEXTVAL or sets the sequence, then a capture process does not capture changes resulting from these operations.







	
See Also:

	
"Datatypes Captured" for information about the datatypes supported by a capture process


	
Chapter 6, "How Rules Are Used in Streams" for more information about rule sets for Streams clients and for information about how messages satisfy rule sets


	
Oracle Streams Replication Administrator's Guide for information about applying DML changes with an apply process and for information about strategies to avoid having the same sequence-generated value for two different rows at different databases


	
Oracle XML DB Developer's Guide for information about SQL functions that update XML data

















DDL Changes and Capture Processes

A capture process captures the DDL changes that satisfy its rule sets, except for the following types of DDL changes:

	
ALTER DATABASE


	
CREATE CONTROLFILE


	
CREATE DATABASE


	
CREATE PFILE


	
CREATE SPFILE


	
FLASHBACK DATABASE




A capture process can capture DDL statements, but not the results of DDL statements, unless the DDL statement is a CREATE TABLE AS SELECT statement. For example, when a capture process captures an ANALYZE statement, it does not capture the statistics generated by the ANALYZE statement. However, when a capture process captures a CREATE TABLE AS SELECT statement, it captures the statement itself and all of the rows selected (as INSERT row LCRs).

Some types of DDL changes that are captured by a capture process cannot be applied by an apply process. If an apply process receives a DDL LCR that specifies an operation that cannot be applied, then the apply process ignores the DDL LCR and records information about it in the trace file for the apply process.

When a capture process captures a DDL change that specifies timestamps or system change number (SCN) values in its syntax, configure a DDL handler for any apply processes that will dequeue the change. The DDL handler must process timestamp or SCN values properly. For example, although a capture process always ignores FLASHBACK DATABASE statements, a capture process captures FLASHBACK TABLE statements when its rule sets instruct it to capture DDL changes to the specified table. FLASHBACK TABLE statements include timestamps or SCN values in its syntax.




	
See Also:

	
Oracle Streams Replication Administrator's Guide for information about applying DDL changes with an apply process


	
Chapter 6, "How Rules Are Used in Streams" for more information about rule sets for Streams clients and for information about how messages satisfy rule sets
















Other Types of Changes Ignored by a Capture Process

The following types of changes are ignored by a capture process:

	
The session control statements ALTER SESSION and SET ROLE.


	
The system control statement ALTER SYSTEM.


	
Invocations of PL/SQL procedures, which means that a call to a PL/SQL procedure is not captured. However, if a call to a PL/SQL procedure causes changes to database objects, then these changes can be captured by a capture process if the changes satisfy the capture process rule sets.


	
Changes made to a table or schema by online redefinition using the DBMS_REDEFINITION package. Online table redefinition is supported on a table for which a capture process captures changes, but the logical structure of the table before online redefinition must be the same as the logical structure after online redefinition.








NOLOGGING and UNRECOVERABLE Keywords for SQL Operations

If you use the NOLOGGING or UNRECOVERABLE keyword for a SQL operation, then the changes resulting from the SQL operation cannot be captured by a capture process. Therefore, do not use these keywords if you want to capture the changes that result from a SQL operation.

If the object for which you are specifying the logging attributes resides in a database or tablespace in FORCE LOGGING mode, then Oracle ignores any NOLOGGING or UNRECOVERABLE setting until the database or tablespace is taken out of FORCE LOGGING mode. You can determine the current logging mode for a database by querying the FORCE_LOGGING column in the V$DATABASE dynamic performance view. You can determine the current logging mode for a tablespace by querying the FORCE_LOGGING column in the DBA_TABLESPACES static data dictionary view.




	
Note:

The UNRECOVERABLE keyword is deprecated and has been replaced with the NOLOGGING keyword in the logging_clause. Although UNRECOVERABLE is supported for backward compatibility, Oracle strongly recommends that you use the NOLOGGING keyword, when appropriate.










	
See Also:

Oracle Database SQL Reference for more information about the NOLOGGING and UNRECOVERABLE keywords, FORCE LOGGING mode, and the logging_clause











UNRECOVERABLE Clause for Direct Path Loads

If you use the UNRECOVERABLE clause in the SQL*Loader control file for a direct path load, then the changes resulting from the direct path load cannot be captured by a capture process. Therefore, if the changes resulting from a direct path load should be captured by a capture process, then do not use the UNRECOVERABLE clause.

If you perform a direct path load without logging changes at a source database, but you do not perform a similar direct path load at the destination databases of the source database, then apply errors can result at these destination databases when changes are made to the loaded objects at the source database. In this case, a capture process at the source database can capture changes to these objects, and one or more propagations can propagate the changes to the destination databases. When an apply process tries to apply these changes, errors result unless both the changed object and the changed rows in the object exist on the destination database.

Therefore, if you use the UNRECOVERABLE clause for a direct path load and a capture process is configured to capture changes to the loaded objects, then make sure any destination databases contain the loaded objects and the loaded data to avoid apply errors. One way to make sure that these objects exist at the destination databases is to perform a direct path load at each of these destination databases that is similar to the direct path load performed at the source database.

If you load objects into a database or tablespace that is in FORCE LOGGING mode, then Oracle ignores any UNRECOVERABLE clause during a direct path load, and the loaded changes are logged. You can determine the current logging mode for a database by querying the FORCE_LOGGING column in the V$DATABASE dynamic performance view. You can determine the current logging mode for a tablespace by querying the FORCE_LOGGING column in the DBA_TABLESPACES static data dictionary view.




	
See Also:

Oracle Database Utilities for information about direct path loads and SQL*Loader














Supplemental Logging in a Streams Environment

Supplemental logging places additional column data into a redo log whenever an operation is performed. A capture process captures this additional information and places it in LCRs. Supplemental logging is always configured at a source database, regardless of location of the capture process that captures changes to the source database.

Typically, supplemental logging is required in Streams replication environments. In these environments, an apply process needs the additional information in the LCRs to properly apply DML changes and DDL changes that are replicated from a source database to a destination database. However, supplemental logging can also be required in environments where changes are not applied to database objects directly by an apply process. In such environments, an apply handler can process the changes without applying them to the database objects, and the supplemental information might be needed by the apply handlers.




	
See Also:

Oracle Streams Replication Administrator's Guide for detailed information about when supplemental logging is required












Instantiation in a Streams Environment

In a Streams environment that shares a database object within a single database or between multiple databases, a source database is the database where changes to the object are generated in the redo log, and a destination database is the database where these changes are dequeued by an apply process. If a capture process captures or will capture such changes, and the changes will be applied locally or propagated to other databases and applied at destination databases, then you must instantiate these source database objects before these changes can be dequeued and processed by an apply process. If a database where changes to the source database objects will be applied is a different database than the source database, then the destination database must have a copy of these database objects.

In Streams, the following general steps instantiate a database object:


	
Prepare the object for instantiation at the source database.


	
If a copy of the object does not exist at the destination database, then create an object physically at the destination database based on an object at the source database. You can use export/import, transportable tablespaces, or RMAN to copy database objects for instantiation. If the database objects already exist at the destination database, then this step is not necessary.


	
Set the instantiation SCN for the database object at the destination database. An instantiation SCN instructs an apply process at the destination database to apply only changes that committed at the source database after the specified SCN.




In some cases, Step 1 and Step 3 are completed automatically. For example, when you add rules for an object to the positive rule set for a capture process by running a procedure in the DBMS_STREAMS_ADM package, the object is prepared for instantiation automatically. Also, when you use export/import or transportable tablespaces to copy database objects from a source database to a destination database, instantiation SCNs can be set for these objects automatically. Instantiation is required whenever an apply process dequeues captured messages, even if the apply process sends the LCRs to an apply handler that does not execute them.




	
Note:

You can use either Data Pump export/import or original export/import for Streams instantiations. General references to export/import in this document refer to both Data Pump and original export/import. This document distinguishes between Data Pump and original export/import when necessary.










	
See Also:

Oracle Streams Replication Administrator's Guide for detailed information about instantiation in a Streams replication environment












Local Capture and Downstream Capture

You can configure a capture process to run locally on a source database or remotely on a downstream database. A single database can have one or more capture processes that capture local changes and other capture processes that capture changes from a remote source database. That is, you can configure a single database to perform both local capture and downstream capture.


Local Capture

Local capture means that a capture process runs on the source database. Figure 2-1 shows a database using local capture.


The Source Database Performs All Change Capture Actions

If you configure local capture, then the following actions are performed at the source database:

	
The DBMS_CAPTURE_ADM.BUILD procedure is run to extract (or build) the data dictionary to the redo log.


	
Supplemental logging at the source database places additional information in the redo log. This information might be needed when captured changes are applied by an apply process.


	
The first time a capture process is started at the database, Oracle uses the extracted data dictionary information in the redo log to create a LogMiner data dictionary, which is separate from the primary data dictionary for the source database. Additional capture processes can use this existing LogMiner data dictionary, or they can create new LogMiner data dictionaries.


	
A capture process scans the redo log for changes using LogMiner.


	
The rules engine evaluates changes based on the rules in one or more of the capture process rule sets.


	
The capture process enqueues changes that satisfy the rules in its rule sets into a local ANYDATA queue.


	
If the captured changes are shared with one or more other databases, then one or more propagations propagate these changes from the source database to the other databases.


	
If database objects at the source database must be instantiated at a destination database, then the objects must be prepared for instantiation and a mechanism such as an Export utility must be used to make a copy of the database objects.








Advantages of Local Capture

The following are the advantages of using local capture:

	
Configuration and administration of the capture process is simpler than when downstream capture is used. When you use local capture, you do not need to configure redo log file copying to a downstream database, and you administer the capture process locally at the database where the captured changes originated.


	
A local capture process can scan changes in the online redo log before the database writes these changes to an archived redo log file. When you use downstream capture, archived redo log files are copied to the downstream database after the source database has finished writing changes to them, and some time is required to copy the redo log files to the downstream database.


	
The amount of data being sent over the network is reduced, because the entire redo log file is not copied to the downstream database. Even if captured messages are propagated to other databases, the captured messages can be a subset of the total changes made to the database, and only the LCRs that satisfy the rules in the rule sets for a propagation are propagated.


	
Security might be improved because only the source (local) database can access the redo log files. For example, if you want to capture changes in the hr schema only, then, when you use local capture, only the source database can access the redo log to enqueue changes to the hr schema into the capture process queue. However, when you use downstream capture, the redo log files are copied to the downstream database, and these redo log files contain all of the changes made to the database, not just the changes made to the hr schema.


	
Some types of custom rule-based transformations are simpler to configure if the capture process is running at the local source database. For example, if you use local capture, then a custom rule-based transformation can use cached information in a PL/SQL session variable which is populated with data stored at the source database.


	
In a Streams environment where messages are captured and applied in the same database, it might be simpler, and use fewer resources, to configure local queries and computations that require information about captured changes and the local data.











Downstream Capture

Downstream capture means that a capture process runs on a database other than the source database. The following types of downstream capture configurations are possible: real-time downstream capture and archived-log downstream capture. The DOWNSTREAM_REAL_TIME_MINE capture process parameter controls whether a downstream capture process performs real-time downstream capture or archived-log downstream capture. A real-time downstream capture process and one or more archived-log downstream capture processes can coexist at a downstream database.




	
Note:

	
References to "downstream capture processes" in this document apply to both real-time downstream capture processes and archived-log downstream capture processes. This document distinguishes between the two types of downstream capture processes when necessary.


	
A downstream capture process only can capture changes from a single source database. However, multiple downstream capture processes at a single downstream database can capture changes from a single source database or multiple source databases.


	
To configure downstream capture, the source database must be an Oracle Database 10g Release 1 database or later.














Real-Time Downstream Capture

A real-time downstream capture configuration works in the following way:

	
Redo transport services use the log writer process (LGWR) at the source database to send redo data to the downstream database either synchronously or asynchronously. At the same time, the LGWR records redo data in the online redo log at the source database.


	
A remote file server process (RFS) at the downstream database receives the redo data over the network and stores the redo data in the standby redo log.


	
A log switch at the source database causes a log switch at the downstream database, and the ARCHn process at the downstream database archives the current standby redo log file.


	
The real-time downstream capture process captures changes from the standby redo log whenever possible and from the archived standby redo log files whenever necessary. A capture process can capture changes in the archived standby redo log files if it falls behind. When it catches up, it resumes capturing changes from the standby redo log.





Figure 2-2 Real-Time Downstream Capture

[image: Description of Figure 2-2 follows]






The advantage of real-time downstream capture over archived-log downstream capture is that real-time downstream capture reduces the amount of time required to capture changes made at the source database. The time is reduced because the real-time capture process does not need to wait for the redo log file to be archived before it can capture data from it.




	
Note:

Only one real-time downstream capture process can exist at a downstream database.











Archived-Log Downstream Capture

A archived-log downstream capture process configuration means that archived redo log files from the source database are copied to the downstream database, and the capture process captures changes in these archived redo log files. You can copy the archived redo log files to the downstream database using redo transport services, the DBMS_FILE_TRANSFER package, file transfer protocol (FTP), or some other mechanism.


Figure 2-3 Archived-Log Downstream Capture

[image: Description of Figure 2-3 follows]









	
Note:

As illustrated in Figure 2-3, the source database for a change captured by a downstream capture process is the database where the change was recorded in the redo log, not the database running the downstream capture process.







The advantage of archived-log downstream capture over real-time downstream capture is that archived-log downstream capture allows multiple downstream capture processes at a downstream database. You can copy redo log files from multiple source databases to a single downstream database and configure multiple archived-log downstream capture processes to capture changes in these redo log files.




	
See Also:

Oracle Data Guard Concepts and Administration for more information about redo transport services











The Downstream Database Performs Most Change Capture Actions

If you configure either real-time or archived-log downstream capture, then the following actions are performed at the downstream database:

	
The first time a downstream capture process is started at the downstream database, Oracle uses data dictionary information in the redo data from the source database to create a LogMiner data dictionary at the downstream database. The DBMS_CAPTURE_ADM.BUILD procedure is run at the source database to extract the source data dictionary information to the redo log at the source database. Next, the redo data is copied to the downstream database from the source database. Additional downstream capture processes for the same source database can use this existing LogMiner data dictionary, or they can create new LogMiner data dictionaries. Also, a real-time downstream capture process can share a LogMiner data dictionary with one or more archived-log downstream capture processes.


	
A capture process scans the redo data from the source database for changes using LogMiner.


	
The rules engine evaluates changes based on the rules in one or more of the capture process rule sets.


	
The capture process enqueues changes that satisfy the rules in its rule sets into a local ANYDATA queue. The capture process formats the changes as LCRs.


	
If the captured messages are shared with one or more other databases, then one or more propagations propagate these LCRs from the downstream database to the other databases.




In a downstream capture configuration, the following actions are performed at the source database:

	
The DBMS_CAPTURE_ADM.BUILD procedure is run at the source database to extract the data dictionary to the redo log.


	
Supplemental logging at the source database places additional information that might be needed for apply in the redo log.


	
If database objects at the source database must be instantiated at other databases in the environment, then the objects must be prepared for instantiation and a mechanism such as an Export utility must be used to make a copy of the database objects.




In addition, the redo data must be copied from the computer system running the source database to the computer system running the downstream database. In a real-time downstream capture configuration, redo transport services use LWGR to send redo data to the downstream database. Typically, in an archived-log downstream capture configuration, redo transport services copy the archived redo log files to the downstream database.




	
See Also:

Chapter 6, "How Rules Are Used in Streams" for more information about rule sets for Streams clients and for information about how messages satisfy rule sets











Advantages of Downstream Capture

The following are the advantages of using downstream capture:

	
Capturing changes uses fewer resources at the source database because the downstream database performs most of the required work.


	
If you plan to capture changes originating at multiple source databases, then capture process administration can be simplified by running multiple archived-log downstream capture processes with different source databases at one downstream database. That is, one downstream database can act as the central location for change capture from multiple sources. In such a configuration, one real-time downstream capture process can run at the downstream database in addition to the archived-log downstream capture processes.


	
Copying redo data to one or more downstream databases provides improved protection against data loss. For example, redo log files at the downstream database can be used for recovery of the source database in some situations.


	
The ability to configure at one or more downstream databases multiple capture processes that capture changes from a single source database provides more flexibility and can improve scalability.








Optional Database Link from the Downstream Database to the Source Database

When you create or alter a downstream capture process, you optionally can specify the use of a database link from the downstream database to the source database. This database link must have the same name as the global name of the source database. Such a database link simplifies the creation and administration of a downstream capture process. You specify that a downstream capture process uses a database link by setting the use_database_link parameter to true when you run CREATE_CAPTURE or ALTER_CAPTURE on the downstream capture process.

When a downstream capture process uses a database link to the source database, the capture process connects to the source database to perform the following administrative actions automatically:

	
In certain situations, runs the DBMS_CAPTURE_ADM.BUILD procedure at the source database to extract the data dictionary at the source database to the redo log when a capture process is created.


	
Prepares source database objects for instantiation.


	
Obtains the first SCN for the downstream capture process if the first SCN is not specified during capture process creation. The first SCN is needed to create a capture process.




If a downstream capture process does not use a database link, then you must perform these actions manually.




	
See Also:

"Preparing to Transmit Redo Data to a Downstream Database" for information about when the DBMS_CAPTURE_ADM.BUILD procedure is run automatically during capture process creation if the downstream capture process uses a database link











Operational Requirements for Downstream Capture

The following are operational requirements for using downstream capture:

	
The source database must be running at least Oracle Database 10g and the downstream capture database must be running the same release of Oracle as the source database or later.


	
The downstream database must be running Oracle Database 10g Release 2 to configure real-time downstream capture. In this case, the source database must be running Oracle Database 10g Release 1 or later.


	
The operating system on the source and downstream capture sites must be the same, but the operating system release does not need to be the same. In addition, the downstream sites can use a different directory structure from the source site.


	
The hardware architecture on the source and downstream capture sites must be the same. For example, a downstream capture configuration with a source database on a 32-bit Sun system must have a downstream database that is configured on a 32-bit Sun system. Other hardware elements, such as the number of CPUs, memory size, and storage configuration, can be different between the source and downstream sites.




In a downstream capture environment, the source database can be a single instance database or a multi-instance Real Application Clusters (RAC) database. The downstream database can be a single instance database or a multi-instance RAC database, regardless of whether the source database is single instance or multi-instance.










SCN Values Relating to a Capture Process

This section describes system change number (SCN) values that are important for a capture process. You can query the DBA_CAPTURE data dictionary view to display these values for one or more capture processes.

	
Captured SCN and Applied SCN


	
First SCN and Start SCN






Captured SCN and Applied SCN

The captured SCN is the SCN that corresponds to the most recent change scanned in the redo log by a capture process. The applied SCN for a capture process is the SCN of the most recent message dequeued by the relevant apply processes. All messages lower than this SCN have been dequeued by all apply processes that apply changes captured by the capture process. The applied SCN for a capture process is equivalent to the low-watermark SCN for an apply process that applies changes captured by the capture process.






First SCN and Start SCN

This section describes the first SCN and start SCN for a capture process.


First SCN

The first SCN is the lowest SCN in the redo log from which a capture process can capture changes. If you specify a first SCN during capture process creation, then the database must be able to access redo data from the SCN specified and higher.

The DBMS_CAPTURE_ADM.BUILD procedure extracts the source database data dictionary to the redo log. When you create a capture process, you can specify a first SCN that corresponds to this data dictionary build in the redo log. Specifically, the first SCN for the capture process being created can be set to any value returned by the following query:


COLUMN FIRST_CHANGE# HEADING 'First SCN' FORMAT 999999999
COLUMN NAME HEADING 'Log File Name' FORMAT A50

SELECT DISTINCT FIRST_CHANGE#, NAME FROM V$ARCHIVED_LOG
  WHERE DICTIONARY_BEGIN = 'YES';


The value returned for the NAME column is the name of the redo log file that contains the SCN corresponding to the first SCN. This redo log file, and subsequent redo log files, must be available to the capture process. If this query returns multiple distinct values for FIRST_CHANGE#, then the DBMS_CAPTURE_ADM.BUILD procedure has been run more than once on the source database. In this case, choose the first SCN value that is most appropriate for the capture process you are creating.

In some cases, the DBMS_CAPTURE_ADM.BUILD procedure is run automatically when a capture process is created. When this happens, the first SCN for the capture process corresponds to this data dictionary build.





Start SCN

The start SCN is the SCN from which a capture process begins to capture changes. You can specify a start SCN that is different than the first SCN during capture process creation, or you can alter a capture process to set its start SCN. The start SCN does not need to be modified for normal operation of a capture process. Typically, you reset the start SCN for a capture process if point-in-time recovery must be performed on one of the destination databases that receive changes from the capture process. In these cases, the capture process can be used to capture the changes made at the source database after the point-in-time of the recovery.





Start SCN Must Be Greater than or Equal to First SCN

If you specify a start SCN when you create or alter a capture process, then the start SCN specified must be greater than or equal to the first SCN for the capture process. A capture process always scans any unscanned redo log records that have higher SCN values than the first SCN, even if the redo log records have lower SCN values than the start SCN. So, if you specify a start SCN that is greater than the first SCN, then the capture process might scan redo log records for which it cannot capture changes, because these redo log records have a lower SCN than the start SCN.

Scanning redo log records before the start SCN should be avoided if possible because it can take some time. Therefore, Oracle recommends that the difference between the first SCN and start SCN be as small as possible during capture process creation to keep the initial capture process startup time to a minimum.




	
Attention:

When a capture process is started or restarted, it might need to scan redo log files with a FIRST_CHANGE# value that is lower than start SCN. Removing required redo log files before they are scanned by a capture process causes the capture process to abort. You can query the DBA_CAPTURE data dictionary view to determine the first SCN, start SCN, and required checkpoint SCN. A capture process needs the redo log file that includes the required checkpoint SCN, and all subsequent redo log files.










	
See Also:

"Capture Process Creation" for more information about the first SCN and start SCN for a capture process











A Start SCN Setting that Is Prior to Preparation for Instantiation

If you want to capture changes to a database object and apply these changes using an apply process, then only changes that occurred after the database object has been prepared for instantiation can be applied. Therefore, if you set the start SCN for a capture process lower than the SCN that corresponds to the time when a database object was prepared for instantiation, then any captured changes to this database object prior to the prepare SCN cannot be applied by an apply process.

This limitation can be important during capture process creation. If a database object was never prepared for instantiation prior to the time of capture process creation, then an apply process cannot apply any captured changes to the object from a time before capture process creation time.

In some cases, database objects might have been prepared for instantiation before a new capture process is created. For example, if you want to create a new capture process for a source database whose changes are already being captured by one or more existing capture processes, then some or all of the database objects might have been prepared for instantiation before the new capture process is created. If you want to capture changes to a certain database object with a new capture process from a time before the new capture process was created, then the following conditions must be met for an apply process to apply these captured changes:

	
The database object must have been prepared for instantiation before the new capture process is created.


	
The start SCN for the new capture process must correspond to a time before the database object was prepared for instantiation.


	
The redo logs for the time corresponding to the specified start SCN must be available. Additional redo logs previous to the start SCN might be required as well.







	
See Also:

	
Oracle Streams Replication Administrator's Guide for more information about preparing database objects for instantiation


	
"Capture Process Creation"





















Streams Capture Processes and RESTRICTED SESSION

When you enable restricted session during system startup by issuing a STARTUP RESTRICT statement, capture processes do not start, even if they were running when the database shut down. When restricted session is disabled with an ALTER SYSTEM statement, each capture process that was running when the database shut down is started.

When restricted session is enabled in a running database by the SQL statement ALTER SYSTEM ENABLE RESTRICTED SESSION clause, it does not affect any running capture processes. These capture processes continue to run and capture changes. If a stopped capture process is started in a restricted session, then the capture process does not actually start until the restricted session is disabled.






Streams Capture Processes and Oracle Real Application Clusters

You can configure a Streams capture process to capture changes in an Oracle Real Application Clusters (RAC) environment. If you use one or more capture processes and RAC in the same environment, then all archived logs that contain changes to be captured by a capture process must be available for all instances in the RAC environment. In a RAC environment, a capture process reads changes made by all instances.

Each capture process is started and stopped on the owner instance for its ANYDATA queue, even if the start or stop procedure is run on a different instance. Also, a capture process will follow its queue to a different instance if the current owner instance becomes unavailable. The queue itself follows the rules for primary instance and secondary instance ownership. If the owner instance for a queue table containing a queue used by a capture process becomes unavailable, then queue ownership is transferred automatically to another instance in the cluster. In addition, if the capture process was enabled when the owner instance became unavailable, then the capture process is restarted automatically on the new owner instance. If the capture process was disabled when the owner instance became unavailable, then the capture process remains disabled on the new owner instance.

The DBA_QUEUE_TABLES data dictionary view contains information about the owner instance for a queue table. Also, any parallel execution servers used by a single capture process run on a single instance in a RAC environment.

LogMiner supports the LOG_ARCHIVE_DEST_n initialization parameter, and Streams capture processes use LogMiner to capture changes from the redo log. If an archived log file is inaccessible from one destination, a local capture process can read it from another accessible destination. On a RAC database, this ability also enables you to use cross instance archival (CIA) such that each instance archives its files to all other instances. This solution cannot detect or resolve gaps caused by missing archived log files. Hence, it can be used only to complement an existing solution to have the archived files shared between all instances.




	
See Also:

	
"Queues and Oracle Real Application Clusters" for information about primary and secondary instance ownership for queues


	
"Streams Apply Processes and Oracle Real Application Clusters"


	
Oracle Database Reference for more information about the DBA_QUEUE_TABLES data dictionary view


	
Oracle Database Oracle Clusterware and Oracle Real Application Clusters Administration and Deployment Guide for more information about configuring archived logs to be shared between instances

















Capture Process Architecture

A capture process is an optional Oracle background process whose process name is cnnn, where nnn is a capture process number. Valid capture process names include c001 through c999. A capture process captures changes from the redo log by using the infrastructure of LogMiner. Streams configures LogMiner automatically. You can create, alter, start, stop, and drop a capture process, and you can define capture process rules that control which changes a capture process captures.

Changes are captured in the security domain of the capture user for a capture process. The capture user captures all changes that satisfy the capture process rule sets. In addition, the capture user runs all custom rule-based transformations specified by the rules in these rule sets. The capture user must have the necessary privileges to perform these actions, including EXECUTE privilege on the rule sets used by the capture process, EXECUTE privilege on all custom rule-based transformation functions specified for rules in the positive rule set, and privileges to enqueue messages into the capture process queue. A capture process can be associated with only one user, but one user can be associated with many capture processes.




	
See Also:

"Configuring a Streams Administrator" for information about the required privileges







This section discusses the following topics:

	
Capture Process Components


	
Capture Process States


	
Multiple Capture Processes in a Single Database


	
Capture Process Checkpoints


	
Capture Process Creation


	
A New First SCN Value and Purged LogMiner Data Dictionary Information


	
The Streams Data Dictionary


	
ARCHIVELOG Mode and a Capture Process


	
Capture Process Parameters


	
Capture Process Rule Evaluation


	
Persistent Capture Process Status Upon Database Restart






Capture Process Components

A capture process consists of the following components:

	
One reader server that reads the redo log and divides the redo log into regions.


	
One or more preparer servers that scan the regions defined by the reader server in parallel and perform prefiltering of changes found in the redo log. Prefiltering involves sending partial information about changes, such as schema and object name for a change, to the rules engine for evaluation, and receiving the results of the evaluation.


	
One builder server that merges redo records from the preparer servers. These redo records either evaluated to TRUE during partial evaluation or partial evaluation was inconclusive for them. The builder server preserves the SCN order of these redo records and passes the merged redo records to the capture process.


	
The capture process (cnnn) performs the following actions for each change when it receives merged redo records from the builder server:

	
Formats the change into an LCR


	
If the partial evaluation performed by a preparer server was inconclusive for the change in the LCR, then sends the LCR to the rules engine for full evaluation


	
Receives the results of the full evaluation of the LCR if it was performed


	
Enqueues the LCR into the queue associated with the capture process if the LCR satisfies the rules in the positive rule set for the capture process, or discards the LCR if it satisfies the rules in the negative rule set for the capture process or if it does not satisfy the rules in the positive rule set







Each reader server, preparer server, and builder server is a parallel execution server. A capture process (cnnn) is an Oracle background process.




	
See Also:

	
"Capture Process Parallelism" for more information about the parallelism parameter


	
"Capture Process Rule Evaluation"


	
Oracle Database Administrator's Guide for information about managing parallel execution servers

















Capture Process States

The state of a capture process describes what the capture process is doing currently. You can view the state of a capture process by querying the STATE column in the V$STREAMS_CAPTURE dynamic performance view. The following capture process states are possible:

	
INITIALIZING - Starting up.


	
WAITING FOR DICTIONARY REDO - Waiting for redo log files containing the dictionary build related to the first SCN to be added to the capture process session. A capture process cannot begin to scan the redo log files until all of the log files containing the dictionary build have been added.


	
DICTIONARY INITIALIZATION - Processing a dictionary build.


	
MINING (PROCESSED SCN = scn_value) - Mining a dictionary build at the SCN scn_value.


	
LOADING (step X of Y) - Processing information from a dictionary build and currently at step X in a process that involves Y steps, where X and Y are numbers.


	
CAPTURING CHANGES - Scanning the redo log for changes that evaluate to TRUE against the capture process rule sets.


	
WAITING FOR REDO - Waiting for new redo log files to be added to the capture process session. The capture process has finished processing all of the redo log files added to its session. This state is possible if there is no activity at a source database. For a downstream capture process, this state is possible if the capture process is waiting for new log files to be added to its session.


	
EVALUATING RULE - Evaluating a change against a capture process rule set.


	
CREATING LCR - Converting a change into an LCR.


	
ENQUEUING MESSAGE - Enqueuing an LCR that satisfies the capture process rule sets into the capture process queue.


	
PAUSED FOR FLOW CONTROL - Unable to enqueue LCRs either because of low memory or because propagations and apply processes are consuming messages slower than the capture process is creating them. This state indicates flow control that is used to reduce spilling of captured messages when propagation or apply has fallen behind or is unavailable.


	
SHUTTING DOWN - Stopping.







	
See Also:

"Displaying Change Capture Information About Each Capture Process" for a query that displays the state of a capture process












Multiple Capture Processes in a Single Database

If you run multiple capture processes in a single database, consider increasing the size of the System Global Area (SGA) for each instance. Use the SGA_MAX_SIZE initialization parameter to increase the SGA size. Also, if the size of the Streams pool is not managed automatically in the database, then you should increase the size of the Streams pool by 10 MB for each capture process parallelism. For example, if you have two capture processes running in a database, and the parallelism parameter is set to 4 for one of them and 1 for the other, then increase the Streams pool by 50 MB (4 + 1 = 5 parallelism).

Also, Oracle recommends that each ANYDATA queue used by a capture process, propagation, or apply process have captured messages from at most one capture process from a particular source database. Therefore, a separate queue should be used for each capture process that captures changes originating at a particular source database.




	
Note:

The size of the Streams pool is managed automatically if the SGA_TARGET initialization parameter is set to a nonzero value.










	
See Also:

	
"Streams Pool"


	
"Setting Initialization Parameters Relevant to Streams" for more information about the STREAMS_POOL_SIZE initialization parameter

















Capture Process Checkpoints

A checkpoint is information about the current state of a capture process that is stored persistently in the data dictionary of the database running the capture process. A capture process tries to record a checkpoint at regular intervals called checkpoint intervals.



Required Checkpoint SCN

The SCN that corresponds to the lowest checkpoint for which a capture process requires redo data is the required checkpoint SCN. The redo log file that contains the required checkpoint SCN, and all subsequent redo log files, must be available to the capture process. If a capture process is stopped and restarted, then it starts scanning the redo log from the SCN that corresponds to its required checkpoint SCN. The required checkpoint SCN is important for recovery if a database stops unexpectedly. Also, if the first SCN is reset for a capture process, then it must be set to a value that is less than or equal to the required checkpoint SCN for the captured process. You can determine the required checkpoint SCN for a capture process by querying the REQUIRED_CHECKPOINT_SCN column in the DBA_CAPTURE data dictionary view.




	
See Also:

"Displaying the Redo Log Files that Are Required by Each Capture Process"











Maximum Checkpoint SCN

The SCN that corresponds to the last checkpoint recorded by a capture process is the maximum checkpoint SCN. If you create a capture process that captures changes from a source database, and other capture processes already exist which capture changes from the same source database, then the maximum checkpoint SCNs of the existing capture processes can help you decide whether the new capture process should create a new LogMiner data dictionary or share one of the existing LogMiner data dictionaries. You can determine the maximum checkpoint SCN for a capture process by querying the MAX_CHECKPOINT_SCN column in the DBA_CAPTURE data dictionary view.





Checkpoint Retention Time

The checkpoint retention time is the amount of time, in number of days, that a capture process retains checkpoints before purging them automatically. A capture process periodically computes the age of a checkpoint by subtracting the NEXT_TIME of the archived redo log that corresponds to the checkpoint from FIRST_TIME of the archived redo log file containing the required checkpoint SCN for the capture process. If the resulting value is greater than the checkpoint retention time, then the capture process automatically purges the checkpoint by advancing its first SCN value. Otherwise, the checkpoint is retained. The DBA_REGISTERED_ARCHIVED_LOG view displays the FIRST_TIME and NEXT_TIME for archived redo log files, and the REQUIRED_CHECKPOINT_SCN column in the DBA_CAPTURE view displays the required checkpoint SCN for a capture process. Figure 2-4 shows an example of a checkpoint being purged when the checkpoint retention time is set to 20 days.


Figure 2-4 Checkpoint Retention Time Set to 20 Days

[image: Description of Figure 2-4 follows]






In Figure 2-4, with the checkpoint retention time set to 20 days, the checkpoint at SCN 435250 is purged because it is 21 days old, while the checkpoint at SCN 479315 is retained because it is 8 days old.

Whenever the first SCN is reset for a capture process, the capture process purges information about archived redo log files prior to the new first SCN from its LogMiner data dictionary. After this information is purged, the archived redo log files remain on the hard disk, but the files are not needed by the capture process. The PURGEABLE column in the DBA_REGISTERED_ARCHIVED_LOG view displays YES for the archived redo log files that are no longer needed. These files can be removed from disk or moved to another location without affecting the capture process.

If you create a capture process using the CREATE_CAPTURE procedure in the DBMS_CAPTURE_ADM package, then you can specify the checkpoint retention time, in days, using the checkpoint_retention_time parameter. The default checkpoint retention time is 60 days if the checkpoint_retention_time parameter is not specified in the CREATE_CAPTURE procedure, or if you use the DBMS_STREAMS_ADM package to create the capture process. The CHECKPOINT_RETENTION_TIME column in the DBA_CAPTURE view displays the current checkpoint retention time for a capture process.

You can change the checkpoint retention time for a capture process by specifying a new time in the ALTER_CAPTURE procedure in the DBMS_CAPTURE_ADM package. If you do not want checkpoints for a capture process to be purged automatically, then specify DBMS_CAPTURE_ADM.INFINITE for the checkpoint_retention_time parameter in CREATE_CAPTURE or ALTER_CAPTURE.




	
Note:

To specify a checkpoint retention time for a capture process, the compatibility level of the database running the capture process must be 10.2.0 or higher. If the compatibility level is lower than 10.2.0 for a database, then the checkpoint retention time for all capture processes running on the database is infinite.










	
See Also:

	
"The LogMiner Data Dictionary for a Capture Process"


	
"First SCN and Start SCN Specifications During Capture Process Creation"


	
"A New First SCN Value and Purged LogMiner Data Dictionary Information"


	
"Managing the Checkpoint Retention Time for a Capture Process"


	
Oracle Database PL/SQL Packages and Types Reference for more information about the CREATE_CAPTURE and ALTER_CAPTURE procedures



















Capture Process Creation

You can create a capture process using the DBMS_STREAMS_ADM package or the DBMS_CAPTURE_ADM package. Using the DBMS_STREAMS_ADM package to create a capture process is simpler because defaults are used automatically for some configuration options. In addition, when you use the DBMS_STREAMS_ADM package, a rule set is created for the capture process and rules can be added to the rule set automatically. The rule set is a positive rule set if the inclusion_rule parameter is set to true (the default), or it is a negative rule set if the inclusion_rule parameter is set to false.

Alternatively, using the DBMS_CAPTURE_ADM package to create a capture process is more flexible, and you create one or more rule sets and rules for the capture process either before or after it is created. You can use the procedures in the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package to add rules to a rule set for the capture process. To create a capture process at a downstream database, you must use the DBMS_CAPTURE_ADM package.

When you create a capture process using a procedure in the DBMS_STREAMS_ADM package and generate one or more rules in the positive rule set for the capture process, the objects for which changes are captured are prepared for instantiation automatically, unless it is a downstream capture process and there is no database link from the downstream database to the source database.

When you create a capture process using the CREATE_CAPTURE procedure in the DBMS_CAPTURE_ADM package, you should prepare for instantiation any objects for which you plan to capture changes as soon as possible after capture process creation. You can prepare objects for instantiation using one of the following procedures in the DBMS_CAPTURE_ADM package:

	
PREPARE_TABLE_INSTANTIATION prepares a single table for instantiation.


	
PREPARE_SCHEMA_INSTANTIATION prepares for instantiation all of the objects in a schema and all objects added to the schema in the future.


	
PREPARE_GLOBAL_INSTANTIATION prepares for instantiation all of the objects in a database and all objects added to the database in the future.




These procedures can also enable supplemental logging for the key columns or for all columns in the table or tables prepared for instantiation.




	
Note:

After creating a capture process, avoid changing the DBID or global name of the source database for the capture process. If you change either the DBID or global name of the source database, then the capture process must be dropped and re-created.










	
See Also:

	
Chapter 11, "Managing a Capture Process" and Oracle Database PL/SQL Packages and Types Reference for more information about the following procedures, which can be used to create a capture process:

DBMS_STREAMS_ADM.ADD_SUBSET_RULES

DBMS_STREAMS_ADM.ADD_TABLE_RULES

DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

DBMS_CAPTURE_ADM.CREATE_CAPTURE


	
Oracle Streams Replication Administrator's Guide for more information about capture process rules and preparation for instantiation, and for more information about changing the DBID or global name of a source database














The LogMiner Data Dictionary for a Capture Process

A capture process requires a data dictionary that is separate from the primary data dictionary for the source database. This separate data dictionary is called a LogMiner data dictionary. There can be more than one LogMiner data dictionary for a particular source database. If there are multiple capture processes capturing changes from the source database, then two or more capture processes can share a LogMiner data dictionary, or each capture process can have its own LogMiner data dictionary. If the LogMiner data dictionary needed by a capture process does not exist, then the capture process populates it using information in the redo log when the capture process is started for the first time.

The DBMS_CAPTURE_ADM.BUILD procedure extracts data dictionary information to the redo log, and this procedure must be run at least once on the source database before any capture process capturing changes originating at the source database is started. The extracted data dictionary information in the redo log is consistent with the primary data dictionary at the time when the DBMS_CAPTURE_ADM.BUILD procedure is run. This procedure also identifies a valid first SCN value that can be used to create a capture process.

You can perform a build of data dictionary information in the redo log multiple times, and a particular build might or might not be used by a capture process to create a LogMiner data dictionary. The amount of information extracted to a redo log when you run the BUILD procedure depends on the number of database objects in the database. Typically, the BUILD procedure generates a large amount of redo data that a capture process must scan subsequently. Therefore, you should run the BUILD procedure only when necessary.

In most cases, if a build is required when a capture process is created using a procedure in the DBMS_STREAMS_ADM or DBMS_CAPTURE_ADM package, then the procedure runs the BUILD procedure automatically. However, the BUILD procedure is not run automatically during capture process creation in the following cases:

	
You use CREATE_CAPTURE and specify a non-NULL value for the first_scn parameter. In this case, the specified first SCN must correspond to a previous build.


	
You create a downstream capture process that does not use a database link. In this case, the command at the downstream database cannot communicate with the source database to run the BUILD procedure automatically. Therefore, you must run it manually on the source database and specify the first SCN that corresponds to the build during capture process creation.




A capture process requires a LogMiner data dictionary because the information in the primary data dictionary might not apply to the changes being captured from the redo log. These changes might have occurred minutes, hours, or even days before they are captured by a capture process. For example, consider the following scenario:

	
A capture process is configured to capture changes to tables.


	
A database administrator stops the capture process. When the capture process is stopped, it records the SCN of the change it was currently capturing.


	
User applications continue to make changes to the tables while the capture process is stopped.


	
The capture process is restarted three hours after it was stopped.




In this case, to ensure data consistency, the capture process must begin capturing changes in the redo log at the time when it was stopped. The capture process starts capturing changes at the SCN that it recorded when it was stopped.

The redo log contains raw data. It does not contain database object names and column names in tables. Instead, it uses object numbers and internal column numbers for database objects and columns, respectively. Therefore, when a change is captured, a capture process must reference a data dictionary to determine the details of the change.

Because a LogMiner data dictionary might be populated when a capture process is started for the first time, it might take some time to start capturing changes. The amount of time required depends on the number of database objects in the database. You can query the STATE column in the V$STREAMS_CAPTURE dynamic performance view to monitor the progress while a capture process is processing a data dictionary build.




	
See Also:

	
"Capture Process Rule Evaluation"


	
"First SCN and Start SCN"


	
"Capture Process States"


	
Oracle Streams Replication Administrator's Guide for more information about preparing database objects for instantiation













Scenario Illustrating Why a Capture Process Needs a LogMiner Data Dictionary

Consider a scenario in which a capture process has been configured to capture changes to table t1, which has columns a and b, and the following changes are made to this table at three different points in time:

Time 1: Insert values a=7 and b=15.

Time 2: Add column c.

Time 3: Drop column b.

If for some reason the capture process is capturing changes from an earlier time, then the primary data dictionary and the relevant version in the LogMiner data dictionary contain different information. Table 2-1 illustrates how the information in the LogMiner data dictionary is used when the current time is different than the change capturing time.


Table 2-1 Information About Table t1 in the Primary and LogMiner Data Dictionaries

	Current Time	Change Capturing Time	Primary Data Dictionary	LogMiner Data Dictionary
	
1

	
1

	
Table t1 has columns a and b.

	
Table t1 has columns a and b at time 1.


	
2

	
1

	
Table t1 has columns a, b, and c.

	
Table t1 has columns a and b at time 1.


	
3

	
1

	
Table t1 has columns a and c.

	
Table t1 has columns a and b at time 1.








Assume that the capture process captures the change resulting from the insert at time 1 when the actual time is time 3. If the capture process used the primary data dictionary, then it might assume that a value of 7 was inserted into column a and a value of 15 was inserted into column c, because those are the two columns for table t1 at time 3 in the primary data dictionary. However, a value of 15 actually was inserted into column b, not column c.

Because the capture process uses the LogMiner data dictionary, the error is avoided. The LogMiner data dictionary is synchronized with the capture process and continues to record that table t1 has columns a and b at time 1. So, the captured change specifies that a value of 15 was inserted into column b.





Multiple Capture Processes for the Same Source Database

If one or more capture processes are capturing changes made to a source database, and you want to create a new capture process that captures changes to the same source database, then the new capture process can either create a new LogMiner data dictionary or share one of the existing LogMiner data dictionaries with one or more other capture processes. Whether a new LogMiner data dictionary is created for a new capture process depends on the setting for the first_scn parameter when you run CREATE_CAPTURE to create a capture process:

	
If you specify NULL for the first_scn parameter, then the new capture process attempts to share a LogMiner data dictionary with one or more existing capture processes that capture changes from the same source database. NULL is the default for the first_scn parameter.


	
If you specify a non-NULL value for the first_scn parameter, then the new capture process uses a new LogMiner data dictionary that is created when the new capture process is started for the first time.







	
Note:

	
When you create a capture process and specify a non-NULL first_scn parameter value, this value should correspond to a data dictionary build in the redo log obtained by running the DBMS_CAPTURE_ADM.BUILD procedure.


	
During capture process creation, if the first_scn parameter is NULL and the start_scn parameter is non-NULL, then an error is raised if the start_scn parameter setting is lower than all of the first SCN values for all existing capture processes.












If multiple LogMiner data dictionaries exist, and you specify NULL for the first_scn parameter during capture process creation, then the new capture process automatically attempts to share the LogMiner data dictionary of one of the existing capture processes that has taken at least one checkpoint. You can view the maximum checkpoint SCN for all existing capture processes by querying the MAX_CHECKPOINT_SCN column in the DBA_CAPTURE data dictionary view.

If multiple LogMiner data dictionaries exist, and you specify a non-NULL value for the first_scn parameter during capture process creation, then the new capture process creates a new LogMiner data dictionary the first time it is started. In this case, before you create the new capture process, you must run the BUILD procedure in the DBMS_CAPTURE_ADM package on the source database. The BUILD procedure generates a corresponding valid first scn value that you can specify when you create the new capture process. You can find a first SCN generated by the BUILD procedure by running the following query:


COLUMN FIRST_CHANGE# HEADING 'First SCN' FORMAT 999999999
COLUMN NAME HEADING 'Log File Name' FORMAT A50

SELECT DISTINCT FIRST_CHANGE#, NAME FROM V$ARCHIVED_LOG
  WHERE DICTIONARY_BEGIN = 'YES';


This query can return more than one row if the BUILD procedure was run more than once.

The most important factor to consider when deciding whether a new capture process should share an existing LogMiner data dictionary or create a new one is the difference between the maximum checkpoint SCN values of the existing capture processes and the start SCN of the new capture process. If the new capture process shares a LogMiner data dictionary, then it must scan the redo log from the point of the maximum checkpoint SCN of the shared LogMiner data dictionary onward, even though the new capture process cannot capture changes prior to its first SCN. If the start SCN of the new capture process is much higher than the maximum checkpoint SCN of the existing capture process, then the new capture process must scan a large amount of redo data before it reaches its start SCN.

A capture process creates a new LogMiner data dictionary when the first_scn parameter is non-NULL during capture process creation. Follow these guidelines when you decide whether a new capture process should share an existing LogMiner data dictionary or create a new one:

	
If one or more maximum checkpoint SCN values is greater than the start SCN you want to specify, and if this start SCN is greater than the first SCN of one or more existing capture processes, then it might be better to share the LogMiner data dictionary of an existing capture process. In this case, you can assume there is a checkpoint SCN that is less than the start SCN and that the difference between this checkpoint SCN and the start SCN is small. The new capture process will begin scanning the redo log from this checkpoint SCN and will catch up to the start SCN quickly.


	
If no maximum checkpoint SCN is greater than the start SCN, and if the difference between the maximum checkpoint SCN and the start SCN is small, then it might be better to share the LogMiner data dictionary of an existing capture process. The new capture process will begin scanning the redo log from the maximum checkpoint SCN, but it will catch up to the start SCN quickly.


	
If no maximum checkpoint SCN is greater than the start SCN, and if the difference between the highest maximum checkpoint SCN and the start SCN is large, then it might take a long time for the capture process to catch up to the start SCN. In this case, it might be better for the new capture process to create a new LogMiner data dictionary. It will take some time to create the new LogMiner data dictionary when the new capture process is first started, but the capture process can specify the same value for its first SCN and start SCN, and thereby avoid scanning a large amount of redo data unnecessarily.




Figure 2-5 illustrates these guidelines.


Figure 2-5 Deciding Whether to Share a LogMiner Data Dictionary

[image: Description of Figure 2-5 follows]









	
Note:

	
If you create a capture process using one of the procedures in the DBMS_STREAMS_ADM package, then it is the same as specifying NULL for the first_scn and start_scn parameters in the CREATE_CAPTURE procedure.


	
You must prepare database objects for instantiation if a new capture process will capture changes made to these database objects. This requirement holds even if the new capture process shares a LogMiner data dictionary with one or more other capture processes for which these database objects have been prepared for instantiation.















	
See Also:

	
"First SCN and Start SCN"


	
"Capture Process Checkpoints"



















First SCN and Start SCN Specifications During Capture Process Creation

When you create a capture process using the CREATE_CAPTURE procedure in the DBMS_CAPTURE_ADM package, you can specify the first SCN and start SCN for the capture process. The first SCN is the lowest SCN in the redo log from which a capture process can capture changes, and it should be obtained through a data dictionary build or a query on the V$ARCHIVED_LOG dynamic performance view. The start SCN is the SCN from which a capture process begins to capture changes. The start SCN must be equal to or greater than the first SCN.

A capture process scans the redo data from the first SCN or an existing capture process checkpoint forward, even if the start SCN is higher than the first SCN or the checkpoint SCN. In this case, the capture process does not capture any changes in the redo data before the start SCN. Oracle recommends that, at capture process creation time, the difference between the first SCN and start SCN be as small as possible to keep the amount of redo scanned by the capture process to a minimum.

In some cases, the behavior of the capture process is different depending on the settings of these SCN values and on whether the capture process is local or downstream.




	
Note:

When you create a capture process using the DBMS_STREAMS_ADM package, both the first SCN and the start SCN are set to NULL during capture process creation.







The following sections describe capture process behavior for SCN value settings:

	
Non-NULL First SCN and NULL Start SCN for a Local or Downstream Capture Process


	
Non-NULL First SCN and Non-NULL Start SCN for a Local or Downstream Capture Process


	
NULL First SCN and Non-NULL Start SCN for a Local Capture Process


	
NULL First SCN and Non-NULL Start SCN for a Downstream Capture Process


	
NULL First SCN and NULL Start SCN






Non-NULL First SCN and NULL Start SCN for a Local or Downstream Capture Process

The new capture process is created at the local database with a new LogMiner session starting from the value specified for the first_scn parameter. The start SCN is set to the specified first SCN value automatically, and the new capture process does not capture changes that were made before this SCN.

The BUILD procedure in the DBMS_CAPTURE_ADM package is not run automatically. This procedure must have been run at least once before on the source database, and the specified first SCN must correspond to the SCN value of a previous build that is still available in the redo log. When the new capture process is started for the first time, it creates a new LogMiner data dictionary using the data dictionary information in the redo log. If the BUILD procedure in the DBMS_CAPTURE_ADM package has not been run at least once on the source database, then an error is raised when the capture process is started.

Capture process behavior is the same for a local capture process and a downstream capture process created with these SCN settings, except that a local capture process is created at the source database and a downstream capture process is created at the downstream database.






Non-NULL First SCN and Non-NULL Start SCN for a Local or Downstream Capture Process

If the specified value for the start_scn parameter is greater than or equal to the specified value for the first_scn parameter, then the new capture process is created at the local database with a new LogMiner session starting from the specified first SCN. In this case, the new capture process does not capture changes that were made before the specified start SCN. If the specified value for the start_scn parameter is less than the specified value for the first_scn parameter, then an error is raised.

The BUILD procedure in the DBMS_CAPTURE_ADM package is not run automatically. This procedure must have been called at least once before on the source database, and the specified first_scn must correspond to the SCN value of a previous build that is still available in the redo log. When the new capture process is started for the first time, it creates a new LogMiner data dictionary using the data dictionary information in the redo log. If the BUILD procedure in the DBMS_CAPTURE_ADM package has not been run at least once on the source database, then an error is raised.

Capture process behavior is the same for a local capture process and a downstream capture process created with these SCN settings, except that a local capture process is created at the source database and a downstream capture process is created at the downstream database.






NULL First SCN and Non-NULL Start SCN for a Local Capture Process

The new capture process creates a new LogMiner data dictionary if either one of the following conditions is true:

	
There is no existing capture process for the local source database, and the specified value for the start_scn parameter is greater than or equal to the current SCN for the database.


	
There are existing capture processes, but none of the capture processes have taken a checkpoint yet, and the specified value for the start_scn parameter is greater than or equal to the current SCN for the database.




In either of these cases, the BUILD procedure in the DBMS_CAPTURE_ADM package is run during capture process creation. The new capture process uses the resulting build of the source data dictionary in the redo log to create a LogMiner data dictionary the first time it is started, and the first SCN corresponds to the SCN of the data dictionary build.

However, if there is at least one existing local capture process for the local source database that has taken a checkpoint, then the new capture process shares an existing LogMiner data dictionary with one or more of the existing capture processes. In this case, a capture process with a first SCN that is lower than or equal to the specified start SCN must have been started successfully at least once.

If there is no existing capture process for the local source database (or if no existing capture processes have taken a checkpoint yet), and the specified start SCN is less than the current SCN for the database, then an error is raised.






NULL First SCN and Non-NULL Start SCN for a Downstream Capture Process

If the use_database_link parameter is set to true during capture process creation, then the database link is used to obtain the current SCN of the source database. In this case, the new capture process creates a new LogMiner data dictionary if either one of the following conditions is true:

	
There is no existing capture process that captures changes to the source database at the downstream database, and the specified value for the start_scn parameter is greater than or equal to the current SCN for the source database.


	
There are existing capture processes that capture changes to the source database at the downstream database, but none of the capture processes have taken a checkpoint yet, and the specified value for the start_scn parameter is greater than or equal to the current SCN for the source database.




In either of these cases, the BUILD procedure in the DBMS_CAPTURE_ADM package is run during capture process creation. The first time you start the new capture process, it uses the resulting build of the source data dictionary in the redo log files copied to the downstream database to create a LogMiner data dictionary. Here, the first SCN for the new capture process corresponds to the SCN of the data dictionary build.

However, if at least one existing capture process has taken a checkpoint and captures changes to the source database at the downstream database, then the new capture process shares an existing LogMiner data dictionary with one or more of these existing capture processes, regardless of the use_database_link parameter setting. In this case, one of these existing capture processes with a first SCN that is lower than or equal to the specified start SCN must have been started successfully at least once.

If the use_database_link parameter is set to true during capture process creation, there is no existing capture process that captures changes to the source database at the downstream database (or no existing capture process has taken a checkpoint), and the specified start_scn parameter value is less than the current SCN for the source database, then an error is raised.

If the use_database_link parameter is set to false during capture process creation and there is no existing capture process that captures changes to the source database at the downstream database (or no existing capture process has taken a checkpoint), then an error is raised.






NULL First SCN and NULL Start SCN

The behavior is the same as setting the first_scn parameter to NULL and setting the start_scn parameter to the current SCN of the source database.




	
See Also:

	
"NULL First SCN and Non-NULL Start SCN for a Local Capture Process"


	
"NULL First SCN and Non-NULL Start SCN for a Downstream Capture Process"





















A New First SCN Value and Purged LogMiner Data Dictionary Information

When you reset the first SCN value for an existing capture process, Oracle automatically purges LogMiner data dictionary information prior to the new first SCN setting. If the start SCN for a capture process corresponds to information that has been purged, then Oracle automatically resets the start SCN to the same value as the first SCN. However, if the start SCN is higher than the new first SCN setting, then the start SCN remains unchanged.

Figure 2-6 shows how Oracle automatically purges LogMiner data dictionary information prior to a new first SCN setting, and how the start SCN is not changed if it is higher than the new first SCN setting.


Figure 2-6 Start SCN Higher than Reset First SCN

[image: Description of Figure 2-6 follows]






Given this example, if the first SCN is reset again to a value higher than the start SCN value for a capture process, then the start SCN no longer corresponds to existing information in the LogMiner data dictionary. Figure 2-7 shows how Oracle resets the start SCN automatically if it is lower than a new first SCN setting.


Figure 2-7 Start SCN Lower than Reset First SCN

[image: Description of Figure 2-7 follows]






As you can see, the first SCN and start SCN for a capture process can continually increase over time, and, as the first SCN moves forward, it might no longer correspond to an SCN established by the DBMS_CAPTURE_ADM.BUILD procedure.




	
See Also:

	
"First SCN and Start SCN"


	
"Setting the Start SCN for an Existing Capture Process"


	
The DBMS_CAPTURE_ADM.ALTER_CAPTURE procedure in the Oracle Database PL/SQL Packages and Types Reference for information about altering a capture process

















The Streams Data Dictionary

Propagations and apply processes use a Streams data dictionary to keep track of the database objects from a particular source database. A Streams data dictionary is populated whenever one or more database objects are prepared for instantiation at a source database. Specifically, when a database object is prepared for instantiation, it is recorded in the redo log. When a capture process scans the redo log, it uses this information to populate the local Streams data dictionary for the source database. In the case of local capture, this Streams data dictionary is at the source database. In the case of downstream capture, this Streams data dictionary is at the downstream database.

When you prepare a database object for instantiation, you are informing Streams that information about the database object is needed by propagations that propagate changes to the database object and apply processes that apply changes to the database object. Any database that propagates or applies these changes requires a Streams data dictionary for the source database where the changes originated.

After an object has been prepared for instantiation, the local Streams data dictionary is updated when a DDL statement on the object is processed by a capture process. In addition, an internal message containing information about this DDL statement is captured and placed in the queue for the capture process. Propagations can then propagate these internal messages to destination queues at databases.

A Streams data dictionary is multiversioned. If a database has multiple propagations and apply processes, then all of them use the same Streams data dictionary for a particular source database. A database can contain only one Streams data dictionary for a particular source database, but it can contain multiple Streams data dictionaries if it propagates or applies changes from multiple source databases.




	
See Also:

	
Oracle Streams Replication Administrator's Guide for more information about instantiation


	
"Streams Data Dictionary for Propagations"


	
"Streams Data Dictionary for an Apply Process"

















ARCHIVELOG Mode and a Capture Process

The following list describes how different types of capture processes read the redo data:

	
A local capture process reads online redo logs whenever possible and archived redo log files otherwise. Therefore, the source database must be running in ARCHIVELOG mode when a local capture process is configured to capture changes.


	
A real-time downstream capture process reads online redo data from its source database whenever possible and archived redo log files that contain redo data from the source database otherwise. In this case, the redo data from the source database is stored in the standby redo log at the downstream database, and the archiver at the downstream database archives the redo data in the standby redo log. Therefore, both the source database and the downstream database must be running in ARCHIVELOG mode when a real-time downstream capture process is configured to capture changes.


	
An archived-log downstream capture process always reads archived redo log files from its source database. Therefore, the source database must be running in ARCHIVELOG mode when an archived-log downstream capture process is configured to capture changes.




You can query the REQUIRED_CHECKPOINT_SCN column in the DBA_CAPTURE data dictionary view to determine the required checkpoint SCN for a capture process. When the capture process is restarted, it scans the redo log from the required checkpoint SCN forward. Therefore, the redo log file that includes the required checkpoint SCN, and all subsequent redo log files, must be available to the capture process.

You must keep an archived redo log file available until you are certain that no capture process will need that file. The first SCN for a capture process can be reset to a higher value, but it cannot be reset to a lower value. Therefore, a capture process will never need the redo log files that contain information prior to its first SCN. Query the DBA_LOGMNR_PURGED_LOG data dictionary view to determine which archived redo log files will never be needed by any capture process.

When a local capture process falls behind, there is a seamless transition from reading an online redo log to reading an archived redo log, and, when a local capture process catches up, there is a seamless transition from reading an archived redo log to reading an online redo log. Similarly, when a real-time downstream capture process falls behind, there is a seamless transition from reading the standby redo log to reading an archived redo log, and, when a real-time downstream capture process catches up, there is a seamless transition from reading an archived redo log to reading the standby redo log.




	
Note:

At a downstream database in a downstream capture configuration, log files from a remote source database should be kept separate from local database log files. In addition, if the downstream database contains log files from multiple source databases, then the log files from each source database should be kept separate from each other.










	
See Also:

	
Oracle Database Administrator's Guide for information about running a database in ARCHIVELOG mode


	
"Displaying SCN Values for Each Redo Log File Used by Each Capture Process" for a query that determines which redo log files are no longer needed













RMAN and Archived Redo Log Files Required by a Capture Process

Some Recovery Manager (RMAN) commands delete archived redo log files. If one of these RMAN commands is used on a database that is running one or more local capture processes, then the RMAN command does not delete archived redo log files that are needed by a local capture process. That is, the RMAN command does not delete archived redo log files that contain changes with SCN values that are equal to or greater than the required checkpoint SCN for a local capture process.

The following RMAN commands delete archived redo log files:

	
The RMAN command DELETE OBSOLETE permanently purges the archived redo log files that are no longer needed. This command only deletes the archived redo log files in which all of the changes are less than the required checkpoint SCN for a local capture process.


	
The RMAN command BACKUP ARCHIVELOG ALL DELETE INPUT copies the archived redo log files and deletes the original files after completing the backup. This command only deletes the archived redo log files in which all of the changes are less than the required checkpoint SCN for a local capture process. If archived redo log files are not deleted because they contain changes required by a capture process, then RMAN display a warning message about skipping the delete operation for these files.




If a database is a source database for a downstream capture process, then these RMAN commands might delete archived redo log files that have not been transferred to the downstream database and are required by a downstream capture process. Therefore, before running these commands on the source database, make sure any archived redo log files needed by a downstream database have been transferred to the downstream database.




	
Note:

The flash recovery area feature of RMAN might delete archived redo log files that are required by a capture process.










	
See Also:

	
"Are Required Redo Log Files Missing?" for information about determining whether a capture process is missing required archived redo log files and for information correcting this problem. This section also contains information about flash recovery area and local capture processes.


	
Oracle Database Backup and Recovery Advanced User's Guide and Oracle Database Backup and Recovery Reference for more information about RMAN



















Capture Process Parameters

After creation, a capture process is disabled so that you can set the capture process parameters for your environment before starting it for the first time. Capture process parameters control the way a capture process operates. For example, the time_limit capture process parameter specifies the amount of time a capture process runs before it is shut down automatically.




	
See Also:

	
"Setting a Capture Process Parameter"


	
This section does not discuss all of the available capture process parameters. See the DBMS_CAPTURE_ADM.SET_PARAMETER procedure in the Oracle Database PL/SQL Packages and Types Reference for detailed information about all of the capture process parameters.














Capture Process Parallelism

The parallelism capture process parameter controls the number of preparer servers used by a capture process. The preparer servers concurrently format changes found in the redo log into LCRs. Each reader server, preparer server, and builder server is a parallel execution server, and the number of preparer servers equals the number specified for the parallelism capture process parameter. So, if parallelism is set to 5, then a capture process uses a total of seven parallel execution servers, assuming seven parallel execution servers are available: one reader server, five preparer servers, and one builder server.




	
Note:

	
Resetting the parallelism parameter automatically stops and restarts the capture process.


	
Setting the parallelism parameter to a number higher than the number of available parallel execution servers might disable the capture process. Make sure the PROCESSES and PARALLEL_MAX_SERVERS initialization parameters are set appropriately when you set the parallelism capture process parameter.















	
See Also:

"Capture Process Components" for more information about preparer servers











Automatic Restart of a Capture Process

You can configure a capture process to stop automatically when it reaches certain limits. The time_limit capture process parameter specifies the amount of time a capture process runs, and the message_limit capture process parameter specifies the number of messages a capture process can capture. The capture process stops automatically when it reaches one of these limits.

The disable_on_limit parameter controls whether a capture process becomes disabled or restarts when it reaches a limit. If you set the disable_on_limit parameter to y, then the capture process is disabled when it reaches a limit and does not restart until you restart it explicitly. If, however, you set the disable_on_limit parameter to n, then the capture process stops and restarts automatically when it reaches a limit.

When a capture process is restarted, it starts to capture changes at the point where it last stopped. A restarted capture process gets a new session identifier, and the parallel execution servers associated with the capture process also get new session identifiers. However, the capture process number (cnnn) remains the same.








Capture Process Rule Evaluation

A capture process evaluates changes it finds in the redo log against its positive and negative rule sets. The capture process evaluates a change against the negative rule set first. If one or more rules in the negative rule set evaluate to TRUE for the change, then the change is discarded, but if no rule in the negative rule set evaluates to TRUE for the change, then the change satisfies the negative rule set. When a change satisfies the negative rule set for a capture process, the capture process evaluates the change against its positive rule set. If one or more rules in the positive rule set evaluate to TRUE for the change, then the change satisfies the positive rule set, but if no rule in the positive rule set evaluates to TRUE for the change, then the change is discarded. If a capture process only has one rule set, then it evaluates changes against this one rule set only.

A running capture process completes the following series of actions to capture changes:

	
Finds changes in the redo log.


	
Performs prefiltering of the changes in the redo log. During this step, a capture process evaluates rules in its rule sets at a basic level to place changes found in the redo log into two categories: changes that should be converted into LCRs and changes that should not be converted into LCRs. Prefiltering is done in two phases. In the first phase, information that can be evaluated during prefiltering includes schema name, object name, and command type. If more information is needed to determine whether a change should be converted into an LCR, then information that can be evaluated during the second phase of prefiltering includes tag values and column values when appropriate.

Prefiltering is a safe optimization done with incomplete information. This step identifies relevant changes to be processed subsequently, such that:

	
A capture process converts a change into an LCR if the change satisfies the capture process rule sets. In this case, proceed to Step 3.


	
A capture process does not convert a change into an LCR if the change does not satisfy the capture process rule sets.


	
Regarding MAYBE evaluations, the rule evaluation proceeds as follows:

	
If a change evaluates to MAYBE against both the positive and negative rule set for a capture process, then the capture process might not have enough information to determine whether the change will definitely satisfy both of its rule sets. In this case, further evaluation is necessary. Proceed to Step 3.


	
If the change evaluates to FALSE against the negative rule set and MAYBE against the positive rule set for the capture process, then the capture process might not have enough information to determine whether the change will definitely satisfy both of its rule sets. In this case, further evaluation is necessary. Proceed to Step 3.


	
If the change evaluates to MAYBE against the negative rule set and TRUE against the positive rule set for the capture process, then the capture process might not have enough information to determine whether the change will definitely satisfy both of its rule sets. In this case, further evaluation is necessary. Proceed to Step 3.


	
If the change evaluates to TRUE against the negative rule set and MAYBE against the positive rule set for the capture process, then the capture process discards the change.


	
If the change evaluates to MAYBE against the negative rule set and FALSE against the positive rule set for the capture process, then the capture process discards the change.








	
Converts changes that satisfy, or might satisfy, the capture process rule sets into LCRs based on prefiltering.


	
Performs LCR filtering. During this step, a capture process evaluates rules regarding information in each LCR to separate the LCRs into two categories: LCRs that should be enqueued and LCRs that should be discarded.


	
Discards the LCRs that should not be enqueued because they did not satisfy the capture process rule sets.


	
Enqueues the remaining captured messages into the queue associated with the capture process.




For example, suppose the following rule is defined in the positive rule set for a capture process: Capture changes to the hr.employees table where the department_id is 50. No other rules are defined for the capture process, and the parallelism parameter for the capture process is set to 1.

Given this rule, suppose an UPDATE statement on the hr.employees table changes 50 rows in the table. The capture process performs the following series of actions for each row change:

	
Finds the next change resulting from the UPDATE statement in the redo log.


	
Determines that the change resulted from an UPDATE statement to the hr.employees table and must be captured. If the change was made to a different table, then the capture process ignores the change.


	
Captures the change and converts it into an LCR.


	
Filters the LCR to determine whether it involves a row where the department_id is 50.


	
Either enqueues the LCR into the queue associated with the capture process if it involves a row where the department_id is 50, or discards the LCR if it involves a row where the department_id is not 50 or is missing.







	
See Also:

	
"Capture Process Components"


	
Chapter 6, "How Rules Are Used in Streams" for more information about rule sets for Streams clients and for information about how messages satisfy rule sets












Figure 2-8 illustrates capture process rule evaluation in a flowchart.


Figure 2-8 Flowchart Showing Capture Process Rule Evaluation

[image: Description of Figure 2-8 follows]










Persistent Capture Process Status Upon Database Restart

A capture process maintains a persistent status when the database running the capture process is shut down and restarted. For example, if a capture process is enabled when the database is shut down, then the capture process automatically starts when the database is restarted. Similarly, if a capture process is disabled or aborted when a database is shut down, then the capture process is not started and retains the disabled or aborted status when the database is restarted.







10 Preparing a Streams Environment

This chapter provides instructions for preparing a database or a distributed database environment to use Streams.

This chapter contains these topics:

	
Configuring a Streams Administrator


	
Setting Initialization Parameters Relevant to Streams


	
Configuring Network Connectivity and Database Links






Configuring a Streams Administrator

To manage a Streams environment, either create a new user with the appropriate privileges or grant these privileges to an existing user. You should not use the SYS or SYSTEM user as a Streams administrator, and the Streams administrator should not use the SYSTEM tablespace as its default tablespace.

Complete the following steps to configure a Streams administrator at each database in the environment that will use Streams:

	
Connect in SQL*Plus as an administrative user who can create users, grant privileges, and create tablespaces. Remain connected as this administrative user for all subsequent steps.


	
Either create a tablespace for the Streams administrator or use an existing tablespace. For example, the following statement creates a new tablespace for the Streams administrator:


CREATE TABLESPACE streams_tbs DATAFILE '/usr/oracle/dbs/streams_tbs.dbf' 
  SIZE 25M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;


	
Create a new user to act as the Streams administrator or use an existing user. For example, to create a new user named strmadmin and specify that this user uses the streams_tbs tablespace, run the following statement:


CREATE USER strmadmin IDENTIFIED BY strmadminpw
   DEFAULT TABLESPACE streams_tbs
   QUOTA UNLIMITED ON streams_tbs;





	
Note:

For security purposes, use a password other than strmadminpw for the Streams administrator.








	
Grant the Streams administrator DBA role:


GRANT DBA TO strmadmin;


	
Optionally, run the GRANT_ADMIN_PRIVILEGE procedure in the DBMS_STREAMS_AUTH package. You might choose to run this procedure on the Streams administrator created in Step3 if any of the following conditions are true:

	
The Streams administrator will run user-created subprograms that execute subprograms in Oracle-supplied packages associated with Streams. An example is a user-created stored procedure that executes a procedure in the DBMS_STREAMS_ADM package.


	
The Streams administrator will run user-created subprograms that query data dictionary views associated with Streams. An example is a user-created stored procedure that queries the DBA_APPLY_ERROR data dictionary view.




A user must have explicit EXECUTE privilege on a package to execute a subprogram in the package inside of a user-created subprogram, and a user must have explicit SELECT privilege on a data dictionary view to query the view inside of a user-created subprogram. These privileges cannot be through a role. You can run the GRANT_ADMIN_PRIVILEGE procedure to grant such privileges to the Streams administrator, or you can grant them directly.

Depending on the parameter settings for the GRANT_ADMIN_PRIVILEGE procedure, it either grants the privileges needed to be a Streams administrator directly, or it generates a script that you can edit and then run to grant these privileges.




	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about this procedure







Use the GRANT_ADMIN_PRIVILEGE procedure to grant privileges directly:


BEGIN
  DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE(
    grantee          => 'strmadmin',    
    grant_privileges => true);
END;
/


Use the GRANT_ADMIN_PRIVILEGE procedure to generate a script:


	
Use the SQL statement CREATE DIRECTORY to create a directory object for the directory into which you want to generate the script. A directory object is similar to an alias for the directory. For example, to create a directory object called admin_dir for the /usr/admin directory on your computer system, run the following procedure:


CREATE DIRECTORY admin_dir AS '/usr/admin';


	
Run the GRANT_ADMIN_PRIVILEGE procedure to generate a script named grant_strms_privs.sql and place this script in the /usr/admin directory on your computer system:


BEGIN
  DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE(
    grantee          => 'strmadmin',    
    grant_privileges => false,
    file_name        => 'grant_strms_privs.sql',
    directory_name   => 'admin_dir');
END;
/


Notice that the grant_privileges parameter is set to false so that the procedure does not grant the privileges directly. Also, notice that the directory object created in Step a is specified for the directory_name parameter.


	
Edit the generated script if necessary and save your changes.


	
Execute the script in SQL*Plus:


SET ECHO ON
SPOOL grant_strms_privs.out
@/usr/admin/grant_strms_privs.sql
SPOOL OFF


	
Check the spool file to ensure that all of the grants executed successfully. If there are errors, then edit the script to correct the errors and rerun it.





	
If necessary, grant the Streams administrator the following privileges:

	
If no apply user is specified for an apply process, then the necessary privileges to perform DML and DDL changes on the apply objects owned by another user. If an apply user is specified, then the apply user must have these privileges.


	
If no apply user is specified for an apply process, then EXECUTE privilege on any PL/SQL procedure owned by another user that is executed by a Streams apply process. These procedures can be used in apply handlers or error handlers. If an apply user is specified, then the apply user must have these privileges.


	
EXECUTE privilege on any PL/SQL function owned by another user that is specified in a custom rule-based transformation for a rule used by a Streams capture process, propagation, apply process, or messaging client. For a capture process, if a capture user is specified, then the capture user must have these privileges. For an apply process, if an apply user is specified, then the apply user must have these privileges.


	
Privileges to alter database objects where appropriate. For example, if the Streams administrator must create a supplemental log group for a table in another schema, then the Streams administrator must have the necessary privileges to alter the table.


	
If the Streams administrator does not own the queue used by a Streams capture process, propagation, apply process, or messaging client, and is not specified as the queue user for the queue when the queue is created, then the Streams administrator must be configured as a secure queue user of the queue if you want the Streams administrator to be able to enqueue messages into or dequeue messages from the queue. The Streams administrator might also need ENQUEUE or DEQUEUE privileges on the queue, or both. See "Enabling a User to Perform Operations on a Secure Queue" for instructions.


	
EXECUTE privilege on any object types that the Streams administrator might need to access.





	
Repeat all of the previous steps at each database in the environment that will use Streams.







	
See Also:

"Monitoring Streams Administrators and Other Streams Users"












Setting Initialization Parameters Relevant to Streams

Table 10-1 lists initialization parameters that are important for the operation, reliability, and performance of a Streams environment. Set these parameters appropriately for your Streams environment. This table specifies whether each parameter is modifiable. A modifiable initialization parameter can be modified using the ALTER SYSTEM statement while an instance is running. Some of the modifiable parameters can also be modified for a single session using the ALTER SESSION statement.


Table 10-1 Initialization Parameters Relevant to Streams

	Parameter	Values	Description
	
COMPATIBLE

	
Default: 10.0.0


Range: 9.2.0 to Current Release Number

Modifiable?: No

	
This parameter specifies the release with which the Oracle server must maintain compatibility. Oracle servers with different compatibility levels can interoperate.

To use the new Streams features introduced in Oracle Database 10g Release 1, this parameter must be set to 10.1.0 or higher. To use downstream capture, this parameter must be set to 10.1.0 or higher at both the source database and the downstream database.

To use the new Streams features introduced in Oracle Database 10g Release 2, this parameter must be set to 10.2.0 or higher.


	
GLOBAL_NAMES

	
Default: false

Range: true or false

Modifiable?: Yes

	
Specifies whether a database link is required to have the same name as the database to which it connects.

To use Streams to share information between databases, set this parameter to true at each database that is participating in your Streams environment.


	
JOB_QUEUE_PROCESSES

	
Default: 0


Range: 0 to 1000

Modifiable?: Yes

	
Specifies the number of Jn job queue processes for each instance (J000 ... J999). Job queue processes handle requests created by DBMS_JOB.

This parameter must be set to at least 2 at each database that is propagating messages in your Streams environment, and should be set to the same value as the maximum number of jobs that can run simultaneously plus two.


	
LOG_ARCHIVE_CONFIG

	
Default: 'SEND, RECEIVE, NODG_CONFIG'

Range: Values:

	
SEND


	
NOSEND


	
RECEIVE


	
NORECEIVE


	
DG_CONFIG


	
NODG_CONFIG




Modifiable?: Yes

	
Enables or disables the sending of redo logs to remote destinations and the receipt of remote redo logs, and specifies the unique database names (DB_UNIQUE_NAME) for each database in the Data Guard configuration.

To use downstream capture and copy the redo data to the downstream database using redo transport services, specify the DB_UNIQUE_NAME of the source database and the downstream database using the DG_CONFIG attribute.


	
LOG_ARCHIVE_DEST_n

	
Default: None

Range: None

Modifiable?: Yes

	
Defines up to ten log archive destinations, where n is 1, 2, 3, ... 10.

To use downstream capture and copy the redo data to the downstream database using redo transport services, at least one log archive destination must be at the site running the downstream capture process.


	
LOG_ARCHIVE_DEST_STATE_n

	
Default: enable

Range: One of the following:

	
alternate


	
reset


	
defer


	
enable




Modifiable?: Yes

	
Specifies the availability state of the corresponding destination. The parameter suffix (1 through 10) specifies one of the ten corresponding LOG_ARCHIVE_DEST_n destination parameters.

To use downstream capture and copy the redo data to the downstream database using redo transport services, make sure the destination that corresponds to the LOG_ARCHIVE_DEST_n destination for the downstream database is set to enable.


	
OPEN_LINKS

	
Default: 4

Range: 0 to 255

Modifiable?: No

	
Specifies the maximum number of concurrent open connections to remote databases in one session. These connections include database links, as well as external procedures and cartridges, each of which uses a separate process.

In a Streams environment, make sure this parameter is set to the default value of 4 or higher.


	
PARALLEL_MAX_SERVERS

	
Default: Derived automatically

Range: 0 to 3599

Modifiable?: Yes

	
Specifies the maximum number of parallel execution processes and parallel recovery processes for an instance. As demand increases, Oracle will increase the number of processes from the number created at instance startup up to this value.

In a Streams environment, each capture process and apply process can use multiple parallel execution servers. Set this initialization parameter to an appropriate value to ensure that there are enough parallel execution servers.


	
PROCESSES

	
Default: 40 to operating system-dependent

Range: 6 to operating system-dependent

Modifiable?: No

	
Specifies the maximum number of operating system user processes that can simultaneously connect to Oracle.

Make sure the value of this parameter allows for all background processes, such as locks, job queue processes, and parallel execution processes. In Streams, capture processes and apply processes use background processes and parallel execution processes, and propagation jobs use job queue processes.


	
SESSIONS

	
Default: Derived from:

(1.1 * PROCESSES) + 5

Range: 1 to 231

Modifiable?: No

	
Specifies the maximum number of sessions that can be created in the system.

To run one or more capture processes or apply processes in a database, you might need to increase the size of this parameter. Each background process in a database requires a session.


	
SGA_MAX_SIZE

	
Default: Initial size of SGA at startup

Range: 0 to operating system-dependent

Modifiable?: No

	
Specifies the maximum size of SGA for the lifetime of a database instance.

To run multiple capture processes on a single database, you might need to increase the size of this parameter.


	
SGA_TARGET

	
Default: 0 (SGA autotuning is disabled)

Range: 64 to operating system-dependent

Modifiable?: Yes

	
Specifies the total size of all System Global Area (SGA) components.

If this parameter is set to a nonzero value, then the size of the Streams pool is managed by Automatic Shared Memory Management.

Oracle recommends enabling the autotuning of the various pools within the SGA by setting SGA_TARGET to a large nonzero value and setting STREAMS_POOL_SIZE to 0. When SGA_TARGET and STREAMS_POOL_SIZE are set in this way, Oracle automatically tunes the SGA and the Streams pool size to meet the workload requirements.


	
SHARED_POOL_SIZE

	
Default:

If SGA_TARGET is set: If the parameter is not specified, then the default is 0 (internally determined by the Oracle Database). If the parameter is specified, then the user-specified value indicates a minimum value for the memory pool.

If SGA_TARGET is not set (32-bit platforms): 32 MB, rounded up to the nearest granule size

If SGA_TARGET is not set (64-bit platforms): 84 MB, rounded up to the nearest granule size

Range: The granule size to operating system-dependent

Modifiable?: Yes

	
Specifies (in bytes) the size of the shared pool. The shared pool contains shared cursors, stored procedures, control structures, and other structures.

If the SGA_TARGET and STREAMS_POOL_SIZE initialization parameters are set to zero, then Streams transfers an amount equal to 10% of the shared pool from the buffer cache to the Streams pool.


	
STREAMS_POOL_SIZE

	
Default: 0

Range:

Minimum: 0

Maximum: operating system-dependent

Modifiable?: Yes

	
Specifies (in bytes) the size of the Streams pool. The Streams pool contains buffered queue messages. In addition, the Streams pool is used for internal communications during parallel capture and apply.

If the SGA_TARGET initialization parameter is set to a nonzero value, then the Streams pool size is set by Automatic Shared memory management, and STREAMS_POOL_SIZE specifies the minimum size.

This parameter is modifiable. If this parameter is reduced to zero when an instance is running, then Streams processes and jobs will not run.

You should increase the size of the Streams pool for each of the following factors:

	
10 MB for each capture process parallelism


	
10 MB or more for each buffered queue. The buffered queue is where the logical change records (LCRs) are stored.


	
1 MB for each apply process parallelism




For example, if parallelism is set to 3 for a capture process, then increase the Streams pool by 30 MB. If a database has two buffered queues, then increase the Streams pool by 20 MB or more. If parallelism is set to 5 for an apply process, then increase the Streams pool by 5 MB.

You can use the V$STREAMS_POOL_ADVICE dynamic performance view to determine an appropriate setting for this parameter.

See Also: "Streams Pool"


	
TIMED_STATISTICS

	
Default:

If STATISTICS_LEVEL is set to TYPICAL or ALL, then true

If STATISTICS_LEVEL is set to BASIC, then false

The default for STATISTICS_LEVEL is TYPICAL.

Range: true or false

Modifiable?: Yes

	
Specifies whether or not statistics related to time are collected.

To collect elapsed time statistics in the dynamic performance views related to Streams, set this parameter to true. The views that include elapsed time statistics include: V$STREAMS_CAPTURE, V$STREAMS_APPLY_COORDINATOR, V$STREAMS_APPLY_READER, V$STREAMS_APPLY_SERVER.


	
UNDO_RETENTION

	
Default: 900

Range: 0 to 232-1 (max value represented by 32 bits)

Modifiable?: Yes

	
Specifies (in seconds) the amount of committed undo information to retain in the database.

For a database running one or more capture processes, make sure this parameter is set to specify an adequate undo retention period.

If you are running one or more capture processes and you are unsure about the proper setting, then try setting this parameter to at least 3600. If you encounter "snapshot too old" errors, then increase the setting for this parameter until these errors cease. Make sure the undo tablespace has enough space to accommodate the UNDO_RETENTION setting.











	
See Also:

	
Oracle Database Reference for more information about these initialization parameters


	
Oracle Data Guard Concepts and Administration for more information about the LOG_ARCHIVE_DEST_n parameter


	
"Streams Pool" for more information about the SGA_TARGET and STREAMS_POOL_SIZE parameters


	
Oracle Database Administrator's Guide for more information about the UNDO_RETENTION parameter

















Configuring Network Connectivity and Database Links

If you plan to use Streams to share information between databases, then configure network connectivity and database links between these databases:

	
For Oracle databases, configure your network and Oracle Net so that the databases can communicate with each other.




	
See Also:

Oracle Database Net Services Administrator's Guide








	
For non-Oracle databases, configure an Oracle gateway for communication between the Oracle database and the non-Oracle database.




	
See Also:

Oracle Database Heterogeneous Connectivity Administrator's Guide








	
If you plan to propagate messages from a source queue at a database to a destination queue at another database, then create a private database link between the database containing the source queue and the database containing the destination queue. Each database link should use a CONNECT TO clause for the user propagating messages between databases.

For example, to create a database link to a database named dbs2.net connecting as a Streams administrator named strmadmin, run the following statement:


CREATE DATABASE LINK dbs2.net CONNECT TO strmadmin IDENTIFIED BY strmadminpw
   USING 'dbs2.net';





	
See Also:

Oracle Database Administrator's Guide for more information about creating database links














4 Streams Apply Process

This chapter explains the concepts and architecture of the Streams apply process.

This chapter contains these topics:

	
Introduction to the Apply Process


	
Apply Process Rules


	
Message Processing with an Apply Process


	
Datatypes Applied


	
Streams Apply Processes and RESTRICTED SESSION


	
Streams Apply Processes and Oracle Real Application Clusters


	
Apply Process Architecture







	
See Also:

Chapter 13, "Managing an Apply Process"









Introduction to the Apply Process

An apply process is an optional Oracle background process that dequeues messages from a specific queue. These messages can be logical change records (LCRs) or user messages. An apply process either applies each message directly or passes it as a parameter to an apply handler. An apply handler is a user-defined procedure used by an apply process for customized processing of messages. The LCRs dequeued by an apply process contain the results of data manipulation language (DML) changes or data definition language (DDL) changes that an apply process can apply to database objects in a destination database. A user-enqueued message dequeued by an apply process is of type ANYDATA and can contain any message, including an LCR or a user message.




	
Note:

An apply process can only dequeue messages from an ANYDATA queue, not a typed queue.












Apply Process Rules

An apply process applies changes based on rules that you define. Each rule specifies the database objects and types of changes for which the rule evaluates to TRUE. You can place these rules in the positive rule set or negative rule set for the apply process.

If a rule evaluates to TRUE for a change, and the rule is in the positive rule set for an apply process, then the apply process applies the change. If a rule evaluates to TRUE for a change, and the rule is in the negative rule set for an apply process, then the apply process discards the change. If an apply process has both a positive and a negative rule set, then the negative rule set is always evaluated first.

You can specify apply process rules for LCRs at the following levels:

	
A table rule applies or discards either row changes resulting from DML changes or DDL changes to a particular table. Subset rules are table rules that include a subset of the row changes to a particular table.


	
A schema rule applies or discards either row changes resulting from DML changes or DDL changes to the database objects in a particular schema.


	
A global rule applies or discards either all row changes resulting from DML changes or all DDL changes in the queue associated with an apply process.




For non-LCR messages, you can create rules to control apply process behavior for specific types of messages.




	
See Also:

	
Chapter 5, "Rules"


	
Chapter 6, "How Rules Are Used in Streams"

















Message Processing with an Apply Process

An apply process is a flexible mechanism for processing the messages in a queue. You have options to consider when you configure one or more apply processes for your environment. The following sections discuss the types of messages that an apply process can apply and the ways in which it can apply them.

	
Processing Captured or User-Enqueued Messages with an Apply Process


	
Message Processing Options for an Apply Process






Processing Captured or User-Enqueued Messages with an Apply Process

A single apply process can dequeue either of the following types of messages:

	
Captured message: A message that was captured implicitly by a capture process. A captured message contains a logical change record (LCR).


	
User-enqueued message: A message that was enqueued explicitly by an application, a user, or an apply process. A user-enqueued message can contain either an LCR or a user message.




A single apply process cannot dequeue both captured and user-enqueued messages. If a queue at a destination database contains both captured and user-enqueued messages, then the destination database must have at least two apply processes to process the messages.

A single apply process can apply user-enqueued messages that originated at multiple databases. However, a single apply process can apply captured messages from only one source database, because processing these LCRs requires knowledge of the dependencies, meaningful transaction ordering, and transactional boundaries at the source database. For a captured message, the source database is the database where the change encapsulated in the LCR was generated in the redo log.

Captured messages from multiple databases can be sent to a single destination queue. However, if a single queue contains captured messages from multiple source databases, then there must be multiple apply processes retrieving these LCRs. Each of these apply processes should be configured to receive captured messages from exactly one source database using rules. Oracle recommends that you use a separate ANYDATA queue for captured messages from each source database.

Also, each apply process can apply captured messages from only one capture process. If multiple capture processes are running on a source database, and LCRs from more than one of these capture processes are applied at a destination database, then there must be one apply process to apply changes from each capture process. In such an environment, Oracle recommends that each ANYDATA queue used by a capture process, propagation, or apply process have captured messages from at most one capture process from a particular source database. A queue can contain LCRs from more than one capture process if each capture process is capturing changes that originated at a different source database.




	
See Also:

	
"Introduction to Message Staging and Propagation" for more information about captured and user-enqueued messages


	
"Creating an Apply Process" for information about creating an apply process to apply captured or user-enqueued messages

















Message Processing Options for an Apply Process

Your options for message processing depend on whether or not the message received by an apply process is an LCR.

Figure 4-1 shows the message processing options for an apply process.


Figure 4-1 Apply Process Message Processing Options

[image: Description of Figure 4-1 follows]






The following sections describe these message processing options:

	
LCR Processing


	
Non-LCR User Message Processing


	
Audit Commit Information for Messages Using Precommit Handlers


	
Considerations for Apply Handlers


	
Summary of Message Processing Options






LCR Processing

You can configure an apply process to process each LCR that it dequeues in the following ways:

	
Apply the LCR Directly


	
Call a User Procedure to Process the LCR






Apply the LCR Directly

If you use this option, then an apply process applies the LCR without running a user procedure. The apply process either successfully applies the change in the LCR or, if a conflict or an apply error is encountered, tries to resolve the error with a conflict handler or a user-specified procedure called an error handler.

If a conflict handler can resolve the conflict, then it either applies the LCR or it discards the change in the LCR. If the error handler can resolve the error, then it should apply the LCR, if appropriate. An error handler can resolve an error by modifying the LCR before applying it. If the conflict handler or error handler cannot resolve the error, then the apply process places the transaction, and all LCRs associated with the transaction, into the error queue.






Call a User Procedure to Process the LCR

If you use this option, then an apply process passes the LCR as a parameter to a user procedure for processing. The user procedure can process the LCR in a customized way.

A user procedure that processes row LCRs resulting from DML statements is called a DML handler. A user procedure that processes DDL LCRs resulting from DDL statements is called a DDL handler. An apply process can have many DML handlers but only one DDL handler, which processes all DDL LCRs dequeued by the apply process.

For each table associated with an apply process, you can set a separate DML handler to process each of the following types of operations in row LCRs:

	
INSERT


	
UPDATE


	
DELETE


	
LOB_UPDATE




For example, the hr.employees table can have one DML handler procedure to process INSERT operations and a different DML handler procedure to process UPDATE operations. Alternatively, the hr.employees table can use the same DML handler procedure for each type of operation.

A user procedure can be used for any customized processing of LCRs. For example, if you want each insert into a particular table at the source database to result in inserts into multiple tables at the destination database, then you can create a user procedure that processes INSERT operations on the table to accomplish this. Or, if you want to log DDL changes before applying them, then you can create a user procedure that processes DDL operations to accomplish this.

A DML handler should never commit and never roll back, except to a named savepoint that the user procedure has established. To execute a row LCR inside a DML handler, invoke the EXECUTE member procedure for the row LCR. To execute a DDL LCR inside a DDL handler, invoke the EXECUTE member procedure for the DDL LCR.

To set a DML handler, use the SET_DML_HANDLER procedure in the DBMS_APPLY_ADM package. You can either set a DML handler for a specific apply process, or you can set a DML handler to be a general DML handler that is used by all apply processes in the database. If a DML handler for an operation on a table is set for a specific apply process, and another DML handler is a general handler for the same operation on the same table, then the specific DML handler takes precedence over the general DML handler.

To associate a DDL handler with a particular apply process, use the ddl_handler parameter in the CREATE_APPLY or the ALTER_APPLY procedure in the DBMS_APPLY_ADM package.

You create an error handler in the same way that you create a DML handler, except that you set the error_handler parameter to true when you run the SET_DML_HANDLER procedure. An error handler is invoked only if an apply error results when an apply process tries to apply a row LCR for the specified operation on the specified table.

Typically, DML handlers and DDL handlers are used in Streams replication environments to perform custom processing of LCRs, but these handlers can be used in nonreplication environments as well. For example, such handlers can be used to record changes made to database objects without replicating these changes.




	
Attention:

Do not modify LONG, LONG RAW, or nonassembled LOB column data in an LCR with DML handlers, error handlers, or custom rule-based transformation functions. DML handlers and error handlers can modify LOB columns in row LCRs that have been constructed by LOB assembly.










	
Note:

When you run the SET_DML_HANDLER procedure, you specify the object for which the handler is used. This object does not need to exist at the destination database.










	
See Also:

	
"Logical Change Records (LCRs)" for more information about row LCRs and DDL LCRs


	
Oracle Database PL/SQL Packages and Types Reference for more information about the EXECUTE member procedure for LCR types


	
Chapter 7, "Rule-Based Transformations"


	
Oracle Streams Replication Administrator's Guide for more information about DML handlers and DDL handlers



















Non-LCR User Message Processing

A user-enqueued message that does not contain an LCR is processed by the message handler specified for an apply process. A message handler is a user-defined procedure that can process user messages in a customized way for your environment.

The message handler offers advantages in any environment that has applications that need to update one or more remote databases or perform some other remote action. These applications can enqueue user messages into a queue at the local database, and Streams can propagate each user message to the appropriate queues at destination databases. If there are multiple destinations, then Streams provides the infrastructure for automatic propagation and processing of these messages at these destinations. If there is only one destination, then Streams still provides a layer between the application at the source database and the application at the destination database, so that, if the application at the remote database becomes unavailable, then the application at the source database can continue to function normally.

For example, a message handler can convert a user message into an electronic mail message. In this case, the user message can contain the attributes you would expect in an electronic mail message, such as from, to, subject, text_of_message, and so on. After converting a message into an electronic mail messages, the message handler can send it out through an electronic mail gateway.

You can specify a message handler for an apply process using the message_handler parameter in the CREATE_APPLY or the ALTER_APPLY procedure in the DBMS_APPLY_ADM package. A Streams apply process always assumes that a non-LCR message has no dependencies on any other messages in the queue. If parallelism is greater than 1 for an apply process that applies user-enqueued messages, then these messages can be dequeued by a message handler in any order. Therefore, if dependencies exist between these messages in your environment, then Oracle recommends that you set apply process parallelism to 1.




	
See Also:

"Managing the Message Handler for an Apply Process"












Audit Commit Information for Messages Using Precommit Handlers

You can use a precommit handler to audit commit directives for captured messages and transaction boundaries for user-enqueued messages. A precommit handler is a user-defined PL/SQL procedure that can receive the commit information for a transaction and process the commit information in any customized way. A precommit handler can work with a DML handler or a message handler.

For example, a handler can improve performance by caching data for the length of a transaction. This data can include cursors, temporary LOBs, data from a message, and so on. The precommit handler can release or execute the objects cached by the handler when a transaction completes.

A precommit handler executes when the apply process commits a transaction. You can use the commit_serialization apply process parameter to control the commit order for an apply process.


Commit Directives for Captured Messages

When you are using a capture process, and a user commits a transaction, the capture process captures an internal commit directive for the transaction if the transaction contains row LCRs that were captured. Once enqueued into a queue, these commit directives can be propagated to destination queues, along with the LCRs in a transaction. A precommit handler receives the commit SCN for these internal commit directives in the queue of an apply process before they are processed by the apply process.





Transaction Boundaries for User-Enqueued Messages

A user or application can enqueue messages into a queue and then issue a COMMIT statement to end the transaction. The enqueued messages are organized into a message group. Once enqueued into a queue, the messages in a message group can be propagated to other queues. When an apply process is configured to process user-enqueued messages, it generates a single transaction identifier and commit SCN for all the messages in a message group. Transaction identifiers and commit SCN values generated by an individual apply process have no relation to the source transaction, or to the values generated by any other apply process. A precommit handler configured for such an apply process receives the commit SCN supplied by the apply process.




	
See Also:

"Managing the Precommit Handler for an Apply Process"














Considerations for Apply Handlers

The following are considerations for using apply handlers:

	
DML handlers, DDL handlers, and message handlers can execute an LCR by calling the LCR's EXECUTE member procedure.


	
All applied DDL LCRs commit automatically. Therefore, if a DDL handler calls the EXECUTE member procedure of a DDL LCR, then a commit is performed automatically.


	
If necessary, an apply handler can set a Streams session tag.


	
An apply handler can call a Java stored procedure that is published (or wrapped) in a PL/SQL procedure.


	
If an apply process tries to invoke an apply handler that does not exist or is invalid, then the apply process aborts.


	
If an apply handler invokes a procedure or function in an Oracle-supplied package, then the user who runs the apply handler must have direct EXECUTE privilege on the package. It is not sufficient to grant this privilege through a role.







	
See Also:

	
Oracle Database PL/SQL Packages and Types Reference for more information about the EXECUTE member procedure for LCR types


	
Oracle Streams Replication Administrator's Guide for more information about Streams tags

















Summary of Message Processing Options

Table 4-1 summarizes the message processing options available when you are using one or more of the apply handlers described in the previous sections. Apply handlers are optional for row LCRs and DDL LCRs because an apply process can apply these messages directly. However, a message handler is required for processing user messages. In addition, an apply process dequeues a message only if the message satisfies the rule sets for the apply process. In general, a message satisfies the rule sets for an apply process if no rules in the negative rule set evaluate to TRUE for the message, and at least one rule in the positive rule set evaluates to TRUE for the message.


Table 4-1 Summary of Message Processing Options

	Apply Handler	Type of Message	Default Apply Process Behavior	Scope of User Procedure
	
DML Handler or Error Handler

	
Row LCR

	
Execute DML

	
One operation on one table


	
DDL Handler

	
DDL LCR

	
Execute DDL

	
Entire apply process


	
Message Handler

	
User Message

	
Create error transaction (if no message handler exists)

	
Entire apply process


	
Precommit Handler

	
Commit directive for transactions that include row LCRs or user messages

	
Commit transaction

	
Entire apply process








In addition to the message processing options described in this section, you can use the SET_ENQUEUE_DESTINATION procedure in the DBMS_APPLY_ADM package to instruct an apply process to enqueue messages into a specified destination queue. Also, you can control message execution using the SET_EXECUTE procedure in the DBMS_APPLY_ADM package.




	
See Also:

	
Chapter 6, "How Rules Are Used in Streams" for more information about rule sets for Streams clients and for information about how messages satisfy rule sets


	
"Specifying Message Enqueues by Apply Processes"


	
"Specifying Execute Directives for Apply Processes"





















Datatypes Applied

When applying row LCRs resulting from DML changes to tables, an apply process applies changes made to columns of the following datatypes:

	
VARCHAR2


	
NVARCHAR2


	
NUMBER


	
LONG


	
DATE


	
BINARY_FLOAT


	
BINARY_DOUBLE


	
TIMESTAMP


	
TIMESTAMP WITH TIME ZONE


	
TIMESTAMP WITH LOCAL TIME ZONE


	
INTERVAL YEAR TO MONTH


	
INTERVAL DAY TO SECOND


	
RAW


	
LONG RAW


	
CHAR


	
NCHAR


	
CLOB


	
NCLOB


	
BLOB


	
UROWID




An apply process does not apply row LCRs containing the results of DML changes in columns of the following datatypes: BFILE, ROWID, and user-defined type (including object types, REFs, varrays, nested tables, and Oracle-supplied types). Also, an apply process cannot apply changes to columns if the columns have been encrypted using transparent data encryption. An apply process raises an error if it attempts to apply a row LCR that contains information about a column of an unsupported datatype. Next, the apply process moves the transaction that includes the LCR into the error queue.




	
See Also:

	
"Datatypes Captured"


	
Oracle Database SQL Reference for more information about these datatypes

















Streams Apply Processes and RESTRICTED SESSION

When restricted session is enabled during system startup by issuing a STARTUP RESTRICT statement, apply processes do not start, even if they were running when the database shut down. When the restricted session is disabled, each apply process that was not stopped is started.

When restricted session is enabled in a running database by the SQL statement ALTER SYSTEM ENABLE RESTRICTED SESSION, it does not affect any running apply processes. These apply processes continue to run and apply messages. If a stopped apply process is started in a restricted session, then the apply process does not actually start until the restricted session is disabled.






Streams Apply Processes and Oracle Real Application Clusters

You can configure a Streams apply process to apply changes in an Oracle Real Application Clusters (RAC) environment. Each apply process is started and stopped on the owner instance for its ANYDATA queue, even if the start or stop procedure is run on a different instance.

If the owner instance for a queue table containing a queue used by an apply process becomes unavailable, then queue ownership is transferred automatically to another instance in the cluster. Also, an apply process will follow its queue to a different instance if the current owner instance becomes unavailable. The queue itself follows the rules for primary instance and secondary instance ownership. In addition, if the apply process was enabled when the owner instance became unavailable, then the apply process is restarted automatically on the new owner instance. If the apply process was disabled when the owner instance became unavailable, then the apply process remains disabled on the new owner instance.

The DBA_QUEUE_TABLES data dictionary view contains information about the owner instance for a queue table. Also, in a RAC environment, an apply coordinator process, its corresponding apply reader server, and all of its apply servers run on a single instance.




	
See Also:

	
"Queues and Oracle Real Application Clusters" for information about primary and secondary instance ownership for queues


	
"Streams Capture Processes and Oracle Real Application Clusters"


	
Oracle Database Reference for more information about the DBA_QUEUE_TABLES data dictionary view


	
"Persistent Apply Process Status upon Database Restart"

















Apply Process Architecture

You can create, alter, start, stop, and drop an apply process, and you can define apply process rules that control which messages an apply process dequeues from its queue. Messages are applied in the security domain of the apply user for an apply process. The apply user dequeues all messages that satisfy the apply process rule sets. The apply user can apply messages directly to database objects. In addition, the apply user runs all custom rule-based transformations specified by the rules in these rule sets. The apply user also runs user-defined apply handlers.

The apply user must have the necessary privileges to apply changes, including EXECUTE privilege on the rule sets used by the apply process, EXECUTE privilege on all custom rule-based transformation functions specified for rules in the positive rule set, EXECUTE privilege on any apply handlers, and privileges to dequeue messages from the apply process queue. An apply process can be associated with only one user, but one user can be associated with many apply processes.




	
See Also:

"Configuring a Streams Administrator" for information about the required privileges







This section discusses the following topics:

	
Apply Process Components


	
Apply Process Creation


	
Streams Data Dictionary for an Apply Process


	
Apply Process Parameters


	
Persistent Apply Process Status upon Database Restart


	
The Error Queue






Apply Process Components

An apply process consists of the following components:

	
A reader server that dequeues messages. The reader server is a parallel execution server that computes dependencies between LCRs and assembles messages into transactions. The reader server then returns the assembled transactions to the coordinator process, which assigns them to idle apply servers.


	
A coordinator process that gets transactions from the reader server and passes them to apply servers. The coordinator process name is annn, where nnn is a coordinator process number. Valid coordinator process names include a001 through a999. The coordinator process is an Oracle background process.


	
One or more apply servers that apply LCRs to database objects as DML or DDL statements or that pass the LCRs to their appropriate apply handlers. For non-LCR messages, the apply servers pass the messages to the message handler. Apply servers can also enqueue LCR and non-LCR messages into a queue specified by the DBMS_APPLY_ADM.SET_ENQUEUE_DESTINATION procedure. Each apply server is a parallel execution server. If an apply server encounters an error, then it then tries to resolve the error with a user-specified conflict handler or error handler. If an apply server cannot resolve an error, then it rolls back the transaction and places the entire transaction, including all of its messages, in the error queue.

When an apply server commits a completed transaction, this transaction has been applied. When an apply server places a transaction in the error queue and commits, this transaction also has been applied.




If a transaction being handled by an apply server has a dependency on another transaction that is not known to have been applied, then the apply server contacts the coordinator process and waits for instructions. The coordinator process monitors all of the apply servers to ensure that transactions are applied and committed in the correct order.




	
See Also:

Oracle Streams Replication Administrator's Guide for more information about apply processes and dependencies









Reader Server States

The state of a reader server describes what the reader server is doing currently. You can view the state of the reader server for an apply process by querying the V$STREAMS_APPLY_READER dynamic performance view. The following reader server states are possible:

	
INITIALIZING - Starting up


	
IDLE - Performing no work


	
DEQUEUE MESSAGES - Dequeuing messages from the apply process queue


	
SCHEDULE MESSAGES - Computing dependencies between messages and assembling messages into transactions


	
SPILLING - Spilling unapplied messages from memory to hard disk


	
PAUSED - Waiting for a DDL LCR to be applied







	
See Also:

"Displaying Information About the Reader Server for Each Apply Process" for a query that displays the state of an apply process reader server












Coordinator Process States

The state of a coordinator process describes what the coordinator process is doing currently. You can view the state of a coordinator process by querying the V$STREAMS_APPLY_COORDINATOR dynamic performance view. The following coordinator process states are possible:

	
INITIALIZING - Starting up


	
APPLYING - Passing transactions to apply servers


	
SHUTTING DOWN CLEANLY - Stopping without an error


	
ABORTING - Stopping because of an apply error







	
See Also:

"Displaying General Information About Each Coordinator Process" for a query that displays the state of a coordinator process












Apply Server States

The state of an apply server describes what the apply server is doing currently. You can view the state of each apply server for an apply process by querying the V$STREAMS_APPLY_SERVER dynamic performance view. The following apply server states are possible:

	
INITIALIZING - Starting up.


	
IDLE - Performing no work.


	
RECORD LOW-WATERMARK - Performing an administrative action that maintains information about the apply progress, which is used in the ALL_APPLY_PROGRESS and DBA_APPLY_PROGRESS data dictionary views.


	
ADD PARTITION - Performing an administrative action that adds a partition that is used for recording information about in-progress transactions.


	
DROP PARTITION - Performing an administrative action that drops a partition that was used to record information about in-progress transactions.


	
EXECUTE TRANSACTION - Applying a transaction.


	
WAIT COMMIT - Waiting to commit a transaction until all other transactions with a lower commit SCN are applied. This state is possible only if the COMMIT_SERIALIZATION apply process parameter is set to a value other than none and the PARALELLISM apply process parameter is set to a value greater than 1.


	
WAIT DEPENDENCY - Waiting to apply an LCR in a transaction until another transaction, on which it has a dependency, is applied. This state is possible only if the PARALELLISM apply process parameter is set to a value greater than 1.


	
WAIT FOR NEXT CHUNK - Waiting for the next set of LCRs for a large transaction.


	
TRANSACTION CLEANUP - Cleaning up an applied transaction, which includes removing LCRs from the apply process queue.







	
See Also:

"Displaying Information About the Apply Servers for Each Apply Process" for a query that displays the state of each apply process apply server














Apply Process Creation

You can create an apply process using the DBMS_STREAMS_ADM package or the DBMS_APPLY_ADM package. Using the DBMS_STREAMS_ADM package to create an apply process is simpler because defaults are used automatically for some configuration options. Alternatively, using the DBMS_APPLY_ADM package to create an apply process is more flexible.

When you create an apply process by running the CREATE_APPLY procedure in the DBMS_APPLY_ADM package, you can specify nondefault values for the apply_captured, apply_database_link, and apply_tag parameters. Then you can use the procedures in the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package to add rules to a rule set for the apply process.

If you create more than one apply process in a database, then the apply processes are completely independent of each other. These apply processes do not synchronize with each other, even if they apply LCRs from the same source database.

Table 4-2 describes the differences between using the DBMS_STREAMS_ADM package and the DBMS_APPLY_ADM package for apply process creation.


Table 4-2 DBMS_STREAMS_ADM and DBMS_APPLY_ADM Apply Process Creation

	DBMS_STREAMS_ADM Package	DBMS_APPLY_ADM Package
	
A rule set is created automatically for the apply process and rules can be added to the rule set automatically. The rule set is a positive rule set if the inclusion_rule parameter is set to true (the default). It is a negative rule set if the inclusion_rule parameter is set to false. You can use the procedures in the DBMS_STREAMS_ADM and DBMS_RULE_ADM package to manage rule sets and rules for the apply process after the apply process is created.

	
You create one or more rule sets and rules for the apply process either before or after it is created. You can use the procedures in the DBMS_RULE_ADM package to create rule sets and add rules to rule sets either before or after the apply process is created. You can use the procedures in the DBMS_STREAMS_ADM package to create rule sets and add rules to rule sets for the apply process after the apply process is created.


	
The apply process can apply messages only at the local database.

	
You specify whether the apply process applies messages at the local database or at a remote database during apply process creation.


	
Changes applied by the apply process generate tags in the redo log at the destination database with a value of 00 (double zero).

	
You specify the tag value for changes applied by the apply process during apply process creation.











	
See Also:

	
"Creating an Apply Process"


	
Oracle Streams Replication Administrator's Guide for more information about Streams tags

















Streams Data Dictionary for an Apply Process

When a database object is prepared for instantiation at a source database, a Streams data dictionary is populated automatically at the database where changes to the object are captured by a capture process. The Streams data dictionary is a multiversioned copy of some of the information in the primary data dictionary at a source database. The Streams data dictionary maps object numbers, object version information, and internal column numbers from the source database into table names, column names, and column datatypes. This mapping keeps each captured message as small as possible because a captured message can often use numbers rather than names internally.

Unless a captured message is passed as a parameter to a custom rule-based transformation during capture or propagation, the mapping information in the Streams data dictionary at the source database is needed to interpret the contents of the LCR at any database that applies the captured message. To make this mapping information available to an apply process, Oracle automatically populates a multiversioned Streams data dictionary at each destination database that has a Streams apply process. Oracle automatically propagates relevant information from the Streams data dictionary at the source database to all other databases that apply captured messages from the source database.




	
See Also:

	
"The Streams Data Dictionary"


	
"Streams Data Dictionary for Propagations"

















Apply Process Parameters

After creation, an apply process is disabled so that you can set the apply process parameters for your environment before starting the process for the first time. Apply process parameters control the way an apply process operates. For example, the time_limit apply process parameter specifies the amount of time an apply process runs before it is shut down automatically. After you set the apply process parameters, you can start the apply process.




	
See Also:

	
"Setting an Apply Process Parameter"


	
This section does not discuss all of the available apply process parameters. See the DBMS_APPLY_ADM.SET_PARAMETER procedure in the Oracle Database PL/SQL Packages and Types Reference for detailed information about all of the apply process parameters.














Apply Process Parallelism

The parallelism apply process parameter specifies the number of apply servers that can concurrently apply transactions. For example, if parallelism is set to 5, then an apply process uses a total of five apply servers. The reader server is a parallel execution server. So, if parallelism is set to 5, then an apply process uses a total of six parallel execution servers, assuming six parallel execution servers are available in the database. An apply process always uses two or more parallel execution servers.




	
Note:

	
Resetting the parallelism parameter automatically stops and restarts the apply process when the currently executing transactions are applied. This operation can take some time depending on the size of the transactions.


	
Setting the parallelism parameter to a number higher than the number of available parallel execution servers can disable the apply process. Make sure the PROCESSES and PARALLEL_MAX_SERVERS initialization parameters are set appropriately when you set the parallelism apply process parameter.















	
See Also:

	
"Apply Process Components" for more information about apply servers and the reader server


	
Oracle Database Administrator's Guide for information about managing parallel execution servers
















Commit Serialization

Apply servers can apply nondependent transactions at the destination database in an order that is different from the commit order at the source database. Dependent transactions are always applied at the destination database in the same order as they were committed at the source database.

You control whether the apply servers can apply nondependent transactions in a different order at the destination database using the commit_serialization apply parameter. This parameter has the following settings:

	
full: An apply process always commits all transactions in the order in which they were committed at the source database. This setting is the default.


	
none: An apply process can commit nondependent transactions in any order. An apply process always commits dependent transactions in the order in which they were committed at the source database. Performance is best if you specify this value.




If you specify none, then it is possible that a destination database commits changes in a different order than the source database. For example, suppose two nondependent transactions are committed at the source database in the following order:

	
Transaction A


	
Transaction B




At the destination database, these transactions might be committed in the opposite order:

	
Transaction B


	
Transaction A








Automatic Restart of an Apply Process

You can configure an apply process to stop automatically when it reaches certain predefined limits. The time_limit apply process parameter specifies the amount of time an apply process runs, and the transaction_limit apply process parameter specifies the number of transactions an apply process can apply. The apply process stops automatically when it reaches these limits.

The disable_on_limit parameter controls whether an apply process becomes disabled or restarts when it reaches a limit. If you set the disable_on_limit parameter to y, then the apply process is disabled when it reaches a limit and does not restart until you restart it explicitly. If, however, you set the disable_on_limit parameter to n, then the apply process stops and restarts automatically when it reaches a limit.

When an apply process is restarted, it gets a new session identifier, and the parallel execution servers associated with the apply process also get new session identifiers. However, the coordinator process number (annn) remains the same.





Stop or Continue on Error 

Using the disable_on_error apply process parameter, you can instruct an apply process to become disabled when it encounters an error or to continue applying transactions after it encounters an error.




	
See Also:

"The Error Queue"














Multiple Apply Processes in a Single Database

If you run multiple apply processes in a single database, consider increasing the size of the System Global Area (SGA). In a Real Application Clusters environment, consider increasing the size of the SGA for each instance. Use the SGA_MAX_SIZE initialization parameter to increase the SGA size. Also, if the size of the Streams pool is not managed automatically in the database, then you should increase the size of the Streams pool by 1 MB for each apply process parallelism. For example, if you have two apply processes running in a database, and the parallelism parameter is set to 4 for one of them and 1 for the other, then increase the Streams pool by 5 MB (4 + 1 = 5 parallelism).




	
Note:

The size of the Streams pool is managed automatically if the SGA_TARGET initialization parameter is set to a nonzero value.










	
See Also:

	
Streams Pool


	
"Setting Initialization Parameters Relevant to Streams" for more information about the STREAMS_POOL_SIZE initialization parameter

















Persistent Apply Process Status upon Database Restart

An apply process maintains a persistent status when the database running the apply process is shut down and restarted. For example, if an apply process is enabled when the database is shut down, then the apply process automatically starts when the database is restarted. Similarly, if an apply process is disabled or aborted when a database is shut down, then the apply process is not started and retains the disabled or aborted status when the database is restarted.






The Error Queue

The error queue contains all of the current apply errors for a database. If there are multiple apply processes in a database, then the error queue contains the apply errors for each apply process. To view information about apply errors, query the DBA_APPLY_ERROR data dictionary view or use Enterprise Manager.

The error queue stores information about transactions that could not be applied successfully by the apply processes running in a database. A transaction can include many messages. When an unhandled error occurs during apply, an apply process automatically moves all of the messages in the transaction that satisfy the apply process rule sets to the error queue.

You can correct the condition that caused an error and then reexecute the transaction that caused the error. For example, you might modify a row in a table to correct the condition that caused an error.

When the condition that caused the error has been corrected, you can either reexecute the transaction in the error queue using the EXECUTE_ERROR or EXECUTE_ALL_ERRORS procedure, or you can delete the transaction from the error queue using the DELETE_ERROR or DELETE_ALL_ERRORS procedure. These procedures are in the DBMS_APPLY_ADM package.

When you reexecute a transaction in the error queue, you can specify that the transaction be executed either by the user who originally placed the error in the error queue or by the user who is reexecuting the transaction. Also, the current Streams tag for the apply process is used when you reexecute a transaction in the error queue.

A reexecuted transaction uses any relevant apply handlers and conflict resolution handlers. If, to resolve the error, a row LCR in an error queue must be modified before it is executed, then you can configure a DML handler to process the row LCR that caused the error in the error queue. In this case, the DML handler can modify the row LCR in some way to avoid a repetition of the same error. The row LCR is passed to the DML handler when you reexecute the error containing the row LCR.

The error queue contains information about errors encountered at the local destination database only. It does not contain information about errors for apply processes running in other databases in a Streams environment.

The error queue uses the exception queues in the database. When you create an ANYDATA queue using the SET_UP_QUEUE procedure in the DBMS_STREAMS_ADM package, the procedure creates a queue table for the queue if one does not already exist. When a queue table is created, an exception queue is created automatically for the queue table. Multiple queues can use a single queue table, and each queue table has one exception queue. Therefore, a single exception queue can store errors for multiple queues and multiple apply processes.

An exception queue only contains the apply errors for its queue table, but the Streams error queue contains information about all of the apply errors in each exception queue in a database. You should use the procedures in the DBMS_APPLY_ADM package to manage Streams apply errors. You should not dequeue apply errors from an exception queue directly.




	
Note:

If a messaging client encounters an error when it is dequeuing messages, then the messaging client moves these messages to the exception queue associated with the its queue table. However, information about messaging client errors is not stored in the error queue. Only information about apply process errors is stored in the error queue.










	
See Also:

	
"Managing Apply Errors"


	
"Checking for Apply Errors"


	
"Displaying Detailed Information About Apply Errors"


	
"Managing an Error Handler"


	
Chapter 6, "How Rules Are Used in Streams" for more information about rule sets for Streams clients and for information about how messages satisfy rule sets


	
Oracle Database PL/SQL Packages and Types Reference for more information on the DBMS_APPLY_ADM package


	
Oracle Database Reference for more information about the DBA_APPLY_ERROR data dictionary view


















6  How Rules Are Used in Streams

This chapter explains how rules are used in Streams.

This chapter contains these topics:

	
Overview of How Rules Are Used in Streams


	
Rule Sets and Rule Evaluation of Messages


	
System-Created Rules


	
Evaluation Contexts Used in Streams


	
Streams and Event Contexts


	
Streams and Action Contexts


	
User-Created Rules, Rule Sets, and Evaluation Contexts







	
See Also:

	
Chapter 5, "Rules" for more information about rules


	
Chapter 14, "Managing Rules"














Overview of How Rules Are Used in Streams

In Streams, each of the following mechanisms is called a Streams client because each one is a client of a rules engine, when the mechanism is associated with one or more rule sets:

	
Capture process


	
Propagation


	
Apply process


	
Messaging client




Each of these clients can be associated with at most two rule sets: a positive rule set and a negative rule set. A single rule set can be used by multiple capture processes, propagations, apply processes, and messaging clients within the same database. Also, a single rule set can be a positive rule set for one Streams client and a negative rule set for another Streams client.

Figure 6-1 illustrates how multiple clients of a rules engine can use one rule set.


Figure 6-1 One Rule Set Can Be Used by Multiple Clients of a Rules Engine

[image: Description of Figure 6-1 follows]






A Streams client performs a task if a message satisfies its rule sets. In general, a message satisfies the rule sets for a Streams client if no rules in the negative rule set evaluate to TRUE for the message, and at least one rule in the positive rule set evaluates to TRUE for the message.

"Rule Sets and Rule Evaluation of Messages" contains more detailed information about how a message satisfies the rule sets for a Streams client, including information about Streams client behavior when one or more rule sets are not specified.

Specifically, you use rule sets in Streams to do the following:

	
Specify the changes that a capture process captures from the redo log or discards. That is, if a change found in the redo log satisfies the rule sets for a capture process, then the capture process captures the change. If a change found in the redo log causes does not satisfy the rule sets for a capture process, then the capture process discards the change.


	
Specify the messages that a propagation propagates from one queue to another or discards. That is, if a message in a queue satisfies the rule sets for a propagation, then the propagation propagates the message. If a message in a queue does not satisfy the rule sets for a propagation, then the propagation discards the message.


	
Specify the messages that an apply process retrieves from a queue or discards. That is, if a message in a queue satisfies the rule sets for an apply process, then the message is dequeued and processed by the apply process. If a message in a queue does not satisfy the rule sets for an apply process, then the apply process discards the message.


	
Specify the user-enqueued messages that a messaging client dequeues from a queue or discards. That is, if a user-enqueued message in a queue satisfies the rule sets for a messaging client, then the user or application that is using the messaging client dequeues the message. If a user-enqueued message in a queue does not satisfy the rule sets for a messaging client, then the user or application that is using the messaging client discards the message.




In the case of a propagation or an apply process, the messages evaluated against the rule sets can be captured messages or user-enqueued messages.

If there are conflicting rules in the positive rule set associated with a client, then the client performs the task if either rule evaluates to TRUE. For example, if a rule in the positive rule set for a capture process contains one rule that instructs the capture process to capture the results of data manipulation language (DML) changes to the hr.employees table, but another rule in the rule set instructs the capture process not to capture the results of DML changes to the hr.employees table, then the capture process captures these changes.

Similarly, if there are conflicting rules in the negative rule set associated with a client, then the client discards a message if either rule evaluates to TRUE for the message. For example, if a rule in the negative rule set for a capture process contains one rule that instructs the capture process to discard the results of DML changes to the hr.departments table, but another rule in the rule set instructs the capture process not to discard the results of DML changes to the hr.departments table, then the capture process discards these changes.




	
See Also:

For more information about Streams clients:
	
Chapter 2, "Streams Capture Process"


	
"Message Propagation Between Queues"


	
Chapter 4, "Streams Apply Process"


	
"Messaging Clients"

















Rule Sets and Rule Evaluation of Messages

Streams clients perform the following tasks based on rules:

	
A capture process captures changes in the redo log, converts the changes into logical change records (LCRs), and enqueues messages containing these LCRs into the capture process queue.


	
A propagation propagates either captured messages or user-enqueued messages, or both, from a source queue to a destination queue.


	
An apply process dequeues either captured or user-enqueued messages from its queue and applies these messages directly or sends the messages to an apply handler.


	
A messaging client dequeues user-enqueued messages from its queue.




These Streams clients are all clients of the rules engine. A Streams client performs its task for a message when the message satisfies the rule sets used by the Streams client. A Streams client can have no rule set, only a positive rule set, only a negative rule set, or both a positive and a negative rule set. The following sections explain how rule evaluation works in each of these cases:

	
Streams Client with No Rule Set


	
Streams Client with a Positive Rule Set Only


	
Streams Client with a Negative Rule Set Only


	
Streams Client with Both a Positive and a Negative Rule Set


	
Streams Client with One or More Empty Rule Sets


	
Summary of Rule Sets and Streams Client Behavior






Streams Client with No Rule Set

A Streams client with no rule set performs its task for all of the messages it encounters. An empty rule set is not the same as no rule set at all.

A capture process should always have at least one rule set because it must not try to capture changes to unsupported database objects. If a propagation should always propagate all messages in its source queue, or if an apply process should always dequeue all messages in its queue, then removing all rule sets from the propagation or apply process might improve performance.




	
See Also:

"Streams Client with One or More Empty Rule Sets"












Streams Client with a Positive Rule Set Only

A Streams client with a positive rule set, but no negative rule set, performs its task for a message if any rule in the positive rule set evaluates to TRUE for the message. However, if all of the rules in a positive rule set evaluate to FALSE for the message, then the Streams client discards the message.






Streams Client with a Negative Rule Set Only

A Streams client with a negative rule set, but no positive rule set, discards a message if any rule in the negative rule set evaluates to TRUE for the message. However, if all of the rules in a negative rule set evaluate to FALSE for the message, then the Streams client performs its task for the message.






Streams Client with Both a Positive and a Negative Rule Set

If Streams client has both a positive and a negative rule set, then the negative rule set is evaluated first for a message. If any rule in the negative rule set evaluates to TRUE for the message, then the message is discarded, and the message is never evaluated against the positive rule set.

However, if all of the rules in the negative rule set evaluate to FALSE for the message, then the message is evaluated against the positive rule set. At this point, the behavior is the same as when the Streams client only has a positive rule set. That is, the Streams client performs its task for a message if any rule in the positive rule set evaluates to TRUE for the message. If all of the rules in a positive rule set evaluate to FALSE for the message, then the Streams client discards the message.






Streams Client with One or More Empty Rule Sets

A Streams client can have one or more empty rule sets. A Streams client behaves in the following ways if it has one or more empty rule sets:

	
If a Streams client has no positive rule set, and its negative rule set is empty, then the Streams client performs its task for all messages.


	
If a Streams client has both a positive and a negative rule set, and the negative rule set is empty but its positive rule set contains rules, then the Streams client performs its task based on the rules in the positive rule set.


	
If a Streams client has a positive rule set that is empty, then the Streams client discards all messages, regardless of the state of its negative rule set.









Summary of Rule Sets and Streams Client Behavior

Table 6-1 summarizes the Streams client behavior described in the previous sections.


Table 6-1 Rule Sets and Streams Client Behavior

	Negative Rule Set	Positive Rule Set	Streams Client Behavior
	
None

	
None

	
Performs its task for all messages


	
None

	
Exists with rules

	
Performs its task for messages that evaluate to TRUE against the positive rule set


	
Exists with rules

	
None

	
Discards messages that evaluate to TRUE against the negative rule set, and performs its task for all other messages


	
Exists with rules

	
Exists with rules

	
Discards messages that evaluate to TRUE against the negative rule set, and performs its task for remaining messages that evaluate to TRUE against the positive rule set. The negative rule set is evaluated first.


	
Exists but is empty

	
None

	
Performs its task for all messages


	
Exists but is empty

	
Exists with rules

	
Performs its task for messages that evaluate to TRUE against the positive rule set


	
None

	
Exists but is empty

	
Discards all messages


	
Exists but is empty

	
Exists but is empty

	
Discards all messages


	
Exists with rules

	
Exists but is empty

	
Discards all messages














System-Created Rules

A Streams client performs its task for a message if the message satisfies its rule sets. A system-created rule is created by the DBMS_STREAMS_ADM package and can specify one of the following levels of granularity: table, schema, or global. This section describes each of these levels. You can specify more than one level for a particular task. For example, you can instruct a single apply process to perform table-level apply for specific tables in the oe schema and schema-level apply for the entire hr schema. In addition, a single rule pertains to either the results of data manipulation language (DML) changes or data definition language (DDL) changes. So, for example, you must use at least two system-created rules to include all of the changes to a particular table: one rule for the results of DML changes and another rule for DDL changes. The results of a DML change are the row changes recorded in the redo log because of the DML change, or the row LCRs in a queue that encapsulate each row change.

Table 6-2 shows what each level of rule means for each Streams task. Remember that a negative rule set is evaluated before a positive rule set.


Table 6-2 Types of Tasks and Rule Levels

	Task	Table Rule	Schema Rule	Global Rule
	
Capture with a capture process

	
If the table rule is in a negative rule set, then discard the changes in the redo log for the specified table.

If the table rule is in a positive rule set, then capture all or a subset of the changes in the redo log for the specified table, convert them into logical change records (LCRs), and enqueue them.

	
If the schema rule is in a negative rule set, then discard the changes in the redo log for the schema itself and for the database objects in the specified schema.

If the schema rule is in a positive rule set, then capture the changes in the redo log for the schema itself and for the database objects in the specified schema, convert them into LCRs, and enqueue them.

	
If the global rule is in a negative rule set, then discard the changes to all of the database objects in the database.

If the global rule is in a positive rule set, then capture the changes to all of the database objects in the database, convert them into LCRs, and enqueue them.


	
Propagate with a propagation

	
If the table rule is in a negative rule set, then discard the LCRs relating to the specified table in the source queue.

If the table rule is in a positive rule set, then propagate all or a subset of the LCRs relating to the specified table in the source queue to the destination queue.

	
If the schema rule is in a negative rule set, then discard the LCRs related to the specified schema itself and the LCRs related to database objects in the schema in the source queue.

If the schema rule is in a positive rule set, then propagate the LCRs related to the specified schema itself and the LCRs related to database objects in the schema in the source queue to the destination queue.

	
If the global rule is in a negative rule set, then discard all of the LCRs in the source queue.

If the global rule is in a positive rule set, then propagate all of the LCRs in the source queue to the destination queue.


	
Apply with an apply process

	
If the table rule is in a negative rule set, then discard the LCRs in the queue relating to the specified table.

If the table rule is in a positive rule set, then apply all or a subset of the LCRs in the queue relating to the specified table.

	
If the schema rule is in a negative rule set, then discard the LCRs in the queue relating to the specified schema itself and the database objects in the schema.

If the schema rule is in a positive rule set, then apply the LCRs in the queue relating to the specified schema itself and the database objects in the schema.

	
If the global rule is in a negative rule set, then discard all of the LCRs in the queue.

If the global rule is in a positive rule set, then apply all of the LCRs in the queue.


	
Dequeue with a messaging client

	
If the table rule is in a negative rule set, then, when the messaging client is invoked, discard the user-enqueued LCRs relating to the specified table in the queue.

If the table rule is in a positive rule set, then, when the messaging client is invoked, dequeue all or a subset of the user-enqueued LCRs relating to the specified table in the queue.

	
If the schema rule is in a negative rule set, then, when the messaging client is invoked, discard the user-enqueued LCRs relating to the specified schema itself and the database objects in the schema in the queue.

If the schema rule is in a positive rule set, then, when the messaging client is invoked, dequeue the user-enqueued LCRs relating to the specified schema itself and the database objects in the schema in the queue.

	
If the global rule is in a negative rule set, then, when the messaging client is invoked, discard all of the user-enqueued LCRs in the queue.

If the global rule is in a positive rule set, then, when the messaging client is invoked, dequeue all of the user-enqueued LCRs in the queue.








You can use procedures in the DBMS_STREAMS_ADM package to create rules at each of these levels. A system-created rule can include conditions that modify the Streams client behavior beyond the descriptions in Table 6-2. For example, some rules can specify a particular source database for LCRs, and, in this case, the rule evaluates to TRUE only if an LCR originated at the specified source database. Table 6-3 lists the types of system-created rule conditions that can be specified in the rules created by the DBMS_STREAMS_ADM package.


Table 6-3 System-Created Rule Conditions Created by DBMS_STREAMS_ADM Package

	Rule Condition Evaluates to TRUE for	Streams Client	Create Using Procedure
	
All row changes recorded in the redo log because of DML changes to any of the tables in a particular database

	
Capture Process

	
ADD_GLOBAL_RULES


	
All DDL changes recorded in the redo log to any of the database objects in a particular database

	
Capture Process

	
ADD_GLOBAL_RULES


	
All row changes recorded in the redo log because of DML changes to any of the tables in a particular schema

	
Capture Process

	
ADD_SCHEMA_RULES


	
All DDL changes recorded in the redo log to a particular schema and any of the database objects in the schema

	
Capture Process

	
ADD_SCHEMA_RULES


	
All row changes recorded in the redo log because of DML changes to a particular table

	
Capture Process

	
ADD_TABLE_RULES


	
All DDL changes recorded in the redo log to a particular table

	
Capture Process

	
ADD_TABLE_RULES


	
All row changes recorded in the redo log because of DML changes to a subset of rows in a particular table

	
Capture Process

	
ADD_SUBSET_RULES


	
All row LCRs in the source queue

	
Propagation

	
ADD_GLOBAL_PROPAGATION_RULES


	
All DDL LCRs in the source queue

	
Propagation

	
ADD_GLOBAL_PROPAGATION_RULES


	
All row LCRs in the source queue relating to the tables in a particular schema

	
Propagation

	
ADD_SCHEMA_PROPAGATION_RULES


	
All DDL LCRs in the source queue relating to a particular schema and any of the database objects in the schema

	
Propagation

	
ADD_SCHEMA_PROPAGATION_RULES


	
All row LCRs in the source queue relating to a particular table

	
Propagation

	
ADD_TABLE_PROPAGATION_RULES


	
All DDL LCRs in the source queue relating to a particular table

	
Propagation

	
ADD_TABLE_PROPAGATION_RULES


	
All row LCRs in the source queue relating to a subset of rows in a particular table

	
Propagation

	
ADD_SUBSET_PROPAGATION_RULES


	
All user-enqueued messages in the source queue of the specified type that satisfy the user-specified rule condition

	
Propagation

	
ADD_MESSAGE_PROPAGATION_RULE


	
All row LCRs in the queue used by the apply process

	
Apply Process

	
ADD_GLOBAL_RULES


	
All DDL LCRs in the queue used by the apply process

	
Apply Process

	
ADD_GLOBAL_RULES


	
All row LCRs in the queue used by the apply process relating to the tables in a particular schema

	
Apply Process

	
ADD_SCHEMA_RULES


	
All DDL LCRs in the queue used by the apply process relating to a particular schema and any of the database objects in the schema

	
Apply Process

	
ADD_SCHEMA_RULES


	
All row LCRs in the queue used by the apply process relating to a particular table

	
Apply Process

	
ADD_TABLE_RULES


	
All DDL LCRs in the queue used by the apply process relating to a particular table

	
Apply Process

	
ADD_TABLE_RULES


	
All row LCRs in the queue used by the apply process relating to a subset of rows in a particular table

	
Apply Process

	
ADD_SUBSET_RULES


	
All user-enqueued messages in the queue used by the apply process of the specified type that satisfy the user-specified rule condition

	
Apply Process

	
ADD_MESSAGE_RULE


	
All user-enqueued row LCRs in the queue used by the messaging client

	
Messaging Client

	
ADD_GLOBAL_RULES


	
All user-enqueued DDL LCRs in the queue used by the messaging client

	
Messaging Client

	
ADD_GLOBAL_RULES


	
All user-enqueued row LCRs in the queue used by the messaging client relating to the tables in a particular schema

	
Messaging Client

	
ADD_SCHEMA_RULES


	
All user-enqueued DDL LCRs in the queue used by the messaging client relating to a particular schema and any of the database objects in the schema

	
Messaging Client

	
ADD_SCHEMA_RULES


	
All user-enqueued row LCRs in the messaging client's queue relating to a particular table

	
Messaging Client

	
ADD_TABLE_RULES


	
All user-enqueued DDL LCRs in the queue used by the messaging client relating to a particular table

	
Messaging Client

	
ADD_TABLE_RULES


	
All user-enqueued row LCRs in the queue used by the messaging client relating to a subset of rows in a particular table

	
Messaging Client

	
ADD_SUBSET_RULES


	
All user-enqueued messages in the queue used by the messaging client of the specified type that satisfy the user-specified rule condition

	
Messaging Client

	
ADD_MESSAGE_RULE








Each procedure listed in Table 6-3 does the following:

	
Creates a capture process, propagation, apply process, or messaging client if it does not already exist.


	
Creates a rule set for the specified capture process, propagation, apply process, or messaging client if a rule set does not already exist for it. The rule set can be a positive rule set or a negative rule set. You can create each type of rule set by running the procedure at least twice.


	
Creates zero or more rules and adds the rules to the rule set for the specified capture process, propagation, apply process, or messaging client. Based on your specifications when you run one of these procedures, the procedure adds the rules either to the positive rule set or to the negative rule set.




Except for the ADD_MESSAGE_RULE and ADD_MESSAGE_PROPAGATION_RULE procedures, these procedures create rule sets that use the SYS.STREAMS$_EVALUATION_CONTEXT evaluation context, which is an Oracle-supplied evaluation context for Streams environments. Global, schema, table, and subset rules use the SYS.STREAMS$_EVALUATION_CONTEXT evaluation context.

However, when you create a rule using either the ADD_MESSAGE_RULE or the ADD_MESSAGE_PROPAGATION_RULE procedure, the rule uses a system-generated evaluation context that is customized specifically for each message type. Rule sets created by the ADD_MESSAGE_RULE or the ADD_MESSAGE_PROPAGATION_RULE procedure do not have an evaluation context.

Except for ADD_SUBSET_RULES, ADD_SUBSET_PROPAGATION_RULES, ADD_MESSAGE_RULE, and ADD_MESSAGE_PROPAGATION_RULE, these procedures create either zero, one, or two rules. If you want to perform the Streams task for only the row changes resulting from DML changes or only for only DDL changes, then only one rule is created. If, however, you want to perform the Streams task for both the results of DML changes and DDL changes, then a rule is created for each. If you create a DML rule for a table now, then you can create a DDL rule for the same table in the future without modifying the DML rule created earlier. The same applies if you create a DDL rule for a table first and a DML rule for the same table in the future.

The ADD_SUBSET_RULES and ADD_SUBSET_PROPAGATION_RULES procedures always create three rules for three different types of DML operations on a table: INSERT, UPDATE, and DELETE. These procedures do not create rules for DDL changes to a table. You can use the ADD_TABLE_RULES or ADD_TABLE_PROPAGATION_RULES procedure to create a DDL rule for a table. In addition, you can add subset rules to positive rule sets only, not to negative rule sets.

The ADD_MESSAGE_RULE and ADD_MESSAGE_PROPAGATION_RULE procedures always create one rule with a user-specified rule condition. These procedures create rules for user-enqueued messages. They do not create rules for the results of DML changes or DDL changes to a table.

When you create propagation rules for captured messages, Oracle recommends that you specify a source database for the changes. An apply process uses transaction control messages to assemble captured messages into committed transactions. These transaction control messages, such as COMMIT and ROLLBACK, contain the name of the source database where the message occurred. To avoid unintended cycling of these messages, propagation rules should contain a condition specifying the source database, and you accomplish this by specifying the source database when you create the propagation rules.

The following sections describe system-created rules in more detail:

	
Global Rules


	
Schema Rules


	
Table Rules


	
Subset Rules


	
Message Rules


	
System-Created Rules and Negative Rule Sets


	
System-Created Rules with Added User-Defined Conditions







	
Note:

	
To create rules with more complex rule conditions, such as rules that use the NOT or OR logical conditions, either use the and_condition parameter, which is available with some of the procedures in the DBMS_STREAMS_ADM package, or use the DBMS_RULE_ADM package.


	
Each example in the sections that follow should be completed by a Streams administrator that has been granted the appropriate privileges, unless specified otherwise.


	
Some of the examples in this section have additional prerequisites. For example, a queue specified by a procedure parameter must exist.















	
See Also:

	
"Rule Sets and Rule Evaluation of Messages" for information about how messages satisfy the rule sets for a Streams client


	
Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_STREAMS_ADM package and the DBMS_RULE_ADM package


	
"Evaluation Contexts Used in Streams"


	
"Logical Change Records (LCRs)"


	
"Complex Rule Conditions"














Global Rules

When you use a rule to specify a Streams task that is relevant either to an entire database or to an entire queue, you are specifying a global rule. You can specify a global rule for DML changes, a global rule for DDL changes, or a global rule for each type of change (two rules total).

A single global rule in the positive rule set for a capture process means that the capture process captures the results of either all DML changes or all DDL changes to the source database. A single global rule in the negative rule set for a capture process means that the capture process discards the results of either all DML changes or all DDL changes to the source database.

A single global rule in the positive rule set for a propagation means that the propagation propagates either all row LCRs or all DDL LCRs in the source queue to the destination queue. A single global rule in the negative rule set for a propagation means that the propagation discards either all row LCRs or all DDL LCRs in the source queue.

A single global rule in the positive rule set for an apply process means that the apply process applies either all row LCRs or all DDL LCRs in its queue for a specified source database. A single global rule in the negative rule set for an apply process means that the apply process discards either all row LCRs or all DDL LCRs in its queue for a specified source database.

If you want to use global rules, but you are concerned about changes to database objects that are not supported by Streams, then you can create rules using the DBMS_RULE_ADM package to discard unsupported changes.




	
See Also:

"Rule Conditions that Instruct Streams Clients to Discard Unsupported LCRs"









Global Rules Example

Suppose you use the ADD_GLOBAL_RULES procedure in the DBMS_STREAMS_ADM package to instruct a Streams capture process to capture all DML changes and DDL changes in a database.

Run the ADD_GLOBAL_RULES procedure to create the rules:


BEGIN 
  DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
    streams_type        =>  'capture',
    streams_name        =>  'capture',
    queue_name          =>  'streams_queue',
    include_dml         =>  true,
    include_ddl         =>  true,
    include_tagged_lcr  =>  false,
    source_database     =>  NULL,
    inclusion_rule      =>  true);
END;
/


Notice that the inclusion_rule parameter is set to true. This setting means that the system-created rules are added to the positive rule set for the capture process.

NULL can be specified for the source_database parameter because rules are being created for a local capture process. You can also specify the global name of the local database. When creating rules for a downstream capture process or apply process using ADD_GLOBAL_RULES, specify a source database name.

The ADD_GLOBAL_RULES procedure creates two rules: one for row LCRs (which contain the results of DML changes) and one for DDL LCRs.

Here is the rule condition used by the row LCR rule:


(:dml.is_null_tag() = 'Y' )


Notice that the condition in the DML rule begins with the variable :dml. The value is determined by a call to the specified member function for the row LCR being evaluated. So, :dml.is_null_tag() is a call to the IS_NULL_TAG member function for the row LCR being evaluated.

Here is the rule condition used by the DDL LCR rule:


(:ddl.is_null_tag() = 'Y' )


Notice that the condition in the DDL rule begins with the variable :ddl. The value is determined by a call to the specified member function for the DDL LCR being evaluated. So, :ddl.is_null_tag() is a call to the IS_NULL_TAG member function for the DDL LCR being evaluated.

For a capture process, these conditions indicate that the tag must be NULL in a redo record for the capture process to capture a change. For a propagation, these conditions indicate that the tag must be NULL in an LCR for the propagation to propagate the LCR. For an apply process, these conditions indicate that the tag must be NULL in an LCR for the apply process to apply the LCR.

Given the rules created by this example in the positive rule set for the capture process, the capture process captures all supported DML and DDL changes made to the database.




	
Caution:

If you add global rules to the positive rule set for a capture process, then make sure you add rules to the negative capture process rule set to exclude database objects that are not support by Streams. Query the DBA_STREAMS_UNSUPPORTED data dictionary view to determine which database objects are not supported by Streams. If unsupported database objects are not excluded, then capture errors will result.










	
See Also:

"Listing the Database Objects that Are Not Compatible with Streams"











System-Created Global Rules Avoid Empty Rule Conditions Automatically

You can omit the is_null_tag condition in system-created rules by specifying true for the include_tagged_lcr parameter when you run a procedure in the DBMS_STREAMS_ADM package. For example, the following ADD_GLOBAL_RULES procedure creates rules without the is_null_tag condition:


BEGIN DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
   streams_type        =>  'capture',
   streams_name        =>  'capture_002',
   queue_name          =>  'streams_queue',
   include_dml         =>  true,
   include_ddl         =>  true,
   include_tagged_lcr  =>  true,
   source_database     =>  NULL,
   inclusion_rule      =>  true);
END;
/


When you set the include_tagged_lcr parameter to true for a global rule, and the source_database_name parameter is set to NULL, the rule condition used by the row LCR rule is the following:


(( :dml.get_source_database_name()>=' ' OR 
:dml.get_source_database_name()<=' ') )


Here is the rule condition used by the DDL LCR rule:


(( :ddl.get_source_database_name()>=' ' OR 
:ddl.get_source_database_name()<=' ') )


The system-created global rules contain these conditions to enable all row and DDL LCRs to evaluate to TRUE.

These rule conditions are specified to avoid NULL rule conditions for these rules. NULL rule conditions are not supported. In this case, if you want to capture all DML and DDL changes to a database, and you do not want to use any rule-based transformations for these changes upon capture, then you can choose to run the capture process without a positive rule set instead of specifying global rules.




	
Note:

	
When you create a capture process using a procedure in the DBMS_STREAMS_ADM package and generate one or more rules for the capture process, the objects for which changes are captured are prepared for instantiation automatically, unless it is a downstream capture process and there is no database link from the downstream database to the source database.


	
The capture process does not capture some types of DML and DDL changes, and it does not capture changes made in the SYS, SYSTEM, or CTXSYS schemas.















	
See Also:

	
Oracle Streams Replication Administrator's Guide for more information about capture process rules and preparation for instantiation


	
Chapter 2, "Streams Capture Process" for more information about the capture process and for detailed information about which DML and DDL statements are captured by a capture process


	
Chapter 5, "Rules" for more information about variables in conditions


	
Oracle Streams Replication Administrator's Guide for more information about Streams tags


	
"Rule Sets and Rule Evaluation of Messages" for more information about running a capture process with no positive rule set



















Schema Rules

When you use a rule to specify a Streams task that is relevant to a schema, you are specifying a schema rule. You can specify a schema rule for DML changes, a schema rule for DDL changes, or a schema rule for each type of change to the schema (two rules total).

A single schema rule in the positive rule set for a capture process means that the capture process captures either the DML changes or the DDL changes to the schema. A single schema rule in the negative rule set for a capture process means that the capture process discards either the DML changes or the DDL changes to the schema.

A single schema rule in the positive rule set for a propagation means that the propagation propagates either the row LCRs or the DDL LCRs in the source queue that contain changes to the schema. A single schema rule in the negative rule set for a propagation means that the propagation discards either the row LCRs or the DDL LCRs in the source queue that contain changes to the schema.

A single schema rule in the positive rule set for an apply process means that the apply process applies either the row LCRs or the DDL LCRs in its queue that contain changes to the schema. A single schema rule in the negative rule set for an apply process means that the apply process discards either the row LCRs or the DDL LCRs in its queue that contain changes to the schema.

If you want to use schema rules, but you are concerned about changes to database objects in a schema that are not supported by Streams, then you can create rules using the DBMS_RULE_ADM package to discard unsupported changes.




	
See Also:

"Rule Conditions that Instruct Streams Clients to Discard Unsupported LCRs"









Schema Rule Example

Suppose you use the ADD_SCHEMA_PROPAGATION_RULES procedure in the DBMS_STREAMS_ADM package to instruct a Streams propagation to propagate row LCRs and DDL LCRs relating to the hr schema from a queue at the dbs1.net database to a queue at the dbs2.net database.

Run the ADD_SCHEMA_PROPAGATION_RULES procedure at dbs1.net to create the rules:


BEGIN 
  DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES(
    schema_name              =>  'hr',
    streams_name             =>  'dbs1_to_dbs2',
    source_queue_name        =>  'streams_queue',
    destination_queue_name   =>  'streams_queue@dbs2.net',
    include_dml              =>  true,
    include_ddl              =>  true,
    include_tagged_lcr       =>  false,
    source_database          =>  'dbs1.net',
    inclusion_rule           =>  true);
END;
/


Notice that the inclusion_rule parameter is set to true. This setting means that the system-created rules are added to the positive rule set for the propagation.

The ADD_SCHEMA_PROPAGATION_RULES procedure creates two rules: one for row LCRs (which contain the results of DML changes) and one for DDL LCRs.

Here is the rule condition used by the row LCR rule:


((:dml.get_object_owner() = 'HR') and :dml.is_null_tag() = 'Y' 
and :dml.get_source_database_name() = 'DBS1.NET' )


Here is the rule condition used by the DDL LCR rule:


((:ddl.get_object_owner() = 'HR' or :ddl.get_base_table_owner() = 'HR') 
and :ddl.is_null_tag() = 'Y' and :ddl.get_source_database_name() = 'DBS1.NET' )


The GET_BASE_TABLE_OWNER member function is used in the DDL LCR rule because the GET_OBJECT_OWNER function can return NULL if a user who does not own an object performs a DDL change on the object.

Given these rules in the positive rule set for the propagation, the following list provides examples of changes propagated by the propagation:

	
A row is inserted into the hr.countries table.


	
The hr.loc_city_ix index is altered.


	
The hr.employees table is truncated.


	
A column is added to the hr.countries table.


	
The hr.update_job_history trigger is altered.


	
A new table named candidates is created in the hr schema.


	
Twenty rows are inserted into the hr.candidates table.




The propagation propagates the LCRs that contain all of the changes previously listed from the source queue to the destination queue.

Now, given the same rules, suppose a row is inserted into the oe.inventories table. This change is ignored because the oe schema was not specified in a schema rule, and the oe.inventories table was not specified in a table rule.








Table Rules

When you use a rule to specify a Streams task that is relevant only for an individual table, you are specifying a table rule. You can specify a table rule for DML changes, a table rule for DDL changes, or a table rule for each type of change to a specific table (two rules total).

A single table rule in the positive rule set for a capture process means that the capture process captures the results of either the DML changes or the DDL changes to the table. A single table rule in the negative rule set for a capture process means that the capture process discards the results of either the DML changes or the DDL changes to the table.

A single table rule in the positive rule set for a propagation means that the propagation propagates either the row LCRs or the DDL LCRs in the source queue that contain changes to the table. A single table rule in the negative rule set for a propagation means that the propagation discards either the row LCRs or the DDL LCRs in the source queue that contain changes to the table.

A single table rule in the positive rule set for an apply process means that the apply process applies either the row LCRs or the DDL LCRs in its queue that contain changes to the table. A single table rule in the negative rule set for an apply process means that the apply process discards either the row LCRs or the DDL LCRs in its queue that contain changes to the table.



Table Rules Example

Suppose you use the ADD_TABLE_RULES procedure in the DBMS_STREAMS_ADM package to instruct a Streams apply process to behave in the following ways:

	
Apply All Row LCRs Related to the hr.locations Table


	
Apply All DDL LCRs Related to the hr.countries Table






Apply All Row LCRs Related to the hr.locations Table

The changes in these row LCRs originated at the dbs1.net source database.

Run the ADD_TABLE_RULES procedure to create this rule:


BEGIN 
  DBMS_STREAMS_ADM.ADD_TABLE_RULES(
    table_name          =>  'hr.locations',
    streams_type        =>  'apply',
    streams_name        =>  'apply',
    queue_name          =>  'streams_queue',
    include_dml         =>  true,
    include_ddl         =>  false,
    include_tagged_lcr  =>  false,
    source_database     =>  'dbs1.net',
    inclusion_rule      =>  true);
END;
/


Notice that the inclusion_rule parameter is set to true. This setting means that the system-created rule is added to the positive rule set for the apply process.

The ADD_TABLE_RULES procedure creates a rule with a rule condition similar to the following:


(((:dml.get_object_owner() = 'HR' and :dml.get_object_name() = 'LOCATIONS')) 
and :dml.is_null_tag() = 'Y' and :dml.get_source_database_name() = 'DBS1.NET' )






Apply All DDL LCRs Related to the hr.countries Table

The changes in these DDL LCRs originated at the dbs1.net source database.

Run the ADD_TABLE_RULES procedure to create this rule:


BEGIN 
  DBMS_STREAMS_ADM.ADD_TABLE_RULES(
    table_name          =>  'hr.countries',
    streams_type        =>  'apply',
    streams_name        =>  'apply',
    queue_name          =>  'streams_queue',
    include_dml         =>  false,
    include_ddl         =>  true,
    include_tagged_lcr  =>  false,
    source_database     =>  'dbs1.net',
    inclusion_rule      =>  true);
END;
/


Notice that the inclusion_rule parameter is set to true. This setting means that the system-created rule is added to the positive rule set for the apply process.

The ADD_TABLE_RULES procedure creates a rule with a rule condition similar to the following:


(((:ddl.get_object_owner() = 'HR' and :ddl.get_object_name() = 'COUNTRIES')
or (:ddl.get_base_table_owner() = 'HR' 
and :ddl.get_base_table_name() = 'COUNTRIES')) and :ddl.is_null_tag() = 'Y' 
and :ddl.get_source_database_name() = 'DBS1.NET' )


The GET_BASE_TABLE_OWNER and GET_BASE_TABLE_NAME member functions are used in the DDL LCR rule because the GET_OBJECT_OWNER and GET_OBJECT_NAME functions can return NULL if a user who does not own an object performs a DDL change on the object.





Summary of Rules

In this example, the following table rules were defined:

	
A table rule that evaluates to TRUE if a row LCR contains a row change that results from a DML operation on the hr.locations table.


	
A table rule that evaluates to TRUE if a DDL LCR contains a DDL change performed on the hr.countries table.




Given these rules, the following list provides examples of changes applied by an apply process:

	
A row is inserted into the hr.locations table.


	
Five rows are deleted from the hr.locations table.


	
A column is added to the hr.countries table.




The apply process dequeues the LCRs containing these changes from its associated queue and applies them to the database objects at the destination database.

Given these rules, the following list provides examples of changes that are ignored by the apply process:

	
A row is inserted into the hr.employees table. This change is not applied because a change to the hr.employees table does not satisfy any of the rules.


	
A row is updated in the hr.countries table. This change is a DML change, not a DDL change. This change is not applied because the rule on the hr.countries table is for DDL changes only.


	
A column is added to the hr.locations table. This change is a DDL change, not a DML change. This change is not applied because the rule on the hr.locations table is for DML changes only.













Subset Rules

A subset rule is a special type of table rule for DML changes that is relevant only to a subset of the rows in a table. You can create subset rules for capture processes, apply processes, and messaging clients using the ADD_SUBSET_RULES procedure, and you can create subset rules for propagations using the ADD_SUBSET_PROPAGATION_RULES procedure. These procedures enable you to use a condition similar to a WHERE clause in a SELECT statement to specify the following:

	
That a capture process only captures a subset of the row changes resulting from DML changes to a particular table


	
That a propagation only propagates a subset of the row LCRs relating to a particular table


	
That an apply process only applies a subset of the row LCRs relating to a particular table


	
That a messaging client only dequeues a subset of the row LCRs relating to a particular table




The ADD_SUBSET_RULES procedure and the ADD_SUBSET_PROPAGATION_RULES procedure can add subset rules to the positive rule set only of a Streams client. You cannot add subset rules to the negative rule set for a Streams client using these procedures.

The following sections describe subset rules in more detail:

	
Subset Rules Example


	
Row Migration and Subset Rules


	
Subset Rules and Supplemental Logging


	
Guidelines for Using Subset Rules


	
Restrictions for Subset Rules







	
Note:

Capture process, propagation, and messaging client subset rules can be specified only at databases running Oracle Database 10g, but apply process subset rules can be specified at databases running Oracle9i Release 2 (9.2) or later.









Subset Rules Example

This example instructs a Streams apply process to apply a subset of row LCRs relating to the hr.regions table where the region_id is 2. These changes originated at the dbs1.net source database.

Run the ADD_SUBSET_RULES procedure to create three rules:


BEGIN 
  DBMS_STREAMS_ADM.ADD_SUBSET_RULES(
    table_name               =>  'hr.regions',
    dml_condition            =>  'region_id=2',
    streams_type             =>  'apply',
    streams_name             =>  'apply',
    queue_name               =>  'streams_queue',
    include_tagged_lcr       =>  false,
    source_database          =>  'dbs1.net');
END;
/


The ADD_SUBSET_RULES procedure creates three rules: one for INSERT operations, one for UPDATE operations, and one for DELETE operations.

Here is the rule condition used by the insert rule:


:dml.get_object_owner()='HR' AND :dml.get_object_name()='REGIONS' 
AND :dml.is_null_tag()='Y' AND :dml.get_source_database_name()='DBS1.NET' 
AND :dml.get_command_type() IN ('UPDATE','INSERT') 
AND (:dml.get_value('NEW','"REGION_ID"') IS NOT NULL) 
AND (:dml.get_value('NEW','"REGION_ID"').AccessNumber()=2) 
AND (:dml.get_command_type()='INSERT' 
OR ((:dml.get_value('OLD','"REGION_ID"') IS NOT NULL) 
AND (((:dml.get_value('OLD','"REGION_ID"').AccessNumber() IS NOT NULL) 
AND NOT (:dml.get_value('OLD','"REGION_ID"').AccessNumber()=2)) 
OR ((:dml.get_value('OLD','"REGION_ID"').AccessNumber() IS NULL) 
AND NOT EXISTS (SELECT 1 FROM SYS.DUAL 
WHERE (:dml.get_value('OLD','"REGION_ID"').AccessNumber()=2))))))


Based on this rule condition, row LCRs are evaluated in the following ways:

	
For an insert, if the new value in the row LCR for region_id is 2, then the insert is applied.


	
For an insert, if the new value in the row LCR for region_id is not 2 or is NULL, then the insert is filtered out.


	
For an update, if the old value in the row LCR for region_id is not 2 or is NULL and the new value in the row LCR for region_id is 2, then the update is converted into an insert and applied. This automatic conversion is called row migration. See "Row Migration and Subset Rules" for more information.




Here is the rule condition used by the update rule:


:dml.get_object_owner()='HR' AND :dml.get_object_name()='REGIONS' 
AND :dml.is_null_tag()='Y' AND :dml.get_source_database_name()='DBS1.NET' 
AND :dml.get_command_type()='UPDATE' 
AND (:dml.get_value('NEW','"REGION_ID"') IS NOT NULL) 
AND (:dml.get_value('OLD','"REGION_ID"') IS NOT NULL) 
AND (:dml.get_value('OLD','"REGION_ID"').AccessNumber()=2) 
AND (:dml.get_value('NEW','"REGION_ID"').AccessNumber()=2)


Based on this rule condition, row LCRs are evaluated in the following ways:

	
For an update, if both the old value and the new value in the row LCR for region_id are 2, then the update is applied as an update.


	
For an update, if either the old value or the new value in the row LCR for region_id is not 2 or is NULL, then the update does not satisfy the update rule. The LCR can satisfy the insert rule, the delete rule, or neither rule.




Here is the rule condition used by the delete rule:


:dml.get_object_owner()='HR' AND :dml.get_object_name()='REGIONS' 
AND :dml.is_null_tag()='Y' AND :dml.get_source_database_name()='DBS1.NET' 
AND :dml.get_command_type() IN ('UPDATE','DELETE') 
AND (:dml.get_value('OLD','"REGION_ID"') IS NOT NULL) 
AND (:dml.get_value('OLD','"REGION_ID"').AccessNumber()=2) 
AND (:dml.get_command_type()='DELETE' 
OR ((:dml.get_value('NEW','"REGION_ID"') IS NOT NULL) 
AND (((:dml.get_value('NEW','"REGION_ID"').AccessNumber() IS NOT NULL) 
AND NOT (:dml.get_value('NEW','"REGION_ID"').AccessNumber()=2)) 
OR ((:dml.get_value('NEW','"REGION_ID"').AccessNumber() IS NULL) 
AND NOT EXISTS (SELECT 1 FROM SYS.DUAL 
WHERE (:dml.get_value('NEW','"REGION_ID"').AccessNumber()=2))))))


Based on this rule condition, row LCRs are evaluated in the following ways:

	
For a delete, if the old value in the row LCR for region_id is 2, then the delete is applied.


	
For a delete, if the old value in the row LCR for region_id is not 2 or is NULL, then the delete is filtered out.


	
For an update, if the old value in the row LCR for region_id is 2 and the new value in the row LCR for region_id is not 2 or is NULL, then the update is converted into a delete and applied. This automatic conversion is called row migration. See "Row Migration and Subset Rules" for more information.




Given these subset rules, the following list provides examples of changes applied by an apply process:

	
A row is updated in the hr.regions table where the old region_id is 4 and the new value of region_id is 2. This update is transformed into an insert.


	
A row is updated in the hr.regions table where the old region_id is 2 and the new value of region_id is 1. This update is transformed into a delete.




The apply process dequeues row LCRs containing these changes from its associated queue and applies them to the hr.regions table at the destination database.

Given these subset rules, the following list provides examples of changes that are ignored by the apply process:

	
A row is inserted into the hr.employees table. This change is not applied because a change to the hr.employees table does not satisfy the subset rules.


	
A row is updated in the hr.regions table where the region_id was 1 before the update and remains 1 after the update. This change is not applied because the subset rules for the hr.regions table evaluate to TRUE only when the new or old (or both) values for region_id is 2.









Row Migration and Subset Rules

When you use subset rules, an update operation can be converted into an insert or delete operation when it is captured, propagated, applied, or dequeued. This automatic conversion is called row migration and is performed by an internal transformation specified automatically in the action context for a subset rule. The following sections describe row migration during capture, propagation, apply, and dequeue.




	
Attention:

Subset rules should reside only in positive rule sets. Do not add subset rules to negative rule sets. Doing so can have unpredictable results, because row migration would not be performed on LCRs that are not discarded by the negative rule set. Also, row migration is not performed on LCRs discarded because they evaluate to TRUE against a negative rule set.








Row Migration During Capture

When a subset rule is in the rule set for a capture process, an update that satisfies the subset rule can be converted into an insert or delete when it is captured.

For example, suppose you use a subset rule to specify that a capture process captures changes to the hr.employees table where the employee's department_id is 50 using the following subset condition: department_id = 50. Assume that the table at the source database contains records for employees from all departments. If a DML operation changes an employee's department_id from 80 to 50, then the capture process with the subset rule converts the update operation into an insert operation and captures the change. Therefore, a row LCR that contains an INSERT is enqueued into the capture process queue. Figure 6-2 illustrates this example.


Figure 6-2 Row Migration During Capture

[image: Description of Figure 6-2 follows]






Similarly, if a captured update changes an employee's department_id from 50 to 20, then a capture process with this subset rule converts the update operation into a DELETE operation.





Row Migration During Propagation

When a subset rule is in the rule set for a propagation, an update operation can be converted into an insert or delete operation when a row LCR is propagated.

For example, suppose you use a subset rule to specify that a propagation propagates changes to the hr.employees table where the employee's department_id is 50 using the following subset condition: department_id = 50. If the source queue for the propagation contains a row LCR with an update operation on the hr.employees table that changes an employee's department_id from 50 to 80, then the propagation with the subset rule converts the update operation into a delete operation and propagates the row LCR to the destination queue. Therefore, a row LCR that contains a DELETE is enqueued into the destination queue. Figure 6-3 illustrates this example.


Figure 6-3 Row Migration During Propagation

[image: Description of Figure 6-3 follows]






Similarly, if a captured update changes an employee's department_id from 80 to 50, then a propagation with this subset rule converts the update operation into an INSERT operation.





Row Migration During Apply

When a subset rule is in the rule set for an apply process, an update operation can be converted into an insert or delete operation when a row LCR is applied.

For example, suppose you use a subset rule to specify that an apply process applies changes to the hr.employees table where the employee's department_id is 50 using the following subset condition: department_id = 50. Assume that the table at the destination database is a subset table that only contains records for employees whose department_id is 50. If a source database captures a change to an employee that changes the employee's department_id from 80 to 50, then the apply process with the subset rule at a destination database applies this change by converting the update operation into an insert operation. This conversion is needed because the employee's row does not exist in the destination table. Figure 6-4 illustrates this example.


Figure 6-4 Row Migration During Apply

[image: Description of Figure 6-4 follows]






Similarly, if a captured update changes an employee's department_id from 50 to 20, then an apply process with this subset rule converts the update operation into a DELETE operation.





Row Migration During Dequeue by a Messaging Client

When a subset rule is in the rule set for a messaging client, an update operation can be converted into an insert or delete operation when a row LCR is dequeued.

For example, suppose you use a subset rule to specify that a messaging client dequeues changes to the hr.employees table when the employee's department_id is 50 using the following subset condition: department_id = 50. If the queue for a messaging client contains a user-enqueued row LCR with an update operation on the hr.employees table that changes an employee's department_id from 50 to 90, then when a user or application invokes a messaging client with this subset rule, the messaging client converts the update operation into a delete operation and dequeues the row LCR. Therefore, a row LCR that contains a DELETE is dequeued. The messaging client can process this row LCR in any customized way. For example, it can send the row LCR to a custom application. Figure 6-5 illustrates this example.


Figure 6-5 Row Migration During Dequeue by a Messaging Client

[image: Description of Figure 6-5 follows]






Similarly, if a user-enqueued row LCR contains an update that changes an employee's department_id from 90 to 50, then a messaging client with this subset rule converts the UPDATE operation into an INSERT operation during dequeue.








Subset Rules and Supplemental Logging

If you specify a subset rule for a table for capture, propagation, or apply, then an unconditional supplemental log group must be specified at the source database for all the columns in the subset condition and all of the columns in the table(s) at the destination database(s) that will apply these changes. In some cases, when a subset rule is specified, an update can be converted to an insert, and, in these cases, supplemental information might be needed for some or all of the columns.

For example, if you specify a subset rule for an apply process at database dbs2.net on the postal_code column in the hr.locations table, and the source database for changes to this table is dbs1.net, then specify supplemental logging at dbs1.net for all of the columns that exist in the hr.locations table at dbs2.net, as well as the postal_code column, even if this column does not exist in the table at the destination database.




	
See Also:

Oracle Streams Replication Administrator's Guide for detailed information about supplemental logging












Guidelines for Using Subset Rules

The following sections provide guidelines for using subset rules:

	
Use Capture Subset Rules When All Destinations Need Only a Subset of Changes


	
Use Propagation or Apply Subset Rules When Some Destinations Need Subsets


	
Make Sure the Table Where Subset Row LCRs Are Applied Is a Subset Table






Use Capture Subset Rules When All Destinations Need Only a Subset of Changes

Subset rules should be used with a capture process when all destination databases of the capture process need only row changes that satisfy the subset condition for the table. In this case, a capture process captures a subset of the DML changes to the table, and one or more propagations propagate these changes in the form of row LCRs to one or more destination databases. At each destination database, an apply process applies these row LCRs to a subset table in which all of the rows satisfy the subset condition in the subset rules for the capture process. None of the destination databases need all of the DML changes made to the table. When you use subset rules for a local capture process, some additional overhead is incurred to perform row migrations at the site running the source database.






Use Propagation or Apply Subset Rules When Some Destinations Need Subsets

Subset rules should be used with a propagation or an apply process when some destinations in an environment need only a subset of captured DML changes. The following are examples of such an environment:

	
Most of the destination databases for captured DML changes to a table need a different subset of these changes.


	
Most of the destination databases need all of the captured DML changes to a table, but some destination databases need only a subset of these changes.




In these types of environments, the capture process must capture all of the changes to the table, but you can use subset rules with propagations and apply processes to ensure that subset tables at destination databases only apply the correct subset of captured DML changes.

Consider these factors when you decide to use subset rules with a propagation in this type of environment:

	
You can reduce network traffic because fewer row LCRs are propagated over the network.


	
The site that contains the source queue for the propagation incurs some additional overhead to perform row migrations.




Consider these factors when you decide to use subset rules with an apply process in this type of environment:

	
The queue used by the apply process can contain all row LCRs for the subset table. In a directed networks environment, propagations can propagate any of the row LCRs for the table to destination queues as appropriate, whether or not the apply process applies these row LCRs.


	
The site that is running the apply process incurs some additional overhead to perform row migrations.









Make Sure the Table Where Subset Row LCRs Are Applied Is a Subset Table

If an apply process might apply row LCRs that have been transformed by a row migration, then Oracle recommends that the table at the destination database be a subset table where each row matches the condition in the subset rule. If the table is not such a subset table, then apply errors might result.

For example, consider a scenario in which a subset rule for a capture process has the condition department_id = 50 for DML changes to the hr.employees table. If the hr.employees table at a destination database of this capture process contains rows for employees in all departments, not just in department 50, then a constraint violation might result during apply:

	
At the source database, a DML change updates the hr.employees table and changes the department_id for the employee with an employee_id of 100 from 90 to 50.


	
A capture process using the subset rule captures the change and converts the update into an insert and enqueues the change into the capture process queue as a row LCR.


	
A propagation propagates the row LCR to the destination database without modifying it.


	
An apply process attempts to apply the row LCR as an insert at the destination database, but an employee with an employee_id of 100 already exists in the hr.employees table, and an apply error results.




In this case, if the table at the destination database were a subset of the hr.employees table and only contained rows of employees whose department_id was 50, then the insert would have been applied successfully.

Similarly, if an apply process might apply row LCRs that have been transformed by a row migration to a table, and you allow users or applications to perform DML operations on the table, then Oracle recommends that all DML changes satisfy the subset condition. If you allow local changes to the table, then the apply process cannot ensure that all rows in the table meet the subset condition. For example, suppose the condition is department_id = 50 for the hr.employees table. If a user or an application inserts a row for an employee whose department_id is 30, then this row remains in the table and is not removed by the apply process. Similarly, if a user or an application updates a row locally and changes the department_id to 30, then this row also remains in the table.








Restrictions for Subset Rules

The following restrictions apply to subset rules:

	
A table with the table name referenced in the subset rule must exist in the same database as the subset rule, and this table must be in the same schema referenced for the table in the subset rule.


	
If the subset rule is in the positive rule set for a capture process, then the table must contain the columns specified in the subset condition, and the datatype of each of these columns must match the datatype of the corresponding column at the source database.


	
If the subset rule is in the positive rule set for a propagation or apply process, then the table must contain the columns specified in the subset condition, and the datatype of each column must match the datatype of the corresponding column in row LCRs that evaluate to TRUE for the subset rule.


	
Creating subset rules for tables that have one or more LOB, LONG, LONG RAW, or user-defined type columns is not supported.











Message Rules

When you use a rule to specify a Streams task that is relevant only for a user-enqueued message of a specific message type, you are specifying a message rule. You can specify message rules for propagations, apply processes, and messaging clients.

A single message rule in the positive rule set for a propagation means that the propagation propagates the user-enqueued messages of the message type in the source queue that satisfy the rule condition. A single message rule in the negative rule set for a propagation means that the propagation discards the user-enqueued messages of the message type in the source queue that satisfy the rule condition.

A single message rule in the positive rule set for an apply process means that the apply process dequeues user-enqueued messages of the message type that satisfy the rule condition. The apply process then sends these user-enqueued messages to its message handler. A single message rule in the negative rule set for an apply process means that the apply process discards user-enqueued messages of the message type in its queue that satisfy the rule condition.

A single message rule in the positive rule set for a messaging client means that a user or an application can use the messaging client to dequeue user-enqueued messages of the message type that satisfy the rule condition. A single message rule in the negative rule set for a messaging client means that the messaging client discards user-enqueued messages of the message type in its queue that satisfy the rule condition. Unlike propagations and apply processes, which propagate or apply messages automatically when they are running, a messaging client does not automatically dequeue or discard messages. Instead, a messaging client must be invoked by a user or application to dequeue or discard messages.



Message Rule Example

Suppose you use the ADD_MESSAGE_RULE procedure in the DBMS_STREAMS_ADM package to instruct a Streams client to behave in the following ways:

	
Dequeue User-Enqueued Messages If region Is EUROPE and priority Is 1


	
Send User-Enqueued Messages to a Message Handler If region Is AMERICAS and priority Is 2




The first instruction in the previous list pertains to a messaging client, while the second instruction pertains to an apply process.

The rules created in these examples are for messages of the following type:


CREATE TYPE strmadmin.region_pri_msg AS OBJECT(
  region         VARCHAR2(100),
  priority       NUMBER,
  message        VARCHAR2(3000))
/




Dequeue User-Enqueued Messages If region Is EUROPE and priority Is 1

Run the ADD_MESSAGE_RULE procedure to create a rule for messages of region_pri_msg type:


BEGIN
  DBMS_STREAMS_ADM.ADD_MESSAGE_RULE (
    message_type    =>  'strmadmin.region_pri_msg',
    rule_condition  =>  ':msg.region = ''EUROPE'' AND  ' ||
                        ':msg.priority = ''1'' ',
    streams_type    =>  'dequeue',
    streams_name    =>  'msg_client',
    queue_name      =>  'streams_queue',
    inclusion_rule  =>  true);
END;
/


Notice that dequeue is specified for the streams_type parameter. Therefore, this procedure creates a messaging client named msg_client if it does not already exist. If this messaging client already exists, then this procedure adds the message rule to its rule set. Also, notice that the inclusion_rule parameter is set to true. This setting means that the system-created rule is added to the positive rule set for the messaging client. The user who runs this procedure is granted the privileges to dequeue from the queue using the messaging client.

The ADD_MESSAGE_RULE procedure creates a rule with a rule condition similar to the following:


:"VAR$_52".region = 'EUROPE' AND  :"VAR$_52".priority = '1'


The variables in the rule condition that begin with VAR$ are variables that are specified in the system-generated evaluation context for the rule.




	
See Also:

"Evaluation Contexts Used in Streams"












Send User-Enqueued Messages to a Message Handler If region Is AMERICAS and priority Is 2

Run the ADD_MESSAGE_RULE procedure to create a rule for messages of region_pri_msg type:


BEGIN
  DBMS_STREAMS_ADM.ADD_MESSAGE_RULE (
    message_type    =>  'strmadmin.region_pri_msg',
    rule_condition  =>  ':msg.region = ''AMERICAS'' AND  ' ||
                        ':msg.priority = ''2'' ',
    streams_type    =>  'apply',
    streams_name    =>  'apply_msg',
    queue_name      =>  'streams_queue',
    inclusion_rule  =>  true);
END;
/


Notice that apply is specified for the streams_type parameter. Therefore, this procedure creates an apply process named apply_msg if it does not already exist. If this apply process already exists, then this procedure adds the message rule to its rule set. Also, notice that the inclusion_rule parameter is set to true. This setting means that the system-created rule is added to the positive rule set for the messaging client.

The ADD_MESSAGE_RULE procedure creates a rule with a rule condition similar to the following:


:"VAR$_56".region = 'AMERICAS' AND  :"VAR$_56".priority = '2'


The variables in the rule condition that begin with VAR$ are variables that are specified in the system-generated evaluation context for the rule.




	
See Also:

"Evaluation Contexts Used in Streams"











Summary of Rules

In this example, the following message rules were defined:

	
A message rule for a messaging client named msg_client that evaluates to TRUE if a message has EUROPE for its region and 1 for its priority. Given this rule, a user or application can use the messaging client to dequeue messages of region_pri_msg type that satisfy the rule condition.


	
A message rule for an apply process named apply_msg that evaluates to TRUE if a message has AMERICAS for its region and 2 for its priority. Given this rule, the apply process dequeues messages of region_pri_msg type that satisfy the rule condition and sends these messages to its message handler or reenqueues the messages into a specified queue.







	
See Also:

	
"Non-LCR User Message Processing"


	
"Enqueue Destinations for Messages During Apply"





















System-Created Rules and Negative Rule Sets

You add system-created rules to a negative rule set to specify that you do not want a Streams client to perform its task for changes that satisfy these rules. Specifically, a system-created rule in a negative rule set means the following for each type of Streams client:

	
A capture process discards changes that satisfy the rule.


	
A propagation discards messages in its source queue that satisfy the rule.


	
An apply process discards messages in its queue that satisfy the rule.


	
A messaging client discards messages in its queue that satisfy the rule.




If a Streams client does not have a negative rule set, then you can create a negative rule set and add rules to it by running one of the following procedures and setting the inclusion_rule parameter to false:

	
DBMS_STREAMS_ADM.ADD_TABLE_RULES


	
DBMS_STREAMS_ADM.ADD_SCHEMA_RULES


	
DBMS_STREAMS_ADM.ADD_GLOBAL_RULES


	
DBMS_STREAMS_ADM.ADD_MESSAGE_RULE


	
DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES


	
DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES


	
DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES


	
DBMS_STREAMS_ADM.ADD_MESSAGE_PROPAGATION_RULE




If a negative rule set already exists for the Streams client when you run one of these procedures, then the procedure adds the system-created rules to the existing negative rule set.

Alternatively, you can create a negative rule set when you create a Streams client by running one of the following procedures and specifying a non-NULL value for the negative_rule_set_name parameter:

	
DBMS_CAPTURE_ADM.CREATE_CAPTURE


	
DBMS_PROPAGATION_ADM.CREATE_PROPAGATION


	
DBMS_APPLY_ADM.CREATE_APPLY




Also, you can specify a negative rule set for an existing Streams client by altering the client. For example, to specify a negative rule set for an existing capture process, use the DBMS_CAPTURE_ADM.ALTER_CAPTURE procedure. After a Streams client has a negative rule set, you can use the procedures in the DBMS_STREAM_ADM package listed previously to add system-created rules to it.

Instead of adding rules to a negative rule set, you can also exclude changes to certain tables or schemas in the following ways:

	
Do not add system-created rules for the table or schema to a positive rule set for a Streams client. For example, to capture DML changes to all of the tables in a particular schema except for one table, add a DML table rule for each table in the schema, except for the excluded table, to the positive rule set for the capture process. The disadvantages of this approach are that there can be many tables in a schema and each one requires a separate DML rule, and, if a new table is added to the schema, and you want to capture changes to this new table, then a new DML rule must be added for this table to the positive rule set for the capture process.


	
Use the NOT logical condition in the rule condition of a complex rule in the positive rule set for a Streams client. For example, to capture DML changes to all of the tables in a particular schema except for one table, use the DBMS_STREAMS_ADM.ADD_SCHEMA_RULES procedure to add a system-created DML schema rule to the positive rule set for the capture process that instructs the capture process to capture changes to the schema, and use the and_condition parameter to exclude the table with the NOT logical condition. The disadvantages to this approach are that it involves manually specifying parts of rule conditions, which can be error prone, and rule evaluation is not as efficient for complex rules as it is for unmodified system-created rules.




Given the goal of capturing DML changes to all of the tables in a particular schema except for one table, you can add a DML schema rule to the positive rule set for the capture process and a DML table rule for the excluded table to the negative rule set for the capture process.

This approach has the following advantages over the alternatives described previously:

	
You add only two rules to achieve the goal.


	
If a new table is added to the schema, and you want to capture DML changes to the table, then the capture process captures these changes without requiring modifications to existing rules or additions of new rules.


	
You do not need to specify or edit rule conditions manually.


	
Rule evaluation is more efficient because you avoid using complex rules.







	
See Also:

	
"Complex Rule Conditions"


	
"System-Created Rules with Added User-Defined Conditions" for more information about the and_condition parameter













Negative Rule Set Example

Suppose you want to apply row LCRs that contain the results of DML changes to all of the tables in hr schema except for the job_history table. To do so, you can use the ADD_SCHEMA_RULES procedure in the DBMS_STREAMS_ADM package to instruct a Streams apply process to apply row LCRs that contain the results of DML changes to the tables in the hr schema. In this case, the procedure creates a schema rule and adds the rule to the positive rule set for the apply process.

You can use the ADD_TABLE_RULES procedure in the DBMS_STREAMS_ADM package to instruct the Streams apply process to discard row LCRs that contain the results of DML changes to the tables in the hr.job_history table. In this case, the procedure creates a table rule and adds the rule to the negative rule set for the apply process.

The following sections explain how to run these procedures:

	
Apply All DML Changes to the Tables in the hr Schema


	
Discard Row LCRs Containing DML Changes to the hr.job_history Table






Apply All DML Changes to the Tables in the hr Schema

These changes originated at the dbs1.net source database.

Run the ADD_SCHEMA_RULES procedure to create this rule:


BEGIN
  DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
    schema_name         =>  'hr',   
    streams_type        =>  'apply',
    streams_name        =>  'apply',
    queue_name          =>  'streams_queue',
    include_dml         =>  true,
    include_ddl         =>  false,
    include_tagged_lcr  =>  false,
    source_database     =>  'dbs1.net',
    inclusion_rule      =>  true);
END;
/


Notice that the inclusion_rule parameter is set to true. This setting means that the system-created rule is added to the positive rule set for the apply process.

The ADD_SCHEMA_RULES procedure creates a rule with a rule condition similar to the following:


((:dml.get_object_owner() = 'HR') and :dml.is_null_tag() = 'Y' 
and :dml.get_source_database_name() = 'DBS1.NET' )






Discard Row LCRs Containing DML Changes to the hr.job_history Table

These changes originated at the dbs1.net source database.

Run the ADD_TABLE_RULES procedure to create this rule:


BEGIN 
  DBMS_STREAMS_ADM.ADD_TABLE_RULES(
    table_name          =>  'hr.job_history',
    streams_type        =>  'apply',
    streams_name        =>  'apply',
    queue_name          =>  'streams_queue',
    include_dml         =>  true,
    include_ddl         =>  false,
    include_tagged_lcr  =>  true,
    source_database     =>  'dbs1.net',
    inclusion_rule      =>  false);
END;
/


Notice that the inclusion_rule parameter is set to false. This setting means that the system-created rule is added to the negative rule set for the apply process.

Also notice that the include_tagged_lcr parameter is set to true. This setting means that all changes for the table, including tagged LCRs that satisfy all of the other rule conditions, will be discarded. In most cases, specify true for the include_tagged_lcr parameter if the inclusion_rule parameter is set to false.

The ADD_TABLE_RULES procedure creates a rule with a rule condition similar to the following:


(((:dml.get_object_owner() = 'HR' and :dml.get_object_name() = 'JOB_HISTORY')) 
and :dml.get_source_database_name() = 'DBS1.NET' )





Summary of Rules

In this example, the following rules were defined:

	
A schema rule that evaluates to TRUE if a DML operation is performed on the tables in the hr schema. This rule is in the positive rule set for the apply process.


	
A table rule that evaluates to TRUE if a DML operation is performed on the hr.job_history table. This rule is in the negative rule set for the apply process.




Given these rules, the following list provides examples of changes applied by the apply process:

	
A row is inserted into the hr.departments table.


	
Five rows are updated in the hr.employees table.


	
A row is deleted from the hr.countries table.




The apply process dequeues these changes from its associated queue and applies them to the database objects at the destination database.

Given these rules, the following list provides examples of changes that are ignored by the apply process:

	
A row is inserted into the hr.job_history table.


	
A row is updated in the hr.job_history table.


	
A row is deleted from the hr.job_history table.




These changes are not applied because they satisfy a rule in the negative rule set for the apply process.




	
See Also:

"Rule Sets and Rule Evaluation of Messages"
















System-Created Rules with Added User-Defined Conditions

Some of the procedures that create rules in the DBMS_STREAMS_ADM package include an and_condition parameter. This parameter enables you to add conditions to system-created rules. The condition specified by the and_condition parameter is appended to the system-created rule condition using an AND clause in the following way:


(system_condition) AND (and_condition)


The variable in the specified condition must be :lcr. For example, to specify that the table rules generated by the ADD_TABLE_RULES procedure evaluate to TRUE only if the table is hr.departments, the source database is dbs 1.net, and the Streams tag is the hexadecimal equivalent of '02', run the following procedure:


BEGIN 
  DBMS_STREAMS_ADM.ADD_TABLE_RULES(
    table_name          =>  'hr.departments',
    streams_type        =>  'apply',
    streams_name        =>  'apply_02',
    queue_name          =>  'streams_queue',
    include_dml         =>  true,
    include_ddl         =>  true,
    include_tagged_lcr  =>  true,
    source_database     =>  'dbs1.net',
    inclusion_rule      =>  true,
    and_condition       =>  ':lcr.get_tag() = HEXTORAW(''02'')');
END;
/


The ADD_TABLE_RULES procedure creates a DML rule with the following condition:


(((((:dml.get_object_owner() = 'HR' and :dml.get_object_name() = 'DEPARTMENTS'))
 and :dml.get_source_database_name() = 'DBS1.NET' )) 
and (:dml.get_tag() = HEXTORAW('02')))


It creates a DDL rule with the following condition:


(((((:ddl.get_object_owner() = 'HR' and :ddl.get_object_name() = 'DEPARTMENTS')
or (:ddl.get_base_table_owner() = 'HR' 
and :ddl.get_base_table_name() = 'DEPARTMENTS')) 
and :ddl.get_source_database_name() = 'DBS1.NET' )) 
and (:ddl.get_tag() = HEXTORAW('02')))


Notice that the :lcr in the specified condition is converted to :dml or :ddl, depending on the rule that is being generated. If you are specifying an LCR member subprogram that is dependent on the LCR type (row or DDL), then make sure this procedure only generates the appropriate rule. Specifically, if you specify an LCR member subprogram that is valid only for row LCRs, then specify true for the include_dml parameter and false for the include_ddl parameter. If you specify an LCR member subprogram that is valid only for DDL LCRs, then specify false for the include_dml parameter and true for the include_ddl parameter.

For example, the GET_OBJECT_TYPE member function only applies to DDL LCRs. Therefore, if you use this member function in an and_condition, then specify false for the include_dml parameter and true for the include_ddl parameter.




	
See Also:

	
Oracle Database PL/SQL Packages and Types Reference for more information about LCR member subprograms


	
Oracle Streams Replication Administrator's Guide for more information about Streams tags



















Evaluation Contexts Used in Streams

The following sections describe the system-created evaluation contexts used in Streams.

	
Evaluation Context for Global, Schema, Table, and Subset Rules


	
Evaluation Contexts for Message Rules






Evaluation Context for Global, Schema, Table, and Subset Rules

When you create global, schema, table, and subset rules, the system-created rule sets and rules use a built-in evaluation context in the SYS schema named STREAMS$_EVALUATION_CONTEXT. PUBLIC is granted the EXECUTE privilege on this evaluation context. Global, schema, table, and subset rules can be used by capture processes, propagations, apply processes, and messaging clients.

During Oracle installation, the following statement creates the Streams evaluation context:


DECLARE
  vt  SYS.RE$VARIABLE_TYPE_LIST;
BEGIN
  vt := SYS.RE$VARIABLE_TYPE_LIST(
    SYS.RE$VARIABLE_TYPE('DML', 'SYS.LCR$_ROW_RECORD', 
       'SYS.DBMS_STREAMS_INTERNAL.ROW_VARIABLE_VALUE_FUNCTION',
       'SYS.DBMS_STREAMS_INTERNAL.ROW_FAST_EVALUATION_FUNCTION'),
    SYS.RE$VARIABLE_TYPE('DDL', 'SYS.LCR$_DDL_RECORD',
       'SYS.DBMS_STREAMS_INTERNAL.DDL_VARIABLE_VALUE_FUNCTION',
       'SYS.DBMS_STREAMS_INTERNAL.DDL_FAST_EVALUATION_FUNCTION'));
    SYS.RE$VARIABLE_TYPE(NULL, 'SYS.ANYDATA', 
       NULL,
       'SYS.DBMS_STREAMS_INTERNAL.ANYDATA_FAST_EVAL_FUNCTION'));
  DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT(
    evaluation_context_name => 'SYS.STREAMS$_EVALUATION_CONTEXT',
    variable_types          => vt,
    evaluation_function     =>
                       'SYS.DBMS_STREAMS_INTERNAL.EVALUATION_CONTEXT_FUNCTION');
END;
/


This statement includes references to the following internal functions in the SYS.DBMS_STREAM_INTERNAL package:

	
ROW_VARIABLE_VALUE_FUNCTION


	
DDL_VARIABLE_VALUE_FUNCTION


	
EVALUATION_CONTEXT_FUNCTION


	
ROW_FAST_EVALUATION_FUNCTION


	
DDL_FAST_EVALUATION_FUNCTION


	
ANYDATA_FAST_EVAL_FUNCTION







	
Attention:

Information about these internal functions is provided for reference purposes only. You should never run any of these functions directly.







The ROW_VARIABLE_VALUE_FUNCTION converts an ANYDATA payload, which encapsulates a SYS.LCR$_ROW_RECORD instance, into a SYS.LCR$_ROW_RECORD instance prior to evaluating rules on the data.

The DDL_VARIABLE_VALUE_FUNCTION converts an ANYDATA payload, which encapsulates a SYS.LCR$_DDL_RECORD instance, into a SYS.LCR$_DDL_RECORD instance prior to evaluating rules on the data.

The EVALUATION_CONTEXT_FUNCTION is specified as an evaluation_function in the call to the CREATE_EVALUATION_CONTEXT procedure. This function supplements normal rule evaluation for captured messages. A capture process enqueues row LCRs and DDL LCRs into its queue, and this function enables it to enqueue other internal messages into the queue, such as commits, rollbacks, and data dictionary changes. This information is also used during rule evaluation for a propagation or apply process.

ROW_FAST_EVALUATION_FUNCTION improves performance by optimizing access to the following LCR$_ROW_RECORD member functions during rule evaluation:

	
GET_OBJECT_OWNER


	
GET_OBJECT_NAME


	
IS_NULL_TAG


	
GET_SOURCE_DATABASE_NAME


	
GET_COMMAND_TYPE




DDL_FAST_EVALUATION_FUNCTION improves performance by optimizing access to the following LCR$_DDL_RECORD member functions during rule evaluation if the condition is <, <=, =, >=, or > and the other operand is a constant:

	
GET_OBJECT_OWNER


	
GET_OBJECT_NAME


	
IS_NULL_TAG


	
GET_SOURCE_DATABASE_NAME


	
GET_COMMAND_TYPE


	
GET_BASE_TABLE_NAME


	
GET_BASE_TABLE_OWNER




ANYDATA_FAST_EVAL_FUNCTION improves performance by optimizing access to values inside an ANYDATA object.

Rules created using the DBMS_STREAMS_ADM package use ROW_FAST_EVALUATION_FUNCTION or DDL_FAST_EVALUATION_FUNCTION, except for subset rules created using the ADD_SUBSET_RULES or ADD_SUBSET_PROPAGATION_RULES procedure.




	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about LCRs and their member functions












Evaluation Contexts for Message Rules

When you use either the ADD_MESSAGE_RULE procedure or the ADD_MESSAGE_PROPAGATION_RULE procedure to create a message rule, the message rule uses a user-defined message type that you specify when you create the rule. Such a system-created message rule uses a system-created evaluation context. The name of the system-created evaluation context is different for each message type used to create message rules. Such an evaluation context has a system-generated name and is created in the schema that owns the rule. Only the user who owns this evaluation context is granted the EXECUTE privilege on it.

The evaluation context for this type of message rule contains a variable that is the same type as the message type. The name of this variable is in the form VAR$_number, where number is a system-generated number. For example, if you specify strmadmin.region_pri_msg as the message type when you create a message rule, then the system-created evaluation context has a variable of this type, and the variable is used in the rule condition. Assume that the following statement created the strmadmin.region_pri_msg type:


CREATE TYPE strmadmin.region_pri_msg AS OBJECT(
  region         VARCHAR2(100),
  priority       NUMBER,
  message        VARCHAR2(3000))
/


When you create a message rule using this type, you can specify the following rule condition:


:msg.region = 'EUROPE' AND :msg.priority = '1'


The system-created message rule replaces :msg in the rule condition you specify with the name of the variable. The following is an example of a message rule condition that might result:


:VAR$_52.region = 'EUROPE' AND  :VAR$_52.priority = '1'


In this case, VAR$_52 is the variable name, the type of the VAR$_52 variable is strmadmin.region_pri_msg, and the evaluation context for the rule contains this variable.

The message rule itself has an evaluation context. A statement similar to the following creates an evaluation context for a message rule:


DECLARE
  vt  SYS.RE$VARIABLE_TYPE_LIST;
BEGIN
  vt := SYS.RE$VARIABLE_TYPE_LIST(
    SYS.RE$VARIABLE_TYPE('VAR$_52', 'STRMADMIN.REGION_PRI_MSG', 
       'SYS.DBMS_STREAMS_INTERNAL.MSG_VARIABLE_VALUE_FUNCTION', NULL));
  DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT(
    evaluation_context_name => 'STRMADMIN.EVAL_CTX$_99',
    variable_types          => vt,
    evaluation_function     => NULL);
END;
/


The name of the evaluation context is in the form EVAL_CTX$_number, where number is a system-generated number. In this example, the name of the evaluation context is EVAL_CTX$_99.

This statement also includes a reference to the MSG_VARIABLE_VALUE_FUNCTION internal function in the SYS.DBMS_STREAM_INTERNAL package. This function converts an ANYDATA payload, which encapsulates a message instance, into an instance of the same type as the variable prior to evaluating rules on the data. For example, if the variable type is strmadmin.region_pri_msg, then the MSG_VARIABLE_VALUE_FUNCTION converts the message payload from an ANYDATA payload to a strmadmin.region_pri_msg payload.

If you create rules for different message types, then Oracle creates a different evaluation context for each message type. If you create a new rule with the same message type as an existing rule, then the new rule uses the evaluation context for the existing rule. When you use the ADD_MESSAGE_RULE or ADD_MESSAGE_PROPAGATION_RULE to create a rule set for a messaging client or apply process, the new rule set does not have an evaluation context.




	
See Also:

	
"Message Rules"


	
"Evaluation Context for Global, Schema, Table, and Subset Rules"



















Streams and Event Contexts

In Streams, capture processes and messaging clients do not use event contexts, but propagations and apply processes do. Both captured messages and user-enqueued messages can be staged in a queue. When a message is staged in a queue, a propagation or apply process can send the message, along with an event context, to the rules engine for evaluation. An event context always has the following name-value pair: AQ$_MESSAGE as the name and the message as the value.

If you create a custom evaluation context, then you can create propagation and apply process rules that refer to Streams events using implicit variables. The variable value function for each implicit variable can check for event contexts with the name AQ$_MESSAGE. If an event context with this name is found, then the variable value function returns a value based on a message. You can also pass the event context to an evaluation function and a variable method function.




	
See Also:

	
"Rule Set Evaluation" for more information about event contexts


	
"Explicit and Implicit Variables" for more information about variable value functions


	
"Evaluation Function"

















Streams and Action Contexts

The following sections describe the purposes of action contexts in Streams and the importance of ensuring that only one rule in a rule set can evaluate to TRUE for a particular rule condition.


Purposes of Action Contexts in Streams

In Streams, an action context serves the following purposes:

	
Internal LCR Transformations in Subset Rules


	
Information About Declarative Rule-Based Transformations


	
Custom Rule-Based Transformations


	
Enqueue Destinations for Messages During Apply


	
Execution Directives for Messages During Apply




A different name-value pair can exist in the action context of a rule for each of these purposes. If an action context for a rule contains more than one of these name-value pairs, then the actions specified or described by the name-value pairs are performed in the following order:

	
Perform subset transformation.


	
Display information about declarative rule-based transformation.


	
Perform custom rule-based transformation.


	
Follow execution directive and perform execution if directed to do so (apply only).


	
Enqueue into a destination queue (apply only).







	
Note:

The actions specified in the action context for a rule are performed only if the rule is in the positive rule set for a capture process, propagation, apply process, or messaging client. If a rule is in a negative rule set, then these Streams clients ignore the action context of the rule.









Internal LCR Transformations in Subset Rules

When you use subset rules, an update operation can be converted into an insert or delete operation when it is captured, propagated, applied, or dequeued. This automatic conversion is called row migration and is performed by an internal transformation specified in the action context when the subset rule evaluates to TRUE. The name-value pair for a subset transformation has STREAMS$_ROW_SUBSET for the name and either INSERT or DELETE for the value.




	
See Also:

	
"Subset Rules"


	
Chapter 15, "Managing Rule-Based Transformations" for information about using rule-based transformation with subset rules

















Information About Declarative Rule-Based Transformations

A declarative rule-based transformation is an internal modification of a row LCR that results when a rule evaluates to TRUE. The name-value pair for a declarative rule-based transformation has STREAMS$_INTERNAL_TRANFORM for the name and the name of a data dictionary view that provides additional information about the transformation for the value.

The name-value pair added for a declarative rule-based transformation is for information purposes only. These name-value pairs are not used by Streams clients. However, the declarative rule-based transformations described in an action context are performed internally before any custom rule-based transformations specified in the same action context.




	
See Also:

	
"Declarative Rule-Based Transformations"


	
"Managing Declarative Rule-Based Transformations"

















Custom Rule-Based Transformations

A custom rule-based transformation is any modification made by a user-defined function to a message when a rule evaluates to TRUE. The name-value pair for a custom rule-based transformation has STREAMS$_TRANSFORM_FUNCTION for the name and the name of the transformation function for the value.




	
See Also:

	
"Custom Rule-Based Transformations"


	
"Managing Custom Rule-Based Transformations"

















Execution Directives for Messages During Apply

The SET_EXECUTE procedure in the DBMS_APPLY_ADM package specifies whether a message that satisfies the specified rule is executed by an apply process. The name-value pair for an execution directive has APPLY$_EXECUTE for the name and NO for the value if the apply process should not execute the message. If a message that satisfies a rule should be executed by an apply process, then this name-value pair is not present in the action context of the rule.




	
See Also:

"Specifying Execute Directives for Apply Processes"












Enqueue Destinations for Messages During Apply

The SET_ENQUEUE_DESTINATION procedure in the DBMS_APPLY_ADM package sets the queue where a message that satisfies the specified rule is enqueued automatically by an apply process. The name-value pair for an enqueue destination has APPLY$_ENQUEUE for the name and the name of the destination queue for the value.




	
See Also:

"Specifying Message Enqueues by Apply Processes"













Make Sure Only One Rule Can Evaluate to TRUE for a Particular Rule Condition

If you use a non-NULL action context for one or more rules in a positive rule set, then make sure only one rule can evaluate to TRUE for a particular rule condition. If more than one rule evaluates to TRUE for a particular condition, then only one of the rules is returned, which can lead to unpredictable results.

For example, suppose two rules evaluate to TRUE if an LCR contains a DML change to the hr.employees table. The first rule has a NULL action context. The second rule has an action context that specifies a custom rule-based transformation. If there is a DML change to the hr.employees table, then both rules evaluate to TRUE for the change, but only one rule is returned. In this case, the transformation might or might not occur, depending on which rule is returned.

You might want to ensure that only one rule in a positive rule set can evaluate to TRUE for any condition, regardless of whether any of the rules have a non-NULL action context. By following this guideline, you can avoid unpredictable results if, for example, a non-NULL action context is added to a rule in the future.




	
See Also:

Chapter 7, "Rule-Based Transformations"











Action Context Considerations for Schema and Global Rules

If you use an action context for a custom rule-based transformation, enqueue destination, or execute directive with a schema rule or global rule, then the action specified by the action context is carried out on a message if the message causes the schema or global rule to evaluate to TRUE. For example, if a schema rule has an action context that specifies a custom rule-based transformation, then the transformation is performed on LCRs for the tables in the schema.

You might want to use an action context with a schema or global rule but exclude a subset of LCRs from the action performed by the action context. For example, if you want to perform a custom rule-based transformation on all of the tables in the hr schema except for the job_history table, then make sure the transformation function returns the original LCR if the table is job_history.

If you want to set an enqueue destination or an execute directive for all of the tables in the hr schema except for the job_history table, then you can use a schema rule and add the following condition to it:


:dml.get_object_name() != 'JOB_HISTORY'


In this case, if you want LCRs for the job_history table to evaluate to TRUE, but you do not want to perform the enqueue or execute directive, then you can add a table rule for the table to a positive rule set. That is, the schema rule would have the enqueue destination or execute directive, but the table rule would not.




	
See Also:

"System-Created Rules" for more information about schema and global rules














User-Created Rules, Rule Sets, and Evaluation Contexts

The DBMS_STREAMS_ADM package generates system-created rules and rule sets, and it can specify an Oracle supplied evaluation context for rules and rule sets or generate system-created evaluation contexts. If you need to create rules, rule sets, or evaluation contexts that cannot be created using the DBMS_STREAMS_ADM package, then you can use the DBMS_RULE_ADM package to create them.

Use the DBMS_RULE_ADM package for the following reasons:

	
You need to create rules with rule conditions that cannot be created using the DBMS_STREAMS_ADM package, such as rule conditions for specific types of operations, or rule conditions that use the LIKE condition.


	
You need to create custom evaluation contexts for the rules in your Streams environment.




You can create a rule set using the DBMS_RULE_ADM package, and you can associate it with a capture process, propagation, apply process, or messaging client. Such a rule set can be a positive rule set or negative rule set for a Streams client, and a rule set can be a positive rule set for one Streams client and a negative rule set for another.

This section contains the following topics:

	
User-Created Rules and Rule Sets


	
User-Created Evaluation Contexts







	
See Also:

	
"Specifying a Rule Set for a Capture Process"


	
"Specifying the Rule Set for a Propagation"


	
"Specifying the Rule Set for an Apply Process"














User-Created Rules and Rule Sets

The following sections describe some of the types of rules and rule sets that you can create using the DBMS_RULE_ADM package:

	
Rule Conditions for Specific Types of Operations


	
Rule Conditions that Instruct Streams Clients to Discard Unsupported LCRs


	
Complex Rule Conditions


	
Rule Conditions with Undefined Variables that Evaluate to NULL


	
Variables as Function Parameters in Rule Conditions







	
Note:

You can add user-defined conditions to a system-created rule by using the and_condition parameter that is available in some of the procedures in the DBMS_STREAMS_ADM package. Using the and_condition parameter is sometimes easier than creating rules with the DBMS_RULE_ADM package.










	
See Also:

"System-Created Rules with Added User-Defined Conditions" for more information about the and_condition parameter









Rule Conditions for Specific Types of Operations

In some cases, you might want to capture, propagate, apply, or dequeue only changes that contain specific types of operations. For example, you might want to apply changes containing only insert operations for a particular table, but not other operations, such as update and delete.

Suppose you want to specify a rule condition that evaluates to TRUE only for INSERT operations on the hr.employees table. You can accomplish this by specifying the INSERT command type in the rule condition:


:dml.get_command_type() = 'INSERT' AND :dml.get_object_owner() = 'HR' 
AND :dml.get_object_name() = 'EMPLOYEES' AND :dml.is_null_tag() = 'Y'


Similarly, suppose you want to specify a rule condition that evaluates to TRUE for all DML operations on the hr.departments table, except DELETE operations. You can accomplish this by specifying the following rule condition:


:dml.get_object_owner() = 'HR' AND :dml.get_object_name() = 'DEPARTMENTS' AND
:dml.is_null_tag() = 'Y' AND (:dml.get_command_type() = 'INSERT' OR
:dml.get_command_type() = 'UPDATE')


This rule condition evaluates to TRUE for INSERT and UPDATE operations on the hr.departments table, but not for DELETE operations. Because the hr.departments table does not include any LOB columns, you do not need to specify the LOB command types for DML operations (LOB ERASE, LOB WRITE, and LOB TRIM), but these command types should be specified in such a rule condition for a table that contains one or more LOB columns.

The following rule condition accomplishes the same behavior for the hr.departments table. That is, the following rule condition evaluates to TRUE for all DML operations on the hr.departments table, except DELETE operations:


:dml.get_object_owner() = 'HR' AND :dml.get_object_name() = 'DEPARTMENTS' AND
:dml.is_null_tag() = 'Y' AND :dml.get_command_type() != 'DELETE'


The example rule conditions described previously in this section are all simple rule conditions. However, when you add custom conditions to system-created rule conditions, the entire condition might not be a simple rule condition, and nonsimple rules might not evaluate efficiently. In general, you should use simple rule conditions whenever possible to improve rule evaluation performance. Rule conditions created using the DBMS_STREAMS_ADM package, without custom conditions added, are always simple.




	
See Also:

	
"Simple Rule Conditions"


	
"Complex Rule Conditions"

















Rule Conditions that Instruct Streams Clients to Discard Unsupported LCRs

You can use the following functions in rule conditions to instruct a Streams client to discard LCRs that encapsulate unsupported changes:

	
The GET_COMPATIBLE member function for LCRs. This function returns the minimal database compatibility required to support an LCR.


	
The COMPATIBLE_9_2 function, COMPATIBLE_10_1 function, and COMPATIBLE_10_2 function in the DBMS_STREAMS package. These functions return constant values that correspond to 9.2.0, 10.1.0, and 10.2.0 compatibility in a database, respectively. You control the compatibility of an Oracle database using the COMPATIBLE initialization parameter.




For example, consider the following rule:


BEGIN
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name => 'strmadmin.dml_compat_9_2',
    condition => ':dml.GET_COMPATIBLE() > DBMS_STREAMS.COMPATIBLE_9_2()');
END;
/


If this rule is in the negative rule set for a Streams client, such as a capture process, a propagation, or an apply process, then the Streams client discards any row LCR that is not compatible with Oracle9i Database Release 2 (9.2).

The following is an example that is more appropriate for a positive rule set:


BEGIN
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name => 'strmadmin.dml_compat_9_2',
    condition => ':dml.GET_COMPATIBLE() <= DBMS_STREAMS.COMPATIBLE_10_1()');
END;
/


If this rule is in the positive rule set for a Streams client, then the Streams client discards any row LCR that is not compatible with Oracle Database 10g Release 1 or earlier. That is, the Streams client processes any row LCR that is compatible with Oracle9i Database Release 2 (9.2) or Oracle Database 10g Release 1 (10.1) and satisfies the other rules in its rule sets, but it discards any row LCR that is not compatible with these releases.

Both of the rules in the previous examples evaluate efficiently. If you use schema rules or global rules created by the DBMS_STREAMS_ADM package to capture, propagate, apply, or dequeue LCRs, then rules such as these can be used to discard LCRs that are not supported by a particular database.




	
Note:

	
You can determine which database objects in a database are not supported by Streams by querying the DBA_STREAMS_UNSUPPORTED data dictionary view.


	
Instead of using the DBMS_RULE_ADM package to create rules with GET_COMPATIBLE conditions, you can use one of the procedures in the DBMS_STREAMS_ADM package to create such rules by specifying the GET_COMPATIBLE condition in the AND_CONDITION parameter.


	
DDL LCRs always return DBMS_STREAMS.COMPATIBLE_9_2.















	
See Also:

	
"Monitoring Compatibility in a Streams Environment"


	
"Global Rules Example", "Schema Rule Example", and "System-Created Rules with Added User-Defined Conditions"


	
Oracle Database Reference and Oracle Database Upgrade Guide for more information about the COMPATIBLE initialization parameter

















Complex Rule Conditions

Complex rule conditions are rule conditions that do not meet the requirements for simple rule conditions described in "Simple Rule Conditions". In a Streams environment, the DBMS_STREAMS_ADM package creates rules with simple rule conditions only, assuming no custom conditions are added to the system-created rules. Table 6-3 describes the types of system-created rule conditions that you can create with the DBMS_STREAMS_ADM package. If you need to create rules with complex conditions, then you can use the DBMS_RULE_ADM package.

There is a wide range of complex rule conditions. The following sections contain some examples of complex rule conditions.




	
Note:

	
Complex rule conditions can degrade rule evaluation performance.


	
In rule conditions, if you specify the name of a database, then make sure you include the full database name, including the domain name.













Rule Conditions Using the NOT Logical Condition to Exclude Objects

You can use the NOT logical condition to exclude certain changes from being captured, propagated, applied, or dequeued in a Streams environment.

For example, suppose you want to specify rule conditions that evaluate to TRUE for all DML and DDL changes to all database objects in the hr schema, except for changes to the hr.regions table. You can use the NOT logical condition to accomplish this with two rules: one for DML changes and one for DDL changes. Here are the rule conditions for these rules:


(:dml.get_object_owner() = 'HR' AND NOT :dml.get_object_name() = 'REGIONS')
AND :dml.is_null_tag() = 'Y' ((:ddl.get_object_owner() = 'HR' OR :ddl.get_base_
table_owner() =       'HR') AND NOT :ddl.get_object_name() = 'REGIONS') AND :ddl.is_
null_tag() = 'Y'


Notice that object names, such as HR and REGIONS are specified in all uppercase characters in these examples. For rules to evaluate properly, the case of the characters in object names, such as tables and users, must match the case of the characters in the data dictionary. Therefore, if no case was specified for an object when the object was created, then specify the object name in all uppercase in rule conditions. However, if a particular case was specified through the use of double quotation marks when the objects was created, then specify the object name in the same case in rule conditions. However, the object name cannot be enclosed in double quotes in rule conditions.

For example, if the REGIONS table in the HR schema was actually created as "Regions", then specify Regions in rule conditions that involve this table, as in the following example:


:dml.get_object_name() = 'Regions'


You can use the Streams evaluation context when you create these rules using the DBMS_RULE_ADM package. The following example creates a rule set to hold the complex rules, creates rules with the previous conditions, and adds the rules to the rule set:


BEGIN
  -- Create the rule set
  DBMS_RULE_ADM.CREATE_RULE_SET(
    rule_set_name       => 'strmadmin.complex_rules',
    evaluation_context  => 'SYS.STREAMS$_EVALUATION_CONTEXT');
  -- Create the complex rules
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name  => 'strmadmin.hr_not_regions_dml',
    condition  => ' (:dml.get_object_owner() = ''HR'' AND NOT ' ||
                  ' :dml.get_object_name() = ''REGIONS'') AND ' ||
                  ' :dml.is_null_tag() = ''Y'' ');
  DBMS_RULE_ADM.CREATE_RULE(
    rule_name  => 'strmadmin.hr_not_regions_ddl',
    condition  => ' ((:ddl.get_object_owner() = ''HR'' OR ' ||
                  ' :ddl.get_base_table_owner() =   ''HR'') AND NOT ' ||
                  ' :ddl.get_object_name() = ''REGIONS'') AND ' ||
                  ' :ddl.is_null_tag() = ''Y'' ');
  --  Add the rules to the rule set
  DBMS_RULE_ADM.ADD_RULE(
    rule_name      => 'strmadmin.hr_not_regions_dml', 
    rule_set_name  => 'strmadmin.complex_rules');
  DBMS_RULE_ADM.ADD_RULE(
    rule_name      => 'strmadmin.hr_not_regions_ddl', 
    rule_set_name  => 'strmadmin.complex_rules');
END;
/


In this case, the rules inherit the Streams evaluation context from the rule set.




	
Note:

In most cases, you can avoid using complex rules with the NOT logical condition by using the DBMS_STREAMS_ADM package to add rules to the negative rule set for a Streams client










	
See Also:

"System-Created Rules and Negative Rule Sets"











Rule Conditions Using the LIKE Condition

You can use the LIKE condition to create complex rules that evaluate to TRUE when a condition in the rule matches a specified pattern. For example, suppose you want to specify rule conditions that evaluate to TRUE for all DML and DDL changes to all database objects in the hr schema that begin with the pattern JOB. You can use the LIKE condition to accomplish this with two rules: one for DML changes and one for DDL changes. Here are the rule conditions for these rules:


(:dml.get_object_owner() = 'HR' AND :dml.get_object_name() LIKE 'JOB%')
AND :dml.is_null_tag() = 'Y'

((:ddl.get_object_owner() = 'HR' OR :ddl.get_base_table_owner() =    'HR') 
AND :ddl.get_object_name() LIKE 'JOB%') AND :ddl.is_null_tag() = 'Y'








Rule Conditions with Undefined Variables that Evaluate to NULL

During evaluation, an implicit variable in a rule condition is undefined if the variable value function for the variable returns NULL. An explicit variable without any attributes in a rule condition is undefined if the client does not send the value of the variable to the rules engine when it runs the DBMS_RULE.EVALUATE procedure.

Regarding variables with attributes, a variable is undefined if the client does not send the value of the variable, or any of its attributes, to the rules engine when it runs the DBMS_RULE.EVALUATE procedure. For example, if variable x has attributes a and b, then the variable is undefined if the client does not send the value of x and does not send the value of a and b. However, if the client sends the value of at least one attribute, then the variable is defined. In this case, if the client sends the value of a, but not b, then the variable is defined.

An undefined variable in a rule condition evaluates to NULL for Streams clients of the rules engine, which include capture processes, propagations, apply processes, and messaging clients. In contrast, for non-Streams clients of the rules engine, an undefined variable in a rule condition can cause the rules engine to return maybe_rules to the client. When a rule set is evaluated, maybe_rules are rules that might evaluate to TRUE given more information.

The number of maybe_rules returned to Streams clients is reduced by treating each undefined variable as NULL. Reducing the number of maybe_rules can improve performance if the reduction results in more efficient evaluation of a rule set when a message occurs. Rules that would result in maybe_rules for non-Streams clients can result in TRUE or FALSE rules for Streams clients, as the following examples illustrate.


Examples of Undefined Variables that Result in TRUE Rules for Streams Clients

Consider the following user-defined rule condition:


:m IS NULL


If the value of the variable m is undefined during evaluation, then a maybe rule results for non-Streams clients of the rules engine. However, for Streams clients, this condition evaluates to TRUE because the undefined variable m is treated as a NULL. You should avoid adding rules such as this to rule sets for Streams clients, because such rules will evaluate to TRUE for every message. So, for example, if the positive rule set for a capture process has such a rule, then the capture process might capture messages that you did not intend to capture.

Here is another user-specified rule condition that uses a Streams :dml variable:


:dml.get_object_owner() = 'HR' AND :m IS NULL


For Streams clients, if a message consists of a row change to a table in the hr schema, and the value of the variable m is not known during evaluation, then this condition evaluates to TRUE because the undefined variable m is treated as a NULL.





Examples of Undefined Variables that Result in FALSE Rules for Streams Clients

Consider the following user-defined rule condition:


:m = 5


If the value of the variable m is undefined during evaluation, then a maybe rule results for non-Streams clients of the rules engine. However, for Streams clients, this condition evaluates to FALSE because the undefined variable m is treated as a NULL.

Consider another user-specified rule condition that uses a Streams :dml variable:


:dml.get_object_owner() = 'HR' AND :m = 5


For Streams clients, if a message consists of a row change to a table in the hr schema, and the value of the variable m is not known during evaluation, then this condition evaluates to FALSE because the undefined variable m is treated as a NULL.




	
See Also:

"Rule Set Evaluation"














Variables as Function Parameters in Rule Conditions

Oracle recommends that you avoid using :dml and :ddl variables as function parameters for rule conditions. The following example uses the :dml variable as a parameter to a function named my_function:


my_function(:dml) = 'Y'


Rule conditions such as these can degrade rule evaluation performance and can result in the capture or propagation of extraneous Streams data dictionary information.




	
See Also:

"The Streams Data Dictionary"














User-Created Evaluation Contexts

You can use a custom evaluation context in a Streams environment. Any user-defined evaluation context involving LCRs must include all the variables in SYS.STREAMS$_EVALUATION_CONTEXT. The type of each variable and its variable value function must be the same for each variable as the ones defined in SYS.STREAMS$_EVALUATION_CONTEXT. In addition, when creating the evaluation context using DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT, the SYS.DBMS_STREAMS_INTERNAL.EVALUATION_CONTEXT_FUNCTION must be specified for the evaluation_function parameter. You can alter an existing evaluation context using the DBMS_RULE_ADM.ALTER_EVALUATION_CONTEXT procedure.

You can find information about an evaluation context in the following data dictionary views:

	
ALL_EVALUATION_CONTEXT_TABLES


	
ALL_EVALUATION_CONTEXT_VARS


	
ALL_EVALUATION_CONTEXTS




If necessary, you can use the information in these data dictionary views to build a new evaluation context based on the SYS.STREAMS$_EVALUATION_CONTEXT.




	
Note:

Avoid using variable names with special characters, such as $ and #, to ensure that there are no conflicts with Oracle-supplied evaluation context variables.










	
See Also:

Oracle Database Reference for more information about these data dictionary views













A XML Schema for LCRs

The XML schema described in this appendix defines the format of a logical change record (LCR). The Oracle XML DB must be installed to use the XML schema for LCRs.

This appendix contains this topic:

	
Definition of the XML Schema for LCRs




The namespace for this schema is the following:


http://xmlns.oracle.com/streams/schemas/lcr 


The schema is the following:


http://xmlns.oracle.com/streams/schemas/lcr/streamslcr.xsd





	
See Also:

Oracle XML DB Developer's Guide for more information about Oracle XML DB and for information about upgrading an existing XML schema for LCRs









Definition of the XML Schema for LCRs

The following is the XML schema definition for LCRs:


'<schema xmlns="http://www.w3.org/2001/XMLSchema" 
        targetNamespace="http://xmlns.oracle.com/streams/schemas/lcr" 
        xmlns:lcr="http://xmlns.oracle.com/streams/schemas/lcr"
        xmlns:xdb="http://xmlns.oracle.com/xdb"
          version="1.0"
        elementFormDefault="qualified">
 
  <simpleType name = "short_name">
    <restriction base = "string">
      <maxLength value="30"/>
    </restriction>
  </simpleType>
 
  <simpleType name = "long_name">
    <restriction base = "string">
      <maxLength value="4000"/>
    </restriction>
  </simpleType>
 
  <simpleType name = "db_name">
    <restriction base = "string">
      <maxLength value="128"/>
    </restriction>
  </simpleType>
 
  <!-- Default session parameter is used if format is not specified -->
  <complexType name="datetime_format">
    <sequence>
      <element name = "value" type = "string" nillable="true"/>
      <element name = "format" type = "string" minOccurs="0" nillable="true"/>
    </sequence>
  </complexType>
 
  <complexType name="anydata">
    <choice>
      <element name="varchar2" type = "string" xdb:SQLType="CLOB" 
                                                        nillable="true"/>
 
      <!-- Represent char as varchar2. xdb:CHAR blank pads upto 2000 bytes! -->
      <element name="char" type = "string" xdb:SQLType="CLOB"
                                                        nillable="true"/>
      <element name="nchar" type = "string" xdb:SQLType="NCLOB"
                                                        nillable="true"/>
 
      <element name="nvarchar2" type = "string" xdb:SQLType="NCLOB"
                                                        nillable="true"/>
      <element name="number" type = "double" xdb:SQLType="NUMBER"
                                                        nillable="true"/>
      <element name="raw" type = "hexBinary" xdb:SQLType="BLOB" 
                                                        nillable="true"/>
      <element name="date" type = "lcr:datetime_format"/>
      <element name="timestamp" type = "lcr:datetime_format"/>
      <element name="timestamp_tz" type = "lcr:datetime_format"/>
      <element name="timestamp_ltz" type = "lcr:datetime_format"/>
 
      <!-- Interval YM should be as per format allowed by SQL -->
      <element name="interval_ym" type = "string" nillable="true"/>
 
      <!-- Interval DS should be as per format allowed by SQL -->
      <element name="interval_ds" type = "string" nillable="true"/>
 
      <element name="urowid" type = "string" xdb:SQLType="VARCHAR2"
                                                        nillable="true"/>
    </choice>
  </complexType>
 
  <complexType name="column_value">
    <sequence>
      <element name = "column_name" type = "lcr:long_name" nillable="false"/>
      <element name = "data" type = "lcr:anydata" nillable="false"/>
      <element name = "lob_information" type = "string" minOccurs="0"
                                                           nillable="true"/>
      <element name = "lob_offset" type = "nonNegativeInteger" minOccurs="0"
                                                           nillable="true"/>
      <element name = "lob_operation_size" type = "nonNegativeInteger" 
                                             minOccurs="0" nillable="true"/>
      <element name = "long_information" type = "string" minOccurs="0"
                                                           nillable="true"/>
    </sequence>
  </complexType>
 
  <complexType name="extra_attribute">
    <sequence>
      <element name = "attribute_name" type = "lcr:short_name"/>
      <element name = "attribute_value" type = "lcr:anydata"/>
    </sequence>
  </complexType>
 
  <element name = "ROW_LCR" xdb:defaultTable="">
    <complexType>
      <sequence>
        <element name = "source_database_name" type = "lcr:db_name" 
                                                            nillable="false"/>
        <element name = "command_type" type = "string" nillable="false"/>
        <element name = "object_owner" type = "lcr:short_name" 
                                                            nillable="false"/>
        <element name = "object_name" type = "lcr:short_name"
                                                            nillable="false"/>
        <element name = "tag" type = "hexBinary" xdb:SQLType="RAW" 
                                               minOccurs="0" nillable="true"/>
        <element name = "transaction_id" type = "string" minOccurs="0" 
                                                             nillable="true"/>
        <element name = "scn" type = "double" xdb:SQLType="NUMBER" 
                                               minOccurs="0" nillable="true"/>
        <element name = "old_values" minOccurs = "0">
          <complexType>
            <sequence>
              <element name = "old_value" type="lcr:column_value" 
                                                    maxOccurs = "unbounded"/>
            </sequence>
          </complexType>
        </element>
        <element name = "new_values" minOccurs = "0">
          <complexType>
            <sequence>
              <element name = "new_value" type="lcr:column_value" 
                                                    maxOccurs = "unbounded"/>
            </sequence>
          </complexType>
        </element>
        <element name = "extra_attribute_values" minOccurs = "0">
          <complexType>
            <sequence>
              <element name = "extra_attribute_value"
                       type="lcr:extra_attribute"
                       maxOccurs = "unbounded"/>
            </sequence>
          </complexType>
        </element>
      </sequence>
    </complexType>
  </element>
 
  <element name = "DDL_LCR" xdb:defaultTable="">
    <complexType>
      <sequence>
        <element name = "source_database_name" type = "lcr:db_name" 
                                                        nillable="false"/>
        <element name = "command_type" type = "string" nillable="false"/>
        <element name = "current_schema" type = "lcr:short_name"
                                                        nillable="false"/>
        <element name = "ddl_text" type = "string" xdb:SQLType="CLOB"
                                                        nillable="false"/>
        <element name = "object_type" type = "string"
                                        minOccurs = "0" nillable="true"/>
        <element name = "object_owner" type = "lcr:short_name"
                                        minOccurs = "0" nillable="true"/>
        <element name = "object_name" type = "lcr:short_name"
                                        minOccurs = "0" nillable="true"/>
        <element name = "logon_user" type = "lcr:short_name"
                                        minOccurs = "0" nillable="true"/>
        <element name = "base_table_owner" type = "lcr:short_name"
                                        minOccurs = "0" nillable="true"/>
        <element name = "base_table_name" type = "lcr:short_name"
                                        minOccurs = "0" nillable="true"/>
        <element name = "tag" type = "hexBinary" xdb:SQLType="RAW"
                                        minOccurs = "0" nillable="true"/>
        <element name = "transaction_id" type = "string"
                                        minOccurs = "0" nillable="true"/>
        <element name = "scn" type = "double" xdb:SQLType="NUMBER"
                                        minOccurs = "0" nillable="true"/>
        <element name = "extra_attribute_values" minOccurs = "0">
          <complexType>
            <sequence>
              <element name = "extra_attribute_value"
                       type="lcr:extra_attribute"
                       maxOccurs = "unbounded"/>
            </sequence>
          </complexType>
        </element>
      </sequence>
    </complexType>
  </element>
</schema>';





25 Monitoring File Group and Tablespace Repositories

A file group repository can contain multiple file groups and multiple versions of a particular file group. A tablespace repository is a collection of tablespace sets in a file group repository. Tablespace repositories are built on file group repositories, but tablespace repositories only contain the files required to move or copy tablespaces between databases. This chapter provides sample queries that you can use to monitor file group repositories and tablespace repositories.

This chapter contains these topics:

	
Monitoring a File Group Repository


	
Monitoring a Tablespace Repository







	
Note:

The Streams tool in the Oracle Enterprise Manager Console is also an excellent way to monitor a Streams environment. See the online help for the Streams tool for more information.










	
See Also:

	
Chapter 8, "Information Provisioning"


	
Chapter 16, "Using Information Provisioning"


	
Oracle Database Reference for information about the data dictionary views described in this chapter


	
Oracle Streams Replication Administrator's Guide for information about monitoring a Streams replication environment














Monitoring a File Group Repository

The queries in the following sections provide examples for monitoring a file group repository:

	
Displaying General Information About the File Groups in a Database


	
Displaying Information About File Group Versions


	
Displaying Information About File Group Files







	
See Also:

	
"File Group Repository"


	
"Using a File Group Repository"














Displaying General Information About the File Groups in a Database

The query in this section displays the following information for each file group in the local database:

	
The file group owner


	
The file group name


	
Whether the files in a version of the file group are kept on disk if the version is purged


	
The minimum number of versions of the file group allowed


	
The maximum number of versions of the file group allowed


	
The number of days to retain a file group version after it is created




Run the following query to display this information for the local database:


COLUMN FILE_GROUP_OWNER HEADING 'File Group|Owner' FORMAT A10
COLUMN FILE_GROUP_NAME HEADING 'File Group|Name' FORMAT A10
COLUMN KEEP_FILES HEADING 'Keep|Files?' FORMAT A10
COLUMN MIN_VERSIONS HEADING 'Minimum|Number|of Versions' FORMAT 9999
COLUMN MAX_VERSIONS HEADING 'Maximum|Number|of Versions' FORMAT 9999999999
COLUMN RETENTION_DAYS HEADING 'Days to|Retain|a Version' FORMAT 9999999999.99

SELECT FILE_GROUP_OWNER,
       FILE_GROUP_NAME,
       KEEP_FILES,
       MIN_VERSIONS,
       MAX_VERSIONS,
       RETENTION_DAYS
  FROM DBA_FILE_GROUPS;


Your output looks similar to the following:


                                     Minimum     Maximum        Days to
File Group File Group Keep            Number      Number         Retain
Owner      Name       Files?     of Versions of Versions      a Version
---------- ---------- ---------- ----------- ----------- --------------
STRMADMIN  REPORTS    Y                    2  4294967295  4294967295.00


This output shows that the database has one file group with the following characteristics:

	
The file group owner is strmadmin.


	
The file group name is reports.


	
The files in a version are kept on disk if a version is purged because the "Keep Files?" is "Y" for the file group.


	
The minimum number of versions allowed is 2. If the file group automatically purges versions, then it will not purge a version if the purge would cause the total number of versions to drop below 2.


	
The file group allows an infinite number of versions. The number 4294967295 means an infinite number of versions.


	
The file group retains a version of an infinite number of days. The number 4294967295 means an infinite number of days.









Displaying Information About File Group Versions

The query in this section displays the following information for each file group version in the local database:

	
The owner of the file group that contains the version


	
The name of the file group that contains the version


	
The version name


	
The version number


	
The name of the user who created the version


	
Comments for the version




Run the following query to display this information for the local database:


COLUMN FILE_GROUP_OWNER HEADING 'File Group|Owner' FORMAT A10
COLUMN FILE_GROUP_NAME HEADING 'File Group|Name' FORMAT A10
COLUMN VERSION_NAME HEADING 'Version Name' FORMAT A20
COLUMN VERSION HEADING 'Version|Number' FORMAT 99999999
COLUMN CREATOR HEADING 'Creator' FORMAT A10
COLUMN COMMENTS HEADING 'Comments' FORMAT A14

SELECT FILE_GROUP_OWNER,
       FILE_GROUP_NAME,
       VERSION_NAME,
       VERSION,
       CREATOR,
       COMMENTS
  FROM DBA_FILE_GROUP_VERSIONS;


Your output looks similar to the following:


File Group File Group                        Version
Owner      Name       Version Name            Number Creator    Comments
---------- ---------- -------------------- --------- ---------- --------------
STRMADMIN  REPORTS    SALES_REPORTS_V1             1 STRMADMIN  Sales reports
                                                                for week of 06
                                                                -FEB-2005
 
STRMADMIN  REPORTS    SALES_REPORTS_V2             2 STRMADMIN  Sales reports
                                                                for week of 13
                                                                -FEB-2005






Displaying Information About File Group Files

The query in this section displays the following information about each file in a file group version in the local database:

	
The owner of the file group that contains the file


	
The name of the file group that contains the file


	
The name of the version in the file group that contains the file


	
The file name


	
The directory object that contains the file





COLUMN FILE_GROUP_OWNER HEADING 'File Group|Owner' FORMAT A10
COLUMN FILE_GROUP_NAME HEADING 'File Group|Name' FORMAT A10
COLUMN VERSION_NAME HEADING 'Version Name' FORMAT A20
COLUMN FILE_NAME HEADING 'File Name' FORMAT A15
COLUMN FILE_DIRECTORY HEADING 'File Directory|Object' FORMAT A15

SELECT FILE_GROUP_OWNER,
       FILE_GROUP_NAME,
       VERSION_NAME,
       FILE_NAME,
       FILE_DIRECTORY
  FROM DBA_FILE_GROUP_FILES;


Your output looks similar to the following:


File Group File Group                                      File Directory
Owner      Name       Version Name         File Name       Object
---------- ---------- -------------------- --------------- ---------------
STRMADMIN  REPORTS    SALES_REPORTS_V1     book_sales.htm  SALES_REPORTS1
STRMADMIN  REPORTS    SALES_REPORTS_V1     music_sales.htm SALES_REPORTS1
STRMADMIN  REPORTS    SALES_REPORTS_V2     book_sales.htm  SALES_REPORTS2
STRMADMIN  REPORTS    SALES_REPORTS_V2     music_sales.htm SALES_REPORTS2


Query the DBA_DIRECTORIES data dictionary view to determine the corresponding file system directory for a directory object.








Monitoring a Tablespace Repository

The queries in the following sections provide examples for monitoring a tablespace repository:

	
Displaying Information About the Tablespaces in a Tablespace Repository


	
Displaying Information About the Tables in a Tablespace Repository


	
Displaying Export Information About Versions in a Tablespace Repository







	
See Also:

	
"Tablespace Repository"


	
"Using a Tablespace Repository"














Displaying Information About the Tablespaces in a Tablespace Repository

The query in this section displays the following information about each tablespace in the tablespace repository in the local database:

	
The owner of the file group that contains the tablespace in the tablespace repository


	
The name of the file group that contains the tablespace in the tablespace repository


	
The name of the version that contains the tablespace


	
The tablespace name





COLUMN FILE_GROUP_OWNER HEADING 'File Group|Owner' FORMAT A15
COLUMN FILE_GROUP_NAME HEADING 'File Group|Name' FORMAT A15
COLUMN VERSION_NAME HEADING 'Version Name' FORMAT A15
COLUMN VERSION HEADING 'Version|Number' FORMAT 99999999
COLUMN TABLESPACE_NAME HEADING 'Tablespace Name' FORMAT A15

SELECT FILE_GROUP_OWNER,
       FILE_GROUP_NAME,
       VERSION_NAME,
       VERSION,
       TABLESPACE_NAME
  FROM DBA_FILE_GROUP_TABLESPACES;


Your output looks similar to the following:


File Group      File Group                        Version
Owner           Name            Version Name       Number Tablespace Name
--------------- --------------- --------------- --------- ---------------
STRMADMIN       SALES           V_Q1FY2005              1 SALES_TBS1
STRMADMIN       SALES           V_Q1FY2005              1 SALES_TBS2
STRMADMIN       SALES           V_Q2FY2005              3 SALES_TBS1
STRMADMIN       SALES           V_Q2FY2005              3 SALES_TBS2
STRMADMIN       SALES           V_Q1FY2005_R            4 SALES_TBS1
STRMADMIN       SALES           V_Q1FY2005_R            4 SALES_TBS2
STRMADMIN       SALES           V_Q2FY2005_R            5 SALES_TBS1
STRMADMIN       SALES           V_Q2FY2005_R            5 SALES_TBS2






Displaying Information About the Tables in a Tablespace Repository

The query in this section displays the following information about each table in the tablespace repository in the local database:

	
The owner of the file group that contains the table in the tablespace repository


	
The name of the file group that contains the table in the tablespace repository


	
The name of the version that contains the table


	
The table owner


	
The table name


	
The tablespace that contains the table





COLUMN FILE_GROUP_OWNER HEADING 'File Group|Owner' FORMAT A10
COLUMN FILE_GROUP_NAME HEADING 'File Group|Name' FORMAT A10
COLUMN VERSION_NAME HEADING 'Version Name' FORMAT A15
COLUMN OWNER HEADING 'Table|Owner' FORMAT A10
COLUMN TABLE_NAME HEADING 'Table Name' FORMAT A15
COLUMN TABLESPACE_NAME HEADING 'Tablespace Name' FORMAT A15

SELECT FILE_GROUP_OWNER,
       FILE_GROUP_NAME,
       VERSION_NAME,
       OWNER,
       TABLE_NAME,
       TABLESPACE_NAME
  FROM DBA_FILE_GROUP_TABLES;


Your output looks similar to the following:


File Group File Group                 Table
Owner      Name       Version Name    Owner      Table Name      Tablespace Name
---------- ---------- --------------- ---------- --------------- ---------------
STRMADMIN  SALES      V_Q1FY2005      SL         ORDERS          SALES_TBS1
STRMADMIN  SALES      V_Q1FY2005      SL         ORDER_ITEMS     SALES_TBS1
STRMADMIN  SALES      V_Q1FY2005      SL         CUSTOMERS       SALES_TBS2
STRMADMIN  SALES      V_Q2FY2005      SL         ORDERS          SALES_TBS1
STRMADMIN  SALES      V_Q2FY2005      SL         ORDER_ITEMS     SALES_TBS1
STRMADMIN  SALES      V_Q2FY2005      SL         CUSTOMERS       SALES_TBS2
STRMADMIN  SALES      V_Q1FY2005_R    SL         ORDERS          SALES_TBS1
STRMADMIN  SALES      V_Q1FY2005_R    SL         ORDER_ITEMS     SALES_TBS1
STRMADMIN  SALES      V_Q1FY2005_R    SL         CUSTOMERS       SALES_TBS2
STRMADMIN  SALES      V_Q2FY2005_R    SL         ORDERS          SALES_TBS1
STRMADMIN  SALES      V_Q2FY2005_R    SL         ORDER_ITEMS     SALES_TBS1
STRMADMIN  SALES      V_Q2FY2005_R    SL         CUSTOMERS       SALES_TBS2






Displaying Export Information About Versions in a Tablespace Repository

To display export information about the versions in the tablespace repository in the local database, query the DBA_FILE_GROUP_EXPORT_INFO data dictionary view. This view only displays information for versions that contain a valid Data Pump export dump file. The query in this section displays the following export information about each version in the local database:

	
The name of the file group that contains the version


	
The name of the version


	
The export version of the export dump file. The export version corresponds to the version of Data Pump that performed the export.


	
The platform on which the export was performed


	
The date and time of the export


	
The global name of the exporting database





COLUMN FILE_GROUP_NAME HEADING 'File Group|Name' FORMAT A10
COLUMN VERSION_NAME HEADING 'Version Name' FORMAT A13
COLUMN EXPORT_VERSION HEADING 'Export|Version' FORMAT A7
COLUMN PLATFORM_NAME HEADING 'Export Platform' FORMAT A17
COLUMN EXPORT_TIME HEADING 'Export Time' FORMAT A17
COLUMN SOURCE_GLOBAL_NAME HEADING 'Export|Database' FORMAT A10

SELECT FILE_GROUP_NAME,
       VERSION_NAME,
       EXPORT_VERSION,
       PLATFORM_NAME,
       TO_CHAR(EXPORT_TIME, 'HH24:MI:SS MM/DD/YY') EXPORT_TIME,
       SOURCE_GLOBAL_NAME
  FROM DBA_FILE_GROUP_EXPORT_INFO;


Your output looks similar to the following:


File Group               Export                                      Export
Name       Version Name  Version Export Platform   Export Time       Database
---------- ------------- ------- ----------------- ----------------- ----------
SALES      V_Q1FY2005    10.2.0  Linux IA (32-bit) 12:23:52 03/08/05 INST1.NET
SALES      V_Q2FY2005    10.2.0  Linux IA (32-bit) 12:27:37 03/08/05 INST1.NET
SALES      V_Q1FY2005_R  10.2.0  Linux IA (32-bit) 12:39:50 03/08/05 INST2.NET
SALES      V_Q2FY2005_R  10.2.0  Linux IA (32-bit) 12:46:04 03/08/05 INST2.NET







11  Managing a Capture Process

A capture process captures changes in a redo log, reformats the captured changes into logical change records (LCRs), and enqueues the LCRs into an ANYDATA queue.

This chapter contains these topics:

	
Creating a Capture Process


	
Starting a Capture Process


	
Stopping a Capture Process


	
Managing the Rule Set for a Capture Process


	
Setting a Capture Process Parameter


	
Setting the Capture User for a Capture Process


	
Managing the Checkpoint Retention Time for a Capture Process


	
Specifying Supplemental Logging at a Source Database


	
Adding an Archived Redo Log File to a Capture Process Explicitly


	
Setting the First SCN for an Existing Capture Process


	
Setting the Start SCN for an Existing Capture Process


	
Specifying Whether Downstream Capture Uses a Database Link


	
Managing Extra Attributes in Captured Messages


	
Dropping a Capture Process




Each task described in this chapter should be completed by a Streams administrator that has been granted the appropriate privileges, unless specified otherwise.




	
See Also:

	
Chapter 2, "Streams Capture Process"


	
"Configuring a Streams Administrator"














Creating a Capture Process

You can create a capture process that captures changes either locally at the source database or remotely at a downstream database. If a capture process runs on a downstream database, then redo data from the source database is copied to the downstream database, and the capture process captures changes in redo data at the downstream database.

You can use any of the following procedures to create a local capture process:

	
DBMS_STREAMS_ADM.ADD_TABLE_RULES


	
DBMS_STREAMS_ADM.ADD_SUBSET_RULES


	
DBMS_STREAMS_ADM.ADD_SCHEMA_RULES


	
DBMS_STREAMS_ADM.ADD_GLOBAL_RULES


	
DBMS_CAPTURE_ADM.CREATE_CAPTURE




Each of the procedures in the DBMS_STREAMS_ADM package creates a capture process with the specified name if it does not already exist, creates either a positive or negative rule set for the capture process if the capture process does not have such a rule set, and can add table rules, schema rules, or global rules to the rule set.

The CREATE_CAPTURE procedure creates a capture process, but does not create a rule set or rules for the capture process. However, the CREATE_CAPTURE procedure enables you to specify an existing rule set to associate with the capture process, either as a positive or a negative rule set, a first SCN, and a start SCN for the capture process. To create a capture process that performs downstream capture, you must use the CREATE_CAPTURE procedure.




	
Attention:

When a capture process is started or restarted, it might need to scan redo log files with a FIRST_CHANGE# value that is lower than start SCN. Removing required redo log files before they are scanned by a capture process causes the capture process to abort. You can query the DBA_CAPTURE data dictionary view to determine the first SCN, start SCN, and required checkpoint SCN for a capture process. A capture process needs the redo log file that includes the required checkpoint SCN, and all subsequent redo log files. See "Capture Process Creation" for more information about the first SCN and start SCN for a capture process.










	
Note:

To configure downstream capture, the source database must be an Oracle Database 10g Release 1 database or later.







The following sections describe:

	
Preparing to Create a Capture Process


	
Creating a Local Capture Process


	
Creating a Downstream Capture Process


	
After Creating a Capture Process







	
Note:

	
After creating a capture process, avoid changing the DBID or global name of the source database for the capture process. If you change either the DBID or global name of the source database, then the capture process must be dropped and re-created.


	
To create a capture process, a user must be granted DBA role.















	
See Also:

	
"Capture Process Creation"


	
"First SCN and Start SCN"


	
Oracle Streams Replication Administrator's Guide for information about changing the DBID or global name of a source database














Preparing to Create a Capture Process

The following tasks must be completed before you create a capture process:

	
Configure any source database that generates redo data that will be captured by a capture process to run in ARCHIVELOG mode. See "ARCHIVELOG Mode and a Capture Process" and Oracle Database Administrator's Guide. For downstream capture processes, the downstream database also must run in ARCHIVELOG mode if you plan to configure a real-time downstream capture process. The downstream database does not need to run in ARCHIVELOG mode if you plan to run only an archived-log downstream capture process on it.


	
Make sure the initialization parameters are set properly on any database that will run a capture process. See "Setting Initialization Parameters Relevant to Streams".


	
Create a Streams administrator on each database involved in the Streams configuration. See "Configuring a Streams Administrator". The examples in this chapter assume that the Streams administrator is strmadmin.


	
Create an ANYDATA queue to associate with the capture process, if one does not exist. See "Creating an ANYDATA Queue" for instructions. The examples in this chapter assume that the queue used by the capture process is strmadmin.streams_queue. Create the queue on the same database that will run the capture process.









Creating a Local Capture Process

The following sections describe using the DBMS_STREAMS_ADM package and the DBMS_CAPTURE_ADM package to create a local capture process. Make sure you complete the tasks in "Preparing to Create a Capture Process" before you proceed.

This section contains the following examples:

	
Example of Creating a Local Capture Process Using DBMS_STREAMS_ADM


	
Example of Creating a Local Capture Process Using DBMS_CAPTURE_ADM


	
Example of Creating a Local Capture Process with Non-NULL Start SCN






Example of Creating a Local Capture Process Using DBMS_STREAMS_ADM

The following example runs the ADD_TABLE_RULES procedure in the DBMS_STREAMS_ADM package to create a local capture process:


BEGIN
  DBMS_STREAMS_ADM.ADD_TABLE_RULES(
    table_name         => 'hr.employees',
    streams_type       => 'capture',
    streams_name       => 'strm01_capture',
    queue_name         => 'strmadmin.streams_queue',
    include_dml        => true,
    include_ddl        => true,
    include_tagged_lcr => false,
    source_database    => NULL,
    inclusion_rule     => true);
END;
/


Running this procedure performs the following actions:

	
Creates a capture process named strm01_capture. The capture process is created only if it does not already exist. If a new capture process is created, then this procedure also sets the start SCN to the point in time of creation.


	
Associates the capture process with an existing queue named streams_queue.


	
Creates a positive rule set and associates it with the capture process, if the capture process does not have a positive rule set, because the inclusion_rule parameter is set to true. The rule set uses the SYS.STREAMS$_EVALUATION_CONTEXT evaluation context. The rule set name is system generated.


	
Creates two rules. One rule evaluates to TRUE for DML changes to the hr.employees table, and the other rule evaluates to TRUE for DDL changes to the hr.employees table. The rule names are system generated.


	
Adds the two rules to the positive rule set associated with the capture process. The rules are added to the positive rule set because the inclusion_rule parameter is set to true.


	
Specifies that the capture process captures a change in the redo log only if the change has a NULL tag, because the include_tagged_lcr parameter is set to false. This behavior is accomplished through the system-created rules for the capture process.


	
Creates a capture process that captures local changes to the source database because the source_database parameter is set to NULL. For a local capture process, you can also specify the global name of the local database for this parameter.


	
Prepares the hr.employees table for instantiation.







	
See Also:

	
"Capture Process Creation"


	
"System-Created Rules"


	
"After Creating a Capture Process"


	
Oracle Streams Replication Administrator's Guide for more information about Streams tags

















Example of Creating a Local Capture Process Using DBMS_CAPTURE_ADM

The following example runs the CREATE_CAPTURE procedure in the DBMS_CAPTURE_ADM package to create a local capture process:


BEGIN
  DBMS_CAPTURE_ADM.CREATE_CAPTURE(
    queue_name         => 'strmadmin.streams_queue',
    capture_name       => 'strm02_capture',
    rule_set_name      => 'strmadmin.strm01_rule_set',
    start_scn          => NULL,
    source_database    => NULL,
    use_database_link  => false,
    first_scn          => NULL);
END;
/


Running this procedure performs the following actions:

	
Creates a capture process named strm02_capture. A capture process with the same name must not exist.


	
Associates the capture process with an existing queue named streams_queue.


	
Associates the capture process with an existing rule set named strm01_rule_set. This rule set is the positive rule set for the capture process.


	
Creates a capture process that captures local changes to the source database because the source_database parameter is set to NULL. For a local capture process, you can also specify the global name of the local database for this parameter.


	
Specifies that the Oracle database determines the start SCN and first SCN for the capture process because both the start_scn parameter and the first_scn parameter are set to NULL.


	
If no other capture processes that capture local changes are running on the local database, then the BUILD procedure in the DBMS_CAPTURE_ADM package is run automatically. Running this procedure extracts the data dictionary to the redo log, and a LogMiner data dictionary is created when the capture process is started for the first time.







	
See Also:

	
"Capture Process Creation"


	
"SCN Values Relating to a Capture Process"


	
"After Creating a Capture Process"

















Example of Creating a Local Capture Process with Non-NULL Start SCN

This example runs the CREATE_CAPTURE procedure in the DBMS_CAPTURE_ADM package to create a local capture process with a start SCN set to 223525. This example assumes that there is at least one local capture process at the database, and that this capture process has taken at least one checkpoint. You can always specify a start SCN for a new capture process that is equal to or greater than the current SCN of the source database. If you want to specify a start SCN that is lower than the current SCN of the database, then the specified start SCN must be higher than the lowest first SCN for an existing local capture process that has been started successfully at least once and has taken at least one checkpoint.

You can determine the first SCN for existing capture processes, and whether these capture processes have taken a checkpoint, by running the following query:


SELECT CAPTURE_NAME, FIRST_SCN, MAX_CHECKPOINT_SCN FROM DBA_CAPTURE;  


Your output looks similar to the following:


CAPTURE_NAME                    FIRST_SCN MAX_CHECKPOINT_SCN
------------------------------ ---------- ------------------
CAPTURE_SIMP                       223522             230825


These results show that the capture_simp capture process has a first SCN of 223522. Also, this capture process has taken a checkpoint because the MAX_CHECKPOINT_SCN value is non-NULL. Therefore, the start SCN for the new capture process can be set to 223522 or higher.

Before you proceed, complete the tasks in "Preparing to Create a Capture Process". Next, run the following procedure to create the capture process:


BEGIN
  DBMS_CAPTURE_ADM.CREATE_CAPTURE(
    queue_name         => 'strmadmin.streams_queue',
    capture_name       => 'strm05_capture',
    rule_set_name      => 'strmadmin.strm01_rule_set',
    start_scn          => 223525,
    source_database    => NULL,
    use_database_link  => false,
    first_scn          => NULL);
END;
/


Running this procedure performs the following actions:

	
Creates a capture process named strm05_capture. A capture process with the same name must not exist.


	
Associates the capture process with an existing queue named streams_queue.


	
Associates the capture process with an existing rule set named strm01_rule_set. This rule set is the positive rule set for the capture process.


	
Specifies 223525 as the start SCN for the capture process. The new capture process uses the same LogMiner data dictionary as one of the existing capture processes. Streams automatically chooses which LogMiner data dictionary to share with the new capture process. Because the first_scn parameter was set to NULL, the first SCN for the new capture process is the same as the first SCN of the existing capture process whose LogMiner data dictionary was shared. In this example, the existing capture process is capture_simp.


	
Creates a capture process that captures local changes to the source database because the source_database parameter is set to NULL. For a local capture process, you can also specify the global name of the local database for this parameter.







	
Note:

If no local capture process exists when the procedure in this example is run, then the DBMS_CAPTURE_ADM.BUILD procedure is run automatically during capture process creation to extract the data dictionary into the redo log. The first time the new capture process is started, it uses this redo data to create a LogMiner data dictionary. In this case, a specified start_scn parameter value must be equal to or higher than the current database SCN.










	
See Also:

	
"Capture Process Creation"


	
"First SCN and Start SCN Specifications During Capture Process Creation"


	
"After Creating a Capture Process"



















Creating a Downstream Capture Process

This section describes preparing for a downstream capture process and configuring a real-time or archived-log downstream capture process.

This section contains these topics:

	
Preparing to Transmit Redo Data to a Downstream Database


	
Creating a Real-Time Downstream Capture Process


	
Creating an Archived-Log Downstream Capture Process that Assigns Logs Implicitly


	
Creating an Archived-Log Downstream Capture Process that Assigns Logs Explicitly







	
See Also:

"Downstream Capture" for conceptual information about downstream capture









Preparing to Transmit Redo Data to a Downstream Database

Complete the following steps to prepare the source database to transmit its redo data to the downstream database, and to prepare the downstream database to accept the redo data:

	
Complete the tasks in "Preparing to Create a Capture Process".


	
Configure Oracle Net so that the source database can communicate with the downstream database.




	
See Also:

Oracle Database Net Services Administrator's Guide








	
Set the following initialization parameters to configure redo transport services to transmit redo data from the source database to the downstream database:

	
At the source database, configure at least one LOG_ARCHIVE_DEST_n initialization parameter to transmit redo data to the downstream database. To do this, set the following attributes of this parameter:

	
SERVICE - Specify the network service name of the downstream database.


	
ARCH, LGWR ASYNC, or LGWR SYNC - Specify a redo transport mode.

If you specify ARCH (the default), then the archiver process (ARCn) will archive the redo log files to the downstream database. You can specify ARCH for an archived-log downstream capture process only.

If you specify LGWR ASYNC, then the log writer process (LGWR) will archive the redo log files to the downstream database. The advantage of specifying LGWR ASYNC is that it results in little or no effect on the performance of the source database. If the source database is running Oracle Database 10g Release 1 or later, then LGWR ASYNC is recommended to avoid affecting source database performance if the downstream database or network is performing poorly. You can specify LGWR ASYNC for an archived-log downstream capture process or a real-time downstream capture process.

The advantage of specifying LGWR SYNC is that redo data is sent to the downstream database faster then when LGWR ASYNC is specified. You can specify LGWR SYNC for a real-time downstream capture process only.


	
NOREGISTER - Specify this attribute so that the location of the archived redo log files is not recorded in the downstream database control file.


	
VALID_FOR - Specify either (ONLINE_LOGFILE,PRIMARY_ROLE) or (ONLINE_LOGFILE,ALL_ROLES).


	
TEMPLATE - If you are configuring an archived-log downstream capture process, then specify a directory and format template for archived redo logs at the downstream database. The TEMPLATE attribute overrides the LOG_ARCHIVE_FORMAT initialization parameter settings at the downstream database. The TEMPLATE attribute is valid only with remote destinations. Ensure that the format uses all of the following variables at each source database: %t, %s, and %r.

Do not specify the TEMPLATE attribute if you are configuring a real-time downstream capture process.


	
DB_UNIQUE_NAME - The unique name of the downstream database. Use the name specified for the DB_UNIQUE_NAME initialization parameter at the downstream database.




The following example is a LOG_ARCHIVE_DEST_n setting that specifies a downstream database for a real-time downstream capture process:


LOG_ARCHIVE_DEST_2='SERVICE=DBS2.NET LGWR ASYNC NOREGISTER
   VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
   DB_UNIQUE_NAME=dbs2'


The following example is a LOG_ARCHIVE_DEST_n setting that specifies a downstream database for an archived-log downstream capture process:


LOG_ARCHIVE_DEST_2='SERVICE=DBS2.NET LGWR ASYNC NOREGISTER
   VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
   TEMPLATE=/usr/oracle/log_for_dbs1/dbs1_arch_%t_%s_%r.log
   DB_UNIQUE_NAME=dbs2'





	
Tip:

Specify a value for the TEMPLATE attribute that keeps log files from a remote source database separate from local database log files. In addition, if the downstream database contains log files from multiple source databases, then the log files from each source database should be kept separate from each other.








	
LOG_ARCHIVE_DEST_STATE_n - At the source database, set this initialization parameter that corresponds with the LOG_ARCHIVE_DEST_n parameter for the downstream database to ENABLE.

For example, if the LOG_ARCHIVE_DEST_2 initialization parameter is set for the downstream database, then set the LOG_ARCHIVE_DEST_STATE_2 parameter in the following way:


LOG_ARCHIVE_DEST_STATE_2=ENABLE


	
LOG_ARCHIVE_CONFIG - At both the source database and the downstream database, set the DB_CONFIG attribute in this initialization parameter to include the DB_UNIQUE_NAME of the source database and the downstream database.

For example, if the DB_UNIQUE_NAME of the source database is dbs1, and the DB_UNIQUE_NAME of the downstream database is dbs2, then specify the following parameter:


LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbs1,dbs2)'


By default, the LOG_ARCHIVE_CONFIG parameter enables a database to both send and receive redo.







	
See Also:

Oracle Database Reference and Oracle Data Guard Concepts and Administration for more information about these initialization parameters








	
If you reset any initialization parameters while an instance was running at a database in Step 3, then you might want to reset them in the relevant initialization parameter file as well, so that the new values are retained when the database is restarted.

If you did not reset the initialization parameters while an instance was running, but instead reset them in the initialization parameter file in Step 3, then restart the database. The source database must be open when it sends redo data to the downstream database, because the global name of the source database is sent to the downstream database only if the source database is open.









Creating a Real-Time Downstream Capture Process

To create a capture process that performs downstream capture, you must use the CREATE_CAPTURE procedure. The example in this section describes creating a real-time downstream capture process that uses a database link to the source database. However, a real-time downstream capture process might not use a database link.

This example assumes the following:

	
The source database is dbs1.net and the downstream database is dbs2.net.


	
The capture process that will be created at dbs2.net uses the streams_queue.


	
The capture process will capture DML changes to the hr.departments table.




This section contains an example that runs the CREATE_CAPTURE procedure in the DBMS_CAPTURE_ADM package to create a real-time downstream capture process at the dbs2.net downstream database that captures changes made to the dbs1.net source database. The capture process in this example uses a database link to dbs1.net for administrative purposes.

Complete the following steps:

	
Complete the tasks in "Preparing to Create a Capture Process".


	
Complete the steps in "Preparing to Transmit Redo Data to a Downstream Database".


	
At the downstream database, set the following initialization parameters to configure the downstream database to receive redo data from the source database and write the redo data to the standby redo log at the downstream database:

	
Set at least one archive log destination in the LOG_ARCHIVE_DEST_n initialization parameter to a directory on the computer system running the downstream database. To do this, set the following attributes of this parameter:

	
LOCATION - Specify a valid path name for a disk directory on the system that hosts the downstream database. Each destination that specifies the LOCATION attribute must identify a unique directory path name. This is the local destination for archived redo log files written from the standby redo logs. Log files from a remote source database should be kept separate from local database log files. In addition, if the downstream database contains log files from multiple source databases, then the log files from each source database should be kept separate from each other.


	
VALID FOR - Specify either (STANDBY_LOGFILE,PRIMARY_ROLE) or (STANDBY_LOGFILE,ALL_ROLES).




The following example is a LOG_ARCHIVE_DEST_n setting at the real-time capture downstream database:


LOG_ARCHIVE_DEST_2='LOCATION=/home/arc_dest/srl_dbs1
   VALID_FOR=(STANDBY_LOGFILE,PRIMARY_ROLE)'


You can specify other attributes in the LOG_ARCHIVE_DEST_n initialization parameter if necessary.


	
Set the LOG_ARCHIVE_DEST_STATE_n initialization parameter that corresponds with the LOG_ARCHIVE_DEST_n parameter for the downstream database to ENABLE.

For example, if the LOG_ARCHIVE_DEST_2 initialization parameter is set for the downstream database, then set one LOG_ARCHIVE_DEST_STATE_2 parameter in the following way:


LOG_ARCHIVE_DEST_STATE_2=ENABLE 


	
Optionally set the LOG_ARCHIVE_FORMAT initialization parameter to generate the filenames in a specified format for the archived redo log files. The following example is a valid LOG_ARCHIVE_FORMAT setting:


LOG_ARCHIVE_FORMAT=log%t_%s_%r.arc


	
If you set other archive destinations at the downstream database, then, to keep archived standby redo log files separate from archived online redo log files from the downstream database, explicitly specify ONLINE_LOGFILE or STANDBY_LOGFILE, instead of ALL_LOGFILES, in the VALID_FOR attribute. For example, if the LOG_ARCHIVE_DEST_1 parameter specifies the archive destination for the online redo log files at the downstream database, then avoid the ALL_LOGFILES keyword in the VALID_FOR attribute when you set the LOG_ARCHIVE_DEST_1 parameter.







	
See Also:

Oracle Database Reference and Oracle Data Guard Concepts and Administration for more information about these initialization parameters








	
If you reset any initialization parameters while an instance was running at a database in Step 3, then you might want to reset them in the relevant initialization parameter file as well, so that the new values are retained when the database is restarted.

If you did not reset the initialization parameters while an instance was running, but instead reset them in the initialization parameter file in Step 3, then restart the database. The source database must be open when it sends redo data to the downstream database, because the global name of the source database is sent to the downstream database only if the source database is open.


	
Create standby redo log files.




	
Note:

The following steps outline the general procedure for adding standby redo log files to the downstream database. The specific steps and SQL statements used to add standby redo log files depend on your environment. For example, in a Real Application Clusters environment, the steps are different. See Oracle Data Guard Concepts and Administration for detailed instructions about adding standby redo log files to a database.







	
In SQL*Plus, connect to the source database dbs1.net as an administrative user.


	
Determine the log file size used on the source database. The standby log file size must exactly match (or be larger than) the source database log file size. For example, if the source database log file size is 500 MB, then the standby log file size must be 500 MB or larger. You can determine the size of the redo log files at the source database (in bytes) by querying the V$LOG view at the source database.

For example, query the V$LOG view:


SELECT BYTES FROM V$LOG;


	
Determine the number of standby log file groups required on the downstream database. The number of standby log file groups must be at least one more than the number of online log file groups on the source database. For example, if the source database has two online log file groups, then the downstream database must have at least three standby log file groups. You can determine the number of source database online log file groups by querying the V$LOG view at the source database.

For example, query the V$LOG view:


SELECT COUNT(GROUP#) FROM V$LOG;


	
In SQL*Plus, connect to the downstream database dbs2.net as an administrative user.


	
Use the SQL statement ALTER DATABASE ADD STANDBY LOGFILE to add the standby log file groups to the downstream database.

For example, assume that the source database has two online redo log file groups and is using a log file size of 500 MB. In this case, use the following statements to create the appropriate standby log file groups:


ALTER DATABASE ADD STANDBY LOGFILE GROUP 3
   ('/oracle/dbs/slog3a.rdo', '/oracle/dbs/slog3b.rdo') SIZE 500M;

ALTER DATABASE ADD STANDBY LOGFILE GROUP 4
   ('/oracle/dbs/slog4.rdo', '/oracle/dbs/slog4b.rdo') SIZE 500M;

ALTER DATABASE ADD STANDBY LOGFILE GROUP 5
   ('/oracle/dbs/slog5.rdo', '/oracle/dbs/slog5b.rdo') SIZE 500M;


	
Ensure that the standby log file groups were added successfully by running the following query:


SELECT GROUP#, THREAD#, SEQUENCE#, ARCHIVED, STATUS
   FROM V$STANDBY_LOG;


You output should be similar to the following:


    GROUP#    THREAD#  SEQUENCE# ARC STATUS
---------- ---------- ---------- --- ----------
         3          0          0 YES UNASSIGNED
         4          0          0 YES UNASSIGNED
         5          0          0 YES UNASSIGNED





	
Connect to the downstream database dbs2.net as the Streams administrator.


CONNECT strmadmin/strmadminpw@dbs2.net


	
Create a database link from dbs2.net to dbs1.net. For example, if the user strmadmin is the Streams administrator on both databases, then create the following database link:


CREATE DATABASE LINK dbs1.net CONNECT TO strmadmin IDENTIFIED BY strmadminpw
   USING 'dbs1.net';


This example assumes that a Streams administrator exists at the source database dbs1.net. If no Streams administrator exists at the source database, then the Streams administrator at the downstream database should connect to a user who allows remote access by a Streams administrator. You can enable remote access for a user by specifying the user as the grantee when you run the GRANT_REMOTE_ADMIN_ACCESS procedure in the DBMS_STREAMS_AUTH package at the source database.


	
Run the CREATE_CAPTURE procedure to create the capture process:


BEGIN
  DBMS_CAPTURE_ADM.CREATE_CAPTURE(
    queue_name         => 'strmadmin.streams_queue',
    capture_name       => 'real_time_capture',
    rule_set_name      => NULL,
    start_scn          => NULL,
    source_database    => 'dbs1.net',
    use_database_link  => true,
    first_scn          => NULL,
    logfile_assignment => 'implicit');
END;
/


Running this procedure performs the following actions:

	
Creates a capture process named real_time_capture at the downstream database dbs2.net. A capture process with the same name must not exist.


	
Associates the capture process with an existing queue on dbs2.net named streams_queue.


	
Specifies that the source database of the changes that the capture process will capture is dbs1.net.


	
Specifies that the capture process uses a database link with the same name as the source database global name to perform administrative actions at the source database.


	
Specifies that the capture process accepts redo data implicitly from dbs1.net. Therefore, the capture process scans the standby redo log at dbs2.net for changes that it must capture. If the capture process falls behind, then it scans the archived redo log files written from the standby redo log.




This step does not associate the capture process real_time_capture with any rule set. A rule set will be created and associated with the capture process in the next step.

If no other capture process at dbs2.net is capturing changes from the dbs1.net source database, then the DBMS_CAPTURE_ADM.BUILD procedure is run automatically at dbs1.net using the database link. Running this procedure extracts the data dictionary at dbs1.net to the redo log, and a LogMiner data dictionary for dbs1.net is created at dbs2.net when the capture process real_time_capture is started for the first time at dbs2.net.

If multiple capture processes at dbs2.net are capturing changes from the dbs1.net source database, then the new capture process real_time_capture uses the same LogMiner data dictionary for dbs1.net as one of the existing archived-log capture process. Streams automatically chooses which LogMiner data dictionary to share with the new capture process.




	
Note:

Only one real-time downstream capture process is allowed at a single downstream database.










	
See Also:

"SCN Values Relating to a Capture Process"








	
Set the downstream_real_time_mine capture process parameter to y:


BEGIN
  DBMS_CAPTURE_ADM.SET_PARAMETER(
    capture_name => 'real_time_capture',
    parameter    => 'downstream_real_time_mine',
    value        => 'y');
END;
/


	
Create the positive rule set for the capture process and add a rule to it:


BEGIN 
  DBMS_STREAMS_ADM.ADD_TABLE_RULES(
    table_name          =>  'hr.departments',
    streams_type        =>  'capture',
    streams_name        =>  'real_time_capture',
    queue_name          =>  'strmadmin.streams_queue',
    include_dml         =>  true,
    include_ddl         =>  false,
    include_tagged_lcr  =>  false,
    source_database     =>  'dbs1.net',
    inclusion_rule      =>  true);
END;
/


Running this procedure performs the following actions:

	
Creates a rule set at dbs2.net for capture process real_time_capture. The rule set has a system-generated name. The rule set is the positive rule set for the capture process because the inclusion_rule parameter is set to true.


	
Creates a rule that captures DML changes to the hr.departments table, and adds the rule to the positive rule set for the capture process. The rule has a system-generated name. The rule is added to the positive rule set for the capture process because the inclusion_rule parameter is set to true.


	
Prepares the hr.departments table at dbs1.net for instantiation using the database link created in Step 7.


	
Enables supplemental logging for any primary key, unique key, bitmap index, and foreign key columns in the hr.departments table. Primary key supplemental logging is required for the hr.departments table because this example creates a capture processes that captures changes to this table.





	
Connect to the source database dbs1.net as an administrative user with the necessary privileges to switch log files.


	
Archive the current log file at the source database:


ALTER SYSTEM ARCHIVE LOG CURRENT;


Archiving the current log file at the source database starts real time mining of the source database redo log.




Now you can configure propagation or apply, or both, of the LCRs captured by the capture process.

In this example, if you want to use an apply process to apply the LCRs at the downstream database dbs2.net, then set the instantiation SCN for the hr.departments table at dbs2.net. If this table does not exist at dbs2.net, then instantiate it at dbs2.net.

For example, if the hr.departments table exists at dbs2.net, then set the instantiation SCN for the hr.departments table at dbs2.net by running the following procedure at the destination database dbs2.net:


DECLARE
  iscn  NUMBER;         -- Variable to hold instantiation SCN value
BEGIN
  iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER@DBS1.NET;
  DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN(
    source_object_name    => 'hr.departments',
    source_database_name  => 'dbs1.net',
    instantiation_scn     => iscn);
END;
/


After the instantiation SCN has been set, you can configure an apply process to apply LCRs for the hr.departments table from the streams_queue queue. Setting the instantiation SCN for an object at a database is required only if an apply process applies LCRs for the object. When all of the necessary propagations and apply processes are configured, start the capture process using the START_CAPTURE procedure in DBMS_CAPTURE_ADM.




	
Note:

If you want the database objects to be synchronized at the source database and the destination database, then make sure the database objects are consistent when you set the instantiation SCN at the destination database. In the previous example, the hr.departments table should be consistent at the source and destination databases when the instantiation SCN is set.










	
See Also:

	
"After Creating a Capture Process"


	
Oracle Streams Replication Administrator's Guide for more information about instantiation
















Creating an Archived-Log Downstream Capture Process

This section describes configuring an archived-log downstream capture process that either assigns log files implicitly or explicitly.

This section contains these topics:

	
Creating an Archived-Log Downstream Capture Process that Assigns Logs Implicitly


	
Creating an Archived-Log Downstream Capture Process that Assigns Logs Explicitly






Creating an Archived-Log Downstream Capture Process that Assigns Logs Implicitly

This section contains an example that runs the CREATE_CAPTURE procedure in the DBMS_CAPTURE_ADM package to create an archived-log downstream capture process at the dbs2.net downstream database that captures changes made to the dbs1.net source database. The capture process in this example uses a database link to dbs1.net for administrative purposes.

This example assumes the following:

	
The source database is dbs1.net and the downstream database is dbs2.net.


	
The capture process that will be created at dbs2.net uses the streams_queue.


	
The capture process will capture DML changes to the hr.departments table.


	
The capture process assigns log files implicitly. That is, the downstream capture process automatically scans all redo log files added by redo transport services or manually from the source database to the downstream database.




Complete the following steps:

	
Complete the tasks in "Preparing to Create a Capture Process".


	
Complete the steps in "Preparing to Transmit Redo Data to a Downstream Database".


	
Connect to the downstream database dbs2.net as the Streams administrator.


CONNECT strmadmin/strmadminpw@dbs2.net


	
Create the database link from dbs2.net to dbs1.net. For example, if the user strmadmin is the Streams administrator on both databases, then create the following database link:


CREATE DATABASE LINK dbs1.net CONNECT TO strmadmin IDENTIFIED BY strmadminpw
   USING 'dbs1.net';


This example assumes that a Streams administrator exists at the source database dbs1.net. If no Streams administrator exists at the source database, then the Streams administrator at the downstream database should connect to a user who allows remote access by a Streams administrator. You can enable remote access for a user by specifying the user as the grantee when you run the GRANT_REMOTE_ADMIN_ACCESS procedure in the DBMS_STREAMS_AUTH package at the source database.


	
While connected to the downstream database as the Streams administrator, run the CREATE_CAPTURE procedure to create the capture process:


BEGIN
  DBMS_CAPTURE_ADM.CREATE_CAPTURE(
    queue_name         => 'strmadmin.streams_queue',
    capture_name       => 'strm04_capture',
    rule_set_name      => NULL,
    start_scn          => NULL,
    source_database    => 'dbs1.net',
    use_database_link  => true,
    first_scn          => NULL,
    logfile_assignment => 'implicit');
END;
/


Running this procedure performs the following actions:

	
Creates a capture process named strm04_capture at the downstream database dbs2.net. A capture process with the same name must not exist.


	
Associates the capture process with an existing queue on dbs2.net named streams_queue.


	
Specifies that the source database of the changes that the capture process will capture is dbs1.net.


	
Specifies that the capture process accepts new redo log files implicitly from dbs1.net. Therefore, the capture process scans any new log files copied from dbs1.net to dbs2.net for changes that it must capture. These log files must be added to the capture process automatically using redo transport services or manually using the following DDL statement:


ALTER DATABASE REGISTER LOGICAL LOGFILE file_name 
   FOR capture_process;


Here, file_name is the name of the redo log file and capture_process is the name of the capture process that will use the redo log file at the downstream database. You must add redo log files manually only if the logfile_assignment parameter is set to explicit.




This step does not associate the capture process strm04_capture with any rule set. A rule set will be created and associated with the capture process in the next step.

If no other capture process at dbs2.net is capturing changes from the dbs1.net source database, then the DBMS_CAPTURE_ADM.BUILD procedure is run automatically at dbs1.net using the database link. Running this procedure extracts the data dictionary at dbs1.net to the redo log, and a LogMiner data dictionary for dbs1.net is created at dbs2.net when the capture process is started for the first time at dbs2.net.

If multiple capture processes at dbs2.net are capturing changes from the dbs1.net source database, then the new capture process uses the same LogMiner data dictionary for dbs1.net as one of the existing capture process. Streams automatically chooses which LogMiner data dictionary to share with the new capture process.




	
See Also:

	
"Capture Process Creation"


	
Oracle Database SQL Reference for more information about the ALTER DATABASE statement


	
Oracle Data Guard Concepts and Administration for more information registering redo log files













	
While connected to the downstream database as the Streams administrator, create the positive rule set for the capture process and add a rule to it:


BEGIN 
  DBMS_STREAMS_ADM.ADD_TABLE_RULES(
    table_name          =>  'hr.departments',
    streams_type        =>  'capture',
    streams_name        =>  'strm04_capture',
    queue_name          =>  'strmadmin.streams_queue',
    include_dml         =>  true,
    include_ddl         =>  false,
    include_tagged_lcr  =>  false,
    source_database     =>  'dbs1.net',
    inclusion_rule      =>  true);
END;
/


Running this procedure performs the following actions:

	
Creates a rule set at dbs2.net for capture process strm04_capture. The rule set has a system-generated name. The rule set is a positive rule set for the capture process because the inclusion_rule parameter is set to true.


	
Creates a rule that captures DML changes to the hr.departments table, and adds the rule to the rule set for the capture process. The rule has a system-generated name. The rule is added to the positive rule set for the capture process because the inclusion_rule parameter is set to true.







Now you can configure propagation or apply, or both, of the LCRs captured by the strm04_capture capture process.

In this example, if you want to use an apply process to apply the LCRs at the downstream database dbs2.net, then set the instantiation SCN for the hr.departments table at dbs2.net. If this table does not exist at dbs2.net, then instantiate it at dbs2.net.

For example, if the hr.departments table exists at dbs2.net, then connect to the source database as the Streams administrator, and create a database link to dbs2.net:


CONNECT strmadmin/strmadminpw@dbs1.net

CREATE DATABASE LINK dbs2.net CONNECT TO strmadmin IDENTIFIED BY strmadminpw   USING 'dbs2.net';


Set the instantiation SCN for the hr.departments table at dbs2.net by running the following procedure at the source database dbs1.net:


DECLARE
  iscn  NUMBER;         -- Variable to hold instantiation SCN value
BEGIN
  iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
  DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN@DBS2.NET(
    source_object_name    => 'hr.departments',
    source_database_name  => 'dbs1.net',
    instantiation_scn     => iscn);
END;
/


After the instantiation SCN has been set, you can configure an apply process to apply LCRs for the hr.departments table from the streams_queue queue. Setting the instantiation SCN for an object at a database is required only if an apply process applies LCRs for the object. When all of the necessary propagations and apply processes are configured, start the capture process using the START_CAPTURE procedure in DBMS_CAPTURE_ADM.




	
Note:

If you want the database objects to be synchronized at the source database and the destination database, then make sure the database objects are consistent when you set the instantiation SCN at the destination database. In the previous example, the hr.departments table should be consistent at the source and destination databases when the instantiation SCN is set.










	
See Also:

	
"After Creating a Capture Process"


	
Oracle Streams Replication Administrator's Guide for more information about instantiation

















Creating an Archived-Log Downstream Capture Process that Assigns Logs Explicitly

To create a capture process that performs downstream capture, you must use the CREATE_CAPTURE procedure. This section describes creating an archived-log downstream capture process that assigns redo log files explicitly. That is, you must use the DBMS_FILE_TRANSFER package, FTP, or some other method to transfer redo log files from the source database to the downstream database, and then you must register these redo log files with the downstream capture process manually.

In this example, assume the following:

	
The source database is dbs1.net and the downstream database is dbs2.net.


	
The capture process that will be created at dbs2.net uses the streams_queue.


	
The capture process will capture DML changes to the hr.departments table.


	
The capture process does not use a database link to the source database for administrative actions.




Complete the following steps:

	
Complete the tasks in "Preparing to Create a Capture Process".


	
Complete the steps in "Preparing to Transmit Redo Data to a Downstream Database".


	
Connect to the source database dbs1.net as the Streams administrator. For example, if the Streams administrator is strmadmin, then issue the following statement:


CONNECT strmadmin/strmadminpw@dbs1.net


If you do not use a database link from the downstream database to the source database, then a Streams administrator must exist at the source database.


	
If there is no capture process at dbs2.net that captures changes from dbs1.net, then perform a build of the dbs1.net data dictionary in the redo log. This step is optional if a capture process at dbs2.net is already configured to capture changes from the dbs1.net source database.


SET SERVEROUTPUT ON
DECLARE
  scn  NUMBER;
BEGIN
  DBMS_CAPTURE_ADM.BUILD(
    first_scn => scn);
  DBMS_OUTPUT.PUT_LINE('First SCN Value = ' || scn);
END;
/
First SCN Value = 409391


This procedure displays the valid first SCN value for the capture process that will be created at dbs2.net. Make a note of the SCN value returned because you will use it when you create the capture process at dbs2.net.

If you run this procedure to build the data dictionary in the redo log, then when the capture process is first started at dbs2.net, it will create a LogMiner data dictionary using the data dictionary information in the redo log.


	
Prepare the hr.departments table for instantiation:


BEGIN
  DBMS_CAPTURE_ADM.PREPARE_TABLE_INSTANTIATION(
     table_name           =>  'hr.departments',
     supplemental_logging =>  'keys');
END;
/


Primary key supplemental logging is required for the hr.departments table because this example creates a capture processes that captures changes to this table. Specifying keys for the supplemental_logging parameter in the PREPARE_TABLE_INSTANTIATION procedure enables supplemental logging for any primary key, unique key, bitmap index, and foreign key columns in the table.


	
Determine the current SCN of the source database:


SET SERVEROUTPUT ON SIZE 1000000

DECLARE
  iscn  NUMBER;         -- Variable to hold instantiation SCN value
BEGIN
  iscn := DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER();
  DBMS_OUTPUT.PUT_LINE('Current SCN: ' || iscn);
END;
/


You can use the returned SCN as the instantiation SCN for destination databases that will apply changes to the hr.departments table that were captured by the capture process being created. In this example, assume the returned SCN is 1001656.


	
Connect to the downstream database dbs2.net as the Streams administrator. For example, if the Streams administrator is strmadmin, then issue the following statement:


CONNECT strmadmin/strmadminpw@dbs2.net


	
Run the CREATE_CAPTURE procedure to create the capture process and specify the value obtained in Step 4 for the first_scn parameter:


BEGIN
  DBMS_CAPTURE_ADM.CREATE_CAPTURE(
    queue_name         => 'strmadmin.streams_queue',
    capture_name       => 'strm05_capture',
    rule_set_name      => NULL,
    start_scn          => NULL,
    source_database    => 'dbs1.net',
    use_database_link  => false,
    first_scn          => 409391, -- Use value from Step 4
    logfile_assignment => 'explicit');
END;
/


Running this procedure performs the following actions:

	
Creates a capture process named strm05_capture at the downstream database dbs2.net. A capture process with the same name must not exist.


	
Associates the capture process with an existing queue on dbs2.net named streams_queue.


	
Specifies that the source database of the changes that the capture process will capture is dbs1.net.


	
Specifies that the first SCN for the capture process is 409391. This value was obtained in Step 4. The first SCN is the lowest SCN for which a capture process can capture changes. Because a first SCN is specified, the capture process creates a new LogMiner data dictionary when it is first started, regardless of whether there are existing LogMiner data dictionaries for the same source database.


	
Specifies new redo log files from dbs1.net must be assigned to the capture process explicitly. After a redo log file has been transferred to the computer running the downstream database, you assign the log file to the capture process explicitly using the following DDL statement:


ALTER DATABASE REGISTER LOGICAL LOGFILE file_name FOR capture_process;


Here, file_name is the name of the redo log file and capture_process is the name of the capture process that will use the redo log file at the downstream database. You must add redo log files manually if the logfile_assignment parameter is set to explicit.




This step does not associate the capture process strm05_capture with any rule set. A rule set will be created and associated with the capture process in the next step.




	
See Also:

	
"Capture Process Creation"


	
"SCN Values Relating to a Capture Process"


	
Oracle Database SQL Reference for more information about the ALTER DATABASE statement


	
Oracle Data Guard Concepts and Administration for more information registering redo log files













	
Create the positive rule set for the capture process and add a rule to it:


BEGIN 
  DBMS_STREAMS_ADM.ADD_TABLE_RULES(
    table_name          =>  'hr.departments',
    streams_type        =>  'capture',
    streams_name        =>  'strm05_capture',
    queue_name          =>  'strmadmin.streams_queue',
    include_dml         =>  true,
    include_ddl         =>  false,
    include_tagged_lcr  =>  false,
    source_database     =>  'dbs1.net',
    inclusion_rule      =>  true);
END;
/


Running this procedure performs the following actions:

	
Creates a rule set at dbs2.net for capture process strm05_capture. The rule set has a system-generated name. The rule set is a positive rule set for the capture process because the inclusion_rule parameter is set to true.


	
Creates a rule that captures DML changes to the hr.departments table, and adds the rule to the rule set for the capture process. The rule has a system-generated name. The rule is added to the positive rule set for the capture process because the inclusion_rule parameter is set to true.





	
After the redo log file at the source database dbs1.net that contains the first SCN for the downstream capture process is archived, transfer the archived redo log file to the computer running the downstream database. The BUILD procedure in Step 4 determined the first SCN for the downstream capture process. If the redo log file is not yet archived, you can run the ALTER SYSTEM SWITCH LOGFILE statement on the database to archive it.

You can run the following query at dbs1.net to identify the archived redo log file that contains the first SCN for the downstream capture process:


COLUMN NAME HEADING 'Archived Redo Log|File Name' FORMAT A50
COLUMN FIRST_CHANGE# HEADING 'First SCN' FORMAT 999999999

SELECT NAME, FIRST_CHANGE# FROM V$ARCHIVED_LOG
  WHERE FIRST_CHANGE# IS NOT NULL AND DICTIONARY_BEGIN = 'YES';





Transfer the archived redo log file with a FIRST_CHANGE# that matches the first SCN returned in Step 4 to the computer running the downstream capture process.


	
At the downstream database dbs2.net, connect as an administrative user and assign the transferred redo log file to the capture process. For example, if the redo log file is /oracle/logs_from_dbs1/1_10_486574859.dbf, then issue the following statement:


ALTER DATABASE REGISTER LOGICAL LOGFILE 
   '/oracle/logs_from_dbs1/1_10_486574859.dbf' FOR 'strm05_capture';




Now you can configure propagation or apply, or both, of the LCRs captured by the strm05_capture capture process.

In this example, if you want to use an apply process to apply the LCRs at the downstream database dbs2.net, then set the instantiation SCN for the hr.departments table at dbs2.net. If this table does not exist at dbs2.net, then instantiate it at dbs2.net.

For example, if the hr.departments table exists at dbs2.net, then set the instantiation SCN for the hr.departments table at dbs2.net to the value determined in Step 6. Run the following procedure at dbs2.net to set the instantiation SCN for the hr.departments table:


CONNECT strmadmin/strmadminpw@dbs2.net

BEGIN
  DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN(
    source_object_name    => 'hr.departments',
    source_database_name  => 'dbs1.net',
    instantiation_scn     => 1001656);
END;
/


After the instantiation SCN has been set, you can configure an apply process to apply LCRs for the hr.departments table from the streams_queue queue. Setting the instantiation SCN for an object at a database is required only if an apply process applies LCRs for the object. When all of the necessary propagations and apply processes are configured, start the capture process using the START_CAPTURE procedure in DBMS_CAPTURE_ADM.




	
Note:

If you want the database objects to be synchronized at the source database and the destination database, then make sure the database objects are consistent when you set the instantiation SCN at the destination database. In the previous example, the hr.departments table should be consistent at the source and destination databases when the instantiation SCN is set.










	
See Also:

	
"After Creating a Capture Process"


	
Oracle Streams Replication Administrator's Guide for more information about instantiation





















After Creating a Capture Process

If you plan to configure propagations and apply processes that process LCRs captured by the new capture process, then perform the configuration steps in the following order:

	
Create all of the propagations that will propagate LCRs captured by the new capture process. See "Creating a Propagation Between Two ANYDATA Queues".

If you created a downstream capture process, and the captured changes will be applied at the downstream database by an apply process, then the capture process and apply process can use the same queue at the downstream database. Using the same queue for the downstream capture process and the apply process at a downstream database is more efficient than propagating the changes between two queues, and it eliminates the need for a propagation.


	
Create all of the apply processes that will dequeue LCRs captured by the new capture process. See "Creating an Apply Process". Configure each apply process to apply captured LCRs.


	
Instantiate the tables for which the new capture process captures changes at all destination databases. See Oracle Streams Replication Administrator's Guide for detailed information about instantiation.


	
Start the apply processes that will process LCRs captured by the new capture process. See "Starting an Apply Process".


	
Start the new capture process. See "Starting a Capture Process".







	
Note:

Other configuration steps might be required for your Oracle Streams environment. For example, some Oracle Streams environments include transformations, apply handlers, and conflict resolution.














Starting a Capture Process

You run the START_CAPTURE procedure in the DBMS_CAPTURE_ADM package to start an existing capture process. For example, the following procedure starts a capture process named strm01_capture:


BEGIN
  DBMS_CAPTURE_ADM.START_CAPTURE(
    capture_name => 'strm01_capture');
END;
/





	
Note:

If a new capture process will use a new LogMiner data dictionary, then, when you first start the new capture process, some time might be required to populate the new LogMiner data dictionary. A new LogMiner data dictionary is created if a non-NULL first SCN value was specified when the capture process was created.












Stopping a Capture Process

You run the STOP_CAPTURE procedure in the DBMS_CAPTURE_ADM package to stop an existing capture process. For example, the following procedure stops a capture process named strm01_capture:


BEGIN
  DBMS_CAPTURE_ADM.STOP_CAPTURE(
    capture_name => 'strm01_capture');
END;
/






Managing the Rule Set for a Capture Process

This section contains instructions for completing the following tasks:

	
Specifying a Rule Set for a Capture Process


	
Adding Rules to a Rule Set for a Capture Process


	
Removing a Rule from a Rule Set for a Capture Process


	
Removing a Rule Set for a Capture Process







	
See Also:

	
Chapter 5, "Rules"


	
Chapter 6, "How Rules Are Used in Streams"














Specifying a Rule Set for a Capture Process

You can specify one positive rule set and one negative rule set for a capture process. The capture process captures a change if it evaluates to TRUE for at least one rule in the positive rule set and evaluates to FALSE for all the rules in the negative rule set. The negative rule set is evaluated before the positive rule set.




	
See Also:

	
Chapter 5, "Rules"


	
Chapter 6, "How Rules Are Used in Streams"













Specifying a Positive Rule Set for a Capture Process

You specify an existing rule set as the positive rule set for an existing capture process using the rule_set_name parameter in the ALTER_CAPTURE procedure. This procedure is in the DBMS_CAPTURE_ADM package.

For example, the following procedure sets the positive rule set for a capture process named strm01_capture to strm02_rule_set.


BEGIN
  DBMS_CAPTURE_ADM.ALTER_CAPTURE(
    capture_name  => 'strm01_capture',
    rule_set_name => 'strmadmin.strm02_rule_set');
END;
/





Specifying a Negative Rule Set for a Capture Process

You specify an existing rule set as the negative rule set for an existing capture process using the negative_rule_set_name parameter in the ALTER_CAPTURE procedure. This procedure is in the DBMS_CAPTURE_ADM package.

For example, the following procedure sets the negative rule set for a capture process named strm01_capture to strm03_rule_set.


BEGIN
  DBMS_CAPTURE_ADM.ALTER_CAPTURE(
    capture_name           => 'strm01_capture',
    negative_rule_set_name => 'strmadmin.strm03_rule_set');
END;
/








Adding Rules to a Rule Set for a Capture Process

To add rules to a rule set for an existing capture process, you can run one of the following procedures in the DBMS_STREAMS_ADM package and specify the existing capture process:

	
ADD_TABLE_RULES


	
ADD_SUBSET_RULES


	
ADD_SCHEMA_RULES


	
ADD_GLOBAL_RULES




Excluding the ADD_SUBSET_RULES procedure, these procedures can add rules to the positive rule set or negative rule set for a capture process. The ADD_SUBSET_RULES procedure can add rules only to the positive rule set for a capture process.




	
See Also:

"System-Created Rules"








Adding Rules to the Positive Rule Set for a Capture Process

The following example runs the ADD_TABLE_RULES procedure in the DBMS_STREAMS_ADM package to add rules to the positive rule set of a capture process named strm01_capture:


BEGIN
  DBMS_STREAMS_ADM.ADD_TABLE_RULES(
    table_name      =>  'hr.departments',
    streams_type    =>  'capture',
    streams_name    =>  'strm01_capture',
    queue_name      =>  'strmadmin.streams_queue',
    include_dml     =>  true,
    include_ddl     =>  true,
    inclusion_rule  =>  true);
END;
/


Running this procedure performs the following actions:

	
Creates two rules. One rule evaluates to TRUE for DML changes to the hr.departments table, and the other rule evaluates to TRUE for DDL changes to the hr.departments table. The rule names are system generated.


	
Adds the two rules to the positive rule set associated with the capture process because the inclusion_rule parameter is set to true.


	
Prepares the hr.departments table for instantiation by running the PREPARE_TABLE_INSTANTIATION procedure in the DBMS_CAPTURE_ADM package.


	
Enables supplemental logging for any primary key, unique key, bitmap index, and foreign key columns in the hr.departments table. When the PREPARE_TABLE_INSTANTIATION procedure is run, the default value (keys) is specified for the supplemental_logging parameter.




If the capture process is performing downstream capture, then the table is prepared for instantiation and supplemental logging is enabled for key columns only if the downstream capture process uses a database link to the source database. If a downstream capture process does not use a database link to the source database, then the table must be prepared for instantiation manually and supplemental logging must be enabled manually.





Adding Rules to the Negative Rule Set for a Capture Process

The following example runs the ADD_TABLE_RULES procedure in the DBMS_STREAMS_ADM package to add rules to the negative rule set of a capture process named strm01_capture:


BEGIN
  DBMS_STREAMS_ADM.ADD_TABLE_RULES(
    table_name      =>  'hr.job_history',
    streams_type    =>  'capture',
    streams_name    =>  'strm01_capture',
    queue_name      =>  'strmadmin.streams_queue',
    include_dml     =>  true,
    include_ddl     =>  true,
    inclusion_rule  =>  false);
END;
/


Running this procedure performs the following actions:

	
Creates two rules. One rule evaluates to TRUE for DML changes to the hr.job_history table, and the other rule evaluates to TRUE for DDL changes to the hr.job_history table. The rule names are system generated.


	
Adds the two rules to the negative rule set associated with the capture process, because the inclusion_rule parameter is set to false.











Removing a Rule from a Rule Set for a Capture Process

You specify that you want to remove a rule from a rule set for an existing capture process by running the REMOVE_RULE procedure in the DBMS_STREAMS_ADM package. For example, the following procedure removes a rule named departments3 from the positive rule set of a capture process named strm01_capture.


BEGIN
  DBMS_STREAMS_ADM.REMOVE_RULE(
    rule_name        => 'departments3',
    streams_type     => 'capture',
    streams_name     => 'strm01_capture',
    drop_unused_rule => true,
    inclusion_rule   => true);
END;
/


In this example, the drop_unused_rule parameter in the REMOVE_RULE procedure is set to true, which is the default setting. Therefore, if the rule being removed is not in any other rule set, then it will be dropped from the database. If the drop_unused_rule parameter is set to false, then the rule is removed from the rule set, but it is not dropped from the database.

If the inclusion_rule parameter is set to false, then the REMOVE_RULE procedure removes the rule from the negative rule set for the capture process, not the positive rule set.

If you want to remove all of the rules in a rule set for the capture process, then specify NULL for the rule_name parameter when you run the REMOVE_RULE procedure.




	
See Also:

"Streams Client with One or More Empty Rule Sets"












Removing a Rule Set for a Capture Process

You specify that you want to remove a rule set from an existing capture process using the ALTER_CAPTURE procedure in the DBMS_CAPTURE_ADM package. This procedure can remove the positive rule set, negative rule set, or both. Specify true for the remove_rule_set parameter to remove the positive rule set for the capture process. Specify true for the remove_negative_rule_set parameter to remove the negative rule set for the capture process.

For example, the following procedure removes both the positive and negative rule set from a capture process named strm01_capture.


BEGIN
  DBMS_CAPTURE_ADM.ALTER_CAPTURE(
    capture_name             => 'strm01_capture',
    remove_rule_set          => true,
    remove_negative_rule_set => true);
END;
/





	
Note:

If a capture process does not have a positive or negative rule set, then the capture process captures all supported changes to all objects in the database, excluding database objects in the SYS, SYSTEM, and CTXSYS schemas.














Setting a Capture Process Parameter

Set a capture process parameter using the SET_PARAMETER procedure in the DBMS_CAPTURE_ADM package. Capture process parameters control the way a capture process operates.

For example, the following procedure sets the parallelism parameter for a capture process named strm01_capture to 3.


BEGIN
  DBMS_CAPTURE_ADM.SET_PARAMETER(
    capture_name => 'strm01_capture',
    parameter    => 'parallelism',
    value        => '3');
END;
/





	
Note:

	
Setting the parallelism parameter automatically stops and restarts a capture process.


	
The value parameter is always entered as a VARCHAR2 value, even if the parameter value is a number.















	
See Also:

	
"Capture Process Architecture"


	
The DBMS_CAPTURE_ADM.SET_PARAMETER procedure in the Oracle Database PL/SQL Packages and Types Reference for detailed information about the capture process parameters

















Setting the Capture User for a Capture Process

The capture user is the user who captures all DML changes and DDL changes that satisfy the capture process rule sets. Set the capture user for a capture process using the capture_user parameter in the ALTER_CAPTURE procedure in the DBMS_CAPTURE_ADM package.

To change the capture user, the user who invokes the ALTER_CAPTURE procedure must be granted DBA role. Only the SYS user can set the capture_user to SYS.

For example, the following procedure sets the capture user for a capture process named strm01_capture to hr.


BEGIN
  DBMS_CAPTURE_ADM.ALTER_CAPTURE(
    capture_name => 'strm01_capture',
    capture_user => 'hr');
END;
/


Running this procedure grants the new capture user enqueue privilege on the queue used by the capture process and configures the user as a secure queue user of the queue. In addition, make sure the capture user has the following privileges:

	
EXECUTE privilege on the rule sets used by the capture process


	
EXECUTE privilege on all custom rule-based transformation functions used in the rule set




These privileges must be granted directly to the capture user. They cannot be granted through roles.






Managing the Checkpoint Retention Time for a Capture Process

The checkpoint retention time is the amount of time that a capture process retains checkpoints before purging them automatically. Set the checkpoint retention time for a capture process using checkpoint_retention_time parameter in the ALTER_CAPTURE procedure of the DBMS_CAPTURE_ADM package.




	
See Also:

"Capture Process Checkpoints"








Setting the Checkpoint Retention Time for a Capture Process to a New Value

When you set the checkpoint retention time, you can specify partial days with decimal values. For example, run the following procedure to specify that a capture process named strm01_capture should purge checkpoints automatically every ten days and twelve hours:


BEGIN
  DBMS_CAPTURE_ADM.ALTER_CAPTURE(
    capture_name              => 'strm01_capture',
    checkpoint_retention_time => 10.5);
END;
/





Setting the Checkpoint Retention Time for a Capture Process to Infinite

To specify that a capture process should not purge checkpoints automatically, set the checkpoint retention time to DBMS_CAPTURE_ADM.INFINITE. For example, the following procedure sets the checkpoint retention time for a name strm01_capture to infinite:


BEGIN
  DBMS_CAPTURE_ADM.ALTER_CAPTURE(
    capture_name              => 'strm01_capture',
    checkpoint_retention_time => DBMS_CAPTURE_ADM.INFINITE);
END;
/








Specifying Supplemental Logging at a Source Database

Supplemental logging must be specified for some columns at a source database for changes to the columns to be applied successfully at a destination database. Typically, supplemental logging is required in Streams replication environments, but it might be required in any environment that processes captured messages with an apply process. You use the ALTER DATABASE statement to specify supplemental logging for all tables in a database, and you use the ALTER TABLE statement to specify supplemental logging for a particular table.




	
See Also:

Oracle Streams Replication Administrator's Guide for more information about specifying supplemental logging












Adding an Archived Redo Log File to a Capture Process Explicitly

You can add an archived redo log file to a capture process manually using the following statement:


ALTER DATABASE REGISTER LOGICAL LOGFILE 
   file_name FOR capture_process;


Here, file_name is the name of the archived redo log file being added, and capture_process is the name of the capture process that will use the redo log file at the downstream database. The capture_process is equivalent to the logminer_session_name and must be specified. The redo log file must be present at the site running capture process.

For example, to add the /usr/log_files/1_3_486574859.dbf archived redo log file to a capture process named strm03_capture, issue the following statement:


ALTER DATABASE REGISTER LOGICAL LOGFILE '/usr/log_files/1_3_486574859.dbf' 
  FOR 'strm03_capture';





	
See Also:

Oracle Database SQL Reference for more information about the ALTER DATABASE statement and Oracle Data Guard Concepts and Administration for more information registering redo log files












Setting the First SCN for an Existing Capture Process

You can set the first SCN for an existing capture process using the ALTER_CAPTURE procedure in the DBMS_CAPTURE_ADM package.

The specified first SCN must meet the following requirements:

	
It must be greater than the current first SCN for the capture process.


	
It must be less than or equal to the current applied SCN for the capture process. However, this requirement does not apply if the current applied SCN for the capture process is zero.


	
It must be less than or equal to the required checkpoint SCN for the capture process.




You can determine the current first SCN, applied SCN, and required checkpoint SCN for each capture process in a database using the following query:


SELECT CAPTURE_NAME, FIRST_SCN, APPLIED_SCN, REQUIRED_CHECKPOINT_SCN
   FROM DBA_CAPTURE;


When you reset a first SCN for a capture process, information below the new first SCN setting is purged from the LogMiner data dictionary for the capture process automatically. Therefore, after the first SCN is reset for a capture process, the start SCN for the capture process cannot be set lower than the new first SCN. Also, redo log files that contain information prior to the new first SCN setting will never be needed by the capture process.

For example, the following procedure sets the first SCN for a capture process named strm01_capture to 351232.


BEGIN
  DBMS_CAPTURE_ADM.ALTER_CAPTURE(
    capture_name => 'strm01_capture',
    first_scn    => 351232);
END;
/





	
Note:

	
If the specified first SCN is higher than the current start SCN for the capture process, then the start SCN is set automatically to the new value of the first SCN.


	
If you need to capture changes in the redo log from a point in time in the past, then you can create a new capture process and specify a first SCN that corresponds to a previous data dictionary build in the redo log. The BUILD procedure in the DBMS_CAPTURE_ADM package performs a data dictionary build in the redo log.


	
You can query the DBA_LOGMNR_PURGED_LOG data dictionary view to determine which redo log files will never be needed by any capture process.















	
See Also:

	
"SCN Values Relating to a Capture Process"


	
"The LogMiner Data Dictionary for a Capture Process"


	
"First SCN and Start SCN Specifications During Capture Process Creation"


	
"Displaying SCN Values for Each Redo Log File Used by Each Capture Process" for a query that determines which redo log files are no longer needed

















Setting the Start SCN for an Existing Capture Process

You can set the start SCN for an existing capture process using the ALTER_CAPTURE procedure in the DBMS_CAPTURE_ADM package. Typically, you reset the start SCN for a capture process if point-in-time recovery must be performed on one of the destination databases that receive changes from the capture process.

The specified start SCN must be greater than or equal to the first SCN for the capture process. When you reset a start SCN for a capture process, make sure the required redo log files are available to the capture process.

You can determine the first SCN for each capture process in a database using the following query:


SELECT CAPTURE_NAME, FIRST_SCN FROM DBA_CAPTURE;


For example, the following procedure sets the start SCN for a capture process named strm01_capture to 750338.


BEGIN
  DBMS_CAPTURE_ADM.ALTER_CAPTURE(
    capture_name => 'strm01_capture',
    start_scn    => 750338);
END;
/





	
See Also:

	
"SCN Values Relating to a Capture Process"


	
Oracle Streams Replication Administrator's Guide for information about performing database point-in-time recovery on a destination database in a Streams environment

















Specifying Whether Downstream Capture Uses a Database Link

You specify whether an existing downstream capture process uses a database link to the source database for administrative purposes using the ALTER_CAPTURE procedure in the DBMS_CAPTURE_ADM package. Set the use_database_link parameter to true to specify that the downstream capture process uses a database link, or you set the use_database_link parameter to false to specify that the downstream capture process does not use a database link.

If you want a capture process that is not using a database link currently to begin using a database link, then specify true for the use_database_link parameter. In this case, a database link with the same name as the global name as the source database must exist at the downstream database.

If you want a capture process that is using a database link currently to stop using a database link, then specify false for the use_database_link parameter. In this case, some administration must be performed manually after you alter the capture process. For example, if you add new capture process rules using the DBMS_STREAMS_ADM package, then you must prepare the objects relating to the rules for instantiation manually at the source database.

If you specify NULL for the use_database_link parameter, then the current value of this parameter for the capture process is not changed.

The example in "Creating an Archived-Log Downstream Capture Process that Assigns Logs Explicitly" created the capture process strm05_capture and specified that this capture process does not use a database link. To create a database link to the source database dbs1.net and specify that this capture process uses the database link, complete the following actions:


CREATE DATABASE LINK dbs1.net CONNECT TO strmadmin IDENTIFIED BY strmadminpw 
   USING 'dbs1.net';

BEGIN
  DBMS_CAPTURE_ADM.ALTER_CAPTURE(
    capture_name       => 'strm05_capture',
    use_database_link  => true);
END;
/





	
See Also:

"Local Capture and Downstream Capture"












Managing Extra Attributes in Captured Messages

You can use the INCLUDE_EXTRA_ATTRIBUTE procedure in the DBMS_CAPTURE_ADM package to instruct a capture process to capture one or more extra attributes. You can also use this procedure to instruct a capture process to exclude an extra attribute that it is capturing currently.

The extra attributes are the following:

	
row_id (row LCRs only)


	
serial#


	
session#


	
thread#


	
tx_name


	
username




This section contains instructions for completing the following tasks:

	
Including Extra Attributes in Captured Messages


	
Excluding Extra Attributes from Captured Messages







	
See Also:

	
"Extra Information in LCRs"


	
"Viewing the Extra Attributes Captured by Each Capture Process"


	
Oracle Database PL/SQL Packages and Types Reference for more information about the INCLUDE_EXTRA_ATTRIBUTE procedure














Including Extra Attributes in Captured Messages

To instruct a capture process named strm01_capture to include the transaction name in each captured message, run the following procedure:


BEGIN
  DBMS_CAPTURE_ADM.INCLUDE_EXTRA_ATTRIBUTE(
    capture_name   => 'strm01_capture',
    attribute_name => 'tx_name',
    include        => true);
END;
/






Excluding Extra Attributes from Captured Messages

To instruct a capture process named strm01_capture to exclude the transaction name from each captured message, run the following procedure:


BEGIN
  DBMS_CAPTURE_ADM.INCLUDE_EXTRA_ATTRIBUTE(
    capture_name   => 'strm01_capture',
    attribute_name => 'tx_name',
    include        => false);
END;
/








Dropping a Capture Process

You run the DROP_CAPTURE procedure in the DBMS_CAPTURE_ADM package to drop an existing capture process. For example, the following procedure drops a capture process named strm02_capture:


BEGIN
  DBMS_CAPTURE_ADM.DROP_CAPTURE(
    capture_name          => 'strm02_capture',
    drop_unused_rule_sets => true);
END;
/


Because the drop_unused_rule_sets parameter is set to true, this procedure also drops any rule sets used by the strm02_capture capture process, unless a rule set is used by another Streams client. If the drop_unused_rule_sets parameter is set to true, then both the positive rule set and negative rule set for the capture process might be dropped. If this procedure drops a rule set, then it also drops any rules in the rule set that are not in another rule set.




	
Note:

The status of a capture process must be DISABLED or ABORTED before it can be dropped. You cannot drop an ENABLED capture process.











26 Monitoring Other Streams Components

This chapter provides sample queries that you can use to monitor various Streams components.

This chapter contains these topics:

	
Monitoring Streams Administrators and Other Streams Users


	
Monitoring the Streams Pool


	
Monitoring Compatibility in a Streams Environment


	
Monitoring Streams Performance Using AWR and Statspack







	
Note:

The Streams tool in the Oracle Enterprise Manager Console is also an excellent way to monitor a Streams environment. See the online help for the Streams tool for more information.










	
See Also:

	
Oracle Database Reference for information about the data dictionary views described in this chapter


	
Oracle Streams Replication Administrator's Guide for information about monitoring a Streams replication environment














Monitoring Streams Administrators and Other Streams Users

The following sections contain queries that you can run to list Streams administrators and other users who allow access to remote Streams administrators:

	
Listing Local Streams Administrators


	
Listing Users Who Allow Access to Remote Streams Administrators







	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about configuring Streams administrators and other Streams users using the DBMS_STREAMS_AUTH package









Listing Local Streams Administrators

You optionally can grant privileges to a local Streams administrator by running the GRANT_ADMIN_PRIVILEGE procedure in the DBMS_STREAMS_AUTH package. The DBA_STREAMS_ADMINISTRATOR data dictionary view contains only the local Streams administrators created with the grant_privileges parameter set to true when the GRANT_ADMIN_PRIVILEGE procedure was run for the user. If you created a Streams administrator using generated scripts and set the grant_privileges parameter to false when the GRANT_ADMIN_PRIVILEGE procedure was run for the user, then the DBA_STREAMS_ADMINISTRATOR data dictionary view does not list the user as a Streams administrator.

To list the local Streams administrators created with the grant_privileges parameter set to true when running the GRANT_ADMIN_PRIVILEGE procedure, run the following query:


COLUMN USERNAME HEADING 'Local Streams Administrator' FORMAT A30

SELECT USERNAME FROM DBA_STREAMS_ADMINISTRATOR
  WHERE LOCAL_PRIVILEGES = 'YES';


Your output looks similar to the following:


Local Streams Administrator
------------------------------
STRMADMIN


The GRANT_ADMIN_PRIVILEGE might not have been run on a user who is a Streams administrator. Such administrators are not returned by the query in this section. Also, you can change the privileges for the users listed after the GRANT_ADMIN_PRIVILEGE procedure has been run for them. The DBA_STREAMS_ADMINISTRATOR view does not track these changes unless they are performed by the DBMS_STREAMS_AUTH package. For example, you can revoke the privileges granted by the GRANT_ADMIN_PRIVILEGE procedure for a particular user using the REVOKE SQL statement, but this user would be listed when you query the DBA_STREAMS_ADMINISTRATOR view.

Oracle recommends using the REVOKE_ADMIN_PRIVILEGE procedure in the DBMS_STREAMS_AUTH package to revoke privileges from a user listed by the query in this section. When you revoke privileges from a user using this procedure, the user is removed from the DBA_STREAMS_ADMINISTRATOR view.




	
See Also:

"Configuring a Streams Administrator"












Listing Users Who Allow Access to Remote Streams Administrators

You can configure a user to allow access to remote Streams administrators by running the GRANT_REMOTE_ADMIN_ACCESS procedure in the DBMS_STREAMS_AUTH package. Such a user allows the remote Streams administrator to perform administrative actions in the local database using a database link.

Typically, you configure such a user at a local source database if a downstream capture process captures changes originating at the local source database. The Streams administrator at a downstream capture database administers the source database using this connection.

To list the users who allow to remote Streams administrators, run the following query:


COLUMN USERNAME HEADING 'Users Who Allow Remote Access' FORMAT A30

SELECT USERNAME FROM DBA_STREAMS_ADMINISTRATOR
  WHERE ACCESS_FROM_REMOTE = 'YES'; 


Your output looks similar to the following:


Users Who Allow Remote Access
------------------------------
STRMREMOTE








Monitoring the Streams Pool

The Streams pool is a portion of memory in the SGA that is used by Streams. The Streams pool stores enqueued messages in memory, and it provides memory for capture processes and apply processes. The Streams pool always stores LCRs captured by a capture process, and it can store user-enqueued messages.

The Streams pool size is managed by Automatic Shared Memory Management when the SGA_TARGET initialization parameter is set to a nonzero value. If this parameter is set to 0 (zero), then you can specify the size of the Streams pool in bytes using the STREAMS_POOL_SIZE initialization parameter. In this case, the V$STREAMS_POOL_ADVICE dynamic performance view provides information about an appropriate setting for the STREAMS_POOL_SIZE initialization parameter.

This section contains example queries that show when you should increase, retain, or decrease the size of the Streams pool. Each query shows the following information about the Streams pool:

	
STREAMS_POOL_SIZE_FOR_ESTIMATE shows the size, in megabytes, of the Streams pool for the estimate. The size ranges from values smaller than the current Streams pool size to values larger than the current Streams pool size, and there is a separate row for each increment. There always is an entry that shows the current Streams pool size, and there always are 20 increments. The range and the size of the increments depend on the current size of the Streams pool.


	
STREAMS_POOL_SIZE_FACTOR shows the size factor of an estimate as it relates to the current size of the Streams pool. For example, a size factor of .2 means that the estimate is for 20% of the current size of the Streams pool, while a size factor of 1.6 means that the estimate is for 160% of the current size of the Streams pool. The row with a size factor of 1.0 shows the current size of the Streams pool.


	
ESTD_SPILL_COUNT shows the estimated number messages that will spill from memory to the queue table for each STREAMS_POOL_SIZE_FOR_ESTIMATE and STREAMS_POOL_SIZE_FACTOR returned by the query.


	
ESTD_SPILL_TIME shows the estimated elapsed time, in seconds, spent spilling messages from memory to the queue table for each STREAMS_POOL_SIZE_FOR_ESTIMATE and STREAMS_POOL_SIZE_FACTOR returned by the query.


	
ESTD_UNSPILL_COUNT shows the estimated number messages that will unspill from the queue table back into memory for each STREAMS_POOL_SIZE_FOR_ESTIMATE and STREAMS_POOL_SIZE_FACTOR returned by the query.


	
ESTD_UNSPILL_TIME shows the estimated elapsed time, in seconds, spent unspilling messages from the queue table back into memory for each STREAMS_POOL_SIZE_FOR_ESTIMATE and STREAMS_POOL_SIZE_FACTOR returned by the query.




If any capture processes, propagations, or apply processes are disabled when you query the V$STREAMS_POOL_ADVICE view, and you plan to enable them in the future, then make sure you consider the memory resources required by these Streams clients before you decrease the size of the Streams pool.




	
Tips:

	
In general, the best size for the Streams pool is the smallest size for which spilled and unspilled messages and times are close to zero.


	
For the most accurate results, you should run a query on the V$STREAMS_POOL_ADVICE view when there is a normal amount of dequeue activity by propagations and apply processes in a database. If dequeue activity is far lower than normal, or far higher than normal, then the query results might not be a good guide for adjusting the size of the Streams pool.















	
See Also:

	
Streams Pool


	
"Setting Initialization Parameters Relevant to Streams" for more information about the STREAMS_POOL_SIZE initialization parameter













Query Result that Advises Increasing the Streams Pool Size

Consider the following results returned by the V$STREAMS_POOL_ADVICE view:


COLUMN STREAMS_POOL_SIZE_FOR_ESTIMATE HEADING 'Streams Pool Size|for Estimate(MB)'
  FORMAT 999999999999
COLUMN STREAMS_POOL_SIZE_FACTOR HEADING 'Streams Pool|Size|Factor' FORMAT 99.9
COLUMN ESTD_SPILL_COUNT HEADING 'Estimated|Spill|Count' FORMAT 99999999
COLUMN ESTD_SPILL_TIME HEADING 'Estimated|Spill|Time' FORMAT 99999999.99
COLUMN ESTD_UNSPILL_COUNT HEADING 'Estimated|Unspill|Count' FORMAT 99999999
COLUMN ESTD_UNSPILL_TIME HEADING 'Estimated|Unspill|Time' FORMAT 99999999.99

SELECT STREAMS_POOL_SIZE_FOR_ESTIMATE,
       STREAMS_POOL_SIZE_FACTOR, 
       ESTD_SPILL_COUNT, 
       ESTD_SPILL_TIME, 
       ESTD_UNSPILL_COUNT,
       ESTD_UNSPILL_TIME
  FROM V$STREAMS_POOL_ADVICE;

                  Streams Pool Estimated    Estimated Estimated    Estimated
Streams Pool Size         Size     Spill        Spill   Unspill      Unspill
 for Estimate(MB)       Factor     Count         Time     Count         Time
----------------- ------------ --------- ------------ --------- ------------
               24           .1       158        62.00         0          .00
               48           .2       145        59.00         0          .00
               72           .3       137        53.00         0          .00
               96           .4       122        50.00         0          .00
              120           .5       114        48.00         0          .00
              144           .6       103        45.00         0          .00
              168           .7        95        39.00         0          .00
              192           .8        87        32.00         0          .00
              216           .9        74        26.00         0          .00
              240          1.0        61        21.00         0          .00
              264          1.1        56        17.00         0          .00
              288          1.2        43        15.00         0          .00
              312          1.3        36        11.00         0          .00
              336          1.4        22         8.00         0          .00
              360          1.5         9         2.00         0          .00
              384          1.6         0          .00         0          .00
              408          1.7         0          .00         0          .00
              432          1.8         0          .00         0          .00
              456          1.9         0          .00         0          .00
              480          2.0         0          .00         0          .00


Based on these results, 384 megabytes, or 160% of the size of the current Streams pool, is the optimal size for the Streams pool. That is, this size is the smallest size for which the estimated number of spilled and unspilled messages is zero.




	
Note:

After you adjust the size of the Streams pool, it might take some time for the new size to result in new output for the V$STREAMS_POOL_ADVICE view.











Query Result that Advises Retaining the Current Streams Pool Size

Consider the following results returned by the V$STREAMS_POOL_ADVICE view:


COLUMN STREAMS_POOL_SIZE_FOR_ESTIMATE  HEADING 'Streams Pool|Size for Estimate'
  FORMAT 999999999999
COLUMN STREAMS_POOL_SIZE_FACTOR HEADING 'Streams Pool|Size|Factor' FORMAT 99.9
COLUMN ESTD_SPILL_COUNT HEADING 'Estimated|Spill|Count' FORMAT 99999999
COLUMN ESTD_SPILL_TIME HEADING 'Estimated|Spill|Time' FORMAT 99999999.99
COLUMN ESTD_UNSPILL_COUNT HEADING 'Estimated|Unspill|Count' FORMAT 99999999
COLUMN ESTD_UNSPILL_TIME HEADING 'Estimated|Unspill|Time' FORMAT 99999999.99
 
SELECT STREAMS_POOL_SIZE_FOR_ESTIMATE,
       STREAMS_POOL_SIZE_FACTOR, 
       ESTD_SPILL_COUNT, 
       ESTD_SPILL_TIME, 
       ESTD_UNSPILL_COUNT,
       ESTD_UNSPILL_TIME
  FROM V$STREAMS_POOL_ADVICE;

                  Streams Pool Estimated    Estimated Estimated    Estimated
Streams Pool Size         Size     Spill        Spill   Unspill      Unspill
 for Estimate(MB)       Factor     Count         Time     Count         Time
----------------- ------------ --------- ------------ --------- ------------
               24           .1        89        52.00         0          .00
               48           .2        78        48.00         0          .00
               72           .3        71        43.00         0          .00
               96           .4        66        37.00         0          .00
              120           .5        59        32.00         0          .00
              144           .6        52        26.00         0          .00
              168           .7        39        20.00         0          .00
              192           .8        27        12.00         0          .00
              216           .9        15         5.00         0          .00
              240          1.0         0          .00         0          .00
              264          1.1         0          .00         0          .00
              288          1.2         0          .00         0          .00
              312          1.3         0          .00         0          .00
              336          1.4         0          .00         0          .00
              360          1.5         0          .00         0          .00
              384          1.6         0          .00         0          .00
              408          1.7         0          .00         0          .00
              432          1.8         0          .00         0          .00
              456          1.9         0          .00         0          .00
              480          2.0         0          .00         0          .00


Based on these results, the current size of the Streams pool is the optimal size. That is, this size is the smallest size for which the estimated number of spilled and unspilled messages is zero.





Query Result that Advises Decreasing the Streams Pool Size

Consider the following results returned by the V$STREAMS_POOL_ADVICE view:


COLUMN STREAMS_POOL_SIZE_FOR_ESTIMATE  HEADING 'Streams Pool|Size for Estimate'
  FORMAT 999999999999
COLUMN STREAMS_POOL_SIZE_FACTOR HEADING 'Streams Pool|Size|Factor' FORMAT 99.9
COLUMN ESTD_SPILL_COUNT HEADING 'Estimated|Spill|Count' FORMAT 99999999
COLUMN ESTD_SPILL_TIME HEADING 'Estimated|Spill|Time' FORMAT 99999999.99
COLUMN ESTD_UNSPILL_COUNT HEADING 'Estimated|Unspill|Count' FORMAT 99999999
COLUMN ESTD_UNSPILL_TIME HEADING 'Estimated|Unspill|Time' FORMAT 99999999.99
 
SELECT STREAMS_POOL_SIZE_FOR_ESTIMATE,
       STREAMS_POOL_SIZE_FACTOR, 
       ESTD_SPILL_COUNT, 
       ESTD_SPILL_TIME, 
       ESTD_UNSPILL_COUNT,
       ESTD_UNSPILL_TIME
  FROM V$STREAMS_POOL_ADVICE;

                  Streams Pool Estimated    Estimated Estimated    Estimated
Streams Pool Size         Size     Spill        Spill   Unspill      Unspill
 for Estimate(MB)       Factor     Count         Time     Count         Time
----------------- ------------ --------- ------------ --------- ------------
               24           .1       158        62.00         0          .00
               48           .2       145        59.00         0          .00
               72           .3       137        53.00         0          .00
               96           .4       122        50.00         0          .00
              120           .5       114        48.00         0          .00
              144           .6       103        45.00         0          .00
              168           .7         0          .00         0          .00
              192           .8         0          .00         0          .00
              216           .9         0          .00         0          .00
              240          1.0         0          .00         0          .00
              264          1.1         0          .00         0          .00
              288          1.2         0          .00         0          .00
              312          1.3         0          .00         0          .00
              336          1.4         0          .00         0          .00
              360          1.5         0          .00         0          .00
              384          1.6         0          .00         0          .00
              408          1.7         0          .00         0          .00
              432          1.8         0          .00         0          .00
              456          1.9         0          .00         0          .00
              480          2.0         0          .00         0          .00


Based on these results, 168 megabytes, or 70% of the size of the current Streams pool, is the optimal size for the Streams pool. That is, this size is the smallest size for which the estimated number of spilled and unspilled messages is zero.




	
Note:

After you adjust the size of the Streams pool, it might take some time for the new size to result in new output for the V$STREAMS_POOL_ADVICE view.














Monitoring Compatibility in a Streams Environment

The queries in the following sections show Streams compatibility for tables in the local database:

	
Listing the Database Objects that Are Not Compatible with Streams


	
Listing the Database Objects that Have Become Compatible with Streams Recently






Listing the Database Objects that Are Not Compatible with Streams

A database object is not compatible with Streams if a capture process cannot capture changes to the object. The query in this section displays the following information about objects that are not compatible with Streams:

	
The object owner


	
The object name


	
The reason why the object is not compatible with Streams


	
Whether capture processes automatically filter out changes to the object (AUTO_FILTERED column)




If capture processes automatically filter out changes to an object, then the rules sets used by the capture processes do not need to filter them out explicitly. For example, capture processes automatically filter out changes to materialized view logs. However, if changes to incompatible objects are not filtered out automatically, then the rule sets used by each capture process must filter them out to avoid errors.

For example, suppose the rule sets for a capture process instruct the capture process to capture all of the changes made to a specific schema. The query in this section shows that one object in this schema is not compatible with Streams, and that changes to the object are not filtered out automatically. In this case, you can add a rule to the negative rule set for the capture process to filter out changes to the incompatible object.

The AUTO_FILTERED column pertains only to capture processes. Apply processes do not automatically filter out LCRs that encapsulate changes to objects that are not compatible with Streams, even if the AUTO_FILTERED column is YES for the object. Such changes can result in apply errors if they are dequeued by an apply process.

Run the following query to list the objects in the local database that are not compatible with Streams:


COLUMN OWNER HEADING 'Object|Owner' FORMAT A8
COLUMN TABLE_NAME HEADING 'Object Name' FORMAT A30
COLUMN REASON HEADING 'Reason' FORMAT A30
COLUMN AUTO_FILTERED HEADING 'Auto|Filtered?' FORMAT A9

SELECT OWNER, TABLE_NAME, REASON, AUTO_FILTERED FROM DBA_STREAMS_UNSUPPORTED;


Your output looks similar to the following:


Object                                                                 Auto
Owner    Object Name                    Reason                         Filtered?
-------- ------------------------------ ------------------------------ ---------
HR       MLOG$_COUNTRIES                materialized view log          YES
HR       MLOG$_DEPARTMENTS              materialized view log          YES
HR       MLOG$_EMPLOYEES                materialized view log          YES
HR       MLOG$_JOBS                     materialized view log          YES
HR       MLOG$_JOB_HISTORY              materialized view log          YES
HR       MLOG$_LOCATIONS                materialized view log          YES
HR       MLOG$_REGIONS                  materialized view log          YES
IX       AQ$_ORDERS_QUEUETABLE_G        IOT with overflow              NO
IX       AQ$_ORDERS_QUEUETABLE_H        unsupported column exists      NO
IX       AQ$_ORDERS_QUEUETABLE_I        unsupported column exists      NO
IX       AQ$_ORDERS_QUEUETABLE_S        AQ queue table                 NO
IX       AQ$_ORDERS_QUEUETABLE_T        AQ queue table                 NO
IX       ORDERS_QUEUETABLE              column with user-defined type  NO
OE       CATEGORIES_TAB                 column with user-defined type  NO
OE       CUSTOMERS                      column with user-defined type  NO
OE       PRODUCT_REF_LIST_NESTEDTAB     column with user-defined type  NO
OE       SUBCATEGORY_REF_LIST_NESTEDTAB column with user-defined type  NO
OE       WAREHOUSES                     column with user-defined type  NO
PM       ONLINE_MEDIA                   column with user-defined type  NO
PM       PRINT_MEDIA                    column with user-defined type  NO
PM       TEXTDOCS_NESTEDTAB             column with user-defined type  NO
SH       MVIEW$_EXCEPTIONS              unsupported column exists      NO
SH       SALES_TRANSACTIONS_EXT         external table                 NO


Notice that the Auto Filtered? column is YES for the oe.mlog$_orders materialized view log. Each capture process automatically filters out changes to this object, even if the rules sets for a capture process instruct the capture process to capture changes to the object.

Because the Auto Filtered? column is NO for the other objects listed in the example output, capture processes do not filter out changes to these objects automatically. If a capture process attempts to process LCRs for these unsupported objects, then the capture process raises an error. However, you can avoid these errors by configuring rules sets that instruct the capture process not to capture changes to these unsupported objects.




	
Note:

The results of the query in this section depend on the compatibility level of the database. More database objects are incompatible with Streams at lower compatibility levels. The COMPATIBLE initialization parameter controls the compatibility level of the database.










	
See Also:

	
Chapter 6, "How Rules Are Used in Streams"


	
Oracle Database Reference and Oracle Database Upgrade Guide for more information about the COMPATIBLE initialization parameter

















Listing the Database Objects that Have Become Compatible with Streams Recently

The query in this section displays the following information about database objects that have become compatible with Streams in a recent release of Oracle:

	
The object owner


	
The object name


	
The reason why the object was not compatible with Streams in previous releases of Oracle


	
The Oracle release in which the object became compatible with Streams




Run the following query to display this information for the local database:


COLUMN OWNER HEADING 'Owner' FORMAT A10
COLUMN TABLE_NAME HEADING 'Object Name' FORMAT A20
COLUMN REASON HEADING 'Reason' FORMAT A30
COLUMN COMPATIBLE HEADING 'Compatible' FORMAT A10

SELECT OWNER, TABLE_NAME, REASON, COMPATIBLE FROM DBA_STREAMS_NEWLY_SUPPORTED;


Your output looks similar to the following:


Owner      Object Name          Reason                         Compatible
---------- -------------------- ------------------------------ ----------
HR         COUNTRIES            IOT                            10.1
OUTLN      OL$                  unsupported column exists      10.1
SH         CAL_MONTH_SALES_MV   unsupported column exists      10.1
SH         FWEEK_PSCAT_SALES_MV unsupported column exists      10.1
SH         PLAN_TABLE           unsupported column exists      10.1
DBSNMP     MGMT_BSLN_RAWDATA    IOT                            10.1
HR         COUNTRIES            IOT                            10.1
IX         AQ$_ORDERS_QUEUETABL IOT with overflow              10.2
           E_G
OUTLN      OL$                  unsupported column exists      10.1
SH         CAL_MONTH_SALES_MV   unsupported column exists      10.1
SH         FWEEK_PSCAT_SALES_MV unsupported column exists      10.1
SH         PLAN_TABLE           unsupported column exists      10.1
STRMADMIN  AQ$_STREAMS_QUEUE_TA IOT with overflow              10.2
           BLE_D
STRMADMIN  AQ$_STREAMS_QUEUE_TA IOT with overflow              10.2
           BLE_G
WMSYS      AQ$_WM$EVENT_QUEUE_T IOT with overflow              10.2
           ABLE_G


The Compatible column shows the minimum database compatibility for Streams to support the object. If the local database compatibility is equal to or higher than the value in the Compatible column for an object, then capture processes and apply processes can process changes to the object successfully. You control the compatibility of an Oracle database using the COMPATIBLE initialization parameter.

If your Streams environment includes databases that are running different versions of the Oracle Database, then you can configure rules that use the GET_COMPATIBLE member function for LCRs to filter out LCRs that are not compatible with particular databases. These rules can be added to the rule sets of capture processes, propagations, and apply processes to filter out incompatible LCRs wherever necessary in a stream.




	
See Also:

	
Oracle Database Reference and Oracle Database Upgrade Guide for more information about the COMPATIBLE initialization parameter


	
"Rule Conditions that Instruct Streams Clients to Discard Unsupported LCRs" for information about creating rules that use the GET_COMPATIBLE member function for LCRs


	
"Listing the Database Objects that Are Not Compatible with Streams" for more information about objects that are not compatible with Streams



















Monitoring Streams Performance Using AWR and Statspack

You can use Automatic Workload Repository (AWR) to monitor performance statistics related to Streams. If AWR is not available on your database, then you can use the Statspack package to monitor performance statistics related to Streams. The most current instructions and information on installing and using the Statspack package are contained in the spdoc.txt file installed with your database. Refer to that file for Statspack information. On Unix systems, the file is located in the ORACLE_HOME/rdbms/admin directory. On Windows systems, the file is located in the ORACLE_HOME\rdbms\admin directory.




	
See Also:

Oracle Database Performance Tuning Guide for more information about AWR











What's New in Oracle Streams?

This section describes new features of Oracle Streams for Oracle Database 10g Release 2 (10.2) and provides pointers to additional information. New features information from previous releases is also retained to help those users migrating to the current release.

The following sections describe the new features in Oracle Streams:

	
Oracle Database 10g Release 2 (10.2) New Features in Streams


	
Oracle Database 10g Release 1 (10.1) New Features in Streams





Oracle Database 10g Release 2 (10.2) New Features in Streams

The following sections describe the new features in Oracle Streams for Oracle Database 10g Release 2 (10.2):

	
Streams Performance Improvements


	
Streams Configuration and Manageability Enhancements


	
Streams Replication Enhancements


	
Rules Interface Enhancement


	
Information Provisioning Enhancements





Streams Performance Improvements

Oracle Database 10g Release 2 includes performance improvements for most Streams operations. Specifically, the following Streams components have been improved to perform more efficiently and handle greater workloads:

	
Capture processes


	
Propagations


	
Apply processes




This release also includes the following specific performance improvements:

	
More types of rules are simple rules for faster rule evaluation. See "Simple Rule Conditions".


	
Declarative rule-based transformations perform transformations more efficiently. See "Declarative Rule-Based Transformations".


	
Real-time downstream capture reduces the amount of time required for a downstream capture process to capture changes made at the source database. See "Real-Time Downstream Capture".


	
Enhanced prefiltering during capture process rule evaluation enables capture processes to capture changes in the redo log more efficiently. See "Capture Process Rule Evaluation".


	
The new ANYDATA_FAST_EVAL_FUNCTION function in the STREAMS$_EVALUATION_CONTEXT provides more efficient access to values inside an ANYDATA object. See "Evaluation Contexts Used in Streams".





Streams Configuration and Manageability Enhancements

The following are Streams configuration manageability enhancements for Oracle Database 10g Release 2:

	
Automatic Shared Memory Management of the Streams Pool


	
Streams Tool in Oracle Enterprise Manager


	
Procedures for Starting and Stopping Propagations


	
Queue-to-Queue Propagations


	
Declarative Rule-Based Transformations


	
Commit-Time Queues


	
Supplemental Logging Enabled During Preparation for Instantiation


	
Configurable Transaction Spill Threshold for Apply Processes


	
Conversion of LCRs to and from XML


	
Retrying an Error Transaction with a User Procedure


	
Enhanced Support for Index-Organized Tables


	
Row LCR Execution Enhancements


	
Information About Oldest Transaction in V$STREAMS_APPLY_READER





Automatic Shared Memory Management of the Streams Pool

The Oracle Automatic Shared Memory Management feature manages the size of the Streams pool when the SGA_TARGET initialization parameter is set to a nonzero value.




	
See Also:

"Streams Pool"








Streams Tool in Oracle Enterprise Manager

The Streams tool in Oracle Enterprise Manager enables you to configure, manage, and monitor a Streams environment using a Web browser.




	
See Also:

	
"Streams Tool in the Oracle Enterprise Manager Console"


	
The online help for the Streams tool in Oracle Enterprise Manager













Procedures for Starting and Stopping Propagations

The START_PROPAGATION and STOP_PROPAGATION procedures are added to the DBMS_PROPAGATION_ADM package.




	
See Also:

	
"Starting a Propagation"


	
"Stopping a Propagation"













Queue-to-Queue Propagations

A queue-to-queue propagation always has its own exclusive propagation job to propagate messages from the source queue to the destination queue. Also, in an Oracle Real Application Clusters (RAC) environment, when the destination queue in a queue-to-queue propagation is a buffered queue, the queue-to-queue propagation uses a service for transparent failover to another instance if the primary RAC instance fails.




	
See Also:

"Queue-to-Queue Propagations"








Declarative Rule-Based Transformations

Declarative rule-based transformations provide a simple interface for configuring a set of common transformation scenarios for row LCRs. No user-defined PL/SQL function is required to configure a declarative rule-based transformation.




	
See Also:

"Declarative Rule-Based Transformations"








Commit-Time Queues

Commit-time queues provide more control over the order in which user-enqueued messages in a queue are browsed or dequeued.




	
See Also:

"Commit-Time Queues"








Supplemental Logging Enabled During Preparation for Instantiation

The following procedures in the DBMS_CAPTURE_ADM package now include a supplemental_logging parameter which controls the supplemental logging specifications for the database objects being prepared for instantiation: PREPARE_TABLE_INSTANTIATION, PREPARE_SCHEMA_INSTANTIATION, and PREPARE_GLOBAL_INSTANTIATION.




	
See Also:

Oracle Streams Replication Administrator's Guide








Configurable Transaction Spill Threshold for Apply Processes

The new txn_lcr_spill_threshold apply process parameter enables you to specify that an apply process begins to spill messages for a transaction from memory to disk when the number of messages in memory for a particular transaction exceeds the specified number. The DBA_APPLY_SPILL_TXN and V$STREAMS_APPLY_READER views enable you to monitor the number of transactions and messages spilled by an apply process.




	
See Also:

Oracle Database PL/SQL Packages and Types Reference








Conversion of LCRs to and from XML

The following functions in the DBMS_STREAMS package convert a logical change record (LCR) to or from XML:

	
CONVERT_LCR_TO_XML converts an LCR encapsulated in a ANYDATA object into an XML object that conforms to the XML schema for LCRs.


	
CONVERT_XML_TO_LCR converts an XML object that conforms to the XML schema for LCRs into an LCR encapsulated in a ANYDATA object.







	
See Also:

Oracle Database PL/SQL Packages and Types Reference








Retrying an Error Transaction with a User Procedure

A new parameter, user_procedure, is added to the EXECUTE_ERROR procedure in the DBMS_APPLY_ADM package. This parameter enables you to specify a user procedure that modifies one or more LCRs in an error transaction before the transaction is executed.




	
See Also:

"Retrying a Specific Apply Error Transaction with a User Procedure"








Enhanced Support for Index-Organized Tables

Streams capture processes and apply processes now support index-organized tables that contain the following datatypes, in addition to the datatypes that were supported in past releases of Oracle:

	
LONG


	
LONG RAW


	
CLOB


	
NCLOB


	
BLOB


	
BFILE




Logical change records (LCRs) containing these datatypes in index-organized tables can also be propagated using propagations.

Also, Streams now supports index-organized tables that include an OVERFLOW segment.


Row LCR Execution Enhancements

In previous releases, the EXECUTE member procedure for row LCRs only execute row LCRs in an apply handler for an apply process. In Oracle Database 10g Release 2, the EXECUTE member procedure can execute user-constructed row LCRs, row LCRs in the error queue, and row LCRs that were last enqueued by an apply process, user, or application.




	
See Also:

	
Oracle Database PL/SQL Packages and Types Reference


	
Oracle Streams Replication Administrator's Guide













Information About Oldest Transaction in V$STREAMS_APPLY_READER

The following new columns are added to the V$STREAMS_APPLY_READER dynamic performance view: OLDEST_XIDUSN, OLDEST_XIDSLT, and OLDEST_XIDSQN. These columns show the transaction identification number of the oldest transaction being assembled or applied by an apply process. The DBA_APPLY_PROGRESS view also contains this information. However, for a running apply process, the information in the V$STREAMS_APPLY_READER view is more current than the information in the DBA_APPLY_PROGRESS view.




	
See Also:

Oracle Database Reference for more information about the V$STREAMS_APPLY_READER dynamic performance view








Streams Replication Enhancements

The following are Streams replication enhancements for Oracle Database 10g Release 2:

	
Simple Streams Replication Configuration


	
LOB Assembly


	
Virtual Dependency Definitions


	
Instantiation Using Transportable Tablespace from Backup


	
RMAN Database Instantiation Across Platforms


	
Apply Processes Allow Duplicate Rows


	
View for Monitoring Long Running Transactions





Simple Streams Replication Configuration

The following new procedures in the DBMS_STREAMS_ADM package provide simplify configuration of a Streams replication environment:

	
MAINTAIN_GLOBAL configures a Streams environment that replicates changes at the database level between two databases.


	
MAINTAIN_SCHEMAS configures a Streams environment that replicates changes to specified schemas between two databases.


	
MAINTAIN_SIMPLE_TTS configures a Streams environment that replicates changes to a single, self-contained tablespace between two databases. This procedure replaces the MAINTAIN_SIMPLE_TABLESPACE procedure.


	
MAINTAIN_TABLES configures a Streams environment that replicates changes to specified tables between two databases.


	
MAINTAIN_TTS configures a Streams environment that replicates changes to a self-contained set of tablespaces. This procedure replaces the MAINTAIN_TABLESPACES procedure.


	
PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP configure a Streams environment that replicates changes at the database level or to specified tablespaces between two databases. These procedures must be used together, and instantiation actions must be performed manually, to complete the Streams replication configuration.







	
See Also:

	
Oracle Streams Replication Administrator's Guide


	
Oracle Database PL/SQL Packages and Types Reference













LOB Assembly

LOB assembly simplifies processing of row LCRs with LOB columns in DML handler and error handlers.




	
See Also:

Oracle Streams Replication Administrator's Guide








Virtual Dependency Definitions

A virtual dependency definition is a description of a dependency that is used by an apply process to detect dependencies between transactions at a destination database. Virtual dependency definitions enable an apply process to detect dependencies that it would not be able to detect by using only the constraint information in the data dictionary.




	
See Also:

Oracle Streams Replication Administrator's Guide








Instantiation Using Transportable Tablespace from Backup

A new RMAN command, TRANSPORT TABLESPACE, enables you to instantiate a set of tablespaces while the tablespaces in the source database remain online. The tablespaces can be added to the destination database using Data Pump import or the ATTACH_TABLESPACES procedure in the DBMS_STREAMS_TABLESPACE_ADM package.




	
See Also:

Oracle Streams Replication Administrator's Guide








RMAN Database Instantiation Across Platforms

The RMAN CONVERT DATABASE command can be used to instantiate an entire database in a replication environment where the source and destination databases are running on different platforms that have the same endian format.




	
See Also:

Oracle Streams Replication Administrator's Guide








Apply Processes Allow Duplicate Rows

In releases prior to Oracle Database 10g Release 2­, an apply process always raises an error when it encounters a row LCR that changes more than one row in a table. In Oracle Database 10g Release 2­, the new allow_duplicate_rows apply process parameter can be set to true to allow an apply process to apply a row LCR that changes more than one row.




	
See Also:

Oracle Database PL/SQL Packages and Types Reference








View for Monitoring Long Running Transactions

The V$STREAMS_TRANSACTION dynamic performance view enables monitoring of long running transactions that currently are being processes by Streams capture processes and apply processes.




	
See Also:

Oracle Database Reference for more information about the V$STREAMS_TRANSACTION dynamic performance view








Rules Interface Enhancement

In Oracle Database 10g Release 2, a new procedure, ALTER_EVALUATION_CONTEXT in the DBMS_RULE_ADM package, enables you to alter an existing evaluation context.




	
See Also:

Oracle Database PL/SQL Packages and Types Reference








Information Provisioning Enhancements

Information provisioning makes information available when and where it is needed. Oracle Database 10g Release 2­ makes it is easier to bulk provision a large amount of information and to incrementally provision information using Streams.




	
See Also:

	
Chapter 8, "Information Provisioning"


	
Chapter 16, "Using Information Provisioning"













Oracle Database 10g Release 1 (10.1) New Features in Streams

The following sections describe the new features in Oracle Streams for Oracle Database 10g Release 1 (10.1):

	
Streams Performance Improvements


	
Streams Configuration and Manageability Enhancements


	
Streams Replication Enhancements


	
Streams Messaging Enhancements


	
Rules Interface Enhancements





Streams Performance Improvements

Oracle Database 10g Release 1 includes performance improvements for most Streams operations. Specifically, the following Streams components have been improved to perform more efficiently and handle greater workloads:

	
Capture processes


	
Propagations


	
Apply processes




This release also includes performance improvements for ANYDATA queue operations and rule set evaluations.


Streams Configuration and Manageability Enhancements

The following are Streams configuration manageability enhancements for Oracle Database 10g Release 1:

	
Negative Rule Sets


	
Downstream Capture


	
Subset Rules for Capture and Propagation


	
Streams Pool


	
Access to Buffered Queue Information


	
SYSAUX Tablespace Usage


	
Ability to Add User-Defined Conditions to System-Created Rules


	
Simpler Rule-Based Transformation Configuration and Administration


	
Enqueue Destinations Upon Apply


	
Execution Directives Upon Apply


	
Support for Additional Datatypes


	
Support for Index-Organized Tables


	
Precommit Handlers


	
Better Interoperation with Oracle Real Application Clusters


	
Support for Function-Based Indexes and Descending Indexes


	
Simpler Removal of Rule Sets When a Streams Client Is Dropped


	
Simpler Removal of ANYDATA Queues


	
Control Over Data Dictionary Builds in the Redo Log


	
Additional Streams Data Dictionary Views and View Columns


	
Copying and Moving Tablespaces


	
Simpler Streams Administrator Configuration


	
Streams Configuration Removal





Negative Rule Sets

Streams clients, which include capture processes, propagations, apply processes, and messaging clients, can use two rule sets: a positive rule set and a negative rule set. Negative rule sets make it easier to discard specific changes so that they are not processed by a Streams client.




	
See Also:

Chapter 6, "How Rules Are Used in Streams"








Downstream Capture

A capture process can run on a database other than the source database. The redo log files from the source database are copied to the other database, called a downstream database, and the capture process captures changes in these redo log files at the downstream database.




	
See Also:

	
"Downstream Capture"


	
"Creating a Capture Process"













Subset Rules for Capture and Propagation

You can use subset rules for capture processes, propagations, and messaging clients, as well as for apply processes.




	
See Also:

"Subset Rules"








Streams Pool

When Streams is used in a single database, memory is allocated from a pool in the System Global Area (SGA) called the Streams pool. The Streams pool contains buffered queues and is used for internal communications during parallel capture and apply. Also, a new dynamic performance view, V$STREAMS_POOL_ADVICE, provides information that you can use to determine the best size for Streams pool.




	
See Also:

	
"Streams Pool"


	
"Setting Initialization Parameters Relevant to Streams"













Access to Buffered Queue Information

The following new dynamic performance views enable you to monitor buffered queues:

	
V$BUFFERED_QUEUES


	
V$BUFFERED_SUBSCRIBERS


	
V$BUFFERED_PUBLISHERS







	
See Also:

	
"Buffered Queues"


	
"Monitoring Buffered Queues"













SYSAUX Tablespace Usage

The default tablespace for LogMiner has been changed from the SYSTEM tablespace to the SYSAUX tablespace. When configuring a new database to run a capture process, you no longer need to relocate the LogMiner tables to a non-SYSTEM tablespace.


Ability to Add User-Defined Conditions to System-Created Rules

Some of the procedures that create rules in the DBMS_STREAMS_ADM package include an and_condition parameter. This parameter enables you to add custom conditions to system-created rules.




	
See Also:

"System-Created Rules with Added User-Defined Conditions"








Simpler Rule-Based Transformation Configuration and Administration

A new procedure, SET_RULE_TRANSFORM_FUNCTION in the DBMS_STREAMS_ADM package, makes it easy to specify and administer rule-based transformations.




	
See Also:

	
Chapter 7, "Rule-Based Transformations"


	
Chapter 15, "Managing Rule-Based Transformations"













Enqueue Destinations Upon Apply

A new procedure, SET_ENQUEUE_DESTINATION in the DBMS_APPLY_ADM package, makes it easy to specify a destination queue for messages that satisfy a particular rule. When a message satisfies such a rule in an apply process rule set, the apply process enqueues the message into the specified queue.




	
See Also:

"Specifying Message Enqueues by Apply Processes"








Execution Directives Upon Apply

A new procedure, SET_EXECUTE in the DBMS_APPLY_ADM package, enables you to specify that apply processes do not execute messages that satisfy a specific rule.




	
See Also:

"Specifying Execute Directives for Apply Processes"








Support for Additional Datatypes

Streams capture processes and apply processes now support the following additional datatypes:

	
NCLOB


	
BINARY_FLOAT


	
BINARY_DOUBLE


	
LONG


	
LONG RAW




Logical change records (LCRs) containing these datatypes can also be propagated using propagations.




	
See Also:

	
"Datatypes Captured"


	
"Datatypes Applied"













Support for Index-Organized Tables

Streams capture processes and apply processes now support processing changes to index-organized tables.




	
See Also:

	
"Types of DML Changes Captured"


	
Oracle Streams Replication Administrator's Guide













Precommit Handlers

You can use a new type of apply handler called a precommit handler to record information about commits processed by an apply process.




	
See Also:

	
"Audit Commit Information for Messages Using Precommit Handlers"


	
"Managing the Precommit Handler for an Apply Process"













Better Interoperation with Oracle Real Application Clusters

The following are specific enhancements that improve Streams interoperation with Oracle Real Application Clusters (RAC):

	
Streams capture processes running in a RAC environment can capture changes in the online redo log as well as the archived redo log.


	
If the owner instance for a queue table containing a queue used by a capture process or apply process becomes unavailable, then queue ownership is transferred automatically to another instance in the cluster and the capture process or apply process is restarted automatically (if it had been running).







	
See Also:

	
"Streams Capture Processes and Oracle Real Application Clusters"


	
"Streams Apply Processes and Oracle Real Application Clusters"













Support for Function-Based Indexes and Descending Indexes

Streams capture processes and apply processes now support processing changes to tables that use function-based indexes and descending indexes.


Simpler Removal of Rule Sets When a Streams Client Is Dropped

A new parameter, drop_unused_rule_sets, is added to the following procedures:

	
DROP_CAPTURE in the DBMS_CAPTURE_ADM package


	
DROP_PROPAGATION in the DBMS_PROPAGATION_ADM package


	
DROP_APPLY in the DBMS_APPLY_ADM package




If you drop a Streams client using one of these procedures and set this parameter to true, then the procedure drops any rule sets, positive and negative, used by the specified Streams client if these rule sets are not used by any other Streams client. Streams clients include capture processes, propagations, apply processes, and messaging clients. If this procedure drops a rule set, then this procedure also drops any rules in the rule set that are not in another rule set.




	
See Also:

	
"Dropping a Capture Process"


	
"Dropping a Propagation"


	
"Dropping an Apply Process"


	
Oracle Database PL/SQL Packages and Types Reference for more information about the procedures for dropping Streams clients













Simpler Removal of ANYDATA Queues

A new procedure, REMOVE_QUEUE in the DBMS_STREAMS_ADM package, enables you to remove an ANYDATA queue. This procedure also has a cascade parameter. When cascade is set to true, any Stream client that uses the queue is removed also.




	
See Also:

	
"Removing an ANYDATA Queue"


	
Oracle Database PL/SQL Packages and Types Reference for more information about the REMOVE_QUEUE procedure













Control Over Data Dictionary Builds in the Redo Log

You can use the BUILD procedure in the DBMS_CAPTURE_ADM package to extract the data dictionary of the current database to the redo log. A capture process can use the extracted information in the redo log to create the LogMiner data dictionary for the capture process. This procedure also identifies a valid first system change number (SCN) value that can be used by the capture process. The first SCN for a capture process is the lowest SCN in the redo log from which a capture process can capture changes. In addition, you can reset the first SCN for a capture process to purge unneeded information in a LogMiner data dictionary.




	
See Also:

	
"Capture Process Creation"


	
"First SCN and Start SCN"


	
"First SCN and Start SCN Specifications During Capture Process Creation"













Additional Streams Data Dictionary Views and View Columns

This release includes new Streams data dictionary views and new columns in Streams data dictionary views that existed in past releases.




	
See Also:

	
Chapter 19, "Monitoring a Streams Environment" for an overview of the Streams data dictionary views and example queries


	
Oracle Streams Replication Administrator's Guide for example queries that are useful in a Streams replication environment













Copying and Moving Tablespaces

The DBMS_STREAMS_TABLESPACE_ADM package provides administrative procedures for copying tablespaces between databases and moving tablespaces from one database to another. This package uses transportable tablespaces, Data Pump, and the DBMS_FILE_TRANSFER package.




	
See Also:

Oracle Database PL/SQL Packages and Types Reference








Simpler Streams Administrator Configuration

In this release, granting the DBA role to a Streams administrator is sufficient for most actions performed by the Streams administrator. In addition, a new package, DBMS_STREAMS_AUTH, provides procedures that make it easy for you to configure and manage a Streams administrator.




	
See Also:

"Configuring a Streams Administrator"








Streams Configuration Removal

A new procedure, REMOVE_STREAMS_CONFIGURATION in the DBMS_STREAMS_ADM package, enables you to remove the entire Streams configuration at a database.




	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about the REMOVE_STREAMS_CONFIGURATION procedure








Streams Replication Enhancements

The following are Streams replication enhancements for Oracle Database 10g Release 1:

	
Additional Supplemental Logging Options


	
Additional Ways to Perform Instantiations


	
New Data Dictionary Views for Schema and Global Instantiations


	
Recursively Setting Schema and Global Instantiation SCN


	
Access to Streams Client Information During LCR Processing


	
Maintaining Tablespaces


	
Control Over Comparing Old Values in Conflict Detection


	
Extra Attributes in LCRs


	
New Member Procedures and Functions for LCR Types


	
A Generated Script to Migrate from Advanced Replication to Streams





Additional Supplemental Logging Options

For database supplemental logging, you can specify that all FOREIGN KEY columns in a database are supplementally logged, or that ALL columns in a database are supplementally logged. These new options are added to the PRIMARY KEY and UNIQUE options, which were available in past releases.

For table supplemental logging, you can specify the following options for log groups:

	
PRIMARY KEY


	
FOREIGN KEY


	
UNIQUE


	
ALL




These new options make it easier to specify and manage supplemental logging at a source database because you can specify supplemental logging without listing each column in a log group. If a table changes in the future, then the correct columns are logged automatically. For example, if you specify FOREIGN KEY for a table's log group, then the foreign key for a row is logged when the row is changed, even if the columns in the foreign key change in the future.




	
See Also:

Oracle Streams Replication Administrator's Guide for more information about supplemental logging in a Streams replication environment








Additional Ways to Perform Instantiations

In addition to original export/import, you can use Data Pump export/import, transportable tablespaces, and RMAN to perform Streams instantiations.




	
See Also:

Oracle Streams Replication Administrator's Guide for more information about performing instantiations








New Data Dictionary Views for Schema and Global Instantiations

The following new data dictionary views enable you to determine which database objects have a set instantiation SCN at the schema and global level:

	
DBA_APPLY_INSTANTIATED_SCHEMAS


	
DBA_APPLY_INSTANTIATED_GLOBAL





Recursively Setting Schema and Global Instantiation SCN

A new recursive parameter in the SET_SCHEMA_INSTANTIATION_SCN and SET_GLOBAL_INSTANTIATION_SCN procedures enables you to set the instantiation SCN for a schema or database, respectively, and for all of the database objects in the schema or database.




	
See Also:

	
Oracle Streams Replication Administrator's Guide for more information about performing instantiations


	
Oracle Database PL/SQL Packages and Types Reference for more information about the SET_SCHEMA_INSTANTIATION_SCN and SET_GLOBAL_INSTANTIATION_SCN procedures













Access to Streams Client Information During LCR Processing

The DBMS_STREAMS package includes two new functions: GET_STREAMS_NAME and GET_STREAMS_TYPE. These functions return the name and type, respectively, of a Streams client that is processing an LCR. You can use these functions in rule conditions, rule-based transformations, apply handlers, error handlers, and in a rule condition.

For example, if you use one error handler for multiple apply processes, then you can use the GET_STREAMS_NAME function to determine the name of the apply process that raised the error. Also, you can use the GET_STREAMS_TYPE function to instruct a DML handler to operate differently if it is processing messages from the error queue (ERROR_EXECUTION type) instead of the apply process queue (APPLY type).




	
See Also:

	
"Managing an Error Handler" for an example of an error handler that uses the GET_STREAMS_NAME function


	
Oracle Database PL/SQL Packages and Types Reference for more information about these functions













Maintaining Tablespaces

You can use the MAINTAIN_SIMPLE_TABLESPACE procedure to configure Streams replication for a simple tablespace, and you can use the MAINTAIN_TABLESPACES procedure to configure Streams replication for a set of self-contained tablespaces. Both of these procedures are in the DBMS_STREAMS_ADM package. These procedures use transportable tablespaces, Data Pump, the DBMS_STREAMS_TABLESPACE_ADM package, and the DBMS_FILE_TRANSFER package to configure the environment.




	
See Also:

	
Oracle Streams Replication Administrator's Guide


	
Oracle Database PL/SQL Packages and Types Reference













Control Over Comparing Old Values in Conflict Detection

The COMPARE_OLD_VALUES procedure in the DBMS_APPLY_ADM package enables you to specify whether to compare old values of one or more columns in a row LCR with the current value of the corresponding columns at the destination database during apply.




	
See Also:

Oracle Database PL/SQL Packages and Types Reference








Extra Attributes in LCRs

You can optionally use the INCLUDE_EXTRA_ATTRIBUTE procedure in the DBMS_CAPTURE_ADM package to instruct a capture process to include the following extra attributes in LCRs:

	
row_id


	
serial#


	
session#


	
thread#


	
tx_name


	
username







	
See Also:

"Extra Information in LCRs"







New Procedure for Point-In-Time Recovery in a Streams Environment

The GET_SCN_MAPPING procedure in the DBMS_STREAMS_ADM package gets information about the SCN values to use for Streams capture and apply processes to recover transactions after point-in-time recovery is performed on a source database in a multiple-source Streams environment.




	
See Also:

Oracle Streams Replication Administrator's Guide








New Member Procedures and Functions for LCR Types

You can use the following new member procedures and functions for LCR types:

	
The GET_COMMIT_SCN member function returns the commit SCN of the transaction to which the current LCR belongs.


	
The GET_EXTRA_ATTRIBUTE member function returns the value for the specified extra attribute in an LCR, and the SET_EXTRA_ATTRIBUTE member procedure enables you to set the value for the specified extra attribute in an LCR.


	
The GET_COMPATIBLE member function returns the minimal database compatibility required to support an LCR.


	
The CONVERT_LONG_TO_LOB_CHUNK member procedure converts LONG data in a row LCR into a CLOB, or converts LONG RAW data in a row LCR into a BLOB.







	
See Also:

	
Oracle Database PL/SQL Packages and Types Reference for more information about LCR types and the new member procedures and functions


	
Oracle Streams Replication Administrator's Guide for an example of a DML handler that uses the GET_COMMIT_SCN member function


	
"Rule Conditions that Instruct Streams Clients to Discard Unsupported LCRs" for an example of a rule condition that uses the GET_COMPATIBLE member function













A Generated Script to Migrate from Advanced Replication to Streams

You can use the procedure DBMS_REPCAT.STREAMS_MIGRATION to generate a SQL*Plus script that migrates an existing Advanced Replication environment to a Streams environment.




	
See Also:

Oracle Streams Replication Administrator's Guide for information about migrating from Advanced Replication to Streams








Streams Messaging Enhancements

The following are Streams messaging enhancements for Oracle Database 10g Release 1:

	
Streams Messaging Client


	
Simpler Enqueue and Dequeue of Messages


	
Simpler Configuration of Rule-Based Dequeue or Apply of Messages


	
Simpler Configuration of Rule-Based Propagations of Messages


	
Simpler Configuration of Message Notifications




	
See Also:

Oracle Streams Advanced Queuing User's Guide and Reference for more information about Streams messaging enhancements











Streams Messaging Client

A messaging client is a new type of Streams client that enables users and applications to dequeue messages from an ANYDATA queue based on rules. You can create a messaging client by specifying dequeue for the streams_type parameter in certain procedures in the DBMS_STREAMS_ADM package.




	
See Also:

	
Chapter 3, "Streams Staging and Propagation"


	
"Message Rule Example"


	
"Configuring a Messaging Client and Message Notification"


	
Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_STREAMS_ADM package













Simpler Enqueue and Dequeue of Messages

A new package, DBMS_STREAMS_MESSAGING, provides an easy interface for enqueuing messages into and dequeuing messages from an ANYDATA queue.




	
See Also:

	
"Configuring a Messaging Client and Message Notification"


	
Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_STREAMS_MESSAGING package













Simpler Configuration of Rule-Based Dequeue or Apply of Messages

A new procedure, ADD_MESSAGE_RULE in the DBMS_STREAMS_ADM package, enables you to configure messaging clients and apply processes, and it enables you to create the rules for user-enqueued messages that control the behavior of these messaging clients and apply processes.




	
See Also:

	
"Message Rules"


	
Oracle Database PL/SQL Packages and Types Reference for more information about the ADD_MESSAGE_RULE procedure













Simpler Configuration of Rule-Based Propagations of Messages

A new procedure, ADD_MESSAGE_PROPAGATION_RULE in the DBMS_STREAMS_ADM package, enables you to configure propagations and create rules for propagations that propagate user-enqueued messages.




	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about the ADD_MESSAGE_PROPAGATION_RULE procedure








Simpler Configuration of Message Notifications

A new procedure, SET_MESSAGE_NOTIFICATION in the DBMS_STREAMS_ADM package, enables you to configure message notifications that are sent when a Streams messaging client dequeues messages. The notification can be sent to an email address, a URL, or a PL/SQL procedure.




	
See Also:

	
"Configuring a Messaging Client and Message Notification"


	
Oracle Database PL/SQL Packages and Types Reference for more information about the SET_MESSAGE_NOTIFICATION procedure













Rules Interface Enhancements

The following are rules interface enhancements for Oracle Database 10g Release 1:

	
Iterative Evaluation Results


	
New Dynamic Performance Views for Rule Sets and Rule Evaluations





Iterative Evaluation Results

During rule set evaluation, a client now can specify that evaluation results are sent iteratively, instead of in a complete list at one time. The EVALUATE procedure in the DBMS_RULE package includes the following two new parameters that enable you specify that evaluation results are sent iteratively: true_rules_interator and maybe_rules_iterator.

In addition, a new procedure in the DBMS_RULE package, GET_NEXT_HIT, returns the next rule that evaluated to TRUE from a true rules iterator, or returns the next rule that evaluated to MAYBE from a maybe rules iterator. Also, the new CLOSE_ITERATOR procedure in the DBMS_RULE package enables you to close an open iterator.




	
See Also:

	
"Rule Set Evaluation"


	
Chapter 28, "Rule-Based Application Example" for examples that use iterative evaluation results


	
Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_RULE package













New Dynamic Performance Views for Rule Sets and Rule Evaluations

You can use the following new dynamic performance views to monitor rule sets and rule evaluations:

	
V$RULE_SET_AGGREGATE_STATS


	
V$RULE_SET


	
V$RULE







	
See Also:

Chapter 23, "Monitoring Rules"









17 Other Streams Management Tasks

This chapter provides instructions for performing full database export/import in a Streams environment. This chapter also provides instructions for removing a Streams configuration.

This chapter contains these topics:

	
Performing Full Database Export/Import in a Streams Environment


	
Removing a Streams Configuration




Each task described in this chapter should be completed by a Streams administrator that has been granted the appropriate privileges, unless specified otherwise.




	
See Also:

"Configuring a Streams Administrator"









Performing Full Database Export/Import in a Streams Environment

This section describes how to perform a full database export/import on a database that is running one or more Streams capture processes, propagations, or apply processes. These instructions pertain to a full database export/import where the import database and export database are running on different computers, and the import database replaces the export database. The global name of the import database and the global name of the export database must match. These instructions assume that both databases already exist. The export/import described in this section can be performed using Data Pump Export/Import utilities or the original Export/Import utilities.




	
Note:

If you want to add a database to an existing Streams environment, then do not use the instructions in this section. Instead, see Oracle Streams Replication Administrator's Guide.










	
See Also:

	
Oracle Streams Replication Administrator's Guide for more information about export/import parameters that are relevant to Streams


	
Oracle Database Utilities for more information about performing a full database export/import












Complete the following steps to perform a full database export/import on a database that is using Streams:


	
If the export database contains any destination queues for propagations from other databases, then stop each propagation that propagates messages to the export database. You can stop a propagation using the STOP_PROPAGATION procedure in the DBMS_PROPAGATION_ADM package.


	
Make the necessary changes to your network configuration so that the database links used by the propagation jobs you disabled in Step 1 point to the computer running the import database.

To complete this step, you might need to re-create the database links used by these propagation jobs or modify your Oracle networking files at the databases that contain the source queues.


	
Notify all users to stop making data manipulation language (DML) and data definition language (DDL) changes to the export database, and wait until these changes have stopped.


	
Make a note of the current export database system change number (SCN). You can determine the current SCN using the GET_SYSTEM_CHANGE_NUMBER function in the DBMS_FLASHBACK package. For example:


SET SERVEROUTPUT ON SIZE 1000000
DECLARE
  current_scn NUMBER;
BEGIN
  current_scn:= DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER;
      DBMS_OUTPUT.PUT_LINE('Current SCN: ' || current_scn);
END;
/


In this example, assume that current SCN returned is 7000000.

After completing this step, do not stop any capture process running on the export database. Step 7c instructs you to use the V$STREAMS_CAPTURE dynamic performance view to ensure that no DML or DDL changes were made to the database after Step 3. The information about a capture process in this view is reset if the capture process is stopped and restarted.

For the check in Step 7c to be valid, this information should not be reset for any capture process. To prevent a capture process from stopping automatically, you might need to set the message_limit and time_limit capture process parameters to infinite if these parameters are set to another value for any capture process.


	
If any downstream capture processes are capturing changes that originated at the export database, then make sure the log file containing the SCN determined in Step 4 has been transferred to the downstream database and added to the capture process session. See "Displaying the Registered Redo Log Files for Each Capture Process" for queries that can determine this information.


	
If the export database is not running any apply processes, and is not propagating user-enqueued messages, then start the full database export now. Make sure that the FULL export parameter is set to y so that the required Streams metadata is exported.

If the export database is running one or more apply processes or is propagating user-enqueued messages, then do not start the export and proceed to the next step.


	
If the export database is the source database for changes captured by any capture processes, then complete the following steps for each capture process:

	
Wait until the capture process has scanned past the redo record that corresponds to the SCN determined in Step 4. You can view the SCN of the redo record last scanned by a capture process by querying the CAPTURE_MESSAGE_NUMBER column in the V$STREAMS_CAPTURE dynamic performance view. Make sure the value of CAPTURE_MESSAGE_NUMBER is greater than or equal to the SCN determined in Step 4 before you continue.


	
Monitor the Streams environment until the apply process at the destination database has applied all of the changes from the capture database. For example, if the name of the capture process is capture, the name of the apply process is apply, the global name of the destination database is dest.net, and the SCN value returned in Step 4 is 7000000, then run the following query at the capture database:


CONNECT strmadmin/strmadminpw

SELECT cap.ENQUEUE_MESSAGE_NUMBER
  FROM V$STREAMS_CAPTURE cap
  WHERE cap.CAPTURE_NAME = 'CAPTURE' AND
        cap.ENQUEUE_MESSAGE_NUMBER IN (
          SELECT DEQUEUED_MESSAGE_NUMBER
          FROM V$STREAMS_APPLY_READER@dest.net reader,
               V$STREAMS_APPLY_COORDINATOR@dest.net coord
          WHERE reader.APPLY_NAME = 'APPLY' AND
            reader.DEQUEUED_MESSAGE_NUMBER = reader.OLDEST_SCN_NUM AND
            coord.APPLY_NAME = 'APPLY' AND
            coord.LWM_MESSAGE_NUMBER = coord.HWM_MESSAGE_NUMBER AND
            coord.APPLY# = reader.APPLY#) AND
          cap.CAPTURE_MESSAGE_NUMBER >= 7000000;


When this query returns a row, all of the changes from the capture database have been applied at the destination database, and you can move on to the next step.

If this query returns no results for an inordinately long time, then make sure the Streams clients in the environment are enabled by querying the STATUS column in the DBA_CAPTURE view at the source database and the DBA_APPLY view at the destination database. You can check the status of the propagation by running the query in "Displaying the Schedule for a Propagation Job".

If a Streams client is disabled, then try restarting it. If a Streams client will not restart, then troubleshoot the environment using the information in Chapter 18, "Troubleshooting a Streams Environment".

The query in this step assumes that a database link accessible to the Streams administrator exists between the capture database and the destination database. If such a database link does not exist, then you can perform two separate queries at the capture database and destination database.


	
Verify that the enqueue message number of each capture process is less than or equal to the SCN determined in Step 4. You can view the enqueue message number for each capture process by querying the ENQUEUE_MESSAGE_NUMBER column in the V$STREAMS_CAPTURE dynamic performance view.

If the enqueue message number of each capture process is less than or equal to the SCN determined in Step 4, then proceed to Step 9.

However, if the enqueue message number of any capture process is higher than the SCN determined in Step 4, then one or more DML or DDL changes were made after the SCN determined in Step 4, and these changes were captured and enqueued by a capture process. In this case, perform all of the steps in this section again, starting with Step 1.




	
Note:

For this verification to be valid, each capture process must have been running uninterrupted since Step 4.











	
If any downstream capture processes captured changes that originated at the export database, then drop these downstream capture processes. You will re-create them in Step 14a.


	
If the export database has any propagations that are propagating user-enqueued messages, then stop these propagations using the STOP_PROPAGATION procedure in the DBMS_PROPAGATION package.


	
If the export database is running one or more apply processes, or is propagating user-enqueued messages, then start the full database export now. Make sure that the FULL export parameter is set to y so that the required Streams metadata is exported. If you already started the export in Step 6, then proceed to Step 11.


	
When the export is complete, transfer the export dump file to the computer running the import database.


	
Perform the full database import. Make sure that the STREAMS_CONFIGURATION and FULL import parameters are both set to y so that the required Streams metadata is imported. The default setting is y for the STREAMS_CONFIGURATION import parameter. Also, make sure no DML or DDL changes are made to the import database during the import.


	
If any downstream capture processes are capturing changes that originated at the database, then make the necessary changes so that log files are transferred from the import database to the downstream database. See "Preparing to Transmit Redo Data to a Downstream Database" for instructions.


	
Re-create downstream capture processes:


	
Re-create any downstream capture processes that you dropped in Step 8, if necessary. These dropped downstream capture processes were capturing changes that originated at the export database. Configure the re-created downstream capture processes to capture changes that originate at the import database.


	
Re-create in the import database any downstream capture processes that were running in the export database, if necessary. If the export database had any downstream capture processes, then those downstream capture processes were not exported.







	
See Also:

"Creating a Capture Process" for information about creating a downstream capture process








	
If any local or downstream capture processes will capture changes that originate at the database, then, at the import database, prepare the database objects whose changes will be captured for instantiation. See Oracle Streams Replication Administrator's Guide for information about preparing database objects for instantiation.


	
Let users access the import database, and shut down the export database.


	
Enable any propagation jobs you disabled in Steps 1 and 9.


	
If you reset the value of a message_limit or time_limit capture process parameter in Step 4, then, at the import database, reset these parameters to their original settings.









Removing a Streams Configuration

You run the REMOVE_STREAMS_CONFIGURATION procedure in the DBMS_STREAMS_ADM package to remove a Streams configuration at the local database.




	
Attention:

Running this procedure is dangerous. You should run this procedure only if you are sure you want to remove the entire Streams configuration at a database.







To remove the Streams configuration at the local database, run the following procedure:


EXEC DBMS_STREAMS_ADM.REMOVE_STREAMS_CONFIGURATION();


After running this procedure, drop the Streams administrator at the database, if possible.




	
See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed information about the actions performed by the REMOVE_STREAMS_CONFIGURATION procedure











Part I



Streams Concepts

This part describes conceptual information about Streams and contains the following chapters:

	
Chapter 1, "Introduction to Streams"


	
Chapter 2, "Streams Capture Process"


	
Chapter 3, "Streams Staging and Propagation"


	
Chapter 4, "Streams Apply Process"


	
Chapter 5, "Rules"


	
Chapter 6, "How Rules Are Used in Streams"


	
Chapter 7, "Rule-Based Transformations"


	
Chapter 8, "Information Provisioning"


	
Chapter 9, "Streams High Availability Environments"






Part IV



Sample Environments and Applications

This part includes the following detailed examples:

	
Chapter 27, "Single-Database Capture and Apply Example"


	
Chapter 28, "Rule-Based Application Example"






Preface

Oracle Streams Concepts and Administration describes the features and functionality of Streams. This document contains conceptual information about Streams, along with information about managing a Streams environment. In addition, this document contains detailed examples that configure a Streams capture and apply environment and a rule-based application.

This Preface contains these topics:

	
Audience


	
Documentation Accessibility


	
Related Documents


	
Conventions





Audience

Oracle Streams Concepts and Administration is intended for database administrators who create and maintain Streams environments. These administrators perform one or more of the following tasks:

	
Plan for a Streams environment


	
Configure a Streams environment


	
Administer a Streams environment


	
Monitor a Streams environment


	
Perform necessary troubleshooting activities




To use this document, you need to be familiar with relational database concepts, SQL, distributed database administration, Advanced Queuing concepts, PL/SQL, and the operating systems under which you run a Streams environment.


Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible, with good usability, to the disabled community. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/.


Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.


Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.


TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the United States of America 24 hours a day, 7 days a week. For TTY support, call 800.446.2398. Outside the United States, call +1.407.458.2479.


Related Documents

For more information, see these Oracle resources:

	
Oracle Streams Replication Administrator's Guide


	
Oracle Database Concepts


	
Oracle Database Administrator's Guide


	
Oracle Database SQL Reference


	
Oracle Database PL/SQL Packages and Types Reference


	
Oracle Database PL/SQL User's Guide and Reference


	
Oracle Database Utilities


	
Oracle Database Heterogeneous Connectivity Administrator's Guide


	
Oracle Streams Advanced Queuing User's Guide and Reference


	
Streams online help for the Streams tool in Oracle Enterprise Manager




Many of the examples in this book use the sample schemas of the sample database, which is installed by default when you install Oracle Database. Refer to Oracle Database Sample Schemas for information on how these schemas were created and how you can use them yourself.

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other collateral, please visit the Oracle Technology Network (OTN). You must register online before using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/

If you already have a username and password for OTN, then you can go directly to the documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/


Conventions

The following text conventions are used in this document:


	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.







20 Monitoring Streams Capture Processes

This chapter provides sample queries that you can use to monitor Streams environment capture processes.

This chapter contains these topics:

	
Displaying the Queue, Rule Sets, and Status of Each Capture Process


	
Displaying Change Capture Information About Each Capture Process


	
Displaying State Change and Message Creation Time for Each Capture Process


	
Displaying Elapsed Time Performing Capture Operations for Each Capture Process


	
Displaying Information About Each Downstream Capture Process


	
Displaying the Registered Redo Log Files for Each Capture Process


	
Displaying the Redo Log Files that Are Required by Each Capture Process


	
Displaying SCN Values for Each Redo Log File Used by Each Capture Process


	
Displaying the Last Archived Redo Entry Available to Each Capture Process


	
Listing the Parameter Settings for Each Capture Process


	
Viewing the Extra Attributes Captured by Each Capture Process


	
Determining the Applied SCN for All Capture Processes in a Database


	
Determining Redo Log Scanning Latency for Each Capture Process


	
Determining Message Enqueuing Latency for Each Capture Process


	
Displaying Information About Rule Evaluations for Each Capture Process







	
Note:

The Streams tool in the Oracle Enterprise Manager Console is also an excellent way to monitor a Streams environment. See the online help for the Streams tool for more information.










	
See Also:

	
Chapter 2, "Streams Capture Process"


	
Chapter 11, "Managing a Capture Process"


	
Oracle Database Reference for information about the data dictionary views described in this chapter


	
Oracle Streams Replication Administrator's Guide for information about monitoring a Streams replication environment














Displaying the Queue, Rule Sets, and Status of Each Capture Process

You can display the following information about each capture process in a database by running the query in this section:

	
The capture process name


	
The name of the queue used by the capture process


	
The name of the positive rule set used by the capture process


	
The name of the negative rule set used by the capture process


	
The status of the capture process, which can be ENABLED, DISABLED, or ABORTED




To display this general information about each capture process in a database, run the following query:


COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A15
COLUMN QUEUE_NAME HEADING 'Capture|Process|Queue' FORMAT A15
COLUMN RULE_SET_NAME HEADING 'Positive|Rule Set' FORMAT A15
COLUMN NEGATIVE_RULE_SET_NAME HEADING 'Negative|Rule Set' FORMAT A15
COLUMN STATUS HEADING 'Capture|Process|Status' FORMAT A15

SELECT CAPTURE_NAME, QUEUE_NAME, RULE_SET_NAME, NEGATIVE_RULE_SET_NAME, STATUS 
   FROM DBA_CAPTURE;


Your output looks similar to the following:


Capture         Capture                                         Capture
Process         Process         Positive        Negative        Process
Name            Queue           Rule Set        Rule Set        Status
--------------- --------------- --------------- --------------- ---------------
STRM01_CAPTURE  STREAMS_QUEUE   RULESET$_25     RULESET$_36     ENABLED


If the status of a capture process is ABORTED, then you can query the ERROR_NUMBER and ERROR_MESSAGE columns in the DBA_CAPTURE data dictionary view to determine the error.




	
See Also:

"Is the Capture Process Enabled?" for an example query that shows the error number and error message if a capture process is aborted












Displaying Change Capture Information About Each Capture Process

The query in this section displays the following information about each capture process in a database:

	
The name of the capture process.


	
The process number (cnnn).


	
The session identifier.


	
The serial number of the session.


	
The current state of the capture process:

	
INITIALIZING


	
WAITING FOR DICTONARY REDO


	
DICTIONARY INITIALIZATION


	
MINING


	
LOADING


	
CAPTURING CHANGES


	
WAITING FOR REDO


	
EVALUATING RULE


	
CREATING LCR


	
ENQUEUING MESSAGE


	
PAUSED FOR FLOW CONTROL


	
SHUTTING DOWN





	
The total number of redo entries passed by LogMiner to the capture process for detailed rule evaluation. A capture process converts a redo entry into a message and performs detailed rule evaluation on the message when capture process prefiltering cannot discard the change.


	
The total number LCRs enqueued since the capture process was last started.




To display this information for each capture process in a database, run the following query:


COLUMN CAPTURE_NAME HEADING 'Capture|Name' FORMAT A7
COLUMN PROCESS_NAME HEADING 'Capture|Process|Number' FORMAT A7
COLUMN SID HEADING 'Session|ID' FORMAT 9999
COLUMN SERIAL# HEADING 'Session|Serial|Number' FORMAT 9999
COLUMN STATE HEADING 'State' FORMAT A27
COLUMN TOTAL_MESSAGES_CAPTURED HEADING 'Redo|Entries|Evaluated|In Detail' FORMAT 9999999
COLUMN TOTAL_MESSAGES_ENQUEUED HEADING 'Total|LCRs|Enqueued' FORMAT 999999

SELECT c.CAPTURE_NAME,
       SUBSTR(s.PROGRAM,INSTR(s.PROGRAM,'(')+1,4) PROCESS_NAME, 
       c.SID,
       c.SERIAL#, 
       c.STATE,
       c.TOTAL_MESSAGES_CAPTURED,
       c.TOTAL_MESSAGES_ENQUEUED 
  FROM V$STREAMS_CAPTURE c, V$SESSION s
  WHERE c.SID = s.SID AND
        c.SERIAL# = s.SERIAL#;


Your output looks similar to the following:


                                                                 Redo
        Capture         Session                               Entries    Total
Capture Process Session  Serial                             Evaluated     LCRs
Name    Number       ID  Number State                       In Detail Enqueued
------- ------- ------- ------- --------------------------- --------- --------
CAPTURE C001        964       3 CAPTURING CHANGES              189346      565


The number of redo entries scanned can be higher than the number of DML and DDL redo entries captured by a capture process. Only DML and DDL redo entries that satisfy the rule sets of a capture process are captured and enqueued into the capture process queue. Also, the total LCRs enqueued includes LCRs that contain transaction control statements. These row LCRs contain directives such as COMMIT and ROLLBACK. Therefore, the total LCRs enqueued is a number higher than the number of row changes and DDL changes enqueued by a capture process.




	
See Also:

	
"Row LCRs" for more information about transaction control statements


	
"Capture Process States"

















Displaying State Change and Message Creation Time for Each Capture Process

The query in this section displays the following information for each capture process in a database:

	
The name of the capture process


	
The current state of the capture process:

	
INITIALIZING


	
WAITING FOR DICTONARY REDO


	
DICTIONARY INITIALIZATION


	
MINING


	
LOADING


	
CAPTURING CHANGES


	
WAITING FOR REDO


	
EVALUATING RULE


	
CREATING LCR


	
ENQUEUING MESSAGE


	
PAUSED FOR FLOW CONTROL


	
SHUTTING DOWN





	
The date and time when the capture process state last changed


	
The date and time when the capture process last created an LCR




To display this information for each capture process in a database, run the following query:


COLUMN CAPTURE_NAME HEADING 'Capture|Name' FORMAT A15
COLUMN STATE HEADING 'State' FORMAT A27
COLUMN STATE_CHANGED HEADING 'State|Change Time'
COLUMN CREATE_MESSAGE HEADING 'Last Message|Create Time'

SELECT CAPTURE_NAME,
       STATE,
       TO_CHAR(STATE_CHANGED_TIME, 'HH24:MI:SS MM/DD/YY') STATE_CHANGED,
       TO_CHAR(CAPTURE_MESSAGE_CREATE_TIME, 'HH24:MI:SS MM/DD/YY') CREATE_MESSAGE
  FROM V$STREAMS_CAPTURE;


Your output looks similar to the following:


Capture                                     State             Last Message
Name            State                       Change Time       Create Time
--------------- --------------------------- ----------------- -----------------
CAPTURE_SIMP    CAPTURING CHANGES           13:24:42 11/08/04 13:24:41 11/08/04





	
See Also:

"Capture Process States"












Displaying Elapsed Time Performing Capture Operations for Each Capture Process

The query in this section displays the following information for each capture process in a database:

	
The name of the capture process


	
The elapsed capture time, which is the amount of time (in seconds) spent scanning for changes in the redo log since the capture process was last started


	
The elapsed rule evaluation time, which is the amount of time (in seconds) spent evaluating rules since the capture process was last started


	
The elapsed enqueue time, which is the amount of time (in seconds) spent enqueuing messages since the capture process was last started


	
The elapsed LCR creation time, which is the amount of time (in seconds) spent creating logical change records (LCRs) since the capture process was last started


	
The elapsed pause time, which is the amount of time (in seconds) spent paused for flow control since the capture process was last started







	
Note:

All times for this query are displayed in seconds. The V$STREAMS_CAPTURE view displays elapsed time in centiseconds by default. A centisecond is one-hundredth of a second. The query in this section divides each elapsed time by one hundred to display the elapsed time in seconds.







To display this information for each capture process in a database, run the following query:


COLUMN CAPTURE_NAME HEADING 'Capture|Name' FORMAT A15
COLUMN ELAPSED_CAPTURE_TIME HEADING 'Elapsed|Capture|Time' FORMAT 99999999.99
COLUMN ELAPSED_RULE_TIME HEADING 'Elapsed|Rule|Evaluation|Time' FORMAT 99999999.99
COLUMN ELAPSED_ENQUEUE_TIME HEADING 'Elapsed|Enqueue|Time' FORMAT 99999999.99
COLUMN ELAPSED_LCR_TIME HEADING 'Elapsed|LCR|Creation|Time' FORMAT 99999999.99
COLUMN ELAPSED_PAUSE_TIME HEADING 'Elapsed|Pause|Time' FORMAT 99999999.99

SELECT CAPTURE_NAME,
       (ELAPSED_CAPTURE_TIME/100) ELAPSED_CAPTURE_TIME,
       (ELAPSED_RULE_TIME/100) ELAPSED_RULE_TIME,
       (ELAPSED_ENQUEUE_TIME/100) ELAPSED_ENQUEUE_TIME,
       (ELAPSED_LCR_TIME/100) ELAPSED_LCR_TIME,
       (ELAPSED_PAUSE_TIME/100) ELAPSED_PAUSE_TIME
  FROM V$STREAMS_CAPTURE;


Your output looks similar to the following:


                                  Elapsed                   Elapsed
                     Elapsed         Rule      Elapsed          LCR      Elapsed
Capture              Capture   Evaluation      Enqueue     Creation        Pause
Name                    Time         Time         Time         Time         Time
--------------- ------------ ------------ ------------ ------------ ------------
STM1$CAP             1213.92          .04        33.84       185.25       600.60






Displaying Information About Each Downstream Capture Process

A downstream capture is a capture process runs on a database other than the source database. You can display the following information about each downstream capture process in a database by running the query in this section:

	
The capture process name


	
The source database of the changes captured by the capture process


	
The name of the queue used by the capture process


	
The status of the capture process, which can be ENABLED, DISABLED, or ABORTED


	
Whether the downstream capture process uses a database link to the source database for administrative actions




To display this information about each downstream capture process in a database, run the following query:


COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A15
COLUMN SOURCE_DATABASE HEADING 'Source|Database' FORMAT A15
COLUMN QUEUE_NAME HEADING 'Capture|Process|Queue' FORMAT A15
COLUMN STATUS HEADING 'Capture|Process|Status' FORMAT A15
COLUMN USE_DATABASE_LINK HEADING 'Uses|Database|Link?' FORMAT A8

SELECT CAPTURE_NAME, 
       SOURCE_DATABASE, 
       QUEUE_NAME, 
       STATUS, 
       USE_DATABASE_LINK
   FROM DBA_CAPTURE
   WHERE CAPTURE_TYPE = 'DOWNSTREAM';


Your output looks similar to the following:


Capture                         Capture         Capture         Uses
Process         Source          Process         Process         Database
Name            Database        Queue           Status          Link?
--------------- --------------- --------------- --------------- --------
STRM03_CAPTURE  DBS1.NET        STRM03_QUEUE    ENABLED         YES


In this case, the source database for the capture process is dbs1.net, but the local database running the capture process is not dbs1.net. Also, the capture process returned by this query uses a database link to the source database to perform administrative actions. The database link name is the same as the global name of the source database, which is dbs1.net in this case.

If the status of a capture process is ABORTED, then you can query the ERROR_NUMBER and ERROR_MESSAGE columns in the DBA_CAPTURE data dictionary view to determine the error.




	
See Also:

	
"Local Capture and Downstream Capture"


	
"Creating an Archived-Log Downstream Capture Process that Assigns Logs Implicitly"


	
"Is the Capture Process Enabled?" for an example query that shows the error number and error message if a capture process is aborted

















Displaying the Registered Redo Log Files for Each Capture Process

You can display information about the archived redo log files that are registered for each capture process in a database by running the query in this section. This query displays information about these files for both local capture processes and downstream capture processes.

The query displays the following information for each registered archived redo log file:

	
The name of a capture process that uses the file


	
The source database of the file


	
The sequence number of the file


	
The name and location of the file at the local site


	
Whether the file contains the beginning of a data dictionary build


	
Whether the file contains the end of a data dictionary build




To display this information about each registered archive redo log file in a database, run the following query:


COLUMN CONSUMER_NAME HEADING 'Capture|Process|Name' FORMAT A15
COLUMN SOURCE_DATABASE HEADING 'Source|Database' FORMAT A10
COLUMN SEQUENCE# HEADING 'Sequence|Number' FORMAT 99999
COLUMN NAME HEADING 'Archived Redo Log|File Name' FORMAT A20
COLUMN DICTIONARY_BEGIN HEADING 'Dictionary|Build|Begin' FORMAT A10
COLUMN DICTIONARY_END HEADING 'Dictionary|Build|End' FORMAT A10

SELECT r.CONSUMER_NAME,
       r.SOURCE_DATABASE,
       r.SEQUENCE#, 
       r.NAME, 
       r.DICTIONARY_BEGIN, 
       r.DICTIONARY_END 
  FROM DBA_REGISTERED_ARCHIVED_LOG r, DBA_CAPTURE c
  WHERE r.CONSUMER_NAME = c.CAPTURE_NAME;  


Your output looks similar to the following:


Capture                                                  Dictionary Dictionary
Process         Source     Sequence Archived Redo Log    Build      Build
Name            Database     Number File Name            Begin      End
--------------- ---------- -------- -------------------- ---------- ----------
STRM02_CAPTURE  DBS2.NET         15 /orc/dbs/log/arch2_1 NO         NO
                                    _15_478347508.arc
STRM02_CAPTURE  DBS2.NET         16 /orc/dbs/log/arch2_1 NO         NO
                                    _16_478347508.arc 
STRM03_CAPTURE  DBS1.NET         45 /remote_logs/arch1_1 YES        YES
                                    _45_478347335.arc
STRM03_CAPTURE  DBS1.NET         46 /remote_logs/arch1_1 NO         NO
                                    _46_478347335.arc
STRM03_CAPTURE  DBS1.NET         47 /remote_logs/arch1_1 NO         NO
                                    _47_478347335.arc



Assume that this query was run at the dbs2.net database, and that strm02_capture is a local capture process, and strm03_capture is a downstream capture process. The source database for the strm03_capture downstream capture process is dbs1.net. This query shows that there are two registered archived redo log files for strm02_capture and three registered archived redo log files for strm02_capture. This query shows the name and location of each of these files in the local file system.




	
See Also:

	
"The LogMiner Data Dictionary for a Capture Process" for more information about data dictionary builds


	
"Local Capture and Downstream Capture"


	
"Creating an Archived-Log Downstream Capture Process that Assigns Logs Implicitly"


	
"ARCHIVELOG Mode and a Capture Process"

















Displaying the Redo Log Files that Are Required by Each Capture Process

A capture process needs the redo log file that includes the required checkpoint SCN, and all subsequent redo log files. You can query the REQUIRED_CHECKPOINT_SCN column in the DBA_CAPTURE data dictionary view to determine the required checkpoint SCN for a capture process. Redo log files prior to the redo log file that contains the required checkpoint SCN are no longer needed by the capture process. These redo log files can be stored offline if they are no longer needed for any other purpose. If you reset the start SCN for a capture process to a lower value in the future, then these redo log files might be needed.

The query displays the following information for each required archived redo log file:

	
The name of a capture process that uses the file


	
The source database of the file


	
The sequence number of the file


	
The name and location of the required redo log file at the local site




To display this information about each required archive redo log file in a database, run the following query:


COLUMN CONSUMER_NAME HEADING 'Capture|Process|Name' FORMAT A15
COLUMN SOURCE_DATABASE HEADING 'Source|Database' FORMAT A10
COLUMN SEQUENCE# HEADING 'Sequence|Number' FORMAT 99999
COLUMN NAME HEADING 'Required|Archived Redo Log|File Name' FORMAT A40

SELECT r.CONSUMER_NAME,
       r.SOURCE_DATABASE,
       r.SEQUENCE#, 
       r.NAME 
  FROM DBA_REGISTERED_ARCHIVED_LOG r, DBA_CAPTURE c
  WHERE r.CONSUMER_NAME =  c.CAPTURE_NAME AND
        r.NEXT_SCN      >= c.REQUIRED_CHECKPOINT_SCN;  


Your output looks similar to the following:


Capture                             Required
Process         Source     Sequence Archived Redo Log
Name            Database     Number File Name
--------------- ---------- -------- ----------------------------------------
STRM02_CAPTURE  DBS2.NET         16 /orc/dbs/log/arch2_1_16_478347508.arc
STRM03_CAPTURE  DBS1.NET         47 /remote_logs/arch1_1_47_478347335.arc





	
See Also:

"Required Checkpoint SCN"












Displaying SCN Values for Each Redo Log File Used by Each Capture Process

You can display information about the SCN values for archived redo log files that are registered for each capture process in a database by running the query in this section. This query displays information the SCN values for these files for both local capture processes and downstream capture processes. This query also identifies redo log files that are no longer needed by any capture process at the local database.

The query displays the following information for each registered archived redo log file:

	
The capture process name of a capture process that uses the file


	
The name and location of the file at the local site


	
The lowest SCN value for the information contained in the redo log file


	
The lowest SCN value for the next redo log file in the sequence


	
Whether the redo log file is purgeable




To display this information about each registered archive redo log file in a database, run the following query:


COLUMN CONSUMER_NAME HEADING 'Capture|Process|Name' FORMAT A15
COLUMN NAME HEADING 'Archived Redo Log|File Name' FORMAT A25
COLUMN FIRST_SCN HEADING 'First SCN' FORMAT 99999999999
COLUMN NEXT_SCN HEADING 'Next SCN' FORMAT 99999999999
COLUMN PURGEABLE HEADING 'Purgeable?' FORMAT A10
 
SELECT r.CONSUMER_NAME,
       r.NAME, 
       r.FIRST_SCN,
       r.NEXT_SCN,
       r.PURGEABLE 
  FROM DBA_REGISTERED_ARCHIVED_LOG r, DBA_CAPTURE c
  WHERE r.CONSUMER_NAME = c.CAPTURE_NAME;


Your output looks similar to the following:


Capture
Process         Archived Redo Log
Name            File Name                    First SCN     Next SCN Purgeable?
--------------- ------------------------- ------------ ------------ ----------
CAPTURE_SIMP    /private1/ARCHIVE_LOGS/1_       509686       549100 YES
                3_502628294.dbf
 
CAPTURE_SIMP    /private1/ARCHIVE_LOGS/1_       549100       587296 YES
                4_502628294.dbf
 
CAPTURE_SIMP    /private1/ARCHIVE_LOGS/1_       587296       623107 NO
                5_502628294.dbf


The redo log files with YES for Purgeable? for all capture processes will never be needed by any capture process at the local database. These redo log files can be removed without affecting any existing capture process at the local database. The redo log files with NO for Purgeable? for one or more capture processes must be retained.




	
See Also:

"ARCHIVELOG Mode and a Capture Process"












Displaying the Last Archived Redo Entry Available to Each Capture Process

For a local capture process, the last archived redo entry available is the last entry from the online redo log flushed to an archived log file. For a downstream capture process, the last archived redo entry available is the redo entry with the most recent SCN in the last archived log file added to the LogMiner session used by the capture process.

You can display the following information about the last redo entry that was made available to each capture process by running the query in this section:

	
The name of the capture process


	
The identification number of the LogMiner session used by the capture process


	
The SCN of the last redo entry available for the capture process


	
The time when the last redo entry became available for the capture process




The information displayed by this query is valid only for an enabled capture process.

Run the following query to display this information for each capture process:


COLUMN CAPTURE_NAME HEADING 'Capture|Name' FORMAT A20
COLUMN LOGMINER_ID HEADING 'LogMiner ID' FORMAT 9999
COLUMN AVAILABLE_MESSAGE_NUMBER HEADING 'Last Redo SCN' FORMAT 9999999999
COLUMN AVAILABLE_MESSAGE_CREATE_TIME HEADING 'Time of|Last Redo SCN'

SELECT CAPTURE_NAME,
       LOGMINER_ID,
       AVAILABLE_MESSAGE_NUMBER,
       TO_CHAR(AVAILABLE_MESSAGE_CREATE_TIME, 'HH24:MI:SS MM/DD/YY') 
         AVAILABLE_MESSAGE_CREATE_TIME
  FROM V$STREAMS_CAPTURE;


Your output looks similar to the following:


Capture                                        Time of
Name                 LogMiner ID Last Redo SCN Last Redo SCN
-------------------- ----------- ------------- -----------------
STREAMS_CAPTURE                1        322953 11:33:20 10/16/03






Listing the Parameter Settings for Each Capture Process

The following query displays the current setting for each capture process parameter for each capture process in a database:


COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A25
COLUMN PARAMETER HEADING 'Parameter' FORMAT A25
COLUMN VALUE HEADING 'Value' FORMAT A10
COLUMN SET_BY_USER HEADING 'Set by User?' FORMAT A15

SELECT CAPTURE_NAME,
       PARAMETER, 
       VALUE,
       SET_BY_USER  
  FROM DBA_CAPTURE_PARAMETERS;


Your output looks similar to the following:


Capture
Process
Name                      Parameter                 Value      Set by User?
------------------------- ------------------------- ---------- ---------------
CAPTURE                   DISABLE_ON_LIMIT          N          NO
CAPTURE                   DOWNSTREAM_REAL_TIME_MINE Y          NO
CAPTURE                   MAXIMUM_SCN               INFINITE   NO
CAPTURE                   MESSAGE_LIMIT             INFINITE   NO
CAPTURE                   PARALLELISM               3          YES
CAPTURE                   STARTUP_SECONDS           0          NO
CAPTURE                   TIME_LIMIT                INFINITE   NO
CAPTURE                   TRACE_LEVEL               0          NO
CAPTURE                   WRITE_ALERT_LOG           Y          NO





	
Note:

If the Set by User? column is NO for a parameter, then the parameter is set to its default value. If the Set by User? column is YES for a parameter, then the parameter might or might not be set to its default value.










	
See Also:

	
"Capture Process Architecture"


	
"Setting a Capture Process Parameter"

















Viewing the Extra Attributes Captured by Each Capture Process

You can use the INCLUDE_EXTRA_ATTRIBUTE procedure in the DBMS_CAPTURE_ADM package to instruct a capture process to capture one or more extra attributes from the redo log. The following query displays the extra attributes included in the LCRs captured by each capture process in the local database:


COLUMN CAPTURE_NAME HEADING 'Capture Process' FORMAT A20
COLUMN ATTRIBUTE_NAME HEADING 'Attribute Name' FORMAT A15
COLUMN INCLUDE HEADING 'Include Attribute in LCRs?' FORMAT A30

SELECT CAPTURE_NAME, ATTRIBUTE_NAME, INCLUDE 
  FROM DBA_CAPTURE_EXTRA_ATTRIBUTES
  ORDER BY CAPTURE_NAME;


Your output looks similar to the following:


Capture Process      Attribute Name  Include Attribute in LCRs?
-------------------- --------------- ------------------------------
STREAMS_CAPTURE      ROW_ID          NO
STREAMS_CAPTURE      SERIAL#         NO
STREAMS_CAPTURE      SESSION#        NO
STREAMS_CAPTURE      THREAD#         NO
STREAMS_CAPTURE      TX_NAME         YES
STREAMS_CAPTURE      USERNAME        NO


Based on this output, the capture process named streams_capture includes the transaction name (tx_name) in the LCRs that it captures, but this capture process does not include any other extra attributes in the LCRs that it captures.




	
See Also:

	
"Extra Information in LCRs"


	
"Managing Extra Attributes in Captured Messages"


	
Oracle Database PL/SQL Packages and Types Reference for more information about the INCLUDE_EXTRA_ATTRIBUTE procedure

















Determining the Applied SCN for All Capture Processes in a Database

The applied system change number (SCN) for a capture process is the SCN of the most recent message dequeued by the relevant apply processes. All changes below this applied SCN have been dequeued by all apply processes that apply changes captured by the capture process.

To display the applied SCN for all of the capture processes in a database, run the following query:


COLUMN CAPTURE_NAME HEADING 'Capture Process Name' FORMAT A30
COLUMN APPLIED_SCN HEADING 'Applied SCN' FORMAT 99999999999

SELECT CAPTURE_NAME, APPLIED_SCN FROM DBA_CAPTURE;


Your output looks similar to the following:


Capture Process Name           Applied SCN
------------------------------ -----------
CAPTURE_EMP                         177154






Determining Redo Log Scanning Latency for Each Capture Process

You can find the following information about each capture process by running the query in this section:

	
The redo log scanning latency, which specifies the number of seconds between the creation time of the most recent redo log entry scanned by a capture process and the current time. This number might be relatively large immediately after you start a capture process.


	
The seconds since last recorded status, which is the number of seconds since a capture process last recorded its status.


	
The current capture process time, which is the latest time when the capture process recorded its status.


	
The message creation time, which is the time when the data manipulation language (DML) or data definition language (DDL) change generated the redo data for the most recently captured message.




The information displayed by this query is valid only for an enabled capture process.

Run the following query to determine the redo scanning latency for each capture process:


COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A10
COLUMN LATENCY_SECONDS HEADING 'Latency|in|Seconds' FORMAT 999999
COLUMN LAST_STATUS HEADING 'Seconds Since|Last Status' FORMAT 999999
COLUMN CAPTURE_TIME HEADING 'Current|Process|Time'
COLUMN CREATE_TIME HEADING 'Message|Creation Time' FORMAT 999999

SELECT CAPTURE_NAME,
       ((SYSDATE - CAPTURE_MESSAGE_CREATE_TIME)*86400) LATENCY_SECONDS,
       ((SYSDATE - CAPTURE_TIME)*86400) LAST_STATUS,
       TO_CHAR(CAPTURE_TIME, 'HH24:MI:SS MM/DD/YY') CAPTURE_TIME,       
       TO_CHAR(CAPTURE_MESSAGE_CREATE_TIME, 'HH24:MI:SS MM/DD/YY') CREATE_TIME
  FROM V$STREAMS_CAPTURE;


Your output looks similar to the following:


Capture    Latency               Current
Process         in Seconds Since Process           Message
Name       Seconds   Last Status Time              Creation Time
---------- ------- ------------- ----------------- -----------------
CAPTURE          4             4 12:04:13 03/01/02 12:04:13 03/01/02


The "Latency in Seconds" returned by this query is the difference between the current time (SYSDATE) and the "Message Creation Time." The "Seconds Since Last Status" returned by this query is the difference between the current time (SYSDATE) and the "Current Process Time."






Determining Message Enqueuing Latency for Each Capture Process

You can find the following information about each capture process by running the query in this section:

	
The message enqueuing latency, which specifies the number of seconds between when an entry was recorded in the redo log and when the message was enqueued by the capture process


	
The message creation time, which is the time when the data manipulation language (DML) or data definition language (DDL) change generated the redo data for the most recently enqueued message


	
The enqueue time, which is when the capture process enqueued the message into its queue


	
The message number of the enqueued message




The information displayed by this query is valid only for an enabled capture process.

Run the following query to determine the message capturing latency for each capture process:


COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A10
COLUMN LATENCY_SECONDS HEADING 'Latency|in|Seconds' FORMAT 999999
COLUMN CREATE_TIME HEADING 'Message Creation|Time' FORMAT A20
COLUMN ENQUEUE_TIME HEADING 'Enqueue Time' FORMAT A20
COLUMN ENQUEUE_MESSAGE_NUMBER HEADING 'Message|Number' FORMAT 999999

SELECT CAPTURE_NAME,
       (ENQUEUE_TIME-ENQUEUE_MESSAGE_CREATE_TIME)*86400 LATENCY_SECONDS, 
       TO_CHAR(ENQUEUE_MESSAGE_CREATE_TIME, 'HH24:MI:SS MM/DD/YY') CREATE_TIME,
       TO_CHAR(ENQUEUE_TIME, 'HH24:MI:SS MM/DD/YY') ENQUEUE_TIME,
       ENQUEUE_MESSAGE_NUMBER
  FROM V$STREAMS_CAPTURE;


Your output looks similar to the following:


Capture    Latency
Process         in Message Creation                            Message
Name       Seconds Time                 Enqueue Time          Number
---------- ------- -------------------- -------------------- -------
CAPTURE          0 10:56:51 03/01/02    10:56:51 03/01/02     253962


The "Latency in Seconds" returned by this query is the difference between the "Enqueue Time" and the "Message Creation Time."






Displaying Information About Rule Evaluations for Each Capture Process

You can display the following information about rule evaluation for each capture process by running the query in this section:

	
The name of the capture process.


	
The number of changes discarded during prefiltering since the capture process was last started. The capture process determined that these changes definitely did not satisfy the capture process rule sets during prefiltering.


	
The number of changes kept during prefiltering since the capture process was last started. The capture process determined that these changes definitely satisfied the capture process rule sets during prefiltering. Such changes are converted into LCRs and enqueued into the capture process queue.


	
The total number of prefilter evaluations since the capture process was last started.


	
The number of undecided changes after prefiltering since the capture process was last started. These changes might or might not satisfy the capture process rule sets. Some of these changes might be filtered out after prefiltering without requiring full evaluation. Other changes require full evaluation to determine whether they satisfy the capture process rule sets.


	
The number of full evaluations since the capture process was last started. Full evaluations can be expensive. Therefore, capture process performance is best when this number is relatively low.




The information displayed by this query is valid only for an enabled capture process.

Run the following query to display this information for each capture process:


COLUMN CAPTURE_NAME HEADING 'Capture|Name' FORMAT A15
COLUMN TOTAL_PREFILTER_DISCARDED HEADING 'Prefilter|Changes|Discarded' 
  FORMAT 9999999999
COLUMN TOTAL_PREFILTER_KEPT HEADING 'Prefilter|Changes|Kept' FORMAT 9999999999
COLUMN TOTAL_PREFILTER_EVALUATIONS HEADING 'Prefilter|Evaluations' 
  FORMAT 9999999999
COLUMN UNDECIDED HEADING 'Undecided|After|Prefilter' FORMAT 9999999999
COLUMN TOTAL_FULL_EVALUATIONS HEADING 'Full|Evaluations' FORMAT 9999999999

SELECT CAPTURE_NAME,
       TOTAL_PREFILTER_DISCARDED,
       TOTAL_PREFILTER_KEPT,
       TOTAL_PREFILTER_EVALUATIONS,
       (TOTAL_PREFILTER_EVALUATIONS - 
         (TOTAL_PREFILTER_KEPT + TOTAL_PREFILTER_DISCARDED)) UNDECIDED,
       TOTAL_FULL_EVALUATIONS
  FROM V$STREAMS_CAPTURE;


Your output looks similar to the following:


Capture     Prefilter   Prefilter               Undecided
Process       Changes     Changes   Prefilter       After        Full
Name        Discarded        Kept Evaluations   Prefilter Evaluations
---------- ---------- ----------- ----------- ----------- -----------
STM1$CAP       219493           2      219961         466           0


The total number of prefilter evaluations equals the sum of the prefilter changes discarded, the prefilter changes kept, and the undecided changes.




	
See Also:

"Capture Process Rule Evaluation"










