Reference
10g Release 2 (10.2)
B14218-01
June 2005
Oracle Text Reference, 10g Release 2 (10.2)
B14218-01
Copyright © 1998, 2005, Oracle. All rights reserved.
The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability with other independently created software or as specified by law, is prohibited.
The information contained in this document is subject to change without notice. If you find any problems in the documentation, please report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.
If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065
The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.
Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third party.
loader1.dat
loader2.dat
Oracle Text Reference, 10g Release 2 (10.2)
B14218-01
Oracle welcomes your comments and suggestions on the quality and usefulness of this publication. Your input is an important part of the information used for revision.
Did you find any errors?
Is the information clearly presented?
Do you need more information? If so, where?
Are the examples correct? Do you need more examples?
What features did you like most about this manual?
If you find any errors or have any other suggestions for improvement, please indicate the title and part number of the documentation and the chapter, section, and page number (if available). You can send comments to us in the following ways:
Electronic mail: infodev_us@oracle.com
FAX: (650) 506-7227. Attn: Server Technologies Documentation Manager
Postal service:
If you would like a reply, please give your name, address, telephone number, and electronic mail address (optional).
If you have problems with the software, please contact your local Oracle Support Services.
This manual provides reference information for Oracle Text. Use it as a reference for creating Oracle Text indexes, for issuing Oracle Text queries, for presenting documents, and for using the Oracle Text PL/SQL packages.
This preface contains these topics:
Oracle Text Reference is intended for an Oracle Text application developer or a system administrator responsible for maintaining the Oracle Text system.
To use this document, you need experience with the Oracle relational database management system, SQL, SQL*Plus, and PL/SQL. See the documentation provided with your hardware and software for additional information.
If you are unfamiliar with the Oracle RDBMS and related tools, see the Oracle Database Concepts, which is a comprehensive introduction to the concepts and terminology used throughout Oracle documentation.
Our goal is to make Oracle products, services, and supporting documentation accessible, with good usability, to the disabled community. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/
Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.
Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.
TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the United States of America 24 hours a day, seven days a week. For TTY support, call 800.446.2398.
This document contains:
Chapter 1, "Oracle Text SQL Statements and Operators"
This chapter describes the SQL statements and operators you can use with Oracle Text.
Chapter 2, " Oracle Text Indexing Elements"
This chapter describes the indexing types you can use to create an Oracle Text index.
Chapter 3, "Oracle Text CONTAINS Query Operators"
This chapter describes the operators you can use in CONTAINS
queries.
Chapter 4, " Special Characters in Oracle Text Queries"
This chapter describes the special characters you can use in CONTAINS
queries.
This chapter describes the procedures in the CTX_ADM
PL/SQL package.
This chapter describes the procedures in the CTX_CLS
PL/SQL package.
This chapter describes the procedures in the CTX_DDL
PL/SQL package. Use this package for maintaining your index.
This chapter describes the procedures in the CTX_DOC
PL/SQL package. Use this package for document services such as document presentation.
Chapter 9, "CTX_OUTPUT Package"
This chapter describes the procedures in the CTX_OUTPUT
PL/SQL package. Use this package to manage your index error log files.
Chapter 10, "CTX_QUERY Package"
This chapter describes the procedures in the CTX_QUERY
PL/SQL package. Use this package to manage queries such as to count hits and to generate query explain plan information.
This chapter describes the procedures in the CTX_REPORT PL/SQL package. Use this package to create various index reports.
Chapter 12, "CTX_THES Package"
This chapter describes the procedures in the CTX_THES
PL/SQL package. Use this package to manage your thesaurus.
Chapter 13, "CTX_ULEXER Package"
This chapter describes the data types in the CTX_ULEXER
PL/SQL package. Use this package with the user defined lexer.
Chapter 14, "Oracle Text Executables"
This chapter describes the supplied executables for Oracle Text including ctxload, the thesaurus loading program, and ctxkbtc, the knowledge base compiler.
Chapter 15, "Oracle Text Alternative Spelling"
This chapter describes how to handle terms that have multiple spellings, and it lists the alternate spelling conventions used for German, Danish, and Swedish.
Appendix A, "Oracle Text Result Tables"
This appendix describes the result tables for some of the procedures in CTX_DOC
, CTX_QUERY
, and CTX_THES
packages.
Appendix B, "Oracle Text Supported Document Formats"
This appendix describes the supported document formats that can be filtered with the AUTO_FILTER
filter for indexing.
Appendix C, "Text Loading Examples for Oracle Text"
This appendix provides some basic examples for populating a text table.
Chapter D, "Oracle Text Multilingual Features"
This appendix describes the multilingual features of Oracle Text.
Appendix E, "Oracle Text Supplied Stoplists"
This appendix describes the supplied stoplist for each supported language.
Appendix F, " The Oracle Text Scoring Algorithm"
This appendix describes the scoring algorithm used for word queries.
Appendix G, "Oracle Text Views"
This appendix describes the Oracle Text views.
Appendix H, " Stopword Transformations in Oracle Text"
This appendix describes stopword transformations.
For more information, see these Oracle resources:
For more information about Oracle Text, see:
For more information about Oracle Database, see:
For more information about PL/SQL, see:
You can obtain Oracle Text technical information, collateral, code samples, training slides and other material at:
Many books in the documentation set use the sample schemas of the seed database, which is installed by default when you install Oracle Database. Refer to Oracle Database Sample Schemas for information on how these schemas were created and how you can use them yourself.
Printed documentation is available for sale in the Oracle Store at
To download free release notes, installation documentation, white papers, or other collateral, please visit the Oracle Technology Network (OTN). You must register online before using OTN; registration is free and can be done at
If you already have a username and password for OTN, then you can go directly to the documentation section of the OTN Web site at
This section describes the conventions used in the text and code examples of this documentation set. It describes:
Conventions in Text
We use various conventions in text to help you more quickly identify special terms. The following table describes those conventions and provides examples of their use.
Convention	Meaning	Example
Bold	Bold typeface indicates terms that are defined in the text or terms that appear in a glossary, or both.	When you specify this clause, you create an index-organized table.
Italics	Italic typeface indicates book titles or emphasis.	Oracle Database Concepts Ensure that the recovery catalog and target database do not reside on the same disk.
UPPERCASE monospace (fixed-width) font	Uppercase monospace typeface indicates elements supplied by the system. Such elements include parameters, privileges, datatypes, RMAN keywords, SQL keywords, SQL*Plus or utility commands, packages and methods, as well as system-supplied column names, database objects and structures, usernames, and roles.	You can specify this clause only for a NUMBER column. You can back up the database by using the Query the Use the
lowercase monospace (fixed-width) font	Lowercase monospace typeface indicates executable programs, filenames, directory names, and sample user-supplied elements. Such elements include computer and database names, net service names and connect identifiers, user-supplied database objects and structures, column names, packages and classes, usernames and roles, program units, and parameter values. Note: Some programmatic elements use a mixture of UPPERCASE and lowercase. Enter these elements as shown.	Enter sqlplus to start SQL*Plus. The password is specified in the Back up the datafiles and control files in the The Set the Connect as The
lowercase italic monospace (fixed-width) font	Lowercase italic monospace font represents placeholders or variables.	You can specify the parallel_clause . Run
Conventions in Code Examples		
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements. They are displayed in a monospace (fixed-width) font and separated from normal text as shown in this example:		
The following table describes typographic conventions used in code examples and provides examples of their use.		
Convention	Meaning	Example
---	---	---
[]	Anything enclosed in brackets is optional.	DECIMAL (digits [, precision])
{ }	Braces are used for grouping items.	{ENABLE
	A vertical bar represents a choice of two options.	{ENABLE
... | Ellipsis points mean repetition in syntax descriptions. In addition, ellipsis points can mean an omission in code examples or text. | CREATE TABLE ... AS subquery; SELECT col1, col2, ... , coln FROM employees; |
Other symbols | You must use symbols other than brackets ([]), braces ({ }), vertical bars (|), and ellipsis points (...) exactly as shown. | acctbal NUMBER(11,2); acct CONSTANT NUMBER(4) := 3; |
Italics | Italicized text indicates placeholders or variables for which you must supply particular values. | CONNECT SYSTEM/system_password DB_NAME = database_name |
UPPERCASE | Uppercase typeface indicates elements supplied by the system. We show these terms in uppercase in order to distinguish them from terms you define. Unless terms appear in brackets, enter them in the order and with the spelling shown. Because these terms are not case sensitive, you can use them in either UPPERCASE or lowercase. | SELECT last_name, employee_id FROM employees; SELECT * FROM USER_TABLES; DROP TABLE hr.employees; |
lowercase | Lowercase typeface indicates user-defined programmatic elements, such as names of tables, columns, or files. Note: Some programmatic elements use a mixture of UPPERCASE and lowercase. Enter these elements as shown. | SELECT last_name, employee_id FROM employees; sqlplus hr/hr CREATE USER mjones IDENTIFIED BY ty3MU9; |
Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and provides examples of their use.
Convention | Meaning | Example |
---|---|---|
Choose Start > menu item | How to start a program. | To start the Database Configuration Assistant, choose Start > Programs > Oracle - HOME_NAME > Configuration and Migration Tools > Database Configuration Assistant. |
File and directory names | File and directory names are not case sensitive. The following special characters are not allowed: left angle bracket (<), right angle bracket (>), colon (:), double quotation marks ("), slash (/), pipe (|), and dash (-). The special character backslash (\) is treated as an element separator, even when it appears in quotes. If the filename begins with \\, then Windows assumes it uses the Universal Naming Convention. | c:\winnt"\"system32 is the same as C:\WINNT\SYSTEM32 |
C:\> | Represents the Windows command prompt of the current hard disk drive. The escape character in a command prompt is the caret (^). Your prompt reflects the subdirectory in which you are working. Referred to as the command prompt in this manual. | C:\oracle\oradata> |
Special characters | The backslash (\) special character is sometimes required as an escape character for the double quotation mark (") special character at the Windows command prompt. Parentheses and the single quotation mark (') do not require an escape character. Refer to your Windows operating system documentation for more information on escape and special characters. | C:\>exp HR/HR TABLES=employees QUERY=\"WHERE job_id='SA_REP' and salary<8000\" |
HOME_NAME | Represents the Oracle home name. The home name can be up to 16 alphanumeric characters. The only special character allowed in the home name is the underscore. | C:\> net start OracleHOME_NAMETNSListener |
ORACLE_HOME and ORACLE_BASE | In releases prior to Oracle8i release 8.1.3, when you installed Oracle components, all subdirectories were located under a top level ORACLE_HOME directory. The default for Windows NT was C:\orant . This release complies with Optimal Flexible Architecture (OFA) guidelines. All subdirectories are not under a top level All directory path examples in this guide follow OFA conventions. Refer to Oracle Database Installation Guide for Microsoft Windows (32-Bit) for additional information about OFA compliances and for information about installing Oracle products in non-OFA compliant directories. | Go to the ORACLE_BASE \ ORACLE_HOME \rdbms\admin directory. |
This section describes new features of the Oracle Database 10g Release 2 (10.2) edition of Oracle Text and provides pointers to additional information. New features information from previous releases is also retained to help those users migrating to the current release.
The following sections describe the new features in Oracle Text:
Oracle Database 10g Release 2 (10.2) New Features in Oracle Text
Oracle Database 10g Release 1 (10.1) New Features in Oracle Text
New AUTO_FILTER
Filter
With Oracle Text 10g Release 2, the INSO_FILTER
filter has been deprecated in favor of a new filter, AUTO_FILTER
. AUTO_FILTER
is backward-compatible with INSO_FILTER
.
Additionally, the INSO_TIMEOUT
and INSO_FORMATTING
attributes of the MAIL_FILTER
have been deprecated in favor of AUTO_FILTER_TIMEOUT
and AUTO_FILTER_OUTPUT_FORMATTING
, respectively. Moreover, the INSOFILTER
directive used in the mail configuration file of the MAIL_FILTER
has been deprecated in favor of the new AUTO_FILTER
directive.
The system-defined preference CTXSYS.INSO_FILTER
has also been deprecated in favor of a new preference, CTXSYS.AUTO_FILTER
.
With these changes, the list of document formats supported by Oracle Text has changed.
See Also: Filter Types, Appendix B, "Oracle Text Supported Document Formats", and the Migration chapter of the Oracle Text Application Developer's Guide |
Changes in Asian Language Support
Chinese, Japanese, and Korean now support the CTXRULE
index type. All three languages also support mixed-case query searches, as does the WORLD_LEXER
.
Additionally, the KOREAN_LEXER
has been desupported. You should use the KOREAN_MORPH_LEXER
instead.
New Stopwords
New default stopwords have been provided for English, Finnish, Italian, Spanish, and Swedish.
Key Word in Context (KWIC)
Two new procedures, CTX_DOC.SNIPPET
and CTX_DOC.POLICY_SNIPPET
, return text fragments containing keywords found in documents. This format enables users to see the keywords in their surrounding text, providing context for them.
New ALTER INDEX
Syntax
ALTER INDEX
now has two new parameters. ALTER INDEX PARAMETERS
enables you to modify the parameters of a non-partitioned index or a local partitioned index (including all partitions) without rebuilding the index
This command works at the index level.
ALTER INDEX MODIFY PARTITION PARAMETERS
enables you to modify the metadata of an index partition.
New Procedure for Handling Failed Index Creation
The new CTX_ADM.MARK_FAILED
procedure enables you to change an index's status from LOADING
to FAILED
; such a change is useful when CREATE
or ALTER INDEX
fails and it is necessary to recover the index.
The following features were introduced in the Oracle Database 10g Release 1 (10.1) version of Oracle Text:
In previous versions of Oracle Text, CTXSYS
had DBA privileges. To tighten security and protect the database in the case of unauthorized access, CTXSYS
now has only CONNECT
and RESOURCE
roles, and only limited, necessary direct grants on some system views and packages. Some applications using Oracle Text may therefore require minor changes in order to work properly with this security change.
The following features are new for classification and clustering:
Supervised Training and Document Classification
The CTX_CLS.TRAIN
procedure has been enhanced to support an additional classifier type called Support Vector Machine method for the supervised training of documents. The SVM method of training can produce better rules for classification than the query-based method.
Document Clustering
The new CTX_CLS.CLUSTERING
procedure enables you to generate document clusters. A cluster is a group of documents similar to each other in content.
See Also: CLUSTERING in Chapter 6, "CTX_CLS Package"and the Oracle Text Application Developer's Guide |
The following features are new for indexing.
Automatic and ON COMMIT
Synchronization for CONTEXT
index
You can set the CONTEXT
index to synchronize automatically either at intervals you specify or at commit time.
Transactional CONTEXT
Indexes
The new TRANSACTIONAL
parameter to CREATE INDEX
and ALTER INDEX
enables changes to a base table to be immediately queryable.
Automatic Multi-Language Indexing
The new WORLD_LEXER
lexer type includes automatic language detection in documents, enabling you to index multilingual documents without having to include a language column in a base table.
Mail Filtering
Oracle Text can filter and index RFC-822 email messages. To do so, you use the new MAIL_FILTER
filter preference.
Fast Filtering of Binary Documents
New attributes for the INSO_FILTER
and MAIL_FILTER
filter preferences offer the option of significantly improving performance when filtering binary documents. This fast filtering preserves only a limited amount of document formatting.
Support for creating local partitioned CONTEXT
indexes in parallel
You can now create local partitioned CONTEXT
indexes in parallel with CREATE INDEX
.
MDATA
section for adding metadata to documents
You can now add an MDATA
section to a section group. MDATA
sections define metadata that enables you to perform mixed CONTAINS
queries faster.
See Also: ADD_MDATA and ADD_MDATA_SECTION in Chapter 7, "CTX_DDL Package"; MDATA in Chapter 3, "Oracle Text CONTAINS Query Operators"; the section searching chapter in the Oracle Text Application Developer's Guide |
ALTER TABLE
enhanced support for partitioned tables
ALTER TABLE
supports the UPDATE GLOBAL INDEXES
clause for partitioned tables.
Binary Filtering for MULTI_COLUMN_DATASTORE
The MULTI_COLUMN_DATASTORE
now enables you to filter binary columns into text for concatenation with other columns during indexing. This datastore has also been enhanced to switch its XML-like auto-tagging on and off.
New XML Output Option for Index Reports
Several procedures and functions in the CTX_REPORT
package now include a report_format parameter that enables you to obtain index report output either as plain text or XML.
Replacing Index Metadata
You can replace index metadata (preference attributes) without having to rebuild the index. You do this using the new METADATA
keyword with ALTER INDEX
.
New Columns for Oracle Text Views
Three Oracle Text views, CTX_OBJECT_ATTRIBUTES
, CTX_INDEX_PARTITIONS
, and CTX_USER_INDEX_PARTITIONS
, have new columns.
New Options for Index Optimization
CTX_DDL.OPTIMIZE_INDEX
has two new optlevels. TOKEN_TYPE
optimizes on demand all tokens in the index matching the input token type. This is intended to help users keep critical field sections or MDATA
sections optimal. REBUILD
enables CTX_DDL.OPTIMIZE_INDEX
to rebuild an index entirely.
Log tokens During Index Optimization
The CTX_OUTPUT.EVENT_OPT_PRINT_TOKEN
event, which prints each token as it is being optimized, can be used with CTX_OUTPUT.ADD_EVENT
.
Tracing
Oracle Text includes a tracing facility that enables you to identify bottlenecks in indexing and querying.
See Also: ADD_TRACE in Chapter 9, "CTX_OUTPUT Package" and the Oracle Text Application Developer's Guide |
New German Spelling
Oracle Text now can index German words under both traditional and reformed spelling.
The following are new language features:
Japanese Language Enhancements
Oracle Text supports stem queries in Japanese with the stem $ operator.
Customization of Japanese and Chinese Lexicons
A new command, ctxlc
, enables you to either modify the existing system Japanese and Chinese dictionaries (lexicons) or create new dictionaries from the merging of the system dictionaries with user-provided word lists. ctxlc also outputs the contents of dictionaries as word files.
New character sets for the Chinese VGRAM lexer
The Chinese VGRAM lexer now supports the AL32UTF8 and ZHS32GB18030 character sets.
Query Template Enhancements
Query templating has been enhanced to provide the following features:
progressive relaxation of queries, which enables you to progressively execute less restrictive versions of a single query
query rewriting, which enables you to programatically rewrite any single query into different versions to increase recall
query language specification
alternative scoring algorithms
See Also: CONTAINS in Chapter 1, "Oracle Text SQL Statements and Operators"The Querying chapter in the Oracle Text Application Developer's Guide |
Query Log Analysis
Oracle Text now offers the capability to create a log of queries and to issue reports on its contents, indicating, for example, the most or least frequent successful queries.
XML DB Enhancements
Oracle Text has the following XML DB enhancements:
Better performance of existsNode()
/CTXXPATH
queries, with new support for attribute existence searching, and positional predicates.
Support for positional predicate testing with INPATH
and HASPATH
operators
Overriding of Base-letter Transformations
A new BASIC_LEXER
attribute, OVERRIDE_BASE_LETTER
, prevents unexpected results when base-letter transformations are combined with alternate spelling.
Highlighting with INPATH
and HASPATH
Oracle Text supports highlighting with INPATH
and HASPATH
operators.
CTX_DOC
Enhancements for Policy-Based Document Services
With the new CTX_DOC.POLICY_*
procedures, you can perform document highlighting and filtering without requiring a table or a context index.
This chapter describes the SQL statements and Oracle Text operators you use for creating and managing Text indexes and performing Text queries.
The following statements are described in this chapter:
Note: This section describes theALTER INDEX statement as it pertains to managing a Text domain index. For a complete description of the |
Purpose
Use ALTER
INDEX
to perform the following maintenance tasks for a CONTEXT
, CTXCAT
, or CTXRULE
index:
All Indextypes
You can use ALTER INDEX to perform the following task on all Oracle Text index types:
Rename the index or index partition. See ALTER INDEX RENAME Syntax.
Rebuild the index using different preferences. Some restrictions apply for the CTXCAT
indextype. See ALTER INDEX REBUILD Syntax.
Add stopwords to the index. See ALTER INDEX REBUILD Syntax.
CONTEXT and CTXRULE Indextypes
You can use ALTER INDEX to perform the following tasks on CONTEXT and CTXRULE indextypes:
Resume a failed index operation (creation/optimization).
Add sections and stop sections to the index.
Replace index meta data.
Overview of ALTER INDEX Syntax
The syntax for ALTER INDEX
is fairly complex. The major divisions are covered in the following sections:
ALTER INDEX MODIFY PARTITION Syntax—use this for modifying an index partition's metadata.
ALTER INDEX PARAMETERS Syntax—use this for modifying the parameters of a non-partitioned index or a local partitioned index (including all partitions) without rebuilding the index.
ALTER INDEX RENAME Syntax—use this to rename an index or index partition.
ALTER INDEX REBUILD Syntax—use this to rebuild an index or index partition. With this command, you can also replace index metadata; add stopwords, sections, and stop sections to an index; and resume a failed operation.
ALTER INDEX REBUILD
has its own "sub-syntax"; that is, its parameters have their own syntax. For example, the ALTER INDEX REBUILD PARAMETERS
command can take either REPLACE
or RESUME
as an argument, and ALTER INDEX REBUILD PARAMETERS ('REPLACE')
has several arguments it can take. Valid examples of ALTER INDEX REBUILD
include:
ALTER INDEX MODIFY PARTITION Syntax
Use the following syntax to modify the metadata of an index partition:
Specify the name of the index whose partition metadata you want to modify.
Specify the name of the index partition whose metadata you want to modify.
The only valid argument here is 'REPLACE METADATA
'. This follows the same syntax as ALTER INDEX REBUILD PARTITION PARAMETERS ('REPLACE METADATA')
; refer to the REPLACE METADATA
subsection of the ALTER INDEX REBUILD Syntax section for more information. (The two commands are equivalent. ALTER INDEX MODIFY PARTITION
is offered for ease of use, and is the recommended syntax.)
ALTER INDEX PARAMETERS Syntax
Use the following syntax for modifying the parameters of a either non-partitioned or local partitioned indexes, without rebuilding the index. For partitioned indexes, this command works at the index level (not the partition level); that is, it changes information for the entire index, including all partitions.
ALTER INDEX PARAMETERS
accepts the following arguments for paramstring;
'REPLACE METADATA
'
Replaces current metadata. Refer to the REPLACE METADATA
subsection of the ALTER INDEX REBUILD Syntax section for more information.
'ADD STOPWORD
'
Dynamically adds a stopword to an index. Refer to the ADD STOPWORD
subsection of the ALTER INDEX REBUILD Syntax section for more information.
'ADD FIELD SECTION
'
Dynamically adds a field section to an index. Refer to the ADD FIELD
subsection of the ALTER INDEX REBUILD Syntax section for more information.
'ADD ZONE SECTION
'
Dynamically adds a zone section to an index. Refer to the ADD ZONE
subsection of the ALTER INDEX REBUILD Syntax section for more information.
'ADD ATTR SECTION
'
Dynamically adds an attribute section to an index Refer to the ADD ATTR
subsection of the ALTER INDEX REBUILD Syntax section for more information.
Each of the above commands has an equivalent ALTER INDEX REBUILD PARAMETERS
version. For example, ALTER INDEX PARAMETERS ('REPLACE METADATA')
is equivalent to ALTER INDEX REBUILD PARAMETERS ('REPLACE METADATA')
. However, the ALTER INDEX PARAMETERS
versions work on either partitioned or non-partitioned indexes, whereas the ALTER INDEX REBUILD PARAMETERS
versions work only on non-partitioned indexes.
Use the following syntax to rename an index or index partition:
Specify the name of the index to rename.
Specify the new name for schema.index.
The new_index_name
parameter can be no more than 25 bytes, and 21 bytes for a partitioned index. If you specify a name longer than 25 bytes (or longer than 21 bytes for a partitioned index), Oracle Text returns an error and the renamed index is no longer valid.
Note: Whennew_index_name is more than 25 bytes (21 for local partitioned index) and less than 30 bytes, Oracle Text renames the index, even though the system returns an error. To drop the index and associated tables, you must DROP new_index_name with the DROP INDEX statement and then re-create and drop index_name . |
Specify the name of the index partition to rename.
Specify the new name for partition.
Use ALTER INDEX REBUILD
to rebuild an index, rebuild an index partition, resume a failed operation, replace index metadata, add stopwords to an index, or add sections and stop sections to an index.
ALTER INDEX REBUILD
has its own sub-syntax; that is, its parameters have their own syntax. For example, the ALTER INDEX REBUILD PARAMETERS
command can take either REPLACE
or RESUME
as an argument, and ALTER INDEX REBUILD PARAMETERS ('REPLACE')
has several arguments it can take. Valid examples of ALTER INDEX REBUILD
include:
This is the syntax for ALTER INDEX REBUILD
:
Rebuilds the index partition partname
. Only one index partition can be built at a time.
When you rebuild a partition you can specify only RESUME or REPLACE in paramstring. These operations work only on the partname
you specify.
With the REPLACE operation, you can only specify MEMORY and STORAGE for each index partition.
Adding Partitions To add a partition to the base table, use the ALTER
TABLE
SQL statement. When you add a partition to an indexed table, Oracle Text automatically creates the metadata for the new index partition. The new index partition has the same name as the new table partition. You can change the index partition name with ALTER
INDEX
RENAME
.
Splitting or Merging Partitions Splitting or merging a table partition with ALTER
TABLE
renders the index partition(s) invalid. You must rebuild them with ALTER
INDEX
REBUILD
.
ONLINE
enables you to continue to perform updates, inserts, and deletes on a base table; it does not enable you to query the base table.
You cannot use PARALLEL with ONLINE. ONLINE is only supported for CONTEXT indexes.
Note: You can specify replace or resume when rebuilding and index ONLINE, but you cannot specify replace or resume when rebuilding an index partition ONLINE. |
Optionally specify paramstring. If you do not specify paramstring, Oracle Text rebuilds the index with existing preference settings.
The syntax for paramstring is as follows:
Rebuilds an index. You can optionally specify preferences, your own or system-defined.
You can only replace preferences that are supported for that index type. For instance, you cannot replace index set for a CONTEXT
or CTXRULE
index. Similarly, for the CTXCAT
index type, you can replace only lexer, wordlist, storage index set, and memory preferences.
If you are rebuilding a partitioned index with REPLACE
, you can only specify STORAGE
and MEMORY
.
See Also: Chapter 2, " Oracle Text Indexing Elements" for more information about creating and setting preferences, including information about system-defined preferences. |
Replaces the existing preference class settings, including SYNC parameters, of the index with the settings from new_preference. Only index preferences and attributes are replaced. The index is not rebuilt.
This command is useful for when you want to replace a preference and its attribute settings after the index is built, without reindexing all data. Reindexing data can require significant time and computing resources.
This command is also useful for changing the type of SYNC, which can be automatic, manual, or on-commit.
ALTER INDEX REBUILD PARAMETER ('REPLACE METADATA')
does not work for a local partitioned index at the index (global) level; you cannot, for example, use this syntax to change a global preference, such as filter or lexer type, without rebuilding the index. Use ALTER INDEX PARAMETERS
instead to change the metadata of an index at the global (index) level, including all partitions; see "ALTER INDEX PARAMETERS Syntax".
When should I use the METADATA keyword? REPLACE METADATA
should be used only when the change in index metadata would not lead to an inconsistent index, which can lead to incorrect query results.
For example, you can use this command in the following instances:
to go from a single-language lexer to a multi-lexer in anticipation of multi-lingual data. For an example, see "Replacing Index Metadata: Changing Single-lexer to Multi-lexer".
to change the WILDCARD_MAXTERMS
setting in BASIC_WORDLIST.
to change the type of SYNC
, which can be automatic, manual, or on-commit.
These changes are safe and would not lead to an inconsistent index that might adversely affect your query results
Caution: The REPLACE METADATA command can result in inconsistent index data, which can lead to incorrect query results. As such, Oracle does not recommend using this command, unless you carefully consider the effect it will have on the consistency of your index data and subsequent queries. |
There can be many instances when changing metadata can result in inconsistent index data. For example, Oracle does not advise you to use the METADATA keyword after doing the following:
changing the USER_DATASTORE procedure to a new PL/SQL stored procedure that has different output.
changing the BASIC_WORDLIST attribute PREFIX_INDEX
from NO
to YES because no prefixes have been generated for already-existing documents. Changing it from YES to NO is safe.
adding or changing BASIC_LEXER
printjoin and skipjoin characters, since new queries with these characters would be lexed differently from how these characters were lexed at index time.
In these unsafe cases, Oracle recommends rebuilding the index.
Specify SYNC
for automatic synchronization of the CONTEXT
index when there is DML to the base table. You can specify one of the following SYNC
methods:
Table 1-1 ALTER INDEX Sync Methods
Sync Type | Description |
---|---|
MANUAL | No automatic synchronization. This is the default. You must manually synchronize the index with CTX_DDL.SYNC_INDEX . Use |
EVERY interval-string | Automatically synchronize the index at a regular interval specified by the value of interval-string. interval-string takes the same syntax as that for scheduler jobs. Automatic synchronization using EVERY requires that the index creator have CREATE JOB privileges. Make sure that interval-string is set to a long enough period that any previous sync jobs will have completed; otherwise, the sync job may hang. interval-string must be enclosed in double quotes. See Enabling Automatic Index Synchronization for an example of automatic sync syntax. |
ON COMMIT | Synchronize the index immediately after a commit. The commit does not return until the sync is complete. (Since the synchronization is performed as a separate transaction, there may be a period, usually small, when the data is committed but index changes are not.) The operation uses the memory specified with the memory parameter. Note that the sync operation has its own transaction context. If this operation fails, the data transaction still commits. Index synchronization errors are logged in the See Enabling Automatic Index Synchronization for an example of ON COMMIT syntax. |
Each partition of a locally partitioned index can have its own type of sync (ON COMMIT
, EVERY
, or MANUAL
). The type of sync specified in master parameter strings applies to all index partitions unless a partition specifies its own type.
With automatic (EVERY
) synchronization, users can specify memory size and parallel synchronization. That syntax is:
ON COMMIT
synchronizations can only be executed serially and at the same memory size as at index creation.
Note: This command rebuilds the index. When you want to change theSYNC setting without rebuilding the index, use the REBUILD REPLACE METADATA SYNC (MANUAL | ON COMMIT) operation. |
This parameter enables you to turn the TRANSACTIONAL
property on or off. For more on TRANSACTIONAL
, see "TRANSACTIONAL".
Using this parameter only succeeds if there are no rows in the DML pending queue. Therefore, you may need to sync the index before issuing this command.
To turn on TRANSACTIONAL
index property:
or
To turn off TRANSACTIONAL
index property:
or
Resumes a failed index operation. You can optionally specify the amount of memory to use with memsize.
Note: ThisALTER INDEX operation applies only to CONTEXT and CTXRULE indexes. It does not apply to CTXCAT indexes. |
Note: ThisALTER INDEX operation will not be supported in future releases. To optimize your index, use CTX_DDL.OPTIMIZE_INDEX. |
Optimizes the index. Specify token
, fast,
or full
optimization. You typically optimize after you synchronize the index.
When you optimize in token
mode, Oracle Text optimizes only index_token
. Use this method of optimization to quickly optimize index information for specific words.
When you optimize in fast
mode, Oracle Text works on the entire index, compacting fragmented rows. However, in fast
mode, old data is not removed.
When you optimize in full
mode, you can optimize the whole index or a portion. This method compacts rows and removes old data (deleted rows).
Note: Optimizing infull mode runs even when there are no deleted document rows. This is useful when you need to optimize time-limited batches with the maxtime parameter. |
You use the maxtime
parameter to specify in minutes the time Oracle Text is to spend on the optimization operation. Oracle Text starts the optimization where it left off and optimizes until complete or until the time limit has been reached, whichever comes first. Specifying a time limit is useful for automating index optimization, where you set Oracle Text to optimize the index for a specified time on a regular basis.
When you specify maxtime unlimited
, the entire index is optimized. This is the default. When you specify 0 for maxtime
, Oracle Text performs minimal optimization.
You can log the progress of optimization by writing periodic progress updates to the CTX_OUTPUT
log. An event for CTX_OUTPUT.ADD_EVENT
, called CTX_OUTPUT.EVENT_OPT_PRINT_TOKEN
, prints each token as it is being optimized.
Note: ThisALTER INDEX operation applies only to CONTEXT and CTXRULE indexes. It does not apply to CTXCAT indexes. |
Note: ThisALTER INDEX operation will not be supported in future releases. To synchronize your index, use CTX_DDL.SYNC_INDEX. |
Synchronizes the index. You can optionally specify the amount of runtime memory to use with memsize. You synchronize the index when you have DML operations on your base table.
Note: ThisALTER INDEX operation applies only to CONTEXT and CTXRULE indexes. It does not apply to CTXCAT indexes. |
Memory Considerations The memory parameter memsize specifies the amount of memory Oracle Text uses for the ALTER
INDEX
operation before flushing the index to disk. Specifying a large amount of memory improves indexing performance because there is less I/O and improves query performance and maintenance because there is less fragmentation.
Specifying smaller amounts of memory increases disk I/O and index fragmentation, but might be useful if you want to track indexing progress or when run-time memory is scarce.
Dynamically adds a stopword word to the index.
Index entries for word that existed before this operation are not deleted. However, subsequent queries on word are treated as though it has always been a stopword.
When your stoplist is a multi-language stoplist, you must specify language.
The index is not rebuilt by this statement.
Dynamically adds the zone section section_name identified by tag to the existing index.
The added section section_name applies only to documents indexed after this operation. For the change to take effect, you must manually re-index any existing documents that contain the tag.
The index is not rebuilt by this statement.
Note: ThisALTER INDEX operation applies only to CONTEXT and CTXRULE indexes. It does not apply to ctxcat indexes. |
Dynamically adds the field section section_name identified by tag to the existing index.
Optionally specify VISIBLE
to make the field sections visible. The default is INVISIBLE
.
The added section section_name applies only to documents indexed after this operation. For the change to affect previously indexed documents, you must explicitly re-index the documents that contain the tag.
The index is not rebuilt by this statement.
Note: ThisALTER INDEX operation applies only to CONTEXT CTXRULE indexes. It does not apply to CTXCAT indexes. |
Dynamically adds an attribute section section_name to the existing index. You must specify the XML tag and attribute in the form tag@attr. You can add attribute sections only to XML section groups.
The added section section_name applies only to documents indexed after this operation. Thus for the change to take effect, you must manually re-index any existing documents that contain the tag.
The index is not rebuilt by this statement.
Note: ThisALTER INDEX operation applies only to CONTEXT CTXRULE indexes. It does not apply to CTXCAT indexes. |
Dynamically adds the stop section identified by tag to the existing index. As stop sections apply only to automatic sectioning of XML documents, the index must use the AUTO_SECTION_GROUP
section group. The tag you specify must be case sensitive and unique within the automatic section group or else ALTER
INDEX
raises an error.
The added stop section tag applies only to documents indexed after this operation. For the change to affect previously indexed documents, you must explicitly re-index the documents that contain the tag.
The text within a stop section is always searchable.
The number of stop sections you can add is unlimited.
The index is not rebuilt by this statement.
Note: ThisALTER INDEX operation applies only to CONTEXT indexes. It does not apply to CTXCAT indexes. |
Optionally specify with n the parallel degree for parallel indexing. This parameter is supported only when you use SYNC, REPLACE, and RESUME in
paramstring. The actual degree of parallelism might be smaller depending on your resources.
Parallel indexing can speed up indexing when you have large amounts of data to index and when your operating system supports multiple CPUs.
You cannot use PARALLEL with ONLINE.
The following statement resumes the indexing operation on newsindex
with 2 megabytes of memory:
The following statement rebuilds the index, replacing the stoplist preference with new_stop
.
Rebuilding a Partitioned Index
The following example creates a partitioned text table, populates it, and creates a partitioned index. It then adds a new partition to the table and then rebuilds the index with ALTER
INDEX
:
The following statement rebuilds the index in the newly populated partition. In general, the index partition name for a newly added partition is the same as the table partition name, unless it is already been used. In this case, Oracle Text generates a new name.
The following statement queries the table for the two hits in the newly added partition:
Replacing Index Metadata: Changing Single-lexer to Multi-lexer
The following example demonstrates how an application can migrate from single-language documents (English) to multi-language documents (English and Spanish) by replacing the index metadata for the lexer.
Optimizing the Index
Optimizing your index with ALTER
INDEX
will not be supported in future releases. To optimize your index, use CTX_DDL.OPTIMIZE_INDEX.
Synchronizing the Index
Synchronizing the index with ALTER
INDEX
will not be supported in future releases. To synchronize your index, use CTX_DDL.SYNC_INDEX.
To add to the index the zone section author
identified by the tag <author>
, issue the following statement:
To add a stop section identified by tag <fluff>
to the index that uses the AUTO_SECTION_GROUP
, issue the following statement:
Assume that the following text appears in an XML document:
You want to create a separate section for the title attribute and you want to name the new attribute section booktitle
. To do so, issue the following statement:
ALTER INDEX Notes
Add Section Constraints Before altering the index section information, Oracle Text checks the new section against the existing sections to ensure that all validity constraints are met. These constraints are the same for adding a section to a section group with the CTX_DDL
PL/SQL package and are as follows:
You cannot add zone, field, or stop sections to a NULL_SECTION_GROUP
.
You cannot add zone, field, or attribute sections to an automatic section group.
You cannot add attribute sections to anything other than XML section groups.
You cannot have the same tag for two different sections.
Section names for zone, field, and attribute sections cannot intersect.
You cannot exceed 64 field sections.
You cannot add stop sections to basic, HTML, XML, or news section groups.
SENTENCE and PARAGRAPH are reserved section names.
Related Topics
CTX_DDL.SYNC_INDEX in Chapter 7, "CTX_DDL Package"
CTX_DDL.OPTIMIZE_INDEX in Chapter 7, "CTX_DDL Package"
Note: This section describes the ALTER TABLE statement as it pertains to adding and modifying a partitioned text table with a context domain index.For a complete description of the ALTER TABLE statement, see Oracle Database SQL Reference. |
Purpose
You can use ALTER TABLE to add, modify, split, merge, exchange, or drop a partitioned text table with a context domain index. The following sections describe some of the ALTER TABLE operations you can issue.
Modify Partition Syntax
Unusable Local Indexes
Marks the index partition corresponding to the given table partition UNUSABLE
. You might mark an index partition unusable before you rebuild the index partition as described in Rebuild Unusable Local Indexes.
If the index partition is not marked unusable, the rebuild command returns without actually rebuilding the local index partition.
Rebuild Unusable Local Indexes
Rebuilds the index partition corresponding to the specified table partition that has an UNUSABLE
status.
Note: If the index partition status is already VALID before you issue this command, this command does NOT rebuild the index partition. Do not depend on this command to rebuild the index partition unless the index partition status is UNUSABLE. |
Add Partition Syntax
Adds a new partition to the high end of a range partitioned table.
To add a partition to the beginning or to the middle of the table, use ALTER TABLE SPLIT PARTITION
.
The newly added table partition is always empty, and the context domain index (if any) status for this partition is always VALID
. After doing DML, if you want to synchronize or optimize this newly added index partition, you must look up the index partition name, and issue the ALTER INDEX REBUILD PARTITION
command. For this newly added partition, index partition name is usually the same as the table partition name, but if the table partition name is already used by another index partition, the system assigns a name in the form of SYS_Pn
.
By querying the USER_IND_PARTITIONS
view and comparing the HIGH_VALUE
field, you can determine the index partition name for the newly added partition.
Merge Partition Syntax
Applies only to a range partition. This command merges the contents of two adjacent partitions into a new partition and then drops the original two partitions. If the resulting partition is non-empty, the corresponding local domain index partition is marked UNUSABLE
. Users can use ALTER TABLE MODIFY PARTITION
to rebuild the partition index.
For a global, non-partitioned index, if you perform the merge operation without an UPDATE GLOBAL INDEXES
clause, the resulting index (if not NULL
) will be invalid and must be rebuilt. If you specify the UPDATE GLOBAL INDEXES
clause after the operation, the index will be valid, but you will still need to synchronize the index with CTX_DDL.SYNC_INDEX for the update to take place, if the sync type is manual.
The naming convention for the resulting index partition is the same as in ALTER TABLE ADD PARTITION
.
Split Partition Syntax
Applies only to range partition. This command divides a table partition into two partitions, thus adding a new partition to the table. The local corresponding index partitions will be marked UNUSABLE
if the corresponding table partitions are non-empty. You can use ALTER TABLE MODIFY PARTITION
to rebuild the partition indexes.
For a global, non-partitioned index, if you perform the split operation without an UPDATE GLOBAL INDEXES
clause, the resulting index (if not NULL
) will be invalid and must be rebuilt. If you specify the UPDATE GLOBAL INDEXES
clause after the operation, the index will be valid, but you will still need to synchronize the index with CTX_DDL.SYNC_INDEX for the update to take place, if the sync type is manual.
The naming convention for the two resulting index partition is the same as in ALTER TABLE ADD PARTITION
.
Exchange Partition Syntax
Converts a partition to a non-partitioned table, and converts a table to a partition of a partitioned table by exchanging their data segments. Rowids are preserved.
If EXCLUDING INDEXES
is specified, all the context indexes corresponding to the partition and all the indexes on the exchanged table are marked as UNUSABLE
. To rebuild the new index partition this case, you can issue ALTER TABLE MODIFY PARTITION
.
If INCLUDING INDEXES
is specified, then for every local domain index on the partitioned table, there must be a non-partitioned domain index on the non-partitioned table. The local index partitions are exchanged with the corresponding regular indexes.
For a global, non-partitioned index, if you perform the exchange operation without an UPDATE GLOBAL INDEXES
clause, the resulting index (if not NULL
) will be invalid and must be rebuilt. If you specify the UPDATE GLOBAL INDEXES
clause after the operation, the index will be valid, but you will still need to synchronize the index with CTX_DDL.SYNC_INDEX for the update to take place, if the sync type is manual.
Field Sections
Field section queries might not work the same if the non-partitioned index and local index use different section id's for the same field section.
Storage
Storage is not changed. So if the index on the non-partitioned table $I table was in tablespace XYZ, then after the exchange partition it will still be in tablespace XYZ, but now it is the $I table for an index partition.
Storage preferences are not switched, so if you switch and then rebuild the index the table may be created in a different location.
Restrictions
Both indexes must be equivalent. They must use the same objects, same settings for each object. Note: we only check that they are using the same object. But they should use the same exact everything.
No index object can be partitioned, that is, when the user has used the storage object to partition the $I, $N tables.
If either index or index partition does not meet all these restrictions an error is raised and both the index and index partition will be INVALID
. The user needs to manually rebuild both index and index partition using ALTER INDEX REBUILD
.
Truncate Partition Syntax
Removes all rows from a partition in a table. Corresponding CONTEXT index partitions are also removed.
For a global, non-partitioned index, if you perform the truncate operation without an UPDATE GLOBAL INDEXES
clause, the resulting index (if not NULL
) will be invalid and must be rebuilt. If you specify the UPDATE GLOBAL INDEXES
clause after the operation, the index will be valid.
ALTER TABLE Examples
Global Index on Partitioned Table Examples
The following example creates a range-partitioned table with three partitions. Each partition is populated with two rows. A global, non-partitioned CONTEXT
index is then created. To demonstrate the UPDATE GLOBAL INDEXES
clause, the partitions are split and merged with an index synchronization.
Use the CATSEARCH
operator to search CTXCAT indexes. Use this operator in the WHERE
clause of a SELECT
statement.
The grammar of this operator is called CTXCAT. You can also use the CONTEXT grammar if your search criteria requires special functionality, such as thesaurus, fuzzy matching, proximity searching or stemming. To utilize the CONTEXT grammar, use the Query Template Specification in the text_query
parameter as described in this section.
About Performance
You use the CATSEARCH
operator with a CTXCAT index mainly to improve mixed query performance. You specify your text query condition with text_query
and your structured condition with structured_query
.
Internally, Oracle Text uses a combined b-tree index on text and structured columns to quickly produce results satisfying the query.
Limitation
If the optimizer chooses to use the functional query invocation, your query will fail. The optimizer might choose functional invocation when your structured clause is highly selective.
Syntax
Specify the text column to be searched on. This column must have a CTXCAT
index associated with it.
Specify one of the following to define your search in column
.
Query Template Specification (for using CONTEXT grammar)
CATSEARCH query operations
The CATSEARCH
operator supports only the following query operations:
Logical AND
Logical OR (|)
Logical NOT (-)
" " (quoted phrases)
Wildcarding
These operators have the following syntax:
Table 1-2 CATSEARCH Query Operators
Operation | Syntax | Description of Operation |
---|---|---|
Logical AND | a b c | Returns rows that contain a, b and c. |
Logical OR | a | b | c | Returns rows that contain a, b, or c. |
Logical NOT | a - b | Returns rows that contain a and not b. |
hyphen with no space | a-b | Hyphen treated as a regular character. For example, if the hyphen is defined as skipjoin, words such as web-site are treated as the single query term website. Likewise, if the hyphen is defined as a printjoin, words such as web-site are treated as web-site in the |
" " | "a b c" | Returns rows that contain the phrase "a b c". For example, entering "Sony CD Player" means return all rows that contain this sequence of words. |
() | (A B) | C | Parentheses group operations. This query is equivalent to the CONTAINS query (A &B) | C. |
wildcard (right and double truncated) | term* a*b | The wildcard character matches zero or more characters. For example, do* matches dog, and gl*s matches glass. Left truncation not supported. Note: Oracle recommends that you create a prefix index if your application uses wildcard searching. You set prefix indexing with the BASIC_WORDLIST preference. |
The following limitations apply to these operators:
The left-hand side (the column name) must be a column named in at least one of the indexes of the index set.
The left-hand side must be a plain column name. Functions and expressions are not allowed.
The right-hand side must be composed of literal values. Functions, expressions, other columns, and subselects are not allowed.
Multiple criteria can be combined with AND
. OR
is not supported.
For example, these expressions are supported:
And these expression are not supported:
You specify a marked-up string that specifies a query template. You can specify one of the following templates:
query rewrite, used to expand a query string into different versions
progressive relaxation, used to progressively issue less restrictive versions of a query to increase recall
alternate grammar, used to specify CONTAINS operators (See CONTEXT Query Grammar Examples)
alternate language, used to specify alternate query language
alternate scoring, used to specify alternate scoring algorithms
See Also: The text_query parameter description for CONTAINS for more information about the syntax for these query templates. |
Specify the structured conditions and the ORDER
BY
clause. There must exist an index for any column you specify. For example, if you specify 'category_id=1 order by bid_close'
, you must have an index for 'category_id, bid_close'
as specified with CTX_DDL
.ADD_INDEX
.
With structured_query
, you can use standard SQL syntax with only the following operators:
=
<=
>=
>
<
IN
BETWEEN
AND (to combine two or more clauses)
Note: You cannot use parentheses () in thestructured_query parameter. |
Examples
The following statement creates the table to be indexed.
The following table inserts the values into the table:
The following statements create the CTXCAT
index:
A typical query with CATSEARCH
might include a structured clause as follows to find all rows that contain the word camera ordered by bid_close
:
The following query finds all rows that contain the phrase Sony CD Player and that have a bid close date of February 20, 2000:
The following query finds all rows with the terms Sony and CD and Player:
The following query finds all rows with the term CD and not Player:
The following query finds all rows with the terms CD or DVD or Speaker:
The following query finds all rows that are about audio equipment:
CONTEXT Query Grammar Examples
The following examples show how to specify the CONTEXT grammar in CATSEARCH queries using the template feature.
The following example shows a field section search against a CTXCAT
index using CONTEXT
grammar by means of a query template in a CATSEARCH
query.
Related Topics
Syntax for CTXCAT Indextype in this chapter.
Use the CONTAINS
operator in the WHERE
clause of a SELECT
statement to specify the query expression for a Text query.
CONTAINS
returns a relevance score for every row selected. You obtain this score with the SCORE operator.
The grammar for this operator is called CONTEXT. You can also use CTXCAT grammar if your application works better with simpler syntax. To do so, use the Query Template Specification in the text_query
parameter as described in this section.
Syntax
Specify the text column to be searched on. This column must have a Text index associated with it.
Specify one of the following:
the query expression that defines your search in column.
a marked-up document that specifies a query template. You can use one of the following templates:
Use this template to automatically write different versions of a query before you submit the query to Oracle Text. This is useful when you need to maximize the recall of a user query. For example, you can program your application to expand a single phrase query of 'cat dog' into the following queries:
These queries are submitted as one query and results are returned with no duplication. In this example, the query returns documents that contain the phrase cat dog as well as documents in which cat is near dog, and documents that have cat and dog.
This is done with the following template:
The operator TRANSFORM
is used to specify the rewrite rules and has the following syntax (note that it uses double parentheses):
Table 1-3 TRANSFORM Parameters
Parameter	Description
terms	Specify the type of terms to be prodcued from the original query. You can specify either TOKENS or THEMES Specifying THEMES requires an installed knowledge base. A knowledge base may or may not have been installed with Oracle Text. For more information on knowledge bases, see the Oracle Text Application Developer's Guide.
prefix	Specify the literal string to be prepended to all the terms
suffix	Specify the literal string to be appended to all the terms.
connector	Specify the literal string to connect all the terms after applying prefix and suffix.
Use this template to progressively relax your query. Progressive relaxation is when you increase recall by progressively issuing less restrictive versions of a query, so that your application can return an appropriate number of hits to the user.	
For example, the query of black pen can be progressively relaxed to:	
This is done with the following template	
Use this template to specify an alternate grammar, such as CONTEXT or CATSEARCH. Specifying an alternate grammar enables you to issue queries using different syntax and operators.	
For example, with CATSEARCH, you can issue ABOUT queries using the CONTEXT grammar. Likewise with CONTAINS, you can issue logical queries using the simplified CATSEARCH syntax.	
The phrase 'dog cat mouse' is interpreted as a phrase in CONTAINS. However, with CATSEARCH this is equivalent to a AND query of 'dog AND cat AND mouse'. To specify that CONTAINS use the alternate grammar, we can issue the following template:	
Use this template to specify an alternate language.	
Use this template to specify an alternate scoring algorithm. The following example specifies that the query use the CONTEXT grammar and return integer scores using the COUNT algorithm. This algorithm return score as number of query occurrences in document.	
Template Attribute Values	
Table 1-4 gives the possible values for template attributes:	
Table 1-4 Template Attribute Values	
Tag Attribute	Description
---	---
grammar=	Specify the grammar of the query.
datatype=	Specify the type of number returned as score.
FLOAT	Returns score as integer between 0 and 100. Returns score as its high precision floating point number between 0 and 100.
algorithm=	Specify the scoring algorithm to use.
lang=	Specify the language name.
Template Grammar Definition	
The query template interface is an XML document. Its grammar is defined with the following XML DTD:	
All tags and attributes values are case-sensitive.	
See Also: Chapter 3, "Oracle Text CONTAINS Query Operators" for more information about the operators you can use in query expressions.	
Optionally specify the label that identifies the score generated by the CONTAINS	
operator.	
Returns	
For each row selected, CONTAINS	
returns a number between 0 and 100 that indicates how relevant the document row is to the query. The number 0 means that Oracle Text found no matches in the row.	
Note: You must use theSCORE operator with a label to obtain this number.	
The following example searches for all documents in the in the text	
column that contain the word oracle. The score for each row is selected with the SCORE	
operator using a label of 1:	
The CONTAINS	
operator must be followed by an expression such as > 0, which specifies that the score value calculated must be greater than zero for the row to be selected.	
When the SCORE	
operator is called (for example, in a SELECT	
clause), the CONTAINS	
clause must reference the score label value as in the following example:	
The following example specifies that the query be parsed using the CATSEARCH grammar:	
Grammar Template Example	
The following example shows how to use the CTXCAT grammar in a CONTAINS query. The example creates a CTXCAT and a CONTEXT index on the same table, and compares the query results:	
Query Relaxation Template Example	
The following query template defines a query relaxation sequence. The query of black pen is issued in sequence as black pen then black NEAR pen then black AND pen then black ACCUM pen. Query hits are returned in this sequence with no duplication as long as the application needs results.	
Query relaxation is most effective when your application needs the top n hits to a query, which you can obtain with the FIRST_ROWS hint or in a PL/SQL cursor.	
Query Rewrite Example	
The following template defines a query rewrite sequence. The query of kukui nut is rewritten as follows:	
{kukui} {nut}	
{kukui} ; {nut}	
{kukui} AND {nut}	
{kukui} ACCUM {nut}	
Notes	
Querying Multi-Language Tables	
With the multi-lexer preference, you can create indexes from multi-language tables.	
At query time, the multi-lexer examines the session's language setting and uses the sub-lexer preference for that language to parse the query. If the language setting is not mapped, then the default lexer is used.	
When the language setting is mapped, the query is parsed and run as usual. The index contains tokens from multiple languages, so such a query can return documents in several languages.	
To limit your query to returning document of a given language, use a structured clause on the language column.	
Query Performance Limitation with a Partitioned Index	
Oracle Text supports the CONTEXT	
indexing and querying of a partitioned text table.	
However, for optimal performance when querying a partitioned table with an ORDER	
BY	
SCORE	
clause, query the partition. If you query the entire table and use an ORDER	
BY	
SCORE	
clause, the query might not perform optimally unless you include a range predicate that can limit the query to a single partition.	
For example, the following statement queries the partition p_tab4 partition directly:	
Related Topics	
Syntax for CONTEXT Indextype in this chapter	
Chapter 3, "Oracle Text CONTAINS Query Operators"	
Note: This section describes theCREATE INDEX statement as it pertains to creating an Oracle Text domain index. For a complete description of the	
Purpose	
Use CREATE	
INDEX	
to create an Oracle Text index. An Oracle Text index is an Oracle Database domain index of type CONTEXT	
, CTXCAT,	
CTXRULE or CTXXPATH	
.	
You must create an appropriate Oracle Text index to issue CONTAINS	
, CATSEARCH	
, or MATCHES	
queries.	
You cannot create an Oracle Text index on an Index Organized Table (IOT).	
You can create the following types of Oracle Text indexes:	
This is an index on a text column. You query this index with the CONTAINS	
operator in the WHERE	
clause of a SELECT	
statement. This index requires manual synchronization after DML. See Syntax for CONTEXT Indextype.	
This is a combined index on a text column and one or more other columns.You query this index with the CATSEARCH	
operator in the WHERE	
clause of a SELECT	
statement. This type of index is optimized for mixed queries. This index is transactional, automatically updating itself with DML to the base table. See Syntax for CTXCAT Indextype.	
This is an index on a column containing a set of queries. You query this index with the MATCHES	
operator in the WHERE	
clause of a SELECT	
statement. See Syntax for CTXRULE Indextype.	
Create this index when you need to speed up existsNode() queries on an XMLType column. See Syntax for CTXXPATH Indextype.	
You do not need the CTXAPP	
role to create an Oracle Text index. If you have Oracle Database grants to create a b-tree index on the text column, you have sufficient permission to create a text index. The issuing owner, table owner, and index owner can all be different users, which is consistent with Oracle standards for creating regular B-tree indexes.	
Use this indextype to create an index on a text column. You query this index with the CONTAINS	
operator in the WHERE	
clause of a SELECT	
statement. This index requires manual synchronization after DML.	
Specify the name of the Text index to create.	
Specify the name of the table and column to index.	
Your table can optionally contain a primary key if you prefer to identify your rows as such when you use procedures in CTX_DOC	
. When your table has no primary key, document services identifies your documents by ROWID	
.	
The column you specify must be one of the following types: CHAR	
, VARCHAR	
, VARCHAR2	
, BLOB	
, CLOB	
, BFILE	
, XMLType	
, or URIType	
.	
The table you specify can be a partitioned table. If you do not specify the LOCAL clause, a global, non-partitioned index is created.	
DATE	
, NUMBER	
, and nested table columns cannot be indexed. Object columns also cannot be indexed, but their attributes can be, provided they are atomic data types.	
Attempting to create a index on a Virtual Private Database (VPD) protected table will fail unless one of the following is true:	
The VPD policy is created such that it does not apply to INDEX statement type, which is the default	
The policy function returns a null predicate for the current user.	
The user (index owner) is SYS.	
The user has the EXEMPT ACCESS POLICY privilege.	
Indexes on multiple columns are not supported with the CONTEXT	
index type. You must specify only one column in the column list.	
Note: With theCTXCAT indextype, you can create indexes on text and structured columns. See Syntax for CTXCAT Indextype in this chapter.	
Creates the index while enabling inserts/updates/deletes (DML) on the base table.	
During indexing, Oracle Text enqueues DML requests in a pending queue. At the end of the index creation, Oracle Text locks the base table. During this time DML is blocked.	
Limitations	
The following limitations apply to using ONLINE:	
At the very beginning or very end of this process, DML might fail.	
ONLINE is supported for CONTEXT indexes only.	
ONLINE cannot be used with PARALLEL.	
Specify LOCAL	
to create a local partitioned context index on a partitioned table. The partitioned table must be partitioned by range. Hash, composite and list partitions are not supported.	
You can specify the list of index partition names with partition. If you do not specify a partition name, the system assigns one. The order of the index partition list must correspond to the table partition by order.	
The PARAMETERS clause associated with each partition specifies the parameters string specific to that partition. You can only specify sync (manual	every
You can query the views CTX_INDEX_PARTITIONS or CTX_USER_INDEX_PARTITIONS to find out index partition information, such as index partition name, and index partition status.	
Query Performance Limitation with Partitioned Index	
For optimal performance when querying a partitioned index with an ORDER	
BY	
SCORE	
clause, query the partition. If you query the entire table and use an ORDER	
BY	
SCORE	
clause, the query might not perform optimally unless you include a range predicate that can limit the query to the fewest number of partitions, which is optimally a single partition.	
Optionally specify with n the parallel degree for parallel indexing. The actual degree of parallelism might be smaller depending on your resources.	
You can use this parameter on non-partitioned tables. Creating a non-partitioned index in parallel does not turn on parallel query processing.	
Parallel indexing is supported for creating a local partitioned index.	
See Also: "Creating a Local Partitioned Index in Parallel" Performance Tuning chapter in Oracle Text Application Developer's Guide	
Performance	
Parallel indexing can speed up indexing when you have large amounts of data to index and when your operating system supports multiple CPUs.	
Note: Using PARALLEL to create a local partitioned index enables parallel queries. (Creating a non-partitioned index in parallel does not turn on parallel query processing.)Parallel querying degrades query throughput especially on heavily loaded systems. Because of this, Oracle recommends that you disable parallel querying after creating a local index. To do so, use ALTER INDEX NOPARALLEL. For more information on parallel querying, see the Performance Tuning chapter in Oracle Text Application Developer's Guide	
Limitations	
The following limitations apply to using PARALLEL:	
Parallel indexing is supported only for CONTEXT index	
PARALLEL cannot be used with ONLINE.	
Create an unusable index. This creates index metadata only and exits immediately.	
You might create an unusable index when you need to create a local partitioned index in parallel.	
Optionally specify indexing parameters in paramstring. You can specify preferences owned by another user using the user.preference notation.	
The syntax for paramstring	
is as follows:	
You create datastore, filter, lexer, wordlist, and storage preferences with CTX_DDL.CREATE_PREFERENCE and then specify them in the paramstring.	
Note: When you specify no paramstring, Oracle Text uses the system defaults.For more information about these defaults, see "Default Index Parameters" in Chapter 2.	
Specify the name of your datastore preference. Use the datastore preference to specify where your text is stored.See Datastore Types in Chapter 2, " Oracle Text Indexing Elements".	
Specify the name of your filter preference. Use the filter preference to specify how to filter formatted documents to plain text or HTML. See Filter Types in Chapter 2, " Oracle Text Indexing Elements".	
Specify the name of the character set column. This column must be in the same table as the text column, and it must be of type CHAR	
, VARCHAR	
, or VARCHAR2	
. Use this column to specify the document character set for conversion to the database character set. The value is case insensitive. You must specify a Globalization Support character set string such as JA16EUC.	
When the document is plain text or HTML, the AUTO_FILTER	
and CHARSET	
filter use this column to convert the document character set to the database character set for indexing.	
For all rows containing the keywords 'AUTO' or 'AUTOMATIC', Oracle Text will apply statistical techniques to determine the character set of the documents and modify document indexing appropriately.	
You use this column when you have plain text or HTML documents with different character sets or in a character set different from the database character set.	
Note: Documents are not marked for re-indexing when only the charset column changes. The indexed column must be updated to flag the re-index.	
Specify the name of the format column. The format column must be in the same table as the text column and it must be CHAR	
, VARCHAR	
, or VARCHAR2	
type.	
FORMAT COLUMN	
determines how a document is filtered, or, in the case of the IGNORE	
value, if it is to be indexed.	
The AUTO_FILTER	
uses the format column when filtering documents. Use this column with heterogeneous document sets to optionally bypass filtering for plain text or HTML documents.	
In the format column, you can specify one of the following	
TEXT	
BINARY	
IGNORE	
TEXT	
indicates that the document is either plain text or HTML. When TEXT	
is specified the document is not filtered, but might be character set converted.	
BINARY	
indicates that the document is a format supported by the AUTO_FILTER	
object other than plain text or HTML, such as PDF. BINARY	
is the default if the format column entry cannot be mapped.	
IGNORE	
indicates that the row is to be ignored during indexing. Use this value when you need to bypass rows that contain data incompatible with text indexing such as image data, or rows in languages that you do not want to process. The difference between documents with TEXT and IGNORE format column types is that the former are indexed but ignored by the filter, while the latter are not indexed at all. (Thus IGNORE	
can be used with any filter type.)	
Note: Documents are not marked for re-indexing when only the format column changes. The indexed column must be updated to flag the re-index.	
Specify the name of your lexer or multi-lexer preference. Use the lexer preference to identify the language of your text and how text is tokenized for indexing. See Lexer Types in Chapter 2, " Oracle Text Indexing Elements".	
Specify the name of the language column when using a multi-lexer preference. See MULTI_LEXER in Chapter 2, " Oracle Text Indexing Elements".	
This column must exist in the base table. It cannot be the same column as the indexed column. Only the first 30 bytes of the language column is examined for language identification.	
For all rows containing the keywords 'AUTO' or 'AUTOMATIC', Oracle Text will apply statistical techniques to determine the language of the documents and modify document indexing appropriately.	
Note: Documents are not marked for re-indexing when only the language column changes. The indexed column must be updated to flag the re-index.	
Specify the name of your wordlist preference. Use the wordlist preference to enable features such as fuzzy, stemming, and prefix indexing for better wildcard searching. See Wordlist Type in Chapter 2, " Oracle Text Indexing Elements".	
Specify the name of your storage preference for the Text index. Use the storage preference to specify how the index tables are stored. See Storage Types in Chapter 2, " Oracle Text Indexing Elements".	
Specify the name of your stoplist. Use stoplist to identify words that are not to be indexed. See CTX_DDL.CREATE_STOPLIST in Chapter 7, "CTX_DDL Package".	
Specify the name of your section group. Use section groups to create searchable sections in structured documents. See CTX_DDL.CREATE_SECTION_GROUP in Chapter 7, "CTX_DDL Package".	
Specify the amount of run-time memory to use for indexing. The syntax for memsize is as follows:	
where K stands for kilobytes., M stands for megabytes, and G stands for gigabytes.	
The value you specify for memsize	
must be between 1M and the value of MAX_INDEX_MEMORY	
in the CTX_PARAMETERS view. To specify a memory size larger than the MAX_INDEX_MEMORY	
, you must reset this parameter with CTX_ADM.SET_PARAMETER to be larger than or equal to memsize	
.	
The default is the value specified for DEFAULT_INDEX_MEMORY	
in CTX_PARAMETERS	
.	
The memsize parameter specifies the amount of memory Oracle Text uses for indexing before flushing the index to disk. Specifying a large amount memory improves indexing performance because there are fewer I/O operations and improves query performance and maintenance since there is less fragmentation.	
Specifying smaller amounts of memory increases disk I/O and index fragmentation, but might be useful when run-time memory is scarce.	
Specify nopopulate to create an empty index. The default is populate.	
Note: This is the only option whose default value cannot be set with CTX_ADM.SET_PARAMETER.This option is not valid with CTXXPATH indexes.	
Empty indexes are populated by updates or inserts to the base table. You might create an empty index when you need to create your index incrementally or to selectively index documents in the base table. You might also create an empty index when you require only theme and Gist output from a document set.	
Specify SYNC	
for automatic synchronization of the CONTEXT	
index when there are inserts, updates or deletes to the base table. You can specify one of the following SYNC	
methods:	
Table 1-5 SYNC Types	
SYNC type	Description
---	---
MANUAL	No automatic synchronization. This is the default. You must manually synchronize the index with CTX_DDL.SYNC_INDEX .
EVERY "interval-string"	Automatically synchronize the index at a regular interval specified by the value of interval-string. interval-string takes the same syntax as that for scheduler jobs. Automatic synchronization using EVERY requires that the index creator have CREATE JOB privileges. Make sure that interval-string is set to a long enough period that any previous sync jobs will have completed; otherwise, the sync job may hang. interval-string must be enclosed in double quotes, and any single quote within interval-string must be escaped with another single quote. See Enabling Automatic Index Synchronization for an example of automatic sync syntax.
ON COMMIT	Synchronize the index immediately after a commit. The commit does not return until the sync is complete. (Since the synchronization is performed as a separate transaction, there may be a period, usually small, when the data is committed but index changes are not.) The operation uses the memory specified with the memory parameter. Note that the sync operation has its own transaction context. If this operation fails, the data transaction still commits. Index synchronization errors are logged in the See Enabling Automatic Index Synchronization for an example of
Each partition of a locally partitioned index can have its own type of sync (ON COMMIT	
, EVERY	
, or MANUAL	
). The type of sync specified in master parameter strings applies to all index partitions unless a partition specifies its own type.	
With automatic (EVERY	
) synchronization, users can specify memory size and parallel synchronization. That syntax is:	
ON COMMIT	
synchronizations can only be executed serially and at the same memory size as at index creation.	
See the Oracle Database Administrator's Guide for information on job scheduling.	
Specify that documents can be searched immediately after they are inserted or updated. If a text index is created with TRANSACTIONAL	
enabled, then, in addition to processing the synchronized rowids already in the index, the CONTAINS	
operator will process unsynchronized rowids as well. (That is, Oracle Text does in-memory indexing of unsynchronized rowids and processes the query against the in-memory index.)	
TRANSACTIONAL	
is an index-level parameter and does not apply at the partition level.	
You must still synchronize your text indexes from time to time (with CTX_DDL.SYNC_INDEX	
) to bring pending rowids into the index. Query performance degrades as the number of unsynchronized rowids increases. For that reason, Oracle recommends setting up your index to use automatic synchronization with the EVERY	
parameter. (See [METADATA] SYNC (MANUAL	EVERY "interval-string"
Transactional querying for indexes that have been created with the TRANSACTIONAL	
parameter can be turned on and off (for the duration of a user session) with the PL/SQL variable CTX_QUERY.disable_transactional_query	
. This is useful, for example, if you find that querying is slow due to the presence of too many pending rowids. Here is an example of setting this session variable:	
If the index uses AUTO_FILTER	
, queries involving unsynchronized rowids will require filtering of unsynchronized documents.	
CREATE INDEX: CONTEXT Index Examples	
The following sections give examples of creating a CONTEXT	
index.	
Creating CONTEXT Index Using Default Preferences	
The following example creates a CONTEXT	
index called myindex	
on the docs	
column in mytable	
. Default preferences are used.	
See Also: For more information about default settings, see "Default Index Parameters" in Chapter 2.Also refer to Oracle Text Application Developer's Guide.	
Creating CONTEXT Index with Custom Preferences	
The following example creates a CONTEXT	
index called myindex	
on the docs	
column in mytable	
. The index is created with a custom lexer preference called my_lexer	
and a custom stoplist called my_stop	
.	
This example also assumes that the preference and stoplist were previously created with CTX_DDL.CREATE_PREFERENCE for my_lexer	
, and CTX_DDL.CREATE_STOPLIST for my_stop	
. Default preferences are used for the unspecified preferences.	
Any user can use any preference. To specify preferences that exist in another user's schema, add the user name to the preference name. The following example assumes that the preferences my_lexer	
and my_stop	
exist in the schema that belongs to user kenny	
:	
Enabling Automatic Index Synchronization	
You can create your index and specify that the index be synchronized at regular intervals for inserts, updates and deletes to the base table. To do so, create the index with the SYNC (EVERY	
"interval-string")	
parameter.	
To use job scheduling, you must log in as a user who has DBA privileges and then grant CREATE JOB	
privileges.	
The following example creates an index and schedules three synchronization jobs for three index partitions. The first partition uses ON COMMIT synchronization. The other two partitions are synchronized by jobs that are scheduled to be executed every Monday at 3 P.M.	
See the Oracle Database Administrator's Guide for information on job scheduling syntax.	
Creating CONTEXT Index with Multi-Lexer Preference	
The multi-lexer decides which lexer to use for each row based on a language column. This is a character column in the table which stores the language of the document in the text column. For example, you create the table globaldoc	
to hold documents of different languages:	
Assume that global_lexer	
is a multi-lexer preference you created. To index the global_doc	
table, you specify the multi-lexer preference and the name of the language column as follows:	
Creating a Local Partitioned Index	
The following example creates a text table partitioned into three, populates it, and then creates a partitioned index.	
Parallel indexing can improve index performance when you have multiple CPUs.	
To create an index in parallel, use the PARALLEL clause with a parallel degree. This example uses a parallel degree of 3:	
Creating a Local Partitioned Index in Parallel	
Creating a local partitioned index in parallel can improve performance when you have multiple CPUs. With partitioned tables, you can divide the work. You can create a local partitioned index in parallel in two ways:	
Use the PARALLEL	
clause with the LOCAL	
clause in CREATE INDEX.	
In this case, the maximum parallel degree is limited to the number of partitions you have. See Parallelism with CREATE INDEX	
Create an unusable index first, then run the DBMS_PCLXUTIL.BUILD_PART_INDEX	
utility. This method can result in a higher degree of parallelism, especially if you have more CPUs than partitions. See Parallelism with DBMS_PCLUTIL.BUILD_PART_INDEX.	
If you attempt to create a local partitioned index in parallel, and the attempt fails, you may see the following error message:	
To determine the specific reason why the index creation failed, query the CTX_USER_INDEX_ERRORS view.	
Parallelism with CREATE INDEX	
You can achieve local index parallelism by using the PARALLEL	
and LOCAL	
clauses in CREATE INDEX.	
In this case, the maximum parallel degree is limited to the number of partitions you have.	
The following example creates a table with three partitions, populates them, and then creates the local indexes in parallel with a degree of 2:	
Parallelism with DBMS_PCLUTIL.BUILD_PART_INDEX	
You can achieve local index parallelism by first creating an unusable CONTEXT index, then running the DBMS_PCLUTIL.BUILD_PART_INDEX	
utility. This method can result in a higher degree of parallelism, especially when you have more CPUs than partitions.	
In this example, the base table has three partitions. We create a local partitioned unusable index first, then run DBMS_PCLUTIL.BUILD_PART_INDEX	
, which builds the 3 partitions in parallel (inter-partition parallelism). Also inside each partition, index creation proceeds in parallel (intra-partition parallelism) with a parallel degree of 2. Therefore the total parallel degree is 6 (3 times 2).	
After a CREATE	
INDEX	
or ALTER	
INDEX	
operation, you can view index errors with Oracle Text views. To view errors on your indexes, query the CTX_USER_INDEX_ERRORS view. To view errors on all indexes as CTXSYS, query the CTX_INDEX_ERRORS view.	
For example, to view the most recent errors on your indexes, you can issue:	
To clear the index error view, you can issue:	
The CTXCAT index is a combined index on a text column and one or more other columns.You query this index with the CATSEARCH	
operator in the WHERE	
clause of a SELECT	
statement. This type of index is optimized for mixed queries. This index is transactional, automatically updating itself with DML to the base table.	
Specify the name of the table and column to index.	
The column you specify when you create a CTXCAT	
index must be of type CHAR	
or VARCHAR2	
. No other types are supported for CTXCAT	
.	
Attempting to create a index on a Virtual Private Database (VPD) protected table will fail unless one of the following is true:	
The VPD policy is created such that it does not apply to INDEX statement type, which is the default	
The policy function returns a null predicate for the current user.	
The user (index owner) is SYS.	
The user has the EXEMPT ACCESS POLICY privilege.	
Specify the index set preference to create the CTXCAT	
index. Index set preferences name the columns that make up your sub-indexes. Any column named in an index set column list cannot have a NULL value in any row of the base table or else you get an error.	
You must always ensure that your columns have non-NULL values before and after indexing.	
Index Performance and Size Considerations	
Although a CTXCAT	
index offers query performance benefits, creating the index has its costs. The time Oracle Text takes to create a CTXCAT	
index depends on its total size, and the total size of a CTXCAT	
index is directly related to	
total text to be indexed	
number of component indexes in the index set	
number of columns in the base table that make up the component indexes	
Having many component indexes in your index set also degrades DML performance since more indexes must be updated.	
Because of these added costs in creating a CTXCAT	
index, carefully consider the query performance benefit each component index gives your application before adding it to your index set.	
See Also: Oracle Text Application Developer's Guide for more information about creatingCTXCAT indexes and its benefits.	
When you create an index of type CTXCAT	
, you can use the following supported index preferences in the parameters	
string:	
Table 1-6 Supported CTXCAT Index Preferences	
Preference Class	Supported Types
---	---
Datastore	This preference class is not supported for CTXCAT.
Filter	This preference class is not supported for CTXCAT.
Lexer	BASIC_LEXER (index_themes attribute not supported)
Wordlist	BASIC_WORDLIST
Storage	BASIC_STORAGE
Stoplist	Supports single language stoplists only (BASIC_STOPLIST type).
Section Group	This preference class is not supported for CTXCAT.
Unsupported Preferences and Parameters	
When you create a CTXCAT	
index, you cannot specify datastore, filter and section group preferences. You also cannot specify language, format, and charset columns as with a CONTEXT	
index.	
Creating a CTXCAT Index	
This section gives a brief example for creating a CTXCAT	
index. For a more complete example, see the Oracle Text Application Developer's Guide.	
Consider a table called AUCTION	
with the following schema:	
Assume that queries on the table involve a mandatory text query clause and optional structured conditions on price	
. Results must be sorted based on bid_close	
. This means that we need an index to support good response time for the structured and sorting criteria.	
You can create a catalog index to support the different types of structured queries a user might enter. For structured queries, a CTXCAT	
index improves query performance over a context index.	
To create the indexes, first create the index set preference, then add the required indexes to it:	
Create the CTXCAT	
index with CREATE	
INDEX	
as follows:	
Querying a CTXCAT Index	
To query the title column for the word pokemon, you can issue regular and mixed queries as follows:	
This is an index on a column containing a set of queries. You query this index with the MATCHES	
operator in the WHERE	
clause of a SELECT	
statement.	
Specify the name of the table and rule column to index. The rules can be query compatible strings, query template strings, or binary support vector machine rules.	
The column you specify when you create a CTXRULE	
index must be VARCHAR2	
, CLOB or BLOB	
. No other types are supported for CTXRULE	
.	
Attempting to create an index on a Virtual Private Database (VPD) protected table will fail unless one of the following is true:	
The VPD policy does not have the INDEX statement type turned on (which is the default)	
The policy function returns a null predicate for the current user.	
The user (index owner) is SYS.	
The user has the EXEMPT ACCESS POLICY privilege.	
Specify the lexer preference to be used for processing queries and later for the documents to be classified with the MATCHES	
function.	
With both classifiers SVN_CLASSFIER	
and RULE_CLASSIFIER	
, you can use the BASIC_LEXER	
, CHINESE_LEXER	
, JAPANESE_LEXER	
, or KOREAN_MORPH_LEXER	
lexer. (See "Classifier Types" and "Lexer Types".)	
For processing queries, these lexers support the following operators: ABOUT	
, STEM	
, AND	
, NEAR	
, NOT	
, OR	
, and WITHIN	
.	
The thesaural operators (BT*	
, NT*	
, PT	
, RT	
, SYN	
, TR	
, TRSYS	
, TT,	
and so on) are supported. However, these operators are expanded using a snapshot of the thesaurus at index time, not when the MATCHES function is issued. This means that if you change your thesaurus after you index, you must re-index your query set.	
Specify the storage preference for the index on the queries.Use the storage preference to specify how the index tables are stored. See Storage Types in Chapter 2, " Oracle Text Indexing Elements".	
Specify the section group. This parameter does not affect the queries. It applies to sections in the documents to be classified. The following section groups are supported for the CTXRULE	
indextype:	
See Section Group Types in Chapter 2, " Oracle Text Indexing Elements".	
CTXRULE does not support special sections.	
Specify the wordlist preferences. This is used to enable stemming operations on query terms. See Wordlist Type in Chapter 2, " Oracle Text Indexing Elements".	
Specify the classifier preference. See Classifier Types in Chapter 2, " Oracle Text Indexing Elements". You must use the same preference name you specify with CTX_CLS.TRAIN.	
Example for Creating a CTXRULE Index	
See the Oracle Text Application Developer's Guide for a complete example of using the CTXRULE indextype in a document routing application.	
Create this index when you need to speed up existsNode() queries on an XMLType column.	
Specify the name of the table and column to index.	
The column you specify when you create a CTXXPATH	
index must be XMLType	
. No other types are supported for CTXXPATH	
.	
Specify the storage preference for the index on the queries.Use the storage preference to specify how the index tables are stored. See Storage Types in Chapter 2, " Oracle Text Indexing Elements".	
Specify the amount of run-time memory to use for indexing. The syntax for memsize is as follows:	
where M stands for megabytes, G stands for gigabytes, and K stands for kilobytes.	
The value you specify for memsize	
must be between 1M and the value of MAX_INDEX_MEMORY	
in the CTX_PARAMETERS view. To specify a memory size larger than the MAX_INDEX_MEMORY	
, you must reset this parameter with CTX_ADM.SET_PARAMETER to be larger than or equal to memsize	
.	
The default is the value specified for DEFAULT_INDEX_MEMORY	
in CTX_PARAMETERS	
.	
Index creation on an XMLType column:	
Querying the table with existsNode:	
Related Topics	
CTX_DDL.CREATE_PREFERENCE in Chapter 7, "CTX_DDL Package".	
CTX_DDL.CREATE_STOPLIST in Chapter 7, "CTX_DDL Package".	
CTX_DDL.CREATE_SECTION_GROUP in Chapter 7, "CTX_DDL Package".	
Note: This section describes theDROP INDEX statement as it pertains to dropping a Text domain index. For a complete description of the	
Purpose	
Use DROP	
INDEX	
to drop a specified Text index.	
Syntax	
Optionally force the index to be dropped. Use force option when Oracle Text cannot determine the state of the index, such as when an indexing operation crashes.	
Oracle recommends against using this option by default. Use it a a last resort when a regular call to DROP INDEX fails.	
Examples	
The following example drops an index named doc_index	
in the current user's database schema.	
Related Topics	
Use this operator to find all rows in a query table that match a given document. The document must be a plain text, HTML, or XML document.	
This operator requires a CTXRULE	
index on your set of queries.	
When the SVM_CLASSIFIER classifier type is used, MATCHES	
returns a score in the range 0 to 100; a higher number indicates a greater confidence in the match. You can use the label	
parameter and MATCH_SCORE	
to obtain this number. You can then use the matching score to apply a category-specific threshold to a particular category.	
If SVM_CLASSIFIER	
is not used, then this operator returns either 100 (the document matches the criteria) or 0 (the document does not match).	
Limitation	
If the optimizer chooses to use the functional query invocation with a MATCHES	
query, your query will fail.	
Syntax	
Specify the column containing the indexed query set.	
Specify the document to be classified. The document can be plain-text, HTML, or XML. Binary formats are not supported.	
Optionally specify the label that identifies the score generated by the MATCHES	
operator. You use this label with MATCH_SCORE.	
Matches Example	
The following example creates a table querytable	
, and populates it with classification names and associated rules. It then creates a CTXRULE	
index.	
The example issues the MATCHES	
query with a document string to be classified. The SELECT	
statement returns all rows (queries) that are satisfied by the document:	
Related Topics	
CTX_CLS.TRAIN	
The Oracle Text Application Developer's Guide contains extended examples of simple and supervised classification, which make use of the MATCHES	
operator.	
Use the MATCH_SCORE	
operator in a statement to return scores produced by a	
MATCHES	
query.	
When the SVM_CLASSIFIER	
classifier type is used, this operator returns a score in the range 0 to 100. You can then use the matching score to apply a category-specific threshold to a particular category.	
If SVM_CLASSIFIER	
is not used, then this operator returns either 100 (the document matches the criteria) or 0 (the document does not match).	
Syntax	
Specify a number to identify the score produced by the query. You use this number to identify the MATCHES	
clause which returns this score.	
Example	
To get the matching score, use	
Related Topics	
Use the SCORE	
operator in a SELECT	
statement to return the score values produced by a CONTAINS query. The SCORE	
operator can be used in a SELECT	
, ORDER	
BY	
, or GROUP	
BY	
clause.	
Syntax	
Specify a number to identify the score produced by the query. You use this number to identify the CONTAINS	
clause which returns this score.	
Example	
Single CONTAINS	
When the SCORE	
operator is called (for example, in a SELECT	
clause), the CONTAINS	
clause must reference the score label value as in the following example:	
Multiple CONTAINS	
Assume that a news database stores and indexes the title and body of news articles separately. The following query returns all the documents that include the words Oracle in their title and java in their body. The articles are sorted by the scores for the first CONTAINS	
(Oracle) and then by the scores for the second CONTAINS	
(java).	
Related Topics	
Appendix F, " The Oracle Text Scoring Algorithm"	
This chapter describes the various elements you can use to create your Oracle Text index.	
The following topics are discussed in this chapter:	
When you use CREATE INDEX to create an index or ALTER INDEX to manage an index, you can optionally specify indexing preferences, stoplists, and section groups in the parameter string. Specifying a preference, stoplist, or section group answers one of the following questions about the way Oracle Text indexes text:	
Preference Class	Answers the Question
---	---
Datastore	How are your documents stored?
Filter	How can the documents be converted to plain text?
Lexer	What language is being indexed?
Wordlist	How should stem and fuzzy queries be expanded?
Storage	How should the index tables be stored?
Stop List	What words or themes are not to be indexed?
Section Group	Is querying within sections enabled, and how are the document sections defined?
This chapter describes how to set each preference. You enable an option by creating a preference with one of the types described in this chapter.	
For example, to specify that your documents are stored in external files, you can create a datastore preference called mydatastore	
using the FILE_DATASTORE type. You specify mydatastore	
as the datastore preference in the parameter clause of CREATE	
INDEX	
.	
To create a datastore, lexer, filter, classifier, wordlist, or storage preference, you use the CTX_DDL.CREATE_PREFERENCE procedure and specify one of the types described in this chapter. For some types, you can also set attributes with the CTX_DDL.SET_ATTRIBUTE procedure.	
An indexing type names a class of indexing objects that you can use to create an index preference. A type, therefore, is an abstract ID, while a preference is an entity that corresponds to a type. Many system-defined preferences have the same name as types (for example, BASIC_LEXER	
), but exact correspondence is not guaranteed (for example, the DEFAULT_DATASTORE	
preference uses the DIRECT_DATASTORE	
type, and there is no system preference corresponding to the CHARSET_FILTER	
type). Be careful in assuming the existence or nature of either indexing types or system preferences.	
You specify indexing preferences with CREATE INDEX	
and ALTER INDEX	
; indexing preferences determine how your index is created. For example, lexer preferences indicate the language of the text to be indexed. You can create and specify your own (user-defined) preferences or you can utilize system-defined preferences.	
To create a stoplist, use CTX_DDL.CREATE_STOPLIST. You can add stopwords to a stoplist with CTX_DDL.ADD_STOPWORD	
.	
To create section groups, use CTX_DDL.CREATE_SECTION_GROUP and specify a section group type. You can add sections to section groups with CTX_DDL. ADD_ZONE_SECTION	
or CTX_DDL.ADD_FIELD_SECTION	
.	
Use the datastore types to specify how your text is stored. To create a datastore preference, you must use one of the following datastore types:	
Table 2-1 Datastore Types	
Datastore Type	Use When
---	---
DIRECT_DATASTORE	Data is stored internally in the text column. Each row is indexed as a single document.
MULTI_COLUMN_DATASTORE	Data is stored in a text table in more than one column. Columns are concatenated to create a virtual document, one for each row.
DETAIL_DATASTORE	Data is stored internally in the text column. Document consists of one or more rows stored in a text column in a detail table, with header information stored in a master table.
FILE_DATASTORE	Data is stored externally in operating system files. Filenames are stored in the text column, one for each row.
NESTED_DATASTORE	Data is stored in a nested table.
URL_DATASTORE	Data is stored externally in files located on an intranet or the Internet. Uniform Resource Locators (URLs) are stored in the text column.
USER_DATASTORE	Documents are synthesized at index time by a user-defined stored procedure.
Use the DIRECT_DATASTORE	
type for text stored directly in the text column, one document for each row. DIRECT_DATASTORE	
has no attributes.	
The following columns types are supported: CHAR	
, VARCHAR	
, VARCHAR2	
, BLOB	
, CLOB	
, BFILE	
, or XMLType	
.	
Note: If your column is aBFILE , the index owner must have read permission on all directories used by the BFILEs .	
The following example creates a table with a CLOB column to store text data. It then populates two rows with text data and indexes the table using the system-defined preference CTXSYS.DEFAULT_DATASTORE	
.	
Use this datastore when your text is stored in more than one column. During indexing, the system concatenates the text columns, tagging the column text, and indexes the text as a single document. The XML-like tagging is optional. You can also set the system to filter and concatenate binary columns.	
MULTI_COLUMN_DATASTORE	
has the following attributes:	
Table 2-2 MULTI_COLUMN_DATASTORE Attributes	
To index, you must create a dummy column to specify in the CREATE	
INDEX	
statement. This column's contents are not made part of the virtual document, unless its name is specified in the columns attribute.	
The index is synchronized only when the dummy column is updated. You can create triggers to propagate changes if needed.	
The following example creates a multi-column datastore preference called my_multi	
with three text columns:	
The following example creates a multi-column datastore preference and denotes that the bar	
column is to be filtered with the AUTO_FILTER.	
The multi-column datastore fetches the content of the foo	
and bar	
columns, filters bar	
, then composes the compound document as:	
The N's need not be specified, and there need not be a flag for every column. Only the Y's need to be specified, with commas to denote which column they apply to. For instance:	
This filters only the column zoo	
.	
During indexing, the system creates a virtual document for each row. The virtual document is composed of the contents of the columns concatenated in the listing order with column name tags automatically added. For example:	
This produces the following virtual text for indexing:	
The system indexes the text between the tags, ignoring the tags themselves.	
To index these tags as sections, you can optionally create field sections with the BASIC_SECTION_GROUP	
.	
Note: No section group is created when you use theMULTI_COLUMN_DATASTORE . To create sections for these tags, you must create a section group.	
When you use expressions or functions, the tag is composed of the first 30 characters of the expression unless a column alias is used.	
For example, if your expression is as follows:	
then it produces the following virtual text:	
If your expression is as follows:	
then it produces the following virtual text:	
The tags are in uppercase unless the column name or column alias is in lowercase and surrounded by double quotes. For example:	
produces the following virtual text:	
For lowercase tags, use the following:	
This expression produces:	
Use the DETAIL_DATASTORE	
type for text stored directly in the database in detail tables, with the indexed text column located in the master table.	
DETAIL_DATASTORE	
has the following attributes:	
Table 2-3 DETAIL_DATASTORE Attributes	
Changes to the detail table do not trigger re-indexing when you synchronize the index. Only changes to the indexed column in the master table triggers a re-index when you synchronize the index.	
You can create triggers on the detail table to propagate changes to the indexed column in the master table row.	
This example illustrates how master and detail tables are related to each other.	
Master tables define the documents in a master/detail relationship. You assign an identifying number to each document. The following table is an example master table, called my_master	
:	
Column Name	Column Type
---	---
article_id	NUMBER
author	VARCHAR2(30)
title	VARCHAR2(50)
body	CHAR(1)
Note: Your master table must include a primary key column when you use theDETAIL_DATASTORE type.	
Detail tables contain the text for a document, whose content is usually stored across a number of rows. The following detail table my_detail	
is related to the master table my_master	
with the article_id	
column. This column identifies the master document to which each detail row (sub-document) belongs.	
Column Name	Column Type
---	---
article_id	NUMBER
seq	NUMBER
text	VARCHAR2
In this example, the DETAIL_DATASTORE	
attributes have the following values:	
Attribute	Attribute Value
---	---
binary	TRUE
detail_table	my_detail
detail_key	article_id
detail_lineno	seq
detail_text	text
You use CTX_DDL.CREATE_PREFERENCE to create a preference with DETAIL_DATASTORE	
. You use CTX_DDL.SET_ATTRIBUTE to set the attributes for this preference as described earlier. The following example shows how this is done:	
To index the document defined in this master/detail relationship, you specify a column in the master table with CREATE	
INDEX	
. The column you specify must be one of the allowable types.	
This example uses the body	
column, whose function is to enable the creation of the master/detail index and to improve readability of the code. The my_detail_pref	
preference is set to DETAIL_DATASTORE	
with the required attributes:	
In this example, you can also specify the title	
or author	
column to create the index. However, if you do so, changes to these columns will trigger a re-index operation.	
The FILE_DATASTORE	
type is used for text stored in files accessed through the local file system.	
Note: FILE_DATASTORE may not work with certain types of remote mounted file systems.	
FILE_DATASTORE	
has the following attribute(s):	
Specify the full directory path name of the files stored externally in a file system. When you specify the full directory path as such, you need only include file names in your text column.	
You can specify multiple paths for path, with each path separated by a colon (:) on UNIX and semicolon(;) on Windows. File names are stored in the text column in the text table.	
If you do not specify a path for external files with this attribute, Oracle Text requires that the path be included in the file names stored in the text column.	
The PATH attribute has the following limitations:	
If you specify a PATH attribute, you can only use a simple filename in the indexed column. You cannot combine the PATH attribute with a path as part of the filename. If the files exist in multiple folders or directories, you must leave the PATH attribute unset, and include the full file name, with PATH, in the indexed column.	
On Windows systems, the files must be located on a local drive. They cannot be on a remote drive, whether the remote drive is mapped to a local drive letter.	
This example creates a file datastore preference called COMMON_DIR	
that has a path of /mydocs	
:	
When you populate the table mytable	
, you need only insert filenames. The path attribute tells the system where to look during the indexing operation.	
Create the index as follows:	
Use the URL_DATASTORE	
type for text stored:	
In files on the World Wide Web (accessed through HTTP or FTP)	
In files in the local file system (accessed through the file protocol)	
You store each URL in a single text field.	
The syntax of a URL you store in a text field is as follows (with brackets indicating optional parameters):	
The access_scheme string you specify can be either ftp, http, or file. For example:	
As this syntax is partially compliant with the RFC 1738 specification, the following restriction holds for the URL syntax:	
The URL must contain only printable ASCII characters. Non printable ASCII characters and multibyte characters must be escaped with the %xx notation, where xx is the hexadecimal representation of the special character.	
Note: Thelogin:password@ syntax within the URL is supported only for the ftp access scheme.	
URL_DATASTORE	
has the following attributes:	
Table 2-5 URL_DATASTORE Attributes	
Attribute	Attribute Value
---	---
timeout	Specify the timeout in seconds. The valid range is 15 to 3600 seconds. The default is 30.
maxthreads	Specify the maximum number of threads that can be running simultaneously. Use a number between 1and 1024. The default is 8.
urlsize	Specify the maximum length of URL string in bytes. Use a number between 32 and 65535. The default is 256.
maxurls	Specify maximum size of URL buffer. Use a number between 32 and 65535. The defaults is 256.
maxdocsize	Specify the maximum document size. Use a number between 256 and 2,147,483,647 bytes (2 gigabytes). The defaults is 2,000,000.
http_proxy	Specify the host name of http proxy server. Optionally specify port number with a colon in the form hostname:port.
ftp_proxy	Specify the host name of ftp proxy server. Optionally specify port number with a colon in the form hostname:port.
no_proxy	Specify the domain for no proxy server. Use a comma separated string of up to 16 domain names.
Specify the length of time, in seconds, that a network operation such as a connect or read waits before timing out and returning a timeout error to the application. The valid range for timeout is 15 to 3600 and the default is 30.	
Note: Since timeout is at the network operation level, the total timeout may be longer than the time specified for timeout.	
Specify the maximum number of threads that can be running at the same time. The valid range for maxthreads is 1 to 1024 and the default is 8.	
Specify the maximum length, in bytes, that the URL data store supports for URLs stored in the database. If a URL is over the maximum length, an error is returned. The valid range for urlsize is 32 to 65535 and the default is 256.	
Note: The product values specified for maxurls and urlsize cannot exceed 5,000,000.In other words, the maximum size of the memory buffer (maxurls * urlsize) for the URL is approximately 5 megabytes.	
Specify the maximum number of rows that the internal buffer can hold for HTML documents (rows) retrieved from the text table. The valid range for maxurls is 32 to 65535 and the default is 256.	
Note: The product values specified for maxurls and urlsize cannot exceed 5,000,000.In other words, the maximum size of the memory buffer (maxurls * urlsize) for the URL is approximately 5 megabytes.	
Specify the fully qualified name of the host machine that serves as the HTTP proxy (gateway) for the machine on which Oracle Text is installed. You can optionally specify port number with a colon in the form hostname:port.	
You must set this attribute if the machine is in an intranet that requires authentication through a proxy server to access Web files located outside the firewall.	
Specify the fully-qualified name of the host machine that serves as the FTP proxy (gateway) for the machine on which Oracle Text is installed. You can optionally specify a port number with a colon in the form hostname:port.	
This attribute must be set if the machine is in an intranet that requires authentication through a proxy server to access Web files located outside the firewall.	
Specify a string of domains (up to sixteen, separate by commas) which are found in most, if not all, of the machines in your intranet. When one of the domains is encountered in a host name, no request is sent to the machine(s) specified for ftp_proxy and http_proxy. Instead, the request is processed directly by the host machine identified in the URL.	
For example, if the string us.oracle.com, uk.oracle.com is entered for no_proxy, any URL requests to machines that contain either of these domains in their host names are not processed by your proxy server(s).	
This example creates a URL_DATASTORE	
preference called URL_PREF	
for which the http_proxy, no_proxy, and timeout attributes are set. The defaults are used for the attributes that are not set.	
Create the table and insert values into it:	
To create the index, specify URL_PREF as the datastore:	
Use the USER_DATASTORE	
type to define stored procedures that synthesize documents during indexing. For example, a user procedure might synthesize author, date, and text columns into one document to have the author and date information be part of the indexed text.	
USER_DATASTORE	
has the following attributes:	
Table 2-6 USER_DATASTORE Attributes	
Attribute	Attribute Value
---	---
procedure	Specify the procedure that synthesizes the document to be indexed. This procedure can be owned by any user and must be executable by the index owner.
output_type	Specify the data type of the second argument to procedure. Valid values are CLOB , BLOB , CLOB_LOC , BLOB_LOC , or VARCHAR2 . The default is CLOB. When you specify
Specify the name of the procedure that synthesizes the document to be indexed. This specification must be in the form PROCEDURENAME or PACKAGENAME.PROCEDURENAME. You can also specify the schema owner name.	
The procedure you specify must have two arguments defined as follows:	
The first argument r must be of type ROWID	
. The second argument c must be of type output_type. NOCOPY	
is a compiler hint that instructs Oracle Text to pass parameter c by reference if possible.	
Note:: The procedure name and its arguments can be named anything. The arguments r and c are used in this example for simplicity.	
The stored procedure is called once for each row indexed. Given the rowid of the current row, procedure must write the text of the document into its second argument, whose type you specify with output_type.	
The following constraints apply to procedure:	
procedure can be owned by any user, but the user must have database permissions to execute procedure correctly	
procedure must be executable by the index owner	
procedure must not issue DDL or transaction control statements like COMMIT	
If you change or edit the stored procedure, indexes based upon it will not be notified, so you must manually re-create such indexes. So if the stored procedure makes use of other columns, and those column values change, the row will not be re-indexed. The row is re-indexed only when the indexed column changes.	
Consider a table in which the author, title, and text fields are separate, as in the articles	
table defined as follows:	
The author and title fields are to be part of the indexed document text. Assume user appowner	
writes a stored procedure with the user datastore interface that synthesizes a document from the text, author, and title fields:	
This procedure takes in a rowid and a temporary CLOB	
locator, and concatenates all the article's columns into the temporary CLOB	
. The for loop executes only once.	
The user appowner	
creates the preference as follows:	
When appowner	
creates the index on articles(text)	
using this preference, the indexing operation sees author and title in the document text.	
The following procedure might be used with OUTPUT_TYPE	
BLOB_LOC	
:	
The user appowner	
creates the preference as follows:	
Use the nested datastore type to index documents stored as rows in a nested table.	
Table 2-7 NESTED_DATASTORE Attributes	
When using the nested table datastore, you must index a dummy column, because the extensible indexing framework disallows indexing the nested table column. See the example.	
DML on the nested table is not automatically propagated to the dummy column used for indexing. For DML on the nested table to be propagated to the dummy column, your application code or trigger must explicitly update the dummy column.	
Filter defaults for the index are based on the type of the nested_text	
column.	
During validation, Oracle Text checks that the type exists and that the attributes you specify for nested_lineno and nested_text exist in the nested table type. Oracle Text does not check that the named nested table column exists in the indexed table.	
This section shows an example of using the NESTED_DATASTORE	
type to index documents stored as rows in a nested table.	
The following code creates a nested table and a storage table mytab for the nested table:	
The following code inserts values into the nested table for the parent row with id equal to 1.	
The following code sets the preferences and attributes for the NESTED_DATASTORE	
according to the definitions of the nested table type nt_tab	
and the parent table mytab	
:	
The following code creates the index using the nested table datastore:	
The following select statement queries the index built from a nested table:	
Use the filter types to create preferences that determine how text is filtered for indexing. Filters allow word processor and formatted documents as well as plain text, HTML, and XML documents to be indexed.	
For formatted documents, Oracle Text stores documents in their native format and uses filters to build temporary plain text or HTML versions of the documents. Oracle Text indexes the words derived from the plain text or HTML version of the formatted document.	
To create a filter preference, you must use one of the following types:	
Table 2-8 Filter Types	
Filter	When Used
---	---
CHARSET_FILTER	Character set converting filter
AUTO_FILTER	Auto filter for filtering formatted documents
NULL_FILTER	No filtering required. Use for indexing plain text, HTML, or XML documents
MAIL_FILTER	Use the MAIL_FILTER to transform RFC-822, RFC-2045 messages in to indexable text.
USER_FILTER	User-defined external filter to be used for custom filtering
PROCEDURE_FILTER	User-defined stored procedure filter to be used for custom filtering.
Use the CHARSET_FILTER	
to convert documents from a non-database character set to the character set used by the database.	
CHARSET_FILTER	
has the following attribute:	
Table 2-9 CHARSET_FILTER Attributes	
See Also: Oracle Database Globalization Support Guide for more information about the supported Globalization Support character sets.	
If your character set is UTF-16, you can specify UTF16AUTO to automatically detect big- or little-endian data. Oracle Text does so by examining the first two bytes of the document row.	
If the first two bytes are 0xFE, 0xFF, the document is recognized as little-endian and the remainder of the document minus those two bytes is passed on for indexing.	
If the first two bytes are 0xFF, 0xFE, the document is recognized as big-endian and the remainder of the document minus those two bytes is passed on for indexing.	
If the first two bytes are anything else, the document is assumed to be big-endian and the whole document including the first two bytes is passed on for indexing.	
A mixed character set column is one that stores documents of different character sets. For example, a text table might store some documents in WE8ISO8859P1 and others in UTF8.	
To index a table of documents in different character sets, you must create your base table with a character set column. In this column, you specify the document character set on a per-row basis. To index the documents, Oracle Text converts the documents into the database character set.	
Character set conversion works with the CHARSET_FILTER	
. When the charset column is NULL	
or not recognized, Oracle Text assumes the source character set is the one specified in the charset attribute.	
Note: Character set conversion also works with theAUTO_FILTER when the document format column is set to TEXT .	
For example, create the table with a charset column:	
Create a preference for this filter:	
Insert plain-text documents and name the character set:	
Create the index and name the charset column:	
The AUTO_FILTER	
is a universal filter that filters most document formats, including PDF and Microsoft Word™ documents. Use it for indexing both single-format and mixed-format columns. This filter automatically bypasses plain-text, HTML, XHTML, SGML, and XML documents.	
See Also: For a list of the formats supported byAUTO_FILTER and to learn more about how to set up your environment to use this filter, see Appendix B, "Oracle Text Supported Document Formats".	
The AUTO_FILTER	
preference has the following attributes:	
Table 2-10 AUTO_FILTER Attributes	
Attribute	Attribute Value
---	---
timeout	Specify the AUTO_FILTER timeout in seconds. Use a number between 0 and 42,949,672. Default is 120. Setting this value 0 disables the feature. How this wait period is used depends on how you set timeout_type. This feature is disabled for rows for which the corresponding charset and format column cause the Use this feature to prevent the Oracle Text indexing operation from waiting indefinitely on a hanging filter operation.
timeout_type	Specify either HEURISTIC or FIXED. Default is HEURISTIC. Specify HEURISTIC for Oracle Text to check every TIMEOUT seconds if output from Outside In HTML Export has increased. The operation terminates for the document if output has not increased. An error is recorded in the Specify FIXED to terminate the Outside In HTML Export processing after TIMEOUT seconds regardless of whether filtering was progressing normally or just hanging. This value is useful when indexing throughput is more important than taking the time to successfully filter large documents.
output_formatting	Setting this attribute has no effect on filter performance or filter output. It is maintained for backward compatibility.
To index a text column containing formatted documents such as Microsoft Word, use the AUTO_FILTER	
. This filter automatically detects the document format. You can use the CTXSYS	
.AUTO_FILTER	
system-defined preference in the parameter clause as follows:	
A mixed-format column is a text column containing more than one document format, such as a column that contains Microsoft Word, PDF, plain text, and HTML documents.	
The AUTO_FILTER	
can index mixed-format columns, automatically bypassing plain text, HTML, and XML documents. However, if you prefer not to depend on the built-in bypass mechanism, you can explicitly tag your rows as text and cause the AUTO_FILTER	
to ignore the row and not process the document in any way.	
The format column in the base table enables you to specify the type of document contained in the text column. You can specify the following document types: TEXT	
, BINARY	
, and IGNORE	
. During indexing, the AUTO_FILTER	
ignores any document typed TEXT	
, assuming the charset column is not specified. (The difference between a document with a TEXT	
format column type and one with an IGNORE	
type is that the TEXT	
document is indexed, but ignored by the filter, while the IGNORE	
document is not indexed at all. Use IGNORE	
to overlook documents such as image files, or documents in a language that you do not want to index. IGNORE	
can be used with any filter type.)	
To set up the AUTO_FILTER	
bypass mechanism, you must create a format column in your base table.	
For example:	
Assuming you are indexing mostly Word documents, you specify BINARY	
in the format column to filter the Word documents. Alternatively, to have the AUTO_FILTER	
ignore an HTML document, specify TEXT	
in the format column.	
For example, the following statements add two documents to the text table, assigning one format as BINARY	
and the other TEXT	
:	
To create the index, use CREATE	
INDEX	
and specify the format column name in the parameter string:	
If you do not specify TEXT	
or BINARY	
for the format column, BINARY	
is used.	
Note: You need not specify the format column inCREATE INDEX when using the AUTO_FILTER .	
The AUTO_FILTER	
converts documents to the database character set when the document format column is set to TEXT	
. In this case, the AUTO_FILTER	
looks at the charset column to determine the document character set.	
If the charset column value is not an Oracle Text character set name, the document is passed through without any character set conversion.	
Note: You need not specify the charset column when using theAUTO_FILTER .	
If you do specify the charset column and do not specify the format column, the AUTO_FILTER	
works like the CHARSET_FILTER, except that in this case there is no Japanese character set auto-detection.	
Use the NULL_FILTER	
type when plain text or HTML is to be indexed and no filtering needs to be performed. NULL_FILTER	
has no attributes.	
If your document set is entirely HTML, Oracle recommends that you use the NULL_FILTER	
in your filter preference.	
For example, to index an HTML document set, you can specify the system-defined preferences for NULL_FILTER	
and HTML_SECTION_GROUP	
as follows:	
See Also: For more information on section groups and indexing HTML documents, see "Section Group Types".	
Use the MAIL_FILTER	
to transform RFC-822, RFC-2045 messages in to indexable text. The following limitations hold for the input:	
Document must be US-ASCII	
Lines must not be longer than 1024 bytes	
Document must be syntactically valid with regard to RFC-822.	
Behavior for invalid input is not defined. Some deviations may be robustly handled by the filter without error. Others may result in a fetch-time or filter-time error.	
The MAIL_FILTER	
has the following attributes:	
Table 2-11 MAIL_FILTER Attributes	
Attribute	Attribute Value
---	---
INDEX_FIELDS	Specify a colon-separated list of fields to preserve in the output. These fields are transformed to tag markup. For example, if INDEX_FIELDS is set to "FROM":
becomes:	
Only top-level fields are transformed in this way.	
AUTO_FILTER_TIMEOUT	Specify a timeout value for the AUTO_FILTER filtering invoked by the mail filter. Default is 60. (Replaces the INSO_TIMEOUT attribute and is backward compatible with INSO_TIMEOUT .)
AUTO_FILTER_OUTPUT_FORMATTING	Specify either TRUE or FALSE . Default is TRUE . This attribute replaces the previous
PART_FIELD_STYLE	Specify how fields occurring in lower-level parts and identified by the INDEX_FIELDS attribute should be transformed. The fields of the top-level message part identified by INDEX_FIELDS are always transformed to tag markup (see the previous description of INDEX_FIELDS); PART_FIELD_STYLE controls the transformation of subsequent parts; for example, attached emails. Possible values include
This filter does the following for each document:	
Read and remove header fields	
Decode message body if needed, depending on Content-transfer-encoding field	
Take action depending on the Content-Type field value and the user-specified behavior specified in a mail filter configuration file. (See "About the Mail Filter Configuration File".) The possible actions are:	
produce the body in the output text (INCLUDE	
). If no character set is encountered in the INLCUDE parts in the Content-Type header field, Oracle defaults to the value you specify in the character set column in the base table. You name your populated character set column in the parameter string of the CREATE INDEX command.	
AUTO_FILTER	
the body contents (AUTO_FILTER	
directive).	
remove the body contents from the output text (IGNORE	
)	
If no behavior is specified for the type in the configuration file, the defaults are as follows:	
text/*: produce body in the output text	
application/*: AUTO_FILTER	
the body contents	
image/*, audio/*, video/*, model/*: ignore	
Multipart messages are parsed, and the mail filter applied recursively to each part. Each part is appended to the output.	
All text produced will be charset-converted to the database character set, if needed.	
The MAIL_FILTER	
filter makes use of a mail filter configuration file, which contains directives specifying how a mail document should be filtered. The mail filter configuration file is a editable text file. Here you can override default behavior for each Content-Type. The configuration file also contains IANA-to-Oracle Globalization Support character set name mappings.	
The location of the file must be in ORACLE_HOME	
/ctx/config. The name of the file to use is stored in the new system parameter MAIL_FILTER_CONFIG_FILE	
. On install, this is set to drmailfl.txt, which has useful default contents.	
Oracle recommends that you create your own mail filter configuration files to avoid overwrite by the installation of a new version or patch set. The mail filter configuration file should be in the database character set.	
The file has two sections, BEHAVIOR and CHARSETS. You indicate the start of the behavior section as follows:	
Each line following starts with a mime type, then whitespace, then behavior specification. The MIME	
type can be a full TYPE	
/SUBTYPE	
or just TYPE	
, which will apply to all subtypes of that type. TYPE	
/SUBTYPE	
specification overrides TYPE	
specification, which overrides default behavior. Behavior can be INCLUDE	
, AUTO_FILTER	
, or IGNORE	
(see "Filter Behavior" for definitions). For instance:	
You cannot specify behavior for "multipart" or "message" types. If you do, such lines are ignored. Duplicate specification for a type replaces earlier specifications.	
Comments can be included in the mail configuration file by starting lines with the # symbol.	
The charset mapping section begins with	
Lines consist of an IANA name, then whitespace, then a Oracle Globalization Support charset name, like:	
This file is the only way the mail filter gets the mappings. There are no defaults.	
When you change the configuration file, the changes affect only the documents indexed after that point. You must flush the shared pool after changing the file.	
Suppose we have an email with the following form, in which other emails with different subject lines are attached to our email:	
We set INDEX_FIELDS	
to be "Subject" and, initially, PART_FIELD_STYLE	
to IGNORE	
.	
Now when the index is created, the file will be indexed as follows:	
If PART_FIELD_STYLE	
is instead set to TAG	
, this becomes:	
If PART_FIELD_STYLE	
is set to FIELD	
instead, this is the result:	
Finally, if PART_FIELD_STYLE	
is instead set to TEXT	
, then the result is:	
Use the USER_FILTER	
type to specify an external filter for filtering documents in a column. USER_FILTER	
has the following attribute:	
Table 2-12 USER_FILTER Attributes	
Attribute	Attribute Value
---	---
command	Specify the name of the filter executable.
Specify the executable for the single external filter used to filter all text stored in a column. If more than one document format is stored in the column, the external filter specified for command must recognize and handle all such formats.	
On UNIX, the executable you specify must exist in the $ORACLE_HOME/ctx/bin	
directory. On Windows, the executable you specify must exist in the %ORACLE_HOME%/bin	
directory.	
You must create your user-filter executable with two parameters: the first is the name of the input file to be read, and the second is the name of the output file to be written to.	
If all the document formats are supported by AUTO_FILTER	
, use AUTO_FILTER	
instead of USER_FILTER	
unless additional tasks besides filtering are required for the documents.	
The following example Perl script to be used as the user filter. This script converts the input text file specified in the first argument to uppercase and writes the output to the location specified in the second argument:	
Assuming that this file is named upcase.pl	
, create the filter preference as follows:	
Create the index in SQL*Plus as follows:	
Use the PROCEDURE_FILTER	
type to filter your documents with a stored procedure. The stored procedure is called each time a document needs to be filtered.	
This type has the following attributes:	
Table 2-13 PROCEDURE_FILTER Attributes	
Attribute	Purpose
---	---
procedure	Name of the filter stored procedure.
input_type	Type of input argument for stored procedure.
output_type	Type of output argument for stored procedure.
rowid_parameter	Include rowid parameter?
format_parameter	Include format parameter?
charset_parameter	Include charset parameter?
Specify the name of the stored procedure to use for filtering. The procedure can be a PL/SQL stored procedure. The procedure can be a safe callout or call a safe callout.	
With the rowid_parameter	
, format_parameter	
, and charset_parameter	
set to FALSE, the procedure can have one of the following signatures:	
The first argument is the content of the unfiltered row as passed out by the datastore. The second argument is for the procedure to pass back the filtered document text.	
The procedure attribute is mandatory and has no default.	
Specify the type of the input argument of the filter procedure. You can specify one of the following:	
Type	Description
---	---
procedure	Name of the filter stored procedure.
input_type	Type of input argument for stored procedure.
output_type	Type of output argument for stored procedure.
rowid_parameter	Include rowid parameter?
The input_type attribute is not mandatory. If not specified, BLOB is the default.	
Specify the type of output argument of the filter procedure. You can specify one of the following types:	
Type	Description
---	---
CLOB	The output argument is IN OUT NOCOPY CLOB. Your procedure must write the filtered content to the CLOB passed in.
VARCHAR2	The output argument is IN OUT NOCOPY VARCHAR2. Your procedure must write the filtered content to the VARCHAR2 variable passed in.
FILE	The output argument must be IN VARCHAR2 . On entering the filter procedure, the output argument is the name of a temporary file. The filter procedure must write the filtered contents to this named file. Using a FILE output type is useful only when the procedure is a safe callout, which can write to the file.
The output_type attribute is not mandatory. If not specified, CLOB	
is the default.	
When you specify TRUE, the rowid of the document to be filtered is passed as the first parameter, before the input and output parameters.	
For example, with INPUT_TYPE	
BLOB	
, OUTPUT_TYPE	
CLOB	
, and ROWID_PARAMETER	
TRUE	
, the filter procedure must have the signature as follows:	
This attribute is useful for when your procedure requires data from other columns or tables. This attribute is not mandatory. The default is FALSE	
.	
When you specify TRUE	
, the value of the format column of the document being filtered is passed to the filter procedure before input and output parameters, but after the rowid parameter, if enabled.	
You specify the name of the format column at index time in the parameters string, using the keyword 'format column <columnname>'	
. The parameter type must be IN	
VARCHAR2	
.	
The format column value can be read by means of the rowid parameter, but this attribute enables a single filter to work on multiple table structures, because the format attribute is abstracted and does not require the knowledge of the name of the table or format column.	
FORMAT_PARAMETER	
is not mandatory. The default is FALSE	
.	
When you specify TRUE	
, the value of the charset column of the document being filtered is passed to the filter procedure before input and output parameters, but after the rowid and format parameter, if enabled.	
You specify the name of the charset column at index time in the parameters string, using the keyword 'charset column <columnname>'	
. The parameter type must be IN	
VARCHAR2	
.	
CHARSET_PARAMETER	
attribute is not mandatory. The default is FALSE.	
ROWID_PARAMETER	
, FORMAT_PARAMETER	
, and CHARSET_PARAMETER	
are all independent. The order is rowid, the format, then charset, but the filter procedure is passed only the minimum parameters required.	
For example, assume that INPUT_TYPE	
is BLOB	
and OUTPUT_TYPE	
is CLOB	
. If your filter procedure requires all parameters, the procedure signature must be:	
If your procedure requires only the ROWID	
, then the procedure signature must be:	
In order to create an index using a PROCEDURE_FILTER	
preference, the index owner must have execute permission on the procedure.	
The filter procedure can raise any errors needed through the normal PL/SQL raise_application_error facility. These errors are propagated to the CTX_USER_INDEX_ERRORS view or reported to the user, depending on how the filter is invoked.	
Consider a filter procedure CTXSYS.NORMALIZE	
that you define with the following signature:	
To use this procedure as your filter, set up your filter preference as follows:	
Use the lexer preference to specify the language of the text to be indexed. To create a lexer preference, you must use one of the following lexer types:	
Table 2-14 Lexer Types	
Type	Description
---	---
BASIC_LEXER	Lexer for extracting tokens from text in languages, such as English and most western European languages that use white space delimited words.
MULTI_LEXER	Lexer for indexing tables containing documents of different languages
CHINESE_VGRAM_LEXER	Lexer for extracting tokens from Chinese text.
CHINESE_LEXER	Lexer for extracting tokens from Chinese text.
JAPANESE_VGRAM_LEXER	Lexer for extracting tokens from Japanese text.
JAPANESE_LEXER	Lexer for extracting tokens from Japanese text.
KOREAN_MORPH_LEXER	Lexer for extracting tokens from Korean text.
USER_LEXER	Lexer you create to index a particular language.
WORLD_LEXER	Lexer for indexing tables containing documents of different languages; autodetects languages in a document
Use the BASIC_LEXER	
type to identify tokens for creating Text indexes for English and all other supported whitespace-delimited languages.	
The BASIC_LEXER	
also enables base-letter conversion, composite word indexing, case-sensitive indexing and alternate spelling for whitespace-delimited languages that have extended character sets.	
In English and French, you can use the BASIC_LEXER	
to enable theme indexing.	
Note: Any processing the lexer does to tokens before indexing (for example, removal of characters, and base-letter conversion) are also performed on query terms at query time. This ensures that the query terms match the form of the tokens in the Text index.	
BASIC_LEXER	
supports any database character set.	
BASIC_LEXER	
has the following attributes:	
Table 2-15 BASIC_LEXER Attributes	
Attribute	Attribute Value
---	---
continuation	characters
numgroup	characters
numjoin	characters
printjoins	characters
punctuations	characters
skipjoins	characters
startjoins	non alphanumeric characters that occur at the beginning of a token (string)
endjoins	non alphanumeric characters that occur at the end of a token (string)
whitespace	characters (string)
newline	NEWLINE (\n) CARRIAGE_RETURN (\r)
base_letter	NO (disabled)
YES (enabled)	
base_letter_type	GENERIC (default)
SPECIFIC	
override_base_letter	TRUE FALSE (default)
mixed_case	NO (disabled)
YES (enabled)	
composite	DEFAULT (no composite word indexing, default)
GERMAN (German composite word indexing)	
DUTCH (Dutch composite word indexing)	
index_stems	0 NONE 1 ENGLISH 2 DERIVATIONAL 3 DUTCH 4 FRENCH 5 GERMAN 6 ITALIAN 7 SPANISH
index_themes	YES (enabled)
NO (disabled, default)	
NO (disabled, default)	
index_text	YES (enabled, default
NO (disabled)	
prove_themes	YES (enabled, default)
NO (disabled)	
theme_language	AUTO (default)
(any Globalization Support language)	
alternate_spelling	GERMAN (German alternate spelling)
DANISH (Danish alternate spelling)	
SWEDISH (Swedish alternate spelling)	
NONE (No alternate spelling, default)	
new_german_spelling	YES NO (default)
Specify the characters that indicate a word continues on the next line and should be indexed as a single token. The most common continuation characters are hyphen '-' and backslash '\'.	
Specify a single character that, when it appears in a string of digits, indicates that the digits are groupings within a larger single unit.	
For example, comma ',' might be defined as a numgroup character because it often indicates a grouping of thousands when it appears in a string of digits.	
Specify the characters that, when they appear in a string of digits, cause Oracle Text to index the string of digits as a single unit or word.	
For example, period '.' can be defined as numjoin characters because it often serves as decimal points when it appears in a string of digits.	
Note: The default values for numjoin and numgroup are determined by the Globalization Support initialization parameters that are specified for the database.In general, a value need not be specified for either numjoin or numgroup when creating a lexer preference for	
Specify the non alphanumeric characters that, when they appear anywhere in a word (beginning, middle, or end), are processed as alphanumeric and included with the token in the Text index. This includes printjoins that occur consecutively.	
For example, if the hyphen '-' and underscore '_' characters are defined as printjoins, terms such as pseudo-intellectual and _file_ are stored in the Text index as pseudo-intellectual and _file_.	
Note: If a printjoins character is also defined as a punctuations character, the character is only processed as an alphanumeric character if the character immediately following it is a standard alphanumeric character or has been defined as a printjoins or skipjoins character.	
Specify the non-alphanumeric characters that, when they appear at the end of a word, indicate the end of a sentence. The defaults are period '.', question mark '?', and exclamation point '!'.	
Characters that are defined as punctuations are removed from a token before text indexing. However, if a punctuations character is also defined as a printjoins character, the character is removed only when it is the last character in the token.	
For example, if the period (.) is defined as both a printjoins and a punctuations character, the following transformations take place during indexing and querying as well:	
Token	Indexed Token
---	---
.doc	.doc
dog.doc	dog.doc
dog..doc	dog..doc
dog.	dog
dog...	dog..
In addition, BASIC_LEXER	
uses punctuations characters in conjunction with newline and whitespace characters to determine sentence and paragraph delimiters for sentence/paragraph searching.	
Specify the non-alphanumeric characters that, when they appear within a word, identify the word as a single token; however, the characters are not stored with the token in the Text index.	
For example, if the hyphen character '-' is defined as a skipjoins, the word pseudo-intellectual is stored in the Text index as pseudointellectual.	
Note: printjoins and skipjoins are mutually exclusive. The same characters cannot be specified for both attributes.	
For startjoins, specify the characters that when encountered as the first character in a token explicitly identify the start of the token. The character, as well as any other startjoins characters that immediately follow it, is included in the Text index entry for the token. In addition, the first startjoins character in a string of startjoins characters implicitly ends the previous token.	
For endjoins, specify the characters that when encountered as the last character in a token explicitly identify the end of the token. The character, as well as any other startjoins characters that immediately follow it, is included in the Text index entry for the token.	
The following rules apply to both startjoins and endjoins:	
The characters specified for startjoins/endjoins cannot occur in any of the other attributes for BASIC_LEXER	
.	
startjoins/endjoins characters can occur only at the beginning or end of tokens	
Printjoins differ from endjoins and startjoins in that position does not matter. For example, $35 will be indexed as one token if $ is a startjoin or a printjoin, but as two tokens if it is defined as an endjoin.	
Specify the characters that are treated as blank spaces between tokens. BASIC_LEXER	
uses whitespace characters in conjunction with punctuations and newline characters to identify character strings that serve as sentence delimiters for sentence and paragraph searching.	
The predefined default values for whitespace are 'space' and 'tab'. These values cannot be changed. Specifying characters as whitespace characters adds to these defaults.	
Specify the characters that indicate the end of a line of text. BASIC_LEXER	
uses newline characters in conjunction with punctuations and whitespace characters to identify character strings that serve as paragraph delimiters for sentence and paragraph searching.	
The only valid values for newline are NEWLINE	
and CARRIAGE_RETURN	
(for carriage returns). The default is NEWLINE	
.	
Specify whether characters that have diacritical marks (umlauts, cedillas, acute accents, and so on) are converted to their base form before being stored in the Text index. The default is NO (base-letter conversion disabled). For more information on base-letter conversions and base_letter_type	
, see Base-Letter Conversion.	
Specify GENERIC or SPECIFIC.	
The GENERIC value is the default and means that base letter transformation uses one transformation table that applies to all languages. For more information on base-letter conversions and base_letter_type	
, see Base-Letter Conversion.	
When base_letter	
is enabled at the same time as alternate_spelling	
, it is sometimes necessary to override base_letter	
to prevent unexpected results from serial transformations. See Overriding Base-Letter Transformations with Alternate Spelling. Default is FALSE	
.	
Specify whether the lexer leaves the tokens exactly as they appear in the text or converts the tokens to all uppercase. The default is NO (tokens are converted to all uppercase).	
Note: Oracle Text ensures that word queries match the case sensitivity of the index being queried. As a result, if you enable case sensitivity for your Text index, queries against the index are always case sensitive.	
Specify whether composite word indexing is disabled or enabled for either GERMAN	
or DUTCH	
text. The default is DEFAULT	
(composite word indexing disabled).	
Words that are usually one entry in a German dictionary are not split into composite stems, while words that aren't dictionary entries are split into composite stems.	
In order to retrieve the indexed composite stems, you must issue a stem query, such as $bahnhof. The language of the wordlist stemmer must match the language of the composite stems.	
Oracle Text ships with a system stemming dictionary ($ORACLE_HOME/ctx/data/enlx/dren.dct	
), which is used for both ENGLISH	
and DERIVATIONAL	
stemming. You can create a user-dictionary for your own language to customize how words are decomposed. These dictionaries are shown in Table 2-16.	
Table 2-16 Stemming User-Dictionaries	
Dictionary	Language
---	---
$ORACLE_HOME/ctx/data/frlx/drfr.dct	French
$ORACLE_HOME/ctx/data/delx/drde.dct	German
$ORACLE_HOME/ctx/data/nllx/drnl.dct	Dutch
$ORACLE_HOME/ctx/data/itlx/drit.dct	Italian
$ORACLE_HOME/ctx/data/eslx/dres.dct	Spanish
Stemming user-dictionaries are not supported for languages other than those listed in Table 2-16.	
The format for the user dictionary is as follows:	
The individual parts of the decomposed word must be separated by the # character. The following example entries are for the German word Hauptbahnhof:	
Specify YES to index theme information in English or French. This makes ABOUT	
queries more precise. The index_themes and index_text attributes cannot both be NO.	
If you use the BASIC_LEXER	
and specify no value for index_themes, this attribute defaults to NO	
.	
You can set this parameter to TRUE for any indextype including CTXCAT. To issue an ABOUT query with CATSEARCH, use the query template with CONTEXT grammar.	
Note: index_themes requires an installed knowledge base. A knowledge base may or may not have been installed with Oracle Text. For more information on knowledge bases, see the Oracle Text Application Developer's Guide.	
Specify YES	
to prove themes. Theme proving attempts to find related themes in a document. When no related themes are found, parent themes are eliminated from the document.	
While theme proving is acceptable for large documents, short text descriptions with a few words rarely prove parent themes, resulting in poor recall performance with ABOUT	
queries.	
Theme proving results in higher precision and less recall (less rows returned) for ABOUT	
queries. For higher recall in ABOUT	
queries and possibly less precision, you can disable theme proving. Default is YES	
.	
The prove_themes	
attribute is supported for CONTEXT	
and CTXRULE	
indexes.	
Specify which knowledge base to use for theme generation when index_themes is set to YES	
. When index_themes is NO	
, setting this parameter has no effect on anything.	
You can specify any Globalization Support language or AUTO	
. You must have a knowledge base for the language you specify. This release provides a knowledge base in only English and French. In other languages, you can create your own knowledge base.	
The default is AUTO	
, which instructs the system to set this parameter according to the language of the environment.	
Specify the stemmer to use for stem indexing. You can choose one of	
NONE	
ENGLISH	
DERIVATIONAL	
DUTCH	
FRENCH	
GERMAN	
ITALIAN	
SPANISH	
Tokens are stemmed to a single base form at index time in addition to the normal forms. Indexing stems enables better query performance for stem ($) queries, such as $computed.	
Specify YES	
to index word information. The index_themes and index_text attributes cannot both be NO	
.	
The default is NO	
.	
Specify either GERMAN	
, DANISH	
, or SWEDISH	
to enable the alternate spelling in one of these languages. Enabling alternate spelling enables you to query a word in any of its alternate forms.	
Alternate spelling is off by default; however, in the language-specific scripts that Oracle provides in admin/defaults	
(drdefd.sql	
for German, drdefdk.sql	
for Danish, and drdefs.sql	
for Swedish), alternate spelling is turned on. If your installation uses these scripts, then alternate spelling is on. However, You can specify NONE	
for no alternate spelling. For more information about the alternate spelling conventions Oracle Text uses, see Alternate Spelling.	
Specify whether the queries using the BASIC_LEXER	
return both traditional and reformed (new) spellings of German words. If new_german_spelling	
is set to YES, then both traditional and new forms of words are indexed. If it is set to NO, then the word will be indexed only as it as provided in the query. The default is NO.	
The following example sets printjoin characters and disables theme indexing with the BASIC_LEXER	
:	
To create the index with no theme indexing and with printjoins characters set as described, issue the following statement:	
Use MULTI_LEXER	
to index text columns that contain documents of different languages. For example, you can use this lexer to index a text column that stores English, German, and Japanese documents.	
This lexer has no attributes.	
You must have a language column in your base table. To index multi-language tables, you specify the language column when you create the index.	
You create a multi-lexer preference with the CTX_DDL.CREATE_PREFERENCE	
. You add language-specific lexers to the multi-lexer preference with the CTX_DDL.ADD_SUB_LEXER	
procedure.	
During indexing, the MULTI_LEXER	
examines each row's language column value and switches in the language-specific lexer to process the document.	
The WORLD_LEXER	
lexer also performs multi-language indexing, but without the need for separate language columns (that is, it has automatic language detection). For more on WORLD_LEXER	
, see "WORLD_LEXER".	
When you use the MULTI_LEXER	
, you can also use a multi-language stoplist for indexing.	
Create the multi-language table with a primary key, a text column, and a language column as follows:	
Assume that the table holds mostly English documents, with the occasional German or Japanese document. To handle the three languages, you must create three sub-lexers, one for English, one for German, and one for Japanese:	
Create the multi-lexer preference:	
Since the stored documents are mostly English, make the English lexer the default using CTX_DDL.ADD_SUB_LEXER:	
Now add the German and Japanese lexers in their respective languages with CTX_DDL.ADD_SUB_LEXER procedure. Also assume that the language column is expressed in the standard ISO 639-2 language codes, so add those as alternate values.	
Now create the index globalx	
, specifying the multi-lexer preference and the language column in the parameter clause as follows:	
At query time, the multi-lexer examines the language setting and uses the sub-lexer preference for that language to parse the query. If the language is not set, then the default lexer is used.	
Otherwise, the query is parsed and run as usual. The index contains tokens from multiple languages, so such a query can return documents in several languages. To limit your query to a given language, use a structured clause on the language column.	
The CHINESE_VGRAM_LEXER	
type identifies tokens in Chinese text for creating Text indexes.	
The CHINESE_LEXER	
type identifies tokens in traditional and simplified Chinese text for creating Oracle Text indexes.	
This lexer offers the following benefits over the CHINESE_VGRAM_LEXER	
:	
generates a smaller index	
better query response time	
generates real word tokens resulting in better query precision	
supports stop words	
Because the CHINESE_LEXER	
uses a different algorithm to generate tokens, indexing time is longer than with CHINESE_VGRAM_LEXER	
.	
You can use this lexer if your database character is one of the Chinese or Unicode character sets supported by Oracle.	
The JAPANESE_VGRAM_LEXER	
type identifies tokens in Japanese for creating Text indexes. It has no attributes. This lexer supports the stem ($) operator.	
This lexer has the following attributes:	
Table 2-19 JAPANESE_VGRAM_LEXER Attributes	
Attribute	Attribute Value
---	---
delimiter	Specify NONE or ALL to ignore certain Japanese blank characters, such as a full-width forward slash or a full-width middle dot. Default is NONE .
mixed_case_ASCII7	Enable mixed-case (upper- and lower-case) searches of ASCII7 text (for example, cat and Cat). Allowable values are YES and NO (default).
The JAPANESE_LEXER	
type identifies tokens in Japanese for creating Text indexes. This lexer supports the stem ($) operator.	
This lexer offers the following benefits over the JAPANESE_VGRAM_LEXER	
:	
generates a smaller index	
better query response time	
generates real word tokens resulting in better query precision	
Because the JAPANESE_LEXER	
uses a new algorithm to generate tokens, indexing time is longer than with JAPANESE_VGRAM_LEXER	
.	
You can modify the existing lexicon (dictionary) used by the Japanese lexer, or create your own Japanese lexicon, with the ctxlc	
command.	
This lexer has the following attributes:	
Table 2-20 JAPANESE_LEXER Attributes	
Attribute	Attribute Value
---	---
delimiter	Specify NONE or ALL to ignore certain Japanese blank characters, such as a full-width forward slash or a full-width middle dot. Default is NONE .
mixed_case_ASCII7	Enable mixed-case (upper- and lower-case) searches of ASCII7 text (for example, cat and Cat). Allowable values are YES and NO (default).
When you specify JAPANESE_LEXER	
for creating text index, the JAPANESE_LEXER	
resolves a sentence into words.	
For example, the following compound word (natural language institute)	
is indexed as three tokens:	
In order to resolve a sentence into words, the internal dictionary is referenced. When a word cannot be found in the internal dictionary, Oracle Text uses the JAPANESE_VGRAM_LEXER	
to resolve it.	
The KOREAN_MORPH_LEXER	
type identifies tokens in Korean text for creating Oracle Text indexes.	
The KOREAN_MORPH_LEXER	
uses four dictionaries:	
Table 2-21 KOREAN_MORPH_LEXER Dictionaries	
Dictionary	File
---	---
System	$ORACLE_HOME/ctx/data/kolx/drk2sdic.dat
Grammar	$ORACLE_HOME/ctx/data/kolx/drk2gram.dat
Stopword	$ORACLE_HOME/ctx/data/kolx/drk2xdic.dat
User-defined	$ORACLE_HOME/ctx/data/kolx/drk2udic.dat
The grammar, user-defined, and stopword dictionaries should be written using the KSC 5601 or MSWIN949 character sets. You can modify these dictionaries using the defined rules. The system dictionary must not be modified.	
You can add unregistered words to the user-defined dictionary file. The rules for specifying new words are in the file.	
You can use KOREAN_MORPH_LEXER	
if your database character set is one of the following:	
The KOREAN_MORPH_LEXER	
enables mixed-case searches.	
The KOREAN_MORPH_LEXER	
supports:	
words in non-KSC5601 Korean characters defined in Unicode	
supplementary characters	
See Also: For information on supplementary characters, see the Oracle Database Globalization Support Guide	
Some Korean documents may have non-KSC5601 characters in them. As the KOREAN_MORPH_LEXER	
can recognize all possible 11,172 Korean (Hangul) characters, such documents can also be interpreted by using the UTF8 or AL32UTF8 character sets.	
Use the AL32UTF8 character set for your database to extract surrogate characters. By default, the KOREAN_MORPH_LEXER	
extracts all series of surrogate characters in a document as one token for each series.	
For conversion Hanja to Hangul (Korean), the KOREAN_MORPH_LEXER	
supports only the 4888 Hanja characters defined in KSC5601.	
When you use the KOREAN_MORPH_LEXER	
, you can specify the following attributes:	
Table 2-22 KOREAN_MORPH_LEXER Attributes	
You can use the composite attribute to control how composite nouns are indexed.	
When you specify NGRAM	
for the composite attribute, composite nouns are indexed with all possible component tokens. For example, the following composite noun (information processing institute)	
is indexed as six tokens:	
You can specify NGRAM	
indexing as follows:	
To create the index:	
When you specify COMPONENT_WORD	
for the composite attribute, composite nouns and their components are indexed. For example, the following composite noun (information processing institute)	
is indexed as four tokens:	
You can specify COMPONENT_WORD	
indexing as follows:	
To create the index:	
Use USER_LEXER to plug in your own language-specific lexing solution. This enables you to define lexers for languages that are not supported by Oracle Text. It also enables you to define a new lexer for a language that is supported but whose lexer is inappropriate for your application.	
The user-defined lexer you register with Oracle Text is composed of two routines that you must supply:	
Table 2-23 User-Defined Routines for USER_LEXER	
User-Defined Routine	Description
---	---
Indexing Procedure	Stored procedure (PL/SQL) which implements the tokenization of documents and stop words. Output must be an XML document as specified in this section.
Query Procedure	Stored procedure (PL/SQL) which implements the tokenization of query words. Output must be an XML document as specified in this section.
This callback stored procedure is called by Oracle Text as needed to tokenize a document or a stop word found in the stoplist object.	
This procedure can be a PL/SQL stored procedure.	
The index owner must have EXECUTE privilege on this stored procedure.	
This stored procedure must not be replaced or dropped after the index is created. You can replace or drop this stored procedure after the index is dropped.	
Two different interfaces are supported for the user-defined lexer indexing procedure:	
This procedure must not perform any of the following operations:	
rollback	
explicitly or implicitly commit the current transaction	
issue any other transaction control statement	
alter the session language or territory	
The child elements of the root element tokens of the XML document returned must be in the same order as the tokens occur in the document or stop word being tokenized.	
The behavior of this stored procedure must be deterministic with respect to all parameters.	
Two different interfaces are supported for the User-defined lexer indexing procedure. One interface enables the document or stop word and the corresponding tokens encoded as XML to be passed as VARCHAR2 datatype whereas the other interface uses the CLOB datatype. This attribute indicates the interface implemented by the stored procedure specified by the INDEX_PROCEDURE attribute.	
BASIC_WORDLIST AttributesTable 2-25 describes the interface that enables the document or stop word from stoplist object to be tokenized to be passed as VARCHAR2 from Oracle Text to the stored procedure and for the tokens to be passed as VARCHAR2 as well from the stored procedure back to Oracle Text.	
Your user-defined lexer indexing procedure should use this interface when all documents in the column to be indexed are smaller than or equal to 32512 bytes and the tokens can be represented by less than or equal to 32512 bytes. In this case the CLOB interface given in Table 2-26 can also be used, although the VARCHAR2 interface will generally perform faster than the CLOB interface.	
This procedure must be defined with the following parameters:	
Table 2-25 VARCHAR2 Interface for INDEX_PROCEDURES	
Parameter Position	Parameter Mode
---	---
1	IN
2	IN OUT
3	IN
Table 2-26 describes the CLOB interface that enables the document or stop word from stoplist object to be tokenized to be passed as CLOB from Oracle Text to the stored procedure and for the tokens to be passed as CLOB as well from the stored procedure back to Oracle Text.	
The user-defined lexer indexing procedure should use this interface when at least one of the documents in the column to be indexed is larger than 32512 bytes or the corresponding tokens are represented by more than 32512 bytes.	
Table 2-26 CLOB Interface for INDEX_PROCEDURE	
Parameter Position	Parameter Mode
---	---
1	IN
2	IN OUT
3	IN
The first and second parameters are temporary CLOBS. Avoid assigning these CLOB locators to other locator variables. Assigning the formal parameter CLOB locator to another locator variable causes a new copy of the temporary CLOB to be created resulting in a performance hit.	
This callback stored procedure is called by Oracle Text as needed to tokenize words in the query. A space-delimited group of characters (excluding the query operators) in the query will be identified by Oracle Text as a word.	
This procedure can be a PL/SQL stored procedure.	
The index owner must have EXECUTE privilege on this stored procedure.	
This stored procedure must not be replaced or be dropped after the index is created. You can replace or drop this stored procedure after the index is dropped.	
This procedure must not perform any of the following operations:	
rollback	
explicitly or implicitly commit the current transaction	
issue any other transaction control statement	
alter the session language or territory	
The child elements of the root element tokens of the XML document returned must be in the same order as the tokens occur in the query word being tokenized.	
The behavior of this stored procedure must be deterministic with respect to all parameters.	
Table 2-27 describes the interface for the user-defined lexer query procedure:	
Table 2-27 User-defined Lexer Query Procedure XML Schema Attributes	
Parameter Position	Parameter Mode
---	---
1	IN
2	IN
3	IN OUT
The sequence of tokens returned by your stored procedure must be represented as an XML 1.0 document. The XML document must be valid with respect to the XML Schemas given in the following sections.	
To boost performance of this feature, the XML parser in Oracle Text will not perform validation and will not be a full-featured XML compliant parser. This implies that only minimal XML features will be supported. The following XML features are not supported:	
Document Type Declaration (for example, <!DOCTYPE [...]>	
) and therefore entity declarations. Only the following built-in entities can be referenced: lt, gt, amp, quot, and apos.	
CDATA sections.	
Comments.	
Processing Instructions.	
XML declaration (for example, <?xml version="1.0" ...?>	
).	
Namespaces.	
Use of elements and attributes other than those defined by the corresponding XML Schema.	
Character references (for example ট).	
xml:space attribute.	
xml:lang attribute	
This section describes additional constraints imposed on the XML document returned by the user-defined lexer indexing procedure when the third parameter is FALSE. The XML document returned must be valid with respect to the following XML Schema:	
Here are some of the constraints imposed by this XML Schema:	
The root element is tokens. This is mandatory. It has no attributes.	
The root element can have zero or more child elements. The child elements can be one of the following: eos, eop, num, word, and compMem. Each of these represent a specific type of token.	
The compMem element must be preceded by a word element or a compMem element.	
The eos and eop elements have no attributes and must be empty elements.	
The num, word, and compMem elements have no attributes. Oracle Text will normalize the content of these elements as follows: convert whitespace characters to space characters, collapse adjacent space characters to a single space character, remove leading and trailing spaces, perform entity reference replacement, and truncate to 64 bytes.	
Table 2-28 describes the element names defined in the preceding XML Schema.	
Table 2-28 User-defined Lexer Indexing Procedure XML Schema Element Names	
Element	Description
---	---
word	This element represents a simple word token. The content of the element is the word itself. Oracle Text does the work of identifying this token as being a stop word or non-stop word and processing it appropriately.
num	This element represents an arithmetic number token. The content of the element is the arithmetic number itself. Oracle Text treats this token as a stop word if the stoplist preference has NUMBERS added as the stopclass. Otherwise this token is treated the same way as the word token. Supporting this token type is optional. Without support for this token type, adding the NUMERBS stopclass will have no effect.
eos	This element represents end-of-sentence token. Oracle Text uses this information so that it can support WITHIN SENTENCE queries. Supporting this token type is optional. Without support for this token type, queries against the SENTENCE section will not work as expected.
eop	This element represents end-of-paragraph token. Oracle Text uses this information so that it can support WITHIN PARAGRAPH queries. Supporting this token type is optional. Without support for this token type, queries against the PARAGRAPH section will not work as expected.
compMem	Same as the word element, except that the implicit word offset is the same as the previous word token. Support for this token type is optional.
Document: Vom Nordhauptbahnhof und aus der Innenstadt zum Messegelände.	
Tokens:	
Document: Oracle Database 10g Release 1	
Tokens:	
Document: WHERE salary<25000.00 AND job = 'F&B Manager'	
Tokens:	
This section describes additional constraints imposed on the XML document returned by the user-defined lexer indexing procedure when the third parameter is TRUE. The XML document returned must be valid according to the following XML schema:	
Some of the constraints imposed by this XML Schema are as follows:	
The root element is tokens. This is mandatory. It has no attributes.	
The root element can have zero or more child elements. The child elements can be one of the following: eos, eop, num, word, and compMem. Each of these represent a specific type of token.	
The compMem element must be preceded by a word element or a compMem element.	
The eos and eop elements have no attributes and must be empty elements.	
The num, word, and compMem elements have two mandatory attributes: off	
and len. Oracle Text will normalize the content of these elements as follows: convert whitespace characters to space characters, collapse adjacent space characters to a single space character, remove leading and trailing spaces, perform entity reference replacement, and truncate to 64 bytes.	
The off	
attribute value must be an integer between 0 and 2147483647 inclusive.	
The len	
attribute value must be an integer between 0 and 65535 inclusive.	
Table 2-28 describes the element types defined in the preceding XML Schema.	
Table 2-29 describes the attributes defined in the preceding XML Schema.	
Table 2-29 User-defined Lexer Indexing Procedure XML Schema Attributes	
Attribute	Description
---	---
off	This attribute represents the character offset of the token as it appears in the document being tokenized. The offset is with respect to the character document passed to the user-defined lexer indexing procedure, not the document fetched by the datastore. The document fetched by the datastore may be pre-processed by the filter object or the section group object, or both, before being passed to the user-defined lexer indexing procedure. The offset of the first character in the document being tokenized is 0 (zero). Offset information follows USC-2 codepoint semantics.
len	This attribute represents the character length (same semantics as SQL function LENGTH) of the token as it appears in the document being tokenized. The length is with respect to the character document passed to the user-defined lexer indexing procedure, not the document fetched by the datastore. The document fetched by the datastore may be pre-processed by the filter object or the section group object before being passed to the user-defined lexer indexing procedure. Length information follows USC-2 codepoint semantics.
Sum of off	
attribute value and len	
attribute value must be less than or equal to the total number of characters in the document being tokenized. This is to ensure that the document offset and characters being referenced are within the document boundary.	
Document: User-defined Lexer.	
Tokens:	
This section describes additional constraints imposed on the XML document returned by the user-defined lexer query procedure. The XML document returned must be valid with respect to the following XML Schema:	
Here are some of the constraints imposed by this XML Schema:	
The root	
element is tokens. This is mandatory. It has no attributes.	
The root	
element can have zero or more child elements. The child elements can be one of the following: num	
and word	
. Each of these represent a specific type of token.	
The compMem	
element must be preceded by a word	
element or a compMem	
element.	
The purpose of compMem	
is to enable USER_LEXER	
queries to return multiple forms for a single query. For example, if a user-defined lexer indexes the word bank as BANK(FINANCIAL)	
and BANK(RIVER)	
, the query procedure can return the first term as a word	
and the second as a compMem	
element:	
See Table 2-30, "User-defined Lexer Query Procedure XML Schema Attributes" for more on the compMem	
element.	
The num and word elements have a single optional attribute: wildcard. Oracle Text will normalize the content of these elements as follows: convert whitespace characters to space characters, collapse adjacent space characters to a single space character, remove leading and trailing spaces, perform entity reference replacement, and truncate to 64 bytes.	
The wildcard attribute value is a white-space separated list of integers. The minimum number of integers is 1 and the maximum number of integers is 64. The value of the integers must be between 0 and 378 inclusive. The intriguers in the list can be in any order.	
Table 2-28 describes the element types defined in the preceding XML Schema.	
Table 2-30 describes the attribute defined in the preceding XML Schema.	
Table 2-30 User-defined Lexer Query Procedure XML Schema Attributes	
Attribute	Description
---	---
compMem	Same as the word element, but its implicit word offset is the same as the previous word token. Oracle Text will equate this token with the previous word token and with subsequent compMem tokens using the query EQUIV operator.
wildcard	Any% or _ characters in the query which are not escaped by the user are considered wildcard characters because they are replaced by other characters. These wildcard characters in the query must be preserved during tokenization in order for the wildcard query feature to work properly. This attribute represents the character offsets (same semantics as SQL function LENGTH) of wildcard characters in the content of the element. Oracle Text will adjust these offsets for any normalization performed on the content of the element. The characters pointed to by the offsets must either be% or _ characters. The offset of the first character in the content of the element is 0. Offset information follows USC-2 codepoint semantics. If the token does not contain any wildcard characters then this attribute must not be specified.
Query word: pseudo-%morph%	
Tokens:	
Use the WORLD_LEXER	
to index text columns that contain documents of different languages. For example, you can use this lexer to index a text column that stores English, Japanese, and German documents.	
WORLD_LEXER	
differs from MULTI_LEXER	
in that WORLD_LEXER	
automatically detects the language(s) of a document. Unlike MULTI_LEXER	
, WORLD_LEXER	
does not require you to have a language column in your base table or to specify the language column when you create the index. Moreover, it is not necessary to use sub-lexers, as with MULTI_LEXER	
. (See MULTI_LEXER.)	
This lexer has no attributes.	
WORLD_LEXER	
works with languages whose character sets are defined by the Unicode 4.0 standard. For a list of languages that WORLD_LEXER	
can work with, see "World Lexer Features".	
Use the wordlist preference to enable the query options such as stemming, fuzzy matching for your language. You can also use the wordlist preference to enable substring and prefix indexing, which improves performance for wildcard queries with CONTAINS	
and CATSEARCH	
.	
To create a wordlist preference, you must use BASIC_WORDLIST	
, which is the only type available.	
Use BASIC_WORDLIST	
type to enable stemming and fuzzy matching or to create prefix indexes with Text indexes.	
See Also: For more information about the stem and fuzzy operators, see Chapter 3, "Oracle Text CONTAINS Query Operators".	
BASIC_WORDLIST	
has the following attributes:	
Table 2-32 BASIC_WORDLIST Attributes	
Specify the stemmer used for word stemming in Text queries. When you do not specify a value for stemmer, the default is ENGLISH	
.	
Specify AUTO	
for the system to automatically set the stemming language according to the language setting of the session. When there is no stemmer for a language, the default is NULL	
. With the NULL	
stemmer, the stem operator is ignored in queries.	
You can create your own stemming user-dictionary. See "Stemming User-Dictionaries" for more information.	
Specify which fuzzy matching routines are used for the column. Fuzzy matching is currently supported for English, Japanese, and, to a lesser extent, the Western European languages.	
Note: The fuzzy_match attributes value for Chinese and Korean are dummy attribute values that prevent the English and Japanese fuzzy matching routines from being used on Chinese and Korean text.	
The default for fuzzy_match is GENERIC	
.	
Specify AUTO	
for the system to automatically set the fuzzy matching language according to language setting of the session.	
Specify a default lower limit of fuzzy score. Specify a number between 0 and 80. Text with scores below this number are not returned. The default is 60.	
Fuzzy score is a measure of how close the expanded word is to the query word. The higher the score the better the match. Use this parameter to limit fuzzy expansions to the best matches.	
Specify the maximum number of fuzzy expansions. Use a number between 0 and 5000. The default is 100.	
Setting a fuzzy expansion limits the expansion to a specified number of the best matching words.	
Specify TRUE	
for Oracle Text to create a substring index. A substring index improves performance for left-truncated or double-truncated wildcard queries such as %ing or %benz%. The default is false.	
Substring indexing has the following impact on indexing and disk resources:	
Index creation and DML processing is up to 4 times slower	
The size of the substring index created is approximately the size of the $X index on the word table.	
Index creation with substring_index	
enabled requires more rollback segments during index flushes than with substring index off. Oracle recommends that you do either of the following when creating a substring index:	
make available double the usual rollback or	
decrease the index memory to reduce the size of the index flushes to disk	
Specify yes	
to enable prefix indexing. Prefix indexing improves performance for right truncated wildcard searches such as TO%. Defaults to NO	
.	
Note: Enabling prefix indexing increases index size.	
Prefix indexing chops up tokens into multiple prefixes to store in the $I table.For example, words TOKEN	
and TOY	
are normally indexed like this in the $I table:	
Token	Type
---	---
TOKEN	0
TOY	0
With prefix indexing, Oracle Text indexes the prefix substrings of these tokens as follows with a new token type of 6:	
Token	Type
---	---
TOKEN	0
TOY	0
T	6
TO	6
TOK	6
TOKE	6
TOKEN	6
TOY	6
Wildcard searches such as TO%	
are now faster because Oracle Text does no expansion of terms and merging of result sets. To obtain the result, Oracle Text need only examine the (TO,6) row.	
Specify the minimum length of indexed prefixes. Defaults to 1.	
For example, setting prefix_length_min	
to 3 and prefix_length_max	
to 5 indexes all prefixes between 3 and 5 characters long.	
Note: A wildcard search whose pattern is below the minimum length or above the maximum length is searched using the slower method of equivalence expansion and merging.	
Specify the maximum length of indexed prefixes. Defaults to 64.	
For example, setting prefix_length_min	
to 3 and prefix_length_max	
to 5 indexes all prefixes between 3 and 5 characters long.	
Note: A wildcard search whose pattern is below the minimum length or above the maximum length is searched using the slower method of equivalence expansion and merging.	
Specify the maximum number of terms in a wildcard (%) expansion. Use this parameter to keep wildcard query performance within an acceptable limit. Oracle Text returns an error when the wildcard query expansion exceeds this number.	
The following example shows the use of the BASIC_WORDLIST	
type.	
The following example enables stemming and fuzzy matching for English. The preference STEM_FUZZY_PREF	
sets the number of expansions to the maximum allowed. This preference also instructs the system to create a substring index to improve the performance of double-truncated searches.	
To create the index in SQL, issue the following statement:	
The following example sets the wordlist preference for prefix and sub-string indexing. For prefix indexing, it specifies that Oracle Text create token prefixes between 3 and 4 characters long:	
Use the wildcard_maxterms attribute to set the maximum allowed terms in a wildcard expansion.	
Use the storage preference to specify tablespace and creation parameters for tables associated with a Text index. The system provides a single storage type called BASIC_STORAGE	
:	
Table 2-33 Storage Types	
Type	Description
---	---
BASIC_STORAGE	Indexing type used to specify the tablespace and creation parameters for the database tables and indexes that constitute a Text index.
The BASIC_STORAGE	
type specifies the tablespace and creation parameters for the database tables and indexes that constitute a Text index.	
The clause you specify is added to the internal CREATE	
TABLE	
(CREATE	
INDEX	
for the i_index _clause) statement at index creation. You can specify most allowable clauses, such as storage, LOB storage, or partitioning. However, you cannot specify an index organized table clause.	
See Also: For more information about how to specifyCREATE TABLE and CREATE INDEX statements, see Oracle Database SQL Reference.	
BASIC_STORAGE	
has the following attributes:	
Table 2-34 BASIC_STORAGE Attributes	
By default, BASIC_STORAGE	
attributes are not set. In such cases, the Text index tables are created in the index owner's default tablespace. Consider the following statement, issued by user IUSER	
, with no BASIC_STORAGE	
attributes set:	
In this example, the text index is created in IOWNER's	
default tablespace.	
The following examples specify that the index tables are to be created in the foo	
tablespace with an initial extent of 1K:	
In order to issue WITHIN	
queries on document sections, you must create a section group before you define your sections. You specify your section group in the parameter clause of CREATE INDEX.	
To create a section group, you can specify one of the following group types with the CTX_DDL.CREATE_SECTION_GROUP procedure:	
Table 2-35 Section Group Types	
This example shows the use of section groups in both HTML and XML documents.	
The following statement creates a section group called htmgroup	
with the HTML group type.	
You can optionally add sections to this group using the procedures in the CTX_DDL	
package, such as CTX_DDL.ADD_SPECIAL_SECTION	
or CTX_DDL.ADD_ZONE_SECTION	
. To index your documents, you can issue a statement such as:	
The following statement creates a section group called xmlgroup	
with the XML_SECTION_GROUP	
group type.	
You can optionally add sections to this group using the procedures in the CTX_DDL	
package, such as CTX_DDL.ADD_ATTR_SECTION	
or CTX_DDL.ADD_STOP_SECTION	
. To index your documents, you can issue a statement such as:	
The following statement creates a section group called auto	
with the AUTO_SECTION_GROUP	
group type. This section group automatically creates sections from tags in XML documents.	
This section describes the classifier types used to create a preference for CTX_CLS.TRAIN and CTXRULE index creation. The following two classifier types are supported:	
Use the RULE_CLASSIFIER type for creating preferences for the query rule generating procedure, CTX_CLS.TRAIN and for CTXRULE creation. The rules generated with this type are essentially query strings and can be easily examined. The queries generated by this classifier can use the AND, NOT, or ABOUT operators. The WITHIN operator is supported for queries on field sections only.	
This type has the following attributes:	
Table 2-36 RULE_CLASSIFIER Attributes	
Attribute	Data Type
---	---
THRESHOLD	I
MAX_TERMS	I
MEMORY_SIZE	I
NT_THRESHOLD	F
TERM_THRESHOLD	I
PRUNE_LEVEL	I
Use the SVM_CLASSIFIER type for creating preferences for the rule generating procedure, CTX_CLS.TRAIN, and for CTXRULE creation. This classifier type represents the Support Vector Machine method of classification and generates rules in binary format. Use this classifier type when you need high classification accuracy.	
This type has the following attributes:	
Table 2-37 SVM_CLASSIFIER Attributes	
Attribute Name	Data Type
---	---
MAX_DOCTERMS	I
MAX_FEATURES	I
THEME_ON	B
TOKEN_ON	B
STEM_ON	B
MEMORY_SIZE	I
SECTION_WEIGHT	1
This section describes the cluster types used for creating preferences for the CTX_CLS.CLUSTERING	
procedure.	
See Also: For more information about clustering, see "CLUSTERING" in Chapter 6, "CTX_CLS Package" as well as the Oracle Text Application Developer's Guide	
This clustering type has the following attributes:	
Table 2-38 KMEAN_CLUSTERING Attributes	
Attribute Name	Data Type
---	---
MAX_DOCTERMS	I
MAX_FEATURES	I
THEME_ON	B
TOKEN_ON	B
STEM_ON	B
MEMORY_SIZE	I
SECTION_WEIGHT	1
CLUSTER_NUM	I
Stoplists identify the words in your language that are not to be indexed. In English, you can also identify stopthemes that are not to be indexed. By default, the system indexes text using the system-supplied stoplist that corresponds to your database language.	
Oracle Text provides default stoplists for most common languages including English, French, German, Spanish, Chinese, Dutch, and Danish. These default stoplists contain only stopwords.	
See Also: For more information about the supplied default stoplists, see Appendix E, "Oracle Text Supplied Stoplists".	
You can create multi-language stoplists to hold language-specific stopwords. A multi-language stoplist is useful when you use the MULTI_LEXER	
to index a table that contains documents in different languages, such as English, German, and Japanese.	
To create a multi-language stoplist, use the CTX_DLL.CREATE_STOPLIST procedure and specify a stoplist type of MULTI_STOPLIST	
. You add language specific stopwords with CTX_DDL.ADD_STOPWORD.	
At indexing time, the language column of each document is examined, and only the stopwords for that language are eliminated. At query time, the session language setting determines the active stopwords, like it determines the active lexer when using the multi-lexer.	
You can create your own stoplists using the CTX_DLL.CREATE_STOPLIST procedure. With this procedure you can create a BASIC_STOPLIST	
for single language stoplist, or you can create a MULTI_STOPLIST	
for a multi-language stoplist.	
When you create your own stoplist, you must specify it in the parameter clause of CREATE	
INDEX	
.	
The default stoplist is always named CTXSYS.DEFAULT_STOPLIST. You can use the following procedures to modify this stoplist:	
CTX_DDL.ADD_STOPWORD	
CTX_DDL.REMOVE_STOPWORD	
CTX_DDL.ADD_STOPTHEME	
CTX_DDL.ADD_STOPCLASS	
When you modify CTXSYS.DEFAULT_STOPLIST	
with the CTX_DDL	
package, you must re-create your index for the changes to take effect.	
You can add stopwords dynamically to a default or custom stoplist with ALTER INDEX. When you add a stopword dynamically, you need not re-index, because the word immediately becomes a stopword and is removed from the index.	
Note: Even though you can dynamically add stopwords to an index, you cannot dynamically remove stopwords. To remove a stopword, you must use CTX_DDL.REMOVE_STOPWORD, drop your index and re-create it.	
When you install Oracle Text, some indexing preferences are created. You can use these preferences in the parameter clause of CREATE INDEX or define your own.	
The default index parameters are mapped to some of the system-defined preferences described in this section.	
System-defined preferences are divided into the following categories:	
This section discusses the types associated with data storage preferences.	
This preference uses the DIRECT_DATASTORE type. You can use this preference to create indexes for text columns in which the text is stored directly in the column.	
This section discusses the types associated with lexer preferences.	
The default lexer depends on the language used at install time. The following sections describe the default settings for CTXSYS.DEFAULT_LEXER	
for each language.	
If your language is English, this preference uses the BASIC_LEXER with the index_themes	
attribute disabled.	
If your language is Danish, this preference uses the BASIC_LEXER with the following option enabled:	
alternate spelling (alternate_spelling attribute set to DANISH	
)	
If your language is Dutch, this preference uses the BASIC_LEXER with the following options enabled:	
composite indexing (composite	
attribute set to DUTCH	
)	
If your language is German, this preference uses the BASIC_LEXER with the following options enabled:	
case-sensitive indexing (mixed_case	
attribute enabled)	
composite indexing (composite	
attribute set to GERMAN	
)	
alternate spelling (alternate_spelling	
attribute set to GERMAN	
)	
If your language is Finnish, Norwegian, or Swedish, this preference uses the BASIC_LEXER with the following option enabled:	
alternate spelling (alternate_spelling attribute set to SWEDISH	
)	
If you language is Japanese, this preference uses the JAPANESE_VGRAM_LEXER.	
If your language is Korean, this preference uses the KOREAN_MORPH_LEXER. All attributes for the KOREAN_MORPH_LEXER	
are enabled.	
If your language is Simplified or Traditional Chinese, this preference uses the CHINESE_VGRAM_LEXER.	
For all other languages not listed in this section, this preference uses the BASIC_LEXER with no attributes set.	
This section discusses the types associated with stoplist preferences.	
This stoplist preference defaults to the stoplist of your database language.	
See Also: For a complete list of the stop words in the supplied stoplists, see Appendix E, "Oracle Text Supplied Stoplists".	
This section discusses the types associated with wordlist preferences.	
This preference uses the language stemmer for your database language. If your language is not listed in Table 2-32, this preference defaults to the NULL stemmer and the GENERIC fuzzy matching attribute.	
This section describes the Oracle Text system parameters. They fall into the following categories:	
When you install Oracle Text, in addition to the system-defined preferences, the following system parameters are set:	
Table 2-39 General System Parameters	
System Parameter	Description
---	---
MAX_INDEX_MEMORY	This is the maximum indexing memory that can be specified in the parameter clause of CREATE INDEX and ALTER INDEX .
DEFAULT_INDEX_MEMORY	This is the default indexing memory used with CREATE INDEX and ALTER INDEX .
LOG_DIRECTORY	This is the directory for CTX_OUTPUT log files.
CTX_DOC_KEY_TYPE	This is the default input key type, either ROWID or PRIMARY_KEY , for the CTX_DOC procedures. Set to ROWID at install time. See also: CTX_DOC. SET_KEY_TYPE.
You can view system defaults by querying the CTX_PARAMETERS view. You can change defaults using the CTX_ADM.SET_PARAMETER procedure.	
This section describes the index parameters you can use when you create context and ctxcat indexes.	
The following default parameters are used when you do not specify preferences in the parameter clause of CREATE INDEX when you create a context index. Each default parameter names a system-defined preference to use for data storage, filtering, lexing, and so on.	
Table 2-40 Default CONTEXT Index Parameters	
Parameter	Used When
---	---
DEFAULT_DATASTORE	No datastore preference specified in parameter clause of CREATE INDEX .
DEFAULT_FILTER_FILE	No filter preference specified in parameter clause of CREATE INDEX , and either of the following conditions is true:
CTXSYS.AUTO_FILTER	
DEFAULT_FILTER_BINARY	No filter preference specified in parameter clause of CREATE INDEX , and Oracle Text detects that the text column datatype is RAW , LONG RAW , or BLOB .
DEFAULT_FILTER_TEXT	No filter preference specified in parameter clause of CREATE INDEX , and Oracle Text detects that the text column datatype is either LONG , VARCHAR2 , VARCHAR , CHAR , or CLOB .
DEFAULT_SECTION_HTML	No section group specified in parameter clause of CREATE INDEX , and when either of the following conditions is true:
CTXSYS.HTML_SECTION_GROUP	
DEFAULT_SECTION_TEXT	No section group specified in parameter clause of CREATE INDEX , and when you do not use either URL_DATASTORE or AUTO_FILTER .
DEFAULT_STORAGE	No storage preference specified in parameter clause of CREATE INDEX .
DEFAULT_LEXER	No lexer preference specified in parameter clause of CREATE INDEX .
DEFAULT_STOPLIST	No stoplist specified in parameter clause of CREATE INDEX .
DEFAULT_WORDLIST	No wordlist preference specified in parameter clause of CREATE INDEX .
The following default parameters are used when you create a CTXCAT index with CREATE INDEX and do not specify any parameters in the parameter string. The CTXCAT index supports only the index set, lexer, storage, stoplist, and wordlist parameters. Each default parameter names a system-defined preference.	
Table 2-41 Default CTXCAT Index Parameters	
Parameter	Used When
---	---
DEFAULT_CTXCAT_INDEX_SET	No index set specified in parameter clause of CREATE INDEX .
DEFAULT_CTXCAT_STORAGE	No storage preference specified in parameter clause of CREATE INDEX .
DEFAULT_CTXCAT_LEXER	No lexer preference specified in parameter clause of CREATE INDEX .
DEFAULT_CTXCAT_STOPLIST	No stoplist specified in parameter clause of CREATE INDEX .
DEFAULT_CTXCAT_WORDLIST	No wordlist preference specified in parameter clause of CREATE INDEX . Note that while you can specify a wordlist preference for
The following default parameters are used when you create a CTXRULE	
index with CREATE	
INDEX	
and do not specify any parameters in the parameter string. The CTXRULE	
index supports only the lexer, storage, stoplist, and wordlist parameters. Each default parameter names a system-defined preference.	
Table 2-42 Default CTXRULE Index Parameters	
Parameter	Used When
---	---
DEFAULT_CTXRULE_LEXER	No lexer preference specified in parameter clause of CREATE INDEX .
DEFAULT_CTXRULE_STORAGE	No storage preference specified in parameter clause of CREATE INDEX .
DEFAULT_CTXRULE_STOPLIST	No stoplist specified in parameter clause of CREATE INDEX .
DEFAULT_CTXRULE_WORDLIST	No wordlist preference specified in parameter clause of CREATE INDEX .
DEFAULT_CLASSIFIER	No classifier preference is specified in parameter clause.
You can view system defaults by querying the CTX_PARAMETERS view. For example, to see all parameters and values, you can issue:	
You can change a default value using the CTX_ADM.SET_PARAMETER procedure to name another custom or system-defined preference to use as default.	
This chapter describes operator precedence and provides description, syntax, and examples for every CONTAINS operator. The following topics are covered:	
Operator precedence determines the order in which the components of a query expression are evaluated. Text query operators can be divided into two sets of operators that have their own order of evaluation. These two groups are described later as Group 1 and Group 2.	
In all cases, query expressions are evaluated in order from left to right according to the precedence of their operators. Operators with higher precedence are applied first. Operators of equal precedence are applied in order of their appearance in the expression from left to right.	
Within query expressions, the Group 1 operators have the following order of evaluation from highest precedence to lowest:	
Within query expressions, the Group 2 operators have the following order of evaluation from highest to lowest:	
Other operators not listed under Group 1 or Group 2 are procedural. These operators have no sense of precedence attached to them. They include the SQE and thesaurus operators.	
Table 3-1 Query Expression Precedence Examples	
Query Expression	Order of Evaluation
---	---
w1	w2 & w3
w1 & w2	w3
?w1, w2	w3 & w4
abc = def ghi & jkl = mno	((abc = def) ghi) & (jkl=mno)
dog and cat WITHIN body	dog and (cat WITHIN body)
In the first example, because AND	
has a higher precedence than OR	
, the query returns all documents that contain w1 and all documents that contain both w2 and w3.	
In the second example, the query returns all documents that contain both w1 and w2 and all documents that contain w3.	
In the third example, the fuzzy operator is first applied to w1, then the AND	
operator is applied to arguments w3 and w4, then the OR	
operator is applied to term w2 and the results of the AND	
operation, and finally, the score from the fuzzy operation on w1 is added to the score from the OR operation.	
The fourth example shows that the equivalence operator has higher precedence than the AND	
operator.	
The fifth example shows that the AND	
operator has lower precedence than the WITHIN	
operator.	
Precedence is altered by grouping characters as follows:	
Within parentheses, expansion or execution of operations is resolved before other expansions regardless of operator precedence.	
Within parentheses, precedence of operators is maintained during evaluation of expressions.	
Within parentheses, expansion operators are not applied to expressions unless the operators are also within the parentheses.	
General Behavior	
Use the ABOUT	
operator to return documents that are related to a query term or phrase. In English and French, ABOUT	
enables you to query on concepts, even if a concept is not actually part of a query. For example, an ABOUT	
query on heat might return documents related to temperature, even though the term temperature is not part of the query.	
In other languages, using ABOUT	
will often increase the number of returned documents and may improve the sorting order of results. For all languages, Oracle Text scores results for an ABOUT	
query with the most relevant document receiving the highest score.	
English and French Behavior	
In English and French, use the ABOUT	
operator to query on concepts. The system looks up concept information in the theme component of the index. You create a theme component to your index by setting the INDEX_THEMES	
BASIC_LEXER attribute to YES	
.	
Note: You need not have a theme component in the index to issue ABOUT queries in English and French. However, having a theme component in the index yields the best results forABOUT queries.	
Oracle Text retrieves documents that contain concepts that are related to your query word or phrase. For example, if you issue an ABOUT	
query on California, the system might return documents that contain the terms Los Angeles and San Francisco, which are cities in California.The document need not contain the term California to be returned in this ABOUT	
query.	
The word or phrase specified in your ABOUT	
query need not exactly match the themes stored in the index. Oracle Text normalizes the word or phrase before performing lookup in the index.	
You can use the ABOUT	
operator with the CONTAINS	
and CATSEARCH	
SQL operators. In the case of CATSEARCH	
, you must use query templating with the CONTEXT	
grammar to query on the indexed themes. See ABOUT Query with CATSEARCH in the Examples section.	
Syntax	
Syntax	Description
---	---
about(phrase)	In all languages, increases the number of relevant documents returned for the same query without the ABOUT operator.The phrase parameter can be a single word or a phrase, or a string of words in free text format. In English and French, returns documents that contain concepts related to phrase, provided the BASIC_LEXER INDEX_THEMES attribute is set to YES at index time. The score returned is a relevance score. Oracle Text ignores any query operators that are included in phrase. If your index contains only theme information, an ABOUT operator and operand must be included in your query on the text column or else Oracle Text returns an error. The phrase you specify cannot be more than 4000 characters.
ABOUT	
queries give the best results when your query is formulated with proper case. This is because the normalization of your query is based on the knowledge catalog which is case-sensitive.	
However, you need not type your query in exact case to obtain results from an ABOUT	
query. The system does its best to interpret your query. For example, if you enter a query of CISCO and the system does not find this in the knowledge catalog, the system might use Cisco as a related concept for look-up.	
Improving ABOUT Results	
The ABOUT	
operator uses the supplied knowledge base in English and French to interpret the phrase you enter. Your ABOUT	
query therefore is limited to knowing and interpreting the concepts in the knowledge base.	
You can improve the results of your ABOUT	
queries by adding your application-specific terminology to the knowledge base.	
Limitations	
The phrase you specify in an ABOUT	
query cannot be more than 4000 characters.	
Single Words	
To search for documents that are about soccer, use the following syntax:	
Phrases	
You can further refine the query to include documents about soccer rules in international competition by entering the phrase as the query term:	
In this English example, Oracle Text returns all documents that have themes of soccer, rules, or international competition.	
In terms of scoring, documents which have all three themes will generally score higher than documents that have only one or two of the themes.	
Unstructured Phrases	
You can also query on unstructured phrases, such as the following:	
Combined Queries	
You can use other operators, such as AND	
or NOT	
, to combine ABOUT	
queries with word queries.	
For example, you can issue the following combined ABOUT	
and word query:	
You can combine an ABOUT	
query with another ABOUT	
query as follows:	
Note: You cannot combine ABOUT with the WITHIN operator, as for example 'ABOUT (xyz) WITHIN abc'.	
ABOUT Query with CATSEARCH	
You can issue ABOUT queries with CATSEARCH using the query template method with grammar set to CONTEXT as follows:	
Use the ACCUM	
operator to search for documents that contain at least one occurrence of any query terms, with the returned documents ranked by a cumulative score based on how many query terms are found (and how frequently).	
Syntax	
Syntax	Description
---	---
term1,term2 term1 ACCUM term2	Returns documents that contain term1 or term2. Ranks documents according to document term weight, with the highest scores assigned to documents that have the highest total term weight.
ACCUMulate first scores documents on how many query terms a document matches. A document that matches more terms will always score higher than a document that matches fewer terms, even if the terms appear more frequently in the latter. In other words, if you search for dog ACCUM cat, you'll find that	
scores higher than	
Scores are divided into ranges. In a two-term ACCUM	
, hits that match both terms will always score between 51 and 100, whereas hits matching only one of the terms will score between 1 and 50. Likewise, for a three-term ACCUM	
, a hit matching one term will score between 1 and 33; a hit matching two terms will score between 34 and 66, and a hit matching all three terms will score between 67 and 100. Within these ranges, normal scoring algorithms apply. (See Appendix F, " The Oracle Text Scoring Algorithm" for more on how scores are calculated.)	
You can assign different weights to different terms. For example, in a query of the form	
the term Brazil is weighted three times as heavily as soccer. Therefore, the document	
will score lower than	
but both documents will rank below	
Note that a query of soccer ACCUM Brazil*3 is equivalent to soccer ACCUM Brazil ACCUM Brazil ACCUM Brazil. Since each query term Brazil is considered independent, the entire query is scored as though it has four terms, not two, and thus has four scoring ranges. The first Brazil-and-soccer example document shown above will score in the first range (1-25), the second will score in the third range (51-75), and the third will score in the fourth range (76-100). (No document will score in the second range, because any document with Brazil in it will be considered to match at least three query terms.)	
Example	
This produces the following output. Note that the document with both dog and cat scores highest.	
Related Topics	
See also weight (*)	
Use the AND	
operator to search for documents that contain at least one occurrence of each of the query terms.	
Syntax	
Syntax	Description
---	---
term1&term2 term1 and term2	Returns documents that contain term1 and term2. Returns the minimum score of its operands. All query terms must occur; lower score taken.
Examples	
To obtain all the documents that contain the terms blue and black and red, issue the following query:	
In an AND	
query, the score returned is the score of the lowest query term. In this example, if the three individual scores for the terms blue, black, and red is 10, 20 and 30 within a document, the document scores 10.	
Related Topics	
See Also: TheAND operator returns documents that contain all of the query terms, while OR operator returns documents that contain any of the query terms. See "OR ()".
Use the broader term operators (BT	
, BTG	
, BTP	
, BTI	
) to expand a query to include the term that has been defined in a thesaurus as the broader or higher level term for a specified term. They can also expand the query to include the broader term for the broader term and the broader term for that broader term, and so on up through the thesaurus hierarchy.	
Syntax	
Syntax	Description
---	---
BT(term[(qualifier)][,level][,thes])	Expands a query to include the term defined in the thesaurus as a broader term for term.
BTG(term[(qualifier)][,level][,thes])	Expands a query to include all terms defined in the thesaurus as broader generic terms for term.
BTP(term[(qualifier)][,level][,thes])	Expands a query to include all the terms defined in the thesaurus as broader partitive terms for term.
BTI(term[(qualifier)][,level][,thes])	Expands a query to include all the terms defined in the thesaurus as broader instance terms for term.
Specify the operand for the broader term operator. Oracle Text expands term to include the broader term entries defined for the term in the thesaurus specified by thes. For example, if you specify BTG(dog), the expansion includes only those terms that are defined as broader term generic for dog. You cannot specify expansion operators in the term	
argument.	
The number of broader terms included in the expansion is determined by the value for level.	
Specify a qualifier for term, if term is a homograph (word or phrase with multiple meanings, but the same spelling) that appears in two or more nodes in the same hierarchy branch of thes.	
If a qualifier is not specified for a homograph in a broader term query, the query expands to include the broader terms of all the homographic terms.	
Specify the number of levels traversed in the thesaurus hierarchy to return the broader terms for the specified term. For example, a level of 1 in a BT query returns the broader term entry, if one exists, for the specified term. A level of 2 returns the broader term entry for the specified term, as well as the broader term entry, if one exists, for the broader term.	
The level argument is optional and has a default value of one (1). Zero or negative values for the level argument return only the original query term.	
Specify the name of the thesaurus used to return the expansions for the specified term. The thes argument is optional and has a default value of DEFAULT	
. A thesaurus named DEFAULT	
must exist in the thesaurus tables if you use this default value.	
Note: If you specify thes, you must also specify level.	
Examples	
The following query returns all documents that contain the term tutorial or the BT	
term defined for tutorial in the DEFAULT	
thesaurus:	
When you specify a thesaurus name, you must also specify level as in:	
Broader Term Operator on Homographs	
If machine is a broader term for crane (building equipment) and bird is a broader term for crane (waterfowl) and no qualifier is specified for a broader term query, the query	
expands to:	
If waterfowl is specified as a qualifier for crane in a broader term query, the query	
expands to the query:	
Note: When specifying a qualifier in a broader or narrower term query, the qualifier and its notation (parentheses) must be escaped, as is shown in this example.	
Related Topics	
You can browse a thesaurus using procedures in the CTX_THES	
package.	
See Also: For more information on browsing the broader terms in your thesaurus, see CTX_THES.BT in Chapter 12, "CTX_THES Package".	
Use the EQUIV	
operator to specify an acceptable substitution for a word in a query.	
Syntax	
Syntax	Description
---	---
term1=term2 term1 equiv term2	Specifies that term2 is an acceptable substitution for term1. Score calculated as the sum of all occurrences of both terms.
Examples	
The following example returns all documents that contain either the phrase alsatians are big dogs or labradors are big dogs:	
Operator Precedence	
The EQUIV	
operator has higher precedence than all other operators except the expansion operators (fuzzy, soundex, stem).	
Use the fuzzy	
operator to expand queries to include words that are spelled similarly to the specified term. This type of expansion is helpful for finding more accurate results when there are frequent misspellings in your document set.	
The fuzzy	
syntax enables you to rank the result set so that documents that contain words with high similarity to the query word are scored higher than documents with lower similarity. You can also limit the number of expanded terms.	
Unlike stem expansion, the number of words generated by a fuzzy expansion depends on what is in the index. Results can vary significantly according to the contents of the index.	
Supported Languages	
Oracle Text supports fuzzy definitions for English, German, Italian, Dutch, Spanish, Japanese, OCR, and auto-language detection.	
Stopwords	
If the fuzzy expansion returns a stopword, the stopword is not included in the query or highlighted by CTX_DOC.HIGHLIGHT	
or CTX_DOC.MARKUP	
.	
Base-Letter Conversion	
If base-letter conversion is enabled for a text column and the query expression contains a fuzzy operator, Oracle Text operates on the base-letter form of the query.	
Syntax	
Parameter	Description
---	---
term	Specify the word on which to perform the fuzzy expansion. Oracle Text expands term to include words only in the index. The word needs to be at least 3 characters for the fuzzy operator to process it.
score	Specify a similarity score. Terms in the expansion that score below this number are discarded. Use a number between 1 and 80. The default is 60.
numresults	Specify the maximum number of terms to use in the expansion of term. Use a number between 1 and 5000. The default is 100.
weight	Specify WEIGHT or W for the results to be weighted according to their similarity scores. Specify
Examples	
Consider the CONTAINS	
query:	
This query expands to the first six fuzzy variations of government in the index that have a similarity score over 70.	
In addition, documents in the result set are weighted according to their similarity to government. Documents containing words most similar to government receive the highest score.	
You can skip unnecessary parameters using the appropriate number of commas. For example:	
Backward Compatibility Syntax	
The old fuzzy syntax from previous releases is still supported. This syntax is as follows:	
Parameter	Description
---	---
?term	Expands term to include all terms with similar spellings as the specified term. Term needs to be at least 3 characters for the fuzzy operator to process it.
Use this operator to find all XML	
documents that contain a specified section path. You can also use this operator to do section equality testing.	
Your index must be created with the PATH_SECTION_GROUP	
for this operator to work.	
Syntax	
Syntax	Description
---	---
HASPATH(path)	Searches an XML document set and returns a score of 100 for all documents where path exists. Separate parent and child paths with the / character. For example, you can specify A/B/C. See example.
HASPATH(A="value")	Searches an XML document set and returns a score of 100 for all documents that have the element A with content value and only value. See example.
Using Special Characters with HASPATH and INPATH	
The following rules govern the use of special characters with regard to both the HASPATH	
and INPATH	
operators:	
Left-brace ({) and right-brace (}) characters are not allowed inside HASPATH	
or INPATH	
expressions unless they are inside the equality operand enclosed by double quotes. So both 'HASPATH({/A/B})	
' and 'HASPATH(/A/{B})	
' will return errors. However, 'HASPATH(/A[B="{author}"])	
' will be parsed correctly.	
With exception of the backslash (\), special characters, such as dollar sign ($), percent sign (%), underscore (_), left brace ({), and right brace (}), when inside the equality operand enclosed by double or single quotes, have no special meaning. (That is, no stemming, wildcard expansion, or similar processing will be performed on them.) However, they are still subject to regular text lexing and will be translated to whitespace, with the exception of characters declared as printjoins. A backslash will still escape any character that immediately follows it.	
For example, if the hyphen (-) and the double quote character (") are defined as printjoins in a lexer preference, then:	
The string B_TEXT inside HASPATH(/A[B="B_TEXT")	
will be lexed as the phrase B TEXT.	
The string B-TEXT inside HASPATH(/A[B="B-TEXT")	
will be lexed as the word B-TEXT.	
The string B'TEXT inside HASPATH(/A[B="B'TEXT")	
will be lexed as the word B"TEXT. You must use a backslash to escape the double quote between B and TEXT, or you will get a parsing error.	
The string {B_TEXT} inside HASPATH(/A[B="{B_TEXT}")	
will be lexed as a phrase B TEXT.	
Example	
Path Testing	
The query	
finds and returns a score of 100 for the document	
without the query having to reference dog at all.	
Section Equality Testing	
The query	
finds	
but it also finds	
To limit the query to the term dog and nothing else, you can use a section equality test with the HASPATH	
operator. For example,	
finds and returns a score of 100 only for the first document, and not the second.	
Limitations	
Because of how XML section data is recorded, false matches might occur with XML sections that are completely empty as follows:	
<A><C></C><D><E></E></D>	
A query of HASPATH(A/B/E)	
or HASPATH(A/D/C)	
falsely matches this document. This type of false matching can be avoided by inserting text between empty tags.	
Use this operator to do path searching in XML documents. This operator is like the WITHIN	
operator except that the right-hand side is a parentheses enclosed path, rather than a single section name.	
Your index must be created with the PATH_SECTION_GROUP	
for the INPATH	
operator to work.	
Syntax	
The INPATH	
operator has the following syntax:	
Top-Level Tag Searching	
Syntax	Description
---	---
term INPATH (/A) term INPATH (A)	Returns documents that have term within the <A> and tags.
Any-Level Tag Searching	
Syntax	Description
---	---
term INPATH (//A)	Returns documents that have term in the <A> tag at any level. This query is the same as 'term WITHIN A'
Direct Parentage Path Searching	
Syntax	Description
---	---
term INPATH (A/B)	Returns documents where term appears in a B element which is a direct child of a top-level A element. For example, a document containing
is returned.	
Single-Level Wildcard Searching	
Syntax	Description
---	---
term INPATH (A/*/B)	Returns documents where term appears in a B element which is a grandchild (two levels down) of a top-level A element. For example a document containing
is returned.	
Multi-level Wildcard Searching	
Syntax	Description
---	---
term INPATH (A/*/B/*/*/C)	Returns documents where term appears in a C element which is 3 levels down from a B element which is two levels down (grandchild) of a top-level A element.
Any-Level Descendant Searching	
Syntax	Description
---	---
term INPATH(A//B)	Returns documents where term appears in a B element which is some descendant (any level) of a top-level A element.
Attribute Searching	
Syntax	Description
---	---
term INPATH (//A/@B)	Returns documents where term appears in the B attribute of an A element at any level. Attributes must be bound to a direct parent.
Descendant/Attribute Existence Testing	
Syntax	Description
---	---
term INPATH (A[B])	Returns documents where term appears in a top-level A element which has a B element as a direct child.
term INPATH (A[.//B])	Returns documents where term appears in a top-level A element which has a B element as a descendant at any level.
term INPATH (//A[@B])	Finds documents where term appears in an A element at any level which has a B attribute. Attributes must be tied to a direct parent.
Attribute Value Testing	
Syntax	Description
---	---
term INPATH (A[@B = "value"])	Finds all documents where term appears in a top-level A element which has a B attribute whose value is value.
term INPATH (A[@B != "value"])	Finds all documents where term appears in a top-level A element which has a B attribute whose value is not value.
Tag Value Testing	
Syntax	Description
---	---
term INPATH (A[B = "value"]))	Returns documents where term appears in an A tag which has a B tag whose value is value.
Not	
Syntax	Description
---	---
term INPATH (A[NOT(B)])	Finds documents where term appears in a top-level A element which does not have a B element as an immediate child.
AND and OR Testing	
Syntax	Description
---	---
term INPATH (A[B and C])	Finds documents where term appears in a top-level A element which has a B and a C element as an immediate child.
term INPATH (A[B and @C="value"]])	
Finds documents where term appears in a top-level A element which has a B element and a C attribute whose value is value.	
term INPATH (A [B OR C])	Finds documents where term appears in a top-level A element which has a B element or a C element.
Combining Path and Node Tests	
Syntax	Description
---	---
term INPATH (A[@B = "value"]/C/D)	Returns documents where term appears in aD element which is the child of a C element, which is the child of a top-level A element with a B attribute whose value is value.
Nested INPATH	
You can nest the entire INPATH	
expression in another INPATH	
expression as follows:	
When you do so, the two INPATH	
paths are completely independent. The outer INPATH	
path does not change the context node of the inner INPATH	
path. For example:	
never finds any documents, because the inner INPATH	
is looking for dog within the top-level tag A, and the outer INPATH	
constrains that to document with top-level tag D. A document can have only one top-level tag, so this expression never finds any documents.	
Case-Sensitivity	
Tags and attribute names in path searching are case-sensitive. That is,	
finds <A>dog	
but does not find <a>dog	
. Instead use	
Using Special Characters with INPATH	
See "Using Special Characters with HASPATH and INPATH" for information on using special characters, such as the percent sign (%) or the backslash (\), with INPATH	
.	
Examples	
Top-Level Tag Searching	
To find all documents that contain the term dog in the top-level tag <A>:	
or	
Any-Level Tag Searching	
To find all documents that contain the term dog in the <A> tag at any level:	
This query finds the following documents:	
and	
Direct Parentage Searching	
To find all documents that contain the term dog in a B element that is a direct child of a top-level A element:	
This query finds the following XML document:	
but does not find:	
Tag Value Testing	
You can test the value of tags. For example, the query:	
Finds the following document:	
But does not find:	
Attribute Searching	
You can search the content of attributes. For example, the query:	
Finds the document	
Attribute Value Testing	
You can test the value of attributes. For example, the query	
Finds the document:	
But does not find:	
Path Testing	
You can test if a path exists with the HASPATH	
operator. For example, the query:	
finds and returns a score of 100 for the document	
without the query having to reference dog at all.	
Limitations	
Testing for Equality	
The following is an example of an INPATH	
equality test.	
The following limitations apply for these expressions:	
Only equality and inequality are supported. Range operators and functions are not supported.	
The left hand side of the equality must be an attribute. Tags and literals here are not enabled.	
The right hand side of the equality must be a literal. Tags and attributes here are not allowed.	
The test for equality depends on your lexer settings. With the default settings, the query	
matches the following sections:	
and	
because lexer is case-insensitive by default.	
because of and is are default stopwords in English, and a stopword matches any stopword word.	
because the underscore character is not a join character by default.	
Use the MDATA	
operator to query documents that contain MDATA	
sections. MDATA	
sections are metadata that have been added to documents to speed up mixed querying.	
MDATA	
queries are treated exactly as literals. For example, with the query	
the $ is not interpreted as a stem operator, nor is the . (period) transformed into whitespace. A right (close) parenthesis terminates the MDATA	
operator, so that MDATA	
values that have close parentheses cannot be searched.	
Syntax	
Syntax	

MDATA(sectionname, value)	
The name of the MDATA	
section(s) to search.	
The value of the MDATA	
section. For example, if an MDATA	
section called Booktype	
has been created, it might have a value of paperback.	
Example	
Suppose you want to query for books written by the writer Nigella Lawson that contain the word summer. Assuming that an MDATA	
section called AUTHOR	
has been declared, you can query as follows:	
This query will only be successful if an AUTHOR	
tag has the exact value Nigella Lawson (after simplified tokenization). Nigella or Ms. Nigella Lawson will not work.	
Notes	
MDATA	
query values ignore stopwords.	
The MDATA	
operator returns 100 or 0, depending on whether the document is a match.	
The MDATA	
operator is not supported for CTXCAT	
, CTXRULE	
, or CTXXPATH	
indexes.	
Table 3-2 shows how MDATA	
interacts with some other query operators:	
Table 3-2 MDATA and Other Query Operators	
Operator	Example
---	---
AND	dog & MDATA(a, b)
OR	dog
NOT	dog ~ MDATA(a, b)
MINUS	dog - MDATA(a, b)
ACCUM	dog , MDATA(a, b)
PHRASE	MDATA(a, b) dog
NEAR	MDATA(a, b) ; dog
WITHIN, HASPATH, INPATH	MDATA(a, b) WITHIN c
Thesaurus	MDATA(a, SYN(b))
expansion	MDATA(a, $b) MDATA(a, b%) MDATA(a, !b) MDATA(a, ?b)
ABOUT	ABOUT(MDATA(a,b)) MDATA(ABOUT(a))
When MDATA	
sections repeat, each instance is a separate and independent value. For instance, the document	
can be found with any of the following queries:	
but not any of the following:	
Related Topics	
See also "ADD_MDATA" and "ADD_MDATA_SECTION", as well as the Section Searching chapter of the Oracle Text Application Developer's Guide.	
Use the MINUS	
operator to lower the score of documents that contain unwanted noise terms. MINUS is useful when you want to search for documents that contain one query term but want the presence of a second term to cause a document to be ranked lower.	
Syntax	
Syntax	Description
---	---
term1-term2 term1 minus term2	Returns documents that contain term1. Calculates score by subtracting the score of term2 from the score of term1. Only documents with positive score are returned.
Examples	
Suppose a query on the term cars always returned high scoring documents about Ford cars. You can lower the scoring of the Ford documents by using the expression:	
In essence, this expression returns documents that contain the term cars and possibly Ford. However, the score for a returned document is the score of cars minus the score of Ford.	
Related Topics	
Use the narrower term operators (NT	
, NTG	
, NTP	
, NTI	
) to expand a query to include all the terms that have been defined in a thesaurus as the narrower or lower level terms for a specified term. They can also expand the query to include all of the narrower terms for each narrower term, and so on down through the thesaurus hierarchy.	
Syntax	
Syntax	Description
---	---
NT(term[(qualifier)][,level][,thes])	Expands a query to include all the lower level terms defined in the thesaurus as narrower terms for term.
NTG(term[(qualifier)][,level][,thes])	Expands a query to include all the lower level terms defined in the thesaurus as narrower generic terms for term.
NTP(term[(qualifier)][,level][,thes])	Expands a query to include all the lower level terms defined in the thesaurus as narrower partitive terms for term.
NTI(term[(qualifier)][,level][,thes])	Expands a query to include all the lower level terms defined in the thesaurus as narrower instance terms for term.
Specify the operand for the narrower term operator. term	
is expanded to include the narrower term entries defined for the term in the thesaurus specified by thes	
. The number of narrower terms included in the expansion is determined by the value for level	
. You cannot specify expansion operators in the term	
argument.	
Specify a qualifier for term, if term is a homograph (word or phrase with multiple meanings, but the same spelling) that appears in two or more nodes in the same hierarchy branch of thes.	
If a qualifier is not specified for a homograph in a narrower term query, the query expands to include all of the narrower terms of all homographic terms.	
Specify the number of levels traversed in the thesaurus hierarchy to return the narrower terms for the specified term. For example, a level of 1 in an NT	
query returns all the narrower term entries, if any exist, for the specified term. A level of 2 returns all the narrower term entries for the specified term, as well as all the narrower term entries, if any exist, for each narrower term.	
The level argument is optional and has a default value of one (1). Zero or negative values for the level argument return only the original query term.	
Specify the name of the thesaurus used to return the expansions for the specified term. The thes argument is optional and has a default value of DEFAULT	
. A thesaurus named DEFAULT	
must exist in the thesaurus tables if you use this default value.	
Note: If you specify thes, you must also specify level.	
Examples	
The following query returns all documents that contain either the term cat or any of the NT	
terms defined for cat in the DEFAULT	
thesaurus:	
If you specify a thesaurus name, you must also specify level as in:	
The following query returns all documents that contain either fairy tale or any of the narrower instance terms for fairy tale as defined in the DEFAULT	
thesaurus:	
That is, if the terms cinderella and snow white are defined as narrower term instances for fairy tale, Oracle Text returns documents that contain fairy tale, cinderella, or snow white.	
Notes	
Each hierarchy in a thesaurus represents a distinct, separate branch, corresponding to the four narrower term operators. In a narrower term query, Oracle Text only expands the query using the branch corresponding to the specified narrower term operator.	
Related Topics	
You can browse a thesaurus using procedures in the CTX_THES	
package.	
See Also: For more information on browsing the narrower terms in your thesaurus, see CTX_THES.NT in Chapter 12, "CTX_THES Package".	
Use the NEAR	
operator to return a score based on the proximity of two or more query terms. Oracle Text returns higher scores for terms closer together and lower scores for terms farther apart in a document.	
Note: TheNEAR operator works with only word queries. You cannot use NEAR in ABOUT queries.	
Syntax	
Syntax	

NEAR((word1, word2,..., wordn) [, max_span [, order]]) Backward compatibility syntax: word1 ; word2	
Specify the terms in the query separated by commas. The query terms can be single words or phrases and may make use of other query operators (see "NEAR with Other Operators").	
Optionally specify the size of the biggest clump. The default is 100. Oracle Text returns an error if you specify a number greater than 100.	
A clump is the smallest group of words in which all query terms occur. All clumps begin and end with a query term.	
For near queries with two terms, max_span is the maximum distance allowed between the two terms. For example, to query on dog and cat where dog is within 6 words of cat, issue the following query:	
Specify TRUE	
for Oracle Text to search for terms in the order you specify. The default is FALSE	
.	
For example, to search for the words monday, tuesday, and wednesday in that order with a maximum clump size of 20, issue the following query:	
Note: To specify order, you must always specify a number for the max_span parameter.	
Oracle Text might return different scores for the same document when you use identical query expressions that have the order flag set differently. For example, Oracle Text might return different scores for the same document when you issue the following queries:	
The scoring for the NEAR	
operator combines frequency of the terms with proximity of terms. For each document that satisfies the query, Oracle Text returns a score between 1 and 100 that is proportional to the number of clumps in the document and inversely proportional to the average size of the clumps. This means many small clumps in a document result in higher scores, since small clumps imply closeness of terms.	
The number of terms in a query also affects score. Queries with many terms, such as seven, generally need fewer clumps in a document to score 100 than do queries with few terms, such as two.	
A clump is the smallest group of words in which all query terms occur. All clumps begin and end with a query term. You can define clump size with the max_span parameter as described in this section.	
The size of a clump does not include the query terms themselves. So for the query NEAR((DOG, CAT), 1)	
, dog cat will be a match, and dog ate cat will be a match, but dog sat on cat will not be a match.	
You can use the NEAR	
operator with other operators such as AND	
and OR	
. Scores are calculated in the regular way.	
For example, to find all documents that contain the terms tiger, lion, and cheetah where the terms lion and tiger are within 10 words of each other, issue the following query:	
The score returned for each document is the lower score of the near operator and the term cheetah.	
You can also use the equivalence operator to substitute a single term in a near query:	
This query asks for all documents that contain the phrase stock crash within twenty words of Japan or Korea.	
The following operators also work with NEAR	
and ; :	
EQUIV	
All expansion operators that produce words, phrases, or EQUIV	
. These include:	
soundex	
fuzzy	
wildcards	
stem	
Backward Compatibility NEAR Syntax	
You can write near queries using the syntax of previous Oracle Text releases. For example, to find all documents where lion occurs near tiger, you can write:	
or with the semi-colon as follows:	
This query is equivalent to the following query:	
Note: Only the syntax of theNEAR operator is backward compatible. In the example, the score returned is calculated using the clump method as described in this section.	
Highlighting with the NEAR Operator	
When you use highlighting and your query contains the near operator, all occurrences of all terms in the query that satisfy the proximity requirements are highlighted. Highlighted terms can be single words or phrases.	
For example, assume a document contains the following text:	
If the query is near((chocolate, vanilla)), 100, FALSE), the following is highlighted:	
However, if the query is near((chocolate, vanilla)), 4, FALSE), only the following is highlighted:	
See Also: For more information about the procedures you can use for highlighting, see Chapter 8, " CTX_DOC Package".	
Section Searching and NEAR	
You can use the NEAR	
operator with the WITHIN	
operator for section searching as follows:	
When evaluating expressions such as these, Oracle Text looks for clumps that lie entirely within the given section.	
In this example, only those clumps that contain dog and cat that lie entirely within the section Headings are counted. That is, if the term dog lies within Headings and the term cat lies five words from dog, but outside of Headings, this pair of words does not satisfy the expression and is not counted.	
Use the NOT	
operator to search for documents that contain one query term and not another.	
Syntax	
Syntax	Description
---	---
term1~term2 term1 not term2	Returns documents that contain term1 and not term2.
Examples	
To obtain the documents that contain the term animals but not dogs, use the following expression:	
Similarly, to obtain the documents that contain the term transportation but not automobiles or trains, use the following expression:	
Note: TheNOT operator does not affect the scoring produced by the other logical operators.	
Related Topics	
Use the OR	
operator to search for documents that contain at least one occurrence of any of the query terms.	
Syntax	
Syntax	Description
---	---
term1	term2 term1 or term2
Examples	
For example, to obtain the documents that contain the term cats or the term dogs, use either of the following expressions:	
Scoring	
In an OR	
query, the score returned is the score for the highest query term. In the example, if the scores for cats and dogs is 30 and 40 within a document, the document scores 40.	
Related Topics	
See Also: TheOR operator returns documents that contain any of the query terms, while the AND operator returns documents that contain all query terms. See "AND (&)".	
Use the preferred term operator (PT	
) to replace a term in a query with the preferred term that has been defined in a thesaurus for the term.	
Syntax	
Syntax	Description
---	---
PT(term[,thes])	Replaces the specified word in a query with the preferred term for term.
Specify the operand for the preferred term operator. term is replaced by the preferred term defined for the term in the specified thesaurus. However, if no PT	
entries are defined for the term, term is not replaced in the query expression and term is the result of the expansion.	
You cannot specify expansion operators in the term	
argument.	
Specify the name of the thesaurus used to return the expansions for the specified term. The thes argument is optional and has a default value of DEFAULT	
. As a result, a thesaurus named DEFAULT	
must exist in the thesaurus tables before using any of the thesaurus operators.	
Examples	
The term automobile has a preferred term of car in a thesaurus. A PT	
query for automobile returns all documents that contain the word car. Documents that contain the word automobile are not returned.	
Related Topics	
You can browse a thesaurus using procedures in the CTX_THES	
package.	
See Also: For more information on browsing the preferred terms in your thesaurus, see CTX_THES.PT in Chapter 12, "CTX_THES Package".	
Use the related term operator (RT	
) to expand a query to include all related terms that have been defined in a thesaurus for the term.	
Syntax	
Syntax	Description
---	---
RT(term[,thes])	Expands a query to include all the terms defined in the thesaurus as a related term for term.
Specify the operand for the related term operator. term is expanded to include term and all the related entries defined for term in thes.	
You cannot specify expansion operators in the term	
argument.	
Specify the name of the thesaurus used to return the expansions for the specified term. The thes argument is optional and has a default value of DEFAULT	
. As a result, a thesaurus named DEFAULT	
must exist in the thesaurus tables before using any of the thesaurus operators.	
Examples	
The term dog has a related term of wolf. A RT query for dog returns all documents that contain the word dog and wolf.	
Related Topics	
You can browse a thesaurus using procedures in the CTX_THES	
package	
See Also: For more information on browsing the related terms in your thesaurus, see CTX_THES.RT in Chapter 12, "CTX_THES Package".	
Use the soundex (!) operator to expand queries to include words that have similar sounds; that is, words that sound like other words. This function enables comparison of words that are spelled differently, but sound alike in English.	
Syntax	
Syntax	Description
---	---
!term	Expands a query to include all terms that sound the same as the specified term (English-language text only).
Examples	
Language	
Soundex works best for languages that use a 7-bit character set, such as English. It can be used, with lesser effectiveness, for languages that use an 8-bit character set, such as many Western European languages.	
If you have base-letter conversion specified for a text column and the query expression contains a soundex operator, Oracle Text operates on the base-letter form of the query.	
Use the stem ($) operator to search for terms that have the same linguistic root as the query term.	
If you use the BASIC_LEXER to index your language, stemming performance can be improved by using the index_stems attribute.	
The Oracle Text stemmer, licensed from Xerox Corporation's XSoft Division, supports the following languages with the BASIC_LEXER: English, French, Spanish, Italian, German, and Dutch.	
Japanese stemming is supported with the JAPANESE_LEXER.	
You can specify your stemming language with the BASIC_WORDLIST wordlist preference.	
Syntax	
Syntax	Description
---	---
$term	Expands a query to include all terms having the same stem or root word as the specified term.
Examples	
Input	Expands To
---	---
$scream	scream screaming screamed
$distinguish	distinguish distinguished distinguishes
$guitars	guitars guitar
$commit	commit committed
$cat	cat cats
$sing	sang sung sing
Behavior with Stopwords	
If stem returns a word designated as a stopword, the stopword is not included in the query or highlighted by CTX_QUERY.HIGHLIGHT	
or CTX_QUERY.MARKUP	
.	
Related Topics	
See Also: For more information about enabling the stem operator with BASIC_LEXER, see BASIC_LEXER in Chapter 2, " Oracle Text Indexing Elements".	
Use the SQE operator to call a stored query expression created with the CTX_QUERY.STORE_SQE	
procedure.	
Stored query expressions can be used for creating predefined bins for organizing and categorizing documents or to perform iterative queries, in which an initial query is refined using one or more additional queries.	
Syntax	
Syntax	Description
---	---
SQE(SQE_name)	Returns the results for the stored query expression SQE_name.
Examples	
To create an SQE named disasters, use CTX_QUERY.STORE_SQE	
as follows:	
This stored query expression returns all documents that contain either hurricane, earthquake or blizzard.	
This SQE can then be called within a query expression as follows:	
Use the synonym operator (SYN	
) to expand a query to include all the terms that have been defined in a thesaurus as synonyms for the specified term.	
Syntax	
Syntax	Description
---	---
SYN(term[,thes])	Expands a query to include all the terms defined in the thesaurus as synonyms for term.
Specify the operand for the synonym operator. term is expanded to include term and all the synonyms defined for term in thes.	
You cannot specify expansion operators in the term	
argument.	
Specify the name of the thesaurus used to return the expansions for the specified term. The thes argument is optional and has a default value of DEFAULT	
. A thesaurus named DEFAULT	
must exist in the thesaurus tables if you use this default value.	
Examples	
The following query expression returns all documents that contain the term dog or any of the synonyms defined for dog in the DEFAULT	
thesaurus:	
Compound Phrases in Synonym Operator	
Expansion of compound phrases for a term in a synonym query are returned as AND	
conjunctives.	
For example, the compound phrase temperature + measurement + instruments is defined in a thesaurus as a synonym for the term thermometer. In a synonym query for thermometer, the query is expanded to:	
Related Topics	
You can browse your thesaurus using procedures in the CTX_THES	
package.	
See Also: For more information on browsing the synonym terms in your thesaurus, see CTX_THES.SYN in Chapter 12, "CTX_THES Package".	
Use the threshold operator (>) in two ways:	
at the expression level	
at the query term level	
The threshold operator at the expression level eliminates documents in the result set that score below a threshold number.	
The threshold operator at the query term level selects a document based on how a term scores in the document.	
Syntax	
Syntax	Description
---	---
expression>n	
term>n	Returns only those documents in the result set that score above the threshold n. Within an expression, returns documents that contain the query term with score of at least n.
Examples	
At the expression level, to search for documents that contain relational databases and to return only documents that score greater than 75, use the following expression:	
At the query term level, to select documents that have at least a score of 30 for lion and contain tiger, use the following expression:	
Use the translation term operator (TR	
) to expand a query to include all defined foreign language equivalent terms.	
Syntax	
Syntax	Description
---	---
TR(term[, lang, [thes]])	Expands term to include all the foreign equivalents that are defined for term.
Specify the operand for the translation term operator. term is expanded to include all the foreign language entries defined for term in thes.You cannot specify expansion operators in the term	
argument.	
Optionally, specify which foreign language equivalents to return in the expansion. The language you specify must match the language as defined in thes. (You may specify only one language at a time.) If you omit this parameter or specify it as ALL	
, the system expands to use all defined foreign language terms.	
Optionally, specify the name of the thesaurus used to return the expansions for the specified term. The thes argument has a default value of DEFAULT	
. As a result, a thesaurus named DEFAULT	
must exist in the thesaurus tables before you can use any of the thesaurus operators.	
Note: If you specify thes, you must also specify lang.	
Examples	
Consider a thesaurus MY_THES	
with the following entries for cat:	
To search for all documents that contain cat and the spanish translation of cat, issue the following query:	
This query expands to:	
Related Topics	
You can browse a thesaurus using procedures in the CTX_THES	
package.	
See Also: For more information on browsing the related terms in your thesaurus, see CTX_THES.TR in Chapter 12, "CTX_THES Package".	
Use the translation term operator (TR	
) to expand a query to include all the defined foreign equivalents of the query term, the synonyms of query term, and the foreign equivalents of the synonyms.	
Syntax	
Syntax	Description
---	---
TRSYN(term[, lang, [thes]])	Expands term to include foreign equivalents of term, the synonyms of term, and the foreign equivalents of the synonyms.
Specify the operand for this operator. term is expanded to include all the foreign language entries and synonyms defined for term in thes.You cannot specify expansion operators in the term	
argument.	
Optionally, specify which foreign language equivalents to return in the expansion. The language you specify must match the language as defined in thes. If you omit this parameter, the system expands to use all defined foreign language terms.	
Optionally, specify the name of the thesaurus used to return the expansions for the specified term. The thes argument has a default value of DEFAULT	
. As a result, a thesaurus named DEFAULT	
must exist in the thesaurus tables before you can use any of the thesaurus operators.	
Note: If you specify thes, you must also specify lang.	
Examples	
Consider a thesaurus MY_THES	
with the following entries for cat:	
To search for all documents that contain cat, the spanish equivalent of cat, the synonym of cat, and the spanish equivalent of lion, issue the following query:	
This query expands to:	
Related Topics	
You can browse a thesaurus using procedures in the CTX_THES	
package.	
See Also: For more information on browsing the translation and synonym terms in your thesaurus, see CTX_THES.TRSYN in Chapter 12, "CTX_THES Package".	
Use the top term operator (TT	
) to replace a term in a query with the top term that has been defined for the term in the standard hierarchy (Broader Term [BT	
], Narrower Term [NT]	
) in a thesaurus. A top term is the broadest conceptual term related to a given query term. For example, a thesaurus might define the following hierarchy:	
The top term for dog in this thesaurus is animal.	
Top terms in the generic (BTG	
, NTG	
), partitive (BTP	
, NTP	
), and instance (BTI	
, NTI	
) hierarchies are not returned.	
Syntax	
Syntax	Description
---	---
TT(term[,thes])	Replaces the specified word in a query with the top term in the standard hierarchy (BT , NT) for term.
Specify the operand for the top term operator. term is replaced by the top term defined for the term in the specified thesaurus. However, if no TT	
entries are defined for term, term is not replaced in the query expression and term is the result of the expansion.	
You cannot specify expansion operators in the term	
argument.	
Specify the name of the thesaurus used to return the expansions for the specified term. The thes argument is optional and has a default value of DEFAULT	
. A thesaurus named DEFAULT	
must exist in the thesaurus tables if you use this default value.	
Examples	
The term dog has a top term of animal in the standard hierarchy of a thesaurus. A TT	
query for dog returns all documents that contain the phrase animal. Documents that contain the word dog are not returned.	
Related Topics	
You can browse your thesaurus using procedures in the CTX_THES	
package.	
The weight operator multiplies the score by the given factor, topping out at 100 when the score exceeds 100. For example, the query cat, dog*2 sums the score of cat with twice the score of dog, topping out at 100 when the score is greater than 100.	
In expressions that contain more than one query term, use the weight operator to adjust the relative scoring of the query terms. You can reduce the score of a query term by using the weight operator with a number less than 1; you can increase the score of a query term by using the weight operator with a number greater than 1 and less than 10.	
The weight operator is useful in ACCUMulate (,), AND (&), or OR () queries when the expression has more than one query term. With no weighting on individual terms, the score cannot tell you which of the query terms occurs the most. With term weighting, you can alter the scores of individual terms and hence make the overall document ranking reflect the terms you are interested in.
Syntax	
Syntax	Description
---	---
term*n	Returns documents that contain term. Calculates score by multiplying the raw score of term by n, where n is a number from 0.1 to 10.
Examples	
You have a collection of sports articles. You are interested in the articles about soccer, in particular Brazilian soccer. It turns out that a regular query on soccer or Brazil returns many high ranking articles on US soccer. To raise the ranking of the articles on Brazilian soccer, you can issue the following query:	
Table 3-3 illustrates how the weight operator can change the ranking of three hypothetical documents A, B, and C, which all contain information about soccer. The columns in the table show the total score of four different query expressions on the three documents.	
Table 3-3 Score Samples	
soccer	Brazil
---|---|---|---|---|
A | 20 | 10 | 20 | 30 |
B | 10 | 30 | 30 | 90 |
C | 50 | 20 | 50 | 60 |
The score in the third column containing the query soccer or Brazil is the score of the highest scoring term. The score in the fourth column containing the query soccer or Brazil*3 is the larger of the score of the first column soccer and of the score Brazil multiplied by three, Brazil*3.
With the initial query of soccer or Brazil, the documents are ranked in the order C B A. With the query of soccer or Brazil*3, the documents are ranked B C A, which is the preferred ranking.
Weights can be added to multiple terms. The query Brazil OR (soccer AND Brazil)*3 will increase the relative scores for documents that contain both soccer and Brazil.
Wildcard characters can be used in query expressions to expand word searches into pattern searches. The wildcard characters are:
Wildcard Character | Description |
---|---|
% | The percent wildcard can appear any number of times at any part of the search term. The search term will be expanded into an equivalence list of terms. The list consists of all terms in the index that match the wildcarded term, with zero or more characters in place of the percent character. |
_ | The underscore wildcard specifies a single position in which any character can occur. |
The total number of wildcard expansions from all words in a query containing unescaped wildcard characters cannot exceed the maximum number of expansions specified by the BASIC_WORDLIST
attribute WILDCARD_MAXTERMS
. For more information, see "BASIC_WORDLIST".
Right-Truncated Queries
Right truncation involves placing the wildcard on the right-hand-side of the search string.
For example, the following query expression finds all terms beginning with the pattern scal:
Left- and Double-Truncated Queries
Left truncation involves placing the wildcard on the left-hand-side of the search string.
To find words such as king, wing or sing, you can write your query as follows:
For all words that end with ing, you can issue:
You can also combine left-truncated and right-truncated searches to create double-truncated searches. The following query finds all documents that contain words that contain the substring %benz%
Improving Wildcard Query Performance
You can improve wildcard query performance by adding a substring or prefix index.
When your wildcard queries are left- and double-truncated, you can improve query performance by creating a substring index. Substring indexes improve query performance for all types of left-truncated wildcard searches such as %ed, _ing, or %benz%.
When your wildcard queries are right-truncated, you can improve performance by creating a prefix index. A prefix index improves query performance for wildcard searches such as to%.
See Also: For more information about creating substring and prefix indexes, see "BASIC_WORDLIST" in Chapter 2. |
You can use the WITHIN
operator to narrow a query down into document sections. Document sections can be one of the following:
zone sections
field sections
attribute sections
special sections (sentence or paragraph)
Syntax
Syntax | Description |
---|---|
expression WITHIN section | Searches for expression within the pre-defined zone, field, or attribute section. If section is a zone, expression can contain one or more If section is a field or attribute section, expression cannot contain another |
expression WITHIN SENTENCE | Searches for documents that contain expression within a sentence. Specify an AND or NOT query for expression. The expression can contain one or more |
expression WITHIN PARAGRAPH | Searches for documents that contain expression within a paragraph. Specify an AND or NOT query for expression. The expression can contain one or more |
The WITHIN
operator has the following limitations:
You cannot embed the WITHIN
clause in a phrase. For example, you cannot write: term1 WITHIN section term2
Since WITHIN
is a reserved word, you must escape the word with braces to search on it.
WITHIN Operator Examples
Querying Within Zone Sections
To find all the documents that contain the term San Francisco within the section Headings, write your query as follows:
To find all the documents that contain the term sailing and contain the term San Francisco within the section Headings, write your query in one of two ways:
Compound Expressions with WITHIN
To find all documents that contain the terms dog and cat within the same section Headings, write your query as follows:
This query is logically different from:
This query finds all documents that contain dog and cat where the terms dog and cat are in Headings sections, regardless of whether they occur in the same Headings section or different sections.
To find all documents in which dog is near cat within the section Headings, write your query as follows:
Note: The near operator has higher precedence than theWITHIN operator so braces are not necessary in this example. This query is equivalent to (dog near cat) WITHIN Headings. |
You can nest the within operator to search zone sections within zone sections.
For example, assume that a document set had the zone section AUTHOR
nested within the zone BOOK
section. You write a nested WITHIN
query to find all occurrences of scott within the AUTHOR
section of the BOOK
section as follows:
Querying Within Field Sections
The syntax for querying within a field section is the same as querying within a zone section. The syntax for most of the examples given in the previous section, "Querying Within Zone Sections", apply to field sections.
However, field sections behave differently from zone sections in terms of
Visibility: You can make text within a field section invisible.
Repeatability: WITHIN
queries cannot distinguish repeated field sections.
Nestability: You cannot issue a nested WITHIN
query with a field section.
The following sections describe these differences.
Visible Flag in Field Sections
When a field section is created with the visible flag set to FALSE
in CTX_DDL.ADD_FIELD_SECTION
, the text within a field section can only be queried using the WITHIN
operator.
For example, assume that TITLE
is a field section defined with visible flag set to FALSE. Then the query dog without the WITHIN
operator will not find a document containing:
To find such a document, you can use the WITHIN
operator as follows:
Alternatively, you can set the visible flag to TRUE
when you define TITLE
as a field section with CTX_DDL.ADD_FIELD_SECTION
.
See Also: For more information about creating field sections, see ADD_FIELD_SECTION in Chapter 7, "CTX_DDL Package". |
WITHIN
queries cannot distinguish repeated field sections in a document. For example, consider the document with the repeated section <author>
:
Assuming that <author>
is defined as a field section, a query such as (charles and martin) within author returns the document, even though these words occur in separate tags.
To have WITHIN
queries distinguish repeated sections, define the sections as zone sections.
Nested Field Sections
You cannot issue a nested WITHIN
query with field sections. Doing so raises an error.
Querying Within Sentence or Paragraphs
Querying within sentence or paragraph boundaries is useful to find combinations of words that occur in the same sentence or paragraph. To query sentence or paragraphs, you must first add the special section to your section group before you index. You do so with CTX_DDL.ADD_SPECIAL_SECTION
.
To find documents that contain dog and cat within the same sentence:
To find documents that contain dog and cat within the same paragraph:
To find documents that contain sentences with the word dog but not cat:
Querying Within Attribute Sections
You can query within attribute sections when you index with either XML_SECTION_GROUP
or AUTO_SECTION_GROUP
as your section group type.
Assume you have an XML document as follows:
You can define the section title@book
to be the attribute section title
. You can do so with the CTX_DLL.ADD_ATTR_SECTION
procedure or dynamically after indexing with ALTER
INDEX
.
Note: When you use theAUTO_SECTION_GROUP to index XML documents, the system automatically creates attribute sections and names them in the form attribute@tag. If you use the |
To search on Tale within the attribute section title
, you issue the following query:
Constraints for Querying Attribute Sections
The following constraints apply to querying within attribute sections:
Regular queries on attribute text do not hit the document unless qualified in a within clause. Assume you have an XML document as follows:
A query on Tale by itself does not produce a hit on the document unless qualified with WITHIN title@book
. (This behavior is like field sections when you set the visible flag set to false.)
You cannot use attribute sections in a nested WITHIN
query.
Phrases ignore attribute text. For example, if the original document looked like:
Then this document would hit on the regular query good men, ignoring the intervening attribute text.
WITHIN
queries can distinguish repeated attribute sections. This behavior is like zone sections but unlike field sections. For example, you have a document as follows:
Assume that book
is a zone section and book@author
is an attribute section. Consider the query:
This query does not hit the document, because tale and bondage are in different occurrences of the attribute section book@author
.
Notes
Section Names
The WITHIN
operator requires you to know the name of the section you search. A list of defined sections can be obtained using the CTX_SECTIONS or CTX_USER_SECTIONS views.
Section Boundaries
For special and zone sections, the terms of the query must be fully enclosed in a particular occurrence of the section for the document to satisfy the query. This is not a requirement for field sections.
For example, consider the query where bold is a zone section:
This query finds:
but it does not find:
This is because dog and cat must be in the same bold section.
This behavior is especially useful for special sections, where
means find dog and cat within the same sentence.
Field sections on the other hand are meant for non-repeating, embedded metadata such as a title section. Queries within field sections cannot distinguish between occurrences. All occurrences of a field section are considered to be parts of a single section. For example, the query:
can find a document like this:
<TITLE>dog</TITLE><TITLE>cat</TITLE>
In return for this field section limitation and for the overlap and nesting limitations, field section queries are generally faster than zone section queries, especially if the section occurs in every document, or if the search term is common.
This chapter describes the special characters that can be used in Text queries. In addition, it provides a list of the words and characters that Oracle Text treats as reserved words and characters.
The following topics are covered in this chapter:
The grouping characters control operator precedence by grouping query terms and operators in a query expression. The grouping characters are:
Table 4-1 Characters for Grouping Query Terms
Grouping Character | Description |
---|---|
() | The parentheses characters serve to group terms and operators found between the characters |
[] | The bracket characters serve to group terms and operators found between the characters; however, they prevent penetrations for the expansion operators (fuzzy, soundex, stem). |
The beginning of a group of terms and operators is indicated by an open character from one of the sets of grouping characters. The ending of a group is indicated by the occurrence of the appropriate close character for the open character that started the group. Between the two characters, other groups may occur.
For example, the open parenthesis indicates the beginning of a group. The first close parenthesis encountered is the end of the group. Any open parentheses encountered before the close parenthesis indicate nested groups.
To query on words or symbols that have special meaning to query expressions such as and & or| accum, you must escape them. There are two ways to escape characters in a query expression:
Table 4-2 Characters for Escaping Query Terms
Escape Character | Description |
---|---|
{} | Use braces to escape a string of characters or symbols. Everything within a set of braces in considered part of the escape sequence. When you use braces to escape a single character, the escaped character becomes a separate token in the query. |
\ | Use the backslash character to escape a single character or symbol. Only the character immediately following the backslash is escaped. For example, a query of blue\-green matches blue-green and blue green. |
In the following examples, an escape sequence is necessary because each expression contains a Text operator or reserved symbol:
In the first example, the query matches high-voltage or high voltage.
Note that in the second example, a query on XY&Z will return 'XY Z', 'XY-Z', 'XY*Z', and so forth, as well as 'XY&Z'. This is because non-alphabetic characters are treated as whitespace (so XY&Z is treated as 'XY Z'). To match only XY&Z, you must declare & as a printjoin. (If you do, however, XY&Z will not match 'XY & Z'.) For more on printjoins, see BASIC_LEXER.
Note: If you use braces to escape an individual character within a word, the character is escaped, but the word is broken into three tokens.For example, a query written as high{-}voltage searches for high - voltage, with the space on either side of the hyphen. |
The open brace { signals the beginning of the escape sequence, and the closed brace } indicates the end of the sequence. Everything between the opening brace and the closing brace is part of the escaped query expression (including any open brace characters). To include the close brace character in an escaped query expression, use }}
.
To escape the backslash escape character, use \\
.
Table 4-3 lists the Oracle Text reserved words and characters that must be escaped when you want to search them in CONTAINS
queries:
Table 4-3 Reserved Words and Characters
Reserved Words | Reserved Characters | Operator |
---|---|---|
ABOUT | (none) | ABOUT |
ACCUM | , | Accumulate |
AND | & | And |
BT | (none) | Broader Term |
BTG | (none) | Broader Term Generic |
BTI | (none) | Broader Term Instance |
BTP | (none) | Broader Term Partitive |
EQUIV | = | Equivalence |
FUZZY | ? | fuzzy |
(none) | { } | escape characters (multiple) |
(none) | \ | escape character (single) |
(none) | () | grouping characters |
(none) | [] | grouping characters |
HASPATH | (none) | HASPATH |
INPATH | (none) | INPATH |
MDATA | (none) | MDATA |
MINUS | - | MINUS |
NEAR | ; | NEAR |
NOT | ~ | NOT |
NT | (none) | Narrower Term |
NTG | (none) | Narrower Term Generic |
NTI | (none) | Narrower Term Instance |
NTP | (none) | Narrower Term Partitive |
OR | | | OR |
PT | (none) | Preferred Term |
RT | (none) | Related Term |
(none) | $ | stem |
(none) | ! | soundex |
SQE | (none) | Stored Query Expression |
SYN | (none) | Synonym |
(none) | > | threshold |
TR | (none) | Translation Term |
TRSYN | (none) | Translation Term Synonym |
TT | (none) | Top Term |
(none) | * | weight |
(none) | % | wildcard character (multiple) |
(none) | _ | wildcard character (single) |
WITHIN | (none) | WITHIN |
This chapter provides information for using the CTX_ADM
PL/SQL package.
CTX_ADM
contains the following stored procedures:
Name | Description |
---|---|
MARK_FAILED | Changes an index's status from LOADING to FAILED . |
RECOVER | Cleans up database objects for deleted Text tables. |
SET_PARAMETER | Sets system-level defaults for index creation. |
Note: Only the CTXSYS user can use the procedures in CTX_ADM. |
Use this procedure to change the status of an index from LOADING
to FAILED
.
Under rare circumstances, if CREATE INDEX
or ALTER INDEX
fails, an index may be left with the status LOADING
. Once an index is in LOADING
status, any attempt to recover using RESUME INDEX
is blocked. For this situation, you can use CTX_ADM.MARK_FAILED
to forcibly change the status from LOADING
to FAILED
so that you can recover the index with RESUME INDEX
.
You must log on as CTXSYS
in order to run CTX_ADM.MARK_FAILED
.
Note: UseCTX_ADM.MARK_FAILED with caution. It should only be used as a last resort and only when no other session is touching the index. Normally, CTX_ADM.MARK_FAILED does not succeed if another session is actively building the index with CREATE or ALTER INDEX ; however, index creation or alteration may include windows during which CTX_ADM.MARK_FAILED can succeed, marking the index as failed even as it is being built by another session. |
CTX_ADM.MARK_FAILED
works with local partitioned indexes. However, it changes the status of all partitions to FAILED
. Therefore, you should rebuild all index partitions with ALTER INDEX REBUILD PARTITION PARAMETERS ('RESUME')
after using CTX_ADM.MARK_FAILED
. If you run ALTER INDEX PARAMETER ('RESUME')
after this operation, Oracle resets the index partition status to valid. Oracle does not rebuild the index partitions that were successfully built before the MARK_FAILED operation.
Syntax
The name of the owner of the index whose status is to be changed.
The name of the index whose status is to be changed.
Example
The RECOVER
procedure cleans up the Text data dictionary, deleting objects such as leftover preferences.
Syntax
Example
The SET_PARAMETER
procedure sets system-level parameters for index creation.
Syntax
Specify the name of the parameter to set, which can be one of the following:
max_index_memory
(maximum memory allowed for indexing)
default_index_memory
(default memory allocated for indexing)
log_directory
(directory for CTX_OUPUT
files)
ctx_doc_key_type
(default input key type for CTX_DOC
procedures)
file_access_role
default_datastore
(default datastore preference)
default_filter_file
(default filter preference for data stored in files)
default_filter_text
(default text filter preference)
default_filter_binary
(default binary filter preference)
default_section_html
(default html section group preference)
default_section_xml
(default xml section group preference)
default_section_text
(default text section group preference)
default_lexer
(default lexer preference)
default_wordlist
(default wordlist preference)
default_stoplist
(default stoplist preference)
default_storage
(default storage preference)
default_ctxcat_lexer
default_ctxcat_stoplist
default_ctxcat_storage
default_ctxcat_wordlist
default_ctxrule_lexer
default_ctxrule_stoplist
default_ctxrule_storage
default_ctxrule_wordlist
See Also: To learn more about the default values for these parameters, see "System Parameters" in Chapter 2. |
Specify the value to assign to the parameter. For max_index_memory
and default_index_memory
, the value you specify must have the following syntax:
where K stands for kilobytes, M stands for megabytes, and G stands for gigabytes.
For each of the other parameters, specify the name of a preference to use as the default for indexing.
Example
This chapter provides reference information for using the CTX_CLS
PL/SQL package. This package enables you to perform document classification.
Name | Description |
---|---|
TRAIN | Generates rules that define document categories. Output based on input training document set. |
CLUSTERING | Generates clusters for a document collection. |
Use this procedure to generate query rules that select document categories. You must supply a training set consisting of categorized documents. Documents can be in any format supported by Oracle Text and must belong to one or more categories. This procedure generates the queries that define the categories and then writes the results to a table.
You must also have a document table and a category table. The category table must contain at least two categories.
For example, your document and category tables can be defined as:
You can use one of two syntaxes depending on the classification algorithm you need. The query compatible syntax uses the RULE_CLASSIFIER
preference and generates rules as query strings. The support vector machine syntax uses the SVM_CLASSIFER
preference and generates rules in binary format. The SVM_CLASSIFIER
is good for high classification accuracy, but because its rules are generated in binary format, they cannot be examined like the query strings generated with the RULE_CLASSIFIER
. Note that only those document ids that appear in both the document table and the category table will impact RULE_CLASSIFIER
and SVM_CLASSIFIER
learning.
The CTX_CLS.TRAIN
procedure requires that your document table have an associated context index. For best results, the index should be synchronized before running this procedure. SVM_CLASSIFIER
syntax enables the use of an unpopulated context index, while query-compatible syntax requires that the context index be populated.
Query Compatible Syntax
The following syntax generates query-compatible rules and is used with the RULE_CLASSIFIER preference. Use this syntax and preference when different categories are separated from others by several key words. An advantage of generating your rules as query strings is that you can easily examine the generated rules. This is different from generating SVM rules, which are in binary format.
Specify the name of the context index associated with your document training set.
Specify the name of the document id column in the document table. This column must contain unique document ids. This column must a NUMBER.
Specify the name of the category table. You must have SELECT privilege on this table.
Specify the name of the document id column in the category table. The document ids in this table must also exist in the document table. This column must a NUMBER.
Specify the name of the category ID column in the category table. This column must a NUMBER.
Specify the name of the result table. You must have INSERT privilege on this table.
Specify the name of the category ID column in the result table. This column must a NUMBER.
Specify the name of the query column in the result table. This column must be VARACHAR2, CHAR CLOB, NVARCHAR2, or NCHAR.
The queries generated in this column connects terms with AND or NOT operators, such as:
'T1 & T2 ~ T3'
Terms can also be theme tokens and be connected with the ABOUT operator, such as:
'about(T1) & about(T2) ~ about(T3)'
Generated rules also support WITHIN queries on field sections.
Specify the name of the confidence column in result table. This column contains the estimated probability from training data that a document is relevant if that document satisfies the query.
Specify the name of the preference. For classifier types and attributes, see "Classifier Types" in Chapter 2, " Oracle Text Indexing Elements".
Syntax for Support Vector Machine Rules
The following syntax generates support vector machine (SVM) rules with the SVM_CLASSIFIER preference. This preference generates rules in binary format. Use this syntax when your application requires high classification accuracy.
Specify the name of the text index.
Specify the name of docid column in document table.
Specify the name of category table.
Specify the name of docid column in category table.
Specify the name of category ID column in category table.
Specify the name of result table.
The result table has the following format:
Column Name | Datatype | Description |
---|---|---|
CAT_ID | NUMBER | The ID of the category. |
TYPE | NUMBER(3) NOT NULL | 0 for the actual rule or catid; 1 for other. |
RULE | BLOB | The returned rule. |
Specify the name of user preference. For classifier types and attributes, see "Classifier Types" in Chapter 2, " Oracle Text Indexing Elements".
Example
The CTX_CLS.TRAIN
procedure is used in supervised classification. For an extended example, see the Oracle Text Application Developer's Guide.
Use this procedure to cluster a collection of documents. A cluster is a group of documents similar to each other in content.
A clustering result set is composed of document assignments and cluster descriptions:
A document assignment result set shows how relevant each document is to all generated leaf clusters.
A cluster description result set contains information about what topic a cluster is about. This result set identifies the cluster and contains cluster description text, a suggested cluster label, and a quality score for the cluster.
Cluster output is hierarchical. Only leaf clusters are scored for relevance to documents. Producing more clusters requires more computing time. You indicate the upper limit for generated clusters with the CLUSTER_NUM
attribute of the KMEAN_CLUSTERING
cluster type (see "Cluster Types").
There are two versions of this procedure: one with a table result set, and one with an in-memory result set.
Clustering is also known as unsupervised classification.
See Also: For more information about clustering, see "Cluster Types" in Chapter 2, " Oracle Text Indexing Elements", which contains relevant preferences, as well as the Oracle Text Application Developer's Guide. |
Syntax: Table Result Set
Specify the name of the context index on collection table.
Specify the name of document ID column of the collection table.
Specify the name of document assignment table. This procedure creates the table with the following structure:
Column | Description |
---|---|
DOCID | Document ID to identify document. |
CLUSTERID | ID of a leaf cluster associated with this document. If CLUSTERID is -1, then the cluster contains "miscellaneous" documents; for example, documents that cannot be assigned to any other cluster category. |
SCORE | The associated score between the document and the cluster. |
If you require more columns, you can create the table before you call this procedure.
Specify the name of the cluster description table. This procedure creates the table with the following structure:
Column | Description |
---|---|
CLUSTERID | Cluster ID to identify cluster. If CLUSTERID is -1, then the cluster contains "miscellaneous" documents; for example, documents that cannot be assigned to any other cluster category. |
DESCRIPT | String to describe the cluster. |
LABEL | A suggested label for the cluster. |
SZE | This parameter currently has no value. |
QUALITY_SCORE | The quality score of the cluster. A higher number indicates greater coherence. |
PARENT | The parent cluster id. Zero means no parent cluster. |
If you require more columns, you can create the table before you call this procedure.
Specify the name of the preference.
Syntax: In-Memory Result Set
You can put the result set into in-memory structures for better performance. Two in-memory tables are defined in CTX_CLS package for document assignment and cluster description respectively.
Specify the name of context index on the collection table.
Specify the document id column of the collection table.
Specify the name of the in-memory docid_tab.
Specify name of the document assignment in-memory table. This table is defined as follows:
Column | Description |
---|---|
DOCID | Document ID to identify document. |
CLUSTERID | ID of a leaf cluster associated with this document. If CLUSTERID is -1, then the cluster contains "miscellaneous" documents; for example, documents that cannot be assigned to any other cluster category. |
SCORE | The associated score between the document and the cluster. |
Specify the name of cluster description in-memory table
Column | Description |
---|---|
CLUSTERID | Cluster ID to identify cluster. If CLUSTERID is -1, then the cluster contains "miscellaneous" documents; for example, documents that cannot be assigned to any other cluster category. |
DESCRIPT | String to describe the cluster. |
LABEL | A suggested label for the cluster. |
SZE | This parameter currently has no value. |
QUALITY_SCORE | The quality score of the cluster. A higher number indicates greater coherence. |
PARENT | The parent cluster id. Zero means no parent cluster. |
Specify the name of the preference. For cluster types and attributes, see "Cluster Types" in Chapter 2, " Oracle Text Indexing Elements".
Example
This chapter provides reference information for using the CTX_DDL
PL/SQL package to create and manage the preferences, section groups, and stoplists required for Text indexes.
CTX_DDL
contains the following stored procedures and functions:
Name | Description |
---|---|
ADD_ATTR_SECTION | Adds an attribute section to a section group. |
ADD_FIELD_SECTION | Creates a filed section and assigns it to the specified section group |
ADD_INDEX | Adds an index to a catalog index preference. |
ADD_MDATA | Changes the MDATA value of a document |
ADD_MDATA_SECTION | Adds an MDATA metadata section to a document |
ADD_SPECIAL_SECTION | Adds a special section to a section group. |
ADD_STOPCLASS | Adds a stopclass to a stoplist. |
ADD_STOP_SECTION | Adds a stop section to an automatic section group. |
ADD_STOPTHEME | Adds a stoptheme to a stoplist. |
ADD_STOPWORD | Adds a stopword to a stoplist. |
ADD_SUB_LEXER | Adds a sub-lexer to a multi-lexer preference. |
ADD_ZONE_SECTION | Creates a zone section and adds it to the specified section group. |
COPY_POLICY | Creates a copy of a policy |
CREATE_INDEX_SET | Creates an index set for CTXCAT index types. |
CREATE_POLICY | Create a policy to use with ORA:CONTAINS(). |
CREATE_PREFERENCE | Creates a preference in the Text data dictionary |
CREATE_SECTION_GROUP | Creates a section group in the Text data dictionary |
CREATE_STOPLIST | Creates a stoplist. |
DROP_INDEX_SET | Drops an index set. |
DROP_POLICY | Drops a policy. |
DROP_PREFERENCE | Deletes a preference from the Text data dictionary |
DROP_SECTION_GROUP | Deletes a section group from the Text data dictionary |
DROP_STOPLIST | Drops a stoplist. |
OPTIMIZE_INDEX | Optimize the index. |
REMOVE_INDEX | Removes an index from a CTXCAT index preference. |
REMOVE_MDATA | Removes MDATA values from a document |
REMOVE_SECTION | Deletes a section from a section group |
REMOVE_STOPCLASS | Deletes a stopclass from a section group. |
REMOVE_STOPTHEME | Deletes a stoptheme from a stoplist. |
REMOVE_STOPWORD | Deletes a stopword from a section group. |
REPLACE_INDEX_METADATA | Replaces metadata for local domain indexes |
SET_ATTRIBUTE | Sets a preference attribute. |
SYNC_INDEX | Synchronize index. |
UNSET_ATTRIBUTE | Removes a set attribute from a preference. |
UPDATE_POLICY | Updates a policy. |
Adds an attribute section to an XML section group. This procedure is useful for defining attributes in XML documents as sections. This enables you to search XML attribute text with the WITHIN
operator.
Note: When you useAUTO_SECTION_GROUP , attribute sections are created automatically. Attribute sections created automatically are named in the form tag@attribute. |
Syntax
Specify the name of the XML section group. You can add attribute sections only to XML section groups.
Specify the name of the attribute section. This is the name used for WITHIN
queries on the attribute text.
The section name you specify cannot contain the colon (:), comma (,), or dot (.) characters. The section name must also be unique within group_name. Section names are case-insensitive.
Attribute section names can be no more than 64 bytes long.
Specify the name of the attribute in tag@attr form. This parameter is case-sensitive.
Examples
Consider an XML file that defines the BOOK tag with a TITLE attribute as follows:
To define the title attribute as an attribute section, create an XML_SECTION_GROUP
and define the attribute section as follows:
When you define the TITLE
attribute section as such and index the document set, you can query the XML attribute text as follows:
Creates a field section and adds the section to an existing section group. This enables field section searching with the WITHIN operator.
Field sections are delimited by start and end tags. By default, the text within field sections are indexed as a sub-document separate from the rest of the document.
Unlike zone sections, field sections cannot nest or overlap. As such, field sections are best suited for non-repeating, non-overlapping sections such as TITLE
and AUTHOR
markup in email- or news-type documents.
Because of how field sections are indexed, WITHIN queries on field sections are usually faster than WITHIN
queries on zone sections.
Syntax
Specify the name of the section group to which section_name is added. You can add up to 64 field sections to a single section group. Within the same group, section zone names and section field names cannot be the same.
Specify the name of the section to add to the group_name. You use this name to identify the section in queries. Avoid using names that contain non-alphanumeric characters such as _, since these characters must be escaped in queries. Section names are case-insensitive.
Within the same group, zone section names and field section names cannot be the same. The terms Paragraph and Sentence are reserved for special sections.
Section names need not be unique across tags. You can assign the same section name to more than one tag, making details transparent to searches.
Specify the tag which marks the start of a section. For example, if the tag is <H1>, specify H1. The start tag you specify must be unique within a section group.
If group_name is an HTML_SECTION_GROUP
, you can create field sections for the META tag's NAME/CONTENT
attribute pairs. To do so, specify tag as meta@namevalue where namevalue is the value of the NAME
attribute whose CONTENT
attribute is to be indexed as a section. Refer to the example.
Oracle Text knows what the end tags look like from the group_type parameter you specify when you create the section group.
Specify TRUE
to make the text visible within rest of document.
By default the visible flag is FALSE
. This means that Oracle Text indexes the text within field sections as a sub-document separate from the rest of the document. However, you can set the visible flag to TRUE
if you want text within the field section to be indexed as part of the enclosing document.
Examples
Visible and Invisible Field Sections
The following code defines a section group basicgroup
of the BASIC_SECTION_GROUP
type. It then creates a field section in basicgroup
called Author
for the <A>
tag. It also sets the visible flag to FALSE
:
Because the Author
field section is not visible, to find text within the Author
section, you must use the WITHIN operator as follows:
A query of Martin Luther King without the WITHIN
operator does not return instances of this term in field sections. If you want to query text within field sections without specifying WITHIN
, you must set the visible flag to TRUE
when you create the section as follows:
Creating Sections for <META>
Tags
When you use the HTML_SECTION _GROUP
, you can create sections for META
tags.
Consider an HTML document that has a META
tag as follows:
To create a field section that indexes the CONTENT
attribute for the <META NAME="author">
tag:
After indexing with section group mygroup
, you can query the document as follows:
Nested Sections
Field sections cannot be nested. For example, if you define a field section to start with <TITLE>
and define another field section to start with <FOO>
, the two sections cannot be nested as follows:
To work with nested section define them as zone sections.
Repeated field sections are allowed, but WITHIN
queries treat them as a single section. The following is an example of repeated field section in a document:
The query (dog and cat) within title returns the document, even though these words occur in different sections.
To have WITHIN
queries distinguish repeated sections, define them as zone sections.
Related Topics
WITHIN operator in Chapter 3, "Oracle Text CONTAINS Query Operators".
"Section Group Types" in Chapter 2, " Oracle Text Indexing Elements".
Use this procedure to add a sub-index to a catalog index preference. You create this preference by naming one or more columns in the base table.
Since you create sub-indexes to improve the response time of structured queries, the column you add should be used in the structured_query
clause of the CATSEARCH operator at query-time.
Syntax
Specify the name of the index set.
Specify a comma separated list of columns to index. At index time, any column listed here cannot have a NULL value in any row in the base table. If any row is NULL during indexing and error is raised.
You must always ensure that your columns have non-NULL values before and after indexing.
Specify a storage clause.
Example
Consider a table called AUCTION
with the following schema:
Assume that queries on the table involve a mandatory text query clause and optional structured conditions on category_id
. Results must be sorted based on bid_close
.
You can create a catalog index to support the different types of structured queries a user might enter.
To create the indexes, first create the index set preference then add the required indexes to it:
Create the combined catalog index with CREATE
INDEX
as follows:
Querying
To query the title column for the word pokemon, you can issue regular and mixed queries as follows:
Notes
VARCHAR2
columns in the column list of a CTXCAT
index of an index set cannot exceed 30 bytes.
Use this procedure to change the metadata of a document that has been specified as an MDATA
section. After this call, MDATA
queries involving the named MDATA
value will find documents with the given MDATA
value.
There are two versions of CTX_DDL.ADD_MDATA
: one for adding a single metadata value to a single rowid, and one for handing multiple values, multiple rowids, or both.
CTX_DDL.ADD_MDATA
is transactional; it takes effect immediately in the calling session, can be seen only in the calling session, can be reversed with a ROLLBACK
command, and must be committed to take permanent effect.
Use CTX_DDL.REMOVE_MDATA to remove metadata values from already-indexed documents. Only the owner of the index is allowed to call ADD_MDATA
and REMOVE_MDATA
.
Syntax
This is the syntax for adding a single value to a single rowid:
Name of the text index that contains the named rowid.
Name of the MDATA
section.
The metadata value to add to the document.
The rowid to which to add the metadata value.
Name of the index partition, if any. Must be provided for local partitioned indexes and must be NULL for global, non-partitioned indexes.
This is the syntax for handling multiple values, multiple rowids, or both. This version is more efficient for large numbers of new values or rowids.
Name of the text index that contains the named rowids.
Name of the MDATA
section.
List of metadata values. If a metadata value contains a comma, the comma must be escaped with a backslash.
rowids to which to add the metadata values.
Name of the index partition, if any. Must be provided for local partitioned indexes and must be NULL for global, non-partitioned indexes.
Example
This example updates a single value:
This example updates multiple values:
This is equivalent to:
Notes
If a rowid is not yet indexed, CTX_DDL.ADD.MDATA
completes without error, but an error is logged in CTX_USER_INDEX_ERRORS
.
Related Topics
See also "ADD_MDATA_SECTION"; "REMOVE_MDATA"; "MDATA"; as well as the Section Searching chapter of the Oracle Text Application Developer's Guide.
Use this procedure to add an MDATA
section, with an accompanying value, to an existing section group. MDATA
sections cannot be added to Null Section groups, Path Section groups, or Auto Section groups.
Section values undergo a simplified normalization:
Leading and trailing whitespace on the value is removed.
The value is truncated to 64 bytes.
The value is converted to upper case.
The value is indexed as a single value; if the value consists of multiple words, it is not broken up.
Case is preserved. If the document is dynamically generated, you can implement case-insensitivity by uppercasing MDATA
values and making sure to search only in uppercase.
Use CTX_DDL.REMOVE_SECTION to remove sections.
Syntax
Name of the section group that will contain the MDATA
section.
Name of the MDATA
section.
The value of the MDATA
section. For example, if the section is <AUTHOR>
, the value could be Cynthia Kadohata (author of the novel The Floating World). More than one tag can be assigned to a given MDATA
section.
Example
This example creates an MDATA
section called AUTHOR
and gives it the value Gordon Burn (author of the novel Alma).
Related Topics
See also "ADD_MDATA"; "REMOVE_MDATA"; "MDATA"; "CREATE_SECTION_GROUP", as well as the Section Searching chapter of the Oracle Text Application Developer's Guide.
Adds a special section, either SENTENCE
or PARAGRAPH
, to a section group. This enables searching within sentences or paragraphs in documents with the WITHIN operator.
A special section in a document is a section which is not explicitly tagged like zone and field sections. The start and end of special sections are detected when the index is created. Oracle Text supports two such sections: paragraph and sentence.
The sentence and paragraph boundaries are determined by the lexer. For example, the lexer recognizes sentence and paragraph section boundaries as follows:
Table 7-1 Paragraph and Sentence Section Boundaries
Special Section | Boundary |
---|---|
SENTENCE | WORD/PUNCT/WHITESPACE |
| WORD/PUNCT/NEWLINE |
PARAGRAPH | WORD/PUNCT/NEWLINE/WHITESPACE (indented paragraph) |
| WORD/PUNCT/NEWLINE/NEWLINE (block paragraph) |
The punctuation, whitespace, and newline characters are determined by your lexer settings and can be changed.
If the lexer cannot recognize the boundaries, no sentence or paragraph sections are indexed.
Syntax
Specify the name of the section group.
Specify SENTENCE
or PARAGRAPH
.
Example
The following code enables searching within sentences within HTML documents:
You can also add zone sections to the group to enable zone searching in addition to sentence searching. The following example adds the zone section Headline
to the section group htmgroup
:
If you are only interested in sentence or paragraph searching within documents and not interested in defining zone or field sections, you can use the NULL_SECTION_GROUP
as follows:
Related Topics
WITHIN operator in Chapter 3, "Oracle Text CONTAINS Query Operators".
"Section Group Types" in Chapter 2, " Oracle Text Indexing Elements".
Adds a stopclass to a stoplist. A stopclass is a class of tokens that is not to be indexed.
Syntax
Specify the name of the stoplist.
Specify the stopclass to be added to stoplist_name. Currently, only the NUMBERS
class is supported. It is not possible to create a custom stopclass.
NUMBERS
includes tokens that follow the number pattern: digits, numgroup
, and numjoin
only. Therefore, 123ABC is not a number, nor is A123. These are labeled as MIXED
. $123 is not a number (this token is not common in a text index because non-alphanumerics become whitespace by default). In the United States, 123.45 is a number, but 123.456.789 is not; in Europe, where numgroup may be '.', the reverse is true.
The maximum number of stopwords, stopthemes, and stopclasses you can add to a stoplist is 4095.
Example
The following code adds a stopclass of NUMBERS
to the stoplist mystop
:
Related Topics
Adds a stop section to an automatic section group. Adding a stop section causes the automatic section indexing operation to ignore the specified section in XML documents.
Note: Adding a stop section causes no section information to be created in the index. However, the text within a stop section is always searchable. |
Adding a stop section is useful when your documents contain many low information tags. Adding stop sections also improves indexing performance with the automatic section group.
The number of stop sections you can add is unlimited.
Stop sections do not have section names and hence are not recorded in the section views.
Syntax
Specify the name of the automatic section group. If you do not specify an automatic section group, this procedure returns an error.
Specify the tag to ignore during indexing. This parameter is case-sensitive. Defining a stop tag as such also stops the tag's attribute sections, if any.
You can qualify the tag with document type in the form (doctype)tag. For example, if you wanted to make the <fluff>
tag a stop section only within the mydoc
document type, specify (mydoc)fluff
for tag.
Example
Defining Stop Sections
The following code adds a stop section identified by the tag <fluff>
to the automatic section group myauto
:
This code also stops any attribute sections contained within <fluff>
. For example, if a document contained:
Then the preceding code also stops the attribute section fluff@type.
Doctype Sensitive Stop Sections
The following code creates a stop section for the tag <fluff>
only in documents that have a root element of mydoc
:
Related Topics
ALTER INDEX in Chapter 1, "Oracle Text SQL Statements and Operators".
Adds a single stoptheme to a stoplist. A stoptheme is a theme that is not to be indexed.
In English, you query on indexed themes using the ABOUT operator.
Syntax
Specify the name of the stoplist.
Specify the stoptheme to be added to stoplist_name. The system normalizes the stoptheme you enter using the knowledge base. If the normalized theme is more than one theme, the system does not process your stoptheme. For this reason, Oracle recommends that you submit single stopthemes.
The maximum number of stopwords, stopthemes, and stopclasses you can add to a stoplist is 4095.
Example
The following example adds the stoptheme banking
to the stoplist mystop
:
Related Topics
ABOUT operator in Chapter 3, "Oracle Text CONTAINS Query Operators".
Use this procedure to add a single stopword to a stoplist.
To create a list of stopwords, you must call this procedure once for each word.
Syntax
Specify the name of the stoplist.
Specify the stopword to be added.
Language-specific stopwords must be unique across the other stopwords specific to the language. For example, it is valid to have a German die and an English die in the same stoplist.
The maximum number of stopwords, stopthemes, and stopclasses you can add to a stoplist is 4095.
Specify the language of stopword
when the stoplist you specify with stoplist_name
is of type MULTI_STOPLIST
. You must specify the Globalization Support name or abbreviation of an Oracle Text-supported language.
To make a stopword active in multiple languages, specify ALL
for this parameter. For example, defining ALL
stopwords is useful when you have international documents that contain English fragments that need to be stopped in any language.
An ALL stopword is active in all languages. If you use the multi-lexer, the language-specific lexing of the stopword occurs, just as if it had been added multiple times in multiple specific languages.
Otherwise, specify NULL
.
Example
Single Language Stoplist
The following example adds the stopwords because, notwithstanding, nonetheless, and therefore to the stoplist mystop
:
Multi-Language Stoplist
The following example adds the German word die to a multi-language stoplist:
Note: You can add stopwords after you create the index withALTER INDEX . |
Adding An ALL Stopword
The following adds the word the as an ALL
stopword to the multi-language stoplist globallist:
Related Topics
ALTER INDEX in Chapter 1, "Oracle Text SQL Statements and Operators".
Add a sub-lexer to a multi-lexer preference. A sub-lexer identifies a language in a multi-lexer (multi-language) preference. Use a multi-lexer preference when you want to index more than one language.
Restrictions
The following restrictions apply to using CTX_DDL.ADD_SUB_LEXER
:
The invoking user must be the owner of the multi-lexer or CTXSYS
.
The lexer_name parameter must name a preference which is a multi-lexer lexer.
A lexer for default must be defined before the multi-lexer can be used in an index.
The sub-lexer preference owner must be the same as multi-lexer preference owner.
The sub-lexer preference must not be a multi-lexer lexer.
A sub-lexer preference cannot be dropped while it is being used in a multi-lexer preference.
CTX_DDL.ADD_SUB_LEXER
records only a reference. The sub-lexer values are copied at create index time to index value storage.
Syntax
Specify the name of the multi-lexer preference.
Specify the Globalization Support language name or abbreviation of the sub-lexer. For example, you can specify ENGLISH
or EN
for English.
The sub-lexer you specify with sub_lexer is used when the language column has a value case-insensitive equal to the Globalization Support name of abbreviation of language.
Specify DEFAULT
to assign a default sub-lexer to use when the value of the language column in the base table is null, invalid, or unmapped to a sub-lexer. The DEFAULT
lexer is also used to parse stopwords.
If a sub-lexer definition for language already exists, then it is replaced by this call.
Specify the name of the sub-lexer to use for this language.
Optionally specify an alternate value for language.
If you specify DEFAULT
for language, you cannot specify an alt_value.
The alt_value is limited to 30 bytes and cannot be an Globalization Support language name, abbreviation, or DEFAULT
.
Example
This example shows how to create a multi-language text table and how to set up the multi-lexer to index the table.
Create the multi-language table with a primary key, a text column, and a language column as follows:
Assume that the table holds mostly English documents, with the occasional German or Japanese document. To handle the three languages, you must create three sub-lexers, one for English, one for German, and one for Japanese:
Create the multi-lexer preference:
Since the stored documents are mostly English, make the English lexer the default:
Add the German and Japanese lexers in their respective languages. Also assume that the language column is expressed in ISO 639-2, so we add those as alternate values.
Create the index globalx
, specifying the multi-lexer preference and the language column in the parameters string as follows:
Creates a zone section and adds the section to an existing section group. This enables zone section searching with the WITHIN operator.
Zone sections are sections delimited by start and end tags. The
and
tags in HTML, for instance, marks a range of words which are to be rendered in boldface.
Zone sections can be nested within one another, can overlap, and can occur more than once in a document.
Syntax
Specify the name of the section group to which section_name is added.
Specify the name of the section to add to the group_name. You use this name to identify the section in WITHIN
queries. Avoid using names that contain non-alphanumeric characters such as _, since most of these characters are special must be escaped in queries. Section names are case-insensitive.
Within the same group, zone section names and field section names cannot be the same. The terms Paragraph and Sentence are reserved for special sections.
Section names need not be unique across tags. You can assign the same section name to more than one tag, making details transparent to searches.
Specify the pattern which marks the start of a section. For example, if <H1>
is the HTML tag, specify H1
for tag. The start tag you specify must be unique within a section group.
Oracle Text knows what the end tags look like from the group_type parameter you specify when you create the section group.
If group_name is an HTML_SECTION_GROUP
, you can create zone sections for the META tag's NAME/CONTENT
attribute pairs. To do so, specify tag as meta@namevalue where namevalue is the value of the NAME
attribute whose CONTENT
attributes are to be indexed as a section. Refer to the example.
If group_name is an XML_SECTION_GROUP
, you can optionally qualify tag with a document type (root element) in the form (doctype)tag. Doing so makes section_name sensitive to the XML document type declaration. Refer to the example.
Examples
The following code defines a section group called htmgroup
of type HTML_SECTION_GROUP
. It then creates a zone section in htmgroup
called headline
identified by the <H1> tag:
After indexing with section group htmgroup
, you can query within the heading section by issuing a query as follows:
Creating Sections for <META NAME>
Tags
You can create zone sections for HTML META tags when you use the HTML_SECTION_GROUP
.
Consider an HTML document that has a META
tag as follows:
To create a zone section that indexes all CONTENT
attributes for the META
tag whose NAME
value is author:
After indexing with section group htmgroup
, you can query the document as follows:
Creating Document Type Sensitive Sections (XML Documents Only)
You have an XML document set that contains the <book>
tag declared for different document types (DTDs). You want to create a distinct book section for each document type.
Assume that myDTDname
is declared as an XML document type as follows:
(Note: the DOCTYPE
must match the top-level tag.)
Within myDTDname
, the element <book>
is declared. For this tag, you can create a section named mybooksec
that is sensitive to the tag's document type as follows:
Notes
Zone sections can repeat. Each occurrence is treated as a separate section. For example, if <H1> denotes a heading
section, they can repeat in the same documents as follows:
<H1> The Brown Fox </H1>
<H1> The Gray Wolf </H1>
Assuming that these zone sections are named Heading
, the query Brown WITHIN Heading returns this document. However, a query of (Brown and Gray) WITHIN Heading does not.
Zone sections can overlap each other. For example, if
and <I>
denote two different zone sections, they can overlap in document as follows:
Zone sections can nest, including themselves as follows:
Using the WITHIN
operator, you can write queries to search for text in sections within sections. For example, assume the BOOK1
, BOOK2
, and AUTHOR
zone sections occur as follows in documents doc1 and doc2:
doc1:
doc2:
Consider the nested query:
This query returns only doc1.
Related Topics
WITHIN operator in Chapter 3, "Oracle Text CONTAINS Query Operators".
"Section Group Types" in Chapter 2, " Oracle Text Indexing Elements".
Creates a new policy from an existing policy or index.
Syntax
The name of the policy or index being copied.
The name of the new policy copy.
The preference values are copied from the source_policy
. Both the source policy or index and the new policy must be owned by the same database user.
Creates an index set for CTXCAT
index types. You name this index set in the parameter clause of CREATE
INDEX
when you create a CTXCAT
index.
Syntax
Specify the name of the index set. You name this index set in the parameter clause of CREATE
INDEX
when you create a CTXCAT
index.
Creates a policy to use with the CTX_DOC.POLICY_*
procedures and the ORA:CONTAINS
function. ORA:CONTAINS
is a function you use within an XPATH
query expression with existsNode()
.
Syntax
Specify the name for the new policy. Policy names and Text indexes share the same namespace.
Specify the filter preference to use.
Specify the section group to use. You can specify only NULL_SECTION_GROUP
. Only special (sentence and paragraph) sections are supported.
Specify the lexer preference to use. Your INDEX_THEMES
attribute must be disabled.
Specify the stoplist to use.
Specify the wordlist to use.
Example
Create mylex lexer preference named mylex.
Create a stoplist preference named mystop.
Create a wordlist preference named 'mywordlist'.
or
Then you can issue the following existsNode()
query with your own defined policy:
You can update your policy by doing:
You can drop your policy by doing:
Creates a preference in the Text data dictionary. You specify preferences in the parameter string of CREATE INDEX or ALTER INDEX.
Syntax
Specify the name of the preference to be created.
Specify the name of the preference type.
See Also: For a complete list of preference types and their associated attributes, see Chapter 2, " Oracle Text Indexing Elements". |
Examples
Creating Text-only Index
The following example creates a lexer preference that specifies a text-only index. It does so by creating a BASIC_LEXER
preference called my_lexer
with CTX_DDL.CREATE_PREFERENCE
. It then calls CTX_DDL.SET_ATTRIBUTE twice, first specifying YES for the INDEX_TEXT
attribute, then specifying NO for the INDEX_THEMES
attribute.
The following example creates a data storage preference called mypref
that tells the system that the files to be indexed are stored in the operating system. The example then uses CTX_DDL.SET_ATTRIBUTE to set the PATH
attribute of to the directory /docs
.
See Also: For more information about data storage, see "Datastore Types" in Chapter 2, " Oracle Text Indexing Elements". |
Creating Master/Detail Relationship
You can use CTX_DDL.CREATE_PREFERENCE to create a preference with DETAIL_DATASTORE
. You use CTX_DDL.SET_ATTRIBUTE to set the attributes for this preference. The following example shows how this is done:
See Also: For more information about master/detail, see "DETAIL_DATASTORE" in Chapter 2, " Oracle Text Indexing Elements". |
The following examples specify that the index tables are to be created in the foo
tablespace with an initial extent of 1K:
Creating Preferences with No Attributes
When you create preferences with types that have no attributes, you need only create the preference, as in the following example which sets the filter to the NULL_FILTER
:
Related Topics
CREATE INDEX in Chapter 1, "Oracle Text SQL Statements and Operators".
ALTER INDEX in Chapter 1, "Oracle Text SQL Statements and Operators".
Creates a section group for defining sections in a text column.
When you create a section group, you can add to it zone, field, or special sections with ADD_ZONE_SECTION, ADD_FIELD_SECTION, ADD_MDATA_SECTION, or ADD_SPECIAL_SECTION.
When you index, you name the section group in the parameter string of CREATE INDEX or ALTER INDEX.
After indexing, you can query within your defined sections with the WITHIN operator.
Syntax
Specify the section group name to create as [user.]section_group_name
. This parameter must be unique within an owner.
Specify section group type. The group_type parameter can be one of:
Example
The following command creates a section group called htmgroup
with the HTML group type.
The following command creates a section group called auto
with the AUTO_SECTION_GROUP
group type to be used to automatically index tags in XML documents.
Related Topics
WITHIN operator in Chapter 3, "Oracle Text CONTAINS Query Operators".
"Section Group Types" in Chapter 2, " Oracle Text Indexing Elements".
Use this procedure to create a new, empty stoplist. Stoplists can contain words or themes that are not to be indexed.
You can also create multi-language stoplists to hold language-specific stopwords. A multi-language stoplist is useful when you index a table that contains documents in different languages, such as English, German, and Japanese. When you do so, you text table must contain a language column.
You can add either stopwords, stopclasses, or stopthemes to a stoplist using ADD_STOPWORD, ADD_STOPCLASS, or ADD_STOPTHEME.
You can specify a stoplist in the parameter string of CREATE INDEX or ALTER INDEX to override the default stoplist CTXSYS.DEFAULT_STOPLIST.
Syntax
Specify the name of the stoplist to be created.
Specify BASIC_STOPLIST
to create a stoplist for a single language. This is the default.
Specify MULTI_STOPLIST
to create a stoplist with language-specific stopwords.
At indexing time, the language column of each document is examined, and only the stopwords for that language are eliminated. At query time, the session language setting determines the active stopwords, like it determines the active lexer when using the multi-lexer.
Note: When indexing a multi-language table with a multi-language stoplist, your table must have a language column. |
Example
Single Language Stoplist
The following code creates a stoplist called mystop
:
Multi-Language Stoplist
The following code creates a multi-language stoplist called multistop
and then adds tow language-specific stopwords:
Related Topics
CREATE INDEX in Chapter 1, "Oracle Text SQL Statements and Operators".
ALTER INDEX in Chapter 1, "Oracle Text SQL Statements and Operators".
Drops a CTXCAT
index set created with CTX_DDL.CREATE_INDEX_SET.
Syntax
Specify the name of the index set to drop.
Dropping an index set drops all of the sub-indexes it contains.
Drops a policy created with CTX_DDL.CREATE_POLICY.
Syntax
Specify the name of the policy to drop.
The DROP_PREFERENCE
procedure deletes the specified preference from the Text data dictionary. Dropping a preference does not affect indexes that have already been created using that preference.
Syntax
Specify the name of the preference to be dropped.
Example
The following code drops the preference my_lexer
.
Related Topics
See also CTX_DDL.CREATE_PREFERENCE.
The DROP_SECTION_GROUP
procedure deletes the specified section group, as well as all the sections in the group, from the Text data dictionary.
Syntax
Specify the name of the section group to delete.
Examples
The following code drops the section group htmgroup
and all its sections:
Related Topics
See also CTX_DDL.CREATE_SECTION_GROUP.
Drops a stoplist from the Text data dictionary. When you drop a stoplist, you must re-create or rebuild the index for the change to take effect.
Syntax
Specify the name of the stoplist.
Example
The following code drops the stoplist mystop
:
Related Topics
See also CTX_DDL.CREATE_STOPLIST.
Use this procedure to optimize the index. You optimize your index after you synchronize it. Optimizing an index removes old data and minimizes index fragmentation, which can improve query response time. Querying and DML may proceed while optimization takes place.
You can optimize in fast, full, rebuild, token, or token-type mode.
Fast mode compacts data but does not remove rows.
Full mode compacts data and removes rows.
Optimize in rebuild mode rebuilds the $I
table (the inverted list table) in its entirety. Rebuilding an index is often significantly faster than performing a full optimization, and is more likely to result in smaller indexes, especially if the index is heavily fragmented.
Rebuild optimization creates a more compact copy of the $I
table, and then switches the original $I
table and the copy. The rebuild operation will therefore require enough space to store the copy as well as the original. (If redo logging is enabled, then additional space is required in the redo log as well.) At the end of the rebuild operation, the original $I
table is dropped, and the space can be reused.
In token mode, you specify a specific token to be optimized (for example, all rows with documents containing the word elections). You can use this mode to optimize index tokens that are frequently searched, without spending time on optimizing tokens that are rarely referenced. An optimized token can improve query response time (but only for queries on that token).
Token-type optimization is similar to token mode, except that the optimization is performed on field sections or MDATA
sections (for example, sections with an <A>
tag). This is useful in keeping critical field or MDATA
sections optimal.
A common strategy for optimizing indexes is to perform regular token optimizations on frequently referenced terms, and to perform rebuild optimizations less frequently. (Use CTX_REPORT.QUERY_LOG_SUMMARY to find out which queries are made most frequently.) You can perform full, fast, or token-type optimizations instead of token optimizations.
Some users choose to perform frequent time-limited full optimizations along with occasional rebuild optimizations.
Note: Optimizing an index can result in better response time only if you insert, delete, or update documents in your base table after your initial indexing operation. |
Using this procedure to optimize your index is recommended over using the ALTER
INDEX
statement.
Optimization of a large index may take a long time. To monitor the progress of a lengthy optimization, log the optimization with CTX_OUTPUT.START_LOG and check the resultant logfile from time to time.
Syntax
Specify the name of the index. If you do not specify an index name, Oracle Text chooses a single index to optimize.
Specify optimization level as a string. You can specify one of the following methods for optimization:
Value | Description |
---|---|
FAST or CTX_DDL.OPTLEVEL_FAST | This method compacts fragmented rows. However, old data is not removed. Fast optimization is not supported for |
FULL or CTX_DDL.OPTLEVEL_FULL | In this mode you can optimize the entire index or a portion of the index. This method compacts rows and removes old data (deleted rows). Optimizing in full mode runs even when there are no deleted rows. Full optimization is not supported for |
REBUILD or CTX_DDL.OPTLEVEL_REBUILD | This optlevel rebuilds the $I table (the inverted list table) to produce more compact token info rows. Like FULL optimize, this mode also deletes information pertaining to deleted rows of the base table.
When using REBUILD, setting |
TOKEN or CTX_DDL.OPTLEVEL_TOKEN | This method lets you specify a specific token to be optimized. Oracle Text does a FULL optimization on the token you specify with token. If no token type is provided, 0 (zero) will be used as the default. Use this method to optimize those tokens that are searched frequently. Token optimization is not supported for |
TOKEN_TYPE or CTX_DDL.OPTLEVEL_TOKEN_TYPE | This optlevel optimizes on demand all tokens in the index matching the input token type. When Token_type optimization is not supported for |
Specify maximum optimization time, in minutes, for FULL
optimize.
When you specify the symbol CTX_DDL
.MAXTIME_UNLIMITED
(or pass in NULL), the entire index is optimized. This is the default.
Specify the token to be optimized.
If your index is a local index, you must specify the name of the index partition to synchronize otherwise an error is returned.
If your index is a global, non-partitioned index, specify NULL, which is the default.
Specify the token_type
to be optimized.
Specify the parallel degree as a number for parallel optimization. The actual parallel degree depends on your resources. Note that when using REBUILD
, setting parallel_degree
to a value greater than 1 still results in serial execution.
Examples
The following two examples are equivalent ways of optimizing an index using fast optimization:
The following example optimizes the index token Oracle:
To optimize all tokens of field section MYSEC
in index MYINDEX
:
Notes
You can run CTX_DDL.SYNC
and CTX_DDL.OPTIMIZE
at the same time. You can also run CTX_DDL.SYNC
and CTX_DDL.OPTIMIZE
with parallelism at the same time. However, you should not:
run CTX_DDL.SYNC
with parallelism at the same time as CTX_DDL.OPTIMIZE
run CTX_DDL.SYNC
with parallelism at the same time as CTX_DDL.OPTIMIZE
with parallelism.
If you should run one of these combinations, no error is generated; however, one operation will wait until the other is done.
Related Topics
See also CTX_DDL.SYNC_INDEX and ALTER INDEX in Chapter 1, "Oracle Text SQL Statements and Operators".
Removes the index with the specified column list from a CTXCAT
index set preference.
Note: This procedure does not remove aCTXCAT sub-index from the existing index. To do so, you must drop your index and re-index with the modified index set preference. |
Syntax
Specify the name of the index set
Specify the name of the column list to remove.
Use this procedure to remove metadata values, which are associated with an MDATA
section, from a document. Only the owner of the index is allowed to call ADD_MDATA and
REMOVE_MDATA
.
Syntax
Name of the text index that contains the named rowids.
Name of the MDATA
section.
List of metadata values. If a metadata value contains a comma, the comma must be escaped with a backslash.
rowids from which to remove the metadata values.
Name of the index partition, if any. Must be provided for local partitioned indexes and must be NULL for global, non-partitioned indexes.
Example
This example removes the MDATA
value blue from the MDATA
section BGCOLOR
.
Related Topics
See also "ADD_MDATA"; "ADD_MDATA_SECTION"; "MDATA"; as well as the Section Searching chapter of the Oracle Text Application Developer's Guide.
The REMOVE_SECTION
procedure removes the specified section from the specified section group. You can specify the section by name or by id. You can view section id with the CTX_USER_SECTIONS
view.
Syntax 1
Use the following syntax to remove a section by section name:
Specify the name of the section group from which to delete section_name.
Specify the name of the section to delete from group_name.
Syntax 2
Use the following syntax to remove a section by section id:
Specify the name of the section group from which to delete section_id.
Specify the section id of the section to delete from group_name.
Examples
The following code drops a section called Title
from the htmgroup
:
Related Topics
Removes a stopclass from a stoplist.
Syntax
Specify the name of the stoplist.
Specify the name of the stopclass to be removed.
Example
The following code removes the stopclass NUMBERS
from the stoplist mystop
.
Related Topics
Removes a stoptheme from a stoplist.
Syntax
Specify the name of the stoplist.
Specify the stoptheme to be removed from stoplist_name.
Example
The following code removes the stoptheme banking from the stoplist mystop
:
Related Topics
Removes a stopword from a stoplist. To have the removal of a stopword be reflected in the index, you must rebuild your index.
Syntax
Specify the name of the stoplist.
Specify the stopword to be removed from stoplist_name.
Specify the language of stopword
to remove when the stoplist you specify with stoplist_name
is of type MULTI_STOPLIST
. You must specify the Globalization Support name or abbreviation of an Oracle Text-supported language. You can also remove ALL stopwords.
Example
The following code removes a stopword because from the stoplist mystop
:
Related Topics
Use this procedure to replace metadata in local domain indexes at the global (index) level.
Note: TheALTER INDEX PARAMETERS command performs the same function as this procedure and can replace more than just metadata. For that reason, using ALTER INDEX PARAMETERS is the preferred method of replacing metadata at the global (index) level and should be used in place of this procedure when possible. For more information, see "ALTER INDEX PARAMETERS Syntax".
|
Syntax
Specify the name of the index whose metadata you want to replace.
Specify the parameter string to be passed to ALTER INDEX
. This must begin with 'REPLACE METADATA
'.
Notes
ALTER INDEX REBUILD PARAMETERS ('REPLACE METADATA')
does not work for a local partitioned index at the index (global) level; you cannot, for example, use that ALTER INDEX
syntax to change a global preference, such as filter or lexer type, without rebuilding the index. Therefore, CTX_DDL.REPLACE_INDEX_METADATA
is provided as a method of overcoming this limitation of ALTER INDEX
.
Though it is meant as a way to replace metadata for a local partitioned index, CTX_DDL.REPLACE_INDEX_METADATA
can be used on a global, non-partitioned index, as well.
REPLACE_INDEX_METADATA
cannot be used to change the sync type at the partition level; that is, parameter_string cannot be 'REPLACE METADATA SYNC
'. For that purpose, use ALTER INDEX REBUILD PARTITION
to change the sync type at the partition level.
Related Topics
See also "ALTER INDEX PARAMETERS Syntax" and "ALTER INDEX REBUILD Syntax".
Sets a preference attribute. You use this procedure after you have created a preference with CTX_DDL.CREATE_PREFERENCE.
Syntax
Specify the name of the preference.
Specify the name of the attribute.
Specify the attribute value. You can specify boolean values as TRUE
or FALSE
, T
or F
, YES
or NO
, Y
or N
, ON
or OFF
, or 1
or 0
.
Example
Specifying File Data Storage
The following example creates a data storage preference called filepref
that tells the system that the files to be indexed are stored in the operating system. The example then uses CTX_DDL.SET_ATTRIBUTE to set the PATH
attribute to the directory /docs
.
See Also: For more information about data storage, see "Datastore Types" in Chapter 2, " Oracle Text Indexing Elements".For more examples of using |
Synchronizes the index to process inserts, updates, and deletes to the base table.
Syntax
Specify the name of the index.
Specify the runtime memory to use for synchronization. This value overrides the DEFAULT_INDEX_MEMORY
system parameter.
The memory parameter specifies the amount of memory Oracle Text uses for the synchronization operation before flushing the index to disk. Specifying a large amount of memory:
improves indexing performance because there is less I/O
improves query performance and maintenance because there is less fragmentation
Specifying smaller amounts of memory increases disk I/O and index fragmentation, but might be useful when runtime memory is scarce.
If your index is a local index, you must specify the name of the index partition to synchronize otherwise an error is returned.
If your index is a global, non-partitioned index, specify NULL, which is the default.
Specify the degree to run parallel synchronize. A number greater than 1 turns on parallel synchronize. The actual degree of parallelism might be smaller depending on your resources.
Example
The following example synchronizes the index myindex
with 2 megabytes of memory:
The following example synchronizes the part1
index partition with 2 megabytes of memory:
Notes
You can run CTX_DDL.SYNC
and CTX_DDL.OPTIMIZE
at the same time. You can also run CTX_DDL.SYNC
and CTX_DDL.OPTIMIZE
with parallelism at the same time. However, you should not run CTX_DDL.SYNC
with parallelism at the same time as CTX_DDL.OPTIMIZE
, nor CTX_DDL.SYNC
with parallelism at the same time as CTX_DDL.OPTIMIZE
with parallelism. If you should run one of these combinations, no error is generated; however, one operation will wait until the other is done.
Related Topics
ALTER INDEX in Chapter 1, "Oracle Text SQL Statements and Operators"
Removes a set attribute from a preference.
Syntax
Specify the name of the preference.
Specify the name of the attribute.
Example
Enabling/Disabling Alternate Spelling
The following example shows how you can enable alternate spelling for German and disable alternate spelling with CTX_DDL.UNSET_ATTRIBUTE
:
To disable alternate spelling, use the CTX_DDL.UNSET_ATTRIBUTE
procedure as follows:
Related Topics
Updates a policy created with CREATE_POLICY. Replaces the preferences of the policy. Null arguments are not replaced.
Syntax
Specify the name of the policy to update.
Specify the filter preference to use.
Specify the section group to use.
Specify the lexer preference to use.
specify the stoplist to use.
Specify the wordlist to use.
This chapter describes the CTX_DOC
PL/SQL package for requesting document services, such as highlighting extracted text or generating a list of themes for a document.
Many of these procedures exist in two versions: those that make use of indexes, and those that don't. Those that don't are called "policy-based" procedures. They are offered because there are times when you might like to use document services on a single document without creating a context index in advance. Policy-based procedures enable you to do this.
The policy_* procedures mirror the conventional in-memory document services and are used with policy_name replacing index_ name, and document of type VARCHAR2
, CLOB
, BLOB
or BFILE
replacing textkey. Thus, you need not create an index to obtain document services output with these procedures.
For the procedures that generate character offsets and lengths, such as HIGHLIGHT and TOKENS, Oracle Text follows USC-2 codepoint semantics.
The CTX_DOC
package includes the following procedures and functions:
Name | Description |
---|---|
FILTER | Generates a plain text or HTML version of a document |
GIST | Generates a Gist or theme summaries for a document |
HIGHLIGHT | Generates plain text or HTML highlighting offset information for a document |
IFILTER | Generates a plain text version of binary data. Can be called from a USER_DATASTORE procedure. |
MARKUP | Generates a plain text or HTML version of a document with query terms highlighted |
PKENCODE | Encodes a composite textkey string (value) for use in other CTX_DOC procedures |
POLICY_FILTER | Generates a plain text or HTML version of a document, without requiring an index. |
POLICY_GIST | Generates a Gist or theme summaries for a document, without requiring an index. |
POLICY_HIGHLIGHT | Generates plain text or HTML highlighting offset information for a document, without requiring an index. |
POLICY_MARKUP | Generates a plain text or HTML version of a document with query terms highlighted, without requiring an index. |
POLICY_SNIPPET | Generates a concordance for a document, based on query terms, without requiring an index.. |
POLICY_THEMES | Generates a list of themes for a document, without requiring an index. |
POLICY_TOKENS | Generates all index tokens for a document, without requiring an index. |
SET_KEY_TYPE | Sets CTX_DOC procedures to accept rowid or primary key document identifiers. |
SNIPPET | Generates a concordance for a document, based on query terms, without requiring an index. |
THEMES | Generates a list of themes for a document |
TOKENS | Generates all index tokens for a document. |
Use the CTX_DOC.FILTER
procedure to generate either a plain text or HTML version of a document. You can store the rendered document in either a result table or in memory. This procedure is generally called after a query, from which you identify the document to be filtered.
Note: The resultant HTML document does not include graphics. |
Syntax 1:In-memory Result Storage
Syntax 2: Result Table Storage
Specify the name of the index associated with the text column containing the document identified by textkey.
Specify the unique identifier (usually the primary key) for the document.
The textkey parameter can be one of the following:
a single column primary key value
encoded specification for a composite (multiple column) primary key. Use CTX_DOC.PKENCODE.
the rowid of the row containing the document
You toggle between primary key and rowid identification using CTX_DOC.SET_KEY_TYPE.
You can specify that this procedure store the marked-up text to either a table or to an in-memory CLOB
.
To store results to a table specify the name of the table. The result table must exist before you make this call.
See Also: "Filter Table" in Appendix A, "Oracle Text Result Tables" for more information about the structure of the filter result table. |
To store results in memory, specify the name of the CLOB
locator. If restab is NULL
, a temporary CLOB
is allocated and returned. You must de-allocate the locator after using it with DBMS_LOB.FREETEMPORARY().
If restab is not NULL
, the CLOB
is truncated before the operation.
Specify an identifier to use to identify the row inserted into restab.
When query_id is not specified or set to NULL
, it defaults to 0. You must manually truncate the table specified in restab.
Specify TRUE
to generate a plaintext version of the document. Specify FALSE
to generate an HTML version of the document if you are using the AUTO_FILTER
filter or indexing HTML documents.
Example
The following code shows how to filter a document to HTML in memory.
Create the filter result table to store the filtered document as follows:
To obtain a plaintext version of document with textkey 20, issue the following statement:
Use the CTX_DOC.GIST
procedure to generate gist and theme summaries for a document. You can generate paragraph-level or sentence-level gists or theme summaries.
Note: CTX_DOC.GIST requires an installed knowledge base. A knowledge base may or may not have been installed with Oracle Text. For more information on knowledge bases, see the Oracle Text Application Developer's Guide. |
Syntax 1: In-Memory Storage
Syntax 2: Result Table Storage
Specify the name of the index associated with the text column containing the document identified by textkey
.
Specify the unique identifier (usually the primary key) for the document.
The textkey parameter can be one of the following:
a single column primary key value
an encoded specification for a composite (multiple column) primary key. To encode a composite textkey, use the CTX_DOC.PKENCODE
procedure.
the rowid of the row containing the document
You toggle between primary key and rowid identification using CTX_DOC.SET_KEY_TYPE
.
You can specify that this procedure store the gist and theme summaries to either a table or to an in-memory CLOB
.
To store results to a table specify the name of the table.
See Also: "Gist Table" in Appendix A, "Oracle Text Result Tables" for more information about the structure of the gist result table, see |
To store results in memory, specify the name of the CLOB
locator. If restab is NULL
, a temporary CLOB
is allocated and returned. You must de-allocate the locator after using it.
If restab
is not NULL
, the CLOB
is truncated before the operation.
Specify an identifier to use to identify the row(s) inserted into restab.
Specify the type of gist or theme summary to produce. The possible values are:
P for paragraph
S for sentence
The default is P.
Specify whether a gist or a single theme summary is generated. The type of gist or theme summary generated (sentence-level or paragraph-level) depends on the value specified for glevel
.
To generate a gist for the entire document, specify a value of 'GENERIC' for pov
. To generate a theme summary for a single theme in a document, specify the theme as the value for pov
.
When using result table storage and you do not specify a value for pov
, this procedure returns the generic gist plus up to fifty theme summaries for the document.
When using in-memory result storage to a CLOB
, you must specify a pov
. However, if you do not specify pov
, this procedure generates only a generic gist for the document.
Note: Thepov parameter is case sensitive. To return a gist for a document, specify 'GENERIC ' in all uppercase. To return a theme summary, specify the theme exactly as it is generated for the document. Only the themes generated by THEMES for a document can be used as input for |
Specify the maximum number of document paragraphs (or sentences) selected for the document gist or theme summaries. The default is 16.
Note: ThenumParagraphs parameter is used only when this parameter yields a smaller gist or theme summary size than the gist or theme summary size yielded by the maxPercent parameter. This means that the system always returns the smallest size gist or theme summary. |
Specify the maximum number of document paragraphs (or sentences) selected for the document gist or theme summaries as a percentage of the total paragraphs (or sentences) in the document. The default is 10.
Note: ThemaxPercent parameter is used only when this parameter yields a smaller gist or theme summary size than the gist or theme summary size yielded by the numParagraphs parameter. This means that the system always returns the smallest size gist or theme summary. |
Specify the number of theme summaries to produce when you do not specify a value for pov
. For example, if you specify 10, this procedure returns the top 10 theme summaries. The default is 50.
If you specify 0 or NULL, this procedure returns all themes in a document. If the document contains more than 50 themes, only the top 50 themes show conceptual hierarchy.
Examples
In-Memory Gist
The following example generates a nondefault size generic gist of at most 10 paragraphs. The result is stored in memory in a CLOB locator. The code then de-allocates the returned CLOB locator after using it.
Result Table Gists
The following example creates a gist table called CTX_GIST
:
The following example returns a default sized paragraph level gist for document 34 as well as the top 10 theme summaries in the document:
The following example generates a nondefault size gist of at most 10 paragraphs:
The following example generates a gist whose number of paragraphs is at most 10 percent of the total paragraphs in document:
Theme Summary
The following example returns a paragraph level theme summary for insects for document 34. The default theme summary size is returned.
Use the CTX_DOC.HIGHLIGHT
procedure to generate highlight offsets for a document. The offset information is generated for the terms in the document that satisfy the query you specify. These highlighted terms are either the words that satisfy a word query or the themes that satisfy an ABOUT
query.
You can generate highlight offsets for either plaintext or HTML versions of the document. The table returned by CTX_DOC.HIGHLIGHT
does not include any graphics found in the original document. You can apply the offset information to the same documents filtered with CTX_DOC.FILTER.
You usually call this procedure after a query, from which you identify the document to be processed.
You can store the highlight offsets in either an in-memory PL/SQL table or a result table.
See CTX_DOC.POLICY_HIGHLIGHT for a version of this procedure that does not require an index.
Syntax 1:In-Memory Result Storage
Syntax 2:Result Table Storage
Specify the name of the index associated with the text column containing the document identified by textkey.
Specify the unique identifier (usually the primary key) for the document.
The textkey parameter can be one of the following:
a single column primary key value
encoded specification for a composite (multiple column) primary key. Use the CTX_DOC.PKENCODE procedure.
the rowid of the row containing the document
You toggle between primary key and rowid identification using CTX_DOC.SET_KEY_TYPE.
Specify the original query expression used to retrieve the document. If NULL, no highlights are generated.
If text_query
includes wildcards, stemming, fuzzy matching which result in stopwords being returned, HIGHLIGHT
does not highlight the stopwords.
If text_query
contains the threshold operator, the operator is ignored. The HIGHLIGHT
procedure always returns highlight information for the entire result set.
You can specify that this procedure store highlight offsets to either a table or to an in-memory PL/SQL table.
To store results to a table specify the name of the table. The table must exist before you call this procedure.
See Also: see "Highlight Table" in Appendix A, "Oracle Text Result Tables" for more information about the structure of the highlight result table. |
To store results to an in-memory table, specify the name of the in-memory table of type CTX_DOC.HIGHLIGHT_TAB
. The HIGHLIGHT_TAB
datatype is defined as follows:
CTX_DOC.HIGHLIGHT
clears HIGHLIGHT_TAB
before the operation.
Specify the identifier used to identify the row inserted into restab.
When query_id is not specified or set to NULL
, it defaults to 0. You must manually truncate the table specified in restab.
Specify TRUE
to generate a plaintext offsets of the document.
Specify FALSE
to generate HTML offsets of the document if you are using the AUTO_FILTER
filter or indexing HTML documents.
Examples
Create the highlight table to store the highlight offset information:
Word Highlight Offsets
To obtain HTML highlight offset information for document 20 for the word dog:
Assuming the index newsindex has a theme component, you obtain HTML highlight offset information for the theme query of politics by issuing the following query:
The output for this statement are the offsets to highlighted words and phrases that represent the theme of politics in the document.
Notes
CTX_DOC.HIGHLIGHT
does not support the use of query templates.
Related Topics
Use this procedure when you need to filter binary data to text.
This procedure takes binary data (BLOB IN
), filters the data through with the AUTO_FILTER
filter, and writes the text version to a CLOB
. (Any graphics in the original document are ignored.) CTX_DOC.IFILTER
employs the safe callout, and it does not require an index to use, as CTX_DOC.FILTER
does.
Note: This procedure will not be supported in future releases. Programs should make use of CTX_DOC.POLICY_FILTER instead. |
Requirements
Because CTX_DOC.IFILTER
employs the safe callout mechanism, the SQL*Net listener must be running and configured for extproc
agent startup.
Syntax
Specify the binary data to be filtered.
Specify the destination CLOB
. The filtered data is placed in here. This parameter must be a valid CLOB
locator that is writable. Passing NULL
or a non-writable CLOB
will result in an error. Filtered text will be appended to the end of existing content, if any.
Example
The document text used in a MATCHES
query can be VARCHAR2
or CLOB
. It does not accept BLOB
input, so you cannot match filtered documents directly. Instead, you must filter the binary content to CLOB
using the AUTO_FILTER
filter. Assuming the document data is in bind variable :doc_blob
:
The CTX_DOC.MARKUP
procedure takes a query specification and a document textkey and returns a version of the document in which the query terms are marked up. These marked-up terms are either the words that satisfy a word query or the themes that satisfy an ABOUT
query.
You can set the marked-up output to be either plaintext or HTML. The marked-up document returned by CTX_DOC.MARKUP
does not include any graphics found in the original document.
You can use one of the pre-defined tagsets for marking highlighted terms, including a tag sequence that enables HTML navigation.
You usually call CTX_DOC.MARKUP
after a query, from which you identify the document to be processed.
You can store the marked-up document either in memory or in a result table.
See CTX_DOC.POLICY_MARKUP for a version of this procedure that does not require an index.
Note: Oracle Text does not guarantee well-formed output fromCTX.DOC.MARKUP , especially for terms that are already marked up with HTML or XML. In particular, unexpected nesting of markup tags may occasionally result. |
Syntax 1: In-Memory Result Storage
Syntax 2: Result Table Storage
Specify the name of the index associated with the text column containing the document identified by textkey.
Specify the unique identifier (usually the primary key) for the document.
The textkey parameter can be one of the following:
a single column primary key value
encoded specification for a composite (multiple column) primary key. Use the CTX_DOC.PKENCODE procedure.
the rowid of the row containing the document
You toggle between primary key and rowid identification using CTX_DOC.SET_KEY_TYPE.
Specify the original query expression used to retrieve the document.
If text_query includes wildcards, stemming, fuzzy matching which result in stopwords being returned, MARKUP
does not highlight the stopwords.
If text_query contains the threshold operator, the operator is ignored. The MARKUP
procedure always returns highlight information for the entire result set.
You can specify that this procedure store the marked-up text to either a table or to an in-memory CLOB
.
To store results to a table specify the name of the table. The result table must exist before you call this procedure.
See Also: For more information about the structure of the markup result table, see "Markup Table" in Appendix A, "Oracle Text Result Tables". |
To store results in memory, specify the name of the CLOB locator. If restab is NULL
, a temporary CLOB is allocated and returned. You must de-allocate the locator after using it.
If restab is not NULL
, the CLOB is truncated before the operation.
Specify the identifier used to identify the row inserted into restab.
When query_id is not specified or set to NULL
, it defaults to 0. You must manually truncate the table specified in restab.
Specify TRUE
to generate plaintext marked-up document. Specify FALSE
to generate a marked-up HTML version of document if you are using the AUTO_FILTER
filter or indexing HTML documents.
Specify one of the following pre-defined tagsets. The second and third columns show how the four different tags are defined for each tagset:
Tagset | Tag | Tag Value |
---|---|---|
TEXT_DEFAULT | starttag | <<< |
| endtag | >>> |
| prevtag | |
| nexttag | |
HTML_DEFAULT | starttag | |
| endtag | |
| prevtag | |
| nexttag | |
HTML_NAVIGATE | starttag | |
| endtag | |
| prevtag | < |
| nexttag | > |
Specify the character(s) inserted by MARKUP
to indicate the start of a highlighted term.
The sequence of starttag, endtag, prevtag and nexttag with respect to the highlighted word is as follows:
Specify the character(s) inserted by MARKUP
to indicate the end of a highlighted term.
Specify the markup sequence that defines the tag that navigates the user to the previous highlight.
In the markup sequences prevtag and nexttag, you can specify the following offset variables which are set dynamically:
Offset Variable | Value |
---|---|
%CURNUM | the current offset number |
%PREVNUM | the previous offset number |
%NEXTNUM | the next offset number |
See the description of the HTML_NAVIGATE
tagset for an example.
Specify the markup sequence that defines the tag that navigates the user to the next highlight tag.
Within the markup sequence, you can use the same offset variables you use for prevtag. See the explanation for prevtag and the HTML_NAVIGATE
tagset for an example.
Examples
In-Memory Markup
The following code takes document (the dog chases the cat), performs the assigned markup on it, and stores the result in memory.
The output from this example shows what the marked-up document looks like:
Markup Table
Create the highlight markup table to store the marked-up document as follows:
You can also store your MARKUP results in a table. To create HTML highlight markup for the words dog or cat for document 23, issue the following statement:
To create HTML highlight markup for the theme of politics for document 23, issue the following statement:
Related Topics
The CTX_DOC.PKENCODE
function converts a composite textkey list into a single string and returns the string.
The string created by PKENCODE
can be used as the primary key parameter textkey in other CTX_DOC
procedures, such as CTX_DOC.THEMES and CTX_DOC.GIST.
Syntax
Each PK argument specifies a column element in the composite textkey list. You can encode at most 16 column elements.
Returns
String that represents the encoded value of the composite textkey.
Examples
In this example, smith and 14 constitute the composite textkey value for the document.
Generates a plain text or an HTML version of a document. With this procedure, no CONTEXT
index is required.
This procedure uses a trusted callout.
Syntax
Specify the policy name created with CTX_DDL.CREATE_POLICY.
Specify the document to filter.
Specify the name of the CLOB locator.
Specify TRUE
to generate a plaintext version of the document. Specify FALSE
to generate an HTML version of the document if you are using the AUTO_FILTER
filter or indexing HTML documents.
Specify the language of the document. Use an Oracle Text supported language value as you would in the language column of the base table. See BASIC_LEXER in Chapter 2, " Oracle Text Indexing Elements".
Specify the format of the document. Use an Oracle Text supported format value, either TEXT, BINARY or IGNORE as you would specify in the format column of the base table. For more information, see the format column description in CREATE INDEX.
Specify the character set of the document. Use an Oracle Text supported value as you would specify in the charset column of the base table. See "Indexing Mixed-Character Set Columns" in Chapter 2, " Oracle Text Indexing Elements".
Generates a Gist or theme summary for document.You can generate paragraph-level or sentence-level gists or theme summaries. With this procedure, no CONTEXT
index is required.
Note: CTX_DOC.POLICY_GIST requires an installed knowledge base. A knowledge base may or may not have been installed with Oracle Text. For more information on knowledge bases, see the Oracle Text Application Developer's Guide. |
Syntax
Specify the policy name created with CTX_DDL.CREATE_POLICY.
Specify the document for which to generate the Gist or theme summary.
Specify the name of the CLOB locator.
Specify the type of gist or theme summary to produce. The possible values are:
P for paragraph
S for sentence
The default is P.
Specify whether a gist or a single theme summary is generated. The type of gist or theme summary generated (sentence-level or paragraph-level) depends on the value specified for glevel
.
To generate a gist for the entire document, specify a value of 'GENERIC' for pov
. To generate a theme summary for a single theme in a document, specify the theme as the value for pov
.
When using result table storage and you do not specify a value for pov
, this procedure returns the generic gist plus up to fifty theme summaries for the document.
Note: Thepov parameter is case sensitive. To return a gist for a document, specify 'GENERIC ' in all uppercase. To return a theme summary, specify the theme exactly as it is generated for the document. Only the themes generated by THEMES for a document can be used as input for |
Specify the maximum number of document paragraphs (or sentences) selected for the document gist or theme summaries. The default is 16.
Note: ThenumParagraphs parameter is used only when this parameter yields a smaller gist or theme summary size than the gist or theme summary size yielded by the maxPercent parameter. This means that the system always returns the smallest size gist or theme summary. |
Specify the maximum number of document paragraphs (or sentences) selected for the document gist or theme summaries as a percentage of the total paragraphs (or sentences) in the document. The default is 10.
Note: ThemaxPercent parameter is used only when this parameter yields a smaller gist or theme summary size than the gist or theme summary size yielded by the numParagraphs parameter. This means that the system always returns the smallest size gist or theme summary. |
Specify the number of theme summaries to produce when you do not specify a value for pov
. For example, if you specify 10, this procedure returns the top 10 theme summaries. The default is 50.
If you specify 0 or NULL, this procedure returns all themes in a document. If the document contains more than 50 themes, only the top 50 themes show conceptual hierarchy.
Specify the language of the document. Use an Oracle Text supported language value as you would in the language column of the base table. See MULTI_LEXER in Chapter 2, " Oracle Text Indexing Elements".
Specify the format of the document. Use an Oracle Text supported format value, either TEXT, BINARY or IGNORE as you would specify in the format column of the base table. For more information, see the format column description in CREATE INDEX.
Specify the character set of the document. Use an Oracle Text supported value as you would specify in the charset column of the base table. See "Indexing Mixed-Character Set Columns" in Chapter 2, " Oracle Text Indexing Elements".
Generates plain text or HTML highlighting offset information for a document.With this procedure, no CONTEXT
index is required.
The offset information is generated for the terms in the document that satisfy the query you specify. These highlighted terms are either the words that satisfy a word query or the themes that satisfy an ABOUT
query.
You can generate highlight offsets for either plaintext or HTML versions of the document. You can apply the offset information to the same documents filtered with CTX_DOC.FILTER.
Syntax
Specify the policy name created with CTX_DDL.CREATE_POLICY.
Specify the document to generate highlighting offset information.
Specify the original query expression used to retrieve the document. If NULL, no highlights are generated.
If text_query
includes wildcards, stemming, or fuzzy matching which result in stopwords being returned, this procedure does not highlight the stopwords.
If text_query
contains the threshold operator, the operator is ignored. This procedure always returns highlight information for the entire result set.
Specify the name of the highlight_tab
PL/SQL index-by-table type.
Specify TRUE
to generate a plaintext offsets of the document.
Specify FALSE
to generate HTML offsets of the document if you are using the AUTO_FILTER
filter or indexing HTML documents.
Specify the language of the document. Use an Oracle Text supported language value as you would in the language column of the base table. See MULTI_LEXER in Chapter 2, " Oracle Text Indexing Elements".
Specify the format of the document. Use an Oracle Text supported format value, either TEXT, BINARY or IGNORE as you would specify in the format column of the base table. For more information, see the format column description in CREATE INDEX.
Specify the character set of the document. Use an Oracle Text supported value as you would specify in the charset column of the base table. See "Indexing Mixed-Character Set Columns" in Chapter 2, " Oracle Text Indexing Elements".
Generates plain text or HTML version of a document with query terms highlighted.With this procedure, no CONTEXT
index is required.
The CTX_DOC.POLICY_MARKUP
procedure takes a query specification and a document and returns a version of the document in which the query terms are marked up. These marked-up terms are either the words that satisfy a word query or the themes that satisfy an ABOUT
query.
You can set the marked-up output to be either plaintext or HTML.
You can use one of the pre-defined tagsets for marking highlighted terms, including a tag sequence that enables HTML navigation.
Syntax
Specify the policy name created with CTX_DDL.CREATE_POLICY.
Specify the document to generate highlighting offset information.
Specify the original query expression used to retrieve the document. If NULL, no highlights are generated.
If text_query
includes wildcards, stemming, or fuzzy matching which result in stopwords being returned, this procedure does not highlight the stopwords.
If text_query
contains the threshold operator, the operator is ignored. This procedure always returns highlight information for the entire result set.
Specify the name of the CLOB
locator.
Specify TRUE
to generate plaintext marked-up document. Specify FALSE
to generate a marked-up HTML version of document if you are using the AUTO_FILTER
filter or indexing HTML documents.
Specify one of the following pre-defined tagsets. The second and third columns show how the four different tags are defined for each tagset:
Tagset | Tag | Tag Value |
---|---|---|
TEXT_DEFAULT | starttag | <<< |
| endtag | >>> |
| prevtag | |
| nexttag | |
HTML_DEFAULT | starttag | |
| endtag | |
| prevtag | |
| nexttag | |
HTML_NAVIGATE | starttag | |
| endtag | |
| prevtag | < |
| nexttag | > |
Specify the character(s) inserted by MARKUP
to indicate the start of a highlighted term.
The sequence of starttag, endtag, prevtag and nexttag with regard to the highlighted word is as follows:
Specify the character(s) inserted by MARKUP
to indicate the end of a highlighted term.
Specify the markup sequence that defines the tag that navigates the user to the previous highlight.
In the markup sequences prevtag and nexttag, you can specify the following offset variables which are set dynamically:
Offset Variable | Value |
---|---|
%CURNUM | the current offset number |
%PREVNUM | the previous offset number |
%NEXTNUM | the next offset number |
See the description of the HTML_NAVIGATE
tagset for an example.
Specify the markup sequence that defines the tag that navigates the user to the next highlight tag.
Within the markup sequence, you can use the same offset variables you use for prevtag. See the explanation for prevtag and the HTML_NAVIGATE
tagset for an example.
Specify the language of the document. Use an Oracle Text supported language value as you would in the language column of the base table. See MULTI_LEXER in Chapter 2, " Oracle Text Indexing Elements".
Specify the format of the document. Use an Oracle Text supported format value, either TEXT, BINARY or IGNORE as you would specify in the format column of the base table. For more information, see the format column description in CREATE INDEX.
Specify the character set of the document. Use an Oracle Text supported value as you would specify in the charset column of the base table. See "Indexing Mixed-Character Set Columns" in Chapter 2, " Oracle Text Indexing Elements".
Display marked-up keywords in context. The returned text contains either the words that satisfy a word query or the themes that satisfy an ABOUT
query. This version of the CTX_DOC.SNIPPET procedure does not require an index.
Syntax
Specify the name of a policy created with CTX_DDL.CREATE_POLICY
.
Specify the document in which to search for keywords.
Specify the original query expression used to retrieve the document. If NULL, no highlights are generated.
If text_query
includes wildcards, stemming, fuzzy matching which result in stopwords being returned, POLICY_SNIPPET
does not highlight the stopwords.
If text_query
contains the threshold operator, the operator is ignored.
Specify the language of the document. Use an Oracle Text supported language value as you would in the language column of the base table. See MULTI_LEXER in Chapter 2, " Oracle Text Indexing Elements".
Specify the format of the document. Use an Oracle Text supported format value, either TEXT, BINARY or IGNORE as you would specify in the format column of the base table. For more information, see the format column description in CREATE INDEX.
Specify the character set of the document. Use an Oracle Text supported value as you would specify in the charset column of the base table. See "Indexing Mixed-Character Set Columns" in Chapter 2, " Oracle Text Indexing Elements".
Specify the start tag for marking up the query keywords. Default is ''.
Specify the end tag for marking up the query keywords. Default is ''.
Specify if you want HTML entities to be translated. The default is TRUE, which means the special entities (<, >, and &) are translated into their alternate forms ('<', '>', and '&') when output by the procedure. However, special characters in the markup tags generated by CTX_DOC.POLICY_SNIPPET
will not be translated.
Specify the string separating different returned fragments. Default is '...'.
Notes
CTX_DOC.POLICY_SNIPPET
does not support the use of query templates.
Related Topics
Generates a list of themes for a document. With this procedure, no CONTEXT
index is required.
Note: CTX_DOC.POLICY_THEMES requires an installed knowledge base. A knowledge base may or may not have been installed with Oracle Text. For more information on knowledge bases, see the Oracle Text Application Developer's Guide. |
Syntax
Specify the policy you create with CTX_DDL.CREATE_POLICY.
Specify the document for which to generate a list of themes.
Specify the name of the theme_tab
PL/SQL index-by-table type.
Specify whether this procedure generates a single theme or a hierarchical list of parent themes (full themes) for each document theme.
Specify TRUE
for this procedure to write full themes to the THEME
column of the result table.
Specify FALSE
for this procedure to write single theme information to the THEME
column of the result table. This is the default.
Specify the maximum number of themes to retrieve. For example, if you specify 10, up to first 10 themes are returned for the document. The default is 50.
If you specify 0 or NULL
, this procedure returns all themes in a document. If the document contains more than 50 themes, only the first 50 themes show conceptual hierarchy.
Specify the language of the document. Use an Oracle Text supported language value as you would in the language column of the base table. See MULTI_LEXER in Chapter 2, " Oracle Text Indexing Elements".
Specify the format of the document. Use an Oracle Text supported format value, either TEXT, BINARY or IGNORE as you would specify in the format column of the base table. For more information, see the format column description in CREATE INDEX.
Specify the character set of the document. Use an Oracle Text supported value as you would specify in the charset column of the base table. See "Indexing Mixed-Character Set Columns" in Chapter 2, " Oracle Text Indexing Elements".
Example
Create a policy:
Run themes:
Generate all index tokens for document.With this procedure, no CONTEXT
index is required.
Syntax
Specify the policy name created with CTX_DDL.CREATE_POLICY.
Specify the document for which to generate tokens.
Specify the name of the token_tab
PL/SQL index-by-table type.
The tokens returned are those tokens which are inserted into the index for the document. Stop words are not returned. Section tags are not returned because they are not text tokens.
Specify the language of the document. Use an Oracle Text supported language value as you would in the language column of the base table. See MULTI_LEXER in Chapter 2, " Oracle Text Indexing Elements".
Specify the format of the document. Use an Oracle Text supported format value, either TEXT, BINARY or IGNORE as you would specify in the format column of the base table. For more information, see the format column description in CREATE INDEX.
Specify the character set of the document. Use an Oracle Text supported value as you would specify in the charset column of the base table. See "Indexing Mixed-Character Set Columns" in Chapter 2, " Oracle Text Indexing Elements".
Example
Get tokens:
Use this procedure to set the CTX_DOC
procedures to accept either the ROWID
or the PRIMARY_KEY
document identifiers. This setting affects the invoking session only.
Syntax
Specify either ROWID
or PRIMARY_KEY
as the input key type (document identifier) for CTX_DOC
procedures.
This parameter defaults to the value of the CTX_DOC_KEY_TYPE
system parameter.
Note: When your base table has no primary key, setting key_type toPRIMARY_KEY is ignored. The textkey parameter you specify for any CTX_DOC procedure is interpreted as a ROWID . |
Example
To set CTX_DOC
procedures to accept primary key document identifiers, do the following:
Use the CTX_DOC.SNIPPET
procedure to produce a concordance for a document. This functionality is also sometimes known as Key Word in Context (KWIC), because it returns query keywords marked up in their surrounding text, allowing the user to evaluate them in context. The returned text can also contain themes that satisfy an ABOUT
query.
For example, a search on brillig and slithey might return one fragment of a relevant document:
CTX_DOC.SNIPPET
attempts to return a Most Relevant Fragment for a document; if that is not possible, it returns multiple relevant fragments.
CTX_DOC.SNIPPET
is similar to CTX.DOC.MARKUP, but differs in the following way: CTX_DOC.MARKUP
returns an entire document, with query terms highlighted, so the user has to read the whole document to find a relevant section. In contrast, CTX_DOC.SNIPPET
returns only fragments containing the query keywords.
CTX_DOC.HIGHLIGHT is similar to CTX_DOC.SNIPPET
, but CTX_DOC.HIGHTLIGHT
does not provide any relevant information about the returned terms, other than offsets and lengths, so it is impossible to know how relevant a given term is. In contrast, CTX_DOC.SNIPPET
returns surrounding text, so the user can immediately gauge how useful the returned term is.
See CTX_DOC.POLICY_SNIPPET for a policy-based version of this procedure.
Syntax
Specify the name of the index for the text column.
Specify the unique identifier (usually the primary key) for the document.
The textkey parameter can be one of the following:
a single column primary key value
an encoded specification for a composite (multiple column) primary key. When textkey is a composite key, you must encode the composite textkey string using the CTX_DOC.PKENCODE
procedure.
the rowid of the row containing the document
You toggle between primary key and rowid identification using CTX_DOC.SET_KEY_TYPE
.
Specify the original query expression used to retrieve the document. If NULL, no highlights are generated.
If text_query
includes wildcards, stemming, fuzzy matching which result in stopwords being returned, SNIPPET
does not highlight the stopwords.
If text_query
contains the threshold operator, the operator is ignored.
Specify the start tag for marking up the query keywords. Default is ''.
Specify the end tag for marking up the query keywords. Default is ''.
Specify if you want HTML entities to be translated. The default is TRUE, which means the special entities (<, >, and &) are translated into their alternate forms ('<', '>', and '&') when output by the procedure. However, special characters in the markup tags generated by CTX_DOC.SNIPPET
will not be translated.
Specify the string separating different returned fragments. Default is '...'.
Example
The result looks something like this:
Notes
CTX_DOC.SNIPPET
does not support the use of query templates.
Related Topics
Use the CTX_DOC.THEMES
procedure to generate a list of themes for a document. You can store each theme as a row in either a result table or an in-memory PL/SQL table you specify.
Note: CTX_DOC.THEMES requires an installed knowledge base. A knowledge base may or may not have been installed with Oracle Text. For more information on knowledge bases, see the Oracle Text Application Developer's Guide. |
Syntax 1: In-Memory Table Storage
Syntax 2: Result Table Storage
Specify the name of the index for the text column.
Specify the unique identifier (usually the primary key) for the document.
The textkey parameter can be one of the following:
a single column primary key value
an encoded specification for a composite (multiple column) primary key. When textkey is a composite key, you must encode the composite textkey string using the CTX_DOC.PKENCODE procedure.
the rowid of the row containing the document
You toggle between primary key and rowid identification using CTX_DOC.SET_KEY_TYPE
.
You can specify that this procedure store results to either a table or to an in-memory PL/SQL table.
To store results in a table, specify the name of the table.
See Also: "Theme Table" in Appendix A, "Oracle Text Result Tables" for more information about the structure of the theme result table. |
To store results in an in-memory table, specify the name of the in-memory table of type THEME_TAB
. The THEME_TAB
datatype is defined as follows:
CTX_DOC.THEMES
clears the THEME_TAB
you specify before the operation.
Specify the identifier used to identify the row(s) inserted into restab.
Specify whether this procedure generates a single theme or a hierarchical list of parent themes (full themes) for each document theme.
Specify TRUE
for this procedure to write full themes to the THEME
column of the result table.
Specify FALSE
for this procedure to write single theme information to the THEME
column of the result table. This is the default.
Specify the maximum number of themes to retrieve. For example, if you specify 10, up to first 10 themes are returned for the document. The default is 50.
If you specify 0 or NULL
, this procedure returns all themes in a document. If the document contains more than 50 themes, only the first 50 themes show conceptual hierarchy.
Examples
In-Memory Themes
The following example generates the first 10 themes for document 1 and stores them in an in-memory table called the_themes
. The example then loops through the table to display the document themes.
Theme Table
The following example creates a theme table called CTX_THEMES
:
Single Themes
To obtain a list of up to the first 20 themes where each element in the list is a single theme, issue a statement like the following:
Full Themes
To obtain a list of the top 20 themes where each element in the list is a hierarchical list of parent themes, issue a statement like the following:
Use this procedure to identify all text tokens in a document. The tokens returned are those tokens which are inserted into the index. This feature is useful for implementing document classification, routing, or clustering.
Stopwords are not returned. Section tags are not returned because they are not text tokens.
Syntax 1: In-Memory Table Storage
Syntax 2: Result Table Storage
Specify the name of the index for the text column.
Specify the unique identifier (usually the primary key) for the document.
The textkey parameter can be one of the following:
a single column primary key value
encoded specification for a composite (multiple column) primary key. To encode a composite textkey, use the CTX_DOC.PKENCODE procedure.
the rowid of the row containing the document
You toggle between primary key and rowid identification using CTX_DOC.SET_KEY_TYPE.
You can specify that this procedure store results to either a table or to an in-memory PL/SQL table.
The tokens returned are those tokens which are inserted into the index for the document (or row) named with textkey
. Stop words are not returned. Section tags are not returned because they are not text tokens.
Specifying a Token Table
To store results to a table, specify the name of the table. Token tables can be named anything, but must include the following columns, with names and data types as specified.
Table 8-1 Required Columns for Token Tables
Column Name | Type | Description |
---|---|---|
QUERY_ID | NUMBER | The identifier for the results generated by a particular call to CTX_DOC.TOKENS (only populated when table is used to store results from multiple TOKEN calls) |
TOKEN | VARCHAR2(64) | The token string in the text. |
OFFSET | NUMBER | The position of the token in the document, relative to the start of document which has a position of 1. |
LENGTH | NUMBER | The character length of the token. |
Specifying an In-Memory Table
To store results to an in-memory table, specify the name of the in-memory table of type TOKEN_TAB
. The TOKEN_TAB
datatype is defined as follows:
CTX_DOC.TOKENS
clears the TOKEN_TAB
you specify before the operation.
Specify the identifier used to identify the row(s) inserted into restab.
Examples
In-Memory Tokens
The following example generates the tokens for document 1 and stores them in an in-memory table, declared as the_tokens
. The example then loops through the table to display the document tokens.
This chapter provides reference information for using the CTX_OUTPUT
PL/SQL package.
CTX_OUTPUT
contains the following stored procedures:
Name | Description |
---|---|
ADD_EVENT | Add an event to the index log. |
ADD_TRACE | Enable tracing. |
END_LOG | Halt logging of index and document services requests. |
END_QUERY_LOG | Stop logging queries into a logfile. |
GET_TRACE_VALUE | Return the value of a trace. |
LOG_TRACES | Print traces to logfile. |
LOGFILENAME | Return the name of the current log file. |
REMOVE_EVENT | Remove an event from the index log. |
REMOVE_TRACE | Disable tracing. |
RESET_TRACE | Clear a trace. |
START_LOG | Start logging index and document service requests. |
START_QUERY_LOG | Create a log file of queries. |
Use this procedure to add an event to the index log for more detailed log output.
Syntax
Specify the type of index event to log. You can add the following events:
CTX_OUTPUT.EVENT_INDEX_PRINT_ROWID
, which logs the rowid of each row after it is indexed. This is useful for debugging a failed index operation.
CTX_OUTPUT.EVENT_OPT_PRINT_TOKEN
, which prints each token as it is being optimized.
CTX_OUTPUT.EVENT_INDEX_PRINT_TOKEN
, which prints the each token as it is being indexed.
Example
Related Topics
Use this procedure to enable a trace. If the trace has not been enabled, this call adds the trace to the list of active traces and resets its value to 0. If the trace has already been enabled, an error is raised.
Syntax
Specify the ID of the trace to enable. See Table 9-1 for possible trace values.
Notes
Table 9-1 shows the available traces:
Table 9-1 Available Traces
Symbol | ID | Metric |
---|---|---|
TRACE_IDX_USER_DATASTORE | 1 | time spent executing user datastore |
TRACE_IDX_AUTO_FILTER | 2 | time spent invoking the AUTO_FILTER filter. (Replaces the deprecated TRACE_IDX_INSO_FILTER trace) |
TRACE_QRY_XX_TIME | 3 | time spent executing the $X cursor |
TRACE_QRY_XF_TIME | 4 | time spent fetching from $X |
TRACE_QRY_X_ROWS | 5 | total number of rows whose token metadata was fetched from $X |
TRACE_QRY_IF_TIME | 6 | time spent fetching the LOB locator from $I |
TRACE_QRY_IR_TIME | 7 | time spent reading $I LOB information |
TRACE_QRY_I_ROWS | 8 | number of rows whose $I token_info was actually read |
TRACE_QRY_I_SIZE | 9 | number of bytes read from $I LOB s |
TRACE_QRY_R_TIME | 10 | time spent fetching and reading $R information |
TRACE_QRY_CON_TIME | 11 | time spent in CONTAINS processing (drexrcontains/drexrstart/drexrfetch) |
Tracing is independent of logging. Logging does not have to be on to start tracing, and vice-versa.
Traces are associated with a session—they can measure operations that take place within a single session, and conversely, cannot make measurements across sessions.
During parallel sync or optimize, the trace profile will be copied to the slave sessions if and only if tracing is currently enabled. Each slave will accumulate its own traces and implicitly write all trace values to the slave logfile before termination.
Related Topics
See Also: "REMOVE_TRACE", "GET_TRACE_VALUE", "LOG_TRACES",and "RESET_TRACE", as well as the Oracle Text Application Developer's Guide |
Halt logging index and document service requests
Syntax
Example
Use this procedure to stop logging queries into a logfile created with CTX_OUTPUT.START_QUERY_LOG
.
Syntax
Example
Use this procedure to programmatically retrieve the current value of a trace.
Syntax
Specify the trace ID whose value you want. See Table 9-1, "Available Traces" for possible values.
Example
This sets the value of the variable value:
Notes
You can also retrieve trace values through SQL:
See "CTX_TRACE_VALUES" for the entries in the CTX_TRACE_VALUES
view.
If the trace has not been enabled, an error is raised.
Traces are not reset to 0 by this call.
Traces are associated with a session—they can measure operations that take place within a single session, and conversely, cannot make measurements across sessions.
Related Topics
See Also: "REMOVE_TRACE", "ADD_TRACE", "LOG_TRACES",and "RESET_TRACE", as well as the Oracle Text Application Developer's Guide |
Use this procedure to print all active traces to the logfile.
Syntax
Notes
If logging has not been started, an error is raised.
Traces are not reset to 0 by this call.
This procedure looks for the logfile in the directory specified by the LOG_DIRECTORY
system parameter, which is $ORACLE_HOME/ctx/log
on UNIX. You can query the CTX_PARAMETERS
view to find the current setting.
Related Topics
See Also: "REMOVE_TRACE", "GET_TRACE_VALUE", "ADD_TRACE", and "RESET_TRACE", as well as the Oracle Text Application Developer's Guide |
Returns the filename for the current log. This procedure looks for the logfile in the directory specified by the LOG_DIRECTORY
system parameter, which is $ORACLE_HOME/ctx/log
on UNIX. You can query the CTX_PARAMETERS
view to find the current setting.
Syntax
Returns
Log file name.
Example
Use this procedure to remove an event from the index log.
Syntax
Specify the type of index event to remove from the log. You can remove the following events:
CTX_OUTPUT.EVENT_INDEX_PRINT_ROWID
, which logs the rowid of each row after it is indexed. This is useful for debugging a failed index operation.
CTX_OUTPUT.EVENT_OPT_PRINT_TOKEN
, which prints each token as it is being optimized.
CTX_OUTPUT.EVENT_INDEX_PRINT_TOKEN
, which prints the each token as it is being indexed.
Example
Related Topics
Use this procedure to disable a trace.
Syntax
Specify the ID of the trace to disable. See Table 9-1, "Available Traces" for possible values.
Notes
If the trace has not been enabled, an error is raised.
Related Topics
See Also: "GET_TRACE_VALUE", "ADD_TRACE", "LOG_TRACES",and "RESET_TRACE", as well as the Oracle Text Application Developer's Guide |
Use this procedure to clear a trace (that is, reset it to 0).
Syntax
Specify the ID of the trace to reset. See Table 9-1, "Available Traces" for possible values.
Notes
If the trace has not been enabled, an error is raised.
Related Topics
See Also: "REMOVE_TRACE", "GET_TRACE_VALUE", "ADD_TRACE", "LOG_TRACES", as well as the Oracle Text Application Developer's Guide |
Begin logging index and document service requests.
Syntax
Specify the name of the log file. The log is stored in the directory specified by the system parameter LOG_DIRECTORY
.
Specify whether you want to overwrite or append to the original query log file specified by logfile, if it already exists. The default is to overwrite the original query log file.
Example
Notes
Logging is independent of tracing. Logging does not have to be on to start tracing, and vice-versa.
Logging is associated with a session—it can log operations that take place within a single session, and, conversely, cannot make measurements across sessions.
Filenames used in CTX_OUTPUT.START_LOG
are restricted to the following characters: alphanumeric, minus, period, space, hash, underscore, single and double quotes. Any other character in the filename will raise an error.
Begin logging query requests into a query log file.
Use CTX_OUTPUT.END_QUERY_LOG
to stop logging queries. Use CTX_REPORT.QUERY_LOG_SUMMARY
to obtain reports on logged queries, such as which queries returned successfully the most times.
The query log includes the query string, the index name, and the timestamp of the query, as well as whether or not the query successfully returned a hit. A successful query for the phrase Blues Guitarists made at 6:46 (local time) on November 11th, 2003, would be entered into the query log in this form:
Syntax
Specify the name of the query log file. The query log is stored in the directory specified by the system parameter LOG_DIRECTORY
.
Specify whether you want to overwrite or append to the original query log file specified by logfile, if it already exists. The default is to overwrite the original query log file.
Example
Notes
Filenames used in CTX_OUTPUT.START_QUERY_LOG
are restricted to the following characters: alphanumeric, minus, period, space, hash, underscore, single and double quotes. Any other character in the filename will raise an error.
Logging is associated with a session—it can log operations that take place within a single session, and, conversely, cannot make measurements across sessions.
This chapter describes the CTX_QUERY
PL/SQL package you can use for generating query feedback, counting hits, and creating stored query expressions.
Note:: You can use this package only when your index type isCONTEXT . This package does not support the CTXCAT index type. |
The CTX_QUERY
package includes the following procedures and functions:
Name | Description |
---|---|
BROWSE_WORDS | Returns the words around a seed word in the index. |
COUNT_HITS | Returns the number hits to a query. |
EXPLAIN | Generates query expression parse and expansion information. |
HFEEDBACK | Generates hierarchical query feedback information (broader term, narrower term, and related term). |
REMOVE_SQE | Removes a specified stored query expression from the SQL tables. |
STORE_SQE | Executes a query and stores the results in stored query expression tables. |
This procedure enables you to browse words in an Oracle Text index. You specify a seed word and BROWSE_WORDS
returns the words around it in the index, and an approximate count of the number of documents that contain each word.
This feature is useful for refining queries. You can identify the following:
unselective words (words that have low document count)
misspelled words in the document set
Syntax 1: To Store Results in Table
Syntax 2: To Store Results in Memory
Specify the name of the index. You can specify schema.name
. Must be a local index.
Specify the seed word. This word is lexed before browse expansion. The word need not exist in the token table. seed must be a single word. Using multiple words as the seed will result in an error.
Specify the name of the result table. You can enter restab as schema.name
. The table must exist before you call this procedure, and you must have INSERT
permissions on the table. This table must have the following schema.
Column | Datatype |
---|---|
browse_id | number |
word | varchar2(64) |
doc_count | number |
Existing rows in restab are not deleted before BROWSE_WORDS
is called.
Specify the name of the result array. resarr is of type ctx_query.browse_tab.
Specify a numeric identifier between 0 and 232. The rows produced for this browse have a value of in the browse_id column in restab. When you do not specify browse_id, it defaults to 0.
Specify the number of words returned.
Specify the direction for the browse. You can specify one of:
value | behavior |
---|---|
BEFORE | Browse seed word and words alphabetically before the seed. |
AROUND | Browse seed word and words alphabetically before and after the seed. |
AFTER | Browse seed word and words alphabetically after the seed. |
Symbols CTX_QUERY.BROWSE_BEFORE
, CTX_QUERY.BROWSE_AROUND
, and CTX_QUERY.BROWSE_AFTER
are defined for these literal values as well.
Specify the name of the index partition to browse.
Example
Browsing Words with Result Table
Browsing Words with Result Array
Returns the number of hits for the specified query. You can call COUNT_HITS
in exact or estimate mode. Exact mode returns the exact number of hits for the query. Estimate mode returns an upper-bound estimate but runs faster than exact mode.
Syntax
Specify the index name.
Specify the query.
Specify TRUE
for an exact count. Specify FALSE
for an upper-bound estimate.
Specifying FALSE
returns a less accurate number but runs faster. Specifying FALSE might return a number which is too high if rows have been updated or deleted since the last FULL index optimize. Optimizing in full mode removes these false hits, and then EXACT set to FALSE will return the same number as EXACT set to TRUE.
Specify the name of the index partition to query.
Notes
If the query contains structured criteria, you should use SELECT COUNT(*)
.
If the index was created with the TRANSACTIONAL
parameter, then COUNT_HITS
will include pending rowids as well as those that have been synchronized.
Use CTX_QUERY.EXPLAIN
to generate explain plan information for a query expression. The EXPLAIN
plan provides a graphical representation of the parse tree for a Text query expression. This information is stored in a result table.
This procedure does not execute the query. Instead, this procedure can tell you how a query is expanded and parsed before you issue the query. This is especially useful for stem, wildcard, thesaurus, fuzzy, soundex, or about queries. Parse trees also show the following information:
ABOUT
query normalization
query expression optimization
stop-word transformations
breakdown of composite-word tokens
Knowing how Oracle Text evaluates a query is useful for refining and debugging queries. You can also design your application so that it uses the explain plan information to help users write better queries.
Syntax
Specify the name of the index to be queried.
Specify the query expression to be used as criteria for selecting rows.
When you include a wildcard, fuzzy, or soundex operator in text_query, this procedure looks at the index tables to determine the expansion.
Wildcard, fuzzy (?), and soundex (!) expression feedback does not account for lazy deletes as in regular queries.
Specify the name of the table used to store representation of the parse tree for text_query. You must have at least INSERT
and DELETE
privileges on the table used to store the results from EXPLAIN
.
See Also: For more information about the structure of the explain table, see "EXPLAIN Table" in Appendix A, "Oracle Text Result Tables". |
Specify whether explain_table is shared by multiple EXPLAIN
calls. Specify 0 for exclusive use and 1 for shared use. This parameter defaults to 0 (single-use).
When you specify 0, the system automatically truncates the result table before the next call to EXPLAIN
.
When you specify 1 for shared use, this procedure does not truncate the result table. Only results with the same explain_id are updated. When no results with the same explain_id exist, new results are added to the EXPLAIN
table.
Specify a name that identifies the explain results returned by an EXPLAIN
procedure when more than one EXPLAIN
call uses the same shared EXPLAIN
table. This parameter defaults to NULL
.
Specify the name of the index partition to query.
Example
To create an explain table called test_explain
for example, use the following SQL statement:
To obtain the expansion of a query expression such as comp% OR ?smith, use CTX_QUERY.EXPLAIN
as follows:
Retrieving Data from Explain Table
To read the explain table, you can select the columns as follows:
The output is ordered by ID to simulate a hierarchical query:
Notes
You cannot use EXPLAIN
with remote queries.
If the query utilizes themes (for example, with an ABOUT
query), then a knowledge base must be installed; such a knowledge base may or may not have been installed with Oracle Text. For more information on knowledge bases, see the Oracle Text Application Developer's Guide.
Related Topics
In English or French, this procedure generates hierarchical query feedback information (broader term, narrower term, and related term) for the specified query.
Broader term, narrower term, and related term information is obtained from the knowledge base. However, only knowledge base terms that are also in the index are returned as query feedback information. This increases the chances that terms returned from HFEEDBACK
produce hits over the currently indexed document set.
Hierarchical query feedback information is useful for suggesting other query terms to the user.
Note: CTX_QUERY.HFEEDBACK is only supported in English and French. |
Note: CTX_QUERY.HFEEDBACK requires an installed knowledge base. A knowledge base may or may not have been installed with Oracle Text. For more information on knowledge bases, see the Oracle Text Application Developer's Guide. |
Syntax
Specify the name of the index for the text column to be queried.
Specify the query expression to be used as criteria for selecting rows.
Specify the name of the table used to store the feedback terms.
See Also: For more information about the structure of the explain table, see "HFEEDBACK Table" in Appendix A, "Oracle Text Result Tables". |
Specify whether feedback_table
is shared by multiple HFEEDBACK
calls. Specify 0 for exclusive use and 1 for shared use. This parameter defaults to 0 (single-use).
When you specify 0, the system automatically truncates the feedback table before the next call to HFEEDBACK
.
When you specify 1 for shared use, this procedure does not truncate the feedback table. Only results with the same feedback_id
are updated. When no results with the same feedback_id exist, new results are added to the feedback table.
Specify a value that identifies the feedback results returned by a call to HFEEDBACK
when more than one HFEEDBACK
call uses the same shared feedback table. This parameter defaults to NULL
.
Specify the name of the index partition to query.
Example
Create a result table to use with CTX_QUERY.HFEEDBACK
as follows:
CTX_FEEDBACK_TYPE is a system-defined type in the CTXSYS
schema.
See Also: For more information about the structure of theHFEEDBACK table, see "HFEEDBACK Table" in Appendix A, "Oracle Text Result Tables". |
Call CTX_QUERY.HFEEDBACK
The following code calls the HFEEDBACK
procedure with the query computer industry.
Select From the Result Table
The following code extracts the feedback data from the result table. It extracts broader term, narrower term, and related term feedback separately from the nested tables.
Sample Output
The following output is for the preceding example, which queries on computer industry:
Note: TheHFEEDBACK information you obtain depends on the contents of your index and knowledge base and as such might differ from the sample shown. |
The CTX_QUERY.REMOVE_SQE
procedure removes the specified stored query expression.
Syntax
Specify the name of the stored query expression to be removed.
Examples
This procedure creates a stored query expression. Only the query definition is stored.
Supported Operators
Stored query expressions support all of the CONTAINS
query operators. Stored query expressions also support all of the special characters and other components that can be used in a query expression, including other stored query expressions.
Privileges
Users are allowed to create and remove stored query expressions owned by them. Users are allowed to use stored query expressions owned by anyone. The CTXSYS
user can create or remove stored query expressions for any user.
Syntax
Specify the name of the stored query expression to be created.
Specify the query expression to be associated with query_name.
Examples
This chapter describes how to use the CTX_REPORT
package to create reports on indexing and querying. These reports can help you troubleshoot problems or fine-tune your applications.
This chapter contains the following topics:
For an overview of the CTX_REPORT
package and how you can use the various procedures described here, see the Oracle Text Application Developer's Guide.
The CTX_REPORT package contains the following procedures:
Name | Description |
---|---|
DESCRIBE_INDEX | Creates a report describing the index. |
DESCRIBE_POLICY | Creates a report describing a policy. |
CREATE_INDEX_SCRIPT | Creates a SQL*Plus script to duplicate the named index. |
CREATE_POLICY_SCRIPT | Creates a SQL*Plus script to duplicate the named policy. |
INDEX_SIZE | Creates a report to show the internal objects of an index, their tablespaces and used sizes. |
INDEX_STATS | Creates a report to show the various statistics of an index. |
QUERY_LOG_SUMMARY | Creates a report showing query statistics |
TOKEN_INFO | Creates a report showing the information for a token, decoded. |
TOKEN_TYPE | Translates a name and returns a numeric token type. |
Some of the procedures in the CTX_REPORT
package have function versions. You can call these functions as follows:
In SQL*Plus, to generate an output file to send to support, you can do:
Creates a report describing the index. This includes the settings of the index metadata, the indexing objects used, the settings of the attributes of the objects, and index partition descriptions, if any.
You can call this operation as a procedure with an IN OUT CLOB parameter or as a function that returns the report as a CLOB.
Syntax
Specify the name of the index to describe.
Specify the CLOB locator to which to write the report.
If report
is NULL, a session-duration temporary CLOB will be created and returned. It is the caller's responsibility to free this temporary CLOB as needed.
The report
CLOB will be truncated before report is generated, so any existing contents will be overwritten by this call.
Specify whether the report should be generated as 'TEXT' or as 'XML'. TEXT is the default. You can also specify the values CTX_REPORT.FMT_TEXT or CTX_REPORT.FMT_XML.
Creates a report describing the policy. This includes the settings of the policy metadata, the indexing objects used, the settings of the attributes of the objects.
You can call this operation as a procedure with an IN OUT CLOB parameter or as a function that returns the report as a CLOB.
Syntax
Specify the CLOB locator to which to write the report.
If report
is NULL, a session-duration temporary CLOB will be created and returned. It is the caller's responsibility to free this temporary CLOB as needed.
The report
CLOB will be truncated before report
is generated, so any existing contents will be overwritten by this call.
Specify whether the report should be generated as 'TEXT' or as 'XML'. TEXT is the default. You can also specify the values CTX_REPORT.FMT_TEXT or CTX_REPORT.FMT_XML.
Specify the name of the policy to describe
Creates a SQL*Plus script which will create a text index that duplicates the named text index.
The created script will include creation of preferences identical to those used in the named text index. However, the names of the preferences will be different.
You can call this operation as a procedure with an IN OUT CLOB parameter or as a function that returns the report as a CLOB.
Syntax
Specify the name of the index.
Specify the CLOB locator to which to write the script.
If report
is NULL, a session-duration temporary CLOB will be created and returned. It is the caller's responsibility to free this temporary CLOB as needed.
The report
CLOB will be truncated before report is generated, so any existing contents will be overwritten by this call.
Specify optional prefix to use for preference names.
If prefname_prefix
is omitted or NULL, index name will be used. The prefname_prefix
follows index length restrictions.
Creates a SQL*Plus script which will create a text policy that duplicates the named text policy.
The created script will include creation of preferences identical to those used in the named text policy.
You can call this operation as a procedure with an IN OUT CLOB parameter or as a function that returns the report as a CLOB.
Syntax
Specify the name of the policy.
Specify the locator to which to write the script.
If report
is NULL, a session-duration temporary CLOB will be created and returned. It is the caller's responsibility to free this temporary CLOB as needed.
The report
CLOB will be truncated before report is generated, so any existing contents will be overwritten by this call.
Specify the optional prefix to use for preference names. If prefname_prefix
is omitted or NULL, policy name will be used. prefname_prefix
follows policy length restrictions.
Creates a report showing the internal objects of the text index or text index partition, and their tablespaces, allocated, and used sizes.
You can call this operation as a procedure with an IN OUT CLOB parameter, or as a function that returns the report as a CLOB.
Syntax
Specify the name of the index to describe
Specify the CLOB locator to which to write the report.
If report
is NULL, a session-duration temporary CLOB will be created and returned. It is the caller's responsibility to free this temporary CLOB as needed.
The report
CLOB will be truncated before report is generated, so any existing contents will be overwritten by this call
Specify the name of the index partition (optional). If part_name
is NULL, and the index is a local partitioned text index, then all objects of all partitions will be displayed. If part_name
is provided, then only the objects of a particular partition will be displayed.
Specify whether the report should be generated as 'TEXT' or as 'XML'. TEXT is the default. You can also specify the values CTX_REPORT.FMT_TEXT or CTX_REPORT.FMT_XML.
Creates a report showing various calculated statistics about the text index.
This procedure will fully scan the text index tables, so it may take a long time to run for large indexes.
Specify the name of the index to describe. This must be a CONTEXT index.
Specify the CLOB locator to which to write the report.If report is NULL, a session-duration temporary CLOB will be created and returned. It is the caller's responsibility to free this temporary CLOB as needed.
The report CLOB will be truncated before report is generated, so any existing contents will be overwritten by this call.
Specify the name of the index partition. If the index is a local partitioned index, then part_name
must be provided. INDEX_STATS will calculate the statistics for that index partition.
Specify TRUE to calculate fragmentation statistics. If frag_stats
is FALSE, the report will not show any statistics relating to size of index data. However, the operation should take less time and resources to calculate the token statistics.
Specify the number of elements in each compiled list. list_size
has a maximum value of 1000.
Specify whether the report should be generated as 'TEXT' or as 'XML'. TEXT is the default. You can also specify the values CTX_REPORT.FMT_TEXT or CTX_REPORT.FMT_XML.
Example
Here's an example of using CTX_REPORT.INDEX_STATS
:
The following is sample output for INDEX_STATS
on a context index. This report has been truncated for clarity. It shows some of the token statistics and all of the fragmentation statistics.
The fragmentation statistics are at the end of the report. It tells you optimal row fragmentation, an estimated amount of garbage data in the index, and a list of the most fragmented tokens. Running CTX_DDL.OPTIMIZE_INDEX
cleans up the index.
The fragmentation portion of this report is as follows:
Obtain a report of logged queries.
QUERY_LOG_SUMMARY
enables you to analyze queries you have logged. For example, suppose you have an application that searches a database of large animals, and your analysis of queries against it shows that users are continually searching for the word mouse; this analysis might induce you to rewrite your application so that a search for mouse redirects the user to a database for small animals instead of simply returning an unsuccessful search.
With query analysis, you can find out
which queries were made
which queries were successful
which queries were unsuccessful
how many times each query was made
You can combine these factors in various ways, such as determining the 50 most frequent unsuccessful queries made by your application.
Query logging is begun with CTX_OUTPUT.START_QUERY_LOG
and terminated with CTX_OUTPUT.END_QUERY_LOG
.
Note: You must connect asCTXSYS to use CTX_REPORT.QUERY_LOG_SUMMARY . |
Syntax
Specify the name of the logfile that contains the queries.
Specify the name of the context index for which you want the summary report. If you specify NULL
, the procedure provides a summary report for all context indexes.
Specify the name of the in-memory table of type TABLE OF RECORD
where the results of the QUERY_LOG_SUMMARY
are to go. The default is the location specified by the system parameter LOG_DIRECTORY
.
The number of rows of results from QUERY_LOG_SUMMARY
to be reported into the table named by restab. For example, if this is number is 10, most_freq is TRUE, and has_hit is TRUE, then the procedure returns the 10 most frequent queries that were successful (that is, returned hits).
Specify whether QUERY_LOG_SUMMARY
should return the most frequent or least frequent queries. The default is most frequent queries. If most_freq is set to FALSE
, the procedure returns the least successful queries.
Specify whether QUERY_LOG_SUMMARY
should return queries that are successful (that is, that generate hits) or unsuccessful queries. The default is to count successful queries; set has_hit to FALSE
to return unsuccessful queries.
Example
The following example shows how a query log can be used.
First connect as CTXSYS
. Then create and populate two tables, and then create an index for each:
Turn on query logging, creating a log called query_log
:
Now make some queries (some of which will be unsuccessful):
With the querying over, turn query logging off:
Use QUERY_LOG_SUMMARY
to get query reports. In the first instance, you ask to see the three most frequent queries that return successfully. First declare the results table (the_queries
).
This returns the following:
Next, look for the three most frequent queries on idx_qlog1
that were successful.
Because only the queries for France were successful, ctx_report.query_log_summary
returns the following:
Lastly, ask to see the three least frequent queries that returned no hits (that is, queries that were unsuccessful and called infrequently). In this case, you are interested in queries on both context indexes, so you set the indexname parameter to NULL.
This returns the following:
Argentina and Japan do not make this list, because they are queried more than once, while Corn Palace does not make this list because it is successfully queried.
Creates a report showing the information for a token, decoded. This procedure will fully scan the info for a token, so it may take a long time to run for really large tokens.
You can call this operation as a procedure with an IN OUT CLOB parameter or as a function that returns the report as a CLOB.
Syntax
Specify the name of the index.
Specify the CLOB locator to which to write the report.
If report is NULL, a session-duration temporary CLOB will be created and returned. It is the caller's responsibility to free this temporary CLOB as needed.
The report
CLOB will be truncated before report is generated, so any existing contents will be overwritten by this call token may be case-sensitive, depending on the passed-in token type.
Specify the token text.
Specify the token type. You can use a number returned by the TOKEN_TYPE function. THEME, ZONE, ATTR, PATH, and PATH ATTR tokens are case-sensitive.
Everything else gets passed through the lexer, so if the index's lexer is case-sensitive, the token input is case-sensitive.
Specify the name of the index partition.
If the index is a local partitioned index, then part_name must be provided. TOKEN_INFO will apply to just that index partition.
Specify TRUE to include a hex dump of the index data. If raw_info is TRUE, the report will include a hex dump of the raw data in the token_info
column.
Specify decode and include docid and offset data. If decoded_info
is FALSE, CTX_REPORT
will not attempt to decode the token information. This is useful when you just want a dump of data.
Specify whether the report should be generated as 'TEXT' or as 'XML'. TEXT is the default. You can also specify the values CTX_REPORT.FMT_TEXT or CTX_REPORT.FMT_XML.
This is a helper function which translates an English name into a numeric token type. This is suitable for use with token_info
, or any other CTX API which takes in a token_type
.
Specify the name of the index.
Specify an English name for token_type
. The following strings are legal input. All input is case-insensitive.
Input | Meaning | Type Returned |
---|---|---|
TEXT | Normal text token. | 0 |
THEME | Theme token. | 1 |
ZONE SEC | Zone token. | 2 |
ORIGINAL | Original form token | 3 |
ATTR TEXT | Text that occurs in attribute. | 4 |
ATTR SEC | Attribute section. | 5 |
PREFIX | Prefix token. | 6 |
PATH SEC | Path section. | 7 |
PATH ATTR | Path attribute section. | 8 |
STEM | Stem form token. | 9 |
FIELD <name> TEXT | Text token in field section <name> | 16-79 |
FIELD <name> PREFIX | Prefix token in field section <name> | 616-916 |
FIELD <name> STEM | Stem token in field section <name> | 916-979 |
TOKEN_TYPE_ATTR_TXT_PFIX | Attribute text prefix. | 604 |
TOKEN_TYPE_ATTR_TXT_STEM | Attribute text stem. | 904 |
For FIELD types, the index metadata needs to be read, so if you are going to be calling this a lot for such things, you might want to consider caching the values in local variables rather than calling token_type over and over again.
The constant types (0 - 9) also have constants in this package defined.
Notes
To get token types for MDATA
tokens, do not use CTX_REPORT.TOKEN_TYPE
; use the MDATA operator instead. (See "MDATA".) The syntax to use is 'MDATA
fieldname'.
Example
This chapter provides reference information for using the CTX_THES
package to manage and browse thesauri. These thesaurus functions are based on the ISO-2788 and ANSI Z39.19 standards except where noted.
Knowing how information is stored in your thesaurus helps in writing queries with thesaurus operators. You can also use a thesaurus to extend the knowledge base, which is used for ABOUT
queries in English and French and for generating document themes.
CTX_THES
contains the following stored procedures and functions:
Name | Description |
---|---|
ALTER_PHRASE | Alters thesaurus phrase. |
ALTER_THESAURUS | Renames or truncates a thesaurus. |
BT | Returns all broader terms of a phrase. |
BTG | Returns all broader terms generic of a phrase. |
BTI | Returns all broader terms instance of a phrase. |
BTP | Returns all broader terms partitive of a phrase. |
CREATE_PHRASE | Adds a phrase to the specified thesaurus. |
CREATE_RELATION | Creates a relation between two phrases. |
CREATE_THESAURUS | Creates the specified thesaurus. |
CREATE_TRANSLATION | Creates a new translation for a phrase. |
DROP_PHRASE | Removes a phrase from thesaurus. |
DROP_RELATION | Removes a relation between two phrases. |
DROP_THESAURUS | Drops the specified thesaurus from the thesaurus tables. |
DROP_TRANSLATION | Drops a translation for a phrase. |
HAS_RELATION | Tests for the existence of a thesaurus relation. |
NT | Returns all narrower terms of a phrase. |
NTG | Returns all narrower terms generic of a phrase. |
NTI | Returns all narrower terms instance of a phrase. |
NTP | Returns all narrower terms partitive of a phrase. |
OUTPUT_STYLE | Sets the output style for the expansion functions. |
PT | Returns the preferred term of a phrase. |
RT | Returns the related terms of a phrase |
SN | Returns scope note for phrase. |
SYN | Returns the synonym terms of a phrase |
THES_TT | Returns all top terms for phrase. |
TR | Returns the foreign equivalent of a phrase. |
TRSYN | Returns the foreign equivalent of a phrase, synonyms of the phrase, and foreign equivalent of the synonyms. |
TT | Returns the top term of a phrase. |
UPDATE_TRANSLATION | Updates an existing translation. |
See Also: Chapter 3, "Oracle Text CONTAINS Query Operators" for more information about the thesaurus operators. |
Alters an existing phrase in the thesaurus. Only CTXSYS
or thesaurus owner can alter a phrase.
Syntax
Specify thesaurus name.
Specify phrase to alter.
Specify the alter operation as a string or symbol. You can specify one of the following operations with the op and operand pair:'
op | meaning | operand |
---|---|---|
RENAME or
| Rename phrase. If the new phrase already exists in the thesaurus, this procedure raises an exception. | Specify new phrase. You can include qualifiers to change, add, or remove qualifiers from phrases. |
PT or
| Make phrase the preferred term. Existing preferred terms in the synonym ring becomes non-preferred synonym. | (none) |
SN or
| Change the scope note on the phrase. | Specify new scope note. |
Specify argument to the alter operation. See table for op.
Examples
Correct misspelled word in thesaurus:
Remove qualifier from mercury (metal):
Add qualifier to mercury:
Make Kowalski the preferred term in its synonym ring:
Change scope note for view cameras:
Use this procedure to rename or truncate an existing thesaurus. Only the thesaurus owner or CTXSYS
can invoke this function on a given thesaurus.
Syntax
Specify the thesaurus name.
Specify the alter operation as a string or symbol. You can specify one of two operations:
op | Meaning | operand |
---|---|---|
RENAME or
| Rename thesaurus. Returns an error if the new name already exists. | Specify new thesaurus name. |
TRUNCATE or
| Truncate thesaurus. | None. |
Specify the argument to the alter operation. See table for op.
Examples
Rename thesaurus THES1
to MEDICAL
:
or
You can use symbols for any op argument, but all further examples will use strings.
Remove all phrases and relations from thesaurus THES1
:
This function returns all broader terms of a phrase as recorded in the specified thesaurus.
Syntax 1: Table Result
Syntax 2: String Result
Optionally, specify the name of the expansion table to store the results. This table must be of type EXP_TAB
which the system defines as follows:
See Also: "CTX_THES Result Tables and Data Types" in Appendix A, "Oracle Text Result Tables" for more information aboutEXP_TAB . |
Specify phrase to lookup in thesaurus.
Specify how many levels of broader terms to return. For example 2 means get the broader terms of the broader terms of the phrase.
Specify thesaurus name. If not specified, system default thesaurus is used.
Returns
This function returns a string of broader terms in the form:
Example
String Result
Consider a thesaurus named MY_THES
that has an entry for cat as follows:
To look up the broader terms for cat up to two levels, issue the following statements:
This code produces the following output:
Table Result
The following code does an broader term lookup for white wolf using the table result:
This code produces the following output:
Related Topics
Broader Term (BT, BTG, BTP, BTI) Operators in Chapter 3, "Oracle Text CONTAINS Query Operators"
This function returns all broader terms generic of a phrase as recorded in the specified thesaurus.
Syntax 1: Table Result
Syntax 2: String Result
Optionally, specify the name of the expansion table to store the results. This table must be of type EXP_TAB
which the system defines as follows:
See Also: "CTX_THES Result Tables and Data Types" in Appendix A, "Oracle Text Result Tables" for more information aboutEXP_TAB . |
Specify phrase to lookup in thesaurus.
Specify how many levels of broader terms to return. For example 2 means get the broader terms of the broader terms of the phrase.
Specify thesaurus name. If not specified, system default thesaurus is used.
Returns
This function returns a string of broader terms generic in the form:
Example
To look up the broader terms generic for cat up to two levels, issue the following statements:
Related Topics
Broader Term (BT, BTG, BTP, BTI) Operators in Chapter 3, "Oracle Text CONTAINS Query Operators"
This function returns all broader terms instance of a phrase as recorded in the specified thesaurus.
Syntax 1: Table Result
Syntax 2: String Result
Optionally, specify the name of the expansion table to store the results. This table must be of type EXP_TAB
which the system defines as follows:
See Also: "CTX_THES Result Tables and Data Types" in Appendix A, "Oracle Text Result Tables" for more information aboutEXP_TAB . |
Specify phrase to lookup in thesaurus.
Specify how many levels of broader terms to return. For example 2 means get the broader terms of the broader terms of the phrase.
Specify thesaurus name. If not specified, system default thesaurus is used.
Returns
This function returns a string of broader terms instance in the form:
Example
To look up the broader terms instance for cat up to two levels, issue the following statements:
Related Topics
Broader Term (BT, BTG, BTP, BTI) Operators in Chapter 3, "Oracle Text CONTAINS Query Operators"
This function returns all broader terms partitive of a phrase as recorded in the specified thesaurus.
Syntax 1: Table Result
Syntax 2: String Result
Optionally, specify the name of the expansion table to store the results. This table must be of type EXP_TAB
which the system defines as follows:
See Also: "CTX_THES Result Tables and Data Types" in Appendix A, "Oracle Text Result Tables" for more information aboutEXP_TAB . |
Specify phrase to lookup in thesaurus.
Specify how many levels of broader terms to return. For example 2 means get the broader terms of the broader terms of the phrase.
Specify thesaurus name. If not specified, the system default thesaurus is used.
Returns
This function returns a string of broader terms in the form:
Example
To look up the 2 broader terms partitive for cat, issue the following statements:
Related Topics
Broader Term (BT, BTG, BTP, BTI) Operators in Chapter 3, "Oracle Text CONTAINS Query Operators"
The CREATE_PHRASE
procedure adds a new phrase to the specified thesaurus.
Note: Even though you can create thesaurus relations with this procedure, Oracle recommends that you useCTX_THES.CREATE_RELATION rather than CTX_THES.CREATE_PHRASE to create relations in a thesaurus. |
Syntax
Specify the name of the thesaurus in which the new phrase is added or the existing phrase is located.
Specify the phrase to be added to a thesaurus or the phrase for which a new relationship is created.
Specify the new relationship between phrase and relname. This parameter is supported only for backward compatibility. Use CTX_THES.CREATE_RELATION to create new relations in a thesaurus.
Specify the existing phrase that is related to phrase. This parameter is supported only for backward compatibility. Use CTX_THES.CREATE_RELATION to create new relations in a thesaurus.
Returns
The ID for the entry.
Examples
Creating Entries for Phrases
In this example, two new phrases (os and operating system) are created in a thesaurus named tech_thes
.
Creates a relation between two phrases in the thesaurus.
Note: Oracle recommends that you useCTX_THES.CREATE_RELATION rather than CTX_THES.CREATE_PHRASE to create relations in a thesaurus. |
Only thesaurus owner and CTXSYS
can invoke this procedure on a given thesaurus.
Syntax
Specify the thesaurus name
Specify the phrase to alter or create. If phrase
is a disambiguated homograph, you must specify the qualifier. If phrase
does not exist in the thesaurus, it is created.
Specify the relation to create.The relation is from phrase
to relphrase
. You can specify one of the following relations:
relation | meaning | relphrase |
---|---|---|
BT*/NT* | Add hierarchical relation. | Specify related phrase. The relationship is interpreted from phrase to relphrase. |
RT | Add associative relation. | Specify phrase to associate. |
SYN | Add phrase to a synonym ring. | Specify an existing phrase in the synonym ring. |
Specify language | Add translation for a phrase. | Specify new translation phrase. |
Specify the related phrase. If relphrase does not exist in tname, relphrase is created. See table for rel.
Notes
The relation you specify for rel is interpreted as from phrase to relphrase. For example, consider dog with broader term animal:
To add this relation, specify the arguments as follows:
Note: The order in which you specify arguments forCTX_THES.CREATE_RELATION is different from the order you specify them with CTX_THES.CREATE_PHRASE . |
Examples
Create relation VEHICLE NT CAR:
Create Japanese translation for you:
The CREATE_THESAURUS
procedure creates an empty thesaurus with the specified name in the thesaurus tables.
Syntax
Specify the name of the thesaurus to be created. The name of the thesaurus must be unique. If a thesaurus with the specified name already exists, CREATE_THESAURUS
returns an error and does not create the thesaurus.
Specify whether the thesaurus to be created is case-sensitive. If casesens is true, Oracle Text retains the cases of all terms entered in the specified thesaurus. As a result, queries that use the thesaurus are case-sensitive.
Example
Use this procedure to create a new translation for a phrase in a specified language.
Syntax
Specify the name of the thesaurus, using no more than 30 characters.
Specify the phrase in the thesaurus to which to add a translation. Phrase must already exist in the thesaurus, or an error is raised.
Specify the language of the translation, using no more than 10 characters.
Specify the translated term, using no more than 256 characters.
If a translation for this phrase already exists, this new translation is added without removing that original translation, so long as that original translation is not the same. Adding the same translation twice results in an error.
Example
The following code adds the Spanish translation for dog to my_thes:
Removes a phrase from the thesaurus. Only thesaurus owner and CTXSYS
can invoke this procedure on a given thesaurus.
Syntax
Specify thesaurus name.
Specify phrase to drop. If phrase is a disambiguated homograph, you must include the qualifier. When phrase does not exist in tname, this procedure raises and exception.
BT* / NT* relations are patched around the dropped phrase. For example, if A has a BT B, and B has BT C, after B is dropped, A has BT C.
When a word has multiple broader terms, then a relationship is established for each narrower term to each broader term.
Note that BT, BTG, BTP, and BTI are separate hierarchies, so if A has BTG B, and B has BTI C, when B is dropped, there is no relation implicitly created between A and C.
RT relations are not patched. For example, if A has RT B, and B has RT C, then if B is dropped, there is no associative relation created between A and C.
Example
Assume you have the following relations defined in mythes:
You drop phrase canine:
The resulting thesaurus is patched and looks like:
Removes a relation between two phrases from the thesaurus.
Note: CTX_THES.DROP_RELATION removes only the relation between two phrases. Phrases are never removed by this call. |
Only thesaurus owner and CTXSYS can invoke this procedure on a given thesaurus.
Syntax
Specify thesaurus name.
Specify the filing phrase.
Specify relation to drop. The relation is from phrase to relphrase. You can specify one of the following relations:
relation | meaning | relphrase |
---|---|---|
BT*/NT* | Remove hierarchical relation. | Optional specify relphrase. If not provided, all relations of that type for the phrase are removed. |
RT | Remove associative relation. | Optionally specify relphrase. If not provided, all RT relations for the phrase are removed. |
SYN | Remove phrase from its synonym ring. | (none) |
PT | Remove preferred term designation from the phrase. The phrase remains in the synonym ring. | (none) |
language | Remove a translation from a phrase. | Optionally specify relphrase. You can specify relphrase when there are multiple translations for a phrase for the language, and you want to remove just one translation. If relphrase is NULL, all translations for the phrase for the language are removed. |
Specify the related phrase.
Notes
The relation you specify for rel is interpreted as from phrase to relphrase. For example, consider dog with broader term animal:
To remove this relation, specify the arguments as follows:
You can also remove this relation using NT as follows:
Example
Remove relation VEHICLE NT CAR:
Remove all narrower term relations for vehicle:
Remove Japanese translations for me:
Remove a specific Japanese translation for me:
The DROP_THESAURUS
procedure deletes the specified thesaurus and all of its entries from the thesaurus tables.
Syntax
Specify the name of the thesaurus to be dropped.
Examples
Use this procedure to remove one or more translations for a phrase.
Syntax
Specify the name of the thesaurus, using no more than 30 characters.
Specify the phrase in the thesaurus to which to remove a translation. The phrase must already exist in the thesaurus or an error is raised.
Optionally, specify the language of the translation, using no more than 10 characters. If not specified, the translation must also not be specified and all translations in all languages for the phrase are removed. An error is raised if the phrase has no translations.
Optionally, specify the translated term to remove, using no more than 256 characters. If no such translation exists, an error is raised.
Example
The following code removes the Spanish translation for dog:
To remove all translations for dog in all languages:
Use this procedure to test that a thesaurus relation exists without actually doing the expansion. The function returns TRUE
if the phrase has any of the relations in the specified list.
Syntax
Specify the phrase.
Specify a single thesaural relation or a comma-delimited list of relations, except PT
. Specify 'ANY'
for any relation.
Specify the thesaurus name.
Example
The following example returns TRUE
if the phrase cat in the DEFAULT
thesaurus has any broader terms or broader generic terms:
This function returns all narrower terms of a phrase as recorded in the specified thesaurus.
Syntax 1: Table Result
Syntax 2: String Result
Optionally, specify the name of the expansion table to store the results. This table must be of type EXP_TAB
which the system defines as follows:
See Also: "CTX_THES Result Tables and Data Types" in Appendix A, "Oracle Text Result Tables" for more information aboutEXP_TAB . |
Specify phrase to lookup in thesaurus.
Specify how many levels of narrower terms to return. For example 2 means get the narrower terms of the narrower terms of the phrase.
Specify thesaurus name. If not specified, system default thesaurus is used.
Returns
This function returns a string of narrower terms in the form:
Example
String Result
Consider a thesaurus named MY_THES
that has an entry for cat as follows:
To look up the narrower terms for cat down to two levels, issue the following statements:
This code produces the following output:
Table Result
The following code does an narrower term lookup for canine using the table result:
This code produces the following output:
Related Topics
Narrower Term (NT, NTG, NTP, NTI) Operators in Chapter 3, "Oracle Text CONTAINS Query Operators"
This function returns all narrower terms generic of a phrase as recorded in the specified thesaurus.
Syntax 1: Table Result
Syntax 2: String Result
Optionally, specify the name of the expansion table to store the results. This table must be of type EXP_TAB
which the system defines as follows:
See Also: "CTX_THES Result Tables and Data Types" in Appendix A, "Oracle Text Result Tables" for more information aboutEXP_TAB . |
Specify phrase to lookup in thesaurus.
Specify how many levels of narrower terms to return. For example 2 means get the narrower terms of the narrower terms of the phrase.
Specify thesaurus name. If not specified, system default thesaurus is used.
Returns
This function returns a string of narrower terms generic in the form:
Example
To look up the narrower terms generic for cat down to two levels, issue the following statements:
Related Topics
Narrower Term (NT, NTG, NTP, NTI) Operators in Chapter 3, "Oracle Text CONTAINS Query Operators"
This function returns all narrower terms instance of a phrase as recorded in the specified thesaurus.
Syntax 1: Table Result
Syntax 2: String Result
Optionally, specify the name of the expansion table to store the results. This table must be of type EXP_TAB
which the system defines as follows:
See Also: "CTX_THES Result Tables and Data Types" in Appendix A, "Oracle Text Result Tables" for more information aboutEXP_TAB . |
Specify phrase to lookup in thesaurus.
Specify how many levels of narrower terms to return. For example 2 means get the narrower terms of the narrower terms of the phrase.
Specify thesaurus name. If not specified, system default thesaurus is used.
Returns
This function returns a string of narrower terms instance in the form:
Example
To look up the narrower terms instance for cat down to two levels, issue the following statements:
Related Topics
Narrower Term (NT, NTG, NTP, NTI) Operators in Chapter 3, "Oracle Text CONTAINS Query Operators"
This function returns all narrower terms partitive of a phrase as recorded in the specified thesaurus.
Syntax 1: Table Result
Syntax 2: String Result
Optionally, specify the name of the expansion table to store the results. This table must be of type EXP_TAB
which the system defines as follows:
See Also: "CTX_THES Result Tables and Data Types" in Appendix A, "Oracle Text Result Tables" for more information about EXP_TAB. |
Specify phrase to lookup in thesaurus.
Specify how many levels of narrower terms to return. For example 2 means get the narrower terms of the narrower terms of the phrase.
Specify thesaurus name. If not specified, system default thesaurus is used.
Returns
This function returns a string of narrower terms partitive in the form:
Example
To look up the narrower terms partitive for cat down to two levels, issue the following statements:
Related Topics
Narrower Term (NT, NTG, NTP, NTI) Operators in Chapter 3, "Oracle Text CONTAINS Query Operators"
Sets the output style for the return string of the CTX_THES
expansion functions. This procedure has no effect on the table results to the CTX_THES
expansion functions.
Syntax
Specify TRUE
to show level in BT/NT
expansions.
Specify TRUE
to show phrase qualifiers.
Specify TRUE
to show preferred terms with an asterisk *.
Specify TRUE
to show phrase ids.
Notes
The general syntax of the return string for CTX_THES
expansion functions is:
Preferred term indicator is an asterisk then a colon at the start of the phrase. The qualifier is in parentheses after a space at the end of the phrase. Level is a number.
The following is an example return string for turkey the bird:
This function returns the preferred term of a phrase as recorded in the specified thesaurus.
Syntax 1: Table Result
Syntax 2: String Result
Optionally, specify the name of the expansion table to store the results. This table must be of type EXP_TAB
which the system defines as follows:
See Also: "CTX_THES Result Tables and Data Types" in Appendix A, "Oracle Text Result Tables" for more information about EXP_TAB. |
Specify phrase to lookup in thesaurus.
Specify thesaurus name. If not specified, system default thesaurus is used.
Returns
This function returns the preferred term as a string in the form:
Example
Consider a thesaurus MY_THES
with the following preferred term definition for automobile:
To look up the preferred term for automobile, execute the following code:
Related Topics
Preferred Term (PT) Operator in Chapter 3, "Oracle Text CONTAINS Query Operators"
This function returns the related terms of a term in the specified thesaurus.
Syntax 1: Table Result
Syntax 2: String Result
Optionally, specify the name of the expansion table to store the results. This table must be of type EXP_TAB
which the system defines as follows:
See Also: "CTX_THES Result Tables and Data Types" in Appendix A, "Oracle Text Result Tables" for more information about EXP_TAB. |
Specify phrase to lookup in thesaurus.
Specify thesaurus name. If not specified, system default thesaurus is used.
Returns
This function returns a string of related terms in the form:
Example
Consider a thesaurus MY_THES
with the following related term definition for dog:
To look up the related terms for dog, execute the following code:
This codes produces the following output:
Related Topics
Related Term (RT) Operator in Chapter 3, "Oracle Text CONTAINS Query Operators"
This function returns the scope note of the given phrase.
Syntax
Specify phrase to lookup in thesaurus.
Specify thesaurus name. If not specified, system default thesaurus is used.
Returns
This function returns the scope note as a string.
Example
This function returns all synonyms of a phrase as recorded in the specified thesaurus.
Syntax 1: Table Result
Syntax 2: String Result
Optionally, specify the name of the expansion table to store the results. This table must be of type EXP_TAB which the system defines as follows:
See Also: "CTX_THES Result Tables and Data Types" in Appendix A, "Oracle Text Result Tables" for more information aboutEXP_TAB . |
Specify phrase to lookup in thesaurus.
Specify thesaurus name. If not specified, system default thesaurus is used.
Returns
This function returns a string of the form:
Example
String Result
Consider a thesaurus named ANIMALS
that has an entry for cat as follows:
To look-up the synonym for cat and obtain the result as a string, issue the following statements:
This code produces the following output:
Table Result
The following code looks up the synonyms for canine and obtains the results in a table. The contents of the table are printed to the standard output.
This code produces the following output:
Related Topics
SYNonym (SYN) Operator in Chapter 3, "Oracle Text CONTAINS Query Operators"
This procedure finds and returns all top terms of a thesaurus. A top term is defined as any term which has a narrower term but has no broader terms.
This procedure differs from TT
in that TT
takes in a phrase and finds the top term for that phrase, but THES_TT
searches the whole thesaurus and finds all top terms.
Large Thesauri
Since this procedure searches the whole thesaurus, it can take some time on large thesauri. Oracle recommends that you not call this often for such thesauri. Instead, your application should call this once, store the results in a separate table, and use those stored results.
Syntax
Specify the name of the expansion table to store the results. This table must be of type EXP_TAB
which the system defines as follows:
See Also: "CTX_THES Result Tables and Data Types" in Appendix A, "Oracle Text Result Tables" for more information aboutEXP_TAB . |
Specify thesaurus name. If not specified, system default thesaurus is used.
Returns
This procedure returns all top terms and stores them in restab.
For a given mono-lingual thesaurus, this function returns the foreign language equivalent of a phrase as recorded in the thesaurus.
Note: Foreign language translation is not part of the ISO-2788 or ANSI Z39.19 thesaural standards. The behavior of TR is specific to Oracle Text. |
Syntax 1: Table Result
Syntax 2: String Result
Optionally, specify the name of the expansion table to store the results. This table must be of type EXP_TAB
which the system defines as follows:
See Also: "CTX_THES Result Tables and Data Types" in Appendix A, "Oracle Text Result Tables" for more information aboutEXP_TAB . |
Specify phrase to lookup in thesaurus.
Specify the foreign language. Specify 'ALL'
for all translations of phrase
.
Specify thesaurus name. If not specified, system default thesaurus is used.
Returns
This function returns a string of foreign terms in the form:
Example
Consider a thesaurus MY_THES
with the following entries for cat:
To look up the translation for cat, you can issue the following statements:
This codes produces the following output:
Related Topics
Translation Term (TR) Operator in Chapter 3, "Oracle Text CONTAINS Query Operators"
For a given mono-lingual thesaurus, this function returns the foreign equivalent of a phrase, synonyms of the phrase, and foreign equivalent of the synonyms as recorded in the specified thesaurus.
Note: Foreign language translation is not part of the ISO-2788 or ANSI Z39.19 thesaural standards. The behavior ofTRSYN is specific to Oracle Text. |
Syntax 1: Table Result
Syntax 2: String Result
Optionally, specify the name of the expansion table to store the results. This table must be of type EXP_TAB
which the system defines as follows:
See Also: "CTX_THES Result Tables and Data Types" in Appendix A, "Oracle Text Result Tables" for more information aboutEXP_TAB . |
Specify phrase to lookup in thesaurus.
Specify the foreign language. Specify 'ALL'
for all translations of phrase.
Specify thesaurus name. If not specified, system default thesaurus is used.
Returns
This function returns a string of foreign terms in the form:
Example
Consider a thesaurus MY_THES
with the following entries for cat:
To look up the translation and synonyms for cat, you can issue the following statements:
This codes produces the following output:
Related Topics
Translation Term Synonym (TRSYN) Operator in Chapter 3, "Oracle Text CONTAINS Query Operators"
This function returns the top term of a phrase as recorded in the specified thesaurus.
Syntax 1: Table Result
Syntax 2: String Result
Optionally, specify the name of the expansion table to store the results. This table must be of type EXP_TAB
which the system defines as follows:
See Also: "CTX_THES Result Tables and Data Types" in Appendix A, "Oracle Text Result Tables" for more information aboutEXP_TAB . |
Specify phrase to lookup in thesaurus.
Specify thesaurus name. If not specified, system default thesaurus is used.
Returns
This function returns the top term string in the form:
Example
Consider a thesaurus MY_THES
with the following broader term entries for dog:
To look up the top term for DOG, execute the following code:
This code produces the following output:
Related Topics
Top Term (TT) Operator in Chapter 3, "Oracle Text CONTAINS Query Operators"
Use this procedure to update an existing translation.
Syntax
Specify the name of the thesaurus, using no more than 30 characters.
Specify the phrase in the thesaurus to which to update a translation. The phrase must already exist in the thesaurus or an error is raised.
Specify the language of the translation, using no more than 10 characters.
Specify the translated term to update. If no such translation exists, an error is raised.
You can specify NULL
if there is only one translation for the phrase. An error is raised if there is more than one translation for the term in the specified language.
Optionally, specify the new form of the translated term.
Example
The following code updates the Spanish translation for dog:
This chapter provides reference information for using the CTX_ULEXER PL/SQL package to use with the user-lexer.
CTX_ULEXER declares the following type:
Name | Description |
---|---|
WILDCARD_TAB | Index-by table type you use to specify the offset of characters to be treated as wildcard characters by the user-defined lexer query procedure. |
Use this index-by table type to specify the offset of those characters in the query word to be treated as wildcard characters by the user-defined lexer query procedure.
Character offset information follows USC-2 codepoint semantics.
This chapter discusses the executables shipped with Oracle Text. The following topics are discussed:
Use ctxload
to do the following with a thesaurus:
import a thesaurus file into the Oracle Text thesaurus tables.
export a loaded thesaurus to a user-specified operating-system file.
An import file is an ASCII flat file that contains entries for synonyms, broader terms, narrower terms, or related terms which can be used to expand queries.
See Also: For examples of import files for thesaurus importing, see "Structure of ctxload Thesaurus Import File" in Appendix C, "Text Loading Examples for Oracle Text". |
The ctxload
program no longer supports the loading of text columns. To load files to a text column in batch, Oracle recommends that you use SQL*Loader.
Specify the user name and password of the user running ctxload.
The user name and password can be followed immediately by @sqlnet_address to permit logon to remote databases. The value for sqlnet_address is a database connect string. If the TWO_TASK
environment variable is set to a remote database, you do not have to specify a value for sqlnet_address to connect to the database.
When you use ctxload
to export/import a thesaurus, use object_name to specify the name of the thesaurus to be exported/imported.
You use object_name
to identify the thesaurus in queries that use thesaurus operators.
Note: Thesaurus name must be unique. If the name specified for the thesaurus is identical to an existing thesaurus,ctxload returns an error and does not overwrite the existing thesaurus. |
When you use ctxload
to update/export a text field, use object_name to specify the index associated with the text column.
When ctxload
is used to import a thesaurus, use file_name to specify the name of the import file which contains the thesaurus entries.
When ctxload
is used to export a thesaurus, use file_name to specify the name of the export file created by ctxload
.
Note: If the name specified for the thesaurus dump file is identical to an existing file,ctxload overwrites the existing file. |
Import a thesaurus. Specify the source file with the -file argument. You specify the name of the thesaurus to be imported with -name.
Specify y to create a case-sensitive thesaurus with the name specified by -name and populate the thesaurus with entries from the thesaurus import file specified by -file. If -thescase is y (the thesaurus is case-sensitive), ctxload
enters the terms in the thesaurus exactly as they appear in the import file.
The default for -thescase is n (case-insensitive thesaurus)
Note: -thescase is valid for use with only the -thes argument. |
Export a thesaurus. Specify the name of the thesaurus to be exported with the -name argument. Specify the destination file with the -file argument.
Specify the name of the log file to which ctxload
writes any national-language supported (Globalization Support) messages generated during processing. If you do not specify a log file name, the messages appear on the standard output.
Enables SQL statement tracing using ALTER
SESSION
SET
SQL_TRACE
TRUE
. This command captures all processed SQL statements in a trace file, which can be used for debugging. The location of the trace file is operating-system dependent and can be modified using the USER_DUMP_DEST
initialization parameter.
See Also: For more information about SQL trace and theUSER_DUMP_DEST initialization parameter, see Oracle Database Administrator's Guide |
Specify the primary key value of the row to be updated or exported.
When the primary key is compound, you must enclose the values within double quotes and separate the keys with a comma.
Exports the contents of a CLOB
or BLOB
column in a database table into the operating system file specified by -file. ctxload
exports the CLOB
or BLOB
column in the row specified by -pk.
When you use the -export, you must specify a primary key with -pk.
Updates the contents of a CLOB
or BLOB
column in a database table with the contents of the operating system file specified by -file. ctxload updates the CLOB
or BLOB column in for the row specified by -pk.
When you use -update, you must specify a primary key with -pk.
This section provides examples for some of the operations that ctxload
can perform.
See Also: For more document loading examples, see Appendix C, "Text Loading Examples for Oracle Text". |
The knowledge base is the information source Oracle Text uses to perform theme analysis, such as theme indexing, processing ABOUT
queries, and document theme extraction with the CTX_DOC
package. A knowledge base is supplied for English and French.
With the ctxkbtc
compiler, you can do the following:
Extend your knowledge base by compiling one or more thesauri with the Oracle Text knowledge base. The extended information can be application-specific terms and relationships. During theme analysis, the extended portion of the knowledge base overrides any terms and relationships in the knowledge base where there is overlap.
Create a new user-defined knowledge base by compiling one or more thesauri. In languages other than English and French, this feature can be used to create a language-specific knowledge base.
Note: OnlyCTXSYS can extend the knowledge base. |
See Also: For more information about the knowledge base packaged with Oracle Text, seehttp://www.oracle.com/technology/products/text/ For more information about the For more information about document services, see Chapter 8, " CTX_DOC Package". |
Knowledge bases can be in any single-byte character set. Supplied knowledge bases are in WE8ISO8859P1. You can store an extended knowledge base in another character set such as US7ASCII.
Specify the user name and password for the administrator creating an extended knowledge base. This user must have write permission to the ORACLE_HOME
directory.
Specify the name(s) of the thesauri (up to 16) to be compiled with the knowledge base to create the extended knowledge base. The thesauri you specify must already be loaded with ctxload
with the "-thescase Y
" option
Reverts the extended knowledge base to the default knowledge base provided by Oracle Text.
Specify the name of the stoplist. Stopwords in the stoplist are added to the knowledge base as useless words that are prevented from becoming themes or contributing to themes. You can still add stopthemes after running this command using CTX_DLL.ADD_STOPTHEME
.
Displays all warnings and messages, including non-Globalization Support messages, to the standard output.
Specify the log file for storing all messages. When you specify a log file, no messages are reported to standard out.
Before running ctxkbtc
, you must set the NLS_LANG
environment variable to match the database character set.
The user issuing ctxkbtc
must have write permission to the ORACLE_HOME
, since the program writes files to this directory.
Before being compiled, each thesaurus must be loaded into Oracle Text case sensitive with the "-thescase Y
" option in ctxload
.
Running ctxkbtc
twice removes the previous extension.
The ctxkbtc
program has the following limitations:
When upgrading or downgrading your database to a different release, Oracle recommends that you recompile your extended knowledge base in the new environment for theme indexing and related features to work correctly.
Before extending the knowledge base, you must terminate all server processes which invoked any knowledge base related Text functions during their lifetime.
There can be only one user extension for each language for each installation. Since a user extension affects all users at the installation, only the CTXSYS
user can extend the knowledge base.
Terms are case sensitive. If a thesaurus has a term in uppercase, for example, the same term present in lowercase form in a document will not be recognized.
The maximum length of a term is 80 characters.
Disambiguated homographs are not supported.
The following constraints apply to thesaurus relations:
BTG and BTP are the same as BT. NTG and NTP are the same as NT.
Only preferred terms can have a BT, NTs or RTs.
If a term has no USE relation, it will be treated as its own preferred term.
If a set of terms are related by SYN relations, only one of them may be a preferred term.
An existing category cannot be made a top term.
There can be no cycles in BT and NT relations.
A term can have at most one preferred term and at most one BT. A term may have any number of NTs.
An RT of a term cannot be an ancestor or descendent of the term. A preferred term may have any number of RTs up to a maximum of 32.
The maximum height of a tree is 16 including the top term level.
When multiple thesauri are being compiled, a top term in one thesaurus should not have a broader term in another thesaurus.
Note: The thesaurus compiler will tolerate certain violations of the preceding rules. For example, if a term has multiple BTs, it ignores all but the last one it encounters.Similarly, BTs between existing knowledge base categories will only result in a warning message. Such violations are not recommended since they might produce undesired results. |
You can extend the supplied knowledge base by compiling one or more thesauri with the Oracle Text knowledge base. The extended information can be application-specific terms and relationships. During theme analysis, the extended portion of the knowledge base overrides any terms and relationships in the knowledge base where there is overlap.
When extending the knowledge base, Oracle recommends that new terms be linked to one of the categories in the knowledge base for best results in theme proving when appropriate.
See Also: For complete description of the supplied knowledge base, seehttp://www.oracle.com/technology/products/text/ |
If new terms are kept completely disjoint from existing categories, fewer themes from new terms will be proven. The result of this is poorer precision and recall with ABOUT
queries as well poor quality of gists and theme highlighting.
You link new terms to existing terms by making an existing term the broader term for the new terms.
You purchase a medical thesaurus medthes
containing a hierarchy of medical terms. The four top terms in the thesaurus are the following:
Anesthesia and Analgesia
Anti-Allergic and Respiratory System Agents
Anti-Inflammatory Agents, Antirheumatic Agents, and Inflammation Mediators
Antineoplastic and Immunosuppressive Agents
To link these terms to the existing knowledge base, add the following entries to the medical thesaurus to map the new terms to the existing health and medicine branch:
Set your Globalization Support language environment variable to match the database character set. For example, if your database character set is WE8ISO8859P1 and you are using American English, set your NLS_LANG as follows:
Assuming the medical thesaurus is in a file called med.thes, you load the thesaurus as medthes
with ctxload
as follows:
To link the loaded thesaurus medthes
to the knowledge base, use ctxkbtc
as follows:
You can extend theme functionality to languages other than English or French by loading your own knowledge base for any single-byte whitespace delimited language, including Spanish.
Theme functionality includes theme indexing, ABOUT
queries, theme highlighting, and the generation of themes, gists, and theme summaries with the CTX_DOC
PL/SQL package.
You extend theme functionality by adding a user-defined knowledge base. For example, you can create a Spanish knowledge base from a Spanish thesaurus.
To load your language-specific knowledge base, follow these steps:
ctxload
. ctxkbtc
: This command compiles your language-specific knowledge base from the loaded thesaurus. To use this knowledge base for theme analysis during indexing and ABOUT
queries, specify the NLS_LANG
language as the THEME_LANGUAGE
attribute value for the BASIC_LEXER
preference.
The following limitations hold for adding knowledge bases:
Oracle Text supplies knowledge bases in English and French only. You must provide your own thesaurus for any other language.
You can only add knowledge bases for languages with single-byte character sets. You cannot create a knowledge base for languages which can be expressed only in multibyte character sets. If the database is a multibyte universal character set, such as UTF-8, the NLS_LANG parameter must still be set to a compatible single-byte character set when compiling the thesaurus.
Adding a knowledge base works best for whitespace delimited languages.
You can have at most one knowledge base for each Globalization Support language.
Obtaining hierarchical query feedback information such as broader terms, narrower terms and related terms does not work in languages other than English and French. In other languages, the knowledge bases are derived entirely from your thesauri. In such cases, Oracle recommends that you obtain hierarchical information directly from your thesauri.
When multiple thesauri are to be compiled, precedence is determined by the order in which thesauri are listed in the arguments to the compiler (most preferred first). A user thesaurus always has precedence over the built-in knowledge base.
Table 14-1 lists the size limits associated with creating and compiling an extended knowledge base:
Table 14-1 Size Limit for the Extended Knowledge Base
Description of Parameter | Limit |
---|---|
Number of RTs (from + to) for each term | 32 |
Number of terms for each single hierarchy (for example, all narrower terms for a given top term) | 64000 |
Number of new terms in an extended knowledge base | 1 million |
Number of separate thesauri that can be compiled into a user extension to the KB | 16 |
The Lexical Compiler (ctxlc
) is a command-line utility that enables you to create your own Chinese and Japanese lexicons (dictionaries). Such a lexicon may either be generated from a user-supplied word list or from the merging of a word list with the system lexicon for that language.
ctxlc
creates the new lexicon in your current directory. The new lexicon consists of three files, drold.dat
, drolk.dat
, and droli.dat
. To change your system lexicon for Japanese or Chinese, overwrite the system lexicon with these files.
The Lexical Compiler can also generate wordlists from the system lexicons for Japanese and Chinese, enabling you to see their contents. These word lists go to the standard output and thus can be redirected into a file of your choice.
After overwriting the system lexicon, you need to re-create your indexes before querying them.
ctxlc
has the following syntax:
Specify the language of the lexicon to modify or create. -ja
indicates the Japanese lexicon; -zh
indicates the Chinese lexicon.
Specify the character set of the input file denoted by -i
input_file. input_file is the list of words, one word to a line, to use in creating the new lexicon.
Specify the file containing words to use in creating a new lexicon.
Specify the character set of the text file to be output.
Specify -n
to create a new lexicon that consists only of user-supplied words taken from input_file. If -n
is not specified, then the new lexicon consists of a merge of the system lexicon with input_file. Also, when -n
is not selected, a text file called drolt.dat
, is created in the current directory to enable you to inspect the contents of the merged lexicon without having to issue another ctxlc
command.
You can add up to 1,000,000 new words to a lexicon. However, creating a very large lexicon can cause a performance hit in indexing and querying. Performance is best when the lexicon character set is UTF-8. There is no performance impact on the Chinese or Japanese V-gram lexers, as they do not use lexicons.
Oracle recommends the following practices with regard to ctxlc
:
Save your plain text dictionary file in your environment for emergency use.
When upgrading or downgrading your database to a different release, recompile your plain text dictionary file in the new environment so that the user lexicon will work correctly.
In this example, you create a new Japanese lexicon from the file jadict.txt
, a word list that uses the JA16EUC character set. Because you are not specifying -n
, the new lexicon is the result of merging jadict.txt
with the system Japanese lexicon. You then replace the existing Japanese lexicon with the new, merged one.
This creates new files in the current directory:
The system lexicon files for Japanese and Chinese are named drold
xx
.dat
drolk
xx
.dat
, and droli
xx
.dat
, where xx is either JA
(for Japanese) or ZH
(for Chinese). Rename the three new files and copy them to the directory containing the system Japanese lexicon.
This replaces the system Japanese lexicon with one that is a merge of the old system lexicon and your wordlist from jadict.txt
.
You can also use ctxlc
to get a dump of a system lexicon. This example dumps the Chinese lexicon to a file called new_chinese_dict.txt
in the current directory:
This creates a file, new_japanese.dict.txt
, using the UTF8 character set, in the current directory.
This chapter describes various ways that Oracle Text handles alternative spelling of words. It also documents the alternative spelling conventions that Oracle Text uses in the German, Danish, and Swedish languages.
The following topics are covered:
Some languages have alternative spelling forms for certain words. For example, the German word Schoen can also be spelled as Schön.
The form of a word is either original or normalized. The original form of the word is how it appears in the source document. The normalized form is how it is transformed, if it is transformed at all. Depending on the word being indexed and which system preferences are in effect (these are discussed in this chapter), the normalized form of a word may be the same as the original form. Also, the normalized form may comprise more than one spelling. For example, the normalized form of Schoen is both Schoen and Schön.
Oracle Text handles indexing of alternative word forms in the following ways:
Alternate Spelling—indexing of alternative forms is enabled
Base-Letter Conversion—accented letters are transformed into non-accented representations
New German Spelling—reformed German spelling is accepted
You enable these features by specifying the appropriate attribute to the BASIC_LEXER
. For instance, you enable Alternate Spelling by specifying either GERMAN
, DANISH
, or SWEDISH
for the ALTERNATE_SPELLING
attribute. As an example, here is how to enable Alternate Spelling in German:
To disable alternate spelling, use the CTX_DDL.UNSET_ATTRIBUTE
procedure as follows:
Oracle Text converts query terms to their normalized forms before lookup. As a result, users can query words with either spelling. If Schoen has been indexed as both Schoen and Schön, a query with Schön returns documents containing either form.
When Swedish, German, or Danish has more than one way of spelling a word, Oracle Text normally indexes the word in its original form; that is, as it appears in the source document.
When Alternate Spelling is enabled, Oracle Text indexes words in their normalized form. So, for example, Schoen is indexed both as Schoen and as Schön, and a query on Schoen will return documents containing either spelling. (The same is true of a query on Schön.)
To enable Alternate Spelling, set the BASIC_LEXER
attribute ALTERNATE_SPELLING
to GERMAN
, DANISH
, or SWEDISH
. See BASIC_LEXER for more information.
Besides alternative spelling, Oracle Text also handles base-letter conversions. With base-letter conversions enabled, letters with umlauts, acute accents, cedillas, and the like are converted to their basic forms for indexing, so fiancé is indexed both as fiancé and as fiance, and a query of fiancé returns documents containing either form.
To enable base-letter conversions, set the BASIC_LEXER
attribute BASE_LETTER
to YES
. See BASIC_LEXER for more information.
When Alternate Spelling is also enabled, Base-Letter Conversion may need to be overridden to prevent unexpected results. See Overriding Base-Letter Transformations with Alternate Spelling for more information.
The BASE_LETTER_TYPE
attribute affects the way base-letter conversions take place. It has two possible values: GENERIC
or SPECIFIC
.
The GENERIC
value is the default and specifies that base letter transformation uses one transformation table that applies to all languages.
The SPECIFIC
value means that a base-letter transformation that has been specifically defined for your language will be used. This enables you to use accent-sensitive searches for words in your own language, while ignoring accents that are from other languages.
For example, both the GENERIC
and the Spanish SPECIFIC
tables will transform é into e. However, they treat the letter ñ distinctly. The GENERIC
table treats ñ as an n with an accent (actually, a tilde), and so transforms ñ to n. The Spanish SPECIFIC
table treats ñ as a separate letter of the alphabet, and thus does not transform it.
In 1996, new spelling rules for German were approved by representatives from all German-speaking countries. For example, under the spelling reforms, Potential becomes Potenzial, Schiffahrt becomes Schifffahrt, and schneuzen becomes schnäuzen.
When the BASIC_LEXER
attribute NEW_GERMAN_SPELLING
is set to YES, then a CONTAINS
query on a German word that has both new and traditional forms will return documents matching both forms. For example, a query on Potential returns documents containing both Potential and Potenzial. The default setting is NO.
Note: Under reformed German spelling, many words traditionally spelled as one word, such as soviel, are now spelled as two (so viel). Currently, Oracle Text does not make these conversions, nor conversions from two words to one (for example, weh tun to wehtun). |
The case of the transformed word is determined from the first two characters of the word in the source document; that is, schiffahrt becomes schifffahrt, Schiffahrt becomes Schifffahrt, and SCHIFFAHRT becomes SCHIFFFAHRT.
As many new German spellings include hyphens, it is recommended that users choosing NEW_GERMAN_SPELLING
define hyphens as printjoin
s.
See BASIC_LEXER for more information on setting this attribute.
Even when alternative spelling features have been specified by lexer preference, it is possible to override them. Overriding takes the following form:
Overriding of base-letter conversion when Alternate Spelling is used, to prevent characters with alternate spelling forms, such as ü, ö, and ä, from also being transformed to the base letter forms.
Transformations caused by turning on alternate_spelling
are performed before those of base_letter
, which can sometimes cause unexpected results when both are enabled.
When Alternate Spelling is enabled, Oracle Text converts two-letter forms to single-letter forms (for example, ue to ü), so that words can be searched in both their base and alternate forms. Therefore, with Alternate Spelling enabled, a search for Schoen will return documents with both Schoen and Schön.
However, when Base-letter Transformation is also enabled, the ö in Schön is transformed into an o, producing the non-existent word (in German, anyway) Schon, and the word is indexed in all three forms.
To prevent this secondary conversion, set the OVERRIDE_BASE_LETTER
attribute to TRUE.
OVERRIDE_BASE_LETTER
only affects letters with umlauts; accented letters, for example, are still transformed into their base forms.
For more on BASE_LETTER
, see Base-Letter Conversion.
The following sections show the alternative spelling substitutions used by Oracle Text.
The German alphabet is the English alphabet plus the additional characters: ä ö ü ß. Table 15-1 lists the alternate spelling conventions Oracle Text uses for these characters.
The Danish alphabet is the Latin alphabet without the w, plus the special characters: ø æ å. Table 15-2 lists the alternate spelling conventions Oracle Text uses for these characters.
The Swedish alphabet is the English alphabet without the w, plus the additional characters: å ä ö. Table 15-3 lists the alternate spelling conventions Oracle Text uses for these characters.
This appendix describes the structure of the result tables used to store the output generated by the procedures in the CTX_QUERY
, CTX_DOC
, and CTX_THES
packages.
The following topics are discussed in this appendix:
For the CTX_QUERY
procedures that return results, tables for storing the results must be created before the procedure is called. The tables can be named anything, but must include columns with specific names and data types.
This section describes the following types of result tables, and their required columns:
Table A-1 describes the structure of the table to which CTX_QUERY.EXPLAIN writes its results.
Table A-1 EXPLAIN Result Table
Column Name | Datatype | Description |
---|---|---|
EXPLAIN_ID | VARCHAR2(30) | The value of the explain_id argument specified in the FEEDBACK call. |
ID | NUMBER | A number assigned to each node in the query execution tree. The root operation node has ID =1. The nodes are numbered in a top-down, left-first manner as they appear in the parse tree. |
PARENT_ID | NUMBER | The ID of the execution step that operates on the output of the ID step. Graphically, this is the parent node in the query execution tree. The root operation node (ID =1) has PARENT_ID = 0. |
OPERATION | VARCHAR2(30) | Name of the internal operation performed. Refer to Table A-2 for possible values. |
OPTIONS | VARCHAR2(30) | Characters that describe a variation on the operation described in the OPERATION column. When an OPERATION has more than one OPTIONS associated with it, OPTIONS values are concatenated in the order of processing. See Table A-3 for possible values. |
OBJECT_NAME | VARCHAR2(80) | Section name, wildcard term, weight, or threshold value or term to lookup in the index. |
POSITION | NUMBER | The order of processing for nodes that all have the same PARENT_ID.The positions are numbered in ascending order starting at 1. |
CARDINALITY | NUMBER | Reserved for future use. You should create this column for forward compatibility. |
Table A-2 shows the possible values for the OPERATION
column of the EXPLAIN
table.
Table A-2 EXPLAIN Table OPERATION Column
Operation Value | Query Operator | Equivalent Symbol |
---|---|---|
ABOUT | ABOUT | (none) |
ACCUMULATE | ACCUM | , |
AND | AND | & |
COMPOSITE | (none) | (none) |
EQUIVALENCE | EQUIV | = |
MINUS | MINUS | - |
NEAR | NEAR | ; |
NOT | NOT | ~ |
NO_HITS | (no hits will result from this query) | |
OR | OR | | |
PHRASE | (a phrase term) | |
SECTION | (section) | |
THRESHOLD | > | > |
WEIGHT | * | * |
WITHIN | within | (none) |
WORD | (a single term) | |
Table A-3 list the possible values for the OPTIONS
column of the EXPLAIN
table.
Table A-4 describes the table to which CTX_QUERY.HFEEDBACK writes its results.
Table A-4 HFEEDBACK Results Table
Column Name | Datatype | Description |
---|---|---|
FEEDBACK_ID | VARCHAR2(30) | The value of the feedback_id argument specified in the HFEEDBACK call. |
ID | NUMBER | A number assigned to each node in the query execution tree. The root operation node has ID =1. The nodes are numbered in a top-down, left-first manner as they appear in the parse tree. |
PARENT_ID | NUMBER | The ID of the execution step that operates on the output of the ID step. Graphically, this is the parent node in the query execution tree. The root operation node (ID =1) has PARENT_ID = 0. |
OPERATION | VARCHAR2(30) | Name of the internal operation performed. Refer to Table A-5 for possible values. |
OPTIONS | VARCHAR2(30) | Characters that describe a variation on the operation described in the OPERATION column. When an OPERATION has more than one OPTIONS associated with it, OPTIONS values are concatenated in the order of processing. See Table A-6 for possible values. |
OBJECT_NAME | VARCHAR2(80) | Section name, wildcard term, weight, threshold value or term to lookup in the index. |
POSITION | NUMBER | The order of processing for nodes that all have the same PARENT_ID.The positions are numbered in ascending order starting at 1. |
BT_FEEDBACK | CTX_FEEDBACK_TYPE | Stores broader feedback terms. See Table A-7. |
PT_FEEDBACK | CTX_FEEDBACK_TYPE | Stores related feedback terms. See Table A-7. |
NT_FEEDBACK | CTX_FEEDBACK_TYPE | Stores narrower feedback terms. See Table A-7. |
Table A-5 shows the possible values for the OPERATION
column of the HFEEDBACK
table.
Table A-5 HFEEDBACK Results Table OPERATION Column
Operation Value | Query Operator | Equivalent Symbol |
---|---|---|
ABOUT | ABOUT | (none) |
ACCUMULATE | ACCUM | , |
AND | AND | & |
EQUIVALENCE | EQUIV | = |
MINUS | MINUS | - |
NEAR | NEAR | ; |
NOT | NOT | ~ |
OR | OR | | |
SECTION | (section) | |
TEXT | word or phrase of a text query | |
THEME | word or phrase of an ABOUT query | |
THRESHOLD | > | > |
WEIGHT | * | * |
WITHIN | within | (none) |
The CTX_FEEDBACK_TYPE
is a nested table of objects. This datatype is pre-defined in the CTXSYS schema. Use this type to define the columns BT_FEEDBACK
, RT_FEEDBACK
, and NT_FEEDBACK
.
The nested table CTX_FEEDBACK_TYPE
holds objects of type CTX_FEEDBACK_ITEM_TYPE
, which is also pre-defined in the CTXSYS schema. This object is defined with three members and one method as follows:
Table A-7 CTX_FEEDBACK_ITEM_TYPE
CTX_FEEDBACK_ITEM_TYPE Members and Methods | Type | Description |
---|---|---|
text | NUMBER | Feedback term. |
cardinality | NUMBER | (reserved for future use.) |
score | NUMBER | (reserved for future use.) |
The SQL code that defines these objects is as follows:
See Also: For an example of how to select from the HFEEDBACK table and its nested tables, refer to CTX_QUERY.HFEEDBACK in Chapter 10, "CTX_QUERY Package". |
The CTX_DOC
procedures return results stored in a table. Before calling a procedure, you must create the table. The tables can be named anything, but must include columns with specific names and data types.
This section describes the following result tables and their required columns:
A filter table stores one row for each filtered document returned by CTX_DOC.FILTER. Filtered documents can be plain text or HTML.
When you call CTX_DOC.FILTER
for a document, the document is processed through the filter defined for the text column and the results are stored in the filter table you specify.
Filter tables can be named anything, but must include the following columns, with names and datatypes as specified:
Table A-8 FILTER Result Table
Column Name | Type | Description |
---|---|---|
QUERY_ID | NUMBER | The identifier for the results generated by a particular call to CTX_DOC.FILTER (only populated when table is used to store results from multiple FILTER calls) |
DOCUMENT | CLOB | Text of the document, stored in plain text or HTML. |
A Gist table stores one row for each Gist/theme summary generated by CTX_DOC.GIST
.
Gist tables can be named anything, but must include the following columns, with names and data types as specified:
Table A-9 Gist Table
Column Name | Type | Description |
---|---|---|
QUERY_ID | NUMBER | Query ID. |
POV | VARCHAR2(80) | Document theme. Case depends of how themes were used in document or represented in the knowledge base. POV has the value of GENERIC for the document GIST. |
GIST | CLOB | Text of Gist or theme summary, stored as plain text |
A highlight table stores offset and length information for highlighted terms in a document. This information is generated by CTX_DOC.HIGHLIGHT. Highlighted terms can be the words or phrases that satisfy a word or an ABOUT
query.
If a document is formatted, the text is filtered into either plain text or HTML and the offset information is generated for the filtered text. The offset information can be used to highlight query terms for the same document filtered with CTX_DOC.FILTER.
Highlight tables can be named anything, but must include the following columns, with names and datatypes as specified:
Table A-10 Highlight Table
Column Name | Type | Description |
---|---|---|
QUERY_ID | NUMBER | The identifier for the results generated by a particular call to CTX_DOC.HIGHLIGHT (only populated when table is used to store results from multiple HIGHLIGHT calls) |
OFFSET | NUMBER | The position of the highlight in the document, relative to the start of document which has a position of 1. |
LENGTH | NUMBER | The length of the highlight. |
A markup table stores documents in plain text or HTML format with the query terms in the documents highlighted by markup tags. This information is generated when you call CTX_DOC.MARKUP.
Markup tables can be named anything, but must include the following columns, with names and datatypes as specified:
Table A-11 Markup Table
Column Name | Type | Description |
---|---|---|
QUERY_ID | NUMBER | The identifier for the results generated by a particular call to CTX_DOC.MARKUP (only populated when table is used to store results from multiple MARKUP calls) |
DOCUMENT | CLOB | Marked-up text of the document, stored in plain text or HTML format |
A theme table stores one row for each theme generated by CTX_DOC.THEMES. The value stored in the THEME
column is either a single theme phrase or a string of parent themes, separated by colons.
Theme tables can be named anything, but must include the following columns, with names and data types as specified:
A token table stores the text tokens for a document as output by the CTX_DOC.TOKENS
procedure. Token tables can be named anything, but must include the following columns, with names and data types as specified.
Table A-13 Token Table
Column Name | Type | Description |
---|---|---|
QUERY_ID | NUMBER | The identifier for the results generated by a particular call to CTX_DOC.HIGHLIGHT (only populated when table is used to store results from multiple HIGHLIGHT calls) |
TOKEN | VARCHAR2(64) | The token string in the text. |
OFFSET | NUMBER | The position of the token in the document, relative to the start of document which has a position of 1. |
LENGTH | NUMBER | The character length of the token. |
The CTX_THES
expansion functions such as BT
, NT
, and SYN
can return the expansions in a table of type EXP_TAB
. You can specify the name of your table with the restab argument.
The EXP_TAB
table type is a table of rows of type EXP_REC
.
The EXP_REC
and EXP_TAB
types are defined as follows in the CTXSYS
schema:
When you call a thesaurus expansion function and specify restab, the system returns the expansion as an EXP_TAB
table. Each row in this table is of type EXP_REC
and represents a word or phrase in the expansion. Table A-14 describes the fields in EXP_REC
:
Table A-14 EXP_TAB Table Type (EXP_REC)
EXP_REC Field | Description |
---|---|
xrel | The xrel field contains the relation of the term to the input term (for example, 'SYN', 'PT', 'RT', and so on). The xrel value is PHRASE when the input term appears in the expansion. For translations, the xrel value is the language. |
xlevel | The xlevel field is the level of the relation. This is used mainly when xrel is a hierarchical relation (BT*/NT*). The The The |
xphrase | The xphrase is the related term. This includes a qualifier in parentheses, if one exists for the related term. Compound terms are not de-compounded. |
This appendix contains a list of the document formats supported by the automatic (AUTO_FILTER
) filtering technology. The following topics are covered in this appendix:
Oracle Text's automatic filtering technology, licensed from Verity, Inc., enables you to index most document formats. This technology also enables you to convert documents to HTML for document presentation with the CTX_DOC
package.
To use automatic filtering for indexing and DML processing, you must specify the AUTO_FILTER
object in your filter preference.
To use automatic filtering technology for converting documents to HTML with the CTX_DOC
package, you need not use the AUTO_FILTER
indexing preference, but you must still set up your environment to use this filtering technology, as described in this appendix.
The supported platforms and formats listed in this appendix apply for this release. These supported formats are updated for patch releases. To view the latest formats, refer to the Oracle Technology Network:
Password-protected documents and documents with password-protected content are not supported by the AUTO_FILTER
filter.
For other limitations, refer to sections in this chapter concerning specific document types.
Several platforms can take advantage of AUTO_FILTER
filter technology.
AUTO_FILTER
filter technology is supported on the following platforms:
Microsoft Windows
Server 2003 (x86 and IA-64)
XP (Service Packs 1 and 2)
2000 x86 (Service Pack 2)
NT 4.0 x86 (Intel) (Service Pack 6a)
Sun Solaris 8.0 and 9.0
HP-UX 11.0 and 11i, PA-RISC
HP-UX 11i v11.23, IA-64
IBM AIX 5.1 and 5.2L
Red Hat Linux 7.3 and 8.0
Red Hat Enterprise Linux AS 2.1 and 3.0 (x86)
Red Hat Enterprise Linux AS 3.0 (IA-64)
SuSE Linux Standard Server 8 (x86)
The tables in this section list the document formats that Oracle Text supports for filtering. Oracle Text licenses its filtering technology from Verity, Inc.
Document filtering is used for indexing, DML, and for converting documents to HTML with the CTX_DOC
package.
Note: These lists do not represent the complete list of formats that Oracle Text is able to process. The external filter framework enables Oracle Text to process any document format, provided an external filter exists that can filter to text.. |
Plain-text, HTML, XHTML, XML, and SGML formats pass through the filter without any conversion.
Format | Version | Single-byte | Asian (and Most Multi-byte) | Bi-directional? |
---|---|---|---|---|
ANSI (TXT) | all versions | Y | Y | n/a |
ASCII (TXT) | all versions | Y | Y | n/a |
HTML | 2.0, 3.2, 4.0 | Y | Y | n/a |
IBM DCA/RFT (Revisable Form Text) (DC) | SC23-0758-1 | character sets 500 and 1026 only | N | N |
Rich Text Format (RTF) | 1 through 1.7 | Y | Y | Y |
Unicode Text | 3, 4 | Y | Y | n/a |
XHTML | 1.0 | Y | Y | n/a |
Generic XML | 1.0 | Y | Y | n/a |
Format | Version | Single-byte | Asian (and Most Multi-byte) | Bi-directional? |
---|---|---|---|---|
Adobe Maker Interchange Format (MIF) | 5, 5.5, 6, 7 | character set 1252 only | N | N |
Applix Words (AW) | 3.11, 4.2, 4.3, 4.4, 4, 41, 4.2 | character set 1252 only | N | N |
DisplayWrite (IP) | 4 | character sets 500 and 1026 only | N | N |
Folio Flat File (FFF) | 3.1 | character set 1252 only | N | N |
Fujitsu Oasys (OA2) | 7 | Y | Japanese only | N |
JustSystems Ichitaro (JTD) | 8, 9, 10, 12 | Y | Japanese only | N |
Lotus AMI Pro (SAM) | 2, 3 | Y | Simplified Chinese, Traditional Chinese, Japanese, and Thai only | Y |
Lotus Word Pro (LWP) | 96, 97, Millennium Edition R9, 9.8 (supported on Windows 32-bit platform only) | Y | Y | Y |
Lotus Master (MWP) | 96, 97, Millennium Edition R9, 9.8 (supported on Windows 32-bit platform only) | Y | Y | Y |
Lotus Master (MWP) | 96, 97 (supported on Windows 32-bit platform only) | Y | Y | N |
Microsoft Word for PC (DOC) | 4, 5, 5.5, 6 | character set 1252 only | N | N |
Microsoft Word for Windows (DOC) | 1 through 2003 | Y | N: versions 1-2 Y: versions 6,7,8,95,97,2000,XP,2002,2003 | N: versions 1-2 Hebrew only: versions 6,7,8,95 Y: versions 97,2000,XP,2002,2003 |
Microsoft Word for Windows XML format | 2003 (No formatting extracted) | Y | Y | Y |
Microsoft Word for Macintosh (DOC) | 4, 5, 6, 98 | Y (version 98) | N (version 98) | Y (version 98) |
Microsoft Works (WPS) | 1 through 2000 | Y | Japanese only | N |
Microsoft Windows Write (WRI) | 1, 2, 3 | Y | Japanese only | N |
OpenOffice (SXW) | 1, 1.1 (No formatting extracted) | Y | Y | Y |
StarOffice (SXW) | 6, 7 (No formatting extracted) | Y | Y | Y |
WordPad | through 2003 | Y | Y | Y |
WordPerfect for Windows (WO) | 5, 5.1 | Y | N | Y |
WordPerfect for Windows (WPD) | 6, 7, 8, 10, 2000, 2002, 11 | Y | N | N |
WordPerfect for Macintosh | 1.02, 2, 2.1, 2.2, 3, 3.1 | Y | N | N |
WordPerfect for Linux | 6 | Y | N | N |
XyWrite (XY4) | 4.12 | character set 1252 only | N | N |
The following limitations apply to filtering of word processing documents:
Mixed-page orientation (landscape and portrait) within the same word processing document is not supported.
When text color in a Microsoft Word document is set to Automatic on a dark background, the resulting text is rendered as black. If the text color is explicitly set, the resulting text is rendered correctly in the same color as the original document.
If a graphic or table appears in a word processing text box, the filter cannot position it correctly in the HTML output.
Nested tables (a table inside another table) in word processing documents are not supported.
Comments in Microsoft Word documents are not filtered.
Format | Version | Single-byte | Asian (and Most Multi-byte) | Bi-directional? |
---|---|---|---|---|
Applix Spreadsheets (AS) | 4.2, 4.3, 4.4 | character set 1252 only | N | N |
Corel Quattro Pro (QPW, WB3) | 6, 7, 8, 10, 2000, 2002, 11 | Y | N | N |
Lotus 1-2-3 (123) | 96, 97, Millennium Edition R9, 9.8 | Y | Y | Y |
Lotus 1-2-3 (WK4) | 2, 3, 4, 5 | Y | Y | N |
Lotus 1-2-3 Charts (123) | 2, 3, 4, 5 | Y | Y | N |
Microsoft Excel for Windows (XLS) | 2.2 through 2003 | Y | Y | Y |
Microsoft Excel for Windows XML format | 2003 (No formatting extracted) | Y | Y | Y |
Microsoft Excel for Macintosh (XLS) | 98 | Y | N | N |
Microsoft Excel Charts (XLS) | 2, 3, 4, 5, 6, 7 | Y | Y | N |
Microsoft Works Spreadsheet (S30,S40) | 1, 2, 3, 4 | Y | N | N |
OpenOffice (SXC) | 1, 1.1 (No formatting extracted) | Y | Y | Y |
StarOffice (SXC) | 6, 7 (No formatting extracted) | Y | Y | Y |
The following limitations apply to the filtering of spreadsheets:
Cell outline borders in Microsoft Excel spreadsheets are not filtered.
Microsoft Excel "Donut," "Radar," "Surface," and custom charts are not supported.
Comments in Microsoft Excel spreadsheets are not filtered.
Format | Version | Single-byte | Asian (and Most Multi-byte) | Bi-directional? |
---|---|---|---|---|
Applix Presents (AG) | 4.0, 4.2, 4.3, 4.4 | character set 1252 only | N | N |
Corel Presentations (SHW) | 6, 7, 8, 10, 2000, 2002, 11 | character set 1252 only | N | N |
Lotus Freelance Graphics (PRE) | 2, 96, 97, 98, Millennium Edition R9, 9.8 | character set 850 only (V96 and higher) | N (V96 and higher) | N (V96 and higher) |
Lotus Freelance Graphics 2 (PRE) | 2 | Y | Japanese, Simplified Chinese, Traditional Chinese, and Thai only | N |
Microsoft PowerPoint for Windows (PPT) | 95 through 2003 | Y | Japanese, Simplified Chinese, Traditional Chinese, and Korean only | Hebrew only |
Microsoft PowerPoint for PC (PPT) | 4 | character set 1252 only | Traditional Chinese only | N |
Microsoft PowerPoint for Macintosh (PPT) | 98 | Y | N | Y |
Microsoft Project (MPP) | 98, 2000, 2002 (XP) | character set 1252 only | N | N |
Microsoft Visio (VSD) | 6 | Y | Y | N |
Microsoft Visio XML format | 2003 (No formatting extracted) | Y | Y | Y |
OpenOffice (SXI, SXP) | 1, 1.1 (No formatting extracted) | Y | Y | Y |
StarOffice (SXI, SXP) | 6, 7 (No formatting extracted) | Y | Y | Y |
Format | Version | Single-byte | Asian (and Most Multi-byte) | Bi-directional? |
---|---|---|---|---|
Adobe Portable Document Format (PDF) | 1.1 (Acrobat 2.0) to 1.5 (Acrobat 6.0) | Y | Japanese, Simplified and Traditional Chinese, and Korean | N |
Multi-byte PDFs are supported, provided the PDF document is created using Character ID-keyed (CID) fonts, predefined CJK CMap files, or ToUnicode font encodings, and the document does not contain embedded fonts. See the Adobe website and the Adobe Acrobat documentation for more information.
To determine the type of font encodings that are used in a PDF, open the PDF document in Adobe Acrobat, and select File->Document Info->Fonts. If the Encodings column lists Custom or Embedded encodings, then you may encounter problems filtering the PDF document.
The following limitations apply to PDF documents:
All PDF security attributes are supported except for user and master passwords.
Embedded fonts in a PDF document are not filtered correctly.
If an unsupported font is encountered during conversion of a PDF document, the default font, Times New Roman, is substituted. If the original font is wider than the substituted font, extra whitespace will appear in the output HTML.
The following color spaces are supported:
DeviceRGB
DeviceGray
DeviceCMYK
CalGray
CalRGB
Index color spaces are supported as long as they are used with a supported basic color space.
Hyperlinks in PDF documents are not supported.
All pre-defined CMaps in PDF 1.3 specification are supported. CMaps added in PDF 1.4 and PDF 1.5 specifications are not supported.
Annotations, such as notes, sound, or movie, are not supported.
The following features of PDF 1.5 for Acrobat 6.0 are not supported:
Tagged PDFs
Images compressed in JPEG2000
Crypt Filter encryption
Hidden content in a PDF document, such as, Optional Content and OCG-State Actions
Interactive forms
Embedded multimedia presentations
Digital signatures and signature fields
Interactive presentations, that is, navigation between pages and transition actions.
Vector images are not supported. Since background colors are defined in PDF as vector images, background colors are also not supported. Raster images are supported.
Table B-1 lists the graphic formats that the AUTO_FILTER
filter recognizes. This means that indexing a text column that contains any of these formats produces no error. As such, it is safe for the column to contain any of these formats.
Formats are categorized as either embedded graphics or standalone graphics. Embedded graphics are inserted or referenced within a document.
Note: This filter cannot extract textual information from graphics. |
Table B-1 Supported Graphics Formats for AUTO_FILTER Filter
Graphics Format | Version | Bidirectional? |
---|---|---|
AutoCAD Drawing format (DWG) | R13, R14, and R2000 (standalone only) | |
AutoCAD Drawing format (DXF) | R13, R14, and R2000 (standalone only) | |
Encapsulated PostScript (EPS) (raster only) | TIFF header only | |
Enhanced Metafile (EMF) | no specific version | N |
Graphics Interchange Format (GIF) | 87, 89 | |
JPEG File Interchange Format | no specific version | |
Lotus AMIDraw Graphics (SDW) | no specific version | |
Lotus Pic (PIC) | no specific version | |
Macintosh Raster (PICT/PCT) | 2 | |
MacPaint (PNTG) | no specific version | |
Microsoft Windows Bitmap (BMP) | no specific version | |
PC Paintbrush (PCX) | 3 | |
Portable Network Graphics (PNG) | no specific version | |
SGI RGB Image (RGB) | no specific version | |
Sun Raster Image (RS) | no specific version | |
Tagged Image File (TIFF) | 5 | N |
Truevision TARGA (TGA) | 2 | |
Windows Animated Cursor (ANI) | no specific version | |
Windows Metafile (WMF) | 3 | N |
WordPerfect Graphics (WPG) | 1 | N |
WordPerfect Graphics 2 (WPG) | 2, 7 | N |
This appendix provides examples of how to load text into a text column. It also describes the structure of ctxload
import files:
A simple way to populate a text table is to create a table with two columns, id
and text
, using CREATE
TABLE
and then use the INSERT
statement to load the data. This example makes the id
column the primary key, which is optional. The text
column is VARCHAR2
:
To populate the text
column, use the INSERT
statement as follows:
The following example shows how to use SQL*Loader to load mixed format documents from the operating system to a BLOB
column. The example has two steps:
create the table
issue the SQL*Loader command that reads control file and loads data into table
This example loads to a table articles_formatted
created as follows:
The article_id
column is the primary key. Documents are loaded in the text
column, which is of type BLOB
.
The following command starts the loader, which reads the control file LOADER1.DAT
:
loader1.dat
This SQL*Loader control file defines the columns to be loaded and instructs the loader to load the data line by line from loader2.dat
into the articles_formatted
table. Each line in loader2.dat
holds a comma separated list of fields to be loaded.
This control file instructs the loader to load data from loader2.dat
to the articles_formatted
table in the following way:
loader2.dat
is written to the article_id
column. author
column. format
column. SYSDATE
is written to the pub_date
column. title
column. ext_fname
temporary variable, and the actual document is loaded in the text
BLOB column: loader2.dat
This file contains the data to be loaded into each row of the table, articles_formatted
.
Each line contains a comma separated list of the fields to be loaded in articles_formatted
. The last field of every line names the file to be loaded in to the text column:
The import file must use the following format for entries in the thesaurus:
is a word or phrase that is defined as having synonyms, broader terms, narrower terms, or related terms.
In compliance with ISO-2788 standards, a TT marker can be placed before a phrase to indicate that the phrase is the top term in a hierarchy; however, the TT marker is not required. In fact, ctxload ignores TT markers during import.
A top term is identified as any phrase that does not have a broader term (BT, BTG, BTP, or BTI).
Note: The thesaurus query operators (SYN , PT , BT , BTG , BTP , BTI , NT , NTG , NTP , NTI , and RT) are reserved words and, thus, cannot be used as phrases in thesaurus entries. |
are the markers that indicate broader_termN is a broader (generic|partitive|instance) term for phrase.
broader_termN is a word or phrase that conceptually provides a more general description or category for phrase. For example, the word elephant could have a broader term of land mammal.
are the markers that indicate narrower_termN is a narrower (generic|partitive|instance) term for phrase.
If phrase does not have a broader (generic|partitive|instance) term, but has one or more narrower (generic|partitive|instance) terms, phrase is created as a top term in the respective hierarchy (in an Oracle Text thesaurus, the BT/NT, BTG/NTG, BTP/NTP, and BTI/NTI hierarchies are separate structures).
narrower_termN is a word or phrase that conceptually provides a more specific description for phrase. For example, the word elephant could have a narrower terms of indian elephant and african elephant.
is a marker that indicates phrase and synonymN are synonyms within a synonym ring.
synonymN is a word or phrase that has the same meaning for phrase. For example, the word dog could have a synonym of canine.
Note: Synonym rings are not defined explicitly in Oracle Text thesauri. They are created by the transitive nature of synonyms. |
are markers that indicate phrase and synonym1 are synonyms within a synonym ring (similar to SYN).
The markers USE, SEE or PT also indicate synonym1 is the preferred term for the synonym ring. Any of these markers can be used to define the preferred term for a synonym ring.
is the marker that indicates related_termN is a related term for phrase.
related_termN is a word or phrase that has a meaning related to, but not necessarily synonymous with phrase. For example, the word dog could have a related term of wolf.
Note: Related terms are not transitive. If a phrase has two or more related terms, the terms are related only to the parent phrase and not to each other. |
is the marker that indicates the following text is a scope note (for example, comment) for the preceding entry.
term is the translation of phrase into the language specified by language_key.
In compliance with thesauri standards, the load file supports formatting hierarchies (BT/NT, BTG/NTG, BTP, NTP, BTI/NTI) by indenting the terms under the top term and using NT (or NTG, NTP, NTI) markers that include the level for the term:
Using this method, the entire branch for a top term can be represented hierarchically in the load file.
The following conditions apply to the structure of the entries in the import file:
each entry (phrase, BT, NT, or SYN) must be on a single line followed by a newline character
entries can consist of a single word or phrases
the maximum length of an entry (phrase, BT, NT, or SYN) is 255 bytes, not including the BT, NT, and SYN markers or the newline characters
entries cannot contain parentheses or plus signs.
each line of the file that starts with a relationship (BT, NT, and so on) must begin with at least one space
a phrase can occur more than once in the file
each phrase can have one or more narrower term entries (NT, NTG, NTP), broader term entries (BT, BTG, BTP), synonym entries, and related term entries
each broader term, narrower term, synonym, and preferred term entry must start with the appropriate marker and the markers must be in capital letters
the broader terms, narrower terms, and synonyms for a phrase can be in any order
homographs must be followed by parenthetical disambiguators everywhere they are used
For example: cranes (birds), cranes (lifting equipment)
compound terms are signified by a plus sign between each factor (for example. buildings + construction)
compound terms are allowed only as synonyms or preferred terms for other terms, never as terms by themselves, or in hierarchical relations.
terms can be followed by a scope note (SN), total maximum length of 2000 bytes, on subsequent lines
multi-line scope notes are allowed, but require an SN marker on each line of the note
Example of Incorrect SN usage:
Example of Correct SN usage:
Multi-word terms cannot start with reserved words (for example, use is a reserved word, so use other door is not an allowed term; however, use is an allowed term)
The following conditions apply to the relationships defined for the entries in the import file:
related term entries must follow a phrase or another related term entry
related term entries start with one or more spaces, the RT marker, followed by white space, then the related term on the same line
multiple related terms require multiple RT markers
Example of incorrect RT usage:
Example of correct RT usage:
Terms are allowed to have multiple broader terms, narrower terms, and related terms
This section provides three examples of correctly formatted thesaurus import files.
This Appendix describes the multi-lingual features of Oracle Text. The following topics are discussed:
This appendix summarizes the main multilingual features for Oracle Text.
For a complete list of Oracle Globalization Support languages and character set support, refer to the Oracle Database Globalization Support Guide.
The following sections describe the multi-lingual indexing features.
The following sections describes the supported multilingual features for the Oracle Text index types.
The CONTEXT index type fully supports multi-lingual features including use of the language and character set columns, use of the MULTI_LEXER, and use of all Chinese, Japanese, and Korean language lexers.
Oracle Text supports the indexing of different languages by enabling you to choose a lexer in the indexing process. The lexer you employ determines the languages you can index. Table D-1 describes the supported lexers:
Table D-1 Oracle Text Lexer Types
Lexer | Supported Languages |
---|---|
BASIC_LEXER | English and most western European languages that use white space delimited words. |
MULTI_LEXER | Lexer for indexing tables containing documents of different languages such as English, German, and Japanese. |
CHINESE_VGRAM | Lexer for extracting tokens from Chinese text. |
CHINESE_LEXER | Lexer for extracting tokens from Chinese text. This lexer offers the following benefits over the CHINESE_VGRAM lexer:
|
JAPANESE_VGRAM | Lexer for extracting tokens from Japanese text. |
JAPANESE_LEXER | Lexer for extracting tokens from Japanese text. This lexer offers the following advantages over the JAPANESE_VGRAM lexer:
|
KOREAN_MORPH_LEXER | Lexer for extracting tokens from Korean text. |
USER_LEXER | Lexer you create to index a particular language. |
The following features are supported with the BASIC_LEXER preference. You enable these features with attributes of the BASIC_LEXER. Features such as alternate spelling, composite, and base letter can be enabled together for better search results.
Enables the indexing and subsequent querying of document concepts with the ABOUT operator with CONTEXT index types. These concepts are derived from the Oracle Text knowledge base. This feature is supported for English and French.
This feature is not supported with CTXCAT index types.
This feature enables you to search on alternate spellings of words. For example, with alternate spelling enabled in German, a query on gross returns documents that contain groß and gross.
This feature is supported in German, Danish, and Swedish.
Additionally, German can be indexed according to both traditional and reformed spelling conventions.
This feature enables you to query words with or without diacritical marks such as tildes, accents, and umlauts. For example, with a Spanish base-letter index, a query of energia matches documents containing both energía and energia.
This feature is supported for English and all other supported whitespace delimited languages. In English and French, you can use the basic lexer to enable theme indexing.
This feature enables you to search on words that contain the specified term as a sub-composite. You must use the stem ($) operator. This feature is supported for German and Dutch.
For example, in German, a query of $register finds documents that contain Bruttoregistertonne and Registertonne.
This feature enables you to specify a stemmer for stem indexing. Tokens are stemmed to a single base form at index time in addition to the normal forms. Indexing stems enables better query performance for stem queries, such as $computed.
This feature is supported for English, Dutch, French, German, Italian, Spanish.
The MULTI_LEXER lexer enables you to index a column that contains documents of different languages. During indexing Oracle Text examines the language column and switches in the language-specific lexer to process the document. You define the lexer preferences for each language before indexing.
The multi lexer enables you to set different preferences for languages.For example, you can have composite set to TRUE for German documents and composite set to FALSE for Dutch documents.
Like MULTI_LEXER
, the WORLD_LEXER
lexer enables you to index documents that contain different languages; however, it automatically detects the languages of a document and so does not require you to create a language column in the base table.
WORLD_LEXER
processes most languages whose characters are defined as part of Unicode 4.0. For WORLD_LEXER
to be effective, documents with multiple languages must use AL32UTF-8 or UTF8 Oracle character set encoding (including supplementary, or "surrogate-pair," characters).
Table D-2 and Table D-3 show the languages supported by WORLD_LEXER
. Note: this list may change as the Unicode standard changes, and in any case should not be considered exhaustive. (Languages are group by Unicode writing system, not by natural language groupings.)
Table D-2 Languages Supported by the World Lexer (Space-separated)
Language Group | Languages Include |
---|---|
Arabic | Arabic, Farsi, Kurdish, Pashto, Sindhi, Urdu |
Armenian | Armenian |
Bengali | Assamese, Bengali |
Bopomofo | Hakka Chinese, Minnan Chinese |
Cyrillic | Over 50 languages, including Belorussian, Bulgarian, Macedonian, Moldavian, Russian, Serbian, Serbo-Croatian, Ukrainian |
Devenagari | Bhojpuri, Bihari, Hindi, Kashmiri, Marathi, Nepali, Pali, Sanskrit |
Ethiopic | Amharic, Ge'ez, Tigrinya, Tigre |
Georgian | Georgian |
Greek | Greek |
Gujarati | Gujarati, Kacchi |
Gurmukhi | {Punjabi |
Hebrew | Hebrew, Ladino, Yiddish |
Kaganga | Redjang |
Kannada | Kanarese, Kannada |
Korean | Korean, Hanja Hangul |
Latin | Afrikaans, Albanian, Basque, Breton, Catalan, Croatian, Czech, Danish, Dutch, English, Esperanto, Estonian, Faeroese, Fijian, Finnish, Flemish, French, Frisian, German, Hawaiian, Hungarian, Icelandic, Indonesian, Irish, Italian, Lappish, Classic Latin, Latvian, Lithuanian, Malay, Maltese, Pinyin Mandarin, Maori, Norwegian, Polish, Portuguese, Provencal, Romanian, Rumanian, Samoan, Scottish Gaelic, Slovak, Slovene, Slovenian, Sorbian, Spanish, Swahili, Swedish, Tagalog, Turkish, Vietnamese, Welsh |
Malayalam | Malayalam |
Mongolian | Mongolian |
Oriya | Oriya |
Sinhalese, Sinhala | Pali, Sinhalese |
Syriac | Aramaic, Syriac |
Tamil | Tamil |
Telugu | Telugu |
Thaana | Dhiveli, Divehi, Maldivian |
Table D-3 Languages Supported by the World Lexer (Non-space-separated)
Language Group | Languages Include |
---|---|
Chinese | Cantonese, Mandarin, Pinyin phonograms |
Japanese | Japanese (Hiragana, Kanji, Katakana) |
Khmer | Cambodian, Khmer |
Lao | Lao |
Myanmar | Burmese |
Thai | Thai |
Tibetan | Dzongkha, Tibetan |
Table D-4 shows languages not supported by the World Lexer.
Table D-4 Languages Not Supported by the World Lexer
Language Group | Languages Include |
---|---|
Buhid | Buhid |
Canadian Syllabics | Blackfoot, Carrier, Cree, Dakhelh, Inuit, Inuktitut, Naskapi, Nunavik, Nunavut, Ojibwe, Sayisi, Slavey |
Cherokee | Cherokee |
Cypriot | Cypriot |
Limbu | Limbu |
Ogham | Ogham |
Runic | Runic |
Tai Le (Tai Lu, Lue, Dai Le) | Tai Le |
Ugaritic | Ugaritic |
Yi | Yi |
Yi Jang Hexagram | Yi Jang |
Oracle Text supports the use of different query operators. Some operators can be set to behave in accordance with your language. This section summarizes the multilingual query features for these operators.
Use the ABOUT operator to query on concepts. The system looks up concept information in the theme component of the index.
This feature is supported for English and French with CONTEXT indexes only.
This operator enables you to search for words that have similar spelling to specified word. Oracle Text supports fuzzy for English, German, Italian, Dutch, Spanish, Japanese, Optical Character recognition (OCR), and automatic language detection.
This operator enables you to search for words that have the same root as the specified term. For example, a stem of $sing expands into a query on the words sang, sung, sing. The Oracle Text stemmer supports the following languages: English, French, Spanish, Italian, German, Japanese and Dutch.
A stoplist is a list of words that do not get indexed. These are usually common words in a language such as this, that, and can in English.
Oracle Text provides a default stoplist for English, Chinese (traditional and simplified), Danish, Dutch, Finnish, French, German, Italian, Portuguese, Spanish, and Swedish. Appendix E, "Oracle Text Supplied Stoplists", lists the stoplists for various languges.
An Oracle Text knowledge base is a hierarchical tree of concepts used for theme indexing, ABOUT queries, and deriving themes for document services.
Oracle Text supplies knowledge bases in English and French only.
The following table summarizes the multilingual features for the supported languages.
Table D-5 Multilingual Features for Supported Languages
LANGUAGE | ALTERNATE SPELLING | FUZZY MATCHING | LANGUAGE SPECIFIC LEXER | DEFAULT STOP LIST | STEMMING |
---|---|---|---|---|---|
ENGLISH | N/A | Yes | Yes | Yes | Yes |
GERMAN | Yes | Yes | Yes | Yes | Yes |
JAPANESE | N/A | Yes | Yes | No | Yes |
FRENCH | N/A | Yes | Yes | Yes | Yes |
SPANISH | N/A | Yes | Yes | Yes | Yes |
ITALIAN | N/A | Yes | Yes | Yes | Yes |
DUTCH | N/A | Yes | Yes | Yes | Yes |
PORTUGUESE | N/A | Yes | Yes | Yes | No |
KOREAN | N/A | No | Yes | No | No |
SIMPLIFIED CHINESE | N/A | No | Yes | Yes | No |
TRADITIONAL CHINESE | N/A | No | Yes | Yes | No |
DANISH | Yes | No | Yes | No | No |
SWEDISH | Yes | No | Yes | Yes | No |
FINNISH | N/A | No | Yes | No | No |
This appendix describes the default stoplists for all the different languages supported and lists the stopwords in each. The following stoplists are described:
The following English words are defined as stop words:
Stopword | Stopword | Stopword | Stopword | Stopword | Stopword |
---|---|---|---|---|---|
a | did | in | only | then | where |
all | do | into | onto | there | whether |
almost | does | is | or | therefore | which |
also | either | it | our | these | while |
although | for | its | ours | they | who |
an | from | just | s | this | whose |
and | had | ll | shall | those | why |
any | has | me | she | though | will |
are | have | might | should | through | with |
as | having | Mr | since | thus | would |
at | he | Mrs | so | to | yet |
be | her | Ms | some | too | you |
because | here | my | still | until | your |
been | hers | no | such | ve | yours |
both | him | non | t | very | |
but | his | nor | than | was | |
by | how | not | that | we | |
can | however | of | the | were | |
could | i | on | their | what | |
d | if | one | them | when | |
The following traditional Chinese words are defined in the default stoplist for this language.
The following simplified Chinese words are defined in the default stoplist for this language.
The following Danish words are defined in the default stoplist for this language:
Stop word | Stop word | Stop word | Stop word | Stop word | Stop word | Stop word |
---|---|---|---|---|---|---|
af | en | god | hvordan | med | og | udenfor |
aldrig | et | han | I | meget | oppe | under |
alle | endnu | her | De | mellem | på | ved |
altid | få | hos | i | mere | rask | vi |
bagved | lidt | hovfor | imod | mindre | hurtig | |
de | fjernt | hun | ja | når | sammen | |
der | for | hvad | jeg | hvonår | temmelig | |
du | foran | hvem | langsom | nede | nok | |
efter | fra | hvor | mange | nej | til | |
eller | gennem | hvorhen | måske | nu | uden | |
The following Dutch words are defined in the default stoplist for this language:
Stop word | Stop word | Stop word | Stop word | Stop word | Stop word | Stop word | Stop word | Stop word |
---|---|---|---|---|---|---|---|---|
aan | betreffende | eer | had | juist | na | overeind | van | weer |
aangaande | bij | eerdat | hadden | jullie | naar | overigens | vandaan | weg |
aangezien | binnen | eerder | hare | kan | nadat | pas | vanuit | wegens |
achter | binnenin | eerlang | heb | klaar | net | precies | vanwege | wel |
achterna | boven | eerst | hebben | kon | niet | reeds | veeleer | weldra |
afgelopen | bovenal | elk | hebt | konden | noch | rond | verder | welk |
al | bovendien | elke | heeft | krachtens | nog | rondom | vervolgens | welke |
aldaar | bovengenoemd | en | hem | kunnen | nogal | sedert | vol | wie |
aldus | bovenstaand | enig | hen | kunt | nu | sinds | volgens | wiens |
alhoewel | bovenvermeld | enigszins | het | later | of | sindsdien | voor | wier |
alias | buiten | enkel | hierbeneden | liever | ofschoon | slechts | vooraf | wij |
alle | daar | er | hierboven | maar | om | sommige | vooral | wijzelf |
allebei | daarheen | erdoor | hij | mag | omdat | spoedig | vooralsnog | zal |
alleen | daarin | even | hoe | meer | omhoog | steeds | voorbij | ze |
alsnog | daarna | eveneens | hoewel | met | omlaag | tamelijk | voordat | zelfs |
altijd | daarnet | evenwel | hun | mezelf | omstreeks | tenzij | voordezen | zichzelf |
altoos | daarom | gauw | hunne | mij | omtrent | terwijl | voordien | zij |
ander | daarop | gedurende | ik | mijn | omver | thans | voorheen | zijn |
andere | daarvanlangs | geen | ikzelf | mijnent | onder | tijdens | voorop | zijne |
anders | dan | gehad | in | mijner | ondertussen | toch | vooruit | zo |
anderszins | dat | gekund | inmiddels | mijzelf | ongeveer | toen | vrij | zodra |
behalve | de | geleden | inzake | misschien | ons | toenmaals | vroeg | zonder |
behoudens | die | gelijk | is | mocht | onszelf | toenmalig | waar | zou |
beide | dikwijls | gemoeten | jezelf | mochten | onze | tot | waarom | zouden |
beiden | dit | gemogen | jij | moest | ook | totdat | wanneer | zowat |
ben | door | geweest | jijzelf | moesten | op | tussen | want | zulke |
beneden | doorgaand | gewoon | jou | moet | opnieuw | uit | waren | zullen |
bent | dus | gewoonweg | jouw | moeten | opzij | uitgezonderd | was | zult |
bepaald | echter | haar | jouwe | mogen | over | vaak | wat | |
The following Finnish words are defined in the default stoplist for this language:
Stopword | Stopword | Stopword | Stopword | Stopword |
---|---|---|---|---|
ään | jälkeen | kumpi | nopeasti | suoraan |
ah | jo | kumpikaan | nuo | ta |
ai | joka | kumpikin | nyt | tä |
aina | jokainen | kun | oi | tähden |
alla | joku | kunhan | olemme | tahi |
alle | jollei | kunnes | olen | tai |
alta | jolleivat | kuten | olet | taikka |
ansiosta | jollemme | kyllä | olette | takana |
edessä | jollen | kylliksi | oli | takia |
een | jollet | lähellä | olimme | tämä |
ehkä | jollette | läpi | olin | tarpeeksi |
ei | jos | liian | olit | tässä |
eli | joskin | lla | olitte | te |
elikkä | jotta | llä | olivat | tokko |
ellei | kaikki | lle | ollut | tta |
elleivät | kanssa | lta | on | ttä |
ellemme | kaukana | ltä | oon | tuo |
ellen | ken | luona | ovat | ulkopuolella |
ellet | keneksi | me | paitsi | useammin |
ellette | kenelle | mikä | paljon | useimmin |
enemmän | kenkään | mikään | paremmin | usein |
eniten | kenties | mikäli | parhaiten | vaan |
ennen | keskellä | mikin | pian | vähän |
eräs | kesken | miksi | se | vähemmän |
että | ketkä | milloin | seen | vähiten |
hän | kohti | milloinkaan | sekä | vaikka |
harva | koska | minä | sen | vailla |
he | koskaan | missä | siellä | varten |
hei | ksi | miten | sieltä | vastaan |
hitaasti | kuin | molemmat | siin | vielä |
hyi | kuinka | mutta | sillä | voi |
hyvin | kuka | na | sinä | ympäri |
iin | kukaan | nä | sinne | |
ilman | kukin | näin | ssa | |
itse | kumpainen | nämä | ssä | |
ja | kumpainenkaan | ne | sta | |
jahka | kumpainenkin | niin | stä | |
The following French words are defined in the default stoplist for this language:
Stop word | Stop word | Stop word | Stop word | Stop word | Stop word | Stop word | Stop word | Stop word |
---|---|---|---|---|---|---|---|---|
a | beaucoup | comment | encore | lequel | moyennant | près | ses | toujours |
afin | ça | concernant | entre | les | ne | puis | sien | tous |
ailleurs | ce | dans | et | lesquelles | ni | puisque | sienne | toute |
ainsi | ceci | de | étaient | lesquels | non | quand | siennes | toutes |
alors | cela | dedans | était | leur | nos | quant | siens | très |
après | celle | dehors | étant | leurs | notamment | que | soi | trop |
attendant | celles | déjà | etc | lors | notre | quel | soi-même | tu |
au | celui | delà | eux | lorsque | notres | quelle | soit | un |
aucun | cependant | depuis | furent | lui | nôtre | quelqu'un | sont | une |
aucune | certain | des | grâce | ma | nôtres | quelqu'une | suis | vos |
au-dessous | certaine | desquelles | hormis | mais | nous | quelque | sur | votre |
au-dessus | certaines | desquels | hors | malgré | nulle | quelques-unes | ta | vôtre |
auprès | certains | dessus | ici | me | nulles | quelques-uns | tandis | vôtres |
auquel | ces | dès | il | même | on | quels | tant | vous |
aussi | cet | donc | ils | mêmes | ou | qui | te | vu |
aussitôt | cette | donné | jadis | mes | où | quiconque | telle | y |
autant | ceux | dont | je | mien | par | quoi | telles | |
autour | chacun | du | jusqu | mienne | parce | quoique | tes | |
aux | chacune | duquel | jusque | miennes | parmi | sa | tienne | |
auxquelles | chaque | durant | la | miens | plus | sans | tiennes | |
auxquels | chez | elle | laquelle | moins | plusieurs | sauf | tiens | |
avec | combien | elles | là | moment | pour | se | toi | |
à | comme | en | le | mon | pourquoi | selon | ton | |
The following German words are defined in the default stoplist for this language:
Stop word | Stop word | Stop word | Stop word | Stop word | Stop word | Stop word | Stop word | Stop word |
---|---|---|---|---|---|---|---|---|
ab | dann | des | es | ihnen | keinem | obgleich | sondern | welchem |
aber | daran | desselben | etwa | ihr | keinen | oder | sonst | welchen |
allein | darauf | dessen | etwas | ihre | keiner | ohne | soviel | welcher |
als | daraus | dich | euch | Ihre | keines | paar | soweit | welches |
also | darin | die | euer | ihrem | man | sehr | über | wem |
am | darüber | dies | eure | Ihrem | mehr | sei | um | wen |
an | darum | diese | eurem | ihren | mein | sein | und | wenn |
auch | darunter | dieselbe | euren | Ihren | meine | seine | uns | wer |
auf | das | dieselben | eurer | Ihrer | meinem | seinem | unser | weshalb |
aus | dasselbe | diesem | eures | ihrer | meinen | seinen | unsre | wessen |
außer | daß | diesen | für | ihres | meiner | seiner | unsrem | wie |
bald | davon | dieser | fürs | Ihres | meines | seines | unsren | wir |
bei | davor | dieses | ganz | im | mich | seit | unsrer | wo |
beim | dazu | dir | gar | in | mir | seitdem | unsres | womit |
bin | dazwischen | doch | gegen | ist | mit | selbst | vom | zu |
bis | dein | dort | genau | ja | nach | sich | von | zum |
bißchen | deine | du | gewesen | je | nachdem | Sie | vor | zur |
bist | deinem | ebenso | her | jedesmal | nämlich | sie | während | zwar |
da | deinen | ehe | herein | jedoch | neben | sind | war | zwischen |
dabei | deiner | ein | herum | jene | nein | so | wäre | |
dadurch | deines | eine | hin | jenem | nicht | sogar | wären | |
dafür | dem | einem | hinter | jenen | nichts | solch | warum | |
dagegen | demselben | einen | hintern | jener | noch | solche | was | |
dahinter | den | einer | ich | jenes | nun | solchem | wegen | |
damit | denn | eines | ihm | kaum | nur | solchen | weil | |
danach | der | entlang | ihn | kein | ob | solcher | weit | |
daneben | derselben | er | Ihnen | keine | ober | solches | welche | |
The following Italian words are defined in the default stoplist for this language:
Stop word | Stop word | Stop word | Stop word | Stop word | Stop word | Stop word |
---|---|---|---|---|---|---|
a | da | durante | lo | o | seppure | un |
affinchè | dachè | e | loro | onde | si | una |
agl' | dagl' | egli | ma | oppure | siccome | uno |
agli | dagli | eppure | mentre | ossia | sopra | voi |
ai | dai | essere | mio | ovvero | sotto | vostro |
al | dal | essi | ne | per | su | |
all' | dall' | finché | neanche | perchè | subito | |
alla | dalla | fino | negl' | perciò | sugl' | |
alle | dalle | fra | negli | però | sugli | |
allo | dallo | giacchè | nei | poichè | sui | |
anzichè | degl' | gl' | nel | prima | sul | |
avere | degli | gli | nell' | purchè | sull' | |
bensì | dei | grazie | nella | quand'anche | sulla | |
che | del | I | nelle | quando | sulle | |
chi | dell' | il | nello | quantunque | sullo | |
cioè | delle | in | nemmeno | quasi | suo | |
come | dello | inoltre | neppure | quindi | talchè | |
comunque | di | io | noi | se | tu | |
con | dopo | l' | nonchè | sebbene | tuo | |
contro | dove | la | nondimeno | sennonchè | tuttavia | |
cosa | dunque | le | nostro | senza | tutti | |
The following Portuguese words are defined in the default stoplist for this language:
Stop word | Stop word | Stop word | Stop word | Stop word | Stop word | Stop word |
---|---|---|---|---|---|---|
a | bem | e | longe | para | se | você |
abaixo | com | ela | mais | por | sem | vocês |
adiante | como | elas | menos | porque | sempre | |
agora | contra | êle | muito | pouco | sim | |
ali | debaixo | eles | não | próximo | sob | |
antes | demais | em | ninguem | qual | sobre | |
aqui | depois | entre | nós | quando | talvez | |
até | depressa | eu | nunca | quanto | todas | |
atras | devagar | fora | onde | que | todos | |
bastante | direito | junto | ou | quem | vagarosamente | |
The following Spanish words are defined in the default stoplist for this language:
Stop word | Stop word | Stop word | Stop word | Stop word | Stop word | Stop word | Stop word | Stop word |
---|---|---|---|---|---|---|---|---|
a | aquí | cuantos | esta | misma | nosotras | querer | tales | usted |
acá | cada | cuán | estar | mismas | nosotros | qué | tan | ustedes |
ahí | cierta | cuánto | estas | mismo | nuestra | quien | tanta | varias |
ajena | ciertas | cuántos | este | mismos | nuestras | quienes | tantas | varios |
ajenas | cierto | de | estos | mucha | nuestro | quienesquiera | tanto | vosotras |
ajeno | ciertos | dejar | hacer | muchas | nuestros | quienquiera | tantos | vosotros |
ajenos | como | del | hasta | muchísima | nunca | quién | te | vuestra |
al | cómo | demasiada | jamás | muchísimas | os | ser | tener | vuestras |
algo | con | demasiadas | junto | muchísimo | otra | si | ti | vuestro |
alguna | conmigo | demasiado | juntos | muchísimos | otras | siempre | toda | vuestros |
algunas | consigo | demasiados | la | mucho | otro | sí | todas | y |
alguno | contigo | demás | las | muchos | otros | sín | todo | yo |
algunos | cualquier | el | lo | muy | para | Sr | todos | |
algún | cualquiera | ella | los | nada | parecer | Sra | tomar | |
allá | cualquieras | ellas | mas | ni | poca | Sres | tuya | |
allí | cuan | ellos | más | ninguna | pocas | Sta | tuyo | |
aquel | cuanta | él | me | ningunas | poco | suya | tú | |
aquella | cuantas | esa | menos | ninguno | pocos | suyas | un | |
aquellas | cuánta | esas | mía | ningunos | por | suyo | una | |
aquello | cuántas | ese | mientras | no | porque | suyos | unas | |
aquellos | cuanto | esos | mío | nos | que | tal | unos | |
The following Swedish words are defined in the default stoplist for this language:
Stopword | Stopword | Stopword | Stopword | Stopword |
---|---|---|---|---|
ab | du | hette | minst | skall |
aldrig | efter | hon | minsta | skulle |
all | efteråt | honom | mot | som |
alla | eftersom | hos | mycket | ta |
allt | ej | hur | någon | till |
alltid | eller | i | någonting | tillräcklig |
allting | emot | i fall | något | tillräckliga |
än | en | ifall | några | tillräckligt |
andra | endast | in | när | tillsammans |
andre | er | inga | nära | tog |
annan | era | ingen | ned | trots att |
annat | ert | ingenting | nej | under |
ännu | ett | inget | ner | underst |
är | få | innan | nere | undre |
åter | fall | inte | ni | upp |
att | färre | ja | nu | uppe |
av | fastän | jag | och | ut |
avse | flest | kan | också | utan |
avsedd | flesta | kort | om | ute |
avsedda | för | korta | oss | utom |
avser | först | kunde | över | vad |
avses | första | kunna | överst | väl |
bakom | förste | lång | översta | var |
bara | fort | långa | övre | vara |
bäst | framför | långsam | på | varför |
bättre | från | långsamma | så | vart |
bra | genom | långsamt | sådan | vem |
bredvid | god | långt | sådana | vems |
då | goda | lite | sådant | vet |
dålig | gott | liten | säga | veta |
där | ha | litet | säger | vi |
därför | hade | man | sägs | vid |
de | haft | med | sämre | vilken |
dem | han | medan | sämst | vill |
den | hans | mellan | sån | ville |
denna | här | men | sånt | visste |
deras | hellre | mer | såsom | vore |
dess | henne | mera | sin | |
dessa | hennes | mest | sist | |
det | heta | mesta | sista | |
detta | heter | mindre | ska | |
This appendix describes the scoring algorithm for word queries.You obtain score using the SCORE
operator.
Note: This appendix discusses how Oracle Text calculates score for word queries, which is different from the way it calculates score forABOUT queries in English. |
To calculate a relevance score for a returned document in a word query, Oracle Text uses an inverse frequency algorithm based on Salton's formula.
Inverse frequency scoring assumes that frequently occurring terms in a document set are noise terms, and so these terms are scored lower. For a document to score high, the query term must occur frequently in the document but infrequently in the document set as a whole.
The following table illustrates Oracle Text's inverse frequency scoring. The first column shows the number of documents in the document set, and the second column shows the number of terms in the document necessary to score 100.
This table assumes that only one document in the set contains the query term.
Number of Documents in Document Set | Occurrences of Term in Document Needed to Score 100 |
---|---|
1 | 34 |
5 | 20 |
10 | 17 |
50 | 13 |
100 | 12 |
500 | 10 |
1,000 | 9 |
10,000 | 7 |
100,000 | 5 |
1,000,000 | 4 |
The table illustrates that if only one document contained the query term and there were five documents in the set, the term would have to occur 20 times in the document to score 100. Whereas, if there were 1,000,000 documents in the set, the term would have to occur only 4 times in the document to score 100.
You have 5000 documents dealing with chemistry in which the term chemical occurs at least once in every document. The term chemical thus occurs frequently in the document set.
You have a document that contains 5 occurrences of chemical and 5 occurrences of the term hydrogen. No other document contains the term hydrogen. The term hydrogen thus occurs infrequently in the document set.
Because chemical occurs so frequently in the document set, its score for the document is lower with respect to hydrogen, which is infrequent is the document set as a whole. The score for hydrogen is therefore higher than that of chemical. This is so even though both terms occur 5 times in the document.
Note: Even if the relatively infrequent term hydrogen occurred 4 times in the document, and chemical occurred 5 times in the document, the score for hydrogen might still be higher, because chemical occurs so frequently in the document set (at least 5000 times). |
Inverse frequency scoring also means that adding documents that contain hydrogen lowers the score for that term in the document, and adding more documents that do not contain hydrogen raises the score.
Because the scoring algorithm is based on the number of documents in the document set, inserting, updating or deleting documents in the document set is likely change the score for any given term before and after the DML.
If DML is heavy, you or your Oracle Database administrator must optimize the index. Perfect relevance ranking is obtained by executing a query right after optimizing the index.
If DML is light, Oracle Database still gives fairly accurate relevance ranking.
In either case, you or your Oracle Database administrator must synchronize the index with CTX_DDL.SYNC_INDEX.
This appendix lists all of the views provided by Oracle Text. The system provides the following views:
This view displays all the preference categories registered in the Text data dictionary. It can be queried by any user.
Column Name | Type | Description |
---|---|---|
CLA_NAME | VARCHAR2(30) | Class name |
CLA_DESCRIPTION | VARCHAR2(80) | Class description |
This view displays all indexes that are registered in the Text data dictionary for the current user. It can be queried by CTXSYS.
Column Name | Type | Description |
---|---|---|
IDX_CHARSET_COLUMN | VARCHAR2(256) | Name of the charset column in base table. |
IDX_DOCID_COUNT | NUMBER | Number of documents indexed. |
IDX_FORMAT_COLUMNS | VARCHAR2(256) | Name of the format column in base table. |
IDX_KEY_NAME | VARCHAR2(256) | Primary key column(s). |
IDX_ID | NUMBER | Internal index id. |
IDX_LANGUAGE_COLUMN | VARCHAR2(256) | Name of the language column in base table. |
IDX_NAME | VARCHAR2(30) | Name of index. |
IDX_OWNER | VARCHAR2(30) | Owner of index. |
IDX_STATUS | VARCHAR2(12) | Status. |
IDX_SYNC_TYPE | VARCHAR2(20) | Type of synching: MANUAL, AUTOMATIC, or ON COMMIT. |
IDX_TABLE | VARCHAR2(30) | Table name. |
IDX_TABLE_OWNER | VARCHAR2(30) | Owner of table. |
IDX_TEXT_NAME | VARCHAR2(30) | Text column name. |
This view displays the DML errors and is queryable by CTXSYS.
Column Name | Type | Description |
---|---|---|
ERR_INDEX_OWNER | VARCHAR2(30) | Index owner. |
ERR_INDEX_NAME | VARCHAR2(30) | Name of index. |
ERR_TIMESTAMP | DATE | Time of error. |
ERR_TEXTKEY | VARCHAR2(18) | ROWID of errored document or name of errored operation (for example, ALTER INDEX) |
ERR_TEXT | VARCHAR2(4000) | Error text. |
This view displays the objects that are used for each class in the index. It can be queried by CTXSYS.
Column Name | Type | Description |
---|---|---|
IXO_INDEX_OWNER | VARCHAR2(30) | Index owner. |
IXO_INDEX_NAME | VARCHAR2(30) | Index name. |
IXO_CLASS | VARCHAR2(30) | Class name. |
IXO_OBJECT | VARCHAR2(30) | Object name. |
This view displays all index partitions. It can be queried by CTXSYS
.
Column Name | Type | Description |
---|---|---|
IXP_ID | NUMBER(38) | Index partition id. |
IXP_INDEX_OWNER | VARCHAR2(30) | Index owner. |
IXP_INDEX_NAME | VARCHAR2(30) | Index name. |
IXP_INDEX_PARTITION_NAME | VARCHAR2(30) | Index partition name. |
IXP_SYNC_TYPE | VARCHAR2(20) | Type of synching: MANUAL, AUTOMATIC, or ON COMMIT. |
IXP_TABLE_OWNER | VARCHAR2(30) | Table owner. |
IXP_TABLE_NAME | VARCHAR2(30) | Table name. |
IXP_TABLE_PARTITION_NAME | VARCHAR2(30) | Table partition name. |
IXP_DOCID_COUNT | NUMBER(38) | Number of documents associated with the partition. |
IXP_STATUS | VARCHAR2(12) | Partition status. |
This view displays all index set names. It can be queried by any user.
Column Name | Type | Description |
---|---|---|
IXS_OWNER | VARCHAR2(30) | Index set owner. |
IXS_NAME | VARCHAR2(30) | Index set name. |
This view displays all the sub-indexes in an index set. It can be queried by any user.
Column Name | Type | Description |
---|---|---|
IXX_INDEX_SET_OWNER | VARCHAR2(30) | Index set owner. |
IXX_INDEX_SET_NAME | VARCHAR2(30) | Index set name. |
IXX_COLLIST | VARCHAR2(500) | Column list of the sub-index. |
IXX_STORAGE | VARCHAR2(500) | Storage clause of the sub-index. |
This view shows the sub-lexers for each language for each index. It can be queried by CTXSYS.
Column Name | Type | Description |
---|---|---|
ISL_INDEX_OWNER | VARCHAR2(30) | Index owner. |
ISL_INDEX_NAME | VARCHAR2(30) | Index name. |
ISL_LANGUAGE | VARCHAR2(30) | Language of sub-lexer |
ISL_ALT_VALUE | VARCHAR2(30) | Alternate value of language. |
ISL_OBJECT | VARCHAR2(30) | Name of lexer object used for this language. |
Shows the sub-lexer attributes and their values. Accessible by CTXSYS.
Column Name | Type | Description |
---|---|---|
ISV_INDEX_OWNER | VARCHAR2(30) | Index owner. |
ISV_INDEX_NAME | VARCHAR2(30) | Index name. |
ISV_LANGUAGE | VARCHAR2(30) | Language of sub-lexer |
ISV_OBJECT | VARCHAR2(30) | Name of lexer object used for this language. |
ISV_ATTRIBUTE | VARCHAR2(30) | Name of sub-lexer attribute. |
ISV_VALUE | VARCHAR2(500) | Value of attribute of sub-lexer. |
This view displays attribute values for each object used in indexes. This view is queryable by CTXSYS.
Column Name | Type | Description |
---|---|---|
IXV_INDEX_OWNER | VARCHAR2(30) | Index owner. |
IXV_INDEX_NAME | VARCHAR2(30) | Index name. |
IXV_CLASS | VARCHAR2(30) | Class name. |
IXV_OBJECT | VARCHAR2(30) | Object name. |
IXV_ATTRIBUTE | VARCHAR2(30) | Attribute name |
IXV_VALUE | VARCHAR2(500) | Attribute value. |
This view displays all of the Text objects registered in the Text data dictionary. This view can be queried by any user.
Column Name | Type | Description |
---|---|---|
OBJ_CLASS | VARCHAR2(30) | Object class (Datastore, Filter, Lexer, and so on) |
OBJ_NAME | VARCHAR2(30) | Object name |
OBJ_DESCRIPTION | VARCHAR2(80) | Object description |
This view displays the attributes that can be assigned to preferences of each object. It can be queried by all users.
Column Name | Type | Description |
---|---|---|
OAT_CLASS | VARCHAR2(30) | Object class (Data Store, Filter, Lexer, and so on) |
OAT_OBJECT | VARCHAR2(30) | Object name |
OAT_ATTRIBUTE | VARCHAR2(64) | Attribute name |
OAT_DESCRIPTION | VARCHAR2(80) | Description of attribute |
OAT_REQUIRED | VARCHAR2(1) | Required attribute, either Y or N. |
OAT_STATIC | VARCHAR2(1) | Not currently used. |
OAT_DATATYPE | VARCHAR2(64) | Attribute datatype. The value PROCEDURE indicates that the attribute of the object should be a stored procedure name. |
OAT_DEFAULT | VARCHAR2(500) | Default value for attribute. |
OAT_MIN | NUMBER | Minimum value. |
OAT_MAX | NUMBER | Maximum value. |
OAT_MAX_LENGTH | NUMBER | Maximum length. |
This view displays the allowed values for certain object attributes provided by Oracle Text. It can be queried by all users.
Column Name | Type | Description |
---|---|---|
OAL_CLASS | NUMBER(38) | Class of object. |
OAL_OBJECT | VARCHAR2(30) | Object name. |
OAL_ATTRIBUTE | VARCHAR2(32) | Attribute name. |
OAl_LABEL | VARCHAR2(30) | Attribute value label. |
OAL_VALUE | VARCHAR2(64) | Attribute value. |
OAL_DESCRIPTION | VARCHAR2(80) | Attribute value description. |
This view displays all system-defined parameters as defined by CTXSYS. It can be queried by any user.
Column Name | Type | Description |
---|---|---|
PAR_NAME | VARCHAR2(30) | Parameter name:
|
PAR_VALUE | VARCHAR2(500) | Parameter value. For max_index_memory and default_index_memory , PAR_VALUE stores a string consisting of the memory amount. For the other parameter names, PAR_VALUE stores the names of the preferences used as defaults for index creation. |
This view displays a row for each of the user's entries in the DML Queue. It can be queried by CTXSYS
.
Column Name | Type | Description |
---|---|---|
PND_INDEX_OWNER | VARCHAR2(30) | Index owner. |
PND_INDEX_NAME | VARCHAR2(30) | Name of index. |
PND_PARTITION_NAME | VARCHAR2(30) | Name of partition for local partition indexes. NULL for normal indexes. |
PND_ROWID | ROWID | ROWID to be indexed |
PND_TIMESTAMP | DATE | Time of modification |
This view displays preferences created by Oracle Text users, as well as all the system-defined preferences included with Oracle Text. The view contains one row for each preference. It can be queried by all users.
Column Name | Type | Description |
---|---|---|
PRE_OWNER | VARCHAR2(30) | Username of preference owner. |
PRE_NAME | VARCHAR2(30) | Preference name. |
PRE_CLASS | VARCHAR2(30) | Preference class. |
PRE_OBJECT | VARCHAR2(30) | Object used. |
This view displays the values assigned to all the preferences in the Text data dictionary. The view contains one row for each value. It can be queried by all users.
Column Name | Type | Description |
---|---|---|
PRV_OWNER | VARCHAR2(30) | Username of preference owner. |
PRV_PREFERENCE | VARCHAR2(30) | Preference name. |
PRV_ATTRIBUTE | VARCHAR2(64) | Attribute name |
PRV_VALUE | VARCHAR2(500) | Attribute value |
This view displays information about all the sections that have been created in the Text data dictionary. It can be queried by any user.
Column Name | Type | Description |
---|---|---|
SEC_OWNER | VARCHAR2(30) | Owner of the section group. |
SEC_SECTION_GROUP | VARCHAR2(30) | Name of the section group. |
SEC_TYPE | VARCHAR2(30) | Type of section, either ZONE, FIELD, SPECIAL, ATTR, STOP. |
SEC_ID | NUMBER | Section id. |
SEC_NAME | VARCHAR2(30) | Name of section. |
SEC_TAG | VARCHAR2(64) | Section tag |
SEC_VISIBLE | VARCHAR2(1) | Y or N visible indicator for field sections only. |
This view displays information about all the section groups that have been created in the Text data dictionary. It can be queried by any user.
Column Name | Type | Description |
---|---|---|
SGP_OWNER | VARCHAR2(30) | Owner of section group. |
SGP_NAME | VARCHAR2(30) | Name of section group. |
SGP_TYPE | VARCHAR2(30) | Type of section group |
This view displays the definitions for all SQEs that have been created by users. It can be queried by all users.
Column Name | Type | Description |
---|---|---|
SQE_OWNER | VARCHAR2(30) | Owner of SQE. |
SQE_NAME | VARCHAR2(30) | Name of SQE. |
SQE_QUERY | VARCHAR2(2000) | Query Text |
This view displays stoplists. Queryable by all users.
Column Name | Type | Description |
---|---|---|
SPL_OWNER | VARCHAR2(30) | Owner of stoplist. |
SPL_NAME | VARCHAR2(30) | Name of stoplist. |
SPL_COUNT | NUMBER | Number of stopwords |
SPL_TYPE | VARCHAR2(30) | Type of stoplist, MULTI or BASIC. |
This view displays the stopwords in each stoplist. Queryable by all users.
Column Name | Type | Description |
---|---|---|
SPW_OWNER | VARCHAR2(30) | Stoplist owner. |
SPW_STOPLIST | VARCHAR2(30) | Stoplist name. |
SPW_TYPE | VARCHAR2(10) | Stop type, either STOP_WORD, STOP_CLASS, STOP_THEME. |
SPW_WORD | VARCHAR2(80) | Stopword. |
SPW_LANGUAGE | VARCHAR2(30) | Stopword language. |
This view contains information on multi-lexers and the sub-lexer preferences they contain. It can be queried by any user.
Column Name | Type | Description |
---|---|---|
SLX_OWNER | VARCHAR2(30) | Owner of the multi-lexer preference. |
SLX_NAME | VARCHAR2(30) | Name of the multi-lexer preference. |
SLX_LANGUAGE | VARCHAR2(30) | Language of the referenced lexer (full name, not abbreviation). |
SLX_ALT_VALUE | VARCHAR2(30) | An alternate value for the language. |
SLX_SUB_OWNER | VARCHAR2(30) | Owner of the sub-lexer. |
SLX_SUB_NAME | VARCHAR2(30) | Name of the sub-lexer. |
This view displays information about all the thesauri that have been created in the Text data dictionary. It can be queried by any user.
Column Name | Type | Description |
---|---|---|
THS_OWNER | VARCHAR2(30) | Thesaurus owner. |
THS_NAME | VARCHAR2(30) | Thesaurus name. |
This view displays phrase information for all thesauri in the Text data dictionary. It can be queried by any user.
Column Name | Type | Description |
---|---|---|
THP_THESAURUS | VARCHAR2(30) | Thesaurus name. |
THP_PHRASE | VARCHAR2(256) | Thesaurus phrase. |
THP_QUALIFIER | VARCHAR2(256) | Thesaurus qualifier. |
THP_SCOPE_NOTE | VARCHAR2(2000) | Thesaurus scope notes. |
This view contains one row for each active trace, and shows the current value of each trace.
Column Name | Type | Description |
---|---|---|
TRC_ID | BINARY_INTEGER | Trace ID. |
TRC_VALUE | NUMBER | Current trace value. |
This view displays all indexes that are registered in the Text data dictionary for the current user. It can be queried by all users.
Column Name | Type | Description |
---|---|---|
IDX_CHARSET_COLUMN | VARCHAR2(256) | Name of the charset column of base table. |
IDX_DOCID_COUNT | NUMBER | Number of documents indexed. |
IDX_FORMAT_COLUMN | VARCHAR2(256) | Name of the format column of base table. |
IDX_ID | NUMBER | Internal index id. |
IDX_KEY_NAME | VARCHAR(256) | Primary key column(s). |
IDX_LANGUAGE_COLUMN | VARCHAR2(256) | Name of the language column of base table. |
IDX_NAME | VARCHAR2(30) | Name of index. |
IDX_STATUS | VARCHAR2(12) | Status, either INDEXED or INDEXING. |
IDX_SYNC_INTERVAL | VARCHAR2(2000) | This is the interval string required by scheduler job. Only meaningful for AUTOMATIC sync. Always null for MANUAL and ON COMMIT sync. |
IDX_SYNC_JOBNAME | VARCHAR2(50) | This is the scheduler job name for automatic sync. Only meaningful for AUTOMATIC sync and always null for other types of sync. |
IDX_SYNC_MEMORY | VARCHAR2(100) | The sync memory size. Only meaningful for ON COMMIT and AUTOMATIC types of sync. For MANUAL sync, this is always null. |
IDX_SYNC_PARA_DEGREE | NUMBER | Degree of parallelism for sync. Only meaningful for the AUTOMATIC type of sync; always null for MANUAL and ON COMMIT syncs. |
IDX_SYNC_TYPE | VARCHAR2(20) | Type of synching: AUTOMATIC, MANUAL or ON COMMIT. |
IDX_TABLE | VARCHAR2(30) | Table name. |
IDX_TABLE_OWNER | VARCHAR2(30) | Owner of table. |
IDX_TEXT_NAME | VARCHAR2(30) | Text column name. |
IDX_TYPE | VARCHAR2(30) | Type of index: CONTEXT, CTXCAT, OR CTXRULE |
This view displays the indexing errors for the current user and is queryable by all users.
Column Name | Type | Description |
---|---|---|
ERR_INDEX_NAME | VARCHAR2(30) | Name of index. |
ERR_TIMESTAMP | DATE | Time of error. |
ERR_TEXTKEY | VARCHAR2(18) | ROWID of errored document or name of errored operation (for example, ALTER INDEX) |
ERR_TEXT | VARCHAR2(4000) | Error text. |
This view displays the preferences that are attached to the indexes defined for the current user. It can be queried by all users.
Column Name | Type | Description |
---|---|---|
IXO_INDEX_NAME | VARCHAR2(30) | Name of index. |
IXO_CLASS | VARCHAR2(30) | Object name |
IXO_OBJECT | VARCHAR2(80) | Object description |
This view displays all index partitions for the current user. It is queryable by all users.
Column Name | Type | Description |
---|---|---|
IXP_DOCID_COUNT | NUMBER(38) | Number of documents associated with the index partition. |
IXP_ID | NUMBER(38) | Index partition id. |
IXP_INDEX_NAME | VARCHAR2(30) | Index name. |
IXP_INDEX_PARTITION_NAME | VARCHAR2(30) | Index partition name. |
IDX_SYNC_INTERVAL | VARCHAR2(2000) | This is the interval string required by scheduler job. Only meaningful for AUTOMATIC sync. Always null for MANUAL and ON COMMIT sync. |
IDX_SYNC_JOBNAME | VARCHAR2(50) | This is the scheduler job name for automatic sync. It's only meaningful for AUTOMATIC sync and always null for other types of sync. |
IDX_SYNC_MEMORY | VARCHAR2(100) | The sync memory size. Only meaningful for ON COMMIT and AUTOMATIC types of sync. For MANUAL sync, this is always null. |
IDX_SYNC_PARA_DEGREE | NUMBER | Degree of parallelism for sync. Only meaningful for the AUTOMATIC type of sync; always null for MANUAL and ON COMMIT syncs. |
IDX_SYNC_TYPE | VARCHAR2(20) | Type of synching: AUTOMATIC, MANUAL or ON COMMIT. |
IXP_STATUS | VARCHAR2(12) | Partition status. |
IXP_TABLE_OWNER | VARCHAR2(30) | Table owner. |
IXP_TABLE_NAME | VARCHAR2(30) | Table name. |
IXP_TABLE_PARTITION_NAME | VARCHAR2(30) | Table partition name. |
This view displays all index set names that belong to the current user. It is queryable by all users.
Column Name | Type | Description |
---|---|---|
IXS_NAME | VARCHAR2(30) | Index set name. |
This view displays all the indexes in an index set that belong to the current user. It is queryable by all users.
Column Name | Type | Description |
---|---|---|
IXX_INDEX_SET_NAME | VARCHAR2(30) | Index set name. |
IXX_COLLIST | VARCHAR2(500) | Column list of the index. |
IXX_STORAGE | VARCHAR2(500) | Storage clause of the index. |
This view shows the sub-lexers for each language for each index for the querying user. This view can be queried by all users.
Column Name | Type | Description |
---|---|---|
ISL_INDEX_NAME | VARCHAR2(30) | Index name. |
ISL_LANGUAGE | VARCHAR2(30) | Language of sub-lexer |
ISL_ALT_VALUE | VARCHAR2(30) | Alternate value of language. |
ISL_OBJECT | VARCHAR2(30) | Name of lexer object used for this language. |
Shows the sub-lexer attributes and their values for the querying user. This view can be queried by all users.
Column Name | Type | Description |
---|---|---|
ISV_INDEX_NAME | VARCHAR2(30) | Index name. |
ISV_LANGUAGE | VARCHAR2(30) | Language of sub-lexer |
ISV_OBJECT | VARCHAR2(30) | Name of lexer object used for this language. |
ISV_ATTRIBUTE | VARCHAR2(30) | Name of sub-lexer attribute. |
ISV_VALUE | VARCHAR2(500) | Value of sub-lexer attribute. |
This view displays attribute values for each object used in indexes for the current user. This view is queryable by all users.
Column Name | Type | Description |
---|---|---|
IXV_INDEX_NAME | VARCHAR2(30) | Index name. |
IXV_CLASS | VARCHAR2(30) | Class name. |
IXV_OBJECT | VARCHAR2(30) | Object name. |
IXV_ATTRIBUTE | VARCHAR2(30) | Attribute name |
IXV_VALUE | VARCHAR2(500) | Attribute value. |
This view displays a row for each of the user's entries in the DML Queue. It can be queried by all users.
Column Name | Type | Description |
---|---|---|
PND_INDEX_NAME | VARCHAR2(30) | Name of index. |
PND_PARTITION_NAME | VARCHAR2(30) | Name of partition for local partition indexes. NULL for normal indexes. |
PND_ROWID | ROWID | Rowid to be indexed. |
PND_TIMESTAMP | DATE | Time of modification. |
This view displays all preferences defined by the current user. It can be queried by all users.
Column Name | Type | Description |
---|---|---|
PRE_NAME | VARCHAR2(30) | Preference name. |
PRE_CLASS | VARCHAR2(30) | Preference class. |
PRE_OBJECT | VARCHAR2(30) | Object used. |
This view displays all the values for preferences defined by the current user. It can be queried by all users.
Column Name | Type | Description |
---|---|---|
PRV_PREFERENCE | VARCHAR2(30) | Preference name. |
PRV_ATTRIBUTE | VARCHAR2(64) | Attribute name |
PRV_VALUE | VARCHAR2(500) | Attribute value |
This view displays information about the sections that have been created in the Text data dictionary for the current user. It can be queried by all users.
Column Name | Type | Description |
---|---|---|
SEC__SECTION_GROUP | VARCHAR2(30) | Name of the section group. |
SEC_TYPE | VARCHAR2(30) | Type of section, either ZONE, FIELD, SPECIAL, STOP, or ATTR. |
SEC_ID | NUMBER | Section id. |
SEC_NAME | VARCHAR2(30) | Name of section. |
SEC_TAG | VARCHAR2(64) | Section tag |
SEC_VISIBLE | VARCHAR2(1) | Y or N visible indicator for field sections. |
This view displays information about the section groups that have been created in the Text data dictionary for the current user. It can be queried by all users.
Column Name | Type | Description |
---|---|---|
SGP_NAME | VARCHAR2(30) | Name of section group. |
SGP_TYPE | VARCHAR2(30) | Type of section group |
This view displays the definitions for all system and session SQEs that have been created by the current user. It can be viewed by all users.
Column Name | Type | Description |
---|---|---|
SQE_OWNER | VARCHAR2(30) | Owner of SQE. |
SQE_NAME | VARCHAR2(30) | Name of SQE. |
SQE_QUERY | VARCHAR2(2000) | Query Text |
This view displays stoplists for current user. It is queryable by all users.
Column Name | Type | Description |
---|---|---|
SPL_NAME | VARCHAR2(30) | Name of stoplist. |
SPL_COUNT | NUMBER | Number of stopwords |
SPL_TYPE | VARCHAR2(30) | Type of stoplist, MULTI or BASIC. |
This view displays stopwords in each stoplist for current user. Queryable by all users.
Column Name | Type | Description |
---|---|---|
SPW_STOPLIST | VARCHAR2(30) | Stoplist name. |
SPW_TYPE | VARCHAR2(10) | Stop type, either STOP_WORD, STOP_CLASS, STOP_THEME. |
SPW_WORD | VARCHAR2(80) | Stopword. |
SPW_LANGUAGE | VARCHAR2(30) | Stopword language. |
For the current user, this view contains information on multi-lexers and the sub-lexer preferences they contain.It can be queried by any user.
Column Name | Type | Description |
---|---|---|
SLX_NAME | VARCHAR2(30) | Name of the multi-lexer preference. |
SLX_LANGUAGE | VARCHAR2(30) | Language of the referenced lexer (full name, not abbreviation). |
SLX_ALT_VALUE | VARCHAR2(30) | An alternate value for the language. |
SLX_SUB_OWNER | VARCHAR2(30) | Owner of the sub-lexer. |
SLX_SUB_NAME | VARCHAR2(30) | Name of the sub-lexer. |
This view displays the information about all of the thesauri that have been created in the system by the current user. It can be viewed by all users.
Column Name | Type | Description |
---|---|---|
THS_NAME | VARCHAR2(30) | Thesaurus name |
This view displays the phrase information of all thesaurus owned by the current user. It can be queried by all users.
Column Name | Type | Description |
---|---|---|
THP_THESAURUS | VARCHAR2(30) | Thesaurus name. |
THP_PHRASE | VARCHAR2(256) | Thesaurus phrase. |
THP_QUALIFIER | VARCHAR2(256) | Phrase qualifier. |
THP_SCOPE_NOTE | VARCHAR2(2000) | Scope note of the phrase. |
This view displays the CTXSYS data dictionary and code version number information.
Column Name | Type | Description |
---|---|---|
VER_DICT | CHAR(9) | The CTXSYS data dictionary version number. |
VER_CODE | VARCHAR2(9) | The version number of the code linked in to the Oracle Database shadow process. This column fetches the version number for linked-in code. Thus, you can use this column to detect and verify patch releases. |
This appendix describes stopword transformations. The following topic is covered:
When you use a stopword or stopword-only phrase as an operand for a query operator, Oracle Text rewrites the expression to eliminate the stopword or stopword-only phrase and then executes the query.
The following section describes the stopword rewrites or transformations for each operator. In all tables, the Stopword Expression column describes the query expression or component of a query expression, while the right-hand column describes the way Oracle Text rewrites the query.
The token stopword stands for a single stopword or a stopword-only phrase.
The token non_stopword stands for either a single non-stopword, a phrase of all non-stopwords, or a phrase of non-stopwords and stopwords.
The token no_lex stands for a single character or a string of characters that is neither a stopword nor a word that is indexed. For example, the + character by itself is an example of a no_lex token.
When the Stopword Expression column completely describes the query expression, a rewritten expression of no_token means that no hits are returned when you enter such a query.
When the Stopword Expression column describes a component of a query expression with more than one operator, a rewritten expression of no_token means that a no_token value is passed to the next step of the rewrite.
Transformations that contain a no_token as an operand in the Stopword Expression column describe intermediate transformations in which the no_token is a result of a previous transformation. These intermediate transformations apply when the original query expression has at least one stopword and more than one operator.
For example, consider the following compound query expression:
Assuming that this is the only stopword in this expression, Oracle Text applies the following transformations in the following order:
stopword NOT non-stopword => no_token
no_token AND non_stopword => non_stopword
The resulting expression is:
Stopword Expression | Rewritten Expression |
---|---|
stopword | no_token |
no_lex | no_token |
The first transformation means that a stopword or stopword-only phrase by itself in a query expression results in no hits.
The second transformation says that a term that is not lexed, such as the + character, results in no hits.
Stopword Expression | Rewritten Expression |
---|---|
non_stopword AND stopword | non_stopword |
non_stopword AND no_token | non_stopword |
stopword AND non_stopword | non_stopword |
no_token AND non_stopword | non_stopword |
stopword AND stopword | no_token |
no_token AND stopword | no_token |
stopword AND no_token | no_token |
no_token AND no_token | no_token |
Stopword Expression | Rewritten Expression |
---|---|
non_stopword OR stopword | non_stopword |
non_stopword OR no_token | non_stopword |
stopword OR non_stopword | non_stopword |
no_token OR non_stopword | non_stopword |
stopword OR stopword | no_token |
no_token OR stopword | no_token |
stopword OR no_token | no_token |
no_token OR no_token | no_token |
Stopword Expression | Rewritten Expression |
---|---|
non_stopword ACCUM stopword | non_stopword |
non_stopword ACCUM no_token | non_stopword |
stopword ACCUM non_stopword | non_stopword |
no_token ACCUM non_stopword | non_stopword |
stopword ACCUM stopword | no_token |
no_token ACCUM stopword | no_token |
stopword ACCUM no_token | no_token |
no_token ACCUM no_token | no_token |
Stopword Expression | Rewritten Expression |
---|---|
non_stopword MINUS stopword | non_stopword |
non_stopword MINUS no_token | non_stopword |
stopword MINUS non_stopword | no_token |
no_token MINUS non_stopword | no_token |
stopword MINUS stopword | no_token |
no_token MINUS stopword | no_token |
stopword MINUS no_token | no_token |
no_token MINUS no_token | no_token |
Stopword Expression | Rewritten Expression |
---|---|
non_stopword NOT stopword | non_stopword |
non_stopword NOT no_token | non_stopword |
stopword NOT non_stopword | no_token |
no_token NOT non_stopword | no_token |
stopword NOT stopword | no_token |
no_token NOT stopword | no_token |
stopword NOT no_token | no_token |
no_token NOT no_token | no_token |
Stopword Expression | Rewritten Expression |
---|---|
non_stopword EQUIV stopword | non_stopword |
non_stopword EQUIV no_token | non_stopword |
stopword EQUIV non_stopword | non_stopword |
no_token EQUIV non_stopword | non_stopword |
stopword EQUIV stopword | no_token |
no_token EQUIV stopword | no_token |
stopword EQUIV no_token | no_token |
no_token EQUIV no_token | no_token |
Note: When you use query explain plan, not all of the equivalence transformations are represented in the EXPLAIN table. |
Stopword Expression | Rewritten Expression |
---|---|
non_stopword NEAR stopword | non_stopword |
non_stopword NEAR no_token | non_stopword |
stopword NEAR non_stopword | non_stopword |
no_token NEAR non_stopword | non_stopword |
stopword NEAR stopword | no_token |
no_token NEAR stopword | no_token |
stopword NEAR no_token | no_token |
no_token NEAR no_token | no_token |
Stopword Expression | Rewritten Expression |
---|---|
stopword * n | no_token |
no_token * n | no_token |
Copyright © 1994-2016, Oracle and/or its affiliates. All rights reserved.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.
If this document is in private preproduction status:
The information contained in this document is for informational sharing purposes only and should be considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described in this document remains at the sole discretion of Oracle.
This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle Master Agreement, Oracle License and Services Agreement, Oracle PartnerNetwork Agreement, Oracle distribution agreement, or other license agreement which has been executed by you and Oracle and with which you agree to comply. This document and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.