Advanced Queuing User's Guide and Reference
10g Release 2 (10.2)
B14257-01
September 2006
Oracle Streams Advanced Queuing User's Guide and Reference, 10g Release 2 (10.2)
B14257-01
Copyright © 1996, 2006, Oracle. All rights reserved.
Primary Author: Craig B. Foch
Contributing Authors: Neerja Bhatt, Ragamayi Bhyravabhotla, Charles Hall, Toliver Jue , Shailendra Mishra, Valerie Moore, Denis Raphaely, Randy Urbano, James M. Wilson
Contributors: Drew Adams, Kirk Bittler, Peter H. Cullen, Patricia McElroy, Kathryn Greunefeldt, Nancy Ikeda, John Lang, Qiang Liu, Vivekananda Maganty , Krishnan Meiyyapan, Bhagat Nainani, Anand Padmanaban, Shengsong Ni, Anil Kakanattu Ramachandran, Janet Stern, Kapil Surlaker, Bob Thome, Sugu Venkatasamy, Kevin Zewe
The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability with other independently created software or as specified by law, is prohibited.
The information contained in this document is subject to change without notice. If you find any problems in the documentation, please report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.
If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software—Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065
The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.
Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third party.
Oracle Streams AQ Security
Using Oracle Streams AQ with XA 4.6 Restrictions on Queue Management
Creating a Queue for Prioritized MessagesThis guide describes features of application development and integration using Oracle Streams Advanced Queuing (AQ). This information applies to versions of the Oracle Database server that run on all platforms, unless otherwise specified.
This Preface contains these topics:
This guide is intended for programmers who develop applications that use Oracle Streams AQ.
To use this document, you need knowledge of an application development language and object-relational database management concepts.
Our goal is to make Oracle products, services, and supporting documentation accessible, with good usability, to the disabled community. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/
Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.
Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.
TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the United States of America 24 hours a day, seven days a week. For TTY support, call 800.446.2398.
For more information, see these Oracle resources:
Many of the examples in this book use the sample schemas, which are installed by default when you select the Basic Installation option with an Oracle Database installation. Refer to Oracle Database Sample Schemas for information on how these schemas were created and how you can use them yourself.
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
This section describes new features of the Oracle Database 10g Release 2 (10.2) and provides pointers to additional information. New features information from previous releases is also retained to help those users migrating to the current release.	
The following sections describe the new features in Oracle Streams AQ:	
Buffered Messaging	
Buffered messaging combines the rich functionality that Oracle Streams AQ has always offered with a much faster queuing implementation. Buffered messaging is faster than persistent messaging, because its messages reside in shared memory. They are usually written to disk only when the total memory consumption of buffered messages approaches the available shared memory limit. Buffered messaging is ideal for applications that do not require the reliability and transaction support of Oracle Streams AQ persistent messaging.	
Commit-Time Ordering	
Commit-time ordering orders messages by an approximate CSCN calculated for each transaction. It is useful when transactions are interdependent or when browsing the messages in a queue must yield consistent results.	
See Also:	
Notification Enhancements	
Asynchronous notification allows clients to receive notifications of messages of interest. Oracle Streams AQ 10g Release 2 (10.2) provides the following notification enhancements:	
Payload delivery with notification (RAW queues only)	
Reliable notifications	
Designated port notifications (OCI only)	
Notification registration timeouts	
Notification of buffered messages	
Queue-To-Queue Propagation	
Oracle Streams AQ 10g Release 2 (10.2) supports queue-to-queue propagation, giving you finer-grained control when propagating messages to several queues.	
In a Real Application Clusters (RAC) environment, this enables transparent failover when propagating messages to a destination RAC system. You no longer need to repoint your database links if the owner instance of the target queue fails on RAC.	
Advanced Queuing has been integrated into Oracle Streams, and is now called Oracle Streams AQ. It supports all existing functionality and more, including:	
New AQ Types	
Message_Properties_T_Array	
type	
Message_Properties_T	
type has an additional attribute, transaction_group	
.	
Oracle JMS now supports JMS version 1.1 specifications.	
In earlier versions of JMS, point-to-point and publish/subscribe operations could not be used in the same transaction. JMS version 1.1 includes methods that overcome this restriction, and Oracle JMS supports these new methods.	
New JMS types and added functionality to existing types	
New DBMS_AQ	
packages	
New DBMS_AQADM	
packages	
A new Purge API allows for purging data in a persistent queue. A limited subset of the Purge API is available for a buffered queue.	
New V$	
views for investigating the status of buffered queues:	
V$BUFFERED_QUEUES	
V$BUFFERED_SUBSCRIBERS	
V$BUFFERED_PUBLISHERS	
See Also: "Dynamic Performance (V$) Views" in Oracle Database Reference for more information on these views	
AQ$	
Queue_table_name	
has been expanded to show buffered messages.	
The rules engine has been enhanced for higher performance and workload.	
New Streams messaging high level API	
You can now enqueue and dequeue multiple messages with a single command.	
Propagation from object queues with BFILEs is now supported.	
New C++ interface to Oracle Streams AQ	
OCCI AQ is a set of interfaces in C++ that enable messaging clients to access Oracle Streams AQ for enterprise messaging applications. OCCI AQ makes use of the OCI interface to Oracle Streams AQ and encapsulates the queuing functionality supported by OCI.	
Parameter AQ_TM_PROCESSES	
is no longer needed in init.ora	
.	
New Oracle Streams features related to Advanced Queuing include auto capture and apply message handlers.	
Oracle Messaging Gateway	
In this release Oracle Messaging Gateway has the following new functionality:	
Message propagation between Oracle Java Message Service (OJMS) and IBM WebSphere MQ JMS. Propagation is supported for JMS queues and topics.	
Message propagation between Oracle Streams AQ and TIBCO TIB/Rendezvous for application integration.	
See Also: PL/SQL Packages and Types Reference, chapters:	
Deprecated Features	
Java AQ API is deprecated in favor of a unified, industry-standard JMS interface. The Java AQ API is still being supported for legacy applications. However, Oracle recommends that you migrate your Java AQ API application to JMS and that new applications use JMS.	
Also deprecated in this release are 8.0-style queues. All new functionality and performance improvements are confined to the newer style queues. Oracle recommends that any new queues you create be 8.1-style or newer and that you migrate existing 8.0-style queues at your earliest convenience.	
Part I introduces Oracle Streams Advanced Queuing (AQ) and tells you how to get started with it. It also describes its main components and supported programming languages.	
This part contains the following chapters:	
This chapter discusses Oracle Streams Advanced Queuing (AQ) and the requirements for complex information handling in an integrated environment.	
This chapter contains the following topics:	
When Web-based business applications communicate with each other, producer applications enqueue messages and consumer applications dequeue messages. At the most basic level of queuing, one producer enqueues one or more messages into one queue. Each message is dequeued and processed once by one of the consumers. A message stays in the queue until a consumer dequeues it or the message expires. A producer may stipulate a delay before the message is available to be consumed, and a time after which the message expires. Likewise, a consumer may wait when trying to dequeue a message if no message is available. An agent program or application may act as both a producer and a consumer.	
Producers can enqueue messages in any sequence. Messages are not necessarily dequeued in the order in which they are enqueued. Messages can be enqueued without being dequeued.	
At a slightly higher level of complexity, many producers enqueue messages into a queue, all of which are processed by one consumer. Or many producers enqueue messages, each message being processed by a different consumer depending on type and correlation identifier.	
Enqueued messages are said to be propagated when they are reproduced on another queue, which can be in the same database or in a remote database.	
Applications often use data in different formats. A transformation defines a mapping from one data type to another. The transformation is represented by a SQL function that takes the source data type as input and returns an object of the target data type. You can arrange transformations to occur when a message is enqueued, when it is dequeued, or when it is propagated to a remote subscriber.	
Oracle Streams AQ provides database-integrated message queuing functionality. It is built on top of Oracle Streams and leverages the functions of Oracle Database so that messages can be stored persistently, propagated between queues on different computers and databases, and transmitted using Oracle Net Services and HTTP(S).	
Because Oracle Streams AQ is implemented in database tables, all operational benefits of high availability, scalability, and reliability are also applicable to queue data. Standard database features such as recovery, restart, and security are supported by Oracle Streams AQ. You can use database development and management tools such as Oracle Enterprise Manager to monitor queues. Like other database tables, queue tables can be imported and exported.	
Messages can be queried using standard SQL. This means that you can use SQL to access the message properties, the message history, and the payload. With SQL access you can also do auditing and tracking. All available SQL technology, such as indexes, can be used to optimize access to messages.	
Note: Oracle Streams AQ does not support data manipulation language (DML) operations on a queue table or an associated index-organized table (IOT), if any. The only supported means of modifying queue tables is through the supplied APIs. Queue tables and IOTs can become inconsistent and therefore effectively ruined, if DML operations are performed on them.	
Oracle Streams AQ supports system-level access control for all queuing operations, allowing an application designer or DBA to designate users as queue administrators. A queue administrator can invoke Oracle Streams AQ administrative and operational interfaces on any queue in the database. This simplifies administrative work because all administrative scripts for the queues in a database can be managed under one schema.	
Oracle Streams AQ supports queue-level access control for enqueue and dequeue operations. This feature allows the application designer to protect queues created in one schema from applications running in other schemas. The application designer can grant only minimal access privileges to applications that run outside the queue schema.	
Requests for service must be decoupled from supply of services to increase efficiency and enable complex scheduling. Oracle Streams AQ exhibits high performance as measured by:	
Number of messages enqueued and dequeued each second	
Time to evaluate a complex query on a message warehouse	
Time to recover and restart the messaging process after a failure	
Queuing systems must be scalable. Oracle Streams AQ exhibits high performance when the number of programs using the application increases, when the number of messages increases, and when the size of the message warehouse increases.	
Messages that constitute requests for service must be stored persistently and processed exactly once for deferred execution to work correctly in the presence of network, computer, and application failures. Oracle Streams AQ is able to meet requirements in the following situations:	
Applications do not have the resources to handle multiple unprocessed messages arriving simultaneously from external clients or from programs internal to the application.	
Communication links between databases are not available all the time or are reserved for other purposes. If the system falls short in its capacity to deal with these messages immediately, then the application must be able to store the messages until they can be processed.	
External clients or internal programs are not ready to receive messages that have been processed.	
Queuing systems must deal with priorities, and those priorities can change:	
Messages arriving later can be of higher priority than messages arriving earlier.	
Messages may wait for later messages before actions are taken.	
The same message may be accessed by different processes.	
Messages in a specific queue can become more important, and so must be processed with less delay or interference from messages in other queues.	
Messages sent to some destinations can have a higher priority than others.	
Persistence for Accessing and Analyzing Metadata	
Queuing systems must preserve message metadata, which can be as important as the payload data. For example, the time that a message is received or dispatched can be crucial for business and legal reasons. With the persistence features of Oracle Streams AQ, you can analyze periods of greatest demand or evaluate the lag between receiving and completing an order.	
Oracle Streams AQ supports enqueue, dequeue, and propagation operations where the queue type is an abstract datatype, ADT. It also supports enqueue and dequeue operations if the types are inherited types of a base ADT. Propagation between two queues where the types are inherited from a base ADT is not supported.	
Oracle Streams AQ also supports ANYDATA	
queues, which enable applications to enqueue different message types in a single queue.	
If you plan to enqueue, propagate, or dequeue user-defined type messages, then each type used in these messages must exist at every database where the message can be enqueued in a queue. Some environments use directed networks to route messages through intermediate databases before they reach their destination. In such environments, the type must exist at each intermediate database, even if the messages of this type are never enqueued or dequeued at a particular intermediate database.	
In addition, the following requirements must be met for such types:	
Type name must be the same at each database.	
Type must be in the same schema at each database.	
Shape of the type must match exactly at each database.	
Type cannot use inheritance or type evolution at any database.	
Type cannot contain varrays, nested tables, LOBs, rowids, or urowids.	
The object identifier need not match at each database.	
Structured and XMLType Payloads	
You can use object types to structure and manage message payloads. Relational database systems in general have a richer typing system than messaging systems. Because Oracle Database is an object-relational database system, it supports traditional relational and user-defined types. Many powerful features are enabled as a result of having strongly typed content, such as content whose format is defined by an external type system. These include:	
Content-based routing	
Oracle Streams AQ can examine the content and automatically route the message to another queue based on the content.	
Content-based subscription	
A publish and subscribe system is built on top of a messaging system so that you can create subscriptions based on content.	
Querying	
The ability to run queries on the content of the message enables message warehousing.	
You can create queues that use the new opaque type, XMLType.	
These queues can be used to transmit and store messages that are XML documents. Using XMLType	
, you can do the following:	
Store any type of message in a queue	
Store d	
ocuments internally as CLOB objects	
Store m	
ore than one type of payload in a queue	
Query XMLType columns using the operator ExistsNode()	
Specify the operators in subscriber rules or dequeue conditions	
Integration with Oracle Internet Directory	
You can register system events, user events, and notifications on queues with Oracle Internet Directory. System events are database startup, database shutdown, and system error events. User events include user log on and user log off, DDL statements (create, drop, alter), and DML statement triggers. Notifications on queues include OCI notifications, PL/SQL notifications, and e-mail notifications.	
You can also create aliases for Oracle Streams AQ agents in Oracle Internet Directory. These aliases can be specified while performing Oracle Streams AQ enqueue, dequeue, and notification operations. This is useful when you do not want to expose an internal agent name.	
Support for Oracle Real Application Clusters	
Real Application Clusters can be used to improve Oracle Streams AQ performance by allowing different queues to be managed by different instances. You do this by specifying different instance affinities (preferences) for the queue tables that store the queues. This allows queue operations (enqueue and dequeue) on different queues to occur in parallel.	
If compatibility is set to Oracle8i release 8.1.5 or higher, then an application can specify the instance affinity for a queue table. When Oracle Streams AQ is used with Real Application Clusters and multiple instances, this information is used to partition the queue tables between instances for queue-monitor scheduling as well as for propagation. The queue table is monitored by the queue monitors of the instance specified by the user. If the owner of the queue table is terminated, then the secondary instance or some available instance takes over the ownership for the queue table.	
If an instance affinity is not specified, then the queue tables are arbitrarily partitioned among the available instances. This can result in pinging between the application accessing the queue table and the queue monitor monitoring it. Specifying the instance affinity prevents this, but does not prevent the application from accessing the queue table and its queues from other instances.	
Oracle Streams AQ provides the message management and communication needed for application integration. In an integrated environment, messages travel between the Oracle Database server, applications, and users, as shown in Figure 1-1.	
Messages are exchanged between a client and the Oracle Database server or between two Oracle Database servers using Oracle Net Services. Oracle Net Services also propagates messages from one Oracle Database queue to another. Or, as shown in Figure 1-1, you can perform Oracle Streams AQ operations over the Internet using HTTP(S). In this case, the client, a user or Internet application, produces structured XML messages. During propagation over the Internet, Oracle Database servers communicate using structured XML also.	
Application integration also involves the integration of heterogeneous messaging systems. Oracle Streams AQ seamlessly integrates with existing non-Oracle Database messaging systems like IBM WebSphere MQ through Messaging Gateway, thus allowing existing WebSphere MQ-based applications to be integrated into an Oracle Streams AQ environment.	
This section contains these topics:	
Client/Server applications usually run in a synchronous manner. Figure 1-2 demonstrates the asynchronous alternative using Oracle Streams AQ. In this example Application B (a server) provides service to Application A (a client) using a request/response queue.	
Application A enqueues a request into the request queue. In a different transaction, Application B dequeues and processes the request. Application B enqueues the result in the response queue, and in yet another transaction, Application A dequeues it.	
The client need not wait to establish a connection with the server, and the server dequeues the message at its own pace. When the server is finished processing the message, there is no need for the client to be waiting to receive the result. A process of double-deferral frees both client and server.	
A message can only be enqueued into one queue at a time. If a producer had to insert the same message into several queues in order to reach different consumers, then this would require management of a very large number of queues. To allow multiple consumers to dequeue the same message, Oracle Streams AQ provides for queue subscribers and message recipients.	
To allow for subscriber and recipient lists, the queue must reside in a queue table that is created with the multiple consumer option. Each message remains in the queue until it is consumed by all its intended consumers.	
Multiple consumers, which can be either applications or other queues, can be associated with a queue as subscribers. This causes all messages enqueued in the queue to be made available to be consumed by each of the queue subscribers. The subscribers to the queue can be changed dynamically without any change to the messages or message producers.	
You cannot add subscriptions to single-consumer queues or exception queues. A consumer that is added as a subscriber to a queue is only able to dequeue messages that are enqueued after the subscriber is added. No two subscribers can have the same values for name, address, and protocol. At least one of these attributes must be different for two subscribers.	
It cannot be known which subscriber will dequeue which message first, second, and so on, because there is no priority among subscribers. More formally, the order of dequeuing by subscribers is indeterminate.	
Subscribers can also be rule-based. Similar in syntax to the WHERE	
clause of a SQL query, rules are expressed in terms of attributes that represent message properties or message content. These subscriber rules are evaluated against incoming messages, and those rules that match are used to determine message recipients.	
In Figure 1-3, Application B and Application C each need messages produced by Application A, so a multiconsumer queue is specially configured with Application B and Application C as queue subscribers. Each receives every message placed in the queue.	
A message producer can submit a list of recipients at the time a message is enqueued. This allows for a unique set of recipients for each message in the queue. The recipient list associated with the message overrides the subscriber list associated with the queue, if there is one. The recipients need not be in the subscriber list. However, recipients can be selected from among the subscribers.	
A recipient can be specified only by its name, in which case the recipient must dequeue the message from the queue in which the message was enqueued. It can be specified by its name and an address with a protocol value of 0. The address should be the name of another queue in the same database or another installation of Oracle Database (identified by the database link), in which case the message is propagated to the specified queue and can be dequeued by a consumer with the specified name. If the recipient's name is NULL, then the message is propagated to the specified queue in the address and can be dequeued by the subscribers of the queue specified in the address. If the protocol field is nonzero, then the name and address are not interpreted by the system and the message can be dequeued by a special consumer.	
Subscribing to a queue is like subscribing to a magazine: each subscriber is able to dequeue all the messages placed into a specific queue, just as each magazine subscriber has access to all its articles. Being a recipient, on the other hand, is like getting a letter: each recipient is a designated target of a particular message.	
Figure 1-4 shows how Oracle Streams AQ can accommodate both kinds of consumers. Application A enqueues messages. Application B and Application C are subscribers. But messages can also be explicitly directed toward recipients like Application D, which may or may not be subscribers to the queue. The list of such recipients for a given message is specified in the enqueue call for that message. It overrides the list of subscribers for that queue.	
Note: Multiple producers can simultaneously enqueue messages aimed at different targeted recipients.	
Figure 1-5 illustrates the use of Oracle Streams AQ for implementing a workflow, also known as a chained application transaction:	
Note: The contents of the messages 1, 2 and 3 can be the same or different. Even when they are different, messages can contain parts of the contents of previous messages.	
The queues are used to buffer the flow of information between different processing stages of the business process. By specifying delay interval and expiration time for a message, a window of execution can be provided for each of the applications.	
From a workflow perspective, knowledge of the volume and timing of message flows is a business asset quite apart from the value of the payload data. Oracle Streams AQ helps you gain this knowledge by supporting the optional retention of messages for analysis of historical patterns and prediction of future trends.	
A point-to-point message is aimed at a specific target. Senders and receivers decide on a common queue in which to exchange messages. Each message is consumed by only one receiver. Figure 1-6 shows that each application has its own message queue, known as a single-consumer queue.	
A publish/subscribe message can be consumed by multiple receivers, as shown in Figure 1-7. Publish/subscribe messaging has a wide dissemination mode called broadcast and a more narrowly aimed mode called multicast.	
Broadcasting is like a radio station not knowing exactly who the audience is for a given program. The dequeuers are subscribers to multiconsumer queues. In contrast, multicast is like a magazine publisher who knows who the subscribers are. Multicast is also referred to as point-to-multipoint, because a single publisher sends messages to multiple receivers, called recipients, who may or may not be subscribers to the queues that serve as exchange mechanisms.	
Publish/subscribe describes a situation in which a publisher application enqueues messages to a queue anonymously (no recipients specified). The messages are then delivered to subscriber applications based on rules specified by each application. The rules can be defined on message properties, message data content, or both.	
You can implement a publish/subscribe model of communication using Oracle Streams AQ as follows:	
Figure 1-8 illustrates the use of Oracle Streams AQ for implementing a publish/subscribe relationship between publisher Application A and subscriber Applications B, C, and D:	
Application B subscribes with rule "priority = 1".	
Application C subscribes with rule "priority > 1".	
Application D subscribes with rule "priority = 3".	
If Application A enqueues three messages with priorities 1, 2, and 3 respectively, then the messages will be delivered as follows:	
Application B receives a single message (priority 1).	
Application C receives two messages (priority 2, 3).	
Application D receives a single message (priority 3).	
Buffered messaging, a new feature in Oracle Streams AQ 10g Release 2 (10.2), combines the rich functionality that this product has always offered with a much faster queuing implementation. Buffered messaging is ideal for applications that do not require the reliability and transaction support of Oracle Streams AQ persistent messaging.	
Buffered messaging is faster than persistent messaging, because its messages reside in shared memory. They are usually written to disk only when the total memory consumption of buffered messages approaches the available shared memory limit.	
Note: The portion of a queue that stores buffered messages in memory is sometimes referred to as a buffered queue.	
Message retention is not supported for buffered messaging.	
When using buffered messaging, Oracle recommends that you do one of the following:	
Set parameter streams_pool_size	
This parameter controls the size of shared memory available to Oracle Streams AQ. If unspecified, up to 10% of the shared pool size may be allocated for the Oracle Streams AQ pool from the database cache.	
Turn on SGA autotuning	
Oracle will automatically allocate the appropriate amount of memory from the SGA for Oracle Streams AQ, based on Oracle Streams AQ usage as well as usage of other components that use the SGA. Examples of such other components are buffer cache and library cache. If streams_pool_size	
is specified, it is used as the lower bound.	
See Also: "Setting Initialization Parameters Relevant to Streams" in Oracle Streams Concepts and Administration	
This section contains the following topics:	
Buffered and persistent messages use the same single-consumer or multiconsumer queues and the same administrative and operational interfaces. They are distinguished from each other by a delivery mode parameter, set by the application when enqueuing the message to an Oracle Streams AQ queue.	
Recipient lists are supported for buffered messaging enqueue.	
Buffered messaging is supported in all queue tables created with compatibility 8.1 or higher. Transaction grouping queues and array enqueues are not supported for buffered messages in this release. You can still use the array enqueue procedure to enqueue buffered messages, but the array size must be set to one.	
Buffered messages can be queried using the AQ$	
Queue_Table_Name	
view. They appear with states IN-MEMORY	
or SPILLED	
.	
The queue type for buffered messaging can be ADT	
, XML	
, ANYDATA	
, or RAW	
. For ADT	
types with LOB	
attributes, only buffered messages with null LOB	
attributes can be enqueued.	
All ordering schemes available for persistent messages are also available for buffered messages, but only within each message class. Ordering among persistent and buffered messages enqueued in the same session is not currently supported.	
Both enqueue and dequeue buffered messaging operations must be with IMMEDIATE	
visibility mode. Thus they cannot be part of another transaction. You cannot specify delay when enqueuing buffered messages.	
Rule-based subscriptions are supported with buffered messaging. The procedure for adding subscribers is enhanced to allow an application to express interest in persistent messages only, buffered messages only, or both.	
Array dequeue is not supported for buffered messaging, but you can still use the array dequeue procedure by setting array size to one message..	
Dequeuing applications can choose to dequeue persistent messages only, buffered messages only, or both types. Visibility must be set to IMMEDIATE	
for dequeuing buffered messages. All of the following dequeue options are supported:	
Dequeue modes BROWSE	
, LOCK	
, REMOVE	
, and REMOVE_NO_DATA	
Navigation modes FIRST_MESSAGE	
and NEXT_MESSAGE	
Correlation identifier	
Dequeue condition	
Message identifier	
Propagation of buffered messages is supported. A single propagation schedule serves both persistent and buffered messages. The DBA_QUEUE_SCHEDULES	
view displays statistics and error information.	
Oracle Streams AQ deletes buffered messages once they are propagated to the remote sites. If the receiving site fails before these messages are consumed, then these messages will be lost. The source site will not be able to resend them. Duplicate delivery of messages is also possible.	
Oracle Streams AQ implements a flow control system that prevents applications from flooding the shared memory with messages. If the number of unread messages enqueued by a message sender exceeds a system-determined limit, then message sender is blocked until one of the subscribers has read some of its messages. A message sender is identified by sender_id.name	
in the enqueue options. A sender blocked due to flow control on a queue does not affect other message senders.	
Even with flow control, slow consumers of a multiconsumer queue can cause the number of messages stored in memory to grow without limit. If this happens, older messages are spilled to disk and removed from the Oracle Streams AQ pool to free up memory. This ensures that the cost of disk access is paid by the slower consumers, and faster subscribers can proceed unhindered.	
Buffered Messaging with Real Application Clusters (RAC)	
An application can enqueue and dequeue buffered messages from any RAC instance as long as it uses password-based authentication to connect to the database. The structures required for buffered messaging are implemented on one RAC instance. The instance where the buffered messaging structures are implemented is the OWNER_INSTANCE	
of the queue table containing the queue. Enqueue and dequeue requests received at other instances are forwarded to the OWNER_INSTANCE	
over the interconnect. The REMOTE_LISTENER	
parameter in listener.ora	
must also be set to enable forwarding of buffered messaging requests to to correct instance.	
See Also:	
A service name is associated with each queue in RAC and displayed in the DBA_QUEUES	
and USER_QUEUES	
views. This service name always points to the instance with the most efficient access for buffered messaging, minimizing pinging between instances. OCI clients can use the service name for buffered messaging operations.	
Oracle recommends that you use buffered messaging with queue-to-queue propagation, a new feature in Oracle Streams AQ 10g Release 2 (10.2). This results in transparent failover when propagating messages to a destination RAC system. You no longer need to repoint your database links if the primary Oracle Streams AQ RAC instance fails.	
Buffered Messaging Restrictions	
The following Oracle Streams AQ features are not currently supported for buffered messaging:	
Message retention	
Message delay	
Transaction grouping	
Array enqueue	
Array dequeue	
Message export and import	
Posting for subscriber notification	
Messaging Gateway	
Retry count and retry delay are not supported for buffered messages. Message expiration is supported. When a buffered message has been in the queue beyond its expiration period, it is moved into the exception queue as a persistent message.	
Asynchronous notification allows clients to receive notifications of messages of interest. The client can use these notifications to monitor multiple subscriptions. The client need not be connected to the database to receive notifications regarding its subscriptions. Asynchronous notification is supported for buffered messages. The delivery mode of the message is available in the message descriptor of the notification descriptor.	
Note: In releases before Oracle Database 10g Release 2 (10.2), the Oracle Streams AQ notification feature was not supported for queues with names longer than 30 characters. This restriction no longer applies. The 24-character limit on names of user-generated queues still applies. See "Creating a Queue".	
The client specifies a callback function which is run for each message. Asynchronous notification cannot be used to invoke an executable, but it is possible for the callback function to invoke a stored procedure.	
Clients can receive notifications procedurally using PL/SQL, Java Message Service (JMS), or OCI callback functions, or clients can receive notifications through e-mail or HTTP post. Clients can also specify the presentation for notifications as either RAW	
or XML	
.	
For JMS queues, the dequeue is accomplished as part of the notification; explicit dequeue is not required. For RAW queues, clients can specify payload delivery; but they still must dequeue the message in REMOVE_NO_DATA	
mode. For all other persistent queues, the notification contains only the message properties; clients explicitly dequeue to receive the message.	
The following notification enhancements are new features of Oracle Streams AQ 10g Release 2 (10.2):	
Payload Delivery for RAW Queues	
For RAW queues, Oracle Streams AQ clients can now specify that the message payload be delivered along with its notification.	
In earlier releases of Oracle Streams AQ, message notifications were stored in shared memory and were lost if the instance failed. Clients can now specify persistent message notification. If a RAC instance fails, its notifications are delivered by another RAC node. If a standalone instance fails, its notifications are delivered when the instance restarts.	
Note: Notification reliability refers only to server failures. If Oracle Streams AQ is unable to deliver client notifications for any other reason, then the notifications are purged along with the client registration.	
Oracle Streams AQ clients can now use the OCI subscription handle attribute OCI_ATTR_SUBSCR_PORTNO	
to designate the port at which notifications are delivered. This is especially useful for clients on a computer behind a firewall. The port for the listener thread can be designated before the first registration, using an attribute in the environment handle. The thread is started the first time an OCISubscriptionRegister	
is called. If the client attempts to start another thread on a different port using a different environment handle, then Oracle Streams AQ returns an error.	
Note: Designated port notification applies only to OCI clients.	
See Also: "Publish-Subscribe Registration Functions in OCI" in Oracle Call Interface Programmer's Guide	
In earlier releases of Oracle Streams AQ, registrations for notification persisted until explicitly removed by the client or purged in case of extended client failure. In Oracle Streams AQ 10g Release 2 (10.2) clients can register for a specified time, after which the registration is automatically purged.	
When the registration is purged, Oracle Streams AQ sends a notification to the client, so the client can invoke its callback and take any necessary action.	
Clients can also register to receive only the first notification, after which the registration is automatically purged.	
An example where purge on notification is useful is a client waiting for enqueues to start. In this case, only the first notification is useful; subsequent notifications provide no additional information. Previously, this client would be required to unregister once enqueuing started; now the registration can be configured to go away automatically.	
Clients can register for notification of buffered messages. The registration requests apply to both buffered and persistent messages. The message properties delivered with the PL/SQL or OCI notification specify whether the message is buffered or persistent.	
See Also:	
Reliable notification is not supported.	
The following features apply to enqueuing messages:	
When enqueuing messages into a queue, you can operate on an array of messages simultaneously, instead of one message at a time. This can improve the performance of enqueue operations. When enqueuing an array of messages into a queue, each message shares the same enqueue options, but each message can have different message properties. You can perform array enqueue operations using PL/SQL or OCI.	
Array enqueuing is not supported for buffered messages in this release.	
You can assign an identifier to each message, thus providing a means to retrieve specific messages at a later time.	
Priority and Ordering of Messages in Enqueuing	
You can specify the priority of an enqueued message and its exact position in the queue. This means that users can specify the order in which messages are consumed in three ways:	
A priority can be assigned to each message.	
A sort order specifies which properties are used to order all messages in a queue. This is set when the queue table is created and cannot be changed. You can choose to sort messages by priority, enqueue time, or commit time. The commit-time option, a new feature in Oracle Streams AQ 10g Release 2 (10.2), orders messages by an approximate CSCN calculated for each transaction.	
Commit-time ordering is useful when transactions are interdependent or when browsing the messages in a queue must yield consistent results.	
See Also:	
A sequence deviation positions a message in relation to other messages.	
Note: The sequence deviation feature is deprecated in 10g Release 2 (10.2).	
If several consumers act on the same queue, then each consumer gets the first message that is available for immediate consumption. A message that is in the process of being consumed by another consumer is skipped.	
Priority ordering of messages is achieved by specifying priority, enqueue time as the sort order. If priority ordering is chosen, then each message is assigned a priority at enqueue time by the enqueuer. At dequeue time, the messages are dequeued in the order of the priorities assigned. If two messages have the same priority, then the order in which they are dequeued is determined by the enqueue time. A first-in, first-out (FIFO) priority queue can also be created by specifying enqueue time, priority as the sort order of the messages.	
Messages belonging to one queue can be grouped to form a set that can only be consumed by one user at a time. This requires that the queue be created in a queue table that is enabled for message grouping. All messages belonging to a group must be created in the same transaction, and all messages created in one transaction belong to the same group.	
This feature allows users to segment complex messages into simple messages. For example, messages directed to a queue containing invoices can be constructed as a group of messages starting with a header message, followed by messages representing details, followed by a trailer message.	
Message grouping is also useful if the message payload contains complex large objects such as images and video that can be segmented into smaller objects.	
Group message properties priority, delay, and expiration are determined solely by the message properties specified for the first message in a group, irrespective of which properties are specified for subsequent messages in the group.	
The message grouping property is preserved across propagation. However, the destination queue where messages are propagated must also be enabled for transactional grouping. There are also some restrictions you must keep in mind if the message grouping property is to be preserved while dequeuing messages from a queue enabled for transactional grouping.	
Applications can mark the messages they send with a custom identification. Oracle Streams AQ also automatically identifies the queue from which a message was dequeued. This allows applications to track the pathway of a propagated message or a string message within the same database.	
Time Specification and Scheduling	
Messages can be enqueued with an expiration that specifies the interval of time the message is available for dequeuing. The default for expiration is never. When a message expires, it is moved to an exception queue. Expiration processing requires that the queue monitor be running.	
The following features apply to dequeuing messages:	
When there are multiple processes dequeuing from a single-consumer queue or dequeuing for a single consumer on the multiconsumer queue, different processes skip the messages that are being worked on by a concurrent process. This allows multiple processes to work concurrently on different messages for the same consumer.	
A message can be dequeued using one of the following dequeue methods:	
Specifying a correlation identifier	
A correlation identifier is a user-defined message property. Multiple messages with the same correlation identifier can be present in a queue, which means that the ordering (enqueue order) between messages might not be preserved on dequeue calls.	
Specifying a message identifier	
A message identifier is a system-assigned value (of RAW	
datatype). Only one message with a given message identifier can be present in the queue.	
Specifying a dequeue condition	
A dequeue condition is expressed in terms of message properties or message content and is similar in syntax to the WHERE	
clause of a SQL query. Messages in the queue are evaluated against the condition, and messages that satisfy the given condition are returned. When a dequeue condition is used, the order of the messages dequeued is indeterminate, and the sort order of the queue is not honored.	
Default dequeue	
A default dequeue retrieves the first available message.	
Note: Dequeuing with correlation identifier, message identifier, or dequeue condition does not preserve the message grouping property.	
A dequeue request can browse a message, remove it, or remove it with no data. If a message is browsed, then it remains available for further processing. If a message is removed or removed with no data, then it is no longer available for dequeue requests. Depending on the queue properties, a removed message can be retained in the queue table. A message is retained in the queue table after it has been consumed only if a retention time is specified for its queue.	
The browse mode has three risks. First, there is no guarantee that the message can be dequeued again after it is browsed, because a dequeue call from a concurrent user might have removed the message. To prevent a viewed message from being dequeued by a concurrent user, you should view the message in the locked mode.	
Second, your dequeue position in browse mode is automatically changed to the beginning of the queue if a nonzero wait time is specified and the navigating position reaches the end of the queue. If you repeat a dequeue call in the browse mode with the NEXT_MESSAGE	
navigation option and a nonzero wait time, then you can end up dequeuing the same message over and over again. Oracle recommends that you use a nonzero wait time for the first dequeue call on a queue in a session, and then use a zero wait time with the NEXT_MESSAGE	
navigation option for subsequent dequeue calls. If a dequeue call gets an "end of queue" error message, then the dequeue position can be explicitly set by the dequeue call to the beginning of the queue using the FIRST_MESSAGE	
navigation option, following which the messages in the queue can be browsed again.	
Third, if the sort order of the queue is ENQ_TIME	
, PRIORITY	
, or a combination of these two, then results may not be repeatable from one browse to the next. If you must have consistent browse results, then you should use a commit-time queue.	
When a message is dequeued using REMOVE_NODATA	
mode, the payload of the message is not retrieved. This mode can be useful when the user has already examined the message payload, possibly by means of a previous BROWSE	
dequeue.	
When dequeuing messages from a queue, you can operate on an array of messages simultaneously, instead of one message at a time. This can improve the performance of dequeue operations. If you are dequeuing from a transactional queue, you can dequeue all the messages for a transaction with a single call, which makes application programming easier.	
When dequeuing an array of messages from a queue, each message shares the same dequeue options, but each message can have different message properties. You can perform array enqueue and array dequeue operations using PL/SQL or OCI.	
Array dequeuing is not supported for buffered messages in this release.	
Multiple processes or operating system threads can use the same consumer name to dequeue concurrently from a queue. In that case Oracle Streams AQ provides the first unlocked message that is at the head of the queue and is intended for the consumer. Unless the message identifier of a specific message is specified during dequeue, consumers can dequeue messages that are in the READY	
state.	
A message is considered PROCESSED	
only when all intended consumers have successfully dequeued the message. A message is considered EXPIRED	
if one or more consumers did not dequeue the message before the EXPIRATION	
time. When a message has expired, it is moved to an exception queue.	
Expired messages from multiconsumer queues cannot be dequeued by the intended recipients of the message. However, they can be dequeued in the REMOVE	
mode exactly once by specifying a NULL	
consumer name in the dequeue options.	
Note: If the multiconsumer exception queue was created in a queue table with thecompatible parameter set to 8.0 , then expired messages can be dequeued only by specifying a message identifier. Queues created in a queue table with	
Beginning with Oracle Streams AQ release 8.1.6, only the queue monitor removes messages from multiconsumer queues. This allows dequeuers to complete the dequeue operation by not locking the message in the queue table. Because the queue monitor removes messages that have been processed by all consumers from multiconsumer queues approximately once every minute, users can see a delay between when the messages have been completely processed and when they are physically removed from the queue.	
Navigation of Messages in Dequeuing	
You have several options for selecting a message from a queue. You can select the first message with the FIRST_MESSAGE	
navigation option. Alternatively, once you have selected a message and established its position in the queue, you can then retrieve the next message with the NEXT_MESSAGE	
navigation option.	
The FIRST_MESSAGE	
navigation option performs a SELECT	
on the queue. The NEXT_MESSAGE	
navigation option fetches from the results of the SELECT	
run in the FIRST_MESSAGE	
navigation. Thus performance is optimized because subsequent dequeues need not run the entire SELECT	
again.	
If the queue is enabled for transactional grouping, then the navigation options work in a slightly different way. If FIRST_MESSAGE	
is requested, then the dequeue position is still reset to the beginning of the queue. But if NEXT_MESSAGE	
is requested, then the position is set to the next message in the same transaction. Transactional grouping also offers a NEXT_TRANSACTION	
option. It sets the dequeue position to the first message of the next transaction.	
Transaction grouping has no effect if you dequeue by specifying a correlation identifier or message identifier, or if you dequeue some of the messages of a transaction and then commit.	
If you reach the end of the queue while using the NEXT_MESSAGE	
or NEXT_TRANSACTION	
option, and you have specified a nonzero wait time, then the navigating position is automatically changed to the beginning of the queue. If a zero wait time is specified, then you can get an exception when the end of the queue is reached.	
Oracle Streams AQ allows applications to block on one or more queues waiting for the arrival of either a newly enqueued message or a message that becomes ready. You can use the DEQUEUE	
operation to wait for the arrival of a message in a single queue or the LISTEN	
operation to wait for the arrival of a message in more than one queue.	
Note: Applications can also perform a blocking dequeue on exception queues to wait for arrival ofEXPIRED messages.	
When the blocking DEQUEUE	
call returns, it returns the message properties and the message payload. When the blocking LISTEN	
call returns, it discloses only the name of the queue where a message has arrived. A subsequent DEQUEUE	
operation is needed to dequeue the message.	
When there are messages for multiple agents in the agent list, LISTEN	
returns with the first agent for whom there is a message. To prevent one agent from starving other agents for messages, the application can change the order of the agents in the agent list.	
Note: This feature is not currently supported in Visual Basic (OO4O).	
Applications can optionally specify a timeout of zero or more seconds to indicate the time that Oracle Streams AQ must wait for the arrival of a message. The default is to wait forever until a message arrives in the queue. This removes the burden of continually polling for messages from the application, and it saves CPU and network resources because the application remains blocked until a new message is enqueued or becomes READY	
after its DELAY	
time.	
An application that is blocked on a dequeue is either awakened directly by the enqueuer if the new message has no DELAY	
or is awakened by the queue monitor process when the DELAY	
or EXPIRATION	
time has passed. If an application is waiting for the arrival of a message in a remote queue, then the Oracle Streams AQ propagator wakes up the blocked dequeuer after a message has been propagated.	
If the transaction dequeuing a message from a queue fails, then it is regarded as an unsuccessful attempt to consume the message. Oracle Streams AQ records the number of failed attempts to consume the message in the message history. Applications can query the RETRY_COUNT	
column of the queue table view to find out the number of unsuccessful attempts on a message. In addition, Oracle Streams AQ allows the application to specify, at the queue level, the maximum number of retries for messages in the queue. The default value for maximum retries is 5. If the number of failed attempts to remove a message exceeds this number, then the message is moved to the exception queue and is no longer available to applications.	
Note: If a dequeue transaction fails because the server process dies (includingALTER SYSTEM KILL SESSION) or SHUTDOWN ABORT on the instance, then RETRY_COUNT is not incremented.	
A bad condition can cause the transaction receiving a message to end. Oracle Streams AQ allows users to hide the bad message for a specified retry delay interval, during which it is in the WAITING state. After the retry delay, the failed message is again available for dequeue. The Oracle Streams AQ time manager enforces the retry delay property. The default value for retry delay is 0.	
If multiple sessions are dequeueing messages from a queue simultaneously, then RETRY_COUNT	
information might not always be updated correctly. If session one dequeues a message and rolls back the transaction, then Oracle Streams AQ notes that the RETRY_COUNT	
information for this message must be updated. However RETRY_COUNT	
cannot be incremented until session one completes the rollback. If session two attempts to dequeue the same message after session one has completed the rollback but before it has incremented RETRY_COUNT	
, then the dequeue by session two succeeds. When session one attempts to increment RETRY_COUNT	
, it finds that the message is locked by session two and RETRY_COUNT	
is not incremented. A trace file is then generated in the user_dump_destination for the instance with the following message:	
Note: Maximum retries and retry delay are not available with 8.0-style multiconsumer queues.Queues created in a queue table with	
Optional Transaction Protection	
Enqueue and dequeue requests are usually part of a transaction that contains the requests, thereby providing the wanted transactional action. You can, however, specify that a specific request is a transaction by itself, making the result of that request immediately visible to other transactions. This means that messages can be made visible to the external world when the enqueue or dequeue statement is applied or after the transaction is committed.	
Note: Transaction protection is not supported for buffered messaging.	
An exception queue is a repository for expired or unserviceable messages. Applications cannot directly enqueue into exception queues. Also, a multiconsumer exception queue cannot have subscribers associated with it. However, an application that intends to handle these expired or unserviceable messages can dequeue them exactly once from the exception queue using remove mode. The consumer name specified while dequeuing should be null. Messages can also be dequeued from the exception queue by specifying the message identifier.	
Note: Expired or unserviceable buffered messages are moved to an exception queue as persistent messages.Messages intended for single-consumer queues, or for 8.0-style multiconsumer queues, can only be dequeued by their message identifiers once the messages have been moved to an exception queue. Queues created in a queue table with	
After a message has been moved to an exception queue, there is no way to identify which queue the message resided in before moving to the exception queue. If this information is important, then the application must save this information in the message itself.	
The exception queue is a message property that can be specified during enqueue time. If an exception queue is not specified, then a default exception queue is used. The default exception queue is automatically created when the queue table is created.	
A message is moved to an exception queue under the following conditions:	
It was not dequeued within the specified expiration interval.	
For a message intended for multiple recipients, the message is moved to the exception queue if one or more of the intended recipients was not able to dequeue the message within the specified expiration interval. The default expiration interval is never, meaning the messages does not expire.	
The message was dequeued successfully, but the application that dequeued it rolled back the transaction because of an error that arose while processing the message. If the message has been dequeued but rolled back more than the number of times specified by the retry limit, then the message is moved to the exception queue.	
For a message intended for multiple recipients, a separate retry count is kept for each recipient. The message is moved to the exception queue only when retry counts for all recipients of the message have exceeded the specified retry limit.	
The default retry limit is five for single-consumer queues and 8.1-style multiconsumer queues. No retry limit is supported for 8.0-style multiconsumer queues, which are deprecated in Oracle Streams AQ 10g Release 2 (10.2)..	
Note: If a dequeue transaction fails because the server process dies (includingALTER SYSTEM KILL SESSION) or SHUTDOWN ABORT on the instance, then RETRY_COUNT is not incremented.	
The statement processed by the client contains a dequeue that succeeded but the statement itself was undone later due to an exception.	
If the dequeue procedure succeeds but the PL/SQL procedure raises an exception, then Oracle Streams AQ increments the retry count of the message returned by the dequeue procedure.	
The client program successfully dequeued a message but terminated before committing the transaction.	
Messages can be propagated from one queue to another, allowing applications to communicate with each other without being connected to the same database or to the same queue. The destination queue can be located in the same database or in a remote database.	
Propagation enables you to fan out messages to a large number of recipients without requiring them all to dequeue messages from a single queue. You can also use propagation to combine messages from different queues into a single queue. This is known as compositing or funneling messages.	
Note: You can propagate messages from a multiconsumer queue to a single-consumer queue. Propagation from a single-consumer queue to a multiconsumer queue is not possible.	
A message is marked as processed in the source queue immediately after the message has been propagated, even if the consumer has not dequeued the message at the remote queue. Similarly, when a propagated message expires at the remote queue, the message is moved to the exception queue of the remote queue, and not to the exception queue of the local queue. Oracle Streams AQ does not currently propagate the exceptions to the source queue.	
To enable propagation, one or more subscribers are defined for the queue from which messages are to be propagated and a schedule is defined for each destination where messages are to be propagated from the queue. Oracle Streams AQ automatically checks if the type of the remote queue is structurally equivalent to the type of the local queue. Messages enqueued in the source queue are then propagated and automatically available for dequeuing at the destination queue or queues.	
When messages arrive at the destination queues, sessions based on the source queue schema name are used for enqueuing the newly arrived messages into the destination queues. This means that you must grant schemas of the source queues enqueue privileges to the destination queues.	
Propagation is performed by two or more job queue background processes. This is in addition to the number of job queue background processes needed for handling jobs unrelated to propagation.	
Oracle Streams AQ offers two kinds of propagation:	
Queue-to-dblink propagation	
Queue-to-queue propagation	
Queue-to-dblink propagation delivers messages or events from the source queue to all subscribing queues at the destination database identified by the dblink.	
A single propagation schedule is used to propagate messages to all subscribing queues. Hence any changes made to this schedule will affect message delivery to all the subscribing queues.	
Queue-to-queue propagation delivers messages or events from the source queue to a specific destination queue identified on the dblink. This allows the user to have fine-grained control on the propagation schedule for message delivery.	
This new propagation mode also supports transparent failover when propagating to a destination RAC system. With queue-to-queue propagation, you are no longer required to repoint a database link if the owner instance of the queue fails on RAC.	
Oracle Streams AQ provides detailed statistics about the messages propagated and the schedule itself. This information can be used to tune propagation schedules for best performance.	
Consumers of a message in multiconsumer queues can be local or remote. Local consumers dequeue messages from the same queues into which the producer enqueued the messages. Local consumers have a name but no address or protocol in their agent descriptions.	
Remote consumers dequeue from queues that are different from the queues where the messages were enqueued. Remote consumers fall into three categories:	
The address refers to a queue in the same database.	
In this case the consumer dequeues the message from a different queue in the same database. These addresses are of the form [schema]	
.queue_name	
. If the schema is not specified, then the schema of the current user is used.	
The address refers to a queue in a different database.	
In this case the database must be reachable using database links and the protocol must be either NULL	
or 0. These addresses are of the form [schema]	
.queue_name@dblink	
. If the schema is not specified, then the schema of the current user is used. If the database link does not have a domain name specified, then the default domain as specified by the db_domain	
init	
.ora	
parameter is used.	
The address refers to a destination that can be reached by a third party protocol.	
You must refer to the documentation of the third party software to determine how to specify the address and the protocol	
database link and schedule propagation.	
Priority and Ordering of Messages in Propagation	
The delay, expiration, and priority parameters apply identically to both local and remote consumers in both queue-to-dblink and queue-to-queue propagation. Oracle Streams AQ accounts for any delay in propagation by adjusting the delay and expiration	
parameters accordingly. For example, if expiration	
is set to one hour, and the message is propagated after 15 minutes, then the expiration at the remote queue is set to 45 minutes.	
Figure 1-9 illustrates applications on different databases communicating using Oracle Streams AQ. Each application has an inbox for handling incoming messages and an outbox for handling outgoing messages. Whenever an application enqueues a message, it goes into its outbox regardless of the message destination. Similarly, an application dequeues messages from its inbox no matter where the message originates.	
A queue-to-dblink propagation schedule is defined for a pair of source and destination database links. A queue-to-queue propagation schedule is defined for a pair of source and destination queues. If a queue has messages to be propagated to several queues, then a schedule must be defined for each of the destination queues. With queue-to-dblink propagation, all schedules for a particular remote database have the same frequency. With queue-to-queue propagation, the frequency of each schedule can be adjusted independently of the others	
A schedule indicates the time frame during which messages can be propagated from the source queue. This time frame can depend on a number of factors such as network traffic, load at the source database, and load at the destination database. If the duration is unspecified, then the time frame is an infinite single window. If a window must be repeated periodically, then a finite duration is specified along with a next_time	
function that defines the periodic interval between successive windows.	
When a schedule is created, a job is automatically submitted to the job queue facility to handle propagation.	
The propagation schedules defined for a queue can be changed or dropped at any time during the life of the queue. You can also temporarily disable a schedule instead of dropping it. All administrative calls can be made irrespective of whether the schedule is active or not. If a schedule is active, then it takes a few seconds for the calls to be processed.	
Propagation of Messages with LOBs	
Large Objects can be propagated using Oracle Streams AQ using two methods:	
Propagation from RAW	
queues	
In RAW	
queues the message payload is stored as a BLOB. This allows users to store up to 32KB of data when using the PL/SQL interface and as much data as can be contiguously allocated by the client when using OCI. This method is supported by all releases after 8.0.4 inclusive.	
Propagation from object queues with LOB attributes	
The user can populate the LOB	
and read from the LOB	
using Oracle Database LOB	
handling routines. The LOB	
attributes can be BLOB	
s or CLOB	
s (not NCLOBs). If the attribute is a CLOB	
, then Oracle Streams AQ automatically performs any necessary characterset conversion between the source queue and the destination queue. This method is supported by all releases from 8.1.3 inclusive.	
Note: Payloads containing LOBs require users to grant explicitSelect , Insert and Update privileges on the queue table for doing enqueues and dequeues.	
Detailed runtime information about propagation is gathered and stored in the DBA_QUEUE_SCHEDULES	
view for each propagation schedule. This information can be used by queue designers and administrators to fix problems or tune performance. Similarly, errors reported by the view can be used to diagnose and fix problems. The view also describes additional information such as the session ID of the session handling the propagation and the process name of the job queue process handling the propagation.	
For each schedule, detailed propagation statistics are maintained:	
Total number of messages propagated in a schedule	
Total number of bytes propagated in a schedule	
Maximum number of messages propagated in a window	
Maximum number of bytes propagated in a window	
Average number of messages propagated in a window	
Average size of propagated messages	
Average time to propagated a message	
Propagation has built-in support for handling failures and reporting errors. For example, if the specified database link is invalid, if the remote database is unavailable, or if the remote queue is not enabled for enqueuing, then the appropriate error message is reported. Propagation uses an exponential backoff scheme for retrying propagation from a schedule that encountered a failure.	
If a schedule continuously encounters failures, then the first retry happens after 30 seconds, the second after 60 seconds, the third after 120 seconds and so forth. If the retry time is beyond the expiration time of the current window, then the next retry is attempted at the start time of the next window. A maximum of 16 retry attempts is made, after which the schedule is automatically disabled.	
Note: Once a retry attempt slips to the next propagation window, it will always do so; the exponential backoff scheme no longer governs retry scheduling. If the date function specified in thenext_time parameter of DBMS_AQADM.SCHEDULE_PROPAGATION() results in a short interval between windows, then the number of unsuccessful retry attempts can quickly exceed 16, disabling the schedule.	
When a schedule is disabled automatically due to failures, the relevant information is written into the alert log. A check for scheduling failures indicates:	
How many successive failures were encountered	
The error message indicating the cause for the failure	
The time at which the last failure was encountered	
By examining this information, a queue administrator can fix the failure and enable the schedule. If propagation is successful during a retry, then the number of failures is reset to 0.	
In some situations that indicate application errors in queue-to-dblink propagations, Oracle Streams AQ marks messages as UNDELIVERABLE	
and logs a message in alert.log	
. Examples of such errors are when the remote queue does not exist or when there is a type mismatch between the source queue and the remote queue. The trace files in the background_dump_dest	
directory can provide additional information about the error.	
When a new job queue process starts, it clears the mismatched type errors so the types can be reverified. If you have capped the number of job queue processes and propagation remains busy, then you might not want to wait for the job queue process to terminate and restart. Queue types can be reverified at any time using DBMS_AQADM.VERIFY_QUEUE_TYPES	
.	
Note: When a type mismatch is detected in queue-to-queue propagation, propagation stops and throws an error. In such situations you must query theDBA_SCHEDULES view to determine the last error that occurred during propagation to a particular destination. The message is not marked as UNDELIVERABLE .	
Propagation with Real Application Clusters	
Propagation has support built-in for Oracle Real Application Clusters. It is transparent to the user and the queue administrator. The job that handles propagation is submitted to the same instance as the owner of the queue table where the queue resides.	
If there is a failure at an instance and the queue table that stores the source queue is migrated to a different instance, then the propagation job is also migrated to the new instance. This minimizes pinging between instances and thus offers better performance.	
The destination can be identified by a database link or by destination queue name. Specifying the destination database results in queue-to-dblink propagation. If you propagate messages to several queues in another database, then all queue-to-dblink propagations to that database have the same frequency. Specifying the destination queue name results in queue-to-queue propagation, a new feature in Oracle Streams AQ 10g Release 2 (10.2). If you propagate messages to several queues in another database, then queue-to-queue propagation enables you to adjust the frequency of each schedule independently of the others. You can even enable or disable individual propagations.	
This new queue-to-queue propagation mode also supports transparent failover when propagating to a destination RAC system. With queue-to-queue propagation, you are no longer required to repoint a database link if the owner instance of the queue fails on RAC.	
Propagation has been designed to handle any number of concurrent schedules. The number of job queue processes is limited to a maximum of 1000, and some of these can be used to handle jobs unrelated to propagation. Hence, propagation has built-in support for multitasking and load balancing.	
The propagation algorithms are designed such that multiple schedules can be handled by a single job queue process. The propagation load on a job queue process can be skewed based on the arrival rate of messages in the different source queues.	
If one process is overburdened with several active schedules while another is less loaded with many passive schedules, then propagation automatically redistributes the schedules so they are loaded uniformly.	
If the protocol number for a recipient is in the range 128 - 255, then the address of the recipient is not interpreted by Oracle Streams AQ and the message is not propagated by the Oracle Streams AQ system. Instead, a third-party propagator can dequeue the message by specifying a reserved consumer name in the dequeue operation. The reserved consumer names are of the form AQ$_P	
protocol_number	
. For example, the consumer name AQ$_P128	
can be used to dequeue messages for recipients with protocol number 128. The list of recipients for a message with the specific protocol number is returned in the recipient_list	
message property on dequeue.	
Another way for Oracle Streams AQ to propagate messages to and from third-party messaging systems is through Messaging Gateway. Messaging Gateway dequeues messages from an Oracle Streams AQ queue and guarantees delivery to supported third-party messaging systems. Messaging Gateway can also dequeue messages from these systems and enqueue them to an Oracle Streams AQ queue.	
In Oracle Database 10g you can set up Oracle Streams AQ propagation over HTTP and HTTPS (HTTP over SSL). HTTP propagation uses the Internet access infrastructure and requires that the Oracle Streams AQ servlet that connects to the destination database be deployed. The database link must be created with the connect string indicating the Web server address and port and indicating HTTP as the protocol. The source database must be created for running Java and XML. Otherwise, the setup for HTTP propagation is more or less the same as Oracle Net Services propagation.	
Applications often use data in different formats. A transformation defines a mapping from one Oracle data type to another. The transformation is represented by a SQL function that takes the source data type as input and returns an object of the target data type. Only one-to-one message transformations are supported.	
To transform a message during enqueue, specify a mapping in the enqueue options. To transform a message during dequeue, specify a mapping either in the dequeue options or when you add a subscriber. A dequeue mapping overrides a subscriber mapping. To transform a message during propagation, specify a mapping when you add a subscriber.	
You can create transformations by creating a single PL/SQL function or by creating an expression for each target type attribute. The PL/SQL function returns an object of the target type or the constructor of the target type. This representation is preferable for simple transformations or those not easily broken down into independent transformations for each attribute.	
Creating a separate expression specified for each attribute of the target type simplifies transformation mapping creation and management for individual attributes of the destination type. It is useful when the destination type has many attributes.	
As Figure 1-10 shows, queuing, routing, and transformation are essential building blocks to an integrated application architecture. The figure shows how data from the Out queue of a CRM application is routed and transformed in the integration hub and then propagated to the In queue of the Web application. The transformation engine maps the message from the format of the Out queue to the format of the In queue.	
You can transform XML data using the extract()	
method supported on XMLType	
to return an object of XMLType	
after applying the supplied XPath	
expression. You can also create a PL/SQL function that transforms the XMLType	
object by applying an XSLT transformation to it, using the package XSLPROCESSOR	
.	
This section contains these topics:	
Before 10g Release 1 (10.1), the Oracle Streams AQ time manager process was called queue monitor (QMNn	
), a background process controlled by setting the dynamic init.ora	
parameter AQ_TM_PROCESSES	
. Beginning with 10g Release 1 (10.1), time management and many other background processes are automatically controlled by a coordinator-slave architecture called Queue Monitor Coordinator (QMNC	
). QMNC	
dynamically spawns slaves named qXXX depending	
on the system load. The slaves provide mechanisms for:	
Message delay	
Message expiration	
Retry delay	
Garbage collection for the queue table	
Memory management tasks for buffered messages	
Because the number of processes is determined automatically and tuned constantly, you are saved the trouble of setting it with AQ_TM_PROCESSES	
.	
Although it is no longer necessary to set init.ora	
parameter AQ_TM_PROCESSES	
, it is still supported. If you do set it (up to a maximum of 10), then QMNC still autotunes the number of processes. But you are guaranteed at least the set number of processes for persistent queues. Processes for a buffered queue and other Oracle Streams tasks, however, are not affected by this parameter.	
Note: If you want to disable the Queue Monitor Coordinator, then you must setAQ_TM_PROCESSES = 0 in your pfile or spfile. Oracle strongly recommends that you do NOT set AQ_TM_PROCESSES = 0 . If you are using Oracle Streams, setting this parameter to zero (which Oracle Database respects no matter what) can cause serious problems.	
Integration with Oracle Internet Directory	
Oracle Internet Directory is a native LDAPv3 directory service built on Oracle Database that centralizes a wide variety of information, including e-mail addresses, telephone numbers, passwords, security certificates, and configuration data for many types of networked devices. You can look up enterprise-wide queuing information—queues, subscriptions, and events—from one location, the Oracle Internet Directory. Refer to the Oracle Internet Directory Administrator's Guide for more information.	
Integration with Oracle Enterprise Manager	
You can use Oracle Enterprise Manager to:	
Create and manage queues, queue tables, propagation schedules, and transformations	
Monitor your Oracle Streams AQ environment using its topology at the database and queue levels, and by viewing queue errors and queue and session statistics	
The systems administrator specifies the retention duration to retain messages after consumption. Oracle Streams AQ stores information about the history of each message, preserving the queue and message properties of delay, expiration, and retention for messages destined for local or remote receivers. The information contains the enqueue and dequeue times and the identification of the transaction that executed each request. This allows users to keep a history of relevant messages. The history can be used for tracking, data warehouse, and data mining operations, as well as specific auditing functions.	
Message retention is not supported for buffered messaging.	
The Oracle Streams AQ retention feature can be used to automatically clean up messages after the user-specified duration after consumption.	
If messages are accidentally inserted into a queue for the wrong subscriber, you can dequeue them with the subscriber name or by message identifier. This consumes the messages, which are cleaned up after their retention time expires.	
To clean up messages for a particular subscriber, you can remove the subscriber and add the subscriber again. Removing the subscriber removes all the messages for that subscriber.	
Retained messages can be related to each other to form sequences. These sequences represent event journals, which are often constructed by applications. Oracle Streams AQ is designed to let applications create event journals automatically.	
Oracle Streams AQ maintains the entire history of information about a message along with the message itself. This information serves as proof of sending and receiving of messages and can be used for nonrepudiation of the sender and nonrepudiation of the receiver.	
The following information is kept at enqueue for nonrepudiation of the enqueuer:	
Oracle Streams AQ agent doing the enqueue	
Database user doing the enqueue	
Enqueue time	
Transaction ID of the transaction doing enqueue	
The following information is kept at dequeue for nonrepudiation of the dequeuer:	
Oracle Streams AQ agent doing dequeue	
Database user doing dequeue	
Dequeue time	
Transaction ID of the transaction doing dequeue	
After propagation, the Original_Msgid	
field in the destination queue of the propagation corresponds to the message ID of the source message. This field can be used to correlate the propagated messages. This is useful for nonrepudiation of the dequeuer of propagated messages.	
Stronger nonrepudiation can be achieved by enqueuing the digital signature of the sender at the time of enqueue with the message and by storing the digital signature of the dequeuer at the time of dequeue.	
You can access Oracle Streams AQ over the Internet by using Simple Object Access Protocol (SOAP). Internet Data Access Presentation (IDAP) is the SOAP specification for Oracle Streams AQ operations. IDAP defines the XML message structure for the body of the SOAP request.	
An IDAP message encapsulates the Oracle Streams AQ request and response in XML. IDAP is used to perform Oracle Streams AQ operations such as enqueue, dequeue, send notifications, register for notifications, and propagation over the Internet standard transports—HTTP(s) and e-mail. In addition, IDAP encapsulates transactions, security, transformation, and the character set ID for requests.	
You can create an alias to an Oracle Streams AQ agent in Oracle Internet Directory and then use the alias in IDAP documents sent over the Internet to perform Oracle Streams AQ operations. Using aliases prevents exposing the internal name of the Oracle Streams AQ agent.	
Figure 1-11 shows the architecture for performing Oracle Streams AQ operations over HTTP. The major components are:	
Oracle Streams AQ client program	
Web server/servlet runner hosting the Oracle Streams AQ servlet	
Oracle Database server	
The Oracle Streams AQ client program sends XML messages (conforming to IDAP) to the Oracle Streams AQ servlet, which understands the XML message and performs Oracle Streams AQ operations. Any HTTP client, a Web browser for example, can be used. The Web server/servlet runner hosting the Oracle Streams AQ servlet, Apache/Jserv or Tomcat for example, interprets the incoming XML messages. The Oracle Streams AQ servlet connects to the Oracle Database server and performs operations on user queues.	
Note: This feature is certified to work with Apache, along with the Tomcat or Jserv servlet execution engines. However, the code does not prevent the servlet from working with other Web server and servlet execution engines that support Java Servlet 2.0 or higher interfaces.	
You can access Oracle Streams AQ functionality through the following interfaces:	
PL/SQL using DBMS_AQ	
, DBMS_AQADM	
, and DBMS_AQELM	
Visual Basic using Oracle Objects for OLE	
Java Message Service (JMS) using the oracle.jms	
Java package	
Internet access using HTTP(S)	
Note: Theoracle.AQ Java package was deprecated in Oracle Streams AQ 10g Release 1 (10.1). Oracle recommends that you migrate existing Java AQ applications to Oracle JMS and use Oracle JMS to design your future Java AQ applications.	
Oracle Streams AQ demos can be installed from the Oracle Database Companion CD. Once they are installed, you can find them in the $ORACLE_HOME/rdbms/demo	
directory. Refer to aqxmlREADME.txt	
and aqjmsREADME.txt	
in the demo	
directory for more information.	
Table 1-1 lists and briefly describes the PL/SQL and OCI demos. Table 1-2 lists and briefly describes the JMS demos. Table 1-3 lists and briefly describes the XML demos.	
Table 1-1 Oracle Streams AQ Demonstrations	
Table 1-2 Oracle Streams AQ JMS Demonstrations	
Demo and Locations	Topic
---	---
aqjmsREADME.txt	Describes the Oracle Streams AQ Java API and JMS demos
aqjmsdmo.sql	Set up Oracle Streams AQ JMS demos
aqjmsdemo01.java	Enqueue text messages and dequeue based on message properties
aqjmsdemo02.java	Message listener demo (enqueue messages)
aqjmsdemo03.java	Message listener demo (set up listener and dequeue messages)
aqjmsdemo04.java	Oracle type payload: dequeue on payload content
aqjmsdemo05.java	Queue browser example
aqjmsdemo06.java	Schedule propagation between queues in the database
aqjmsdemo07.java	Send and receive an ADT message containing XML data
aqjmsdemo08.java	JMS 1.1 domain unification demo
aqjmsdemo09.java	JMS bulk array enqueue and dequeue
aqjmsdemo10.java	ANYDATA messaging with JMS message types and ADT messages
aqjmsdrp.sql	Clean up AQ JMS demos
aqoradmo.sql	Set up Oracle Streams AQ Java API demos
aqorademo01.java	Enqueue and dequeue RAW messages
aqorademo02.java	Enqueue and dequeue object type messages using ORAData interface
aqoradrp.sql	Clean up AQ Java API demos
aqjmskprb01.java	Enqueues and dequeues a message within the database
aqjmskprb01a.sql	Set up kprb driver demo
aqjmskprb01b.sql	Defines Java program aqjmskprb01.java as stored procedure
aqjmskprb01c.sql	Runs aqjmskprb01.java as stored procedure
aqjmskprb01d.sql	Clean up AQ kprb driver demo
Table 1-3 Oracle Streams AQ XML Demonstrations	
Demo and Locations	Topic
---	---
aqxmlREADME.txt	Describes the Internet access demos
aqxmldmo.sql	Create users, queue tables, and queues
aqxml01.xml	AQXmlSend: Enqueue three messages to an ADT single- consumer queue with piggyback commit
aqxml02.xml	AQXmlReceive: Dequeue messages from ADT single-consumer queue with piggyback commit
aqxml03.xml	AQXmlPublish: Enqueue two messages to an ADT multiconsumer queue
aqxml04.xml	AQXmlReceive: Dequeue messages from an ADT (with LOB) multiconsumer queue
aqxml05.xml	AQXmlCommit: Commit previous operation
aqxml06.xml	AQXmlSend: Enqueue a message to a JMS TEXT single-consumer queue with piggyback commit
aqxml07.xml	AQXmlReceive: Dequeue messages from a JMS TEXT single-consumer queue with piggyback commit
aqxml08.xml	AQXmlPublish: Enqueue a JMS MAP message with recipient into multiconsumer queue
aqxml09.xml	AQXmlReceive: Dequeue JMS MAP messages from a multiconsumer queue
aqxml10.xml	AQXmlRollback: Roll back previous operation
aqxmlhtp.sql	HTTP propagation
AQDemoServlet.java	Servlet to post Oracle Streams AQ XML files (for Jserv)
AQPropServlet.java	Servlet for Oracle Streams AQ HTTP propagation
aqxmldrp.sql	Clean up AQ XML demo
This chapter describes the Oracle Streams Advanced Queuing (AQ) basic components.	
This chapter contains the following topics:	
Enumerated Constants in the Oracle Streams AQ Administrative Interface	
Enumerated Constants in the Oracle Streams AQ Operational Interface	
This component names database objects. This naming convention applies to queues, queue tables, and object types.	
Names for objects are specified by an optional schema name and a name. If the schema name is not specified, then the current schema is assumed. The name must follow the reserved character guidelines in Oracle Database SQL Reference. The schema name, agent name, and the object type name can each be up to 30 bytes long. However, queue names and queue table names can be a maximum of 24 bytes.	
This component defines queue types. For details on creating object types refer to Oracle Database Concepts. The maximum number of attributes in the object type is limited to 900.	
To store payloads of type RAW	
, Oracle Streams AQ creates a queue table with a LOB column as the payload repository. The size of the payload is limited to 32K bytes of data. Because LOB	
columns are used for storing RAW	
payload, the Oracle Streams AQ administrator can choose the LOB	
tablespace and configure the LOB	
storage by constructing a LOB	
storage string in the storage_clause	
parameter during queue table creation time.	
Note: Payloads containing LOBs require users to grant explicitSelect , Insert and Update privileges on the queue table for doing enqueues and dequeues.	
This component identifies a producer or a consumer of a message.	
All consumers that are added as subscribers to a multiconsumer queue must have unique values for the AQ$_AGENT	
parameters. Two subscribers cannot have the same values for the NAME	
, ADDRESS,	
and PROTOCOL	
attributes for the AQ$_AGENT	
type. At least one of the three attributes must be different for two subscribers.	
You can add subscribers by repeatedly using the DBMS_AQADM.ADD_SUBSCRIBER	
procedure up to a maximum of 1024 subscribers for a multiconsumer queue.	
This type has three attributes:	
name	
This attribute specifies the name of a producer or consumer of a message. It can be the name of an application or a name assigned by an application. A queue can itself be an agent, enqueuing or dequeuing from another queue. The name must follow the reserved character guidelines in Oracle Database SQL Reference.	
address	
This attribute is interpreted in the context of protocol	
. If protocol	
is 0 (default), then address	
is of the form [schema.]queue[@dblink]	
.	
protocol	
This attribute specifies the protocol to interpret the address and propagate the message. The default value is 0.	
This component identifies the list of agents that receive a message.	
This component identifies the list of agents for DBMS_AQ.LISTEN	
to listen for.	
This component identifies the list of subscribers that subscribe to this queue.	
This component identifies the list of registrations to a queue.	
This component identifies the list of anonymous subscriptions to which messages are posted.	
This component identifies a producer or a consumer of a message. Its attributes are described in the following list. Attributes qosflags	
and timeout	
are part of Oracle Streams AQ 10g Release 2 (10.2) notification enhancements.	
name	
This attribute specifies the name of the subscription. If the registration is for a single-consumer queue, then it is of the form schema	
.	
queue	
. If the registration is for a multiconsumer queue, then it is of the form schema	
.	
queue	
:	
consumer_name	
.	
namespace	
This attribute specifies the namespace of the subscription. To receive notifications from Oracle Streams AQ queues, the namespace must be DBMS_AQ.NAMESPACE_AQ	
. To receive notifications from other applications using DBMS_AQ.POST	
or OCISubscriptionPost()	
, the namespace must be DBMS_AQ.NAMESPACE_ANONYMOUS	
.	
callback	
This attribute specifies the action to be performed on message notification. For e-mail notifications, the form is mailto://xyz@company.com	
. For Oracle Streams AQ PL/SQL callback, use plsql://	
schema	
.	
procedure	
?PR=0 for raw message payload or plsql://	
schema	
.	
procedure	
?PR=1	
for Oracle object type message payload converted to XML.	
context	
This attribute specifies the context that is to be passed to the callback function. The default is NULL	
.	
qosflags	
This attribute specifies the notification quality of service, described in more detail in "Notification Quality of Service".	
timeout	
Clients can use this attribute to specify an automatic expiration period for the registration. If you want no timeout, then set this attribute to 0	
.	
Notification Quality of Service	
The qosflags	
attribute can be set to one or more of the following values to specify the notification quality of service:	
NTFN_QOS_RELIABLE	
This value specifies that reliable notification is required. Reliable notifications persist across instance and database restarts. The corresponding OCI flag is OCI_SUBSCR_QOS_RELIABLE	
.	
NTFN_QOS_PAYLOAD	
This value specifies that payload delivery is required. It is supported only for client notification and only for RAW queues. The corresponding OCI flag is OCI_SUBSCR_QOS_PAYLOAD	
.	
NTFN_QOS_PURGE_ON_NTFN	
This value specifies that the registration is to be purged automatically when the first notification is delivered to this registration location. The corresponding OCI flag is OCI_SUBSCR_QOS_PURGE_ON_NTFN	
.	
This component specifies the Oracle Streams AQ descriptor received by Oracle Streams AQ PL/SQL callbacks upon notification. It has the following attributes:	
queue_name	
This attribute specifies the name of the queue in which the message was enqueued which resulted in the notification.	
consumer_name	
This attribute specifies the name of the consumer for a multiconsumer queue.	
msg_id	
This attribute specifies the message identifier.	
msg_prop	
This attribute specifies the message properties.	
gen_desc	
This attribute indicates the timeout specifications	
The message properties type msg_prop_t	
has the following components:	
The timeout specifications type AQ$_NTFN_DESCRIPTOR	
has a single component:	
NTFN_FLAGS	
is set to 1	
if the notifications are already removed after a stipulated timeout; otherwise the value is 0	
.	
This component specifies anonymous subscriptions to which you want to post messages. It has three attributes:	
name	
This attribute specifies the name of the anonymous subscription to which you want to post.	
namespace	
This attribute specifies the namespace of the anonymous subscription. To receive notifications from other applications using DBMS_AQ.POST	
or OCISubscriptionPost()	
, the namespace must be DBMS_AQ.NAMESPACE_ANONYMOUS	
.	
payload	
This attribute specifies the payload to be posted to the anonymous subscription. The default is NULL	
.	
When enumerated constants such as INFINITE	
, TRANSACTIONAL	
, and NORMAL_QUEUE	
are selected as values, the symbol must be specified with the scope of the packages defining it. All types associated with the administrative interfaces must be prepended with DBMS_AQADM	
. For example:	
Table 2-1 lists the enumerated constants in the Oracle Streams AQ administrative interface.	
Table 2-1 Enumerated Constants in the Oracle Streams AQ Administrative Interface	
Note: Nonpersistent queues are deprecated in Oracle Streams AQ 10g Release 2 (10.2). Oracle recommends that you use buffered messaging instead.	
When using enumerated constants such as BROWSE	
, LOCKED	
, and REMOVE	
, the PL/SQL constants must be specified with the scope of the packages defining them. All types associated with the operational interfaces must be prepended with DBMS_AQ	
. For example:	
Table 2-2 lists the enumerated constants in the Oracle Streams AQ operational interface.	
Table 2-2 Enumerated Constants in the Oracle Streams AQ Operational Interface	
Note: The sequence deviation feature is deprecated in 10g Release 2 (10.2).	
You can specify parameters AQ_TM_PROCESSES	
and JOB_QUEUE_PROCESSES	
in the init.ora	
parameter file.	
Prior to Oracle Database 10g, Oracle Streams AQ time manager processes were controlled by init	
.ora	
parameter AQ_TM_PROCESSES	
, which had to be set to nonzero to perform time monitoring on queue messages and for processing messages with delay and expiration properties specified. These processes were named QMNO-9, and the number of them could be changed using:	
Parameter X ranged from 0	
to 10	
. When X was set to 1 or more, that number of QMN processes were then started. If the parameter was not specified, or was set to 0	
, then queue monitor processes were not started.	
Beginning in Oracle Streams AQ 10g Release 1 (10.1), this was changed to a coordinator-slave architecture, where a coordinator is automatically spawned if Oracle Streams AQ or Streams is being used in the system. This process, named QMNC, dynamically spawns slaves depending on the system load. The slaves, named qXXX, do various background tasks for Oracle Streams AQ or Streams. Because the number of processes is determined automatically and tuned constantly, you no longer need set AQ_TM_PROCESSES	
.	
Even though it is no longer necessary to set AQ_TM_PROCESSES	
when Oracle Streams AQ or Streams is used, if you do specify a value, then that value is taken into account. However, the number of qXXX processes can be different from what was specified by AQ_TM_PROCESSES	
.	
QMNC only runs when you use queues and create new queues. It affects Streams Replication and Messaging users.	
No separate API is needed to disable or enable the background processes. This is controlled by setting AQ_TM_PROCESSES	
to zero or nonzero. Oracle recommends, however, that you leave the AQ_TM_PROCESSES	
parameter unspecified and let the system autotune.	
Note: If you want to disable the Queue Monitor Coordinator, then you must setAQ_TM_PROCESSES = 0 in your pfile or spfile . Oracle strongly recommends that you do NOT set AQ_TM_PROCESSES = 0 . If you are using Oracle Streams, then setting this parameter to zero (which Oracle Database respects no matter what) can cause serious problems.	
Propagation is handled by job queue (Jnnn) processes. The number of job queue processes started in an instance is controlled by the init.ora	
parameter JOB_QUEUE_PROCESSES	
. The default value of this parameter is 0. For message propagation to take place, this parameter must be set to at least 2. The database administrator can set it to higher values if there are many queues from which the messages must be propagated, or if there are many destinations to which the messages must be propagated, or if there are other jobs in the job queue.	
This chapter describes the different language options and elements you must work with and issues to consider in preparing your Oracle Streams Advanced Queuing (AQ) application environment.	
Note: Java packageoracle.AQ was deprecated in 10g Release 1 (10.1). Oracle recommends that you migrate existing Java AQ applications to Oracle JMS (or other Java APIs) and use Oracle JMS (or other Java APIs) to design your future Java AQ applications.	
This chapter contains these topics:	
Using Oracle Java Message Service (OJMS) to Access Oracle Streams AQ	
Using Oracle Streams AQ XML Servlet to Access Oracle Streams AQ	
Table 3-1 lists Oracle Streams AQ programmatic interfaces, functions supported in each interface, and syntax references.	
Table 3-1 Oracle Streams AQ Programmatic Interfaces	
Language	Precompiler or Interface Program
---	---
PL/SQL	DBMS_AQADM and DBMS_AQ Packages
C	Oracle Call Interface (OCI)
Visual Basic	Oracle Objects for OLE (OO4O)
Java (JMS)	oracle.JMS package using JDBC API
AQ XML servlet	Internet Data Access Presentation (IDAP)
The PL/SQL packages DBMS_AQADM	
and DBMS_AQ	
support access to Oracle Streams AQ administrative and operational functions using the native Oracle Streams AQ interface. These functions include:	
Create queue, queue table, nonpersistent queue, multiconsumer queue/topic, RAW message, or message with structured data	
Get queue table, queue, or multiconsumer queue/topic	
Alter queue table or queue/topic	
Drop queue/topic	
Start or stop queue/topic	
Grant and revoke privileges	
Add, remove, or alter subscriber	
Add, remove, or alter an Oracle Streams AQ Internet agent	
Grant or revoke privileges of database users to Oracle Streams AQ Internet agents	
Enable, disable, or alter propagation schedule	
Enqueue messages to single consumer queue (point-to-point model)	
Publish messages to multiconsumer queue/topic (publish/subscribe model)	
Subscribe for messages in multiconsumer queue	
Browse messages in a queue	
Receive messages from queue/topic	
Register to receive messages asynchronously	
Listen for messages on multiple queues/topics	
Post messages to anonymous subscriptions	
Bind or unbind agents in a Lightweight Directory Access Protocol (LDAP) server	
Add or remove aliases to Oracle Streams AQ objects in a LDAP server	
See Also: PL/SQL Packages and Types Reference for detailed documentation ofDBMS_AQADM and DBMS_AQ , including syntax, parameters, parameter types, return values, and examples	
Available PL/SQL DBMS_AQADM	
and DBMS_AQ	
functions are listed in detail in Table 3-2 through Table 3-9.	
OCI provides an interface to Oracle Streams AQ functions using the native Oracle Streams AQ interface.	
An OCI client can perform the following actions:	
Enqueue messages	
Dequeue messages	
Listen for messages on sets of queues	
Register to receive message notifications	
In addition, OCI clients can receive asynchronous notifications for new messages in a queue using OCISubscriptionRegister	
.	
See Also: "OCI and Advanced Queuing" and "Publish-Subscribe Notification" in Oracle Call Interface Programmer's Guide for syntax details	
For queues with user-defined payload types, the Oracle type translator must be used to generate the OCI/OCCI mapping for the Oracle type. The OCI client is responsible for freeing the memory of the Oracle Streams AQ descriptors and the message payload.	
See Also: Appendix C, "OCI Examples", which appears only in the HTML version of this guide, for OCI interface examples	
C++ applications can use OCCI, which has a set of Oracle Streams AQ interfaces that enable messaging clients to access Oracle Streams AQ. OCCI AQ supports all the operational functions required to send/receive and publish/subscribe messages in a message-enabled database. Synchronous and asynchronous message consumption is available, based on a message selection rule.	
Visual Basic (OO4O) supports access to Oracle Streams AQ operational functions using the native Oracle Streams AQ interface.	
These functions include the following:	
Create a connection, RAW message, or message with structured data	
Enqueue messages to a single-consumer queue (point-to-point model)	
Publish messages to a multiconsumer queue/topic (publish/subscribe model)	
Browse messages in a queue	
Receive messages from a queue/topic	
Register to receive messages asynchronously	
Note: Because the database handles message propagation, OO4O does not differentiate between remote and local recipients. The same sequence of calls/steps are required to dequeue a message for local and remote recipients.	
Java Message Service (JMS) is a messaging standard defined by Sun Microsystems, Oracle, IBM, and other vendors. JMS is a set of interfaces and associated semantics that define how a JMS client accesses the facilities of an enterprise messaging product.	
Oracle Java Message Service (OJMS) provides a Java API for Oracle Streams AQ based on the JMS standard. OJMS supports the standard JMS interfaces and has extensions to support administrative operations and other features that are not a part of the standard.	
Standard JMS features include:	
Point-to-point model of communication using queues	
Publish/subscribe model of communication using topics	
ObjectMessage	
, StreamMessage	
, TextMessage	
, BytesMessage	
, and MapMessage	
message types	
Asynchronous and synchronous delivery of messages	
Message selection based on message header fields or properties	
Oracle JMS extensions include:	
Administrative API to create queue tables, queues and topics	
Point-to-multipoint communication using recipient lists for topics	
Message propagation between destinations, which allows the application to define remote subscribers	
Support for transactional sessions, enabling JMS and SQL operations in one transaction	
Message retention after messages have been dequeued	
Message delay, allowing messages to be made visible after a certain delay	
Exception handling, allowing messages to be moved to exception queues if they cannot be processed successfully	
Support for AdtMessage	
These are stored in the database as Oracle objects, so the payload of the message can be queried after it is enqueued. Subscriptions can be defined on the contents of these messages as opposed to just the message properties.	
Topic browsing	
This allows durable subscribers to browse through the messages in a publish/subscribe (topic) destination. It optionally allows these subscribers to purge the browsed messages, so they are no longer retained by Oracle Streams AQ for that subscriber.	
See Also:	
Standard JMS interfaces are in the javax.jms	
package. Oracle JMS interfaces are in the oracle.jms	
package. You must have EXECUTE	
privilege on the DBMS_AQIN	
and DBMS_AQJMS	
packages to use the Oracle JMS interfaces. You can also acquire these rights through the AQ_USER_ROLE	
or the AQ_ADMINSTRATOR_ROLE	
. You also need the appropriate system and queue or topic privileges to send or receive messages.	
Because Oracle JMS uses Java Database Connectivity (JDBC) to connect to the database, its applications can run outside the database using the JDBC OCI driver or JDBC thin driver.	
Using JDBC OCI Driver or JDBC Thin Driver	
To use JMS with clients running outside the database, you must include the appropriate JDBC driver, Java Naming and Directory Interface (JNDI) jar files, and Oracle Streams AQ jar files in your CLASSPATH.	
For JDK 1.3.x and higher, include the following in the CLASSPATH:	
For JDK 1.2 include the following in the CLASSPATH	
:	
Using Oracle Server Driver in JServer	
If your application is running inside the JServer, then you should be able to access the Oracle JMS classes that have been automatically loaded when the JServer was installed. If these classes are not available, then you must load jmscommon.jar	
followed by aqapi.jar	
using the $ORACLE_HOME/rdbms/admin/initjms	
SQL script.	
You can use Oracle Streams AQ XML servlet to access Oracle Streams AQ over HTTP using Simple Object Access Protocol (SOAP) and an Oracle Streams AQ XML message format called Internet Data Access Presentation (IDAP).	
Using the Oracle Streams AQ servlet, a client can perform the following actions:	
Send messages to single-consumer queues	
Publish messages to multiconsumer queues/topics	
Receive messages from queues	
Register to receive message notifications	
See Also: "Deploying the Oracle Streams AQ XML Servlet" for more information on the Oracle Streams AQ XML servlet	
Available functions for the Oracle Streams AQ programmatic interfaces are listed by use case in Table 3-2 through Table 3-9. Use cases are described in Chapter 8 through Chapter 10 and Chapter 12 through Chapter 15.	
Table 3-2 lists the equivalent Oracle Streams AQ administrative functions for the PL/SQL and Java (JMS) programmatic interfaces.	
Table 3-2 Comparison of Oracle Streams AQ Programmatic Interfaces: Administrative Interface	
Use Case	PL/SQL
---	---
Create a connection factory	N/A
Register a ConnectionFactory in an LDAP server	N/A
Create a queue table	DBMS_AQADM.CREATE_QUEUE_TABLE
Get a queue table	Use schema .queue_table_name
Alter a queue table	DBMS_AQADM.ALTER_QUEUE_TABLE
Drop a queue table	DBMS_AQADM.DROP_QUEUE_TABLE
Create a queue	DBMS_AQADM.CREATE_QUEUE
Get a queue	Use schema.queue_name
Create a multiconsumer queue/topic in a queue table with multiple consumers enabled	DBMS_AQADM.CREATE_QUEUE
Get a multiconsumer queue/topic	Use schema.queue_name
Alter a queue/topic	DBMS_AQADM.ALTER_QUEUE
Start a queue/topic	DBMS_AQADM.START_QUEUE
Stop a queue/topic	DBMS_AQADM.STOP_QUEUE
Drop a queue/topic	DBMS_AQADM.DROP_QUEUE
Grant system privileges	DBMS_AQADM.GRANT_SYSTEM_ PRIVILEGE
Revoke system privileges	DBMS_AQADM.REVOKE_SYSTEM_ PRIVILEGE
Grant a queue/topic privilege	DBMS_AQADM.GRANT_QUEUE_ PRIVILEGE
Revoke a queue/topic privilege	DBMS_AQADM.REVOKE_QUEUE_ PRIVILEGE
Verify a queue type	DBMS_AQADM.VERIFY_QUEUE_TYPES
Add a subscriber	DBMS_AQADM.ADD_SUBSCRIBER
Alter a subscriber	DBMS_AQADM.ALTER_SUBSCRIBER
Remove a subscriber	DBMS_AQADM.REMOVE_SUBSCRIBER
Schedule propagation	DBMS_AQADM.SCHEDULE_PROPAGATION
Enable a propagation schedule	DBMS_AQADM.ENABLE_PROPAGATION_ SCHEDULE
Alter a propagation schedule	DBMS_AQADM.ALTER_PROPAGATION_ SCHEDULE
Disable a propagation schedule	DBMS_AQADM.DISABLE_PROPAGATION_ SCHEDULE
Unschedule a propagation	DBMS_AQADM.UNSCHEDULE_ PROPAGATION
Create an Oracle Streams AQ Internet Agent	DBMS_AQADM.CREATE_AQ_AGENT
Alter an Oracle Streams AQ Internet Agent	DBMS_AQADM.ALTER_AQ_AGENT
Drop an Oracle Streams AQ Internet Agent	DBMS_AQADM.DROP_AQ_AGENT
Grant database user privileges to an Oracle Streams AQ Internet Agent	DBMS_AQADM.ENABLE_AQ_AGENT
Revoke database user privileges from an Oracle Streams AQ Internet Agent	DBMS_AQADM.DISABLE_AQ_AGENT
Add alias for queue, agent, ConnectionFactory in a LDAP server	DBMS_AQADM.ADD_ALIAS_TO_LDAP
Delete alias for queue, agent, ConnectionFactory in a LDAP server	DBMS_AQADM.DEL_ALIAS_FROM_LDAP
Table 3-3 through Table 3-9 list equivalent Oracle Streams AQ operational functions for the programmatic interfaces PL/SQL, OCI, Oracle Streams AQ XML Servlet, and JMS, for various use cases.	
Table 3-3 Comparison of Oracle Streams AQ Programmatic Interfaces: Operational Interface—Create Connection, Session, Message Use Cases	
Use Case	PL/SQL
---	---
Create a connection	N/A
Create a session	N/A
Create a RAW message	Use SQL RAW type for message
Create a message with structured data	Use SQL Oracle object type for message
Create a message producer	N/A
Table 3-4 Comparison of Oracle Streams AQ Programmatic Interfaces: Operational Interface—Enqueue Messages to a Single-Consumer Queue, Point-to-Point Model Use Cases	
Use Case	PL/SQL
---	---
Enqueue a message to a single-consumer queue	DBMS_AQ.enqueue
Enqueue a message to a queue and specify visibility options	DBMS_AQ.enqueue Specify visibility in ENQUEUE_OPTIONS
Enqueue a message to a single-consumer queue and specify message properties priority and expiration	DBMS_AQ.enqueue Specify priority, expiration in MESSAGE_PROPERTIES
Enqueue a message to a single-consumer queue and specify message properties correlationID, delay, and exception queue	DBMS_AQ.enqueue Specify correlation, delay, exception_queue in MESSAGE_PROPERTIES
Enqueue a message to a single-consumer queue and specify user-defined message properties	Not supported Properties should be part of payload
Enqueue a message to a single-consumer queue and specify message transformation	DBMS_AQ.enqueue Specify transformation in ENQUEUE_OPTIONS
Table 3-5 Comparison of Oracle Streams AQ Programmatic Interfaces: Operational Interface—Publish Messages to a Multiconsumer Queue/Topic, Publish/Subscribe Model Use Cases	
Use Case	PL/SQL
---	---
Publish a message to a multiconsumer queue/topic using default subscription list	DBMS_AQ.enqueue Set recipient_list to NULL in MESSAGE_PROPERTIES
Publish a message to a multiconsumer queue/topic using specific recipient list See footnote-1	DBMS_AQ.enqueue Specify recipient list in MESSAGE_PROPERTIES
Publish a message to a multiconsumer queue/topic and specify message properties priority and expiration	DBMS_AQ.enqueue Specify priority, expiration in MESSAGE_PROPERTIES
Publish a message to a multiconsumer queue/topic and specify send options correlationID, delay, and exception queue	DBMS_AQ.enqueue Specify correlation, delay, exception_queue in MESSAGE_PROPERTIES
Publish a message to a topic and specify user-defined message properties	Not supported Properties should be part of payload
Publish a message to a topic and specify message transformation	DBMS_AQ.enqueue Specify transformation in ENQUEUE_OPTIONS
Table 3-6 Comparison of Oracle Streams AQ Programmatic Interfaces: Operational Interface—Subscribing for Messages in a Multiconsumer Queue/Topic, Publish/Subscribe Model Use Cases	
Use Case	PL/SQL
---	---
Add a subscriber	See administrative interfaces
Alter a subscriber	See administrative interfaces
Remove a subscriber	See administrative interfaces
Table 3-7 Comparison of Oracle Streams AQ Programmatic Interfaces: Operational Interface—Browse Messages in a Queue Use Cases	
Use Case	PL/SQL
---	---
Browse messages in a queue/topic	DBMS_AQ. Set dequeue dequeue_mode to BROWSE in DEQUEUE_OPTIONS
Browse messages in a queue/topic and lock messages while browsing	DBMS_AQ.dequeue Set dequeue_mode to LOCKED in DEQUEUE_OPTIONS
Table 3-8 Comparison of Oracle Streams AQ Programmatic Interfaces: Operational Interface—Receive Messages from a Queue/Topic Use Cases	
Use Case	PL/SQL
---	---
Start a connection for receiving messages	N/A
Create a message consumer	N/A
Dequeue a message from a queue/topic and specify visibility	DBMS_AQ.dequeue Specify visibility in DEQUEUE_OPTIONS
Dequeue a message from a queue/topic and specify transformation	DBMS_AQ.dequeue Specify transformation in DEQUEUE_OPTIONS
Dequeue a message from a queue/topic and specify navigation mode	DBMS_AQ.dequeue Specify navigation in DEQUEUE_OPTIONS
Dequeue a message from a single-consumer queue	DBMS_AQ.dequeue Set dequeue_mode to REMOVE in DEQUEUE_OPTIONS
Dequeue a message from a multiconsumer queue/topic using subscription name	DBMS_AQ.dequeue Set dequeue_mode to REMOVE and set consumer_name to subscription name in DEQUEUE_OPTIONS
Dequeue a message from a multiconsumer queue/topic using recipient name	DBMS_AQ.dequeue Set dequeue_mode to REMOVE and set consumer_name to recipient name in DEQUEUE_OPTIONS
Table 3-9 Comparison of Oracle Streams AQ Programmatic Interfaces: Operational Interface—Register to Receive Messages Asynchronously from a Queue/Topic Use Cases	
Use Case	PL/SQL
---	---
Receive messages asynchronously from a single-consumer queue	Define a PL/SQL callback procedure Register it using DBMS_AQ.REGISTER
Receive messages asynchronously from a multiconsumer queue/topic	Define a PL/SQL callback procedure Register it using DBMS_AQ.REGISTER
Listen for messages on multiple queues/topics	-
Listen for messages on one (many) single-consumer queues	DBMS_AQ.LISTEN Use agent_name as NULL for all agents in agent_list
Listen for messages on one (many) multiconsumer queues/Topics	DBMS_AQ.LISTEN Specify agent_name for all agents in agent_list
Part II describes how to manage and tune your Oracle Streams Advanced Queuing (AQ) application.	
This part contains the following chapters:	
This chapter discusses topics related to managing Oracle Streams Advanced Queuing (AQ).	
This chapter contains these topics:	
The queues in which buffered messages are stored must be created with compatibility set to 8.1 or higher.	
For 8.1-style or higher queues, the compatible	
parameter of init.ora	
and the compatible	
parameter of the queue table should be set to 8.1 or higher to use the following features:	
Queue-level access control	
Support for Real Application Clusters environments	
Rule-based subscribers for publish/subscribe	
Asynchronous notification	
Sender identification	
Separate storage of history management information	
Secure queues	
Mixed case (upper and lower case together) queue names, queue table names, and subscriber names are supported if database compatibility is 10.0, but the names must be enclosed in double quote marks. So abc.efg	
means the schema is ABC	
and the name is EFG	
, but "abc"."efg"	
means the schema is abc	
and the name is efg	
.	
This section contains these topics:	
Oracle Streams AQ Security Configuration information can be managed through procedures in the DBMS_AQADM	
package. Initially, only SYS	
and SYSTEM	
have execution privilege for the procedures in DBMS_AQADM	
and DBMS_AQ	
. Users who have been granted EXECUTE	
rights to these two packages are able to create, manage, and use queues in their own schemas. Users also need the MANAGE_ANY	
AQ system privilege to create and manage queues in other schemas.	
See Also: "Granting Oracle Streams AQ System Privileges" for more information on AQ system privileges	
Users of the Java Message Service (JMS) API need EXECUTE	
privileges on DBMS_AQJMS	
and DBMS_AQIN	
.	
This section contains these topics:	
The AQ_ADMINISTRATOR_ROLE	
has all the required privileges to administer queues. The privileges granted to the role let the grantee:	
Perform any queue administrative operation, including create queues and queue tables on any schema in the database	
Perform enqueue and dequeue operations on any queues in the database	
Access statistics views used for monitoring the queue workload	
Create transformations using DBMS_TRANSFORM	
Run all procedures in DBMS_AQELM	
Run all procedures in DBMS_AQJMS	
You should avoid granting AQ_USER_ROLE	
, because this role does not provide sufficient privileges for enqueuing or dequeuing on 8.1-style or higher queues.	
Your database administrator has the option of granting the system privileges ENQUEUE_ANY	
and DEQUEUE_ANY	
, exercising DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE	
and DBMS_AQADM.REVOKE_SYSTEM_PRIVILEGE	
directly to a database user, if you want the user to have this level of control.	
You as the application developer give rights to a queue by granting and revoking privileges at the object level by exercising DBMS_AQADM.GRANT_QUEUE_PRIVILEGE	
and DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE	
.	
As a database user, you do not need any explicit object-level or system-level privileges to enqueue or dequeue to queues in your own schema other than the EXECUTE	
right on DBMS_AQ	
.	
Oracle Streams AQ administrators of Oracle Database can create 8.1-style or higher queues. All 8.1 security features are enabled for 8.1-style or higher queues. Oracle Streams AQ 8.1 security features work only with 8.1-style or higher queues. When you create queues, the default value of the compatible	
parameter in DBMS_AQADM.CREATE_QUEUE_TABLE	
is 8.1.3	
if the database compatibility is less than 10.0	
. If database compatibility is 10.1	
, then the default value of the compatible	
parameter is also 10.0	
.	
The AQ_ADMINISTRATOR_ROLE	
role is supported for 8.1-style or higher queues. To enqueue/dequeue on 8.1-style or higher queues, users need EXECUTE	
rights on DBMS_AQ	
and either enqueue/dequeue privileges on target queues or ENQUEUE_ANY	
/DEQUEUE_ANY	
system privileges.	
You can grant or revoke privileges at the object level on 8.1- compatible or higher queues. You can also grant or revoke various system-level privileges. Table 4-1 lists all common Oracle Streams AQ operations and the privileges needed to perform these operations for an 8.1-style or higher queue.	
Table 4-1 Operations and Required Privileges for 8.1-Style and Higher Queues	
Operation(s)	Privileges Required
---	---
CREATE /DROP /MONITOR own queues	Must be granted EXECUTE rights on DBMS_AQADM . No other privileges needed.
CREATE /DROP /MONITOR any queues	Must be granted EXECUTE rights on DBMS_AQADM and be granted AQ_ADMINISTRATOR_ROLE by another user who has been granted this role (SYS and SYSTEM are the first granters of AQ_ADMINISTRATOR_ROLE)
ENQUEUE / DEQUEUE to own queues	Must be granted EXECUTE rights on DBMS_AQ . No other privileges needed.
ENQUEUE / DEQUEUE to another's queues	Must be granted EXECUTE rights on DBMS_AQ and be granted privileges by the owner using DBMS_AQADM .GRANT_QUEUE_PRIVILEGE .
ENQUEUE / DEQUEUE to any queues	Must be granted EXECUTE rights on DBMS_AQ and be granted ENQUEUE ANY QUEUE or DEQUEUE ANY QUEUE system privileges by an Oracle Streams AQ administrator using DBMS_AQADM .GRANT_SYSTEM_PRIVILEGE .
For an Oracle Call Interface (OCI) application to access an 8.1-style or higher queue, the session user must be granted either the object privilege of the queue he intends to access or the ENQUEUE	
ANY	
QUEUE	
or DEQUEUE	
ANY	
QUEUE	
system privileges. The EXECUTE	
right of DBMS_AQ	
is not checked against the session user's rights if the queue he intends to access is an 8.1-style or higher queue.	
Oracle Streams AQ propagates messages through database links. The propagation driver dequeues from the source queue as owner of the source queue; hence, no explicit access rights need be granted on the source queue. At the destination, the login user in the database link should either be granted ENQUEUE	
ANY	
QUEUE	
privilege or be granted the right to enqueue to the destination queue. However, if the login user in the database link also owns the queue tables at the destination, then no explicit Oracle Streams AQ privileges must be granted.	
When a queue table is exported, the queue table data and anonymous blocks of PL/SQL code are written to the export dump file. When a queue table is imported, the import utility executes these PL/SQL anonymous blocks to write the metadata to the data dictionary.	
Note: You cannot export or import buffered messages.If there exists a queue table with the same name in the same schema in the database as in the export dump, then ensure that the database queue table is empty before importing a queue table with queues. Failing to do so has a possibility of ruining the metadata for the imported queue.	
This section contains these topics:	
The export of queues entails the export of the underlying queue tables and related dictionary tables. Export of queues can only be accomplished at queue-table granularity.	
Exporting Queue Tables with Multiple Recipients	
A queue table that supports multiple recipients is associated with the following tables:	
Dequeue index-organized table (IOT)	
Time-management index-organized table	
Subscriber table (for 8.1-compatible and higher queue tables)	
A history index-organized table (for 8.1-compatible and higher queue tables)	
These tables are exported automatically during full database mode and user mode exports, but not during table mode export. See "Export Modes".	
Because the metadata tables contain ROWIDs of some rows in the queue table, the import process generates a note about the ROWIDs being made obsolete when importing the metadata tables. This message can be ignored, because the queuing system automatically corrects the obsolete ROWIDs as a part of the import operation. However, if another problem is encountered while doing the import (such as running out of rollback segment space), then you should correct the problem and repeat the import.	
Exporting operates in full database mode, user mode, and table mode. Incremental exports on queue tables are not supported.	
In full database mode, queue tables, all related tables, system-level grants, and primary and secondary object grants are exported automatically.	
In user mode, queue tables, all related tables, and primary object grants are exported automatically. However, doing a user-level export from one schema to another using the FROMUSER	
TOUSER	
clause is not supported.	
Oracle does not recommend table mode. If you must export a queue table in table mode, then you must export all related objects that belong to that queue table. For example, when exporting an 8.1-compatible or higher multiconsumer queue table named MCQ	
, you must also export the following tables:	
AQ$	
_queue_table	
_I	
(the dequeue IOT)	
AQ$_	
queue_table	
_T	
(the time-management IOT)	
AQ$_queue_table_S	
(the subscriber table)	
AQ$_	
queue_table	
_H	
(the history IOT)	
Similar to exporting queues, importing queues entails importing the underlying queue tables and related dictionary data. After the queue table data is imported, the import utility executes the PL/SQL anonymous blocks in the dump file to write the metadata to the data dictionary.	
Note: Transportable tablespace export/import of tablespaces with queue tables across releases fails on import. The metadata import from the lower release fails with an error indicating that the tablespace is read only. The workaround is to make the tablespace read/write before importing the metadata.	
Importing Queue Tables with Multiple Recipients	
A queue table that supports multiple recipients is associated with the following tables:	
A dequeue IOT	
A time-management IOT	
A subscriber table (for 8.1-compatible or higher queue tables)	
A history IOT (for 8.1-compatible or higher queue tables)	
These tables must be imported as well as the queue table itself.	
You must not import queue data into a queue table that already contains data. The IGNORE	
parameter of the import utility must always be set to NO	
when importing queue tables. If the IGNORE	
parameter is set to YES	
, and the queue table that already exists is compatible with the table definition in the dump file, then the rows are loaded from the dump file into the existing table. At the same time, the old queue table definition is lost and re-created. Queue table definition prior to the import is lost and duplicate rows appear in the queue table.	
The Data Pump replace and skip modes are supported for queue tables. In the replace mode an existing queue table is dropped and replaced by the new queue table from the export dump file. In the skip mode, a queue table that already exists is not imported.	
The truncate and append modes are not supported for queue tables. The behavior in this case is the same as the replace mode.	
Oracle Enterprise Manager supports most of the administrative functions of Oracle Streams AQ. Oracle Streams AQ functions are found under the Distributed node in the navigation tree of the Enterprise Manager console. Functions available through Oracle Enterprise Manager include:	
Using queues as part of the schema manager to view properties	
Creating, starting, stopping, and dropping queues	
Scheduling and unscheduling propagation	
Adding and removing subscribers	
Viewing propagation schedules for all queues in the database	
Viewing errors for all queues in the database	
Viewing the message queue	
Granting and revoking privileges	
Creating, modifying, or removing transformations	
Using Oracle Streams AQ with XA You must specify "Objects=T	
" in the xa_open	
string if you want to use the Oracle Streams AQ OCI interface. This forces XA to initialize the client-side cache in Objects mode. You are not required to do this if you plan to use Oracle Streams AQ through PL/SQL wrappers from OCI or Pro*C.	
The large object (LOB) memory management concepts from the Pro* documentation are not relevant for Oracle Streams AQ raw messages because Oracle Streams AQ provides a simple RAW buffer abstraction (although they are stored as LOBs).	
When using the Oracle Streams AQ navigation option, you must reset the dequeue position by using the FIRST_MESSAGE	
option if you want to continue dequeuing between services (such as xa_start	
and xa_end	
boundaries). This is because XA cancels the cursor fetch state after an xa_end	
. If you do not reset, then you get an error message stating that the navigation is used out of sequence (ORA-25237).	
See Also:	
This section discusses restrictions on queue management.	
This section contains these topics:	
Note: Mixed case (upper and lower case together) queue names, queue table names, and subscriber names are supported if database compatibility is 10.0, but the names must be enclosed in double quote marks. Soabc.efg means the schema is ABC and the name is EFG , but "abc"."efg" means the schema is abc and the name is efg .	
You cannot have more than 1,000 local subscribers for each queue. Also, only 32 remote subscribers are allowed for each remote destination database.	
Oracle Streams AQ does not support data manipulation language (DML) operations on queue tables or associated index-organized tables (IOTs), if any. The only supported means of modifying queue tables is through the supplied APIs. Queue tables and IOTs can become inconsistent and therefore effectively ruined, if DML operations are performed on them.	
Oracle Streams AQ does not support propagation from object queues that have REF attributes in the payload.	
You cannot construct a message payload using a VARRAY that is not itself contained within an object. You also cannot currently use a NESTED Table even as an embedded object within a message payload. However, you can create an object type that contains one or more VARRAYs, and create a queue table that is founded on this object type, as shown in Example 4-1.	
No Oracle Streams AQ PL/SQL calls resolve synonyms on queues and queue tables. Although you can create synonyms, you should not apply them to the Oracle Streams AQ interface.	
If you have created synonyms on object types, you cannot use them in DBMS_AQADM.CREATE_QUEUE_TABLE	
. Error ORA-24015 results.	
Oracle Streams AQ currently does not support tablespace point-in-time recovery. Creating a queue table in a tablespace disables that particular tablespace for point-in-time recovery. Oracle Streams AQ does support regular point-in-time recovery.	
You can use Oracle Streams AQ with Virtual Private Database by specifying a security policy with Oracle Streams AQ queue tables. While dequeuing, use the dequeue condition (deq_cond	
) or the correlation identifier for the policy to be applied. You can use "1=1" as the dequeue condition. If you do not use a dequeue condition or correlation ID, then the dequeue results in an error.	
Note: When a dequeue condition or correlation identifier is used, the order of the messages dequeued is indeterminate, and the sort order of the queue is not honored.	
Propagation makes use of the system queue aq$_prop_notify_X	
, where X	
is the instance number of the instance where the source queue of a schedule resides, for handling propagation runtime events. Messages in this queue are stored in the system table aq$_prop_table_X,	
where X	
is the instance number of the instance where the source queue of a schedule resides.	
Caution: For propagation to work correctly, the queueaq$_prop_notify_X should never be stopped or dropped and the table aq$_prop_table_X should never be dropped.	
This section contains these topics:	
Propagation jobs are owned by SYS	
, but the propagation occurs in the security context of the queue table owner. Previously propagation jobs were owned by the user scheduling propagation, and propagation occurred in the security context of the user setting up the propagation schedule. The queue table owner must be granted EXECUTE	
privileges on the DBMS_AQADM	
package. Otherwise, the Oracle Database snapshot processes do not propagate and generate trace files with the error identifier SYS.DBMS_AQADM	
not defined. Private database links owned by the queue table owner can be used for propagation. The username specified in the connection string must have EXECUTE	
access on the DBMS_AQ	
and DBMS_AQADM	
packages on the remote database.	
The scheduling algorithm places the restriction that at least two job queue processes be available for propagation. If there are jobs unrelated to propagation, then more job queue processes are needed. If heavily loaded conditions (a large number of active schedules, all of which have messages to be propagated) are expected, then you should start a larger number of job queue processes and keep in mind the need for other jobs as well. In a system that only has propagation jobs, two job queue processes can handle all schedules. However, with more job queue processes, messages are propagated faster. Because one job queue process can propagate messages from multiple schedules, it is not necessary to have the number of job queue processes equal to the number of schedules.	
In setting the number of JOB_QUEUE_PROCESSES,	
DBAs should be aware that this number is determined by the number of queues from which the messages must be propagated and the number of destinations (rather than queues) to which messages must be propagated.	
A scheduling algorithm handles propagation. The algorithm optimizes available job queue processes and minimizes the time it takes for a message to show up at a destination after it has been enqueued into the source queue, thereby providing near-OLTP action. The algorithm can handle an unlimited number of schedules and various types of failures. While propagation tries to make the optimal use of the available job queue processes, the number of job queue processes to be started also depends on the existence of jobs unrelated to propagation, such as replication jobs. Hence, it is important to use the following guidelines to get the best results from the scheduling algorithm.	
The scheduling algorithm uses the job queue processes as follows (for this discussion, an active schedule is one that has a valid current window):	
If the number of active schedules is fewer than half the number of job queue processes, then the number of job queue processes acquired corresponds to the number of active schedules.	
If the number of active schedules is more than half the number of job queue processes, after acquiring half the number of job queue processes, then multiple active schedules are assigned to an acquired job queue process.	
If the system is overloaded (all schedules are busy propagating), depending on availability, then additional job queue processes are acquired up to one fewer than the total number of job queue processes.	
If none of the active schedules handled by a process has messages to be propagated, then that job queue process is released.	
The algorithm performs automatic load balancing by transferring schedules from a heavily loaded process to a lightly load process such that no process is excessively loaded.	
Handling Failures in Propagation	
The scheduling algorithm has robust support for handling failures. Common failures that prevent message propagation include the following:	
Database link failed	
Remote database is not available	
Remote queue does not exist	
Remote queue was not started	
Security violation while trying to enqueue messages into remote queue	
Under all these circumstances the appropriate error messages are reported in the DBA_QUEUE_SCHEDULES	
view.	
When an error occurs in a schedule, propagation of messages in that schedule is attempted again after a retry period of 30*(number of failures) seconds, with an upper bound of ten minutes. After sixteen consecutive retries, the schedule is disabled.	
If the problem causing the error is fixed and the schedule is enabled, then the error fields that indicate the last error date, time, and message continue to show the error information. These fields are reset only when messages are successfully propagated in that schedule.	
Client requests for enqueue, send and publish requests, use the following methods:	
AQXmlSend	
—to enqueue to a single-consumer queue	
AQXmlPublish	
—to enqueue to multiconsumer queues/topics	
In message_header	
, the message_state	
attribute represents the state of the message filled in automatically during dequeue, as follows:	
0 (the message is ready to be processed)	
1 (the message delay has not yet been reached)	
2 (the message has been processed and is retained)	
3 (the message has been moved to the exception queue)	
Propagation from object queues with BFILE	
objects is supported in Oracle Database 10g. To be able to propagate object queues with BFILE	
objects, the source queue owner must have read privileges on the directory object corresponding to the directory in which the BFILE	
is stored. The database link user must have write privileges on the directory object corresponding to the directory of the BFILE	
at the destination database.	
Note: Propagation ofBFILE objects from object queues without specifying a database link is not supported.	
See Also: "CREATE DIRECTORY" in Oracle Database SQL Reference for more information on directory objects	
Note: Queues created in a queue table withcompatible set to 8.0 (referrred to in this guide as 8.0-style queues) are deprecated in Oracle Streams AQ 10g Release 2 (10.2). Oracle recommends that any new queues you create be 8.1-style or newer and that you migrate existing 8.0-style queues at your earliest convenience.	
If you use 8.0-style queues and 8.1 or higher database compatibility, then the following features are not available:	
Support for Real Application Clusters environments	
Asynchronous notification	
Secure queues	
Queue level access control	
Rule-based subscribers for publish/subscribe	
Separate storage of history management information	
To use these features, you should migrate to 8.1-style or higher queues.	
To upgrade a 8.0-compatible queue table to an 8.1-compatible or higher queue table or to downgrade a 8.1-compatible or higher queue table to an 8.0-compatible queue table, use DBMS_AQADM.MIGRATE_QUEUE_TABLE	
.	
Because the metadata tables contain ROWIDs of some rows in the queue table, the import and export processes generate a note about the ROWIDs being obsoleted when importing the metadata tables. This message can be ignored, because the queuing system automatically corrects the obsolete ROWIDs as a part of the import operation. However, if another problem is encountered while doing the import or export (such as running out of rollback segment space), then you should correct the problem and repeat the import or export.	
Access to Oracle Streams AQ operations in Oracle8 was granted to users through roles that provided execution privileges on the Oracle Streams AQ procedures. The fact that there was no control at the database object level when using Oracle8 meant that a user with the AQ_USER_ROLE	
could enqueue and dequeue to any queue in the system. For finer-grained access control, use 8.1-compatible or higher queue tables in an 8.1- compatible or higher database.	
Oracle Streams AQ administrators of an 8.1-compatible or higher database can create 8.0-style queues. These queues are protected by the 8.0-compatible security features.	
If you want to use 8.1 security features on a queue originally created in an 8.0 database, then the queue table must be converted to 8.1-compatible or higher by running DBMS_AQADM	
.MIGRATE_QUEUE_TABLE	
on the queue table.	
If a database downgrade is necessary, then all 8.1-compatible or higher queue tables must be either converted back to 8.0 compatibility or dropped before the database downgrade can be carried out. During the conversion, all 8.1-compatible security features on the queues, like the object privileges, are dropped. When a queue is converted to 8.0-style, the 8.0-compatible security model applies to the queue, and only 8.0-compatible security features are supported.	
The following Oracle Streams AQ security features and privilege equivalences are supported with 8.0-style queues:	
AQ_USER_ROLE	
The grantee is given the EXECUTE	
right of DBMS_AQ	
through the role.	
AQ_ADMINISTRATOR_ROLE	
EXECUTE	
right on DBMS_AQ	
EXECUTE	
right on DBMS_AQ	
should be granted to developers who write Oracle Streams AQ applications in PL/SQL.	
The procedure GRANT_TYPE_ACCESS	
was made obsolete in release 8.1.5 for 8.0-style queues.	
For an OCI application to access an 8.0-style queue, the session user must be granted EXECUTE	
privileges on DBMS_AQ	
.	
A tablespace that contains 8.0-compatible multiconsumer queue tables should not be transported using the pluggable tablespace mechanism. The mechanism does work, however, with tablespaces that contain only single-consumer queues as well as 8.1 compatible or higher multiconsumer queues. Before you can export a tablespace in pluggable mode, you must alter the tablespace to read-only mode. If you try to import a read-only tablespace that contains 8.0-style multiconsumer queues, then you get an Oracle Streams AQ error indicating that you cannot update the queue table index at import time.	
The autocommit parameters in the CREATE_QUEUE_TABLE	
, DROP_QUEUE_TABLE	
, CREATE_QUEUE	
, DROP_QUEUE	
, and ALTER_QUEUE	
calls of the DBMS_AQADM	
package are deprecated for 8.1.5 and subsequent releases. Oracle continues to support this parameter in the interface for backward compatibility.	
This chapter discusses performance and scalability issues relating to Oracle Streams Advanced Queuing (AQ).	
This chapter contains the following topics:	
When persistent messages are enqueued, they are stored in database tables. The performance characteristics of queue operations on persistent messages are similar to underlying database operations. The code path of an enqueue operation is comparable to SELECT	
and INSERT	
into a multicolumn queue table with three index-organized tables. The code path of a dequeue operation is comparable to SELECT,	
DELETE,	
and UPDATE	
operations on similar tables.	
Note: Performance is not affected by the number of queues in a table.	
Real Application Clusters (RAC) can be used to ensure highly available access to queue data. The entry and exit points of a queue, commonly called its tail and head respectively, can be extreme hot spots. Because RAC may not scale well in the presence of hot spots, limit usual access to a queue from one instance only. If an instance failure occurs, then messages managed by the failed instance can be processed immediately by one of the surviving instances.	
You can associate RAC instance affinities with 8.1-compatible queue tables. If you are using q1	
and q2	
in different instances, then you can use ALTER_QUEUE_TABLE	
or CREATE_QUEUE_TABLE	
on the queue table and set primary_instance	
to the appropriate instance_id.	
Queue operation scalability is similar to the underlying database operation scalability. If a dequeue operation with wait option is applied, then it does not return until it is successful or the wait period has expired. In a shared server environment, the shared server process is dedicated to the dequeue operation for the duration of the call, including the wait time. The presence of many such processes can cause severe performance and scalability problems and can result in deadlocking the shared server processes. For this reason, Oracle recommends that dequeue requests with wait option be applied using dedicated server processes. This restriction is not enforced.	
See Also: "DEQUEUE_OPTIONS_T Type" in PL/SQL Packages and Types Reference for more information on the wait option	
Oracle Streams AQ table layout is similar to a layout with ordinary database tables and indexes.	
Storage parameters can be specified when creating a queue table using the storage_clause	
parameter. Storage parameters are inherited by other IOTs and tables created with the queue table. The tablespace of the queue table should have sufficient space to accommodate data from all the objects associated with the queue table. With retention specified, the history table as well as the queue table can grow to be quite big.	
Because Oracle Streams AQ is very I/O intensive, you will usually need to tune I/O to remove any bottlenecks.	
Some environments must process messages in a constant flow, requiring that enqueue and dequeue processes run concurrently. If the message delivery system has only one queue table and one queue, then all processes must work on the same segment area at the same time. This precludes reasonable performance levels when delivering a high number of messages.	
The best number for concurrent processes depends on available system resources. For example, on a four-CPU system, it is reasonable to start with two concurrent enqueue and two concurrent dequeue processes. If the system cannot deliver the wanted number of messages, then use several subscribers for load balancing rather than increasing the number of processes.	
When enqueue and dequeue processes are running serially, contention on the same data segment is lower than in the case of concurrent processes. The total time taken to deliver messages by the system, however, is longer than when they run concurrently. Increasing the number of processes helps both enqueuing and dequeuing. The message throughput rate is higher for enqueuers than for dequeuers when the number of processes is increased. Usually, the dequeue operations throughput is much less than the enqueue operation (INSERT)	
throughput, because dequeue operations perform SELECT	
, DELETE	
, and UPDATE	
.	
Creating an index on a queue table is useful if you:	
Dequeue using correlation ID	
An index created on the column corr_id	
of the underlying queue table AQ$_	
QueueTableName	
expedites dequeues.	
Dequeue using a condition	
This is like adding the condition to the where-clause for the SELECT	
on the underlying queue table. An index on QueueTableName	
expedites performance on this SELECT	
statement.	
Propagation can be considered a special kind of dequeue operation with an additional INSERT	
at the remote (or local) queue table. Propagation from a single schedule is not parallelized across multiple job queue processes. Rather, they are load balanced. For better scalability, configure the number of propagation schedules according to the available system resources (CPUs).	
Propagation rates from transactional and nontransactional (default) queue tables vary to some extent because Oracle Streams AQ determines the batching size for nontransactional queues, whereas for transactional queues, batch size is mainly determined by the user application.	
Optimized propagation happens in batches. If the remote queue is in a different database, then Oracle Streams AQ uses a sequencing algorithm to avoid the need for a two-phase commit. When a message must be sent to multiple queues in the same destination, it is sent multiple times. If the message must be sent to multiple consumers in the same queue at the destination, then it is sent only once.	
You can access Oracle Streams Advanced Queuing (AQ) over the Internet by using Simple Object Access Protocol (SOAP). Internet Data Access Presentation (IDAP) is the SOAP specification for Oracle Streams AQ operations. IDAP defines XML message structure for the body of the SOAP request. An IDAP-structured message is transmitted over the Internet using HTTP.	
Users can register for notifications using the IDAP interface.	
This chapter contains these topics:	
See Also:	
This section contains these topics:
Figure 6-1 shows the architecture for performing Oracle Streams AQ operations over HTTP. The major components are:
Oracle Streams AQ client program
Web server/servlet runner hosting the Oracle Streams AQ servlet
Oracle Database server
A Web browser or any other HTTP client can serve as an Oracle Streams AQ client program, sending XML messages conforming to IDAP to the Oracle Streams AQ servlet, which interprets the incoming XML messages. The Oracle Streams AQ servlet connects to the Oracle Database server and performs operations on user queues.
Oracle Streams AQ supports messages of three types: RAW, Oracle object, and Java Message Service (JMS). All these message types can be accessed using SOAP and Web services. If the queue holds messages in RAW, Oracle object, or JMS format, then XML payloads are transformed to the appropriate internal format during enqueue and stored in the queue. During dequeue, when messages are obtained from queues containing messages in any of the preceding formats, they are converted to XML before being sent to the client.
The message payload type depends on the queue type on which the operation is being performed:
The contents of RAW queues are raw bytes. You must supply the hex representation of the message payload in the XML message. For example, <raw>023f4523</raw>
.
For Oracle object type queues that are not JMS queues (that is, they are not type AQ$_JMS_*
), the type of the payload depends on the type specified while creating the queue table that holds the queue. The content of the XML elements must map to the attributes of the object type of the queue table.
For queues with JMS types (that is, those with payloads of type AQ$_JMS_*
), there are four XML elements, depending on the JMS type. IDAP supports queues or topics with the following JMS types:
TextMessage
MapMessage
BytesMessage
ObjectMessage
JMS queues with payload type StreamMessage
are not supported through IDAP.
After the servlet is installed, the Web server must be configured to authenticate all users that send POST
requests to the Oracle Streams AQ servlet. The Oracle Streams AQ servlet allows only authenticated users to access the servlet. If the user is not authenticated, then an error is returned by the servlet.
The Web server can be configured in multiple ways to restrict access. Some of the common techniques are basic authentication (username/password) over SSL and client certificates. Consult your Web server documentation to see how you can restrict access to servlets.
In the context of the Oracle Streams AQ servlet, the username that is used to connect to the Web server is known as the Oracle Streams AQ HTTP agent or Oracle Streams AQ Internet user.
An Oracle Streams AQ client begins a request to the Oracle Streams AQ servlet using HTTP by opening a connection to the server. The client logs in to the server using HTTP basic authentication (with or without SSL) or SSL certificate-based client authentication. The client constructs an XML message representing the send, publish, receive or register request.
The client sends an HTTP POST
to the servlet at the remote server.
See Also: Table 1-3, "Oracle Streams AQ XML Demonstrations" for the locations of AQ XML demonstrations illustratingPOST requests using HTTP |
After a client is authenticated and connects to the Oracle Streams AQ servlet, an HTTP session is created on behalf of the user. The first request in the session also implicitly starts a new database transaction. This transaction remains open until it is explicitly committed or terminated. The responses from the servlet includes the session ID in the HTTP headers as cookies.
If the client wishes to continue work in the same transaction, then it must include this HTTP header containing the session ID cookie in subsequent requests. This is automatically accomplished by most Web browsers. However, if the client is using a Java or C client to post requests, then this must be accomplished programmatically.
See Also: Table 1-3, "Oracle Streams AQ XML Demonstrations" for the locations of AQ XML demonstrations illustrating a Java program used to post requests as part of the same session |
An explicit commit or rollback must be applied to end the transaction. The commit or rollback requests can also be included as part of other Oracle Streams AQ operations.
The server accepts the client HTTP(S) connection and authenticates the user (Oracle Streams AQ agent) specified by the client. The server receives the POST
request and invokes the Oracle Streams AQ servlet.
If this is the first request from this client, then a new HTTP session is created. The XML message is parsed and its contents are validated. If a session ID is passed by the client in the HTTP headers, then this operation is performed in the context of that session.
The servlet determines which object (queue/topic) the agent is trying to perform operations on. The servlet looks through the list of database users that map to this Oracle Streams AQ agent. If any one of these users has privileges to access the queue/topic specified in the request, then the Oracle Streams AQ servlet superuser creates a session on behalf of this user.
If no transaction is active in the HTTP session, then a new database transaction is started. Subsequent requests in the session are part of the same transaction until an explicit COMMIT
or ROLLBACK
request is made. The effects of the transaction are visible only after it is committed. If the transaction remains inactive for 120 seconds, then it is automatically terminated.
The requested operation is performed. The response is formatted as an XML message and sent back the client. The response also includes the session ID in the HTTP headers as a cookie.
You can propagate over HTTP and HTTPS (HTTP over SSL) instead of Oracle Net Services. HTTP, unlike Oracle Net Services, is easy to configure for firewalls. The background process doing propagation pushes messages to an Oracle Streams AQ servlet that enqueues them into the destination database, as shown in Figure 6-2.
You can set up any application to use Oracle Streams AQ HTTP propagation without any change to the existing code. An application using Oracle Streams AQ HTTP propagation can easily switch back to Net Services propagation just by re-creating the database link with a Net Services connection string, without any other changes.
Follow these steps to deploy the AQ XML servlet using OC4J:
CLASSPATH
: CLASSPATH
: Note: http_client.jar , jssl-1_1.jar , and javax-ssl-1_1.jar are required by HTTPClient used in AQHttp.java and AQHttpRq.java . |
AQHttpRq.java
: See Also: aqxmlREADME.txt and aqxmldmo.sql in ORACLE_HOME /rdbms/demo for additional information. |
Note: Usesh aqxmlctl stop to stop the OC4J instance. The deploy servlet and start OC4J instance steps might have been done during your Oracle Database installation. You can verify this in the following steps. |
where hostname
is the server name, and portnumber
is the value discovered in the previous step. After you respond to a username/password prompt, the servlet displays:
The following tags in ORACLE_HOME
/oc4j/j2ee/OC4J_AQ/config/http-web-site.xml
indicate that the Web site is secure and keystore is used for SSL authentication:
To make the site access only HTTP requests, remove secure="true"
and <ssl-config>
from http-web-site.xml
.
Internet Data Access Presentation (IDAP) uses the Content-Type of text/xml
to specify the body of the SOAP request. XML provides the presentation for IDAP request and response messages as follows:
All request and response tags are scoped in the SOAP namespace.
Oracle Streams AQ operations are scoped in the IDAP namespace.
The sender includes namespaces in IDAP elements and attributes in the SOAP body.
The receiver processes SOAP messages that have correct namespaces and returns an invalid request error for requests with incorrect namespaces.
The SOAP namespace has the value http://schemas.xmlsoap.org/soap/envelope/
The IDAP namespace has the value http://ns.oracle.com/AQ/schemas/access
SOAP structures a message request or response as follows:
This is the root or top element in an XML tree. Its tag is SOAP:Envelope
. SOAP defines a global attribute SOAP:encodingStyle
that indicates serialization rules used instead of those described by the SOAP specification. This attribute can appear on any element and is scoped to that element and all child elements not themselves containing such an attribute. Omitting this attribute means that type specification has been followed unless overridden by a parent element.
The SOAP envelope also contains namespace declarations and additional attributes, provided they are namespace-qualified. Additional namespace-qualified subelements can follow the body.
This is the first element under the root. Its tag is SOAP:Header
. A SOAP header passes necessary information, such as the transaction identifier. The header is encoded as a child of the SOAP:Envelope
XML element. Headers are identified by the name element and are namespace-qualified. A header entry is encoded as an embedded element.
This is the Oracle Streams AQ XML document. Its tag is SOAP:Body
, and it contains a first subelement whose name is the method name. This method request element contains elements for each input and output parameter. The element names are the parameter names. The body also contains SOAP:Fault
, indicating information about an error. The Oracle Streams AQ XML document has the namespace http://ns.oracle.com/AQ/schemas/access
A method invocation is performed by creating the request header and body and processing the returned response header and body. The request and response headers can consist of standard transport protocol-specific and extended headers.
The POST
method within the HTTP request header performs the SOAP method invocation. The request should include the header SOAPMethodName,
whose value indicates the method to be invoked on the target. The value is of the form URI
#
method name
. For example:
The URI used for the interface must match the implied or specified namespace qualification of the method name element in the SOAP:Body
part of the payload. The method name must not include the "#" character.
SOAP method invocation consists of a method request and optionally a method response. The SOAP method request and method response are an HTTP request and response, respectively, whose contents are XML documents consisting of the root and mandatory body elements. These XML documents are referred to as SOAP payloads in the rest of this chapter.
A SOAP payload is defined as follows:
The SOAP root element is the top element in the XML tree.
The SOAP payload headers contain additional information that must travel with the request.
The method request is represented as an XML element with additional elements for parameters. It is the first child of the SOAP:Body
element. This request can be one of the Oracle Streams AQ XML client requests described in the next section.
The response is the return value or an error or exception that is passed back to the client.
At the receiving site, a request can have one of the following outcomes:
The SOAP infrastructure on the receiving site is able to decode the input parameters, dispatch to an appropriate server indicated by the server address, and invoke an application-level function corresponding semantically to the method indicated in the method request. In this case, the result of the method request consists of a response or error.
The SOAP infrastructure on the receiving site cannot decode the input parameters, dispatch to an appropriate server indicated by the server address, and invoke an application-level function corresponding semantically to the interface or method indicated in the method request. In this case, the result of the method is an error that prevented the dispatching infrastructure on the receiving side from successful completion.
In the last two cases, additional message headers can be present in the results of the request for extensibility.
The body of a SOAP message is an IDAP message. This XML document has the namespace http://ns.oracle.com/AQ/schemas/access
. The body represents:
Server responses to client requests for enqueue, dequeue, and registration
Notifications from the server to the client
Note: Oracle Streams AQ Internet access is supported only for 8.1or higher style queues. |
This section contains these topics:
Client send and publish requests use AQXmlSend
to enqueue to a single-consumer queue and AQXmlPublish
to enqueue to multiconsumer queues/topics
AQXmlSend
and AQXmlPublish
contain the following elements:
producer_options
This is a required element. It contains the following child elements:
destination
This element is required. It specifies the queue/topic to which messages are to be sent. It has an optional lookup_type
attribute, which determines how the destination value is interpreted. If lookup_type is DATABASE
, which is the default, then the destination is interpreted as schema.queue_name
. If lookup_type
is LDAP
, then the LDAP server is used to resolve the destination.
This element is optional. It determines when an enqueue becomes visible. The default is ON_COMMIT
, which makes the enqueue visible when the current transaction commits. If IMMEDIATE
is specified, then the effects of the enqueue are visible immediately after the request is completed. The enqueue is not part of the current transaction. The operation constitutes a transaction on its own.
transformation
This element is optional. It specifies the PL/SQL transformation to be invoked before the message is enqueued.
message_set
This is a required element and contains one or more messages. Each message consists of a message_header and a message_payload.
message_header
This element is optional. It contains the following child elements:
sender_id
If a message_header
element is included, then it must contain a sender_id
element, which specifies an application-specific identifier. The sender_id
element can contain agent_name
, address
, protocol
, and agent_alias
elements. The agent_alias
element resolves to a name, address, and protocol using LDAP.
message_id
This element is optional. It is a unique identifier of the message, supplied during dequeue.
correlation
This element is optional. It is the correlation identifier of the message.
delay
This element is optional. It specifies the duration in seconds after which a message is available for processing.
expiration
This element is optional. It specifies the duration in seconds that a message is available for dequeuing. This parameter is an offset from the delay. By default messages never expire. If a message is not dequeued before it expires, then it is moved to an exception queue in the EXPIRED
state.
priority
This element is optional. It specifies the priority of the message. The priority can be any number, including negative numbers. A smaller number indicates higher priority.
recipient_list
This element is optional. It is a list of recipients which overrides the default subscriber list. Each recipient is represented in recipient_list
by a recipient
element, which can contain agent_name
, address
, protocol
, and agent_alias
elements. The agent_alias
element resolves to a name, address, and protocol using LDAP.
message_state
This element is optional. It specifies the state of the message. It is filled in automatically during dequeue. If message_state
is 0, then the message is ready to be processed. If it is 1, then the message delay has not yet been reached. If it is 2, then the message has been processed and is retained. If it is 3, then the message has been moved to an exception queue.
exception_queue
This element is optional. It specifies the name of the queue to which the message is moved if the number of unsuccessful dequeue attempts has exceeded max_retries
or the message has expired. All messages in the exception queue are in the EXPIRED
state.
If the exception queue specified does not exist at the time of the move, then the message is moved to the default exception queue associated with the queue table, and a warning is logged in the alert log. If the default exception queue is used, then the parameter returns a NULL
value at dequeue time.
message_payload
This is a required element. It can contain different elements based on the payload type of the destination queue/topic. The different payload types are described in "IDAP Client Requests for Dequeue".
AQXmlCommit
This is an optional empty element. If it is included, then the transaction is committed at the end of the request.
Client requests for dequeue use AQXmlReceive
, which contains the following elements:
consumer_options
This is a required element. It contains the following child elements:
destination
This element is required. It specifies the queue/topic from which messages are to be received. The destination
element has an optional lookup_type
attribute, which determines how the destination value is interpreted. If lookup_type is DATABASE
, which is the default, then the destination is interpreted as schema.queue_name
. If lookup_type
is LDAP
, then the LDAP server is used to resolve the destination.
consumer_name
This element is optional. It specifies the name of the consumer. Only those messages matching the consumer name are accessed. If a queue is not set up for multiple consumers, then this field should not be specified.
wait_time
This element is optional. It specifies the number of seconds to wait if there is no message currently available which matches the search criteria.
selector
This element is optional. It specifies criteria used to select the message. It can contain child elements correlation
, message_id
, or condition
.
A dequeue condition
element is a Boolean expression using syntax similar to the WHERE
clause of a SQL query. This Boolean expression can include conditions on message properties, user object payload data properties, and PL/SQL or SQL functions. Message properties include priority
, corrid
and other columns in the queue table.
To specify dequeue conditions on a message payload, use attributes of the object type in clauses. You must prefix each attribute with tab
.user_data
as a qualifier to indicate the specific column of the queue table that stores the payload.
A dequeue condition
element cannot exceed 4000 characters.
Note: When a dequeue condition or correlation identifier is used, the order of the messages dequeued is indeterminate, and the sort order of the queue is not honored. |
This element is optional. It determines when a dequeue becomes visible. The default is ON_COMMIT
, which makes the dequeue visible when the current transaction commits. If IMMEDIATE
is specified, then the effects of the dequeue are visible immediately after the request is completed. The dequeue is not part of the current transaction. The operation constitutes a transaction on its own.
dequeue_mode
This element is optional. It specifies the locking action associated with the dequeue. The possible values are REMOVE
, BROWSE
, and LOCKED
.
REMOVE
is the default and causes the message to be read and deleted. The message can be retained in the queue table based on the retention properties. BROWSE
reads the message without acquiring any lock on it. This is equivalent to a select statement. LOCKED
reads the message and obtains a write lock on it. The lock lasts for the duration of the transaction. This is equivalent to a select for update statement.
navigation_mode
This element is optional. It specifies the position of the message that is retrieved. First, the position is determined. Second, the search criterion is applied. Finally, the message is retrieved. Possible values are FIRST_MESSAGE
, NEXT_MESSAGE
, and NEXT_TRANSACTION
.
FIRST_MESSAGE
retrieves the first message which is available and which matches the search criteria. This resets the position to the beginning of the queue. NEXT_MESSAGE
is the default and retrieves the next message which is available and which matches the search criteria. If the previous message belongs to a message group, then Oracle Streams AQ retrieves the next available message which matches the search criteria and which belongs to the message group.NEXT_TRANSACTION
skips the remainder of the current transaction group and retrieves the first message of the next transaction group. This option can only be used if message grouping is enabled for the current queue.
transformation
This element is optional. It specifies the PL/SQL transformation to be invoked after the message is dequeued.
AQXmlCommit
This is an optional empty element. If it is included, then the transaction is committed at the end of the request.
Client requests for registration use AQXmlRegister
, which must contain a register_options
element. The register_options
element contains the following child elements:
destination
This element is required. It specifies the queue/topic on which notifications are registered. The destination
element has an optional lookup_type
attribute, which determines how the destination value is interpreted. If lookup_type is DATABASE
, which is the default, then the destination is interpreted as schema.queue_name
. If lookup_type
is LDAP
, then the LDAP server is used to resolve the destination.
consumer_name
This element is optional. It specifies the consumer name for multiconsumer queues or topics. This parameter must not be specified for single-consumer queues.
notify_url
This element is required. It specifies where notification is sent when a message is enqueued. The form can be http://
url
, mailto://
email address
or plsql://
pl/sql procedure
.
A request to commit all actions performed by the user in a session uses AQXmlCommit
. A commit request has the following format:
A request to roll back all actions performed by the user in a session uses AQXmlRollback
. Actions performed with IMMEDIATE
visibility are not rolled back. An IDAP client rollback request has the following format:
The response to an enqueue request to a single-consumer queue uses AQXmlSendResponse
. It contains the following elements:
status_response
This element contains child elements status_code
, error_code
, and error_message
. The status_code
element takes value 0
for success or -1
for failure. The error_code
element contains an Oracle error code. The error_message
element contains a description of the error.
send_result
This element contains child elements destination
and message_id
. The destination
element specifies where the message was sent. The message_id
element uniquely identifies every message sent.
The response to an enqueue request to a multiconsumer queue or topic uses AQXmlPublishResponse
. It contains the following elements:
status_response
This element contains child elements status_code
, error_code
, and error_message
. The status_code
element takes value 0
for success or -1
for failure. The error_code
element contains an Oracle error code. The error_message
element contains a description of the error.
publish_result
This element contains child elements destination
and message_id
. The destination
element specifies where the message was sent. The message_id
element uniquely identifies every message sent.
The response to a dequeue request uses AQXmlReceiveResponse
. It contains the following elements:
status_response
This element contains child elements status_code
, error_code
, and error_message
. The status_code
element takes value 0
for success or -1
for failure. The error_code
element contains an Oracle error code. The error_message
element contains a description of the error.
receive_result
This element contains child elements destination
and message_set
. The destination
element specifies where the message was sent. The message_set
element specifies the set of messages dequeued.
The response to a register request uses AQXmlRegisterResponse
. It contains the status_response
element described in "IDAP Server Response to a Dequeue Request".
The response to a commit request uses AQXmlCommitResponse. It contains the status_response
element described in "IDAP Server Response to a Dequeue Request". The response to a commit request has the following format:
The response to a rollback request uses AQXmlRollbackResponse
. It contains the status_response
element described in "IDAP Server Response to a Dequeue Request".
When an event for which a client has registered occurs, a notification is sent to the client at the URL specified in the REGISTER
request using AQXmlNotification
. It contains the following elements:
notification_options
This element has child elements destination
and consumer_name
. The destination
element specifies the destination queue/topic on which the event occurred. The consumer_name element specifies the consumer name for which the even occurred. It applies only to multiconsumer queues/topics.
message_set
This element specifies the set of message properties.
In case of an error in any of the preceding requests, a FAULT
is generated. The FAULT
element contains the following elements:
faultcode
This element specifies the error code for the fault.
faultstring
This element indicates a client error or a server error. A client error means that the request is not valid. A server error indicates that the Oracle Streams AQ servlet has not been set up correctly.
detail
This element contains the status_response
element, which is described in "IDAP Server Response to a Dequeue Request".
Here are the steps for setting up your database for e-mail notifications:
DBMS_AQELM.SET_MAILHOST
as an Oracle Streams AQ administrator. DBMS_AQELM.SET_MAILPORT
as an Oracle Streams AQ administrator. If not explicit, set defaults to 25. DBMS_AQELM.SET_SENDFROM
. This chapter describes how to troubleshoot Oracle Streams Advanced Queuing (AQ).
The chapter contains these topics:
The following tips should help with debugging propagation problems. This discussion assumes that you have created queue tables and queues in source and target databases and defined a database link for the destination database. The notation assumes that you supply the actual name of the entity (without the brackets).
To begin debugging, do the following:
Look for the entry in the DBA_QUEUE_SCHEDULES
view and make sure that the status of the schedule is enabled. SCHEDULE_DISABLED
must be set to 'N
'. Check that it has a nonzero entry for JOBNO
in table AQ$_SCHEDULES
, and that there is an entry in table JOB$
with that JOBNO
.
To check if propagation is occurring, monitor the DBA_QUEUE_SCHEDULES
view for the number of messages propagated (TOTAL_NUMBER
).
If propagation is not occurring, check the view for any errors. Also check the NEXT_RUN_DATE
and NEXT_RUN_TIME
in DBA_QUEUE_SCHEDULES
to see if propagation is scheduled for a later time, perhaps due to errors or the way it is set up.
Check which jobs are being run by querying dba_jobs_running
. It is possible that other jobs are starving the propagation jobs.
sys.aq$_prop_table_
instno
exists in DBA_QUEUE_TABLES
. The queue sys.aq$_prop_notify_queue_
instno
must also exist in DBA_QUEUES
and must be enabled for enqueue and dequeue. In case of Real Application Clusters (RAC), this queue table and queue pair must exist for each RAC node in the system. They are used for communication between job queue processes and are automatically created.
For 8.1-style queues, you can do the following:
For 8.0-style queues, you can obtain the same information from the history column of the queue table:
Note: Queues created in a queue table withcompatible set to 8.0 (referrred to in this guide as 8.0-style queues) are deprecated in Oracle Streams AQ 10g Release 2 (10.2). Oracle recommends that any new queues you create be 8.1-style or newer and that you migrate existing 8.0-style queues at your earliest convenience. |
Debugging information is logged to job queue trace files as propagation takes place. You can check the trace file for errors and for statements indicating that messages have been sent.
ORA-1555
You might get this error when using the NEXT_MESSAGE
navigation option for dequeue. NEXT_MESSAGE uses the snapshot created during the first dequeue call. After that, undo information may not be retained.
The workaround is to use the FIRST_MESSAGE
option to dequeue the message. This reexecutes the cursor and gets a new snapshot. FIRST_MESSAGE does not perform as well as NEXT_MESSAGE, so Oracle recommends that you dequeue messages in batches: FIRST_MESSAGE
for one, NEXT_MESSAGE
for the next 1000 messages, then FIRST_MESSAGE
again, and so on.
ORA-24033
This error is raised if a message is enqueued to a multiconsumer queue with no recipient and the queue has no subscribers (or rule-based subscribers that match this message). This is a warning that the message will be discarded because there are no recipients or subscribers to whom it can be delivered.
ORA-25237
When using the Oracle Streams AQ navigation option, you must reset the dequeue position by using the FIRST_MESSAGE
option if you want to continue dequeuing between services (such as xa_start
and xa_end
boundaries). This is because XA cancels the cursor fetch state after an xa_end
. If you do not reset, then you get an error message stating that the navigation is used out of sequence.
ORA-25307
Flow control has been enabled for the message sender. This means that the fastest subscriber of the sender's message is not able to keep pace with the rate at which messages are enqueued. The buffered messaging application must handle this error and attempt again to enqueue messages after waiting for some time.
Part III describes Oracle Streams Advanced Queuing (AQ) administrative and operational interfaces.
This part contains the following chapters:
This chapter describes the Oracle Streams Advanced Queuing (AQ) administrative interface.
This chapter contains these topics:
See Also:
|
This section contains these topics:
This procedure creates a queue table for messages of a predefined type. It has the following required and optional parameters:
Parameter	Description
queue_table	This required parameter specifies the queue table name. Mixed case (upper and lower case together) queue table names are supported if database compatibility is 10.0, but the names must be enclosed in double quote marks. So Queue table names must not be longer than 24 characters. If you attempt to create a queue table with a longer name, error ORA-24019 results.
queue_payload_type	This required parameter specifies the payload type as RAW or an object type. See "Payload Type" for more information.
storage_clause	This optional parameter specifies a tablespace for the queue table. See "Storage Clause" for more information.
sort_list	This optional parameter specifies one or two columns to be used as sort keys in ascending order. It has the format sort_column1,sort_column2 . See "Sort Key" for more information.
multiple_consumers	This optional parameter specifies the queue table as single-consumer or multiconsumer. The default FALSE means queues created in the table can have only one consumer for each message. TRUE means queues created in the table can have multiple consumers for each message.
message_grouping	This optional parameter specifies whether messages are grouped or not. The default NONE means each message is treated individually. TRANSACTIONAL means all messages enqueued in one transaction are considered part of the same group and can be dequeued as a group of related messages.
comment	This optional parameter is a user-specified description of the queue table. This user comment is added to the queue catalog.
primary_instance	This optional parameter specifies the primary owner of the queue table. Queue monitor scheduling and propagation for the queues in the queue table are done in this instance. The default value 0 means queue monitor scheduling and propagation is done in any available instance. You can specify and modify this parameter only if
secondary_instance	This optional parameter specifies the owner of the queue table if the primary instance is not available. The default value 0 means that the queue table will fail over to any available instance. You can specify and modify this parameter only if
compatible	This optional parameter specifies the lowest database version with which the queue table is compatible. The possible values are 8.0 , 8.1 , and 10.0 . If the database is in 10.1-compatible mode, then the default value is 10.0 . If the database is in 8.1-compatible or 9.2-compatible mode, then the default value is 8.1 . If the database is in 8.0-compatible mode, then the default value is 8.0 . The 8.0 value is deprecated in Oracle Streams AQ 10g Release 2 (10.2). For more information on compatibility, see "Oracle Streams AQ Compatibility Parameters" and "8.0-Style Queues".
secure	This optional parameter must be set to TRUE if you want to use the queue table for secure queues. Secure queues are queues for which AQ agents must be associated explicitly with one or more database users who can perform queue operations, such as enqueue and dequeue. The owner of a secure queue can perform all queue operations on the queue, but other users cannot unless they are configured as secure queue users
To specify the payload type as an object type, you must define the object type.	
Note: If you have created synonyms on object types, then you cannot use them inDBMS_AQADM.CREATE_QUEUE_TABLE . Error ORA-24015 results.	
CLOB, BLOB, and BFILE objects are valid in an Oracle Streams AQ message. You can propagate these object types using Oracle Streams AQ propagation with Oracle software since Oracle8i release 8.1.x. To enqueue an object type that has a LOB, you must first set the LOB_attribute	
to EMPTY_BLOB	
() and perform the enqueue. You can then select the LOB	
locator that was generated from the queue table's view and use the standard LOB	
operations.	
Note: Payloads containing LOBs require users to grant explicitSelect , Insert and Update privileges on the queue table for doing enqueues and dequeues.	
The storage_clause	
argument can take any text that can be used in a standard CREATE TABLE	
storage_clause	
argument.	
Once you pick the tablespace, any index-organized table (IOT) or index created for that queue table goes to the specified tablespace. You do not currently have a choice to split them between different tablespaces.	
Note: If you choose to create the queue table in a locally managed tablespace or with freelist groups > 1, then Queue Monitor Coordinator will skip the cleanup of those blocks. This can cause a decline in performance over time.The workaround is to coalesce the dequeue IOT by running ALTER TABLE AQ$_queue_table_I COALESCE; You can run this command while there are concurrent dequeuers and enqueuers of the queue, but these concurrent users might see a slight decline in performance while the command is running.	
The sort_list parameter determines the order in which messages are dequeued. You cannot change the message sort order after you have created the queue table. Your choices are:	
ENQ_TIME	
ENQ_TIME,PRIORITY	
PRIORITY	
PRIORITY,ENQ_TIME	
PRIORITY,COMMIT_TIME	
COMMIT_TIME	
The COMMIT_TIME	
choice is a new feature in Oracle Streams AQ 10g Release 2 (10.2). If it is specified, then any queue that uses the queue table is a commit-time queue, and Oracle Streams AQ computes an approximate CSCN for each enqueued message when its transaction commits.	
If you specify COMMIT_TIME	
as the sort key, then you must also specify the following:	
multiple_consumers	
= TRUE	
message_grouping	
= TRANSACTIONAL	
compatible	
= 8.1	
or higher	
Commit-time ordering is useful when transactions are interdependent or when browsing the messages in a queue must yield consistent results.	
The following objects are created at table creation time:	
AQ$	
QUEUE_TABLE_NAME	
, a read-only view which is used by Oracle Streams AQ applications for querying queue data	
AQ$_	
QUEUE_TABLE_NAME	
_E	
, the default exception queue associated with the queue table	
AQ$_	
QUEUE_TABLE_NAME	
_I	
, an index or an index-organized table (IOT) in the case of multiple consumer queues for dequeue operations	
AQ$_	
QUEUE_TABLE_NAME	
_T	
, an index for the queue monitor operations	
The following objects are created only for 8.1-compatible multiconsumer queue tables:	
AQ$_	
queue_table_name	
_S	
, a table for storing information about subscribers	
AQ$_	
queue_table_name	
_H	
, an index organized table (IOT) for storing dequeue history data	
Note: Oracle Streams AQ does not support the use of triggers on these internal AQ queue tables.	
If you do not specify a schema, then you default to the user's schema.	
If GLOBAL_TOPIC_ENABLED	
=	
TRUE	
when a queue table is created, then a corresponding Lightweight Directory Access Protocol (LDAP) entry is also created.	
If the queue type is ANYDATA	
, then a buffered queue and two additional objects are created. The buffered queue stores logical change records created by a capture process. The logical change records are staged in a memory buffer associated with the queue; they are not ordinarily written to disk.	
If they have been staged in the buffer for a period of time without being dequeued, or if there is not enough space in memory to hold all of the captured events, then they are spilled to:	
AQ$_	
QUEUE_TABLE_NAME	
_P	
, a table for storing the captured events that spill from memory	
AQ$_	
QUEUE_TABLE_NAME	
_d	
, a table for storing information about the propagations and apply processes that are eligible for processing each event	
Examples	
The following examples assume you are in a SQL*Plus testing environment. In Example 8-1, you create users in preparation for the other examples in this chapter. For this example, you must connect as a user with administrative privileges. For most of the other examples in this chapter, you can connect as user test_adm	
. A few examples must be run as test	
with EXECUTE	
privileges on DBMS_AQADM	
.	
Example 8-1 Setting Up AQ Administrative Users	
Example 8-2 Setting Up AQ Administrative Example Types	
Example 8-3 Creating a Queue Table for Messages of Object Type	
Example 8-4 Creating a Queue Table for Messages of RAW Type	
Example 8-5 Creating a Queue Table for Messages of LOB Type	
Example 8-6 Creating a Queue Table for Messages of XMLType	
Example 8-7 Creating a Queue Table for Grouped Messages	
Example 8-8 Creating Queue Tables for Prioritized Messages and Multiple Consumers	
Example 8-9 Creating a Queue Table with Commit-Time Ordering	
Example 8-10 Creating an 8.1-Compatible Queue Table for Multiple Consumers	
This procedure alters the existing properties of a queue table.	
Parameter	Description
---	---
queue_table	This required parameter specifies the queue table name.
comment	This optional parameter is a user-specified description of the queue table. This user comment is added to the queue catalog.
primary_instance	This optional parameter specifies the primary owner of the queue table. Queue monitor scheduling and propagation for the queues in the queue table are done in this instance. You can specify and modify this parameter only if
secondary_instance	This optional parameter specifies the owner of the queue table if the primary instance is not available. You can specify and modify this parameter only if
Note: In general, DDL statements are not supported on queue tables and may even render them inoperable. For example, issuing anALTER TABLE ... SHRINK statement against a queue table results in an internal error, and all subsequent attempts to use the queue table will also result in errors. Oracle recommends that you not use DDL statements on queue tables.	
If GLOBAL_TOPIC_ENABLED = TRUE	
when a queue table is modified, then a corresponding LDAP entry is also altered.	
This procedure drops an existing queue table. You must stop and drop all the queues in a queue table before the queue table can be dropped. You must do this explicitly if force	
is set to FALSE	
. If force	
is set to TRUE	
, then all queues in the queue table and their associated propagation schedules are dropped automatically.	
If GLOBAL_TOPIC_ENABLED = TRUE	
when a queue table is dropped, then a corresponding LDAP entry is also dropped.	
This procedure purges messages from a queue table. It has the following parameters:	
A trace file is generated in the udump destination when you run this procedure. It details what the procedure is doing. The procedure commits after it has processed all the messages.	
See Also: "DBMS_AQADM" in PL/SQL Packages and Types Reference for more information onDBMS_AQADM.PURGE_QUEUE_TABLE	
Example 8-17 Purging All Messages in a Queue Table	
Example 8-18 Purging All Messages in a Named Queue	
Example 8-19 Purging All PROCESSED Messages in a Named Queue	
Example 8-20 Purging All Messages in a Named Queue and for a Named Consumer	
Note: Some purge conditions, such as consumer_name in Example 8-20 and sender_name in Example 8-21, are supported only in 8.1-compatible queue tables. For more information, see Table 9-7, "AQ$Queue_Table_Name View".	
This procedure migrates a queue table from 8.0, 8.1, or 10.0 to 8.0, 8.1, or 10.0. Only the owner of the queue table can migrate it.	
Caution: This procedure requires that theEXECUTE privilege on DBMS_AQADM be granted to the queue table owner, who is probably an ordinary queue user. If you do not want ordinary queue users to be able to create and drop queues and queue tables, add and delete subscribers, and so forth, then you must revoke the EXECUTE privilege as soon as the migration is done.	
Note: Queues created in a queue table withcompatible set to 8.0 (referrred to in this guide as 8.0-style queues) are deprecated in Oracle Streams AQ 10g Release 2 (10.2). Oracle recommends that any new queues you create be 8.1-style or newer and that you migrate existing 8.0-style queues at your earliest convenience.	
If a schema was created by an import of an export dump from a lower release or has Oracle Streams AQ queues upgraded from a lower release, then attempts to drop it with DROP USER CASCADE	
will fail with ORA-24005. To drop such schemas:	
AQ$_	
queue_table_name	
_NR	
from the schema. This section contains these topics:	
This procedure creates a queue. It has the following parameters:	
Parameter	Description
---	---
queue_name	This required parameter specifies the name of the new queue. Mixed case (upper and lower case together) queue names are supported if database compatibility is 10.0, but the names must be enclosed in double quote marks. So User-generated queue names must not be longer than 24 characters. If you attempt to create a queue with a longer name, error ORA-24019 results. Queue names generated by Oracle Streams AQ, such as those listed in "Other Tables and Views", cannot be longer than 30 characters.
queue_table	This required parameter specifies the queue table in which the queue is created.
queue_type	This parameter specifies what type of queue to create. The default NORMAL_QUEUE produces a normal queue. EXCEPTION_QUEUE produces an exception queue.
max_retries	This parameter limits the number of times a dequeue with the REMOVE mode can be attempted on a message. The maximum value of max_retries is 2**31 -1.
retry_delay	This parameter specifies the number of seconds after which this message is scheduled for processing again after an application rollback. The default is 0, which means the message can be retried as soon as possible. This parameter has no effect if max_retries is set to 0. This parameter is supported for single-consumer queues and 8.1-style or higher multiconsumer queues but not for 8.0-style multiconsumer queues, which are deprecated in Oracle Streams AQ 10g Release 2 (10.2).
retention_time	This parameter specifies the number of seconds a message is retained in the queue table after being dequeued from the queue. When retention_time expires, messages are removed by the time manager process. INFINITE means the message is retained forever. The default is 0, no retention.
dependency_tracking	This parameter is reserved for future use. FALSE is the default. TRUE is not permitted in this release.
comment	This optional parameter is a user-specified description of the queue. This user comment is added to the queue catalog.
All queue names must be unique within a schema. Once a queue is created with CREATE_QUEUE	
, it can be enabled by calling START_QUEUE	
. By default, the queue is created with both enqueue and dequeue disabled. To view retained messages, you can either dequeue by message ID or use SQL. If GLOBAL_TOPIC_ENABLED = TRUE	
when a queue is created, then a corresponding LDAP entry is also created.	
The following examples (Example 8-23 through Example 8-30) use data structures created in Example 8-1 through Example 8-12.	
Example 8-23 Creating a Queue for Messages of Object Type	
Example 8-24 Creating a Queue for Messages of RAW Type	
Example 8-25 Creating a Queue for Messages of LOB Type	
Example 8-26 Creating a Queue for Grouped Messages	
Example 8-27 Creating a Queue for Prioritized Messages	
Example 8-28 Creating a Queue for Prioritized Messages and Multiple Consumers	
This procedure alters existing properties of a queue.	
Only max_retries	
, comment	
, retry_delay	
, and retention_time	
can be altered. To view retained messages, you can either dequeue by message ID or use SQL. If GLOBAL_TOPIC_ENABLED = TRUE	
when a queue is modified, then a corresponding LDAP entry is also altered.	
Example 8-31 changes retention time, saving messages for 1 day after dequeuing.	
This procedure enables the specified queue for enqueuing or dequeuing.	
After creating a queue, the administrator must use START_QUEUE	
to enable the queue. The default is to enable it for both enqueue and dequeue. Only dequeue operations are allowed on an exception queue. This operation takes effect when the call completes and does not have any transactional characteristics.	
This procedure disables enqueuing, dequeuing, or both on the specified queue.	
By default, this call disables both enqueue and dequeue. A queue cannot be stopped if there are outstanding transactions against the queue. This operation takes effect when the call completes and does not have any transactional characteristics.	
This procedure drops an existing queue. DROP_QUEUE	
is not allowed unless STOP_QUEUE	
has been called to disable the queue for both enqueuing and dequeuing. All the queue data is deleted as part of the drop operation.	
If GLOBAL_TOPIC_ENABLED = TRUE	
when a queue is dropped, then a corresponding LDAP entry is also dropped.	
Transformations change the format of a message, so that a message created by one application can be understood by another application. You can use transformations on both persistent and buffered messages.	
This section contains these topics:	
This procedure creates a message format transformation. The transformation must be a SQL function with input type from_type	
, returning an object of type to_type	
. It can also be a SQL expression of type to_type	
, referring to from_type	
. All references to from_type	
must be of the form source.user_data	
.	
You must be granted EXECUTE	
privilege on dbms_transform	
to use this feature. This privilege is included in the AQ_ADMINISTRATOR_ROLE	
.	
You must also have EXECUTE	
privilege on the user-defined types that are the source and destination types of the transformation, and have EXECUTE	
privileges on any PL/SQL function being used in the transformation function. The transformation cannot write the database state (that is, perform DML operations) or commit or rollback the current transaction.	
Example 8-36 Creating a Transformation	
This procedure changes the transformation function and specifies transformations for each attribute of the target type. If the attribute number 0 is specified, then the transformation expression singularly defines the transformation from the source to target types.	
All references to from_type	
must be of the form source.user_data	
. All references to the attributes of the source type must be prefixed by source.user_data	
.	
You must be granted EXECUTE	
privileges on dbms_transform	
to use this feature. You must also have EXECUTE	
privileges on the user-defined types that are the source and destination types of the transformation, and have EXECUTE	
privileges on any PL/SQL function being used in the transformation function.	
This procedure drops a transformation.	
You must be granted EXECUTE	
privileges on dbms_transform	
to use this feature. You must also have EXECUTE	
privileges on the user-defined types that are the source and destination types of the transformation, and have EXECUTE	
privileges on any PL/SQL function being used in the transformation function.	
This section contains these topics:	
This procedure grants Oracle Streams AQ system privileges to users and roles. The privileges are ENQUEUE_ANY	
, DEQUEUE_ANY	
, MANAGE_ANY	
. Initially, only SYS	
and SYSTEM	
can use this procedure successfully.	
Users granted the ENQUEUE_ANY	
privilege are allowed to enqueue messages to any queues in the database. Users granted the DEQUEUE_ANY	
privilege are allowed to dequeue messages from any queues in the database. Users granted the MANAGE_ANY	
privilege are allowed to run DBMS_AQADM	
calls on any schemas in the database.	
This procedure revokes Oracle Streams AQ system privileges from users and roles. The privileges are ENQUEUE_ANY	
, DEQUEUE_ANY	
and MANAGE_ANY	
. The ADMIN	
option for a system privilege cannot be selectively revoked.	
Users granted the ENQUEUE_ANY	
privilege are allowed to enqueue messages to any queues in the database. Users granted the DEQUEUE_ANY	
privilege are allowed to dequeue messages from any queues in the database. Users granted the MANAGE_ANY	
privilege are allowed to run DBMS_AQADM	
calls on any schemas in the database.	
This procedure grants privileges on a queue to users and roles. The privileges are ENQUEUE	
, DEQUEUE	
, or ALL	
. Initially, only the queue table owner can use this procedure to grant privileges on the queues.	
Caution: This procedure requires thatEXECUTE privileges on DBMS_AQADM be granted to the queue table owner, who is probably an ordinary queue user. If you do not want ordinary queue users to be able to create and drop queues and queue tables, add and delete subscribers, and so forth, then you must revoke the EXECUTE privilege as soon as the initial GRANT_QUEUE_PRIVILEGE is done.	
This procedure revokes privileges on a queue from users and roles. The privileges are ENQUEUE	
or DEQUEUE	
.	
To revoke a privilege, the revoker must be the original grantor of the privilege. The privileges propagated through the GRANT	
option are revoked if the grantor's privileges are revoked.	
You can revoke the dequeue right of a grantee on a specific queue, leaving the grantee with only the enqueue right as in Example 8-40.	
This section contains these topics:	
This procedure adds a default subscriber to a queue.	
An application can enqueue messages to a specific list of recipients or to the default list of subscribers. This operation succeeds only on queues that allow multiple consumers, and the total number of subscribers must be 1024 or less. This operation takes effect immediately and the containing transaction is committed. Enqueue requests that are executed after the completion of this call reflect the new action. Any string within the rule	
must be quoted (with single quotation marks) as follows:	
User data properties or attributes apply only to object payloads and must be prefixed with tab.userdata	
in all cases.	
If GLOBAL_TOPIC_ENABLED	
is set to true when a subscriber is created, then a corresponding LDAP entry is also created.	
Specify the name of the transformation to be applied during dequeue or propagation. The transformation must be created using the DBMS_TRANSFORM	
package.	
For queues that contain payloads with XMLType attributes, you can specify rules that contain operators such as XMLType.existsNode()	
and XMLType.extract()	
.	
If parameter queue_to_queue	
is set to TRUE	
, then the added subscriber is a queue-to-queue subscriber. When queue-to-queue propagation is set up between a source queue and a destination queue, queue-to-queue subscribers receive messages through that propagation schedule.	
If the delivery_mode	
parameter is the default PERSISTENT	
, then the subscriber receives only persistent messages. If it is set to BUFFERED	
, then the subscriber receives only buffered messages. If it is set to PERSISTENT_OR_BUFFERED	
, then the subscriber receives both types. You cannot alter this parameter with ALTER_SUBSCRIBER	
.	
Note: ADD_SUBSCRIBER is an administrative operation on a queue. Although Oracle Streams AQ does not prevent applications from issuing administrative and operational calls concurrently, they are executed serially. ADD_SUBSCRIBER blocks until pending transactions that have enqueued or dequeued messages commit and release the resources they hold.	
Example 8-41 Adding a Subscriber at a Designated Queue at a Dababase Link	
Example 8-42 Adding a Subscriber with a Rule	
Example 8-43 Adding a Subscriber and Specifying a Transformation	
This procedure alters existing properties of a subscriber to a specified queue.	
The rule, the transformation, or both can be altered. If you alter only one of these attributes, then specify the existing value of the other attribute to the alter call. If GLOBAL_TOPIC_ENABLED = TRUE when a subscriber is modified, then a corresponding LDAP entry is created.	
This procedure removes a default subscriber from a queue.	
This operation takes effect immediately and the containing transaction is committed. All references to the subscriber in existing messages are removed as part of the operation. If GLOBAL_TOPIC_ENABLED = TRUE	
when a subscriber is dropped, then a corresponding LDAP entry is also dropped.	
It is not an error to run the REMOVE_SUBSCRIBER	
procedure even when there are pending messages that are available for dequeue by the consumer. These messages are automatically made unavailable for dequeue when the REMOVE_SUBSCRIBER	
procedure finishes.	
Note: REMOVE_SUBSCRIBER is an administrative operation on a queue. Although Oracle Streams AQ does not prevent applications from issuing administrative and operational calls concurrently, they are executed serially. REMOVE_SUBSCRIBER blocks until pending transactions that have enqueued or dequeued messages commit and release the resources they hold.	
The propagation schedules defined for a queue can be changed or dropped at any time during the life of the queue. You can also temporarily disable a schedule instead of dropping it. All administrative calls can be made irrespective of whether the schedule is active or not. If a schedule is active, then it takes a few seconds for the calls to be processed.	
This section contains these topics:	
This procedure schedules propagation of messages.	
The destination can be identified by a database link in the destination	
parameter, a queue name in the destination_queue	
parameter, or both. Specifying only a database link results in queue-to-dblink propagation. If you propagate messages to several queues in another database, then all propagations have the same frequency.	
If a private database link in the schema of the queue table owner has the same name as a public database link, then AQ always uses the private database link..	
Specifying the destination queue name results in queue-to-queue propagation, a new feature in Oracle Streams AQ 10g Release 2 (10.2). If you propagate messages to several queues in another database, then queue-to-queue propagation enables you to configure each schedule independently of the others. You can even enable or disable individual propagations.	
Note: If you want queue-to-queue propagation to a queue in another database, then you must specify parametersdestination and destination_queue .	
This new queue-to-queue propagation mode also supports transparent failover when propagating to a destination Real Application Clusters (RAC) system. With queue-to-queue propagation, you are no longer required to repoint a database link if the owner instance of the queue fails on RAC.	
Oracle Streams AQ validates the database link specified in a propagation schedule when the schedule runs, but not when the schedule is created. It is possible, therefore, to create a queue-to-dblink or queue-to-queue propagation before creating its associated database link. Also, the propagation schedule is not disabled if you remove the database link.	
Messages can also be propagated to other queues in the same database by specifying a NULL	
destination. If a message has multiple recipients at the same destination in either the same or different queues, then the message is propagated to all of them at the same time.	
The source queue must be in a queue table meant for multiple consumers. If you specify a single-consumer queue, than error ORA-24039 results. Oracle Streams AQ does not support the use of synonyms to refer to queues or database links.	
If you specify a latency less than 0 in the propagation schedule, then the job is rescheduled to run after the specified latency. The time at which the job actually runs depends on other factors, such as the number of ready jobs and the number of job queue processes.	
See Also:	
Propagation uses an exponential backoff scheme for retrying propagation from a schedule that encountered a failure. If a schedule continuously encounters failures, then the first retry happens after 30 seconds, the second after 60 seconds, the third after 120 seconds and so forth. If the retry time is beyond the expiration time of the current window, then the next retry is attempted at the start time of the next window. A maximum of 16 retry attempts are made after which the schedule is automatically disabled.	
Note: Once a retry attempt slips to the next propagation window, it will always do so; the exponential backoff scheme no longer governs retry scheduling. If the date function specified in thenext_time parameter of DBMS_AQADM.SCHEDULE_PROPAGATION() results in a short interval between windows, then the number of unsuccessful retry attempts can quickly exceed 16, disabling the schedule.	
If you specify a value for destination	
that does not exist, then this procedure still runs without throwing an error. You can query runtime propagation errors in the LAST_ERROR_MSG	
column of the USER_QUEUE_SCHEDULES	
view.	
Example 8-46 Scheduling a Propagation to Queues in the Same Database	
This procedure verifies that the source and destination queues have identical types. The result of the verification is stored in the dictionary table SYS.AQ$_MESSAGE_TYPES	
, overwriting all previous output of this command.	
If the source and destination queues do not have identical types and a transformation was specified, then the transformation must map the source queue type to the destination queue type.	
Note: SYS.AQ$_MESSAGE_TYPES can have multiple entries for the same source queue, destination queue, and database link, but with different transformations.	
Example 8-49 Verifying a Queue Type	
Example 8-49 involves two queues of the same type. It returns:	
If the same example is run with test.raw_queue	
(a queue of type RAW) in place of test.another_queue	
, then it returns:	
This procedure alters parameters for a propagation schedule. The destination_queue	
parameter for queue-to-queue propagation cannot be altered.	
This procedure enables a previously disabled propagation schedule.	
This procedure disables a previously enabled propagation schedule.	
This procedure unschedules a previously scheduled propagation of messages from a queue to a destination. The destination is identified by a specific database link in the destination	
parameter or by name in the destination_queue	
parameter.	
This section contains these topics:	
This procedure registers an agent for Oracle Streams AQ Internet access using HTTP protocols.	
The SYS.AQ$INTERNET_USERS	
view has a list of all Oracle Streams AQ Internet agents. When an agent is created, altered, or dropped, an LDAP entry is created for the agent if the following are true:	
GLOBAL_TOPIC_ENABLED	
= TRUE	
certificate_location	
is specified	
This procedure alters an agent registered for Oracle Streams AQ Internet access.	
When an Oracle Streams AQ agent is created, altered, or dropped, an LDAP entry is created for the agent if the following are true:	
GLOBAL_TOPIC_ENABLED	
= TRUE	
certificate_location	
is specified	
This procedure drops an agent that was previously registered for Oracle Streams AQ Internet access.	
When an Oracle Streams AQ agent is created, altered, or dropped, an LDAP entry is created for the agent if the following are true:	
GLOBAL_TOPIC_ENABLED	
= TRUE	
certificate_location	
is specified	
This procedure grants an Oracle Streams AQ Internet agent the privileges of a specific database user. The agent should have been previously created using the CREATE_AQ_AGENT	
procedure.	
The SYS.AQ$INTERNET_USERS	
view has a list of all Oracle Streams AQ Internet agents and the names of the database users whose privileges are granted to them.	
This procedure revokes the privileges of a specific database user from an Oracle Streams AQ Internet agent. The agent should have been previously granted those privileges using the ENABLE_DB_ACCESS	
procedure.	
This procedure adds an alias to the LDAP server.	
This call takes the name of an alias and the distinguished name of an Oracle Streams AQ object in LDAP, and creates the alias that points to the Oracle Streams AQ object. The alias is placed immediately under the distinguished name of the database server. The object to which the alias points can be a queue, an agent, or a ConnectionFactory.	
This procedure removes an alias from the LDAP server.	
This call takes the name of an alias as the argument, and removes the alias entry in the LDAP server. It is assumed that the alias is placed immediately under the database server in the LDAP directory.	
This chapter describes the Oracle Streams Advanced Queuing (AQ) administrative interface views.	
This chapter contains these topics:	
ALL_QUEUE_SUBSCRIBERS: Subscribers for Queues Where User Has Queue Privileges	
V$AQ: Number of Messages in Different States for Specific Instances	
AQ$INTERNET_USERS: Oracle Streams AQ Agents Registered for Internet Access	
USER_ATTRIBUTE_TRANSFORMATIONS: User Transformation Functions	
The DBA_QUEUE_TABLES	
view describes the names and types of all queue tables created in the database.	
Table 9-1 DBA_QUEUE_TABLES View	
Column	Datatype
---	---
OWNER	VARCHAR2(30)
QUEUE_TABLE	VARCHAR2(30)
TYPE	VARCHAR2(7)
OBJECT_TYPE	VARCHAR2(61)
SORT_ORDER	VARCHAR2(22)
RECIPIENTS	VARCHAR2(8)
MESSAGE_GROUPING	VARCHAR2(13)
COMPATIBLE	VARCHAR2(5)
PRIMARY_INSTANCE	NUMBER
SECONDARY_INSTANCE	NUMBER
OWNER_INSTANCE	NUMBER
USER_COMMENT	VARCHAR2(50)
SECURE	VARCHAR2(3)
The ALL_QUEUE_TABLES	
view describes queue tables accessible to a user.	
Table 9-2 ALL_QUEUE_TABLES View	
Column	Datatype
---	---
OWNER	VARCHAR2(30)
QUEUE_TABLE	VARCHAR2(30)
TYPE	VARCHAR2(7)
OBJECT_TYPE	VARCHAR2(61)
SORT_ORDER	VARCHAR2(22)
RECIPIENTS	VARCHAR2(8)
MESSAGE_GROUPING	VARCHAR2(13)
COMPATIBLE	VARCHAR2(5)
PRIMARY_INSTANCE	NUMBER
SECONDARY_INSTANCE	NUMBER
OWNER_INSTANCE	NUMBER
USER_COMMENT	VARCHAR2(50)
SECURE	VARCHAR2(3)
The DBA_QUEUES	
view specifies operational characteristics for every queue in a database.	
Table 9-3 DBA_QUEUES View	
Column	Datatype
---	---
OWNER	VARCHAR2(30)
NAME	VARCHAR2(30)
QUEUE_TABLE	VARCHAR2(30)
QID	NUMBER
QUEUE_TYPE	VARCHAR2(20)
MAX_RETRIES	NUMBER
RETRY_DELAY	NUMBER
ENQUEUE_ENABLED	VARCHAR2(7)
DEQUEUE_ENABLED	VARCHAR2(7)
RETENTION	VARCHAR2(40)
USER_COMMENT	VARCHAR2(50)
NETWORK_NAME	VARCHAR2(64)
Note: A message is moved to an exception queue ifRETRY_COUNT is greater than MAX_RETRIES . If a dequeue transaction fails because the server process dies (including ALTER SYSTEM KILL SESSION) or SHUTDOWN ABORT on the instance, then RETRY_COUNT is not incremented.	
The DBA_QUEUE_SCHEDULES	
view describes the current schedules for propagating messages.	
Table 9-4 DBA_QUEUE_SCHEDULES View	
Column	Datatype
---	---
SCHEMA	VARCHAR2(30)
QNAME	VARCHAR2(30)
DESTINATION	VARCHAR2(128)
START_DATE	DATE
START_TIME	VARCHAR2(8)
PROPAGATION_WINDOW	NUMBER
NEXT_TIME	VARCHAR2(200)
LATENCY	NUMBER
SCHEDULE_DISABLED	VARCHAR(1)
PROCESS_NAME	VARCHAR2(8)
SESSION_ID	VARCHAR2(82)
INSTANCE	NUMBER
LAST_RUN_DATE	DATE
LAST_RUN_TIME	VARCHAR2(8)
CURRENT_START_DATE	DATE
CURRENT_START_TIME	VARCHAR2(8)
NEXT_RUN_DATE	DATE
NEXT_RUN_TIME	VARCHAR2(8)
TOTAL_TIME	NUMBER
TOTAL_NUMBER	NUMBER
TOTAL_BYTES	NUMBER
MAX_NUMBER	NUMBER
MAX_BYTES	NUMBER
AVG_NUMBER	NUMBER
AVG_SIZE	NUMBER
AVG_TIME	NUMBER
FAILURES	NUMBER
LAST_ERROR_DATE	DATE
LAST_ERROR_TIME	VARCHAR2(8)
LAST_ERROR_MSG	VARCHAR2(4000)
MESSAGE_DELIVERY_MODE	VARCHAR2(10)
The ALL_QUEUES	
view describes all queues accessible to the user.	
Table 9-5 ALL_QUEUES View	
Column	Datatype
---	---
OWNER	VARCHAR2(30)
NAME	VARCHAR2(30)
QUEUE_TABLE	VARCHAR2(30)
QID	NUMBER
QUEUE_TYPE	VARCHAR2(15)
MAX_RETRIES	NUMBER
RETRY_DELAY	NUMBER
ENQUEUE_ENABLED	VARCHAR2(7)
DEQUEUE_ENABLED	VARCHAR2(7)
RETENTION	VARCHAR2(40)
USER_COMMENT	VARCHAR2(50)
Note: A message is moved to an exception queue ifRETRY_COUNT is greater than MAX_RETRIES . If a dequeue transaction fails because the server process dies (including ALTER SYSTEM KILL SESSION) or SHUTDOWN ABORT on the instance, then RETRY_COUNT is not incremented.	
The QUEUE_PRIVILEGES	
view describes queues for which the user is the grantor, grantee, or owner. It also shows queues for which an enabled role on the queue is granted to PUBLIC	
.	
Table 9-6 QUEUE_PRIVILEGES View	
Column	Datatype
---	---
GRANTEE	VARCHAR2(30)
OWNER	VARCHAR2(30)
NAME	VARCHAR2(30)
GRANTOR	VARCHAR2(30)
ENQUEUE_PRIVILEGE	NUMBER
DEQUEUE_PRIVILEGE	NUMBER
The AQ$	
Queue_Table_Name	
view describes the queue table in which message data is stored. This view is automatically created with each queue table and should be used for querying the queue data. The dequeue history data (time, user identification and transaction identification) is only valid for single-consumer queues.	
In a queue table that is created with the compatible	
parameter set to '8.1' or higher, messages that were not dequeued by the consumer are shown as "UNDELIVERABLE	
". You can dequeue these messages by msgid	
. If the Oracle Streams AQ queue process monitor is running, then the messages are eventually moved to an exception queue. You can dequeue these messages from the exception queue with an ordinary dequeue.	
A multiconsumer queue table created without the compatible	
parameter, or with the compatible	
parameter set to '8.0', does not display the state of a message on a consumer basis, but only displays the global state of the message.	
Note: Queues created in a queue table withcompatible set to 8.0 (referrred to in this guide as 8.0-style queues) are deprecated in Oracle Streams AQ 10g Release 2 (10.2). Oracle recommends that any new queues you create be 8.1-style or newer and that you migrate existing 8.0-style queues at your earliest convenience.	
When a message is dequeued using the REMOVE	
mode, DEQ_TIME	
, DEQ_USER_ID	
, and DEQ_TXN_ID	
are updated for the consumer that dequeued the message.	
You can use MSGID	
and ORIGINAL_MSGID	
to chain propagated messages. When a message with message identifier m1	
is propagated to a remote queue, m1	
is stored in the ORIGINAL_MSGID	
column of the remote queue.	
Beginning with Oracle Database 10g, AQ$	
Queue_Table_Name	
includes buffered messages. For buffered messages, the value of MSG_STATE	
is one of the following:	
IN MEMORY	
Buffered messages enqueued by a user	
DEFERRED	
Buffered messages enqueued by a capture process	
SPILLED	
User-enqueued buffered messages that have been spilled to disk	
DEFERRED SPILLED	
Capture-enqueued buffered messages that have been spilled to disk	
BUFFERED EXPIRED	
Expired buffered messages	
Table 9-7 AQ$Queue_Table_Name View	
Column	Datatype
---	---
QUEUE	VARCHAR2(30)
MSG_ID	RAW(16)
CORR_ID	VARCHAR2(128)
MSG_PRIORITY	NUMBER
MSG_STATE	VARCHAR2(16)
DELAY	DATE
DELAY_TIMESTAMP	TIMESTAMP
EXPIRATION	NUMBER
ENQ_TIME	DATE
ENQ_TIMESTAMP	TIMESTAMP
ENQ_USER_ID (8.0.4 or 8.1.3 queue tables)	NUMBER
ENQ_USER_ID (10.1 queue tables)	VARCHAR2(30)
ENQ_TXN_ID	VARCHAR2(30)
DEQ_TIME	DATE
DEQ_TIMESTAMP	TIMESTAMP
DEQ_USER_ID (8.0.4 or 8.1.3 queue tables)	NUMBER
DEQ_USER_ID (10.1 queue tables)	VARCHAR2(30)
DEQ_TXN_ID	VARCHAR2(30)
RETRY_COUNT	NUMBER
EXCEPTION_QUEUE_OWNER	VARCHAR2(30)
EXCEPTION_QUEUE	VARCHAR2(30)
USER_DATA	-
SENDER_NAME	VARCHAR2(30)
SENDER_ADDRESS	VARCHAR2(1024)
SENDER_PROTOCOL	NUMBER
ORIGINAL_MSGID	RAW(16)
CONSUMER_NAME	VARCHAR2(30)
ADDRESS	VARCHAR2(1024)
PROTOCOL	NUMBER
PROPAGATED_MSGID	RAW(16)
ORIGINAL_QUEUE_NAME	VARCHAR2(30)
ORIGINAL_QUEUE_OWNER	VARCHAR2(30)
EXPIRATION_REASON	VARCHAR2(19)
Note: A message is moved to an exception queue ifRETRY_COUNT is greater than MAX_RETRIES . If a dequeue transaction fails because the server process dies (including ALTER SYSTEM KILL SESSION) or SHUTDOWN ABORT on the instance, then RETRY_COUNT is not incremented.	
The USER_QUEUE_TABLES	
view is the same as DBA_QUEUE_TABLES	
with the exception that it only shows queue tables in the user's schema. It does not contain a column for OWNER	
.	
Table 9-8 USER_QUEUE_TABLES View	
Column	Datatype
---	---
QUEUE_TABLE	VARCHAR2(30)
TYPE	VARCHAR2(7)
OBJECT_TYPE	VARCHAR2(61)
SORT_ORDER	VARCHAR2(22)
RECIPIENTS	VARCHAR2(8)
MESSAGE_GROUPING	VARCHAR2(13)
COMPATIBLE	VARCHAR2(5)
PRIMARY_INSTANCE	NUMBER
SECONDARY_INSTANCE	NUMBER
OWNER_INSTANCE	NUMBER
USER_COMMENT	VARCHAR2(50)
SECURE	VARCHAR2(3)
The USER_QUEUES	
view is the same as DBA_QUEUES	
with the exception that it only shows queues in the user's schema.	
Table 9-9 USER_QUEUES View	
Column	Datatype
---	---
NAME	VARCHAR2(30)
QUEUE_TABLE	VARCHAR2(30)
QID	NUMBER
QUEUE_TYPE	VARCHAR2(20)
MAX_RETRIES	NUMBER
RETRY_DELAY	NUMBER
ENQUEUE_ENABLED	VARCHAR2(7)
DEQUEUE_ENABLED	VARCHAR2(7)
RETENTION	VARCHAR2(40)
USER_COMMENT	VARCHAR2(50)
NETWORK_NAME	VARCHAR2(64)
Note: A message is moved to an exception queue ifRETRY_COUNT is greater than MAX_RETRIES . If a dequeue transaction fails because the server process dies (including ALTER SYSTEM KILL SESSION) or SHUTDOWN ABORT on the instance, then RETRY_COUNT is not incremented.	
The USER_QUEUE_SCHEDULES	
view is the same as DBA_QUEUE_SCHEDULES	
with the exception that it only shows queue schedules in the user's schema.	
Table 9-10 DBA_QUEUE_SCHEDULES View	
Column	Datatype
---	---
QNAME	VARCHAR2(30)
DESTINATION	VARCHAR2(128)
START_DATE	DATE
START_TIME	VARCHAR2(8)
PROPAGATION_WINDOW	NUMBER
NEXT_TIME	VARCHAR2(200)
LATENCY	NUMBER
SCHEDULE_DISABLED	VARCHAR(1)
PROCESS_NAME	VARCHAR2(8)
SESSION_ID	VARCHAR2(82)
INSTANCE	NUMBER
LAST_RUN_DATE	DATE
LAST_RUN_TIME	VARCHAR2(8)
CURRENT_START_DATE	DATE
CURRENT_START_TIME	VARCHAR2(8)
NEXT_RUN_DATE	DATE
NEXT_RUN_TIME	VARCHAR2(8)
TOTAL_TIME	NUMBER
TOTAL_NUMBER	NUMBER
TOTAL_BYTES	NUMBER
MAX_NUMBER	NUMBER
MAX_BYTES	NUMBER
AVG_NUMBER	NUMBER
AVG_SIZE	NUMBER
AVG_TIME	NUMBER
FAILURES	NUMBER
LAST_ERROR_DATE	DATE
LAST_ERROR_TIME	VARCHAR2(8)
LAST_ERROR_MSG	VARCHAR2(4000)
The AQ$	
Queue_Table_Name	
_S	
view provides information about subscribers for all the queues in any given queue table. It shows subscribers created by users with DBMS_AQADM.ADD_SUBSCRIBER	
and subscribers created for the apply process to apply user-created events. It also displays the transformation for the subscriber, if it was created with one. It is generated when the queue table is created.	
This view provides functionality that is equivalent to the DBMS_AQADM.QUEUE_SUBSCRIBERS()	
procedure. For these queues, Oracle recommends that the view be used instead of this procedure to view queue subscribers. This view is created only for 8.1-compatible queue tables.	
Table 9-11 AQ$Queue_Table_Name_S View	
Column	Datatype
---	---
QUEUE	VARCHAR2(30)
NAME	VARCHAR2(30)
ADDRESS	VARCHAR2(1024)
PROTOCOL	NUMBER
TRANSFORMATION	VARCHAR2(61)
The AQ$	
Queue_Table_Name	
_R	
view displays only the subscribers based on rules for all queues in a given queue table, including the text of the rule defined by each subscriber. It also displays the transformation for the subscriber, if one was specified. It is generated when the queue table is created.	
This view is created only for 8.1-compatible queue tables.	
Table 9-12 AQ$Queue_Table_Name_R View	
Column	Datatype
---	---
QUEUE	VARCHAR2(30)
NAME	VARCHAR2(30)
ADDRESS	VARCHAR2(1024)
PROTOCOL	NUMBER
RULE	CLOB
RULE_SET	VARCHAR2(65)
TRANSFORMATION	VARCHAR2(61)
The DBA_QUEUE_SUBSCRIBERS	
view returns a list of all subscribers on all queues in the database.	
Table 9-13 DBA_QUEUE_SUBSCRIBERS View	
Column	Datatype
---	---
OWNER	VARCHAR2(30)
QUEUE_NAME	VARCHAR2(30)
QUEUE_TABLE	VARCHAR2(30)
CONSUMER_NAME	VARCHAR2(30)
ADDRESS	VARCHAR2(1024)
PROTOCOL	NUMBER
TRANSFORMATION	VARCHAR2(61)
DELIVERY_MODE	VARCHAR2(22)
QUEUE_TO_QUEUE	VARCHAR2(5)
The USER_QUEUE_SUBSCRIBERS	
view returns a list of subscribers on queues in the schema of the current user.	
Table 9-14 USER_QUEUE_SUBSCRIBERS View	
Column	Datatype
---	---
QUEUE_NAME	VARCHAR2(30)
QUEUE_TABLE	VARCHAR2(30)
CONSUMER_NAME	VARCHAR2(30)
ADDRESS	VARCHAR2(1024)
PROTOCOL	NUMBER
TRANSFORMATION	VARCHAR2(61)
DELIVERY_MODE	VARCHAR2(22)
QUEUE_TO_QUEUE	VARCHAR2(5)
The ALL_QUEUE_SUBSCRIBERS	
view returns a list of subscribers to queues that the current user has privileges to dequeue from.	
Table 9-15 ALL_QUEUE_SUBSCRIBERS View	
Column	Datatype
---	---
OWNER	VARCHAR2(30)
QUEUE_NAME	VARCHAR2(30)
QUEUE_TABLE	VARCHAR2(30)
CONSUMER_NAME	VARCHAR2(30)
ADDRESS	VARCHAR2(1024)
PROTOCOL	NUMBER
TRANSFORMATION	VARCHAR2(61)
DELIVERY_MODE	VARCHAR2(22)
QUEUE_TO_QUEUE	VARCHAR2(5)
The GV$AQ	
view provides information about the number of messages in different states for the whole database.	
In a Real Application Clusters environment, each instance keeps its own Oracle Streams AQ statistics information in its own System Global Area (SGA), and does not have knowledge of the statistics gathered by other instances. When a GV$AQ	
view is queried by an instance, all other instances funnel their Oracle Streams AQ statistics information to the instance issuing the query.	
Table 9-16 GV$AQ View	
Column	Datatype
---	---
QID	NUMBER
WAITING	NUMBER
READY	NUMBER
EXPIRED	NUMBER
TOTAL_WAIT	NUMBER
AVERAGE_WAIT	NUMBER
The V$AQ	
view provides information about the number of messages in different states for specific instances.	
Table 9-17 V$AQ View	
Column	Datatype
---	---
QID	NUMBER
WAITING	NUMBER
READY	NUMBER
EXPIRED	NUMBER
TOTAL_WAIT	NUMBER
AVERAGE_WAIT	NUMBER
The AQ$INTERNET_USERS	
view provides information about the agents registered for Internet access to Oracle Streams AQ. It also provides the list of database users that each Internet agent maps to.	
Table 9-18 AQ$INTERNET_USERS View	
Column	Datatype
---	---
AGENT_NAME	VARCHAR2(30)
DB_USERNAME	VARCHAR2(30)
HTTP_ENABLED	VARCHAR2(4)
FTP_ENABLED	VARCHAR2(4)
The DBA_TRANSFORMATIONS	
view displays all the transformations in the database. These transformations can be specified with Advanced Queue operations like enqueue, dequeue and subscribe to automatically integrate transformations in messaging. This view is accessible only to users having DBA privileges.	
Table 9-19 DBA_TRANSFORMATIONS View	
Column	Datatype
---	---
TRANSFORMATION_ID	NUMBER
OWNER	VARCHAR2(30)
NAME	VARCHAR2(30)
FROM_TYPE	VARCHAR2(61)
TO_TYPE	VARCHAR2(91)
The DBA_ATTRIBUTE_TRANSFORMATIONS	
view displays the transformation functions for all the transformations in the database.	
Table 9-20 DBA_ATTRIBUTE_TRANSFORMATIONS View	
Column	Datatype
---	---
TRANSFORMATION_ID	NUMBER
OWNER	VARCHAR2(30)
NAME	VARCHAR2(30)
FROM_TYPE	VARCHAR2(61)
TO_TYPE	VARCHAR2(91)
ATTRIBUTE	NUMBER
ATTRIBUTE_TRANSFORMATION	VARCHAR2(4000)
The USER_TRANSFORMATIONS	
view displays all the transformations owned by the user. To view the transformation definition, query USER_ATTRIBUTE_TRANSFORMATIONS	
.	
The USER_ATTRIBUTE_TRANSFORMATIONS	
view displays the transformation functions for all the transformations of the user.	
Table 9-22 USER_ATTRIBUTE_TRANSFORMATIONS View	
Column	Datatype
---	---
TRANSFORMATION_ID	NUMBER
NAME	VARCHAR2(30)
FROM_TYPE	VARCHAR2(61)
TO_TYPE	VARCHAR2(91)
ATTRIBUTE	NUMBER
ATTRIBUTE_TRANSFORMATION	VARCHAR2(4000)
This chapter describes the Oracle Streams Advanced Queuing (AQ) PL/SQL operational interface.	
This chapter contains these topics:	
See Also:	
For secure queues, you must specify the sender_id	
in the messages_properties	
parameter. See "MESSAGE_PROPERTIES_T Type" in PL/SQL Packages and Types Reference for more information about sender_id	
.	
When you use secure queues, the following are required:	
You must have created a valid Oracle Streams AQ agent using DBMS_AQADM.CREATE_AQ_AGENT	
.	
You must map sender_id	
to a database user with enqueue privileges on the secure queue. Use DBMS_AQADM.ENABLE_DB_ACCESS	
to do this.	
This procedure adds a message to the specified queue.	
It is not possible to update the message payload after a message has been enqueued. If you want to change the message payload, then you must dequeue the message and enqueue a new message.	
To store a payload of type RAW	
, Oracle Streams AQ creates a queue table with LOB	
column as the payload repository. The maximum size of the payload is determined by which programmatic interface you use to access Oracle Streams AQ. For PL/SQL, Java and precompilers the limit is 32K; for the OCI the limit is 4G.	
If a message is enqueued to a multiconsumer queue with no recipient and the queue has no subscribers (or rule-based subscribers that match this message), then Oracle error ORA 24033 is raised. This is a warning that the message will be discarded because there are no recipients or subscribers to whom it can be delivered.	
If several messages are enqueued in the same second, then they all have the same enq_time	
. In this case the order in which messages are dequeued depends on step_no	
, a variable that is monotonically increasing for each message that has the same enq_time	
. There is no situation when both enq_time	
and step_no	
are the same for two messages enqueued in the same session.	
The enqueue_options	
parameter specifies the options available for the enqueue operation. It has the following attributes:	
The visibility	
attribute specifies the transactional behavior of the enqueue request. ON_COMMIT	
(the default) makes the enqueue is part of the current transaction. IMMEDIATE	
makes the enqueue operation an autonomous transaction which commits at the end of the operation.	
Do not use the IMMEDIATE	
option when you want to use LOB locators. LOB locators are valid only for the duration of the transaction. Your locator will not be valid, because the immediate	
option automatically commits the transaction.	
You must set the visibility	
attribute to IMMEDIATE	
to use buffered messaging.	
The relative_msgid	
attribute specifies the message identifier of the message referenced in the sequence deviation operation. This parameter is ignored unless sequence_deviation	
is specified with the BEFORE	
attribute.	
The sequence_deviation	
attribute specifies when the message should be dequeued, relative to other messages already in the queue. BEFORE	
puts the message ahead of the message specified by relative_msgid	
. TOP	
puts the message ahead of any other messages.	
Specifying sequence_deviation	
for a message introduces some restrictions for the delay and priority values that can be specified for this message. The delay of this message must be less than or equal to the delay of the message before which this message is to be enqueued. The priority of this message must be greater than or equal to the priority of the message before which this message is to be enqueued.	
Note: Thesequence_deviation attribute has no effect in releases prior to Oracle Streams AQ 10g Release 1 (10.1) if message_grouping is set to TRANSACTIONAL . The sequence deviation feature is deprecated in Oracle Streams AQ 10g Release 2 (10.2).	
transformation	
The transformation	
attribute specifies a transformation that will be applied before enqueuing the message. The return type of the transformation function must match the type of the queue.	
If the delivery_mode	
attribute is the default PERSISTENT	
, then the message is enqueued as a persistent message. If it is set to BUFFERED	
, then the message is enqueued as an buffered message. Null values are not allowed.	
The message_properties	
parameter contains the information that Oracle Streams AQ uses to manage individual messages. It has the following attributes:	
The priority	
attribute specifies the priority of the message. It can be any number, including negative numbers. A smaller number indicates higher priority.	
The delay	
attribute specifies the number of seconds during which a message is in the WAITING	
state. After this number of seconds, the message is in the READY	
state and available for dequeuing. If you specify NO_DELAY	
, then the message is available for immediate dequeuing. Dequeuing by msgid	
overrides the delay	
specification.	
Note: Delay is not supported with buffered messaging.	
The expiration	
attribute specifies the number of seconds during which the message is available for dequeuing, starting from when the message reaches the READY	
state. If the message is not dequeued before it expires, then it is moved to the exception queue in the EXPIRED	
state. If you specify NEVER	
, then the message does not expire.	
Note: Message delay and expiration are enforced by the queue monitor (QMN) background processes. You must start the QMN processes for the database if you intend to use the delay and expiration features of Oracle Streams AQ.	
The correlation	
attribute is an identifier supplied by the producer of the message at enqueue time.	
The attemps	
attribute specifies the number of attempts that have been made to dequeue the message. This parameter cannot be set at enqueue time.	
The recipient_list	
parameter is valid only for queues that allow multiple consumers. The default recipients are the queue subscribers.	
The exception_queue	
attribute specifies the name of the queue into which the message is moved if it cannot be processed successfully. If the exception queue specified does not exist at the time of the move, then the message is moved to the default exception queue associated with the queue table, and a warning is logged in the alert log.	
Any value for delivery_mode	
specified in message properties at enqueue time is ignored. The value specified in enqueue options is used to set the delivery mode of the message. If the delivery mode in enqueue options is left unspecified, then it defaults to persistent.	
The enqueue_time	
attribute specifies the time the message was enqueued. This value is determined by the system and cannot be set by the user at enqueue time.	
Note: Because information about seasonal changes in the system clock (switching between standard time and daylight-saving time, for example) is stored with each queue table, seasonal changes are automatically reflected inenqueue_time . If the system clock is changed for some other reason, then you must restart the database for Oracle Streams AQ to pick up the changed time.	
The state	
attribute specifies the state of the message at the time of the dequeue. This parameter cannot be set at enqueue time.	
The sender_id	
attribute is an identifier of type aq$_agent	
specified at enqueue time by the message producer.	
The original_msgid attribute is used by Oracle Streams AQ for propagating messages.	
The transaction_group	
attribute specifies the transaction group for the message. This attribute is set only by DBMS_AQ.DEQUEUE_ARRAY	
. This attribute cannot be used to set the transaction group of a message through DBMS_AQ.ENQUEUE	
or DBMS_AQ.ENQUEUE_ARRAY	
.	
The user_property	
attribute is optional. It is used to store additional information about the payload.	
The examples in this chapter use the same users, message types, queue tables, and queues as do the examples in Chapter 8, "Oracle Streams AQ Administrative Interface". If you have not already created these structures in your test environment, then you must run the following examples:	
Example 8-3, "Creating a Queue Table for Messages of Object Type"	
Example 8-5, "Creating a Queue Table for Messages of LOB Type"	
Example 8-8, "Creating Queue Tables for Prioritized Messages and Multiple Consumers"	
Example 8-23, "Creating a Queue for Messages of Object Type"	
Example 8-28, "Creating a Queue for Prioritized Messages and Multiple Consumers"	
For Example 8-1, you must connect as a user with administrative privileges. For the other examples in the preceding list, you can connect as user test_adm	
. After you have created the queues, you must start them as shown in "Starting a Queue". Except as noted otherwise, you can connect as ordinary queue user 'test'	
to run all examples appearing in this chapter.	
Example 10-1 Enqueuing a Message, Specifying Queue Name and Payload	
Example 10-2 Enqueuing a Message, Specifying Priority	
Enqueuing a LOB Type Message	
Example 10-3 creates procedure blobenqueue()	
using the test.lob_type	
message payload object type created in Example 8-1. On enqueue, the LOB attribute is set to EMPTY_BLOB	
. After the enqueue completes, but before the transaction is committed, the LOB attribute is selected from the user_data	
column of the test.lob_qtab	
queue table. The LOB data is written to the queue using the LOB	
interfaces (which are available through both OCI and PL/SQL). The actual enqueue operation is shown in	
On dequeue, the message payload will contain the LOB locator. You can use this LOB locator after the dequeue, but before the transaction is committed, to read the LOB data. This is shown in Example 10-14.	
Example 10-3 Creating an Enqueue Procedure for LOB Type Messages	
Enqueuing Multiple Messages to a Single-Consumer Queue	
Example 10-5 enqueues six messages to test.obj_queue	
. These messages are dequeued in Example 10-17.	
Example 10-5 Enqueuing Multiple Messages	
Enqueuing Multiple Messages to a Multiconsumer Queue	
Example 10-6 requires that you connect as user 'test_adm	
' to add subscribers RED	
and GREEN	
to queue test.multiconsumer_queue	
. The subscribers are required for Example 10-7.	
Example 10-6 Adding Subscribers RED and GREEN	
Example 10-7 enqueues multiple messages from sender 001. MESSAGE 1 is intended for all queue subscribers. MESSAGE 2 is intended for RED and BLUE. These messages are dequeued in Example 10-17.	
Example 10-7 Enqueuing Multiple Messages to a Multiconsumer Queue	
Enqueuing Grouped Messages	
Example 10-8 enqueues three groups of messages, with three messages in each group. These messages are dequeued in Example 10-16.	
Example 10-8 Enqueuing Grouped Messages	
Enqueuing a Message with Delay and Expiration	
In Example 10-9, an application wants a message to be dequeued no earlier than a week from now, but no later than three weeks from now. Because expiration is calculated from the earliest dequeue time, this requires setting the expiration time for two weeks.	
Example 10-9 Enqueuing a Message, Specifying Delay and Expiration	
Example 10-10 Enqueuing a Message, Specifying a Transformation	
See Also: "Using Advanced Queuing Interfaces" in Oracle Objects for OLE Developer's Guide for OO4O message-enqueuing examples	
Use the ENQUEUE_ARRAY	
function to enqueue an array of payloads using a corresponding array of message properties. The output is an array of message identifiers of the enqueued messages. The function returns the number of messages successfully enqueued.	
Array enqueuing is not supported for buffered messages, but you can still use DBMS_AQ.ENQUEUE_ARRAY()	
to enqueue buffered messages by setting array_size	
to 1	
.	
The message_properties_array	
parameter is an array of message properties. Each element in the payload array must have a corresponding element in this record. All messages in an array have the same delivery mode.	
The payload structure can be a VARRAY or nested table. The message IDs are returned into an array of RAW(16) entries of type DBMS_AQ.msgid_array_t	
.	
As with array operations in the relational world, it is not possible to provide a single optimum array size that will be correct in all circumstances. Application developers must experiment with different array sizes to determine the optimal value for their particular applications.	
Example 10-11 Enqueuing an Array of Messages	
This procedure specifies which queue or queues to monitor.	
This call takes a list of agents as an argument. Each agent is identified by a unique combination of name, address, and protocol.	
You specify the queue to be monitored in the address field of each agent listed. Agents must have dequeue privileges on each monitored queue. You must specify the name of the agent when monitoring multiconsumer queues; but you must not specify an agent name for single-consumer queues. Only local queues are supported as addresses. Protocol is reserved for future use.	
The listen_delivery_mode	
parameter specifies what types of message interest the agent. If it is the default PERSISTENT	
, then the agent is informed about persistent messages only. If it is set to BUFFERED	
, then the agent is informed about buffered messages only. If it is set to PERSISTENT_OR_BUFFERED	
, then the agent is informed about both types.	
This is a blocking call that returns the agent and message type when there is a message ready for consumption for an agent in the list. If there are messages for more than one agent, then only the first agent listed is returned. If there are no messages found when the wait time expires, then an error is raised.	
A successful return from the listen	
call is only an indication that there is a message for one of the listed agents in one of the specified queues. The interested agent must still dequeue the relevant message.	
Example 10-12 Listening to a Single-Consumer Queue with Zero Timeout	
Even though both test.obj_queue	
and test.priority_queue	
contain messages (enqueued in Example 10-1 and Example 10-2 respectively) Example 10-12 returns only:	
If the order of agents in test_agent_list	
is reversed, so test.priority_queue	
appears before test.obj_queue	
, then the example returns:	
This procedure dequeues a message from the specified queue. Beginning with Oracle Streams AQ 10g Release 2 (10.2), you can choose to dequeue only persistent messages, only buffered messages, or both. See delivery_mode	
in the following list of dequeue options.	
The dequeue_options	
parameter specifies the options available for the dequeue operation. It has the following attributes:	
A consumer can dequeue a message from a queue by supplying the name that was used in the AQ$_AGENT	
type of the DBMS_AQADM	
.ADD_SUBSCRIBER	
procedure or the recipient list of the message properties. If a value is specified, then only those messages matching consumer_name	
are accessed. If a queue is not set up for multiple consumers, then this field must be set to NULL (the default).	
The dequeue_mode	
attribute specifies the locking behavior associated with the dequeue. If BROWSE	
is specified, then the message is dequeued without acquiring any lock. If LOCKED	
is specified, then the message is dequeued with a write lock that lasts for the duration of the transaction. If REMOVE	
is specified, then the message is dequeued and deleted (the default). The message can be retained in the queue table based on the retention properties. If REMOVE_NO_DATA	
is specified, then the message is marked as updated or deleted.	
The navigation	
attribute specifies the position of the dequeued message. If FIRST_MESSAGE	
is specified, then the first available message matching the search criteria is dequeued. If NEXT_MESSAGE	
is specified, then the next available message matching the search criteria is dequeued (the default). If the previous message belongs to a message group, then the next available message matching the search criteria in the message group is dequeued.	
If NEXT_TRANSACTION	
is specified, then any messages in the current transaction group are skipped and the first message of the next transaction group is dequeued. This setting can only be used if message grouping is enabled for the queue.	
The visibility	
attribute specifies when the new message is dequeued. If ON_COMMIT	
is specified, then the dequeue is part of the current transaction (the default). If IMMEDIATE	
is specified, then the dequeue operation is an autonomous transaction that commits at the end of the operation. The visibility	
attribute is ignored in BROWSE	
dequeue mode.	
Visibility must always be IMMEDIATE	
when dequeuing messages with delivery mode DBMS_AQ.BUFFERED	
or DBMS_AQ.PERSISTENT_OR_BUFFERED	
.	
The wait	
attribute specifies the wait time if there is currently no message available matching the search criteria. If a number is specified, then the operation waits that number of seconds. If FOREVER	
is specified, then the operation waits forever (the default). If NO_WAIT	
is specified, then the operation does not wait.	
The msgid	
attribute specifies the message identifier of the dequeued message. Only messages in the READY	
state are dequeued unless msgid	
is specified.	
The correlation attribute specifies the correlation identifier of the dequeued message. The correlation identifier cannot be changed between successive dequeue calls without specifying the FIRST_MESSAGE	
navigation option.	
Correlation identifiers are application-defined identifiers that are not interpreted by Oracle Streams AQ. You can use special pattern matching characters, such as the percent sign and the underscore. If more than one message satisfies the pattern, then the order of dequeuing is indeterminate, and the sort order of the queue is not honored.	
Note: Although dequeue optionscorrelation and deq_condition are both supported for buffered messages, it is not possible to create indexes to optimize these queries.	
The deq_condition	
attribute is a Boolean expression similar to the WHERE clause of a SQL query. This Boolean expression can include conditions on message properties, user data properties (object payloads only), and PL/SQL or SQL functions.	
To specify dequeue conditions on a message payload (object payload), use attributes of the object type in clauses. You must prefix each attribute with tab.user_data	
as a qualifier to indicate the specific column of the queue table that stores the payload.	
The deq_condition	
attribute cannot exceed 4000 characters. If more than one message satisfies the dequeue condition, then the order of dequeuing is indeterminate, and the sort order of the queue is not honored.	
The transformation	
attribute specifies a transformation that will be applied after the message is dequeued but before returning the message to the caller.	
The delivery_mode	
attribute specifies what types of messages to dequeue. If it is set to DBMS_AQ.PERSISTENT	
, then only persistent messages are dequeued. If it is set to DBMS_AQ.BUFFERED	
, then only buffered messages are dequeued.	
If it is the default DBMS_AQ.PERSISTENT_OR_BUFFERED	
, then both persistent and buffered messages are dequeued. The delivery_mode	
attribute in the message properties of the dequeued message indicates whether the dequeued message was buffered or persistent.	
The dequeue order is determined by the values specified at the time the queue table is created unless overridden by the message identifier and correlation identifier in dequeue options.	
The database consistent read mechanism is applicable for queue operations. For example, a BROWSE	
call may not see a message that is enqueued after the beginning of the browsing transaction.	
In a commit-time queue, a new feature of Oracle Streams AQ 10g Release 2 (10.2), messages are not visible to BROWSE	
or DEQUEUE	
calls until a deterministic order can be established among them based on an approximate CSCN.	
If the navigation	
attribute of the dequeue_conditions	
parameter is NEXT	
_MESSAGE	
(the default), then subsequent dequeues retrieve messages from the queue based on the snapshot obtained in the first dequeue. A message enqueued after the first dequeue command, therefore, will be processed only after processing all remaining messages in the queue. This is not a problem if all the messages have already been enqueued or if the queue does not have priority-based ordering. But if an application must process the highest-priority message in the queue, then it must use the FIRST_MESSAGE	
navigation option.	
Note: It can also be more efficient to use theFIRST_MESSAGE navigation option when there are messages being concurrently enqueued. If the FIRST_MESSAGE option is not specified, then Oracle Streams AQ continually generates the snapshot as of the first dequeue command, leading to poor performance. If the FIRST_MESSAGE option is specified, then Oracle Streams AQ uses a new snapshot for every dequeue command.	
Messages enqueued in the same transaction into a queue that has been enabled for message grouping form a group. If only one message is enqueued in the transaction, then this effectively forms a group of one message. There is no upper limit to the number of messages that can be grouped in a single transaction.	
In queues that have not been enabled for message grouping, a dequeue in LOCKED	
or REMOVE	
mode locks only a single message. By contrast, a dequeue operation that seeks to dequeue a message that is part of a group locks the entire group. This is useful when all the messages in a group must be processed as a unit.	
When all the messages in a group have been dequeued, the dequeue returns an error indicating that all messages in the group have been processed. The application can then use NEXT_TRANSACTION	
to start dequeuing messages from the next available group. In the event that no groups are available, the dequeue times out after the period specified in the wait	
attribute of dequeue_options	
.	
Typically, you expect the consumer of messages to access messages using the dequeue interface. You can view processed messages or messages still to be processed by browsing by message ID or by using SELECT	
commands.	
Example 10-13 returns the message enqueued in Example 10-1. It returns:	
Example 10-13 Dequeuing Object Type Messages	
Dequeuing LOB Type Messages	
Example 10-14 creates procedure blobdequeue()	
to dequeue the LOB type messages enqueued in Example 10-4. The actual dequeue is shown in Example 10-15. It returns:	
Example 10-14 Creating a Dequeue Procedure for LOB Type Messages	
Dequeuing Grouped Messages	
You can dequeue the grouped messages enqueued in Example 10-8 by running Example 10-16. It returns:	
Example 10-16 Dequeuing Grouped Messages	
Dequeuing from a Multiconsumer Queue	
You can dequeue the messages enqueued for RED	
in Example 10-7 by running Example 10-17. If you change RED	
to GREEN	
and then to BLUE	
, you can use it to dequeue their messages as well. The output of the example will be different in each case.	
RED	
is a subscriber to the multiconsumer queue and is also a specified recipient of MESSAGE 2, so it gets both messages:	
GREEN	
is only a subscriber, so it gets only those messages in the queue for which no recipients have been specified (in this case, MESSAGE 1):	
BLUE	
, while not a subscriber to the queue, is nevertheless specified to receive MESSAGE 2.	
Example 10-17 Dequeuing Messages for RED from a Multiconsumer Queue	
Example 10-18 browses messages enqueued in Example 10-5 until it finds PINK, which it removes. The example returns:	
Dequeue Modes	
Example 10-18 Dequeue in Browse Mode and Remove Specified Message	
Example 10-19 previews in locked mode the messages enqueued in Example 10-5 until it finds PURPLE, which it removes. The example returns:	
Example 10-19 Dequeue in Locked Mode and Remove Specified Message	
See Also: "Using Advanced Queuing Interfaces" in Oracle Objects for OLE Developer's Guide for OO4O message-dequeuing examples	
Use the DEQUEUE_ARRAY	
function to dequeue an array of payloads and a corresponding array of message properties. The output is an array of payloads, message IDs, and message properties of the dequeued messages. The function returns the number of messages successfully dequeued.	
Array dequeuing is not supported for buffered messages, but you can still use DBMS_AQ.DEQUEUE_ARRAY()	
to dequeue buffered messages by setting array_size	
to 1	
.	
The payload structure can be a VARRAY or nested table. The message identifiers are returned into an array of RAW(16) entries of type DBMS_AQ.msgid_array_t	
. The message properties are returned into an array of type DBMS_AQ.message_properties_array_t	
.	
As with array operations in the relational world, it is not possible to provide a single optimum array size that will be correct in all circumstances. Application developers must experiment with different array sizes to determine the optimal value for their particular applications.	
All dequeue options available with DBMS_AQ.DEQUEUE	
are also available with DBMS_AQ.DEQUEUE_ARRAY	
. Beginning with Oracle Streams AQ 10g Release 2 (10.2), you can choose to dequeue only persistent messages, only buffered messages, or both. In addition, the navigation	
attribute of dequeue_options	
offers two options specific to DBMS_AQ.DEQUEUE_ARRAY	
.	
When dequeuing messages, you might want to dequeue all the messages for a transaction group with a single call. You might also want to dequeue messages that span multiple transaction groups. You can specify either of these methods by using one of the following navigation methods:	
NEXT_MESSAGE_ONE_GROUP	
FIRST_MESSAGE_ONE_GROUP	
NEXT_MESSAGE_MULTI_GROUP	
FIRST_MESSAGE_MULTI_GROUP	
Navigation method NEXT_MESSAGE_ONE_GROUP	
dequeues messages that match the search criteria from the next available transaction group into an array. Navigation method FIRST_MESSAGE_ONE_GROUP	
resets the position to the beginning of the queue and dequeues all the messages in a single transaction group that are available and match the search criteria.	
The number of messages dequeued is determined by an array size limit. If the number of messages in the transaction group exceeds array_size	
, then multiple calls to DEQUEUE_ARRAY	
must be made to dequeue all the messages for the transaction group.	
Navigation methods NEXT_MESSAGE_MULTI_GROUP	
and FIRST_MESSAGE_MULTI_GROUP	
work like their ONE_GROUP	
counterparts, but they are not limited to a single transaction group. Each message that is dequeued into the array has an associated set of message properties. Message property transaction_group	
determines which messages belong to the same transaction group.	
Example 10-20 dequeues the messages enqueued in Example 10-11. It returns:	
Example 10-20 Dequeuing an Array of Messages	
This procedure registers an e-mail address, user-defined PL/SQL procedure, or HTTP URL for message notification.	
Note: In releases before Oracle Database 10g Release 2 (10.2), the Oracle Streams AQ notification feature was not supported for queues with names longer than 30 characters. This restriction no longer applies. The 24-character limit on names of user-generated queues still applies. See "Creating a Queue".	
The reg_list	
parameter is a list of SYS.AQ$_REG_INFO	
objects. You can specify notification quality of service, a new feature in Oracle Streams AQ 10g Release 2 (10.2), with the qosflags	
attribute of SYS.AQ$_REG_INFO	
.	
The reg_count	
parameter specifies the number of entries in the reg_list	
. Each subscription requires its own reg_list	
entry. Interest in several subscriptions can be registered at one time.	
When PL/SQL notification is received, the Oracle Streams AQ message properties descriptor that the callback is invoked with specifies the delivery_mode	
of the message notified as DBMS_AQ.PERSISTENT	
or DBMS_AQ.BUFFERED	
.	
See Also: "AQ Notification Descriptor Type" for more information on the message properties descriptor	
If you register for e-mail notifications, then you must set the host name and port name for the SMTP server that will be used by the database to send e-mail notifications. If required, you should set the send-from e-mail address, which is set by the database as the sent from	
field. You need a Java-enabled database to use this feature.	
If you register for HTTP notifications, then you might want to set the host name and port number for the proxy server and a list of no-proxy domains that will be used by the database to post HTTP notifications.	
An internal queue called SYS.AQ_SRVNTFN_TABLE_Q	
stores the notifications to be processed by the job queue processes. If notification fails, then Oracle Streams AQ retries the failed notification up to MAX_RETRIES	
attempts.	
Note: You can change theMAX_RETRIES and RETRY_DELAY properties of SYS.AQ_SRVNTFN_TABLE_Q . The new settings are applied across all notifications.	
Example 10-21 Registering for Notifications	
This procedure unregisters an e-mail address, user-defined PL/SQL procedure, or HTTP URL for message notification.	
This procedure posts to a list of anonymous subscriptions, allowing all clients who are registered for the subscriptions to get notifications of persistent messages. This feature is not supported with buffered messages.	
The count	
parameter specifies the number of entries in the post_list	
. Each posted subscription must have its own entry in the post_list	
. Several subscriptions can be posted to at one time.	
The post_list	
parameter specifies the list of anonymous subscriptions to which you want to post. It has three attributes:	
The name	
attribute specifies the name of the anonymous subscription to which you want to post.	
The namespace	
attribute specifies the namespace of the subscription. To receive notifications from other applications through DBMS_AQ.POST	
the namespace must be DBMS_AQ.NAMESPACE_ANONYMOUS	
.	
The payload	
attribute specifies the payload to be posted to the anonymous subscription. It is possible for no payload to be associated with this call.	
This call provides a best-effort guarantee. A notification goes to registered clients at most once. This call is primarily used for lightweight notification. If an application needs more rigid guarantees, then it can enqueue to a queue.	
This procedure creates an entry for an Oracle Streams AQ agent in the Lightweight Directory Access Protocol (LDAP) server.	
The agent	
parameter specifies the Oracle Streams AQ Agent that is to be registered in LDAP server.	
The certificate	
parameter specifies the location (LDAP distinguished name) of the OrganizationalPerson	
entry in LDAP whose digital certificate (attribute usercertificate	
) is to be used for this agent. For example, "cn=OE, cn=ACME, cn=com	
" is a distinguished name for a OrganizationalPerson	
OE	
whose certificate will be used with the specified agent. If the agent does not have a digital certificate, then this parameter is defaulted to null.	
Part IV describes how to use Oracle JMS and Oracle Streams Advanced Queuing (AQ).	
This part contains the following chapters:	
Chapter 16, "Oracle JMS Types Examples"	
See Also:	
This chapter describes the Oracle Java Message Service (JMS) interface to Oracle Streams Advanced Queuing (AQ).
This chapter contains these topics:
This section contains these topics:
This section contains these topics:
A ConnectionFactory
encapsulates a set of connection configuration parameters that has been defined by an administrator. A client uses it to create a connection with a JMS provider. In this case Oracle JMS, part of Oracle Database, is the JMS provider.
The three types of ConnectionFactory
objects are:
ConnectionFactory
QueueConnectionFactory
TopicConnectionFactory
You can use the AQjmsFactory
class to obtain a handle to a ConnectionFactory
, QueueConnectionFactory
, or TopicConnectionFactory
object.
To obtain a ConnectionFactory
, which supports both point-to-point and publish/subscribe operations, use AQjmsFactory.getConnectionFactory()
. To obtain a QueueConnectionFactory
, use AQjmsFactory.getQueueConnectionFactory()
. To obtain a TopicConnectionFactory
, use AQjmsFactory.getTopicConnectionFactory()
.
The ConnectionFactory
, QueueConnectionFactory
, or TopicConnectionFactory
can be created using hostname, port number, and SID driver or by using JDBC URL and properties.
A JMS administrator can register ConnectionFactory
objects in a Lightweight Directory Access Protocol (LDAP) server. The following setup is required to enable Java Naming and Directory Interface (JNDI) lookup in JMS:
When the Oracle Database server is installed, the database must be registered with the LDAP server. This can be accomplished using the Database Configuration Assistant (DBCA). Figure 11-1 shows the structure of Oracle Streams AQ entries in the LDAP server. ConnectionFactory
information is stored under <cn=OracleDBConnections>
, while topics and queues are stored under <cn=OracleDBQueues>
.
GLOBAL_TOPIC_ENABLED
. The GLOBAL_TOPIC_ENABLED
system parameter for the database must be set to TRUE
. This ensures that all queues and topics created in Oracle Streams AQ are automatically registered with the LDAP server. This parameter can be set by using ALTER SYSTEM SET GLOBAL_TOPIC_ENABLED = TRUE
.
ConnectionFactory
Objects After the database has been set up to use an LDAP server, the JMS administrator can register ConnectionFactory
, QueueConnectionFactory
, and TopicConnectionFactory
objects in LDAP by using AQjmsFactory.registerConnectionFactory()
.
The registration can be accomplished in one of the following ways:
Connect directly to the LDAP server
The user must have the GLOBAL_AQ_USER_ROLE
to register connection factories in LDAP.
To connect directly to LDAP, the parameters for the registerConnectionFactory
method include the LDAP context, the name of the ConnectionFactory
, QueueConnectionFactory
, or TopicConnectionFactory
, hostname, database SID, port number, JDBC driver (thin or oci8) and factory type (queue or topic).
Connect to LDAP through the database server
The user can log on to Oracle Database first and then have the database update the LDAP entry. The user that logs on to the database must have the AQ_ADMINISTRATOR_ROLE
to perform this operation.
To connect to LDAP through the database server, the parameters for the registerConnectionFactory
method include a JDBC connection (to a user having AQ_ADMINISTRATOR_ROLE
), the name of the ConnectionFactory
, QueueConnectionFactory
, or TopicConnectionFactory
, hostname, database SID, port number, JDBC driver (thin or oci8) and factory type (queue or topic).
A JMS Connection
is an active connection between a client and its JMS provider. A JMS Connection
performs several critical services:
Encapsulates either an open connection or a pool of connections with a JMS provider
Typically represents an open TCP/IP socket (or a set of open sockets) between a client and a provider's service daemon
Provides a structure for authenticating clients at the time of its creation
Creates Sessions
Provides connection metadata
Supports an optional ExceptionListener
A JMS Connection
to the database can be created by invoking createConnection()
, createQueueConnection()
, or createTopicConnection()
and passing the parameters username
and password
on the ConnectionFactory
, QueueConnectionFactory
, or TopicConnectionFactory
object respectively.
Some of the methods that are supported on the Connection
object are
start()
This method starts or restart delivery of incoming messages.
stop()
This method temporarily stops delivery of incoming messages. When a Connection
object is stopped, delivery to all of its message consumers is inhibited. Also, synchronous receive's block and messages are not delivered to message listener.
close()
This method closes the JMS session and releases all associated resources.
createSession(true, 0)
This method creates a JMS Session
using a JMS Connection
instance.
createQueueSession(true,
0)
This method creates a QueueSession
.
createTopicSession(true,
0
)
This method creates a TopicSession
.
setExceptionListener(ExceptionListener)
This method sets an exception listener for the Connection
. This allows a client to be notified of a problem asynchronously. If a Connection
only consumes messages, then it has no other way to learn it has failed.
getExceptionListener()
This method gets the ExceptionListener
for this Connection
.
A JMS client typically creates a Connection
, a Session
and a number of MessageProducer
and MessageConsumer
objects. In the current version only one open Session
for each Connection
is allowed, except in the following cases:
If the JDBC oci8 driver is used to create the JMS connection
If the user provides an OracleOCIConnectionPool
instance during JMS connection creation
When a Connection
is created it is in stopped mode. In this state no messages can be delivered to it. It is typical to leave the Connection
in stopped mode until setup is complete. At that point the Connection
start()
method is called and messages begin arriving at the Connection
consumers. This setup convention minimizes any client confusion that can result from asynchronous message delivery while the client is still in the process of setup.
It is possible to start a Connection
and to perform setup subsequently. Clients that do this must be prepared to handle asynchronous message delivery while they are still in the process of setting up. A MessageProducer
can send messages while a Connection
is stopped.
A JMS Session
is a single threaded context for producing and consuming messages. Although it can allocate provider resources outside the Java Virtual Machine (JVM), it is considered a lightweight JMS object.
A Session
serves several purposes:
Constitutes a factory for MessageProducer
and MessageConsumer
objects
Provides a way to get a handle to destination objects (queues/topics)
Supplies provider-optimized message factories
Supports a single series of transactions that combines work spanning session MessageProducer
and MessageConsumer
objects, organizing these into units
Defines a serial order for the messages it consumes and the messages it produces
Serializes execution of MessageListener
objects registered with it
In Oracle Database 10g, you can create as many JMS Sessions
as resources allow using a single JMS Connection
, when using either JDBC thin or JDBC thick (OCI) drivers.
Because a provider can allocate some resources on behalf of a Session
outside the JVM, clients should close them when they are not needed. Relying on garbage collection to eventually reclaim these resources may not be timely enough. The same is true for MessageProducer
and MessageConsumer
objects created by a Session
.
Methods on the Session
object include:
commit()
This method commits all messages performed in the transaction and releases locks currently held.
rollback()
This method rolls back any messages accomplished in the transaction and release locks currently held.
close()
This method closes the Session
.
getDBConnection()
This method gets a handle to the underlying JDBC connection. This handle can be used to perform other SQL DML operations as part of the same Session
. The method is specific to Oracle JMS.
acknowledge()
This method acknowledges message receipt in a nontransactional session.
recover()
This method restarts message delivery in a nontransactional session. In effect, the series of delivered messages in the session is reset to the point after the last acknowledged message.
The following are some Oracle JMS extensions:
createQueueTable()
This method creates a queue table.
getQueueTable()
This method gets a handle to an existing queue table.
createQueue()
This method creates a queue.
getQueue()
This method gets a handle to an existing queue.
createTopic()
This method creates a topic.
getTopic()
This method gets a handle to an existing topic.
The Session
object must be cast to AQjmsSession
to use any of the extensions.
Note: The JMS specification expects providers to return null messages when receives are accomplished on a JMSConnection instance that has not been started. After you create a |
A Destination
is an object a client uses to specify the destination where it sends messages, and the source from which it receives messages. A Destination
object can be a Queue
or a Topic
. In Oracle Streams AQ, these map to a schema.queue
at a specific database. Queue
maps to a single-consumer queue, and Topic
maps to a multiconsumer queue.
Destination
objects are created from a Session
object using the following domain-specific Session
methods:
AQjmsSession.getQueue(queue_owner, queue_name)
This method gets a handle to a JMS queue.
AQjmsSession.getTopic(topic_owner, topic_name)
This method gets a handle to a JMS topic.
The database can be configured to register schema objects with an LDAP server. If a database has been configured to use LDAP and the GLOBAL_TOPIC_ENABLED parameter has been set to TRUE, then all JMS queues and topics are automatically registered with the LDAP server when they are created. The administrator can also create aliases to the queues and topics registered in LDAP. Queues and topics that are registered in LDAP can be looked up through JNDI using the name or alias of the queue or topic.
Methods on the Destination
object include:
alter()
This method alters a Queue
or a Topic
.
schedulePropagation()
This method schedules propagation from a source to a destination.
unschedulePropagation()
This method unschedules a previously scheduled propagation.
enablePropagationSchedule()
This method enables a propagation schedule.
disablePropagationSchedule()
This method disables a propagation schedule.
start()
This method starts a Queue
or a Topic
. The queue can be started for enqueue or dequeue. The topic can be started for publish or subscribe.
stop()
This method stops a Queue
or a Topic
. The queue is stopped for enqueue or dequeue. The topic is stopped for publish or subscribe.
drop()
This method drops a Queue
or a Topic
.
Oracle8i or higher supports system-level access control for all queuing operations. This feature allows an application designer or DBA to create users as queue administrators. A queue administrator can invoke administrative and operational JMS interfaces on any queue in the database. This simplifies administrative work, because all administrative scripts for the queues in a database can be managed under one schema.
When messages arrive at the destination queues, sessions based on the source queue schema name are used for enqueuing the newly arrived messages into the destination queues. This means that you must grant enqueue privileges for the destination queues to schemas of the source queues.
To propagate to a remote destination queue, the login user (specified in the database link in the address field of the agent structure) should either be granted the ENQUEUE_ANY
privilege, or be granted the rights to enqueue to the destination queue. However, you are not required to grant any explicit privileges if the login user in the database link also owns the queue tables at the destination.
Oracle8i or higher supports access control for enqueue and dequeue operations at the queue or topic level. This feature allows the application designer to protect queues and topics created in one schema from applications running in other schemas. You can grant only minimal access privileges to the applications that run outside the schema of the queue or topic. The supported access privileges on a queue or topic are ENQUEUE
, DEQUEUE
and ALL
.
Messages are often related to each other. For example, if a message is produced as a result of the consumption of another message, then the two are related. As the application designer, you may want to keep track of such relationships. Oracle Streams AQ allows users to retain messages in the queue table, which can then be queried in SQL for analysis.
Along with retention and message identifiers, Oracle Streams AQ lets you automatically create message journals, also called tracking journals or event journals. Taken together, retention, message identifiers and SQL queries make it possible to build powerful message warehouses.
Oracle Real Application Clusters (RAC) can be used to improve Oracle Streams AQ performance by allowing different queues to be managed by different instances. You do this by specifying different instance affinities (preferences) for the queue tables that store the queues. This allows queue operations (enqueue/dequeue) or topic operations (publish/subscribe) on different queues or topics to occur in parallel.
The Oracle Streams AQ queue monitor process continuously monitors the instance affinities of the queue tables. The queue monitor assigns ownership of a queue table to the specified primary instance if it is available, failing which it assigns it to the specified secondary instance.
If the owner instance of a queue table terminates, then the queue monitor changes ownership to a suitable instance such as the secondary instance.
Oracle Streams AQ propagation is able to make use of Real Application Clusters, although it is transparent to the user. The affinities for jobs submitted on behalf of the propagation schedules are set to the same values as that of the affinities of the respective queue tables. Thus, a job_queue_process
associated with the owner instance of a queue table is handling the propagation from queues stored in that queue table, thereby minimizing pinging.
Each instance keeps its own Oracle Streams AQ statistics information in its own System Global Area (SGA), and does not have knowledge of the statistics gathered by other instances. Then, when a GV$AQ
view is queried by an instance, all other instances funnel their statistics information to the instance issuing the query.
The GV$AQ
view can be queried at any time to see the number of messages in waiting, ready or expired state. The view also displays the average number of seconds messages have been waiting to be processed.
JMS messages are composed of a header, properties, and a body.
The header consists of header fields, which contain values used by both clients and providers to identify and route messages. All messages support the same set of header fields.
Properties are optional header fields. In addition to standard properties defined by JMS, there can be provider-specific and application-specific properties.
The body is the message payload. JMS defines various types of message payloads, and a type that can store JMS messages of any or all JMS-specified message types.
This section contains these topics:
A JMS message header contains the following fields:
JMSDestination
This field contains the destination to which the message is sent. In Oracle Streams AQ this corresponds to the destination queue/topic. It is a Destination
type set by JMS after the Send
method has completed.
JMSDeliveryMode
This field determines whether the message is logged or not. JMS supports PERSISTENT
delivery (where messages are logged to stable storage) and NONPERSISTENT
delivery (messages not logged). It is a INTEGER
set by JMS after the Send
method has completed. JMS permits an administrator to configure JMS to override the client-specified value for JMSDeliveryMode
.
JMSMessageID
This field uniquely identifies a message in a provider. All message IDs must begin with the string ID:
. It is a String
type set by JMS after the Send
method has completed.
JMSTimeStamp
This field contains the time the message was handed over to the provider to be sent. This maps to Oracle Streams AQ message enqueue time. It is a Long
type set by JMS after the Send
method has completed.
JMSCorrelationID
This field can be used by a client to link one message with another. It is a String
type set by the JMS client.
JMSReplyTo
This field contains a Destination
type supplied by a client when a message is sent. Clients can use oracle.jms.AQjmsAgent
; javax.jms.Queue
; or javax.jms.Topic
.
JMSType
This field contains a message type identifier supplied by a client at send time. It is a String
type. For portability Oracle recommends that the JMSType
be symbolic values.
JMSExpiration
This field is the sum of the enqueue time and the TimeToLive
in non-J2EE compliance mode. In compliant mode, the JMSExpiration
header value in a dequeued message is the sum of JMSTimeStamp
when the message was enqueued (Greenwich Mean Time, in milliseconds) and the TimeToLive
(in milliseconds). It is a Long
type set by JMS after the Send
method has completed. JMS permits an administrator to configure JMS to override the client-specified value for JMSExpiration
.
JMSPriority
This field contains the priority of the message. It is a INTEGER
set by JMS after the Send
method has completed. In J2EE-compliance mode, the permitted values for priority are 0
–9
, with 9
the highest priority and 4
the default, in conformance with the Sun Microsystem JMS 1.1 standard. Noncompliant mode is the default. JMS permits an administrator to configure JMS to override the client-specified value for JMSPriority
.
JMSRedelivered
This field is a Boolean set by the JMS provider.
JMS properties are set either explicitly by the client or automatically by the JMS provider (these are generally read-only). Some JMS properties are set using the parameters specified in Send
and Receive
operations.
Properties add optional header fields to a message. Properties allow a client, using a messageSelector
, to have a JMS provider select messages on its behalf using application-specific criteria. Property names are strings and values can be: Boolean
, byte
, short
, int
, long
, float
, double
, and string
.
JMS-defined properties, which all begin with "JMSX"
, include the following:
JMSXUserID
This field is the identity of the user sending the message. It is a String
type set by JMS after the Send
method has completed.
JMSXAppID
This field is the identity of the application sending the message. It is a String
type set by JMS after the Send
method has completed.
JMSXDeliveryCount
This field is the number of message delivery attempts. It is an Integer
set by JMS after the Send
method has completed.
JMSXGroupid
This field is the identity of the message group that this message belongs to. It is a String
type set by the JMS client.
JMSXGroupSeq
This field is the sequence number of a message within a group. It is an Integer
set by the JMS client.
JMSXRcvTimeStamp
This field is the time the message was delivered to the consumer (dequeue time). It is a String
type set by JMS after the Receive
method has completed.
JMSXState
This field is the message state, set by the provider. The message state can be WAITING
, READY
, EXPIRED
, or RETAINED
.
Oracle-specific JMS properties, which all begin with JMS_Oracle
, include the following:
JMS_OracleExcpQ
This field is the queue name to send the message to if it cannot be delivered to the original destination. It is a String
type set by the JMS client. Only destinations of type EXCEPTION
can be specified in the JMS_OracleExcpQ
property.
JMS_OracleDelay
This field is the time in seconds to delay the delivery of the message. It is an Integer
set by the JMS client. This can affect the order of message delivery.
JMS_OracleOriginalMessageId
This field is set to the message identifier of the message in the source if the message is propagated from one destination to another. It is a String
type set by the JMS provider. If the message is not propagated, then this property has the same value as JMSMessageId
.
A client can add additional header fields to a message by defining properties. These properties can then be used in a messageSelector
to select specific messages.
JMS provides five forms of message body:
A StreamMessage
object is used to send a stream of Java primitives. It is filled and read sequentially. It inherits from Message
and adds a StreamMessage
body. Its methods are based largely on those found in java.io.DataInputStream
and java.io.DataOutputStream
.
The primitive types can be read or written explicitly using methods for each type. They can also be read or written generically as objects. To use StreamMessage
objects, create the queue table with the SYS.AQ$_JMS_STREAM_MESSAGE
or AQ$_JMS_MESSAGE
payload types.
StreamMessage
objects support the conversions shown in Table 11-1. A value written as the row type can be read as the column type.
Table 11-1 StreamMessage Conversion
Input	Boolean	byte	short	char	int	long	float	double	String	byte[]
Boolean	X	-	-	-	-	-	-	-	X	-
byte	-	X	X	-	X	X	-	-	X	-
short	-	-	X	-	X	X	-	-	X	-
char	-	-	-	X	-	-	-	-	X	-
int	-	-	-	-	X	X	-	-	X	-
long	-	-	-	-	-	X	-	-	X	-
float	-	-	-	-	-	-	X	X	X	-
double	-	-	-	-	-	-	-	X	X	-
string	X	X	X	X	X	X	X	X	X	-
byte[]	-	-	-	-	-	-	-	-	-	X
A BytesMessage										
object is used to send a message containing a stream of uninterpreted bytes. It inherits Message										
and adds a BytesMessage										
body. The receiver of the message interprets the bytes. Its methods are based largely on those found in java.io.DataInputStream										
and java.io.DataOutputStream										
.										
This message type is for client encoding of existing message formats. If possible, one of the other self-defining message types should be used instead.										
The primitive types can be written explicitly using methods for each type. They can also be written generically as objects. To use BytesMessage										
objects, create the queue table with SYS.AQ$_JMS_BYTES_MESSAGE										
or AQ$_JMS_MESSAGE										
payload types.										
A MapMessage										
object is used to send a set of name-value pairs where the names are String										
types, and the values are Java primitive types. The entries can be accessed sequentially or randomly by name. The order of the entries is undefined. It inherits from Message										
and adds a MapMessage										
body. The primitive types can be read or written explicitly using methods for each type. They can also be read or written generically as objects.										
To use MapMessage										
objects, create the queue table with the SYS.AQ$_JMS_MAP_MESSAGE										
or AQ$_JMS_MESSAGE										
payload types. MapMessage										
objects support the conversions shown in Table 11-2. An "X" in the table means that a value written as the row type can be read as the column type.										
Table 11-2 MapMessage Conversion										
Input	Boolean	byte	short	char	int	long	float	double	String	byte[]
---	---	---	---	---	---	---	---	---	---	---
Boolean	X	-	-	-	-	-	-	-	X	-
byte	-	X	X	-	X	X	-	-	X	-
short	-	-	X	-	X	X	-	-	X	-
char	-	-	-	X	-	-	-	-	X	-
int	-	-	-	-	X	X	-	-	X	-
long	-	-	-	-	-	X	-	-	X	-
float	-	-	-	-	-	-	X	X	X	-
double	-	-	-	-	-	-	-	X	X	-
string	X	X	X	X	X	X	X	X	X	-
byte[]	-	-	-	-	-	-	-	-	-	X
A TextMessage										
object is used to send a message containing a java.lang.StringBuffer										
. It inherits from Message										
and adds a TextMessage										
body. The text information can be read or written using methods getText()										
and setText(
...)										
. To use TextMessage										
objects, create the queue table with the SYS.AQ$_JMS_TEXT_MESSAGE										
or AQ$_JMS_MESSAGE										
payload types.										
An ObjectMessage										
object is used to send a message that contains a serializable Java object. It inherits from Message and adds a body containing a single Java reference. Only serializable Java objects can be used. If a collection of Java objects must be sent, then one of the collection classes provided in JDK 1.4 can be used. The objects can be read or written using the methods getObject()										
and setObject(
...)										
.To use ObjectMessage										
objects, create the queue table with the SYS.AQ$_JMS_OBJECT_MESSAGE										
or AQ$_JMS_MESSAGE										
payload types.										
An AdtMessage										
object is used to send a message that contains a Java object that maps to an Oracle object type. These objects inherit from Message										
and add a body containing a Java object that implements the CustomDatum										
or ORAData										
interface.										
See Also: Oracle Database Java Developer's Guide for information about theCustomDatum and ORAData interfaces										
To use AdtMessage										
objects, create the queue table with payload type as the Oracle object type. The AdtMessage										
payload can be read and written using the getAdtPayload										
and setAdtPayload										
methods.										
You can also use an AdtMessage										
object to send messages to queues of type SYS.XMLType										
. You must use the oracle.xdb.XMLType										
class to create the message.										
For AdtMessage										
objects, the client can get:										
JMSXDeliveryCount										
JMSXRecvTimeStamp										
JMSXState										
JMS_OracleExcpQ										
JMS_OracleDelay										
The following message properties can be set by the client using the setProperty										
call. For StreamMessage										
, BytesMessage										
, ObjectMessage										
, TextMessage										
, and MapMessage										
objects, the client can set:										
JMSXAppID										
JMSXGroupID										
JMSXGroupSeq										
JMS_OracleExcpQ										
JMS_OracleDelay										
For AdtMessage										
objects, the client can set:										
JMS_OracleExcpQ										
JMS_OracleDelay										
The following message properties can be obtained by the client using the getProperty										
call. For StreamMessage										
, BytesMessage										
, ObjectMessage										
, TextMessage										
, and MapMessage										
objects, the client can get:										
JMSXuserID										
JMSXAppID										
JMSXDeliveryCount										
JMSXGroupID										
JMSXGroupSeq										
JMSXRecvTimeStamp										
JMSXState										
JMS_OracleExcpQ										
JMS_OracleDelay										
JMS_OracleOriginalMessageID										
Users can send a nonpersistent JMS message by specifying the deliveryMode										
to be NON_PERSISTENT										
when sending a message. JMS nonpersistent messages are not required to be logged to stable storage, so they can be lost after a JMS system failure. JMS nonpersistent messages are similar to the buffered messages now available in Oracle Streams AQ, but there are also important differences between the two.										
Note: Do not confuse Oracle JMS nonpersistent messages with Oracle Streams AQ nonpersistent queues, which are deprecated in Oracle Database 10g Release 2 (10.2).										
Transaction Commits and Client Acknowledgements										
The JMS deliveryMode										
is orthogonal to the transaction attribute of a message. JMS nonpersistent messages can be sent and received by either a transacted session or a nontransacted session. If a JMS nonpersistent message is sent and received by a transacted session, then the effect of the JMS operation is only visible after the transacted session commits. If it is received by a nontransacted session with CLIENT_ACKNOWLEDGE										
acknowledgement mode, then the effect of receiving this message is only visible after the client acknowledges the message. Without the acknowledgement, the message is not removed and will be redelivered if the client calls Session.recover										
.										
Oracle Streams AQ buffered messages, on the other hand, do not support these transaction or acknowledgement concepts. Both sending and receiving a buffered message must be in the IMMEDIATE										
visibility mode. The effects of the sending and receiving operations are therefore visible to the user immediately, no matter whether the session is commited or the messages are acknowledged.										
Different APIs										
Messages sent with the regular JMS send and publish methods are treated by Oracle Streams AQ as persistent messages. The regular JMS receive methods receive only AQ persistent messages. To send and receive buffered messages, you must use the Oracle extension APIs bufferSend										
, bufferPublish										
, and bufferReceive										
.										
See Also: Oracle Streams Advanced Queuing Java API Reference for more information onbufferSend , bufferPublish , and bufferReceive										
Payload Limits										
The Oracle Streams AQ implementation of buffered messages does not support LOB										
attributes. This places limits on the payloads for the five types of standard JMS messages:										
JMS TextMessage										
payloads cannot exceed 4000 bytes.										
This limit might be even lower with some database character sets, because during the Oracle JMS character set conversion, Oracle JMS sometimes must make a conservative choice of using CLOB										
instead of VARCHAR										
to store the text payload in the database.										
JMS BytesMessage										
payloads cannot exceed 2000 bytes.										
JMS ObjectMessage										
, StreamMessage										
, and MapMessage										
data serialized by JAVA cannot exceed 2000 bytes.										
For all other Oracle JMS ADT messages, the corresponding Oracle database ADT cannot contain LOB										
attributes.										
Different Constants										
The Oracle Streams AQ and Oracle JMS APIs use different numerical values to designate buffered and persistent messages, as shown in Table 11-3.										
In the point-to-point model, clients exchange messages from one point to another. Message producers and consumers send and receive messages using single-consumer queues. An administrator creates the single-consumer queues with the createQueue										
method in AQjmsSession										
. Before they can be used, the queues must be enabled for enqueue/dequeue using the start										
call in AQjmsDestination										
. Clients obtain a handle to a previously created queue using the getQueue										
method on AQjmsSession										
.										
In a single-consumer queue, a message can be consumed exactly once by a single consumer. If there are multiple processes or operating system threads concurrently dequeuing from the same queue, then each process dequeues the first unlocked message at the head of the queue. A locked message cannot be dequeued by a process other than the one that has created the lock.										
After processing, the message is removed if the retention time of the queue is 0, or it is retained for a specified retention time. As long as the message is retained, it can be either queried using SQL on the queue table view or dequeued by specifying the message identifier of the processed message in a QueueBrowser										
.										
A client uses a QueueSender										
to send messages to a queue. It is created by passing a queue to the createSender										
method in a client Session										
. A client also has the option of creating a QueueSender										
without supplying a queue. In that case a queue must be specified on every send operation.										
A client can specify a default delivery mode, priority and TimeToLive										
for all messages sent by the QueueSender										
. Alternatively, the client can define these options for each message.										
A client uses a QueueReceiver										
to receive messages from a queue. It is created using the createQueueReceiver										
method in a client Session										
. It can be created with or without a messageSelector										
.										
A client uses a QueueBrowser										
to view messages on a queue without removing them. The browser method returns a java										
.util										
.Enumeration										
that is used to scan messages in the queue. The first call to nextElement										
gets a snapshot of the queue. A QueueBrowser										
can be created with or without a messageSelector										
.										
A QueueBrowser										
can also optionally lock messages as it is scanning them. This is similar to a "SELECT										
... for										
UPDATE"										
command on the message. This prevents other consumers from removing the message while they are being scanned.										
A messageSelector										
allows the client to restrict messages delivered to the consumer to those that match the messageSelector										
expression. A messageSelector										
for queues containing payloads of type TextMessage										
, StreamMessage										
, BytesMessage										
, ObjectMessage										
, or MapMessage										
can contain any expression that has one or more of the following:										
JMS message identifier prefixed with "ID:"										
JMS message header fields or properties										
User-defined message properties										
The messageSelector										
for queues containing payloads of type AdtMessage										
can contain any expression that has one or more of the following:										
Message identifier without the "ID:" prefix										
Priority, correlation identifier, or both										
Message payload										
This section contains these topics:										
JMS enables flexible and dynamic communication between applications functioning as publishers and applications playing the role of subscribers. The applications are not coupled together; they interact based on messages and message content.										
In distributing messages, publisher applications are not required to handle or manage message recipients explicitly. This allows new subscriber applications to be added dynamically without changing any publisher application logic.										
Similarly, subscriber applications receive messages based on message content without regard to which publisher applications are sending messages. This allows new publisher applications to be added dynamically without changing any subscriber application logic.										
Subscriber applications specify interest by defining a rule-based subscription on message properties or the message content of a topic. The system automatically routes messages by computing recipients for published messages using the rule-based subscriptions.										
In the publish/subscribe model, messages are published to and received from topics. A topic is created using the CreateTopic()										
method in an AQjmsSession										
. A client can obtain a handle to a previously-created topic using the getTopic()										
method in AQjmsSession										
.										
A client creates a DurableSubscriber										
with the createDurableSubscriber()										
method in a client Session										
. It can be created with or without a messageSelector										
.										
A messageSelector										
allows the client to restrict messages delivered to the subscriber to those that match the selector. The syntax for the selector is described in detail in createDurableSubscriber										
in Oracle Streams Advanced Queuing Java API Reference.										
When subscribers use the same name, durable subscriber action depends on the J2EE compliance mode set for an Oracle Java Message Service (OJMS) client at runtime.										
In noncompliant mode, two durable TopicSubscriber										
objects with the same name can be active against two different topics. In compliant mode, durable subscribers with the same name are not allowed. If two subscribers use the same name and are created against the same topic, but the selector used for each subscriber is different, then the underlying Oracle Streams AQ subscription is altered using the internal DBMS_AQJMS.ALTER_SUBSCRIBER()										
call.										
If two subscribers use the same name and are created against two different topics, and if the client that uses the same subscription name also originally created the subscription name, then the existing subscription is dropped and the new subscription is created.										
If two subscribers use the same name and are created against two different topics, and if a different client (a client that did not originate the subscription name) uses an existing subscription name, then the subscription is not dropped and an error is thrown. Because it is not known if the subscription was created by JMS or PL/SQL, the subscription on the other topic should not be dropped.										
Remote subscribers are defined using the createRemoteSubscriber										
call. The remote subscriber can be a specific consumer at the remote topic or all subscribers at the remote topic										
A remote subscriber is defined using the AQjmsAgent										
structure. An AQjmsAgent										
consists of a name and address. The name refers to the consumer_name										
at the remote topic. The address refers to the remote topic:										
To publish messages to a particular consumer at the remote topic, the subscription_name										
of the recipient at the remote topic must be specified in the name field of AQjmsAgent										
. The remote topic must be specified in the address field of AQjmsAgent										
.										
To publish messages to all subscribers of the remote topic, the name field of AQjmsAgent										
must be set to null. The remote topic must be specified in the address field of AQjmsAgent										
.										
Messages are published using TopicPublisher										
, which is created by passing a										
Topic										
to a createPublisher										
method. A client also has the option of creating a TopicPublisher										
without supplying a Topic										
. In this case, a Topic										
must be specified on every publish operation. A client can specify a default delivery mode, priority and TimeToLive										
for all messages sent by the TopicPublisher										
. It can also specify these options for each message.										
In the JMS publish/subscribe model, clients can specify explicit recipient lists instead of having messages sent to all the subscribers of the topic. These recipients may or may not be existing subscribers of the topic. The recipient list overrides the subscription list on the topic for this message. Recipient lists functionality is an Oracle extension to JMS.										
If the recipient name is explicitly specified in the recipient list, but that recipient is not a subscriber to the queue, then messages sent to it can be received by creating a TopicReceiver										
. If the subscriber name is not specified, then clients must use durable subscribers at the remote site to receive messages. TopicReceiver										
is an Oracle extension to JMS.										
A TopicReceiver										
can be created with a messageSelector										
. This allows the client to restrict messages delivered to the recipient to those that match the selector.										
A client uses a TopicBrowser										
to view messages on a topic without removing them. The browser method returns a java.util.Enumeration										
that is used to scan topic messages. Only durable subscribers are allowed to create a TopicBrowser										
. The first call to nextElement										
gets a snapshot of the topic.										
A TopicBrowser										
can optionally lock messages as it is scanning them. This is similar to a SELECT										
... for										
UPDATE										
command on the message. This prevents other consumers from removing the message while it is being scanned.										
A TopicBrowser										
can be created with a messageSelector										
. This allows the client to restrict messages delivered to the browser to those that match the selector.										
TopicBrowser										
supports a purge feature. This allows a client using a TopicBrowser										
to discard all messages that have been seen during the current browse operation on the topic. A purge is equivalent to a destructive receive of all of the seen messages (as if performed using a TopicSubscriber										
).										
For a purge, a message is considered seen if it has been returned to the client using a call to the nextElement()										
operation on the java.lang.Enumeration										
for the TopicBrowser										
. Messages that have not yet been seen by the client are not discarded during a purge. A purge operation can be performed multiple times on the same TopicBrowser										
.										
The effect of a purge becomes stable when the JMS Session										
used to create the TopicBrowser										
is committed. If the operations on the session are rolled back, then the effects of the purge operation are also undone.										
Follow these steps to use the publish/subscribe model of communication in JMS:										
start										
call in AQjmsDestination										
. messageSelector										
that selects the messages that the subscriber wishes to receive. A null messageSelector										
indicates that the subscriber wishes to receive all messages published on the topic. Subscribers can be local or remote. Local subscribers are durable subscribers defined on the same topic on which the message is published. Remote subscribers are other topics, or recipients on other topics that are defined as subscribers to a particular queue. In order to use remote subscribers, you must set up propagation between the source and destination topics. Remote subscribers and propagation are Oracle extensions to JMS.										
TopicPublisher										
objects using the createPublisher()										
method in the publisher Session										
. Messages are published using the publish										
call. Messages can be published to all subscribers to the topic or to a specified subset of recipients on the topic. receive										
method. Message ordering dictates the order in which messages are received from a queue or topic. The ordering method is specified when the queue table for the queue or topic is created. Currently, Oracle Streams AQ supports ordering on message priority and enqueue time, producing four possible ways of ordering:										
First-In, First-Out (FIFO)										
If enqueue time was chosen as the ordering criteria, then messages are received in the order of the enqueue time. The enqueue time is assigned to the message by Oracle Streams AQ at message publish/send time. This is also the default ordering.										
Priority Ordering										
If priority ordering was chosen, then each message is assigned a priority. Priority can be specified as a message property at publish/send time by the MessageProducer										
. The messages are received in the order of the priorities assigned.										
FIFO Priority										
If FIFO priority ordering was chosen, then the topic/queue acts like a priority queue. If two messages are assigned the same priority, then they are received in the order of their enqueue time.										
Enqueue Time Followed by Priority										
Messages with the same enqueue time are received according to their priorities. If the ordering criteria of two message is the same, then the order they are received is indeterminate. However, Oracle Streams AQ does ensure that messages produced in one session with a particular ordering criteria are received in the order they were sent.										
Messages can be sent/published to a queue/topic with delay. The delay represents a time interval after which the message becomes available to the message consumer. A message specified with a delay is in a waiting state until the delay expires. Receiving by message identifier overrides the delay specification.										
Delay is an Oracle Streams AQ extension to JMS message properties. It requires the Oracle Streams AQ background process queue monitor to be started.										
Producers of messages can specify expiration limits, or TimeToLive										
for messages. This defines the period of time the message is available for a Message Consumer.										
TimeToLive										
can be specified at send/publish time or using the set TimeToLive										
method of a MessageProducer										
, with the former overriding the latter. The Oracle Streams AQ background process queue monitor must be running to implement TimeToLive										
.										
Messages belonging to a queue/topic can be grouped to form a set that can be consumed by only one consumer at a time. This requires the queue/topic be created in a queue table that is enabled for transactional message grouping. All messages belonging to a group must be created in the same transaction, and all messages created in one transaction belong to the same group.										
Message grouping is an Oracle Streams AQ extension to the JMS specification.										
You can use this feature to divide a complex message into a linked series of simple messages. For example, an invoice directed to an invoices queue could be divided into a header message, followed by several messages representing details, followed by the trailer message.										
Message grouping is also very useful if the message payload contains complex large objects such as images and video that can be segmented into smaller objects.										
The priority, delay, and expiration properties for the messages in a group are determined solely by the message properties specified for the first message (head) of the group. Properties specified for subsequent messages in the group are ignored.										
Message grouping is preserved during propagation. The destination topic must be enabled for transactional grouping.										
See Also: "Dequeue Features" for a discussion of restrictions you must keep in mind if message grouping is to be preserved while dequeuing messages from a queue enabled for transactional grouping										
This section contains these topics:										
A JMS application can receive messages by creating a message consumer. Messages can be received synchronously using the receive										
call or asynchronously using a message listener.										
There are three modes of receive:										
Block until a message arrives for a consumer										
Block for a maximum of the specified time										
Nonblocking										
If a consumer does not specify a navigation mode, then its first receive										
in a session retrieves the first message in the queue or topic, its second receive										
gets the next message, and so on. If a high priority message arrives for the consumer, then the consumer does not receive the message until it has cleared the messages that were already there before it.										
To provide the consumer better control in navigating the queue for its messages, Oracle Streams AQ offers several navigation modes as JMS extensions. These modes can be set at the TopicSubscriber										
, QueueReceiver										
or the TopicReceiver										
.										
Two modes are available for ungrouped messages:										
FIRST_MESSAGE										
This mode resets the position to the beginning of the queue. It is useful for priority ordered queues, because it allows the consumer to remove the message on the top of the queue.										
NEXT_MESSAGE										
This mode gets whatever message follows the established position of the consumer. For example, a NEXT_MESSAGE										
applied when the position is at the fourth message will get the fifth message in the queue. This is the default action.										
Three modes are available for grouped messages:										
FIRST_MESSAGE										
This mode resets the position to the beginning of the queue.										
NEXT_MESSAGE										
This mode sets the position to the next message in the same transaction.										
NEXT_TRANSACTION										
This mode sets the position to the first message in the next transaction.										
The transaction grouping property can be negated if messages are received in the following ways:										
Receive by specifying a correlation identifier in the selector										
Receive by specifying a message identifier in the selector										
Committing before all the messages of a transaction group have been received										
If the consumer reaches the end of the queue while using the NEXT										
_MESSAGE										
or NEXT										
_TRANSACTION										
option, and you have specified a blocking receive()										
, then the navigating position is automatically changed to the beginning of the queue.										
By default, a QueueReceiver										
, TopicReceiver										
, or TopicSubscriber										
uses FIRST_MESSAGE										
for the first receive call, and NEXT_MESSAGE										
for subsequent receive()										
calls.										
Aside from the usual receive										
, which allows the dequeuing client to delete the message from the queue, JMS provides an interface that allows the JMS client to browse its messages in the queue. A QueueBrowser										
can be created using the createBrowser										
method from QueueSession										
.										
If a message is browsed, then it remains available for further processing. That does not necessarily mean that the message will remain available to the JMS session after it is browsed, because a receive										
call from a concurrent session might remove it.										
To prevent a viewed message from being removed by a concurrent JMS client, you can view the message in the locked mode. To do this, you must create a QueueBrowser										
with the locked mode using the Oracle Streams AQ extension to the JMS interface. The lock on the message is released when the session performs a commit or a rollback.										
To remove a message viewed by a QueueBrowser										
, the session must create a QueueReceiver										
and use the JMSmesssageID										
as the selector.										
The consumer can remove a message from a queue or topic without retrieving it using the										
receiveNoData										
call. This is useful when the application has already examined the message, perhaps using a QueueBrowser										
. This mode allows the JMS client to avoid the overhead of retrieving a payload from the database, which can be substantial for a large message.										
If a transaction receiving a message from a queue/topic fails, then it is regarded as an unsuccessful attempt to remove the message. Oracle Streams AQ records the number of failed attempts to remove the message in the message history.										
An application can specify the maximum number of retries supported on messages at the queue/topic level. If the number of failed attempts to remove a message exceeds this maximum, then the message is moved to an exception queue.										
Oracle Streams AQ allows users to specify a retry_delay										
along with max_retries										
. This means that a message that has undergone a failed attempt at retrieving remains visible in the queue for dequeue after retry_delay										
interval. Until then it is in the WAITING										
state. The Oracle Streams AQ background process time manager enforces the retry delay property.										
The maximum retries and retry delay are properties of the queue/topic. They can be set when the queue/topic is created or by using the alter method on the queue/topic. The default value for MAX_RETRIES is 5.										
The JMS client can receive messages asynchronously by setting the MessageListener										
using the setMessageListener										
method.										
When a message arrives for the consumer, the onMessage										
method of the message listener is invoked with the message. The message listener can commit or terminate the receipt of the message. The message listener does not receive messages if the JMS Connection										
has been stopped. The receive										
call must not be used to receive messages once the message listener has been set for the consumer.										
The JMS client can receive messages asynchronously for all consumers in the session by setting the MessageListener										
at the session. No other mode for receiving messages must be used in the session once the message listener has been set.										
An exception queue is a repository for all expired or unserviceable messages. Applications cannot directly enqueue into exception queues. However, an application that intends to handle these expired or unserviceable messages can receive/remove them from the exception queue.										
To retrieve messages from exception queues, the JMS client must use the point-to-point interface. The exception queue for messages intended for a topic must be created in a queue table with multiple consumers enabled. Like any other queue, the exception queue must be enabled for receiving messages using the start										
method in the AQOracleQueue										
class. You get an exception if you try to enable it for enqueue.										
The exception queue is an Oracle-specific message property called "JMS_OracleExcpQ"										
that can be set with the message before sending/publishing it. If an exception queue is not specified, then the default exception queue is used. The default exception queue is automatically created when the queue table is created and is named AQ$_										
queue_table_name										
_E										
.										
Messages are moved to the exception queue under the following conditions:										
The message was not dequeued within the specified timeToLive										
.										
For messages intended for more than one subscriber, the message is moved to the exception queue if one or more of the intended recipients is not able to dequeue the message within the specified timeToLive										
.										
The message was received successfully, but the application terminated the transaction that performed the receive										
because of an error while processing the message. The message is returned to the queue/topic and is available for any applications that are waiting to receive messages.										
A receive										
is considered rolled back or undone if the application terminates the entire transaction, or if it rolls back to a savepoint that was taken before the receive										
.										
Because this was a failed attempt to receive the message, its retry count is updated. If the retry count of the message exceeds the maximum value specified for the queue/topic where it resides, then it is moved to the exception queue.										
If a message has multiple subscribers, then the message is moved to the exception queue only when all the recipients of the message have exceeded the retry limit.										
Note: If a dequeue transaction failed because the server process died (includingALTER SYSTEM KILL SESSION) or SHUTDOWN ABORT on the instance, then RETRY_COUNT is not incremented.										
This section contains these topics:										
Oracle Streams AQ allows a subscriber at another database to subscribe to a topic. If a message published to the topic meets the criterion of the remote subscriber, then it is automatically propagated to the queue/topic at the remote database specified for the remote subscriber. Propagation is performed using database links and Oracle Net Services. This enables applications to communicate with each other without having to be connected to the same database.										
There are two ways to implement remote subscribers:										
The createRemoteSubscriber										
method can be used to create a remote subscriber to/on the topic. The remote subscriber is specified as an instance of the class AQjmsAgent										
.										
The AQjmsAgent										
has a name and an address. The address consists of a queue/topic and the database link to the database of the subscriber.										
There are two kinds of remote subscribers:										
The remote subscriber is a topic.										
This occurs when no name is specified for the remote subscriber in the AQjmsAgent										
object and the address is a topic. The message satisfying the subscriber's subscription is propagated to the remote topic. The propagated message is now available to all the subscriptions of the remote topic that it satisfies.										
A specific remote recipient is specified for the message.										
The remote subscription can be for a particular consumer at the remote database. If the name of the remote recipient is specified (in the AQjmsAgent										
object), then the message satisfying the subscription is propagated to the remote database for that recipient only. The recipient at the remote database uses the TopicReceiver										
interface to retrieve its messages. The remote subscription can also be for a point-to-point queue.										
Propagation must be scheduled using the schedule_propagation										
method for every topic from which messages are propagated to target destination databases.										
A schedule indicates the time frame during which messages can be propagated from the source topic. This time frame can depend on a number of factors such as network traffic, the load at the source database, the load at the destination database, and so on. The schedule therefore must be tailored for the specific source and destination. When a schedule is created, a job is automatically submitted to the job_queue										
facility to handle propagation.										
The administrative calls for propagation scheduling provide great flexibility for managing the schedules. The duration or propagation window parameter of a schedule specifies the time frame during which propagation must take place. If the duration is unspecified, then the time frame is an infinite single window. If a window must be repeated periodically, then a finite duration is specified along with a next_time										
function that defines the periodic interval between successive windows.										
The propagation schedules defined for a queue can be changed or dropped at any time during the life of the queue. In addition there are calls for temporarily disabling a schedule (instead of dropping the schedule) and enabling a disabled schedule. A schedule is active when messages are being propagated in that schedule. All the administrative calls can be made irrespective of whether the schedule is active or not. If a schedule is active, then it takes a few seconds for the calls to be executed.										
Job queue processes must be started for propagation to take place. At least 2 job queue processes must be started. The database links to the destination database must also be valid. The source and destination topics of the propagation must be of the same message type. The remote topic must be enabled for enqueue. The user of the database link must also have enqueue privileges to the remote topic.										
Catalog views defined for propagation provide the following information about active schedules:										
Name of the background process handling the schedule										
SID (session and serial number) for the session handling the propagation										
Instance handling a schedule (if using RAC)										
Previous successful execution of a schedule										
Next planned execution of a schedule										
The following propagation statistics are maintained for each schedule, providing useful information to queue administrators for tuning:										
The total number of messages propagated in a schedule										
Total number of bytes propagated in a schedule										
Maximum number of messages propagated in a window										
Maximum number of bytes propagated in a window										
Average number of messages propagated in a window										
Average size of propagated messages										
Average time to propagated a message										
Propagation has built-in support for handling failures and reporting errors. For example, if the database link specified is invalid, or if the remote database is unavailable, or if the remote topic/queue is not enabled for enqueuing, then the appropriate error message is reported. Propagation uses an exponential backoff scheme for retrying propagation from a schedule that encountered a failure. If a schedule continuously encounters failures, then the first retry happens after 30 seconds, the second after 60 seconds, the third after 120 seconds and so forth. If the retry time is beyond the expiration time of the current window, then the next retry is attempted at the start time of the next window. A maximum of 16 retry attempts are made after which the schedule is automatically disabled.										
Note: Once a retry attempt slips to the next propagation window, it will always do so; the exponential backoff scheme no longer governs retry scheduling. If the date function specified in thenext_time parameter of DBMS_AQADM.SCHEDULE_PROPAGATION() results in a short interval between windows, then the number of unsuccessful retry attempts can quickly exceed 16, disabling the schedule.										
When a schedule is disabled automatically due to failures, the relevant information is written into the alert log. It is possible to check at any time if there were failures encountered by a schedule and if so how many successive failures were encountered, the error message indicating the cause for the failure and the time at which the last failure was encountered. By examining this information, an administrator can fix the failure and enable the schedule.										
If propagation is successful during a retry, then the number of failures is reset to 0.										
Propagation has built-in support for Real Application Clusters and is transparent to the user and the administrator. The job that handles propagation is submitted to the same instance as the owner of the queue table where the source topic resides. If at any time there is a failure at an instance and the queue table that stores the topic is migrated to a different instance, then the propagation job is also automatically migrated to the new instance. This minimizes the pinging between instances and thus offers better performance. Propagation has been designed to handle any number of concurrent schedules.										
The number of job_queue_processes										
is limited to a maximum of 1000 and some of these can be used to handle jobs unrelated to propagation. Hence, propagation has built in support for multitasking and load balancing. The propagation algorithms are designed such that multiple schedules can be handled by a single snapshot (job_queue										
) process. The propagation load on a job_queue										
processes can be skewed based on the arrival rate of messages in the different source topics. If one process is overburdened with several active schedules while another is less loaded with many passive schedules, then propagation automatically redistributes the schedules among the processes such that they are loaded uniformly.										
When a system error such as a network failure occurs, Oracle Streams AQ continues to attempt to propagate messages using an exponential back-off algorithm. In some situations that indicate application errors in queue-to-dblink propagations, Oracle Streams AQ marks messages as UNDELIVERABLE										
and logs a message in alert.log										
. Examples of such errors are when the remote queue does not exist or when there is a type mismatch between the source queue and the remote queue. The trace files in the background_dump_dest										
directory can provide additional information about the error.										
When a new job queue process starts, it clears the mismatched type errors so the types can be reverified. If you have capped the number of job queue processes and propagation remains busy, then you might not want to wait for the job queue process to terminate and restart. Queue types can be reverified at any time using DBMS_AQADM.VERIFY_QUEUE_TYPES										
.										
Note: When a type mismatch is detected in queue-to-queue propagation, propagation stops and throws an error. In such situations you must query theDBA_SCHEDULES view to determine the last error that occurred during propagation to a particular destination. The message is not marked as UNDELIVERABLE .										
A transformation can be defined to map messages of one format to another. Transformations are useful when applications that use different formats to represent the same information must be integrated. Transformations can be SQL expressions and PL/SQL functions. Message transformation is an Oracle Streams AQ extension to the standard JMS interface.										
The transformations can be created using the DBMS_TRANSFORM.create_transformation										
procedure. Transformation can be specified for the following operations:										
Sending a message to a queue or topic										
Receiving a message from a queue or topic										
Creating a TopicSubscriber										
Creating a RemoteSubscriber										
. This enables propagation of messages between topics of different formats.										
In Oracle Database 10g, Oracle JMS conforms to the Sun Microsystems JMS 1.1 standard. You can define the J2EE compliance mode for an Oracle Java Message Service (OJMS) client at runtime. For compliance, set the Java property oracle.jms.j2eeCompliant										
to TRUE										
as a command line option. For noncompliance, do nothing. FALSE										
is the default value.										
Features in Oracle Streams AQ that support J2EE compliance (and are also available in the noncompliant mode) include:										
Nontransactional sessions										
Durable subscribers										
Temporary queues and topics										
Nonpersistent delivery mode										
Multiple JMS messages types on a single JMS queue or topic (using Oracle Streams AQ queues of the AQ$_JMS_MESSAGE										
type)										
The noLocal										
option for durable subscribers										
See Also:										
This chapter describes the basic operational Java Message Service (JMS) administrative interface to Oracle Streams Advanced Queuing (AQ).										
This chapter contains these topics:										
Users should never directly call methods in the DBMS_AQIN										
package, but they do need the EXECUTE										
privilege on DBMS_AQIN										
. Use the following syntax to accomplish this:										
You can register a ConnectionFactory four ways:										
This method registers a QueueConnectionFactory										
or TopicConnectionFactory through the database to a Lightweight Directory Access Protocol (LDAP) server with JDBC connection parameters. This method is static and has the following parameters:										
Parameter	Description									
---	---									
connection	JDBC connection used in registration									
conn_name	Name of the connection to be registered									
hostname	Name of the host running Oracle Streams AQ									
oracle_sid	Oracle system identifier									
portno	Port number									
driver	JDBC driver type									
type	Connection factory type (QUEUE or TOPIC)									
The database connection passed to registerConnectionFactory										
must be granted AQ_ADMINISTRATOR_ROLE										
. After registration, you can look up the connection factory using Java Naming and Directory Interface (JNDI).										
Example 12-1 Registering Through the Database Using JDBC Connection Parameters										
This method registers a QueueConnectionFactory										
or TopicConnectionFactory through the database with a JDBC URL to LDAP. It is static and has the following parameters:										
Parameter	Description									
---	---									
connection	JDBC connection used in registration									
conn_name	Name of the connection to be registered									
jdbc_url	URL to connect to									
info	Properties information									
portno	Port number									
type	Connection factory type (QUEUE or TOPIC)									
The database connection passed to registerConnectionFactory										
must be granted AQ_ADMINISTRATOR_ROLE										
. After registration, you can look up the connection factory using JNDI.										
This method registers a QueueConnectionFactory										
or TopicConnectionFactory through LDAP with JDBC connection parameters to LDAP. It is static and has the following parameters:										
Parameter	Description									
---	---									
env	Environment of LDAP connection									
conn_name	Name of the connection to be registered									
hostname	Name of the host running Oracle Streams AQ									
oracle_sid	Oracle system identifier									
portno	Port number									
driver	JDBC driver type									
type	Connection factory type (QUEUE or TOPIC)									
The hash table passed to registerConnectionFactory()										
must contain all the information to establish a valid connection to the LDAP server. Furthermore, the connection must have write access to the connection factory entries in the LDAP server (which requires the LDAP user to be either the database itself or be granted GLOBAL_AQ_USER_ROLE										
). After registration, look up the connection factory using JNDI.										
Example 12-3 Registering Through LDAP Using JDBC Connection Parameters										
This method registers a QueueConnectionFactory										
or TopicConnectionFactory through LDAP with JDBC connection parameters to LDAP. It is static and has the following parameters:										
Parameter	Description									
---	---									
env	Environment of LDAP connection									
conn_name	Name of the connection to be registered									
jdbc_url	URL to connect to									
info	Properties information									
type	Connection factory type (QUEUE or TOPIC)									
The hash table passed to registerConnectionFactory()										
must contain all the information to establish a valid connection to the LDAP server. Furthermore, the connection must have write access to the connection factory entries in the LDAP server (which requires the LDAP user to be either the database itself or be granted GLOBAL_AQ_USER_ROLE)										
. After registration, look up the connection factory using JNDI.										
Example 12-4 Registering Through LDAP Using a JDBC URL										
You can unregister a queue/topic ConnectionFactory										
in LDAP two ways:										
This method unregisters a QueueConnectionFactory										
or TopicConnectionFactory										
in LDAP. It is static and has the following parameters:										
Parameter	Description									
---	---									
connection	JDBC connection used in registration									
conn_name	Name of the connection to be registered									
The database connection passed to unregisterConnectionFactory()										
must be granted AQ_ADMINISTRATOR_ROLE										
.										
This method unregisters a QueueConnectionFactory										
or TopicConnectionFactory in LDAP. It is static and has the following parameters:										
Parameter	Description									
---	---									
env	Environment of LDAP connection									
conn_name	Name of the connection to be registered									
The hash table passed to unregisterConnectionFactory()										
must contain all the information to establish a valid connection to the LDAP server. Furthermore, the connection must have write access to the connection factory entries in the LDAP server (which requires the LDAP user to be either the database itself or be granted GLOBAL_AQ_USER_ROLE										
).										
Example 12-6 Unregistering Through LDAP										
This section contains these topics:										
Getting a QueueConnectionFactory with JDBC Connection Parameters										
Getting a TopicConnectionFactory with JDBC Connection Parameters										
Getting a QueueConnectionFactory or TopicConnectionFactory in LDAP										
This method gets a QueueConnectionFactory										
with JDBC URL. It is static and has the following parameters:										
Parameter	Description									
---	---									
jdbc_url	URL to connect to									
info	Properties information									
This method gets a QueueConnectionFactory										
with JDBC connection parameters. It is static and has the following parameters:										
Parameter	Description									
---	---									
hostname	Name of the host running Oracle Streams AQ									
oracle_sid	Oracle system identifier									
portno	Port number									
driver	JDBC driver type									
This method gets a TopicConnectionFactory										
with a JDBC URL. It is static and has the following parameters:										
Parameter	Description									
---	---									
jdbc_url	URL to connect to									
info	Properties information									
This method gets a TopicConnectionFactory										
with JDBC connection parameters. It is static and has the following parameters:										
Parameter	Description									
---	---									
hostname	Name of the host running Oracle Streams AQ									
oracle_sid	Oracle system identifier									
portno	Port number									
driver	JDBC driver type									
This method gets a QueueConnectionFactory										
or TopicConnectionFactory										
from LDAP.										
Example 12-11 Getting a QueueConnectionFactory or TopicConnectionFactory in LDAP										
This method gets a queue or topic from LDAP.										
Example 12-12 Getting a Queue or Topic in LDAP										
This method creates a queue table. It has the following parameters:										
Parameter	Description									
---	---									
owner	Queue table owner (schema)									
name	Queue table name									
property	Queue table properties									
If the queue table is used to hold queues, then the queue table must not be multiconsumer enabled (default). If the queue table is used to hold topics, then the queue table must be multiconsumer enabled.										
CLOB, BLOB, and BFILE objects are valid attributes for an Oracle Streams AQ object type load. However, only CLOB and BLOB can be propagated using Oracle Streams AQ propagation in Oracle8i and after.										
This method gets a queue table. It has the following parameters:										
Parameter	Description									
---	---									
owner	Queue table owner (schema)									
name	Queue table name									
If the caller that opened the connection is not the owner of the queue table, then the caller must have Oracle Streams AQ enqueue/dequeue privileges on queues/topics in the queue table. Otherwise the queue table is not returned.										
This section contains these topics:										
This method creates a queue in a specified queue table. It has the following parameters:										
Parameter	Description									
---	---									
q_table	Queue table in which the queue is to be created. The queue table must be single-consumer.									
queue_name	Name of the queue to be created									
dest_property	Queue properties									
This method is specific to OJMS. You cannot use standard Java javax.jms.Session										
objects with it. Instead, you must cast the standard type to the OJMS concrete class oracle.jms.AQjmsSession										
.										
This method creates a topic in the publish/subscribe model. It has the following parameters:										
Parameter	Description									
---	---									
q_table	Queue table in which the queue is to be created. The queue table must be multiconsumer.									
queue_name	Name of the queue to be created									
dest_property	Queue properties									
This method is specific to OJMS. You cannot use standard Java javax.jms.Session										
objects with it. Instead, you must cast the standard type to the OJMS concrete class oracle.jms.AQjmsSession										
.										
Example 12-16 Creating a Publish/Subscribe Topic										
In Example 12-17, if an order cannot be filled because of insufficient inventory, then the transaction processing the order is terminated. The bookedorders										
topic is set up with max_retries										
= 4 and retry_delay										
= 12 hours.Thus, if an order is not filled up in two days, then it is moved to an exception queue.										
Example 12-17 Specifying Max Retries and Max Delays in Messages										
This section contains these topics:										
This method grants Oracle Streams AQ system privileges to a user or role.										
Parameter	Description									
---	---									
privilege	ENQUEUE_ANY , DEQUEUE_ANY or MANAGE_ANY									
grantee	Grantee (user, role, or PUBLIC)									
admin_option	If this is set to true, then the grantee is allowed to use this procedure to grant the system privilege to other users or roles									
Initially only SYS										
and SYSTEM										
can use this procedure successfully. Users granted the ENQUEUE_ANY										
privilege are allowed to enqueue messages to any queues in the database. Users granted the DEQUEUE_ANY										
privilege are allowed to dequeue messages from any queues in the database. Users granted the MANAGE_ANY										
privilege are allowed to run DBMS_AQADM										
calls on any schemas in the database.										
This method revokes Oracle Streams AQ system privileges from a user or role. It has the following parameters:										
Parameter	Description									
---	---									
privilege	ENQUEUE_ANY , DEQUEUE_ANY or MANAGE_ANY									
grantee	Grantee (user, role, or PUBLIC)									
Users granted the ENQUEUE_ANY										
privilege are allowed to enqueue messages to any queues in the database. Users granted the DEQUEUE_ANY										
privilege are allowed to dequeue messages from any queues in the database. Users granted the MANAGE_ANY										
privilege are allowed to run DBMS_AQADM										
calls on any schemas in the database.										
This method grants a topic privilege in the publish/subscribe model. Initially only the queue table owner can use this procedure to grant privileges on the topic. It has the following parameters:										
Parameter	Description									
---	---									
session	JMS session									
privilege	ENQUEUE , DEQUEUE, or ALL (ALL means both.)									
grantee	Grantee (user, role, or PUBLIC)									
grant_option	If this is set to true, then the grantee is allowed to use this procedure to grant the system privilege to other users or roles									
This method revokes a topic privilege in the publish/subscribe model. It has the following parameters:										
Parameter	Description									
---	---									
session	JMS session									
privilege	ENQUEUE , DEQUEUE, or ALL (ALL means both.)									
grantee	Revoked grantee (user, role, or PUBLIC)									
This method grants a queue privilege in the point-to-point model. Initially only the queue table owner can use this procedure to grant privileges on the queue. It has the following parameters:										
Parameter	Description									
---	---									
session	JMS session									
privilege	ENQUEUE , DEQUEUE, or ALL (ALL means both.)									
grantee	Grantee (user, role, or PUBLIC)									
grant_option	If this is set to true, then the grantee is allowed to use this procedure to grant the system privilege to other users or roles									
This method revokes queue privileges in the point-to-point model. Initially only the queue table owner can use this procedure to grant privileges on the queue. It has the following parameters:										
Parameter	Description									
---	---									
session	JMS session									
privilege	ENQUEUE , DEQUEUE, or ALL (ALL means both.)									
grantee	Revoked grantee (user, role, or PUBLIC)									
To revoke a privilege, the revoker must be the original grantor of the privilege. Privileges propagated through the GRANT										
option are revoked if the grantor privilege is also revoked.										
This section contains these topics:										
This method starts a destination. It has the following parameters:										
Parameter	Description									
---	---									
session	JMS session									
enqueue	If set to TRUE , then enqueue is enabled									
dequeue	If set to TRUE , then dequeue is enabled									
This method stops a destination. It has the following parameters:										
Parameter	Description									
---	---									
session	JMS session									
enqueue	If set to TRUE , then enqueue is disabled									
dequeue	If set to TRUE , then dequeue is disabled									
wait	If set to true, then pending transactions on the queue/topic are allowed to complete before the destination is stopped									
This method alters a destination. It has the following properties:										
Parameter	Description									
---	---									
session	JMS session									
dest_property	New properties of the queue or topic									
This section contains these topics:										
This method schedules a propagation. It has the following parameters:										
Parameter	Description									
---	---									
session	JMS session									
destination	Database link of the remote database for which propagation is being scheduled. A null string means that propagation is scheduled for all subscribers in the database of the topic.									
start_time	Time propagation starts									
duration	Duration of propagation									
next_time	Next time propagation starts									
latency	Latency in seconds that can be tolerated. Latency is the difference between the time a message was enqueued and the time it was propagated.									
If a message has multiple recipients at the same destination in either the same or different queues, then it is propagated to all of them at the same time.										
This method enables a propagation schedule. It has the following parameters:										
Parameter	Description									
---	---									
session	JMS session									
destination	Database link of the destination database. A null string means that propagation is to the local database.									
This method alters a propagation schedule. It has the following parameters:										
Parameter	Description									
---	---									
session	JMS session									
destination	Database link of the remote database for which propagation is being scheduled. A null string means that propagation is scheduled for all subscribers in the database of the topic.									
duration	Duration of propagation									
next_time	Next time propagation starts									
latency	Latency in seconds that can be tolerated. Latency is the difference between the time a message was enqueued and the time it was propagated.									
This method disables a propagation schedule. It has the following parameters:										
Parameter	Description									
---	---									
session	JMS session									
destination	Database link of the destination database. A null string means that propagation is to the local database.									
This method unschedules a previously scheduled propagation. It has the following parameters:										
Parameter	Description									
---	---									
session	JMS session									
destination	Database link of the destination database. A null string means that propagation is to the local database.									
This chapter describes the components of the Oracle Streams Advanced Queuing (AQ) Java Message Service (JMS) operational interface that are specific to point-to-point operations. Components that are shared by point-to-point and publish/subscribe are described in Chapter 15, "Oracle JMS Shared Interfaces".										
This chapter contains these topics:										
Creating a Connection with Default ConnectionFactory Parameters										
Creating a QueueConnection with Default ConnectionFactory Parameters										
Creating a QueueConnection with an Open OracleOCIConnectionPool										
Sending Messages Using a QueueSender with Default Send Options										
Sending Messages Using a QueueSender by Specifying Send Options										
Creating a QueueBrowser for Standard JMS Type Messages, Locking Messages										
Creating a QueueBrowser for Oracle Object Type Messages, Locking Messages										
This method creates a connection supporting both point-to-point and publish/subscribe operations with the specified username and password. This method is new and supports JMS version 1.1 specifications. It has the following parameters:										
Parameter	Description									
---	---									
username	Name of the user connecting to the database for queuing									
password	Password for creating the connection to the server									
This method creates a connection supporting both point-to-point and publish/subscribe operations with default ConnectionFactory parameters. This method is new and supports JMS version 1.1 specifications. If the ConnectionFactory										
properties do not contain a default username and password, then it throws a JMSException.										
This method creates a queue connection with the specified username and password. It has the following parameters:										
Parameter	Description									
---	---									
username	Name of the user connecting to the database for queuing									
password	Password for creating the connection to the server									
This method creates a queue connection with an open JDBC connection. It is static and has the following parameter:										
Parameter	Description									
---	---									
jdbc_connection	Valid open connection to the database									
The method in Example 13-2 can be used if the user wants to use an existing JDBC connection (say from a connection pool) for JMS operations. In this case JMS does not open a new connection, but instead uses the supplied JDBC connection to create the JMS QueueConnection										
object.										
Example 13-2 Creating a QueueConnection with an Open JDBC Connection										
The method in Example 13-3 is the only way to create a JMS QueueConnection										
when using JMS from a Java stored procedures inside the database (JDBC Server driver)										
This method creates a queue connection with default ConnectionFactory parameters. If the queue connection factory properties do not contain a default username and password, then it throws a JMSException.										
This method creates a queue connection with an open OracleOCIConnectionPool										
. It is static and has the following parameter:										
Parameter	Description									
---	---									
cpool	Valid open OCI connection pool to the database									
The method in Example 13-4 can be used if the user wants to use an existing OracleOCIConnectionPool										
instance for JMS operations. In this case JMS does not open an new OracleOCIConnectionPool										
instance, but instead uses the supplied OracleOCIConnectionPool										
instance to create the JMS QueueConnection object.										
This method creates a Session										
, which supports both point-to-point and publish/subscribe operations. This method is new and supports JMS version 1.1 specifications. Transactional and nontransactional sessions are supported. It has the following parameters:										
Parameter	Description									
---	---									
transacted	If set to true, then the session is transactional									
ack_mode	Indicates whether the consumer or the client will acknowledge any messages it receives. It is ignored if the session is transactional. Legal values are Session.AUTO_ACKNOWLEDGE , Session.CLIENT_ACKNOWLEDGE , and Session.DUPS_OK_ACKNOWLEDGE .									
This method creates a QueueSession										
. Transactional and nontransactional sessions are supported. It has the following parameters:										
Parameter	Description									
---	---									
transacted	If set to true, then the session is transactional									
ack_mode	Indicates whether the consumer or the client will acknowledge any messages it receives. It is ignored if the session is transactional. Legal values are Session.AUTO_ACKNOWLEDGE , Session.CLIENT_ACKNOWLEDGE , and Session.DUPS_OK_ACKNOWLEDGE .									
This method creates a QueueSender										
. If a sender is created without a default queue, then the destination queue must be specified on every send operation. It has the following parameter:										
Parameter	Description									
---	---									
queue	Name of destination queue									
This method sends a message using a QueueSender										
with default send options. This operation uses default values for message priority										
(1										
) and timeToLive										
(infinite										
). It has the following parameters:										
Parameter	Description									
---	---									
queue	Queue to send this message to									
message	Message to send									
If the QueueSender										
has been created with a default queue, then the queue parameter may not necessarily be supplied in the send()										
call. If a queue is specified in the send()										
operation, then this value overrides the default queue of the QueueSender										
.										
If the QueueSender										
has been created without a default queue, then the queue parameter must be specified in every send()										
call.										
This method sends messages using a QueueSender										
by specifying send options. It has the following parameters:										
Parameter	Description									
---	---									
queue	Queue to send this message to									
message	Message to send									
deliveryMode	Delivery mode to use									
priority	Priority for this message									
timeToLive	Message lifetime in milliseconds (zero is unlimited)									
If the QueueSender										
has been created with a default queue, then the queue parameter may not necessarily be supplied in the send()										
call. If a queue is specified in the send()										
operation, then this value overrides the default queue of the QueueSender										
.										
If the QueueSender										
has been created without a default queue, then the queue parameter must be specified in every send()										
call.										
Example 13-8 Sending Messages Using a QueueSender by Specifying Send Options 1										
Example 13-9 Sending Messages Using a QueueSender by Specifying Send Options 2										
This method creates a QueueBrowser										
for queues with text, stream, objects, bytes or MapMessage message bodies. It has the following parameters:										
Parameter	Description									
---	---									
queue	Queue to access									
messageSelector	Only messages with properties matching the messageSelector expression are delivered									
Use methods in java.util.Enumeration										
to go through list of messages.										
Example 13-10 Creating a QueueBrowser Without a Selector										
Example 13-11 Creating a QueueBrowser With a Specified Selector										
This method creates a QueueBrowser										
for queues with TextMessage, StreamMessage, ObjectMessage, BytesMessage, or MapMessage message bodies, locking messages while browsing. Locked messages cannot be removed by other consumers until the browsing session ends the transaction. It has the following parameters:										
Parameter	Description									
---	---									
queue	Queue to access									
messageSelector	Only messages with properties matching the messageSelector expression are delivered									
locked	If set to true, then messages are locked as they are browsed (similar to a SELECT for UPDATE)									
Example 13-12 Creating a QueueBrowser Without a Selector, Locking Messages										
Example 13-13 Creating a QueueBrowser With a Specified Selector, Locking Messages										
This method creates a QueueBrowser										
for queues of Oracle object type messages. It has the following parameters:										
Parameter	Description									
---	---									
queue	Queue to access									
messageSelector	Only messages with properties matching the messageSelector expression are delivered									
payload_factory	CustomDatumFactory or ORADataFactory for the java class that maps to the Oracle ADT									
The CustomDatumFactory										
for a particular java class that maps to the SQL object payload can be obtained using the getFactory										
static method.										
Note: CustomDatum support will be deprecated in a future release. Use ORADataFactory payload factories instead.										
Assume the queue test_queue										
has payload of type SCOTT.EMPLOYEE										
and the java class that is generated by Jpublisher for this Oracle object type is called Employee. The Employee class implements the CustomDatum										
interface. The CustomDatumFactory										
for this class can be obtained by using the Employee.getFactory()										
method.										
This method creates a QueueBrowser										
for queues of Oracle object type messages, locking messages while browsing. It has the following parameters:										
Parameter	Description									
---	---									
queue	Queue to access									
messageSelector	Only messages with properties matching the messageSelector expression are delivered									
payload_factory	CustomDatumFactory or ORADataFactory for the java class that maps to the Oracle ADT									
locked	If set to true, then messages are locked as they are browsed (similar to a SELECT for UPDATE)									
Note: CustomDatum support will be deprecated in a future release. Use ORADataFactory payload factories instead.										
Example 13-15 Creating a QueueBrowser for AdtMessages, Locking Messages										
This method creates a QueueReceiver										
for queues of standard JMS type messages. It has the following parameters:										
Parameter	Description									
---	---									
queue	Queue to access									
messageSelector	Only messages with properties matching the messageSelector expression are delivered									
Example 13-16 Creating a QueueReceiver Without a Selector										
Example 13-17 Creating a QueueReceiver With a Specified Selector										
This method creates a QueueReceiver										
for queues of Oracle object type messages. It has the following parameters:										
Parameter	Description									
---	---									
queue	Queue to access									
messageSelector	Only messages with properties matching the messageSelector expression are delivered									
payload_factory	CustomDatumFactory or ORADataFactory for the java class that maps to the Oracle ADT									
The CustomDatumFactory										
for a particular java class that maps to the SQL object type payload can be obtained using the getFactory										
static method.										
Note: CustomDatum support will be deprecated in a future release. Use ORADataFactory payload factories instead.										
Assume the queue test_queue										
has payload of type SCOTT.EMPLOYEE										
and the java class that is generated by Jpublisher for this Oracle object type is called Employee. The Employee class implements the CustomDatum										
interface. The ORADataFactory										
for this class can be obtained by using the Employee.getFactory() method.										
Example 13-18 Creating a QueueReceiver for AdtMessage Messages										
This chapter describes the components of the Oracle Streams Advanced Queuing (AQ) Java Message Service (JMS) operational interface that are specific to publish/subscribe operations. Components that are shared by point-to-point and publish/subscribe are described in Chapter 15, "Oracle JMS Shared Interfaces".										
This chapter contains these topics:										
Creating a Connection with Default ConnectionFactory Parameters										
Creating a TopicConnection with an Open OracleOCIConnectionPool										
Publishing Messages Specifying Delivery Mode, Priority and TimeToLive										
Creating a DurableSubscriber for a JMS Topic Without Selector										
Creating a DurableSubscriber for an Oracle Object Type Topic Without Selector										
Creating a DurableSubscriber for an Oracle Object Type Topic With Selector										
Creating a Remote Subscriber for Oracle Object Type Messages										
Unsubscribing a Durable Subscription for a Remote Subscriber										
Creating a TopicReceiver for a Topic of Standard JMS Type Messages										
Creating a TopicReceiver for a Topic of Oracle Object Type Messages										
Creating a TopicBrowser for Standard JMS Messages, Locking Messages										
Creating a TopicBrowser for Oracle Object Type Messages, Locking Messages										
This method creates a connection supporting both point-to-point and publish/subscribe operations with the specified username and password. This method is new and supports JMS version 1.1 specifications. It has the following parameters:										
Parameter	Description									
---	---									
username	Name of the user connecting to the database for queuing									
password	Password for creating the connection to the server									
This method creates a connection supporting both point-to-point and publish/subscribe operations with default ConnectionFactory parameters. This method is new and supports JMS version 1.1 specifications. If the ConnectionFactory										
properties do not contain a default username and password, then it throws a JMSException.										
This method creates a TopicConnection										
with the specified username/password. It has the following parameters:										
Parameter	Description									
---	---									
username	Name of the user connecting to the database for queuing									
password	Password for creating the connection to the server									
Example 14-1 Creating a TopicConnection with Username/Password										
This method creates a TopicConnection										
with open JDBC connection. It has the following parameter:										
Parameter	Description									
---	---									
jdbc_connection	Valid open connection to database									
This method creates a TopicConnection										
with an open OracleOCIConnectionPool										
. It is static and has the following parameter:										
Parameter	Description									
---	---									
cpool	Valid open OCI connection pool to the database									
This method creates a Session										
supporting both point-to-point and publish/subscribe operations. It is new and supports JMS version 1.1 specifications. It has the following parameters:										
Parameter	Description									
---	---									
transacted	If set to true, then the session is transactional									
ack_mode	Indicates whether the consumer or the client will acknowledge any messages it receives. It is ignored if the session is transactional. Legal values are Session.AUTO_ACKNOWLEDGE , Session.CLIENT_ACKNOWLEDGE , and Session.DUPS_OK_ACKNOWLEDGE .									
This method creates a TopicSession										
. It has the following parameters:										
Parameter	Description									
---	---									
transacted	If set to true, then the session is transactional									
ack_mode	Indicates whether the consumer or the client will acknowledge any messages it receives. It is ignored if the session is transactional. Legal values are Session.AUTO_ACKNOWLEDGE , Session.CLIENT_ACKNOWLEDGE , and Session.DUPS_OK_ACKNOWLEDGE .									
This method creates a TopicPublisher										
. It has the following parameter:										
Parameter	Description									
---	---									
topic	Topic to publish to, or null if this is an unidentified producer									
This method publishes a message with minimal specification. It has the following parameter:										
Parameter	Description									
---	---									
message	Message to send									
The TopicPublisher										
uses the default values for message priority										
(1										
) and timeToLive										
(infinite										
).										
Example 14-6 Publishing Without Specifying Topic										
Example 14-7 Publishing Specifying Correlation and Delay										
This method publishes a message specifying the topic. It has the following parameters:										
Parameter	Description									
---	---									
topic	Topic to publish to									
message	Message to send									
If the TopicPublisher										
has been created with a default topic, then the topic										
parameter may not be specified in the publish()										
call. If a topic is specified, then that value overrides the default in the TopicPublisher										
. If the TopicPublisher										
has been created without a default topic, then the topic must be specified with the publish()										
call.										
Example 14-8 Publishing Specifying Topic										
This method publishes a message specifying delivery mode, priority and TimeToLive										
. It has the following parameters:										
Parameter	Description									
---	---									
topic	Topic to which to publish the message (overrides the default topic of the MessageProducer)									
message	Message to publish									
recipient_list	List of recipients to which the message is published. Recipients are of type AQjmsAgent .									
deliveryMode	PERSISTENT or NON_PERSISTENT (only PERSISTENT is supported in this release)									
priority	Priority for this message									
timeToLive	Message lifetime in milliseconds (zero is unlimited)									
Example 14-9 Publishing Specifying Priority and TimeToLive										
This method publishes a message specifying a recipient list overriding topic subscribers. It has the following parameters:										
Parameter	Description									
---	---									
message	Message to publish									
recipient_list	List of recipients to which the message is published. Recipients are of type AQjmsAgent .									
Example 14-10 Publishing Specifying a Recipient List Overriding Topic Subscribers										
This method creates a DurableSubscriber for a JMS topic without selector. It has the following parameters:										
Parameter	Description									
---	---									
topic	Non-temporary topic to subscribe to									
subs_name	Name used to identify this subscription									
Exclusive Access to Topics										
CreateDurableSubscriber()										
and Unsubscribe()										
both require exclusive access to their target topics. If there are pending JMS send()										
, publish()										
, or receive()										
operations on the same topic when these calls are applied, then exception ORA - 4020 is raised. There are two solutions to the problem:										
Limit calls to createDurableSubscriber()										
and Unsubscribe()										
to the setup or cleanup phase when there are no other JMS operations pending on the topic. That makes sure that the required resources are not held by other JMS operational calls.										
Call TopicSession.commit										
before calling createDurableSubscriber()										
or Unsubscribe()										
.										
Example 14-11 Creating a Durable Subscriber for a JMS Topic Without Selector										
This method creates a durable subscriber for a JMS topic with selector. It has the following parameters:										
Parameter	Description									
---	---									
topic	Non-temporary topic to subscribe to									
subs_name	Name used to identify this subscription									
messageSelector	Only messages with properties matching the messageSelector expression are delivered. A value of null or an empty string indicates that there is no messageSelector for the message consumer.									
noLocal	If set to true, then it inhibits the delivery of messages published by its own connection									
A client can change an existing durable subscription by creating a durable TopicSubscriber with the same name and a different messageSelector										
. An unsubscribe call is needed to end the subscription to the topic.										
Example 14-12 Creating a Durable Subscriber for a JMS Topic With Selector										
This method creates a durable subscriber for an Oracle object type topic without selector. It has the following parameters:										
Parameter	Description									
---	---									
topic	Non-temporary topic to subscribe to									
subs_name	Name used to identify this subscription									
payload_factory	CustomDatumFactory or ORADataFactory for the Java class that maps to the Oracle ADT									
Note: CustomDatum support will be deprecated in a future release. Use ORADataFactory payload factories instead.										
Example 14-13 Creating a Durable Subscriber for an Oracle Object Type Topic Without Selector										
This method creates a durable subscriber for an Oracle object type topic with selector. It has the following parameters:										
Parameter	Description									
---	---									
topic	Non-temporary topic to subscribe to									
subs_name	Name used to identify this subscription									
messageSelector	Only messages with properties matching the messageSelector expression are delivered. A value of null or an empty string indicates that there is no messageSelector for the message consumer.									
noLocal	If set to true, then it inhibits the delivery of messages published by its own connection									
payload_factory	CustomDatumFactory or ORADataFactory for the Java class that maps to the Oracle ADT									
Note: CustomDatum support will be deprecated in a future release. Use ORADataFactory payload factories instead.										
Example 14-14 Creating a Durable Subscriber for an Oracle Object Type Topic With Selector										
A transformation can be supplied when sending/publishing a message to a queue/topic. The transformation is applied before putting the message into the queue/topic.										
The application can specify a transformation using the setTransformation										
interface in the AQjmsQueueSender										
and AQjmsTopicPublisher										
interfaces.										
Example 14-15 Sending Messages to a Destination Using a Transformation										
Suppose that the orders that are processed by the order entry application should be published to WS_bookedorders_topic										
. The transformation OE2WS (defined in the previous section) is supplied so that the messages are inserted into the topic in the correct format.										
A transformation can also be specified when creating topic subscribers using the CreateDurableSubscriber()										
call. The transformation is applied to the retrieved message before returning it to the subscriber. If the subscriber specified in the CreateDurableSubscriber()										
call already exists, then its transformation is set to the specified transformation.										
Example 14-16 Specifying Transformations for Topic Subscribers										
The Western Shipping application subscribes to the OE_bookedorders_topic with the transformation OE2WS										
. This transformation is applied to the messages and the returned message is of Oracle object type WS.WS_orders										
.										
Suppose that the WSOrder java class has been generated by Jpublisher to map to the Oracle object WS.WS_order										
:										
This method creates a remote subscriber for topics of JMS messages. It has the following parameters:										
Parameter	Description									
---	---									
topic	Topic to subscribe to									
remote_subscriber	AQjmsAgent that refers to the remote subscriber									
messageSelector	Only messages with properties matching the messageSelector expression are delivered. A value of null or an empty string indicates that there is no messageSelector for the message consumer.									
Oracle Streams AQ allows topics to have remote subscribers, for example, subscribers at other topics in the same or different database. In order to use remote subscribers, you must set up propagation between the local and remote topic.										
Remote subscribers can be a specific consumer at the remote topic or all subscribers at the remote topic. A remote subscriber is defined using the AQjmsAgent										
structure. An AQjmsAgent										
consists of a name and address. The name refers to the consumer_name										
at the remote topic. The address refers to the remote topic. Its syntax is schema.topic_name[@dblink]										
.										
To publish messages to a particular consumer at the remote topic, the subscription_name										
of the recipient at the remote topic must be specified in the name field of AQjmsAgent										
, and the remote topic must be specified in the address field. To publish messages to all subscribers of the remote topic, the name field of AQjmsAgent										
must be set to null.										
Example 14-17 Creating a Remote Subscriber for Topics of JMS Messages										
This method creates a remote subscriber for topics of Oracle object type messages. It has the following parameters:										
Parameter	Description									
---	---									
topic	Topic to subscribe to									
remote_subscriber	AQjmsAgent that refers to the remote subscriber									
messageSelector	Only messages with properties matching the messageSelector expression are delivered. A value of null or an empty string indicates that there is no messageSelector for the message consumer.									
payload_factory	CustomDatumFactory or ORADataFactory for the Java class that maps to the Oracle ADT									
Note: CustomDatum support will be deprecated in a future release. Use ORADataFactory payload factories instead.										
Oracle Streams AQ allows topics to have remote subscribers, for example, subscribers at other topics in the same or different database. In order to use remote subscribers, you must set up propagation between the local and remote topic.										
Remote subscribers can be a specific consumer at the remote topic or all subscribers at the remote topic. A remote subscriber is defined using the AQjmsAgent										
structure. An AQjmsAgent										
consists of a name and address. The name refers to the consumer_name										
at the remote topic. The address refers to the remote topic. Its syntax is schema.topic_name[@dblink]										
.										
To publish messages to a particular consumer at the remote topic, the subscription_name										
of the recipient at the remote topic must be specified in the name field of AQjmsAgent										
, and the remote topic must be specified in the address field. To publish messages to all subscribers of the remote topic, the name field of AQjmsAgent										
must be set to null.										
Example 14-18 Creating a Remote Subscriber for Topics of Oracle Object Type Messages										
Oracle Streams AQ allows a remote subscriber, that is a subscriber at another database, to subscribe to a topic.										
Transformations can be specified when creating remote subscribers using the createRemoteSubscriber()										
call. This enables propagation of messages between topics of different formats. When a message published at a topic meets the criterion of a remote subscriber, Oracle Streams AQ automatically propagates the message to the queue/topic at the remote database specified for the remote subscriber. If a transformation is also specified, then Oracle Streams AQ applies the transformation to the message before propagating it to the queue/topic at the remote database.										
Example 14-19 Specifying Transformations for Remote Subscribers										
A remote subscriber is created at the OE.OE_bookedorders_topic so that messages are automatically propagated to the WS.WS_bookedorders_topic. The transformation OE2WS is specified when creating the remote subscriber so that the messages reaching the WS_bookedorders_topic have the correct format.										
Suppose that the WSOrder java class has been generated by Jpublisher to map to the Oracle object WS.WS_order										
This method unsubscribes a durable subscription for a local subscriber. It has the following parameters:										
Parameter	Description									
---	---									
topic	Non-temporary topic to unsubscribe									
subs_name	Name used to identify this subscription									
Example 14-20 Unsubscribing a Durable Subscription for a Local Subscriber										
This method unsubscribes a durable subscription for a remote subscriber. It has the following parameters:										
Parameter	Description									
---	---									
topic	Non-temporary topic to unsubscribe									
remote_subscriber	AQjmsAgent that refers to the remote subscriber. The address field of the AQjmsAgent cannot be null.									
Example 14-21 Unsubscribing a Durable Subscription for a Remote Subscriber										
This method creates a TopicReceiver										
for a topic of standard JMS type messages. It has the following parameters:										
Parameter	Description									
---	---									
topic	Topic to access									
receiver_name	Name of message receiver									
messageSelector	Only messages with properties matching the messageSelector expression are delivered. A value of null or an empty string indicates that there is no messageSelector for the message consumer.									
Oracle Streams AQ allows messages to be sent to specified recipients. These receivers may or may not be subscribers of the topic. If the receiver is not a subscriber to the topic, then it receives only those messages that are explicitly addressed to it. This method must be used order to create a TopicReceiver										
object for consumers that are not durable subscribers.										
Example 14-22 Creating a TopicReceiver for Standard JMS Type Messages										
This method creates a TopicReceiver										
for a topic of Oracle object type messages with selector. It has the following parameters:										
Parameter	Description									
---	---									
topic	Topic to access									
receiver_name	Name of message receiver									
messageSelector	Only messages with properties matching the messageSelector expression are delivered. A value of null or an empty string indicates that there is no messageSelector for the message consumer.									
payload_factory	CustomDatumFactory or ORADataFactory for the Java class that maps to the Oracle ADT									
Note: CustomDatum support will be deprecated in a future release. Use ORADataFactory payload factories instead.										
Oracle Streams AQ allows messages to be sent to all subscribers of a topic or to specified recipients. These receivers may or may not be subscribers of the topic. If the receiver is not a subscriber to the topic, then it receives only those messages that are explicitly addressed to it. This method must be used order to create a TopicReceiver										
object for consumers that are not durable subscribers.										
Example 14-23 Creating a TopicReceiver for Oracle Object Type Messages										
This method creates a TopicBrowser										
for topics with TextMessage										
, StreamMessage										
, ObjectMessage										
, BytesMessage										
, or MapMessage										
message bodies. It has the following parameters:										
Parameter	Description									
---	---									
topic	Topic to access									
cons_name	Name of the durable subscriber or consumer									
messageSelector	Only messages with properties matching the messageSelector expression are delivered. A value of null or an empty string indicates that there is no messageSelector for the message consumer.									
payload_factory	CustomDatumFactory or ORADataFactory for the Java class that maps to the Oracle ADT									
Example 14-24 Creating a TopicBrowser Without a Selector										
Example 14-25 Creating a TopicBrowser With a Specified Selector										
This method creates a TopicBrowser										
for topics with text, stream, objects, bytes or map messages, locking messages while browsing. It has the following parameters:										
Parameter	Description									
---	---									
topic	Topic to access									
cons_name	Name of the durable subscriber or consumer									
messageSelector	Only messages with properties matching the messageSelector expression are delivered. A value of null or an empty string indicates that there is no messageSelector for the message consumer.									
locked	If set to true, then messages are locked as they are browsed (similar to a SELECT for UPDATE)									
Example 14-26 Creating a TopicBrowser Without a Selector, Locking Messages While Browsing										
Example 14-27 Creating a TopicBrowser With a Specified Selector, Locking Messages										
This method creates a TopicBrowser										
for topics of Oracle object type messages. It has the following parameters:										
Parameter	Description									
---	---									
topic	Topic to access									
cons_name	Name of the durable subscriber or consumer									
messageSelector	Only messages with properties matching the messageSelector expression are delivered. A value of null or an empty string indicates that there is no messageSelector for the message consumer.									
payload_factory	CustomDatumFactory or ORADataFactory for the Java class that maps to the Oracle ADT									
Note: CustomDatum support will be deprecated in a future release. Use ORADataFactory payload factories instead.										
The CustomDatumFactory										
for a particular Java class that maps to the SQL object type payload can be obtained using the getFactory										
static method. Assume the topic test_topic										
has payload of type SCOTT.EMPLOYEE										
and the Java class that is generated by Jpublisher for this Oracle object type is called Employee										
. The Employee class implements the CustomDatum										
interface. The CustomDatumFactory										
for this class can be obtained by using the Employee.getFactory()										
method.										
This method creates a TopicBrowser										
for topics of Oracle object type messages, locking messages while browsing. It has the following parameters:										
Parameter	Description									
---	---									
topic	Topic to access									
cons_name	Name of the durable subscriber or consumer									
messageSelector	Only messages with properties matching the messageSelector expression are delivered. A value of null or an empty string indicates that there is no messageSelector for the message consumer.									
payload_factory	CustomDatumFactory or ORADataFactory for the Java class that maps to the Oracle ADT									
locked	If set to true, then messages are locked as they are browsed (similar to a SELECT for UPDATE)									
Note: CustomDatum support will be deprecated in a future release. Use ORADataFactory payload factories instead.										
Example 14-29 Creating a TopicBrowser for AdtMessage Messages, Locking Messages										
This method browses messages using a TopicBrowser										
. Use methods in java.util.Enumeration										
to go through the list of messages. Use the method purgeSeen										
in TopicBrowser										
to purge messages that have been seen during the current browse.										
Example 14-30 Creating a TopicBrowser with a Specified Selector										
This chapter describes the Java Message Service (JMS) operational interface (shared interfaces) to Oracle Streams Advanced Queuing (AQ).										
This chapter contains these topics:										
Oracle Streams AQ JMS Operational Interface: Shared Interfaces										
Setting Default TimeToLive for All Messages Sent by a MessageProducer										
Setting Default Priority for All Messages Sent by a MessageProducer										
This section discusses Oracle Streams AQ shared interfaces for JMS operations.										
This section contains these topics:										
AQjmsConnection.start()										
starts a JMS connection for receiving messages.										
AQjmsSession.getJmsConnection()										
gets a JMS connection from a session.										
AQjmsSession.commit()										
commits all JMS and SQL operations performed in a session.										
AQjmsSession.rollback()										
terminates all JMS and SQL operations performed in a session.										
AQjmsSession.getDBConnection()										
gets the underlying JDBC connection from a JMS session. The JDBC connection can be used to perform SQL operations as part of the same transaction in which the JMS operations are accomplished.										
AQjmsConnection.getOCIConnectionPool()										
gets the underlying OracleOCIConnectionPool										
from a JMS connection. The settings of the OracleOCIConnectionPool										
instance can be tuned by the user depending on the connection usage, for example, the number of sessions the user wants to create using the given connection. The user should not, however, close the OracleOCIConnectionPool										
instance being used by the JMS connection.										
AQjmsSession.createBytesMessage()										
creates a bytes message. It can be used only if the queue table that contains the destination queue/topic was created with the SYS.AQ$_JMS_BYTES_MESSAGE										
or AQ$_JMS_MESSAGE										
payload types.										
AQjmsSession.createMapMessage()										
creates a map message. It can be used only if the queue table that contains the destination queue/topic was created with the SYS.AQ$_JMS_MAP_MESSAGE										
or AQ$_JMS_MESSAGE										
payload types.										
AQjmsSession.createStreamMessage()										
creates a stream message. It can be used only if the queue table that contains the destination queue/topic was created with the SYS.AQ$_JMS_STREAM_MESSAGE										
or AQ$_JMS_MESSAGE										
payload types.										
AQjmsSession.createObjectMessage()										
creates an object message. It can be used only if the queue table that contains the destination queue/topic was created with the SYS.AQ$_JMS_OBJECT_MESSAGE										
or AQ$_JMS_MESSAGE										
payload types.										
AQjmsSession.createTextMessage()										
creates a text message. It can be used only if the queue table that contains the destination queue/topic was created with the SYS.AQ$_JMS_TEXT_MESSAGE										
or AQ$_JMS_MESSAGE										
payload types.										
AQjmsSession.createMessage()										
creates a JMS message. You can use the AQ$_JMS_MESSAGE										
construct message to construct messages of different types. The message type must be one of the following:										
DBMS_AQ.JMS_TEXT_MESSAGE										
DBMS_AQ.JMS_OBJECT_MESSAGE										
DBMS_AQ.JMS_MAP_MESSAGE										
DBMS_AQ.JMS_BYTES_MESSAGE										
DBMS_AQ.JMS_STREAM_MESSAGE										
You can also use this ADT to create a header-only JMS message.										
AQjmsSession.createAdtMessage()										
creates an AdtMessage										
. It can be used only if the queue table that contains the queue/topic was created with an Oracle ADT payload type. An AdtMessage										
must be populated with an object that implements the CustomDatum										
interface. This object must be the Java mapping of the SQL ADT defined as the payload for the queue/topic. Java classes corresponding to SQL ADT types can be generated using the Jpublisher tool.										
Property names starting with JMS are provider-specific. User-defined properties cannot start with JMS.										
The following provider properties can be set by clients using text, stream, object, bytes or map messages:										
JMSXAppID (string)										
JMSXGroupID (string)										
JMSXGroupSeq (int)										
JMS_OracleExcpQ (string)										
This message property specifies the exception queue.										
JMS_OracleDelay (int)										
This message property specifies the message delay in seconds.										
The following properties can be set on AdtMessage										
JMS_OracleExcpQ (String)										
This message property specifies the exception queue as "schema										
.queue_name										
"										
JMS_OracleDelay (int)										
This message property specifies the message delay in seconds.										
This section contains these topics:										
AQjmsMessage.setBooleanProperty()										
specifies a message property as Boolean. It has the following parameters:										
Parameter	Description									
---	---									
name	Name of the Boolean property									
value	Boolean property value to set in the message									
AQjmsMessage.setStringProperty()										
specifies a message property as string. It has the following parameters:										
Parameter	Description									
---	---									
name	Name of the string property									
value	String property value to set in the message									
AQjmsMessage.setIntProperty()										
specifies a message property as integer. It has the following parameters:										
Parameter	Description									
---	---									
name	Name of the integer property									
value	Integer property value to set in the message									
AQjmsMessage.setDoubleProperty()										
specifies a message property as double. It has the following parameters:										
Parameter	Description									
---	---									
name	Name of the double property									
value	Double property value to set in the message									
AQjmsMessage.setFloatProperty()										
specifies a message property as float. It has the following parameters:										
Parameter	Description									
---	---									
name	Name of the float property									
value	Float property value to set in the message									
AQjmsMessage.setByteProperty()										
specifies a message property as byte. It has the following parameters:										
Parameter	Description									
---	---									
name	Name of the byte property									
value	Byte property value to set in the message									
AQjmsMessage.setLongProperty()										
specifies a message property as long. It has the following parameters:										
Parameter	Description									
---	---									
name	Name of the long property									
value	Long property value to set in the message									
AQjmsMessage.setShortProperty()										
specifies a message property as short. It has the following parameters:										
Parameter	Description									
---	---									
name	Name of the short property									
value	Short property value to set in the message									
AQjmsMessage.setObjectProperty()										
specifies a message property as object. Only objectified primitive values are supported: Boolean, byte, short, integer, long, float, double and string. It has the following parameters:										
Parameter	Description									
---	---									
name	Name of the Java object property									
value	Java object property value to set in the message									
This method sets the default TimeToLive										
for all messages sent by a MessageProducer										
. It is calculated after message delay has taken effect. This method has the following parameter:										
Parameter	Description									
---	---									
timeToLive	Message time to live in milliseconds (zero is unlimited)									
This method sets the default Priority										
for all messages sent by a MessageProducer										
. It has the following parameter:										
Parameter	Description									
---	---									
priority	Message priority for this message producer. The default is 4.									
Priority values can be any integer. A smaller number indicates higher priority. If a priority value is explicitly specified during a send()										
operation, then it overrides the default value set by this method.										
This method creates an AQjmsAgent										
. It has the following parameters:										
Parameter	Description									
---	---									
agent_name	Name of the AQ agent									
enable_http	If set to true, then this agent is allowed to access AQ through HTTP									
You can receive a message synchronously by specifying Timeout or without waiting. You can also receive a message using a transformation:										
This method receives a message using a message consumer by specifying timeout.										
Parameter	Description									
---	---									
timeout	Timeout value in milliseconds									
Example 15-6 Using a Message Consumer by Specifying Timeout										
Example 15-7 JMS: Blocking Until a Message Arrives										
This method receives a message using a message consumer without waiting.										
Example 15-8 JMS: Nonblocking Messages										
A transformation can be applied when receiving a message from a queue or topic. The transformation is applied to the message before returning it to JMS application.										
The transformation can be specified using the setTransformation()										
interface of the AQjmsQueueReceiver										
, AQjmsTopicSubscriber										
or AQjmsTopicReceiver										
.										
Example 15-9 JMS: Receiving Messages from a Destination Using a Transformation										
Assume that the Western Shipping application retrieves messages from the OE_bookedorders_topic. It specifies the transformation OE2WS										
to retrieve the message as the Oracle object type WS_order										
. Assume that the WSOrder Java class has been generated by Jpublisher to map to the Oracle object WS.WS_order										
:										
This method specifies the navigation mode for receiving messages. It has the following parameter:										
Parameter	Description									
---	---									
mode	New value of the navigation mode									
Example 15-10 Specifying Navigation Mode for Receiving Messages										
You can receive a message asynchronously two ways:										
This method specifies a message listener at the message consumer. It has the following parameter:										
Parameter	Description									
---	---									
myListener	Sets the consumer message listener									
Example 15-11 Specifying Message Listener at Message Consumer										
This section contains these topics:										
AQjmsMessage.getJMSCorrelationID()										
gets the correlation identifier of a message.										
This section contains these topics:										
AQjmsMessage.getBooleanProperty()										
gets a message property as Boolean. It has the following parameter:										
Parameter	Description									
---	---									
name	Name of the Boolean property									
AQjmsMessage.getStringProperty()										
gets a message property as string. It has the following parameter:										
Parameter	Description									
---	---									
name	Name of the string property									
AQjmsMessage.getIntProperty()										
gets a message property as integer. It has the following parameter:										
Parameter	Description									
---	---									
name	Name of the integer property									
AQjmsMessage.getDoubleProperty()										
gets a message property as double. It has the following parameter:										
Parameter	Description									
---	---									
name	Name of the double property									
AQjmsMessage.getFloatProperty()										
gets a message property as float. It has the following parameter:										
Parameter	Description									
---	---									
name	Name of the float property									
AQjmsMessage.getByteProperty()										
gets a message property as byte. It has the following parameter:										
Parameter	Description									
---	---									
name	Name of the byte property									
AQjmsMessage.getLongProperty()										
gets a message property as long. It has the following parameter:										
Parameter	Description									
---	---									
name	Name of the long property									
AQjmsMessage.getShortProperty() gets a message property as short. It has the following parameter:										
Parameter	Description									
---	---									
name	Name of the short property									
This section contains these topics:										
AQjmsProducer.close()										
closes a MessageProducer										
.										
AQjmsConsumer.close()										
closes a message consumer.										
AQjmsConnection.stop()										
stops a JMS connection.										
AQjmsSession.close()										
closes a JMS session.										
AQjmsConnection.close()										
closes a JMS connection and releases all resources allocated on behalf of the connection. Because the JMS provider typically allocates significant resources outside the JVM on behalf of a connection, clients should close them when they are not needed. Relying on garbage collection to eventually reclaim these resources may not be timely enough.										
This section contains these topics:										
AQjmsException.getErrorCode()										
gets the error code for a JMS exception.										
AQjmsException.getErrorNumber()										
gets the error number for a JMS exception.										
Note: This method will be deprecated in a future release. UsegetErrorCode() instead.										
AQjmsException.getLinkString()										
gets the exception linked to a JMS exception. In general, this contains the SQL exception raised by the database.										
AQjmsException.printStackTrace()										
prints the stack trace for a JMS exception.										
AQjmsConnection.setExceptionListener()										
specifies an exception listener for a connection. It has the following parameter:										
Parameter	Description									
---	---									
listener	Exception listener									
If an exception listener has been registered, then it is informed of any serious problem detected for a connection. This is accomplished by calling the listener onException()										
method, passing it a JMS exception describing the problem. This allows a JMS client to be notified of a problem asynchronously. Some connections only consume messages, so they have no other way to learn the connection has failed.										
Example 15-13 Specifying Exception Listener for Connection										
This chapter provides examples that illustrate how to use Oracle JMS Types to dequeue and enqueue Oracle Streams Advanced Queuing (AQ) messages.										
The chapter contains the following topics:										
To run Example 16-2 through Example 16-7 follow these steps:										
setup.sql										
. setup.sql										
as follows: jmsuser/jmsuser										
. For JMS BytesMessage										
, for example, run Example 16-2 and Example 16-3.										
java_pool-size										
is large enough. For example, you can use java_pool_size										
=20M. Example 16-1 performs the necessary setup for the JMS types examples. Copy and save it as setup.sql										
.										
Example 16-1 Setting Up Environment for Running JMS Types Examples										
This section includes examples that illustrate enqueuing and dequeuing of a JMS BytesMessage										
.										
Example 16-2 shows how to use JMS type member functions with DBMS_AQ										
functions to populate and enqueue a JMS BytesMessage										
represented as sys.aq$_jms_bytes_message										
type in the database. This message later can be dequeued by a JAVA Oracle Java Message Service (OJMS) client.										
Example 16-2 Populating and Enqueuing a BytesMessage										
Example 16-3 illustrates how to use JMS type member functions with DBMS_AQ										
functions to dequeue and retrieve data from a JMS BytesMessage										
represented as sys.aq$_jms_bytes_message										
type in the database. This message might be enqueued by a Java OJMS client.										
Example 16-3 Dequeuing and Retrieving JMS BytesMessage Data										
This section includes examples that illustrate enqueuing and dequeuing of a JMS StreamMessage										
.										
Example 16-4 shows how to use JMS type member functions with DBMS_AQ										
functions to populate and enqueue a JMS StreamMessage										
represented as sys.aq$_jms_stream_message										
type in the database. This message later can be dequeued by a JAVA OJMS client.										
Example 16-4 Populating and Enqueuing a JMS StreamMessage										
Example 16-5 shows how to use JMS type member functions with DBMS_AQ										
functions to dequeue and retrieve data from a JMS StreamMessage										
represented as sys.aq$_jms_stream_message										
type in the database. This message might be enqueued by a JAVA OJMS client.										
Example 16-5 Dequeuing and Retrieving Data From a JMS StreamMessage										
This section includes examples that illustrate enqueuing and dequeuing of a JMS MapMessage										
.										
Example 16-6 shows how to use JMS type member functions with DBMS_AQ										
functions to populate and enqueue a JMS MapMessage										
represented as sys.aq$_jms_map_message										
type in the database. This message later can be dequeued by a JAVA OJMS client.										
Example 16-6 Populating and Enqueuing a JMS MapMessage										
Example 16-7 illustrates how to use JMS type member functions with DBMS_AQ										
functions to dequeue and retrieve data from a JMS MapMessage										
represented as sys.aq$_jms_map_message										
type in the database. This message can be enqueued by a Java OJMS client.										
Example 16-7 Dequeuing and Retrieving Data From a JMS MapMessage										
The sample program in Example 16-8 enqueues a large TextMessage										
(along with JMS user properties) in an Oracle Streams AQ queue created through the OJMS administrative interfaces to hold JMS TEXT										
messages. Both the TextMessage										
and BytesMessage										
enqueued in this example can be dequeued using OJMS Java clients.										
Example 16-8 Enqueuing a Large TextMessage										
The sample program in Example 16-9 enqueues a large BytesMessage										
.										
Example 16-9 Enqueuing a Large BytesMessage										
Part VII describes Messaging Gateway and how to use it.										
This part contains the following chapters:										
This chapter introduces Oracle Messaging Gateway (MGW) features and functionality.										
This chapter contains these topics:										
Messaging Gateway enables communication between applications based on non-Oracle messaging systems and Oracle Streams AQ.										
Oracle Streams AQ provides propagation between two Oracle Streams AQ queues to enable e-business (HTTP through IDAP). Messaging Gateway extends this to applications based on non-Oracle messaging systems.										
Because Messaging Gateway is integrated with Oracle Streams AQ and Oracle Database, it offers reliable message delivery. Messaging Gateway guarantees that messages are delivered once and only once between Oracle Streams AQ and non-Oracle messaging systems that support persistence. The PL/SQL interface provides an easy-to-learn administrative API, especially for developers already proficient in using Oracle Streams AQ.										
This release of Messaging Gateway supports the integration of Oracle Streams AQ with applications based on WebSphere MQ 5.3 and TIB/Rendezvous 7.2.										
Messaging Gateway provides the following features:										
Extends Oracle Streams AQ message propagation										
Messaging Gateway propagates messages between Oracle Streams AQ and non-Oracle messaging systems. Messages sent by Oracle Streams AQ applications can be received by non-Oracle messaging system applications. Conversely, messages published by non-Oracle messaging system applications can be consumed by Oracle Streams AQ applications.										
Support for Java Message Service (JMS) messaging systems										
Messaging Gateway propagates messages between Oracle Java Message Service (Oracle JMS) and WebSphere MQ Java Message Service (WebSphere MQ JMS).										
Native message format support										
Messaging Gateway supports the native message formats of messaging systems. Oracle Streams AQ messages can have RAW										
or any Oracle object type payload. WebSphere MQ messages can be text or byte messages. TIB/Rendezvous messages can be any TIB/Rendezvous wire format datatype except the nested datatype MSG										
and those with unsigned integers.										
Message conversion										
Messaging Gateway facilitates message conversion between Oracle Streams AQ messages and non-Oracle messaging system messages. Messages are converted through either automatic routines provided by Messaging Gateway or customized message transformation functions that you provide.										
Note: Messaging Gateway does not support message propagation between JMS and non-JMS messaging systems.										
Integration with Oracle Database										
Messaging Gateway is managed through a PL/SQL interface similar to that of Oracle Streams AQ. Configuration information is stored in Oracle Database tables. Message propagation is carried out by an external process of the Oracle Database server.										
Guaranteed message delivery										
If the messaging systems at the propagation source and propagation destination both support transactions, then Messaging Gateway guarantees that persistent messages are propagated exactly once. If messages are not persistent or transactions are not supported by the messaging systems at the propagation source or propagation destination, then at-most-once propagation is guaranteed.										
Security support										
Messaging Gateway supports client authentication of Oracle Database and non-Oracle messaging systems.										
Messaging Gateway has two main components:										
Administration Package DBMS_MGWADM										
Messaging Gateway Agent										
Figure 17-1 shows how these components work together with Oracle Database and non-Oracle messaging systems.										
The Messaging Gateway administration package DBMS_MGWADM										
provides an interface for managing the Messaging Gateway agent, creating messaging system links, registering non-Oracle queues, and setting up and scheduling propagation jobs.										
Users call the procedures in the package to make configuration changes regardless of whether the Messaging Gateway agent is running. If the Messaging Gateway agent is running, then the procedures in the package send notifications for configuration changes to the agent. The agent dynamically alters its configuration for most configuration changes, although some changes require that the agent be shut down and restarted before they take effect. All the procedures in the package are serialized to guarantee that the Messaging Gateway agent receives and processes notifications in the same order as they are made.										
The Messaging Gateway agent runs as an external process of the Oracle Database server and processes propagation jobs. It is started and shut down by calling the STARTUP										
and SHUTDOWN										
procedures in DBMS_MGWADM										
package.										
The Messaging Gateway agent contains a multithreaded propagation engine and a set of drivers for messaging systems. The propagation engine fairly schedules propagation jobs and processes propagation jobs concurrently. The polling thread in the agent periodically polls the source queues of enabled propagation jobs and wakes up worker threads to process propagation jobs if messages are available. The drivers for non-Oracle messaging systems run as clients of the messaging systems for all messaging operations.										
As an Oracle Database feature, Messaging Gateway provides a mechanism of message propagation between Oracle Streams AQ and non-Oracle messaging systems. Oracle Streams AQ is involved in every propagation job as either propagation source or propagation destination.										
Messaging Gateway is managed through the PL/SQL administration package DBMS_MGWADM										
. All configuration information and execution state information of Messaging Gateway are stored in Oracle Database and can be accessed through database views.										
The Messaging Gateway agent runs as an external procedure of the Oracle Database server. Therefore, it runs only when its associated database server is running.										
The Messaging Gateway agent connects to non-Oracle messaging systems through messaging system links. Messaging system links are communication channels between the Messaging Gateway agent and non-Oracle messaging systems. Users can use the administration package DBMS_MGWADM										
to configure multiple links to the same or different non-Oracle messaging systems.										
Queues in non-Oracle messaging systems, such as WebSphere MQ queues, TIB/Rendezvous subjects, and WebSphere MQ JMS destinations (queues and topics) can all serve as propagation sources and destinations for Messaging Gateway. They are referred to as foreign queues. All foreign queues involved in message propagation as source queues, destination queues, or exception queues must be registered through the administration package. The registration of a foreign queue does not create the physical queue in a non-Oracle messaging system, but merely records information about the queue, such as the messaging system link to access it, its native name, and its domain (queue or topic). The physical queue must be created through the administration interface of the non-Oracle messaging system.										
To propagate messages, propagation jobs must be created. A propagation job consists of a propagation subscriber and a propagation schedule. A propagation subscriber defines the source queue and destination queue of a propagation job. A propagation schedule controls when the propagation job is processed.										
If the propagation source is a queue (point-to-point), then the Messaging Gateway agent moves all messages in the queue to the destination. If the propagation source is a topic (publish/subscribe), then the Messaging Gateway agent creates a subscription on the propagation source topic. The agent moves all messages that are published to the topic after the subscription is created.										
A propagation job is processed when its schedule is enabled. Disabling a propagation schedule stops propagation job processing, but does not stop message subscription.										
When the Messaging Gateway agent processes a propagation job, it dequeues messages from the source queue and enqueues the messages to the destination queue. As each message is propagated, it is converted from its native format in the source messaging system to its native format in the destination messaging system. Messaging Gateway provides automatic message conversions between simple and commonly used message formats. You can customize message conversions by providing your own message transformation functions.										
When the Messaging Gateway agent fails to convert a message from the source format to the destination format, the agent moves the message from the source queue to an exception queue, if the exception queue exists, and continues to process the propagation job.										
If the Messaging Gateway agent runs into failures when processing a propagation job, it retries up to sixteen times in an exponential backoff scheme (from two seconds up to thirty minutes) before it stops retrying.										
To guarantee reliable message delivery, Messaging Gateway requires logging queues in messaging systems that support transactions and persistent messages. The Messaging Gateway agent uses the logging queues to store the processing states of propagation jobs so that it can restore propagation processing from failures.										
Messaging Gateway does not support propagation of buffered messages. In outbound propagation, the Messaging Gateway agent dequeues only persistent messages from AQ queues. In inbound propagation, the Messaging Gateway agent always enqueues persistent messages into AQ queues.										
This chapter describes Oracle Messaging Gateway (MGW) prerequisites and how to load, set up, and unload Messaging Gateway. It also describes how to set up and modify the mgw.ora										
initialization file.										
This chapter contains these topics:										
Messaging Gateway requires two job queue processes in addition to those used for other purposes. You can set the number of job queue processes in the init										
sid										
.ora										
file, where sid										
is the Oracle system ID of the database instance used for Messaging Gateway:										
Perform the following procedures before running Messaging Gateway:										
Configuring Oracle Messaging Gateway in a RAC Environment										
Note: These setup instructions are specific to 32-bit versions of the Windows and Linux x86 operating systems. The tasks apply to both Windows and Linux operating systems, except where "Windows Operating System Only" or "Linux Operating System Only" is indicated. For other operating systems, see Oracle Database Installation Guide 10g Release 2 (10.2) for UNIX Systems: AIX-Based Systems, HP Tru64 UNIX, HP 9000 Series HP-UX, Linux Intel and Sun Solaris.										
Using SQL*Plus, run ORACLE_HOME										
/mgw/admin/catmgw.sql										
as user SYS										
as SYSDBA										
. This script loads the database objects necessary for Messaging Gateway, including roles, tables, views, object types, and PL/SQL packages. It creates public synonyms for Messaging Gateway PL/SQL packages. It creates two roles, MGW_ADMINISTRATOR_ROLE										
and MGW_AGENT_ROLE,										
with certain privileges granted. All objects are owned by SYS										
.										
This procedure is for Linux 32-bit operating systems only. Static service information for the listener is not necessary on the Windows operating system.										
You must modify listener.ora										
so that the Messaging Gateway PL/SQL packages can call the external procedure.										
SID_DESC										
for the listener. Within the SID_DESC										
, the parameters described in Table 18-1 are important to Messaging Gateway and must be specified according to your own situation. Table 18-1 SID_DESC Parameters										
Parameter	Description									
---	---									
SID_NAME	The SID that is specified in the net service name in tnsnames.ora . In the following example, the SID_NAME is mgwextproc .									
ENVS	Set up the LD_LIBRARY_PATH environment needed for the external procedure to run. The LD_LIBRARY_PATH must contain the following paths: JRE_HOME/lib/PLATFORM_TYPE JRE_HOME/lib/PLATFORM_TYPE/server ORACLE_HOME/lib It should also contain any additional libraries required by third-party messaging systems. See "Setting Up Non-Oracle Messaging Systems".									
ORACLE_HOME	Your Oracle home directory. Using $ORACLE_HOME does not work.									
PROGRAM	The name of the external procedure agent, which is extproc									
Note: JRE_HOME represents the root directory of a JRE installation, just as ORACLE_HOME represents the root directory of an Oracle installation. Oracle recommends that you use the JRE installed with Oracle Database.										
Example 18-1 adds SID_NAME										
mgwextproc										
to a listener.ora file for Linux x86.										
This procedure is for Linux 32-bit operating systems only. For the external procedure, configure a net service name MGW_AGENT										
in tnsnames.ora										
whose connect descriptor matches the information configured in listener.ora										
, as shown in Example 18-2. The net service name must be MGW_AGENT										
(this value is fixed). The KEY										
value must match the KEY										
value specified for the IPC protocol in listener.ora										
. The SID value must match the value specified for SID_NAME										
of the SID_DESC										
entry in listener.ora										
.										
Example 18-2 Configuring MGW_AGENT										
Note: If thenames.default_domain parameter for sqlnet.ora has been used to set a default domain, then that domain must be appended to the MGW_AGENT net service name in tnsnames.ora . For example, if sqlnet.ora contains the entry names.default_domain=acme.com , then the net service name in tnsnames.ora must be MGW_AGENT.acme.com .										
The Messaging Gateway initialization file ORACLE_HOME										
/mgw/admin/mgw.ora										
is a text file. The Messaging Gateway external procedure uses it to get initialization parameters to start the Messaging Gateway agent. Copy ORACLE_HOME										
/mgw/admin/sample_mgw.ora										
to mgw.ora										
and modify it according to your situation.										
The following procedure sets environment variables and other parameters required for all applications of Messaging Gateway:										
MGW_PRE_PATH										
variable. Its value is the path to the jvm.dll										
library: This variable is prepended to the path inherited by the Messaging Gateway agent process.										
CLASSPATH										
to include at least the following: JRE runtime classes:										
Oracle JDBC classes:										
Oracle internationalization classes:										
SQLJ runtime:										
Java Message Service (JMS) interface										
Oracle JMS implementation classes										
Java transaction API										
Any additional classes needed for Messaging Gateway to access non-Oracle messaging systems										
Note: ReplaceORACLE_HOME with the appropriate, spelled-out value. Using $ORACLE_HOME , for example, does not work. Users of the Windows operating system must set										
To perform Messaging Gateway administration work, a database user must be created with MGW_ADMINISTRATOR_ROLE										
privileges, as shown in Example 18-3.										
To establish the Messaging Gateway agent connection back to the database, a database user with MGW_AGENT_ROLE										
privileges must be created, as shown in Example 18-4.										
After the Messaging Gateway agent user is created, the administration user uses DBMS_MGWADM.DB_CONNECT_INFO										
to configure Messaging Gateway with the username, password, and database connect string used by the Messaging Gateway agent to connect back to the database, as shown in Example 18-5. Use the Messaging Gateway username and password that you created in "Creating an Oracle Messaging Gateway Agent User". The database connect string parameter can be set to either a net service name in tnsnames.ora										
(with IPC protocol for better performance) or NULL										
. If NULL										
, then the oracle_sid										
parameter must be set in mgw.ora										
.										
For this release, always specify a not NULL										
value for the database connect string parameter when calling DBMS_MGWADM.DB_CONNECT_INFO										
.										
This section contains these topics:										
Oracle recommends that all database connections made by the Messaging Gateway agent be made to the instance on which the Messaging Gateway agent process is running. This ensures correct failover behavior in a Real Application Clusters (RAC) environment. You can configure connections this way by having the instances use slightly different tnsnames.ora										
files. Each file contains an entry with the same net service name, but the connect data refers to only the instance associated with that tnsnames.ora										
file. The common net service name would then be used for the database parameter when DBMS_MGWADM.DB_CONNECT_INFO										
is used to configure the Messaging Gateway agent database connection information.										
For example, in a two-instance RAC environment with instances OraDB1										
and OraDB2										
, where the net service name AGENT_DB										
is to be used, the tnsnames.ora										
for instance OraDB1										
would look like this:										
The tnsnames.ora										
for OraDB2										
would look like this:										
You would then configure Messaging Gateway agent user connection information by running the following command:										
The DBMS_MGWADM.STARTUP										
procedure submits a job queue job that starts the Messaging Gateway agent external process when the job is executed. You can use the instance										
and force										
parameters to control the job and instance affinity. By default the job is set up so that it can be run by any instance.										
This section contains these topics:										
Running as a TIB/Rendezvous Java client application, the Messaging Gateway agent requires TIB/Rendezvous software to be installed on the computer where the Messaging Gateway agent runs. In this section TIBRV_HOME										
refers to the installed TIB/Rendezvous software location.										
On the Linux operating system, LD_LIBRARY_PATH										
in the entry for Messaging Gateway must include TIBRV_HOME										
/lib										
for the agent to access TIB/Rendezvous shared library files.										
On the Windows operating system, you are not required to modify listener.ora										
. But the system environment variable PATH										
must include TIBRV_HOME										
\bin										
.										
MGW_PRE_PATH										
must include the directory that contains the TIB/Rendezvous license ticket file (tibrv.tkt										
), which usually is located in TIBRV_HOME/bin										
.										
CLASSPATH										
must include the TIB/Rendezvous jar file TIBRV_HOME										
/lib/tibrvj.jar										
. If you use your own customized TIB/Rendezvous advisory message callback, then the location of the callback class must also be included.										
You can set the following Java properties to change the default setting:										
oracle.mgw.tibrv.encoding										
oracle.mgw.tibrv.intraProcAdvSubjects										
oracle.mgw.tibrv.advMsgCallback										
The WebSphere MQ client and WebSphere MQ classes for Java and JMS must be installed on the computer where the Messaging Gateway agent runs. In this section MQ_HOME										
refers to the location of the installed client. On the Linux operating system, this location is always /opt/mqm										
. On the Windows operating system, the installed location can vary.										
No extra modification of listener.ora										
is necessary for Messaging Gateway to access WebSphere MQ.										
When using WebSphere MQ Base Java (non-JMS) interface, set CLASSPATH										
to include at least the following (in addition to those in "Setting Up a mgw.ora Initialization File"):										
MQ_HOME										
/java/lib/com.ibm.mq.jar										
MQ_HOME										
/java/lib/connector.jar										
When using WebSphere MQ JMS interface, set CLASSPATH										
to include at least the following (in addition to those in "Setting Up a mgw.ora Initialization File"):										
MQ_HOME										
/java/lib/com.ibm.mqjms.jar										
MQ_HOME										
/java/lib/com.ibm.mq.jar										
MQ_HOME										
/java/lib/connector.jar										
The following procedure verifies the setup and includes a simple startup and shutdown of the Messaging Gateway agent:										
Start the listener for the external procedure and other listeners for the regular database connection.										
Run sqlplus										
agent_user										
/										
agent_password										
@										
agent_database										
.										
If it is successful, then the Messaging Gateway agent is able to connect to the database.										
Run sqlplus										
agent_user										
/										
agent_password										
@										
MGW_AGENT										
.										
This should fail with "ORA-28547: connection to server failed, probable Oracle Net admin error". Any other error indicates that the tnsnames.ora										
, listener.ora										
, or both are not correct.										
admin_user										
and call DBMS_MGWADM.STARTUP										
to start the Messaging Gateway agent. MGW_GATEWAY										
view, wait for AGENT_STATUS										
to change to RUNNING										
and AGENT_PING										
to change to REACHABLE										
. admin_user										
and call DBMS_MGWADM.SHUTDOWN										
to shut down the Messaging Gateway agent. MGW_GATEWAY										
view, wait for AGENT_STATUS										
to change to NOT_STARTED										
. Use this procedure to unload Messaging Gateway:										
SYS.MGW_BASIC_MSG_T										
). ORACLE_HOME										
/mgw/admin/catnomgw.sql										
as user SYS										
as SYSDBA										
. This drops the database objects used by Messaging Gateway, including roles, tables, views, packages, object types, and synonyms.										
listener.ora										
and tnsnames.ora										
. Messaging Gateway reads initialization information from a text file named mgw.ora										
when the Messaging Gateway agent starts. The mgw.ora										
file is located in ORACLE_HOME										
/mgw/admin										
.										
The Messaging Gateway initialization file mgw.ora										
contains lines for setting initialization parameters, environment variables, and Java properties. Each entity must be specified on one line. Leading whitespace is trimmed in all cases.										
This section contains these topics:										
Note: Each of the following sections includes example code, identified by the heading Example. This code must consist of only one line in the initialization file, although it can appear otherwise in this document.										
The initialization parameters are typically specified by lines having a "name										
=										
value										
<NL>										
" format where name										
represents the parameter name, value										
represents its value and <NL>										
represents a new line.										
Usage: Specifies the directory where the Messaging Gateway log/trace file is created.										
Format:										
Default:										
Example:										
Usage: Specifies the level of logging detail recorded by the Messaging Gateway agent. The logging level can be dynamically changed by changed by calling DBMS_MGWADM.SET_LOG_LEVEL										
while the Messaging Gateway agent is running. Oracle recommends that log level 0										
(the default value) be used at all times.										
Format:										
Values:										
0										
for basic logging; equivalent to DBMS_MGWADM.BASIC_LOGGING										
1										
for light tracing; equivalent to DBMS_MGWADM.TRACE_LITE_LOGGING										
2										
for high tracing; equivalent to DBMS_MGWADM.TRACE_HIGH_LOGGING										
3										
for debug tracing; equivalent to DBMS_MGWADM.TRACE_DEBUG_LOGGING										
Example:										
Because the Messaging Gateway process environment is not under the direct control of the user, certain environment variables should be set using the initialization file. The environment variables currently used by the Messaging Gateway agent are CLASSPATH										
, MGW_PRE_PATH										
, and ORACLE_SID										
.										
Environment variables such as CLASSPATH										
and MGW_PRE_PATH										
are set so the Messaging Gateway agent can find the required shared objects, Java classes, and so on. Environment variables are specified by lines having a "set										
env_var										
=value										
<NL>"										
or "setenv										
env_var										
=										
value										
<NL>"										
format where env_var										
represents the name of the environment variable to set, value										
represents the value of the environment variable, and <NL>										
represents a new line.										
Usage: Used by the Java Virtual Machine to find Java classes needed by the Messaging Gateway agent for propagation between Oracle Streams AQ and non-Oracle messaging systems.										
Format:										
Example:										
Usage: Appended to the front of the path inherited by the Messaging Gateway process. For the Windows operating system, this variable must be set to indicate where the library jvm.dll										
is found.										
Format:										
Example:										
Usage: Can be used when a service name is not specified when configuring Messaging Gateway.										
Format:										
Example:										
You must specify Java system properties for the Messaging Gateway JVM when working with TIB/Rendezvous subjects. You can use the setJavaProp										
parameter of the Messaging Gateway initialization file for this. Java properties are specified by lines having a "setJavaProp										
prop_name										
=										
value										
<NL>"										
format, where prop_name										
represents the name of the Java property to set, value										
represents the value of the Java property, and <NL>										
represents a new line character.										
Usage: This Java property represents the maximum number of messages propagated in one transaction. It serves as a default value if the Messaging Gateway subscriber option, MsgBatchSize										
, is not specified. If altered from the default, then consideration should be given to the expected message size and the Messaging Gateway agent memory (see max_memory										
parameter of DBMS_MGWADM.ALTER_AGENT										
). The minimum value of this Java property is 1, the maximum is 100, and the default is 30.										
Syntax:										
Example:										
Usage: This parameter specifies the time (in milliseconds) that must elapse between polls for available messages of a propagation source queue. The default polling interval used by Messaging Gateway is 5000 milliseconds (5 seconds).										
Syntax:										
Example:										
Usage: This parameter specifies the character encoding to be used by the TIB/Rendezvous messaging system links. Only one character set for all configured TIB/Rendezvous links is allowed due to TIB/Rendezvous restrictions. The default is ISO 8859-1 or the character set specified by the Java system property file.encoding										
.										
Syntax:										
Example:										
oracle.mgw.tibrv.intraProcAdvSubjects										
Usage Used for all TIB/Rendezvous messaging system links, this parameter specifies the names of system advisory subjects that present on the intraprocess transport.										
Syntax										
Example:										
oracle.mgw.tibrv.advMsgCallback										
Usage: Used for all TIB/Rendezvous messaging system links, this parameter specifies the name of the Java class that implements the TibrvMsgCallback										
interface to handle system advisory messages. If it is not specified, then the default system advisory message handler provided by Messaging Gateway is used, which writes system advisory messages into Messaging Gateway log files. If it is specified, then the directory where the class file is stored must be included in the CLASSPATH										
in mgw.ora										
.										
Syntax:										
Example:										
After Oracle Messaging Gateway (MGW) is loaded and set up, it is ready to be configured and run. This chapter describes how to manage the Messaging Gateway agent and how to configure propagation.										
This chapter contains these topics:										
Note: All commands in the examples must be run as a user grantedMGW_ADMINISTRATOR_ROLE .										
Messages are propagated between Oracle Streams AQ and non-Oracle messaging systems by the Messaging Gateway agent. The Messaging Gateway agent runs as an external process of the Oracle Database server.										
You must set the following information in order for the agent to start:										
The Messaging Gateway agent runs as a process external to the database. To access Oracle Streams AQ and the Messaging Gateway packages, the Messaging Gateway agent needs to establish connections to the database. You can use DBMS_MGWADM.DB_CONNECT_INFO										
to set the username, password and the database connect string that the Messaging Gateway agent will use for creating database connections. The user must be granted the role MGW_AGENT_ROLE										
before the Messaging Gateway agent can be started.										
You can call DBMS_MGWADM.DB_CONNECT_INFO										
to alter connection information when the Messaging Gateway agent is running.										
Example 19-1 shows Messaging Gateway being configured for user mgwagent										
with password mgwagent_password										
using net service name mydatabase										
.										
You can use DBMS_MGWADM.ALTER_AGENT										
to set the maximum number of messaging connections used by the Messaging Gateway agent, the heap size of the Messaging Gateway agent process, and the number of propagation threads in the agent process. The default values are one connection, 64 MB of memory heap, and one propagation thread.										
Example 19-2 sets the number of database connections to two, the heap size to 64MB, and the number of propagation threads to two.										
Example 19-2 Setting the Resource Limits										
You can alter the maximum number of connections when the Messaging Gateway agent is running. The memory heap size and the number of propagation threads cannot be altered when the Messaging Gateway agent is running. Example 19-3 updates the maximum number of connections to three but leaves the maximum memory and the number of propagation threads unchanged.										
This section contains these topics:										
After the Messaging Gateway agent is configured, you can start the agent with DBMS_MGWADM.STARTUP										
, as shown in Example 19-4.										
You can use the MGW_GATEWAY										
view to check the status of the Messaging Gateway agent, as described in Chapter 21, "Monitoring Oracle Messaging Gateway".										
You can use DBMS_MGWADM.SHUTDOWN										
to shut down the Messaging Gateway agent, as shown in Example 19-5.										
You can use the MGW_GATEWAY										
view to check if the Messaging Gateway agent has shut down successfully, as described in Chapter 21, "Monitoring Oracle Messaging Gateway".										
Messaging Gateway uses a job queue job to start the Messaging Gateway agent. This job is created when procedure DBMS_MGWADM.STARTUP										
is called. When the job is run, it calls an external procedure that creates the Messaging Gateway agent in an external process. The job is removed after:										
The agent shuts down because DBMS_MGWADM.SHUTDOWN										
was called										
The agent terminates because a non-restartable error occurs										
The DBMS_JOB										
package creates a repeatable job with a repeat interval of two minutes. The job is owned by SYS										
. A repeatable job enables the Messaging Gateway agent to restart automatically when a given job instance ends because of a database shutdown, database malfunction, or a restartable error. Only one instance of a Messaging Gateway agent job runs at a given time.										
If the agent job encounters an error, then the error is classified as either a restartable error or non-restartable error. A restartable error indicates a problem that might go away if the agent job were to be restarted. A non-restartable error indicates a problem that is likely to persist and be encountered again if the agent job restarts. ORA-01089 (immediate shutdown in progress) and ORA-28576 (lost RPC connection to external procedure) are examples of restartable errors. ORA-06520 (error loading external library) is an example of a non-restartable error.										
Messaging Gateway uses a database shutdown trigger. If the Messaging Gateway agent is running on the instance being shut down, then the trigger notifies the agent of the shutdown, and upon receipt of the notification, the agent will terminate the current run. The job scheduler will automatically schedule the job to run again at a future time.										
If a Messaging Gateway agent job instance ends because of a database malfunction or a restartable error detected by the agent job, then the job will not be removed and the job scheduler will automatically schedule the job to run again at a future time.										
The MGW_GATEWAY										
view shows the agent status, the job identifier, and the database instance on which the Messaging Gateway agent is currently running.										
See Also:										
While the Messaging Gateway job startup and shutdown principles are the same for Real Application Clusters (RAC) and non-RAC environments, there are some things to keep in mind for a RAC environment.										
Only one Messaging Gateway agent process can be running at a given time, even in a RAC environment. The job scheduler determines which database instance will run a job based on parameters specified when the job is created. The DBMS_MGWADM.STARTUP										
procedure has two optional parameters, instance										
and force										
, that can be used to set the instance affinity of the Messaging Gateway agent job.										
When a database instance is shut down in a RAC environment, the Messaging Gateway shutdown trigger will notify the agent to shut down only if the Messaging Gateway agent is running on the instance being shut down. The job scheduler will automatically schedule the job to be run again at a future time, either on another instance, or if the job can only run on the instance being shut down, when that instance is restarted.										
Oracle recommends that all database connections made by the Messaging Gateway agent be made to the instance on which the Messaging Gateway agent process is running. This ensures correct failover behavior in a RAC environment.										
Running as a client of non-Oracle messaging systems, the Messaging Gateway agent communicates with non-Oracle messaging systems through messaging system links. A messaging system link is a set of connections between the Messaging Gateway agent and a non-Oracle messaging system.										
To configure a messaging system link of a non-Oracle messaging system, users must provide information for the agent to make connections to the non-Oracle messaging system. Users can specify the maximum number of messaging connections.										
When configuring a messaging system link for a non-Oracle messaging system that supports transactions and persistent messages, the native name of log queues for inbound and outbound propagation must be specified in order to guarantee exactly-once message delivery. The log queues should be used only by the Messaging Gateway agent. No other programs should enqueue or dequeue messages of the log queues. The inbound log queue and outbound log queue can refer to the same physical queue, but better performance can be achieved if they refer to different physical queues.										
When configuring a messaging system link, users can also specify an options										
argument. An options										
argument is a set of {name, value} pairs of type SYS.MGW_PROPERTY										
.										
This section contains these topics:										
A WebSphere MQ Base Java link is created by calling DBMS_MGWADM.CREATE_MSGSYSTEM_LINK										
with the following information provided:										
Interface type: DBMS_MGWADM.MQSERIES_BASE_JAVA_INTERFACE										
WebSphere MQ connection information:										
Host name and port number of the WebSphere MQ server										
Queue manager name										
Channel name										
User name and password										
Maximum number of messaging connections allowed										
Log queue names for inbound and outbound propagation										
Optional information such as:										
Send, receive, and security exits										
Character sets										
Example 19-6 configures a WebSphere MQ Base Java link mqlink										
. The link is configured to use the WebSphere MQ queue manager my.queue.manager										
on host myhost.mydomain										
and port 1414, using WebSphere MQ channel mychannel										
.										
This example also sets the option to register a WebSphere MQ SendExit										
class. The class mySendExit										
must be in the CLASSPATH set in mgw.ora										
.										
Example 19-6 Configuring a WebSphere MQ Base Java Link										
See Also:										
A WebSphere MQ JMS link is created by calling DBMS_MGWADM.CREATE_MSGSYSTEM_LINK										
with the following information provided:										
Interface type										
Java Message Service (JMS) distinguishes between queue and topic connections. The Sun Microsystem JMS 1.1 standard supports domain unification that allows both JMS queues and topics to be accessed by a single JMS connection:										
A WebSphere MQ JMS link created with interface type DBMS_MGWADM.JMS_CONNECTION										
can be used to access both JMS queues and topics. This is the recommended interface for a WebSphere MQ JMS link.										
A WebSphere MQ JMS link created with interface type DBMS_MGWADM.JMS_QUEUE_CONNECTION										
can be used to access only JMS queues.										
A WebSphere MQ JMS link created with interface type DBMS_MGWADM.JMS_TOPIC_CONNECTION										
can be used to access only JMS topics.										
WebSphere MQ connection information:										
Host name and port number of the WebSphere MQ server										
Queue manager name										
Channel name										
User name and password										
Maximum number of messaging connections allowed										
A messaging connection is mapped to a JMS session.										
Log destination (JMS queue or JMS topic) for inbound and outbound propagation										
The log destination type must be valid for the link type. JMS unified links and JMS queue links must use JMS queues for log destinations, and JMS topic links must use topics:										
For a WebSphere MQ JMS unified or queue link, the log queue name must be the name of a physical WebSphere MQ JMS queue created using WebSphere MQ administration tools.										
For a WebSphere MQ JMS topic link, the log topic name must be the name of a WebSphere MQ JMS topic. The physical WebSphere MQ queue used by that topic must be created using WebSphere MQ administration tools. By default, the physical queue used is SYSTEM.JMS.D.SUBSCRIBER.QUEUE										
. A link option can be used to specify a different physical queue.										
Optional information such as:										
Send, receive, and security exits										
Character sets										
WebSphere MQ publish/subscribe configuration used for JMS topics										
Example 19-7 configures a Messaging Gateway link to a WebSphere MQ queue manager using a JMS topic interface. The link is named mqjmslink										
and is configured to use the WebSphere MQ queue manager my.queue.manager										
on host myhost.mydomain										
and port 1414, using WebSphere MQ channel mychannel										
.										
This example also uses the options										
parameter to specify a nondefault durable subscriber queue to be used with the log topic.										
Example 19-7 Configuring a WebSphere MQ JMS Link										
See Also:										
A TIB/Rendezvous link is created by calling DBMS_MGWADM.CREATE_MSGSYSTEM_LINK										
with three parameters (service										
, network										
and daemon										
) for the agent to create a corresponding transport of TibrvRvdTransport										
type.										
A TIB/Rendezvous message system link does not need propagation log queues. Logging information is stored in memory. Therefore, Messaging Gateway can only guarantee at-most-once message delivery.										
Example 19-8 configures a TIB/Rendezvous link named rvlink										
that connects to the rvd										
daemon on the local computer.										
Example 19-8 Configuring a TIB/Rendezvous Link										
Using DBMS_MGWADM.ALTER_MSGSYSTEM_LINK										
, you can alter some link information after the link is created. You can alter link information with the Messaging Gateway agent running or shut down. Example 19-9 alters the link mqlink										
to change the max_connections										
and password										
properties.										
Example 19-9 Altering a WebSphere MQ Link										
See Also: "Configuration Properties" for restrictions on changes when the Messaging Gateway agent is running										
You can remove a Messaging Gateway link to a non-Oracle messaging system with DBMS_MGWADM.REMOVE_MSGSYSTEM_LINK										
, but only if all registered queues associated with this link have already been unregistered. The link can be removed with the Messaging Gateway agent running or shut down. Example 19-10 removes the link mqlink										
.										
You can use the MGW_LINKS										
view to check links that have been created. It lists the name and link type, as shown in Example 19-11.										
Example 19-11 Listing All Messaging Gateway Links										
You can use the MGW_MQSERIES_LINK										
and MGW_TIBRV_LINKS										
views to check messaging system type-specific configuration information, as shown in Example 19-12.										
Example 19-12 Checking Messaging System Link Configuration Information										
All non-Oracle messaging system queues involved in propagation as a source queue, destination queue, or exception queue must be registered through the Messaging Gateway administration interface. You do not need to register Oracle Streams AQ queues involved in propagation.										
This section contains these topics:										
You can register a non-Oracle queue using DBMS_MGWADM.REGISTER_FOREIGN_QUEUE										
. Registering a non-Oracle queue provides information for the Messaging Gateway agent to access the queue. However, it does not create the physical queue in the non-Oracle messaging system. The physical queue must be created using the non-Oracle messaging system administration interfaces before the Messaging Gateway agent accesses the queue.										
The following information is used to register a non-Oracle queue:										
Name of the messaging system link used to access the queue										
Native name of the queue (its name in the non-Oracle messaging system)										
Domain of the queue										
DBMS_MGWADM.DOMAIN_QUEUE										
for a point-to-point queue										
DBMS_MGWADM.DOMAIN_TOPIC										
for a publish/subscribe queue										
Options specific to the non-Oracle messaging system										
These options are a set of {name, value} pairs, both of which are strings.										
Example 19-13 shows how to register the WebSphere MQ Base Java queue my_mq_queue										
as a Messaging Gateway queue destq										
.										
Example 19-13 Registering a WebSphere MQ Base Java Queue										
The domain must be DBMS_MGWADM.DOMAIN_QUEUE										
or NULL, because only point-to-point queues are supported for WebSphere MQ.										
When registering a WebSphere MQ JMS queue, the domain must be DBMS_MGWADM.DOMAIN_QUEUE										
, and the linkname										
parameter must refer to a WebSphere MQ JMS unified link or queue link.										
When registering a WebSphere MQ JMS topic, the domain must be DBMS_MGWADM.DOMAIN_TOPIC										
, and the linkname										
parameter must refer to a WebSphere MQ JMS unified link or topic link. The provider_queue										
for a WebSphere MQ JMS topic used as a propagation source may include wildcards. See WebSphere MQ documentation for wildcard syntax.										
When registering a TIB/Rendezvous subject with Messaging Gateway, the provider_queue										
parameter specifies a TIB/Rendezvous subject name. The domain of a registered TIB/Rendezvous queue must be DBMS_MGWADM.DOMAIN_TOPIC										
or NULL.										
A registered TIB/Rendezvous queue with provider_queue										
set to a wildcard subject name can be used as a propagation source queue for inbound propagation. It is not recommended to use queues with wildcard subject names as propagation destination queues or exception queues. As documented in TIB/Rendezvous, sending messages to wildcard subjects can trigger unexpected behavior. However, neither Messaging Gateway nor TIB/Rendezvous prevents you from doing so.										
A non-Oracle queue can be unregistered with DBMS_MGWADM.UNREGISTER_FOREIGN_QUEUE										
, but only if there are no subscribers or schedules referencing it.										
Example 19-14 unregisters the queue destq										
of the link mqlink										
.										
You can use the MGW_FOREIGN_QUEUES										
view to check which non-Oracle queues are registered and what link each uses, as shown in Example 19-15.										
Propagating messages between an Oracle Streams AQ queue and a non-Oracle messaging system queue requires a propagation job. A propagation job consists of a propagation subscriber and a propagation schedule. The propagation subscriber specifies the source and destination queues, while the propagation schedule specifies when the propagation job is processed. A propagation schedule is associated with a propagation subscriber that has the same propagation source, destination, and type.										
You can create a propagation job to propagate messages between JMS destinations. You can also create a propagation job to propagate messages between non-JMS queues. Messaging Gateway does not support message propagation between a JMS destination and a non-JMS queue.										
This section contains these topics:										
A propagation subscriber specifies what messages are propagated and how the messages are propagated.										
Messaging Gateway allows bidirectional message propagation. An outbound propagation moves messages from Oracle Streams AQ to non-Oracle messaging systems. An inbound propagation moves messages from non-Oracle messaging systems to Oracle Streams AQ.										
If the propagation source is a queue (point-to-point), then the Messaging Gateway agent moves all messages from the source queue to the destination queue. If the propagation source is a topic (publish/subscribe), then the Messaging Gateway agent creates a subscriber of the propagation source queue in the messaging system. The agent only moves messages that are published to the source queue after the subscriber is created.										
When propagating a message, the Messaging Gateway agent converts the message from the format in the source messaging system to the format in the destination messaging system. Users can customize the message conversion by providing a message transformation. If message conversion fails, then the message will be moved to an exception queue, if one has been provided, so that the agent can continue to propagate messages for the subscriber.										
A Messaging Gateway exception queue is different from an Oracle Streams AQ exception queue. Messaging Gateway moves a message to a Messaging Gateway exception queue when message conversion fails. Oracle Streams AQ moves a message to an Oracle Streams AQ exception queue after MAX_RETRIES										
dequeue attempts on the message.										
Messages moved to an Oracle Streams AQ exception queue may result in unrecoverable failures on the associated Messaging Gateway subscriber. To avoid the problem, the MAX_RETRIES										
parameter of any Oracle Streams AQ queue that is used as the propagation source of a Messaging Gateway propagation job should be set to a value much larger than 16.										
If the messaging system of the propagation source queue supports message selection, then a message selection rule can be specified for a propagation subscriber. Only messages that satisfy the message selector will be propagated.										
Users can also specify subscriber options for certain types of propagation subscribers to control how messages are propagated, such as options for JMS message delivery mode and TIB/Rendezvous queue policies.										
Messaging Gateway provides MGW_SUBSCRIBERS										
and MGW_SCHEDULES										
views for users to check configuration and status of Messaging Gateway subscribers and schedules.										
Messaging Gateway subscribers are created by DBMS_MGWADM.ADD_SUBSCRIBER										
.										
If the propagation source for non-JMS propagation is an Oracle Streams AQ queue, then the queue must be a multiconsumer queue. Messaging Gateway creates a corresponding Oracle Streams AQ subscriber MGW_										
subscriber_id										
for the messaging system subscriber subscriber_id										
when DBMS_MGWADM.ADD_SUBSCRIBER										
is called.										
If the propagation source is a JMS topic, such as an Oracle Java Message Service (OJMS) topic or a WebSphere MQ JMS topic, then a JMS subscriber MGW_										
subscriber_id										
is created on the topic in the source messaging system by the Messaging Gateway agent. If the agent is not running, then the subscriber will not be created until the agent is restarted.										
If the propagation source is a queue, then only one propagation job can be created using that queue as the propagation source. If the propagation source is a topic, then multiple propagation jobs can be set up using that topic as the propagation source with each propagation job having its own corresponding subscriber on the topic in the messaging system.										
Example 19-16 creates Messaging Gateway propagation subscriber sub_aq2mq										
.										
Example 19-16 Creating a Propagation Subscriber										
Note: If a WebSphere MQ JMS topic is involved in a propagation job and the interface type of the link isDBMS_MGWADM.JMS_TOPIC_CONNECTION , then a durable subscriber MGL_ subscriber_id is created on the log topic. The durable subscriber is removed when the Messaging Gateway subscriber is successfully removed.										
You can create a propagation schedule using DBMS_MGWADM.SCHEDULE_PROPAGATION										
. A propagation subscriber is not processed until an associated propagation schedule is created and enabled. A propagation schedule is associated with a propagation subscriber when the propagation type, source and destination match.										
The latency										
parameter in a propagation schedule controls the polling interval of a propagation job. The polling interval determines how soon the agent can discover the available messages to propagate in the propagation source queue. The default polling interval is 5 seconds or the value set for oracle.mgw.polling_interval										
in Messaging Gateway initialization file mgw.ora										
.										
Example 19-17 creates Messaging Gateway propagation schedule sch_aq2mq										
.										
A propagation job is enabled if its propagation schedule is created and enabled. A propagation job is disabled if its propagation schedule is disabled or removed. Users can call DBMS_MGWADM.ENABLE_PROPAGATION_SCHEDULE										
to enable a propagation schedule and DBMS_MGWADM.DISABLE_PROPAGATION_SCHEDULE										
to disable a propagation schedule.										
Example 19-18 enables the propagation schedule for propagation subscriber sub_aq2mq										
.										
Example 19-18 Enabling a Messaging Gateway Propagation Schedule										
Example 19-19 disables the propagation schedule for propagation subscriber sub_aq2mq										
.										
Example 19-19 Disabling a Messaging Gateway Propagation Schedule										
By default, the propagation schedule is enabled when it is first created.										
To create a propagation job that is initially disabled, call the following APIs in the indicated order:										
DBMS_MGWADM.SCHEDULE_PROPAGATION										
DBMS_MGWADM.DISABLE_PROPAGATION_SCHEDULE										
DBMS_MGWADM.ADD_SUBSCRIBER										
When a problem occurs with a propagation job, the Messaging Gateway agent retries the failed operation up to 16 times in an exponential backoff scheme before the propagation job stops. You can use DBMS_MGWADM.RESET_SUBSCRIBER										
to reset the failure count to zero to allow the agent to retry the failed operation immediately.										
Example 19-20 resets the failure count for propagation subscriber sub_aq2mq										
.										
After the propagation subscriber and schedule of a propagation job are created, you can alter the selection rule, transformation, exception queue, subscriber options, and latency of the propagation job using DBMS_MGWADM.ALTER_SUBSCRIBER										
and DBMS_MGWADM.ALTER_PROPAGATION_SCHEDULE										
. Subscribers and schedules can be altered with the Messaging Gateway agent running or shut down.										
Example 19-21 adds an exception queue for subscriber sub_aq2mq										
.										
Example 19-21 Altering Propagation Subscriber by Adding an Exception Queue										
Example 19-22 changes the polling interval for schedule sch_aq2mq										
.										
You can remove a Messaging Gateway propagation subscriber with DBMS_MGWADM.REMOVE_SUBSCRIBER										
.										
Before removing the Messaging Gateway subscriber from the Messaging Gateway configuration, Messaging Gateway does the following cleanup:										
Removes from the messaging system the associated subscriber that may have been created by Messaging Gateway										
Removes propagation log records from log queues for the subscriber being removed										
Messaging Gateway may fail to do the cleanup because:										
The Messaging Gateway agent is not running										
Non-Oracle messaging system is not running										
The Messaging Gateway agent is unable to interact with the source or destination messaging system										
If Messaging Gateway cleanup fails for any reason, then the Messaging Gateway subscriber being removed is placed in the DELETE_PENDING										
state. The Messaging Gateway agent tries to clean up subscribers in DELETE_PENDING										
state when:										
DBMS_MGWADM.REMOVE_SUBSCRIBER										
is called and the Messaging Gateway agent is running										
The Messaging Gateway agent is starting and finds a subscriber in DELETE_PENDING										
state										
You can specify DBMS_MGWADM.FORCE										
when calling DBMS_MGWADM.REMOVE_SUBSCRIBER										
to force Messaging Gateway to remove the Messaging Gateway subscriber from the Messaging Gateway configuration without placing it in the DELETE_PENDING										
mode in case of cleanup failures.										
Calling DBMS_MGWADM.REMOVE_SUBSCRIBER										
with DBMS_MGWADM.FORCE										
may result in obsolete log records in the log queues and subscriptions in messaging systems, which may cause unnecessary message accumulation. Oracle recommends not using DBMS_MGWADM.FORCE										
when calling DBMS_MGWADM.REMOVE_SUBSCRIBER										
, if possible.										
Example 19-23 removes propagation subscriber sub_aq2mq										
.										
Example 19-23 Removing a Propagation Subscriber										
You can remove propagation schedules with DBMS_MGWADM.UNSCHEDULE_PROPAGATION										
. Removing a propagation schedule results in disabling the associated propagation job. It does not remove any subscriptions in messaging systems.										
Example 19-24 removes propagation schedule sch_aq2mq										
.										
This section summarizes basic and optional properties related to Messaging Gateway links, foreign queues, and subscribers.										
This section contains these topics:										
Table 19-1 summarizes the basic configuration properties for a WebSphere MQ messaging link. The table indicates which properties of SYS.MGW_MQSERIES_PROPERTIES										
are optional (NULL										
allowed), which can be altered, and if alterable, which values can be dynamically changed.										
Table 19-1 WebSphere MQ Link Properties										
Attribute	NULL Allowed?	Alter Value?	Dynamic?							
---	---	---	---							
queue_manager	no	no	no							
hostname	yes (1)	no	no							
port	yes (1)	no	no							
channel	yes (1)	no	no							
interface_type	yes (2)	no	no							
max_connections	yes (3)	yes	yes							
username	yes	yes	yes							
password	yes	yes	yes							
inbound_log_queue	yes (4)	yes(4)	yes							
outbound_log_queue	yes (5)	yes(5)	yes							
Notes on Table 19-1										
hostname										
is NULL										
, then the port and channel must be NULL										
. If the hostname is not NULL										
, then the port and channel must be not NULL										
. If the hostname is NULL										
, then a WebSphere MQ bindings connection is used; otherwise a client connection is used. interface_type										
is NULL										
, then a default value of DBMS_MGWADM.MQSERIES_BASE_JAVA_INTERFACE										
is used. max_connections										
is NULL										
, then a default value of 1										
is used. inbound_log_queue										
can be NULL										
if the link is not used for inbound propagation. The log queue can be altered only when no inbound propagation subscriber references the link. outbound_log_queue										
can be NULL										
if the link is not used for outbound propagation. The log queue can be altered only when no outbound propagation subscriber references the link. Table 19-2 summarizes the optional configuration properties supported when a WebSphere MQ Base Java interface is used to access the WebSphere MQ messaging system. Table 19-3 summarizes the optional configuration properties supported when a WebSphere MQ JMS interface is used. Each table lists the property name, where that property applies, whether the property can be altered, and if alterable, whether the value can be dynamically changed. Only the properties listed in the tables are supported, and any extra properties are ignored.										
Table 19-2 Optional Configuration Properties for WebSphere MQ Base Java										
Property Name	Used For	Alter Value?	Dynamic?							
---	---	---	---							
MQ_ccsid	link	yes	no							
MQ_ReceiveExit	link	yes	no							
MQ_SendExit	link	yes	no							
MQ_SecurityExit	link	yes	no							
MQ_openOptions	foreign queue	no	no							
MsgBatchSize	subscriber	yes	yes							
PreserveMessageID	subscriber	yes	yes							
Table 19-3 Optional Configuration Properties for WebSphere MQ JMS										
Property Name	Used For	Alter Value?	Dynamic?							
---	---	---	---							
MQ_ccsid	link	yes	no							
MQ_ReceiveExit	link	yes	no							
MQ_SendExit	link	yes	no							
MQ_SecurityExit	link	yes	no							
MQ_ReceiveExitInit	link	yes	no							
MQ_SendExitInit	link	yes	no							
MQ_SecurityExitInit	link	yes	no							
MQ_BrokerControlQueue	link	yes	no							
MQ_BrokerPubQueue	link	yes	no							
MQ_BrokerQueueManager	link	yes	no							
MQ_BrokerVersion	link	yes	no							
MQ_PubAckInterval	link	yes	no							
MQ_JmsDurSubQueue	link	no	no							
MQ_JmsTargetClient	foreign queue	no	no							
MQ_JmsDurSubQueue	foreign queue	no	no							
MQ_CharacterSet	foreign queue	no	no							
MsgBatchSize	subscriber	yes	yes							
JMS_NoLocal	subscriber	no	no							
JMS_DeliveryMode	subscriber	yes	yes							
PreserveMessageID	subscriber	yes	yes							
Table 19-4 summarizes the basic configuration properties for a TIB/Rendezvous messaging link. It indicates which properties of SYS.MGW_TIBRV_PROPERTIES										
are optional (NULL										
allowed), which can be altered, and if alterable, which values can be dynamically changed.										
Table 19-4 TIB/Rendezvous Link Properties										
Attribute	NULL allowed?	Alter value?	Dynamic?							
---	---	---	---							
service	yes(1)	no	no							
daemon	yes(1)	no	no							
network	yes(1)	no	no							
cm_name	yes(2)	no	no							
cm_ledger	yes(2)	no	no							
Notes on Table 19-4:										
service										
, daemon										
, or network										
are NULL										
. cm_name										
and cm_ledger										
attributes are reserved for future use when TIB/Rendezvous certified messages are supported. At present, a NULL										
must be specified for these parameters when a TIB/Rendezvous link is configured. Table 19-5 summarizes the optional configuration properties supported when a TIB/Rendezvous messaging system is used. The table lists the property name, where that property applies, whether the property can be altered, and if alterable, whether the value can be dynamically changed. Only the properties listed in the table are supported, and any extra properties will be ignored.										
Table 19-5 Optional Properties for TIB/Rendezvous										
Property Name	Used For	Alter Value?	Dynamic?							
---	---	---	---							
RV_discardAmount	subscriber	yes	no							
RV_limitPolicy	subscriber	yes	no							
RV_maxEvents	subscriber	yes	no							
AQ_MsgProperties	subscriber	yes	yes							
MsgBatchSize	subscriber	yes	yes							
PreserveMessageID	subscriber	yes	yes							
This section describes optional link properties you can specify using the options										
parameter of DBMS_MGWADM.CREATE_MSGSYSTEM_LINK										
and DBMS_MGWADM.ALTER_MSGSYSTEM_LINK										
. Each listing also indicates which messaging system might use that property.										
This property is used by WebSphere MQ JMS. It specifies the name of the broker control queue and corresponds to WebSphere MQ JMS administration tool property BROKERCONQ										
. The WebSphere MQ default is SYSTEM.BROKER.CONTROL.QUEUE										
.										
This property is used by WebSphere MQ JMS. It specifies the name of the broker publish queue and corresponds to WebSphere MQ JMS administration tool property BROKERPUBQ										
. The WebSphere MQ default is SYSTEM.BROKER.DEFAULT.STREAM										
.										
This property is used by WebSphere MQ JMS. It specifies the name of the broker queue manager and corresponds to WebSphere MQ administration tool property BROKERQMGR										
. If it is not set, then no default is used.										
This property is used by WebSphere MQ JMS. It specifies the broker version number and corresponds to WebSphere MQ JMS administration tool property BROKERVER										
. The WebSphere MQ default is 0										
.										
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It specifies the character set identifier to be used to translate information in the WebSphere MQ message header. This should be the integer value of the character set (for example, 819										
) rather than a descriptive string. If it is not set, then the WebSphere MQ default character set 819										
is used.										
This property is used by WebSphere MQ JMS. It applies to WebSphere MQ JMS topic links only. The SYS.MGW_MQSERIES_PROPERITES										
attributes, inbound_log_queue										
and outbound_log_queue										
, specify the names of WebSphere MQ JMS topics used for propagation logging. This property specifies the name of the WebSphere MQ queue from which durable subscription messages are retrieved by the log topic subscribers. The WebSphere MQ default queue is SYSTEM.JMS.D.SUBSCRIBER.QUEUE										
.										
This property is used by WebSphere MQ JMS. It specifies the interval, in number of messages, between publish requests that require acknowledgment from the broker and corresponds to WebSphere MQ JMS administration tool property PUBACKINT										
. The WebSphere MQ default is 25										
.										
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It specifies the fully qualified Java classname of a class implementing the MQReceiveExit										
interface. This class must be in the CLASSPATH										
of the Messaging Gateway agent. There is no default.										
This initialization string is used by WebSphere MQ JMS. It is passed by WebSphere MQ JMS to the constructor of the class specified by MQ_ReceiveExit										
and corresponds to WebSphere MQ JMS administration tool property RECEXITINIT										
. There is no default.										
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It specifies the fully qualified Java classname of a class implementing the MQSecurityExit										
interface. This class must be in the CLASSPATH										
of the Messaging Gateway agent. There is no default.										
This initialization string is used by WebSphere MQ JMS. It is passed by WebSphere MQ JMS to the constructor of the class specified by MQ_SecurityExit										
and corresponds to WebSphere MQ JMS administration tool property SECEXITINIT										
. There is no default.										
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It specifies the fully qualified Java classname of a class implementing the MQSendExit										
interface. This class must be in the CLASSPATH										
of the Messaging Gateway agent. There is no default.										
This initialization string is used by WebSphere MQ JMS. It is passed by WebSphere MQ JMS to the constructor of the class specified by MQ_SendExit										
. It corresponds to WebSphere MQ JMS administration tool property SENDEXITINIT										
. There is no default.										
This section describes optional foreign queue properties that you can specify using the options										
parameter of DBMS_MGWADM										
.REGISTER_FOREIGN_QUEUE										
. Each listing also indicates which messaging system might use that property.										
This property is used by WebSphere MQ JMS. It is used only for outbound propagation to a JMS queue or topic. It specifies the character set to be used to encode text strings sent to the destination. It should be the integer value of the character set (for example, 1208										
) rather than a descriptive string. The default value used by Messaging Gateway is 1208										
(UTF8).										
This property is used by WebSphere MQ JMS. It is a string representing the name of the WebSphere MQ queue from which durable subscription messages are retrieved by subscribers on this topic. It applies only to WebSphere MQ JMS topics. The WebSphere MQ default queue is SYSTEM.JMS.D.SUBSCRIBER.QUEUE										
.										
This property is used by WebSphere MQ JMS. It is used only for outbound propagation to a JMS queue or topic. Supported values are TRUE										
and FALSE										
. TRUE										
indicates that WebSphere MQ should store the message as a JMS message. FALSE										
indicates that WebSphere MQ should store the message in non-JMS format so that non-JMS applications can access it. Default is TRUE										
.										
This property is used by WebSphere MQ Base Java. It specifies the value used for the openOptions										
argument of the WebSphere MQ Base Java MQQueueManager.accessQueue										
method. No value is required. But if one is given, then the Messaging Gateway agent adds MQOO_OUTPUT										
to the specified value for an enqueue (put										
) operation. MQOO_INPUT_SHARED										
is added for a dequeue (get										
) operation. The default is MQOO_OUTPUT										
for an enqueue/put operation; MQOO_INPUT_SHARED										
for a dequeue/get operation.										
This section describes optional subscriber properties that you can specify using the options										
parameter of DBMS_MGWADM.ADD_SUBSCRIBER										
and DBMS_MGWADM.ALTER_SUBSCRIBER										
. Each listing also indicates which messaging system might use that property.										
This property is used by TIB/Rendezvous. It specifies how Oracle Streams AQ message properties will be used during message propagation. Supported values are TRUE										
and FALSE										
. The default value is FALSE										
.										
For an outbound propagation subscriber, if the value is TRUE										
(case insensitive), then the Messaging Gateway agent will add a field for most Oracle Streams AQ message properties to the message propagated to the TIB/Rendezvous subject.										
For an inbound propagation subscriber, if the value is TRUE										
(case insensitive), then the Messaging Gateway agent will search the source message for a field with a reserved name, and if it exists, use its value to set the corresponding Oracle Streams AQ message property. A default value will be used if the field does not exist or does not have an expected datatype.										
This property is used by WebSphere MQ JMS and Oracle JMS. You can use this property when the propagation destination is a JMS messaging system. It sets the delivery mode of messages enqueued to the propagation destination queue by a JMS MessageProducer										
. The default is PRESERVE_MSG										
. Supported values and their associated delivery modes are:										
PERSISTENT										
(DeliveryMode.PERSISTENT										
)										
NON_PERSISTENT										
(DeliveryMode.NON_PERSISTENT										
)										
PRESERVE_MSG										
(delivery mode of the source JMS message is used)										
This property is used by WebSphere MQ JMS and Oracle JMS. You can use it when the propagation source is a JMS messaging system. It sets the noLocal										
parameter of a JMS TopicSubscriber										
. TRUE										
indicates that messages that have been published to this topic through the same Messaging Gateway link will not be propagated. The default value FALSE										
indicates that such messages will be propagated from the topic.										
This property can be used by any supported messaging system. It specifies the maximum number of messages, if available, to be propagated in one transaction. The default is 30.										
This property is used by WebSphere MQ Base Java, WebSphere MQ JMS, TIB/Rendezvous, and Oracle JMS. It specifies whether Messaging Gateway should preserve the original message identifier when the message is propagated to the destination messaging system. The exact details depend on the capabilities of the messaging systems involved. Supported values are TRUE										
and FALSE										
. The default value is FALSE										
.										
This property is used by TIB/Rendezvous. It specifies the discard amount of a queue. It is meaningful only for an inbound propagation subscriber. The default is 0.										
This property is used by TIB/Rendezvous. It specifies the limit policy for resolving overflow of a queue limit. It is meaningful only for an inbound propagation subscriber. The default is DISCARD_NONE										
. Supported values and their associated limit policies are: DISCARD_NONE										
, DISCARD_FIRST										
, DISCARD_LAST										
and DISCARD_NEW										
.										
DISCARD_NONE										
(TibrvQueue.DISCARD_NONE										
)										
DISCARD_FIRST										
(TibrvQueue.DISCARD_FIRST										
)										
DISCARD_LAST										
(TibrvQueue.DISCARD_LAST										
)										
DISCARD_NEW										
(TibrvQueue.DISCARD_NEW										
)										
This property is used by TIB/Rendezvous. It specifies the maximum event limit of a queue. It is meaningful only for an inbound propagation subscriber. The default is 0.										
This chapter discusses how Oracle Messaging Gateway (MGW) converts message formats from one messaging system to another. A conversion is generally necessary when moving messages between Oracle Streams AQ and another system, because different messaging systems have different message formats. Java Message Service (JMS) messages are a special case. A JMS message can be propagated only to a JMS destination, making conversion a simple process.										
This chapter contains these topics:										
MGW converts the native message format of the source messaging system to the native message format of the destination messaging system during propagation. MGW uses canonical types and a model centering on Oracle Streams AQ for the conversion.										
When a message is propagated by MGW, the message is converted from the native format of the source queue to the native format of the destination queue.										
A native message usually contains a message header and a message body. The header contains the fixed header fields that all messages in that messaging system have, such as message properties in Oracle Streams AQ and the fixed header in WebSphere MQ. The body contains message contents, such as the Oracle Streams AQ payload, the WebSphere MQ message body, or the entire TIB/Rendezvous message. MGW converts both message header and message body components.										
Figure 20-1 shows how non-JMS messages are converted in two stages. A message is first converted from the native format of the source queue to the MGW internal message format, and then it is converted from the internal message format to the native format of the destination queue.										
The MGW agent uses an internal message format consisting of a header that is similar to the Oracle Streams AQ message properties and a body that is a representation of an MGW canonical type.										
MGW defines canonical types to support message conversion between Oracle Streams AQ and non-Oracle messaging systems. A canonical type is a message type representation in the form of a PL/SQL Oracle type in Oracle Database. The canonical types are RAW										
, SYS.MGW_BASIC_MSG_T										
, and SYS.MGW_TIBRV_MSG_T										
.										
WebSphere MQ propagation supports the canonical types MGW_BASIC_MSG_T										
and RAW										
. TIB/Rendezvous propagation supports the canonical types MGW_TIBRV_MSG_T										
and RAW										
.										
See Also: "DBMS_MGWMSG" in PL/SQL Packages and Types Reference for Syntax and attribute information forSYS.MGW_BASIC_MSG_T and SYS.MGW_TIBRV_MSG_T										
MGW provides default mappings between Oracle Streams AQ message properties and non-Oracle message header fields that have a counterpart in Oracle Streams AQ message properties with the same semantics. Where MGW does not provide a mapping, the message header fields are set to a default value, usually the default value defined by the messaging system.										
When converting to or from Oracle Streams AQ messages, the MGW agent uses only its canonical types. Arbitrary payload types are supported, however, with the assistance of user-defined Oracle Streams AQ message transformations to convert between an Oracle Streams AQ queue payload and an MGW canonical type.										
For MGW to propagate messages from an Oracle Streams AQ queue with an arbitrary ADT payload (outbound propagation), you must provide a mapping to an MGW canonical ADT. The transformation is invoked when the MGW agent dequeues messages from the Oracle Streams AQ queue. Similarly, for MGW to propagate messages to an Oracle Streams AQ queue with an arbitrary ADT payload (inbound propagation), you must provide a mapping from an MGW canonical ADT. The transformation is invoked when the MGW agent enqueues messages to the Oracle Streams AQ queue.										
The transformation is always executed in the context of the MGW agent, which means that the MGW agent user (the user specified using DBMS_MGWADM.DB_CONNECT_INFO										
) must have EXECUTE										
privileges on the transformation function and the Oracle Streams AQ payload type. This can be accomplished by granting the EXECUTE										
privilege to PUBLIC										
or by granting the EXECUTE										
privilege directly to the MGW agent user.										
To configure an MGW subscriber with a transformation:										
EXECUTE										
to the MGW agent user or to PUBLIC										
on the function and the object types it references. DBMS_TRANSFORM.CREATE_TRANSFORMATION										
to register the transformation. DBMS_MGWADM.ADD_SUBSCRIBER										
to create an MGW subscriber using the transformation, or DBMS_MGWADM.ALTER_SUBSCRIBER										
to alter an existing subscriber. The value passed in the transformation parameter for these APIs must be the registered transformation name and not the function name. For example, trans_sampleadt_to_mgw_basic										
is a stored procedure representing a transformation function with the signature shown in Example 20-1.										
Note: All commands in the examples must be run as a user grantedMGW_ADMINISTRATOR_ROLE , except for the commands to create transformations.										
Example 20-1 Transformation Function Signature										
You can create a transformation using DBMS_TRANSFORM.CREATE_TRANSFORMATION										
, as shown in Example 20-2.										
Example 20-2 Creating a Transformation										
Once created, this transformation can be registered with MGW when creating a subscriber. Example 20-3 creates subscriber sub_aq2mq										
, for whom messages are propagated from Oracle Streams AQ queue mgwuser.srcq										
to non-Oracle messaging system queue destq@mqlink										
using transformation mgwuser.sample_adt_to_mgw_basic										
.										
Example 20-3 Registering a Transformation										
An error that occurs while attempting a user-defined transformation is usually considered a message conversion exception, and the message is moved to the exception queue if it exists.										
MGW provides facilities to propagate Logical Change Records (LCRs). Routines are provided to help in creating transformations to handle the propagation of both row LCRs and DDL LCRs stored in queues with payload type ANYDATA										
. An LCR is propagated as an XML string stored in the appropriate message type.										
Note: For LCR propagation, you must load the XDB package.										
Because Oracle Streams uses ANYDATA										
queues to store LCRs, an ANYDATA										
queue is the source for outbound propagation. The transformation must first convert the ANYDATA										
object containing an LCR into an XMLType object using the MGW routine DBMS_MGWMSG.LCR_TO_XML										
. If the ANYDATA										
object does not contain an LCR, then this routine raises an error. The XML document string of the LCR is then extracted from the XMLType and placed in the appropriate MGW canonical type (SYS.MGW_BASIC_MSG_T										
or SYS.MGW_TIBRV_MSG_T										
).										
Example 20-4 illustrates a simplified transformation used for LCR outbound propagation. The transformation converts an ANYDATA										
payload containing an LCR to a SYS.MGW_TIBRV_MSG_T										
object. The string representing the LCR as an XML document is put in a field named ORACLE_LCR										
.										
Example 20-4 Outbound LCR Transformation										
For LCR inbound propagation, an MGW canonical type (SYS.MGW_BASIC_MSG_T										
or SYS.MGW_TIBRV_MSG_T										
) is the transformation source type. A string in the format of an XML document representing an LCR must be contained in the canonical type. The transformation function must extract the string from the message, create an XMLType object from it, and convert it to an ANYDATA										
object containing an LCR with the MGW routine DBMS_MGWMSG.XML_TO_LCR										
. If the original XML document does not represent an LCR, then this routine raises an error.										
Example 20-5 illustrates a simplified transformation used for LCR inbound propagation. The transformation converts a SYS.MGW_TIBRV_MSG_T										
object with a field containing an XML string representing an LCR to an ANYDATA										
object. The string representing the LCR as an XML document is taken from a field named ORACLE_LCR										
.										
Example 20-5 Inbound LCR Transformation										
See Also:										
MGW converts between the MGW canonical types and the WebSphere MQ native message format. WebSphere MQ native messages consist of a fixed message header and a message body. The message body is treated as either a TEXT										
value or RAW										
(bytes) value. The canonical types supported for WebSphere MQ propagation are SYS.MGW_BASIC_MSG_T										
and RAW										
.										
Figure 20-3 illustrates the message conversion performed by the MGW WebSphere MQ driver when using the canonical type MGW_BASIC_MSG_T										
. For outbound propagation, the driver maps the Oracle Streams AQ message properties and canonical message to a WebSphere MQ message having a fixed header and a message body. For inbound propagation, the driver maps a native message to a set of Oracle Streams AQ message properties and a canonical message. When the canonical type is RAW										
, the mappings are the same, except no canonical headers exist.										
When the MGW canonical type used in an outbound propagation job is RAW										
, no WebSphere MQ header information is set from the RAW										
message body. Similarly, for inbound propagation no WebSphere MQ header information is preserved in the RAW										
message body. MGW canonical type MGW_BASIC_MSG_T										
, however, has a header that can be used to specify WebSphere MQ header fields for outbound propagation, and preserve WebSphere MQ header fields for inbound propagation.										
This section describes the message properties supported for the WebSphere MQ messaging system when using MGW_BASIC_MSG_T										
as the canonical type. Table 20-1 defines the MGW {name, value} pairs used to describe the WebSphere MQ header properties. The first column refers to valid string values for the MGW_NAME_VALUE_T.NAME										
field in the MGW_BASIC_MSG_T										
header. The second column refers to the MGW_NAME_VALUE_T.TYPE										
value corresponding to the name. (Refer to "Notes on Table 20-1" for explanations of the numbers in parentheses.)										
For inbound propagation, the WebSphere MQ driver generates {name,value} pairs based on the source message header and stores them in the header part of the canonical message of the MGW_BASIC_MSG_T										
type. For outbound propagation, the WebSphere MQ driver sets the message header and enqueue options from {name,value} pairs for these properties stored in the header part of the MGW_BASIC_MSG_T										
canonical message.										
Table 20-1 MGW Names for WebSphere MQ Header Values										
MGW Name	MGW Type	WebSphere MQ Property Name	Used For							
---	---	---	---							
MGW_MQ_accountingToken	RAW_VALUE (size 32)	accountingToken	Outbound (1), Inbound							
MGW_MQ_applicationIdData	TEXT_VALUE (size 32)	applicationIdData	Outbound (1), Inbound							
MGW_MQ_applicationOriginData	TEXT_VALUE (size 4)	applicationOriginData	Outbound (1), Inbound							
MGW_MQ_backoutCount	INTEGER_VALUE	backoutCount	Inbound							
MGW_MQ_characterSet	INTEGER_VALUE	characterSet	Outbound, Inbound							
MGW_MQ_correlationId	RAW_VALUE (size 24)	correlationId	Outbound (1), Inbound							
MGW_MQ_encoding	INTEGER_VALUE	encoding	Outbound, Inbound							
MGW_MQ_expiry	INTEGER_VALUE	expiry	Outbound, Inbound							
MGW_MQ_feedback	INTEGER_VALUE	feedback	Outbound, Inbound							
MGW_MQ_format	TEXT_VALUE (size 8)	format	Outbound (1), Inbound							
MGW_MQ_groupId	RAW_VALUE (size 24)	groupId	Outbound (1), Inbound							
MGW_MQ_messageFlags	INTEGER_VALUE	messageFlags	Outbound, Inbound							
MGW_MQ_messageId	RAW_VALUE (size 24)	messageId	Outbound, Inbound							
MGW_MQ_messageSequenceNumber	INTEGER_VALUE	messageSequenceNumber	Outbound, Inbound							
MGW_MQ_messageType	INTEGER_VALUE	messageType	Outbound, Inbound							
MGW_MQ_offset	INTEGER_VALUE	offset	Outbound, Inbound							
MGW_MQ_originalLength	INTEGER_VALUE	originalLength	Outbound, Inbound							
MGW_MQ_persistence	INTEGER_VALUE	persistence	Inbound							
MGW_MQ_priority	INTEGER_VALUE	priority	Outbound, Inbound							
MGW_MQ_putApplicationName	TEXT_VALUE (size 28)	putApplicationName	Outbound (1), Inbound							
MGW_MQ_putApplicationType	INTEGER_VALUE	putApplicationType	Outbound (1), Inbound							
MGW_MQ_putDateTime	DATE_VALUE	putDateTime	Inbound							
MGW_MQ_putMessageOptions	INTEGER_VALUE	putMessageOptions	Outbound (1) (2)							
MGW_MQ_replyToQueueManagerName	TEXT_VALUE (size 48)	replyToQueueManagerName	Outbound, Inbound							
MGW_MQ_replyToQueueName	TEXT_VALUE (size 48)	replyToQueueName	Outbound, Inbound							
MGW_MQ_report	INTEGER_VALUE	report	Outbound (1), Inbound							
MGW_MQ_userId	TEXT_VALUE (size 12)	userId	Outbound, Inbound							
Notes on Table 20-1										
MGW_MQ_accountingToken										
is set for an outgoing message, then WebSphere MQ overrides its value unless MGW_MQ_putMessageOptions										
is set to the WebSphere MQ constant MQPMD_SET_ALL_CONTEXT										
. MGW_MQ_putMessageOptions										
is used as the putMessageOptions										
argument to the WebSphere MQ Base Java Queue.put()										
method. It is not part of the WebSphere MQ header information and is therefore not an actual message property.										
The value for the openOptions										
argument of the WebSphere MQ Base Java MQQueueManager.accessQueue										
method is specified when the WebSphere MQ queue is registered using the DBMS_MGWADM.REGISTER_FOREIGN_QUEUE										
call. Dependencies can exist between the two. For instance, for MGW_MQ_putMessageOptions										
to include MQPMD_SET_ALL_CONTEXT,										
the MQ_openMessageOptions										
queue option must include MQOO_SET_CONTEXT										
.										
The MGW agent adds the value MQPMO_SYNCPOINT										
to any value that you can specify.										
MGW sets default values for two WebSphere MQ message header fields: messageType										
defaults to MQMT_DATAGRAM										
and putMessageOptions										
defaults to MQPMO_SYNCPOINT										
.										
MGW provides two default mappings between Oracle Streams AQ message properties and WebSphere MQ header fields.										
One maps the Oracle Streams AQ message property expiration										
, representing the time-to-live of the message at the time the message becomes available in the queue, to the WebSphere MQ header field expiry										
, representing the time-to-live of the message. For outbound propagation, the value used for expiry										
is determined by subtracting the time the message was available in the queue from the expiration										
, converted to tenths of a second. Oracle Streams AQ value NEVER										
is mapped to MQEI_UNLIMITED										
. For inbound propagation, the value of expiration										
is simply expiry										
converted to seconds. WebSphere MQ value MQEI_UNLIMITED										
is mapped to NEVER										
.										
The other default maps Oracle Streams AQ message property priority										
with the WebSphere MQ header field priority										
. It is described in Table 20-2.										
Table 20-2 Default Priority Mappings for Propagation										
Propagation Type	Message System	Priority Values								
---	---	---	---	---	---	---	---	---	---	---
Outbound	Oracle Streams AQ	0	1	2	3	4	5	6	7	8
Outbound	WebSphere MQ	9	8	7	6	5	4	3	2	1
Inbound	Oracle Streams AQ	9	8	7	6	5	4	3	2	1
Inbound	WebSphere MQ	0	1	2	3	4	5	6	7	8
Note: For outbound propagation, Oracle Streams AQ priority values less than 0 are mapped to WebSphere MQ priority 9, and Oracle Streams AQ priority values greater than 9 are mapped to WebSphere MQ priority 0.										
If no message transformation is provided for outbound propagation, then the Oracle Streams AQ source queue payload type must be either SYS.MGW_BASIC_MSG_T										
or RAW										
. If a message transformation is specified, then the target ADT of the transformation must be SYS.MGW_BASIC_MSG_T										
, but the source ADT can be any ADT supported by Oracle Streams AQ.										
If the Oracle Streams AQ queue payload is RAW, then the resulting WebSphere MQ message has the message body set to the value of the RAW bytes and, by default, the format										
field set to the value "MGW_Byte										
".										
If the Oracle Streams AQ queue payload or transformation target ADT is SYS.MGW_BASIC_MSG_T										
, then the message is mapped to a WebSphere MQ native message as follows:										
The WebSphere MQ fixed header fields are based on the internal Oracle Streams AQ message properties and the MGW_BASIC_MSG_T.header										
attribute of the canonical message, as described in "WebSphere MQ Message Header Mappings".										
If the canonical message has a TEXT										
body, then the WebSphere MQ format header field is set to MQFMT_STRING										
unless overridden by the header property MGW_MQ_format										
. The message body is treated as text.										
If the canonical message has a RAW										
body, then the WebSphere MQ format header field is set to "MGW_Byte										
" unless overridden by the header property MGW_MQ_format										
. The message body is treated as raw bytes.										
If the canonical message has both a TEXT										
and RAW										
body, then message conversion fails.										
If the canonical message has neither a TEXT										
nor RAW										
body, then no message body is set, and the WebSphere MQ format header field is MQFMT_NONE										
.										
If the canonical message has a TEXT										
body with both small and large values set (MGW_BASIC_MSG_T.TEXT_BODY.small_value										
and MGW_BASIC_MSG_T.TEXT_BODY.large_value										
not empty), then message conversion fails.										
If the canonical message has a RAW										
body with both small and large values set (MGW_BASIC_MSG_T.RAW_BODY.small_value										
and MGW_BASIC_MSG_T.RAW_BODY.large_value										
not empty), then message conversion fails.										
If the subscriber option PreserveMessageID										
is specified with a value of TRUE										
, then the correlationId										
field of the WebSphere message header will be set to the AQ source message identifier. The correlationId										
value will be a 24-byte value of the form "AQMSGID:"+										
AQ_msgid										
where AQ_msgid										
represents the 16-byte Streams AQ message identifier.										
If no message transformation is provided for inbound propagation, then the Oracle Streams AQ destination queue payload type must be either SYS.MGW_BASIC_MSG_T										
or RAW										
. If a message transformation is specified, then the source ADT of the transformation must be SYS.MGW_BASIC_MSG_T										
, but the destination ADT can be any ADT supported by Oracle Streams AQ.										
If the Oracle Streams AQ queue payload is RAW										
and the incoming WebSphere MQ message has a format										
of MQFMT_STRING										
, then message conversion fails. Otherwise the message body is considered as raw bytes and enqueued directly to the destination queue. If the number of bytes is greater than 32KB, then message conversion fails. The actual limit is 32512 bytes rather than 32767 bytes.										
If the Oracle Streams AQ queue payload or transformation source ADT is SYS.MGW_BASIC_MSG_T										
, then the WebSphere MQ message is mapped to a SYS.MGW_BASIC_MSG_T										
message as follows:										
Specific WebSphere MQ header fields are mapped to Oracle Streams AQ message properties as previously described.										
The MGW_BASIC_MSG_T.header										
attribute of the canonical message is set to {name, value} pairs based on the WebSphere MQ header fields, as described in Table 20-1. These values preserve the original content of the WebSphere MQ message header.										
If the WebSphere MQ format										
header field is MQFMT_STRING										
, then the WebSphere MQ message body is treated as text, and its value is mapped to MGW_BASIC_MSG_T.text_body										
. For any other format										
value, the message body is treated as raw bytes, and its value is mapped to MGW_BASIC_MSG_T.raw_body										
.										
MGW regards a TIB/Rendezvous message as a set of fields and supplementary information. Figure 20-4 shows how messages are converted between MGW and TIB/Rendezvous.										
When a message conversion failure occurs, messages are moved to an exception queue (if one has been provided), so that MGW can continue propagation of the remaining messages in the source queue. In inbound propagation from TIB/Rendezvous, an exception queue is a registered subject.										
All TIB/Rendezvous wire format datatypes for TIB/Rendezvous fields are supported, except for the datatypes with unsigned integers and the nested message type. User-defined custom datatypes are not supported in this release. If a message contains data of the unsupported datatypes, then a message conversion failure occurs when the message is processed. A message conversion failure results in moving the failed message from the source queue to the exception queue, if an exception queue is provided.										
Table 20-3 shows the datatype mapping used when MGW converts between a native TIB/Rendezvous message and the canonical ADT. For each supported TIB/Rendezvous wire format type, it shows the Oracle type used to store the data and the DBMS_MGWMSG										
constant that represents that type.										
Table 20-3 TIB/Rendezvous Datatype Mapping										
TIB/Rendezvous Wire Format	Oracle Type	ADT Field Type								
---	---	---								
Bool	NUMBER	TIBRVMSG_BOOL								
F32	NUMBER	TIBRVMSG_F32								
F64	NUMBER	TIBRVMSG_F64								
I8	NUMBER	TIBRVMSG_I8								
I16	NUMBER	TIBRVMSG_I16								
I32	NUMBER	TIBRVMSG_I32								
I64	NUMBER	TIBRVMSG_I64								
U8	not supported	not supported								
U16	not supported	not supported								
U32	not supported	not supported								
U64	not supported	not supported								
IPADDR32	VARCHAR2	TIBRVMSG_IPADDR32								
IPPORT16	NUMBER	TIBRVMSG_IPPORT16								
DATETIME	DATE	TIBRVMSG_DATETIME								
F32ARRAY	SYS.MGW_NUMBER_ARRAY_T	TIBRVMSG_F32ARRAY								
F64ARRAY	SYS.MGW_NUMBER_ARRAY_T	TIBRVMSG_F64ARRAY								
I8ARRAY	SYS.MGW_NUMBER_ARRAY_T	TIBRVMSG_I8ARRAY								
I16ARRAY	SYS.MGW_NUMBER_ARRAY_T	TIBRVMSG_I16ARRAY								
I32ARRAY	SYS.MGW_NUMBER_ARRAY_T	TIBRVMSG_I32ARRAY								
I64ARRAY	SYS.MGW_NUMBER_ARRAY_T	TIBRVMSG_I64ARRAY								
U8ARRAY	not supported	not supported								
U16ARRAY	not supported	not supported								
U32ARRAY	not supported	not supported								
U64ARRAY	not supported	not supported								
MSG	not supported	not supported								
OPAQUE	RAW or BLOB	TIBRVMSG_OPAQUE								
STRING	VARCHAR2 or CLOB	TIBRVMSG_STRING								
XML	RAW or BLOB	TIBRVMSG_XML								
For propagation between Oracle Streams AQ and TIB/Rendezvous, MGW provides direct support for the Oracle Streams AQ payload types RAW										
and SYS.MGW_TIBRV_MSG_T										
. To support any other Oracle Streams AQ payload type, you must supply a transformation.										
This section describes the mapping between Oracle Streams AQ message properties and TIB/Rendezvous fields. This mapping is used to preserve Streams AQ message properties during outbound propagation, and set Streams AQ message properties during inbound propagation.										
Table 20-4 describes the Streams AQ message properties supported using TIB/Rendezvous fields. The first column indicates the DBMS_AQ.MESSAGE_PROPERTIES_T										
field for the Streams AQ message property. The second and third columns indicate the name and datatype used for the TIB/Rendezvous field. The last column indicates if the message property is supported for inbound and outbound propagation.										
Table 20-4 TIB/Rendezvous and MGW Names for Oracle Streams AQ Message Properties										
Oracle Streams AQ Message Property	MGW Name	TIB/Rendezvous Wire Format Datatype	Used For							
---	---	---	---							
priority	MGW_AQ_priority	TibrvMsg.I32	Outbound, Inbound							
expiration	MGW_AQ_expiration	TibrvMsg.I32	Outbound, Inbound							
delay	MGW_AQ_delay	TibrvMsg.I32	Outbound, Inbound							
correlation	MGW_AQ_correlation	TibrvMsg.STRING	Outbound, Inbound							
exception_queue	MGW_AQ_exception_queue	TibrvMsg.STRING	Outbound, Inbound							
enqueue_time	MGW_AQ_enqueue_time	TibrvMsg.DATETIME	Outbound							
original_msgid	MGW_AQ_original_msgid	TibrvMsg.OPAQUE	Outbound							
msgid (1)	MGW_AQ_messageID	TibrvMsg.OPAQUE	Outbound							
Notes on Table 20-4:										
msgid										
Streams AQ property represents the Streams AQ message identifier, rather than a particular field of the DBMS_AQ.MESSAGE_PROPERTIES_T										
record. If no propagation transformation is provided for outbound propagation, then the Oracle Streams AQ source queue payload type must be either SYS.MGW_TIBRV_MSG_T										
or RAW										
. If a propagation transformation is specified, then the target ADT of the transformation must be SYS.MGW_TIBRV_MSG_T										
, but the source ADT can be any ADT supported by Oracle Streams AQ.										
If the Oracle Streams AQ queue payload or transformation target ADT is SYS.MGW_TIBRV_MSG_T										
, then:										
Every field in the source message is converted to a TIB/Rendezvous message field of the resulting TIB/Rendezvous message.										
If the reply_subject										
attribute is not NULL										
, then the reply subject supplementary information is set.										
The send_subject										
field is ignored.										
If the Oracle Streams AQ queue payload is RAW										
, then:										
The resulting message contains a field named MGW_RAW_MSG										
with value TibrvMsg.OPAQUE										
. The field ID is set to 0.										
If the subscriber option AQ_MsgProperties										
is specified with a value of TRUE										
, then the MGW agent generates fields to preserve the Streams AQ message properties in the TIB/Rendezvous message according to Table 20-4.										
If the PreserveMessageID										
subscriber option is specified with a value of TRUE										
, then the Streams AQ message identifier (msgid										
) is preserved in the TIB/Rendezvous message according to Table 20-4.										
If no propagation transformation is provided for inbound propagation, then the Oracle Streams AQ destination queue payload type must be either RAW										
or SYS.MGW_TIBRV_MSG_T										
. If a propagation transformation is specified, then the target ADT of the transformation can be any ADT supported by Oracle Streams AQ, but the source ADT of the transformation must be SYS.MGW_TIBRV_MSG_T										
.										
If the Oracle Streams AQ queue payload or transformation source ADT is SYS.MGW_TIBRV_MSG_T										
, then:										
Every field in the source TIB/Rendezvous message is converted to a field of the resulting message of the SYS.MGW_TIBRV_MSG_T										
type.										
The MGW agent extracts the send subject name from the source TIB/Rendezvous message and sets the send_subject										
attribute in SYS.MGW_TIBRV_MSG_T										
. The send subject name is usually the same as the subject name of the registered propagation source queue, but it might be different when wildcards are used.										
The MGW agent extracts the reply subject name from the source TIB/Rendezvous message, if it exists, and sets the reply_subject										
attribute in SYS.MGW_TIBRV_MSG_T										
.										
If the source TIB/Rendezvous message contains more than three large text fields (greater than 4000 bytes of text) or more than three large bytes fields (greater than 2000 bytes), then message conversion fails.										
If the Oracle Streams AQ queue payload is RAW										
, then:										
The Oracle Streams AQ message payload is the field data if the source TIB/Rendezvous message has a field named MGW_RAW_MSG										
of type TibrvMsg.OPAQUE										
or TibrvMsg.XML										
. The field name and ID are ignored. If no such field exists or has an unexpected type, then a message conversion failure occurs.										
A message conversion failure occurs if the RAW										
data size is greater than 32KB. This is due to a restriction on the data size allowed for a bind variable. Also, the actual limit is 32512 rather than 32767.										
If the subscriber option AQ_MsgProperties										
is specified with a value of TRUE										
, then the MGW agent searches for fields in the original TIB/Rendezvous messages with reserved field names. Table 20-4 shows the field name strings and the corresponding values used in the TIB/Rendezvous message.										
If such fields exist, then the MGW agent uses the field value to set the corresponding Oracle Streams AQ message properties, instead of using the default values. If there is more than one such field with the same name, then only the first one is used. Such fields are removed from the resulting payload only if the Oracle Streams AQ queue payload is RAW										
. If a field with the reserved name does not have the expected datatype, then it causes a message conversion failure.										
MGW propagates only JMS messages between Oracle JMS and non-Oracle JMS systems, without changing the message content. Figure 20-5 shows JMS message propagation.										
MGW supports only the standard JMS message types. It does not support:										
JMS provider extensions, because any such extensions would not be recognized by the destination JMS system. An attempt to propagate any such non-JMS message results in an error.										
User transformations for JMS propagation.										
Propagation of Logical Change Records (LCRs).										
For the purposes of this discussion, a JMS message is a Java object of a class that implements one of the five JMS message interfaces. Table 20-5 shows the JMS message interfaces and the corresponding Oracle JMS ADTs. The table also shows the interface, javax.jms.Message										
, which can be any one of the five specific types, and the corresponding generic Oracle JMS type SYS.AQ$_JMS_MESSAGE										
.										
Table 20-5 Oracle JMS Message Conversion										
JMS Message	ADT									
---	---									
javax.jms.TextMessage	SYS.AQ$_JMS_TEXT_MESSAGE									
javax.jms.BytesMessage	SYS.AQ$_JMS_BYTES_MESSAGE									
javax.jms.MapMessage	SYS.AQ$_JMS_MAP_MESSAGE									
javax.jms.StreamMessage	SYS.AQ$_JMS_STREAM_MESSAGE									
javax.jms.ObjectMessage	SYS.AQ$_JMS_OBJECT_MESSAGE									
javax.jms.Message	SYS.AQ$_JMS_MESSAGE									
When a propagation job is activated, the MGW agent checks the Oracle Streams AQ payload type for the propagation source or destination. If the type is one of those listed in Table 20-5 or ANYDATA										
, then message propagation is attempted. Otherwise an exception is logged and propagation is not attempted.										
The MGW agent may add a JMS String										
property named OracleMGW_OriginalMessageID										
to the JMS message sent to the destination queue in order to preserve the original message identifier of the source message. This property is added if the PreserveMessageID										
subscriber option is specified with a value of TRUE										
. It will also be added for any message moved to an exception queue upon a message conversion failure.										
When dequeuing a message from an Oracle Streams AQ queue, Oracle JMS converts instances of the ADTs shown in Table 20-5 into JMS messages. In addition it can convert instances of ANYDATA										
into JMS messages, depending on the content.										
A queue with payload type ANYDATA										
can hold messages that do not map to a JMS message. MGW fails to dequeue such a message. An error is logged and propagation of messages from that queue does not continue until the message is removed.										
Every message successfully dequeued using WebSphere MQ JMS is a JMS message. No message conversion is necessary prior to enqueuing using Oracle JMS. However, if the payload ADT of the propagation destination does not accept the type of the inbound message, then an exception is logged and an attempt is made to place the message in an exception queue. An example of such type mismatches is a JMS TextMessage										
and a queue payload type SYS.AQ$_JMS_BYTES_MESSAGE										
.										
This chapter discusses means of monitoring the Oracle Messaging Gateway (MGW) agent, abnormal situations you may experience, several sources of information about Messaging Gateway errors and exceptions, and suggested remedies.										
This chapter contains these topics:										
Messaging Gateway agent status, history, and errors are recorded in Messaging Gateway log files. A different log file is created each time the Messaging Gateway agent is started. You should monitor the log file because any errors, configuration information read at startup time, or dynamic configuration information is written to the log. The format of the log file name is:										
By default the Messaging Gateway log file is in ORACLE_HOME										
/mgw/log										
. This location can be overridden by parameter log_directory										
in mgw.ora										
.										
This section contains these topics:										
The following sample log file shows the Messaging Gateway agent starting. The sample log file shows that a link, a registered foreign queue, a subscriber, and a schedule have been added. The log shows that the subscriber has been activated. The last line indicates that the Messaging Gateway agent is up and running.										
Example 21-1 Sample Messaging Gateway Log File										
Exception messages logged to the Messaging Gateway log file may include one or more linked exceptions, identified by [Linked-exception]										
in the log file. These are often the most useful means of determining the cause of a problem. For instance, a linked exception could be a java.sql.SQLException										
, possibly including an Oracle error message, a PL/SQL stack trace, or both.										
The following example shows entries from a Messaging Gateway log file when an invalid value (bad_service_name										
) was specified for the database										
parameter of DBMS_MGWADM.DB_CONNECT_INFO										
. This resulted in the Messaging Gateway agent being unable to establish database connections.										
Example 21-2 Sample Exception Message										
This section contains these topics:										
The MGW_GATEWAY										
view monitors the progress of the Messaging Gateway agent. Among the fields that can be used to monitor the agent are:										
AGENT_STATUS										
AGENT_PING										
LAST_ERROR_MSG										
AGENT_JOB										
AGENT_INSTANCE										
The AGENT_STATUS										
field shows the status of the agent. This column has the following possible values:										
Indicates that the agent is neither running nor scheduled to be run.										
Indicates that the agent job is waiting to be run by the job scheduler.										
Indicates that the agent is in the process of starting.										
Indicates that the agent has started and is reading configuration data.										
Indicates that the agent is ready to propagate any available messages or process dynamic configuration changes.										
Indicates that the agent is in the process of shutting down.										
Indicates that, while attempting to start an agent process, Messaging Gateway has detected another agent already running. This situation should never occur under normal usage.										
Querying the AGENT_PING										
field pings the Messaging Gateway agent. Its value is either REACHABLE										
or UNREACHABLE										
. An agent with status of RUNNING										
should almost always be REACHABLE										
.										
The columns LAST_ERROR_MSG										
, LAST_ERROR_DATE										
, and LAST_ERROR_TIME										
give valuable information if an error in starting or running the Messaging Gateway agent occurs. AGENT_INSTANCE										
indicates the Oracle Database instance on which the Messaging Gateway instance was started.										
See Also: "DBMS_MGWADM" in PL/SQL Packages and Types Reference for more information on theMGW_GATEWAY view										
A status of NOT_STARTED										
in the AGENT_STATUS										
field of the MGW_GATEWAY										
view indicates that the Messaging Gateway agent is not running. If the AGENT_STATUS										
is NOT_STARTED										
and the LAST_ERROR_MSG										
field is not NULL, then the Messaging Gateway agent has encountered an irrecoverable error while starting or running. Check if a Messaging Gateway log file has been generated and whether it indicates any errors. If a log file is not present, then the Messaging Gateway agent process was probably not started.										
This section describes the causes and solutions for some error messages that may appear in the LAST_ERROR_MSG										
field of the MGW_GATEWAY										
view. Unless indicated otherwise, the Messaging Gateway agent will not attempt to restart itself when one of these errors occurs.										
ORA-01089: Immediate shutdown in progress - no operations are permitted										
The Messaging Gateway agent has shut down because the SHUTDOWN IMMEDIATE										
command was used to shut down a running Oracle Database instance on which the agent was running. The agent will restart itself on the next available database instance on which it is set up to run.										
ORA-06520: PL/SQL: Error loading external library										
The Messaging Gateway agent process was unable to start because the shared library was not loaded. This may be because the Java shared library was not in the library path. Verify that the library path in listener.ora										
has been set correctly.										
ORA-28575: Unable to open RPC connection to external procedure agent										
The Messaging Gateway agent was unable to start. It will attempt to start again automatically.										
Possible causes include:										
The listener is not running. If you have modified listener.ora										
, then you must stop and restart the listener before the changes will take effect.										
Values in tnsnames.ora										
, listener.ora										
, or both are not correct.										
In particular, tnsnames.ora										
must have a net service name entry of MGW_AGENT										
. This entry is not needed for Messaging Gateway on Windows. The SID value specified for CONNECT_DATA										
of the MGW_AGENT										
net service name in tnsnames.ora										
must match the SID_NAME										
value of the SID_DESC										
entry in listener.ora										
. If the MGW_AGENT										
net service name is set up for an Inter-process Communication (IPC) connection, then the KEY										
values for ADDRESS										
in tnsnames.ora										
and listener.ora										
must match. If the names.default_domain										
parameter for sqlnet.ora										
has been used to set a default domain, then that domain must be appended to the MGW_AGENT										
net service name in tnsnames.ora										
.										
ORA-28576: Lost RPC connection to external procedure agent										
The Messaging Gateway agent process ended prematurely. This may be because the process was stopped by an outside entity or because an internal error caused a malfunction. The agent will attempt to start again automatically. Check the Messaging Gateway log file to determine if further information is available. If the problem persists, then contact Oracle Support Services for assistance.										
ORA-32830: Result code -2 returned by Messaging Gateway agent										
An error occurred reading the initialization file mgw.ora										
. Verify that the file is readable.										
ORA-32830: Result code -3 returned by Messaging Gateway agent										
An error occurred creating the Messaging Gateway log file. Verify that the log directory can be written to. The default location is ORACLE_HOME										
/mgw/log										
.										
ORA-32830: Result code -8 returned by Messaging Gateway agent										
An error occurred starting the Java Virtual Machine (JVM). Verify that:										
You are using the correct Java version										
Your operating system version and patch level are sufficient for the JDK version										
You are using a reasonable value for the JVM heap size										
The heap size is specified by the max_memory										
parameter of DBMS_MGWADM.ALTER_AGENT										
On Windows platforms, verify the MGW_PRE_PATH										
set in mgw.ora										
contains the path to the correct JVM library (jvm.dll										
).										
ORA-32830: Result code -17 returned by Messaging Gateway agent										
The JVM was successfully created but an error occurred trying to call the MGW Java agent program. Verify that the CLASSPATH set in mgw.ora										
is correct.										
ORA-32830: Result code -100 returned by Messaging Gateway agent										
The Messaging Gateway agent JVM encountered a runtime exception or error on startup before it could write to the log file.										
ORA-32830: Result code -101 returned by Messaging Gateway agent										
An irrecoverable error caused the Messaging Gateway agent to shut down. Check the Messaging Gateway log file for further information. Verify that the values specified in mgw.ora										
are correct. Incorrect values can cause the Messaging Gateway agent to terminate due to unusual error conditions.										
ORA-32830: Result code -102 returned by Messaging Gateway agent										
The Messaging Gateway agent shut down because the version of file ORACLE_HOME										
/mgw/classes/mgw.jar										
does not match the version of the Messaging Gateway PL/SQL packages. Verify that all Messaging Gateway components are from the same release.										
ORA-32830: Result code -103 returned by Messaging Gateway agent										
The Messaging Gateway agent shut down because the database instance on which it was running was shutting down. The agent should restart automatically, either on another instance if set up to do so, or when the instance that shut down is restarted.										
ORA-32830: Result code -104 returned by Messaging Gateway agent										
See previous error.										
ORA-32830: Result code -105 returned by Messaging Gateway agent										
The Messaging Gateway agent detected that it was running when it should not be. This should not happen. If it does, AGENT_STATUS										
will be BROKEN										
and the agent will shut down automatically. If you encounter this error:										
Terminate any Messaging Gateway agent process that may still be running. The process is usually named extprocmgwextproc										
.										
Run DBMS_MGWADM.CLEANUP_GATEWAY(DBMS_MGWADM.CLEAN_STARTUP_STATE)										
.										
Start the Messaging Gateway agent using DBMS_MGWADM.STARTUP										
.										
ORA-32830: Result code -106 returned by Messaging Gateway agent										
See previous error.										
This section discusses possible causes for AGENT_STATUS										
remaining START_SCHEDULED										
in MGW_GATEWAY										
view for an extended period.										
Too Few Job Queue Processes										
Messaging Gateway uses job queues in Oracle Database to start the Messaging Gateway agent process. When AGENT_STATUS										
is START_SCHEDULED										
, the Messaging Gateway agent job is waiting to be run by the job scheduler. At least one job queue process must be configured to execute queued jobs in the background. The Messaging Gateway job is scheduled to execute immediately, but will not do so until a job queue process is available. The Messaging Gateway holds its job queue process for the lifetime of that Messaging Gateway agent session.										
If the Messaging Gateway status remains START_SCHEDULED										
for an extended period of time, then it can indicate that the database instance has been started with no or too few job queue processes. Verify that the database instance has been started with enough job queue processes so one is available for use by Messaging Gateway. You can set the number of job queue processes with init.ora										
parameter JOB_QUEUE_PROCESSES										
, or you can change the number dynamically with:										
Oracle recommends a minimum of two job queue processes for Messaging Gateway in addition to those used for other purposes.										
Multiple Errors While Starting										
Another possibility is that the job queue has attempted to start the Messaging Gateway agent sixteen times, each time resulting in an error. To determine if this is the case, connect as user SYS										
and execute the following query:										
If the job has failed sixteen times, check the last error message from the MGW_GATEWAY										
view and any error messages in the Messaging Gateway log file, fix the problem, call DBMS_MGWADM.SHUTDOWN										
to remove the current job queue job, and then call DBMS_MGWADM.STARTUP										
to try again.										
Real Application Clusters (RAC) Environment										
If Messaging Gateway is being used in a RAC environment and the agent has been configured to run on a particular instance that is currently not running, then AGENT_STATUS										
will remain START_SCHEDULED										
until that instance is running.										
Messaging Gateway propagation can be monitored using the MGW_SUBSCRIBERS										
view and the Messaging Gateway log file. The view provides information on propagated messages and errors that may have occurred during propagation attempts. The log file can be used to determine the cause of the errors.										
Besides showing configuration information, the MGW_SUBSCRIBERS										
view also has dynamic information that can be used to monitor message propagation. Applicable fields include STATUS										
, PROPAGATED_MSGS										
, EXCEPTIONQ_MSGS										
, FAILURES										
, LAST_ERROR_MSG										
, LAST_ERROR_DATE										
, and LAST_ERROR_TIME										
.										
STATUS										
can be either ENABLED										
or DELETE_PENDING										
. DELETE_PENDING										
means subscriber removal is pending, usually because DBMS_MGWADM.REMOVE_SUBSCRIBER										
has been called but certain cleanup tasks pertaining to this subscriber are still outstanding. Otherwise the subscriber is considered ENABLED										
.										
The PROPAGATED_MSGS										
field of the MGW_SUBSCRIBERS										
view indicates how many messages have been successfully propagated. This field is reset to zero when the Messaging Gateway agent is started.										
If a Messaging Gateway subscriber has been configured with an exception queue, then the Messaging Gateway agent will move messages to that exception queue the first time the Messaging Gateway agent encounters a propagation failure caused by a message conversion failure. A message conversion failure is indicated by oracle.mgw.common.MessageException										
in the Messaging Gateway log file. The EXCEPTIONQ_MSGS										
field indicates how many messages have been moved to the exception queue. This field is reset to zero when the Messaging Gateway agent is started.										
If an error occurs during message propagation for a subscriber, a count is incremented in the FAILURES										
field. This field indicates the number of failures encountered since the last successful propagation of messages. Each time a failure occurs, an error message and the time it occurred will be shown by LAST_ERROR_MSG										
, LAST_ERROR_DATE										
, and LAST_ERROR_TIME										
. When the number of failures reaches sixteen, Messaging Gateway halts propagation attempts for this subscriber. To resume propagation attempts you must call DBMS_MGWADM.RESET_SUBSCRIBER										
for the subscriber in question.										
If an error occurs, then examine the Messaging Gateway log file for further information.										
This section lists some of the most commonly occurring errors that are shown in the LAST_ERROR_MSG										
column of the MGW_SUBSCRIBERS										
view and logged to the Messaging Gateway agent log file. Also shown are some errors that require special action. When you notice that a failure has occurred, look at the linked exceptions in the log file to determine the root cause of the problem.										
Two primary types of errors are logged to the Messaging Gateway agent log file:										
oracle.mgw.common.MessageException										
This error type is logged when a message conversion failure occurs. The Messaging Gateway agent probably cannot propagate the message causing the failure, and the propagation job will eventually be stopped.										
oracle.mgw.common.GatewayException										
This error type is logged when some failure other than message conversion occurs. Depending on the cause, the problem may fix itself or require user action.										
[221] Failed to access <messaging_system> queue: <queue>										
An error occurred while trying to access either an Oracle Streams AQ queue or a non-Oracle queue. Check the linked exception error code and message in the log file.										
[241] Failed to connect to database. SQL error: <error>, connect string: <connect_string>										
This is probably caused by incorrect entries in DBMS_MGWADM.DB_CONNECT_INFO										
. Either the Messaging Gateway agent user or password has not been entered correctly, or the database										
parameter is incorrect or NULL.										
If the database										
parameter is NULL, then check the Messaging Gateway log file for the following Oracle linked errors:										
These two errors together indicate that the Messaging Gateway agent is attempting to connect to the database using a local IPC connection, but the ORACLE_SID										
value is not correct.										
A local connection is used when DBMS_MGWADM.DB_CONNECT_INFO										
is called with a NULL value for the database										
parameter. If a local connection is desired, the correct ORACLE_SID										
value must be set in the Messaging Gateway agent process. This can be done by adding the following line to mgw.ora										
:										
ORACLE_SID										
need not be set if DBMS_MGWADM.DB_CONNECT_INFO										
is called with a not NULL value for the database										
parameter. In this case the value should specify a net service name from tnsnames.ora										
.										
If setting ORACLE_SID										
in mgw.ora										
does not work, then the database										
parameter of DBMS_MGWADM.DB_CONNECT_INFO										
must be set to a value that is not NULL.										
[415] Missing messages from source queue of subscriber <subscriber_id>										
Possible causes include:										
The agent partially processed persistent messages that were dequeued by someone other than the Messaging Gateway agent.										
The propagation source queue was purged or re-created.										
A message was moved to the Oracle Streams AQ exception queue.										
If this error occurs, then call procedure CLEANUP_GATEWAY										
in the DBMS_MGWADM										
package:										
The call takes effect only if the subscriber has encountered the missing message problem and the agent is running. The agent treats the missing messages as nonpersistent messages and continues processing the subscriber.										
See Also: "Propagation Subscriber Overview" for more information on Messaging Gateway exception queues										
[416] Missing log records in receiving log queue for subscriber <subscriber_id>										
Possible causes include:										
Log records were dequeued from the log queues by someone other than the Messaging Gateway agent.										
The log queues were purged or re-created.										
If this error occurs, then call procedure CLEANUP_GATEWAY										
in the DBMS_MGWADM										
package:										
The call takes effect only if the subscriber has encountered the missing log records problem and the agent is running.										
Note: Calling procedureDBMS_MGWADM.CLEANUP_GATEWAY may result in duplicated messages if the missing messages have already been propagated to the destination queue. Users should check the source and destination queues for any messages that exist in both places. If such messages exist, then they should be removed from either the source or destination queue before calling this procedure.										
[417] Missing log records in sending log queue for subscriber <subscriber_id>										
See previous error.										
[421] WARNING: Unable to get connections to recover subscriber <subscriber_id>										
This message is a warning message indicating that the Messaging Gateway agent failed to get a connection to recover the propagation job, because other propagation jobs are using them all. The agent will keep trying to get a connection until it succeeds.										
If this message is repeated many times for a WebSphere MQ link, then increase the maximum number of connections used by the Messaging Gateway link associated with the subscriber.										
[434] Failed to access queue <queue>; provider queue <queue>										
This message indicates that a messaging system native queue cannot be accessed. The queue may have been registered by DBMS_MGWADM.REGISTER_FOREIGN_QUEUE										
, or it may be an Oracle Streams AQ queue. The linked exceptions should give more information.										
Possible causes include:										
The foreign queue was registered incorrectly, or the Messaging Gateway link was configured incorrectly.										
Verify configuration information. If possible, use the same configuration information to run a sample application of the non-Oracle messaging system.										
The non-Oracle messaging system is not accessible.										
Check that the non-Oracle messaging system is running and can be accessed using the information supplied in the Messaging Gateway link.										
The Oracle Streams AQ queue does not exist. Perhaps the queue was removed after the Messaging Gateway subscriber was created.										
Check that the Oracle Streams AQ queue still exists.										
[436] LOW MEMORY WARNING: total memory = < >, free_mem = < >										
The Messaging Gateway agent JVM is running low on memory. Java garbage collection will be invoked, but this may represent a JVM heap size that is too small. Use the max_memory										
parameter of DBMS_MGWADM.ALTER_AGENT										
to increase the JVM heap size. If the Messaging Gateway agent is running, then it must be restarted for this change to take effect.										
[703] Failed to retrieve information for transformation <transformation_id>										
The Messaging Gateway agent could not obtain all the information it needs about the transformation. The transformation parameter of DBMS_MGWADM.ADD_SUBSCRIBER										
must specify the name of the registered transformation and not the name of the transformation function.										
Possible causes include:										
The transformation does not exist. Verify that the transformation has been created. You can see this from the following query performed as user SYS:										
The wrong transformation is registered with Messaging Gateway. Verify that the transformation registered is the one intended.										
The Messaging Gateway agent user does not have EXECUTE										
privilege on the object type used for the from_type										
or the to_type										
of the transformation indicated in the exception.										
It is not sufficient to grant EXECUTE										
to MGW_AGENT_ROLE										
and then grant MGW_AGENT_ROLE										
to the agent user. You must grant EXECUTE										
privilege on the object type directly to the agent user or to PUBLIC										
.										
Example 21-3 shows such a case for the from_type										
. It also shows the use of linked exceptions for determining the precise cause of the error.										
Example 21-3 No EXECUTE Privilege on Object Type										
[720] AQ payload type <type> not supported; queue: <queue>										
The payload type of the Oracle Streams AQ queue used by a Messaging Gateway subscriber is not directly supported by Messaging Gateway. For non-JMS propagation, Messaging Gateway directly supports the payload types RAW										
, SYS.MGW_BASIC_MSG_T										
and SYS.MGW_TIBRV_MSG_T										
.										
Possible actions include:										
Configure the Messaging Gateway subscriber to use a transformation that converts the queue payload type to a supported type.										
Remove the Messaging Gateway subscriber and create a new subscriber that uses an Oracle Streams AQ queue with a supported payload type.										
For Java Message Service (JMS) propagation, the Messaging Gateway subscriber must be removed and a new subscriber added whose Oracle Streams AQ payload type is supported by Oracle Java Message Service (OJMS). Transformations are not supported for JMS propagation.										
[721] Transformation type <type> not supported; queue: <queue_name>, transform: <transformation>										
A Messaging Gateway subscriber was configured with a transformation that uses an object type that is not one of the Messaging Gateway canonical types.										
For an outbound subscriber, the transformation from_type										
must be the Oracle Streams AQ payload type, and the to_type										
must be a Messaging Gateway canonical type. For an inbound subscriber, the transformation from_type										
must be a Messaging Gateway canonical type and the to_type										
must be the Oracle Streams AQ payload type.										
[722] Message transformation failed; queue: <queue_name>, transform: <transformation>										
An error occurred while attempting execution of the transformation. ORA-25229 is typically thrown by Oracle Streams AQ when the transformation function raises a PL/SQL exception or some other Oracle error occurs when attempting to use the transformation.										
Possible causes include:										
The Messaging Gateway agent user does not have EXECUTE										
privilege on the transformation function. This is illustrated in Example 21-4.										
It is not sufficient to grant EXECUTE										
to MGW_AGENT_ROLE										
and then grant MGW_AGENT_ROLE										
to the Messaging Gateway agent user. You must grant EXECUTE										
privilege on the transformation function directly to the Messaging Gateway agent user or to PUBLIC										
.										
Example 21-4 No EXECUTE Privilege on Transformation Function										
The transformation function does not exist, even though the registered transformation does. If the transformation function does not exist, it must be re-created.										
The Messaging Gateway agent user does not have EXECUTE										
privilege on the payload object type for the queue indicated in the exception.										
It is not sufficient to grant EXECUTE										
to MGW_AGENT_ROLE										
and then grant MGW_AGENT_ROLE										
to the Messaging Gateway agent user. You must grant EXECUTE										
privilege on the object type directly to the Messaging Gateway agent user or to PUBLIC										
.										
The transformation function raised the error. Verify that the transformation function can handle all messages it receives.										
[724] Message conversion not supported; to AQ payload type: <type>, from type: <type>										
A Messaging Gateway subscriber is configured for inbound propagation where the canonical message type generated by the non-Oracle messaging system link is not compatible with the Oracle Streams AQ queue payload type. For example, propagation from a TIB/Rendezvous messaging system to an Oracle Streams AQ queue with a SYS.MGW_BASIC_MSG_T										
payload type, or propagation from WebSphere MQ to an Oracle Streams AQ queue with a SYS.MGW_TIBRV_MSG_T										
payload type.										
Possible actions include:										
Configure the Messaging Gateway subscriber with a transformation that maps the canonical message type generated by the non-Oracle messaging link to the Oracle Streams AQ payload type.										
Remove the Messaging Gateway subscriber and create a new subscriber whose Oracle Streams AQ queue payload type matches the canonical message type generated by the non-Oracle link.										
[725] Text message not supported for RAW payload										
A Messaging Gateway subscriber is configured for inbound propagation to an Oracle Streams AQ destination having a RAW										
payload type. A text message was received from the source (non-Oracle) queue resulting in a message conversion failure.										
If support for text data is required, remove the Messaging Gateway subscriber and create a new subscriber to an Oracle Streams AQ destination whose payload type supports text data.										
[726] Message size <size> too large for RAW payload; maximum size is <size>										
A Messaging Gateway subscriber is configured for inbound propagation to an Oracle Streams AQ destination having a RAW										
payload type. A message conversion failure occurred when a message containing a large RAW										
value was received from the source (non-Oracle) queue.										
If large data support is required, remove the Messaging Gateway subscriber and create a new subscriber to an Oracle Streams AQ destination whose payload type supports large data, usually in the form of an object type with a BLOB attribute.										
[728] Message contains too many large (BLOB) fields										
The source message contains too many fields that must be stored in BLOB										
types. SYS.MGW_TIBRV_MSG_T										
is limited to three BLOB										
fields. Reduce the number of large fields in the message, perhaps by breaking them into smaller fields or combining them into fewer large fields.										
[729] Message contains too many large (CLOB) fields										
The source message contains too many fields that contain a large text value that must be stored in a CLOB										
. SYS.MGW_TIBRV_MSG_T										
is limited to three CLOB										
fields. Reduce the number of large fields in the message, perhaps by breaking them into smaller fields or combining them into fewer large fields.										
[805] MQSeries Message error while enqueuing to queue: <queue>										
WebSphere MQ returned an error when an attempt was made to put a message in a WebSphere MQ queue. Check the linked exception error code and message in the log file. Consult WebSphere MQ documentation.										
Part VI describes how to use Oracle Streams with Oracle Streams Advanced Queuing.										
This part contains the following chapters:										
This chapter describes how to use and manage Oracle Streams AQ when enqueuing and propagating. It describes ANYDATA										
queues and user messages.										
Oracle Streams uses queues of type ANYDATA										
to store three types of messages:										
Captured logical change record (LCR)										
This message type, produced by an Oracle Streams capture process, is not discussed in this guide.										
User-enqueued LCR										
This is a message containing an LCR that was enqueued by a user or application.										
User message										
This is a non-LCR message created and enqueued by a user or application.										
All three types of messages can be used for information sharing within a single database or between databases.										
This chapter contains these topics:										
Propagating User Messages from ANYDATA Queues to Typed Queues										
Propagating User-Enqueued LCRs from ANYDATA Queues to Typed Queues										
This section contains these topics:										
You can wrap almost any type of payload in an ANYDATA										
payload with the Convert										
data_type										
static functions of the ANYDATA										
type, where data_type										
is the type of object to wrap. These functions take the object as input and return an ANYDATA										
object.										
The following datatypes cannot be wrapped in an ANYDATA										
wrapper:										
Nested table										
ROWID and UROWID										
The following datatypes can be directly wrapped in an ANYDATA										
wrapper, but they cannot be present in a user-defined type payload wrapped in an ANYDATA										
wrapper:										
Your applications can use the following programmatic interfaces to enqueue user messages into an ANYDATA										
queue and dequeue user messages from an ANYDATA										
queue:										
PL/SQL (DBMS_AQ										
package)										
Java Message Service (JMS)										
OCI										
The following sections provide information about using these interfaces to enqueue user messages into and dequeue user messages from an ANYDATA										
queue.										
See Also: Chapter 3, "Oracle Streams AQ: Programmatic Interfaces" for more information about these programmatic interfaces										
To enqueue a user message containing an LCR into an ANYDATA										
queue using PL/SQL, first create the LCR to be enqueued. You use the constructor for the SYS.LCR$_ROW_RECORD										
type to create a row LCR, and you use the constructor for the SYS.LCR$_DDL_RECORD										
type to create a DDL LCR. Then you use the ANYDATA.ConvertObject										
function to convert the LCR into an ANYDATA										
payload and enqueue it using the DBMS_AQ.ENQUEUE										
procedure.										
To enqueue a user message containing a non-LCR object into an ANYDATA										
queue using PL/SQL, you use one of the ANYDATA.Convert*										
functions to convert the object into an ANYDATA										
payload and enqueue it using the DBMS_AQ.ENQUEUE										
procedure.										
To enqueue a user message containing an LCR into an ANYDATA										
queue using JMS or OCI, you must represent the LCR in XML format. To construct an LCR, use the oracle.xdb.XMLType										
class. LCRs are defined in the SYS										
schema. The LCR schema must be loaded into the SYS										
schema using the catxlcr.sql										
script in ORACLE_HOME										
/rdbms/admin										
.										
To enqueue a message using OCI, perform the same actions that you would to enqueue a message into a typed queue. To enqueue a message using JMS, a user must have EXECUTE										
privilege on the DBMS_AQ										
, DBMS_AQIN										
and DBMS_AQJMS										
packages.										
Note: Enqueue of JMS types and XML types does not work withANYDATA queues unless you call DBMS_AQADM.ENABLE_JMS_TYPES(queue_table_name) after DBMS_STREAMS_ADM.SET_UP_QUEUE(queue_name) . Enabling a queue for these types may affect import/export of the queue table.										
A non-LCR user message can be a message of any user-defined type or a JMS type. The JMS types include the following:										
javax.jms.TextMessage										
javax.jms.MapMessage										
javax.jms.StreamMessage										
javax.jms.ObjectMessage										
javax.jms.BytesMessage										
When using user-defined types, you must generate the Java class for the message using Jpublisher, which implements the ORAData										
interface. To enqueue a message into an ANYDATA										
queue, you can use methods QueueSender.send										
or TopicPublisher.publish										
.										
See Also:										
To dequeue a user message from an ANYDATA										
queue using PL/SQL, you use the DBMS_AQ.DEQUEUE										
procedure and specify ANYDATA										
as the payload. The user message can contain an LCR or another type of object.										
In an ANYDATA										
queue, user messages containing LCRs in XML format are represented as oracle.xdb.XMLType										
. Non-LCR messages can be any user-defined type or a JMS type.										
To dequeue a message from an ANYDATA										
queue using JMS, you can use methods QueueReceiver										
, TopicSubscriber										
, or TopicReceiver										
. Because the queue can contain different types of objects wrapped in ANYDATA										
wrappers, you must register a list of SQL types and their corresponding Java classes in the type map of the JMS session. JMS types are already preregistered in the type map.										
For example, suppose a queue contains user-enqueued LCR messages represented as oracle.xdb.XMLType										
and non-LCR messages of type person										
and address										
. The classes JPerson.java										
and JAddress.java										
are the ORAData										
mappings for person										
and address										
, respectively. Before dequeuing the message, the type map must be populated as follows:										
When using a messageSelector										
with a QueueReceiver										
or TopicPublisher										
, the selector can contain any SQL92 expression that has a combination of one or more of the following:										
JMS message header fields or properties										
These include JMSPriority										
, JMSCorrelationID										
, JMSType										
, JMSXUserI										
, JMSXAppID										
, JMSXGroupID										
, and JMSXGroupSeq										
. An example of a JMS message field messageSelector										
is:										
User-defined message properties										
An example of a user-defined message properties messageSelector										
is:										
PL/SQL functions										
An example of a PL/SQL function messageSelector										
is:										
To dequeue a message from an ANYDATA										
queue using OCI, perform the same actions that you would to dequeue a message from a typed queue.										
See Also:										
ANYDATA										
queues can interoperate with typed queues. Table 22-1 shows the types of propagation possible between queues.										
Table 22-1 Propagation Between Different Types of Queues										
Source Queue	Destination Queue	Transformation								
---	---	---								
ANYDATA	ANYDATA	None								
Typed	ANYDATA	Implicit Note: Propagation is possible only if the messages in the typed queue meet the restrictions outlined in "Object Type Support".								
ANYDATA	Typed	Requires a rule to filter messages and a user-defined transformation. Only messages containing a payload of the same type as the typed queue can be propagated to the typed queue.								
Typed	Typed	Follows Oracle Streams AQ rules								
Note: Propagations cannot propagate user-enqueuedANYDATA messages that encapsulate payloads of object types, varrays, or nested tables between databases with different character sets. Propagations can propagate such messages between databases with the same character set.										
Although you cannot use Simple Object Access Protocol (SOAP) to interact directly with an ANYDATA										
queue, you can use SOAP by propagating messages between an ANYDATA										
queue and a typed queue. If you want to enqueue a message into an ANYDATA										
queue using SOAP, you must first configure propagation from a typed queue to the ANYDATA										
queue. Then you can use SOAP to enqueue a message into the typed queue. The message is propagated automatically from the typed queue to the ANYDATA										
queue.										
If you want to use SOAP to dequeue a message that is in an ANYDATA										
queue, then you can configure propagation from the ANYDATA										
queue to a typed queue. The message is propagated automatically from the ANYDATA										
queue to the typed queue, where it is available for access using SOAP.										
See Also: "Propagating Messages Between an ANYDATA Queue and a Typed Queue" in Oracle Streams Concepts and Administration										
This section provides examples of enqueuing messages into an ANYDATA										
queue. The examples assume you are in a SQL*Plus testing environment with access to two databases named db01										
and db02										
. The first few examples prepare the testing environment for the other examples in this chapter.										
In Example 22-1, you connect as a user with administrative privileges at databases db01										
and db02										
to create administrator user strmadmin										
and to grant EXECUTE										
privilege on the DBMS_AQ										
package to sample schema user oe										
.										
Example 22-1 Creating ANYDATA Users										
In Example 22-2, you connect to db01										
as strmadmin										
to create ANYDATA										
queue oe_queue_any										
. The oe										
user is configured automatically as a secure user of the oe_queue_any										
queue and is given ENQUEUE										
and DEQUEUE										
privileges on the queue.										
Example 22-2 Creating an ANYDATA Queue										
In Example 22-3, you add a subscriber to the oe_queue_any										
queue. This subscriber performs explicit dequeues of messages. The ADD_SUBSCRIBER										
procedure will automatically create an AQ_AGENT										
.										
Example 22-3 Adding a Subscriber to the ANYDATA Queue										
In Example 22-4, you associate the oe										
user with the local_agent										
agent.										
Example 22-4 Associating a User with an AQ_AGENT										
In Example 22-5, you connect to database db01										
as user oe										
to create an enqueue procedure. It takes an object of ANYDATA										
type as an input parameter and enqueues a message containing the payload into an existing ANYDATA										
queue.										
Example 22-5 Creating an Enqueue Procedure										
In Example 22-6, you use procedure oe.enq_proc										
to enqueue a message of type VARCHAR2										
into an ANYDATA										
queue.										
Example 22-6 Enqueuing a VARCHAR2 Message into an ANYDATA Queue										
In Example 22-7, you use procedure oe.enq_proc										
to enqueue a message of type NUMBER										
into an ANYDATA										
queue.										
Example 22-7 Enqueuing a NUMBER Message into an ANYDATA Queue										
In Example 22-8, you use procedure oe.enq_proc										
to enqueue a user-defined type message into an ANYDATA										
queue.										
Example 22-8 Enqueuing a User-Defined Type Message into an ANYDATA Queue										
See Also: "Viewing the Contents of User-Enqueued Events in a Queue" in Oracle Streams Concepts and Administration										
This section provides examples of dequeuing messages from an ANYDATA										
queue. The examples assume that you have completed the examples in "Enqueuing User Messages in ANYDATA Queues".										
To dequeue messages, you must know the consumer of the messages. To find the consumer for the messages in a queue, connect as the owner of the queue and query the AQ$										
queue_table_name										
view, where queue_table_name										
is the name of the queue table containing the queue.										
In Example 22-9, you connect to database db01										
as strmadmin										
, the owner of queue oe_queue_any										
, and perform a query on the AQ$OE_QTAB_ANY										
view. The query returns three rows, with LOCAL_AGENT										
as the CONSUMER_NAME										
in each row.										
Example 22-9 Determining the Consumer of Messages in a Queue										
In Example 22-10, you connect to database db01										
as user oe										
to create a dequeue procedure that takes as an input the consumer of the messages you want to dequeue, dequeues messages of oe.cust_address_typ										
, and prints the contents of the messages.										
Example 22-10 Creating a Dequeue Procedure for an ANYDATA Queue										
In Example 22-11, you use procedure oe.get_cust_address										
, created in Example 22-10, specifying LOCAL_AGENT										
as the consumer.										
Example 22-11 Dequeuing Messages from an ANYDATA Queue										
The example returns:										
This section provides examples showing how to propagate non-LCR user messages between an ANYDATA										
queue and a typed queue.										
Note: The examples in this section assume that you have completed the examples in "Enqueuing User Messages in ANYDATA Queues".										
See Also: "Message Propagation and ANYDATA Queues" for more information about propagation betweenANYDATA and typed queues										
The first few examples set up propagation from the ANYDATA										
queue oe_queue_any										
, created in Example 22-2, to a typed queue in database db02										
. In Example 22-12, you connect as sample schema user oe										
to grant EXECUTE										
privilege on oe.cust_address_typ										
at databases db01										
and db02										
to administrator user strmadmin										
.										
Example 22-12 Granting EXECUTE Privilege on a Type										
In Example 22-13, you connect to database db02										
as administrator user strmadmin										
and create a destination queue of type oe.cust_address_typ										
.										
Example 22-13 Creating a Typed Destination Queue										
In Example 22-14, you connect to database db01										
as administrator user strmadmin										
to create a database link from db01										
to db02										
.										
Example 22-14 Creating a Database Link										
In Example 22-15, you create function any_to_cust_address_typ										
in the strmadmin										
schema at db01										
that takes an ANYDATA										
payload containing an oe.cust_address_typ										
object and returns an oe.cust_address_typ										
object.										
Example 22-15 Creating a Function to Extract a Typed Object from an ANYDATA Object										
In Example 22-16, you create a transformation at db01										
using the DBMS_TRANSFORM										
package.										
Example 22-16 Creating an ANYDATA to Typed Object Transformation										
In Example 22-17, you create a subscriber for the typed queue. The subscriber must contain a rule that ensures that only messages of the appropriate type are propagated to the destination queue.										
Example 22-17 Creating Subscriber ADDRESS_AGENT_REMOTE										
In Example 22-18, you schedule propagation between the ANYDATA										
queue at db01										
and the typed queue at db02										
.										
Example 22-18 Scheduling Propagation from an ANYDATA Queue to a Typed Queue										
In Example 22-19, you connect to database db01										
as sample schema user oe										
to enqueue a message of oe.cust_address_typ										
type wrapped in an ANYDATA										
wrapper. This example uses the enqueue procedure oe.enq_proc										
created in Example 22-5.										
Example 22-19 Enqueuing a Typed Message in an ANYDATA Wrapper										
After allowing some time for propagation, in Example 22-20 you query queue table AQ$OE_QTAB_ADDRESS										
at db02										
to view the propagated message.										
Example 22-20 Viewing the Propagated Message										
The example returns one message for ADDRESS_AGENT_REMOTE										
:										
See Also: Chapter 20, "Oracle Messaging Gateway Message Conversion" for more information about transformations during propagation										
You can propagate user-enqueued LCRs to an appropriate typed queue, but propagation of captured LCRs to a typed queue is not supported.										
See Also: "Streams Capture Process" in Oracle Streams Concepts and Administration for more information on capture processes										
To propagate user-enqueued LCRs from an ANYDATA										
queue to a typed queue, you complete the same steps as you do for non-LCR messages, but Oracle supplies the transformation functions. You can use the following functions in the DBMS_STREAMS										
package to transform LCRs in ANYDATA										
queues to messages in typed queues:										
CONVERT_ANYDATA_TO_LCR_ROW										
transforms an ANYDATA										
payload containing a row LCR into a SYS.LCR$_ROW_RECORD										
payload.										
CONVERT_ANYDATA_TO_LCR_DDL										
transforms an ANYDATA										
payload containing a DDL LCR into a SYS.LCR$_DDL_RECORD										
payload.										
The examples in this section set up propagation of row LCRs from an ANYDATA										
queue named oe_queue_any										
to a typed queue of type SYS.LCR$_ROW_RECORD										
named oe_queue_lcr										
. The source queue oe_queue_any										
is at database db01										
, and the destination queue oe_queue_lcr										
is created at database db02										
in Example 22-21.										
Note: The examples in this section assume you have already run the examples in the preceding sections of this chapter.										
Example 22-21 Creating a Queue of Type LCR$_ROW_RECORD										
In Example 22-22, you connect to db01										
as administrator user strmadmin										
to create an ANYDATA										
to LCR$_ROW_RECORD										
transformation at db01										
using the DBMS_TRANSFORM										
package.										
Example 22-22 Creating an ANYDATA to LCR$_ROW_RECORD Transformation										
In Example 22-23, you create a subscriber at the typed queue. The subscriber specifies the anytolcr										
transformation created in Example 22-22 for the transformation										
parameter.										
Example 22-23 Creating Subscriber ROW_LCR_AGENT_REMOTE										
In Example 22-24, you connect to database db01										
as sample schema user oe										
to create a procedure to construct and enqueue a row LCR into the strmadmin.oe_queue_any										
queue.										
Example 22-24 Creating a Procedure to Construct and Enqueue a Row LCR										
In Example 22-25, you use the oe.enq_row_lcr_proc										
procedure first to create a row LCR that inserts a row into the oe.inventories										
table, and then to enqueue the row LCR into the strmadmin.oe_queue_any										
queue.										
Note: This example does not insert a new row in theoe.inventories table. The new row is inserted when an Oracle Streams apply process dequeues the row LCR and applies it.										
Example 22-25 Creating and Enqueuing a Row LCR										
The LCR is propagated to database db02										
by the schedule created in Example 22-18. After allowing some time for propagation, in Example 22-26 you query queue table AQ$OE_QTAB_LCR										
at db02										
to view the propagated message.										
Example 22-26 Viewing the Propagated LCR										
The example returns one message for ROW_LCR_AGENT_REMOTE										
:										
See Also: "DBMS_STREAMS" in PL/SQL Packages and Types Reference for more information about the row LCR and DDL LCR conversion functions										
The examples in this chapter illustrate a messaging environment that can be constructed using Oracle Streams. The examples assume you are in a SQL*Plus testing environment with access to a database named db01										
.										
This chapter contains these topics:										
Dequeuing Messages Explicitly and Querying for Applied Messages										
Enqueuing and Dequeuing Messages Using JMS										
See Also: Oracle Streams Concepts and Administration for more information about messaging andANYDATA queues										
This example illustrates using a single ANYDATA										
queue to create an Oracle Streams messaging environment in which message payloads of different types are stored in the same queue. Specifically, this example illustrates the following messaging features of Oracle Streams:										
Enqueuing messages containing order payload as ANYDATA										
payloads										
Enqueuing messages containing customer payload as ANYDATA										
payloads										
Enqueuing messages containing row LCRs as ANYDATA										
payloads										
Creating a rule set for applying the events										
Creating an evaluation context used by the rule set										
Creating an Oracle Streams apply process to dequeue and process the events based on rules										
Creating a message handler and associating it with the apply process										
Explicitly dequeuing and processing events based on rules without using the apply process										
Figure 23-1 provides an overview of this environment.										
Because the examples in this chapter use the oe										
sample schema, the oe										
user must have privileges to run the subprograms in the DBMS_AQ										
package. This is accomplished in Example 23-1.										
Note: Theoe user is specified as the queue user when the ANYDATA queue is created in Example 23-2. The SET_UP_QUEUE procedure grants the oe user enqueue and dequeue privileges on the queue, but the oe user also needs EXECUTE privilege on the DBMS_AQ package to enqueue and dequeue messages.										
Most of the configuration and administration actions illustrated in these examples are performed by the Oracle Streams administrator strmadmin										
. Example 23-1 also creates this user and grants the necessary privileges. These privileges enable the user to run subprograms in packages related to Oracle Streams, create rule sets, create rules, and monitor the Oracle Streams environment by querying data dictionary views.										
In Example 23-1, you connect to database db01										
as a user with administrative privileges.										
Example 23-1 Setting Up ANYDATA Users										
Note:										
In Example 23-2, you connect to database db01
as administrator user strmadmin
to create ANYDATA
queue oe_queue
. The SET_UP_QUEUE
procedure creates a queue table for the queue and then creates and starts the queue.
Example 23-2 Creating an ANYDATA Queue
In Example 23-3, you connect to database db01
as administrator user strmadmin
to grant the oe
user privileges on queue oe_queue
, create agent explicit_enq
that will be used to perform explicit enqueue operations on the queue, and associate the
oe
user with the agent.
Queue oe_queue
is a secure queue because it was created using SET_UP_QUEUE
. For a user to perform enqueue and dequeue operations on a secure queue, the user must be configured as a secure queue user of the queue. Associating the oe
user with agent explicit_enq
enables the oe
user to perform enqueue operations on this queue.
Example 23-3 Enabling Enqueue on the ANYDATA Queue
The examples in this section create two PL/SQL procedures that enqueue messages into the ANYDATA
queue oe_queue
. One procedure enqueues non-LCR messages, and the other procedure enqueues row LCR messages.
In Example 23-4, you connect to database db01
as sample schema user oe
to create a type to represent orders based on the columns in the oe.orders
table. This type is used for messages that are enqueued into the ANYDATA
queue oe_queue
. The type attributes include the columns in the oe.orders
table, along with one extra attribute named action
. The value of the action
attribute for instances of this type is used to determine the correct action to perform on the instance (either apply process dequeue or explicit dequeue).
Example 23-4 Creating an Orders Type
In Example 23-5, you connect to database db01
as sample schema user oe
to create a type to represent customers based on the columns in the oe.customers
table. This type is used for messages that are enqueued into the ANYDATA
queue oe_queue
. The type attributes include the columns in the oe.customers
table, along with one extra attribute named action
. The value of the action
attribute for instances of this type is used to determine the correct action to perform on the instance (either apply process dequeue or explicit dequeue).
Note: This example assumes you have dropped thecust_geo_location column from the oe.customers table. This column is useful only with Oracle Spatial. |
Example 23-5 Creating a Customers Type
In Example 23-6, you connect to database db01
as sample schema user oe
to create a PL/SQL procedure called enq_proc
to enqueue non-LCR messages into ANYDATA
queue oe_queue.
Note: A single enqueued message can be dequeued by both an apply process and an explicit dequeue, but the examples in this chapter do not illustrate this capability. |
Example 23-6 Creating a Procedure to Enqueue Non-LCR Messages
In Example 23-7, you connect to database db01
as sample schema user oe
to create a PL/SQL procedure called enq_row_lcr
that constructs a row LCR and then enqueues the row LCR into ANYDATA
queue oe_queue.
Example 23-7 Creating a Procedure to Construct and Enqueue Row LCR Events
The examples in this section configure an apply process to apply the user-enqueued messages in the ANYDATA
queue oe_queue.
In Example 23-8, you connect to database db01
as sample schema user oe
to create a function called get_oe_action
and to grant EXECUTE
privilege on the function to administrator user strmadmin
.
This function determines the value of the action
attribute in the messages in queue oe_queue
. It is used in rules later in this chapter to determine the value of the action
attribute for an event. Then, the clients of the rules engine perform the appropriate action for the event (either dequeue by apply process or explicit dequeue). In this example, the clients of the rules engine are the apply process and the oe.explicit_dq
PL/SQL procedure.
Example 23-8 Creating a Function to Determine the Value of the Action Attribute
In Example 23-9, you connect to database db01
as sample schema user oe
to create a PL/SQL procedure called mes_handler
that is used as a message handler by the apply process. You also grant EXECUTE
privilege on this procedure to administrator user strmadmin
. This procedure takes the payload in a user-enqueued message of type oe.order_event_typ
or oe.customer_event_typ
and inserts it as a row in the oe.orders
table or oe.customers
table, respectively.
Example 23-9 Creating a Message Handler
In Example 23-10, you connect to database db01
as administrator user strmadmin
to create an evaluation context for the rule set.
Example 23-10 Creating an Evaluation Context for the Rule Set
In Example 23-11, you connect to database db01
as administrator user strmadmin
to create a rule set for the apply process.
Example 23-11 Creating a Rule Set for the Apply Process
In Example 23-12, you connect to database db01
as administrator user strmadmin
to create a rule that evaluates to TRUE
if the action
value of a message is apply
. Notice that tab.user_data
is passed to the oe.get_oe_action
function. The tab.user_data
column holds the event payload in a queue table. The table alias for the queue table was specified as tab
in Example 23-10.
Example 23-12 Creating a Rule that Evaluates to TRUE if Action Is Apply
In Example 23-13, you connect to database db01
as administrator user strmadmin
to create a rule that evaluates to TRUE
if the event in the queue is a row LCR that changes either the oe.orders
table or the oe.customers
table. This rule enables the apply process to apply user-enqueued changes to the tables directly.
For convenience, this rule uses the Oracle-supplied evaluation context SYS.STREAMS$_EVALUATION_CONTEXT
because the rule is used to evaluate LCRs. When this rule is added to the rule set, the Oracle-supplied evaluation context is used for the rule during evaluation instead of evaluation context oe_eval_context
created in Example 23-10.
Example 23-13 Creating a Rule that Evaluates to TRUE for Row LCR Events
In Example 23-14, you connect to database db01
as administrator user strmadmin
to add the apply_action
rule created in Example 23-12 and the apply_lcrs
rule created in Example 23-13 to the apply_oe_rs
rule set created in Example 23-11.
Example 23-14 Adding Rules to the Rule Set
In Example 23-15, you connect to database db01
as administrator user strmadmin
to create an apply process that is associated with queue oe_queue
, that uses the apply_oe_rs
rule set, and that uses the mes_handler
procedure as a message handler.
Example 23-15 Creating an Apply Process
Because oe
was specified as the apply user when the apply process was created in Example 23-15, you must grant this user EXECUTE
privilege on the strmadmin.apply_oe_rs
rule set used by the apply process. You connect to database db01
as administrator user strmadmin
to accomplish this in Example 23-16.
Example 23-16 Granting EXECUTE Privilege on the Rule Set To oe User
In Example 23-17, you connect to database db01
as administrator user strmadmin
to start the apply process with the disable_on_error
parameter set to n
so that the apply process is not disabled if it encounters an error.
The examples in this section illustrate how to configure explicit dequeue of messages based on message contents.
In Example 23-18, you connect to database db01
as administrator user strmadmin
to create agent explicit_dq
. This agent is used to perform explicit dequeue operations on the oe_queue
queue.
Example 23-18 Creating an Agent for Explicit Dequeue
The oe_queue
queue is a secure queue because it was created using SET_UP_QUEUE
in Example 23-2. For a user to perform enqueue and dequeue operations on a secure queue, the user must be configured as a secure queue user of the queue.
In Example 23-19, you connect to database db01
as administrator user strmadmin
to associate the oe
user with agent explicit_dq
. The oe
user is able to perform dequeue operations on the oe_queue
queue when the agent is used to create a subscriber to the queue in Example 23-20.
Example 23-19 Associating User oe with Agent explicit_dq
In Example 23-20, you connect to database db01
as administrator user strmadmin
to add a subscriber to the oe_queue
queue. This subscriber will perform explicit dequeues of messages. A subscriber rule is used to dequeue any messages where the action
value is not apply
. If the action value is apply
for a message, then the message is ignored by the subscriber. Such messages are dequeued and processed by the apply process.
Example 23-20 Adding a Subscriber to the oe_queue Queue
In Example 23-21, you connect to database db01
as sample schema user oe
to create a PL/SQL procedure called explicit_dq
to dequeue messages explicitly using the subscriber created in Example 23-20.
The procedure commits after the dequeue of the messages. The commit informs the queue that the dequeued messages have been consumed successfully by this subscriber.
The procedure can process multiple transactions and uses two exception handlers. Exception handler next_trans
moves to the next transaction, and exception handler no_messages
exits the loop when there are no more messages.
Example 23-21 Creating a Procedure to Dequeue Messages Explicitly
The examples in this section illustrate how to enqueue non-LCR messages and row LCR messages into a queue.
Note: It is possible to dequeue user-enqueued LCRs explicitly, but these examples do not illustrate this capability. |
In Example 23-22, you connect to database db01
as sample schema user oe
to enqueue two messages with apply
for the action
value. Based on the apply process rules, the apply process dequeues and processes these messages with the oe.mes_handler
message handler procedure created in Example 23-9. The COMMIT
after the enqueues makes these two enqueues part of the same transaction. An enqueued message is not visible until the session that enqueued it commits the enqueue.
Example 23-22 Enqueuing Non-LCR Messages to Be Dequeued by an Apply Process
In Example 23-23, you connect to database db01
as sample schema user oe
to enqueue two messages with dequeue
for the action
value. The oe.explicit_dq
procedure created in Example 23-21 dequeues these messages because the action
is not apply
. Based on the apply process rules, the apply process ignores these messages. The COMMIT
after the enqueues makes these two enqueues part of the same transaction.
Example 23-23 Enqueuing Non-LCR Messages to Be Dequeued Explicitly
In Example 23-24, you connect to database db01
as sample schema user oe
to create a row LCR that inserts a row into the oe.orders
table and another LCR that updates that row. The apply process applies these messages directly.
Note: Enqueued LCRs should commit at transaction boundaries. In this example, aCOMMIT statement is run after each enqueue, making each enqueue a separate transaction. However, you can perform multiple LCR enqueues before a commit if there is more than one LCR in a transaction. |
Example 23-24 Enqueuing Row LCRs to Be Dequeued by an Apply Process
The examples in this section illustrate how to dequeue messages explicitly and query messages that were applied by the apply process. The examples use messages that were enqueued in the previous section.
In Example 23-25, you connect to database db01
as sample schema user oe
to run procedure explicit_dq
, created in Example 23-21. You specify subscriber explicit_dq
, added in Example 23-20, as the consumer of the messages you want to dequeue. In these examples, messages that are not dequeued explicitly by this procedure are dequeued by the apply process.
Example 23-25 Dequeuing Messages Explicitly
The example returns the payload of the messages enqueued in Example 23-23:
Example 23-26, you connect to database db01
as sample schema user oe
to query the oe.orders
and oe.customers
tables to see the rows corresponding to the messages applied by apply process apply_oe
, created in Example 23-15.
Example 23-26 Querying for Applied Messages
The example returns three rows:
The examples in this section illustrate how to enqueue non-LCR messages and row LCRs into a queue and then dequeue them using Java Message Service (JMS).
The following jar and zip files should be in the CLASSPATH
based on the release of JDK you are using.
For JDK 1.4.x, the CLASSPATH
must contain:
For JDK 1.3.x, the CLASSPATH
must contain:
For JDK 1.2.x, the CLASSPATH
must contain:
Also, make sure LD_LIBRARY_PATH
(Linux and Solaris) or PATH
(Windows) includes ORACLE_HOME
/lib
.
These examples show sample schema user oe
enqueuing JMS messages into a queue and agent explicit_dq
dequeuing them. Agent explicit_dq
was created in Example 23-18, associated with sample schema user oe
in Example 23-19, and made a subscriber to queue oe_queue
in Example 23-20.
Sample schema user oe
was granted EXECUTE
on DBMS_AQ
in Example 23-1. In order for this user to use the Oracle JMS interface, it must have EXECUTE
privilege on DBMS_AQIN
as well. In Example 23-27, you connect to database db01
as a user with administrative privileges to grant the necessary privilege to oe
.
Enqueue of JMS types and XML types does not work with Oracle Streams ANYDATA
queues unless you call DBMS_AQADM.ENABLE_JMS_TYPES(
queue_table_name
)
after DBMS_STREAMS_ADM.SET_UP_QUEUE()
. In Example 23-28, you connect to database db01
as administrator user strmadmin
, created in Example 23-1, to run ENABLE_JMS_TYPES
on ANYDATA
queue table oe_queue_table
, created in Example 23-2.
Example 23-28 Enabling JMS Types on an ANYDATA Queue
Note: Enabling an Oracle Streams queue for these types may affect import/export of the queue table. |
In Example 23-29, you connect to database db01
as sample schema user oe
to create types address
and person
.
Example 23-29 Creating Oracle Object Types address and person
In Example 23-30, you use JPublisher to generate two Java classes named JPerson
and JAddress
for the person
and address
types, respectively. The input to JPublisher is a file called input.typ
with the following lines:
Example 23-30 Creating Java Classes That Map to Oracle Object Types
Example 23-31 is the Java code that you use to publish JMS text messages, LCRs, and non-LCR ADT messages into an Oracle Streams topic. It does the following:
Creates a TopicConnectionFactory
using the JDBC OCI driver
Note: The JDBC OCI driver is your only choice for accessing Oracle Streams through JMS. |
Creates a TopicSession
Starts the connection
Creates method publishUserMessages()
to publish an ADT message and a JMS text message to an Oracle Streams topic
Creates method publishLcrMessages()
to publish an XML LCR message to an Oracle Streams topic
Publishes three messages, providing feedback as it proceeds
Method publishUserMessages()
does the following:
Gets the topic
Creates a publisher
Specifies agent explicit_enq
to access queue oe_queue
Creates a PERSON
ADT message
Sets the payload in the message
Specifies explicit_dq
as the recipient
Publishes the PERSON
ADT message
Creates a JMS Text message
Publishes the JMS Text message
Method publishLcrMessages()
does the following:
Gets the topic
Creates a publisher
Gets the JDBC connection
Specifies agent explicit_enq
to access queue oe_queue
Creates an ADT message
Creates the LCR representation in XML
Creates the XMLType
containing the LCR
Sets the payload in the message
Specifies explicit_dq
as the recipient
Publishes the LCR
The code is compiled in Example 23-33. For now, just save it as StreamsEnq.java
.
Example 23-31 Java Code for Enqueuing Messages
Example 23-32 is the Java code you use to receive messages from a Oracle Streams topic. It does the following:
Creates a TopicConnectionFactory
using the JDBC OCI driver
Note: The JDBC OCI driver is your only choice for accessing Oracle Streams through JMS. |
Creates a TopicSession
Starts the connection
Creates method receiveMessages()
to receive messages from an Oracle Streams topic
Receives three messages, providing feedback as it proceeds
Method receiveMessages()
does the following:
Gets the topic
Creates a TopicReceiver
to receive messages for consumer explicit_dq
Registers mappings for ADDRESS
and PERSON
in the JMS typemap
Registers a mapping for XMLType
in the typemap (required for LCRs)
Receives the enqueued messages
The code is compiled in Example 23-33. For now, just save it as StreamsDeq.java
.
Example 23-32 Java Code for Dequeuing Messages
In Example 23-33, you compile the scripts.
Example 23-33 Compiling StreamsEnq.java and StreamsDeq.java
In Example 23-34, you run the enqueue program, specifying values for ORACLE_SID
, HOST
, and PORT
that are appropriate for your testing environment.
The example returns:
In Example 23-35, you run the dequeue program, specifying values for ORACLE_SID
, HOST
, and PORT
that are appropriate for your testing environment.
This appendix describes nonpersistent queues, which are deprecated in Oracle Streams AQ 10g Release 2 (10.2). Oracle recommends that you use buffered messaging instead.
Oracle Streams AQ can deliver nonpersistent messages asynchronously to subscribers. These messages can be event-driven and do not persist beyond the failure of the system (or instance). The messages are stored in a system-created queue table. Oracle Streams AQ supports persistent and nonpersistent messages with a common API.
Nonpersistent queues, which can be either single-consumer or multiconsumer, provide a mechanism for notification to all currently connected users. Subscribers can be added to multiconsumer nonpersistent queues, and nonpersistent queues can be destinations for propagation.
You use the enqueue interface to enqueue messages into a nonpersistent queue in the usual way. You can enqueue RAW and Oracle object type messages into a nonpersistent queue. OCI notifications are used to deliver such messages to users that are currently registered for notification.
This appendix contains these topics:
This procedure creates a nonpersistent queue.
Only local recipients are supported for nonpersistent queues. The queue can be either single-consumer or multiconsumer. All queue names must be unique within a schema. The queues are created in an 8.1-compatible system-created queue table (AQ$_MEM_SC
or AQ$_MEM_MC
) in the same schema as that specified by the queue name. If the queue name does not specify a schema name, then the queue is created in the login user's schema.
Note: Names of nonpersistent queues must not be longer than 24 characters. If you attempt to create a nonpersistent queue with a longer name, error ORA-24019 results. |
Once a queue is created with CREATE_NP_QUEUE
, it can be enabled by calling START_QUEUE
. By default, the queue is created with both enqueue and dequeue disabled.
You can enqueue RAW and Oracle object type messages into a nonpersistent queue. You cannot dequeue from a nonpersistent queue. The only way to retrieve a message from a nonpersistent queue is by using the Oracle Call Interface (OCI) notification mechanism. You cannot invoke the listen
call on a nonpersistent queue.
A nonpersistent queue can be dropped only by its owner.
For 8.1-style or higher queues, the compatible
parameter of init.ora
and the compatible
parameter of the queue table should be set to 8.1 or higher to use nonpersistent queues.
For nonpersistent queues, the message is delivered as part of the notification. Table A-1 shows the actions performed for nonpersistent queues for different notification mechanisms when RAW presentation is specified. Table A-2 shows the actions performed when XML presentation is specified.
Table A-1 Actions Performed for Nonpersistent Queues When RAW Presentation Specified
Queue Payload Type | OCI Callback | PL/SQL Callback | |
---|---|---|---|
RAW | OCI callback receives the RAW data in the payload. | Not supported | PL/SQL callback receives the RAW data in the payload. |
Oracle object type | Not supported | Not supported | Not supported |
Table A-2 Actions Performed for Nonpersistent Queues When XML Presentation Specified
Queue Payload Type | OCI Callback | PL/SQL Callback | |
---|---|---|---|
RAW | OCI callback receives the XML data in the payload. | XML data is formatted as a SOAP message and e-mailed to the registered e-mail address. | PL/SQL callback receives the XML data in the payload. |
Oracle object type | OCI callback receives the XML data in the payload. | XML data is formatted as a SOAP message and e-mailed to the registered e-mail address. | PL/SQL callback receives the XML data in the payload. |
You can create nonpersistent queues of RAW
and Oracle object type.You are limited to sending messages only to subscribers and explicitly specified recipients who are local. Propagation is not supported from nonpersistent queues. When retrieving messages, you cannot use the dequeue call, but must instead employ the asynchronous notification mechanism, registering for the notification by mean of OCISubscriptionRegister
.
The visibility
attribute of enqueue_options
must be set to IMMEDIATE
for nonpersistent messages.
application programming interface
The calling conventions by which an application program accesses operating system and other services.
approximate CSCN
An approximate system change number value, based on the current SCN of the database when a transaction that has enqueued messages into a commit-time queue is committed.
asynchronous
A process in a multitasking system is asynchronous if its execution can proceed independently in the background. Other processes can be started before the asynchronous process has finished. The opposite of synchronous.
BFILE
An external binary file that exists outside the database tablespaces residing in the operating system.
binary large object
A large object datatype whose content consists of binary data. This data is considered raw, because its structure is not recognized by the database.
broadcast
A publish/subscribe mode in which the message producer does not know the identity of any message consumer. This mode is similar to a radio or television station.
buffered queue
Buffered queues support queuing of messages with buffered attributes (buffered messages) and materialize them in memory. If the memory devoted to a buffered message is requiredfor a newer message, or if a buffered message has exceeded a stipulated duration in memory, then that buffered message is swapped to the underlying queue table. The memory for buffered messages comes from a separate pool called the streams pool. Buffered messages cannot be recovered if the database is bounced. Messages that have no buffered attributes set are queued as persistent messages in the underlying persistent queue..
character large object
The large object datatype whose value is composed of character data corresponding to the database character set. A character large object can be indexed and searched by the Oracle Text search engine.
ConnectionFactory
A ConnectionFactory encapsulates a set of connection configuration parameters that has been defined by an administrator. A client uses it to create a connection with a Java Message Service provider.
data manipulation language
Data manipulation language (DML) statements manipulate database data. For example, querying, inserting, updating, and deleting rows of a table are all DML operations; locking a table or view and examining the execution plan of an SQL statement are also DML operations.
Database Configuration Assistant
An Oracle Database tool for creating and deleting databases and for managing database templates.
DBCA
exception queue
Messages are transferred to an exception queue if they cannot be retrieved and processed for some reason.
IDAP
index-organized table
Unlike an ordinary table whose data is stored as an unordered collection, data for an index-organized table is stored in a B-tree index structure sorted on a primary key. Besides storing the primary key column values of an index-organized table row, each index entry in the B-tree stores the nonkey column values as well.
Internet Data Access Presentation
The Simple Object Access Protocol (SOAP) specification for Oracle Streams AQ operations. IDAP defines the XML message structure for the body of the SOAP request. An IDAP-structured message is transmitted over the Internet using HTTP(S).
Inter-process Communication
Exchange of data between one process and another, either within the same computer or over a network. It implies a protocol that guarantees a response to a request.
IOT
IPC
Java Database Connectivity
An industry-standard Java interface for connecting to a relational database from a Java program, defined by Sun Microsystems.
Java Message Service
A messaging standard defined by Sun Microsystems, Oracle, IBM, and other vendors. JMS is a set of interfaces and associated semantics that define how a JMS client accesses the facilities of an enterprise messaging product.
Java Naming and Directory Interface
A programming interface from Sun for connecting Java programs to naming and directory services.
Java Virtual Machine
The Java interpreter that converts the compiled Java bytecode into the machine language of the platform and runs it. JVMs can run on a client, in a browser, in a middle tier, on an intranet, on an application server such as Oracle Application Server 10g, or in a database server such as Oracle Database 10g.
JDBC
JDBC driver
The vendor-specific layer of Java Database Connectivity that provides access to a particular database. Oracle Database provides three JDBC drivers--Thin, OCI, and KPRB.
JMS
See Java Message Service.
JMS connection
An active connection of a client to its JMS provider, typically an open TCP/IP socket (or a set of open sockets) between a client and a provider's service daemon.
JMS message
JMS messages consist of a header, one or more optional properties, and a message payload.
JNDI
JVM
Lightweight Directory Access Protocol
A standard, extensible directory access protocol. It is a common language that LDAP clients and servers use to communicate. The framework of design conventions supporting industry-standard directory products, such as the Oracle Internet Directory.
local consumer
A local consumer dequeues the message from the same queue into which the producer enqueued the message.
logical change record
An object with a specific format that describes a database change, captured from the redo log by a capture process or user application. Capture processes enqueue messages containing logical change records (LCRs) only into ANYDATA
queues. For improved performance, these LCRs are always stored in a buffered queue.
message
The smallest unit of information inserted into and retrieved from a queue. A message consists of control information (metadata) and payload (data).
multicast
A publish/subscribe mode in which the message producer knows the identity of each consumer. This mode is also known as point-to-multipoint.
national character large object
The large object datatype whose value is composed of character data corresponding to the database national character set.
nonpersistent
Nonpersistent queues store messages in memory. They are generally used to provide an asynchronous mechanism to send notifications to all users that are currently connected. Nonpersistent queues are deprecated in Oracle Streams AQ 10g Release 2 (10.2). Oracle recommends that you use buffered messaging instead.
object type
An object type encapsulates a data structure along with the functions and procedures needed to manipulate the data. When you define an object type using the CREATE TYPE
statement, you create an abstract template that corresponds to a real-world object.
OJMS
Online Transaction Processing
Online transaction processing systems are optimized for fast and reliable transaction handling. Compared to data warehouse systems, most OLTP interactions involve a relatively small number of rows, but a larger group of tables.
OO4O
Oracle Call Interface
An application programming interface that enables data and schema manipulation in Oracle Database.
Oracle Java Message Service
Oracle Java Message Service (OJMS) provides a Java API for Oracle Streams AQ based on the Java Message Service (JMS) standard. OJMS supports the standard JMS interfaces and has extensions to support the Oracle Streams AQ administrative operations and other Oracle Streams AQ features that are not a part of the standard.
Oracle Objects for OLE
A custom control (OCX or ActiveX) combined with an object linking and embedding (OLE) in-process server that lets you plug native Oracle Database functionality into your Windows applications.
publish/subscribe
A type of messaging in which a producer enqueues a message to one or more multiconsumer queues, and then the message is dequeued by several subscribers. The published message can have a wide dissemination mode called broadcast or a more narrowly aimed mode called multicast.
QMNC
Queue monitor coordinator. It dynamically spawns slaves qXXX depending on the system load. The slaves do various background tasks.
QMNn
Queue monitor process.
queue table
A database table where queues are stored. Each queue table contains a default exception queue.
recipient
An agent authorized by the enqueuer or queue administrator to retrieve messages. The enqueuer can explicitly specify the consumers who can retrieve the message as recipients of the message. A queue administrator can specify a default list of recipients who can retrieve messages from a queue. A recipient specified in the default list is known as a subscriber. If a message is enqueued without specifying the recipients, then the message is sent to all the subscribers. Specific messages in a queue can be directed toward specific recipients, who may or may not be subscribers to the queue, thereby overriding the subscriber list.
If only the name of the recipient is specified, then the recipient must dequeue the message from the queue in which the message was enqueued. If the name and an address of the recipient are specified with a protocol value of 0, then the address should be the name of another queue in the same database or another installation of Oracle Database. If the recipient's name is NULL
, then the message is propagated to the specified queue in the address and can be dequeued by any subscriber of the queue specified in the address. If the protocol field is nonzero, then the name and address are not interpreted by the system, and the message can be dequeued by a special consumer.
remote consumer
A remote consumer dequeues from a queue that is different from the queue where the message was enqueued.
rules
Boolean expressions that define subscriber interest in subscribing to messages. The expressions use syntax similar to the WHERE
clause of a SQL query and can include conditions on: message properties (currently priority and correlation identifier), user data properties (object payloads only), and functions. If a rule associated with a subscriber evaluates to TRUE
for a message, then the message is sent to that subscriber even if the message does not have a specified recipient.
rules engine
Oracle Database software that evaluates rules. Rules are database objects that enable a client to perform an action when an event occurs and a condition is satisfied. Rules are similar to conditions in WHERE clauses of SQL queries. Both user-created applications and Oracle Database features, such as Oracle Streams AQ, can be clients of the rules engine.
schema
A collection of database objects, including logical structures such as tables, views, sequences, stored procedures, synonyms, indexes, clusters, and database links. A schema has the name of the user who controls it.
servlet
A Java program that runs as part of a network service and responds to requests from clients. It is typically an HTTP server.
SGA
See System Global Area.
Simple Object Access Protocol
A minimal set of conventions for invoking code using XML over HTTP defined by World Wide Web Consortium.
SOAP
System Global Area
A group of shared memory structures that contain data and control information for one Oracle Database instance. The SGA and Oracle Database processes constitute an Oracle Database instance. Oracle Database automatically allocates memory for an SGA whenever you start an instance and the operating system reclaims the memory when you shut down the instance. Each instance has one and only one SGA.
synchronous
Two or more processes are synchronous if they depend upon the occurrences of specific events such as common timing signals. The opposite of asynchronous.
transformation
A mapping from one Oracle data type to another, represented by a SQL function that takes the source data type as input and returns an object of the target data type. A transformation can be specified during enqueue, to transform the message to the correct type before inserting it into the queue. It can be specified during dequeue to receive the message in the wanted format. If specified with a remote consumer, then the message is transformed before propagating it to the destination queue.
VARRAY
An ordered set of data elements. All elements of a given array are of the same datatype. Each element has an index, which is a number corresponding to the element's position in the array. The number of elements in an array is the size of the array. Oracle Database allows arrays to be of variable size.
wildcard
A special character or character sequence which matches any character in a string comparison.
workflow
The set of relationships between all the activities in a project or business transaction, from start to finish. Activities are related by different types of trigger relations. Activities can be triggered by external events or by other activities.
Copyright © 1994-2015, Oracle and/or its affiliates. All rights reserved.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.