

What's New in the XDK?

What's New contains this topic:

	
Features Introduced in Oracle XML Developer's Kit 11g Release 1 (11.1)

Features Introduced in Oracle XML Developer's Kit 11g Release 1 (11.1)

	
DOM Stream access to XML nodes is done by PL/SQL and Java APIs. Nodes in an XML document can now exceed 64 KBytes by a large amount.

	
See Also:

"Large Node Handling"

	
The new XDK compact binary XML processors provide an encoder, a decoder, and a token manager to convert the schema or non-schema-based stream to and from XML 1.0 text and SAX events. The format is the same used in Oracle XML DB Developer's Guide.

	
See Also:

Chapter 5, "Using Binary XML for Java"

	
Binary XML adds a third storage model for persistent XML in the database: binary XML. Java and C APIs, and PL/SQL packages are affected. Binary XML support in the C API is used for both XML Developer's Kit and XML DB.

	
See Also:

Chapter 19, "Using Binary XML for C"

Support is now provided for a scalable, pluggable DOM in Java:

	
Scalable DOM support for Java includes lazy loading of DOM nodes, DOM updates of binary XML, multiple applications sharing the same DOM source, binary XML as output, and shadow copy in DOM.

	
Pluggable DOM splits the DOM implementation into two separate layers: DOM API layer and data layer. The data is either internal or plug-in, and are accessed through an implementation of the InfosetReader interface.

	
Configurable support for Java DOM is provided.

	
See Also:

"Scalable DOM"

	
The Unified Java API for XML allows mid-tier Java programs to leverage all the benefits of XMLType used with a session pool model of connection management. This allows XMLType object to be disconnected from the database session used to create it.

	
See Also:

Chapter 2, " Unified Java API for XML"

	
JAXP 1.3 support for XPath with extensions improves Java XSLT performance. Support is for static and dynamic context and users can register runtime context.

	
HTTP server for SOA is enabled. The database is capable of exposing PL/SQL packages, procedures, and functions as Web Services. The database is capable of executing dynamic XQuery and SQL queries.

	
See Also:

Chapter 22, "Using SOAP with the C XDK"

	
Chapters on SOAP for Java and C++ were removed.

	
XmlDiff for C detects the differences between two XML documents and represents the difference in XML. XmlPatch outputs the differences and applies the changes on the target XML document.

	
See Also:

Chapter 21, "Determining XML Differences Using C"

	
The JSR 170 standard is supported.

	
See Also:

"Standards and Specifications"

	
The C Pull Parser reduces memory overhead compared to the SAX model.

	
See Also:

"What is the XML Pull Parser for C?"

	
Streaming Validator support for C improves XML processing.

	
See Also:

"What is the Streaming Validator?"

	
Document Updates For DLF/TransX is enhanced.

	
See Also:

	
Chapter 12, "Using the TransX Utility"

	
Chapter 13, "Data Loading Format (DLF) Specification"

1 Introduction to Oracle XML Developer's Kit

This chapter contains the following topics:

	
Overview of Oracle XML Developer's Kit (XDK)

	
XDK Components

	
XML Document Generation with the XDK Components

	
Development Tools and Frameworks for the XDK

	
Installing the XDK

Overview of Oracle XML Developer's Kit (XDK)

Oracle Oracle XML Developer's Kit (XDK) is a versatile set of components that enables you to build and deploy C, C++, and Java software programs that process XML. You can assemble these components into an XML application that serves your business needs.

	
Note:

Customers using Oracle XDK with PL/SQL and migrating from Oracle Database Release 8.1 or 9.2 are strongly encouraged to use AL32UTF8 as the database character set. Otherwise, issues can arise during PL/SQL processing of XML data that contains escaped entities.

Oracle XDK provides the foundation for the Oracle XML solution. The XDK supports Oracle XML DB, which is a set of technologies used for storage and processing of XML in the database. You can use the XDK in conjunction with Oracle XML DB to build applications that run in Oracle Database. You can also use the XDK independently of XML DB.

XML Date Formatting

Dates and timestamps in generated XML are now in the formats specified by XML Schema. See Oracle Oracle XML DB Developer's Guide, Chapter "Generating XML Data from the Database", section "XMLELEMENT and XMLATTRIBUTES SQL Functions", subsection "Formatting of XML Dates and Timestamps".

The Oracle XDK is fully supported by Oracle and comes with a commercial redistribution license. The standard installation of Oracle Database includes the XDK.

Table 1-1 describes the XDK components, specifies which programming languages are supported, and directs you to sections that describe how to use the components.

Table 1-1 Overview of XDK Components

	Component	Description	Lang.	Refer To
	
XML Parser

	
Creates and parses XML with industry standard DOM and SAX interfaces.

	
Java, C, C++

	
	
Chapter 4, "XML Parsing for Java"

	
Chapter 18, "Using the XML Parser for C"

	
Chapter 25, "Using the XML Parser for C++"

	
XML Compressor

	
Enables binary compression and decompression of XML documents. The compressor is built into the XML parser for Java.

	
Java

	
"Compressing XML"

	
Java API for XML Processing (JAXP)

	
Enables you to use SAX, DOM, XML Schema processor, XSLT processors, or alternative processors, from your Java program.

	
Java

	
"Parsing XML with JAXP"

	
XSLT Processor

	
Transforms XML into other text-based formats such as HTML.

	
Java, C, C++

	
	
Chapter 6, "Using the XSLT Processor for Java"

	
Chapter 17, "Using the XSLT and XVM Processors for C"

	
Chapter 26, "Using the XSLT Processor for C++"

	
XML Schema Processor

	
Validates schemas, allowing use of simple and complex XML datatypes.

	
Java, C, C++

	
	
Chapter 7, "Using the Schema Processor for Java"

	
Chapter 20, "Using the XML Schema Processor for C"

	
Chapter 27, "Using the XML Schema Processor for C++"

	
XML Class Generator

	
Generates Java or C++ classes from DTDs or XML schemas so that you can send XML data from Web forms or applications. The Java implementation supports Java Architecture for XML Binding (JAXB).

	
Java, C++

	
Chapter 8, "Using the JAXB Class Generator" and Chapter 29, "Using the XML Class Generator for C++"

	
XML Pipeline Processor

	
Applies XML processes specified in a declarative XML Pipeline document.

	
Java

	
Chapter 9, "Using the XML Pipeline Processor for Java"

	
XML JavaBeans

	
Provides a set of bean encapsulations of XDK components for ease of use of Integrated Development Environment (IDE), Java Server Pages (JSP), and applets.

	
Java

	
Chapter 10, "Using XDK JavaBeans"

	
XML SQL Utility (XSU)

	
Generates XML documents, DTDs, and Schemas from SQL queries. Maps any SQL query result to XML and vice versa. The XSU Java classes are mirrored by PL/SQL packages.

	
Java, PL/SQL

	
Chapter 11, "Using the XML SQL Utility (XSU)"

	
TransX Utility

	
Loads translated seed data and messages into the database using XML.

	
Java

	
Chapter 12, "Using the TransX Utility"

	
XSQL servlet

	
Combines XML, SQL, and XSLT in the server to deliver dynamic Web content.

	
Java

	
Chapter 14, "Using the XSQL Pages Publishing Framework"

	
Oracle SOAP Server

	
Provides a lightweight SOAP messaging protocol for sending and receiving requests and responses across the Internet.

	
C

	
Chapter 22, "Using SOAP with the C XDK"

	
XSLT Virtual Machine (XVM)

	
Provides a high-performance XSLT transformation engine that supports compiled stylesheets.

	
C, C++

	
"XVM Processor"

	
See Also:

	
Chapter 31, "XDK Standards" to learn about XDK support for XML-related standards

	
"XDK Components" for fuller descriptions of the components listed in Table 1-1

XDK Components

You can use the XDK components to perform various types of XML processing. For example, you can develop programs that do the following:

	
Parse XML

	
Validate XML against a DTD or XML schema

	
Transform an XML document into another XML document by applying an XSLT stylesheet

	
Generate Java and C++ classes from input XML schemas and DTDs

Figure 1-1 illustrates a hypothetical XML processor that performs the preceding tasks.

Figure 1-1 Sample XML Processor

[image: Description of Figure 1-1 follows]

The XDK contains components that you can use in your programs. This section describes the following XDK components, some of which are illustrated in Figure 1-1:

	
XML Parsers

	
XSLT Processors

	
XML Schema Processors

	
XML Class Generators

	
XSQL Pages Publishing Framework

	
XML Pipeline Processor

	
XDK JavaBeans

	
Oracle XML SQL Utility (XSU)

	
TransX Utility

	
Soap Services

	
XSLT Virtual Machine (XVM)

XML Parsers

An XML parser is a processor that reads an XML document and determines the structure and properties of the data. It breaks the data into parts and provides them to other components.

An XML processor can programmatically access the parsed XML data with the following APIs:

	
Use a SAX interface to serially access the data element by element. You can register event handlers with a SAX parser and invoke callback methods when certain events are encountered.Use DOM APIs to represent the XML document as an in-memory tree and manipulate or navigate it.

The XDK includes XML parsers for Java, C, and C++. Each parser includes support for both DOM and SAX APIs.

The XML parser for Java supports version 1.2 of JAXP, which is a standard API that enables use of DOM, SAX, XML Schema, and XSLT independently of a processor implementation. Thus, you can change the implementation of XML processors without impacting your programs.

The XML compressor is integrated into the XML parser for Java. It provides element-level XML compression and decompression with DOM and SAX interfaces. The compressor will compress XML documents without losing the structural and hierarchical information of the DOM tree. After parsing an XML document, you can serialize it with DOM or SAX to a binary stream and then reconstruct it later.

You can use the compressor to reduce the size of XML message payloads, thereby increasing throughput. When used within applications as the internal XML document access, it significantly reduces memory usage while maintaining fast access.

Figure 1-2 illustrates the functionality of the XDK parsers for Java, C, and C++.

Figure 1-2 The XML Parsers for Java, C, and C++

[image: Description of Figure 1-2 follows]

	
See Also:

	
Chapter 4, "XML Parsing for Java"

	
Chapter 18, "Using the XML Parser for C"

	
Chapter 25, "Using the XML Parser for C++"

XSLT Processors

eXtensible Stylesheet Language Transformation (XSLT) is a stylesheet language that enables processors to transform one XML document into another XML document. An XSLT document is a stylesheet that contains template rules that govern the transformation.

The Oracle XSLT processor fully supports the W3C XSL Transformations 1.0 recommendation. The processor also implements also implements the current working drafts of the XSLT and XPath 2.0 standards. It enables standards-based transformation of XML information inside and outside the database on any operating system.

The Oracle XML parsers include an integrated XSLT processor for transforming XML data by means of XSLT stylesheets. By using the XSLT processor, you can transform XML documents from XML to XML, to XHTML, or almost any other text format.

	
See Also:

	
"Using the XSLT Processor for Java: Overview".

	
Specifications and other information are found on the W3C site at http://www.w3.org/Style/XSL

XML Schema Processors

The XML Schema language was created by the W3C to describe the content and structure of XML documents in XML, thus improving on DTDs. An XML schema contains rules that define validity for an XML application. Unlike a DTD, an XML schema is itself written in XML. One of the principal advantages of an XML schema over a DTD is that a schema can specify rules for the content of elements and attributes. An XML schema specifies a set of built-in datatypes, for example, string, float, and date. Users can derive their own datatypes from the built-in datatypes. For example, the schema can restrict dates to those after the year 2000 or specify a list of legal values.

The Oracle XDK includes an XML Schema processor for Java, C, and C++.

	
See Also:

	
Chapter 7, "Using the Schema Processor for Java"

	
Chapter 20, "Using the XML Schema Processor for C"

	
Chapter 27, "Using the XML Schema Processor for C++"

XML Class Generators

An XML class generator is a software program that accepts a parsed XML schema or DTD as input and generates Java or C++ source class files as output. The XDK includes both the JAXB class generator and the C++ class generator.JAXB is a Java API and set of tools that map to and from XML data and Java objects. Because JAXB presents an XML document to a Java program in a Java format, you can write programs that process XML data without having to use a SAX parser or write callback methods. Each object derives from an instance of the schema component in the input document. JAXB does not directly support DTDs, but you can convert a DTD to an XML schema that is usable by JAXB. The XML class generator for C++ supports both DTDs and XML Schemas.

As an example of how to use JAXB, you can write a Java program that uses generated Java classes to build XML documents gradually. Suppose that you write an XML schema for use by a human resources department and a Java program that responds to users who change their personal data. The program can use JAXB to construct an XML confirmation document in a piecemeal fashion, which an XSLT processor can transform into XHTML and deliver to a browser.

Figure 1-3 Oracle JAXB Class Generator

[image: Description of Figure 1-3 follows]

	
See Also:

	
Chapter 8, "Using the JAXB Class Generator"

	
Chapter 29, "Using the XML Class Generator for C++"

XML Pipeline Processor

The XML Pipeline Definition Language is an XML vocabulary for describing the processing relationships between XML resources. A document that is an instance of the pipeline language, that is, that defines the relationship between processes, is a pipeline document. For example, the document can specify that the program should first validate an input XML document and then, if it is valid, transform it.

Oracle XML Pipeline processor conforms to the XML Pipeline Definition Language 1.0 standard. The processor can take an input XML pipeline document and execute the pipeline processes according to the derived dependencies. The pipeline processor helps Java developers by replacing custom Java code with a simple declarative XML syntax for building XML processing applications.

	
See Also:

Chapter 9, "Using the XML Pipeline Processor for Java"

XDK JavaBeans

JavaBeans is a Java API for developing reusable software components that can be manipulated visually in a builder tool. A JavaBean is a Java object that conforms to this API. The Oracle XDK JavaBeans are a collection of visual and non-visual beans that are useful in a variety of XML-enabled Java programs or applets. Table 1-2 summarizes the XDK JavaBeans.

Table 1-2 Summary of XDK JavaBeans

	JavaBean	Description
	
DOMBuilder

	
Builds a DOM Tree from an XML document. This bean is nonvisual.

	
XSLTransformer

	
Accepts an XML file, applies the transformation specified by an input XSLT stylesheet and creates the resulting output file. This bean is nonvisual.

	
DBAccess

	
Maintains CLOB tables that contain multiple XML and text documents.

	
XMLDBAccess

	
Extends the DBAccess bean to support the XMLType column, in which XML documents are stored in an Oracle Database table.

	
XMLDiff

	
Compares two XML DOM trees.

	
XMLCompress

	
Encapsulates the XML compression functionality.

	
XSDValidator

	
Encapsulates the oracle.xml.parser.schema.XSDValidator class and adds capabilities for validating a DOM tree.

	
See Also:

Chapter 10, "Using XDK JavaBeans"

Oracle XML SQL Utility (XSU)

XSU is a set of Java class libraries that you can use to perform the following tasks:

	
Automatically and dynamically render the results of arbitrary SQL queries into canonical XML. XSU supports queries over richly-structured, user-defined object types and object views, including XMLType. When XSU transforms relational data into XML, the resulting XML document has the following structure:

	
Columns are mapped to top-level elements.

	
Scalar values are mapped to elements with text-only content.

	
Object types are mapped to elements with attributes appearing as sub-elements.

	
Collections are mapped to lists of elements.

	
Load data from an XML document into an existing database schema or view.

	
Note:

XSU also has a PL/SQL implementation. The DBMS_XMLQuery and DBMS_XMLSave PL/SQL packages reflect the functions in the OracleXMLQuery and OracleXMLSave Java classes.

Figure 1-4 illustrates how XSU processes SQL queries and returns the results as an XML document.

Figure 1-4 XSU Processes SQL Queries and Returns the Result as XML

[image: Description of Figure 1-4 follows]

Handling or Representing an XML Document

XSU can generate an XML document in any of the following ways:

	
A string representation of the XML document. Use this representation if you are returning the XML document to a requester. An in-memory DOM tree. Use this representation if you are operating on the XML programmatically, for example, transforming it with the XSLT processor by using DOM methods to search or modify the XML. A series of SAX events. You can use this functionality when retrieving XML, especially large documents or result sets.

Using XSU with an XML Class Generator

You can use XSU to generate an XML schema based on the relational schema of the underlying table or view that you are querying. You can use the generated XML schema as input to the JAXB class generator the C++ class generator. You can then write code that uses the generated classes to create the infrastructure behind a Web-based form. Based on this infrastructure, the form can capture user data and create an XML document compatible with the database schema. A program can write the XML directly to the corresponding table or object view without further processing.

	
See Also:

Chapter 11, "Using the XML SQL Utility (XSU)"

TransX Utility

The Oracle TransX utility is a data transfer utility that enables you to populate a database with multilingual XML data. It uses a simple data format that is intuitive for both developers and translators and uses a validation capability that is less error-prone than previous techniques.How is the TransX utility different from XSU? TransX utility is an application of XSU that loads translated seed data and messages into a database schema. If you have data to be populated into a database in multiple languages, then the utility provides the functionality that you would otherwise need to develop with XSU.

	
See Also:

Chapter 12, "Using the TransX Utility"

XSQL Pages Publishing Framework

The XSQL pages publishing framework (XSQL servlet) is a server component that processes an XSQL file, which is an XML file with a specific structure and grammar, and produces dynamic XML documents from one or more SQL queries of data objects. Figure 1-5 shows you can invoke the XSQL servlet.

Figure 1-5 XSQL Pages Publishing Framework

[image: This graphic is described in the surrounding text.]

The XSQL servlet uses the Oracle XML parser to process the XSQL file, passing XSLT processing statements to its internal processor while passing parameters and SQL statements between the tags to XSU. Results from those queries are received as XML-formatted text or a JDBC ResultSet object. If necessary, you can further transform the query results by using the built-in XSLT processor.

One example of an XSQL servlet is a page that contains a query of flight schedules for an airline with a bind variable for the airport name. The user can pass an airport name as a parameter in a web form. The servlet binds the parameter value in its database query and transforms the output XML into HTML for display in a browser.

	
See Also:

Chapter 14, "Using the XSQL Pages Publishing Framework"

Soap Services

Simple Object Access Protocol (SOAP) is a platform-independent messaging protocol that enables programs to access services, objects, and servers. Oracle SOAP Services is published and executed through the Web and provides the standard XML message format for all programs. With SOAP Services, you can use the XDK to develop messaging, RPC, and Web service programs with XML standards.

	
See Also:

Chapter 22, "Using SOAP with the C XDK"

XSLT Virtual Machine (XVM)

The XVM for C/C++ is the software implementation of a CPU designed to run compiled XSLT code. To run this code, you need to compile XSLT stylesheets into byte code that the XVM engine understands. Figure 1-6 illustrates how the XVM processes XML and XSL.

Figure 1-6 XSLT Virtual Machine

[image: This graphic is described in the surrounding text.]

The XDK includes an XSLT compiler that is compliant with the XSLT 1.0 standard. The compilation can occur at runtime or be stored for runtime retrieval. Applications perform transformations more quickly with higher throughput because the stylesheet does not need to be parsed and the templates are applied based on an index lookup instead of an XML operation.

	
See Also:

"XVM Processor"

XML Document Generation with the XDK Components

The XDK enables you to map the structure of an XML document to a relational schema. You can use the XDK to establish a two-way path to an Oracle database in which your program creates XML documents from tables and inserts XML-tagged data into tables. Each XDK programming language supports the development of programs that generate XML documents from relational data.

This section contains the following topics:

	
XML Document Generation with Java

	
XML Document Generation with C

	
XML Document Generation with C++

XML Document Generation with Java

As shown in Figure 1-7, you can execute a SQL query against the database in three different ways. Table 1-3 describes the alternatives.

Table 1-3 Generating XML in Java

	Technology	Label in Figure 1-7	Description
	
XSQL Servlet

	
A

	
Includes XSU and the XML parser

	
XSU

	
B

	
Includes XML parser

	
JDBC

	
C

	
Sends output data to the XML parser

Figure 1-7 Sample XML Processor Built with Java XDK Components

[image: Description of Figure 1-7 follows]

Regardless of how your software program generates the XML from the database, Figure 1-7 illustrates possible further processing that your program can perform on the XML document. Table 1-4 describes some of the components that you can use to perform this additional processing.

Table 1-4 Additional Document Processing with the Java XDK

	Technology	Label in Figure 1-7	Description
	
JAXB

	
D

	
Generates Java class files that correspond to an input XML Schema

	
JavaBeans

	
E

	
Can compare an XML document with another XML document

	
XSLT

	
F

	
Transforms the XML document into XHTML with an XSLT stylesheet

XML Document Generation with C

Figure 1-8 illustrates the Oracle XDK C language components that you can use to generate XML documents from relational data. The XDK C components are listed in Table 1-1.

Figure 1-8 Generating XML Documents with XDK C Components

[image: Description of Figure 1-8 follows]

As illustrated in Figure 1-8, you can use the XDK to develop a C program that processes an XML document as follows:

	
Send SQL queries to the database by the Oracle Call Interface (OCI) or the Pro*C/C++ Precompiler. The program must leverage the XML DB XML view functionality.

	
Process the resulting XML data with the XML parser or from the CLOB as an XML document.

	
Transform the document with the XSLT processor, send it to an XML-enabled browser, or send it for further processing to a software program.

XML Document Generation with C++

Figure 1-9 shows the Oracle XDK C++ components that you can use to generate XML documents. The XDK C++ components are listed in Table 1-1.

Figure 1-9 Generating XML Documents Using XDK C++ Components

[image: Description of Figure 1-9 follows]

As illustrated in Figure 1-9, you can use the XDK to develop a C++ program that processes an XML document as follows:

	
Send SQL queries to the database by the Oracle C++ Call Interface (OCCI) or the Pro*C/C++ Precompiler.

	
Process the resulting XML data with the XML parser or from the CLOB as an XML document.

	
Transform the document with the XSLT processor, send it to an XML-enabled browser, or send it for further processing to a software program.

Development Tools and Frameworks for the XDK

Figure 1-10 illustrates some of the tools and frameworks that you can use to develop software programs that use XDK components. For example, you can use Oracle JDeveloper to write a Java client that can query the database, generate XML, and perform additional processing. An employee can then use this program to send a query to an Oracle database. The program can transfer XML documents to XML-based business solutions for data exchange with other users, content and data management, and so forth.

Figure 1-10 XDK Tools and Frameworks

[image: Description of Figure 1-10 follows]

This section describes some of the tools and frameworks that you can use in e-business development:

	
Oracle JDeveloper

	
User Interface XML (UIX)

	
Oracle Reports

	
Oracle XML Gateway

	
Oracle Data Provider for .NET

Oracle JDeveloper

Oracle JDeveloper is a J2EE development environment with end-to-end support for developing, debugging, and deploying e-business applications. JDeveloper provides a comprehensive set of integrated tools that support the complete development life cycle, from source code control, modeling, and coding through debugging, testing, profiling, and deployment. JDeveloper simplifies development by providing deployment tools to create J2EE components such as the following:

	
Applets

	
JavaBeans

	
Java Server Pages (JSP)

	
Servlets

	
Enterprise JavaBeans (EJB)

JDeveloper also provides a public API to extend and customize the development environment and integrate it with external products.

The Oracle XDK is integrated into JDeveloper, offering many ways to manage XML. For example, you can use the XSQL Servlet to perform the following tasks:

	
Query and manipulate database information

	
Generate XML documents

	
Transform XML with XSLT stylesheets

	
Deliver XML on the Web

JDeveloper has an integrated XML schema-driven code editor for working on XML Schema-based documents such as XML schemas and XSLT stylesheets. By specifying the schema for a certain language, the editor can assist you in creating a document in that markup language. You can use the Code Insight feature to provide a list of valid alternatives for XML elements or attributes in the document.

Oracle JDeveloper simplifies the task of working with Java application code and XML data and documents at the same time. It features drag-and-drop XML development modules such as the following:

	
Color-coded syntax highlighting for XML

	
Built-in syntax checking for XML and XSL

	
Editing support for XML schema documents

	
XSQL Pages and Servlet support

	
Oracle's XML parser for Java

	
XSLT processor

	
XDK for JavaBeans components

	
XSQL Page Wizard

	
XSQL Action Handlers

	
Schema-driven XML editor

	
See Also:

	
http://www.oracle.com/technology/products/jdev/ for links to JDeveloper documentation and tutorials

	
http://www.oracle.com/technology/forums for the online discussion forum for JDeveloper

User Interface XML (UIX)

UIX (User Interface XML) is a framework for developing XML-enabled Web applications. The main focus of UIX is the user presentation layer of a program, with additional functionality for managing events and application flow. You can use UIX to create programs with page-based navigation, such as an online human resources program, rather than full-featured programs requiring advanced interaction, such as an integrated development environment (IDE).

	
See Also:

	
http://www.oracle.com/technology/sample_code/products/jdev/content.html for sample JDeveloper Demonstration code for UIX

	
JDeveloper online help for the complete UIX Developer's Guide

Oracle Reports

Oracle Reports Developer and Reports Server is a development tool that enables you to build and publish dynamically generated Web reports. A wizard expedites the use of each major task. Report templates and live data previews allow you to customize the report structure. You can publish reports throughout the enterprise through a standard Web browser in formats such as the following:

	
XML

	
HTML with or without CSS

	
PDF

	
Text

	
RTF

	
PostScript

	
PCL

	
See Also:

http://www.oracle.com/technology/products/reports for links to Oracle Reports documentation

Oracle XML Gateway

Oracle XML Gateway is a set of services that enables integration with the Oracle E-Business Suite to create and consume XML messages triggered by business events. It integrates with Oracle Streams Advanced Queuing to enqueue and dequeue a message, which it can then transmit to or from the business partner through any message transport agent.

	
See Also:

	
Oracle Streams Advanced Queuing User's Guide

	
Oracle XML DB Developer's Guide

Oracle Data Provider for .NET

Oracle Data Provider for .NET (ODP.NET) is an implementation of a data provider for the Oracle Database. ODP.NET uses Oracle native APIs to offer fast and reliable access to Oracle data and features from any .NET application and also uses and inherits classes and interfaces available in the Microsoft .NET Framework Class Library.

You can use ODP.NET and the XDK to extract data from relational and object-relational tables and views as XML documents. The use of XML documents for insert, update, and delete operations to the database server is also allowed. ODP.NET supports XML natively in the database through XML DB.

ODP.NET supports XML with features that:

	
Store XML data natively in the database server as the Oracle native type XMLType.

	
Access relational and object-relational data as XML data from an Oracle Database instance into Microsoft .NET environment and process the XML with the Microsoft .NET framework.

	
Save changes to the database server with XML data.

For the .NET application developer, features include the following:

	
Enhancements to the OracleCommand, OracleConnection, and OracleDataReader classes

	
XML-specific classes:

	
OracleXmlType

	
OracleXmlStream

	
OracleXmlQueryProperties

	
OracleXmlSaveProperties

	
See Also:

Oracle Data Provider for .NET Developer's Guide

Installing the XDK

This section assumes that you installed Oracle Database from either CD-ROM or from an archive downloaded from Oracle Technology Network (OTN). The Oracle Database CD installs the Oracle XDK by default. Note that you must install the demo programs from the Oracle Database Examples media to obtain the XDK demos. This manual presumes that you have access to the XDK demos programs.

After installing Oracle Database and the demos from the Oracle database Examples media, your Oracle Database home should be set up as follows:

- Oracle_home_directory
 | - bin: includes XDK executables
 | - lib: includes XDK libraries
 | - jlib: includes Globalization Support libraries for the XDK
 | - nls: includes binary files used as part of globalization support
 | - xdk: XDK scripts, message files, documentation, and demos
 readme.html
 | - admin: SQL scripts and XSL Servlet Configuration
 file (XSQLConfig.xml)
 | - demo: sample programs (installed from Oracle Database Examples media)
 | - c
 | - cpp
 | - java
 | - jsp
 | - doc: release notes and readme
 content.html
 index.html
 license.html
 title.html
 | - cpp
 | - images
 | - java
 | - include: header files
 | - mesg: error message files

The directory that contains the XDK is called the XDK home. Set the $XDK_HOME environment variable (UNIX) or the %XDK_HOME% variable (Windows) to the XDK directory in your Oracle home. For example, you can set use csh on UNIX to set the XDK home as follows:

setenv XDK_HOME $ORACLE_HOME/xdk

	
See Also:

	
Chapter 3, "Getting Started with Java XDK Components"

	
Chapter 16, "Getting Started with C XDK Components"

	
Chapter 23, "Getting Started with C++ XDK Components"

2 Unified Java API for XML

This chapter introduces you to the Unified Java API for XMLType and provides information about the APIs that are unified for Oracle XML DB and Oracle XML Developer's Kit.

This chapter contains these topics:

	
Overview of Unified Java API

	
Component Unification

	
Moving to the Unified Java API Model

Overview of Unified Java API

Unified Java API is a programming interface that combines the functionality required by both Oracle XDK and Oracle XML DB. Oracle XML DB implements Java DOM API using the Java package oracle.xdb.dom and Oracle XML Developer's Kit implements it using the oracle.xml.parser.v2 package. With Unified Java APIs, you can use a unified set of core DOM APIs required by both Oracle XDK and Oracle XML DB, as well as make use of the new Java classes that provide extra functionality that is built on top of the DOM API.

You can use Unified Java APIs irrespective of how your XML data is stored, that is, whether it resides within or outside the database. This is because Unified Java APIs use a session pool model of connection management. If you do not specify the connection type as thick (that uses OCI APIs and is C-based) or thin (that uses JDBC APIs and is pure Java-based), then Java Document Object Model (DOM) APIs are used for connecting to a local document object that is not stored in the database.

	
See Also:

Oracle Database XML Java API Reference for information about the oracle.xml.parser.v2 package.

Component Unification

Certain components that were either supported by only the thick connection or the thin connection have been unified in the Unified Java API model. The components that were earlier supported by thin connection but have been unified include:

	
DOM Parser

	
JAXP Transformer

	
XSU

	
XSLT

Moving to the Unified Java API Model

Unified Java API provides new Java classes that replace the old oracle.xdb.dom Java classes. All classes in the oracle.xdb.dom package have been deprecated. If you are using any of the old classes, you need to migrate to the new Unified Java API and use the oracle.xml.parser.v2 classes instead.

Java DOM APIs for XMLType Classes

Table 2-1 lists the oracle.xdb.dom package classes that have been deprecated in the Oracle Database 11g release 1.

Table 2-1 Deprecated XDB Package Classes And Their Unified Java API Equivalent

	oracle.xdb.dom.* classes	oracle.xml.parser.v2 (Unified Java API) classes
	
XDBAttribute

	
XMLAttr

	
XDBBinaryDocument

	
This has been deprecated and has no replacement in the Java DOM API XMLType classes

	
XDBCData

	
XMLCDATA

	
XDBCharData

	
CharData

	
XDBComment

	
XMLComment

	
XDBDocFragment

	
XMLDocumentFragment

	
XDBDocument

	
XMLDocument

	
XDBDocumentType

	
DTD

	
XDBDOMException

	
XMLDomException

	
XDBDomImplementation

	
XMLDomImplementation

	
XDBDOMNotFoundErrException

	
This has been deprecated and has no replacement in the Java DOM API XMLType classes

	
XDBElement

	
XMLElement

	
XDBEntity

	
XMLEntity

	
XDBEntityReference

	
XMLEntityReference

	
XDBNamedNodeMap

	
XMLAttrList

	
XDBNode

	
XMLNode

	
XDBNotation

	
XMLNotation

	
XDBNotImplementedException

	
This has been deprecated and has no replacement in the Java DOM API XMLType classes

	
XDBProcInst

	
XMLPI

	
XDBText

	
XMLText

When you use the Java DOM API to retrieve XML data, you either get an XMLDocument instance if the connection is thin, or an XDBDocument instance with method getDOM() and an XMLDocument instance with method getDocument(). Both XMLDocument and XDBDocument are instances of the W3C DOM interface. The getDOM() method and XDBDocument class have been deprecated in the Unified Java APIs. Table 2-2 lists the new methods and classes that are supported with the current release.

Table 2-2 Deprecated XMLType Methods

	oracle.xdb.XMLType old API	oracle.xdb.XMLType new API
	
getDOM()

	
getDocument()

	
public XMLType createXML(...)

	
public XMLType createXML(..., int kind) where kind is either XMLDocument.THICK or XMLDocument.THIN

Extension APIs

In addition to the W3C Recommendation, the Unified Java API implementation provides some extension APIs that extend the W3C DOM APIs in various ways. You can use the Oracle-specific extension APIs for either performing the basic functions like connecting to a database or for performance enhancement.

XMLDocument is a class that represents the DOM for the instantiated XML document. You can retrieve the XMLType value from the XML document using the XMLType constructor that takes a Document argument:

XMLType createXML(Connection conn, Document domdoc)

Use the freeNode() extension API available in the oracle.xml.parser.v2 package (XMLNode class) for manual dereferencing of nodes. When you use freeNode(), you explicitly dereference a document fragment from the DOM tree.

Document Creation Java APIs

The unified Java APIs that create an XMLDocument must create either a thin document or a thick document. A thick document requires a Connection object in order to establish communication with the database. So the creation APIs are extended to accept a Connection object.

	
Note:

You must specify the Connection type. Old document creation APIs are still supported for backward compatibility.

For XMLType.createXML APIs, Connection determines the type of object and for other APIs, a thin (pure Java) object is created if not explicitly specified.

Table 2-3 lists the XMLDocument output, based on the KIND and Connection property:

Table 2-3 XMLDocument Output Based on XMLDocument.KIND and XMLDocument.CONNECTION

	XMLDocument.KIND	XMLDocument.CONNECTION	XMLDocument
	
XMLDocument.THICK

	
Thick or KPRB connection

	
Thick DOM

	
XMLDocument.THICK

	
Thin or no connection

	
Exception

	
XMLDocument.THIN

	
Any connection type

	
Thin DOM

	
Not specified

	
Any connection type

	
Non-XMLType APIs. Thin DOM

XMLType.createXML APIs - Based on connection type. That is, Thick DOM for OCI or KPRB connection, and Thin DOM for a Thin connection.

The following objects and methods are provided for document creation in the unified Java API model:

	
DOMParser object and parse() method: Use the DOMParser object and parse() method to parse XML documents. You must specify the type of object, that is, thick or thin. For thick objects, you must also provide the Connection property using the DOMParser.setAttribute() API. For example:

DOMParser parser = new oracle.xml.parser.v2.DOMParser();
parser.setAttribute(XMLDocument.KIND, XMLDocument.THICK);
parser.setAttribute(XMLDocument.CONNECTION, conn);

	
DocumentBuilder object: Use the DocumentBuilder object to parse XML document using the Java-specific API, JAXP. You need to create a DOM parser factory with the DocumentBuilderFactory class. The DocumentBuilderFactory class then passes the connection into the DOMParser, which is used to create the document from these APIs.

	
DocumentBuilder builds DOM from input SAX events. This takes the Connection from a property set on the DocumentBuilderFactory. For example:

DocumentBuilderFactory.setAttribute(XMLDocument.CONNECTION, conn);
DocumentBuilderFactory.setAttribute(XMLDocument.KIND,XMLDocument.THICK);

DocumentBuilderFactory passes the connection into the DOMParser that is used to create the document from the following APIs:

DocumentBuilder.newDocument()
DocumentBuilder parse(InputStream)
DocumentBuilder parse(InputStream, int)
DocumentBuilder.parse(InputSource)

	
XSU: These methods return an XMLDocument to the user. You can specify whether they want a thick or thin object:

OracleXMLUtil util = new OracleXMLUtil(...);
util.setAttribute(XMLDocument.KIND, XMLDocument.THICK);
util.setAttribute(XMLDocument.CONNECTION, conn);
Document doc = util.getXMLDOMFromStruct(struct, enc);

OracleXMLQuery query = new OracleXMLQuery(...);
query.setAttribute(XMLDocument.KIND, XMLDocument.THICK);
query.setAttribute(XMLDocument.CONNECTION, conn);
Document doc = query.getXMLDOM (root, meta);

OracleXMLDocGenDOM dgd = new OracleXMLDocGenDOM(...);
dgd.setAttribute(XMLDocument.KIND, XMLDocument.THICK);
dgd.setAttribute(XMLDocument.CONNECTION, conn);
Document doc = dgd.getXMLDocumentDOM(struct, enc);

	
XMLType: Using the getDocument() method, you can specify whether you want a thick or thin object. All existing XMLType methods are still available. In this example, the connection is inferred from the OPAQUE:

XMLType xt = XMLType.createXML(orset.getOPAQUE(1), XMLDocument.THICK);
Document doc = xt.getDocument();

One known case that will not allow for the user to specify the type is the case of an XMLType that is created using the ResultSet.getObject() API. If a user has a table with an XMLType column, and the user selects of this column, the user can call getObject() on the ResultSet. This will return an XMLType object. The type is determined by the Connection used in the JDBC call to fetch the column.

3 Getting Started with Java XDK Components

This chapter contains these topics:

	
Installing Java XDK Components

	
Java XDK Component Dependencies

	
Setting Java XDK Environment Variables for UNIX

	
Setting Java XDK Environment Variables for Windows

	
Verifying the Java XDK Components Version

Installing Java XDK Components

The Java XDK components are included with Oracle Database. This chapter assumes that you have installed XDK with Oracle Database and also installed the demo programs on the Oracle Database Examples media. Refer to "Installing the XDK" for installation instructions and a description of the XDK directory structure.

Example 3-1 shows the UNIX directory structure for the XDK demos and the libraries used by the XDK components. The $ORACLE_HOME/xdk/demo/java subdirectories contain sample programs and data files for the XDK for Java components. The chapters in Part I, "XDK for Java" explain how to understand and use these programs.

Example 3-1 Java XDK Libraries, Utilities, and Demos

- Oracle_home_directory
 | - bin/
 orajaxb
 orapipe
 oraxml
 oraxsl
 transx
 | - lib/
 classgen.jar
 jdev-rt.zip
 oraclexsql.jar
 transx.zip
 xml.jar
 xml2.jar
 xmlcomp.jar
 xmlcomp2.jar
 xmldemo.jar
 xmlmesg.jar
 xmlparserv2.jar
 xschema.jar
 xsqlserializers.jar
 xsu12.jar
 | - jlib/
 orai18n.jar
 orai18n-collation.jar
 orai18n-mapping.jar
 orai18n-utility.jar
 | - jdbc/
 | - lib/
 ojdbc5.jar
 | - rdbms/
 | - jlib/
 xdb.jar

 | - xdk/
 | demo/
 | - java/
 | - classgen/
 | - jaxb/
 | - parser/
 | - pipeline/
 | - schema/
 | - transviewer/
 | - tranxs/
 | - xsql/
 | - xsu/

The subdirectories contain sample programs and data files for the Java XDK components. The chapters in Part I, "XDK for Java" explain how to use these programs to gain an understanding of the most important Java features.

Java XDK Component Dependencies

The Java XDK components are certified and supported with JDK version 5 and version 6. Earlier versions of Java are no longer supported. Figure 3-1 shows the dependencies of Java XDK components when using JDK 5.

Figure 3-1 Java XDK Component Dependencies for JDK 5

[image: Description of Figure 3-1 follows]

The Java XDK components require the libraries alphabetically listed in Table 3-1. Note that some of the libraries are not specific to the XDK, but are shared among other Oracle Database components.

Table 3-1 Java Libraries for XDK Components

	Library	Directory	Includes . . .
	
classgen.jar

	
$ORACLE_HOME/lib

	
XML class generator for Java runtime classes.

Note: This library is maintained for backward compatibility only. You should use the JAXB class generator in xml.jar instead.

	
jdev-rt.zip

	
$ORACLE_HOME/lib

	
Java GUI libraries for use when working with the demos with the JDeveloper IDE.

	
ojdbc5.jar, ojdbc6.jar

	
$ORACLE_HOME/jdbc/lib

	
Oracle JDBC drivers for Java 5, 6. This JAR depends on orai18n.jar for character set support if you use a multibyte character set other than UTF-8, ISO8859-1, or JA16SJIS.

	
oraclexsql.jar

	
$ORACLE_HOME/lib

	
Most of the XSQL Servlet classes needed to construct XSQL pages.

Note: This archive is superseded by xml.jar and is maintained for backward compatibility only.

	
orai18n.jar

	
$ORACLE_HOME/jlib

	
Globalization support for JDK 1.2 or above. It is a wrapper of all other Globalization jars and includes character set converters. If you use a multibyte character set other than UTF-8, ISO8859-1, or JA16SJIS, then place this archive in your CLASSPATH so that JDBC can convert the character set of the input file to the database character set when loading XML files with XSU, TransX Utility, or XSQL Servlet.

	
orai18n-collation.jar

	
$ORACLE_HOME/jlib

	
Globalization collation features: the OraCollator class and the lx3*.glb and lx4001[0-9].glb files.

	
orai18n-mapping.jar

	
$ORACLE_HOME/jlib

	
Globalization locale and character set name mappings: the OraResourceBundle class and lx4000[0-9].glb files. This archive is mainly used by the products that need only locale name mapping tables.

	
orai18n-utility.jar

	
$ORACLE_HOME/jlib

	
Globalization locale objects: the OraLocaleInfo class, the OraNumberFormat and OraDateFormat classes, and the lx[01]*.glb files.

	
transx.zip

	
$ORACLE_HOME/lib

	
TransX Utility classes.

Note: This archive is replaced by xml.jar and is retained for backward compatibility only.

	
xdb.jar

	
$ORACLE_HOME/rdbms/jlib

	
Classes needed by xml.jar and xmlcomp2.jar to access XMLType. It also includes classes needed to access the XML DB Repository as well as the XMLType DOM classes for manipulation of the DOM tree.

	
xml.jar

	
$ORACLE_HOME/lib

	
Classes from the following libraries:

	
oraclexsql.jar

	
xsqlserializers.jar

	
xmlcomp.jar

	
xmlcomp2.jar

	
transx.jar

The archive also contains the JAXB and Pipeline Processor classes.

	
xmlcomp.jar

	
$ORACLE_HOME/lib

	
XML JavaBeans that do not depend on the database: DOMBuilder, XSLTransformer, DBAccess, XSDValidator, and XMLDiffer.

Note: This archive is included for backward compatibility only because its classes are included in xml.jar. They do not include the visuals Beans included in previous releases.

	
xmlcomp2.jar

	
$ORACLE_HOME/lib

	
XML JavaBeans that depend on the database: XMLDBAccess and XMLCompress. Thus, it depends on xdb.jar, which includes the classes that support XML DB.

Note: This JAR is included for backward compatibility only because its classes are included in xml.jar. They do not include the visuals Beans included in previous releases.

	
xmldemo.jar

	
$ORACLE_HOME/lib

	
The visual JavaBeans: XMLTreeView, XMLTransformPanel, XMLSourceView, and DBViewer.

	
xmlmesg.jar

	
$ORACLE_HOME/lib

	
Needed if you use XML parser with a language other than English.

	
xmlparserv2.jar

	
$ORACLE_HOME/lib

	
APIs for the following:

	
DOM and SAX parsers

	
XML Schema processor

	
XSLT processor

	
XML compression

	
JAXP

	
Utility functionality such as XMLSAXSerializer and asynchronous DOM Builder

This library includes xschema.jar.

	
xschema.jar

	
$ORACLE_HOME/lib

	
Includes the XML Schema classes contained in xmlparserv2.jar.

Note: This JAR file is maintained for backward compatibility only.

	
xsqlserializers.jar

	
$ORACLE_HOME/lib

	
Serializer classes for XSQL Servlet needed for serialized output such as PDF.

Note: This archive is superseded by xml.jar and is maintained for backward compatibility only.

	
xsu12.jar

	
$ORACLE_HOME/lib

	
Classes that implement XSU. These classes have a dependency on xdb.jar for XMLType access.

	
See Also:

	
Oracle Database Globalization Support Guide to learn about the Globalization Support libraries

	
Oracle Database JDBC Developer's Guide and Reference to learn about the JDBC libraries

	
Oracle XML DB Developer's Guide to learn about XML DB

Setting Up the Java XDK Environment

In the Oracle Database installation of the XDK, you must manually set the $CLASSPATH (UNIX) or %CLASSPATH% (Windows) environment variables. Alternatively, set the -classpath option when compiling and running Java programs at the command line.

This section contains the following topics:

	
Setting Java XDK Environment Variables for UNIX

	
Setting Java XDK Environment Variables for Windows

Setting Java XDK Environment Variables for UNIX

Table 3-2 describes the UNIX environment variables required for use with the Java XDK components.

Table 3-2 UNIX Environment Settings for Java XDK Components

	Variable	Description
	
$CLASSPATH

	
Includes the following (note that a single period "." to represent the current directory is not required but may be useful):

.:${CLASSPATHJ}:${ORACLE_HOME}/lib/xmlparserv2.jar:
${ORACLE_HOME}/lib/xsu12.jar:${ORACLE_HOME}/lib/xml.jar

	
$CLASSPATHJ

	
For JDK 5, set as follows:

CLASSPATHJ=${ORACLE_HOME}/jdbc/lib/ojdbc5.jar:${ORACLE_HOME}/jlib/orai18n.jar

The orai18n.jar is needed to support certain character sets.

	
$JAVA_HOME

	
Installation directory for the Java JDK, Standard Edition. Modify the path that links to the Java SDK.

	
$LD_LIBRARY_PATH

	
For OCI JDBC connections:

${ORACLE_HOME}/lib:${LD_LIBRARY_PATH}

	
$PATH

	
${JAVA_HOME}/bin

Testing the Java XDK Environment on UNIX

Table 3-3 describes the command-line utilities included in the Java XDK on UNIX. Before you can use these utilities, you must set up your environment.

Table 3-3 Java XDK Utilities

	Executable/Class	Directory/JAR	Description
	
xsql

	
$ORACLE_HOME/bin

	
XSQL command-line utility. The script executes the oracle.xml.xsql.XSQLCommandLine class. Edit this shell script for your environment before use.

See Also: "Using the XSQL Pages Command-Line Utility"

	
OracleXML

	
$ORACLE_HOME/lib/xsu12.jar

	
XSU command-line utility

See Also: "Using the XSU Command-Line Utility"

	
orajaxb

	
$ORACLE_HOME/bin

	
JAXB command-line utility

See Also: "Using the JAXB Class Generator Command-Line Utility"

	
orapipe

	
$ORACLE_HOME/bin

	
Pipeline command-line utility

See Also: "Using the XML Pipeline Processor Command-Line Utility"

	
oraxml

	
$ORACLE_HOME/bin

	
XML parser command-line utility

See Also: "Using the XML Parser Command-Line Utility"

	
oraxsl

	
$ORACLE_HOME/bin

	
XSLT processor command-line utility

See Also: "Using the XSLT Processor Command-Line Utility"

	
transx

	
$ORACLE_HOME/bin

	
TransX command-line utility

See Also: "Using the TransX Command-Line Utility"

If your environment is set up correctly, then the UNIX shell script shown in Example 3-2 should generate version and usage information for the utilities.

Example 3-2 Testing the Java XDK Environment on UNIX

#!/usr/bin/tcsh
echo;echo "BEGIN TESTING";echo
echo;echo "now testing the XSQL utility...";echo
xsql
echo; echo "now testing the XSU utility...";echo
java OracleXML
echo;echo "now testing the JAXB utility...";echo
orajaxb -version
echo;echo "now testing the Pipeline utility...";echo
orapipe -version
echo;echo "now testing the XSLT Processor utility...";echo
oraxsl
echo;echo "now testing the TransX utility...";echo
transx
echo;echo "END TESTING"

Setting Java XDK Environment Variables for Windows

Table 3-4 describes the Windows environment variables required for use with the Java XDK components.

Table 3-4 Windows Environment Settings for Java XDK Components

	Variable	Notes
	
%CLASSPATH%

	
Includes the following (note that a single period "." to represent the current directory is not required but may be useful):

.;%CLASSPATHJ%;%ORACLE_HOME%\lib\xmlparserv2.jar;
%ORACLE_HOME%\lib\xsu12.jar;%ORACLE_HOME%\lib\xml.jar;
%ORACLE_HOME%\lib\xmlmesg.jar;%ORACLE_HOME%\lib\oraclexsql.jar

	
%CLASSPATHJ%

	
For JDK 5, set as follows:

CLASSPATHJ=%ORACLE_HOME%\jdbc\lib\ojdbc5.jar:%ORACLE_HOME%\lib\orai18n.jar

The orai18n.jar is needed to support certain character sets.

	
%JAVA_HOME%

	
Installation directory for the Java SDK, Standard Edition. Modify the path that links to the Java SDK.

	
%PATH%

	
%JAVA_HOME%\bin

Testing the Java XDK Environment on Windows

Table 3-5 describes the command-line utilities included in the Java XDK on Windows. Before you can use these utilities, you must set up your environment.

Table 3-5 Java XDK Utilities

	Batch File/Class	Directory/JAR	Description
	
xsql.bat

	
%ORACLE_HOME%\bin

	
XSQL command-line utility. The batch file executes the oracle.xml.xsql.XSQLCommandLine class. Edit the batch file for your environment before use.

See Also: "Using the XSQL Pages Command-Line Utility"

	
OracleXML

	
%ORACLE_HOME%\lib\xsu12.jar

	
XSU command-line utility

See Also: "Using the XSU Command-Line Utility"

	
orajaxb.bat

	
%ORACLE_HOME%\bin

	
JAXB command-line utility

See Also: "Using the JAXB Class Generator Command-Line Utility"

	
orapipe.bat

	
%ORACLE_HOME%\bin

	
Pipeline command-line utility

See Also: "Using the XML Pipeline Processor Command-Line Utility"

	
oraxml.bat

	
%ORACLE_HOME%\bin

	
XML parser command-line utility

See Also: "Using the XML Parser Command-Line Utility"

	
oraxsl.bat

	
%ORACLE_HOME%\bin

	
XSLT processor command-line utility

See Also: "Using the XSLT Processor Command-Line Utility"

	
transx.bat

	
%ORACLE_HOME%\bin

	
TransX command-line utility

See Also: "Using the TransX Command-Line Utility"

If your environment is set up correctly, then you can run the commands in Example 3-3 at the system prompt to generate version and usage information for the utilities.

Example 3-3 Testing the Java XDK Environment on Windows

xsql.bat
java OracleXML
orajaxb.bat -version
orapipe.bat -version
oraxsl.bat
transx.bat

Verifying the Java XDK Components Version

To obtain the version of XDK you are working with, use javac to compile the Java code shown in Example 3-4.

Example 3-4 XDKVersion.java

//
// XDKVersion.java
//
import java.net.URL;
import oracle.xml.parser.v2.XMLParser;
public class XDKVersion
{
 static public void main(String[] argv)
 {
 System.out.println("You are using version: ");
 System.out.println(XMLParser.getReleaseVersion());
 }
}

After compiling the source file with javac, run the program on the operating system command line as follows:

java XDKVersion
You are using version:
Oracle XML Developers Kit 11.1.0.6.0 - Production

6 Using the XSLT Processor for Java

This chapter contains these topics:

	
Introduction to the XSLT Processor

	
Using the XSLT Processor for Java: Overview

	
Transforming XML

	
Programming with Oracle XSLT Extensions

	
Tips and Techniques for Transforming XML

Introduction to the XSLT Processor

This section contains the following topics:

	
Prerequisites

	
Standards and Specifications

	
XML Transformation with XSLT 1.0 and 2.0

Prerequisites

XSLT is an XML-based language that you can use to transform one XML document into another text document. For example, you can use XSLT to accept an XML data document as input, perform arithmetic calculations on element values in the document, and generate an XHTML document that shows the calculation results.In XSLT, XPath is used to navigate and process elements in the source node tree. XPath models an XML document as a tree made up of nodes; the types of nodes in the XPath node tree correspond to the types of nodes in a DOM tree.

This chapter assumes that you are familiar with the following W3C standards:

	
eXtensible Stylesheet Language (XSL) and eXtensible Stylesheet Language Transformation (XSLT). If you require a general introduction to XSLT, consult the XML resources listed in "Related Documents" of the preface.

Standards and Specifications

XSLT is currently available in two versions: a working draft for XSLT 2.0 and the XSLT 1.0 Recommendation. You can find the specifications at the following URLs:

	
http://www.w3.org/TR/xslt20/

	
http://www.w3.org/TR/xslt

XPath, which is the navigational language used by XSLT and other XML languages, is available in two versions: a working draft for XPath 2.0 and the XPath 1.0 Recommendation. You can find the specifications for the two XPath versions at the following URLs:

	
http://www.w3.org/TR/xpath20/

	
http://www.w3.org/TR/xpath

Oracle XDK XSLT processor implements both the XSLT and XPath 1.0 standards as well as the current working drafts of the XSLT and XPath 2.0 standards. The XDK XSLT processor supports the XPath 2.0 functions and operators. You can find the specification at the following URL:

http://www.w3.org/TR/xpath-functions/

	
See Also:

Chapter 31, "XDK Standards" for a summary of the standards supported by the XDK

XML Transformation with XSLT 1.0 and 2.0

In Oracle Database 10g, the XDK provides several useful features not included in XSLT 1.0. To use XSLT 2.0, set the version attribute in your stylesheet as follows:

<? xml-stylesheet version="2.0" ... ?>

Some of the most useful XSLT 2.0 features are the following:

	
User-defined functions

You can use the <xsl:function> declaration to define functions. This element must have one name attribute to define the function name. The value of the name attribute is a QName. The content of the <xsl:function> element is zero or more xsl:param elements that specify the formal arguments of the function, followed by a sequence constructor that defines the value returned by the function.

Note that QName can have a null namespace, but user-defined functions must have a non-null namespace. That is, if abc is defined as a namespace, then add is not a legal user-defined function, but abc:add is.

	
Grouping

You can use the <xsl:for-each-group> element, current-group() function, and current-grouping-key() function to group items.

	
Multiple result documents

You can use the <xsl:result-document> element to create a result tree. The content of the <xsl:result-document> element is a sequence constructor for the children of the document node of the tree.

For example, this element enables you to accept an XML document as input and break it into separate documents. You can take an XML document that describes a list of books and generate an XHTML document for each book. You can then validate each output document.

	
Temporary trees

Instead of representing the intermediate XSL transformation results and XSL variables as strings, as in XSLT 1.0, you can store them as a set of document nodes. The document nodes, which you can construct with the <xsl:variable>, <xsl:param>, and <xsl:with-param> elements, are called temporary trees.

	
Character mapping

In XSLT 1.0, you had to use the disable-output-escaping attribute of the <xsl:text> and <xsl:value-of> elements to specify character escaping. In XSLT 2.0, you can declare mapping characters with an <xsl:character-map> element as a top level stylesheet element. You can use this element to generate files with reserved or invalid XML characters in the XSLT outputs, such as <, >, and &.

	
See Also:

http://www.w3.org/TR/xslt20 for explanation and examples of XSLT 2.0 features

Using the XSLT Processor for Java: Overview

The Oracle XDK XSLT processor is a software program that transforms an XML document into another text-based format. For example, the processor can transform XML into XML, HTML, XHTML, or text. You can invoke the processor programmatically by using the APIs or run it from the command line. The XSLT processor can perform the following tasks:

	
Reads one or more XSLT stylesheets. The processor can apply multiple stylesheets to a single XML input document and generate different results.

	
Reads one or more input XML documents. The processor can use a single stylesheet to transform multiple XML input documents.

	
Builds output documents by applying the rules in the stylesheet to the input XML documents. The output is a DOM tree, output stream, or series of SAX events.

Whereas XSLT is a function-based language that generally requires a DOM of the input document and stylesheet to perform the transformation, the Java XDK implementation of the XSLT processor can use SAX to create a stylesheet object to perform transformations with higher efficiency and fewer resources. You can reuse this stylesheet object to transform multiple documents without reparsing the stylesheet.

Using the XSLT Processor: Basic Process

Figure 6-1 depicts the basic design of the XSLT processor for Java.

	
See Also:

Oracle Database XML Java API Reference to learn about the XMLParser and XSDBuilder classes

Figure 6-1 Using the XSLT Processor for Java

[image: Description of Figure 6-1 follows]

Running the XSLT Processor Demo Programs

Demo programs for the XSLT processor for Java are included in $ORACLE_HOME/xdk/demo/java/parser/xslt. Table 6-1 describes the XML files and programs that you can use to test the XSLT processor.

Table 6-1 XSLT Processor Sample Files

	File	Description
	
match.xml

	
A sample XML document that you can use to test ID selection and pattern matching. Its associated stylesheet is match.xsl.

	
match.xsl

	
A sample stylesheet for use with match.xml. You can use it to test simple identity transformations.

	
math.xml

	
A sample XML data document that you can use to perform simple arithmetic. Its associated stylesheet is math.xsl.

	
math.xsl

	
A sample stylesheet for use with math.xml. The stylesheet outputs an HTML page with the results of arithmetic operations performed on element values in math.xml.

	
number.xml

	
A sample XML data document that you can use to test for source tree numbering. The document describes the structure of a book.

	
number.xsl

	
A sample stylesheet for us with number.xml. The stylesheet outputs an HTML page that calculates section numbers for the sections in the book described by number.xml.

	
position.xml

	
A sample XML data document that you can use to test for position()=X in complex patterns. Its associated stylesheet is position.xsl.

	
position.xsl

	
A sample stylesheet for use with position.xml. The stylesheet outputs an HTML page with the results of complex pattern matching.

	
reverse.xml

	
A sample XML data document that you can use with reverse.xsl to traverse backward through a tree.

	
reverse.xsl

	
A sample stylesheet for us with reverse.xml. The stylesheet output the item numbers in reverse.xml in reverse order.

	
string.xml

	
A sample XML data document that you can use to test perform various string test and manipulations. Its associated stylesheet is string.xsl.

	
string.xsl

	
A sample stylesheet for us with string.xml. The stylesheet outputs an XML document that displays the results of the string manipulations.

	
style.txt

	
A stylesheet that provides the framework for an HTML page. The stylesheet is included by number.xsl.

	
variable.xml

	
A sample XML data document that you can use to test the use of XSL variables. The document describes the structure of a book. Its associated stylesheet is variable.xsl.

	
variable.xsl

	
A stylesheet for use with variable.xml. The stylesheet makes extensive use of XSL variables.

	
XSLSample.java

	
A sample application that offers a simple example of how to use the XSL processing capabilities of the Oracle XSLT processor. The program transforms an input XML document by using an input stylesheet. This program builds the result of XSL transformations as a DocumentFragment and does not show xsl:output features.

Run this program with any XSLT stylesheet in the directory as a first argument and its associated *.xml XML document as a second argument. For example, run the program with variable.xsl and variable.xml or string.xsl and string.xml.

	
XSLSample2.java

	
A sample application that offers a simple example of how to use the XSL processing capabilities of the Oracle XSLT processor. The program transforms an input XML document by using an input stylesheet. This program outputs the result to a stream and supports xsl:output features. Like XSLSample.java, you can run it against any pair of XML data documents and stylesheets in the directory.

Documentation for how to compile and run the sample programs is located in the README. The basic steps are as follows:

	
Change into the $ORACLE_HOME/xdk/demo/java/parser/xslt directory (UNIX) or %ORACLE_HOME%\xdk\demo\java\parser\xslt directory (Windows).

	
Make sure that your environment variables are set as described in "Setting Up the Java XDK Environment".

	
Run make (UNIX) or Make.bat (Windows) at the command line. The make file compiles the source code and then runs the XSLSample and XSLSample2 programs for each *.xml file and its associated *.xsl stylesheet. The program writes its output for each transformation to *.out.

	
You can view the *.out files to see the output for the XML transformations. You can also run the programs on the command line as follows, where name is replaced by match, math, and so forth:

java XSLSample name.xsl name.xml
java XSLSample2 name.xsl name.xml

For example, run the match.xml demos as follows:

java XSLSample match.xsl match.xml
java XSLSample2 match.xsl match.xml

Using the XSLT Processor Command-Line Utility

The XDK includes oraxsl, which is a command-line Java interface that can apply a stylesheet to multiple XML documents. The $ORACLE_HOME/bin/oraxsl and %ORACLE_HOME%\bin\oraxsl.bat shell scripts execute the oracle.xml.jaxb.oraxsl class. To use oraxsl ensure that your CLASSPATH is set as described in "Setting Up the Java XDK Environment".

Use the following syntax on the command line to invoke oraxsl:

oraxsl options source stylesheet result

The oraxsl utility expects a stylesheet, an XML file to transform, and an optional result file. If you do not specify a result file, then the utility sends the transformed document to standard output. If multiple XML documents need to be transformed by a stylesheet, then use the -l or -d options in conjunction with the -s and -r options. These and other options are described in Table 6-2.

Table 6-2 Command Line Options for oraxsl

	Option	Description
	
-w

	
Shows warnings. By default, warnings are turned off.

	
-e error_log

	
Specifies file into which the program writes errors and warnings.

	
-l xml_file_list

	
Lists files to be processed.

	
-d directory

	
Specifies the directory that contains the files to transform. The default behavior is to process all files in the directory. If only a subset of the files in that directory, for example, one file, need to be processed, then change this behavior by setting -l and specifying the files that need to be processed. You can also change the behavior by using the -x or -i option to select files based on their extension.

	
-x source_extension

	
Specifies extensions for the files that should be excluded. Use this option in conjunction with -d. The program does not select any files with the specified extension.

	
-i source_extension

	
Specifies extensions for the files that should be included. Use this option in conjunction with -d. The program selects only files with the specified extension.

	
-s stylesheet

	
Specifies the stylesheet. If you set -d or -l, then set -s to indicate the stylesheet to be used. You must specify the complete path.

	
-r result_extension

	
Specifies the extension to use for results. If you set -d or -l, then set -r to specify the extension to be used for the results of the transformation. So, if you specify the extension out, the program transformed an input document doc to doc.out. By default, the program places the results in the current directory. You can change this behavior by using the -o option, which allows you to specify a directory for the results.

	
-o result_directory

	
Specifies the directory in which to place results. You must set this option in conjunction with the -r option.

	
-p param_list

	
Lists parameters.

	
-t num_of_threads

	
Specifies the number of threads to use for processing. Using multiple threads can provide performance improvements when processing multiple documents.

	
-v

	
Generates verbose output. The program prints some debugging information and can help in tracing any problems that are encountered during processing.

	
-debug

	
Generates debugging output. By default, debug mode is disabled. Note that a GUI version of the XSLT debugger is available in Oracle JDeveloper.

Using the XSLT Processor Command-Line Utility: Example

You can test oraxsl on the various XML files and stylesheets in $ORACLE_HOME/xdk/demo/java/parser/xslt. Example 6-1 displays the contents of math.xml.

Example 6-1 math.xml

<?xml version="1.0"?>
<doc>
 <n1>5</n1>
 <n2>2</n2>
 <div>-5</div>
 <mod>2</mod>
</doc>

The XSLT stylesheet named math.xsl is shown in Example 6-2.

Example 6-2 math.xsl

<?xml version="1.0"?><xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="doc">
 <HTML>
 <H1>Test for mod.</H1>
 <HR/>
 <P>Should say "1": <xsl:value-of select="5 mod 2"/></P>
 <P>Should say "1": <xsl:value-of select="n1 mod n2"/></P>
 <P>Should say "-1": <xsl:value-of select="div mod mod"/></P>
 <P><xsl:value-of select="div or ((mod)) | or"/></P>
 </HTML>
 </xsl:template>
</xsl:stylesheet

You can run the oraxsl utility on these files to produce HTML output as shown in the following example:

oraxsl math.xml math.xsl math.htm

The output file math.htm is shown in Example 6-3.

Example 6-3 math.htm

<HTML>
 <H1>Test for mod.</H1>
 <HR>
 <P>Should say "1": 1</P>
 <P>Should say "1": 1</P>
 <P>Should say "-1": -1</P>
 <P>true</P>
</HTML>

Transforming XML

This section contains the following topics:

	
Performing Basic XSL Transformation

	
Obtaining DOM Results from an XSL Transformation

Performing Basic XSL Transformation

As explained in "Using the XSLT Processor for Java: Overview", the fundamental classes used by the XSLT processor are DOMParser and XSLProcessor. The XSL2Sample.java demo program provides a good illustration of how to use these classes to transform an XML document with an XSLT stylesheet.

Use the following basic steps to write Java programs that use the XSLT processor:

	
Create a DOM parser object that you can use to parse the XML data documents and XSLT stylesheets. The following code fragment from XSL2Sample.java illustrates how to instantiate a parser:

XMLDocument xml, xsldoc, out;URL xslURL;URL xmlURL;
// ...
parser = new DOMParser();parser.setPreserveWhitespace(true);

Note that by default, the parser does not preserve whitespace unless a DTD is used. It is important to preserve whitespace because it enables XSLT whitespace rules to determine how whitespace is handled.

	
Parse the XSLT stylesheet with the DOMParser.parse() method. The following code fragment from XSL2Sample.java illustrates how to perform the parse:

xslURL = DemoUtil.createURL(args[0]);
parser.parse(xslURL);
xsldoc = parser.getDocument();

	
Parse the XML data document with the DOMParser.parse() method. The following code fragment from XSL2Sample.java illustrates how to perform the parse:

xmlURL = DemoUtil.createURL(args[1]);
parser.parse(xmlURL);
xml = parser.getDocument();

	
Create a new XSLT stylesheet object. You can pass objects of the following classes to the XSLProcessor.newXSLStylesheet() method:

	
java.io.Reader

	
java.io.InputStream

	
XMLDocument

	
java.net.URL

For example, XSL2Sample.java illustrates how to create a stylesheet object from an XMLDocument object:

XSLProcessor processor = new XSLProcessor();
processor.setBaseURL(xslURL);
XSLStylesheet xsl = processor.newXSLStylesheet(xsldoc);

	
Set the XSLT processor to display any warnings. For example, XSL2Sample.java calls the showWarnings() and setErrorStream() methods as follows:

processor.showWarnings(true);
processor.setErrorStream(System.err);

	
Use the XSLProcessor.processXSL() method to apply the stylesheet to the input XML data document. Table 6-3 lists some of the other available XSLProcessor methods.

Table 6-3 XSLProcessor Methods

	Method	Description
	
removeParam()

	
Removes parameters.

	
resetParams()

	
Resets all parameters.

	
setParam()

	
Sets parameters for the transformation.

	
setBaseUrl()

	
Sets a base URL for any relative references in the stylesheet.

	
setEntityResolver()

	
Sets an entity resolver for any relative references in the stylesheet.

	
setLocale()

	
Sets a locale for error reporting.

The following code fragment from XSL2Sample.java shows how to apply the stylesheet to the XML document:

processor.processXSL(xsl, xml, System.out);

	
Process the transformed output. You can transform the results by creating an XML document object, writing to an output stream, or reporting SAX events.

The following code fragment from XSL2Sample.java shows how to print the results:

processor.processXSL(xsl, xml, System.out);

	
See Also:

	
http://www.w3.org/TR/xslt

	
http://www.w3.org/style/XSL

	
Chapter 4, "XML Parsing for Java"

Obtaining DOM Results from an XSL Transformation

The XSLSample.java demo program illustrates how to generate an oracle.xml.parser.v2.XMLDocumentFragment object as the result of an XSL transformation. An XMLDocumentFragment is a "lightweight" Document object that extracts a portion of an XML document tree. The XMLDocumentFragment class implements the org.w3c.dom.DocumentFragment interface.

The XSL2Sample.java program illustrates how to generate a DocumentFragment object. The basic steps for transforming XML are the same as those described in "Performing Basic XSL Transformation". The only difference is in the arguments passed to the XSLProcessor.processXSL() method. The following code fragment from XSL2Sample.java shows how to create the DOM fragment and then print it to standard output:

XMLDocumentFragment result = processor.processXSL(xsl, xml);
result.print(System.out);

Table 6-4 lists some of the XMLDocumentFragment methods that you can use to manipulate the object.

Table 6-4 XMLDocumentFragment Methods

	Method	Description
	
getAttributes()

	
Gets a NamedNodeMap containing the attributes of this node (if it is an Element) or null otherwise

	
getLocalName()

	
Gets the local name for this element

	
getNamespaceURI()

	
Gets the namespace URI of this element

	
getNextSibling()

	
Gets the node immediately following the current node

	
getNodeName()

	
Gets the name of the node

	
getNodeType()

	
Gets a code that represents the type of the underlying object

	
getParentNode()

	
Gets the parent of the current node

	
getPreviousSibling()

	
Gets the node immediately preceding the current node

	
reportSAXEvents()

	
Reports SAX events from a DOM Tree

Programming with Oracle XSLT Extensions

This section contains these topics:

	
Overview of Oracle XSLT Extensions

	
Specifying Namespaces for XSLT Extension Functions

	
Using Static and Non-Static Java Methods in XSLT

	
Using Constructor Extension Functions

	
Using Return Value Extension Functions

Overview of Oracle XSLT Extensions

The XSLT 1.0 standard defines two kinds of extensions: extension elements and extension functions. The XDK provides extension functions for XSLT processing that enable users of the XSLT processor to call any Java method from XSL expressions. Note the following guidelines when using Oracle XSLT extensions:

	
When you define an XSLT extension in a given programming language, you can only use the XSLT stylesheet with XSLT processors that can invoke this extension. Thus, only the Java version of the processor can invoke extension functions that are defined in Java.

	
Use XSLT extensions only if the built-in XSL functions cannot solve a given problem.

	
As explained in the following section, the namespace of the extension class must start with the proper URL.

The following Oracle extension functions are particularly useful:

	
<ora:output>, you can use <ora:output> as a top-level element or in an XSL template. If used as a top-level element, it is similar to the <xsl:output> extension function, except that it has an additional name attribute. When used as a template, it has the additional attributes use and href. This function is useful for creating multiple outputs from one XSL transformation.

	
<ora:node-set>, which converts a result tree fragment into a node-set. This function is useful when you want to refer the existing text or intermediate text results in XSL for further transformation.

Specifying Namespaces for XSLT Extension Functions

The Oracle Java extension functions belong to the namespace that corresponds to the following URI:

http://www.oracle.com/XSL/Transform/java/

An extension function that belongs to the following namespace refers to methods in the Java classname, so that you can construct URIs in the following format:

http://www.oracle.com/XSL/Transform/java/classname

For example, you can use the following namespace to call java.lang.String methods from XSL expressions:

http://www.oracle.com/XSL/Transform/java/java.lang.String

	
Note:

When assigning the xsl prefix to a namespace, the correct URI is xmlns:xsl="http://www.w3.org/1999/XSL/Transform". Any other URI fails to give correct output.

Using Static and Non-Static Java Methods in XSLT

If the Java method is a non-static method of the class, then the first parameter is used as the instance on which the method is invoked, and the rest of the parameters are passed to the method. If the extension function is a static method, however, then all the parameters of the extension function are passed as parameters to the static function. Example 6-4 shows how to use the java.lang.Math.ceil() method in an XSLT stylesheet.

Example 6-4 Using a Static Function in an XSLT Stylesheet

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:math="http://www.oracle.com/XSL/Transform/java/java.lang.Math">
 <xsl:template match="/">
 <xsl:value-of select="math:ceil('12.34')"/>
 </xsl:template>
</xsl:stylesheet>

For example, you can create Example 6-4 as stylesheet ceil.xsl and then apply it to any well-formed XML document. For example, run the oraxsl utility as follows:

oraxsl ceil.xsl ceil.xsl ceil.out

The output document ceil.out has the following content:

<?xml version = '1.0' encoding = 'UTF-8'?>
13

	
Note:

The XSL class loader only knows about statically added JARs and paths in the CLASSPATH as well as those specified by wrapper.classpath. Files added dynamically are not visible to XSLT processor.

Using Constructor Extension Functions

The extension function new creates a new instance of the class and acts as the constructor. Example 6-5 creates a new String object with the value "Hello World," stores it in the XSL variable str1, and then outputs it in uppercase.

Example 6-5 Using a Constructor in an XSLT Stylesheet

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:jstring="http://www.oracle.com/XSL/Transform/java/java.lang.String">
 <xsl:template match="/">
 <!-- creates a new java.lang.String and stores it in the variable str1 -->
 <xsl:variable name="str1" select="jstring:new('HeLlO wOrLd')"/>
 <xsl:value-of select="jstring:toUpperCase($str1)"/>
 </xsl:template>
</xsl:stylesheet>

For example, you can create this stylesheet as hello.xsl and apply it to any well-formed XML document. For example, run the oraxsl utility as follows:

oraxsl hello.xsl hello.xsl hello.out

The output document hello.out has the following content:

<?xml version = '1.0' encoding = 'UTF-8'?>
HELLO WORLD

Using Return Value Extension Functions

The result of an extension function can be of any type, including the five types defined in XSL and the additional simple XML Schema data types defined in XSLT 2.0:

	
NodeSet

	
Boolean

	
String

	
Number

	
ResultTree

You can store these data types in variables or pass to other extension functions. If the result is of one of the five types defined in XSL, then the result can be returned as the result of an XSL expression.

The XSLT Processor supports overloading based on the number of parameters and type. The processor performs implicit type conversion between the five XSL types as defined in XSL. It performs type conversion implicitly among the following datatypes, and also from NodeSet to the following datatypes:

	
String

	
Number

	
Boolean

	
ResultTree

Overloading based on two types that can be implicitly converted to each other is not permitted. The following overloading results in an error in XSL because String and Number can be implicitly converted to each other:

	
overloadme(int i){}

	
overloadme(String s){}

Mapping between XSL datatypes and Java datatypes is done as follows:

String -> java.lang.String
Number -> int, float, double
Boolean -> boolean
NodeSet -> NodeList
ResultTree -> XMLDocumentFragment

The stylesheet in Example 6-6 parses the variable.xml document, which is located in the directory $ORACLE_HOME/xdk/demo/java/parser/xslt, and retrieves the value of the <title> child of the <chapter> element.

Example 6-6 gettitle.xsl

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:parser = "http://www.oracle.com/XSL/Transform/java/oracle.xml.parser.v2.DOMParser"
 xmlns:document =
 "http://www.oracle.com/XSL/Transform/java/oracle.xml.parser.v2.XMLDocument">

 <xsl:template match ="/">
 <!-- Create a new instance of the parser and store it in myparser variable -->
 <xsl:variable name="myparser" select="parser:new()"/>

 <!-- Call an instance method of DOMParser. The first parameter is the object.
 The PI is equivalent to $myparser.parse('file:/my_path/variable.xml'). Note
 that you should replace my_path with the absolute path on your system. -->
 <xsl:value-of select="parser:parse($myparser, 'file:/my_path/variable.xml')"/>

 <!-- Get the document node of the XML Dom tree -->
 <xsl:variable name="mydocument" select="parser:getDocument($myparser)"/>

 <!-- Invoke getelementsbytagname on mydocument -->
 <xsl:for-each select="document:getElementsByTagName($mydocument,'chapter')">
 The value of the title element is: <xsl:value-of select="docinfo/title" />
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

You can create Example 6-6 as gettitle.xsl and then run oraxsl as follows:

oraxsl gettitle.xsl gettitle.xsl variable.out

The output document variable.out has the following content:

<?xml version = '1.0' encoding = 'UTF-8'?>
The value of the title element is: Section Tests

Tips and Techniques for Transforming XML

This section lists XSL and XSLT Processor for Java hints, and contains these topics:

	
Merging XML Documents with XSLT

	
Creating an HTML Input Form Based on the Columns in a Table

Merging XML Documents with XSLT

"Merging Documents with appendChild()" discusses the DOM technique for merging documents. If the merging operation is simple, then you can also use an XSLT-based approach. Suppose that you want to merge the XML documents in Example 6-7 and Example 6-8.

Example 6-7 msg_w_num.xml

<messages>
 <msg>
 <key>AAA</key>
 <num>01001</num>
 </msg>
 <msg>
 <key>BBB</key>
 <num>01011</num>
 </msg>
</messages>

Example 6-8 msg_w_text.xml

<messages>
 <msg>
 <key>AAA</key>
 <text>This is a Message</text>
 </msg>
 <msg>
 <key>BBB</key>
 <text>This is another Message</text>
 </msg>
</messages>

Example 6-9 displays a sample stylesheet that merges the two XML documents based on matching the <key/> element values.

Example 6-9 msgmerge.xsl

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output indent="yes"/>
 <!-- store msg_w_text.xml in doc2 variable -->
 <xsl:variable name="doc2" select="document('msg_w_text.xml')"/>

 <!-- match each node in input xml document, that is, msg_w_num.xml -->
 <xsl:template match="@*|node()">
 <!-- copy the current node to the result tree -->
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 </xsl:template>

 <!-- match each <msg> element in msg_w_num.xml -->
 <xsl:template match="msg">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 <!-- insert two spaces so indentation is correct in output document -->
 <xsl:text> </xsl:text>
 <!-- copy <text> node from msg_w_text.xml into result tree -->
 <text><xsl:value-of
 select="$doc2/messages/msg[key=current()/key]/text"/>
 </text>
 </xsl:copy>
 </xsl:template>
</xsl:stylesheet>

Create the XML files in Example 6-7, Example 6-8, and Example 6-9 and run the following at the command line:

oraxsl msg_w_num.xml msgmerge.xsl msgmerge.xml

Example 6-10 shows the output document, which merges the data contained in msg_w_num.xml and msg_w_text.xml.

Example 6-10 msgmerge.xml

<?xml version = '1.0' encoding = 'UTF-8'?>
<messages>
 <msg>
 <key>AAA</key>
 <num>01001</num>
 <text>This is a Message</text>
 </msg>
 <msg>
 <key>BBB</key>
 <num>01011</num>
 <text>This is another Message</text>
 </msg>
</messages>

This technique is not as efficient for larger files as an equivalent database join of two tables, but it is useful if you have only XML files to work with.

Creating an HTML Input Form Based on the Columns in a Table

Suppose that you want to generate an HTML form for inputting data that uses column names from a database table. You can achieve this goal by using XSU to obtain an XML document based on the user_tab_columns table and XSLT to transform the XML into an HTML form.

	
Use XSU to generate an XML document based on the columns in the table. For example, suppose that the table is hr.employees. You can run XSU from the command line as follows:

java OracleXML getXML -user "hr/password"\
 "SELECT column_name FROM user_tab_columns WHERE table_name = 'EMPLOYEES'"

	
Save the XSU output as an XML file called emp_columns.xml. The XML should look like the following, with one <ROW> element corresponding to each column in the table (some <ROW> elements have been removed to conserve space):

<?xml version = '1.0'?><ROWSET>
 <ROW num="1">
 <COLUMN_NAME>EMPLOYEE_ID</COLUMN_NAME>
 </ROW>
 <ROW num="2">
 <COLUMN_NAME>FIRST_NAME</COLUMN_NAME>
 </ROW>
 <!-- rows 3 through 10 -->
 <ROW num="11">
 <COLUMN_NAME>DEPARTMENT_ID</COLUMN_NAME>
 </ROW>
</ROWSET>

	
Create a stylesheet to transform the XML into HTML. For example, create the columns.xsl stylesheet as follows:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="html"/>
 <xsl:template match="/">
 <HTML>
 <xsl:apply-templates select="@*|node()"/>
 </HTML>
 </xsl:template>
 <xsl:template match="ROW">
 <xsl:value-of select="COLUMN_NAME"/>
 <xsl:text> </xsl:text>
 <INPUT NAME="{COLUMN_NAME}"/>

 </xsl:template>
</xsl:stylesheet>

	
Run the oraxsl utility to generate the HTML form. For example:

oraxsl emp_columns.xml columns.xsl emp_form.htm

	
Review the output HTML form, which should have the following contents:

<HTML>
 EMPLOYEE_ID <INPUT NAME="EMPLOYEE_ID">

 FIRST_NAME <INPUT NAME="FIRST_NAME">

 LAST_NAME <INPUT NAME="LAST_NAME">

 EMAIL <INPUT NAME="EMAIL">

 PHONE_NUMBER <INPUT NAME="PHONE_NUMBER">

 HIRE_DATE <INPUT NAME="HIRE_DATE">

 JOB_ID <INPUT NAME="JOB_ID">

 SALARY <INPUT NAME="SALARY">

 COMMISSION_PCT <INPUT NAME="COMMISSION_PCT">

 MANAGER_ID <INPUT NAME="MANAGER_ID">

 DEPARTMENT_ID <INPUT NAME="DEPARTMENT_ID">

</HTML>

7 Using the Schema Processor for Java

This chapter contains these topics:

	
Introduction to XML Validation

	
Using the XML Schema Processor: Overview

	
Validating XML with XML Schemas

	
Tips and Techniques for Programming with XML Schemas

Introduction to XML Validation

This section describes the different techniques for XML validation. It discusses the following topics:

	
Prerequisites

	
Standards and Specifications

	
XML Validation with DTDs

	
XML Validation with XML Schemas

	
Differences Between XML Schemas and DTDs

Prerequisites

This chapter assumes that you have working knowledge of the following technologies:

	
Document Type Definition (DTD). An XML DTD defines the legal structure of an XML document.

	
XML Schema language. XML Schema defines the legal structure of an XML document.

If you are unfamiliar with these technologies or need to refresh your knowledge, you can consult the XML resources in "Related Documents" of the preface.

	
See Also:

	
http://www.w3schools.com/dtd/ for a DTD tutorial

	
http://www.w3schools.com/schema for an XML Schema language tutorial

Standards and Specifications

XML Schema is a W3C standard. You can find the XML Schema specifications at the following locations:

	
http://www.w3.org/TR/xmlschema-0/ for the W3C XML Schema Primer

	
http://www.w3.org/TR/xmlschema-1/ for the definition of the XML Schema language structures

	
http://www.w3.org/TR/xmlschema-2/ for the definition of the XML Schema language datatypes

The Oracle XML Schema processor supports the W3C XML Schema specifications.

	
See Also:

Chapter 31, "XDK Standards" for a summary of the standards supported by the XDK

XML Validation with DTDs

DTDs were originally developed for SGML. XML DTDs are a subset of those available in SGML and provide a mechanism for declaring constraints on XML markup. XML DTDs enable the specification of the following:

	
Which elements can be in your XML documents

	
The content model of an XML element, that is, whether the element contains only data or has a set of subelements that defines its structure. DTDs can define whether a subelement is optional or mandatory and whether it can occur only once or multiple times.

	
Attributes of XML elements. DTDs can also specify whether attributes are optional or mandatory.

	
Entities that are legal in your XML documents.

An XML DTD is not itself written in XML, but is a context-independent grammar for defining the structure of an XML document. You can declare a DTD in an XML document itself or in a separate file from the XML document.

Validation is the process by which you verify an XML document against its associated DTD, ensuring that the structure, use of elements, and use of attributes are consistent with the definitions in the DTD. Thus, applications that handle XML documents can assume that the data matches the definition.

By using the XDK, you can write an application that includes a validating XML parser, that is, a program that parses and validates XML documents against a DTD. Note the following aspects of parsers that perform DTD validation:

	
Depending on its implementation, a validating parser may stop processing when it encounters an error, or continue.

	
A validating parser may report warnings and errors as they occur as in summary form at the end of processing.

	
Most processors can enable or disable validation mode, but they must still process entity definitions and other constructs of DTDs.

DTD Samples in the XDK

Example 7-1 shows the contents of a DTD named family.dtd, which is located in $ORACLE_HOME/xdk/demo/java/parser/common/. The <ELEMENT> tags specify the legal nomenclature and structure of elements in the document, whereas the <ATTLIST> tags specify the legal attributes of elements.

Example 7-1 family.dtd

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT family (member*)>
<!ATTLIST family lastname CDATA #REQUIRED>
<!ELEMENT member (#PCDATA)>
<!ATTLIST member memberid ID #REQUIRED>
<!ATTLIST member dad IDREF #IMPLIED>
<!ATTLIST member mom IDREF #IMPLIED>

Example 7-2 shows the contents of an XML document named family.xml, which is also located in $ORACLE_HOME/xdk/demo/java/parser/common/. The <!DOCTYPE> element in family.xml specifies that this XML document conforms to the external DTD named family.dtd.

Example 7-2 family.xml

<?xml version="1.0" standalone="no"?>
<!DOCTYPE family SYSTEM "family.dtd">
<family lastname="Smith">
<member memberid="m1">Sarah</member>
<member memberid="m2">Bob</member>
<member memberid="m3" mom="m1" dad="m2">Joanne</member>
<member memberid="m4" mom="m1" dad="m2">Jim</member>
</family>

XML Validation with XML Schemas

The XML Schema language, also known as XML Schema Definition, was created by the W3C to use XML syntax to describe the content and the structure of XML documents. An XML schema is an XML document written in the XML Schema language. An XML schema document contains rules describing the structure of an input XML document, called an instance document. An instance document is valid if and only if it conforms to the rules of the XML schema.

The XML Schema language defines such things as the following:

	
Which elements and attributes are legal in the instance document

	
Which elements can be children of other elements

	
The order and number of child elements

	
Datatypes for elements and attributes

	
Default and fixed values for elements and attributes

A validating XML parser tries to determine whether an instance document conforms to the rules of its associated XML schema. By using the XDK, you can write a validating parser that performs this schema validation. Note the following aspects of parsers that perform schema validation:

	
Depending on its implementation, the parser may stop processing when it encounters an error, or continue.

	
The parser may report warnings and errors as they occur as in summary form at the end of processing.

	
The processor must take into account entity definitions and other constructs that are defined in a DTD that is included by the instance document. The XML Schema language does not define what must occurs when an instance document includes both an XML schema and a DTD. Thus, the behavior of the application in such cases depends on the implementation.

XML Schema Samples in the XDK

Example 7-3 shows a sample XML document that contains a purchase report that describes the parts that have been ordered in different regions. This sample file is located at $ORACLE_HOME/xdk/demo/java/schema/report.xml.

Example 7-3 report.xml

<purchaseReport
 xmlns="http://www.example.com/Report"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.com/Report report.xsd"
 period="P3M" periodEnding="1999-12-31">

 <regions>
 <zip code="95819">
 <part number="872-AA" quantity="1"/>
 <part number="926-AA" quantity="1"/>
 <part number="833-AA" quantity="1"/>
 <part number="455-BX" quantity="1"/>
 </zip>
 <zip code="63143">
 <part number="455-BX" quantity="4"/>
 </zip>
 </regions>
 <parts>
 <part number="872-AA">Lawnmower</part>
 <part number="926-AA">Baby Monitor</part>
 <part number="833-AA">Lapis Necklace</part>
 <part number="455-BX">Sturdy Shelves</part>
 </parts>
</purchaseReport>

Example 7-4 shows the XML schema document named report.xsd, which is the sample XML schema document that you can use to validate report.xml. Among other things, the XML schema defines the names of the elements that are legal in the instance document as well as the type of data that the elements can contain.

Example 7-4 report.xsd

<schema targetNamespace="http://www.example.com/Report"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:r="http://www.example.com/Report"
 elementFormDefault="qualified">

 <annotation>
 <documentation xml:lang="en">
 Report schema for Example.com
 Copyright 2000 Example.com. All rights reserved.
 </documentation>
 </annotation>

 <element name="purchaseReport">
 <complexType>
 <sequence>
 <element name="regions" type="r:RegionsType">
 <keyref name="dummy2" refer="r:pNumKey">
 <selector xpath="r:zip/r:part"/>
 <field xpath="@number"/>
 </keyref>
 </element>

 <element name="parts" type="r:PartsType"/>
 </sequence>
 <attribute name="period" type="duration"/>
 <attribute name="periodEnding" type="date"/>
 </complexType>

 <unique name="dummy1">
 <selector xpath="r:regions/r:zip"/>
 <field xpath="@code"/>
 </unique>

 <key name="pNumKey">
 <selector xpath="r:parts/r:part"/>
 <field xpath="@number"/>
 </key>
 </element>
 <complexType name="RegionsType">
 <sequence>
 <element name="zip" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="part" maxOccurs="unbounded">
 <complexType>
 <complexContent>
 <restriction base="anyType">
 <attribute name="number" type="r:SKU"/>
 <attribute name="quantity" type="positiveInteger"/>
 </restriction>
 </complexContent>
 </complexType>
 </element>
 </sequence>
 <attribute name="code" type="positiveInteger"/>
 </complexType>
 </element>
 </sequence>
 </complexType>

 <simpleType name="SKU">
 <restriction base="string">
 <pattern value="\d{3}-[A-Z]{2}"/>
 </restriction>
 </simpleType>

 <complexType name="PartsType">
 <sequence>
 <element name="part" maxOccurs="unbounded">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="number" type="r:SKU"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 </sequence>
 </complexType>

</schema>

Differences Between XML Schemas and DTDs

The XML Schema language includes most of the capabilities of the DTD specification. An XML schema serves a similar purpose to a DTD, but is more flexible in specifying document constraints. Table 7-1 compares some of the features between the two validation mechanisms.

Table 7-1 Feature Comparison Between XML Schema and DTD

	Feature	XML Schema	DTD
	
Element nesting

	
X

	
X

	
Element occurrence constraints

	
X

	
X

	
Permitted attributes

	
X

	
X

	
Attribute types and default values

	
X

	
X

	
Written in XML

	
X

	

	
Namespace support

	
X

	

	
Built-In datatypes

	
X

	

	
User-Defined datatypes

	
X

	

	
Include/Import

	
X

	

	
Refinement (inheritance)

	
X

	

The following reasons are probably the most persuasive for choosing XML schema validation over DTD validation:

	
The XML Schema language enables you to define rules for the content of elements and attributes. You achieve control over content by using datatypes. With XML Schema datatypes you can more easily perform actions such as the following:

	
Declare which elements should contain which types of data, for example, positive integers in one element and years in another

	
Process data obtained from a database

	
Define restrictions on data, for example, a number between 10 and 20

	
Define data formats, for example, dates in the form MM-DD-YYYY

	
Convert data between different datatypes, for example, strings to dates

	
Unlike DTD grammar, documents written in the XML Schema language are themselves written in XML. Thus, you can perform the following actions:

	
Use your XML parser to parse your XML schema

	
Process your XML schema with the XML DOM

	
Transform your XML document with XSLT

	
Reuse your XML schemas in other XML schemas

	
Extend your XML schema by adding elements and attributes

	
Reference multiple XML schemas from the same document

Using the XML Schema Processor: Overview

The Oracle XML Schema processor is a SAX-based XML schema validator that you can use to validate instance documents against an XML schema. The processor supports both LAX and strict validation.

You can use the processor in the following ways:

	
Enable it in the XML parser

	
Use it with a DOM tree to validate whole or part of an XML document

	
Use it as a component in a processing pipeline (like a content handler)

You can configure the schema processor in different ways depending on your requirements. For example, you can do the following:

	
Use a fixed XML schema or automatically build a schema based on the schemaLocation attributes in an instance document.

	
Set XMLError and entityResolver to gain better control over the validation process.

	
Determine how much of an instance document should be validated. You can use any of the validation modes specified in Table 4-1. You can also designate a type of element as the root of validation.

Using the XML Schema Processor: Basic Process

The following XDK packages are important for applications that process XML schemas:

	
oracle.xml.parser.v2, which provides APIs for XML parsing

	
oracle.xml.parser.schema, which provides APIs for XML Schema processing

The most important classes in the oracle.xml.parser.schema package are described in Table 7-2. These form the core of most XML schema applications.

Table 7-2 oracle.xml.parser.schema Classes

	Class/Interface	Description	Methods
	
XMLSchema class

	
Represents XML Schema component model. An XMLSchema object is a set of XMLSchemaNodes that belong to different target namespaces. The XSDValidator class uses XMLSchema for schema validation or metadata.

	
The principal methods are as follows:

	
get methods such as getElement() and getSchemaTargetNS() obtain information about the XML schema

	
printSchema() prints information about the XML schema

	
XMLSchemaNode class

	
Represents schema components in a target namespace, including type definitions, element and attribute delcarations, and group and attribute group definitions.

	
The principal methods are get methods such as getElementSet() and getAttributeDeclarations() obtain components of the XML schema.

	
XSDBuilder class

	
Builds an XMLSchema object from an XML schema document. The XMLSchema object is a set of objects (Infoset items) corresponding to top-level schema declarations and definitions. The schema document is XML parsed and converted to a DOM tree.

	
The principal methods are as follows:

	
build() creates an XMLSchema object.

	
getObject() returns the XMLSchema object.

	
setEntityResolver() sets an EntityResolver for resolving imports and includes.

	
XSDValidator class

	
Validates an instance XML document against an XML schema. When registered, an XSDValidator object is inserted as a pipeline node between XMLParser and XMLDocument events handlers.

	
The principal methods are as follows:

	
get methods such as getCurrentMode() and getElementDeclaration()

	
set methods such as setXMLProperty() and setDocumentLocator()

	
startDocument() receives notification of the beginning of the document.

	
startElement() receives notification of the beginning of the element.

Figure 7-1 depicts the basic process of validating an instance document with the XML Schema processor.

Figure 7-1 XML Schema Processor

[image: Description of Figure 7-1 follows]

The XML Schema processor performs the following major tasks:

	
A builder (XSDBuilder object) assembles the XML schema from an input XML schema document. Although instance documents and schemas need not exist specifically as files on the operating system, they are commonly referred to as files. They may exist as streams of bytes, fields in a database record, or collections of XML Infoset "Information Items."

This task involves parsing the schema document into an object. The builder creates the schema object explicitly or implicitly:

	
In explicit mode, you pass in an XML schema when you invoke the processor. "Validating Against Externally Referenced XML Schemas" explains how to build the schema object in explicit mode.

	
In implicit mode, you do not pass in an XML schema when you invoke the processor because the schema is internally referenced by the instance document. "Validating Against Internally Referenced XML Schemas" explains how to create the schema object in implicit mode.

	
The XML schema validator uses the schema object to validate the instance document. This task involves the following steps:

	
A SAX parser parses the instance document into SAX events, which it passes to the validator.

	
The validator receives SAX events as input and validates them against the schema object, sending an error message if it finds invalid XML components.

"Validation in the XML Parser" describes the validation modes that you can use when validating the instance document. If you do not explicitly set a schema for validation with the XSDBuilder class, then the instance document must have the correct xsi:schemaLocation attribute pointing to the schema file. Otherwise, the program will not perform the validation. If the processor encounters errors, it generates error messages.

	
The validator sends input SAX events, default values, or post-schema validation information to a DOM builder or application.

	
See Also:

	
Oracle Database XML Java API Reference to learn about the XSDBuilder, DOMParser, and SAXParser classes

	
Chapter 7, "Using the Schema Processor for Java" to learn about the XDK SAX and DOM parsers

Running the XML Schema Processor Demo Programs

Demo programs for the XML Schema processor for Java are included in $ORACLE_HOME/xdk/demo/java/schema. Table 7-3 describes the XML files and programs that you can use to test the XML Schema processor.

Table 7-3 XML Schema Sample Files

	File	Description
	

cat.xsd

	
A sample XML schema used by the XSDSetSchema.java program to validate catalogue.xml. The cat.xsd schema specifies the structure of a catalogue of books.

	

catalogue.xml

	
A sample instance document that the XSDSetSchema.java program uses to validate against the cat.xsd schema.

	

catalogue_e.xml

	
A sample instance document used by the XSDSample.java program. When the program tries to validate this document against the cat.xsd schema, it generates schema errors.

	

DTD2Schema.java

	
This sample program converts a DTD (first argument) into an XML Schema and uses it to validate an XML file (second argument).

	

embeded_xsql.xsd

	
The XML schema used by XSDLax.java. The schema defines the structure of an XSQL page.

	

embeded_xsql.xml

	
The instance document used by XSDLax.java.

	

juicer1.xml

	
A sample XML document for use with xsdproperty.java. The XML schema that defines this document is juicer1.xsd.

	

juicer1.xsd

	
A sample XML schema for use with xsdproperty.java. This XML schema defines juicer1.xml.

	

juicer2.xml

	
A sample XML document for use with xsdproperty.java. The XML schema that defines this document is juicer2.xsd.

	

juicer2.xsd

	
A sample XML document for use with xsdproperty.java. This XML schema defines juicer2.xml.

	

report.xml

	
The sample XML file that XSDSetSchema.java uses to validate against the XML schema report.xsd.

	

report.xsd

	
A sample XML schema used by the XSDSetSchema.java program to validate the contents of report.xml. The report.xsd schema specifies the structure of a purchase order.

	

report_e.xml

	
When the program validates this sample XML file using XSDSample.java, it generates XML Schema errors.

	

xsddom.java

	
This program shows how to validate an instance document by obtain a DOM representation of the document and using an XSDValidator object to validate it.

	

xsdent.java

	
This program validates an XML document by redirecting the referenced schema in the SchemaLocation attribute to a local version.

	

xsdent.xml

	
This XML document describes a book. The file is used as an input to xsdent.java.

	

xsdent.xsd

	
This XML schema document defines the rules for xsdent.xml. The schema document contains a schemaLocation attribute set to xsdent-1.xsd.

	

xsdent-1.xsd

	
The XML schema document referenced by the schemaLocation attribute in xsdent.xsd.

	

xsdproperty.java

	
This demo shows how to configure the XML Schema processor to validate an XML document based on a complex type or element declaration.

	

xsdsax.java

	
This demo shows how to validate an XML document received as a SAX stream.

	

XSDLax.java

	
This demo is the same as XSDSetSchema.java but sets the SCHEMA_LAX_VALIDATION flag for LAX validation.

	

XSDSample.java

	
This program is a sample driver that you can use to process XML instance documents.

	

XSDSetSchema.java

	
This program is a sample driver to process XML instance documents by overriding the schemaLocation. The program uses the XML Schema specification from cat.xsd to validate the contents of catalogue.xml.

Documentation for how to compile and run the sample programs is located in the README in the same directory. The basic steps are as follows:

	
Change into the $ORACLE_HOME/xdk/demo/java/schema directory (UNIX) or %ORACLE_HOME%\xdk\demo\java\schema directory (Windows).

	
Run make (UNIX) or Make.bat (Windows) at the command line.

	
Add xmlparserv2.jar, xschema.jar, and the current directory to the CLASSPATH. These JAR files are located in $ORACLE_HOME/lib (UNIX) and %ORACLE_HOME%\lib (Windows). For example, you can set the CLASSPATH as follows with the tcsh shell on UNIX:

setenv CLASSPATH
 "$CLASSPATH":$ORACLE_HOME/lib/xmlparserv2.jar:$ORACLE_HOME/lib/schema.jar:.

Note that the XML Schema processor requires JDK version 1.2 or higher and is usable on any operating system with Java 1.2 support.

	
Run the sample programs with the XML files that are included in the directory:

	
The following examples use report.xsd to validate the contents of report.xml:

java XSDSample report.xml
java XSDSetSchema report.xsd report.xml

	
The following example validates an instance document in Lax mode:

java XSDLax embeded_xsql.xsd embeded_xsql.xml

	
The following examples use cat.xsd to validate the contents of catalogue.xml:

java XSDSample catalogue.xml
java XSDSetSchema cat.xsd catalogue.xml

	
The following examples generates error messages:

java XSDSample catalogue_e.xml
java XSDSample report_e.xml

	
The following example uses the schemaLocation attribute in xsdent.xsd to redirect the XML schema to xsdent-1.xsd for validation:

java xsdent xsdent.xml xsdent.xsd

	
The following example generates a SAX stream from report.xml and validates it against the XML schema defined in report.xsd:

java xsdsax report.xsd report.xml

	
The following example creates a DOM representation of report.xml and validates it against the XML schema defined in report.xsd:

java xsddom report.xsd report.xml

	
The following examples configure validation starting with an element declaration or complex type definition:

java xsdproperty juicer1.xml juicer1.xsd http://www.juicers.org \
juicersType false > juicersType.out

java xsdproperty juicer2.xml juicer2.xsd http://www.juicers.org \
Juicers true > juicers_e.out

	
The following example converts a DTD (dtd2schema.dtd) into an XML schema and uses it to validate an instance document (dtd2schema.xml):

java DTD2Schema dtd2schema.dtd dtd2schema.xml

Using the XML Schema Processor Command-Line Utility

"Using the XML Parser Command-Line Utility" describes how to run the oraxml command-line utility. You can use this utility to validate instance documents against XML schemas and DTDs.

Using oraxml to Validate Against a Schema

Change into the $ORACLE_HOME/xdk/demo/java/schema directory. Example 7-5 shows how you can validate report.xml against report.xsd by executing the following on the command line.

Example 7-5 Using oraxml to Validate Against a Schema

oraxml -schema -enc report.xml

You should obtain the following output:

The encoding of the input file: UTF-8
The input XML file is parsed without errors using Schema validation mode.

Using oraxml to Validate Against a DTD

Change into the $ORACLE_HOME/xdk/demo/java/parser/common directory. Example 7-6 shows how you can validate family.xml against family.dtd by executing the following on the command line.

Example 7-6 Using oraxml to Validate Against a DTD

oraxml -dtd -enc family.xml

You should obtain the following output:

The encoding of the input file: UTF-8
 The input XML file is parsed without errors using DTD validation mode.

Validating XML with XML Schemas

This section includes the following topics:

	
Validating Against Internally Referenced XML Schemas

	
Validating Against Externally Referenced XML Schemas

	
Validating a Subsection of an XML Document

	
Validating XML from a SAX Stream

	
Validating XML from a DOM

	
Validating XML from Designed Types and Elements

	
Validating XML with the XSDValidator Bean

Validating Against Internally Referenced XML Schemas

The $ORACLE_HOME/xdk/demo/java/schema/XSDSample.java program illustrates how to validate against an implicit XML Schema. The validation mode is implicit because the XML schema is referenced in the instance document itself.

Follow the steps in this section to write programs that use the setValidationMode() method of the oracle.xml.parser.v2.DOMParser class:

	
Create a DOM parser to use for the validation of an instance document. The following code fragment from XSDSample.java illustrates how to create the DOMParser object:

public class XSDSample
{
 public static void main(String[] args) throws Exception
 {
 if (args.length != 1)
 {
 System.out.println("Usage: java XSDSample <filename>");
 return;
 }
 process (args[0]);
 }

 public static void process (String xmlURI) throws Exception
 {
 DOMParser dp = new DOMParser();
 URL url = createURL(xmlURI);
 ...
 }
...
}

createURL() is a helper method that constructs a URL from a filename passed to the program as an argument.

	
Set the validation mode for the validating DOM parser with the DOMParser.setValidationMode() method. For example, XSDSample.java shows how to specify XML schema validation:

dp.setValidationMode(XMLParser.SCHEMA_VALIDATION);
dp.setPreserveWhitespace(true);

	
Set the output error stream with the DOMParser.setErrorStream() method. For example, XSDSample.java sets the error stream for the DOM parser object as follows:

dp.setErrorStream (System.out);

	
Validate the instance document with the DOMParser.parse() method. You do not have to create an XML schema object explicitly because the schema is internally referenced by the instance document. For example, XSDSample.java validates the instance document as follows:

try
{
 System.out.println("Parsing "+xmlURI);
 dp.parse(url);
 System.out.println("The input file <"+xmlURI+"> parsed without errors");
}
catch (XMLParseException pe)
{
 System.out.println("Parser Exception: " + pe.getMessage());
}
catch (Exception e)
{
 System.out.println("NonParserException: " + e.getMessage());
}

Validating Against Externally Referenced XML Schemas

The $ORACLE_HOME/xdk/demo/java/schema/XSDSetSchema.java program illustrates how to validate an XML schema explicitly. The validation mode is explicit because you use the XSDBuilder class to specify the schema to use for validation: the schema is not specified in the instance document as in implicit validation.

Follow the basic steps in this section to write Java programs that use the build() method of the oracle.xml.parser.schema.XSDBuilder class:

	
Build an XML schema object from the XML schema document with the XSDBuilder.build() method. The following code fragment from XSDSetSchema.java illustrates how to create the object:

public class XSDSetSchema
{
 public static void main(String[] args) throws Exception
 {
 if (args.length != 2)
 {
 System.out.println("Usage: java XSDSample <schema_file> <xml_file>");
 return;
 }

 XSDBuilder builder = new XSDBuilder();
 URL url = createURL(args[0]);

 // Build XML Schema Object
 XMLSchema schemadoc = (XMLSchema)builder.build(url);
 process(args[1], schemadoc);
 }
. . .

The createURL() method is a helper method that constructs a URL from the schema document filename specified on the command line.

	
Create a DOM parser to use for validation of the instance document. The following code from XSDSetSchema.java illustrates how to pass the instance document filename and XML schema object to the process() method:

public static void process(String xmlURI, XMLSchema schemadoc)throws Exception{
 DOMParser dp = new DOMParser();
 URL url = createURL (xmlURI);
 . . .

	
Specify the schema object to use for validation with the DOMParser.setXMLSchema() method. This step is not necessary in implicit validation mode because the instance document already references the schema. For example, XSDSetSchema.java specifies the schema as follows:

dp.setXMLSchema(schemadoc);

	
Set the validation mode for the DOM parser object with the DOMParser.setValidationMode() method. For example, XSDSample.java shows how to specify XML schema validation:

dp.setValidationMode(XMLParser.SCHEMA_VALIDATION);
dp.setPreserveWhitespace(true);

	
Set the output error stream for the parser with the DOMParser.setErrorStream() method. For example, XSDSetSchema.java sets it as follows:

dp.setErrorStream (System.out);

	
Validate the instance document against the XML schema with the DOMParser.parse() method. For example, XSDSetSchema.java includes the following code:

try
{
 System.out.println("Parsing "+xmlURI);
 dp.parse (url);
 System.out.println("The input file <"+xmlURI+"> parsed without errors");
}
catch (XMLParseException pe)
{
 System.out.println("Parser Exception: " + pe.getMessage());
}
catch (Exception e)
{
 System.out.println ("NonParserException: " + e.getMessage());
}

Validating a Subsection of an XML Document

In LAX mode, you can validate parts of the XML content of an instance document without validating the whole document. A LAX parser indicates that the processor should perform validation for elements in the instance document that are declared in an associated XML schema. The processor does not consider the instance document invalid if it contains no elements declared in the schema.

By using LAX mode, you can define the schema only for the part of the XML that you want to validate. The $ORACLE_HOME/xdk/demo/java/schema/XSDLax.java program illustrates how to use LAX validation. The program follows the basic steps described in "Validating Against Externally Referenced XML Schemas":

	
Build an XML schema object from the user-specified XML schema document.

	
Create a DOM parser to use for validation of the instance document.

	
Specify the XML schema to use for validation.

	
Set the validation mode for the DOM parser object.

	
Set the output error stream for the parser.

	
Validate the instance document against the XML schema by calling DOMParser.parse().

To enable LAX validation, the program sets the validation mode in the parser to SCHEMA_LAX_VALIDATION rather than to SCHEMA_VALIDATION. The following code fragment from XSDLax.java illustrates this technique:

dp.setXMLSchema(schemadoc);
dp.setValidationMode(XMLParser.SCHEMA_LAX_VALIDATION);
dp.setPreserveWhitespace (true);
. . .

You can test LAX validation by running the sample program as follows:

java XSDLax embeded_xsql.xsd embeded_xsql.xml

Validating XML from a SAX Stream

The $ORACLE_HOME/xdk/demo/java/schema/xsdsax.java program illustrates how to validate an XML document received as a SAX stream. You instantiate an XSDValidator and register it with the SAX parser as the content handler.

Follow the steps in this section to write programs that validate XML from a SAX stream:

	
Build an XML schema object from the user-specified XML schema document by invoking the XSDBuilder.build() method. The following code fragment from illustrates how to create the object:

XSDBuilder builder = new XSDBuilder();
URL url = XMLUtil.createURL(args[0]);

// Build XML Schema Object
XMLSchema schemadoc = (XMLSchema)builder.build(url);
process(args[1], schemadoc);
. . .

createURL() is a helper method that constructs a URL from the filename specified on the command line.

	
Create a SAX parser (SAXParser object) to use for validation of the instance document. The following code fragment from saxxsd.java passes the handles to the XML document and schema document to the process() method:

process(args[1], schemadoc);...public static void process(String xmlURI, XMLSchema schemadoc)
throws Exception
{
 SAXParser dp = new SAXParser();
...

	
Configure the SAX parser. The following code fragment sets the validation mode for the SAX parser object with the XSDBuilder.setValidationMode() method:

dp.setPreserveWhitespace (true);
dp.setValidationMode(XMLParser.NONVALIDATING);

	
Create and configure a validator (XSDValidator object). The following code fragment illustrates this technique:

XMLError err;... err = new XMLError();
...
XSDValidator validator = new XSDValidator();
...
validator.setError(err);

	
Specify the XML schema to use for validation by invoking the XSDBuilder.setXMLProperty() method. The first argument is the name of the property, which is fixedSchema, and the second is the reference to the XML schema object. The following code fragment illustrates this technique:

validator.setXMLProperty(XSDNode.FIXED_SCHEMA, schemadoc);
...

	
Register the validator as the SAX content handler for the parser. The following code fragment illustrates this technique:

dp.setContentHandler(validator);
...

	
Validate the instance document against the XML schema by invoking the SAXParser.parse() method. The following code fragment illustrates this technique:

dp.parse (url);

Validating XML from a DOM

The $ORACLE_HOME/xdk/demo/java/schema/xsddom.java program shows how to validate an instance document by obtain a DOM representation of the document and using an XSDValidator object to validate it.

The xsddom.java program follows these steps:

	
Build an XML schema object from the user-specified XML schema document by invoking the XSDBuilder.build() method. The following code fragment from illustrates how to create the object:

XSDBuilder builder = new XSDBuilder();
URL url = XMLUtil.createURL(args[0]);

XMLSchema schemadoc = (XMLSchema)builder.build(url);
process(args[1], schemadoc);

createURL() is a helper method that constructs a URL from the filename specified on the command line.

	
Create a DOM parser (DOMParser object) to use for validation of the instance document. The following code fragment from domxsd.java passes the handles to the XML document and schema document to the process() method:

process(args[1], schemadoc);...public static void process(String xmlURI, XMLSchema schemadoc)
throws Exception
{
 DOMParser dp = new DOMParser();
 . . .

	
Configure the DOM parser. The following code fragment sets the validation mode for the parser object with the DOMParser.setValidationMode() method:

dp.setPreserveWhitespace (true);
dp.setValidationMode(XMLParser.NONVALIDATING);
dp.setErrorStream (System.out);

	
Parse the instance document. The following code fragment illustrates this technique:

dp.parse (url);

	
Obtain the DOM representation of the input document. The following code fragment illustrates this technique:

XMLDocument doc = dp.getDocument();

	
Create and configure a validator (XSDValidator object). The following code fragment illustrates this technique:

XMLError err;... err = new XMLError();
...
XSDValidator validator = new XSDValidator();
...
validator.setError(err);

	
Specify the schema object to use for validation by invoking the XSDBuilder.setXMLProperty() method. The first argument is the name of the property, which in this example is fixedSchema, and the second is the reference to the schema object. The following code fragment illustrates this technique:

validator.setXMLProperty(XSDNode.FIXED_SCHEMA, schemadoc);
. . .

	
Obtain the root element (XMLElement) of the DOM tree and validate. The following code fragment illustrates this technique:

XMLElement root = (XMLElement)doc.getDocumentElement();
XMLElement copy = (XMLElement)root.validateContent(validator, true);
copy.print(System.out);

Validating XML from Designed Types and Elements

The $ORACLE_HOME/xdk/demo/java/schema/xsdproperty.java program shows how to configure the XML Schema processor to validate an XML document based on a complex type or element declaration.

The xsdproperty.java program follows these steps:

	
Create String objects for the instance document name, XML schema name, root node namespace, root node local name, and specification of element or complex type ("true" means the root node is an element declaration). The following code fragment illustrates this technique:

String xmlfile = args[0];
String xsdfile = args[1];
...
String ns = args[2]; //namespace for the root node
String nm = args[3]; //root node's local name
String el = args[4]; //true if root node is element declaration,
 // otherwise, the root node is a complex type

	
Create an XSD builder and use it to create the schema object. The following code fragment illustrates this technique:

XSDBuilder builder = new XSDBuilder();
URL url = XMLUtil.createURL(xsdfile);
XMLSchema schema;
...
schema = (XMLSchema) builder.build(url);

	
Obtain the node. Invoke different methods depending on whether the node is an element declaration or a complex type:

	
If the node is an element declaration, pass the local name and namespace to the getElement() method of the schema object.

	
If the node is an element declaration, pass the namespace, local name, and root complex type to the getType() method of the schema object.

xsdproperty.java uses the following control structure:

QxName qname = new QxName(ns, nm);
...
XSDNode nd;
...
if (el.equals("true"))
{
 nd = schema.getElement(ns, nm);
 /* process ... */
}
else
{
 nd = schema.getType(ns, nm, XSDNode.TYPE);
 /* process ... */
}

	
After obtaining the node, create a new parser and set the schema to the parser to enable schema validation. The following code fragment illustrates this technique:

DOMParser dp = new DOMParser();
URL url = XMLUtil.createURL (xmlURI);

	
Set properties on the parser and then parse the URL. Invoke the schemaValidatorProperty() method as follows:

	
Set the root element or type property on the parser to a fully qualified name.

For a top-level element declaration, set the property name to XSDNode.ROOT_ELEMENT and the value to a QName, as illustrated by the process1() method.

For a top-level type definition, set the property name to XSDNode.ROOT_TYPE and the value to a QName, as illustrated by the process2() method.

	
Set the root node property on the parser to an element or complex type node.

For an element node, set the property name to XSDNode.ROOT_NODE and the value to an XSDElement node, as illustrated by the process3() method.

For a type node, set the property name to XSDNode.ROOT_NODE and the value to an XSDComplexType node, as illustrated by the process3() method.

The following code fragment shows the sequence of method invocation:

if (el.equals("true"))
{
 nd = schema.getElement(ns, nm);
 process1(xmlfile, schema, qname);
 process3(xmlfile, schema, nd);
}
else
{
 nd = schema.getType(ns, nm, XSDNode.TYPE);
 process2(xmlfile, schema, qname);
 process3(xmlfile, schema, nd);
}

The processing methods are implemented as follows:

 static void process1(String xmlURI, XMLSchema schema, QxName qname)
 throws Exception
 {
 /* create parser... */
 dp.setXMLSchema(schema);
 dp.setSchemaValidatorProperty(XSDNode.ROOT_ELEMENT, qname);
 dp.setPreserveWhitespace (true);
 dp.setErrorStream (System.out);
 dp.parse (url);
 ...
 }

 static void process2(String xmlURI, XMLSchema schema, QxName qname)
 throws Exception
 {
 /* create parser... */
 dp.setXMLSchema(schema);
 dp.setSchemaValidatorProperty(XSDNode.ROOT_TYPE, qname);
 dp.setPreserveWhitespace (true);
 dp.setErrorStream (System.out);
 dp.parse (url);
 ...
 }

 static void process3(String xmlURI, XMLSchema schema, XSDNode node)
 throws Exception
 {
 /* create parser... */

 dp.setXMLSchema(schema);
 dp.setSchemaValidatorProperty(XSDNode.ROOT_NODE, node);
 dp.setPreserveWhitespace (true);
 dp.setErrorStream (System.out);
 dp.parse (url);
 ...
 }

Validating XML with the XSDValidator Bean

The oracle.xml.schemavalidator.XSDValidator bean encapsulates the oracle.xml.parser.schema.XSDValidator class and adds functionality for validating a DOM tree. The parser builds the DOM tree for the instance document and XML schema document and validates the instance document against the schema.

The XSDValidatorSample.java program in $ORACLE_HOME/xdk/demo/java/transviewer illustrates how to use the XSDValidator bean.

Follow the basic steps in this section to write Java programs that use the XSDValidator bean:

	
Parse the instance document with the DOMParser.parse() method. The following code fragment from XSDValidatorSample.java illustrates this technique:

URL xmlinstanceurl, schemaurl;
XMLDocument xmldoc1,xmldoc2;

// get the URL for the input files
xmlinstanceurl = createURL(args[0]);
// Parse the XML Instance document first
xmldoc1 = parseXMLDocument(xmlinstanceurl);

createURL() is a helper method that creates a URL from a filename. The parseXMLDocument() method receives a URL as input and parses it with the DOMParser.parse() method as follows:

DOMParser parser = new DOMParser();
parser.parse(xmlurl);
return parser.getDocument();

	
Parse the XML schema document with the DOMParser.parse() method. The following code from XSDValidatorSample.java illustrates this technique:

schemaurl = createURL(args[1]);xmldoc2 = parseXMLDocument(schemaurl);

	
Build the schema object from the parsed XML schema with the XSDBuilder.build() method. The following code fragment from XSDValidatorSample.java illustrates this technique:

XSDBuilder xsdbuild = new XSDBuilder();
. . .
xmlschema = (XMLSchema)xsdbuild.build(xmldoc2, createURL(args+"builder"));

	
Specify the schema object to use for validation by passing a reference to the XSDValidator.setSchema() method. The following code fragment from XSDValidatorSample.java creates the validator and sets the schema:

XSDValidator xsdval = new XSDValidator();
. . .
xsdval.setSchema(xmlschema);

	
Set the error output stream for the validator by invoking the XSDValidator.setError() method. The following code fragment from XSDValidatorSample.java illustrates how to create the object:

Properties p = new Properties(System.getProperties());
p.load(new FileInputStream("demo.properties"));
System.setProperties(p);
. . .
XMLError err = new XMLError();
. . .
err.setErrorHandler(new DocErrorHandler());
. . .
xsdval.setError(err);

	
Validate the instance document against the schema by passing a reference to instance document to the XSDValidator.validate() method. For example, XSDValidatorSample.java includes the following code fragment:

xsdval.validate(xmldoc1);

Tips and Techniques for Programming with XML Schemas

This section contains the following topics:

	
Overriding the Schema Location with an Entity Resolver

	
Converting DTDs to XML Schemas

Overriding the Schema Location with an Entity Resolver

When the XSDBuilder builds a schema, it may need to include or import other schemas specified as URLs in the schemaLocation attribute. The xsdent.java demo described in Table 7-3 illustrates this case. The document element in xsdent.xml file contains the following attribute:

xsi:schemaLocation = "http://www.somewhere.org/BookCatalogue
 xsdent.xsd">

The xsdent.xsd document contains the following elements:

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.somewhere.org/BookCatalogue"
 xmlns:catd = "http://www.somewhere.org/Digest"
 xmlns:cat = "http://www.somewhere.org/BookCatalogue"
 elementFormDefault="qualified">
<import namespace = "http://www.somewhere.org/Digest"
 schemaLocation = "xsdent-1.xsd" />

In some cases, you may want to override the schema locations specified in <import> and supply the builder with the required schema documents. For example, you may have downloaded the schemas documents from external Web sites and stored them in a database. In such cases, you can set an entity resolver in the XSDBuilder. XSDBuilder passes the schema location to the resolver, which returns an InputStream, Reader, or URL as an InputSource. The builder can read the schema documents from the InputSource.

The xsdent.java program illustrates how you can override the schema location with an entity resolver. You must implement the EntityResolver interface, instantiate the entity resolver, and set it in the XML schema builder. In the demo code, sampleEntityResolver1 returns InputSource as an InputStream whereas sampleEntityResolver2 returns InputSource as a URL.

Follow these basic steps:

	
Create a new XML schema builder as follows:

XSDBuilder builder = new XSDBuilder();

	
Set the builder to your entity resolver. An entity resolver is a class that implements the EntityResolver interface. The purpose of the resolver is to enable the XML reader to intercept any external entities before including them. The following code fragment creates an entity resolver and sets it in the builder:

builder.setEntityResolver(new sampleEntityResolver1());

The sampleEntityResolver1 class implements the resolveEntity() method. You can use this method to redirect external system identifiers to local URIs. The source code is as follows:

class sampleEntityResolver1 implements EntityResolver
{
 public InputSource resolveEntity (String targetNS, String systemId)
 throws SAXException, IOException
 {
 // perform any validation check if needed based on targetNS & systemId
 InputSource mySource = null;
 URL u = XMLUtil.createURL(systemId);
 // Create input source with InputStream as input
 mySource = new InputSource(u.openStream());
 mySource.setSystemId(systemId);
 return mySource;
 }
}

Note that sampleEntityResolver1 initializes the InputSource with a stream.

	
Build the XML schema object. The following code illustrates this technique:

schemadoc = builder.build(url);

	
Validate the instance document against the XML schema. The program executes the following statement:

process(xmlfile, schemadoc);

The process() method creates a DOM parser, configures it, and invokes the parse() method. The method is implemented as follows:

public static void process(String xmlURI, Object schemadoc)
 throws Exception
{
 DOMParser dp = new DOMParser();
 URL url = XMLUtil.createURL (xmlURI);

 dp.setXMLSchema(schemadoc);
 dp.setValidationMode(XMLParser.SCHEMA_VALIDATION);
 dp.setPreserveWhitespace (true);
 dp.setErrorStream (System.out);
 try {
 dp.parse (url);
 ...
}

Converting DTDs to XML Schemas

Because of the power and flexibility of the XML Schema language, you may want to convert your existing DTDs to XML Schema documents. The XDK API enables you to perform this transformation.

The $ORACLE_HOME/xdk/demo/java/schema/DTD2Schema.java program illustrates how to convert a DTD. You can test the program as follows:

java DTD2Schema dtd2schema.dtd dtd2schema.xml

Follow these basic steps to convert a DTD to an XML schema document:

	
Parse the DTD with the DOMParser.parseDTD() method. The following code fragment from DTD2Schema.java illustrates how to create the DTD object:

XSDBuilder builder = new XSDBuilder();
URL dtdURL = createURL(args[0]);
DTD dtd = getDTD(dtdURL, "abc");

The getDTD() method is implemented as follows:

private static DTD getDTD(URL dtdURL, String rootName)
 throws Exception
{
 DOMParser parser = new DOMParser();
 DTD dtd;
 parser.setValidationMode(true);
 parser.setErrorStream(System.out);
 parser.showWarnings(true);
 parser.parseDTD(dtdURL, rootName);
 dtd = (DTD)parser.getDoctype();
 return dtd;
}

	
Convert the DTD to an XML schema DOM tree with the DTD.convertDTD2Sdhema() method. The following code fragment from DTD2Schema.java illustrates this technique:

XMLDocument dtddoc = dtd.convertDTD2Schema();

	
Write the XML schema DOM tree to an output stream with the XMLDocument.print() method. The following code fragment from DTD2Schema.java illustrates this technique:

FileOutputStream fos = new FileOutputStream("dtd2schema.xsd.out");
dtddoc.print(fos);

	
Create an XML schema object from the schema DOM tree with the XSDBuilder.build() method. The following code fragment from DTD2Schema.java illustrates this technique:

XMLSchema schemadoc = (XMLSchema)builder.build(dtddoc, null);

	
Validate an instance document against the XML schema with the DOMParser.parse() method. The following code fragment from DTD2Schema.java illustrates this technique:

validate(args[1], schemadoc);

The validate() method is implemented as follows:

DOMParser dp = new DOMParser();
URL url = createURL (xmlURI);
dp.setXMLSchema(schemadoc);
dp.setValidationMode(XMLParser.SCHEMA_VALIDATION);
dp.setPreserveWhitespace (true);
dp.setErrorStream (System.out);
try
{
 System.out.println("Parsing "+xmlURI);
 dp.parse (url);
 System.out.println("The input file <"+xmlURI+"> parsed without errors");
}
...

11 Using the XML SQL Utility (XSU)

This chapter contains these topics:

	
Introduction to the XML SQL Utility (XSU)

	
Using the XML SQL Utility: Overview

	
Programming with the XSU Java API

	
Programming with the XSU PL/SQL API

	
Tips and Techniques for Programming with XSU

Introduction to the XML SQL Utility (XSU)

XML SQL Utility (XSU) is an XDK component that enables you to transfer XML data through Oracle SQL statements. You can use XSU to perform the following tasks:

	
Transform data in object-relational database tables or views into XML. XSU can query the database and return the result set as an XML document.

	
Extract data from an XML document and use canonical mapping to insert the data into a table or a view or update or delete values of the appropriate columns or attributes.

This section contains the following topics:

	
Prerequisites

	
XSU Features

	
XSU Restrictions

Prerequisites

This chapter assumes that you are familiar with the following technologies:

	
Oracle Database SQL. XSU transfers XML to and from a database through SELECT statements and DML.

	
PL/SQL. The XDK supplies a PL/SQL API for XSU that mirrors the Java API.

	
Java Database Connectivity (JDBC). Java applications that use XSU to transfer XML to and from a database require a JDBC connection.

XSU Features

XSU has the following key features:

	
Dynamically generates DTDs or XML schemas.

	
Generates XML documents in their string or DOM representations.

	
Performs simple transformations during generation such as modifying default tag names for each <ROW> element. You can also register an XSL transformation that XSU applies to the generated XML documents as needed.

	
Generates XML as a stream of SAX2 callbacks.

	
Supports XML attributes during generation, which enables you to specify that a particular column or group of columns maps to an XML attribute instead of an XML element.

	
Allows SQL to XML tag escaping. Sometimes column names are not valid XML tag names. To avoid this problem you can either alias all the column names or turn on tag escaping.

	
Supports XMLType columns in objects or tables.

	
Inserts XML into relational database tables or views. When given an XML document, XSU can also update or delete records from a database object.

XSU Restrictions

Note the following restrictions when using XSU:

	
XSU can only store data in a single table. You can store XML across tables, however, by using the Oracle XSLT processor to transform a document into multiple documents and inserting them separately. You can also define views over multiple tables and perform insertions into the views. If a view is non-updatable (because of complex joins), then you can use INSTEAD OF triggers over the views to perform the inserts.

	
You cannot use XSU to load XML data stored in attributes into a database schema, but you can use an XSLT transformation to change the attributes into elements.

	
By default XSU is case sensitive. You can either use the correct case or specify that case should be ignored.

	
XSU cannot generate a relational database schema from an input DTD.

	
Inserting into XMLType tables using XSU is not supported. XMLType columns are supported.

Using the XML SQL Utility: Overview

This section contains the following topics:

	
Using XSU: Basic Process

	
Installing XSU

	
Running the XSU Demo Programs

	
Using the XSU Command-Line Utility

Using XSU: Basic Process

XSU is accessible through the following interfaces:

	
The OracleXMLQuery and OracleXMLSave Java classes in the oracle.xml.sql.query package. Use the OracleXMLQuery class to generate XML from relational data and OracleXMLSave class to perform DML.

	
The PL/SQL packages DBMS_XMLQuery and DBMS_XMLSave, which mirror the Java classes.

You can write the following types of XSU applications:

	
Java programs that run inside the database and access the internal XSU Java API

	
Java programs that run on the client and access the client-side XSU Java API

	
PL/SQL programs that access XSU through PL/SQL packages

Generating XML with the XSU Java API: Basic Process

The OracleXMLQuery class makes up the XML generation part of the XSU Java API. Figure 11-1 illustrates the basic process for generating XML with XSU.

The basic steps in Figure 11-1 are as follows:

Figure 11-1 Generating XML with XSU

[image: Description of Figure 11-1 follows]

	
Create a JDBC connection to the database. Normally, you establish a connection with the DriverManager class, which manages a set of JDBC drivers. After the JDBC drivers are loaded, call getConnection(). When it finds the right driver, this method returns a Connection object that represents a database session. All SQL statements are executed within the context of this session.

You have the following options:

	
Create the connection with the JDBC OCI driver. The following code fragment illustrates this technique:

// import the Oracle driver class
import oracle.jdbc.*;
// load the Oracle JDBC driver
DriverManager.registerDriver(new oracle.jdbc.OracleDriver());
// create the connection
Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci:@","hr","password");

The preceding example uses the default connection for the JDBC OCI driver.

	
Create the connection with the JDBC thin driver. The thin driver is written in pure Java and can be called from any Java program. The following code fragment illustrates this technique:

Connection conn =
 DriverManager.getConnection("jdbc:oracle:thin:@dlsun489:1521:ORCL",
 "hr","password");

The thin driver requires the host name (dlsun489), port number (1521), and the Oracle SID (ORCL). The database must have an active TCP/IP listener.

	
Use default connection used by the server-side internal JDBC driver. This driver runs within a default session and default transaction context. You are already connected to the database; your SQL operations are part of the default transaction. Thus, you do not need to register the driver. Create the Connection object as follows:

Connection conn = new oracle.jdbc.OracleDriver().defaultConnection ();

	
Note:

OracleXMLDataSetExtJdbc is used only for Oracle JDBC, whereas OracleXMLDataSetGenJdbc is used for non-Oracle JDBC. These classes are in the oracle.xml.sql.dataset package.

	
Create an XML query object and assign it a SQL query. You create an OracleXMLQuery Class instance by passing a SQL query to the constructor, as shown in the following example:

OracleXMLQuery qry = new OracleXMLQuery (conn, "SELECT * from EMPLOYEES");

	
Configure the XML query object by invoking OracleXMLQuery methods. The following example specifies that only 20 rows should be included in the result set:

xmlQry.setMaxRows(20);

	
Return a DOM object or string by invoking OracleXMLQuery methods. For example, obtain a DOM object as follows:

XMLDocument domDoc = (XMLDocument)qry.getXMLDOM();

Obtain a string object as follows:

String xmlString = qry.getXMLString();

	
Perform additional processing on the string or DOM as needed.

	
See Also:

	
Oracle Database Java Developer's Guide to learn about Oracle JDBC

	
Oracle Database XML Java API Reference to learn about OracleXMLQuery methods

Performing DML with the XSU Java API: Basic Process

Use the OracleXMLSave class to insert, update, and delete XML in the database. Figure 11-2 illustrates the basic process.

Figure 11-2 Storing XML in the Database Using XSU

[image: Description of Figure 11-2 follows]

The basic steps in Figure 11-2 are as follows:

	
Create a JDBC connection to the database. This step is identical to the first step described in "Generating XML with the XSU Java API: Basic Process".

	
Create an XML save object and assign it a table on which to perform DML. Pass a table or view name to the constructor, as shown in the following example:

OracleXMLSave sav = new OracleXMLSave(conn, "employees");

	
Specify the primary key columns. For example, the following code specifies that employee_id is the key column:

String [] keyColNames = new String[1];
keyColNames[0] = "EMPLOYEE_ID";
sav.setKeyColumnList(keyColNames);

	
Configure the XML save object by invoking OracleXMLSave methods. The following example specifies an update of the salary and job_id columns:

String[] updateColNames = new String[2];
updateColNames[0] = "SALARY";
updateColNames[1] = "JOB_ID";
sav.setUpdateColumnList(updateColNames); // set the columns to update

	
Invoke the insertXML(), updateXML(), or deleteXML() methods on the OracleXMLSave object. The following example illustrates an update:

// Assume that the user passes in this XML document as the first argument
sav.updateXML(sav.getURL(argv[0]));

When performing the DML, XSU performs the following tasks:

	
Parses the input XML document.

	
Matches element names to column names in the target table or view.

	
Converts the elements to SQL types and binds them to the appropriate statement.

	
Close the OracleXMLSave object and deallocate all contexts associated with it, as shown in the following example:

sav.close();

	
See Also:

	
Oracle Database Java Developer's Guide to learn about JDBC

	
Oracle Database XML Java API Reference to learn about OracleXMLSave

Generating XML with the XSU PL/SQL API: Basic Process

The XSU PL/SQL API reflects the Java API in the generation and storage of XML documents from and to a database. DBMS_XMLQuery is the PL/SQL package that reflects the methods in the OracleXMLQuery Java class. This package has a context handle associated with it. Create a context by calling one of the constructor-like functions to get the handle and then use the handle in all subsequent calls.

	
Note:

For improved performance, consider using the C-based DBMS_XMLGEN, which is written in C and built into the database, rather than DBMS_XMLQUERY.

XSU supports the XMLType datatype. Using XSU with XMLType is useful if, for example, you have XMLType columns in objects or tables.

Generating XML results in a CLOB that contains the XML document. To use DBMS_XMLQuery and the XSU generation engine, follow these basic steps:

	
Declare a variable for the XML query context and a variable for the generated XML. For example:

v_queryCtx DBMS_XMLQuery.ctxType;
v_result CLOB;

	
Obtain a context handle by calling the DBMS_XMLQuery.newContext function and supplying it the query, either as a CLOB or a VARCHAR2. The following example registers a query to select the rows from the employees table with the WHERE clause containing the bind variables :EMPLOYEE_ID and :FIRST_NAME:

v_queryCtx = DBMS_XMLQuery.newContext('SELECT * FROM employees
 WHERE employee_id=:EMPLOYEE_ID AND first_name=:FIRST_NAME');

	
Bind values to the query. The binds work by binding a name to the position. clearBindValues clears all the bind variables, whereas setBindValue sets a single bind variable with a string value. For example, bind the employee_id and first_name values as shown:

DBMS_XMLQuery.setBindValue(v_queryCtx,'EMPLOYEE_ID',20);
DBMS_XMLQuery.setBindValue(v_queryCtx,'FIRST_NAME','John');

	
Configure the query context. Set optional arguments such as the ROW tag name, the ROWSET tag name, or the number of rows to fetch, and so on. The following example specifies changes the default ROWSET element name to EMPSET:

DBMS_XMLQuery.setRowSetTag(v_queryCtx,'EMPSET');

	
Fetch the results. You can obtain the XML as a CLOB with the getXML function, which generates XML with or without a DTD or XML schema. The following example applies bind values to the statement and gets the result corresponding to the predicate employee_id = 20 and first_name = 'John':

v_result := DBMS_XMLQuery.getXML(v_queryCtx);

	
Process the results of the XML generation. For example, suppose that your program declared the following variables:

v_xmlstr VARCHAR2(32767);
v_line VARCHAR2(2000);

You can print the CLOB stored in v_result as follows:

v_xmlstr := DBMS_LOB.SUBSTR(v_result,32767);
LOOP
 EXIT WHEN v_xmlstr IS NULL;
 v_line := substr(v_xmlstr,1,INSTR(v_xmlstr,CHR(10))-1);
 DBMS_OUTPUT.PUT_LINE('| ' || v_line);
 v_xmlstr := SUBSTR(v_xmlstr,INSTR(v_xmlstr,CHR(10))+1);
END LOOP;

	
Close the context. For example:

DBMS_XMLQuery.closeContext(v_queryCtx);

Performing DML with the PL/SQL API: Basic Process

DBMS_XMLSave is the PL/SQL package that reflects the methods in the OracleXMLSave Java class. This package has a context handle associated with it. Create a context by calling one of the constructor-like functions to get the handle and then use the handle in all subsequent calls.

To use DBMS_XMLSave, follow these basic steps:

	
Declare a variable for the XML save context and a variable for the number of rows touched by the DML. For example:

savCtx DBMS_XMLSave.ctxType;
v_rows NUMBER;

	
Create a context handle by calling the DBMS_XMLSave.newContext function and supply it the table name to use for the DML operations.

savCtx := DBMS_XMLSave.newContext('hr.employees');

	
Set options based on the type of DML that you want to perform.

For inserts you can set the list of columns to insert into the setUpdateColumn function. The default is to insert values into all columns. The following example sets five columns in the employees table:

DBMS_XMLSave.setUpdateColumn(savCtx,'EMPLOYEE_ID');
DBMS_XMLSave.setUpdateColumn(savCtx,'LAST_NAME');
DBMS_XMLSave.setUpdateColumn(savCtx,'EMAIL');
DBMS_XMLSave.setUpdatecolumn(savCtx,'JOB_ID');
DBMS_XMLSave.setUpdateColumn(savCtx,'HIRE_DATE');

For updates you must supply the list of key columns. Optionally, you can then supply the list of columns for update. In this case, the tags in the XML document matching the key column names will be used in the WHERE clause of the UPDATE statement and the tags matching the update column list will be used in the SET clause of the UPDATE statement. For example:

DBMS_XMLSave.setKeyColumn(savCtx,'employee_id'); -- set key column
-- set list of columns to update.
DBMS_XMLSave.setUpdateColumn(savCtx,'salary');
DBMS_XMLSave.setUpdateColumn(savCtx,'job_id');

For deletes the default is to create a WHERE clause to match all the tag values present in each <ROW> element of the document supplied. To override this behavior, set the list of key columns. In this case only those tag values whose tag names match these columns are used to identify the rows to delete (in effect used in the WHERE clause of the DELETE statement). For example:

DBMS_XMLSave.setKeyColumn(savCtx,'EMPLOYEE_ID');

	
Supply a context and XML document to the insertXML, updateXML, or deleteXML functions. For example:

v_rows := DBMS_XMLSave.deleteXML(savCtx,xmlDoc);

	
Repeat the DML any number of times if needed.

	
Close the context. For example:

DBMS_XMLSave.closeContext(savCtx);

For a model use the Java examples described in "Programming with the XSU Java API".

Installing XSU

XSU is included in the Oracle Database software CD along with the other XDK utilities. "Java XDK Component Dependencies" describes the XSU components and dependencies.

By default, the Oracle Universal Installer installs XSU on disk and loads it into the database. No user intervention is required. If you did not load XSU in the database when installing Oracle, you can install XSU manually as follows:

	
Make sure that Oracle XML DB is installed.

	
Load the xsu12.jar file into the database. This JAR file, which has a dependency on xdb.jar for XMLType access, is described in Table 3-1.

	
Run the $ORACLE_HOME/rdbms/admin/dbmsxsu.sql script. This SQL script builds the XSU PL/SQL API.

As explained in "Using XSU: Basic Process", you do not have to load XSU into the database in order to use it. XSU can reside in any tier that supports Java.

The following sections describe your installation options:

	
Installing XSU in the Database

	
Installing XSU in an Application Server

	
Installing XSU in a Web Server

Installing XSU in the Database

Figure 11-3 shows the typical architecture for applications that use the XSU libraries installed in the database. XML generated from XSU running in the database can be placed in advanced queues in the database to be queued to other systems or clients. You deliver the XML internally through stored procedures in the database or externally through web or application servers.

In Figure 11-3 all lines are bidirectional. Because XSU can generate as well as save data, resources can deliver XML to XSU running inside the database, which can then insert it in the appropriate database tables.

Figure 11-3 Running XSU in the Database

[image: Description of Figure 11-3 follows]

Installing XSU in an Application Server

Your application architecture may need to use an application server in the middle tier. The application tier can be an Oracle database, Oracle application server, or a third-party application server that supports Java programs.

You can generate XML in the middle tier from SQL queries or ResultSets for various reasons, for example, to integrate different JDBC data sources in the middle tier. In this case, you can install the XSU in your middle tier, thereby enabling your Java programs to make use of XSU through its Java API.

Figure 11-4 shows a typical architecture for running XSU in a middle tier. In the middle tier, data from JDBC sources is converted by XSU into XML and then sent to Web servers or other systems. Again, the process is bidirectional, which means that the data can be put back into the JDBC sources (database tables or views) by means of XSU. If an Oracle database itself is used as the application server, then you can use the PL/SQL front-end instead of Java.

Figure 11-4 Running XSU in the MIddle Tier

[image: Description of Figure 11-4 follows]

Installing XSU in a Web Server

Figure 11-5 shows that XSU can live in the Web server as long as the Web server supports Java servlets. In this way you can write Java servlets that use XSU. XSQL Servlet is a standard servlet provided by Oracle. It is built on top of XSU and provides a template-like interface to XSU functionality. To perform XML processing in the Web server and avoid intricate servlet programming, you can use the XSQL Servlet.

Figure 11-5 Running XSU in a Web Server

[image: Description of Figure 11-5 follows]

	
See Also:

	
Oracle XML DB Developer's Guide, especially the chapter on generating XML, for examples on using XSU with XMLType

	
Oracle Database XML Java API Reference to learn about the classes OracleXMLQuery and OracleXMLSave

	
Oracle Database PL/SQL Packages and Types Reference to learn about the packages DBMS_XMLQuery and DBMS_XMLSave

	
Chapter 14, "Using the XSQL Pages Publishing Framework" to learn about XSQL Servlet

Running the XSU Demo Programs

Demo programs for XSU are included in $ORACLE_HOME/xdk/demo/java/xsu. Table 11-1 describes the XML files and programs that you can use to test XSU.

Table 11-1 XSU Sample Files

	File	Description
	
bindSQLVariables.sql

	
An PL/SQL script that binds values for EMPLOYEE_ID and FIRST_NAME to columns in the employees table. Refer to "Binding Values in XSU".

	
changeElementName.sql

	
A PL/SQL program that obtains the first 20 rows of the employees table as an XML document. Refer to "Specifying Element Names with DBMS_XMLQuery".

	
createObjRelSchema.sql

	
A SQL script that sets up an object-relational schema and populates it. Refer to "XML Mapping Against an Object-Relational Schema".

	
createObjRelSchema2.sql

	
A SQL script that sets up an object-relational schema and populates it. Refer to "Altering the Database Schema or SQL Query".

	
createRelSchema.sql

	
A SQL script that creates a relational table and then creates a customer view that contains a customer object on top of it. Refer to "Altering the Database Schema or SQL Query".

	
customer.xml

	
An XML document that describes a customer. Refer to "Altering the Database Schema or SQL Query".

	
deleteEmployeeByKey.sql

	
A PL/SQL program that deletes an employee by primary key. Refer to "Deleting by Key with DBMS_XMLSave: Example".

	
deleteEmployeeByRow.sql

	
A PL/SQL program that deletes an employee by row. Refer to "Deleting by Row with DBMS_XMLSave: Example".

	
domTest.java

	
A program that generates a DOM tree and then traverses it in document order, printing the nodes one by one. Refer to "Generating a DOM Tree with OracleXMLQuery".

	
index.txt

	
A README that describes the programs in the demo directory.

	
insProc.sql

	
A PL/SQL program that inserts an XML document into a table. Refer to "Inserting Values into All Columns with DBMS_XMLSave".

	
insertClob.sql

	
A SQL script that creates a table called xmldocument and stores an XML document in the table as a CLOB. Refer to "Inserting Values into All Columns with DBMS_XMLSave".

	
insertClob2.sql

	
A SQL script that inserts an XML document into the xmldocument table. Refer to "Inserting into a Subset of Columns with DBMS_XMLSave".

	
insertClob3.sql

	
A SQL script that inserts an XML document into the xmldocument table. Refer to "Updating with Key Columns with DBMS_XMLSave".

	
insertClob4.sql

	
A SQL script that inserts an XML document into the xmldocument table. Refer to "Specifying a List of Columns with DBMS_XMLSave: Example".

	
insertEmployee.sql

	
A PL/SQL script that calls the insProc stored procedure and inserts an employee into the employees table. Refer to "Inserting XML with DBMS_XMLSave".

	
insertEmployee2.sql

	
A PL/SQL script that invokes the testInsert procedure to insert the XML data for an employee into the hr.employees table. Refer to "Inserting into a Subset of Columns with DBMS_XMLSave".

	
mapColumnToAtt.sql

	
A SQL script that queries the employees table, rendering employee_id as an XML attribute. Refer to "Altering the Database Schema or SQL Query".

	
new_emp.xml

	
An XML document that describes a new employee. Refer to "Running the testInsert Program".

	
new_emp2.xml

	
An XML document that describes a new employee. Refer to "Running the testInsertSubset Program".

	
noRowsTest.java

	
A program that throws an exception when there are no more rows. Refer to "Raising a No Rows Exception".

	
pageTest.java

	
A program that uses the JDBC ResultSet to generate XML one page at a time. Refer to "Generating Scrollable Result Sets".

	
paginateResults.java

	
A program that generates an XML page that paginates results. Refer to "Paginating Results with OracleXMLQuery: Example".

	
paginateResults.sql

	
A PL/SQL script that paginates results. It skips the first 3 rows of the employees table and then prints the rest of the rows 10 at a time by setting skipRows to 3 for the first batch of 10 rows and then to 0 for the rest of the batches. Refer to "Paginating Results with DBMS_XMLQuery".

	
printClobOut.sql

	
A PL/SQL script that prints a CLOB to the output buffer. Refer to "Generating XML from Simple Queries with DBMS_XMLQuery".

	
raiseException.sql

	
A PL/SQL script that invokes the DBMS_XMLQuery.getExceptionContent procedure. Refer to "Handling Exceptions in the XSU PL/SQL API".

	
refCurTest.java

	
A program that generates XML from the results of the SQL query defined in the testRefCur function. Refer to "Generating XML from Cursor Objects".

	
samp1.java

	
A program that queries the scott.emp table, then generates an XML document from the query results.

	
samp10.java

	
A program that inserts sampdoc.xml into the xmltest_tab1 table.

	
samp2.java

	
A program that queries the scott.emp table, then generates an XML document from the query results. This program demonstrates how you can customize the generated XML document.

	
sampdoc.xml

	
A sample XML data document that samp10.java inserts into the database.

	
samps.sql

	
A SQL script that creates the xmltest_tab1 table used by samp10.java.

	
simpleQuery.sql

	
A PL/SQL script that selects 20 rows from the hr.employees table and obtains an XML document as a CLOB. Refer to "Generating XML from Simple Queries with DBMS_XMLQuery".

	
testDML.sql

	
A PL/SQL script that uses the same context and settings to perform DML depending on user input. Refer to "Reusing the Context Handle with DBMS_XMLSave".

	
testDeleteKey.java

	
A program that limits the number of elements used to identify a row, which improves performance by caching the DELETE statement and batching transactions. Refer to "Deleting by Key with OracleXMLSave".

	
testDeleteKey.sql

	
A PL/SQL script that deletes a row from the employees table for every <ROW> element in an input XML document. Refer to "Deleting by Key with DBMS_XMLSave: Example".

	
testDeleteRow.java

	
A program that accepts an XML document filename as input and deletes the rows corresponding to the elements in the document. Refer to "Deleting by Row with OracleXMLSave".

	
testDeleteRow.sql

	
A SQL script that deletes a row from the employees table for every <ROW> element in an input XML document. Refer to "Deleting by Row with DBMS_XMLSave: Example".

	
testException.java

	
A sample program shown that throws a runtime exception and then obtains the parent exception by invoking Exception.getParentException(). Refer to "Obtaining the Parent Exception".

	
testInsert.java

	
A Java program that inserts XML values into all columns of the hr.employees table. Refer to "Inserting XML into All Columns with OracleXMLSave".

	
testInsert.sql

	
A PL/SQL script that inserts XML data into a subset of columns. Refer to "Inserting into a Subset of Columns with DBMS_XMLSave".

	
testInsertSubset.java

	
A program shown that inserts XML data into a subset of columns. Refer to "Inserting XML into a Subset of Columns with OracleXMLSave".

	
testRef.sql

	
A PL/SQL script that creates a function that defines a REF cursor and returns it. Every time the testRefCur function is called, it opens a cursor object for the SELECT query and returns that cursor instance. Refer to "Generating XML from Cursor Objects".

	
testUpdate.java

	
A sample program that updates the hr.employees table by invoking the OracleXMLSave.setKeyColumnList() method. Refer to "Updating Rows with OracleXMLSave".

	
testUpdateKey.sql

	
A PL/SQL that creates a PL/SQL procedure called testUpdateKey that uses the employee_id column of the employees table as a primary key. Refer to "Updating with Key Columns with DBMS_XMLSave".

	
testUpdateList.java

	
Suppose only want to update the salary and job title for each employee and ignore the other information. If you know that all the elements to be updated are the same for all ROW elements in the XML document, then you can use the OracleXMLSave.setUpdateColumnNames() method to specify the columns. Refer to "Updating a Column List with OracleXMLSave".

	
testUpdateSubset.sql

	
A SQL script that creates the procedure testUpdateSubset. The procedure specifies the employee_id column as the key and specifies that salary and job_id should be updated. Refer to "Specifying a List of Columns with DBMS_XMLSave: Example".

	
testXMLSQL.java

	
A sample program that uses XSU to generate XML as a String object. This program queries the hr.employees table and prints the result set to standard output. Refer to "Generating a String with OracleXMLQuery".

	
upd_emp.xml

	
An XML document that contains updated salary and other information for a series of employees. Refer to "Running the testUpdate Program".

	
upd_emp2.xml

	
An XML document that contains updated salary and other information for a series of employees. Refer to "Running the testUpdate Program".

	
updateEmployee.sql

	
An XML document that contains new data for two employees. Refer to "Running the testUpdateList Program".

	
updateEmployee2.sql

	
A PL/SQL script that passes an XML document to the testUpdateSubset procedure and generates two UPDATE statements. Refer to "Specifying a List of Columns with DBMS_XMLSave: Example".

The steps for running the demos are:

	
Change into the $ORACLE_HOME/xdk/demo/java/xsu directory (UNIX) or %ORACLE_HOME%\xdk\demo\java\xsu directory (Windows).

	
Make sure that your environment variables are set as described in "Setting Up the Java XDK Environment". In particular, make sure that the Java classpath includes xsu12.jar for XSU and ojdbc5.jar (Java 1.5) for JDBC. If you use a multibyte character set other than UTF-8, ISO8859-1, or JA16SJIS, then place orai18n.jar in your classpath so that JDBC can convert the character set of the input file to the database character set.

	
Compile the Java programs as shown in the following example:

javac samp1.java samp2.java samp10.java

	
Connect to an Oracle database as hr and run the SQL script createRelSchema:

CONNECT hr
@$ORACLE_HOME/xdk/demo/java/xsu/createRelSchema

The following sections describe the XSU demos in detail.

Using the XSU Command-Line Utility

The XDK includes a command-line Java interface for XSU. XSU command-line options are provided through the Java class OracleXML. To use this API ensure that your Java classpath is set as described in "Setting Up the Java XDK Environment".

To print usage information for XSU to standard output, run the following command:

java OracleXML

To use XSU, invoke it with either the getXML or putXML parameter as follows:

java OracleXML getXML options
java OracleXML putXML options

Table 11-2 describes the getXML options.

Table 11-2 getXML Options

	getXML Option	Description
	
-user "username/password"

	
Specifies the username and password to connect to the database. If this is not specified, then the user defaults to scott/tiger. Note that the connect string is also specified. You can specify the username and password as part of the connect string.

	
-conn "JDBC_connect_string"

	
Specifies the JDBC database connect string. By default the connect string is: "jdbc:oracle:oci:@".

	
-withDTD

	
Instructs the XSU to generate the DTD along with the XML document.

	
-withSchema

	
Instructs the XSU to generate the schema along with the XML document.

	
-rowsetTag tag_name

	
Specifies the rowset tag, which is tag that encloses all the XML elements corresponding to the records returned by the query. The default rowset tag is <ROWSET>. If you specify an empty string ("") for rowset, then XSU omits the rowset element.

	
-rowTag tag_name

	
Specifies the row tag that encloses the data corresponding to a database row. The default row tag is <ROW>. If you specify an empty string ("") for the row tag, then XSU omits the row tag.

	
-rowIdAttr row_id_attribute_name

	
Names the attribute of the ROW element that keeps track of the cardinality of the rows. By default this attribute is num. If you specify an empty string as the rowID attribute, then XSU omits the attribute.

	
-rowIdColumn row_Id_column_name

	
Specifies that the value of one of the scalar columns from the query is to be used as the value of the rowID attribute.

	
-collectionIdAttr collect_id_attr_name

	
Names the attribute of an XML list element that keeps track of the cardinality of the elements of the list. The generated XML lists correspond to either a cursor query, or collection. If you specify an empty string ("") as the rowID attribute, then XSU omits the attribute.

	
-useTypeForCollElemTag

	
Specifies the use type name for the column-element tag. By default XSU uses the column-name_item.

	
-useNullAttrId

	
Specifies the attribute NULL (TRUE/FALSE) to indicate the nullness of an element.

	
-styleSheet stylesheet_URI

	
Specifies the stylesheet in the XML processing instruction.

	
-stylesheetType stylesheet_type

	
Specifies the stylesheet type in the XML processing instruction.

	
-setXSLT URI

	
Specifies the XSLT stylesheet to apply to the XML document.

	
-setXSLTRef URI

	
Sets the XSLT external entity reference.

	
-useLowerCase | -useUpperCase

	
Generates lowercase or uppercase tag names. The default is to match the case of the SQL object names from which the tags are generated.

	
-withEscaping

	
Specifies the treatment of characters that are legal in SQL object names but illegal in XML tags. If such a character is encountered, then it is escaped so that it does not throw an exception.

	
-errorTag error tag_name

	
Specifies the tag to enclose error messages that are formatted as XML.

	
-raiseException

	
Specifies that XSU should throw a Java exception. By default XSU catches any error and produces the XML error.

	
-raiseNoRowsException

	
Raises an exception if no rows are returned.

	
-useStrictLegalXMLCharCheck

	
Performs strict checking on input data.

	
-maxRows maximum_rows

	
Specifies the maximum number of rows to be retrieved and converted to XML.

	
-skipRows number_of_rows_to_skip

	
Specifies the number of rows to be skipped.

	
-encoding encoding_name

	
Specifies the character set encoding of the generated XML.

	
-dateFormat date_format

	
Specifies the date format for the date values in the XML document.

	
-fileName SQL_query_fileName | SQL_query

	
Specifies the file name that contains the query or the query itself.

Table 11-3 describes the putXML options.

Table 11-3 putXML Options

	putXML Options	Description
	
-user "username/password"

	
Specifies the username and password to connect to the database. If not specified, the user defaults to scott/tiger. The connect string is also specified; you can specify the username and password as part of the connect string.

	
-conn "JDBC_connect_string"

	
Specifies the JDBC database connect string. By default the connect string is: "jdbc:oracle:oci:@".

	
-batchSize batching_size

	
Specifies the batch size that controls the number of rows that are batched together and inserted in a single trip to the database to improve performance.

	
-commitBatch commit_size

	
Specifies the number of inserted records after which a commit is to be executed. If the autocommit is TRUE (the default), then setting commitBatch has no consequence.

	
-rowTag tag_name

	
Specifies the row tag, which is tag used to enclose the data corresponding to a database row. The default row tag is <ROW>. If you specify an empty string for the row tag, then XSU omits the row tag.

	
-dateFormat date_format

	
Specifies the date format for the date values in the XML document.

	
-withEscaping

	
Turns on reverse mapping if SQL to XML name escaping was used when generating the doc.

	
-ignoreCase

	
Makes the matching of the column names with tag names case insensitive. For example, EmpNo matches with EMPNO if ignoreCase is on.

	
-preserveWhitespace

	
Preserves the whitespace in the inserted XML document.

	
-setXSLT URI

	
Specifies the XSLT to apply to the XML document before inserting.

	
-setXSLTRef URI

	
Sets the XSLT external entity reference.

	
-fileName file_name | -URL URL | -xmlDoc xml_document

	
Specifies the XML document to insert: a local file, a URL, or an XML document as a string on the command line.

	
table_name

	
Specifies the name of the table to put the values into.

Generating XML with the XSU Command-Line Utility

To generate XML from the database schema use the getXML parameter. For example, to generate an XML document by querying the employees table in the hr schema, you can use the following syntax:

java OracleXML getXML -user "hr/password" "SELECT * FROM employees"

The preceding command performs the following tasks:

	
Connects to the current default database

	
Executes the specified SELECT query

	
Converts the SQL result set to XML

	
Prints the XML to standard output

The getXML parameter supports a wide range of options, which are explained in Table 11-2.

Generating XMLType Data with the XSU Command-Line Utility

You can use XSU to generate XML from tables with XMLType columns. Suppose that you run the demo script setup_xmltype.sql to create and populate the parts table. You can generate XML from this table with XSU as follows:

java OracleXML getXML -user "hr/password" -rowTag "Part" "SELECT * FROM parts"

The output of the command is shown below:

<?xml version = '1.0'?>
<ROWSET>
 <Part num="1">
 <PARTNO>1735</PARTNO>
 <PARTNAME>Gizmo</PARTNAME>
 <PARTDESC>
 <Description>
 <Title>Description of the Gizmo</Title>
 <Author>John Smith</Author>
 <Body>
 The Gizmo is <i>grand</i>.
 </Body>
 </Description>
 </PARTDESC>
 </Part>
</ROWSET>

Performing DML with the XSU Command-Line Utility

To insert an XML document called new_employees.xml into the hr.employees table, use the following syntax:

java OracleXML putXML -user "hr/password" -fileName "new_employees.xml" employees

The preceding command performs the following tasks:

	
Connects to the current database as hr

	
Reads the XML document named new_emp.xml

	
Parses the XML document, matching the tags with column names

	
Inserts the values appropriately into the employees table

The getXML parameter supports a wide range of options, which are explained in Table 11-2.

Programming with the XSU Java API

This section contains the following topics:

	
Generating a String with OracleXMLQuery

	
Generating a DOM Tree with OracleXMLQuery

	
Paginating Results with OracleXMLQuery

	
Generating Scrollable Result Sets

	
Generating XML from Cursor Objects

	
Inserting Rows with OracleXMLSave

	
Updating Rows with OracleXMLSave

	
Deleting Rows with OracleXMLSave

	
Handling XSU Java Exceptions

Generating a String with OracleXMLQuery

The testXMLSQL.java demo program uses XSU to generate XML as a String object. This program queries the hr.employees table and prints the result set to standard output.

The testXMLSQL.java program follows these steps:

	
Register the JDBC driver and create a database connection. The following code fragment uses the OCI JDBC driver and connects with the username hr:

import oracle.jdbc.*;...Connection conn = getConnection("hr","password");
...
private static Connection getConnection(String username, String password)
 throws SQLException
{
// register the JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.OracleDriver());
// create the connection using the OCI driver
 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci:@",username,password);
 return conn;
}

	
Create an XML query object and initialize it with a SQL query. The following code fragment initializes the object with a SELECT statement on hr.employees:

OracleXMLQuery qry = new OracleXMLQuery(conn, "SELECT * FROM employees");

	
Obtain the query result set as a String object. The getXMLString() method transforms the object-relational data specified in the constructor into an XML document. The following example illustrates this technique:

String str = qry.getXMLString();

	
Close the query object to release any resources, as shown in the following code:

qry.close();

Running the testXMLSQL Program

To run the testXMLSQL.java program perform the following steps:

	
Compile testXMLSQL.java with javac.

	
Execute java testXMLSQL on the command line.

You must have the CLASSPATH pointing to this directory for the Java executable to find the class. Alternatively, use visual Java tools such as Oracle JDeveloper to compile and run this program. When run, this program prints out the XML file to the screen. The following shows sample output with some rows edited out:

<?xml version = '1.0'?>
<ROWSET>
 <ROW num="1">
 <EMPLOYEE_ID>100</EMPLOYEE_ID>
 <FIRST_NAME>Steven</FIRST_NAME>
 <LAST_NAME>King</LAST_NAME>
 <EMAIL>SKING</EMAIL>
 <PHONE_NUMBER>515.123.4567</PHONE_NUMBER>
 <HIRE_DATE>6/17/1987 0:0:0</HIRE_DATE>
 <JOB_ID>AD_PRES</JOB_ID>
 <SALARY>24000</SALARY>
 <DEPARTMENT_ID>90</DEPARTMENT_ID>
 </ROW>
<!-- ROW num="2" through num="107" ... -->
</ROWSET>

Generating a DOM Tree with OracleXMLQuery

To generate a DOM tree from the XML generated by XSU, you can directly request a DOM document from XSU. This technique saves the overhead of creating a string representation of the XML document and then parsing it to generate the DOM tree.

XSU calls the Oracle XML parser to construct the DOM tree from the data values. The domTest.java demo program generates a DOM tree and then traverses it in document order, printing the nodes one by one.

The first two steps in the domTest.java program are the same as for the testXMLSQL.java program described in "Generating a String with OracleXMLQuery". The program proceeds as follows:

	
Obtain the DOM by invoking getXMLDOM() method. The following example illustrates this technique:

XMLDocument domDoc = (XMLDocument)qry.getXMLDOM();

	
Print the DOM tree. The following code prints to standard output:

domDoc.print(System.out);

You can also create a StringWriter and wrap it in a PrintWriter as follows:

StringWriter s = new StringWriter(10000);
domDoc.print(new PrintWriter(s));
System.out.println(" The string version ---> \n"+s.toString());

After compiling the program, run it from the command line as follows:

java domTest

Paginating Results with OracleXMLQuery

This section contains the following topics:

	
Limiting the Number of Rows in the Result Set

	
Keeping the Object Open for the Duration of the User's Session

	
Paginating Results with OracleXMLQuery: Example

Limiting the Number of Rows in the Result Set

In testXMLSQL.java and domTest.java, XSU generated XML from all rows returned by the query. Suppose that you query a table that contains 1000 rows, but you want only 100 rows at a time. One approach is to execute one query to obtain the first 100 rows, another to obtain the next 100 rows, and so on. With this technique you cannot skip the first five rows of the query and then generate the result. To avoid these problems, use the following Java methods:

	
OracleXMLSave.setSkipRows() forces XSU to skip the desired number of rows before starting to generate the result. The command-line equivalent to this method is the -skipRows parameter.

	
OracleXMLSave.setMaxRows() limits the number of rows converted to XML. The command-line equivalent to this method is the -maxRows parameter.

Example 11-1 sets skipRows to a value of 5 and maxRows to a value of 1, which causes XSU to skip the first 5 rows and then generate XML for the next row when querying the hr.employees table.

Example 11-1 Specifying skipRows and maxRows on the Command Line

java OracleXML getXML -user "hr/password" -skipRows 5 -maxRows 1 \
 "SELECT * FROM employees"

The following shows sample output (only row 6 of the query result set is returned):

<?xml version = '1.0'?>
<ROWSET>
 <ROW num="6">
 <EMPLOYEE_ID>105</EMPLOYEE_ID>
 <FIRST_NAME>David</FIRST_NAME>
 <LAST_NAME>Austin</LAST_NAME>
 <EMAIL>DAUSTIN</EMAIL>
 <PHONE_NUMBER>590.423.4569</PHONE_NUMBER>
 <HIRE_DATE>6/25/1997 0:0:0</HIRE_DATE>
 <JOB_ID>IT_PROG</JOB_ID>
 <SALARY>4800</SALARY>
 <MANAGER_ID>103</MANAGER_ID>
 <DEPARTMENT_ID>60</DEPARTMENT_ID>
 </ROW>
</ROWSET>

Keeping the Object Open for the Duration of the User's Session

In some situations you may want to keep the query object open for the duration of the user session. You can handle such cases with the maxRows() method and the keepObjectOpen() method.

Consider a Web search engine that paginates search results. The first page lists 10 results, the next page lists 10 more, and so on. To perform this task with XSU, request 10 rows at a time and keep the ResultSet open so that the next time you ask XSU for more results, it starts generating from where the last generation finished. If OracleXMLQuery creates a result set from the SQL query string, then it typically closes the ResultSet internally because it assumes no more results are required. Thus, you should invoke keepObjectOpen() to keep the cursor active.

A different case requiring an open query object is when the number of rows or number of columns in a row is very large. In this case, you can generate multiple small documents rather than one large document.

	
See Also:

"Paginating Results with OracleXMLQuery: Example"

Paginating Results with OracleXMLQuery: Example

The paginateResults.java program shows how you can generate an XML page that paginates results. The output XML displays only 20 rows of the hr table.

The first step of the paginateResults.java program, which creates the connection, is the same as in testXMLSQL.java. The program continues as follows:

	
Create a SQL statement object and initialize it with a SQL query. The following code fragment sets two options in java.sql.ResultSet:

Statement stmt = conn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_READ_ONLY);

	
Create the query as a string and execute it by invoking Statement.executeQuery(). The return object is of type ResultSet. The following example illustrates this technique:

String sCmd = "SELECT first_name, last_name FROM hr.employees";
ResultSet rs = stmt.executeQuery(sCmd);

	
Create the query object, as shown in the following code:

OracleXMLQuery xmlQry = new OracleXMLQuery(conn, rs);

	
Configure the query object. The following code specifies that the query object should be open for the duration of the session. It also limits the number of rows returned to 20:

xmlQry.keepObjectOpen(true);
xmlQry.setRowsetTag("ROWSET");
xmlQry.setRowTag("ROW");
xmlQry.setMaxRows(20);

	
Retrieve the result as a String and print:

String sXML = xmlQry.getXMLString();
System.out.println(sXML);

After compiling the program, run it from the command line as follows:

java paginateResults

Generating Scrollable Result Sets

In some situations you may want to perform a query and then retrieve a previous page of results from within the result set. To enable scrolling, instantiate the Oracle.jdbc.ResultSet class. You can use the ResultSet object to move back and forth within the result set and use XSU to generate XML each time.

The pageTest.java program shows how to use the JDBC ResultSet to generate XML a page at a time. Using ResultSet may be necessary in cases that are not handled directly by XSU, for example, when setting the batch size and binding values.

The pageTest.java program creates a pageTest object and initializes it with a SQL query. The constructor for the pageTest object performs the following steps:

	
Create a JDBC connection by calling the same getConnection() method defined in paginateResults.java:

Connection conn;
...
conn = getConnection("hr","password");

	
Create a statement as follows:

Statement stmt;
...
stmt = conn.createStatement();

	
Execute the query passed to the constructor to obtain the scrollable result set. The following code illustrates this technique:

ResultSet rset = stmt.executeQuery(sqlQuery);

	
Create a query object by passing references to the connection and result set objects to the constructor. The following code fragment illustrates this technique:

OracleXMLQuery qry;
...
qry = new OracleXMLQuery(conn,rset);

	
Configure the query object. The following code fragment specifies that the query object should be kept open and that it should raise an exception when there are no more rows:

qry.keepObjectOpen(true);
qry.setRaiseNoRowsException(true);
qry.setRaiseException(true);

	
After creating the query object by passing it the string "SELECT * FROM employees", the program loops through the result set. The getResult() method receives integer values specifying the start row and end row of the set. It sets the maximum number of rows to retrieve by calculating the difference of these values and then retrieves the result as a string. The following while loop retrieves and prints ten rows at a time:

int i = 0;
while ((str = test.getResult(i,i+10))!= null)
{
 System.out.println(str);
 i+= 10;
}

After compiling the program, run it from the command line as follows:

java pageTest

Generating XML from Cursor Objects

The OracleXMLQuery class provides XML conversion only for query strings or ResultSet objects. If your program uses PL/SQL procedures that return REF cursors, then how do you perform the conversion? You can use the ResultSet conversion mechanism described in "Generating Scrollable Result Sets".

REF cursors are references to cursor objects in PL/SQL. These cursor objects are SQL statements over which a program can iterate to obtain a set of values. The cursor objects are converted into OracleResultSet objects in the Java world. In your Java program you can initialize a CallableStatement object, execute a PL/SQL function that returns a cursor variable, obtain the OracleResultSet object, and then send it to the OracleXMLQuery object to obtain the desired XML.

Consider the testRef PL/SQL package defined in the testRef.sql script. It creates a function that defines a REF cursor and returns it. Every time the testRefCur PL/SQL function is called, it opens a cursor object for the SELECT query and returns that cursor instance. To convert the object to XML, do the following:

	
Run the testRef.sql script to create the testRef package in the hr schema.

	
Compile and run the refCurTest.java program to generate XML from the results of the SQL query defined in the testRefCur function.

To apply the stylesheet, you can use the applyStylesheet command, which forces the stylesheet to be applied before generating the output.

Inserting Rows with OracleXMLSave

To insert a document into a table or view, supply the table or view name and then the document. XSU parses the document (if a string is given) and then creates an INSERT statement into which it binds all the values. By default XSU inserts values into all columns of the table or view. An absent element is treated as a NULL value. The following example shows how you can store the XML document generated from the hr.employees table in the table.

Inserting XML into All Columns with OracleXMLSave

The testInsert.java demo program inserts XML values into all columns of the hr.employees table.

The program follows these steps:

	
Create a JDBC OCI connection. The program calls the same getConnection() method used by the previous examples in this chapter:

Connection conn = getConnection("hr","password");

	
Create an XML save object. You initialize the object by passing it the Connection reference and the name of the table on which you want to perform DML. The following example illustrates this technique:

OracleXMLSave sav = new OracleXMLSave(conn, "employees");

	
Insert the data in an input XML document into the hr.employees table. The following code fragment creates a URL from the document filename specified on the command line:

sav.insertXML(sav.getURL(argv[0]));

	
Close the XML save object as follows:

sav.close();

Running the testInsert Program

Assume that you write the new_emp.xml document to describe new employee Janet Smith, who has employee ID 7369. You pass the filename new_emp.xml as an argument to the testInsert program as follows:

java testInsert "new_emp.xml"

The program inserts a new row in the employees table that contains the values for the columns specified. Any absent element inside the row element is treated as NULL.

Running the program generates an INSERT statement of the following form:

INSERT INTO hr.employees
 (employee_id, first_name, last_name, email, phone_number, hire_date,
 salary, commission_pct, manager_id, department_id)
VALUES
 (?, ?, ?, ?, ?, ?, ?, ?, ?, ?);

XSU matches the element tags in the input XML document that match the column names and binds their values.

Inserting XML into a Subset of Columns with OracleXMLSave

In some circumstances you may not want to insert values into all columns. For example, the group of values that you obtain may not be the complete set, requiring you to use triggers or default values for the remaining columns. The testInsertSubset.java demo program shows how to handle this case.

The program follows these steps:

	
Create a JDBC OCI connection. The program calls the same getConnection() method used by the previous examples in this chapter:

Connection conn = getConnection("hr","password");

	
Create an XML save object. Initialize the object by passing it the Connection reference and the name of the table on which you want to perform DML. The following example illustrates this technique:

OracleXMLSave sav = new OracleXMLSave(conn, "employees");

	
Create an array of strings. Each element of the array should contain the name of a column in which values will be inserted. The following code fragment specifies the names of five columns:

String [] colNames = new String[5];
colNames[0] = "EMPLOYEE_ID";
colNames[1] = "LAST_NAME";
colNames[2] = "EMAIL";
colNames[3] = "JOB_ID";
colNames[4] = "HIRE_DATE";

	
Configure the XML save object to update the specified columns. The following statement passes a reference to the array to the OracleXMLSave.setUpdateColumnList() method:

sav.setUpdateColumnList(colNames);

	
Insert the data in an input XML document into the hr.employees table. The following code fragment creates a URL from the document filename specified on the command line:

sav.insertXML(sav.getURL(argv[0]));

	
Close the XML save object as follows:

sav.close();

Running the testInsertSubset Program

Assume that you use the new_emp2.xml document to store data for new employee Adams, who has employee ID 7400. You pass new_emp2.xml as an argument to the testInsert program as follows:

java testInsert new_emp2.xml

The program ignores values for the columns that were not specified in the input file. It performs an INSERT for each ROW element in the input and batches the INSERT statements by default.

The program generates the following INSERT statement:

INSERT INTO hr.employees (employee_id, last_name, email, job_id, hire_date)
 VALUES (?, ?, ?, ?, ?);

Updating Rows with OracleXMLSave

To update the fields in a table or view, supply the table or view name and then the XML document. XSU parses the document (if a string is given) and then creates one or more UPDATE statements into which it binds all the values. The following examples show how you can use an XML document to update the hr.employees table.

Updating with Key Columns with OracleXMLSave

The testUpdate.java demo program updates the hr.employees table by invoking the OracleXMLSave.setKeyColumnList() method.

The testUpdate.java program follows these steps:

	
Create a JDBC OCI connection. The program calls the same getConnection() method used by the previous examples in this chapter:

Connection conn = getConnection("hr","password");

	
Create an XML save object. You initialize the object by passing it the Connection reference and the name of the table on which you want to perform DML. The following example illustrates this technique:

OracleXMLSave sav = new OracleXMLSave(conn, "employees");

	
Create a single-element String array to hold the name of the primary key column in the table to be updated. The following code fragment specifies the name of the employee_id column:

String [] keyColNames = new String[1];
colNames[0] = "EMPLOYEE_ID";

	
Set the XML save object to the primary key specified in the array. The following statement passes a reference to the keyColNames array to the OracleXMLSave.setKeyColumnList() method:

sav.setKeyColumnList(keyColNames);

	
Update the rows specified in the input XML document. The following statement creates a URL from the filename specified on the command line:

sav.updateXML(sav.getURL(argv[0]));

	
Close the XML save object as follows:

sav.close();

Running the testUpdate Program

You can use XSU to update specified fields in a table. Example 11-2 shows upd_emp.xml, which contains updated salary and other information for the two employees that you just added, 7369 and 7400.

Example 11-2 upd_emp.xml

<?xml version='1.0'?>
<ROWSET>
 <ROW num="1">
 <EMPLOYEE_ID>7400</EMPLOYEE_ID>
 <SALARY>3250</SALARY>
 </ROW>
 <ROW num="2">
 <EMPLOYEE_ID>7369</EMPLOYEE_ID>
 <JOB_ID>SA_REP</JOB_ID>
 <MANAGER_ID>145</MANAGER_ID>
 </ROW>
<!-- additional rows ... -->
</ROWSET>

For updates, supply XSU with the list of key column names in the WHERE clause of the UPDATE statement. In the hr.employees table the employee_id column is the key.

Pass the filename upd_emp.xml as an argument to the preceding program as follows:

java testUpdate upd_emp.xml

The program generates two UPDATE statements. For the first ROW element, the program generates an UPDATE statement to update the SALARY field as follows:

UPDATE hr.employees SET salary = 3250 WHERE employee_id = 7400;

For the second ROW element the program generates the following statement:

UPDATE hr.employees SET job_id = 'SA_REP' AND MANAGER_ID = 145
 WHERE employee_id = 7369;

Updating a Column List with OracleXMLSave

You may want to update a table by using only a subset of the elements in an XML document. You can achieve this goal by specifying a list of columns. This technique speeds processing because XSU uses the same UPDATE statement with bind variables for all the ROW elements. You can also ignore other tags in the XML document.

	
Note:

When you specify a list of columns to update, if an element corresponding to one of the update columns is absent, XSU treats it as NULL.

Suppose you want to update the salary and job title for each employee and ignore the other data. If you know that all the elements to be updated are the same for all ROW elements in the XML document, then you can use the OracleXMLSave.setUpdateColumnNames() method to specify the columns. The testUpdateList.java program illustrates this technique.

The testUpdateList.java program follows these steps:

	
Create a JDBC OCI connection. The program calls the same getConnection() method used by the previous examples in this chapter:

Connection conn = getConnection("hr","password");

	
Create an XML save object. You initialize the object by passing it the Connection reference and the name of the table on which you want to perform DML. The following example illustrates this technique:

OracleXMLSave sav = new OracleXMLSave(conn, "employees");

	
Create an array of type String to hold the name of the primary key column in the table to be updated. The array contains only one element, which is the name of the primary key column in the table to be updated. The following code fragment specifies the name of the employee_id column:

String [] colNames = new String[1];
colNames[0] = "EMPLOYEE_ID";

	
Set the XML save object to the primary key specified in the array. The following statement passes a reference to the colNames array to the OracleXMLSave.setKeyColumnList() method:

sav.setKeyColumnList(keyColNames);

	
Create an array of type String to hold the name of the columns to be updated. The following code fragment specifies the name of the employee_id column:

String[] updateColNames = new String[2];
updateColNames[0] = "SALARY";
updateColNames[1] = "JOB_ID";

	
Set the XML save object to the list of columns to be updated. The following statement performs this task:

sav.setUpdateColumnList(updateColNames);

	
Update the rows specified in the input XML document. The following code fragment creates a URL from the filename specified on the command line:

sav.updateXML(sav.getURL(argv[0]));

	
Close the XML save object as follows:

sav.close();

Running the testUpdateList Program

Suppose that you use the sample XML document upd_emp2.xml to store new data for employees Steven King, who has an employee ID of 100, and William Gietz, who has an employee ID of 206. You pass upd_emp2.xml as an argument to the testUpdateList program as follows:

java testUpdateList upd_emp2.xml

In this example, the program generates two UPDATE statements. For the first ROW element, the program generates the following statement:

UPDATE hr.employees SET salary = 8350 AND job_id = 'AC_ACCOUNT'
 WHERE employee_id = 100;

For the second ROW element the program generates the following statement:

UPDATE hr.employees SET salary = 25000 AND job_id = 'AD_PRES'
 WHERE employee_id = 206;

Deleting Rows with OracleXMLSave

When deleting from XML documents, you can specify a list of key columns. XSU uses these columns in the WHERE clause of the DELETE statement. If you do not supply the key column names, then XSU creates a new DELETE statement for each ROW element of the XML document. The list of columns in the WHERE clause of the DELETE statement matches those in the ROW element.

Deleting by Row with OracleXMLSave

The testDeleteRow.java demo program accepts an XML document filename as input and deletes the rows corresponding to the elements in the document.

The testDeleteRow.java program follows these steps:

	
Create a JDBC OCI connection. The program calls the same getConnection() method used by the previous examples in this chapter:

Connection conn = getConnection("hr","password");

	
Create an XML save object. You initialize the object by passing it the Connection reference and the name of the table on which you want to perform DML. The following example illustrates this technique:

OracleXMLSave sav = new OracleXMLSave(conn, "employees");

	
Delete the rows specified in the input XML document. The following code fragment creates a URL from the filename specified on the command line:

sav.deleteXML(sav.getURL(argv[0]));

	
Close the XML save object as follows:

sav.close();

Running the testDelete Program

Suppose that you want to delete the employees 7400 and 7369 that you added in "Inserting Rows with OracleXMLSave".

To make this example work correctly, connect to the database and disable a constraint on the hr.job_history table:

CONNECT hr
ALTER TABLE job_history
 DISABLE CONSTRAINT JHIST_EMP_FK;
EXIT

Now pass upd_emp.xml to the testDeleteRow program as follows:

java testDeleteRow upd_emp.xml

The program forms the DELETE statements based on the tag names present in each ROW element in the XML document. It executes the following statements:

DELETE FROM hr.employees WHERE salary = 3250 AND employee_id = 7400;
DELETE FROM hr.employees WHERE job_id = 'SA_REP' AND MANAGER_ID = 145
 AND employee_id = 7369;

Deleting by Key with OracleXMLSave

To only use the key values as predicates on the DELETE statement, invoke the OracleXMLSave.setKeyColumnList() method. This approach limits the number of elements used to identify a row, which has the benefit of improving performance by caching the DELETE statement and batching transactions. The testDeleteKey.java program illustrates this technique.

The testDeleteKey.java program follows these steps:

	
Create a JDBC OCI connection. The program calls the same getConnection() method used by the previous examples in this chapter:

Connection conn = getConnection("hr","password");

	
Create an XML save object. You initialize the object by passing it the Connection reference and the name of the table on which you want to perform DML. The following example illustrates this technique:

OracleXMLSave sav = new OracleXMLSave(conn, "employees");

	
Create an array of type String to hold the name of the primary key column in the table. The array contains only one element. The following code fragment specifies the name of the employee_id column:

String [] colNames = new String[1];
colNames[0] = "EMPLOYEE_ID";

	
Set the XML save object to the primary key specified in the array. The following statement passes a reference to the colNames array to the OracleXMLSave.setKeyColumnList() method:

sav.setKeyColumnList(keyColNames);

	
Delete the rows specified in the input XML document. The following code fragment creates a URL from the filename specified on the command line:

sav.deleteXML(sav.getURL(argv[0]));

	
Close the XML save object as follows:

sav.close();

Running the testDeleteKey Program

Suppose that you want to delete employees 7400 and 7369 that you added in "Updating with Key Columns with OracleXMLSave". Note that if you already deleted these employees in the previous example, you can first add them back to the employees table as follows:

java testInsert new_emp.xml
java testInsert new_emp2.xml

Delete employees 7400 and 7369 by passing the same upd_emp.xml document to the testDeleteRow program as follows:

java testDeleteKey upd_emp.xml

The program forms the following single generated DELETE statement:

DELETE FROM hr.employees WHERE employee_id=?;

The program executes the following DELETE statements, one for each employee:

DELETE FROM hr.employees WHERE employee_id = 7400;
DELETE FROM hr.employees WHERE employee_id = 7369;

Handling XSU Java Exceptions

XSU catches all exceptions that occur during processing and throws oracle.xml.sql.OracleXMLSQLException, which is a generic runtime exception. The calling program does not have to catch this exception if it can still perform the appropriate action. The exception class provides methods to obtain error messages and also get any existing parent exception.

Obtaining the Parent Exception

The testException.java demo program throws a runtime exception and then obtains the parent exception by invoking Exception.getParentException().

Running the preceding program generates the following error message:

Caught SQL Exception:ORA-00904: "SD": invalid identifier

Raising a No Rows Exception

When there are no rows to process, XSU returns a null string. You can throw an exception every time there are no more rows, however, so that the program can process this exception through exception handlers. When a program invokes OracleXMLQuery.setRaiseNoRowsException(), XSU raises an oracle.xml.sql.OracleXMLSQLNoRowsException whenever there are no rows to generate for the output. This is a runtime exception and need not be caught.

The noRowsTest.java demo program instantiates the pageTest class defined in pageTest.java. The condition to check the termination changed from checking whether the result is null to an exception handler.

The noRowsTest.java program creates a pageTest object and initializes it with a SQL query. The program proceeds as follows:

	
Configure the query object or raise a no rows exception. The following code fragment illustrates this technique:

pageTest test = new pageTest("SELECT * from employees");
...
test.qry.setRaiseNoRowsException(true);

	
Loop through the result set infinitely, retrieving ten rows at a time. When no rows are available, the program throws an exception. The following code fragment calls pageTest.nextPage(), which scrolls through the result set ten rows at a time:

try
{
 while(true)
 System.out.println(test.nextPage());
}

	
Catch the no rows exception and print "END OF OUTPUT". The following code illustrates this technique:

catch(oracle.xml.sql.OracleXMLSQLNoRowsException e)
{
 System.out.println(" END OF OUTPUT ");
 try
 {
 test.close();
 }
 catch (Exception ae)
 {
 ae.printStackTrace(System.out);
 }
}

After compiling the program, run it from the command line as follows:

java noRowsTest

Programming with the XSU PL/SQL API

This chapter contains the following topics:

	
Generating XML from Simple Queries with DBMS_XMLQuery

	
Specifying Element Names with DBMS_XMLQuery

	
Paginating Results with DBMS_XMLQuery

	
Setting Stylesheets in XSU

	
Binding Values in XSU

	
Inserting XML with DBMS_XMLSave

	
Updating with DBMS_XMLSave

	
Deleting with DBMS_XMLSave

	
Handling Exceptions in the XSU PL/SQL API

	
Reusing the Context Handle with DBMS_XMLSave

	
Note:

For increased performance, consider using DBMS_XMLGen and DBMS_XMLStore as alternatives to DBMS_XMLQuery and DBMS_XMLSave. The two former packages are written in C and are built in to the database kernel. You can also use SQL/XML functions such as XML_Element for XML access in the database.

Generating XML from Simple Queries with DBMS_XMLQuery

This section shows how you can use the DBMS_XMLQuery package to generate XML from a SQL query. To make the example work, connect to the database as hr and run the printClobOut.sql script. The script creates printClobOut, which is a simple procedure that prints a CLOB to the output buffer. If you run the printClobOut procedure in SQL*Plus, it prints the input CLOB to the screen. Set server output to ON to see the results. You may have to increase your display buffer to see all the output.

Run the simpleQuery.sql script to select 20 rows from the hr.employees table and obtain an XML document as a CLOB. The program first gets the context handle by passing in a query and then calls the getXML function to obtain the CLOB value. The document is in the same encoding as the database character set. This sample application assumes that you created the printClobOut procedure by running printClobOut.sql.

Specifying Element Names with DBMS_XMLQuery

With the XSU PL/SQL API you can change the default ROW and the ROWSET element names, which are the default names placed around each row of the result and around the whole output XML document. Use the PL/SQL procedures setRowTagName and setRowSetTagName to accomplish this task.

Connect as hr and run the changeElementName.sql script in SQL*Plus to obtain the first 20 rows of the employees table as an XML document. The anonymous PL/SQL block changes the ROW and ROWSET element names to EMP and EMPSET. Note that the block calls the printClobOut procedure that you created by running printClobOut.sql.

The generated XML document has an <EMPSET> document element. Each row is separated with the <EMP> tag.

Paginating Results with DBMS_XMLQuery

You can paginate query results by calling the following PL/SQL functions:

	
setMaxRows sets the maximum number of rows to be converted to XML. This maximum is relative to the current row position from which the previous result was generated.

	
setSkipRows specifies the number of rows to skip before converting the row values to XML.

Run the paginateResult.sql script to execute an anonymous block that paginates results. It skips the first 3 rows of the employees table and prints the rest of the rows 10 at a time by setting skipRows to 3 for the first batch of 10 rows and then to 0 for the rest of the batches. For multiple fetches, you must determine when there are no more rows to fetch, which you can do by calling setRaiseNoRowsException. This procedure raises an exception if no rows are written to the CLOB. This exception can be caught and used as the termination condition.

Setting Stylesheets in XSU

The XSU PL/SQL API provides the ability to set stylesheets on the generated XML documents as follows:

	
Set the stylesheet header in the result with the setStylesheetHeader procedure. This procedure adds the XML processing instruction that includes the stylesheet.

	
Apply a stylesheet to the resulting XML document before generation. This method increases performance dramatically because otherwise the XML document must be generated as a CLOB, sent to the parser again, and have the stylesheet applied. XSU generates a DOM document, calls the parser, applies the stylesheet and then generates the result. To apply the stylesheet to the resulting XML document, use the setXSLT procedure, which uses the stylesheet to generate the result.

Binding Values in XSU

The XSU PL/SQL API provides the ability to bind values to a SQL statement. The SQL statement can contain named bind variables, which must be prefixed with a colon (:). The bindSQLVariables.sql script runs an anonymous PL/SQL block that binds values for EMPLOYEE_ID and FIRST_NAME to columns in the employees table.

Inserting XML with DBMS_XMLSave

To insert a document into a table or view, supply the table or the view name and then the XML document. XSU parses the XML document (if a string is given) and then creates an INSERT statement into which it binds all the values. By default, XSU inserts values into all the columns of the table or view and treats absent elements as NULL.

Inserting Values into All Columns with DBMS_XMLSave

Run the insProc.sql demo script to create a PL/SQL stored procedure, insProc, which accepts the following parameters:

	
An XML document as a CLOB

	
The name of the table in which to insert the document

You can invoke the insProc procedure to insert an XML document into the table.

Run the insertClob.sql script to create a table called xmldocument and store an XML document in the table as a CLOB. The XML document describes employee 7370, Liz Gardner, whom you want to insert into the hr.employees table.

Example 11-3 insertClob.sql

CREATE TABLE hr.xmldocument
 (docid NUMBER PRIMARY KEY,
 xml_text CLOB);
-- insert an XML document into the CLOB column
INSERT INTO hr.xmldocument (docid,xml_text)
VALUES (1,
 '<?xml version="1.0"?>
 <ROWSET>
 <ROW num="1">
 <EMPLOYEE_ID>7370</EMPLOYEE_ID>
 <FIRST_NAME>Liz</FIRST_NAME>
 <LAST_NAME>Gardner</LAST_NAME>
 <EMAIL>liz.gardner@business.com</EMAIL>
 <PHONE_NUMBER>650-555-6127</PHONE_NUMBER>
 <HIRE_DATE>12/18/2004 0:0:0</HIRE_DATE>
 <SALARY>3000</SALARY>
 <COMMISSION_PCT>0</COMMISSION_PCT>
 <JOB_ID>SH_CLERK</JOB_ID>
 <MANAGER_ID>103</MANAGER_ID>
 <DEPARTMENT_ID>20</DEPARTMENT_ID>
 </ROW>
 </ROWSET>');

Run the insertEmployee.sql script shown in Example 11-4 to call the insProc stored procedure and insert Liz Gardner into the employees table.

Example 11-4 insertEmployee.sql

DECLARE
 v_xml_text CLOB;
BEGIN
 SELECT xml_text
 INTO v_xml_text
 FROM hr.xmldocument
 WHERE docid = 1;
 insProc(v_xml_text, 'employees');
END;
/

As in "Inserting Rows with OracleXMLSave", running the callinsProc procedure generates an INSERT statement of the form shown in Example 11-5.

Example 11-5 Form of the INSERT Statement

INSERT INTO hr.employees
 (employee_id, first_name, last_name, email, phone_number, hire_date,
 salary, commission_pct, manager_id, department_id)
VALUES
 (?, ?, ?, ?, ?, ?, ?, ?, ?, ?);

XSU matches the element tags in the input XML document that match the column names and binds their values.

Inserting into a Subset of Columns with DBMS_XMLSave

As explained in "Inserting XML into a Subset of Columns with OracleXMLSave", you may not want to insert values into all columns. You can create a list of column names for insert processing and pass it to the DBMS_XMLSave procedure. You can set these values by calling the setUpdateColumnName procedure repeatedly and passing in a column name to update every time. Clear the column name settings by invoking clearUpdateColumnList.

Run the testInsert.sql demo script to create a PL/SQL stored procedure called testInsert. You can use this procedure to insert XML data of type CLOB into the hr.employees table.

Run the insertClob2.sql script shown in Example 11-6 to insert an XML document describing new employee Jordan into a CLOB column of the xmldocument table. Note that the document does not contain an element corresponding to every column in the employees table.

Example 11-6 insertClob2.sql

-- insert an XML document into the CLOB column of the xmldocument table with only
-- some of the possible elements
INSERT INTO hr.xmldocument (docid, xml_text)
VALUES (2,
 '<?xml version="1.0"?>
 <ROWSET>
 <ROW num="1">
 <EMPLOYEE_ID>7401</EMPLOYEE_ID>
 <LAST_NAME>Jordan</LAST_NAME>
 <EMAIL>jim.jordan@business.com</EMAIL>
 <JOB_ID>SH_CLERK</JOB_ID>
 <HIRE_DATE>12/17/2004 0:0:0</HIRE_DATE>
 </ROW>
 </ROWSET>');

Running the insertEmployee2.sql script shown in Example 11-7 inserts the data for employee Jim Jordan into a subset of the columns in the hr.employees table.

Example 11-7 insertEmployee2.sql

DECLARE
 v_xml_text CLOB;
BEGIN
 SELECT xml_text
 INTO v_xml_text
 FROM hr.xmldocument
 WHERE docid = 2;
 testInsert(v_xml_text);
END;
/

As in "Inserting XML into a Subset of Columns with OracleXMLSave", calling testInsert generates the following INSERT statement:

INSERT INTO hr.employees (employee_id, last_name, email, job_id, hire_date)
 VALUES (?, ?, ?, ?, ?);

Updating with DBMS_XMLSave

As described in "Updating Rows with OracleXMLSave", you can use an XML document to update specified fields in a table. You can either specify a column to use as a key or pass a list of columns for updating.

Updating with Key Columns with DBMS_XMLSave

Run the testUpdateKey.sql script to create a PL/SQL procedure called testUpdateKey. This procedure uses the employee_id column of the hr.employees table as a primary key.

Run the insertClob3.sql script shown in shown in Example 11-8 to insert an XML document into the CLOB column of the xmldocument table. The document specifies a new salary for employee 7400 and a new job ID and manager ID for employee 7369.

Example 11-8 insertClob3.sql

INSERT INTO hr.xmldocument (docid, xml_text)
VALUES (3,
 '<?xml version="1.0"?>
 <ROWSET>
 <ROW num="1">
 <EMPLOYEE_ID>7400</EMPLOYEE_ID>
 <SALARY>3250</SALARY>
 </ROW>
 <ROW num="2">
 <EMPLOYEE_ID>7369</EMPLOYEE_ID>
 <JOB_ID>SA_REP</JOB_ID>
 <MANAGER_ID>145</MANAGER_ID>
 </ROW>
 </ROWSET>');

Run the updateEmployee.sql script shown in Example 11-9 to pass the XML document to the testUpdateKey procedure and generate two UPDATE statements.

Example 11-9 updateEmployee.sql

DECLARE
 v_xml_text CLOB;
BEGIN
 SELECT xml_text
 INTO v_xml_text
 FROM hr.xmldocument
 WHERE docid = 3;
 testUpdateKey(v_xml_text);
END;
/

For the first ROW element, the program generates an UPDATE statement as follows:

UPDATE hr.employees SET salary = 3250 WHERE employee_id = 7400;

For the second ROW element the program generates the following statement:

UPDATE hr.employees SET job_id = 'SA_REP' AND MANAGER_ID = 145
 WHERE employee_id = 7369;

Specifying a List of Columns with DBMS_XMLSave: Example

As described in "Updating a Column List with OracleXMLSave", you can specify a list of columns to update.

Run the testUpdateSubset.sql script creates the PL/SQL procedure testUpdateSubset. The procedure uses the employee_id column as key and updates only the salary and job_id columns of the hr.employees table.

Run the insertClob4.sql script to insert an XML document into the xmldocument table. The <ROW> elements in the document describe employees 100 and 206. Each <ROW> element has ten subelements that contain descriptive text.

Run the updateEmployee2.sql script shown in Example 11-10 to pass the XML CLOB to the testUpdateSubset procedure and generate two UPDATE statements.

Example 11-10 updateEmployee2.sql

DECLARE
 v_xml_text CLOB;
BEGIN
 SELECT xml_text
 INTO v_xml_text
 FROM hr.xmldocument
 WHERE docid = 4;
 testUpdateSubset(v_xml_text);
END;
/

The procedure updates only those columns specified in the setUpdateColumn procedure, salary and email, for employees 100 and 206.

Deleting with DBMS_XMLSave

As described in "Deleting Rows with OracleXMLSave", you can supply a list of key columns that XSU uses to determine which rows to delete. XSU specifies these columns in the WHERE clause of the DELETE statement.

Deleting by Row with DBMS_XMLSave: Example

Create the testDeleteRow PL/SQL procedure by running the testDeleteRow.sql script. The procedure deletes a row from the hr.employees table for every <ROW> element in an input XML document.

Suppose that you want to delete the employee Jim Jordan that you added in Example 11-7. Run the deleteEmployeeByRow.sql script shown in Example 11-11 to pass the XML document as a CLOB to the testDeleteRow stored procedure.

Example 11-11 Deleting by Row

DECLARE
 v_xml_text CLOB;
BEGIN
 SELECT xml_text
 INTO v_xml_text
 FROM hr.xmldocument
 WHERE docid = 2;
 testDeleteRow(v_xml_text);
END;
/

The preceding call to testDeleteRow generates the following DELETE statement:

DELETE FROM hr.employees
 WHERE employee_id = 7401 AND last_name = 'JORDAN'
 AND email = 'jim.jordan@business.com' AND job_id = 'SH_CLERK'
 AND hire_date = '12/17/2004 0:0:0';

The program forms the DELETE statements based on the tag names present in each <ROW> element in the XML document.

Deleting by Key with DBMS_XMLSave: Example

As explained in "Deleting by Key with OracleXMLSave", you can specify a column to use as a primary key for the deletions. Use the DBMS_XMLSave.setKeyColumn function to specify the key.

The testDeleteKey procedure created by running testDeleteKey.sql deletes a row from the employees table for every <ROW> element in an input XML document.

Suppose that you want to delete the employee Liz Gardner that you added in Example 11-4. Run the deleteEmployeeByKey.sql script shown in Example 11-12 to pass the XML document as a CLOB to the testDeleteKey stored procedure.

Example 11-12 Deleting by Key

DECLARE
 v_xml_text CLOB;
BEGIN
 SELECT xml_text
 INTO v_xml_text
 FROM hr.xmldocument
 WHERE docid = 1;
 testDeleteKey(v_xml_text);
END;
/

In the preceding procedure call, XSU generates a single DELETE statement of the following form:

DELETE FROM hr.employees WHERE employee_id=?

XSU uses this statement for all ROW elements in the input XML document.

Handling Exceptions in the XSU PL/SQL API

Good PL/SQL coding practice accounts for possible exceptions. The anonymous PL/SQL block in raiseException.sql demonstrates how to invoke the DBMS_XMLQuery.getExceptionContent procedure. Run the script in SQL*Plus to print the following error message:

Exception caught 904 ORA-00904: "Z": invalid identifier

Reusing the Context Handle with DBMS_XMLSave

In the DML examples described in the preceding sections, you can use the same context handle to perform more than one operation. That is, you can perform more than one INSERT with the same context provided that all of the insertions access the same table specified when creating the save context. You can also use the same context to mix DML statements.

The testDML.sql script shows how to use the same context and settings to perform DML depending on user input. The example uses a PL/SQL supplied package static variable to store the context so that the same context can be used for all function calls.

In the testDML package created by the script, you create a context once for the whole package (and thus the session) and reuse the context for multiple DML operations.

	
Note:

The key column employee_id is used both for updates and deletes as a way of identifying the row.

You can call any of the three procedures created by the script to update the employees table:

testDML.insertXML(xmlclob);
testDML.deleteXML(xmlclob);
testDML.updateXML(xmlclob);

Each procedure call uses the same context, which improves the performance of these operations, particularly if these operations are performed frequently.

Tips and Techniques for Programming with XSU

This section provides additional tips and techniques for writing programs with XSU. It contains the following topics:

	
How XSU Maps Between SQL and XML

	
How XSU Processes SQL Statements

How XSU Maps Between SQL and XML

The fundamental component of a table is a column, whereas the fundamental components of an XML document are elements and attributes. How do tables map to XML documents? For example, if the hr.employees table has a column called last_name, how is this structure represented in XML: as an <EMPLOYEES> element with a last_name attribute or as a <LAST_NAME> element within a different root element? This section answers such questions by describing how SQL maps to XML and vice versa. It contains the following topics:

	
Default SQL to XML Mapping

	
Default XML to SQL Mapping

	
Customizing Generated XML

Default SQL to XML Mapping

Assume that you want to display data from some column of the hr.employees table as an XML document. You run XSU at the command line as follows:

java OracleXML getXML -user "hr/password" -withschema \
 "SELECT employee_id, last_name, hire_date FROM employees"

XSU outputs an XML document based on the input query. The root element of the document is <DOCUMENT>. The following shows sample output, with extraneous lines replaced by comments:

<?xml version = '1.0'?>
<DOCUMENT xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <!-- children of schema element ... -->
 </xsd:schema>
 <ROWSET xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="#/DOCUMENT/xsd:schema[not(@targetNamespace)]">
 <ROW num="1">
 <EMPLOYEE_ID>100</EMPLOYEE_ID>
 <LAST_NAME>King</LAST_NAME>
 <HIRE_DATE>6/17/1987 0:0:0</HIRE_DATE>
 </ROW>
 <!-- additional rows ... -->
 </ROWSET>
</DOCUMENT>

In the generated XML, the rows returned by the SQL query are children of the <ROWSET> element. The XML document has the following features:

	
The <ROWSET> element has zero or more <ROW> child elements corresponding to the number of rows returned. If the query generates no rows, then no <ROW> elements are included; if the query generates one row, then one <ROW> element is included, and so forth.

	
Each <ROW> element contains data from one of the table rows. Specifically, each <ROW> element has one or more child elements whose names and content are identical to the database columns specified in the SELECT statement.

XML Mapping Against an Object-Relational Schema

Assume a case in which you generate an XML document from an object-relational schema. Run the createObjRelSchema.sql script in SQL*Plus to set up and populate an object-relational schema. The schema contains a dept1 table with two columns that employ user-defined types.

You can query the dept1 table as follows by invoking XSU from the command line:

% java OracleXML getXML -user "hr/password" -withschema "SELECT * FROM dept1"

XSU returns the XML document shown in Example 11-13, which is altered so that extraneous lines are replaced by comments.

Example 11-13 XSU-Generated Sample Document

<?xml version='1.0'?>
<DOCUMENT xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <schema targetNamespace="http://xmlns.oracle.com/xdb/SYSTEM"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:SYSTEM="http://xmlns.oracle.com/xdb/SYSTEM">
 <!-- children of schema element ... -->
 </xsd:schema>
 <ROWSET xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="#/DOCUMENT/xsd:schema[not(@targetNamespace)]">
 <ROW num="1">
 <DEPTNO>120</DEPTNO>
 <DEPTNAME>Treasury</DEPTNAME>
 <DEPTADDR>
 <STREET>2004 Charade Rd</STREET>
 <CITY>Seattle</CITY>
 <STATE>WA</STATE>
 <ZIP>98199</ZIP>
 </DEPTADDR>
 <EMPLIST>
 <EMPLIST_ITEM>
 <EMPLOYEE_ID>1</EMPLOYEE_ID>
 <LAST_NAME>Mehta</LAST_NAME>
 <SALARY>6000</SALARY>
 <EMPLOYEE_ADDRESS>
 <STREET>500 Main Road</STREET>
 <CITY>Seattle</CITY>
 <STATE>WA</STATE>
 <ZIP>98199</ZIP>
 </EMPLOYEE_ADDRESS>
 </EMPLIST_ITEM>
 </EMPLIST>
 </ROW>
 </ROWSET>
</DOCUMENT>

As in the previous example, the mapping is canonical, that is, <ROWSET> contains <ROW> child elements, which in turn contain child elements corresponding to the columns in dept1. For example, the <DEPTNAME> element corresponds to the dept1.deptname column. The elements corresponding to scalar type columns contain the data from the columns.

Default Mapping of Complex Type Columns to XML

The situation is more complex with elements corresponding to a complex type column. In Example 11-13, <DEPTADDR> corresponds to the dept1.deptAddr column, which is of object type AddressType. Consequently, <DEPTADDR> contains child elements corresponding to the attributes specified in the type AddressType. The AddressType attribute street corresponds to the child XML element <STREET> and so forth. These sub-elements can contain data or subelements of their own, depending on whether the attribute they correspond to is of a simple or complex type.

Default Mapping of Collections to XML

When dealing with elements corresponding to database collections, the situation is also different. In Example 11-13, the <EMPLIST> element corresponds to the emplist column of type EmployeeListType. Consequently, the <EMPLIST> element contains a list of <EMPLIST_ITEM> elements, each corresponding to one of the elements of the collection. Note the following:

	
The <ROW> elements contain a cardinality attribute num.

	
If a particular column or attribute value is NULL, then for that row, the corresponding XML element is left out altogether.

	
If a top-level scalar column name starts with the at sign (@) character, then the column is mapped to an XML attribute instead of an XML element.

Default XML to SQL Mapping

XML to SQL mapping is the reverse of SQL to XML mapping. Consider the following differences when using XSU to map XML to SQL:

	
When transforming XML to SQL, XSU ignores XML attributes. Thus, there is really no mapping of XML attributes to SQL.

	
When transforming SQL to XML, XSU performs the mapping on a single ResultSet created by a SQL query. The query can span multiple database tables or views. When transforming XML into SQL, note the following:

	
To insert one XML document into multiple tables or views, you must create an object-relational view over the target schema.

	
If the view is not updatable, then you can use INSTEAD OF INSERT triggers.

If the XML document does not perfectly map to the target database schema, then you can perform the following actions:

	
Modify the target. Create an object-relational view over the target schema and make the view the new target.

	
Modify the XML document by using XSLT to transform the XML document. You can register the XSLT stylesheet with XSU so that the incoming XML is automatically transformed before it attempts any mapping.

	
Modify XSU's XML-to-SQL mapping. You can instruct XSU to perform case-insensitive matching of XML elements to database columns or attributes. For example, you can instruct XSU to do the following:

	
Use the name of the element corresponding to a database row instead of ROW.

	
Specify the date format to use when parsing dates in the XML document.

Customizing Generated XML

In some circumstances you may need to generate XML with a specific structure. Because the desired structure may differ from the default structure of the generated XML document, you want to have some flexibility in this process. You can customize the structure of a generated XML document by using one of the following methods:

	
Altering the Database Schema or SQL Query

	
Modifying XSU

Altering the Database Schema or SQL Query

You can perform source customizations by altering the SQL query or the database schema. The simplest and most powerful source customizations include the following:

	
In the database schema, create an object-relational view that maps to the desired XML document structure.

	
In your query, do the following:

	
Use cursor subqueries or cast-multiset constructs to create nesting in the XML document that comes from a flat schema.

	
Alias column and attribute names to obtain the desired XML element names.

	
Alias top-level scalar type columns with identifiers that begin with the at sign (@) to make them map to an XML attribute instead of an XML element. For example, executing the following statement generates an XML document in which the <ROW> element has the attribute empno:

SELECT employee_name AS "@empno",... FROM employees;

Consider the customer.xml document shown in Example 11-14.

Example 11-14 customer.xml

<?xml version = "1.0"?>
<ROWSET>
 <ROW num="1">
 <CUSTOMER>
 <CUSTOMERID>1044</CUSTOMERID>
 <FIRSTNAME>Paul</FIRSTNAME>
 <LASTNAME>Astoria</LASTNAME>
 <HOMEADDRESS>
 <STREET>123 Cherry Lane</STREET>
 <CITY>SF</CITY>
 <STATE>CA</STATE>
 <ZIP>94132</ZIP>
 </HOMEADDRESS>
 </CUSTOMER>
 </ROW>
</ROWSET>

Suppose that you need to design a set of database tables to store this data. Because the XML is nested more than one level, you can use an object-relational database schema that maps canonically to the preceding XML document. Run the createObjRelSchema2.sql script in SQL*Plus to create such a database schema.

You can load the data in the customer.xml document into the customer_tab table created by the script. Invoke XSU for Java from the command line as follows:

java OracleXML putXML -user "hr/password" -fileName customer.xml customer_tab

To load customer.xml into a database schema that is not object-relational, you can create objects in views on top of a standard relational schema. For example, you can create a relational table that contains the necessary columns, then create a customer view that contains a customer object on top of it, as shown in the createRelSchema.sql script in Example 11-15.

Example 11-15 createRelSchema.sql

CREATE TABLE hr.cust_tab
 (customerid NUMBER(10),
 firstname VARCHAR2(20),
 lastname VARCHAR2(20),
 street VARCHAR2(40),
 city VARCHAR2(20),
 state VARCHAR2(20),
 zip VARCHAR2(20)
);

CREATE VIEW customer_view
AS
SELECT customer_type(customerid, firstname, lastname,
 address_type(street,city,state,zip)) customer
FROM cust_tab;

You can load data into customer_view as follows:

java OracleXML putXML -user "hr/password" -fileName customer.xml customer_view

Alternatively, you can flatten your XML by means of XSLT and then insert it directly into a relational schema. However, this is the least recommended option.

Suppose that you want to map a particular column or a group of columns to an XML attribute instead of an XML element. To achieve this functionality, you can create an alias for the column name and prepend the at sign (@) before the name of this alias. For example, you can use the mapColumnToAtt.sql script to query the hr.employees table, rendering employee_id as an XML attribute.

You can run the mapColumnToAtt.sql script from the command line as follows:

java OracleXML getXML -user "hr/password" -fileName "mapColumnToAtt.sql"

	
Note:

All attributes must appear before any non-attribute.

Modifying XSU

XSU enables you to modify the rules that it uses to transform SQL data into XML. You can make any of the following changes when mapping SQL to XML:

	
Change or omit the <ROWSET> or <ROW> tag.

	
Change or omit the attribute num, which is the cardinality attribute of the <ROW> element.

	
Specify the case for the generated XML element names.

	
Specify that XML elements corresponding to elements of a collection must have a cardinality attribute.

	
Specify the format for dates in the XML document.

	
Specify that null values in the XML document have to be indicated with a nullness attribute rather then by omission of the element.

How XSU Processes SQL Statements

This section describes how XSU interacts with the database:

	
How XSU Queries the Database

	
How XSU Inserts Rows

	
How XSU Updates Rows

	
How XSU Deletes Rows

	
How XSU Commits After DML

How XSU Queries the Database

XSU executes SQL queries and retrieves the ResultSet from the database. XSU then acquires and analyzes metadata about the ResultSet. Using the mapping described in "Default SQL to XML Mapping", XSU processes the SQL result set and converts it into an XML document.

XSU cannot handle certain types of queries, especially those that mix columns of type LONG or LONG RAW with CURSOR() expressions in the SELECT clause. LONG and LONG RAW are two examples of datatypes that JDBC accesses as streams and whose use is deprecated. If you migrate these columns to CLOBs, then the queries succeed.

How XSU Inserts Rows

When inserting the contents of an XML document into a table or view, XSU performs the following steps:

	
Retrieves metadata about the target table or view.

	
Generates a SQL INSERT statement based on the metadata. For example, assume that the target table is dept1 and the XML document is generated from dept1. XSU generates the following INSERT statement:

INSERT INTO dept1 (deptno, deptname, deptaddr, emplist) VALUES (?,?,?,?)

	
Parses the XML document, and for each record, it binds the appropriate values to the appropriate columns or attributes. For example, it binds the values for INSERT statement as follows:

deptno <- 100
deptname <- SPORTS
deptaddr <- AddressType('100 Redwood Shores Pkwy','Redwood Shores',
 'CA','94065')
emplist <- EmployeeListType(EmployeeType(7369,'John',100000,
 AddressType('300 Embarcadero','Palo Alto','CA','94056'),...)

	
Executes the statement. You can optimize INSERT processing to insert in batches and commit in batches.

	
See Also:

	
"Default SQL to XML Mapping"

	
"Inserting Rows with OracleXMLSave" for more detail on batching

How XSU Updates Rows

Updates and delete statements differ from inserts in that they can affect more than one row in the database table. For inserts, each <ROW> element of the XML document can affect at most one row in the table if no triggers or constraints are on the table. With updates and deletes, the XML element can match more than one row if the matching columns are not key columns in the table.

For update statements, you must provide a list of key columns that XSU needs to identify the row to update. For example, assume that you have an XML document that contains the following fragment:

<ROWSET>
 <ROW num="1">
 <DEPTNO>100</DEPTNO>
 <DEPTNAME>SportsDept</DEPTNAME>
 </ROW>
</ROWSET>

You want to change the DEPTNAME value from Sports to SportsDept. If you supply the DEPTNO as the key column, then XSU generates the following UPDATE statement:

UPDATE dept1 SET deptname = ? WHERE deptno = ?

XSU binds the values in the following way:

deptno <- 100
deptname <- SportsDept

For updates, you can also choose to update only a set of columns and not all the elements present in the XML document.

	
See Also:

"Updating Rows with OracleXMLSave"

How XSU Deletes Rows

For deletes, you can choose to provide a set of key columns so that XSU can identify the rows to be deleted. If you do not provide the set of key columns, then the DELETE statement tries to match all the columns in the document. Assume that you pass the following document to XSU:

<ROWSET>
 <ROW num="1">
 <DEPTNO>100</DEPTNO>
 <DEPTNAME>Sports</DEPTNAME>
 <DEPTADDR>
 <STREET>100 Redwood Shores Pkwy</STREET>
 <CITY>Redwood Shores</CITY>
 <STATE>CA</STATE>
 <ZIP>94065</ZIP>
 </DEPTADDR>
 </ROW>
 <!-- additional rows ... -->
</ROWSET>

XSU builds a DELETE statement for each ROW element:

DELETE FROM dept1 WHERE deptno = ? AND deptname = ? AND deptaddr = ?

The binding is as follows:

deptno <- 100
deptname <- sports
deptaddr <- addresstype('100 redwood shores pkwy','redwood city','ca',
 '94065')

	
See Also:

"Deleting Rows with OracleXMLSave"

How XSU Commits After DML

By default XSU performs no explicit commits. If AUTOCOMMIT is on, which is the default for a JDBC connection, then after each batch of statement executions XSU executes a COMMIT. You can override this behavior by turning AUTOCOMMIT off and then using setCommitBatch to specify the number of statement executions before XSU should commit. If an error occurs, then XSU rolls back to either the state the target table was in before the call to XSU, or the state after the last commit made during the current call to XSU.

12 Using the TransX Utility

This chapter contains these topics:

	
Introduction to the TransX Utility

	
Using the TransX Utility: Overview

	
Loading Data with the TransX Utility

	
See Also:

Chapter 13, "Data Loading Format (DLF) Specification"

Introduction to the TransX Utility

TransX Utility enables you to transfer XML to a database. More specifically, the TransX utility is an application of XML SQL Utility (XSU) that loads translated seed data and messages into a database schema. If you have data to be populated into a database in multiple languages, then the utility provides the functionality that you would otherwise need to develop with XSU.

The TransX utility is particularly useful when handling multilingual XML. The utility does the following:

	
Automatically manages the change variables, start sequences, and additional SQL statements that would otherwise require multiple inserts or sessions. Thus, translation vendors do not need to work with unfamiliar SQL and PL/SQL scripts.

	
Automates character encoding. Consequently, loading errors due to incorrect encoding are impossible so long as the data file conforms to the XML standard.

	
Reduces globalization costs by preparing strings to be translated, translating the strings, and loading them into the database.

	
Minimizes translation data format errors and accurately loads the translation contents into pre-determined locations in the database. When the data is in a predefined format, the TransX utility validates it.

	
Eliminates syntax errors due to varying Globalization Support settings.

	
Does not require the UNISTR construct for every piece of NCHAR data.

Prerequisites

This chapter assumes that you are familiar with XML SQL Utility (XSU) because TransX is an application of XSU.

	
See Also:

Chapter 11, "Using the XML SQL Utility (XSU)"

TransX UtilityFeatures

This section describes the following features of the TransX utility:

	
Simplified Multilingual Data Loading

	
Simplified Data Format Support and Interface

	
Additional TransX Utility Features

Simplified Multilingual Data Loading

When inserting multilingual data or data translations into an Oracle database, or when encoding, each XML file requires validation. The traditional translation data loading method is to change the NLS_LANG environment variable setting when switching load files. This variable sets the language and territory used by the client application and the database server. It also sets the client character set, which is the character set for data entered or displayed by a client program.

In the traditional method, each load file is encoded in a character set suitable for its language, which is necessary because translations must be performed in the same file format—typically in a SQL script—as the original. The NLS_LANG setting changes as files are loaded to adapt to the character set that corresponds to the language. As well as consuming time, this approach is error-prone because the encoding metadata is separate from the data itself.

With the TransX utility you use an XML document with a predefined format called a dataset. The dataset contains the encoding information and the data so that you can transfer multilingual data without changing NLS_LANG settings. The TransX utility frees development and translation groups by maintaining the correct character set while loading XML data into the database.

	
See Also:

Oracle Database Globalization Support Guide to learn about the NLS_LANG environment variable

Simplified Data Format Support and Interface

The TransX utility provides a command-line interface and programmable API. The utility complies with a data format defined to be the canonical method for the representation of seed data loaded into the database. The format is intuitive and simplified for use by translation groups. The format specification defines how translators can describe the data so that it is loaded in an expected way. You can represent the values in the data set with scalar values or expressions such as constants, sequences, and queries.

Additional TransX Utility Features

Table 12-1 describes other useful TransX utility features.

Table 12-1 TransX Utility Features

	Feature	TransX Utility . . .
	
Command-line interface

	
Provides easy-to-use commands.

	
User API

	
Exposes a Java API.

	
Validation

	
Validates the data format and reports errors.

	
Whitespace handling

	
Does not consider whitespace characters in the data set as significant unless otherwise specified in various granularity.

	
Unloading

	
Exports the result into the standard data format based on an input query.

	
Intimacy with translation exchange format

	
Enables transformation to and from translation exchange format.

	
Localized user interface

	
Provides messages in many languages.

Using the TransX Utility: Overview

This section contains the following topics:

	
Using the TransX Utility: Basic Process

	
Running the TransX Utility Demo Programs

	
Using the TransX Command-Line Utility

Using the TransX Utility: Basic Process

TransX is accessible through the following API:

	
oracle.xml.transx.loader class, which contains the getLoader() method to obtain a TransX instance

	
oracle.xml.transx.TransX interface, which is the TransX API

Figure 12-1 illustrates the basic process for using the TransX API to transfer XML to an Oracle database.

Figure 12-1 Basic Process of a TransX Application

[image: This graphic is described in the following text.]

The basic process of a TransX application is as follows:

	
Create a TransX loader object. Instantiate the TransX class by calling getLoader() as follows:

TransX transx = loader.getLoader();

	
Start a data loading session by supplying database connection information with TransX.open(). You create a session by supplying the JDBC connect string, database username, and database password. You have the following options:

	
Create the connection with the JDBC OCI driver. The following code fragment illustrates this technique and connects with the supplied user name and password:

transx.open("jdbc:oracle:oci8:@", user, passwd);

	
Create the connection with the JDBC thin driver. The thin driver is written in pure Java and can be called from any Java program. The following code fragment illustrates this technique and connects:

transx.open("jdbc:oracle:thin:@//myhost:1521/myservicename", user,passwd);

The thin driver requires the host name (myhost), port number (1521), and the service name (myservicename). The database must have an active TCP/IP listener.

	
Note:

If you are just validating your data format, then you do not need to establish a database connection because the validation is performed by TransX. Thus, you can invoke the TransX.validate() method without a preceding open() call.

	
Configure the TransX loader. Table 12-2 describes configuration methods.

Table 12-2 TransX Configuration Methods

	Method	Description
	
setLoadingMode()

	
Sets the operation mode on duplicates. The mode determines TransX behavior when there are one or more existing rows in the database whose values in the key columns are the same as those in the dataset to be loaded. You can specify the constants EXCEPTION_ON_DUPLICATES, SKIP_DUPLICATES, or UPDATE_DUPLICATES in class oracle.xml.transx.LoadingMode. By default the loader skips duplicates.

	
setNormalizeLangTag()

	
Sets the case of language tag. By default the loader uses the style specified in the normalize-langtag attribute on DLF.

	
setPreserveWhitespace()

	
Specifies how the loader should handle whitespace. The default is FALSE, which means that the loader ignores the type of whitespace characters in the dataset and loads them as space characters. The loader treats consecutive whitespace characters in the dataset as one space character.

	
setValidationMode()

	
Sets the validation mode. The default is TRUE, which means that the loader performs validation of the dataset format against the canonical schema definition on each load() call. The validation mode should be disabled only if the dataset has already been validated.

The following example specifies that the loader should skip duplicate rows and not validate the dataset:

transx.setLoadingMode(LoadingMode.SKIP_DUPLICATES);
transx.setValidationMode(false);

	
Load the datasets by invoking TransX.load(). The same JDBC connection is used during the iteration of the load operations. For example, load three datasets as follows:

String datasrc[] = {"data1.xml", "data2.xml", "data3.xml"};
...
for (int i = 0 ; i < datasrc.length ; i++)
{
 transx.load(datasrc[i]);
}

	
Close the loading session by invoking TransX.close(). This method call closes the database connection:

transx.close();

	
See Also:

	
Oracle Database Java Developer's Guide to learn about Oracle JDBC

	
Oracle Database XML Java API Reference to learn about TransX classes and methods

Running the TransX Utility Demo Programs

Demo programs for the TransX utility are included in $ORACLE_HOME/xdk/demo/java/transx. Table 12-3 describes the XML files and programs that you can use to test the utility.

Table 12-3 TransX Utility Sample Files

	File	Description
	
README

	
A text file that describes how to set up the TransX demos.

	
emp-dlf.xml

	
A sample output file. The following command generates a file emp.xml that contains all data in the table emp:

transx -s "jdbc:oracle:thin:@//myhost:1521/myservicename" user
 -pw emp.xml emp

The emp-dlf.xml file should be identical to emp.xml.

	
txclean.sql

	
A SQL file that drops the tables and sequences created for the demo.

	
txdemo1.java

	
A sample Java application that creates a JDBC connection and loads three datasets into the database.

	
txdemo1.sql

	
A SQL script that creates two tables and a sequence for use by the demo application.

	
txdemo1.xml

	
A sample dataset.

Documentation for how to compile and run the sample programs is located in the README. The basic steps are as follows:

	
Change into the $ORACLE_HOME/xdk/demo/java/transx directory (UNIX) or %ORACLE_HOME%\xdk\demo\java\transx directory (Windows).

	
Make sure that your environment variables are set as described in "Setting Up the Java XDK Environment". It is recommended that you set the $ORACLE_SID (UNIX) or %ORACLE_SID% (Windows) environment variables to the default database.

	
Note:

For security purposes, do not expose passwords in command-line interfaces. If "-pw" is specified instead of the password in TransX, the user will be prompted for the password [Enter password :]. When the user types the password, it will not be echoed; instead, "*"s will be printed in the command window.

	
Set up the sample database objects by executing txdemo1.sql. Connect to the database and run the txdemo1.sql script as follows:

@txdemo1

	
Run the TransX utility from the command line. For example, assume that you want to connect with the Java thin driver and that your host is myhost, your port is 1521, and your service name is myservicename. Enter the user name where the token user appears. You can execute the following command to load dataset txdemo1.xml:

transx "jdbc:oracle:thin:@//myhost:1521/myservicename" user -pw txdemo1.xml

When the operation is successful, nothing is printed out on your terminal.

	
Query the database to determine whether the load was successful. For example:

SELECT * FROM i18n_messages;

	
Drop the demo objects to prepare for another test. Connect to the database and run the txclean.sql script as follows:

@txclean

	
Compile the Java demo program. For example:

javac txdemo1.java

	
Run the Java program, using the same JDBC and database connection data that you used when invoking the command-line interface. For example:

java txdemo1 "jdbc:oracle:thin:@//myhost:1521/myservicename" user -pw\
 txdemo1.xml

Perform the same query test (step 5) and clean-up operation (step 6) as before.

	
Run the TransX Utility to unload data into the predefined XML format. For example:

transx -s "jdbc:oracle:thin:@//myhost:1521/myservicename" user -pw emp.xml emp

Compare the data in emp.xml with emp-dlf.xml.

	
Note:

For simplicity in demonstrating this feature, this example does not perform the password management techniques that a deployed system normally uses. In a production environment, follow the Oracle Database password management guidelines, and disable any sample accounts. See Oracle Database Security Guide for password management guidelines and other security recommendations.

Using the TransX Command-Line Utility

TransX utility is packaged with Oracle Database. By default, the Oracle Universal Installer installs the utility on disk. As explained in "Java XDK Component Dependencies", the TransX library is $ORACLE_HOME/bin/xml.jar (UNIX) and %ORACLE_HOME%\bin\xml.jar (Windows).

You can run the TransX utility from the operating system command line with the following syntax:

java oracle.xml.transx.loader

The XDK includes a script version of TransX named $ORACLE_HOME/bin/transx (UNIX) and %ORACLE_HOME%\bin\transx.bat (Windows). Assuming that your PATH variable is set correctly, you can run TransX as follows:

transx options parameters
transx.bat options parameters

For example, the following command shows valid syntax:

transx -s "jdbc:oracle:thin:@//myhost:1521/myservicename" user -pw emp.xml emp

TransX utility Command-Line Options

Table 12-4 describes the options for the TransX utility.

Table 12-4 TransX utility Command-line Options

	Option	Meaning	Description
	

-u

	
Update existing rows.

	
Does not skip existing rows but updates them. To exclude a column from the update operation, set the useforupdate attribute to no.

	

-e

	
Raise exception if a row is already existing in the database.

	
Throws an exception if a duplicate row is found. By default, TransX skips duplicate rows. Rows are considered duplicate if the values for lookup-key column(s) in the database and the data set are the same.

	

-x

	
Print data in the database in the predefined format.

	
Similar to the -s option, it causes the utility to perform the opposite operation of loading. Unlike the -s option, it prints to stdout. Redirecting this output to a file is discouraged because intervention of the operating system may result in data loss due to unexpected transcoding.

	
-s

	
Save data in the database into a file in the predefined format.

	
Performs unloading. TransX Utility queries the database, formats the result into the predefined XML format, and stores it under the specified file name.

	
-p

	
Print the XML to load.

	
Prints out the data set for insert in the canonical format of XSU.

	
-t

	
Print the XML for update.

	
Prints out the data set for update in the canonical format of XSU.

	
-o

	
Omit validation (as the data set is parsed it is validated by default).

	
Causes TransX Utility to skip the format validation, which is performed by default.

	
-v

	
Validate the data format and exit without loading.

	
Causes TransX Utility to perform validation and exit.

	
-w

	
Preserve white space.

	
Causes TransX Utility to treat whitespace characters (such as \t, \r, \n, and ' ') as significant. The utility condenses consecutive whitespace characters in string data elements into one space character by default.

	
-l

	
Set the case of language tag.

	
Causes TransX Utility to override the style of normalizing the case of language tag specified in the normalize-langtag attribute on DLF or the setNormalizeLangTag() method on the TransX API. Valid options are -ls, -lu and -ll for standard, uppercase and lowercase, respectively.

Note the following command-line option exceptions:

	
-u and -e are mutually exclusive.

	
-v must be the only option followed by data, as shown in the examples.

	
-x must be the only option followed by connect information and a SQL query, as shown in the examples.

Omitting all arguments results in the display of the usage information shown in Table 12-4.

TransX Utility Command-Line Parameters

Table 12-5 describes the command-line parameters for the TransX utility.

Table 12-5 TransX utility Command-line Parameters

	Parameter	Description
	

connect_string

	
The JDBC connect string. See Oracle Database JDBC Developer's Guide and Reference,

	

username

	
Database user name.

	

password

	
Password for the database user, or "-pw".

	

datasource

	
An XML document specified by filename or URL.

	

options

	
Described in Table 12-4, "TransX utility Command-line Options".

	
See Also:

Oracle Database XML Java API Reference for complete details of the TransX interface

Loading Data with the TransX Utility

The TransX utility is especially useful for populating a database with multilingual data. To use the utility to transfer data in and out of a database schema you must create a dataset that maps to this schema. This section describes a typical use scenario in which you use TransX to organize translated application messages in a database.

This section contains the following topics:

	
Storing Messages in the Database

	
Creating a Dataset in a Predefined Format

	
Loading the Data

	
Querying the Data

Storing Messages in the Database

To build an internationalized system, it is essential to decouple localizable resources from business logic. A typical example of such a resource is translated text information. Data that is specific to a particular region and shares a common language and cultural conventions needs to be organized with a resource management facility that can retrieve locale-specific information. A database is often used to store such data because of easy maintenance and flexibility.

Assume that you create the table with the structure and content shown in Example 12-1 and insert data.

Example 12-1 Structure of Table translated_messages

CREATE TABLE translated_messages
(
 MESSAGE_ID NUMBER(4)
 CONSTRAINT tm_mess_id_nn NOT NULL
, LANGUAGE_ID VARCHAR2(42)
, MESSAGE VARCHAR2(200)
);

The column language_id is defined in this table so that applications can retrieve messages based on the preferred language of the end user. It contains abbreviations of language names to identify the language of messages.

Example 12-2 shows sample data for the table.

Example 12-2 Query of translated_messages

MESSAGE_ID LANGUAGE_ID MESSAGE
---------- ----------- ----------------------------------
1 us Welcome to System X
2 us Please enter username and password

	
See Also:

Oracle Database Globalization Support Guide for Oracle language abbreviations

Creating a Dataset in a Predefined Format

Chapter 13, "Data Loading Format (DLF) Specification" describes the complete syntax of the Data Loading Format (DLF) language. This language is used to create a DLF document that provides the input to TransX.

Given the dataset (the input data) in the canonical format, the TransX utility loads the data into the designated locations in the database. Note that TransX does not create the database objects: you must create the tables or views before attempting to load data.

An XML document that represents the translated_messages table created in Example 12-1 looks something like Example 12-3. The dataset reflects the structure of the target table, which in this case is called translated_messages.

Example 12-3 example.xml

<?xml version="1.0"?>
<table name="translated_messages">
 <!-- Specify the unique identifier -->
 <lookup-key>
 <column name="message_id" />
 <column name="language_id" />
 </lookup-key>
 <!-- Specify the columns into which data will be inserted -->
 <columns>
 <column name="message_id" type="number"/>
 <column name="language_id" type="string" constant="us" translate="yes"/>
 <column name="message" type="string" translate="yes"/>
 </columns>
 <!-- Specify the data to be inserted -->
 <dataset>
 <row>
 <col name="message_id">1</col>
 <col name="message" translation-note="dnt'X'">Welcome to System X</col>
 </row>
 <row>
 <col name="message_id">2</col>
 <col name="message">Please enter username and password</col>
 </row>
 <!-- ... -->
 </dataset>
</table>

Format of the Input XML Document

The XML document in Example 12-3 starts with the following declaration:

<?xml version="1.0"?>

Its root element <table>, which has an attribute that specifies the name of the table, encloses all the other elements:

<table name="translated_messages">
...
</table>

As explained in "Elements in DLF", the <table> element contains three subsections:

	
Lookup Key Elements

	
Metadata Elements

	
Data Elements

The preceding sections map to elements in Example 12-3 as follows:

<lookup-key>...</lookup-key>
<columns>...</columns>
<dataset>...</dataset>

The lookup keys are columns used to evaluate rows if they already exist in the database. Because we want a pair of message and language IDs to identify a unique string, the document lists the corresponding columns. Thus, the message_id, language_id, and message columns in table translated_messages map to the attributes in the <column> element as follows:

<column name="message_id" type="number"/>
<column name="language_id" type="string" constant="us" translate="yes"/>
<column name="message" type="string" translate="yes"/>

The columns section should mirror the table structure because it specifies which piece of data in the dataset section maps to which table column. The column names should be consistent throughout the XML dataset and database. You can use the <column> attributes in Table 12-6 to describe the data to be loaded. Note that these attributes form a subset of the DLF attributes described in "Attributes in DLF".

Table 12-6 <column> Attributes

	Attribute	Description	Example
	
type

	
Specifies the datatype of a column in the dataset. This attribute specifies the kind of text contained in the <col> element in the dataset. Depending on this type, the data loading tool applies different datatype conventions to the data.

	

<column name="col" type="string" />

	
constant

	
Specifies a constant value. A column with a fixed value for each row does not have to repeat that same value.

	

<column name="col" type="string" constant="us" />

	
language

	
The language attribute indicates that the column is the language column, which stores a language tag. It works in the same way as the constant attribute, except for the role to declare the column is the language column.

	

<column name="language" type="string" language="us" />

	
sequence

	
Specifies a sequence in the database used to fill in the value for this column.

	

<column name="id" type="number" sequence="id_sq" />

	
translate

	
Indicates whether the text of this column or parameter is to be translated.

	

<column name="msg" type="string" translate="yes"/>

The constant attribute of a <column> element specifies a value to be stored into the corresponding column for every row in the dataset section. Because in this example we are working in the original language, the language_id column is set to the value us.

Defining the Language Column

Alternatively, the language_id column may use the language attribute instead of the constant attribute. A DLF document with the language attribute can use the lang attribute in the xml namespace. A language column can use the "%x" placeholder to get its value from the standard xml:lang attribute at the root table element.Thus translate="yes" is not needed, because the value "%x" does not have to be translated. The result of loading this DLF is the same as Example 10-3.

Example 12-4 example.xml with a Language Attribute

<?xml version="1.0"?>
<table xml:lang="us" name="translated_messages">
 <!-- Specify the unique identifier -->
 <lookup-key>
 <column name="message_id" />
 <column name="language_id" />
 </lookup-key>
 <!-- Specify the columns into which data will be inserted -->
 <columns>
 <column name="message_id" type="number"/>
 <column name="language_id" type="string" language="%x"/>
 <column name="message" type="string" translate="yes"/>
 </columns>
 <!-- Specify the data to be inserted -->
 <dataset>
 <row>
 <col name="message_id">1</col>
 <col name="message" translation-note="dnt'X'">Welcome to System X</col>
 </row>
 <row>
 <col name="message_id">2</col>
 <col name="message">Please enter username and password</col>
 </row>
 <!-- ... -->
 </dataset>
</table>

As explained in Table 13-10, the valid values for the type attribute are string, number, date, and dateTime. These values correspond to the datatypes defined in the XML schema standard, so each piece of data should conform to the respective datatype definition. In particular, it is important to use the ISO 8601 format for the date and dateTime datatypes, as shown in Table 12-7.

Table 12-7 date and dateTime Formats

	Datatype	Format	Example
	
date

	
CCYY-MM-DD

	
2009-05-20

	
dateTime

	
CCYY-MM-DDThh:mm:ss

	
2009-05-20T16:01:37

Example 12-5 shows how you can represent a table row with dateTime data in a TransX dataset.

Example 12-5 dateTime Row

<row>
 <col name="article_id">12345678</col>
 <col name="author_id">10500</col>
 <col name="submission">2002-03-09T16:01:37</col>
 <col name="title">...</col>
 <!-- some columns follows -->
</row>

Specifying Translations in a Dataset

As explained in "Attributes in DLF", you can use the translation attribute to specify whether the column contains translated data. In Example 12-3, two <column> elements use the translate attribute differently. The attribute for the language_id column specifies that the value of the constant attribute should be translated:

<column name="language_id" type="string" constant="us" translate="yes"/>

In contrast, the following translate attribute requests translation of the data in the dataset section with a name that matches this column:

<column name="message" type="string" translate="yes"/>

For example, the preceding element specifies that the following messages in the dataset section should be translated:

<col name="message" translation-note="dnt'X'">Welcome to System X</col>
<col name="message">Please enter username and password</col>

When translating messages for applications, you may decide that specified words or phrases should be left untranslated. The translation-note attribute shown in the preceding example achieves this goal.

An XSLT processor can convert the preceding format into another format for exchanging translation data among localization service providers for use with XML-based translation tools. This transformation insulates developers from tasks such as keeping track of revisions, categorizing translatable strings into units, and so on.

Example 12-6 shows what the document in Example 12-3 looks like after translation.

Example 12-6 example_es.xml

<?xml version="1.0"?>
<table xml:lang="es" name="translated_messages">
<!-- Specify the unique identifier -->
<lookup-key>
<column name="message_id" />
<column name="language_id" />
</lookup-key>
<!-- Specify the columns into which data will be inserted -->
<columns>
<column name="message_id" type="number"/>
<column name="language_id" type="string" constant="es"
translate="yes"/>

Example 12-7 shows what the document in Example 12-4 looks like after translation. Unlike the previous example, the column definition is not changed.

Example 12-7 example_es.xml with a Language Attribute

<?xml version="1.0"?>
<table xml:lang="es" name="translated_messages">
 <!-- Specify the unique identifier -->
 <lookup-key>
 <column name="message_id" />
 <column name="language_id" />
 </lookup-key>
 <!-- Specify the columns into which data will be inserted -->
 <columns>
 <column name="message_id" type="number"/>
 <column name="language_id" type="string" language="%x"/>

:
:

If you use a text editor or a traditional text-based translation tool during the translation process, it is important to maintain the encoding of the document. After a document is translated, it may be in a different encoding from the original. As explained in "XML Declaration in DLF", If the translated document is in an encoding other than Unicode, then add the encoding declaration to the XML declaration on the first line. A declaration for non-Unicode encoding looks like the following:

<?xml version="1.0" encoding="ISO-8859-15"?>

To ensure that the translation process does not lose syntactic integrity, process the document as XML. Otherwise, you can check the format by specifying the -v option of the command-line interface. If a syntactic error exists, the utility prints the location and description of the error. You must fix errors for the data transfer to succeed.

	
See Also:

Chapter 13, "Data Loading Format (DLF) Specification"

Loading the Data

Suppose that you want to load the sample documents in Example 12-3 and Example 12-8 into the translated_messages table that you created in Example 12-1. You can use the sample program in Example 12-8, which you can find in the TransX demo directory, to load the data.

Example 12-8 txdemo1.java

// Copyright (c) 2001 All rights reserved Oracle Corporation

import oracle.xml.transx.*;

public class txdemo1 {

 /**
 * Constructor
 */
 public txdemo1() {
 }

 /**
 * main
 * @param args
 *
 * args[0] : connect string
 * args[1] : username
 * args[2] : password
 * args[3+] : xml file names
 */
 public static void main(String[] args) throws Exception {

 // instantiate a transx class
 TransX transx = loader.getLoader();

 // start a data loading session
 transx.open(args[0], args[1], args[2]);

 // specify operation modes
 transx.setLoadingMode(LoadingMode.SKIP_DUPLICATES);
 transx.setValidationMode(false);

 // load the dataset(s)
 for (int i = 3 ; i < args.length ; i++)
 {
 transx.load(args[i]);
 }

 // cleanup
 transx.close();
 }
}

The txdemo1.java program follows these steps:

	
Create a TransX loader object. For example:

TransX transx = loader.getLoader();

	
Open a data loading session. The first three command-line parameters are the JDBC connect string, database username, and database password. These parameters are passed to the TransX.open() method. The program includes the following statement:

transx.open(args[0], args[1], args[2]);

	
Configure the TransX loader. The program configures the loader to skip duplicate rows and to validate the input dataset. The program includes the following statements:

transx.setLoadingMode(LoadingMode.SKIP_DUPLICATES);
transx.setValidationMode(false);

	
Load the data. The first three command-line parameters specify connection information; any additional parameters specify input XML documents. The program invokes the load() method for every specified document:

for (int i = 3 ; i < args.length ; i++)
{
 transx.load(args[i]);
}

	
Close the data loading session. The program includes the following statement:

transx.close();

After compiling the program with javac, you can run it from the command line. The following example uses the Java thin driver to connect to instance mydb on port 1521 of computer myhost. It connects to the user schema and loads the XML documents example.xml and example_es.xml:

java txdemo1 "jdbc:oracle:thin:@//myhost:1521/mydb" user -pw example.xml
 example_es.xml

In building a multilingual software system, translations usually become available at a later stage of development. They also tend to evolve over a period of time. If you need to add messages to the database, then you can add new rows in your <dataset> definition by running the TransX utility again. TransX recognizes which rows are new and inserts only the new messages based on the columns specified in the <lookup-key> section. If some messages are updated, then run TransX with the -u option to update existing rows with the data specified in XML, as shown in the following example:

transx -u "jdbc:oracle:thin:@//myhost:1521/mydb" user -pw example.xml
 example_es.xml

Querying the Data

After using the program in Example 12-8 to load the data, you can query the translated_messages table to see the results. The results should look like the following:

MESSAGE_ID LANGUAGE_ID MESSAGE
---------- ----------- ----------------------------------
1 us Welcome to System X
1 es Bienvenido al Sistema X
2 us Please enter username and password
2 es Porfavor entre su nombre de usuario y su contraseña

An application can retrieve a message in a specific language by using the language_id and message_id columns in a WHERE clause. For example, you can execute the following query:

SELECT message
FROM translated_messages
WHERE message_id = 2
AND language_id = 'es';

MESSAGE

Porfavor entre su nombre de usuario y su contraseña

15 Using the XSQL Pages Publishing Framework: Advanced Topics

This chapter discusses the following XSQL pages advanced topics:

	
Customizing the XSQL Configuration File Name

	
Controlling How Stylesheets Are Processed

	
Working with Array-Valued Parameters

	
Setting Error Parameters on Built-in Actions

	
Including XMLType Query Results in XSQL Pages

	
Handling Posted XML Content

	
Producing PDF Output with the FOP Serializer

	
Performing XSQL Customizations

Customizing the XSQL Configuration File Name

By default, the XSQL pages framework expects the configuration file to be named XSQLConfig.xml. When moving between development, test, and production environments, you can switch between different versions of an XSQL configuration file. To override the name of the configuration file read by the XSQL page processor, set the Java system property xsql.config.

The simplest technique is to specify a Java VM command-line flag such as -Dxsql.config=MyConfigFile.xml by defining a servlet initialization parameter named xsql.config. Add an <init-param> element to your web.xml file as part of the <servlet> tag that defines the XSQL Servlet as follows:

<servlet>
 <servlet-name>XSQL</servlet-name>
 <servlet-class>oracle.xml.xsql.XSQLServlet</servlet-class>
 <init-param>
 <param-name>xsql.config</param-name>
 <param-value>MyConfigFile.xml</param-value>
 <description>
 Please Use MyConfigFile.xml instead of XSQLConfig.xml
 </description>
 </init-param>
</servlet>

The servlet initialization parameter is only applicable to the servlet-based use of the XSQL engine. When using the XSQLCommandLine or XSQLRequest programmatic interfaces, use the System parameter instead.

	
Note:

The configuration file is always read from the CLASSPATH. For example, if you specify a custom configuration parameter file named MyConfigFile.xml, then the XSQL processor attempts to read the XML file as a resource from the CLASSPATH. In a J2EE-style servlet environment, you must place your MyConfigFile.xml in the .\WEB-INF\classes directory (or some other top-level directory that will be found on the CLASSPATH). If both the servlet initialization parameter and the System parameter are provided, then the servlet initialization parameter value is used.

Controlling How Stylesheets Are Processed

This section contains the following topics:

	
Overriding Client Stylesheets

	
Controlling the Content Type of the Returned Document

	
Assigning the Stylesheet Dynamically

	
Processing XSLT Stylesheets in the Client

	
Providing Multiple Stylesheets

Overriding Client Stylesheets

If the current XSQL page being requested allows it, then you can supply an XSLT stylesheet URL in the request. This technique enables you to either override the default stylesheet or apply a stylesheet where none is applied by default. The client-initiated stylesheet URL is provided by supplying the xml-stylesheet parameter as part of the request. The valid values for this parameter are the following:

	
Any relative URL interpreted relative to the XSQL page being processed.

	
Any absolute URL that uses the HTTP protocol scheme, provided it references a trusted host as defined in the XSQL configuration file.

	
The literal value none. Setting xml-stylesheet=none is useful during development to temporarily "short-circuit" the XSLT stylesheet processing to determine what XML datagram your stylesheet is seeing. Use this technique to determine why a stylesheet is not producing expected results.

You can allow client override of stylesheets for an XSQL page in the following ways:

	
Setting the allow-client-style configuration parameter to no in the XSQL configuration file

	
Explicitly including an allow-client-style="no" attribute on the document element of any XSQL page

If client-override of stylesheets has been globally disabled by default in the XSQL configuration file, any page can still enable client-override explicitly by including an allow-client-style="yes" attribute on the document element of that page.

Controlling the Content Type of the Returned Document

Setting the content type of the data that you serve enables the requesting client to correctly interpret the data that you return. If your stylesheet uses an <xsl:output> element, then the XSQL processor infers the media type and encoding of the returned document from the media-type and encoding attributes of <xsl:output>.

The stylesheet in Example 15-1 uses the media-type="application/vnd.ms-excel" attribute on <xsl:output>. This instruction transforms the results of an XSQL page containing a standard query of the hr.employees table into Microsoft Excel format.

Example 15-1 empToExcel.xsl

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="html" media-type="application/vnd.ms-excel"/>
 <xsl:template match="/">
 <html>
 <table>
 <tr><th>Id</th><th>Email</th><th>Salary</th></tr>
 <xsl:for-each select="ROWSET/ROW">
 <tr>
 <td><xsl:value-of select="EMPLOYEE_ID"/></td>
 <td><xsl:value-of select="EMAIL"/></td>
 <td><xsl:value-of select="SALARY"/></td>
 </tr>
 </xsl:for-each>
 </table>
 </html>
 </xsl:template>
</xsl:stylesheet>

The following XSQL page makes use of the stylesheet in Example 15-1:

<?xml version="1.0"?>
<?xml-stylesheet href="empToExcel.xsl" type="text/xsl"?>
<xsql:query connection="hr" xmlns:xsql="urn:oracle-xsql">
 SELECT employee_id, email, salary
 FROM employees
 ORDER BY salary DESC
</xsql:query>

Assigning the Stylesheet Dynamically

If you include an <?xml-stylesheet?> instruction at the top of your .xsql file, then the XSQL page processor considers it for use in transforming the resulting XML datagram. Consider the emp_test.xsql page shown in Example 15-2.

Example 15-2 emp_test.xsql

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="emp.xsl"?>
<page connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:query>
 SELECT *
 FROM employees
 ORDER BY salary DESC
 </xsql:query>
</page>

The page in Example 15-2 uses the emp.xsl stylesheet to transform the results of the employees query in the server tier before returning the response to the requestor. The processor accesses the stylesheet by the URL provided in the href pseudo-attribute on the <?xml-stylesheet?> processing instruction.

Suppose that you want to change XSLT stylesheets dynamically based on arguments passed to the XSQL servlet. You can achieve this goal by using a lexical parameter in the href attribute of your xml-stylesheet processing instruction, as shown in the following sample instruction:

<?xml-stylesheet type="text/xsl" href="{@filename}.xsl"?>

You can then pass the value of the filename parameter as part of the URL request to XSQL servlet.

You can also use the <xsql:set-page-param> element in an XSQL page to set the value of the parameter based on a SQL query. For example, the XSQL page in Example 15-3 selects the name of the stylesheet to use from a table by assigning the value of a page-private parameter.

Example 15-3 emp_test_dynamic.xsql

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="{@sheet}.xsl"?>
<page connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:set-page-param bind-params="UserCookie" name="sheet">
 SELECT stylesheet_name
 FROM user_prefs
 WHERE username = ?
 </xsql:set-page-param>
 <xsql:query>
 SELECT *
 FROM employees
 ORDER BY salary DESC
 </xsql:query>
</page>

Processing XSLT Stylesheets in the Client

Some browsers support processing XSLT stylesheets in the client. These browsers recognize the stylesheet to be processed for an XML document by using an <?xml-stylesheet?> processing instruction. The use of <?xml-stylesheet?> for this purpose is part of the W3C Recommendation from June 29, 1999 entitled "Associating Stylesheets with XML Documents, Version 1.0".

By default, the XSQL pages processor performs XSLT transformations in the server. By adding client="yes" to your <?xml-stylesheet?> processing instruction in your XSQL page, however, you can defer XSLT processing to the client. The processor serves the XML datagram "raw" with the current <?xml-stylesheet?> element at the top of the document.

Providing Multiple Stylesheets

You can include multiple <?xml-stylesheet?> processing instructions at the top of an XSQL page. The instructions can contain an optional media pseudo-attribute. If specified, the processor case-insensitively compares the value of the media pseudo-attribute with the value of the User-Agent string in the HTTP header. If the value of the media pseudo-attribute matches part of the User-Agent string, then the processor selects the current <?xml-stylesheet?> instruction for use. Otherwise, the processor ignores the instruction and continues looking. The processor uses the first matching processing instruction in document order. An instruction without a media pseudo-attribute matches all user agents.

Example 15-4 shows multiple processing instructions at the top of an XSQL file. The processor uses doyouxml-lynx.xsl for Lynx browsers, doyouxml-ie.xsl for Internet Explorer 5.0 or 5.5 browsers, and doyouxml.xsl for all others.

Example 15-4 Multiple <?xml-stylesheet ?> Processing Instructions

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" media="lynx" href="doyouxml-lynx.xsl" ?>
<?xml-stylesheet type="text/xsl" media="msie 5" href="doyouxml-ie.xsl" ?>
<?xml-stylesheet type="text/xsl" href="doyouxml.xsl" ?>
<page xmlns:xsql="urn:oracle-xsql" connection="demo">

Table 15-1 summarizes the supported pseudo-attributes allowed on the <?xml-stylesheet?> processing instruction.

Table 15-1 Pseudo-Attributes for <?xml-stylesheet ?>

	Attribute Name	Description
	

type = "string"

	
Indicates the MIME type of the associated stylesheet. For XSLT stylesheets, this attribute must be set to the string text/xsl.

This attribute may be present or absent when using the serializer attribute, depending on whether an XSLT stylesheet has to execute before invoking the serializer, or not.

	

href = "URL"

	
Indicates the relative or absolute URL to the XSLT stylesheet to be used. If an absolute URL is supplied that uses the http protocol scheme, the IP address of the resource must be a trusted host listed in the XSQL configuration file (by default, named XSQLConfig.xml).

	

media = "string"

	
Performs a case-insensitive match on the User-Agent string from the HTTP header sent by the requesting device. This attribute is optional. The current <?xml-stylesheet?> processing instruction is used only if the User-Agent string contains the value of the media attribute; otherwise it is ignored.

	

client = "boolean"

	
Defers the processing of the associated XSLT stylesheet to the client if set to yes. The raw XML datagram is sent to the client with the current <?xml-stylesheet?> instruction at the top of the document. The default if not specified is to perform the transformation in the server.

	

serializer = "string"

	
By default, the XSQL page processor uses the following:

	
XML DOM serializer if no XSLT stylesheet is used

	
XSLT processor serializer if an XSLT stylesheet is used

Specifying this pseudo-attribute indicates that a custom serializer implementation must be used instead.

Valid values are either the name of a custom serializer defined in the <serializerdefs> section of the XSQL configuration file or the string java:fully.qualified.Classname. If both an XSLT stylesheet and the serializer attribute are present, then the processor performs the XSLT transformation first, then invokes the custom serializer to render the final result to the OutputStream or PrintWriter.

Working with Array-Valued Parameters

This section contains the following topics:

	
Supplying Values for Array-Valued Parameters

	
Setting Array-Valued Page or Session Parameters from Strings

	
Binding Array-Valued Parameters in SQL and PL/SQL Statements

Supplying Values for Array-Valued Parameters

Request parameters, session parameters, and page-private parameters can have arrays of strings as values. To treat to the value of a parameter as an array, add two empty square brackets to the end of its name. For example, if an HTML form is posted with four occurrences of a input control named productid, then use the notation productid[] to refer to the array-valued productid parameter. If you refer to an array-valued parameter without using the array-brackets notation, then the XSQL processor uses the value of the first array entry.

	
Note:

The XSQL processor does not support use of numbers inside the array brackets. That is, you can refer to productid or productid[], but not productid[2].

Suppose that you refer to an array-valued parameter as a lexical substitution parameter inside an action handler attribute value or inside the content of an action handler element. The XSQL page processor converts its value to a comma-delimited list of non-null and non-empty strings in the order that they exist in the array. Example 15-5 shows an XSQL page with an array-valued parameter.

Example 15-5 Using an Array-Valued Parameter in an XSQL Page

<page xmlns:xsql="urn:oracle-xsql">
 <xsql:query>
 SELECT description
 FROM product
 WHERE productid in ({@productid[]}) /* Using lexical parameter */
 </xsql:query>
</page>

You can invoke the XSQL command-line utility to supply multiple values for the productid parameter in Page.xsql as follows:

xsql Page.xsql productid=111 productid=222 productid=333 productid=444

The preceding command sets the productid[] array-valued parameter to the value {"111","222","333","444"}. The XSQL page processor replaces the {@productid[]} expression in the query with the string "111,222,333,444".

Note that you can also pass multi-valued parameters programmatically through the XSQLRequest API, which accepts a java.util.Dictionary of named parameters. You can use a Hashtable and call its put(name,value) method to add String-valued parameters to the request. To add multi-valued parameters, put a value of type String[] instead of type String.

	
Note:

Only request parameters, page-private parameters, and session parameters can use string arrays. The <xsql:set-stylesheet-param> and <xsql:set-cookie> actions only support working with parameters as simple string values. To refer to a multi-valued parameter in your XSLT stylesheet, use <xsql:include-param> to include the multi-valued parameter into your XSQL datapage, then use an XPath expression in the stylesheet to refer to the values from the datapage.

Setting Array-Valued Page or Session Parameters from Strings

You can set the value of a page-private parameter or session parameter to a string-array value by using the array brackets notation on the name as follows:

<!-- param name contains array brackets -->
<xsql:set-page-param name="names[]" value="Tom Jane Joe"/>

You set the value similarly for session parameters, as shown in the following example:

<xsql:set-session-param name="dates[]" value="12-APR-1962 15-JUL-1968"/>

By default, when the name of the parameter uses array brackets, the XSQL processor treats the value as a space-or-comma-delimited list and tokenizes it.

The resulting string array value contains these separate tokens. In the preceding examples, the names[] parameter is the string array {"Tom", "Jane", "Joe"} and the dates[] parameter is the string array {"12-APR-1962", "15-JUL-1968"}.

To handle strings that contain spaces, the tokenization algorithm first checks the string for the presence of commas. If at least one comma is found in the string, then commas are used as the token delimiter. For example, the following action sets the value of the names[] parameter to the string array {"Tom Jones", "Jane York"}:

<!-- param name contains array brackets -->
<xsql:set-page-param name="names[]" value="Tom Jones,Jane York"/>

By default, when you set a parameter whose name does not end with the array-brackets, then the string-tokenization does not occur. Thus, the following action sets the parameter names to the literal string "Tom Jones,Jane York":

<!-- param name does NOT contain array brackets -->
<xsql:set-page-param name="names" value="Tom Jones,Jane York"/>

You can force the string to be tokenized by including the treat-list-as-array="yes" attribute on the <xsql:set-page-param> or <xsql:set-session-param> actions. When this attribute is set, the XSQL processor assigns a comma-delimited string of the tokenized values to the parameter. For example, the following action sets the names parameter to the literal string "Tom,Jane,Joe":

<!-- param name does NOT contain array brackets -->
<xsql:set-page-param name="names" value="Tom Jane Joe"
 treat-list-as-array="yes"/>

When you are setting the value of a simple string-valued parameter and you are tokenizing the value with treat-list-as-array="yes", you can include the quote-array-values="yes" attribute to surround the comma-delimited values with single-quotes. Thus, the following action assigns the literal string value "'Tom Jones','Jane York','Jimmy'" to the names parameter:

<!-- param name does NOT contain array brackets -->
<xsql:set-page-param name="names" value="Tom Jones,Jane York,Jimmy"
 treat-list-as-array="yes"
 quote-array-values="yes"/>

Binding Array-Valued Parameters in SQL and PL/SQL Statements

Where string-valued scalar bind variables are supported in an XSQL page, you can also bind array-valued parameters. Use the array parameter name, for example, myparam[], in the list of parameter names that you supply for the bind-params attribute. This technique enables you to process array-valued parameters in SQL statements and PL/SQL procedures.

The XSQL processor binds array-valued parameters as a nested table object type named XSQL_TABLE_OF_VARCHAR. You must create this type in your current schema with the following DDL statement:

CREATE TYPE xsql_table_of_varchar AS TABLE OF VARCHAR2(2000);

Although the type must have the name xsql_table_of_varchar, you can change the dimension of the VARCHAR2 string if desired. Of course, you have to make it as long as any string value you expect to handle in your array-valued string parameters.

Consider the PL/SQL function shown in Example 15-6.

Example 15-6 testTableFunction

FUNCTION testTableFunction(p_name XSQL_TABLE_OF_VARCHAR,
 p_value XSQL_TABLE_OF_VARCHAR)
RETURN VARCHAR2 IS
 lv_ret VARCHAR2(4000);
 lv_numElts INTEGER;
BEGIN
 IF p_name IS NOT NULL THEN
 lv_numElts := p_name.COUNT;
 FOR j IN 1..lv_numElts LOOP
 IF (j > 1) THEN
 lv_ret := lv_ret||':';
 END IF;
 lv_ret := lv_ret||p_name(j)||'='||p_value(j);
 END LOOP;
 END IF;
 RETURN lv_ret;
END;

The XSQL page in Example 15-7 shows how to bind two array-valued parameters in a SQL statement that uses testTableFunction.

Example 15-7 XSQL Page with Array-Valued Parameters

<page xmlns:xsql="urn:oracle-xsql" connection="demo"
 someNames="aa,bb,cc" someValues="11,22,33">
 <xsql:query bind-params="someNames[] someValues[]">
 SELECT testTableFunction(?,?) AS example
 FROM dual
 </xsql:query>
</page>

Executing the XSQL page in Example 15-7 generates the following datagram:

<page someNames="aa,bb,cc" someValues="11,22,33">
 <ROWSET>
 <ROW num="1">
 <EXAMPLE>aa=11:bb=22:cc=33</EXAMPLE>
 </ROW>
 </ROWSET>
</page>

This technique shows that the XSQL processor bound the array-valued someNames[] and someValues[] parameters as table collection types. It iterated over the values and concatenated them to produce the "aa=11:bb=22:cc=33" string value as the return value of the PL/SQL function.

You can mix any number of regular parameters and array-valued parameters in your bind-params string. Use the array-bracket notation for the parameters that you want to be bound as arrays.

	
Note:

If you run the page in Example 15-7 but you have not created the XSQL_TABLE_OF_VARCHAR type as illustrated earlier, then you receive an error such as the following:

<page someNames="aa,bb,cc" someValues="11,22,33">
 <xsql-error code="17074" action="xsql:query">
 <statement>
 select testTableFunction(?,?) as example from dual
 </statement>
 <message>
 invalid name pattern: SCOTT.XSQL_TABLE_OF_VARCHAR
 </message>
 </xsql-error>
</page>

Because the XSQL processor binds array parameters as nested table collection types, you can use the TABLE() operator with the CAST() operator in SQL to treat the nested table bind variable value as a table of values. You can then query this table. This technique is especially useful in subqueries. The page in Example 15-8 uses an array-valued parameter containing employee IDs to restrict the rows queried from hr.employees.

Example 15-8 Using an Array-Valued Parameter to Restrict Rows

<page xmlns:xsql="urn:oracle-xsql" connection="hr">
 <xsql:set-page-param name="someEmployees[]" value="196,197"/>
 <xsql:query bind-params="someEmployees[]">
 SELECT first_name||' '||last_name AS name, salary
 FROM employees
 WHERE employee_id IN (
 SELECT * FROM TABLE(CAST(? AS xsql_table_of_varchar))
)
 </xsql:query>
</page>

The XSQL page in Example 15-8 generates a datagram such as the following:

<page>
 <ROWSET>
 <ROW num="1">
 <NAME>Alana Walsh</NAME>
 <SALARY>3100</SALARY>
 </ROW>
 <ROW num="2">
 <NAME>Kevin Feeny</NAME>
 <SALARY>3000</SALARY>
 </ROW>
 </ROWSET>
</page>

Example 15-7 and Example 15-8 show how to use bind-params with <xsql:query>, but these techniques work for <xsql:dml>, <xsql:include-owa>, <xsql:ref-cursor-function>, and other actions that accept SQL or PL/SQL statements.

Note that PL/SQL index-by tables work with the OCI JDBC driver but not the JDBC thin driver. By using the nested table collection type XSQL_TABLE_OF_VARCHAR, you can use array-valued parameters with either driver. In this way you avoid losing the programming flexibility of working with array values in PL/SQL.

Setting Error Parameters on Built-in Actions

The XSQL page processor determines whether an action encountered a non-fatal error during its execution. For example, an attempt to insert a row or call a stored procedure can fail with a database exception that will get included in your XSQL data page as an <xsql-error> element.

You can set a page-private parameter in a built-in XSQL action when the action reports a nonfatal error. Use the error-param attribute on the action to enable this feature. For example, to set the parameter "dml-error" when the statement inside the <xsql:dml> action encounters a database error, you can use the technique shown in Example 15-9.

Example 15-9 Setting an Error Parameter

<xsql:dml error-param="dml-error" bind-params="val">
 INSERT INTO yourtable(somecol)
 VALUES(?)
</xsql:dml>

If the execution of the <xsql:dml> action encounters an error, then the XSQL processor sets the page-private parameter dml-error to the string "Error". If the execution is successful, then the XSQL processor does not assign a value to the error parameter. In Example 15-9, if the page-private parameter dml-error already exists, then it retains its current value. If it does not exist, then it continues not to exist.

Using Conditional Logic with Error Parameters

By using the error parameter in combination with <xsql:if-param>, you can achieve conditional behavior in your XSQL page template. For example, assume that your connection definition sets the AUTOCOMMIT flag to false on the connection named demo in the XSQL configuration file. The XSQL page shown in Example 15-10 illustrates how you might roll back the changes made by a previous action if a subsequent action encounters an error.

Example 15-10 Achieving Conditional Behavior with an Error Parameter

<!-- NOTE: Connection "demo" must not set to autocommit! -->
<page connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:dml error-param="dml-error" bind-params="val">
 INSERT INTO yourtable(somecol)
 VALUES(?)
 </xsql:dml>
 <!-- This second statement will commit if it succeeds -->
 <xsql:dml commit="yes" error-param="dml-error" bind-params="val2">
 INSERT INTO anothertable(anothercol)
 VALUES(?)
 </xsql:dml>
 <xsql:if-param name="dml-error" exists="yes">
 <xsql:dml>
 ROLLBACK
 </xsql:dml>
 </xsql:if-param>
</page>

If you have written custom action handlers, and if your custom actions call reportMissingAttribute(), reportError(), or reportErrorIncludingStatement() to report non-fatal action errors, then they automatically pick up this feature as well.

Formatting XSQL Action Handler Errors

Errors raised by the processing of XSQL action elements are reported as XML elements in a uniform way. This fact enables XSLT stylesheets to detect their presence and optionally format them for presentation.

The action element in error is replaced in the page by the following element:

<xsql-error action="xxx">

Depending on the error the <xsql-error> element contains:

	
A nested <message> element

	
A <statement> element with the offending SQL statement

Example 15-11 shows an XSLT stylesheet that uses this information to display error information on the screen.

Example 15-11 XSLTStylesheet

<xsl:if test="//xsql-error">
 <table style="background:yellow">
 <xsl:for-each select="//xsql-error">
 <tr>
 <td>Action</td>
 <td><xsl:value-of select="@action"/></td>
 </tr>
 <tr valign="top">
 <td>Message</td>
 <td><xsl:value-of select="message"/></td>
 </tr>
 </xsl:for-each>
 </table>
</xsl:if>

Including XMLType Query Results in XSQL Pages

Oracle Database supports XMLType for storing and querying XML-based database content. You can exploit database XML features to produce XML for inclusion in your XSQL pages by using one of the following techniques:

	
<xsql:query> handles any query including columns of type XMLType, but it handles XML markup in CLOB and VARCHAR2 columns as literal text.

	
<xsql:include-xml> parses and includes a single CLOB or string-based XML document retrieved from a query.

One difference between the preceding approaches is that <xsql:include-xml> parses the literal XML appearing in a CLOB or string value on the fly to turn it into a tree of elements and attributes. In contrast, <xsql:query> leaves XML markup in CLOB or string-valued columns as literal text.

Another difference is that while <xsql:query> can handle query results of any number of columns and rows, <xsql:include-xml> works on a single column of a single row. Accordingly, when using <xsql:include-xml>, the SELECT statement inside it returns a single row containing a single column. The column can either be a CLOB or a VARCHAR2 value containing a well-formed XML document. The XSQL engine parses the XML document and includes it in your XSQL page.

Example 15-12 uses nested XmlAgg() functions to aggregate the results of a dynamically-constructed XML document containing departments and nested employees. The functions aggregate the document into a single "result" document wrapped in a <DepartmentList> element.

Example 15-12 Aggregating a Dynamically-Constructed XML Document

<xsql:query connection="hr" xmlns:xsql="urn:oracle-xsql">
 SELECT XmlElement("DepartmentList",
 XmlAgg(
 XmlElement("Department",
 XmlAttributes(department_id AS "Id"),
 XmlForest(department_name AS "Name"),
 (SELECT XmlElement("Employees",
 XmlAgg(
 XmlElement("Employee",
 XmlAttributes(employee_id AS "Id"),
 XmlForest(first_name||' '||last_name AS "Name",
 salary AS "Salary",
 job_id AS "Job")
)
)
)
 FROM employees e
 WHERE e.department_id = d.department_id
)
)
)
) AS result
 FROM departments d
 ORDER BY department_name
</xsql:query>

In another example, suppose you have a number of <Movie> XML documents stored in a table of XMLType called movies. Each document might look like the one shown in Example 15-13.

Example 15-13 Movie XML Document

<Movie Title="The Talented Mr.Ripley" RunningTime="139" Rating="R">
 <Director>
 <First>Anthony</First>
 <Last>Minghella</Last>
 </Director>
 <Cast>
 <Actor Role="Tom Ripley">
 <First>Matt</First>
 <Last>Damon</Last>
 </Actor>
 <Actress Role="Marge Sherwood">
 <First>Gwyneth</First>
 <Last>Paltrow</Last>
 </Actress>
 <Actor Role="Dickie Greenleaf">
 <First>Jude</First>
 <Last>Law</Last>
 <Award From="BAFTA" Category="Best Supporting Actor"/>
 </Actor>
 </Cast>
</Movie>

You can use the built-in XPath query features to extract an aggregate list of all cast members who have received Oscar awards from any movie in the database. Example 15-14 shows a sample query.

Example 15-14 Using XPath to Extract an Aggregate List

SELECT XMLELEMENT("AwardedActors",
 XMLAGG(EXTRACT(VALUE(m),
 '/Movie/Cast/*[Award[@From="Oscar"]]')))
FROM movies m

To include this query result of XMLType in your XSQL page, paste the query inside an <xsql:query> element. Make sure you include an alias for the query expression, as shown in Example 15-15.

Example 15-15 Including an XMLType Query Result

<xsql:query connection="demo" xmlns:xsql="urn:oracle-xsql">
 SELECT XMLELEMENT("AwardedActors",
 XMLAGG(EXTRACT(VALUE(m),
 '/Movie/Cast/*[Award[@From="Oscar"]]'))) AS result
 FROM movies m
</xsql:query>

You can use the combination of XmlElement() and XmlAgg() to make the database aggregate all of the XML fragments identified by the query into single, well-formed XML document. The functions work together to produce a well-formed result like the following:

<AwardedActors>
 <Actor>...</Actor>
 <Actress>...</Actress>
</AwardedActors>

You can use the standard XSQL bind variable capabilities in the middle of an XPath expression if you concatenate the bind variable into the expression. For example, to parameterize the value Oscar into a parameter named award-from, you can use an XSQL page like the one shown in Example 15-16.

Example 15-16 Using XSQL Bind Variables in an XPath Expression

<xsql:query connection="orcl92" xmlns:xsql="urn:oracle-xsql"
 award-from="Oscar" bind-params="award-from">
 /* Using a bind variable in an XPath expression */
 SELECT XMLELEMENT("AwardedActors",
 XMLAGG(EXTRACT(VALUE(m),
 '/Movie/Cast/*[Award[@From="'|| ? ||'"]]'))) AS result
 FROM movies m
</xsql:query>

Handling Posted XML Content

In addition to simplifying the assembly and transformation of XML content, the XSQL pages framework enables you to handle posted XML content. Built-in actions provide the following advantages:

	
Simplify the handling of posted data from both XML document and HTML forms

	
Enable data to be posted directly into a database table by using XSU

XSU can perform database inserts, updates, and deletes based on the content of an XML document in canonical form for a target table or view. For a specified table, the canonical XML form of its data is given by one row of XML output from a SELECT * query. When given an XML document in this form, XSU can automate the DML operation.

By combining XSU with XSLT, you can transform XML in any format into the canonical format expected by a given table. XSU can then perform DML on the resulting canonical XML.

The following built-in XSQL actions make it possible for you to exploit this capability from within your XSQL pages:

	
<xsql:insert-request>

Insert the optionally transformed XML document that was posted in the request into a table.

	
<xsql:update-request>

Update the optionally transformed XML document that was posted in the request into a table or view.

	
<xsql:delete-request>

Delete the optionally transformed XML document that was posted in the request from a table or view.

	
<xsql:insert-param>

Insert the optionally transformed XML document that was posted as the value of a request parameter into a table or view.

If you target a database view with your insert, then you can create INSTEAD OF INSERT triggers on the view to further automate the handling of the posted information. For example, an INSTEAD OF INSERT trigger on a view can use PL/SQL to check for the existence of a record and intelligently choose whether to do an INSERT or an UPDATE depending on the result of this check.

Understanding XML Posting Options

The XSQL pages framework can handle posted data in the following scenarios:

	
A client program sends an HTTP POST message that targets an XSQL page. The request body contains an XML document; the HTTP header reports a ContentType of "text/xml".

In this case, <xsql:insert-request>, <xsql:update-request>, or <xsql:delete-request> can insert, update, or delete the content of the posted XML in the target table. If you transform the posted XML with XSLT, then the posted document is the source for the transformation.

	
A client program sends an HTTP GET request for an XSQL page, one of whose parameters contains an XML document.

In this case, you can use the <xsql:insert-param> action to insert the content of the posted XML parameter value in the target table. If you transform the posted XML document with XSLT, then the XML document in the parameter value is the source document for this transformation.

	
A browser submits an HTML form with method="POST" whose action targets an XSQL page. The request body of the HTTP POST message contains an encoded version of the form fields and values with a ContentType of "application/x-www-form-urlencoded".

In this case, the request does not contain an XML document, but an encoded version of the form parameters. To make all three of these cases uniform, however, the XSQL page processor materializes on demand an XML document from the form parameters, session variables, and cookies contained in the request. The XSLT processor transforms this dynamically-materialized XML document into canonical form for DML by using <xsql:insert>, <xsql:update-request>, or <xsql:delete-request>.

When working with posted HTML forms, the dynamically materialized XML document has the form shown in Example 15-17.

Example 15-17 XML Document Generated from HTML Form

<request>
 <parameters>
 <firstparamname>firstparamvalue</firstparamname>
 ...
 <lastparamname>lastparamvalue</lastparamname>
 </parameters>
 <session>
 <firstparamname>firstsessionparamvalue</firstparamname>
 ...
 <lastparamname>lastsessionparamvalue</lastparamname>
 </session>
 <cookies>
 <firstcookie>firstcookievalue</firstcookiename>
 ...
 <lastcookie>firstcookievalue</lastcookiename>
 </cookies>
</request>

If multiple parameters are posted with the same name, then the XSQL processor automatically creates multiple <row> elements to make subsequent processing easier. Assume that a request posts or includes the following parameters and values:

	
id = 101

	
name = Steve

	
id = 102

	
name = Sita

	
operation = update

The XSQL page processor creates a set of parameters as follows:

<request>
 <parameters>
 <row>
 <id>101</id>
 <name>Steve</name>
 </row>
 <row>
 <id>102</id>
 <name>Sita</name>
 </row>
 <operation>update</operation>
 </parameters>
 ...
</request>

You need to provide an XSLT stylesheet that transforms this materialized XML document containing the request parameters into canonical format for your target table. Thus, you can build an XSQL page as follows:

<!--
 | ShowRequestDocument.xsql
 | Show Materialized XML Document for an HTML Form
 +-->
<xsql:include-request-params xmlns:xsql="urn:oracle-xsql"/>

With this page in place, you can temporarily modify your HTML form to post to the ShowRequestDocument.xsql page. In the browser you will see the "raw" XML for the materialized XML request document, which you can save and use to develop the XSL transformation.

Producing PDF Output with the FOP Serializer

Using the XSQL pages framework support for custom serializers, the oracle.xml.xsql.serializers.XSQLFOPSerializer class provides integration with the Apache FOP processor. The FOP processor renders a PDF document from an XML document containing XSL Formatting Objects.

As described in Table 14-1, the demo directory includes the emptablefo.xsl stylesheet and emptable.xsql page as illustrations. If you get an error trying to use the FOP serializer, then probably you do not have all of the required JAR files in the CLASSPATH. The XSQLFOPSerializer class resides in the separate xml.jar file, which must be included in the CLASSPATH to use the FOP integration. You also need to add the following additional Java archives to your CLASSPATH:

	
fop.jar - from Apache, version 0.20.3 or higher

	
batik.jar - from the FOP distribution

	
avalon-framework-4.0.jar - from FOP distribution

	
logkit-1.0.jar - from FOP distribution

In case you want to customize the implementation, the source code for the FOP serializer provided in this release is shown in Example 15-18.

Example 15-18 Source Code for FOP Serializer

package oracle.xml.xsql.serializers;
import org.w3c.dom.Document;
import org.apache.log.Logger;
import org.apache.log.Hierarchy;
import org.apache.fop.messaging.MessageHandler;
import org.apache.log.LogTarget;
import oracle.xml.xsql.XSQLPageRequest;
import oracle.xml.xsql.XSQLDocumentSerializer;
import org.apache.fop.apps.Driver;
import org.apache.log.output.NullOutputLogTarget;
/**
 * Tested with the FOP 0.20.3RC release from 19-Jan-2002
 */
public class XSQLFOPSerializer implements XSQLDocumentSerializer {
 private static final String PDFMIME = "application/pdf";
 public void serialize(Document doc, XSQLPageRequest env) throws Throwable {
 try {
 // First make sure we can load the driver
 Driver FOPDriver = new Driver();
 // Tell FOP not to spit out any messages by default.
 // You can modify this code to create your own FOP Serializer
 // that logs the output to one of many different logger targets
 // using the Apache LogKit API
 Logger logger=Hierarchy.getDefaultHierarchy().getLoggerFor("XSQLServlet");
 logger.setLogTargets(new LogTarget[]{new NullOutputLogTarget()});
 FOPDriver.setLogger(logger);
 // Some of FOP's messages appear to still use MessageHandler.
 MessageHandler.setOutputMethod(MessageHandler.NONE);
 // Then set the content type before getting the reader
 env.setContentType(PDFMIME);
 FOPDriver.setOutputStream(env.getOutputStream());
 FOPDriver.setRenderer(FOPDriver.RENDER_PDF); FOPDriver.render(doc);
 }
 catch (Exception e) {
 // Cannot write PDF output for the error anyway.
 // So maybe this stack trace will be useful info
 e.printStackTrace(System.err);
 }
 }
}

	
See Also:

http://xml.apache.org/fop to learn about the Formatting Objects Processor

Performing XSQL Customizations

This section contains the following topics:

	
Writing Custom XSQL Action Handlers

	
Implementing Custom XSQL Serializers

	
Using a Custom XSQL Connection Manager for JDBC Datasources

	
Writing Custom XSQL Connection Managers

	
Implementing a Custom XSQLErrorHandler

	
Providing a Custom XSQL Logger Implementation

Writing Custom XSQL Action Handlers

When a task requires custom processing, and none of the built-in actions listed in Table 30-2, "XSQL Configuration File Settings" does exactly what you need, you can write your own actions.

The XSQL pages engine processes an XSQL page by looking for action elements from the xsql namespace and invoking an appropriate action element handler class to process each action. The processor supports any action that implements the XSQLActionHandler interface. All of the built-in actions implement this interface.

The XSQL engine processes the actions in a page in the following way. For each action in the page, the engine performs the following steps:

	
Constructs an instance of the action handler class using the default constructor

	
Initializes the handler instance with the action element object and the page processor context by invoking the method init(Element actionElt,XSQLPageRequest context)

	
Invokes the method that allows the handler to handle the action handleAction (Node result)

For built-in actions, the engine can map the XSQL action element name to the Java class that implements the handler of the action. Table 30-2, "XSQL Configuration File Settings" lists the built-in actions and their corresponding classes.

For user-defined actions, use the following built-in action, replacing fully.qualified.Classname with the name of your class:

<xsql:action handler="fully.qualified.Classname" ... />

The handler attribute provides the fully-qualified name of the Java class that implements the custom action handler.

Implementing the XSQLActionHandler Interface

To create a custom action handler, provide a class that implements the oracle.xml.xsql.XSQLActionHandler interface. Most custom action handlers extend oracle.xml.xsql.XSQLActionHandlerImpl, which provides a default implementation of the init() method and offers useful helper methods.

When an action handler's handleAction() method is invoked by the XSQL pages processor, a DOM fragment is passed to the action implementation. The action handler appends any dynamically created XML content returned to the page to the root node.

The XSQL processor conceptually replaces the action element in the XSQL page with the content of this document fragment. It is legal for an action handler to append nothing to this fragment if it has no XML content to add to the page.

While writing you custom action handlers, some methods on the XSQLActionHandlerImpl class are helpful. Table 15-2 lists these methods.

Table 15-2 Helpful Methods in the XSQLActionHandlerImpl Class

	Method Name	Description
	

getActionElement

	
Returns the current action element being handled.

	

getActionElementContent

	
Returns the text content of the current action element, with all lexical parameters substituted appropriately.

	

getPageRequest

	
Returns the current XSQL pages processor context. Using this object you do the following:

	
setPageParam()

Set a page parameter value.

	
getPostedDocument()/setPostedDocument()

Get or set the posted XML document.

	
translateURL()

Translate a relative URL to an absolute URL.

	
getRequestObject()/setRequestObject()

Get or set objects in the page request context that can be shared across actions in a single page.

	
getJDBCConnection()

Gets the JDBC connection in use by this page (possible null if no connection in use).

	
getRequestType()

Detect whether you are running in the Servlet, Command Line, or Programmatic context. For example, if the request type is Servlet then you can cast the XSQLPageRequest object to the more specific XSQLServletPageRequest to access servlet-specific methods such as getHttpServletRequest, getHttpServletResponse, and getServletContext.

	

getAttributeAllowingParam

	
Retrieves the attribute value from an element, resolving any XSQL lexical parameter references that might appear in value of the attribute. Typically this method is applied to the action element itself, but it is also useful for accessing attributes of subelements. To access an attribute value without allowing lexical parameters, use the standard getAttribute() method on the DOM Element interface.

	

appendSecondaryDocument

	
Appends the contents of an external XML document to the root of the action handler result content.

	

addResultElement

	
Simplifies appending a single element with text content to the root of the action handler result content.

	

firstColumnOfFirstRow

	
Returns the first column value of the first row of a SQL statement. Requires the current page to have a connection attribute on its document element, or an error is returned.

	

getBindVariableCount

	
Returns the number of tokens in the space-delimited list of bind-params. This number indicates how many bind variables are expected to be bound to parameters.

	

handleBindVariables

	
Manages the binding of JDBC bind variables that appear in a prepared statement with the parameter values specified in the bind-params attribute on the current action element. If the statement is already using a number of bind variables prior to call this method, you can pass the number of existing bind variable slots in use as well.

	

reportErrorIncludingStatement

	
Reports an error. The error includes the offending (SQL) statement that caused the problem and optionally includes a numeric error code.

	

reportFatalError

	
Reports a fatal error.

	

reportMissingAttribute

	
Reports an error that a required action handler attribute is missing by using the <xsql-error> element.

	

reportStatus

	
Reports action handler status by using the <xsql-status> element.

	

requiredConnectionProvided

	
Checks whether a connection is available for this request and outputs an errorgram into the page if no connection is available.

	

variableValue

	
Returns the value of a lexical parameter, taking into account all scoping rules that might determine its default value.

Example 15-19 shows a custom action handler named MyIncludeXSQLHandler that leverages one of the built-in action handlers. It uses arbitrary Java code to modify the XML fragment returned by this handler before appending its result to the XSQL page.

Example 15-19 MyIncludeXSQLHandler.java

import oracle.xml.xsql.*;
import oracle.xml.xsql.actions.XSQLIncludeXSQLHandler;
import org.w3c.dom.*;
import java.sql.SQLException;
public class MyIncludeXSQLHandler extends XSQLActionHandlerImpl {
 XSQLActionHandler nestedHandler = null;
 public void init(XSQLPageRequest req, Element action) {
 super.init(req, action);
 // Create an instance of an XSQLIncludeXSQLHandler and init() the handler by
 // passing the current request/action. This assumes the XSQLIncludeXSQLHandler
 // will pick up its href="xxx.xsql" attribute from the current action element.
 nestedHandler = new XSQLIncludeXSQLHandler();
 nestedHandler.init(req,action);
 }
 public void handleAction(Node result) throws SQLException {
 DocumentFragment df=result.getOwnerDocument().createDocumentFragment();
 nestedHandler.handleAction(df);
 // Custom Java code here can work on the returned document fragment
 // before appending the final, modified document to the result node.
 // For example, add an attribute to the first child.
 Element e = (Element)df.getFirstChild();
 if (e != null) {
 e.setAttribute("ExtraAttribute","SomeValue");
 }
 result.appendChild(df);
 }
}

You may need to write custom action handlers that work differently based on whether the page is requested through the XSQL servlet, the XSQL command-line utility, or programmatically through the XSQLRequest class.You can invoke getPageRequest() in your action handler implementation to obtain a reference to the XSQLPageRequest interface for the current page request. By calling getRequestType() on the XSQLPageRequest object, you can determine whether the request is coming from the Servlet, Command Line, or Programmatic routes. If the return value is Servlet, then you can access the HTTP servlet request, response, and servlet context objects as shown in Example 15-20.

Example 15-20 Testing for the Servlet Request

XSQLServletPageRequest xspr = (XSQLServletPageRequest)getPageRequest();
if (xspr.getRequestType().equals("Servlet")) {
 HttpServletRequest req = xspr.getHttpServletRequest();
 HttpServletResponse resp = xspr.getHttpServletResponse();
 ServletContext cont = xspr.getServletContext();
 // Do something here with req, resp, or cont. Note that writing to the response
 // directly from a handler produces unexpected results. All the servlet or your
 // custom Serializer to write to the servlet response output stream at the right
 // moment later when all action elements have been processed.
}

Using Multivalued Parameters in Custom XSQL Actions

XSQLActionHandlerImpl is the base class for custom XSQL actions. It supports the following:

	
Array-named lexical parameter substitution

	
Array-named bind variables

	
Simple-valued parameters

If your custom actions use methods such as getAttributeAllowingParam(), getActionElementContent(), or handleBindVariables() from this base class, you pick up multi-valued parameter functionality for free in your custom actions.

Use the getParameterValues() method on the XSQLPageRequest interface to explicitly get a parameter value as a String[]. The helper method variableValues() in XSQLActionHandlerImpl enables you to use this functionality from within a custom action handler if you need to do so programmatically.

Implementing Custom XSQL Serializers

You can implement a user-defined serializer class to control how the final XSQL datapage is serialized to a text or binary stream. A user-defined serializer must implement the oracle.xml.xsql.XSQLDocumentSerializer interface. The interface contains the following single method:

void serialize(org.w3c.dom.Document doc, XSQLPageRequest env) throws Throwable;

Only DOM-based serializers are supported. A custom serializer class is expected to perform the following tasks in the correct order:

	
Set the content type of the serialized stream before writing any content to the output PrintWriter (or OutputStream).

Set the type by calling setContentType() on the XSQLPageRequest passed to your serializer. When setting the content type, you can set a MIME type as follows:

env.setContentType("text/html");

Alternatively, you can set a MIME type with an explicit output encoding character set as follows:

env.setContentType("text/html;charset=Shift_JIS");

	
Call either getWriter() or getOutputStream() (but not both) on the XSQLPageRequest to obtain the appropriate PrintWriter or OutputStream for serializing the content.

The custom serializer in Example 15-21 illustrates a simple implementation that serializes an HTML document containing the name of the document element of the current XSQL data page.

Example 15-21 Custom Serializer

package oracle.xml.xsql.serializers;
import org.w3c.dom.Document;
import java.io.PrintWriter;
import oracle.xml.xsql.*;

public class XSQLSampleSerializer implements XSQLDocumentSerializer {
 public void serialize(Document doc, XSQLPageRequest env) throws Throwable {
 String encoding = env.getPageEncoding(); // Use same encoding as XSQL page
 // template. Set to specific
 // encoding if necessary
 String mimeType = "text/html"; // Set this to the appropriate content type
 // (1) Set content type using the setContentType on the XSQLPageRequest
 if (encoding != null && !encoding.equals("")) {
 env.setContentType(mimeType+";charset="+encoding);
 }
 else {
 env.setContentType(mimeType);
 }
 // (2) Get the output writer from the XSQLPageRequest
 PrintWriter e = env.getWriter();
 // (3) Serialize the document to the writer
 e.println("<html>Document element is "+
 doc.getDocumentElement().getNodeName()+"</html>");
 }
}

Techniques for Using a Custom Serializer

There are two ways to use a custom serializer, depending on whether you need to first perform an XSLT transformation before serializing or not.

To perform an XSLT transformation before using a custom serializer, add the serializer="java:fully.qualified.ClassName" in the <?xml-stylesheet?> processing instruction at the top of your page. The following examples illustrates this technique:

<?xml version="1.0?>
<?xml-stylesheet type="text/xsl" href="mystyle.xsl"
 serializer="java:my.pkg.MySerializer"?>

If you only need the custom serializer, then leave out the type and href attributes. The following example illustrates this technique:

<?xml version="1.0?>
<?xml-stylesheet serializer="java:my.pkg.MySerializer"?>

Assigning a Short Name to a Custom Serializer

You can also assign a short name to your custom serializers in the <serializerdefs> section of the XSQL configuration file. You can then use the nickname in the serializer attribute instead to save typing. Note that the short name is case sensitive.

Assume that you have the information shown in Example 15-22 in your XSQL configuration file.

Example 15-22 Assigning Short Names to Custom Serializers

<XSQLConfig>
 <!--and so on. -->
 <serializerdefs>
 <serializer>
 <name>Sample</name>
 <class>oracle.xml.xsql.serializers.XSQLSampleSerializer</class>
 </serializer>
 <serializer>
 <name>FOP</name>
 <class>oracle.xml.xsql.serializers.XSQLFOPSerializer</class>
 </serializer>
 </serializerdefs>
</XSQLConfig>

You can use the short names "Sample" or "FOP" in a stylesheet instruction as follows:

<?xml-stylesheet type="text/xsl" href="emp-to-xslfo.xsl" serializer="FOP"?>
<?xml-stylesheet serializer="Sample"?>

The XSQLPageRequest interface supports both a getWriter() and a getOutputStream() method. Custom serializers can call getOutputStream() to return an OutputStream instance into which binary data can be serialized. When you use the XSQL servlet, writing to this output stream results in writing binary information to the servlet output stream.

The serializer shown in Example 15-23 illustrates an example of writing a dynamic GIF image. In this example the GIF image is a static "ok" icon, but it shows the basic technique that a more sophisticated image serializer needs to use.

Example 15-23 Writing a Dynamic GIF Image

package oracle.xml.xsql.serializers;
import org.w3c.dom.Document;
import java.io.*;
import oracle.xml.xsql.*;

public class XSQLSampleImageSerializer implements XSQLDocumentSerializer {
 // Byte array representing a small "ok" GIF image
 private static byte[] okGif =
 {(byte)0x47,(byte)0x49,(byte)0x46,(byte)0x38,
 (byte)0x39,(byte)0x61,(byte)0xB,(byte)0x0,
 (byte)0x9,(byte)0x0,(byte)0xFFFFFF80,(byte)0x0,
 (byte)0x0,(byte)0x0,(byte)0x0,(byte)0x0,
 (byte)0xFFFFFFFF,(byte)0xFFFFFFFF,(byte)0xFFFFFFFF,(byte)0x2C,
 (byte)0x0,(byte)0x0,(byte)0x0,(byte)0x0,
 (byte)0xB,(byte)0x0,(byte)0x9,(byte)0x0,
 (byte)0x0,(byte)0x2,(byte)0x14,(byte)0xFFFFFF8C,
 (byte)0xF,(byte)0xFFFFFFA7,(byte)0xFFFFFFB8,(byte)0xFFFFFF9B,
 (byte)0xA,(byte)0xFFFFFFA2,(byte)0x79,(byte)0xFFFFFFE9,
 (byte)0xFFFFFF85,(byte)0x7A,(byte)0x27,(byte)0xFFFFFF93,
 (byte)0x5A,(byte)0xFFFFFFE3,(byte)0xFFFFFFEC,(byte)0x75,
 (byte)0x11,(byte)0xFFFFFF85,(byte)0x14,(byte)0x0,
 (byte)0x3B};

 public void serialize(Document doc, XSQLPageRequest env) throws Throwable {
 env.setContentType("image/gif");
 OutputStream os = env.getOutputStream();
 os.write(okGif,0,okGif.length);
 os.flush();
 }
}

Using the XSQL command-line utility, the binary information is written to the target output file. Using the XSQLRequest API, two constructors exist that allow the caller to supply the target OutputStream to use for the results of page processing.

Note that your serializer must either call getWriter() for textual output or getOutputStream() for binary output but not both. Calling both in the same request raises an error.

Using a Custom XSQL Connection Manager for JDBC Datasources

As an alternative to defining your named connections in the XSQL configuration file, you can use one of the two provided XSQLConnectionManager implementations. These implementations enable you to use your servlet container's JDBC Datasource implementation and related connection pooling features.

This XSQL pages framework provides the following alternative connection manager implementations:

	
oracle.xml.xsql.XSQLDatasourceConnectionManager

Consider using this connection manager if your servlet container's datasource implementation does not use the Oracle JDBC driver. Features of the XSQL pages system such as <xsql:ref-cursor-function> and <xsql:include-owa> are not available when you do not use an Oracle JDBC driver.

	
oracle.xml.xsql.XSQLOracleDatasourceConnectionManager

Consider using this connection manager when your datasource implementation returns JDBC PreparedStatement and CallableStatement objects that implement the oracle.jdbc.PreparedStatement and oracle.jdbc.CallableStatement interfaces. The Oracle Application Server has a datasource implementation that performs this task.

When using either of the preceding alternative connection manager implementations, the value of the connection attribute in your XSQL page template is the JNDI name used to look up your desired datasource. For example, the value of the connection attribute might look like the following:

	
jdbc/scottDS

	
java:comp/env/jdbc/MyDatasource

If you are not using the default XSQL pages connection manager, then needed connection pooling functionality must be provided by the alternative connection manager implementation. In the case of the preceding two options based on JDBC datasources, you must properly configure your servlet container to supply the connection pooling. See your servlet container documentation for instructions on how to properly configure the datasources to offer pooled connections.

Writing Custom XSQL Connection Managers

You can provide a custom connection manager to replace the built-in connection management mechanism. To provide a custom connection manager implementation, you must perform the following steps:

	
Write a connection manager factory class that implements the oracle.xml.xsql.XSQLConnectionManagerFactory interface.

	
Write a connection manager class that implements the oracle.xml.xsql.XSQLConnectionManager interface.

	
Change the name of the XSQLConnectionManagerFactory class in your XSQL configuration file.

The XSQL servlet uses your connection management scheme instead of the XSQL pages default scheme.

You can set your custom connection manager factory as the default connection manager factory by providing the class name in the XSQL configuration file. Set the factory in the following section:

<!--
 | Set the name of the XSQL Connection Manager Factory
 | implementation. The class must implement the
 | oracle.xml.xsql.XSQLConnectionManagerFactory interface.
 | If unset, the default is to use the built-in connection
 | manager implementation in
 | oracle.xml.xsql.XSQLConnectionManagerFactoryImpl
+-->
 <connection-manager>
 <factory>oracle.xml.xsql.XSQLConnectionManagerFactoryImpl</factory>
 </connection-manager>

In addition to specifying the default connection manager factory, you can associate a custom connection factory with a XSQLRequest object by using APIs provided.

The responsibility of the XSQLConnectionManagerFactory is to return an instance of an XSQLConnectionManager for use by the current request. In a multithreaded environment such as a servlet engine, the XSQLConnectionManager object must ensure that a single XSQLConnection instance is not used by two different threads. This aim is realized by marking the connection as in use for the time between the getConnection() and releaseConnection() method calls. The default XSQL connection manager implementation automatically pools named connections and adheres to this thread-safe policy.

If your custom implementation of XSQLConnectionManager implements the optional oracle.xml.xsql.XSQLConnectionManagerCleanup interface, then your connection manager can clean up any resources it has allocated. For example, if your servlet container invokes the destroy() method on the XSQLServlet servlet, which can occur during online administration of the servlet for example, the connection manager has a chance to clean up resources as part of the servlet destruction process.

Accessing Authentication Information in a Custom Connection Manager

To use the HTTP authentication mechanism to get the username and password to connect to the database, write a customized connection manager. You can then invoke a getConnection() method to obtain the needed information.

You can write a Java program that follows these steps:

	
Pass an instance of the oracle.xml.xsql.XSQLPageRequest interface to the getConnection() method.

	
Invoke getRequestType() to ensure that the request type is Servlet.

	
Cast the XSQLPageRequest object to an XSQLServletPageRequest.

	
Call getHttpServletRequest() on the result of the preceding step.

	
Obtain the authentication information from the javax.servlet.http.HttpServletResponse object returned by the previous call.

Implementing a Custom XSQLErrorHandler

You may want to control how serious page processor errors such as an unavailable connection are reported to users. You can achieve this task by implementing the oracle.xml.xsql.XSQLErrorHandler interface. The interface contains the following single method signature:

public interface XSQLErrorHandler {
 public void handleError(XSQLError err, XSQLPageRequest env);
}

You can provide a class that implements the XSQLErrorHandler interface to customize how the XSQL pages processor writes error messages. The new XSQLError object encapsulates the error information and provides access to the error code, formatted error message, and so on.

Example 15-24 illustrates a sample implementation of XSQLErrorHandler.

Example 15-24 myErrorHandler class

package example;
import oracle.xml.xsql.*;
import java.io.*;
public class myErrorHandler implements XSQLErrorHandler {
 public void logError(XSQLError err, XSQLPageRequest env) {
 // Must set the content type before writing anything out
 env.setContentType("text/html");
 PrintWriter pw = env.getErrorWriter();
 pw.println("<H1>ERROR</H1><hr>"+err.getMessage());
 }
}

You can control which custom XSQLErrorHandler implementation is used in the following distinct ways:

	
Define the name of a custom XSQLErrorHandler implementation class in the XSQL configuration file. You must provide the fully-qualified class name of your error handler class as the value of the /XSQLConfig/processor/error-handler/class entry.

If the XSQL processor can load this class, and if it correctly implements the XSQLErrorHandler interface, then it uses this class as a singleton and replaces the default implementation globally wherever page processor errors are reported.

	
Override the error writer on a per page basis by using the errorHandler (or xsql:errorHandler) attribute on the document element of the page. The attribute value is the fully-qualified class name of a class that implements the XSQLErrorHandler interface. This class reports the errors for this page only. The class is instantiated on each page request by the page engine.

You can use a combination of the preceding approaches if needed.

Providing a Custom XSQL Logger Implementation

You can optionally register custom code to handle the logging of the start and end of each XSQL page request. Your custom logger code must provide an implementation of the oracle.xml.xsql.XSQLLoggerFactory and oracle.xml.xsql.XSQLLogger interfaces.

The XSQLLoggerFactory interface contains the following single method:

public interface XSQLLoggerFactory {
 public XSQLLogger create(XSQLPageRequest env);
}

You can provide a class that implements the XSQLLoggerFactory interface to decide how XSQLLogger objects are created (or reused) for logging. The XSQL processor holds a reference to the XSQLLogger object returned by the factory for the duration of a page request. The processor uses it to log the start and end of each page request by invoking the logRequestStart() and logRequestEnd() methods.

The XSQLLogger interface is as follows:

public interface XSQLLogger {
 public void logRequestStart(XSQLPageRequest env) ;
 public void logRequestEnd(XSQLPageRequest env);
}

The classes in Example 15-25 and Example 15-26 illustrate a trivial implementation of a custom logger. The XSQLLogger implementation in Example 15-25 notes the time the page request started. It then logs the page request end by printing the name of the page request and the elapsed time to System.out.

Example 15-25 SampleCustomLogger Class

package example;
import oracle.xml.xsql.*;
public class SampleCustomLogger implements XSQLLogger {
 long start = 0;
 public void logRequestStart(XSQLPageRequest env) {
 start = System.currentTimeMillis();
 }
 public void logRequestEnd(XSQLPageRequest env) {
 long secs = System.currentTimeMillis() - start;
 System.out.println("Request for " + env.getSourceDocumentURI()
 + " took "+ secs + "ms");
 }
}

The factory implementation is shown in Example 15-26.

Example 15-26 SampleCustomLoggerFactory Class

package example;
import oracle.xml.xsql.*;
public class SampleCustomLoggerFactory implements XSQLLoggerFactory {
 public XSQLLogger create(XSQLPageRequest env) {
 return new SampleCustomLogger();
 }
}

To register a custom logger factory, edit the XSQLConfig.xml file and provide the name of your custom logger factory class as the content to the /XSQLConfig/processor/logger/factory element. Example 15-27 illustrates this technique.

Example 15-27 Registering a Custom Logger Factory

<XSQLConfig>
 :
 <processor>
 :
 <logger>
 <factory>example.SampleCustomLoggerFactory</factory>
 </logger>
 :
 </processor>
</XSQLConfig>

By default, <logger> section is commented out. There is no default logger.

Part II

XDK for C

This part contains chapters describing how the Oracle XDK is used for development in C.

This part contains the following chapters:

	
Chapter 16, "Getting Started with C XDK Components"

	
Chapter 17, "Using the XSLT and XVM Processors for C"

	
Chapter 18, "Using the XML Parser for C"

	
Chapter 19, "Using Binary XML for C"

	
Chapter 20, "Using the XML Schema Processor for C"

	
Chapter 21, "Determining XML Differences Using C"

	
Chapter 22, "Using SOAP with the C XDK"

19 Using Binary XML for C

This chapter contains this topic.

	
Introduction to Binary XML for C

Introduction to Binary XML for C

Client-side processing of XML data can use either XMLType data stored in the database, including data in binary XML format, or transient data that is not in the database.

Prerequisites

This chapter assumes that you are familiar with the XML Parser for C, the basic concepts of binary XML, and the OCI (Oracle Call Interface). For this release, only the OCI API can be used for programming in C with binary XML. A discussion of how to use OCI support for XML is found in the Oracle Call Interface Programmer's Guide, section "OCI Support for XML."

	
See Also:

	
Chapter 18, "Using the XML Parser for C"

	
Chapter 5, "Using Binary XML for Java"

	
Oracle XML DB Developer's Guide

	
Oracle Call Interface Programmer's Guide

Binary XML Storage Format

Binary XML was introduced in 11g Release 1 (11.1). Binary XML is an optimized format for XML It includes encoding and decoding of XML documents, from text to binary and binary to text.

Binary XML is XML Schema-aware encoding of XML data, but binary XML can also be used for XML data that is not based on an XML schema.

A Binary XML processor is a component that processes and transforms binary XML format into text and XML text into binary XML format.

The mid-tier and client tiers can produce, consume, and process XML in binary XML format. The C application fetches data from the XML DB repository, performs updates on the XML using DOM, and stores it back in the database. Or an XML document is created or input on the client and XSLT, XQuery, and other utilities can be used on it. Then the output XML is saved in XML DB. Further details of concepts and reference pages for OCI functions are described in the Oracle Call Interface Programmer's Guide.

Part III

Oracle XDK for C++

This part contains chapters that describe how the Oracle XDK is used for developing applications in C++.

This part contains the following chapters:

	
Chapter 23, "Getting Started with C++ XDK Components"

	
Chapter 24, "Overview of the Unified C++ Interfaces"

	
Chapter 25, "Using the XML Parser for C++"

	
Chapter 26, "Using the XSLT Processor for C++"

	
Chapter 27, "Using the XML Schema Processor for C++"

	
Chapter 28, "Using the XPath Processor for C++"

	
Chapter 29, "Using the XML Class Generator for C++"

23 Getting Started with C++ XDK Components

This chapter describes the Oracle Database installation of the XDK. Note that the C++ demo programs are located on the Examples media.

This chapter contains these topic:

	
Installing the C++ XDK Components

	
Configuring the UNIX Environment for C++ XDK Components

	
Configuring the Windows Environment for C++ XDK Components

Installing the C++ XDK Components

The C++ XDK components are included with Oracle Database and Oracle Application Server.

Refer to "Installing the XDK" for installation instructions.

	
See Also:

"Overview of Oracle XML Developer's Kit (XDK)" for a list of the C++ XDK components

Configuring the UNIX Environment for C++ XDK Components

This section contains the following topics:

	
C++ XDK Component Dependencies on UNIX

	
Setting C++ XDK Environment Variables on UNIX

	
Testing the C++ XDK Runtime Environment on UNIX

	
Setting Up and Testing the C++ XDK Compile-Time Environment on UNIX

	
Verifying the C++ XDK Component Version on UNIX

C++ XDK Component Dependencies on UNIX

The C++ libraries described in this section are located in $ORACLE_HOME/lib. The C and C++ XDK components are contained in the library:

libxml11.a

In addition to the C XDK components described in "C XDK Component Dependencies on UNIX", the library includes the XML class generator, which creates C++ source files based on an input DTD or XML Schema.

Table 16-1 in "C XDK Component Dependencies on UNIX" describes the Oracle CORE and Globalization Support libraries on which the C XDK components (UNIX) depend. The library dependencies are the same for C and C++.

Setting C++ XDK Environment Variables on UNIX

Table 16-2 in "Setting C XDK Environment Variables on UNIX" describes the UNIX environment variables required for use with the C XDK components. The environment variables are the same for C and C++.

Testing the C++ XDK Runtime Environment on UNIX

You can test your environment by running any of the utilities described in Table 16-3 in "Testing the C XDK Runtime Environment on UNIX". These utilities are C utilities that do not have C++ versions.

Setting Up and Testing the C++ XDK Compile-Time Environment on UNIX

Both the C and C++ header files are located in $ORACLE_HOME/xdk/include. Table 23-1 describes the C++ header files. Table 16-4 in "Setting Up and Testing the C XDK Compile-Time Environment on UNIX" describes the C header files. Your runtime environment must be set up before you can compile your C++ code.

Table 23-1 Header Files in the C++ XDK Compile-Time Environment

	Header File	Description
	
oraxml.hpp

	
Includes the Oracle9i XML ORA datatypes and the public ORA APIs included in libxml.a (for backward compatibility only).

	
oraxmlcg.h

	
Includes the C APIs for the C++ class generator (for backward compatibility only).

	
oraxsd.hpp

	
Includes the Oracle9i XSD validator datatypes and APIs (for backward compatibility only)

	
xml.hpp

	
Handles the Unified DOM APIs transparently, whether you use them through OCI or standalone

	
xmlotn.hpp

	
Includes the common APIs, whether you compile standalone or use OCI and the Unified DOM

	
xmlctx.hpp

	
Includes the initialization and exception-handling public APIs

Testing the C++ XDK Compile-Time Environment on UNIX

The simplest way to test your compile-time environment is to run the make utility on the sample programs. The demo programs are located on the Examples media rather than the Oracle Database CD. After you install these programs, they will be located in $ORACLE_HOME/xdk/demo/cpp.

Build and run the sample programs by executing the following commands at the system prompt:

cd $ORACLE_HOME/xdk/demo/cpp
make

Verifying the C++ XDK Component Version on UNIX

To obtain the version of XDK you are using, change into $ORACLE_HOME/lib and run the following command as the system prompt:

strings libxml10.a | grep -i developers

Configuring the Windows Environment for C++ XDK Components

This section contains the following topics:

	
C++ XDK Component Dependencies on Windows

	
Setting C++ XDK Environment Variables on Windows

	
Testing the C++ XDK Runtime Environment on Windows

	
Setting Up and Testing the C++ XDK Compile-Time Environment on Windows

	
Using the C++ XDK Components with Visual C/C++

C++ XDK Component Dependencies on Windows

The C++ libraries described in this section are located in %ORACLE_HOME%\lib. The XDK C and C++ components are contained in the following Windows library:

libxml10.dll

Table 16-5 in "C XDK Component Dependencies on Windows" describes the Oracle CORE and Globalization Support libraries on which the C components for Windows depend. The library dependencies are the same for C and C++.

Setting C++ XDK Environment Variables on Windows

Table 16-6 in "Setting C XDK Environment Variables on Windows" describes the Windows environment variables required for use with the XDK C components. The environment variables are the same for C and C++.

Testing the C++ XDK Runtime Environment on Windows

You can test your environment by running any of the utilities described in Table 16-7 in "Testing the C XDK Runtime Environment on Windows". These utilities are C utilities that do not have C++ versions.

Setting Up and Testing the C++ XDK Compile-Time Environment on Windows

Table 23-1 in the section "Setting Up and Testing the C++ XDK Compile-Time Environment on UNIX" describes the header files required for compilation of the C components on Windows. The relative filenames are the same on both UNIX and Windows installations.

On Windows the header files are located in %ORACLE_HOME%\xdk\include. Note that your runtime environment must be set up before you can compile your code.

Testing the C++ XDK Compile-Time Environment on Windows

You can test your compile-time environment by compiling the demo programs, which are located in %ORACLE_HOME%\xdk\demo\cpp if you have installed the Oracle Database Examples media.

The procedure for setting the C++ compiler path is identical to the procedure described in "Setting the C XDK Compiler Path on Windows". The procedure for editing the Make.bat files is identical to the procedure described in "Editing the Make.bat Files on Windows".

Using the C++ XDK Components with Visual C/C++

You can set up a project in Microsoft Visual C/C++ and use it for the demos included in the XDK. Refer to "Using the C XDK Components with Visual C/C++ on Windows" for instructions.

24 Overview of the Unified C++ Interfaces

This chapter contains these topics:

	
What is the Unified C++ API?

	
Accessing the C++ Interface

	
OracleXML Namespace

	
Ctx Namespace

	
IO Namespace

	
Tools Package

	
Error Message Files

What is the Unified C++ API?

Unified C++ APIs for XML tools represent a set of C++ interfaces for Oracle XML tools. This unified approach provides a generic, interface-based framework that allows XML tools to be improved, updated, replaced, or added without affecting any interface-based user code, and minimally affecting application drivers and, possibly, application configuration. All three kinds of C++ interfaces: abstract classes, templates, and implicit interfaces represented by generic template parameters, are used by the unified framework.

	
Note:

Use the new unified C++ API in xml.hpp for new XDK applications. The old C++ API in oraxml.hpp is deprecated and supported only for backward compatibility, but will not be enhanced. It will be removed in a future release.
These C++ APIs support the W3C specification as closely as possible; however, Oracle cannot guarantee that the specification is fully supported by our implementation because the W3C specification does not cover C++ implementations.

Accessing the C++ Interface

The C++ interface is provided with Oracle Database. Sample files are located in $ORACLE_HOME/xdk/demo/cpp.

readme.html in the root directory of the software archive contains release specific information including bug fixes and API additions.

OracleXML Namespace

OracleXml is the C++ namespace for all XML C++ interfaces. It contains common interfaces and namespaces for different XDK packages. The following namespaces are included:

	
Ctx - namespace for TCtx related declarations

	
Dom - namespace for DOM related declarations

	
Parser - namespace for parser and schema validator declarations

	
IO - namespace for input and output source declarations

	
Xsl - namespace for XSLT related declarations

	
XPath - namespace for XPath related declarations

	
Tools - namespace for Tools::Factory related declarations

OracleXml is fully defined in the file xml.hpp. Another namespace, XmlCtxNS, visible to users, is defined in xmlctx.hpp. That namespace contains C++ definitions of data structures corresponding to C level definitions of the xmlctx context and related data structures. While there is no need for users to know details of that namespace, xmlctx.hpp needs to be included in most application main modules.

Multiple encodings are currently supported on the base of the oratext type that is currently supposed to be used by all implementations. All strings are represented as oratext*.

OracleXML Interfaces

XMLException Interface - This is the root interface for all XML exceptions.

Ctx Namespace

The Ctx namespace contains data types and interfaces related to the TCtx interface.

OracleXML Datatypes

DATATYPE encoding - a particular supported encoding. The following kinds of encodings (or encoding names) are supported:

	
data_encoding

	
default_input_encoding

	
input_encoding - overwrites the previous one

	
error_language - gets overwritten by the language of the error handler, if specified

DATATYPE encodings - array of encodings.

Ctx Interfaces

ErrorHandler Interface - This is the root error handler class. It deals with local processing of errors, mainly from the underlying C implementation. It may throw XmlException in some implementations. But this is not specified in its signature in order to accommodate needs of all implementations. However, it can create exception objects. The error handler is passed to the TCtx constructor when TCtx is initialized. Implementations of this interface are provided by the user.

MemAllocator Interface - This is a simple root interface to make the TCtx interface reasonably generic so that different allocator approaches can be used in the future. It is passed to the TCtx constructor when TCtx is initialized. It is a low level allocator that does not know the type of an object being allocated. The allocators with this interface can also be used directly. In this case the user is responsible for the explicit deallocation of objects (with dealloc).

If the MemAllocator interface is passed as a parameter to the TCtx constructor, then, in many cases, it makes sense to overwrite the operator new. In this case all memory allocations in both C and C++ can be done by the same allocator.

Tctx Interface - This is an implicit interface to XML context implementations. It is primarily used for memory allocation, error (not exception) handling, and different encodings handling. The context interface is an implicit interface that is supposed to be used as type parameter. The name TCtx will be used as a corresponding type parameter name. Its actual substitutions are instantiations of implementations parameterized (templatized) by real context implementations. In the case of errors XmlException might be thrown.All constructors create and initialize context implementations. In a multithreaded environment a separate context implementation has to be initialized for each thread.

IO Namespace

The IO namespace specifies interfaces for the different input and output options for all XML tools.

IO Datatypes

Datatype InputSourceType specifies different kinds of input sources supported currently. They include:

	
ISRC_URI - Input is to be read from the specified URI.

	
ISRC_FILE - Input is to be read from a file.

	
ISRC_BUFFER - Input is to be read from a buffer.

	
ISRC_DOM - Input is a DOM tree.

	
ISRC_CSTREAM - Input is a C level stream.

IO Interfaces

URISource - This is an interface to inputs from specified URIs.

FileSource - This is an interface to inputs from a file.

BufferSource - This is an interface to inputs from a buffer.

DOMSource - This is an interface to inputs from a DOM tree.

CStreamSource - This is an interface to inputs from a C level stream.

Tools Package

Tools is the package (sub-space of OracleXml) for types and interfaces related to the creation and instantiation of Oracle XML tools.

Tools Interfaces

FactoryException - Specifies tool's factory exceptions. It is derived from XMLExceptions.

Factory - XML tools factory. Hides implementations of all XML tools and provides methods to create objects representing these tools based on their ID values.

Error Message Files

Error message files are provided in the mesg subdirectory. The messages files also exist in the $ORACLE_HOME/xdk/mesg directory. You can set the environment variable ORA_XML_MESG to point to the absolute path of the mesg subdirectory, although this not required.

	
See Also:

Oracle Database XML C++ API Reference package Ctx APIs for C++

25 Using the XML Parser for C++

This chapter contains these topics:

	
Introduction to Parser for C++

	
DOM Namespace

	
DOM Interfaces

	
Parser Namespace

	
Thread Safety

	
XML Parser for C++ Usage

	
XML Parser for C++ Default Behavior

	
C++ Sample Files

	
Note:

Use the new unified C++ API in xml.hpp for new XDK applications. The old C++ API in oraxml.hpp is deprecated and supported only for backward compatibility.

Introduction to Parser for C++

Oracle XML parser for C++ determines whether an XML document is well-formed and optionally validates it against a DTD or XML schema. The parser constructs an object tree which can be accessed through one of the following two XML APIs:

	
DOM: Tree-based APIs. A tree-based API compiles an XML document into an internal tree structure, then allows an application to navigate that tree using the Document Object Model (DOM), a standard tree-based API for XML and HTML documents.

	
SAX: Event-based APIs. An event-based API, on the other hand, reports parsing events (such as the start and end of elements) directly to the application through a user defined SAX even handler, and does not usually build an internal tree. The application implements handlers to deal with the different events, much like handling events in a graphical user interface.

Tree-based APIs are useful for a wide range of applications, but they often put a great strain on system resources, especially if the document is large (under very controlled circumstances, it is possible to construct the tree in a lazy fashion to avoid some of this problem). Furthermore, some applications need to build their own, different data trees, and it is very inefficient to build a tree of parse nodes, only to map it onto a new tree.

DOM Namespace

This is the namespace for DOM-related types and interfaces.

DOM interfaces are represented as generic references to different implementations of the DOM specification. They are parameterized by Node that supports various specializations and instantiations. Of them, the most important is xmlnode which corresponds to the current C implementation

These generic references do not have a NULL-like value. Any implementation must never create a reference with no state (like NULL). If there is a need to signal that something has no state, an exception should be thrown.

Many methods might throw the SYNTAX_ERR exception, if the DOM tree is incorrectly formed, or throw UNDEFINED_ERR, in the case of wrong parameters or unexpected NULL pointers. If these are the only errors that a particular method might throw, it is not reflected in the method signature.

Actual DOM trees do not depend on the context, TCtx. However, manipulations on DOM trees in the current, xmlctx-based implementation require access to the current context, TCtx. This is accomplished by passing the context pointer to the constructor of DOMImplRef. In multithreaded environment DOMImplRef is always created in the thread context and, so, has the pointer to the right context.

DOMImplRef provides a way to create DOM trees. DomImplRef is a reference to the actual DOMImplementation object that is created when a regular, non-copy constructor of DomImplRef is invoked. This works well in a multithreaded environment where DOM trees need to be shared, and each thread has a separate TCtx associated with it. This works equally well in a single threaded environment.DOMString is only one of the encodings supported by Oracle implementations. The support of other encodings is an Oracle extension. The oratext* data type is used for all encodings.Interfaces represent DOM level 2 Core interfaces according to http://www.w3.org/TR/DOM-Level-2-Core/core.html. These C++ interfaces support the DOM specification as closely as possible. However, Oracle cannot guarantee that the specification is fully supported by our implementation because the W3C specification does not cover C++ binding.

DOM Datatypes

DATATYPE DomNodeType - Defines types of DOM nodes.

DATATYPE DomExceptionCode - Defines exception codes returned by the DOM API.

DOM Interfaces

DOMException Interface - See exception DOMException in the W3C DOM documentation. DOM operations only raise exceptions in "exceptional" circumstances: when an operation is impossible to perform (either for logical reasons, because data is lost, or because the implementation has become unstable). The functionality of XMLException can be used for a wider range of exceptions.

NodeRef Interface - See interface Node in the W3C documentation.

DocumentRef Interface - See interface Document in the W3C documentation.

DocumentFragmentRef Interface - See interface DocumentFragment in the W3C documentation.

ElementRef Interface - See interface Element in the W3C documentation.

AttrRef Interface - See interface Attr in the W3C documentation.

CharacterDataRef Interface - See interface CharacterData in the W3C documentation.

TextRef Interface - See Text nodes in the W3C documentation.

CDATASectionRef Interface - See CDATASection nodes in the W3C documentation.

CommentRef Interface - See Comment nodes in the W3C documentation.

ProcessingInstructionRef Interface - See PI nodes in the W3C documentation.

EntityRef Interface - See Entity nodes in the W3C documentation.

EntityReferenceRef Interface - See EntityReference nodes in the W3C documentation.

NotationRef Interface - See Notation nodes in the W3C documentation.

DocumentTypeRef Interface - See DTD nodes in the W3C documentation.

DOMImplRef Interface - See interface DOMImplementation in the W3C DOM documentation. DOMImplementation is fundamental for manipulating DOM trees. Every DOM tree is attached to a particular DOM implementation object. Several DOM trees can be attached to the same DOM implementation object. Each DOM tree can be deleted and deallocated by deleting the document object. All DOM trees attached to a particular DOM implementation object are deleted when this object is deleted. DOMImplementation object is not visible to the user directly. It is visible through class DOMImplRef. This is needed because of requirements in the case of multithreaded environments

NodeListRef Interface - Abstract implementation of node list. See interface NodeList in the W3C documentation.

NamedNodeMapRef Interface - Abstract implementation of a node map. See interface NamedNodeMap in the W3C documentation.

DOM Traversal and Range Datatypes

DATATYPE AcceptNodeCode defines values returned by node filters provided by the user and passed to iterators and tree walkers.

DATATYPE WhatToShowCode specifies codes to filter certain types of nodes.

DATATYPE RangeExceptionCode specifies Exception kinds that can be thrown by the Range interface.

DATATYPE CompareHowCode specifies kinds of comparisons that can be done on two ranges.

DOM Traversal and Range Interfaces

NodeFilter Interface - DOM 2 Node Filter.

NodeIterator Interface - DOM 2 Node Iterator.

TreeWalker Interface - DOM 2 TreeWalker.

DocumentTraversal Interface - DOM 2 interface.

RangeException Interface - Exceptions for DOM 2 Range operations.

Range Interface - DOM 2 Range.

DocumentRange Interface - DOM 2 interface.

Parser Namespace

DOMParser Interface - DOM parser root class.

GParser Interface - Root class for XML parsers.

ParserException Interface - Exception class for parser and validator.

SAXHandler Interface - Root class for current SAX handler implementations.

SAXHandlerRoot Interface - Root class for all SAX handlers.

SAXParser Interface - Root class for all SAX parsers.

SchemaValidator Interface - XML schema-aware validator.

GParser Interface

GParser Interface - Root class for all XML parser interfaces and implementations. It is not an abstract class, that is, it is not an interface. It is a real class that allows users to set and check parser parameters.

DOMParser Interface

DOMParser Interface - DOM parser root abstract class or interface. In addition to parsing and checking that a document is well formed, DOMParser provides means to validate the document against DTD or XML schema.

SAXParser Interface

SAXParser Interface - Root abstract class for all SAX parsers.

SAX Event Handlers

To use SAX, a SAX event handler class should be provided by the user and passed to the SAXParser in a call to parse() or set before such call.

SAXHandlerRoot Interface - root class for all SAX handlers.

SAXHandler Interface - root class for current SAX handler implementations.

Thread Safety

If threads are forked off somewhere in the midst of the init-parse-term sequence of calls, you will get unpredictable behavior and results.

XML Parser for C++ Usage

	
A call to Tools::Factory to create a parser initializes the parsing process.

	
The XML input can be any of the InputSource kinds (see IO namespace).

	
DOMParser invocation results in the DOM tree.

	
SAXParser invocation results in SAX events.

	
A call to parser destructor terminates the process.

XML Parser for C++ Default Behavior

The following is the XML parser for C++ default behavior:

	
Character set encoding is UTF-8. If all your documents are ASCII, you are encouraged to set the encoding to US-ASCII for better performance.

	
Messages are printed to stderr unless msghdlr is specified.

	
XML parser for C++ determines whether an XML document is well-formed and optionally validates it against a DTD. The parser constructs an object tree that can be accessed through a DOM interface or operates serially through a SAX interface.

	
A parse tree which can be accessed by DOM APIs is built unless saxcb is set to use the SAX callback APIs. Note that any of the SAX callback functions can be set to NULL if not needed.

	
The default behavior for the parser is to check that the input is well-formed but not to check whether it is valid. The flag XML_FLAG_VALIDATE can be set to validate the input. The default behavior for whitespace processing is to be fully conformant to the XML 1.0 spec, that is, all whitespace is reported back to the application but it is indicated which whitespace is ignorable. However, some applications may prefer to set the XML_FLAG_DISCARD_WHITESPACE which will discard all whitespace between an end-element tag and the following start-element tag.

	
Note:

It is recommended that you set the default encoding explicitly if using only single byte character sets (such as US-ASCII or any of the ISO-8859 character sets) for performance up to 25% faster than with multibyte character sets, such as UTF-8.

	
In both of these cases, an event-based API provides a simpler, lower-level access to an XML document: you can parse documents much larger than your available system memory, and you can construct your own data structures using your callback event handlers.

C++ Sample Files

xdk/demo/cpp/parser/ directory contains several XML applications to illustrate how to use the XML parser for C++ with the DOM and SAX interfaces.

Change directories to the sample directory ($ORACLE_HOME/xdk/demo/cpp on Solaris, for example) and read the README file. This will explain how to build the sample programs.

Table 25-1 lists the sample files in the directory. Each file *Main.cpp has a corresponding *Gen.cpp and *Gen.hpp.

Table 25-1 XML Parser for C++ Sample Files

	Sample File Name	Description
	

DOMSampleMain.cpp

	
Sample usage of C++ interfaces of XML parser and DOM.

	

FullDOMSampleMain.cpp

	
Manually build DOM and then exercise.

	

SAXSampleMain.cpp

	
Source for SAXSample program.

	
See Also:

Oracle Database XML C++ API Reference for parser package APIs for C++

28 Using the XPath Processor for C++

This chapter contains these topics:

	
XPath Interfaces

	
Sample Programs

	
Note:

Use the new unified C++ API in xml.hpp for new XDK applications. The old C++ API in oraxml.hpp is deprecated and supported only for backward compatibility, but will not be enhanced. It will be removed in a future release.

XPath Interfaces

Processor Interface - basic XPath processor interface that any XPath processor is supposed to conform to.

CompProcessor Interface - extended XPath processor that adds an ability to use XPath expressions pre-compiled into an internal binary representation. In this release this interface represents Oracle virtual machine interface.

Compiler Interface - XPath compiler into binary representation.

NodeSetRef Interface - defines references to node sets when they are returned by the XPath expression evaluation.

XPathException Interface - exceptions for XPath compilers and processors.

XPathObject Interface - interface for XPath 1.0 objects.

Sample Programs

Sample programs are located in xdk/demo/cpp/new.

The programs XslXPathSample and XvmXPathSample have sources:

XslXPathSampleGen.hpp, XslXPathSampleGen.cpp, XslXPathSampleMain.cpp, XslXPathSampleForce.cpp;

and XvmXPathSampleGen.hpp, XvmXPathSampleGen.cpp, XvmXPathSampleMain.cpp, XvmXPathSampleForce.cpp.

	
See Also:

Oracle Database XML C++ API Reference package XPATH APIs for C++

29 Using the XML Class Generator for C++

This chapter contains these topics:

	
Accessing XML C++ Class Generator

	
Using XML C++ Class Generator

	
Using the XML C++ Class Generator Command-Line Utility

	
Using the XML C++ Class Generator Examples

Accessing XML C++ Class Generator

The XML C++ class generator is provided with Oracle Database.

Using XML C++ Class Generator

The XML C++ class generator creates source files from an XML DTD or XML Schema. The class generator takes the Document Type Definition (DTD) or the XML Schema, and generates classes for each defined element. Those classes are then used in a C++ program to construct XML documents conforming to the DTD.

This is useful when an application wants to send an XML message to another application based on an agreed-upon DTD or XML Schema, or as the back end of a Web form to construct an XML document. Using these classes, C++ applications can construct, validate, and print XML documents that comply with the input.

The class generator works in conjunction with the Oracle XML parser for C++, which parses the input and passes the parsed document to the class generator.

External DTD Parsing

The XML C++ class generator can also parse an external DTD directly without requiring a complete (dummy) document by using the Oracle XML parser for C++ routine xmlparsedtd().

The provided command-line program xmlcg has a '-d' option that is used to parse external DTDs.

Error Message Files

Error message files are provided in the mesg/ subdirectory. The messages files also exist in the $ORACLE_HOME/xdk/mesg directory. You may set the environment variable ORA_XML_MESG to point to the absolute path of the mesg subdirectory although this not required.

Using the XML C++ Class Generator Command-Line Utility

The standalone class generator can be called as an executable by invoking bin/xmlcg.

	
You can run the C++ class generator from the command line as follows:

xmlcg [options] input_file

Table 29-1 describes the options for the utility.

Table 29-1 C++ Class Generator Options

	Option	Meaning
	
-d name

	
Input is an external DTD or a DTD file. Generates name.cpp and name.h.

	
-o directory

	
Output directory for generated files (the default is the current directory).

	
-e encoding

	
Default input file encoding.

	
-h

	
Show this usage help.

	
-v

	
Show the class generator version validator options.

	
-s name

	
Input is an XML Schema file with the given name. Generates name.cpp and name.h.

input_file name is the name of the parsed XML document with <!DOCTYPE> definitions, or parsed DTD, or an XML Schema document. The XML document must have an associated DTD.

The DTD input to the XML C++ class generator is an XML document containing a DTD, or an external DTD. The document body itself is ignored; only the DTD is relevant, though the document must conform to the DTD.

	
If invalid options, or no input is provided, a usage message with the preceding information is output.

	
Two source files are output, a name.h header file and a C++ file, name.cpp. These are named after the DTD file.

	
The output files are typically used to generate XML documents.

Constructors are provided for each class (element) that allow an object to be created in the following two ways:

	
Initially empty, then adding the children or data after the initial creation

	
Created with the initial full set of children or initial data

A method is provided for #PCDATA (and Mixed) elements to set the data and, when appropriate, set an element's attributes.

Input to the XML C++ Class Generator

The input is an XML document containing a DTD. The document body itself is ignored; only the DTD is relevant, though the dummy document must conform to the DTD. The underlying XML parser only accepts file names for the document and associated external entities.

Using the XML C++ Class Generator Examples

Table 29-2 lists the demo XML C++ class generator files:

Table 29-2 XML C++ Class Generator Files

	File Name	Description
	
CG.cpp

	
Sample program

	
CG.xml

	
XML file contains DTD and dummy document

	
CG.dtd

	
DTD file referenced by CG.xml

	
Make.bat on Windows

Makefile on UNIX

	
Batch file (on Windows) or Make file (on UNIX) to generate classes and build the sample programs.

	
README

	
A readme file with these instructions

The make.bat batch file (on Windows) or Makefile (on UNIX) do the following:

	
Generate classes based on CG.xml into Sample.h and Sample.cpp

	
Compile the program CG.cpp (using Sample.h), and link this with the Sample object into an executable named CG.exe in the...\bin (or .../bin) directory.

XML C++ Class Generator Example 1: XML — Input File to Class Generator, CG.xml

This XML file, CG.xml, inputs XML C++ class generator. It references the DTD file, CG.dtd.

<?xml version="1.0"?>
<!DOCTYPE Sample SYSTEM "CG.dtd">
 <Sample>
 Be!
 <D attr="value"></D>
 <E>
 <F>Formula1</F>
 <F>Formula2</F>
 </E>
 </Sample>

XML C++ Class Generator Example 2: DTD — Input File to Class Generator, CG.dtd

This DTD file, CG.dtd is referenced by the XML file CG.xml. CG.xml inputs XML C++ class generator.

<!ELEMENT Sample (A | (B, (C | (D, E))) | F)>
<!ELEMENT A (#PCDATA)>
<!ELEMENT B (#PCDATA | F)*>
<!ELEMENT C (#PCDATA)>
<!ELEMENT D (#PCDATA)>
<!ATTLIST D attr CDATA #REQUIRED>
<!ELEMENT E (F, F)>
<!ELEMENT F (#PCDATA)>

XML C++ Class Generator Example 3: CG Sample Program

The CG sample program, CG.cpp, does the following:

	
Initializes the XML parser.

	
Loads the DTD (by parsing the DTD-containing file-- the dummy document part is ignored).

	
Creates some objects using the generated classes.

	
Invokes the validation function which verifies that the constructed classes match the DTD.

	
Writes the constructed document to Sample.xml.

//
// NAME CG.cpp
// DESCRIPTION Demonstration program for C++ class generator usage
//

#ifndef ORAXMLDOM_ORACLE
include <oraxmldom.h>
#endif

#include <fstream.h>

#include "Sample.h"

#define DTD_DOCUMENT "CG.xml"
#define OUT_DOCUMENT Sample.xml"

int main()
{
 XMLParser parser;
 Document *doc;
 Sample *samp;
 B *b;
 D *d;
 E *e;
 F *f1, *f2;
 fstream *out;
 ub4 flags = XML_FLAG_VALIDATE;
 uword ecode;

 // Initialize XML parser
 cout << "Initializing XML parser...\n";
 if (ecode = parser.xmlinit())
 {
 cout << "Failed to initialize parser, code " << ecode << "\n";
 return 1;
 }

 // Parse the document containing a DTD; parsing just a DTD is not
 // possible yet, so the file must contain a valid document (which
 // is parsed but we're ignoring).
 cout << "Loading DTD from " << DTD_DOCUMENT << "...\n";
 if (ecode = parser.xmlparse((oratext *) DTD_DOCUMENT, (oratext *)0, flags))
 {
 cout << "Failed to parse DTD document " << DTD_DOCUMENT <<
 ", code " << ecode << "\n";
 return 2;
 }

 // Fetch dummy document
 cout << "Fetching dummy document...\n";
 doc = parser.getDocument();

 // Create the constituent parts of a Sample
 cout << "Creating components...\n";
 b = new B(doc, (String) "Be there or be square");
 d = new D(doc, (String) "Dit dah");
 d->setattr((String) "attribute value");
 f1 = new F(doc, (String) "Formula1");
 f2 = new F(doc, (String) "Formula2");
 e = new E(doc, f1, f2);

 // Create the Sample
 cout << "Creating top-level element...\n";
 samp = new Sample(doc, b, d, e);

 // Validate the construct
 cout << "Validating...\n";
 if (ecode = parser.validate(samp))
 {
 cout << "Validation failed, code " << ecode << "\n";
 return 3;
 }

 // Write out doc
 cout << "Writing document to " << OUT_DOCUMENT << "\n";
 if (!(out = new fstream(OUT_DOCUMENT, ios::out)))
 {
 cout << "Failed to open output stream\n";
 return 4;
 }
 samp->print(out, 0);
 out->close();

 // Everything's OK
 cout << "Success.\n";

 // Shut down
 parser.xmlterm();
 return 0;
}

// end of CG.cpp

Part IV

Oracle XDK Reference

This part contains the following reference chapters for the XDK:

	
Chapter 30, "XSQL Pages Reference"

	
Chapter 31, "XDK Standards"

	
Appendix A, "Oracle XDK for Java Error Messages"

31 XDK Standards

This appendix contains the following topics:

	
XML Standards Supported by the XDK

	
Character Sets Supported by the XDK

XML Standards Supported by the XDK

This section contains the following topics:

	
Summary of XML Standards Supported by the XDK

	
XML Standards for the XDK for Java

Summary of XML Standards Supported by the XDK

Table 31-1 summarizes the standards supported by the XDK Components.

Table 31-1 Summary of XML Standards Supported by the XDK

	Standard	Java	C	C++	Specification URL
	
DOM 1.0

	
Full

	
Full

	
Full

	
http://www.w3.org/TR/DOM-Level-1

	
DOM 2.0 Core

	
Full

	
Full

	
Full

	
http://www.w3.org/TR/DOM-Level-2-Core

	
DOM 2.0 Events

	
Full

	
Full

	
Full

	
http://www.w3.org/TR/DOM-Level-2-Events

	
DOM 2.0 Transversal and Range

	
Full

	
Full

	
Full

	
http://www.w3.org/TR/DOM-Level-2-Traversal-Range

	
DOM 3.0 Load and Save

	
PartialFoot 1

	
None

	
None

	
http://www.w3.org/TR/2003/CR-DOM-Level-3-LS-20031107

	
DOM 3.0 Validation

	
FullFoot 2

	
None

	
None

	
http://www.w3.org/TR/2003/CR-DOM-Level-3-Val-20030730

	
JAXP 1.1 (JSR Standard)

	
Full

	
N/A

	
N/A

	
http://java.sun.com/xml/downloads/jaxp.html

	
JAXP 1.2 (JSR Standard)

	
Full

	
N/A

	
N/A

	
http://java.sun.com/xml/downloads/jaxp.html

	
SAX 1.0

	
Full

	
Full

	
Full

	
http://www.saxproject.org

	
SAX 2.0 Core

	
Full

	
Full

	
Full

	
http://www.saxproject.org

	
SAX 2.0 Extension

	
Full

	
Full

	
Full

	
http://www.saxproject.org

	
XML 1.0 (Second Edition)

	
Full

	
Full

	
Full

	
http://www.w3.org/TR/REC-xml

	
XML Base

	
Only in XSLT

	
None

	
None

	
http://www.w3.org/TR/xmlbase

	
XML Namespaces 1.0

	
Full

	
Full

	
Full

	
http://www.w3.org/TR/REC-xml-names

	
XML Pipeline Definition Language 1.0 (Note)

	
PartialFoot 3

	
None

	
None

	
http://www.w3.org/TR/xml-pipeline

	
XML Schema language 1.0

	
Full

	
FullFoot 4

	
FullFootref 4

	
http://www.w3.org/TR/xmlschema-0

	
XPath 1.0

	
Full

	
Full

	
Full

	
http://www.w3.org/TR/xpath

	
XPath 2.0 Language (working draft dated 04 April 2005)

	
Full

	
None

	
None

	
http://www.w3.org/TR/2005/WD-xpath20-20050404

	
XPath 2.0 Data Model (working draft dated 04 April 2005)

	
Full

	
None

	
None

	
http://www.w3.org/TR/2005/WD-xpath-datamodel-20050404/

	
XQuery 1.0 and XPath 2.0 Functions and Operators (working draft dated 04 April 2005)

	
Full

	
None

	
None

	
http://www.w3.org/TR/2005/WD-xpath-functions-20050404

	
XSLT 1.0

	
Full

	
Full

	
Full

	
http://www.w3.org/TR/xslt

	
XSLT 2.0 (working draft dated 04 April 2005)

	
PartialFoot 5

	
None

	
None

	
http://www.w3.org/TR/2005/WD-xslt20-20050404/

Footnote 1 "DOM Level 3 Load and Save" describes the relationship between DOM 3.0 Core and Load and Save.

Footnote 2 "DOM 3.0 Validation" describes the relationship between DOM 3.0 Core and Validation.

Footnote 3 "Pipeline Definition Language Standard for the XDK for Java" describes the parts of the standard that are not supported.

Footnote 4 The Schema processor fully supports the functionality stated in the specification plus "XML Schema 1.0 Specification Errata" as published on http://www.w3.org/2001/05/xmlschema-errata.

Footnote 5 "XSLT Standard for the XDK for Java" describes the parts of the XSLT standard that are not supported.

XML Standards for the XDK for Java

This section contains the following topics:

	
DOM Standard for the XDK for Java

	
XSLT Standard for the XDK for Java

	
JAXB Standard for the XDK for Java

	
Pipeline Definition Language Standard for the XDK for Java

DOM Standard for the XDK for Java

	
Note:

In Oracle Database 10g Release 2, the Java XDK implements the candidate recommendation versions of DOM Level 3.0 Load and Save and Validation specifications. Oracle plans to produce a release or patch set that will include an implementation of DOM Level 3.0 Load and Save and Validation recommendations. In order to conform to the recommendations, Oracle may be forced to make changes that are not backward compatible. During this period Oracle does not guarantee backward compatibility with respect to our DOM Load and Save, and Validation implementation. After the Java XDK is updated to conform to the recommendations, standard Oracle policies with respect to backwards compatibility will apply to the Oracle DOM Load and Save, and Validation implementation.

The DOM APIs include support for candidate recommendations of DOM Level 3 Validation and DOM Level 3 Load and Save.

DOM Level 3 Load and Save

The DOM Level 3 Load and Save module enables software developers to load and save XML content inside conforming products. The DOM 3.0 Core interface DOMConfiguration is referred by DOM 3 Load and Save. Although DOM 3.0 Core is not supported, a limited implementation of this interface is available.

The charset-overrides-xml-encoding configuration parameter is not supported by LSParser. Optional settings of the following configuration parameters are not supported by LSParser:

	
disallow-doctype (true)

	
ignore-unknown-character-denormalizations (false)

	
namespaces (false)

	
supported-media-types-only (true)

The discard-default-content configuration parameter is not supported by LSSerializer. Optional settings of the following configuration parameters are not supported by LSSerializer:

	
canonical-form (true)

	
format-pretty-print (true)

	
ignore-unknown-character-denormalizations (false)

	
normalize-characters (true)

DOM 3.0 Validation

DOM 3.0 validation allows users to retrieve the metadata definitions from XML schemas, query the validity of DOM operations and validate the DOM documents or sub-trees against the XML schema.

Some DOM 3 Core functions referred by Validation are implemented, but Core itself is not supported. Specifically, NameList and DOMStringList in DOM Core are supported for validation purposes. Because validation is based on an XML schema, you need to convert a DTD to an XML schema before using these functions.

XSLT Standard for the XDK for Java

The XSLT processor adds support for the current working drafts of XSLT 2.0, XPath 2.0, and the shared XPath/XQuery data model.

	
Note:

At the time of release of Oracle Database 10g Release 2 the W3C XSLT and XPath working group had not yet published the XSLT 2.0 and XPath 2.0 recommendations. Oracle will continue to track the evolution of the XSLT 2.0 and XPath 2.0 specifications, until such time as they become recommendations. During this period, in order to follow the evolution of the XSLT 2.0 and XPath 2.0 specifications, Oracle may be forced to release updates to the XSLT 2.0 and XPath 2.0 implementation which are not backwards compatible with previous releases or patch sets. During this period Oracle does not guarantee any backward compatibility between database releases or patch sets with respect to our XSLT 2.0 and XPath 2.0 implementation. After the XSLT 2.0 and XPath 2.0 specifications become recommendations, Oracle will produce a release or patch set that includes an implementation of the XSLT 2.0 and XPath 2.0 recommendations. From that point on, standard Oracle policies with respect to backwards compatibility will apply to the Oracle XSLT 2.0 and XPath 2.0 implementation. See http://www.w3.org for the latest information on the status of XSLT 2.0 and XPath 2.0 specifications.

Some features of these specifications are not supported in the current release:

	
The Schema Import and Static Typing features are not supported, but we do support XML Schema built-in types specified by the XPath 2.0 Datamodel.

	
The schema-element and schema-attribute nodetests are not supported.

	
The XSLT instruction xsl:number uses XSLT 1.0 semantics and syntax.

	
The use-when standard attribute is not supported.

	
The processor does not honor the attribute of required on xsl:param.

	
Tunnel parameters are not supported.

	
Regular expression instructions are not supported in XSLT.

	
The XPath 2.0 functions fn:tokenize, fn:matches, and fn:replace are not supported.

	
format-dateTime, format-date, and format-time functions are not supported.

	
The content model for xsl:attribute, xsl:comment, xsl:message and the way to compute key values of xsl:key and xsl:sort are still 1.0 behavior.

	
attribute [xsl:]inherit-namespaces for xsl:copy, xsl:element, and literal result elements is not supported.

Updates to the W3C specifications for XPath 2.0 and XSLT 2.0 resulted in certain differences in behavior from 10g Release 1. For 10g Release 1 compatible behavior set the system property oracle.xdkjava.compatibility.version=10.1.0.

XPath 2.0 - Differences between 10g Release 1 and 10g Release 2

1. RangeExpr, behavior for (m to n), where m > n changed. Earlier we treated it as (n to m), reverse sequence. As described in the April 2005 draft, we return an empty sequence.

2. isnot operator was removed as per the Apr 2005 draft.

3. getEffectiveBooleanValue definition (fn:boolean) updated as described in the April 2005 draft. Empty string value will result in exception (FORG006) instead of returning false. All cases not handled by getEffectiveBooleanValue will result in an exception (FORG006). XPath 1.0 behavior for fn:boolean will remain the same.

XSLT 2.0 - Difference between 10g Release 1 and 10g Release 2

normalize-unicode has been changed to normalization-form, the allowed attribute values have been changed from "yes" | "no" to "NFC" | "NFD" | "NKFC" | "NKFD" | \x{2026}\x{2026} as described in the Nov. 2004 draft.

JAXB Standard for the XDK for Java

The Oracle Database XDK implementation of the JAXB specification does not support the following features:

	
Javadoc generation

	
XML Schema component "any" and substitution groups

Pipeline Definition Language Standard for the XDK for Java

The XML Pipeline processor differs from the W3C Note as follows:

	
The parser processes DOMParserProcess and SAXParserProcess are included in the XML pipeline (Section 1).

	
Only the final target output is checked to see if it is up-to-date with respect to the available pipeline inputs. The XML Pipeline processor does not determine whether the intermediate outputs of every process are up-to-date (Section 2.2).

	
For the select attribute, anything in between double-quotes ("...") is considered to be a string literal.

	
The XML Pipeline processor throws an error if more that one process produces the same infoset (Section 2.4.2.3).

	
The <document> element is not supported (Section 2.4.2.8).

Character Sets Supported by the XDK

This section contains the following topics:

	
Character Sets Supported by the XDK for Java

	
Character Sets Supported by the XDK for C

Character Sets Supported by the XDK for Java

XML Schema processor for Java supports documents in the following encodings:

	
BIG

	
EBCDIC-CP-*

	
EUC-JP

	
EUC-KR

	
GB2312

	
ISO-2022-JP

	
ISO-2022-KR

	
ISO-8859-1to -9

	
ISO-10646-UCS-2

	
ISO-10646-UCS-4

	
KOI8-R

	
Shift_JIS

	
US-ASCII

	
UTF-8

	
UTF-16

Character Sets Supported by the XDK for C

The XDK parser for C supports over 300 IANA character sets. These character sets include the following:

	
UTF-8

	
UTF-16

	
UTF16-BE

	
UTF16-LE

	
US-ASCII

	
ISO-10646-UCS-2

	
ISO-8859-{1-9, 13-15}

	
EUC-JP

	
SHIFT_JIS

	
BIG5

	
GB2312

	
GB_2312-80

	
HZ-GB-2312

	
KOI8-R

	
KSC5601

	
EUC-KR

	
ISO-2022-CN

	
ISO-2022-JP

	
ISO-2022-KR

	
WINDOWS-{1250-1258}

	
EBCDIC-CP-{US,CA,NL,WT,DK,NO,FI,SE,IT,ES,GB,FR,HE,BE,CH,ROECE,YU,IS,AR}

	
IBM{037, 273, 277, 278, 280, 284, 285, 297, 420, 424, 437, 500, 775, 850, 852, 855, 857, 858, 860, 861, 863, 865, 866, 869, 870, 871, 1026, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147,01148}

You can use any alias of the preceding character sets. In addition, you can use any character set specified in Appendix A, Character Sets, of the Oracle Database Globalization Support Guide with the exception of IW7IS960.

A Oracle XDK for Java Error Messages

This section lists error messages that may be encountered in applications that use Oracle XDK for Java. These are divided into these principal sections:

	
XML Error Messages

	
TXU Error Messages

	
XSU Error Messages

	
See Also:

http://www.w3.org/TR/xquery/#id-errors for the XQuery error messages

XML Error Messages

These error messages may occur during the execution of XML interfaces.

XML Parser Error Messages

These error messages are in the range XML-20000 through XML-20999.

XML-20003: missing token string at line string, column string

An expected token was not found in the input data.

Action: Check/update the input data to fix the syntax error.

XML-20004: missing keyword string at line string, column string

Cause: An expected keyword was not found in the input data.

Action: Check/update the input data to the correct keyword.

XML-20005: missing keyword string or string at line string, column string

Cause: An expected keyword was not found in the input data.

Action: Check/update the input data to the correct keyword.

XML-20006: unexpected text at line string, column string; expected EOF

Cause: More text was found after the end-tag of the root element.

Action: The end-tag of the root element can be followed only by comments, PI, or white space. Remove the extra text after the end-tag.

XML-20007: missing content model in element declaration at line string, column string

Cause: The element declaration was missing the required content model spec See Production [45] in XML 1.0 2nd Edition.

Action: Add the required content spec to the element declaration.

XML-20008: missing element name in content model at line string, column string

Cause: The content model in the element declaration was invalid, the content particle requires an element name. See Production [48] in XML 1.0 2nd Edition.

Action: Add the element name to fix the content spec syntactically.

XML-20009: target name string of processing instruction at line string, column string is reserved

Cause: The target names "XML: xml", and so on are reserved for standardization in future versions of XML specification. See Production [17] in XML 1.0 2nd Edition.

Action: If the PI is meant to be XML declaration, make sure the declaration occurs at the very beginning of the file. Otherwise, change to name of the PI.

XML-20010: missing notation name in unparsed entity declaration at line string, column string

Cause: The notation name used in the unparsed entity declaration did not match the name in a declared notation. See Production [76] in XML 1.0 2nd Edition.

Action: Add the notation declaration to the DTD.

XML-20011: missing attribute type in attribute-list declaration at line string, column string

Cause: The attribute type was missing the attribute-list declaration. One of the following types CDATA, ID, IDREF, IDREFS, ENTITY, ENTITIES, NMTOKEN, or NMTOKENS must be added. See Production [52], [53] in XML 1.0 2nd Edition.

Action: Check and correct attribute declaration.

XML-20012: missing white space at line string, column string

Cause: The required white space was missing.

Action: Add white space to fix the syntax error.

XML-20013: invalid character string in entity value at line string, column string

Cause: An invalid character was used in the entity value, the characters'&', '%' and (" or ' based on the value delimiters) are invalidSee Production [9] in XML 1.0 2nd Edition.

Action: Use entity or character references instead of the characters For example, & or & can be used instead of '&'

XML-20014: -- not allowed in comment at line string, column string

Cause: A syntax error in comment due to the use of "--"See Production [15] in XML 1.0 2nd Edition.

Action: Fix the comment, and use "--" only as part of end of comment "-->"

XML-20015:]]> not allowed in text at line string, column string

Cause: "]]>" is not allowed in text, it is used only as end marker forCDATA Section. See Production [14] in XML 1.0 2nd Edition.

Action: Fix the text content by using > or char ref for '>'

XML-20016: white space not allowed before occurrence indicator at line string, column string

Cause: White space is not allowed in the contentspec before the occurrenceindicator. For example, <!ELEMENT x (a,b) *> is not valid. See Production [47], [48] in XML 1.0 2nd Edition.

Action: Fix the contentspec by removing the extra space

XML-20017: occurrence indicator string not allowed in mixed-content at line string, column string

Cause: Occurrence is not allowed in mixed content declaration.For example, <!ELEMENT x (#PCDATA)?> is not valid. See Production [51] in XML 1.0 2nd Edition.

Action: Fix the syntax to remove the occurrence indicator.

XML-20018: content list not allowed inside mixed-content at line string, column string

Cause: Content list is not allowed in mixed-content declaration. For example, <!ELEMENT x (#PCDATA | (a,b))> is not valid.See Production [51] in XML 1.0 2nd Edition.

Action: Fix the syntax to remove the content list.

XML-20019: duplicate element string in mixed-content declaration at line string, column string

Cause: Duplicate element name was found in mixed-content declaration. For example, <!ELEMENT x (#PCDATA | a | a)> is not valid. See Production [51] in XML 1.0 2nd Edition.

Action: Remove the duplicate element name.

XML-20020: root element string does not match the DOCTYPE name string at line string, column string

Cause: failed: The Name in the document type declaration must match the element type of the root element. For example: <?xml version="1.0"?> <!DOCTYPE greeting [<!ELEMENT greeting (#PCDATA)>]> <salutation>Hello!</salutation> The document's root element, salutation, does not match the root element declared in the DTD (greeting).

Action: Correct the document.

XML-20021: duplicate element declaration string at line string, column string

Cause: Element was declared twice in the DTD.

Action: Remove the duplicate declaration.

XML-20022: element string has multiple ID attributes at line string, column string

Cause: failed: No element type may have more than one ID attribute specified.

Action: Correct the document, by removing the duplicate ID attribute decl

XML-20023: ID attribute string in element string must be #IMPLIED or #REQUIRED at line string, column string

Cause: failed: An ID attribute must have a declared default of #IMPLIED or #REQUIRED.

Action: Fix the attribute declaration.

XML-20024: missing required attribute string in element string at line string, column string

Cause: failed: If the default declaration is the keyword #REQUIRED, then the attribute must be specified for all elements of the type in the attribute-list declaration.

Action: Fix the input document by specifying the required attribute.

XML-20025: duplicate ID value: string

Cause: Values of type ID must match the Name production. A name must not appear more than once in an XML document as a value of this type; i.e., ID values must uniquely identify the elements which bear them.

Action: Fix the input document by removing the duplicate ID value.

XML-20026: undefined ID value string in IDREF

Cause: failed "Values of type IDREF must match value of some ID attribute.

Action: Fix the document by adding an ID corresponding the to the IDREF, or removing the IDREF

XML-20027: attribute string in element string has invalid enumeration value string at line string, column string

Cause: failed: Values of this type must match one of the Nmtoken tokens in the declaration.

Action: Fix the attribute value to match one of the enumerated values.

XML-20028: attribute string in element string has invalid value string, must be string at line string, column {5}

Cause: failed: If an attribute has a default value declared with the #FIXED keyword, instances of that attribute must match the default value.

Action: Update the attribute value to match the fixed default value.

XML-20029: attribute default must be REQUIRED, IMPLIED, or FIXED at line string, column string

Cause: The declared default value must meet the lexical constraints o the declared attribute type.

Action: Use one of REQUIRED, IMPLIED, or FIXED for attribute default decl.

XML-20030: invalid text in content of element string at line string, column string

Cause: The element does not allow text in content. An element is valid if there is a declaration matching element decl where the Name matches the element type, and one of the following holds:

The declaration matches children and the sequence of child elements belongs to the language generated by the regular expression in the content model, with optional white space (characters matching the nonterminal S) between the start-tag and the first child element, between child elements, or between the last child element and the end-tag. Note that a CDATA section containing only white space does not match the nonterminal S, and hence cannot appear in these positions.

Action: Fix the content by removing unexpected text.

XML-20031: invalid element string in content of element string at line string, column string

Cause: The element has invalid content. An element is valid if there is a declaration matching element decl where the Name matches the element type, and one of the following holds:

1. The declaration matches children and the sequence of child elements belongs to the language generated by the regular expression in the content model, with optional white space (characters matching the nonterminal S) between the start-tag and the first child element, between child elements, or between the last child element and the end-tag. Note that a CDATA section containing only white space does not match the non-terminal S, and hence cannot appear in these positions.

2. The declaration matches Mixed and the content consists of character data and child elements whose types match names in the content model.

Action: Fix the content by removing unexpected elements.

XML-20032: incomplete content in element string at line string, column string

Cause: The element has invalid content. An element is valid if there is a declaration matching elementdecl where the Name matches the element type, and one of the following holds:

1. The declaration matches children and the sequence of child elements belongs to the language generated by the regular expression in the content model, with optional white space (characters matching the non-terminal S) between the start-tag and the first child element, between child elements, or between the last child element and the end-tag. Note that a CDATA section containing only white space does not match the nonterminal S, and hence cannot appear in these positions.

2. The declaration matches Mixed and the content consists of character data and child elements whose types match names in the content model.

Action: Fix the content by removing unexpected elements.

XML-20033: invalid replacement-text for entity string at line string, column string

Cause: Parameter-entity replacement text must be properly nested with markup declarations. That is to say, if either the first character or the last character of a markup declaration (markup decl above) is contained in the replacement text for a parameter-entity reference, both must be contained in the same replacement text.

Action: Fix the entity value.

XML-20034: end-element tag string does not match start-element tag string at line string, column string

Cause: The Name in an element's end-tag must match the element type in the start-tag.

Action: Fix the end-tag or start-tag to match the other.

XML-20035: duplicate attribute string in element string at line string, column string

Cause: No attribute name may appear more than once in the same start-tag o rempty-element tag.

Action: Remove the duplicate attribute.

XML-20036: invalid character string in attribute value at line string, column string

Cause: An invalid character was used in the attribute value, the characters'&', '<' and (" or ' based on the value delimiters) are invalid. See Production [10] in XML 1.0 2nd Edition.

Action: Use entity or character references instead of the characters For example, & or & can be used instead of '&'

XML-20037: invalid reference to external entity string in attribute string at line string, column string

Cause: Attribute values cannot contain direct or indirect entity references to external entities.

Action: Fix document to remove reference to external entity in attribute.

XML-20038: invalid reference to unparsed entity string in element string at line string, column string

Cause: An entity reference must not contain the name of an unparsed entity.Unparsed entities may be referred to only in attribute values declared to be of type ENTITY or ENTITIES.

Action: Fix document to remove reference to unparsed entity in content.

XML-20039: invalid attribute type string in attribute-list declaration at line string, column string

Cause: Invalid attribute type was used in the attribute-list declaration. One of the following types CDATA, ID, IDREF, IDREFS, ENTITY, ENTITIES, NMTOKEN, or NMTOKENS must be added. See Production [52], [53] in XML 1.0 2nd Edition.

Action: Check and correct attribute declaration.

XML-20040: invalid character string in element content at line string, column string

Cause: Characters referred to using character references must match the production for Char.

Action: Fix the document by removing the invalid character or char-ref.

XML-20041: entity reference string refers to itself at line string, column string

Cause: A parsed entity must not contain a recursive reference to itself, either directly or indirectly.

Action: Fix the document.

XML-20042: invalid Nmtoken: string

Cause: Values of this type must match one of the Nmtoken tokens in the declaration, and must be valid Nmtoken"

Action: Fix the attribute value.

XML-20043: invalid character string in public identifier at line string, column string

Cause: Invalid character used in public identifier. See Production [12], [13] in XML 1.0 2nd Edition.

Action: Fix the public identifier.

XML-20044: undeclared namespace prefix string used at line string, column string

Cause: The prefix was not defined in any namespace declaration in scope.

Action: Add a namespace declaration to define the prefix.

XML-20045: attribute string in element string must be an unparsed entity at line string, column string

Cause: Values of type ENTITY must match the Name production, values of type ENTITIES must match Names; each Name must match the name of an unparsed entity declared in the DTD.

Action: Fix the attribute value to refer to an unparsed entity.

XML-20046: undeclared notation string used in unparsed entity string at line string, column string

Cause: Values of this type must match one of the notation names included in the declaration; all notation names in the declaration must be declared.

Action: Fix the notation name in the unparsed entity declaration.

XML-20047: missing element declaration string

Cause: The element declaration referred to by an attribute declaration was not found in the DTD.

Action: Fix the DTD by adding the element declaration.

XML-20048: duplicate entity declaration string at line string, column string

Cause: Warning regarding duplicate entity declaration.

Action: No action required.

XML-20049: invalid use of NDATA in parameter entity declaration at line string, column string

Cause: NDATA declaration was found in parameter entity declaration. It is allowed only in general unparsed entity declaration. See Production [72], [74] in XML 1.0 2nd Edition.

Action: Fix the entity declaration.

XML-20050: duplicate attribute declaration string at line string, column string

Cause: Warning regarding duplicate attribute declaration.

Action: No action required.

XML-20051: duplicate notation declaration string at line string, column string

Cause: Only one notation declaration can declare a given Name.

Action: Fix the document by removing the duplicate notation.

XML-20052: undeclared attribute string used at line string, column string

Cause: The attribute declaration was not found in the DTD.

Action: Fix the DTD by adding the attribute declaration.

XML-20053: undeclared element string used at line string, column string

Cause: The element declaration was not found in the DTD.

Action: Fix the DTD by adding the element declaration.

XML-20054: undeclared entity string used at line string, column string

Cause: The entity declaration was not found in the DTD.

Action: Fix the DTD by adding the element declaration.

XML-20055: invalid document returned by NodeFactory's createDocument

Cause: The document returned by createDocument function of NodeFactory was invalid, either it was null or instance of an unsupported class.

Action: Fix NodeFactory implementation to return an instance of XMLDocument or its subclass.

XML-20056: invalid SAX feature string

Cause: The SAX feature supplied was not a valid feature name.

Action: Refer to documentation for a valid list of features.

XML-20057: invalid value string passed for SAX feature string

Cause: The value supplied for the SAX feature was not valid.

Action: Refer to documentation for a valid list of features and their corresponding values.

XML-20058: invalid SAX property string

Cause: The SAX property supplied was not a valid property name.

Action: Refer to documentation for a valid list of properties.

XML-20059: invalid value passed for SAX property string

Cause: The value supplied for the SAX property was not valid.

Action: Refer to documentation for a valid list of properties and their corresponding values.

XML-20060: Error occurred while opening URL string

Cause: An error occurred while opening the supplied URL.

Action: Verify the URL, and take appropriate action to allow data to be read.

XML-20061: invalid byte stream string in UTF8 encoded data

Cause: The input data contained bytes that are not valid w.r.t to UTF8encoding scheme.

Action: Fix the input data.

XML-20062: 5-byte UTF8 encoding not supported

Cause: The XML Parser does not support 5-byte UTF8 encoding scheme. It is also possible that invalid UTF8 characters were misinterpreted as5-byte UTF8 encoding.

Action: If the data contains invalid UTF8 bytes, fix the input, otherwise if 5-byte UTF8 supported is required, please contact Oracle Support.

XML-20063: 6-byte UTF8 encoding not supported

Cause: The XML Parser does not support 6-byte UTF8 encoding scheme. It is also possible that invalid UTF8 characters were misinterpreted as6-byte UTF8 encoding.

Action: If the data contains invalid UTF8 bytes, fix the input, otherwise if 6-byte UTF8 supported is required, please contact Oracle Support.

XML-20064: invalid XML character string

Cause: Invalid XML character was found in the input data.

Action: Fix the input data.

XML-20065: encoding string doesn't match encoding string in XML declaration

Cause: The encoding of the data (either by auto-detection or user supplied)didn't match the encoding specified in the XML declaration.

Action: Fix the XML declaration to match the encoding of the data.

XML-20066: encoding string not supported

Cause: The XML Parser does not support the specified encoding.

Action: If the support for the encoding is required, please contact Oracle Support.

XML-20067: invalid InputSource returned by EntityResolver's resolveEntity

Cause: An invalid instance of InputSource was returned by the EntityResolverAn InputSource can be invalid if the none of Reader, InputStream, andSystemId were initialized or if the SystemId was invalid.

Action: Fix the EntityResolver class to return a valid instance of InputSource

XML-20100: Expected string.

XML-20101: Expected string or string.

XML-20102: Expected string, string, or string.

XML-20103: Illegal token in content model.

XML-20104: Could not find element with ID string.

XML-20105: ENTITY type Attribute value string does not match any unparsed Entity.

XML-20106: Could not find Notation string.

XML-20107: Could not find declaration for element string.

XML-20108: Start of root element expected.

XML-20109: PI with the name 'xml' can occur only in the beginning of the document.

XML-20110: #PCDATA expected in mixed-content declaration.

XML-20111: Element string repeated in mixed-content declaration.

XML-20112: Error opening external DTD string.

XML-20113: Unable to open input source (string).

XML-20114: Bad conditional section start syntax, expected '['.

XML-20115: Expected ']]>' to end conditional section.

XML-20116: Entity string already defined, using the first definition.

XML-20117: NDATA not allowed in parameter entity declaration.

XML-20118: NDATA value required.

XML-20119: Entity Value should start with quote.

XML-20120: Entity value not well-formed.

XML-20121: End tag does not match start tag string.

XML-20122: '=' missing in attribute.

XML-20123: '>' Missing from end tag.

XML-20124: An attribute cannot appear more than once in the same start tag.

XML-20125: Attribute value should start with quote.

XML-20126: '<' cannot appear in attribute value.

XML-20127: Reference to an external entity not allowed in attribute value.

XML-20128: Reference to unparsed entity not allowed in element content.

XML-20129: Namespace prefix string used but not declared.

XML-20130: Root element name must match the DOCTYPE name.

XML-20131: Element string already declared.

XML-20132: Element cannot have more than one ID attribute.

XML-20133: Attr type missing.

XML-20134: ID attribute must be declared #IMPLIED or #REQUIRED.

XML-20135: Attribute string already defined, using the first definition.

XML-20136: Notation string already declared.

XML-20137: Attribute string used but not declared.

XML-20138: REQUIRED attribute string is not specified.

XML-20139: ID value string is not unique.

XML-20140: IDREF value string does not match any ID attribute value.

XML-20141: Attribute value string should be one of the declared enumerated values.

XML-20142: Unknown attribute type.

XML-20143: Unrecognized text at end of attribute value.

XML-20144: FIXED type Attribute value not equal to the default value string.

XML-20145: Unexpected text in content of Element string.

XML-20146: Unexpected text in content of Element string, expected elements string.

XML-20147: Invalid element string in content of string, expected closing tag.

XML-20148: Invalid element string in content of string, expected elements string.

XML-20149: Element string used but not declared.

XML-20150: Element string not complete, expected elements string.

XML-20151: Entity string used but not declared.

XML-20170: Invalid UTF8 encoding.

XML-20171: Invalid XML character(string).

XML-20172: 5-byte UTF8 encoding not supported.

XML-20173: 6-byte UTF8 encoding not supported.

XML-20180: User Supplied NodeFactory returned a Null Pointer.

XML-20190: Whitespace required.

XML-20191: '>' required to end DTD.

XML-20192: Unexpected text in DTD.

XML-20193: Unexpected EOF.

XML-20194: Unable to write to output stream.

XML-20195: Encoding not supported in PrintWriter.

XML-20200: Expected string instead of string.

XML-20201: Expected string instead of string.

XML-20202: Expected string to be string.

XML-20205: Expected string.

XML-20206: Expected string or string.

XML-20210: Unexpected string.

XML-20211: string is not allowed in string.

XML-20220: Invalid InputSource.

XML-20221: Invalid char in text.

XML-20230: Illegal change of encoding: from string to string.

XML-20231: Encoding string is not currently supported.

XML-20240: Unable to open InputSource.

XML-20241: Unable to open entity string.

XML-20242: Error opening external DTD string.

XML-20250: Missing entity string.

XML-20251: Cyclic Entity Reference in entity string.

XML-20280: Bad character (string).

XML-20281: NMToken must contain atleast one NMChar.

XML-20282: string not allowed in a PubIdLiteral.

XML-20284: Illegal white space before optional character in content model.

XML-20285: Illegal mixed content model.

XML-20286: Content list not allowed inside mixed content model.

XML-20287: Content particles not allowed inside mixed content model.

XML-20288: Invalid default declaration in attribute declaration.

XML-20500: SAX feature string not recognized.

XML-20501: SAX feature string not supported.

XML-20502: SAX property string not recognized.

XML-20503: SAX property string not supported.

DOM Error Messages

These error messages are in the range XML-21000 through XML-21999.

XML-21000: invalid size string specified

Cause: An invalid size or count was passed to a DOM function.

Action: Correct the argument passed to a valid value.

XML-21001: invalid index string specified; must be between 0 and string

Cause: An invalid index was passed to a DOM function.

Action: Correct the argument passed to a valid value specified by the bounds in the error message.

XML-21002: cannot add an ancestor as a child node

Cause: The DOM operation was trying to a add an ancestor node as a child. This can lead to inconsistencies in the tree, so it is not allowed.

Action: Check the application to fix the usage.

XML-21003: node of type string cannot be added to node of type string

Cause: The DOM specification does not allow the parent-child combinationused in the DOM operation.

Action: Refer to DOM specification to fix the usage.

XML-21004: document node can have only one string node as child

Cause: The XML well-formedness requires that the document node have onlyone element node as its child. The application tried adding addinga second element node.

Action: Fix usage in the application.

XML-21005: node of type string cannot be added to attribute list

Cause: The attribute list (instance of NamedNodeMap) can contain onlyattribute nodes.

Action: Fix usage of NamedNodeMap.

XML-21006: cannot add a node belonging to a different document

Cause: The node being added was created by a different document. The DOMspecification does not allow use of nodes across documents.

Action: Use importNode or adoptNode to move a node from one document to another, before adding it.

XML-21007: invalid character string in name

Cause: The qualified or local name passed was invalid.

Action: Fix the name to contain only valid

XML-21008: cannot set value for node of type string

Cause: The node of the specified type cannot have value.

Action: Fix usage of DOM functions.

XML-21009: cannot modify descendants of entity or entity reference nodes

Cause: The descendants of entity or entity reference nodes are read-onlynodes, and modification is not allowed.

Action: Fix usage of DOM functions.

XML-21010: cannot modify DTD's content

Cause: DTD and all its content is read-only and cannot be modified.

Action: Fix usage of DOM functions.

XML-21011: cannot remove attribute; not found in the current element

Cause: An attempt was made to remove an attribute that does not belong thecurrent element.

Action: Fix usage in application.

XML-21012: cannot remove or replace node; it is not a child of the current node

Cause: An attempt was made to remove an node that does not belong thecurrent node as a child.

Action: Fix usage in application.

XML-21013: parameter string not recognized

Cause: The DOM parameter was not recognized.

Action: See documentation for a valid list of parameters.

XML-21014: value string of parameter string is not supported

Cause: The DOM parameter was not recognized.

Action: See documentation for a valid list of parameters.

XML-21015: cannot add attribute belonging to another element

Cause: An attempt was made to add an attribute that belonged theanother element.

Action: Fix usage in application.

XML-21016: invalid namespace string for prefix string

Cause: The namespace for xml, and xmlns prefixes is fixed, and usage mustmatch these.

Action: Correct the namespace for the prefixes, namespaces are xml = http://www.w3.org/XML/1998/namespace xmlns = http://www.w3.org/2000/xmlns/

XML-21017: invalid qualified name: string

Cause: The qualified name passed to a DOM function was invalid.

Action: Fix the qualified name.

XML-21018: conflicting namespace declarations string and string for prefix string

Cause: The DOM tree has conflicting namespace declarations for the sameprefix. Such a DOM tree cannot be serialized.

Action: Fix the DOM tree, before printing it.

XML-21019: string object is detached

Cause: The object was detached, no operations are supported ona detached object. The object can be a Range or iterator object

Action: Fix the usage in application.

XML-21020: bad boundary specified; cannot partially select a node of type string

Cause: The boundary specified in the range was invalid. The selectioncan be partial only for text nodes.

Action: Fix the usage in the application.

XML-21021: node of type string does not support range operation string

Cause: The range operation is not supported on the node type specified.

Action: Refer to DOM documentation for restrictions of node types for each range operation.

XML-21022: invalid event type: string

Cause: The event type passed was invalid.

Action: Fix usage in the application.

XML-21023: prefix not allowed on nodes of type string

Cause: The application tried to set prefix on a node on which prefix is notallowed

Action: Fix usage in the application.

XML-21024: import not allowed on nodes of type string

Cause: The application tried to import a node of type DOCUMENT orDOCUMENT FRAGMENT.

Action: Fix usage in the application.

XML-21025: rename not allowed on nodes of type string

Cause: The application tried to import a node of type other than ELEMENT orATTRIBUTE.

Action: Fix usage in the application.

XML-21026: Unrepresentable character in node: string

Cause: A node contains an invalid character, eg. CDATA section contain a termination character.

Action: Set appropriate DOMConfiguration parameter.

XML-21027: Namespace normalization error in node: string

Cause: Namespace fixup cannot be performed on this node.

Action: Set namespace normalization to false.

XML-21997: function not supported on THICK DOM

Cause: A function on THICK (for example, XDB based) DOM which is not supported was called.

Action: Refer to the XDK documentation for possible alternatives for functions not supported on THICK DOM.

XML-21998: system error occurred: string

Cause: Non-dom related system errors occurred.

Action: Check with ORA error(s) embedded in the message and consult with developers for possible causes.

XSL Transformation Error Messages

These error messages are in the range XML-22000 through XML-22999.

XML-22000: Error while parsing XSL file (string).

XML-22001: XSL Stylesheet does not belong to XSLT namespace.

XML-22002: Error while processing include XSL file (string).

XML-22003: Unable to write to output stream (string).

XML-22004: Error while parsing input XML document (string).

XML-22005: Error while reading input XML stream (string).

XML-22006: Error while reading input XML URL (string).

XML-22007: Error while reading input XML reader (string).

XML-22008: Namespace prefix string used but not declared.

XML-22009: Attribute string not found in string.

XML-22010: Element string not found in string.

XML-22011: Cannot construct XML PI with content: string.

XML-22012: Cannot construct XML comment with content: string.

XML-22013: Error in expression: string.

XML-22014: Expecting node-set before relative location path.

XML-22015: Function string not found.

XML-22016: Extension function namespace should start with string.

XML-22017: Literal expected in string function. Found string.

XML-22018: Parse Error in string function.

XML-22019: Expected string instead of string.

XML-22020: Error in extension function arguments.

XML-22021: Error parsing external document: string.

XML-22022: Error while testing predicates. Not a nodeset type.

XML-22023: Literal Mismatch.

XML-22024: Unknown multiply operator.

XML-22025: Expression error: Empty string.

XML-22026: Unknown expression at EOF: string.

XML-22027: Closing } not found in Attribute Value template.

XML-22028: Expression value type string not recognized by string.

XML-22029: Cannot transform child string in string.

XML-22030: Attribute value string not expected for string.

XML-22031: Variable not defined: string.

XML-22032: Found a single } outside expression in Attribute value template.

XML-22033: Token not recognized:!.

XML-22034: Namespace definition not found for prefix string.

XML-22035: Axis string not found

XML-22036: Cannot convert string to string.

XML-22037: Unsupported feature: string.

XML-22038: Expected Node-set in Path Expression.

XML-22039: Extension function error: Error invoking constructor for string

XML-22040: Extension function error: Overloaded constructors for string

XML-22041: Extension function error: Constructor not found for string

XML-22042: Extension function error: Overloaded method string

XML-22043: Extension function error: Method not found string

XML-22044: Extension function error: Error invoking string:string

XML-22045: Extension function error: Class not found string

XML-22046: Apply import cannot be called when current template is null.

XML-22047: Invalid instantiation of string in string context.

XML-22048: The string element children must precede all other element children of an string element.

XML-22049: Template string invoked but not defined.

XML-22050: Duplicate variable string definition.

XML-22051: only a literal or a reference to a variable or parameter is allowed in id() function when used as a pattern

XML-22052: no sort key named as: string was defined

XML-22053: cannot detect encoding in unparsed-text(), please specify

XML-22054: no such xsl:function with namespace: string and local name: string was defined

XML-22055: range expression can only accept xs:integer data type, but not string

XML-22056: exactly one of four group attributes must be present in xsl:for-each-group

XML-22057: string can only have string as children

XML-22058: wrong child of xsl:function

XML-22059: wrong child order of xsl:function

XML-22060: TERMINATE PROCESSING

XML-22061: teminate attribute in <xsl:message> can only be yes or no

XML-22062: string must have at least one string child

XML-22063: no definition for character-map with qname string

XML-22064: cannot define character-map with the same name string and the same import precedence

Cause: A required child was not found.

Action: After error mesgfreeze is over, throws an error (without the required child element, it can do nothing).

XML-22065: at least one string must be defined under string

Cause: a required child is missing.

Action: without the required child, it can do nothing, so throws an error.

XML-22066: if select attribute is present, string instructions sequence-constructor must be empty

Cause: the "select" attribute and sequence constructor should be mutually exclusive for this instruction.

Action: None. Throw an error.

XML-22067: if use attribute is present, string instructions sequence-constructor must be empty

Cause: the "use" attribute and sequence constructor should be mutually exclusive for this instruction.

Action: None. Throw an error.

XML-22068: only primary sort key is allowed to have the stable attribute.

Cause: the secondary sort key has a stable attribute.

Action: None. Throw an error.

XML-22069: only string or string is allowed.

Cause: user's typo.

Action: None. Throw an error.

XML-22101: DOMSource node as this type not supported.

XML-22103: DOMResult can not be this kind of node.

XML-22106: Invalid StreamSource - InputStream, Reader, and SystemId are null.

XML-22107: Invalid SAXSource - InputSource is null.

XML-22108: Invalid Source - URL format is incorrect.

XML-22109: Internal error while reporting SAX events.

XML-22110: Invalid StreamResult set in TransformerHandler.

XML-22111: Invalid Result set in TransformerHandler.

XML-22112: Namespace URI missing }.

XML-22113: Namespace URI should start with {.

XML-22117: URL format has problems (null or bad format or missing 'href' or missing '=').

XML-22121: Could not get associated stylesheet.

XML-22122: Invalid StreamResult - OutputStream, Writer, and SystemId are null.

XML-22900: An internal error condition occurred.

XPath Error Messages

These error messages are in the range XML-23000 through XML-23999.

XML-23002: internal xpath error

Cause: This was an error returned by the XPath/XQuery datamodel or XPathF&O.

Action: Check the XPath expression.

XML-23003: XPath 2.0 feature schema-element/schema-attribute not supported

Cause: This error was caused by using the kindtest schema-element or schema-attribute. These are not supported for this release.

Action: Remove usage of schema-element or schema-attribute kindtest

XML-23006: value does not match required type

Cause: During the evaluation phase, there was a type error as thevalue did not match a required type specified by the matchingrules in XPath 2.0 SequenceType Matching.

Action: Modify the stylesheet to reflect the correct type.

XML-23007: FOAR0001: division by zero

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23008: FOAR0002: numeric operation overflow/unflow

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23009: FOCA0001: Error in casting to decimal

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23010: FOCA0002: invalid lexical value

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23011: FOCA0003: input value too large for integer

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23012: FOCA0004: Error in casting to integer

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23013: FOCA0005: NaN supplied as float/double value

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23014: FOCH0001: invalid codepoint

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23015: FOCH0002: unsupported collation

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23016: FOCH0003: unsupported normalization form

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23017: FOCH0004: collation does not support collation units

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23018: FODC0001: no context document

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23019: FODC0002: Error retrieving resource

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23020: FODC0003: Error parsing contents of resource

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23021: FODC0004: invalid argument to fn:collection()

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23022: FODT0001: overflow in date/time arithmetic

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23023: FODT0002: overflow in duration arithmetic

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23024: FONC0001: undefined context item

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23025: FONS0002: default namespace is defined

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23026: FONS0003: no prefix defined for namespace

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23027: FONS0004: no namespace found for prefix

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23028: FONS0005: base URI not defined in the static context

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23029: FORG0001: invalid value for cast/constructor

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23030: FORG0002: invalid argument to fn:resolve-uri()

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23031: FORG0003: zero-or-one called with sequence containing more than one item

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23032: FORG0004: fn:one-or-more called with sequence containing no items

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23033: FORG0005: exactly-one called with sequence containing zero or more than one item

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23034: FORG0006: invalid argument type

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23035: FORG0007: invalid argument to aggregate function

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23036: FORG0008: both arguments to fn:dateTime have a specified timezone

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23037: FORG0009: base uri argument to fn:resolve-uri is not an absolute URI

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23038: FORX0001: invalid regular expression flags

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23039: FORX0002: invalid regular expression

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23040: FORX0003: regular expression matches zero-length string

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23041: FORX0004: invalid replacement string

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23042: FOTY0001: type error

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23043: FOTY0011: context item is not a node

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23044: FOTY0012: items not comparable

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23045: FOTY0013: type does not have equality defined

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23046: FOTY0014: type exception

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23047: FORT0001: invalid number of parameters

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23048: FOTY0002: type definition not found

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23049: FOTY0021: invalid node type

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23050: FOER0000: unidentified error

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23051: FODC0005: invalid argument to fn:doc

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23052: FODT0003: invalid timezone value

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML Schema Validation Error Messages

These error messages are in the range XML-24000 through XML-24099.

XML-24000: internal error

Cause: An unexpected error occoured during processing

Action: Report the error

XML-24001: attribute string not expected at line string, column string

Cause: [cvc-assess-attr.1] The attribute were not expected for owner element

Action: Add the attribute declaration to the type of the owner element

XML-24002: can not find element declaration string.

Cause: [cvc-assess-elt.1.1.1.1]The element declaration required by processorfor validation was absent.

Action: Add the element declaration to schema, or change the instance document to comply to schema.

XML-24003: context-determined element declaration string absent.

Cause: [cvc-assess-elt.1.1.1.2] The element declaration required by context was missing in schema

Action: Add the element declaration to schema

XML-24004: declaration for element string absent.

Cause: [cvc-assess-elt.1.1.1.3] The context-determined declaration was not skip and the declaration that matches the element could not be foundin schema

Action: Add the element declaration to schema or change the context-determined declaration to skip

XML-24005: element string not assessed

Cause:[cvc-assess-elt.2]

XML-24006: element string laxly assessed

Cause: [cvc-assess-elt.2]

XML-24007: missing attribute declaration stringin element string

Cause: [cvc-attribute.1] Attribute declaration was absent from element declaration

Action: Add the attribute declaration to schema.

XML-24008: type absent for attribute string

Cause: [cvc-attribute.2] Missing type definition for the attribute declaration

Action: Specify a data type for the attribute declaration.

XML-24009: invalid attribute value string

Cause: [cvc-attribute.3] Invalid attribute value with respect to its type

Action: Correct the attribute value in instance.

XML-24010: attribute value string and fixed value string not match

Cause: [cvc-au] Attribute's normalized value was not the same as the fixedvalue declared.

Action: Change attribute value to the required value.

XML-24011: type of element string is abstract.

Cause: [cvc-complex-type.1] The type of this element was specified as abstract.

Action: Remove the abstract attribute from the type definition.

XML-24012: no children allowed for element string with empty content type

Cause: [cvc-complex-type.2.1] The content type was specified empty while the actual content was not.

Action: Make the content empty or modify the content type of this element.

XML-24013: element child string not allowed for simple content

Cause: [cvc-complex-type.2.2] Element was declared with simple content, but instance had element children.

Action: Use only character content for this element.

XML-24014: characters string not allowed for element-only content

Cause: [cvc-complex-type.2.3] Characters appeared in the content of element with element-only content.

Action: Use only element children for this element.

XML-24015: multiple ID attributes in element string at line string, column string

Cause:[cvc-complex-type.2.5] More than one attributes with type ID or its derivation matched attribute wildcard.

Action: Do not use more than one attriubtes with ID or ID derived type.

XML-24016: invalid string value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid with respect to string type.

Action: Correct the value to satisfy the declared type

XML-24017: invalid boolean value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid with respect to boolean type.

Action: Correct the value to satisfy boolean type, valid values are "0: 1", "true", and"false".

XML-24018: invalid decimal value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters could not be parsed into a decimal value.

Action: Correct the data value to satisfy decimal type.

XML-24019: invalid float value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters could not be parsed into a float value.

Action: Correct the value to satisfy string type

XML-24020: invalid double value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid double format as specified in IEEE 754-1985.

Action: Correct the value to satisfy double format.

XML-24021: invalid duration string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in correct extended date time format defined in ISO 8601.

Action: Correct the value to satisfy format PnYnMnDTnHnMnS.

XML-24022: invalid date value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid calendar date format specified in ISO 8601.

Action: Correct the value to satisfy CCYY-MM-DD format.

Comments: cvc-datatype-valid.1.2.2

XML-24023: invalid dateTime value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid combined data time format as specified in ISO 8601

Action: Correct the value to satisfy format CCYY-MM-DDThh:mm:ss with optional timezoon.

XML-24024: invalid time value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid time format as specified in ISO 8601.

Action: Correct the value to satisfy foramt DDThh:mm:ss with optional timezone.

XML-24025: invalid gYearMonth value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid right-truncated date format, as specified in ISO 8601.

Action: Correct the value to satisfy format CCYY-MM.

XML-24026: invalid gYear value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid right-truncateddate format, as specified in ISO 8601.

Action: Correct the value to satisfy format CCYY.

XML-24027: invalid gMonthDay value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid left-truncateddate format, as specified in ISO 8601.

Action: Correct the value to required foramt --MM-DD.

XML-24028: invalid gDay value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid left-truncated date format, as specified in ISO 8601.

Action: Correct the value to required format ---DD.

XML-24029: invalid gMonth value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid left-and-right-truncated date format, as specified in ISO 8601.

Action: Correct the value to required format --MM--.

XML-24030: invalid hexBinary value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid hex encoded binary.

Action: Correct the value to satisfy hexBinary type

XML-24031: invalid base64Binary value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid with respect to base64 encoding.

Action: Correct the value to satisfy base64 binary encoding.

XML-24032: invalid anyURI value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid format as specified in RFC 2396 and RFC 2732.

Action: Correct the value to satisfy anyURI type

XML-24033: invalid QName value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid QName format.

Action: Correct the value to satisfy QName type

XML-24034: invalid NOTATION value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for NOTATION type.

Action: Correct the value to satisfy NOTATION type

XML-24035: invalid normalizedString value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid normalizedStringvalue.

Action: Correct the value to satisfy normalizedString type

XML-24036: invalid token value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for token type.

Action: Correct the value to satisfy token type

XML-24037: invalid language value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for language type.

Action: Correct the value to satisfy language type

XML-24038: invalid NMTOKEN value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for NMTOKEN type.

Action: Correct the value to satisfy NMTOKEN type

XML-24039: invalid NMTOKENS value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid list of NMTOKEN type.

Action: Correct the value to satisfy NMTOKENS type.

XML-24040: invalid Name value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for Name type.

Action: Correct the value to satisfy Name type

XML-24041: invalid NCName value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for NCName type.

Action: Correct the value to satisfy NCName type

XML-24042: invalid ID value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for ID type.

Action: Correct the value to satisfy ID type

XML-24043: invalid IDREF value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for IDREF type.

Action: Correct the value to satisfy IDREF type

XML-24044: invalid ENTITY value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for ENTITY type

Action: Correct the value to satisfy ENTITY type

XML-24045: invalid ENTITIES value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid list ofENTITY value.

Action: Correct the value to satisfy ENTITIES type

XML-24046: invalid integer value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for integertype.

Action: Correct the value to satisfy integer type

XML-24047: invalid nonPositiveInteger value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for nonPositiveInteger type.

Action: Correct the value to satisfy nonPositiveInteger type

XML-24048: invalid negativeInteger value string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for negativeInteger type.

Action: Correct the value to satisfy negativeInteger type

XML-24049: invalid long value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for long type.

Action: Correct the value to satisfy long type

XML-24050: invalid int value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for int type.

Action: Correct the value to satisfy int type

XML-24051: invalid short value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for short type.

Action: Correct the value to satisfy short type

XML-24052: invalid byte value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for byte type.

Action: Correct the value to satisfy byte type

XML-24053: invalid nonNegativeInteger value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for nonNegativeInteger type.

Action: Correct the value to satisfy nonNegativeInteger type

XML-24054: invalid unsignedLong value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for unsignedlong type.

Action: Correct the value to satisfy unsignedlong type

XML-24055: invalid unsignedInt value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value of unsignedInt.

Action: Correct the value to satisfy unsignedInt type

XML-24056: invalid unsignedShort value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for unsignedShort type.

Action: Correct the value to satisfy unsignedShort type

XML-24057: invalid unsignedByte value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for unsignedByte type.

Action: Correct the value to satisfy unsignedByte type

XML-24058: value string must be valid with respect to one member type

Cause: [cvc-datatype-valid.1.2.3] Characters were invalid with respect to any member type of union.

Action: Correct data value to satisfy at least one member type

XML-24059: element string not expected at line string, column string

Cause: [cvc-elt.1]

XML-24060: element string abstract

Cause:[cvc-elt.2] Element declared abstract was used in instance document.

Action: Do not declare the element as abstract.

XML-24061: element string not nillable

Cause: [cvc-elt.3.1] There was an attriube xsi:nil, which was not allowed because the element declaration was not nillable.

Action: Remove xsi:nil attribute from the the element

XML-24062: no character or element children allowed for nil content string

Cause: [cvc-elt.3.2.1] Element was specified nil but had character or element children.

Action: Remove any element content or remove nil attribute.

XML-24063: nil element does not satisfy fixed value constraint

Cause: [cvc-elt.3.2.2] Element had an fixed value while the content in instance was empty.

Action: Remove nil attribute from element.

XML-24064: xsi:type not a QName at line string, column string

Cause: [cvc-elt.4.1] The value of xsi:type attribute was not a QName.

Action: Change the value to a valid QName that references to a type.

XML-24065: xsi:type string not resolved to a type definition

Cause: [cvc-elt.4.2] The referenced type specified by xsi:type was absent.

Action: Correct the value of xsi:type so it points to a valide type definition.

XML-24066: local type string not validly derived from the type of element string

Cause: [cvc-elt.4.3] The type referenced by xsi:type was not derived from original type.

Action: Modify the reference type defintion so it satisfy the constraint, or use another type that is derived from original type.

XML-24067: value string not in enumeration

Cause: [cvc-enumeration-valid] The value was not one in the enumeration constraint.

Action: Use valid value specified in enumeration.

XML-24068: invalid facet string for type string

Cause: [cvc-facet-valid] The given data value violates the constraining facet.

Action: Correct the data value.

XML-24069: too many fraction digits in value string at line string, column string

Cause: [cvc-fractionDigits-valid] The given number violated the fractionDigits constraining facet.

Action: Use fewer fraction digits.

XML-24070: missing ID definition for ID reference string at line string, column string

Cause: [cvc-id.1] There is no ID binding in the ID/IDREF table for validation root

Action: Define the ID for the ID reference

XML-24071: duplicate ID string at line string, column string

Cause: [cvc-id.2] Same ID was defined more than once.

Action: Eliminate duplicate ID attributes.

XML-24072: duplicate key sequence string

Cause: [cvc-identity-constraint] The document contained duplicate key sequence thatviolated uniqueness constraint.

Action: Correct the document to make key sequence unique, or modify xpath to avoid it.

XML-24073: target node set not equals to qualified node set for key string

Cause: [cvc-identity-constraint.4.2.1] There were empty key sequences in key constraint.

Action: Make sure every element in target node set has a non-empty key sequence.

XML-24074: element member string in key sequence is nillable

Cause: [cvc-identity-constraint.4.2.3] The element selected as a member in a key sequence was nillable, which is not allowed.

Action: Modify the schema to make corrsponding element declaration not nillable.

XML-24075: missing key sequence for key reference string

Cause: [cvc-identity-constraint.4.3] A keyref referenced to empty key sequence.

Action: Make sure every key sequence for keyref is has a corresponding key sequence for referenced key.

XML-24076: incorrect length of value string

Cause: [cvc-length-valid] The length of the value was not the same as specified in length facet.

Action: Use data value with correct length.

XML-24077: value string greater than or equal to maxExclusive

Cause: [cvc-maxExclusive-valid] The data value was out of boundary specified in maxExclusive facet.

Action: Correct the data value.

XML-24078: value string greater than the maxInclusive

Cause: [cvc-maxInclusive-valid] The data value was out of boundary specified in maxInclusive facet.

Action: Correct the data value.

XML-24079: value length of string greater than maxLength

Cause: [cvc-maxLength-valid] The length of the data value was greater than maxLength.

Action: Make the data value's length smaller than maxLength.

XML-24080: value string smaller or equals to minExclusive

Cause: [cvc-minExclusive-valid] The data value was out of lower boundary of value range.

Action: Use data valude that is greater to minExclusive.

XML-24081: value string smaller than minInclusive

Cause: [cvc-minInclusive-valid] The data value was too small.

Action: Use data value not smaller than the value of minInclusive.

XML-24082: value string shorter than minLength

Cause: [cvc-minLength-valid] The length of value was smaller than that specified in minLength.

Action: Use data value with length greater than or equals to minLength.

XML-24083: wildcard particle in the content of element string not done

Cause: [cvc-particle.1.1] The wildcard particle's minOccurs had not been met.

Action: Have more elements in the content that match the wildcard.

XML-24084: element particle string not done

Cause: [cvc-particle.1.2] The element particle's minOccurs had not been met.

Action: Have more elements that match the element declaration or members in its substitution group.

XML-24085: model group string in the content of element string not done

Cause: [cvc-particle.1.3] The model group particle's minOccurs had not been met.

Action: Have more elements in the content that match the model group.

XML-24086: invlid literal string with respect to pattern facet string

Cause: [cvc-pattern-valid] The literal did not match the pattern constraining facet.

Action: Correct the lexical data to match pattern facet.

XML-24087: undefined type string

Cause: [cvc-resolve-instance.1] Could not resolve the type reference to a type definition

Action: Add the type definition to schema

XML-24088: undeclared attribute string

Cause: [cvc-resolve-instance.2] Could not resolve attributre reference to an attribute declaraton.

Action: Add the attribute declaration to schema.

XML-24089: undeclared element string

Cause: [cvc-resolve-instance.3] Could not resolve element reference to an element declaraton

Action: Add the element declaration to schema

XML-24090: undefined attribute group string

Cause: [cvc-resolve-instance.4] Could not resolve the attribute group reference to an attribute group definition.

Action: Define the attribute group definition in schema

XML-24091: undefined model group string

Cause: [cvc-resolve-instance.5] Could not resolve the model group reference to a model group definition

Action: Define the model group in schema

XML-24092: undeclared notation string

Cause: [cvc-resolve-instance.6] Could not resolve the notation reference to a notation declaration

Action: Add the notation declaration to schema

XML-24093: too many digits in value string at line string, column string

Cause: [cvc-totalDigits-valid] The number of digits in numeric value was greater than the value oftotalDigits facet.

Action: Use smaller numbers.

Schema Representation Constraint Error Messages

These error messages are in the range XML-24100 through XML-24199.

XML-24100: element string must belong to XML Schema namespace

Cause: Element in XML Schema document did not have Schema namespace.

Action: Specify XML Schema namespace http://www.w3.org/2001/XMLSchema

XML-24101: can not build schema from location string

Cause: [schema_reference.2] Processor could not find schema from given schema location

Action: Fix the schema location

XML-24102: can not resolve schema by target namespace string

Cause: [schema_reference.3] Processor was unable to retrieve schema based on given namespace.

Action: Fix the schema namespace

XML-24103: invalid annotation representation at line string, column string

Cause:[src-annotation]

XML-24104: multiple annotations at line string, column string

Cause: [src-annotation] More than one annotation elements appeared in component.

Action: Remove extra annotation.

XML-24105: annotation must be the first element at line string, column string

Cause: [src-annotation] Annotation was not the first element in component.

Action: Move annotation to the begining of component content.

XML-24106: attribute wildcard before attribute declaration at line string, column string

Cause: The attribute wildcard appeared before attribute declarations.

Action: Move attribute wildcard to the end of declaration.

XML-24107: multiple attribute wildcard

Cause: [src-attribute.1] More than one anyAttributes were declared.

Action: Remove extra attribute wildcards.

XML-24108: default string and fixed string both present

Cause: [src-attribute.1] Both default and fixed attriubtes were present in attriubte declaration.

Action: Remove either default or fixed attribute.

XML-24109: default value string conflicts with attribute use stringXML-24109: default value string conflicts with attribute use string

Cause: [src-attribute.2] Both default and use were present, and value for use is not optional.

Action: Remove either default or use value.

XML-24110: missing name or ref attribute

Cause: [src-attribute.3.1] Neither name nor ref attribute was present in declaration.

Action: Add name or ref to the declaration.

XML-24111: both name and ref presented in attribute declaration

Cause: [src-attribute.3.1] Name and ref attribute were both present in attribute declaration.

Action: Add name or ref to the declaration.

XML-24112: ref conflicits with form, type, or simpleType child

Cause: [src-attribute.3.2] The attribute was a reference, and form, type or simpleType child were specified.

Action: Either change ref to name, or remove form, type and/or childrens.

XML-24113: type attribute conflicts with simpleType child

Cause: [src-attribute.4] Both type attribute and simpleType child were present.

Action: Remove either type reference or type definition.

XML-24114: intersecton of attribute wildcard is not expressible

Cause: [src-attribute_group.2] Attriubes wildcards defined were not expressible with a wildcard.

Action: Remove inexpressible attribute wildcards.

XML-24115: circular attribute group reference string

Cause: [src-attribute_group.3] Attriubte group were circularly referenced outside redefine

Action: Remove circular reference

XML-24116: circular group reference string

Cause: group were circularly referenced outside redefine.

Action: Remove circular reference

XML-24117: base type string for complexContent is not complex type

Cause: [src-ct.1] Derived a complexType with complex content from simple type

Action: Change base type to complex type

XML-24118: simple content required in base type string

Cause: [src-ct.2] A complexType with simpleContent was derived from a complexType with complex content

Action: Change base type to simple type (if derivation is extension) or simpleContent complex type.

XML-24119: properties specified with element reference string

Cause: [src-element.2.2] Element reference also had complexType, simpleType, key, keyrefunique children or nillable, form, default, block, or type attribute.

Action: Remove conflict attributes or children.

XML-24120: simpleType and complexType can not both present in element declaration string

Cause: [src-element.3] Element declaration had both complexType, simpleType children.

Action: Remove either simpleType or complexType child.

XML-24121: imported namespace string must different from namespace string

Cause: [src-import.1.1] The namespce of import was the same as the target namespace of importing schema

Action: Change import to inclusion.

XML-24122: target namespace string required

Cause: [src-import.1.2] Imported namespace was specified but absent imported schema.

Action: Remove namespace attribute in element import, or add target namespac to the imported schema.

XML-24123: namespace stringis different from expedted targetNamespace string

Cause: [src-import.3.1] Specified namespace was different from actual targetNamespace impported.

Action: Correct the namespace attribute in import element.

XML-24124: targetNamespace string not expected in schema

Cause: [src-import.3.2] Specified a no-namespace schema, but actual schema had targetNamespace.

Action: Remove the imported schema's targetNamespace attribute

XML-24125: can not include schema fromstring

Cause: [src-include.1] Processor was unable to include a schema from given location.

Action: Check correctness of URL and URL resolver

XML-24126: included targetNamespace string must the same as string

Cause: [src-include.2.1] Tried to include a achema with different targetNamespace.

Action: Use import instead of include.

XML-24127: no-namespace schema can not include schema with target namespace string

Cause: [src-include.2.2] A schema without targetNamespace tried to include a schema with targetNamespace.

Action: Use import instead of include

XML-24128: itemType attribute conflicits with simpleType child

Cause: [src-list-itemType-or-simpleType] Both itemType attribute and simpleType child were present in list simple type declaration.

Action: Remove either itemType attribute or simpleType child.

XML-24129: prefix of qname string can not be resolved

Cause: [src-qname] Prefix of a qname was present, but did not map to any in-scope namespace.

Action: Declare a namespace corresponding to the prefix.

XML-24130: redefined schema has different namespace. line string column string

Cause: Redefined schema's targetNamespace was not the same as the targetNamespace of redefining schema.

Action: Correct the targetNamespace in redefined schema.

Comments: src-redefine.3.1

XML-24131: no-namespace schema can only redefine schema without targetNamespace

Cause: [src-redefine.3.2] A no-namespace schema tried to redefine a schema with namespace

Action: Remove the targetNamespace attribute from redefined schema.

XML-24132: type derivation string must be restriction

Cause: [src-redefine.5] A simpleType or complexType was present in redefine, but the derivation was not restriction.

Action: Change the type redefinition, make it a restriction.

XML-24132: type string must redefine itself at line string, column string

Cause: [src-redefine.5] A simpleType or complexType was present in redefine, but its base type was not itself.

Action: Change the base type to redefine itself.

XML-24133: group string can have only one self reference in redefinition

Cause: [src-redefine.6.1.1] A group was present in redefine and it had more than onereferences to itself in its content.

Action: Remove extra self references in the group redefinition.

XML-24134: self reference of group string must not have minOccurs or maxOccurs other than 1 in redefinition

Cause: [src-redefine.6.1.2] A minOccurs or maxOccurs with value other than 1 was specified in a group self reference in redefine.

Action: Remove the minOccurs or maxOccurs attribute.

XML-24135: redefined group stringis not a restriction of its orginal group

Cause: [src-redefine.6.2.2] A group presented in redefine, without self reference but was nota valid restriction of its original group.

Action: Modify the content of the group, make it a valid restriction of its original.

XML-24236: attribute group string can have only one self reference in redefinition

Cause: [src-redefine.7.1] An attributeGroup was present in redefine and it had more than oneself references in its content.

Action: Remove extra self references.

XML-24136: redefined attribute group string must be a restriction of its orginal group

Cause: [src-redefine.7.2.2] An attributeGroup presented in redefine, without self reference but was not a valid restriction of its original.

Action: Modify the content of the attribute group, make it valid restriction of its original.

XML-24137: restriction must not have both base and simpleType child

Cause:[src-restriction-base-or-simpleType]

XML-24138: simple type restriction must have either base attribute or simpleType child

Cause: [src-simple-type.2] Both base and simpleType were absent in simple type restriction

Action: Add either base attribute or simpleType child.

XML-24139: neitehr itemType or simpleType child present for list

Cause: [src-simple-type.3] Missing itemType attribute or simpleType child in list definition.

Action: Add either itemType or simpleType child

XML-24140: itemType and simpleType child can not both be present in list type.

Cause: [src-simple-type.3] Both itemType attribute and simpleType child were present inlist definition

Action: Remove either itemType or simpleType child.

XML-24141: circular union type is disallowed

Cause: [src-simple-type.4] Some member types in union type made references to the union type

Action: Remove the circular references

XML-24142: facet string can not be specified more than once

Cause: [src-single-facet-value] Same facet other than enumeration and pattern had been specified more than once, which is not allowed.

Action: Remove extra facets.

XML-24143: memberTypes and simpleType child can not both be absent in union

Cause: [src-union-memberTypes-or-simpleTypes] Both memberTypes and simpleType were absent for a union type.

Action: Either specify memberTypes or add simpleType children.

XML-24144: facets can only used for restriction

Cause: [st-restrict-facets] Derivation was not restriction while facet children were present.

Action: Remove facet children.

Schema Component Constraint Error Messages

These error messages are in the range XML-24200 through XML-24399.

XML-24201: duplicate attribute string declaration

Cause: [ag-props-correct.1] There were more than one attribute declarations with same namespace and name in attribute group definition.

Action: Remove duplicate attribute declarations.

XML-24202: more than one attributes with ID type not allowed

Cause: [ag-props-correct.2] There were more than one attribute declarations with type ID.

Action: Change to other types for such attriubte declarations

XML-24203: invalid value constraint string

Cause: [a-props-correct.2] The fixed value or default value did not satisfy the attribute's type

Action: Use type valid default for fixed value.

XML-24204: value constraint string not allowed for ID type

Cause: [a-props-correct.3] Attribute with ID type had either fixed or default value constraint.

Action: Remove value constraint.

XML-24205: fixed value string does not match string in attribute declaration

Cause: [au-props-correct.2] Attriubte reference specified a fixed value which is not the same as that in referenced declaration.

Action: Correct the fixed value to the same as specified in attribute declaration

XML-24206: value constraint must be fixed to match that in attribute declaration

Cause: [au-props-correct.2] Attriubte reference specified a default value, while the referenced declaration had a fixed value.

Action: Remove default value form attribute reference.

XML-24207: invalid xpath expression string

Cause: [c-fields-xpaths.1] The value of xpath was not valid xpath expression as specified in XPath 1.0.

Action: Use correct xpath

XML-24208: invalid field xpath string

Cause: [c-fields-xpaths.2] The value of xpath did not satisfied field's restricted xpath syntax.

Action: Correct the xpath expression

XML-24209: maxOccurs in element string of All group must be 0 or 1

Cause: [cos-all-limited] Some elements in a All group had maxOccurs greater than one.

XML-24210: All group has to form a content type.

Cause: All group was contained in another model group

Action: Make all group at the top of a content type

Comments: cos-all-limited

XML-24211: All group has to form a content type.

Cause: [cos-applicable-facets] All group was contained in another model group

Action: Make all group at the top of a content type

XML-24212: type string does not allow facet string

Cause: [cos-applicable-facets] A facet not applicable to the simple type was used.

Action: Remove the facet.

XML-24213: wildcard intersection is not exprssible

Cause: [cos-aw-intersect] Two wilcards in an attribtue group had different negative namespaces

Action: Use only one wildcard with negative namespace

XML-24214: base type not allow string derivation

Cause: [cos-ct-derived-ok.1] Base type's final prevented the derivation.

Action: Remove the derivation method from the value of final in base type

XML-24215: complex type string is not a derivation of type string

Cause: [cos-ct-derived-ok.2] There was no derivation chain from base type to derived type.

Action: Fix the derivation chaining.

XML-24216: must specify a particle in extened content type

Cause: [cos-ct-extends.1.4.2.1] The content type of an extension of a complex type was empty

Action: Add particle to the content type of extension.

XML-24217: content type string conflicts with base type's content type string

Cause: [cos-ct-extends.1.4.2.2.2] Base type's content type was not empty and was not the same as the content type specified.

Action: Match the specified content type with that in base type.

XML-24218: inconsistent local element declarations string

Cause: More than one elements in the content had same name and namespace, butdid not refer to same type.

Action: Make type references the same for all elements equal in name and namespace

Comments: cos-element-consistent

XML-24219: element string is not valid substitutable for element string

Cause:[cos-equiv-derived-ok-rec]

XML-24220: itemType string can not be list

Cause: [cos-list-of-atomic] The itemType of a list type was itself a list.

Action: Use atomic or union type as the itemType of list.

XML-24221: cricular union string not allowed

Cause: [cos-no-circular-union] Union's name and namespace matched one of its memberType.

Action: Remove any circular references

XML-24222: ambiguous particles string

Cause: [cos-nanambig] particles in a content type violated UPA (Unique Particle Attrition)constraint.

Action: Make content type particle unambiguous.

XML-24223: invalid particle extension

Cause:[cos-particle-extend]

XML-24224: invalid particle restriction

Cause:[cos-particle-restrict]

XML-24225: simple type string does not allowed restriction

Cause: [cos-st-derived-ok] Derivation was restriction but restriction was in base type's final.

Action: Remove restriction from base type's final.

XML-24226: invalid derivation from base type string

Cause: [cos-st-derived-ok] The derivation violated the "type derivaton OK (simple)" constraint.

Action: Make the derivation satisfy the constraint.

XML-24227: atomic type can not restrict list string

Cause: [cos-st-restricts.1.1] base type is list,

XML-24228: base type can not be ur-type in restriction

Cause: [cos-st-restricts.1.1] Tried to directly restrict anySimipleType.

XML-24229: base type of list must be list or ur-type

Cause: [cos-st-restricts.2.3]

XML-24230: base type of union must be union or ur-type

Cause: [cos-st-restricts.3.3]

XML-24231: element default stringrequires mixed content to be emptiable

Cause: [cos-valide-default] Element had default constraint but its mixed content type was not emtiable.

Action: Remove default value constraint.

XML-24232: element default string requires mixed content or simple content

Cause: [cos-valide-default] Element had default value constraint but its content type was element only or empty.

Action: Remove default value constraint.

XML-24233: element default string must be valid to its content type

Cause: [cos-valide-default] Element's default value constraint was invalid to its type.

Action: Correct the default value or remove it.

XML-24234: wrong field cardinality for keyref string

Cause: [c-props-correct] Number of fields were different between keyref and referenced key.

Action: Ensure that keyref and referenced key have same number of fields.

XML-24235: complex type can only extend simple type string

Cause: [ct-props-correct] Complex type was derived from simple type, but derivation was not extension.

Action: Change restriction to extension.

XML-24236: cricular type definition string

Cause: [ct-props-correct] Type was in its own derivation chain.

Action: Remove recursive derivation.

XML-24237: base type string must be complex type

Cause: [derivation-ok-restriction.1] Complex type was restricted from a simple type.

Action: Change the restriction from a complex type.

XML-24238: attribute string not allowed in base type

Cause: [derivation-ok-restriction.2] The attribute in restriction was not allowed for base type.

Action: Correct the restriction of attribute use.

XML-24239: required attribute string not in restriction

Cause: [derivation-ok-restriction.3] Restriction's attribute uses was not a subset of basetype's attribute uses.

Action: Correct the restriction of attribute uses.

XML-24240: no correspoonding attribue wildcard in bas type string

Cause: [derivation-ok-restriction.4] Restriction had an attribute wildard that did not corrspond to any attribute wildcard in base type.

Action: Correct the derivation.

XML-24241: base type string must have simple content or emptiable

Cause: [derivation-ok-restriction.5.1] Content type was simple, but the base type has complex content that is not mixed or not emptiable.

Action: Change the content type from simple to element only.

XML-24242: base type string must have empty content or emptiable

Cause: [derivation-ok-restriction.5.2] Content type was empty, but the base type had simple content or not emptiable complex content.

Action: Change the content type from simple to element only.

XML-24243: enumeration facet required for NOTATION

Cause: [enumeration-required-notation] NOTATION type was used without enumeration facet.

Action: Specify enumeration facet for NOTATION.

XML-24244: invalid value string in enumeration

Cause: [enumeration-valid-restriction] Some value in enumeration was not valid in respect to the type.

Action: Correct invalid values.

XML-24245: default value stringis element type invalid

Cause: [e-props-correct.2] Default value was invalid in respect to the type of element.

Action: Correct the default value.

XML-24246: invalid substitutionGroup string, type invalid

Cause: [e-props-correc.3] The type of the element was not a validly derivation from the type ofelement's substitutionGroup.

Action: Correct the type or remove substitutionGroup.

XML-24247: ID type does not allow value constraint string

Cause: [e-props-correct.4] Type was ID or its derivation whild there was a value constraint.

Action: Remove value constraint.

XML-24248: fractionDigits stringgreater than totalDigits string

Cause: [fractionDigits-totalDigits] The value for fractionDigits was greater than totalDigits.

Action: Make fractionDigits smaller or equal to totalDigits.

XML-24249: length facet can not be specified with minLength or maxLength

Cause: [length-minLength-maxLength] Both length and either minLength or maxLength were specified.

Action: Remove length facet.

XML-24250: length string not the same as length in base type's

Cause: [length-valid-restriction] Specified a length that was not the same as the length in base type.

Action: Remove length facet.

XML-24251: maxExclusive greater than its original

Cause: [maxExclusive-valid-restriction] Restricted maxExclusive was greater thant its original in base type.

XML-24252: minInclusive greater than or equal to maxExclusive

Cause: [maxInclusive-maxExclusive] Specified a minInclusive that was greater or equal to maxExclusive.

Action: Make minInclusive smaller than maxExclusive.

XML-24253: maxLength is greater than that in base type

Cause: [maxLength-valid-restriction] Specified a maxLength greater than orginal in base type.

Action: Sepcify a smaller maxLength to make it valid restriction.

XML-24254: circular group stringdisallowed

Cause: [mg-props-correct] Circular model group references.

Action: Remove circular references in model group definition.

XML-24256: minExclusive must be less than or equal to maxExclusive

Cause: [minExclusive-less-than-equals-to-maxExclusive] minExclusive was bigger than maxExclusive.

Action: Use smaller value for minExclusive.

XML-24257: minExclusive stringmust be less than maxInclusive

Cause: [minExclusive-less-than-maxInclusive] inExclusive specified was greater than or equal to maxInclusive.

Action: Specify smaller minExclusive.

XML-24258: invalid minExclusive string

Cause: [minExclusive-valid-restriction] Restriction's minExclusive was less than base type's minExclusive

Action: Specify greater value for minExclusive.

XML-24259: invalid minExclusive string

Cause: [minExclusive-valid-restriction] Restriction's minExclusive was less than base type's minInclusive

Action: Specify greater value for minExclusive

XML-24260: invalid minExclusive string

Cause: [minExclusive-valid-restriction] Restriction's minExlcusive was greater than base type's maxInclusive

Action: Specify smaller value for minExclusive

XML-24261: invalid minExclusive string

Cause: [minExclusive-valid-restriction] Restriction's minExclusive was greater than or equals to base type's maxExclusive

Action: Specify smaller value for minExclusive.

XML-24262: minInclusive string must not be greater than maxInclusive

Cause: [minInclusive-less-than-equal-to-maxInclusive] Specified a minInclusive that was greater than maxInclusive

Action: Specify smaller value for minInclusive.

XML-24263: Can not specify both minInclusive and minExclusive

Cause: [minInclusive-minExclusive]] Restriction specified both minInclusive and minExclusive.

Action: Remove either minInclusive or minExclusive.

XML-24264: invalid minInclusive string

Cause: [minInclusive-valid-restriction] Restriction's minInclusive was less than or equal to minInclusive in base type.

Action: Use minInclusive larger than that of base type.

XML-24265: invalid minInclusive string

Cause: [minInclusive-valid-restriction] Restriction's minInclusive was less than minExclusivein base type.

Action: Use minInclusive larger than or equal to the minExclusive of base type.

XML-24267: invalid minInclusive string

Cause: [minInclusive-valid-restriction] Restriction's minInclusive was greater than maxInclusive in base type.

Action: Use minInclusive smaller than or equal to the maxInclusive of base type.

XML-24268: invalid minInclusive string

Cause: Restriction's minInclusive was greater than or equal to maxEnclusive in base type.

Action: Use minInclusive smaller than the maxEnclusive of base type.

Comments: minInclusive-valid-restriction

XML-24269: invalid minLength string

Cause: [minLength-less-than-equal-to-maxLength] minLength in restriction is greater than base type's maxLength.

Action: Make minLength within the length range of base type.

XML-24270: invalid minLength string

Cause: [minLength-valid-restriction] Value of minLength is smaller than that of base type in restriction.

Action: Use bigger value for minLength.

XML-24271: can not declare xmlns attribute

Cause: [no-xmlns] Declared an attribute with name xmlns.

Action: Remove such declaraton.

XML-24272: no xsi for targetNamespace

Cause: [no-xsi] The schema's target namespace matched http://www.w3.org/2001/XMLSchema-instance

Action: Use other target namespace.

XML-24272: minOccurs is greater than maxOccurs

Cause: [n-props-correct] The minOccurs of particle was greater than the maxOccurs.

Action: Use smaller value for minOccurs.

XML-24281: maxOccurs must greater than or equal to 1

Cause: [p-props-correct] The maxOccurs of particle was less than 1.

Action: Use greater value for maxOccurs.

XML-24282: incorrect Notation properties

Cause: [n-props-correct] The Notation declaration had incorrect properties.

Action: Fix Noation declaration.

XML-24283: particle's range is not valid restriction

Cause: [range-ok] Range of restriction was not within the range of parent particle.

XML-24284: sequence group is not valid derivation of choice group

Cause: Restriction did not satisfy constraint: Particle Derivation OK (Sequence:Choice -- MapAndSum)

Comments: rcase-MapAndSum

XML-24285: element string is not valid restriction of element string

Cause: [rcase-NameAndTypeOK] Restriction did not satisfy constraint: Particle Restriction OK

XML-24286: element string is not valid restriction of wildcard

Cause: [rcase-NSCompat] Restriction did not satisfy constraint: Particle Restriction OK

XML-24287: group is not valid restriction of wildcard

Cause: [rcase-NSRecurseCheckCardinality] Restriction did not satisfy constraint: Particle Restriction OK

XML-24288: group any is not valid restriction

Cause: [rcase-NSSubset] Restriction did not satisfy constraint: Particle Restriction OK(Any:Any -- NSSubset)

XML-24289: invalid restriction of all or sequence group

Cause: [rcase-Recurse] Restriction did not satisfy constraint: Particle Restriction OK(All:All, Seqiemce"Sequence:-- Recurse)

XML-24290: wildcard is not valid restriction

Cause: [rcase-RecurseLax] The wildcard was not validly restricted from another wildcard.

XML-24291: sequence is not a valid restriction of all

Cause: Restriction violated constraint: Particle Derivation OK (Sequence:All--RecurseUnordered)

Action: Fix the restriction.

Comments: rcase-RecurseUnordered

XML-24292: duplicate component definitions string

Cause: [sch-props-correct] There were two schema components with same name and namespace.

Action: Remove duplicate definitions.

XML-24293: Incorrect simple type definition properties

Cause: [st-props-correct]

XML-24294: wildcard is not a subset of its super

Cause: [w-props-correct] The namespace constraint was not a restriction of its super

Action: Correct namespace constraint.

XML-24295: totalDigits stringis greater than string in base type

Cause: [totalDigits-valid-restriction] Restriction specified a totalDigits with value greater than that in base type.

Action: Use smaller value for totalDigits.

XML-24296: whiteSpace string can not restrict base type's string

Cause: [whiteSpace-valid-restriction] Restriction's whiteSpace was replace or preserve, and base had whiteSpace collapse, or restriction had replace while base had preserve.

Action: Eliminate conflicit whiteSpace values.

XML-24297: circular substitution group string

Cause: Substitution group was circular.

Action: Remove the circular substitution group

XSQL Server Pages Error Messages

These error messages are in the range XML-25000 through XML-25999.

XML-25001: Cannot locate requested XSQL file. Check the name.

XML-25002: Cannot acquire database connection from pool: string

XML-25003: Failed to find config file string in CLASSPATH.

XML-25004: Could not acquire a database connection named: string

XML-25005: XSQL page is not well-formed.

XML-25006: XSLT stylesheet is not well-formed: string

XML-25007: Cannot acquire a database connection to process page.

XML-25008: Cannot find XSLT Stylesheet: string

XML-25009: Missing arguments on command line

XML-25010: Error creating: string\nUsing standard output.

XML-25011: Error processing XSLT stylesheet: string

XML-25012: Cannot Read XSQL Page

XML-25013: XSQL Page URI is null; check exact case of file name.

XML-25014: Resulting page is an empty document or had multiple document elements.

XML-25015: Error inserting XML Document

XML-25016: Error parsing posted XML Document

XML-25017: Unexpected Error Occurred

XML-25018: Unexpected Error Occurred processing stylesheet string

XML-25019: Unexpected Error Occurred reading stylesheet string

XML-25020: Config file string is not well-formed.

XML-25021: Serializer string is not defined in XSQL configuration file

XML-25022: Cannot load serializer class string

XML-25023: Class string is not an XSQL Serializer

XML-25024: Attempted to get response Writer after getting OutputStream

XML-25025: Attempted to get response OutputStream after getting Writer

XML-25026: Stylesheet URL references an untrusted server.

XML-25027: Failed to load string class for built-in xsql:string action.

XML-25028: Error reading string. Check case of the name.

XML-25029: Cannot load error handler class string

XML-25030: Class string is not an XSQL ErrorHandler

XML-25100: You must supply a string attribute.

XML-25101: Fatal error in Stylesheet Pool

XML-25102: Error instantiating class string

XML-25103: Unable to load class string

XML-25104: Class string is not an XSQLActionHandler

XML-25105: XML returned from PLSQL agent was not well-formed

XML-25106: Invalid URL string

XML-25107: Error loading URL string

XML-25108: XML Document string is not well-formed

XML-25109: XML Document returned from database is not well-formed

XML-25110: XML Document in parameter string is not well-formed

XML-25111: Problem including string

XML-25112: Error reading parameter value

XML-25113: Error loading XSL transform string

XML-25114: Parameter string has a null value

XML-25115: No posted document to process

XML-25116: No query statement supplied

XML-25117: No PL/SQL function name supplied

XML-25118: Stylesheet URL references an untrusted server.

XML-25119: You must supply either the string or string attribute.

XML-25120: You selected fewer than the expected string values.

XML-25121: Cannot use 'xpath' to set multiple parameters.

XML-25122: Query must be supplied to set multiple parameters

XML-25123: Error reading string. Check case of the name.

XML-25124: Error printing additional error information.

XML-25125: Only one of (string) attributes is allowed.

XML-25126: One of (string) attributes must be supplied.

XML Pipeline Error Messages

These error messages are in the range XML-30000 through XML-30999.

XML-30000: Error ignored in string: string

Cause: Error occurred while processes execution is ignored

Action: None required

XML-30001: Error occurred in execution of Process

Cause: Component being wrapped by pipeline process is causing error

Action: Might need to fix input xml content

XML-30002: Only XML type(s) string allowed.

Comments: Should not occur normally

XML-30003: Error creating/writing to output string

Cause: Output url provided might be invalid

XML-30004: Error creating base url string

Cause: URL provided as base url is invalid

Action: Fix base url provided

XML-30005: Error reading input string

Cause: Input url provided might be invalid

XML-30006: Error in processing pipedoc Error element

XML-30007: Error converting output to xml type required by dependent process

XML-30008: A valid parameter target is required

Cause: Param with name target is missing or invalid

Action: Please add param target pointing to the target output label

XML-30009: Error piping output to input

XML-30010: Process definition element string needs to be defined

Cause: Element procdef is missing

Action: Please add process definition to pipedoc

XML-30011: ContentHandler not available

Cause: The dependent process does not provide a valid ContentHandler

Action: Please implement the getContentHandler API in your Process.

XML-30012: Pipeline components are not compatible

Cause: Component output and input don't match in terms of document/docfrag

Action: Fix the pipedoc to use components which are compatible

XML-30013: Process with output label string not found

Cause: Process whose output label matched target label is not available

Action: Create a process in the pipedoc, where the output label matches the label of the target param

XML-30014: Pipeline is not complete, missing output/outparam label called string

Cause: A dependent process output label has not been named correctly, or a dependent process is missing

Action: Please make sure every dependent input has a corresponding output

XML-30016: Unable to instantiate class

Cause: A process could not be create as there is an error in the process definition element associated with it

Action: Correctly specify the class for a process definition

XML-30017: Target is up-to-date, pipeline not executed

Cause: Either the target does not exist, or the pipeline inputs are more recent than the target

Action: Use the 'force' option to execute pipeline regardless of whether the target is up-to-date

Java API for XML Binding (JAXB) Error Messages

These error messages are in the range XML-32000 through XML32999.

XML-32202: a problem was encountered because multiple <schemaBindings> were defined.

Cause: There was more than one instance of <schemaBindings> declaration in the annotation element of the <schema> element.

Action: Update the annotation to remove duplicate <schemaBinding> declaration.

XML-32203: a problem was encountered because multiple <class> name annotations were defined on node string.

Cause: There was more than one instance of <class> declaration in the annotation element of the node.

Action: Update the annotation to remove duplicate <class> declaration.

XML-32204: a problem was encountered because the name in <class> declaration contained a package name prefix string which was not allowed.

Cause: A failure occurred because the name attribute in the <class> declaration contained a package prefix.

Action: Update the className in <class> declaration.

Comments: The package prefix is inherited from the current value of package.

XML-32205: a problem was encountered because the property customization was not specified correctly on node string.

Cause: A failure occurred because the property customization was not specified correctly.

Action: Update the <property> customization.

XML-32206: a problem was encountered because the javaType customization was not specified correctly on node string.

Cause: A failure occurred because the property customization was notspecified correctly.

Action: Update the <javaType> customization.

XML-32207: a problem was encountered in declaring the baseType customization on the node string.

Cause: A failure occurred because the baseType customization was not specified correctly.

Action: Update the <baseType> customization.

XML-32208: a problem was encountered because multiple baseType customizations were declared on the node string.

Cause: A failure occurred because multiple "baseType" customizations were declared.

Action: Remove one of the <baseType> customization declaration.

XML-32209: a problem was encountered because multiple javaType customizations were declared on the node string.

Cause: A failure occurred because multiple "javaType" customizations were declared.

Action: Remove one of the <javaType> customization declaration.

XML-32210: a problem was encountered because invalid value was specified on customization of string.

Cause: A failure occurred because an invalid value was specified onthe globalBindings customization declaration.

Action: Check and correct the globalBindings customization value.

XML-32211: a problem was encountered because incorrect <schemaBindings> customization was specified.

Cause: A failure occurred because an invalid value was specified on the schemaBindings cusotmization.

Action: Check and correct the schemaBindings customization value.

XML-32212: the <class> customization did not support specifiying the implementation class using implClass declaration. The implClass declaration specified on node string was ignored.

Cause: A warning occurred because the implClass customization declaration was not supported.

XML-32213: the <globalBindings> customization did not support specifiying user specific class that implements java.util.List. The collectionType declaration was ignored.

Cause: A warning occurred because the user specific implementation class for java.util.List was not supported.

TXU Error Messages

These error messages may occur during the execution of TXU interfaces.

General TXU Error Messages

These error messages are in the range TXU-0001 through TXU-0099.

TXU-0001: Fatal Error

TXU-0002: Error

TXU-0003: Warning

DLF Error Messages

These error messages are in the range TXU-0100 through TXU-0199.

TXU-0100: parameter string in query string not found

Cause: There is not a placeholder for the parameter in the query

Action: Supply a parameter whose id can be found as an associated placeholder in the associated query

TXU-0101: incompatible attributes col and constant coexist at string in query string

Cause: Attributes 'col' and 'constant' cannot coexist

Action: Remove either 'col' or 'constant' attribute

TXU-0102: node string not found

Cause: The document lacks an expected node

Action: Supply the missing node

TXU-0103: element string lacks content

Cause: The element has no data

Action: Supply content

TXU-0104: element string with SQL string lacks col or constant attribute

Cause: The element lacks a required attribute of 'col' or 'constant'

Action: Supply either 'col' or 'constant' attribute

TXU-0105: SQL exception string while processing SQL string

Cause: An error occurred during the SQL execution

Action: Resolve the error in the SQL statement

TXU-0106: no data for column string selected by SQL string

Cause: The SQL query returned no data

Action: Supply data or modify your query

TXU-0107: datatype string not supported

Cause: An attempt to process an unsupported datatype was made

Action: Change the datatype to a supported one

TXU-0108: missing maxsize attribute for column string

Cause: The size-unit attribute is specified but maxsize is not.

Action: Supply the maxsize attribute, too

TXU-0109: a text length of string for string exceeds the allowed maximum of string

Cause: The length of the text data is too long

Action: Shorten the data so it fits in the limit, or enlarge the maxsize attribute and ensure the database column is large enough

TXU-0110: undeclared column string in row string

Cause: A column in the data section is not declared in the columns section

Action: Modify the column name to a declared one

TXU-0111: lacking column data for string in row string

Cause: A column is declared but the data is missing.

Action: Supply the col element whose name attribute matches the column name

TXU-0112: undeclared query parameter string for column string

Cause: The query parameter refers to an undeclared column

Action: Specify a declared column

TXU-0113: incompatible attribute string with a query on column string

Cause: A column with a query cannot have the specified attribute

Action: Remove either the attribute or query

TXU-0114: DLF parse error (string) on line string, character string in string

Cause: The format is in error as reported

Action: Correct the erroneous part

TXU-0115: The specified date string string has an invalid format

Cause: The specified date string does not match the specified formatstring.

Action: Make sure the date string is in an appropriate date format

TransX Informational Messages

These error messages are in the range TXU-0200 throughTXU-0299.

TXU-0200: duplicate row at string

Cause: A duplicate row exists in the database

Action: This message appears on the DuplicateRowException to inform applications of existance of one or more duplicate rows already stored in the database

TransX Error Messages

These error messages are in the range TXU-0300 through TXU-0399.

TXU-0300: document string not found

Cause: The document could not be located

Action: Modify the document location or supply the document at the location

TXU-0301: file string could not be read

Cause: An I/O error happened when reading the file

Action: Resolve the I/O problem

TXU-0302: archive string not found

Cause: The archive file could not be located

Action: Ensure that the CLASSPATH includes TransX correctly and only once

TXU-0303: schema string not found in string

Cause: The schema definition of DLF could not be located

Action: Obtain an unbroken copy of a TransX archive

TXU-0304: archive path for string not found

Cause: The path for the archive could not be determined

Action: Ensure that the CLASSPATH includes TransX correctly and only once

TXU-0305: no database connection on string call for string

Cause: The operation was attempted without a database connection

Action: Open a connection first

TXU-0306: null tablename given; access denied

Cause: The table name is not provided

Action: Specify a table name

TXU-0307: lookup-keys could not be determined string

Cause: The data dictionary is corrupted

Action: Restore the data dictionary

TXU-0308: binary file string not found

Cause: The file name is invalid

Action: Supply a good file name

TXU-0309: a file size of string exceeds the allowed maximum of 2,000 bytes

Cause: The file is too large

Action: Reduce the file size

Assertion Messages

These error messages are in the range TXU-0400 through TXU-0499.

TXU-0400: missing SQL statement element on string

Cause: An internal assertion was not successful

Action: Contact Oracle customer support

TXU-0401: missing node string

Cause: An internal assertion was not successful

Action: Contact Oracle customer support

TXU-0402: invalid flag string

Cause: An internal assertion was not successful

Action: Contact Oracle customer support

TXU-0403: internal error string

Cause: An internal assertion was not successful

Action: Contact Oracle customer support

TXU-0404: unexpected Exception string

Cause: An internal assertion was not successful

Action: Contact Oracle customer support

Usage Description Messages

These error messages are in the range TXU-0500 through TXU-0599.

TXU-0500: XML data transfer utility

TXU-0501: Parameters are as follows:

TXU-0502: JDBC connect string

TXU-0503: You can omit the connect string information through the '@' symbol.

TXU-0504: Then jdbc:oracle:thin:@ will be supplied.

TXU-0505: database username

TXU-0506: database password

TXU-0507: data file name or URL

TXU-0508: Options:

TXU-0509: update existing rows

TXU-0510: raise exception if a row is already existing

TXU-0511: print data in the predefined format

TXU-0512: save data in the predefined format

TXU-0513: print the XML to load

TXU-0514: print the tree for update

TXU-0515: omit validation

TXU-0516: validate the data format and exit without loading

TXU-0517: preserve whitespace

TXU-0518: Examples:

XSU Error Messages

These error messages may occur during the execution of the XSU interfaces.

Keywords and Syntax for Error Messages

These error messages are in the range XSUK-0001 through XSUK-0099.

XSUK-0001: DOCUMENT

XSUK-0002: ROWSET

XSUK-0003: ROW

XSUK-0004: ERROR

XSUK-0005: num

XSUK-0006: item

Generic Error Messages

These error messages are in the range XSUE-0000 through XSUE-0099.

XSUE-0000: Internal Error -- Exception Caught string

XSUE-0001: Internal Error -- string

XSUE-0002: string is not a scalar column. The row id attribute can only get values from scalar columns.

XSUE-0003: string is not a valid column name.

XSUE-0004: This object has been closed. If you would like the object not to be closed implicitly between calls, see the string method.

XSUE-0005: The row-set enclosing tag and the row enclosing tag are both omitted; consequently, the result can consist of at most one row which contains exactly one column which is not marked to be an XML attribute.

XSUE-0006: The row enclosing tag or the row-set enclosing tag is ommitted; consequently to get a well formed XML document, the result can only consist of a single row with multiple columns or multiple rows with exactly one column which is not marked to be an XML attribute.

XSUE-0007: Parsing of the sqlname failed -- invalid arguments.

XSUE-0008: Character string is not allowed in an XML tag name.

XSUE-0009: this method is not supported by string class. Please use string instead.

XSUE-0010: The number of bind names does not equal the number of bind values.

XSUE-0011: The number of bind values does not match the number of binds in the SQL statement.

XSUE-0012: Bind name identifier string does not exist in the sql query.

XSUE-0013: The bind identifier has to be of non-zero length.

XSUE-0014: Root node supplied is null.

XSUE-0015: Invalid LOB locator specified.

XSUE-0016: File string does not exit.

XSUE-0017: Can not create oracle.sql.STRUCT object of a type other than oracle.sql.STRUCT (i.e. ADT).

XSUE-0018: Null is not a valid DocumentHandler.

XSUE-0019: Null and empty string are not valid namespace aliases.

XSUE-0020: to use this method you will have to override it in your subclass.

XSUE-0021: You are using an old version of the gss library; thus, sql-xml name escaping is not supported.

XSUE-0022: cannot create XMLType object from opaque base type: string

Query Error Messages

These error messages are in the range XSUE-0100 through XSUE-0199.

XSUE-0100: Invalid context handle specified.

XSUE-0101: In the FIRST row of the resultset there is a nested cursor whose parent cursor is empty; when this condition occurs we are unable to generate a dtd.

XSUE-0102: string is not a valid IANA encoding.

XSUE-0103: The resultset is a "TYPE_FORWARD_ONLY" (non-scrollable); consequently, xsu can not reposition the read point. Furthermore, since the result set has been passed to the xsu by the caller, the xsu can not recreate the resultset.

XSUE-0104: input character is invalid for well-formed XML: string

DML Error Messages

These error messages are in the range XSUE-0200 through XSUE-0299.

XSUE-0200: The XML element tag string does not match the name of any of the columns/attributes of the target database object.

XSUE-0201: NULL is an invalid column name.

XSUE-0202: Column string, specified to be a key column, does not not exits in table string.

XSUE-0203: Column string, specified as column to be updated, does not exist in the table string.

XSUE-0204: Invalid REF element - string - attribute string missing.

XSUE-0206: Must specify key values before calling update routine. Use the string function.

XSUE-0207: UpdateXML: No columns to update. The XML document must contain some non-key columns to update.

XSUE-0208: The key column array must be non empty.

XSUE-0209: The key column array must be non empty.

XSUE-0210: No rows to modify -- the row enclosing tag missing. Specify the correct row enclosing tag.

XSUE-0211: string encountered during processing ROW element string in the XML document.

XSUE-0212: string XML rows were successfully processed.

XSUE-0213: All prior XML row changes were rolled back.

Pieces of Error Messages

These error messages are in the range XSUE-0300 through XSUE-0400.

XSUE-0300: Note

XSUE-0301: Exception string caught: string

XSUE-0302: column

XSUE-0303: name

XSUE-0303: invalid

XSUE-0304: xml document

XSUE-0305: template

Glossary

access control entry (Index

Index

A B C D E F G H I J L M N O P R S T U V W X

Symbols

	<xsql:dml> action, 30.1, 30.1, 30.1, 30.1, 30.1, 30.1
	<xsql:include-owa> action, 30.1
	<xsql:include-param> action, 30.1
	<xsql:include-posted-xml> action, 30.1
	<xsql:include-request-params> action, 30.1
	<xsql:include-xml> action, 30.1, 30.1, 30.1
	<xsql:query> action, 30.1
	<xsql:set-cookie> action, 30.1
	<xsql:set-page-param> action, 30.1
	<xsql:set-session-param> action, 30.1
	<xsql:set-stylesheet-param> action, 30.1

A

	access control entry, definition, Glossary
	access control list, definition, Glossary
	ACE, definition, Glossary
	ACL, definition, Glossary
	application server, definition, Glossary
	attribute, definition, Glossary

B

	B2B, definition, Glossary
	B2C, definition, Glossary
	Binary XML
	
	saving text as, 4.3.4.1.3

	binary XML
	
	C, 19.1
	decoder, 5.5.2
	decoding, 5.3.2
	encoder, 5.5.1
	encoding, 5.3.1
	Glossary, 5.2.1
	models for using, 5.2
	using Java, 5.5
	vocabulary management, 5.4
	XML DB, 5.5

	binary XML for Java, 5
	Binary XML Storage Format, 5.1.1
	binding
	
	clearBindValues(), 11.2.1.3

	Built-in Action Handler, 15.8.1.2
	Built-in Action Handler, XSQL, 15.8.1.2
	Business-to-Business, definition, Glossary
	Business-to-Consumer, definition, Glossary

C

	C API, 16.4
	C compile-time environment on UNIX
	
	setting up, 16.2.4

	C components
	
	demos, 16.1, 17.3.1, 18.2.4, 20.4
	directory structure, 16.1
	globalization support
	installation, 16.1
	runtime environment on Windows, 16.3.3
	samples, 16.1, 17.3.1, 18.2.4, 20.4
	setting up Windows environment, 16.3
	setting up Windows environment variables, 16.3.2
	with Visual C/C++ on Windows, 16.3.5

	C environment variables on UNIX, 16.2.2
	C libraries
	
	contents, 16.2.1

	C runtime environment on UNIX, 16.2.3
	C++ class generator, 1.2.4
	C++ interface, 24.2
	callback, definition, Glossary
	cartridge, definition, Glossary
	Cascading Style Sheets, definition, Glossary, Glossary
	CDATA, definition, Glossary
	Class Generator
	
	XML C++, 29

	Class Generator, definition, Glossary
	CLASSPATH
	
	XSQL Pages, 14.2.2.2

	CLASSPATH, definition, Glossary
	clearBindValues(), 11.2.1.3
	clearUpdateColumnNames(), 11.4.6.2
	command-line interface
	
	oraxml, 4.2.3, 8.2.3

	Common Object Request Broker API, definition, Glossary
	Common Oracle Runtime Environment, definition, Glossary
	Connection Definitions, 14.2.2.4
	context, creating one in XSU PL/SQL API, 11.4.10
	CORBA, definition, Glossary
	CORE, definition, Glossary
	creating context handles
	
	getCtx, 11.2.1.3

	custom connection manager, 15.8.4.1

D

	DAD, definition, Glossary
	Data Provider for .NET, 1.4.5
	data variables into XML, 4.7.2
	Database Access Descriptor, definition, Glossary
	datagram, definition, Glossary
	DB Access JavaBean, 10.1.3.3
	DBMS_XMLQuery
	
	clearBindValues(), 11.2.1.3
	getXMLClob, 11.2.1.3

	DBMS_XMLQuery(), 11.2.1.3
	DBMS_XMLSave, 11.2.1.4
	
	deleteXML, 11.2.1.4
	getCtx, 11.2.1.4
	insertXML, 11.2.1.4
	updateXML, 11.2.1.4

	DBMS_XMLSave(), 11.2.1.4
	DBURITYPE, definition, Glossary
	decoding binary XML, 5.3.2
	Default SQL to XML Mapping, 11.5.1.1
	demos
	
	C components, 16.1, 17.3.1, 18.2.4, 20.4

	directory structure
	
	C, 16.1

	DOCTYPE, definition, Glossary
	document creation Java APIs, 2.3.3
	Document Location Hint, definition, Glossary
	Document Object Model, definition, Glossary
	Document Type Definition, definition, Glossary
	DOM
	
	creating in Java, 4
	specifications, 31.1.2.1

	DOM fidelity, definition, Glossary
	DOM, definition, Glossary
	DOMBuilder Bean, 10.1.3.1
	DTD, definition, Glossary
	DTDs
	
	external, 4.7.3.1

E

	EDI, definition, Glossary
	EJB, definition, Glossary
	Electronic Data Interchange, definition, Glossary
	element, definition, Glossary
	empty element, definition, Glossary
	encoding binary XML, 5.3.1
	Enterprise JavaBean, definition, Glossary
	entity, definition, Glossary
	examples of document creation in Java, 2.3.3
	eXtensible Stylesheet Language Formatting Object, definition, Glossary
	eXtensible Stylesheet Language Transformation, definition, Glossary
	eXtensible Stylesheet Language, definition, Glossary

F

	FileReader not for system files, 4.7.4.1
	FOP
	
	serializer, 14.2.3
	serializer to produce PDF, 15.7

	FOP, definition, Glossary

G

	generated XML
	
	customizing, 11.5.1.3

	generating XML, 11.2.4.1
	
	using DBMS_XMLQuery, 11.2.1.3
	using XSU command line, getXML, 11.2.4.1

	getCtx, 11.2.1.3, 11.2.1.4
	getXML, 11.2.4.1
	getXMLClob, 11.2.1.3
	globalization support
	
	for the C components, 16.5

H

	HASPATH, definition, Glossary
	hierarchical indexing, definition, Glossary
	HTML Form Parameters, 14.5.2.4
	HTTP Parameters, 14.5.1
	HTTP POST method, 14.5.3.2
	HTTPURITYPE, definition, Glossary

I

	IDE, definition, Glossary
	IIOP, definition, Glossary
	infoset, 5.3
	infoset, definition, Glossary
	INPATH, definition, Glossary
	insert, XSU, 11.5.2.2
	insertXML, 11.2.1.4
	installation
	
	C components, 16.1

	instance document, definition, Glossary
	instantiate, definition, Glossary
	Integrated Development Environment, definition, Glossary
	invalid characters, 4.7.4.6

J

	JAR files, DTDs, 4.7.3.1
	Java 2 Platform, Enterprise Edition, definition, Glossary
	Java API for XML Processing (JAXP), definition, Glossary
	Java Architecture for XML Binding (JAXB), definition, Glossary
	Java classes deprecated, 2.3.1
	Java components
	
	creating a DOM, 4
	environment in Windows, 3.3.2
	installation, 3.1
	parsing, 4

	Java Database Connectivity, definition, Glossary
	Java Naming and Directory Interface, definition, Glossary
	Java Runtime Environment, definition, Glossary
	Java, definition, Glossary
	JavaBean, definition, Glossary
	JAXB
	
	class generator, 1.2.4
	compared with JAXP, 8.1, 8.2
	features not supported, 8.2.4
	marshalling and unmarshalling, 8.1
	validating, 8.1
	what is, 8.2

	JAXP
	
	compared with JAXB, 8.1

	JAXP (Java API for XML Processing), 4.5
	JCR 1.0 standard, 4.1.2
	JDBC driver, 11.2.1.1
	JDBC, definition, Glossary, Glossary
	JDeveloper, 1.4.1
	JDeveloper, definition, Glossary
	JDK, definition, Glossary
	JNDI, definition, Glossary
	JRE, definition, Glossary
	JSP, definition, Glossary
	JSR 170 standard, 4.1.2
	JSR, definition, Glossary
	JVM, definition, Glossary, Glossary

L

	lazy type conversions, definition, Glossary
	listener, definition, Glossary

M

	make.bat file
	
	editing on Window for C environment, 16.3.4.1.1

	mapping
	
	primer, XSU, 11.5.1

	method
	
	getDocument(), DOMBuilder Bean, 10.2.1.1

	methods
	
	addXSLTransformerListener(), 10.2.1.2
	domBuilderError(), 10.2.1.1
	DOMBuilderOver(), 10.2.1.1, 10.2.1.2
	domBuilderStarted(), 10.2.1.1

	Microsoft .NET, 1.4.5
	Multimedia, definition, Glossary

N

	name-level locking, definition, Glossary
	namespace, definition, Glossary
	.NET, 1.4.5
	no rows exception, 11.3.9.2
	node, definition, Glossary
	notation attribute declaration, definition, Glossary

O

	OAG, definition, Glossary
	OASIS, definition, Glossary
	OC4J, definition, Glossary
	OCI and the XDK C, 18.6
	OCI examples, 18.6.5
	Open Applications Group, definition, Glossary
	Oracle Content Management SDK, definition, Glossary
	Oracle Text, definition, Glossary
	Oracle XML DB, definition, Glossary
	ORACLE_HOME, definition, Glossary
	Oracle9i JVM, 4.2
	OracleXML
	
	XSU command line, 11.2.4

	OracleXml namespace, 24.3
	OracleXMLSQLException, 11.3.9
	oraxml, 4.2.3, 8.2.3
	oraxsl
	
	command line interfaces, 6.2.3

	ORB, definition, Glossary
	Ordered Collection in Tables, definition, Glossary
	Out Variable, using xsql
	
	dml, 14.5.2.5

P

	Package Classes, 2.3.1
	parent element, definition, Glossary
	parseDTD() method, 4.7.3.1
	Parser for Java, 4
	
	constructor extension functions, 6.4.4
	oraxsl, 6.2.3
	return value extension function, 6.4.5
	supported database, 4.2
	using DTDs, 4.7.3

	Parser for Java, overview, 4.2
	path name, definition, Glossary
	PCDATA, definition, Glossary
	PDA, definition, Glossary
	PDF results using FOP, 14.2.3
	Personal Digital Assistant, definition, Glossary
	Pipeline Definition Language, 9.1
	Pipeline Definition Language, definition, Glossary
	PL/SQL
	
	generating XML with DBMS_XMLQuery, 11.2.1.3

	principal, definition, Glossary
	prolog, definition, Glossary
	PUBLIC, definition, Glossary

R

	renderer, definition, Glossary
	Reports, Oracle, 1.4.3
	repository, definition, Glossary
	Resource Definition Framework, definition, Glossary
	resource name, definition, Glossary
	resource, definition, Glossary
	result set, definition, Glossary
	root element, definition, Glossary

S

	samples
	
	C components, 16.1, 17.3.1, 18.2.4, 20.4

	SAX, definition, Glossary
	schema evolution, definition, Glossary
	schema, definition, Glossary
	Secure Sockets Layer, definition, Glossary
	security, XSQL Pages, 14.5.4
	select
	
	with XSU, 11.5.2.1

	Server-Side Include (SSI), definition, Glossary
	servlet, definition, Glossary
	servlet, XSQL, 14, 15
	setKeyColumn(), 11.3.8.2, 11.4.8.2
	setMaxRows, 11.4.3
	setRaiseNoRowsException(), 11.4.3
	setSkipRows, 11.4.3
	setStylesheetHeader(), 11.4.4
	setUpdateColumnName(), 11.4.6.2
	setUpdateColumnNames()
	
	XML SQL Utility (XSU)
	
	setUpdateColumnNames(), 11.2.3, 11.3.7.2

	setXSLT(), 11.4.4
	SGML, definition, Glossary
	Simple API for XML, definition, Glossary
	Simple Object Access Protocol (SOAP), definition, Glossary
	SOAP
	
	C clients, 22.1.2
	C examples, 22.3
	C Functions, 22.2
	for C, 22.1
	server, 22.1.3
	what is, 22.1.1

	SOAP, definition, Glossary
	SQL, definition, Glossary
	SQL/XML, definition, Glossary
	SSI, definition, Glossary
	storing XML in the database, 11.2.1.4
	streaming validator, 20.5
	
	opaque mode, 20.5.2
	transparent mode, 20.5.1

	string data, 4.7.4.6
	stylesheet, definition, Glossary
	SYS_XMLAGG, definition, Glossary
	SYS_XMLGEN, definition, Glossary
	SYSTEM, definition, Glossary

T

	tag, definition, Glossary
	TransX Utility, 12
	TransX Utility, definition, Glossary

U

	UIX, 1.4.2
	UIX, definition, Glossary
	Unicode in a system file, 4.7.4.1
	unified C API for XDK and XML DB, 16.4
	Unified Java API, 2, 2.1, 2.1
	unified Java API, 2.1, 2.1, 2.1
	Unified Java API new objects and methods, 2.3.3
	Uniform Resource Identifier, definition, Glossary
	Uniform Resource Locator, definition, Glossary
	UNIX environment for C components
	
	configuring, 16.2

	update, XSU, 11.5.2.3
	URI, definition, Glossary
	URL, definition, Glossary
	User Interface XML, 1.4.2
	User Interface XML (UIX), definition, Glossary
	UTF-16 Encoding, 4.7.4.5
	UTF-8 output, 4.7.4.3

V

	valid, definition, Glossary
	validation
	
	auto validation mode, 4.1.10, 4.1.10
	DTD validating Mode, 4.1.10
	partial validation mode, 4.1.10
	schema validation, 4.1.10
	schema validation mode, 4.1.10

	Visual C/C++, 16.3.5
	Visual Studio, 16.3.5

W

	W3C, definition, Glossary
	Web Request Broker, definition, Glossary
	WebDAV, definition, Glossary, Glossary
	well-formed, definition, Glossary
	WG, definition, Glossary
	Windows, 16.3
	
	C components
	
	with Visual C/C++, 16.3.5

	C libraries, 16.3.1
	editing make.bat file, 16.3.4.1.1
	setting up C environment variables, 16.3.2

	Windows environment for C components
	
	setting up, 16.3

	WML Document, 14.5.2.1
	World Wide Web Consortium, definition, Glossary
	World Wide Web Distributed Authoring and Versioning, definition, Glossary
	World Wide Web, definition, Glossary
	WRB, definition, Glossary

X

	XDBbinary, definition, Glossary
	Xdiff instance document, 21.2.6
	Xdiff schema, 21.2.10
	XDK components, 1.1
	XDK version
	
	using C, 16.2.5
	using Java, 3.4, 23.2.5

	XDK, definition, Glossary
	XLink, definition, Glossary
	XML Base, 31.1.1
	XML Base, definition, Glossary
	XML C++ Class Generator, 29
	XML Developer's Kit (XDK), definition, Glossary
	XML documents
	
	generating from C, 1.3.2
	generating from C++, 1.3.3
	generating from Java, 1.3.1

	XML Gateway, 1.4.4
	XML Gateway, definition, Glossary
	XML Namespaces 1.0, 31.1.1
	XML output in UTF-8, 4.7.4.3
	XML parser
	
	oraxml command-line interface, 4.2.3, 8.2.3

	XML parser for C
	
	sample programs, 17.3.1, 18.2.4

	XML parser, definition, Glossary
	XML pull parser
	
	example, 18.5.5

	XML Pull Parser error handling, 18.5.4
	XML Pull Parser for C, 18.5
	XML Query, definition, Glossary
	XML Schema
	
	explained, 7.1.4
	processor for Java
	
	how to run the sample program, 6.2.2, 7.2.2, 8.2.2, 9.2.2, 12.2.2

	XML schema for C
	
	sample programs, 20.4

	XML schema registration, definition, Glossary
	XML Schema, definition, Glossary
	XML SQL Utility, Glossary
	XML SQL Utility (XSU), 1.2.7
	
	advanced techniques, exception handling (PL/SQL), 11.4.9
	clearBindValues() with PL/SQL API, 11.2.1.3
	connecting with OCI* JDBC driver, 11.2.1.1
	creating context handles with getCtx, 11.2.1.3
	customizing generated XML, 11.5.1.3
	DBMS_XMLQuery, 11.2.1.3
	DBMS_XMLSave(), 11.2.1.4
	dependencies and installation, 11.2.1
	explained, 11.2
	getXML command line, 11.2.4.1
	getXMLClob, 11.2.1.3
	inserts, 11.5.2.2
	mapping primer, 11.5.1
	selects, 11.5.2.1
	setKeyColumn() function, 11.3.8.2
	setRaiseNoRowsException(), 11.4.3
	updates, 11.5.2.3

	XML SQL Utility XSU)
	
	setXSLT(), 11.4.4

	XML, definition, Glossary
	xmlcg usage, 29.3
	XMLCompress JavaBean, 10.1.3.6
	XMLDBAccess JavaBean, 10.1.3.4
	XmlDiff command line utility, 21.2.4
	XMLDiff example, 21.2.11
	XMLDiff in C, 21.1
	XMLDiff JavaBean, 10.1.3.5
	XMLGEN, is obsolete. See DBMS_XMLQUERY and DBMS_XMLSAVE, 11.2.1
	XmlHash, 21.4
	XMLNode.selectNodes() method, 4.7.1
	XmlPatch, 21.3
	XMLSchema-instance mechanism, definition, Glossary
	XMLSchema-instance namespace, definition, Glossary
	XMLType views, definition, Glossary
	XPath rewrite, definition, Glossary
	XPath, definition, Glossary
	XPointer, definition, Glossary
	XSDBuilder, 4.1.10
	XSL Transformation (XSLT) Processor, 1.2.2
	XSL Transformation (XSLT) Processor for Java, 6.2, 9.2, 12.2
	XSL Transformations Specifications, 31.1.2.2
	XSL, definition, Glossary
	XSLFO, definition, Glossary
	XSLT
	
	XSLTransformer bean, 10.2.1.2

	XSLT compiler, 17.1
	XSLT processor, 17.2
	XSLT Processor for Java
	
	hints for using, 6.5

	XSLT stylesheets
	
	setStylesheetHeader() in XSU PL/SQL, 11.4.4
	setXSLT() with XSU PL/SQL, 11.4.4

	XSLT, definition, Glossary
	XSLTransformer JavaBean, 10.1.3.2
	XSLValidator JavaBean, 10.1.3.7
	XSQL
	
	action handler errors, 15.4.2
	advanced topics, 15
	built-in action handler elements, 15.8.1.2
	connection, 14.5.2.6, 14.5.2.7
	current page name, 14.5.2.8
	errors, 14.5.3.1
	setting up demos, 14.2.3.1, 14.2.3.2
	SOAP support, 14.5.2.6
	stylesheets, 15.2
	two queries, 14.5.2.3

	XSQL Pages security, 14.5.4
	XSQL servlet
	
	hints, 14.5.2

	XSQL Servlet examples, 14.2.3
	XSQL, definition, Glossary, Glossary
	XSU
	
	generating XML, 11.2.4.1
	mapping primer, 11.5.1
	usage guidelines, 11.5.1

	XSU (XML SQL Utility), 1.2.7
	XSU usage techniques, 11.5
	XVM
	
	XSLT compiler, 17.1.2

	XVM (XSLT Virtual Machine) processor, 17.1
	XVM, definition, Glossary

Oracle Legal Notices

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Alpha and Beta Draft Documentation Notice

If this document is in preproduction status:

This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation