

What's New in Pro*COBOL?

This section describes new features of Oracle9i releases and provides pointers to additional information. New features information from previous releases is also retained to help those users migrating to the current release.

The following sections describe the new features in Oracle Pro*COBOL:

	
Oracle11g Release 1 (11.1) New Features in Pro*COBOL

Oracle11g Release 1 (11.1) New Features in Pro*COBOL

The following are the new features and enancements in the Pro*Cobol application in Oracle11g Release 1:

	
SQL99 Syntax Support

With this enhancement, the SQL99 syntax for SELECT, INSERT, DELETE, and UPDATE statements and the body of the cursor in a DECLARE CURSOR statement will be supported.

	
Additional Array Insert/Select Syntax

The array INSERT and array SELECT syntax of the DB2 precompiler is now supported by Pro*Cobol.

	
Fix Execution Plans

By using the outline feature, you can ensure that the performance of the database is not affected when modules are integrated and deployed into different environments.

	
Using Implicit Buffered Insert

Pro*Cobol supports the implicit buffering of a single INSERT statement executed in a loop.

	
Dynamic SQL Statement Caching

Statement caching can be used to improve the performance of dynamic SQL statements.

	
Scrollable Cursors

Pro*Cobol now supports a scrollable cursor in the Pro*Cobol application to fetch data in a non sequential manner.

	
Platform Endianness Support

Retrieving unicode data in OS endian in the PIC N host variable is now supported for the Pro*Cobol application.

	
Flexible B Area Length

The length of B Area for the Pro*Cobol application can now be from 8 to 253 columns.

Part I

Introduction and Concepts

Part I contains the following chapters:

	
Introduction

	
Precompiler Concepts

	
Database Concepts

	
Datatypes and Host Variables

	
Embedded SQL

	
Embedded PL/SQL

	
Host Tables

	
Error Handling and Diagnostics

	
Oracle Dynamic SQL

1 Introduction

This chapter introduces you to the Pro*COBOL Precompiler. You look at its role in developing application programs that manipulate Oracle data and find out what it enables your applications to do. The following questions are answered:

	
What is Pro*COBOL?

	
The Pro*COBOL Precompiler

	
Advantages of the Pro*COBOL Precompiler

	
The SQL Language

	
The PL/SQL Language

	
Pro*COBOL Features and Benefits

	
Directory Structure

What is Pro*COBOL?

To access an Oracle database, you use a high-level query language called Structured Query Language (SQL). You often use SQL through an interactive interface, such as SQL*Plus.

Pro*COBOL is a programming tool that enables you to embed SQL statements in a COBOL program. The Pro*COBOL precompiler converts the SQL statements in the COBOL program into standard Oracle run-time library calls. The generated output file can then be compiled, linked, and run in the usual manner.

Use the Pro*COBOL precompiler when rapid development and compatibility with other systems are your priorities.

The Pro*COBOL Precompiler

The Pro*COBOL Precompiler is a programming tool that enables you to embed SQL statements in a host COBOL program. As Figure 1-1 shows, the precompiler accepts the host program as input, translates the embedded SQL statements into standard Oracle run-time library calls, and generates a source program that you can compile, link, and execute in the usual way.

Figure 1-1 Embedded SQL Program Development

[image: Embedded SQL]

	
Note:

Pro*COBOL supports the MERANT Micro Focus NetExpress version 4.0 for 32-bit Windows 2000.

	
Note:

Pro*COBOL does not support Object Oriented COBOL (OOCOBOL) specifications.

Language Alternatives

Oracle Precompilers are available (but not on all systems) for the following high-level languages:

	
C/C++

	
COBOL

	
FORTRAN

Pro*Pascal, Pro*ADA, and Pro*PL/I will not be released again. However, Oracle will continue to issue patch releases for Pro*FORTRAN as bugs are reported and corrected.

Advantages of the Pro*COBOL Precompiler

The Pro*COBOL Precompiler lets you pack the power and flexibility of SQL into your application programs. You can embed SQL statements in COBOL. A convenient, easy to use interface lets your application access Oracle directly.

Unlike many application development tools, Pro*COBOL lets you create highly customized applications. For example, you can create user interfaces that incorporate the latest windowing and mouse technology. You can also create applications that run in the background without the need for user interaction.

Furthermore, with Pro*COBOL you can fine-tune your applications. It enables close monitoring of resource usage, SQL statement execution, and various run-time indicators. With this information, you can adjust program parameters for maximum performance.

The SQL Language

If you want to access and manipulate Oracle data, you need SQL. Whether you use SQL interactively or embedded in an application program depends on the job at hand. If the job requires the procedural processing power of COBOL, or must be done on a regular basis, use embedded SQL.

SQL has become the database language of choice because it is flexible, powerful, and easy to learn. Being non-procedural, it lets you specify what you want done without specifying how to do it. A few English-like statements make it easy to manipulate Oracle data one row or many rows at a time.

You can execute any SQL (not SQL*Plus) statement from an application program. For example, you can:

	
CREATE, ALTER, and DROP database tables dynamically.

	
SELECT, INSERT, UPDATE, and DELETE rows of data.

	
COMMIT or ROLLBACK transactions.

Before embedding SQL statements in an application program, you can test them interactively using SQL*Plus. Usually, only minor changes are required to switch from interactive to embedded SQL.

The PL/SQL Language

An extension to SQL, PL/SQL is a transaction processing language that supports procedural constructs, variable declarations, and robust error handling. Within the same PL/SQL block, you can use SQL and all the PL/SQL extensions.

The main advantage of embedded PL/SQL is better performance. Unlike SQL, PL/SQL enables you to group SQL statements logically and send them to Oracle in a block rather than one by one. This reduces network traffic and processing overhead.

For more information about PL/SQL including how to embed it in an application program, see Chapter 6, "Embedded PL/SQL".

Pro*COBOL Features and Benefits

As Figure 1-2 shows, Pro*COBOL offers many features and benefits that help you to develop effective, reliable applications.

Figure 1-2 Pro*COBOL Features and Benefits

[image: Pro*COBOL Features]

For example, the Pro*COBOL Precompiler enables you to:

	
Write your application in COBOL.

	
Conform to the ANSI/ISO embedded SQL standard.

	
Take advantage of ANSI Dynamic SQL Method 4, an advanced programming technique that lets your program accept or build any valid SQL statement at run-time in a COBOL program.

	
Design and develop highly customized applications.

	
Convert automatically between Oracle9i internal datatypes and COBOL datatypes.

	
Improve performance by embedding PL/SQL transaction processing blocks in your COBOL application program.

	
Specify useful precompiler options and change their values during precompilation.

	
Use datatype equivalencing to control the way Oracle9i interprets input data and formats output data.

	
Precompile several program modules separately, and then link them into one executable program.

	
Check the syntax and semantics of embedded SQL data manipulation statements and PL/SQL blocks.

	
Access Oracle9i databases on multiple nodes concurrently, using Oracle Net (formerly called Net8).

	
Use arrays as input and output program variables.

	
Precompile sections of code conditionally so that your host program can run in different environments.

	
Interface with tools, such as Oracle Forms and Oracle Reports, through user exits written in a high-level language.

	
Handle errors and warnings with the ANSI-approved status variables SQLSTATE and SQLCODE, or the SQL Communications Area (SQLCA) and WHENEVER statement. Or both SQLSTATE and SQLCODE, and the SQL Communications Area (SQLCA) and WHENEVER statement.

	
Use an enhanced set of diagnostics provided by the Oracle Communications Area (ORACA).

	
Access Large Object (LOB) database types.

Directory Structure

When you install Pro*COBOL, Oracle Universal Installer creates a directory called \precomp in your ORACLE_BASE\ORACLE_HOME directory.

	
Note:

The \precomp directory can contain files for other products, such as Pro*C/C++.

The \precomp directory contains the directories listed in Table 1-1.

Table 1-1 Directories

	Directory Name	Contents
	
\admin

	
Configuration files

	
\demo\procob2

	
Sample programs for Pro*COBOL release 9.2.0

	
\demo\sql

	
SQL scripts for sample programs

	
\doc\procob2

	
Readme files for Pro*COBOL 9.2.0

	
\lib

	
Library files

	
\mesg

	
Message files

	
\public

	
Header files

Header Files

The ORACLE_BASE\ORACLE_HOME\precomp\public directory contains the Pro*COBOL header files listed in Table 1-2.

Table 1-2 Header Files

	Header File	Description
	
oraca.cob

	
Contains the Oracle Communications Area (ORACA), which helps you to diagnose runtime errors and to monitor your program's use of various Oracle resources.

	
oraca5.cob

	
ORACA5 is the COMP-5 version of ORACA.

	
sqlca.cob

	
Contains the SQL Communications Area (SQLCA), which helps you to diagnose runtime errors. The SQLCA is updated after every executable SQL statement.

	
sqlca5.cob

	
SQLCA5 is the COMP-5 version of SQLCA.

	
sqlda.cob

	
Contains the SQL Descriptor Area (SQLDA), which is a data structure required for programs that use dynamic SQL Method 4.

	
sqlda5.cob

	
This is the COMP-5 version of SQLDA.

Library File

The ORACLE_BASE\ORACLE_HOME \precomp\lib directory contains the library file that you use when linking Pro*COBOL applications. The library file is called orasql9.lib.

Known Problems, Restrictions, and Workarounds

	
Although all Windows operating systems allow spaces in filenames and directory names, the Oracle Pro*COBOL precompilers do not precompile files that include spaces in the file name or directory name. For example, do not use the following formats:

	
proc iname=test one.pc

	
proc iname=d:\dir1\second dir\sample1.pc

	
Users running PROCOB application that are not linked using /LITLINK option and failing at runtime with the error,

Load error: file 'ORASQL8'

need to copy orasql9.dll to orasql8.dll in the same directory where orasql9.dll exists.

Compatibility, Upgrading, and Migration

The additional "array insert" and "array select" syntax will help migrating DB2 precompiler applications to the Pro*Cobol application. This is because you will not need to change DB2 array INSERT and SELECT syntax to that of Oracle Pro*Cobol.

The ""Implicit Buffered Insert" feature supported by Pro*Cobol helps you to migrate DB2 precompiler applications to Pro*Cobol applications without using the array syntax of Pro*Cobol for better performance.

4 Datatypes and Host Variables

This chapter provides the basic information you need to write a Pro*COBOL program, including:

	
The Oracle Database 10g Datatypes

	
Datetime and Interval Datatype Descriptors

	
Host Variables

	
Indicator Variables

	
VARCHAR Variables

	
Handling Character Data

	
Universal ROWIDs

	
Globalization Support

	
Unicode Support for Pro*COBOL

	
Datatype Conversion

	
Explicit Control Over DATE String Format

	
Datatype Equivalencing

	
Platform Endianness Support

	
Sample Program 4: Datatype Equivalencing

The Oracle Database 10g Datatypes

Oracle Database 10g recognizes two kinds of datatypes: internal and external. Internal datatypes specify how Oracle10g stores data in database columns.

For complete descriptions of the Oracle internal (also called built-in) datatypes, see Oracle Database SQL Language Reference.

Oracle9i also uses internal datatypes to represent database pseudocolumns. An external datatype specifies how data is stored in a host variable.

Internal Datatypes

Table 4-1 summarizes the information about each Oracle built-in datatype.

Table 4-1 Summary of Oracle Built-In Datatypes

	Datatype	Description	Column Length and Default
	
CHAR (size)

	
Fixed-length character data of length size in characters or bytes, depending on the national character set

	
Fixed for every row in the table (with trailing blanks.) Column size is the number of characters for a fixed-width national character set or the number of bytes required to store one character, with an upper limit of 2000 bytes for each row. Default size is 1 character or 1 byte for each row, depending on the national character set. Consider the character set (one-byte or multibyte) before setting size.

	
VARCHAR2 (size)

	
Fixed-length character data of length size in characters or bytes, depending on the national character set. A maximum size must be specified.

	
Variable for each row. Column size is the number of characters for a fixed-width national character set or the number of bytes for a varying-width national character set. Maximum size is determined by the number of bytes required to store one character, with an upper limit of 4000 bytes for each row. Default size is 1 character or 1 byte, depending on the national character set.

	
NCHAR (size)

	
Fixed-length character data of length size in characters or bytes, depending on national character set.

	
Fixed for every row in the table (with trailing blanks). Column size is the number of bytes for a national character set or the number of bytes for a varying-width national character set. Maximum size is determined by the number of bytes required to store one character, with an upper limit of 2000 bytes for each row. Default is 1 character or 1 byte, depending on the character set.

	
NVARCHAR2 (size)

	
Variable-length character data of length size in characters or bytes, depending on national character set. A maximum size must be specified.

	
Variable for each row. Column size is the number of bytes for a national character set. Maximum size is determined by the number of bytes required to store one character, with an upper limit of 4000 bytes for each row. Default is 1 character or 1 byte, depending on the character set.

	
CLOB

	
Single-byte character data

	
Up to 2^32 - 1 bytes, or 4 gigabytes.

	
NCLOB

	
Single-byte or fixed-length multibyte national character set (NCHAR) data

	
Up to 2^32 - 1 bytes, or 4 gigabytes.

	
LONG

	
Variable-length character data

	
Variable for each row in the table, up to 2^31 - 1 bytes, or 2 gigabytes, for each row. Provided for backward compatibility.

	
NUMBER(p,s)

	
Variable-length numeric data.: Maximum precision p, or scale s is 38, or both.

	
Variable for each row. The maximum space required for a given column is 21 bytes for each row.

	
DATE

	
Fixed-length date and time data, ranging from Jan. 1, 4712 B.C.E. to Dec. 31, 4712 C.E.

	
Fixed at 7 bytes for each row in the table. Default format is a string (such as DD-MON-YY) specified by NLS_DATE_FORMAT parameter.

	
BLOB

	
Unstructured binary data

	
Up to 2^32 - 1 bytes, or 4 gigabytes.

	
BFILE

	
Binary data stored in an external file

	
Up to 2^32 - 1 bytes, or 4 gigabytes.

	
RAW (size)

	
Variable-length raw binary data

	
Variable for each row in the table, up to 2000 bytes for each row. A maximum size must be specified. Provided for backward compatibility.

	
LONG RAW

	
Variable-length raw binary data

	
Variable for each row in the table, up to 2^31 - 1 bytes, or 2 gigabytes, for each row. Provided for backward compatibility.

	
ROWID

	
Binary data representing row addresses

	
Fixed at 10 bytes (extended ROWID) or 6 bytes (restricted ROWID) for each row in the table.

External Datatypes

The external datatypes include all the internal datatypes plus several datatypes found in other supported host languages. Use the datatype names in datatype equivalencing, and the datatype codes in dynamic SQL Method 4. The following table lists external datatypes.

Table 4-2 External Datatypes

	Name	Code	Description
	
CHAR

	
1

96

	
<= 65535-byte, variable-length character string ()

<= 65535-byte, fixed-length character string ()

	
CHARF

	
96

	
<= 65535-byte, fixed-length character string

	
CHARZ

	
97

	
<= 65535-byte, fixed-length, null-terminated string ()

	
DATE

	
12

	
7-byte, fixed-length date/time value

	
DECIMAL

	
7

	
COBOL packed decimal

	
DISPLAY

	
91

	
COBOL numeric character string with leading sign

	
DISPLAY TRAILING

	
152

	
COBOL numeric with trailing sign

	
FLOAT

	
4

	
4-byte or 8-byte floating-point number

	
INTEGER

	
3

	
2-byte, 4-byte, or 8-byte signed integer. (8-byte on 64-bit platforms).

	
LONG

	
8

	
<= 2147483647-byte, fixed-length string

	
LONG RAW

	
24

	
<= 217483647-byte, fixed-length binary data

	
LONG VARCHAR

	
94

	
<= 217483643-byte, variable-length string

	
LONG VARRAW

	
95

	
<= 217483643-byte, variable-length binary data

	
NUMBER

	
2

	
Internal Oracle Format Number represented in binary coded decimal format.

	
OVERPUNCH LEADING

	
172

	
COBOL numeric character string with embedded leading sign

	
OVERPUNCH TRAILING

	
154

	
COBOL numeric character string with embedded trailing sign (equivalent to declarations of the form PIC S9(n)V9(m) DISPLAY)

	
RAW

	
23

	
<= 65535-byte, fixed-length binary data ()

	
ROWID

	
11

	
fixed-length binary value (system-specific)

	
STRING

	
5

	
<= 65535-byte, null-terminated character string ()

	
UNSIGNED

	
68

	
2-byte or 4-byte unsigned integer

	
UNSIGNED DISPLAY

	
153

	
COBOL unsigned numeric

	
VARCHAR

	
9

	
<= 65533-byte, variable-length character string

	
VARCHAR2

	
1

	
<= 65535-byte, variable-length character string ()

	
VARNUM

	
6

	
variable-length binary number

	
VARRAW

	
15

	
<= 65533-byte, variable-length binary data

Notes:

CHAR is datatype 1 when PICX=VARCHAR2 and datatype 96 when PICX=CHARF.

Maximum size is 32767 (32K) on some platforms.

CHAR

CHAR behavior depends on the settings of the option PICX. See "PICX".

CHARF

By default, the CHARF datatype represents all non-varying character host variables. You use the CHARF datatype to store fixed-length character strings. On most platforms, the maximum length of a CHARF value is 65535 (64K) bytes. See "PICX".

On Input. Oracle9i reads the number of bytes specified for the input host variable, does not strip trailing blanks, then stores the input value in the target database column.

If the input value is longer than the defined width of the database column, Oracle9i generates an error. If the input value is all-blank, then a string of spaces is stored.

On Output. Oracle9i returns the number of bytes specified for the output host variable, blank-padding if necessary, then assigns the output value to the target host variable. If a NULL is returned, then the original value of the variable is not overwritten.

If the output value is longer than the declared length of the host variable, Oracle9i truncates the value before assigning it to the host variable. If an indicator variable is available, Oracle9i sets it to the original length of the output value.

CHARZ

The CHARZ datatype represents fixed-length, null-terminated character strings. On most platforms, the maximum length of a CHARZ value is 65535 bytes. You usually will not need this external type in Pro*COBOL.

DATE

The DATE datatype represents dates and times in 7-byte, fixed-length fields. As Table 4-3 shows, the century, year, month, day, hour (in 24-hour format), minute, and second are stored in that order from left to right.

Table 4-3 Date Format

	Byte	1	2	3	4	5	6	7
	
Meaning

	
Century

	
Year

	
Month

	
Day

	
Hour

	
Minute

	
Second

	
Example

17-Oct-1994 at 1:23:12 PM

	
119

	
194

	
10

	
17

	
14

	
24

	
13

The century and year bytes are in excess-100 notation. The hour, minute, and second are in excess-1 notation. Dates before the Common Era (B.C.E.) are less than 100. The epoch is January 1, 4712 B.C.E. For this date, the century byte is 53 and the year byte is 88. The hour byte ranges from 1 to 24. The minute and second bytes range from 1 to 60. The time defaults to midnight (1, 1, 1). Pro*COBOL also supports five additional datetime datetypes, as described in "Datetime and Interval Datatype Descriptors" .

DECIMAL

The DECIMAL datatype represents packed decimal numbers for calculation. In COBOL, the host variable must be a signed COMP-3 field with an implied decimal point. If significant digits are lost during data conversion, the value is truncated to the declared length.

DISPLAY

The DISPLAY datatype represents numeric character data. The DISPLAY datatype refers to a COBOL "DISPLAY SIGN LEADING SEPARATE" number, which requires n + 1 bytes of storage for PIC S9(n), and n + d + 1 bytes of storage for PIC S9(n)V9(d).

FLOAT

The FLOAT datatype represents numbers that have a fractional part or that exceed the capacity of the INTEGER datatype. FLOAT relates to the COBOL datatypes COMP-1 (4-byte floating point) and COMP-2 (8-byte floating point).

Oracle9i can represent numbers with greater precision than floating point implementations because the internal format of Oracle9i numbers is decimal.

Note: In SQL statements, when comparing FLOAT values, use the SQL function ROUND because FLOAT stores binary (not decimal) numbers; so, fractions do not convert exactly.

INTEGER

The INTEGER datatype represents numbers that have no fractional part. An integer is a signed, 2-byte, 4-byte, or 8-byte binary number. (8-byte on 64-bit platforms.) The order of the bytes in a word is platform-dependent. You must specify a length for input and output host variables. On output, if the column has a fractional part, the digits after the decimal point are truncated.

LONG

The LONG datatype represents fixed-length character strings. The LONG datatype is like the VARCHAR2 datatype, except that the maximum length of a LONG value is 2147483647 bytes (two gigabytes).

LONG RAW

The LONG RAW datatype represents fixed-length, binary data or byte strings. The maximum length of a LONG RAW value is 2147483647 bytes (two gigabytes).

LONG RAW data is like LONG data, except that Oracle9i assumes nothing about the meaning of LONG RAW data and does no character set conversions when you transmit LONG RAW data from one system to another.

LONG VARCHAR

The LONG VARCHAR datatype represents variable-length character strings. LONG VARCHAR variables have a 4-byte length field followed by a string field. The maximum length of the string field is 2147483643 bytes. In an EXEC SQL VAR statement, do not include the 4-byte length field.

LONG VARRAW

The LONG VARRAW datatype represents binary data or byte strings. LONG VARRAW variables have a 4-byte length field followed by a data field. The maximum length of the data field is 2147483643 bytes. In an EXEC SQL VAR statement, do not include the 4-byte length field.

NUMBER

The NUMBER datatype represents the internal Oracle NUMBER format which cannot be represented by a COBOL datatype.

OVER-PUNCH

OVER-PUNCH is the default signed numeric for the COBOL language. Digits are held in ASCII or EBCDIC format in radix 10, with one digit for each byte of computer storage. The sign is held in the high order nibble of one of the bytes. It is called OVER-PUNCH because the sign is "punched-over" the digit in either the first or last byte. The default sign position will be over the trailing byte. PIC S9(n)V9(m) TRAILING or PIC S9(n)V9(m) LEADING is used to specify the over-punch.

RAW

The RAW datatype represents fixed-length binary data or byte strings. On most platforms, the maximum length of a RAW value is 65535 bytes.

RAW data is like CHAR data, except that Oracle9i assumes nothing about the meaning of RAW data and does no character set conversions when you transmit RAW data from one system to another.

ROWID

The ROWID datatype is the database row identifier in COBOL. To support both logical and physical ROWIDs (as well as ROWIDs of non-Oracle tables) the Universal ROWID (UROWID) was defined. Use the SQL-ROWID pseudotype for this datatype (see "Universal ROWIDs").

You can use VARCHAR2 host variables to store ROWIDs in a readable format. When you select or fetch a ROWID into a VARCHAR2 host variable, Oracle9i converts the binary value to an 18-byte character string and returns it in the format:

BBBBBBBB.RRRR.FFFF

where BBBBBBBB is the block in the database file, RRRR is the row in the block (the first row is 0), and FFFF is the database file. These numbers are hexadecimal. For example, the ROWID:

0000000E.000A.0007

points to the 11th row in the 15th block in the 7th database file.

Typically, you fetch a ROWID into a VARCHAR2 host variable, and hen compare the host variable to the ROWID pseudocolumn in the WHERE clause of an UPDATE or DELETE statement. That way, you can identify the latest row fetched by a cursor. For an example, see "Mimicking the CURRENT OF Clause".

Note: If you need full portability or your application communicates with a non-Oracle database through Transparent Gateway, specify a maximum length of 256 (not 18) bytes when declaring the VARCHAR2 host variable. If your application communicates with a non-Oracle data source through Oracle Open Gateway, specify a maximum length of 256 bytes. Though you can assume nothing about its contents, the host variable will behave normally in SQL statements.

STRING

The STRING datatype is like the VARCHAR2 datatype except that a STRING value is always terminated by a LOW-VALUE character. This datatype is usually not used in Pro*COBOL.

UNSIGNED

The UNSIGNED datatype represents unsigned integers. This datatype is usually not used in Pro*COBOL.

VARCHAR

The VARCHAR datatype represents variable-length character strings. VARCHAR variables have a 2-byte length field followed by a 65533-byte string field. However, for VARCHAR array elements, the maximum length of the string field is 65530 bytes. When you specify the length of a VARCHAR variable, be sure to include 2 bytes for the length field. For longer strings, use the LONG VARCHAR datatype. In an EXEC SQL VAR statement, do not include the 2-byte length field.

VARCHAR2

The VARCHAR2 datatype represents variable-length character strings. On most platforms, the maximum length of a VARCHAR2 value is 65535 bytes.

Specify the maximum length of a VARCHAR2(n) value in bytes, not characters. So, if a VARCHAR2(n) variable stores multibyte characters, its maximum length is less than n characters.

On Input. Oracle9i reads the number of bytes specified for the input host variable, strips any trailing blanks, and then stores the input value in the target database column.

If the input value is longer than the defined width of the database column, Oracle9i generates an error. If the input value is all SPACES, Oracle9i treats it like a NULL.

Oracle9i can convert a character value to a NUMBER column value if the character value represents a valid number. Otherwise, Oracle9i generates an error.

On Output. Oracle9i returns the number of bytes specified for the output host variable, blank-padding if necessary, and then assigns the output value to the target host variable. If a NULL is returned, Oracle9i fills the host variable with blanks.

If the output value is longer than the declared length of the host variable, Oracle9i truncates the value before assigning it to the host variable. If an indicator variable is available, Oracle9i sets it to the original length of the output value.

Oracle9i can convert NUMBER column values to character values. The length of the character host variable determines precision. If the host variable is too short for the number, scientific notation is used. For example, if you select the column value 123456789 into a host variable of length 6, Oracle9i returns the value 1.2E08 to the host variable.

VARNUM

The VARNUM datatype is similar in format to NUMBER and is usually not used in Pro*COBOL.

VARRAW

The VARRAW datatype represents variable-length binary data or byte strings. The VARRAW datatype is like the RAW datatype, except that VARRAW variables have a 2-byte length field followed by a <= 65533-byte data field. For longer strings, use the LONG VARRAW datatype. In an EXEC SQL VAR statement, do not include the 2-byte length field. To get the length of a VARRAW variable, simply refer to its length field.

SQL Pseudocolumns and Functions

SQL recognizes the pseudocolumns listed in Table 4-4, which return specific data items.

Table 4-4 Pseudocolumns and Internal Datatypes

	Pseudocolumn	Internal Datatype
	
CURRVAL

	
NUMBER

	
LEVEL

	
NUMBER

	
NEXTVAL

	
NUMBER

	
ROWID

	
ROWID

	
ROWNUM

	
NUMBER

Pseudocolumns are not actual columns in a table. However, pseudocolumns are treated like columns, so their values must be SELECTed from a table. Sometimes it is convenient to select pseudocolumn values from a dummy table.

In addition, SQL recognizes the functions without parameters listed in Table 4-5, which also return specific data items.

Table 4-5 Functions and Internal Datatypes

	Function	Internal Datatype
	
SYSDATE

	
DATE

	
UID

	
NUMBER

	
USER

	
VARCHAR2

You can refer to SQL pseudocolumns and functions in SELECT, INSERT, UPDATE, and DELETE statements. In the following example, you use SYSDATE to compute the number of months since an employee was hired:

 EXEC SQL SELECT MONTHS_BETWEEN(SYSDATE, HIREDATE)
 INTO :MONTHS-OF-SERVICE
 FROM EMP
 WHERE EMPNO = :EMP-NUMBER
 END EXEC.

Brief descriptions of the SQL pseudocolumns and functions follow. For details, see the Oracle Database SQL Language Reference.

CURRVAL returns the current number in a specified sequence. Before you can reference CURRVAL, you must use NEXTVAL to generate a sequence number.

LEVEL returns the level number of a node in a tree structure. The root is level 1, children of the root are level 2, grandchildren are level 3, and so on.

LEVEL is used in the SELECT CONNECT BY statement to incorporate some or all the rows of a table into a tree structure. In an ORDER BY or GROUP BY clause, LEVEL segregates the data at each level in the tree.

Specify the direction in which the query walks the tree (down from the root or up from the branches) with the PRIOR operator. In the START WITH clause, you can specify a condition that identifies the root of the tree.

NEXTVAL returns the next number in a specified sequence. After creating a sequence, you can use it to generate unique sequence numbers for transaction processing. In the following example, the sequence named partno assigns part numbers:

 EXEC SQL INSERT INTO PARTS
 VALUES (PARTNO.NEXTVAL, :DESCRIPTION, :QUANTITY, :PRICE
 END EXEC.

If a transaction generates a sequence number, the sequence is incremented when you commit or roll back the transaction. A reference to NEXTVAL stores the current sequence number in CURRVAL.

ROWNUM returns a number indicating the sequence in which a row was selected from a table. The first row selected has a ROWNUM of 1, the second row has a ROWNUM of 2, and so on. If a SELECT statement includes an ORDER BY clause, ROWNUMs are assigned to the selected rows before the sort is done.

You can use ROWNUM to limit the number of rows returned by a SELECT statement. Also, you can use ROWNUM in an UPDATE statement to assign unique values to each row in a table. Using ROWNUM in the WHERE clause does not stop the processing of a SELECT statement; it just limits the number of rows retrieved. The only meaningful use of ROWNUM in a WHERE clause is:

 ... WHERE ROWNUM < constant END-EXEC.

because the value of ROWNUM increases only when a row is retrieved. The following search condition can never be met because the first four rows are not retrieved:

 ... WHERE ROWNUM = 5 END-EXEC.

SYSDATE returns the current date and time.

UID returns the unique ID number assigned to an Oracle user.

USER returns the username of the current Oracle user.

Datetime and Interval Datatype Descriptors

The OCI datetime and interval datatypes supported by Pro*COBOL are briefly summarized here.

	
See Also:

Oracle Database SQL Language Reference for more a more complete discussion datetime datatype descriptors

ANSI DATE

The ANSI DATE is based on the DATE, but contains no time portion. (Therefore, it also has no time zone.) ANSI DATE follows the ANSI specification for the DATE datatype. When assigning an ANSI DATE to a DATE or a timestamp datatype, the time portion of the Oracle DATE and the timestamp are set to zero. When assigning a DATE or a timestamp to an ANSI DATE, the time portion is ignored.

You are encouraged to instead use the TIMESTAMP datatype which contains both date and time.

TIMESTAMP

The TIMESTAMP datatype is an extension of the DATE datatype. It stores the year, month, and day of the DATE datatype, plus the hour, minute, and second values. It has no time zone. The TIMESTAMP datatype has the form:

TIMESTAMP(fractional_seconds_precision)

where fractional_seconds_precision (which is optional) specifies the number of digits in the fractional part of the SECOND datetime field and can be a number in the range 0 to 9. The default is 6.

TIMESTAMP WITH TIME ZONE

TIMESTAMP WITH TIME ZONE (TSTZ) is a variant of TIMESTAMP that includes an explicit time zone displacement in its value. The time zone displacement is the difference (in hours and minutes) between local time and UTC (Coordinated Universal Time—formerly Greenwich Mean Time). The TIMESTAMP WITH TIME ZONE datatype has the form:

TIMESTAMP(fractional_seconds_precision) WITH TIME ZONE

where fractional_seconds_precision optionally specifies the number of digits in the fractional part of the SECOND datetime field and can be a number in the range 0 to 9. The default is 6.

Two TIMESTAMP WITH TIME ZONE values are considered identical if they represent the same instant in UTC, regardless of the TIME ZONE offsets stored in the data.

TIMESTAMP WITH LOCAL TIME ZONE

TIMESTAMP WITH LOCAL TIME ZONE (TSLTZ) is another variant of TIMESTAMP that includes a time zone displacement in its value. Storage is in the same format as for TIMESTAMP. This type differs from TIMESTAMP WITH TIME ZONE in that data stored in the database is normalized to the database time zone, and the time zone displacement is not stored as part of the column data. When users retrieve the data, Oracle returns it in the users' local session time zone.

The time zone displacement is the difference (in hours and minutes) between local time and UTC (Coordinated Universal Time—formerly Greenwich Mean Time). The TIMESTAMP WITH LOCAL TIME ZONE datatype has the form:

TIMESTAMP(fractional_seconds_precision) WITH LOCAL TIME ZONE

where Embedded PL/SQL

6 Embedded PL/SQL

This chapter shows you how to improve performance by embedding PL/SQL transaction processing blocks in your program. This chapter has the following sections:

	
Embedding PL/SQL

	
Advantages of PL/SQL

	
Embedding PL/SQL Blocks

	
Host Variables and PL/SQL

	
Indicator Variables and PL/SQL

	
Host Tables and PL/SQL

	
Cursor Usage in Embedded PL/SQL

	
Stored PL/SQL and Java Subprograms

	
Sample Program 9: Calling a Stored Procedure

	
Cursor Variables

Embedding PL/SQL

Pro*COBOL treats a PL/SQL block like a single embedded SQL statement. You can place a PL/SQL block anywhere in a host program that you can place a SQL statement.

To embed a PL/SQL block in your host program, declare the variables to be shared with PL/SQL and bracket the PL/SQL block with the EXEC SQL EXECUTE and END-EXEC keywords.

Host Variables

Inside a PL/SQL block, host variables are global to the entire block and can be used anywhere a PL/SQL variable is allowed. Like host variables in a SQL statement, host variables in a PL/SQL block must be prefixed with a colon. The colon sets host variables apart from PL/SQL variables and database objects.

VARCHAR Variables

When entering a PL/SQL block, Oracle9i automatically checks the length fields of VARCHAR host variables. Therefore, you must set the length fields before the block is entered. For input variables, set the length field to the length of the value stored in the string field. For output variables, set the length field to the maximum length allowed by the string field.

Indicator Variables

In a PL/SQL block, you cannot refer to an indicator variable by itself; it must be appended to its associated host variable. Further, if you refer to a host variable with its indicator variable, you must always refer to it that way in the same block.

Handling NULLs

When entering a block, if an indicator variable has a value of -1, PL/SQL automatically assigns a NULL to the host variable. When exiting the block, if a host variable is NULL, PL/SQL automatically assigns a value of -1 to the indicator variable.

Handling Truncated Values

PL/SQL does not raise an exception when a truncated string value is assigned to a host variable. However, if you use an indicator variable, PL/SQL sets it to the original length of the string.

SQLCHECK

You must specify SQLCHECK=SEMANTICS when precompiling a program with an embedded PL/SQL block. You must also use the USERID option. For more information, see Chapter 14, "Precompiler Options".

Advantages of PL/SQL

This section looks at some of the features and benefits offered by PL/SQL, such as:

	
Better performance

	
Integration with Oracle9i

	
Cursor FOR loops

	
Procedures and functions

	
Packages

	
PL/SQL tables

	
User-defined records

For more information about PL/SQL, see Oracle Database PL/SQL Language Reference.

Better Performance

PL/SQL can help you reduce overhead, improve performance, and increase productivity. For example, without PL/SQL, Oracle9i must process SQL statements one at a time. Each SQL statement results in another call to the Server and higher overhead. However, with PL/SQL, you can send an entire block of SQL statements to the server. This minimizes communication between your application and the server.

Integration with Oracle9i

PL/SQL is tightly integrated with the server. For example, most PL/SQL datatypes are native to the data dictionary. Furthermore, you can use the %TYPE attribute to base variable declarations on column definitions stored in the data dictionary, as the following example shows:

job_title emp.job%TYPE;

That way, you need not know the exact datatype of the column. Furthermore, if a column definition changes, the variable declaration changes accordingly and automatically. This provides data independence, reduces maintenance costs, and allows programs to adapt as the database changes.

Cursor FOR Loops

With PL/SQL, you need not use the DECLARE, OPEN, FETCH, and CLOSE statements to define and manipulate a cursor. Instead, you can use a cursor FOR loop, which implicitly declares its loop index as a record, opens the cursor associated with a given query, repeatedly fetches data from the cursor into the record and then closes the cursor. An example follows:

DECLARE
 ...
BEGIN
 FOR emprec IN (SELECT empno, sal, comm FROM emp) LOOP
 IF emprec.comm / emprec.sal > 0.25 THEN ...
 ...
 END LOOP;
END;

Notice that you use dot notation to reference fields in the record.

Subprograms

PL/SQL has two types of subprograms called procedures and functions, which aid application development by letting you isolate operations. Generally, you use a procedure to perform an action and a function to compute a value.

Procedures and functions provide extensibility. That is, they let you tailor the PL/SQL language to suit your needs. For example, if you need a procedure that creates a new department, you can write your own, such as follows:

PROCEDURE create_dept
 (new_dname IN CHAR(14),
 new_loc IN CHAR(13),
 new_deptno OUT NUMBER(2)) IS
BEGIN
 SELECT deptno_seq.NEXTVAL INTO new_deptno FROM dual;
 INSERT INTO dept VALUES (new_deptno, new_dname, new_loc);
END create_dept;

When called, this procedure accepts a new department name and location, selects the next value in a department-number database sequence, inserts the new number, name, and location into the dept table and then returns the new number to the caller.

You can store subprograms in the database (using CREATE FUNCTION and CREATE PROCEDURE) that can be called from multiple applications without needing to be re-compiled each time.

Parameter Modes

You use parameter modes to define the behavior of formal parameters. There are three parameter modes: IN (the default), OUT, and IN OUT. An IN parameter lets you pass values to the subprogram being called. An OUT parameter lets you return values to the caller of a subprogram. An IN OUT parameter lets you pass initial values to the subprogram being called and return updated values to the caller.

The datatype of each actual parameter must be convertible to the datatype of its corresponding formal parameter. Table 6-1 shows the legal conversions between datatypes.

Packages

PL/SQL lets you bundle logically related types, program objects, and subprograms into a package. Packages can be compiled and stored in a database, where their contents can be shared by multiple applications.

Packages usually have two parts: a specification and a body. The specification is the interface to your applications; it declares the types, constants, variables, exceptions, cursors, and subprograms available for use. The body defines cursors and subprograms and so implements the specification. The following example "packages" two employment procedures:

PACKAGE emp_actions IS -- package specification
 PROCEDURE hire_employee (empno NUMBER, ename CHAR, ...);
 PROCEDURE fire_employee (emp_id NUMBER);
END emp_actions;

PACKAGE BODY emp_actions IS -- package body
 PROCEDURE hire_employee (empno NUMBER, ename CHAR, ...) IS
 BEGIN
 INSERT INTO emp VALUES (empno, ename, ...);
 END hire_employee;
 PROCEDURE fire_employee (emp_id NUMBER) IS
 BEGIN
 DELETE FROM emp WHERE empno = emp_id;
 END fire_employee;
END emp_actions;

Only the declarations in the package specification are visible and accessible to applications. Implementation details in the package body are hidden and inaccessible.

PL/SQL Tables

PL/SQL provides a composite datatype named TABLE. Objects of type TABLE are called PL/SQL tables, which are modeled as (but not the same as) database tables. PL/SQL tables have only one column and use a primary key to give you array-like access to rows. The column can belong to any scalar type (such as CHAR, DATE, or NUMBER), but the primary key must belong to type BINARY_INTEGER, PLS_INTEGER or VARCHAR2.

You can declare PL/SQL table types in the declarative part of any block, procedure, function, or package. The following example declares a TABLE type called NumTabTyp:

DECLARE
 TYPE NumTabTyp IS TABLE OF NUMBER
 INDEX BY BINARY_INTEGER;
 ...
BEGIN
 ...
END;

Once you define type NumTabTyp, you can declare PL/SQL tables of that type, as the next example shows:

num_tab NumTabTyp;

The identifier num_tab represents an entire PL/SQL table.

You reference rows in a PL/SQL table using array-like syntax to specify the primary key value. For example, you reference the ninth row in the PL/SQL table named num_tab as follows:

num_tab(9) ...

User-Defined Records

You can use the %ROWTYPE attribute to declare a record that represents a row in a database table or a row fetched by a cursor. However, you cannot specify the datatypes of fields in the record or define fields of your own. The composite datatype RECORD lifts those restrictions.

Objects of type RECORD are called records. Unlike PL/SQL tables, records have uniquely named fields, which can belong to different datatypes. For example, suppose you have different kinds of data about an employee such as name, salary, hire date, and so on. This data is dissimilar in type but logically related. A record that contains such fields as the name, salary, and hire date of an employee would let you treat the data as a logical unit.

You can declare record types and objects in the declarative part of any block, procedure, function, or package. The following example declares a RECORD type called DeptRecTyp:

DECLARE
 TYPE DeptRecTyp IS RECORD
 (deptno NUMBER(4) NOT NULL := 10, -- must initialize
 dname CHAR(9),
 loc CHAR(14));

Notice that the field declarations are like variable declarations. Each field has a unique name and specific datatype. You can add the NOT NULL option to any field declaration and so prevent the assigning of NULLs to that field. However, you must initialize NOT NULL fields.

Once you define type DeptRecTyp, you can declare records of that type, as the next example shows:

dept_rec DeptRecTyp;

The identifier dept_rec represents an entire record.

You use dot notation to reference individual fields in a record. For example, you reference the dname field in the dept_rec record as follows:

dept_rec.dname ...

Embedding PL/SQL Blocks

Pro*COBOL treats a PL/SQL block like a single embedded SQL statement. Thus, you can place a PL/SQL block anywhere in a host program that you can place a SQL statement.

To embed a PL/SQL block in your host program, simply bracket the PL/SQL block with the keywords EXEC SQL EXECUTE and END-EXEC as follows:

 EXEC SQL EXECUTE
 DECLARE
 ...
 BEGIN
 ...
 END;
 END-EXEC.

When your program embeds PL/SQL blocks, you must specify the precompiler option SQLCHECK=SEMANTICS because PL/SQL must be parsed by Pro*COBOL. To connect to the server, you must also specify the option USERID. For more information, see "Using Pro*COBOL Precompiler Options".

Host Variables and PL/SQL

Host variables are the key to communication between a host language and a PL/SQL block. Host variables can be shared with PL/SQL, meaning that PL/SQL can set and reference host variables.

For example, you can prompt a user for information and use host variables to pass that information to a PL/SQL block. Then, PL/SQL can access the database and use host variables to pass the results back to your host program.

Inside a PL/SQL block, host variables are treated as global to the entire block and can be used anywhere a PL/SQL variable is allowed. Like host variables in a SQL statement, host variables in a PL/SQL block must be prefixed with a colon. The colon sets host variables apart from PL/SQL variables and database objects.

PL/SQL Examples

The following example illustrates the use of host variables with PL/SQL. The program prompts the user for an employee number and then displays the job title, hire date, and salary of that employee.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(20) VARYING.
 01 PASSWORD PIC X(20) VARYING.
 01 EMP-NUMBER PIC S9(4) COMP.
 01 JOB-TITLE PIC X(20) VARYING.
 01 HIRE-DATE PIC X(9) VARYING.
 01 SALARY PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 EXEC SQL END DECLARE SECTION END-EXEC.
 EXEC SQL INCLUDE SQLCA END-EXEC.
 ...
 DISPLAY 'Connected to Oracle'.
 PERFORM
 DISPLAY 'Employee Number (0 to end)? 'WITH NO ADVANCING
 ACCEPT EMP-NUMBER
 IF EMP-NUMBER = 0
 EXEC SQL COMMIT WORK RELEASE END-EXEC
 DISPLAY 'Exiting program'
 STOP RUN
 END-IF.
* ---------------- begin PL/SQL block -----------------
 EXEC SQL EXECUTE
 BEGIN
 SELECT job, hiredate, sal
 INTO :JOB-TITLE, :HIRE-DATE, :SALARY
 FROM EMP
 WHERE EMPNO = :EMP-NUMBER;
 END;
 END-EXEC.
* ---------------- end PL/SQL block -----------------
 DISPLAY 'Number Job Title Hire Date Salary'.
 DISPLAY '------------------------------------'.
 DISPLAY EMP-NUMBER, JOB-TITLE, HIRE-DATE, SALARY.
 END-PERFORM.
 ...
 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 DISPLAY 'Processing error'.
 STOP RUN.

Notice that the host variable EMP-NUMBER is set before the PL/SQL block is entered, and the host variables JOB-TITLE, HIRE-DATE, and SALARY are set inside the block.

A More Complex PL/SQL Example

In the following example the user is prompted for a bank account number, transaction type, and transaction amount. The account is then debited or credited. If the account does not exist, an exception is raised. When the transaction is complete its status is displayed.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(20) VARYING.
 01 ACCT-NUM PIC S9(4) COMP.
 01 TRANS-TYPE PIC X(1).
 01 TRANS-AMT PIC PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 01 STATUS PIC X(80) VARYING.
 EXEC SQL END DECLARE SECTION END-EXEC.
 EXEC SQL INCLUDE SQLCA END-EXEC.
 DISPLAY 'Username? 'WITH NO ADVANCING.
 ACCEPT USERNAME.
 DISPLAY 'Password? '.
 ACCEPT PASSWORD.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR.
 EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWORD.
 PERFORM
 DISPLAY 'Account Number (0 to end)? '
 WITH NO ADVANCING
 ACCEPT ACCT_NUM
 IF ACCT-NUM = 0
 EXEC SQL COMMIT WORK RELEASE END-EXEC
 DISPLAY 'Exiting program' WITH NO ADVANCING
 STOP RUN
 END-IF.
 DISPLAY 'Transaction Type - D)ebit or C)redit? '
 WITH NO ADVANCING
 ACCEPT TRANS-TYPE
 DISPLAY 'Transaction Amount? '
 ACCEPT trans_amt
* --------------------- begin PL/SQL block -------------------
 EXEC SQL EXECUTE
 DECLARE
 old_bal NUMBER(9,2);
 err_msg CHAR(70);
 nonexistent EXCEPTION;
 BEGIN
 IF :TRANS-TYP-TYPE = 'C' THEN -- credit the account
 UPDATE accts SET bal = bal + :TRANS-AMT
 WHERE acctid = :acct-num;
 IF SQL%ROWCOUNT = 0 THEN -- no rows affected
 RAISE nonexistent;
 ELSE
 :STATUs := 'Credit applied';
 END IF;
 ELSIF :TRANS-TYPe = 'D' THEN -- debit the account
 SELECT bal INTO old_bal FROM accts
 WHERE acctid = :ACCT-NUM;
 IF old_bal >= :TRANS-AMT THEN -- enough funds
 UPDATE accts SET bal = bal - :TRANS-AMT
 WHERE acctid = :ACCT-NUM;
 :STATUS := 'Debit applied';
 ELSE
 :STATUS := 'Insufficient funds';
 END IF;
 ELSE
 :STATUS := 'Invalid type: ' || :TRANS-TYPE;
 END IF;
 COMMIT;
 EXCEPTION
 WHEN NO_DATA_FOUND OR nonexistent THEN
 :STATUS := 'Nonexistent account';
 WHEN OTHERS THEN
 err_msg := SUBSTR(SQLERRM, 1, 70);
 :STATUS := 'Error: ' || err_msg;
 END;
 END-EXEC.
* ------------------- end PL/SQL block -----------------------
 DISPLAY 'Status: ', STATUS
 END-PERFORM.
 ...
 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 DISPLAY 'Processing error'.
 STOP RUN.

VARCHAR Pseudotype

Recall that you can use the VARCHAR pseudotype to declare variable-length character strings. If the VARCHAR is an input host variable, you must tell Pro*COBOL what length to expect. Therefore, set the length field to the actual length of the value stored in the string field.

If the VARCHAR is an output host variable, Pro*COBOL automatically sets the length field. However, to use a VARCHAR output host variable in your PL/SQL block, you must initialize the length field before entering the block. Therefore, set the length field to the declared (maximum) length of the VARCHAR, as shown in the following example:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 EMP-NUM PIC S9(4) COMP.
 01 EMP-NAME PIC X(10) VARYING.
 01 SALARY PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
 PROCEDURE DIVISION.
 ...
* -- initialize length field
 MOVE 10 TO EMP-NAME-LEN.
 EXEC SQL EXECUTE
 BEGIN
 SELECT ename, sal INTO :EMP-NAME, :SALARY
 FROM emp
 WHERE empno = :EMP-NUM;
 ...
 END;
 END-EXEC.

Indicator Variables and PL/SQL

PL/SQL does not need indicator variables because it can manipulate NULLs. For example, within PL/SQL, you can use the IS NULL operator to test for NULLs, as follows:

IF variable IS NULL THEN ...

You can use the assignment operator (:=) to assign NULLs, as follows:

variable := NULL;

However, host languages need indicator variables because they cannot manipulate NULLs. Embedded PL/SQL meets this need by letting you use indicator variables to:

	
Accept NULLs input from a host program

	
Output NULLs or truncated values to a host program

When used in a PL/SQL block, indicator variables are subject to the following rule:

	
If you refer to a host variable with an indicator variable, you must always refer to it that way in the same block.

In the following example, the indicator variable IND-COMM appears with its host variable COMMISSION in the SELECT statement, so it must appear that way in the IF statement:

 EXEC SQL EXECUTE
 BEGIN
 SELECT ename, comm
 INTO :EMP-NAME, :COMMISSION:IND-COMM FROM emp
 WHERE empno = :EMP-NUM;
 IF :COMMISSION:IND-COMM IS NULL THEN ...
 ...
 END;
 END-EXEC.

Notice that PL/SQL treats :COMMISSION:IND-COMM like any other simple variable. Though you cannot refer directly to an indicator variable inside a PL/SQL block, PL/SQL checks the value of the indicator variable when entering the block and sets the value correctly when exiting the block.

Handling NULLs

When entering a block, if an indicator variable has a value of -1, PL/SQL automatically assigns a NULL to the host variable. When exiting the block, if a host variable is NULL, PL/SQL automatically assigns a value of -1 to the indicator variable. In the next example, if IND-SAL had a value of -1 before the PL/SQL block was entered, the salary_missing exception is raised. An exception is a named error condition.

 EXEC SQL EXECUTE
 BEGIN
 IF :SALARY:IND-SAL IS NULL THEN
 RAISE salary_missing;
 END IF;
 ...
 END;
 END-EXEC.

Handling Truncated Values

PL/SQL does not raise an exception when a truncated string value is assigned to a host variable. However, if you use an indicator variable, PL/SQL sets it to the original length of the string. The following example the host program will be able to tell, by checking the value of IND-NAME, if a truncated value was assigned to EMP-NAME:

 EXEC SQL EXECUTE
 DECLARE
 ...
 new_name CHAR(10);
 BEGIN
 ...
 :EMP_NAME:IND-NAME := new_name;
 ...
 END;
 END-EXEC.

Host Tables and PL/SQL

You can pass input host tables and indicator tables to a PL/SQL block. They can be indexed by a PL/SQL variable of type BINARY_INTEGER or PLS_INTEGER; VARCHAR2 key types are not permitted. Normally, the entire host table is passed to PL/SQL, but you can use the ARRAYLEN statement (discussed later) to specify a smaller table dimension.

Furthermore, you can use a subprogram call to assign all the values in a host table to rows in a PL/SQL table. Given that the table subscript range is m .. n, the corresponding PL/SQL table index range is always 1 .. (n - m + 1). For example, if the table subscript range is 5 .. 10, the corresponding PL/SQL table index range is 1 .. (10 - 5 + 1) or 1 .. 6.

Note: Pro*COBOL does not check your usage of host tables. For instance, no index range checking is done.

In the following example, you pass a host table named salary to a PL/SQL block, which uses the host table in a function call. The function is named median because it finds the middle value in a series of numbers. Its formal parameters include a PL/SQL table named num_tab. The function call assigns all the values in the actual parameter salary to rows in the formal parameter num_tab.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 01 SALARY OCCURS 100 TIMES PIC S9(6)V99 COMP-3.
 01 MEDIAN-SALARY PIC S9(6)V99 COMP-3.
 EXEC SQL END DECLARE SECTION END-EXEC.
* -- populate the host table
 EXEC SQL EXECUTE
 DECLARE
 TYPE NumTabTyp IS TABLE OF REAL
 INDEX BY BINARY_INTEGER;
 n BINARY_INTEGER;
 ...
 FUNCTION median (num_tab NumTabTyp, n INTEGER)
 RETURN REAL IS
 BEGIN
* -- compute median
 END;
 BEGIN
 n := 100;
 :MEDIAN-SALARY := median(:SALARY END;
 END-EXEC.

You can also use a subprogram call to assign all row values in a PL/SQL table to corresponding elements in a host table. For an example, see "Stored PL/SQL and Java Subprograms".

The interface between Host Tables and PL/SQL strictly controls datatypes. The default external type for PIC X is CHARF (fixed length character string) and this can only be mapped to PL/SQL tables of type CHAR.

Table 6-1 shows the legal conversions between row values in a PL/SQL table and elements in a host table. The most notable fact is that you cannot pass a PIC X variable to a table of type VARCHAR2 without using datatype equivalencing to equivalence the variable to VARCHAR2, or using PICX=VARCHAR2 on the command line.

Table 6-1 Legal Datatype Conversions

	PL/SQL Table	-	-	-	-	-	-	-	-
	
Host Table

	
CHAR

	
DATE

	
LONG

	
LONG RAW

	
NUMBER

	
RAW

	
ROWID

	
VARCHAR2

	
CHARF

	
X

	
-

	
-

	
-

	
-

	
-

	
-

	
-

	
CHARZ

	
X

	
-

	
-

	
-

	
-

	
-

	
-

	
-

	
DATE

	
-

	
X

	
-

	
-

	
-

	
-

	
-

	
-

	
DECIMAL

	
-

	
-

	
-

	
-

	
X

	
-

	
-

	
-

	
DISPLAY

	
-

	
-

	
-

	
-

	
X

	
-

	
-

	
-

	
FLOAT

	
-

	
-

	
-

	
-

	
X

	
-

	
-

	
-

	
INTEGER

	
-

	
-

	
-

	
-

	
-

	
-

	
-

	
-

	
LONG

	
X

	
-

	
X

	
-

	
-

	
-

	
-

	
-

	
LONG VARCHAR

	
-

	
-

	
X

	
X

	
-

	
X

	
-

	
X

	
LONG VARRAW

	
-

	
-

	
-

	
X

	
-

	
X

	
-

	
-

	
NUMBER

	
-

	
-

	
-

	
-

	
X

	
	
-

	
-

	
RAW

	
-

	
-

	
-

	
X

	
-

	
X

	
-

	
-

	
ROWID

	
-

	
-

	
-

	
-

	
-

	
-

	
X

	
-

	
STRING

	
-

	
-

	
X

	
X

	
-

	
X

	
-

	
X

	
UNSIGNED

	
-

	
-

	
-

	
-

	
X

	
-

	
-

	
-

	
VARCHAR

	
-

	
-

	
X

	
X

	
-

	
X

	
-

	
X

	
VARCHAR2

	
-

	
-

	
X

	
X

	
-

	
X

	
-

	
X

	
VARNUM

	
-

	
-

	
-

	
-

	
X

	
-

	
-

	
-

	
VARRAW

	
-

	
-

	
-

	
X

	
-

	
X

	
-

	
-

ARRAYLEN Statement

Suppose you must pass an input host table to a PL/SQL block for processing. By default, when binding such a host table, Pro*COBOL use its declared dimension. However, you might not want to process the entire table. In that case, you can use the ARRAYLEN statement to specify a smaller table dimension. ARRAYLEN associates the host table with a host variable, which stores the smaller dimension. The statement syntax is:

 EXEC SQL ARRAYLEN host_array (dimension) EXECUTE END-EXEC.

where dimension is a 4-byte, integer host variable, not a literal or an expression.

The ARRAYLEN statement must appear somewhere after the declarations of host_array and dimension. You cannot specify an offset into the host table. However, you might be able to use COBOL features for that purpose.

The following example uses ARRAYLEN to override the default dimension of a host table named BONUS:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 BONUS OCCURS 100 TIMES PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 01 MY-DIM PIC S9(9) COMP.
 ...
 EXEC SQL ARRAYLEN BONUS (MY-DIM) END-EXEC.
 EXEC SQL END DECLARE SECTION END-EXEC.
* -- populate the host table
 ...
* -- set smaller table dimension
 MOVE 25 TO MY-DIM.
 EXEC SQL EXECUTE
 DECLARE
 TYPE NumTabTyp IS TABLE OF REAL
 INDEX BY BINARY_INTEGER;
 median_bonus REAL;
 FUNCTION median (num_tab NumTabTyp, n INTEGER)
 RETURN REAL IS
 BEGIN
* -- compute median
 END;
 BEGIN
 median_bonus := median(:BONUS, :MY-DIM);
 ...
 END;
 END-EXEC.

Only 25 table elements are passed to the PL/SQL block because ARRAYLEN reduces the host table from 100 to 25 elements. As a result, when the PL/SQL block is sent to the server for execution, a much smaller host table is sent along. This saves time and, in a networked environment, reduces network traffic.

Optional Keyword EXECUTE to ARRAYLEN Statement

The use of host tables used in a dynamic SQL Method 2 statement (see "Using Method 2") may have two different interpretations based on the presence or absence of the keyword to EXECUTE the ARRAYLEN statement. .

If the EXECUTE keyword is absent:

	
The PL/SQL block will be executed multiple times, with the actual number determined by the minimum dimension of ARRAYLEN used.

	
The host array cannot be bound to a PL/SQL table.

If EXECUTE is present:

	
The host table must be bound to an index table.

	
The PL/SQL block will be executed once.

	
All host variables specified in the EXEC SQL EXECUTE statement must:

	
Be specified in an ARRAYLEN ... EXECUTE statement, or

	
Be a scalar.

The following Pro*COBOL example demonstrates how host tables can be used to determine how many times a given PL/SQL block is executed. In this case, the PL/SQL block will be execute 3 times resulting in 3 new rows in the emp table.

 ...
 01 DYNSTMT PIC X(80) VARYING.
 01 EMPNOTAB PIC S9(4) COMPUTATIONAL OCCURS 5 TIMES.
 01 ENAMETAB PIC X(10) OCCURS 3 TIMES.
 ...
 MOVE 1111 TO EMPNOTAB(1).
 MOVE 2222 TO EMPNOTAB(2).
 MOVE 3333 TO EMPNOTAB(3).
 MOVE 4444 TO EMPNOTAB(4).
 MOVE 5555 TO EMPNOTAB(5).

 MOVE "MICKEY" TO ENAMETAB(1).
 MOVE "MINNIE" TO ENAMETAB(2).
 MOVE "GOOFY" TO ENAMETAB(3).

 MOVE "BEGIN INSERT INTO emp(empno, ename) VALUES :b1, :b2; END;"
 TO DYNSTMT-ARR.
 MOVE 57 TO DYNSTMT-LEN.

 EXEC SQL PREPARE s1 FROM :DYNSTMT END-EXEC.
 EXEC SQL EXECUTE s1 USING :EMPNOTAB, :ENAMETAB END-EXEC.
 ...

Given the following PL/SQL procedure:

 CREATE OR REPLACE PACKAGE pkg AS
 TYPE tab IS TABLE OF NUMBER(5) INDEX BY BINARY_INTEGER;
 PROCEDURE proc1 (parm1 tab, parm2 NUMBER, parm3 tab);
 END;

The following Pro*COBOL example demonstrates how to bind a host table to a PL/SQL index table through dynamic method 2. Note the presence of the ARRAYLEN...EXECUTE statement for all host arrays specified in the EXEC SQL EXECUTE statement.

 ...
 01 DYNSTMT PIC X(80) VARYING.
 01 II PIC S9(4) COMP VALUE 2.
 01 INTTAB PIC S9(9) COMP OCCURS 3 TIMES.
 01 DIM PIC S9(9) COMP VALUE 3.

 EXEC SQL ARRAYLEN INTTAB (DIM) EXECUTE END-EXEC.
 ...
 MOVE 1 TO INTTAB(1).
 MOVE 2 TO INTTAB(2).
 MOVE 3 TO INTTAB(3).

 MOVE "BEGIN pkg.proc1 (:v1, :v2, :v3); end;";
 TO DYNSTMT-ARR.
 MOVE 37 TO DYNSTMT-LEN.

 EXEC SQL PREPARE s1 FROM :DYNSTMT END-EXEC.
 EXEC SQL EXECUTE s1 USING :INTTAB, :II, :INTTAB END-EXEC.
 ...

However, the following Pro*COBOL example will result in a precompile-time error because there is no ARRAYLEN...EXECUTE statement for INTTAB2.

 ...
 01 DYNSTMT PIC X(80) VARYING.
 01 INTTAB PIC S9(9) COMP OCCURS 3 TIMES.
 01 INTTAB2 PIC S9(9) COMP OCCURS 3 TIMES.
 01 DIM PIC S9(9) COMP VALUE 3.

 EXEC SQL ARRAYLEN INTTAB (DIM) EXECUTE END-EXEC.
 ...
 MOVE 1 TO INTTAB(1).
 MOVE 2 TO INTTAB(2).
 MOVE 3 TO INTTAB(3).

 MOVE "BEGIN pkg.proc1 (:v1, :v2, :v3); end;";
 TO DYNSTMT-ARR.
 MOVE 37 TO DYNSTMT-LEN.

 EXEC SQL PREPARE s1 FROM :DYNSTMT END-EXEC.
 EXEC SQL EXECUTE s1 USING :INTTAB, :INTTAB2, :INTTAB END-EXEC.
 ...

Cursor Usage in Embedded PL/SQL

The maximum number of cursors your program can simultaneously use is determined by the database initialization parameter OPEN_CURSORS. Normally, to prevent OPEN_CURSORS being exceeded, the precompiler allows management of statement cursors. The precompiler options HOLD_CURSOR, RELEASE_CURSOR and MAXOPENCURSORS are used. (For more details on this subject, see "Embedded PL/SQL Considerations".) While executing an embedded PL/SQL block there will be one cursor, the parent cursor, associated with the entire PL/SQL block and a separate child cursor for each statement executed during the execution of the PL/SQL block. Because the PL/SQL block is passed to the server for execution, only the parent cursor can be tracked by the precompiler runtime library. Thus, it is possible for applications that use a lot of cursors in this way to exceed OPEN_CURSORS. Figure 6-1 shows how to calculate the maximum number of cursors used.

Figure 6-1 Maximum Cursors in Use

[image: Maximum Cursors in Use]

Developers should be aware of this situation and plan for this in the setting of OPEN_CURSORS and MAXOPENCURSORS.

If there are problems with this, you may wish to free all child cursors after a SQL statement is executed.

This can be achieved by setting RELEASE_CURSOR=YES and HOLD_CURSOR=NO. Because the use of the first setting for the entire program is likely to have an impact on performance, you can set these options in line as follows:

 EXEC ORACLE OPTION (RELEASE_CURSOR=YES) END-EXEC.
* -- first embedded PL/SQL block
 EXEC ORACLE OPTION (RELEASE_CURSOR=NO)END-EXEC.
* -- embedded SQL statements
 EXEC ORACLE OPTION (RELEASE_CURSOR=YES)END-EXEC.
* -- second embedded PL/SQL block
 EXEC ORACLE OPTION (RELEASE_CURSOR=NO)END-EXEC.
* -- embedded SQL statements

Stored PL/SQL and Java Subprograms

Unlike anonymous blocks, PL/SQL subprograms (procedures and functions) and Java methods can be compiled separately, stored in the database, and invoked.

A subprogram explicitly created using an Oracle tool such as SQL*Plus is called a stored subprogram. Once compiled and stored in the data dictionary, it is a database object can be re-executed without being re-compiled.

When a subprogram within a PL/SQL block or stored subprogram is sent to the database by your application, it is called an inline subprogram and is compiled by the database. Pro*COBOL sends the statement to the server for execution.

Subprograms defined within a package are considered part of the package, and so are called packaged subprograms. Stored subprograms not defined within a package are called standalone subprograms.

Creating Stored Subprograms

You can embed the SQL statements CREATE FUNCTION, CREATE PROCEDURE, and CREATE PACKAGE in a COBOL program, as the following example shows:

 EXEC SQL CREATE
 FUNCTION sal_ok (salary REAL, title CHAR)
 RETURN BOOLEAN AS
 min_sal REAL;
 max_sal REAL;
 BEGIN
 SELECT losal, hisal INTO min_sal, max_sal
 FROM sals
 WHERE job = title;
 RETURN (salary >= min_sal) AND
 (salary <= max_sal);
 END sal_ok;
 END-EXEC.

Notice that the embedded CREATE {FUNCTION | PROCEDURE | PACKAGE} statement is a hybrid. Like all other embedded CREATE statements, it begins with the keywords EXEC SQL (not EXEC SQL EXECUTE).

If an embedded CREATE {FUNCTION | PROCEDURE | PACKAGE} statement fails, Oracle9i generates a warning, not an error. For the full syntax of the CREATE statement see the Oracle Database SQL Language Reference.

Calling a Stored PL/SQL or Java Subprogram

To call a stored subprogram from your host program, you can use either an anonymous PL/SQL block or the CALL embedded SQL statement.

Anonymous PL/SQL Block

The following example calls a standalone procedure named raise_salary:

 EXEC SQL EXECUTE
 BEGIN
 raise_salary(:emp_id, :increase);
 END;
 END-EXEC.

Notice that stored subprograms can take parameters. In this example, the actual parameters emp_id and increase are host variables.

In the next example, the procedure raise_salary is stored in a package named emp_actions, so you must use dot notation to fully qualify the procedure call:

 EXEC SQL EXECUTE
 BEGIN
 emp_actions.raise_salary(:emp_id, :increase);
 END;
 END-EXEC.

An actual IN parameter can be a literal, host variable, host table, PL/SQL constant or variable, PL/SQL table, PL/SQL user-defined record, subprogram call, or expression. However, an actual OUT parameter cannot be a literal, subprogram call, or expression.

You must use precompiler option SQLCHECK=SEMANTICS with an embedded PL/SQL block.

CALL Statement

The concepts presented earlier for the embedded PL/SQL block holds true for the CALL statement. The CALL embedded SQL statement has the form:

 EXEC SQL
 CALL [schema.][package.]stored_proc[@db_link](arg1, ...)
 [INTO :ret_var[[INDICATOR]:ret_ind]]
 END-EXEC.

where:

schema

the schema containing the procedure

package

the package containing the procedure

stored_proc

is the Java or PL/SQL stored procedure to be called

db_link

is the optional remote database link

arg1...

is the list of arguments (variables, literals, or expressions) passed,

ret_var

is the optional host variable which receives the result

ind_var

the optional indicator variable for ret_var.

You can use either SQLCHECK=SYNTAX, or SQLCHECK=SEMANTICS with the CALL statement.

CALL Example

If you have created a PL/SQL function fact (stored in the package mathpkg) that takes an integer as input and returns its factorial in an integer:

 EXEC SQL CREATE OR REPLACE PACKAGE BODY mathpkg as
 function fact(n IN INTEGER) RETURN INTEGER AS
 BEGIN
 IF (n <= 0) then return 1;
 ELSE return n * fact(n - 1);
 END IF;
 END fact;
 END mathpkge;
 END-EXEC.

then to use fact in a Pro*COBOL application:

...

 01 N PIC S9(4) COMP.
 01 FACT PIC S9(9) COMP.
...
 EXEC SQL CALL mathpkge.fact(:N) INTO :FACT END-EXEC.
...

For more information about this statement, see "CALL (Executable Embedded SQL)". For a complete explanation of passing arguments and other issues, see Oracle Database Advanced Application Developer's Guide, "External Routines" chapter.

Using Dynamic PL/SQL

Recall that Pro*COBOL treats an entire PL/SQL block like a single SQL statement. Therefore, you can store a PL/SQL block in a string host variable. Then, if the block contains no host variables, you can use dynamic SQL Method 1 to execute the PL/SQL string. Or, if the block contains a known number of host variables, you can use dynamic SQL Method 2 to prepare and execute the PL/SQL string. If the block contains an unknown number of host variables, you must use dynamic SQL Method 4. For more information, refer to Chapter 9, "Oracle Dynamic SQL", Chapter 10, "ANSI Dynamic SQL"and Chapter 11, "Oracle Dynamic SQL: Method 4".

Subprograms Restriction

In dynamic SQL Method 4, a host table cannot be bound to a PL/SQL procedure with a parameter of type TABLE.

Sample Program 9: Calling a Stored Procedure

Before trying the sample program, you must create a PL/SQL package named calldemo, by running the following script, titled CALLDEMO.SQL, which is supplied with Pro*COBOL. The script can be found in the Pro*COBOL demo library. Check your system-specific Oracle documentation for exact spelling of the the name of the script.

CREATE OR REPLACE PACKAGE calldemo AS

 TYPE name_array IS TABLE OF emp.ename%type
 INDEX BY BINARY_INTEGER;
 TYPE job_array IS TABLE OF emp.job%type
 INDEX BY BINARY_INTEGER;
 TYPE sal_array IS TABLE OF emp.sal%type
 INDEX BY BINARY_INTEGER;

 PROCEDURE get_employees(
 dept_number IN number, -- department to query
 batch_size IN INTEGER, -- rows at a time
 found IN OUT INTEGER, -- rows actually returned
 done_fetch OUT INTEGER, -- all done flag
 emp_name OUT name_array,
 job OUT job_array,
 sal OUT sal_array);

END calldemo;
/

CREATE OR REPLACE PACKAGE BODY calldemo AS

 CURSOR get_emp (dept_number IN number) IS
 SELECT ename, job, sal FROM emp
 WHERE deptno = dept_number;

 -- Procedure "get_employees" fetches a batch of employee
 -- rows (batch size is determined by the client/caller
 -- of the procedure). It can be called from other
 -- stored procedures or client application programs.
 -- The procedure opens the cursor if it is not
 -- already open, fetches a batch of rows, and
 -- returns the number of rows actually retrieved. At
 -- end of fetch, the procedure closes the cursor.

 PROCEDURE get_employees(
 dept_number IN number,
 batch_size IN INTEGER,
 found IN OUT INTEGER,
 done_fetch OUT INTEGER,
 emp_name OUT name_array,
 job OUT job_array,
 sal OUT sal_array) IS

 BEGIN
 IF NOT get_emp%ISOPEN THEN -- open the cursor if
 OPEN get_emp(dept_number); -- not already open
 END IF;

 -- Fetch up to "batch_size" rows into PL/SQL table,
 -- tallying rows found as they are retrieved. When all
 -- rows have been fetched, close the cursor and exit
 -- the loop, returning only the last set of rows found.

 done_fetch := 0; -- set the done flag FALSE
 found := 0;

 FOR i IN 1..batch_size LOOP
 FETCH get_emp INTO emp_name(i), job(i), sal(i);
 IF get_emp%NOTFOUND THEN -- if no row was found
 CLOSE get_emp;
 done_fetch := 1; -- indicate all done
 EXIT;
 ELSE
 found := found + 1; -- count row
 END IF;
 END LOOP;
 END;
END;
/

The following sample program connects to the database, prompts the user for a department number and then calls a PL/SQL procedure named get_employees, which is stored in package calldemo. The procedure declares three PL/SQL tables as OUT formal parameters and then fetches a batch of employee data into the PL/SQL tables. The matching actual parameters are host tables. When the procedure finishes, row values in the PL/SQL tables are automatically assigned to the corresponding elements in the host tables. The program calls the procedure repeatedly, displaying each batch of employee data, until no more data is found.

 * Sample Program 9: Calling a Stored Procedure
 *
 * This program connects to ORACLE, prompts the user for a
 * department number, then calls a PL/SQL stored procedure named
 * GET_EMPLOYEES, which is stored in package CALLDEMO. The
 * procedure declares three PL/SQL tables ast OUT formal
 * parameters, then fetches a batch of employee data into the
 * PL/SQL tables. The matching actual parameters are host tables.
 * When the procedure finishes, it automatically assigns all row
 * values in the PL/SQL tables to corresponding elements in the
 * host tables. The program calls the procedure repeatedly,
 * displaying each batch of employee data, until no more data
 * is found.
 * Use option picx=varchar2 when precompiling this sample program.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CALL-STORED-PROC.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(15) VARYING.
 01 PASSWD PIC X(15) VARYING.
 01 DEPT-NUM PIC S9(9) COMP.
 01 EMP-TABLES.
 05 EMP-NAME OCCURS 10 TIMES PIC X(10).
 05 JOB-TITLE OCCURS 10 TIMES PIC X(10).

 05 SALARY OCCURS 10 TIMES COMP-2.

 01 DONE-FLAG PIC S9(9) COMP.
 01 TABLE-SIZE PIC S9(9) COMP VALUE 10.
 01 NUM-RET PIC S9(9) COMP.
 01 SQLCODE PIC S9(9) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.

 01 COUNTER PIC S9(9) COMP.
 01 DISPLAY-VARIABLES.
 05 D-EMP-NAME PIC X(10).
 05 D-JOB-TITLE PIC X(10).

 05 D-SALARY PIC Z(5)9.

 05 D-DEPT-NUM PIC 9(2).

 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.

 BEGIN-PGM.
 EXEC SQL WHENEVER SQLERROR DO
 PERFORM SQL-ERROR END-EXEC.

 PERFORM LOGON.
 PERFORM INIT-TABLES VARYING COUNTER FROM 1 BY 1
 UNTIL COUNTER > 10.
 PERFORM GET-DEPT-NUM.
 PERFORM DISPLAY-HEADER.
 MOVE ZERO TO DONE-FLAG.
 MOVE ZERO TO NUM-RET.
 PERFORM FETCH-BATCH UNTIL DONE-FLAG = 1.
 PERFORM LOGOFF.

 INIT-TABLES.
 MOVE SPACE TO EMP-NAME(COUNTER).
 MOVE SPACE TO JOB-TITLE(COUNTER).
 MOVE ZERO TO SALARY(COUNTER).

 GET-DEPT-NUM.
 MOVE ZERO TO DEPT-NUM.
 DISPLAY " ".
 DISPLAY "ENTER DEPARTMENT NUMBER: "
 WITH NO ADVANCING.

 ACCEPT D-DEPT-NUM.

 MOVE D-DEPT-NUM TO DEPT-NUM.

 DISPLAY-HEADER.
 DISPLAY " ".
 DISPLAY "EMPLOYEE JOB TITLE SALARY".
 DISPLAY "-------- --------- ------".

 FETCH-BATCH.
 EXEC SQL EXECUTE
 BEGIN
 CALLDEMO.GET_EMPLOYEES
 (:DEPT-NUM, :TABLE-SIZE,
 :NUM-RET, :DONE-FLAG,
 :EMP-NAME, :JOB-TITLE, :SALARY);
 END;
 END-EXEC.
 PERFORM PRINT-ROWS VARYING COUNTER FROM 1 BY 1
 UNTIL COUNTER > NUM-RET.

 PRINT-ROWS.
 MOVE EMP-NAME(COUNTER) TO D-EMP-NAME.
 MOVE JOB-TITLE(COUNTER) TO D-JOB-TITLE.
 MOVE SALARY(COUNTER) TO D-SALARY.
 DISPLAY D-EMP-NAME, " ",
 D-JOB-TITLE, " ",
 D-SALARY.

 LOGON.
 MOVE "SCOTT" TO USERNAME-ARR.
 MOVE 5 TO USERNAME-LEN.
 MOVE "TIGER" TO PASSWD-ARR.
 MOVE 5 TO PASSWD-LEN.
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWD
 END-EXEC.
 DISPLAY " ".
 DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.

 LOGOFF.
 DISPLAY " ".
 DISPLAY "HAVE A GOOD DAY.".
 DISPLAY " ".
 EXEC SQL COMMIT WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

Remember that the datatype of each actual parameter must be convertible to the datatype of its corresponding formal parameter. Further, before a stored subprogram exits, all OUT formal parameters must be assigned values. Otherwise, the values of corresponding actual parameters are indeterminate.

Remote Access

PL/SQL lets you access remote databases through database links. Typically, database links are established by your DBA and stored in the data dictionary. A database link tells your program where the remote database is located, the path to it, and what username and password to use. The following example uses the database link dallas to call the raise_salary procedure:

 EXEC SQL EXECUTE
 BEGIN
 raise_salary@dallas(:emp_id, :increase);
 END;
 END-EXEC.

You can create synonyms to provide location transparency for remote subprograms, as the following example shows:

 CREATE PUBLIC SYNONYM raise_salary FOR raise_salary@dallas;

Cursor Variables

You can use cursor variables in your Pro*COBOL programs to process multi-row queries using static embedded SQL. A cursor variable identifies a cursor reference that is defined and opened on the database server, using PL/SQL. See Oracle Database PL/SQL Language Reference for complete information about cursor variables.

Like a cursor, a cursor variable points to the current row in the active set of a multi-row query. Cursors differ from cursor variables the way constants differ from variables. While a cursor is static, a cursor variable is dynamic, because it is not tied to a specific query. You can open a cursor variable for any type-compatible query.

You can assign new values to a cursor variable and pass it as a parameter to subprograms, including subprograms stored in a database. This gives you a convenient way to centralize data retrieval.

First, you declare the cursor variable. After declaring the variable, you use these statements to control a cursor variable:

	
ALLOCATE

	
OPEN ... FOR

	
FETCH

	
CLOSE

	
FREE

After you declare the cursor variable and allocate memory for it, you must pass it as an input host variable (bind variable) to PL/SQL, OPEN it FOR a multi-row query on the server side, FETCH from it on the client side and then CLOSE it on either side.

The advantages of cursor variables are

	
Ease of maintenance. Queries are centralized, in the stored procedure that opens the cursor variable. If you need to change the cursor, you only need to make the change in one place: the stored procedure. There is no need to change each application.

	
Increased Security. The user of the application (the username when the Pro*COBOL application connected to the database) must have execute permission on the stored procedure that opens the cursor. This user, however, does not need to have read permission on the tables used in the query. This capability can be used to limit access to the columns in the table.

Declaring a Cursor Variable

You declare a Pro*COBOL cursor variable using the SQL-CURSOR pseudotype. For example:

 WORKING-STORAGE SECTION.
 ...
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 01 CUR-VAR SQL-CURSOR.
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.

A SQL-CURSOR variable is implemented as a COBOL group item in the code that Pro*COBOL generates. A cursor variable is just like any other Pro*COBOL host variable.

Allocating a Cursor Variable

Before you can OPEN or FETCH from a cursor variable, you must initialize it using the Pro*COBOL ALLOCATE command. For example, to initialize the cursor variable CUR-VAR that was declared in the previous section, write the following statement:

 EXEC SQL ALLOCATE :CUR-VAR END-EXEC.

Allocating a cursor variable does not require a call to the server, either at precompile time or at runtime.

The AT clause cannot be used in an ALLOCATE statement.

Caution: Allocating a cursor variable does cause heap memory to be used. For this reason, avoid allocating a cursor variable in a program loop.

Opening a Cursor Variable

You must use an embedded anonymous PL/SQL block to open a cursor variable on the database server. The anonymous PL/SQL block may open the cursor either indirectly by calling a PL/SQL stored procedure that opens the cursor (and defines it in the same statement) or directly from the Pro*COBOL program.

Opening Indirectly through a Stored PL/SQL Procedure

Consider the following PL/SQL package stored in the database:

CREATE PACKAGE demo_cur_pkg AS
 TYPE EmpName IS RECORD (name VARCHAR2(10));
 TYPE cur_type IS REF CURSOR RETURN EmpName;
 PROCEDURE open_emp_cur (
 curs IN OUT curtype,
 dept_num IN number);
END;

CREATE PACKAGE BODY demo_cur_pkg AS
 CREATE PROCEDURE open_emp_cur (
 curs IN OUT curtype,
 dept_num IN number) IS
 BEGIN
 OPEN curs FOR
 SELECT ename FROM emp
 WHERE deptno = dept_num
 ORDER BY ename ASC;
 END;
END;

After this package has been stored, you can open the cursor curs by first calling the open_emp_cur stored procedure from your Pro*COBOL program and then issuing a FETCH from the cursor variable emp_cursor in the program. For example:

 WORKING-STORAGE SECTION.
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 emp_cursor sql-cursor.
 01 DEPT-NUM PIC S9(4).
 01 EMP-NAME PIC X(10) VARYING.
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...

 PROCEDURE DIVISION.
 ...
* Allocate the cursor variable.
 EXEC SQL
 ALLOCATE :emp-cursor
 END-EXEC.
 ...
 MOVE 30 TO dept_num.
* Open the cursor on the Oracle Server.
 EXEC SQL EXECUTE
 begin
 demo_cur_pkg.open_emp_cur(:emp-cursor, :dept-num);
 END;
 END-EXEC.
 EXEC SQL
 WHENEVER NOT FOUND DO PERFORM SIGN-OFF
 END-EXEC.
 FETCH-LOOP.
 EXEC SQL
 FETCH :emp_cursor INTO :EMP-NAME
 END-EXEC.
 DISPLAY "Employee Name: ",:EMP-NAME.
 GO TO FETCH-LOOP.
 ...
 SIGN-OFF.
 ...

Opening Directly from Your Pro*COBOL Application

To open a cursor using a PL/SQL anonymous block in a Pro*COBOL program, define the cursor in the anonymous block. Consider the following example:

 PROCEDURE DIVISION.
 ...
 EXEC SQL EXECUTE
 begin
 OPEN :emp_cursor FOR SELECT ename FROM emp
 WHERE deptno = :DEPT-NUM;
 end;
 END-EXEC.
 ...

Fetching from a Cursor Variable

After opening a cursor variable for a multi-row query, you use the FETCH statement to retrieve rows as you would from a static cursor. The syntax follows:

 EXEC SQL FETCH cursor_variable_name
 INTO {record_name | variable_name[, variable_name, ...]}
 END-EXEC.

Each column value returned by the cursor variable is assigned to a corresponding field or variable in the INTO clause, providing that their datatypes are compatible.

The FETCH statement must be executed on the client side. The following example fetches rows into a host record named EMP-REC:

* -- exit loop when done fetching
 EXEC SQL
 WHENEVER NOT FOUND DO PERFORM NO-MORE
 END-EXEC.
 PERFORM
* -- fetch row into record
 EXEC SQL FETCH :EMP-CUR INTO :EMP-REC END-EXEC
* -- test for transfer out of loop
 ...
* -- process the data
 ...
 END-PERFORM.
 ...
 NO-MORE.
 ...

Use the embedded SQL FETCH INTO command to retrieve the rows selected when you opened the cursor variable. For example:

 EXEC SQL
 FETCH :emp_cursor INTO :EMP-INFO:EMP-INFO-IND
 END-EXEC.

Before you can FETCH from a cursor variable, the variable must be initialized and opened. You cannot FETCH from an unopened cursor variable.

Closing a Cursor Variable

Use the embedded SQL CLOSE statement to close a cursor variable. At this point its active set becomes undefined. The syntax follows:

 EXEC SQL CLOSE cursor_variable_name END-EXEC.

The CLOSE statement can be executed on the client side or the server side. The following example closes the cursor variable CUR-VAR when the last row is processed:

 WORKING-STORAGE SECTION.
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
* Declare the cursor variable.
 01 CUR-VAR SQL-CURSOR.
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.

 PROCEDURE DIVISION.
* Allocate and open the cursor variable, then
* Fetch one or more rows.
 ...
* Close the cursor variable.
 EXEC SQL
 CLOSE :CUR-VAR
 END-EXEC.

Freeing a Cursor Variable

To free memory allocated for the cursor variable, CUR-VAR, use the FREE statement after the CLOSE:

* Free the cursor variable memory.
 EXEC SQL
 FREE :CUR-VAR
 END-EXEC.

Restrictions on Cursor Variables

The following restrictions apply to the use of cursor variables:

	
Cursor variables are not supported in dynamic SQL.

	
You can only use cursor variables with the ALLOCATE, FETCH, FREE, and CLOSE commands. The DECLARE CURSOR command does not apply to cursor variables.

	
You cannot use the AT clause with the ALLOCATE command.

Sample Program 11: Cursor Variables

The following sample programs—a SQL script (SAMPLE11.sql) and a Pro*COBOL program (SAMPLE11.pco)—demonstrate how you can use cursor variables in Pro*COBOL.

SAMPLE11.SQL

Following is the PL/SQL source code for a creating a package that declares and opens a cursor variable:

CONNECT SCOTT/TIGER
CREATE OR REPLACE PACKAGE emp_demo_pkg AS
 TYPE emp_cur_type IS REF CURSOR RETURN emp%ROWTYPE;
 PROCEDURE open_cur (
 cursor IN OUT emp_cur_type,
 dept_num IN number);
END emp_demo_pkg;
/
CREATE OR REPLACE PACKAGE BODY emp_demo_pkg AS

 PROCEDURE open_cur (
 cursor IN OUT emp_cur_type,
 dept_num IN number) IS
 BEGIN
 OPEN cursor FOR SELECT * FROM emp
 WHERE deptno = dept_num
 ORDER BY ename ASC;
 END;
END emp_demo_pkg;
/

SAMPLE11.PCO

Following is a Pro*COBOL sample program, SAMPLE11.PCO, that uses the cursor variable declared in the SAMPLE11.sql example to fetch employee names, salaries, and commissions from the EMP table:

 * Sample Program 11: Cursor Variable Operations *
 * *
 * This program logs on to ORACLE, allocates and opens a cursor *
 * variable fetches the names, salaries, and commissions of all *
 * salespeople, displays the results, then closes the cursor. *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CURSOR-VARIABLES.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(15) VARYING.
 01 PASSWD PIC X(15) VARYING.
 01 HOST PIC X(15) VARYING.
 01 EMP-CUR SQL-CURSOR.
 01 EMP-INFO.
 05 EMP-NUM PIC S9(4) COMP.
 05 EMP-NAM PIC X(10) VARYING.
 05 EMP-JOB PIC X(10) VARYING.
 05 EMP-MGR PIC S9(4) COMP.
 05 EMP-DAT PIC X(10) VARYING.
 05 EMP-SAL PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 05 EMP-COM PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 05 EMP-DEP PIC S9(4) COMP.
 01 EMP-INFO-IND.
 05 EMP-NUM-IND PIC S9(4) COMP.
 05 EMP-NAM-IND PIC S9(4) COMP.
 05 EMP-JOB-IND PIC S9(4) COMP.
 05 EMP-MGR-IND PIC S9(4) COMP.
 05 EMP-DAT-IND PIC S9(4) COMP.
 05 EMP-SAL-IND PIC S9(4) COMP.
 05 EMP-COM-IND PIC S9(4) COMP.
 05 EMP-DEP-IND PIC S9(4) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.

 EXEC SQL INCLUDE SQLCA END-EXEC.

 01 DISPLAY-VARIABLES.
 05 D-DEP-NUM PIC Z(3)9.
 05 D-EMP-NAM PIC X(10).
 05 D-EMP-SAL PIC Z(4)9.99.
 05 D-EMP-COM PIC Z(4)9.99.
 05 D-EMP-DEP PIC 9(2).

 PROCEDURE DIVISION.

 BEGIN-PGM.
 EXEC SQL
 WHENEVER SQLERROR DO PERFORM SQL-ERROR
 END-EXEC.
 PERFORM LOGON.
 EXEC SQL
 ALLOCATE :EMP-CUR
 END-EXEC.
 DISPLAY "Enter department number (0 to exit): "
 WITH NO ADVANCING.
 ACCEPT D-EMP-DEP.
 MOVE D-EMP-DEP TO EMP-DEP.
 IF EMP-DEP <= 0
 GO TO SIGN-OFF
 END-IF.
 MOVE EMP-DEP TO D-DEP-NUM.
 EXEC SQL EXECUTE
 BEGIN
 emp_demo_pkg.open_cur(:EMP-CUR, :EMP-DEP);
 END;
 END-EXEC.
 DISPLAY " ".
 DISPLAY "For department ", D-DEP-NUM, ":".
 DISPLAY " ".
 DISPLAY "EMPLOYEE SALARY COMMISSION".
 DISPLAY "---------- ---------- ----------".

 FETCH-LOOP.
 EXEC SQL
 WHENEVER NOT FOUND GOTO CLOSE-UP
 END-EXEC.
 MOVE SPACES TO EMP-NAM-ARR.
 EXEC SQL FETCH :EMP-CUR
 INTO :EMP-NUM:EMP-NUM-IND,
 :EMP-NAM:EMP-NAM-IND,
 :EMP-JOB:EMP-JOB-IND,
 :EMP-MGR:EMP-MGR-IND,
 :EMP-DAT:EMP-DAT-IND,
 :EMP-SAL:EMP-SAL-IND,
 :EMP-COM:EMP-COM-IND,
 :EMP-DEP:EMP-DEP-IND
 END-EXEC.
 MOVE EMP-SAL TO D-EMP-SAL.
 IF EMP-COM-IND = 0
 MOVE EMP-COM TO D-EMP-COM
 DISPLAY EMP-NAM-ARR, " ", D-EMP-SAL,
 " ", D-EMP-COM
 ELSE
 DISPLAY EMP-NAM-ARR, " ", D-EMP-SAL,
 " N/A"
 END-IF.
 GO TO FETCH-LOOP.

 LOGON.
 MOVE "SCOTT" TO USERNAME-ARR.
 MOVE 5 TO USERNAME-LEN.
 MOVE "TIGER" TO PASSWD-ARR.
 MOVE 5 TO PASSWD-LEN.
 MOVE "INST1_ALIAS" TO HOST-ARR.
 MOVE 11 TO HOST-LEN.
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWD
 END-EXEC.
 DISPLAY " ".
 DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.

 CLOSE-UP.
 EXEC SQL
 CLOSE :EMP-CUR
 END-EXEC.
 EXEC SQL
 FREE :EMP-CUR
 END-EXEC.
 SIGN-OFF.
 DISPLAY " ".
 DISPLAY "HAVE A GOOD DAY.".
 DISPLAY " ".
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Host Tables

7 Host Tables

This chapter looks at using host tables to simplify coding and improve program performance. You learn how to manipulate Oracle data using host tables, how to operate on all the elements of a host table with a single SQL statement, how to limit the number of table elements processed, and how to use tables of group items.

The main sections are:

	
Host Tables

	
Advantages of Host Tables

	
Selecting into Tables

	
Selecting into Tables

	
Inserting with Tables

	
Updating with Tables

	
Deleting with Tables

	
Using Indicator Tables

	
The FOR Clause

	
The WHERE Clause

	
Mimicking the CURRENT OF Clause

	
Tables of Group Items as Host Variables

	
Additional Array Insert/Select Syntax

	
Using Implicit Buffered Insert

Host Tables

A host table (also known as an array) is a set of related data items, called elements, associated with a single variable. An indicator variable defined as a table is called an indicator table. An indicator table can be associated with any host table that is NULLABLE.

Advantages of Host Tables

Host tables can ease programming and can offer greatly improved performance. When writing an application, you are usually faced with the problem of storing and manipulating large amounts of data. Host tables simplify the task of accessing multiple return values.

Host tables let you manipulate multiple rows with a single SQL statement. Thus, communications overhead is reduced markedly, especially in a networked environment. For example, suppose you want to insert information about 300 employees into the EMP table. Without host tables your program must do 300 individual INSERTs—one for each employee. With host tables, only one INSERT need be done.

Tables in Data Manipulation Statements

Pro*COBOL allows the use of host tables in data manipulation statements. You can use host tables as input variables in the INSERT, UPDATE, and DELETE statements and as output variables in the INTO clause of SELECT and FETCH statements.

The syntax used for host tables and for simple host variables is nearly the same. One difference is the optional FOR clause, which lets you control table processing. Also, there are restrictions on mixing host tables and simple host variables in a SQL statement.

Declaring Host Tables

You declare and dimension host tables in the Data Division. In the following example, three host tables are declared, each dimensioned with 50 elements:

 01 EMP-TABLES.
 05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
 05 EMP-NAME OCCURS 50 TIMES PIC X(10.
 05 SALARY OCCURS 50 TIMES PIC S9(5)V99 COMP-3.

You can use the INDEXED BY phrase in the OCCURS clause to specify an index, as the next example shows:

 ...
 01 EMP-TABLES.
 05 EMP-NUMBER PIC X(10) OCCURS 50 TIMES
 INDEXED BY EMP-INDX.
 ...
 ...

The INDEXED BY phrase implicitly declares the index item EMP-INDX.

Restrictions

Multi-dimensional host tables are not allowed. Thus, the two-dimensional host table declared in the following example is invalid:

 ...
 01 NATION.
 05 STATE OCCURS 50 TIMES.
 10 STATE-NAME PIC X(25).
 10 COUNTY OCCURS 25 TIMES.
 15 COUNTY-NAME PIX X(25).
 ...

Variable-length host tables are not allowed either. For example, the following declaration of EMP-REC is invalid for a host variable:

 ...
 01 EMP-FILE.
 05 REC-COUNT PIC S9(3) COMP.
 05 EMP-REC OCCURS 0 TO 250 TIMES
 DEPENDING ON REC-COUNT.
 ...

The maximum number of host table elements in a SQL statement that is accessible in one fetch is 32K (or possibly greater, depending on your platform and the available memory). If you try to access a number that exceeds the maximum, you get a "parameter out of range" runtime error. If the statement is an anonymous PL/SQL block, the number of elements accessible is limited to 32512 divided by the size of the datatype.

Referencing Host Tables

If you use multiple host tables in a single SQL statement, their dimensions should be the same. This is not a requirement, however, because Pro*COBOL always uses the smallest dimension for the SQL operation. In the following example, only 25 rows are inserted

 WORKING-STORAGE SECTION.
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 EMP-TABLES.
 05 EMP-NUMBER PIC S9(4) COMP OCCURS 50 TIMES.
 05 EMP-NAME PIC X(10) OCCURS 50 TIMES.
 05 DEPT-NUMBER PIC S9(4) COMP OCCURS 25 TIMES.
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 PROCEDURE DIVISION.
 ...
* Populate host tables here.
 ...
 EXEC SQL INSERT INTO EMP (EMPNO, ENAME, DEPTNO)
 VALUES (:EMP-NUMBER, :EMP-NAME, :DEPT-NUMBER)
 END-EXEC.

Host tables must not be subscripted in SQL statements. For example, the following INSERT statement is invalid:

 WORKING-STORAGE SECTION.
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 EMP-TABLES.
 05 EMP-NUMBER PIC S9(4) COMP OCCURS 50 TIMES.
 05 EMP-NAME PIC X(10) OCCURS 50 TIMES.
 05 DEPT-NUMBER PIC S9(4) COMP OCCURS 50 TIMES.
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 PROCEDURE DIVISION.
 ...
 PERFORM LOAD-EMP VARYING J FROM 1 BY 1 UNTIL J > 50.
 ...
 LOAD-EMP.
 EXEC SQL INSERT INTO EMP (EMPNO, ENAME, DEPTNO)
 VALUES (:EMP-NUMBER(J), :EMP-NAME(J),
 :DEPT-NUMBER(J))
 END-EXEC.

You need not process host tables in a PERFORM VARYING statement. Instead, use the un-subscripted table names in your SQL statement. Pro*COBOL treats a SQL statement containing host tables of dimension n like the same statement executed n times with n different scalar host variables, but more efficiently.

Using Indicator Tables

You can use indicator tables to assign NULLs to elements in input host tables and to detect NULLs or truncated values (of character columns only) in output host tables. The following example shows how to conduct an INSERT with indicator tables:

 WORKING-STORAGE SECTION.
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 EMP-TABLES.
 05 EMP-NUMBER PIC S9(4) COMP OCCURS 50 TIMES.
 05 DEPT-NUMBER PIC S9(4) COMP OCCURS 50 TIMES.
 05 COMMISSION PIC S9(5)V99 COMP-3 OCCURS 50 TIMES.
 05 COMM-IND PIC S9(4) COMP OCCURS 50 TIMES.
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 PROCEDURE DIVISION.
 ...
* Populate the host and indicator tables.
* Set indicator table to all zeros.
 ...
 EXEC SQL INSERT INTO EMP (EMPNO, DEPTNO, COMM)
 VALUES (:EMP-NUMBER, :DEPT-NUMBER,
 :COMMISSION:COMM-IND)
 END-EXEC.

The dimension of the indicator table must be greater than or equal to the dimension of the host table.

When using host table SELECT and FETCH, it is recommended that you use indicator variables. That way you can test for NULLs in the associated output host table.

If a NULL is selected or fetched into a host variable that has no associated indicator variable, your program stops processing, sets sqlca.sqlerrd(3) to the number of rows processed, and returns an error.

NULL is selected by default, but you can switch it off by using the UNSAFE_NULL = YES option.

When DBMS=V7 or V8, your program does not consider truncation to be an error.

Host Group Item Containing Tables

Note: If you have a host group item containing tables, then you must use a corresponding group item of tables for an indicator. For example, if your group item is the following:

 01 DEPARTURE.
 05 HOUR PIC X(2) OCCURS 3 TIMES.
 05 MINUTE PIC X(2) OCCURS 3 TIMES.

the following indicator variable cannot be used:

 01 DEPARTURE-IND PIC S9(4) COMP OCCURS 6 TIMES.

The indicator variable you use with the group item of tables must itself be a group item of tables such as the following:

 01 DEPARTURE-IND.
 05 HOUR-IND PIC S9(4) COMP OCCURS 3 TIMES.
 05 MINUTE-IND PIC S9(4) COMP OCCURS 3 TIMES.

Oracle Restrictions

Mixing scalar host variables with host tables in the VALUES, SET, INTO, or WHERE clause is not allowed. If any of the host variables is a host table, all must be host tables.

You cannot use host tables with the CURRENT OF clause in an UPDATE or DELETE statement.

ANSI Restriction and Requirements

The array interface is an Oracle extension to the ANSI/ISO embedded SQL standard. However, when you precompile with MODE=ANSI, array SELECTs and FETCHes are still allowed. The use of arrays can be flagged using the FIPS flagger precompiler option, if desired.

Selecting into Tables

You can use host tables as output variables in the SELECT statement. If you know the maximum number of rows the select will return, simply define the host tables with that number of elements. In the following example, you select directly into three host tables. The table was defined with 50 rows, with the knowledge that the select will return no more than 50 rows.

 01 EMP-REC-TABLES.
 05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
 05 EMP-NAME OCCURS 50 TIMES PIC X(10) VARYING.
 05 SALARY OCCURS 50 TIMES PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 ...
 EXEC SQL SELECT ENAME, EMPNO, SAL
 INTO :EMP-NAME, :EMP-NUMBER, :SALARY
 FROM EMP
 WHERE SAL > 1000
 END-EXEC.

In this example, the SELECT statement returns up to 50 rows. If there are fewer than 50 eligible rows or you want to retrieve only 50 rows, this method will suffice. However, if there are more than 50 eligible rows, you cannot retrieve all of them this way. If you reexecute the SELECT statement, it just returns the first 50 rows again, even if more are eligible. You must either define a larger table or declare a cursor for use with the FETCH statement.

If a SELECT INTO statement returns more rows than the size of the table you defined, Oracle9i issues an error message unless you specify SELECT_ERROR=NO. For more information about the option, see "SELECT_ERROR".

Batch Fetches

Use batch fetches when the size of data you are processing is large (greater than about 100 rows) as well as when you do not know how many rows will be returned.

If you do not know the maximum number of rows a select will return, you can declare and open a cursor, and then fetch from it in "batches." Batch fetches within a loop let you retrieve a large number of rows with ease. Each fetch returns the next batch of rows from the current active set. In the following example, you fetch in 20-row batches:

 ...
 01 EMP-REC-TABLES.
 05 EMP-NUMBER OCCURS 20 TIMES PIC S9(4) COMP.
 05 EMP-NAME OCCURS 20 TIMES PIC X(10) VARYING.
 05 SALARY OCCURS 20 TIMES PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 ...
 EXEC SQL DECLARE EMPCURSOR CURSOR FOR
 SELECT EMPNO, SAL FROM EMP
 END-EXEC.
 ...
 EXEC SQL OPEN EMPCURSOR END-EXEC.
 ...
 EXEC SQL WHENEVER NOT FOUND DO PERFORM END-IT.
 LOOP.
 EXEC SQL FETCH EMPCURSOR INTO :EMP-NUMBER, :SALARY END-EXEC.
* -- process batch of rows
 ...
 GO TO LOOP.
 END-IT.
...

Do not forget to check how many rows were actually returned in the last fetch and to process them. See "Sample Program 3: Fetching in Batches" for a complete example.

Using SQLERRD(3)

For INSERT, UPDATE, and DELETE statements, SQLERRD(3) records the number of rows processed.

SQLERRD(3) is also useful when an error occurs during a table operation. Processing stops at the row that caused the error, so SQLERRD(3) gives the number of rows processed successfully.

Number of Rows Fetched

Each fetch returns, at most, the number of entries in the table. Fewer rows are returned in the following cases:

	
The end of the active set is reached. The "no data found" warning code is returned to SQLCODE in the SQLCA. For example, this happens if you fetch into a table of number of entries 100, but only 20 rows are returned.

	
Fewer than a full batch of rows remain to be fetched. For example, this happens if you fetch 70 rows into a table of number of entries 20 because after the third fetch, only 10 rows remain to be fetched.

	
An error is detected while processing a row. The fetch fails and the applicable error code is returned to SQLCODE.

The cumulative number of rows returned can be found in the third element of SQLERRD in the SQLCA, called SQLERRD(3) in this guide. This applies to each open cursor. In the following example, notice how the status of each cursor is maintained separately:

 EXEC SQL OPEN CURSOR1 END-EXEC.
 EXEC SQL OPEN CURSOR2 END-EXEC.
 EXEC SQL FETCH CURSOR1 INTO :TABLE-OF-20 END-EXEC.
* -- now running total in SQLERRD(3) is 20
 EXEC SQL FETCH CURSOR2 INTO :TABLE-OF-30 END-EXEC.
* -- now running total in SQLERRD(3) is 30, not 50
 EXEC SQL FETCH CURSOR1 INTO :TABLE-OF-20 END-EXEC.
* -- now running total in SQLERRD(3) is 40 (20 + 20)
 EXEC SQL FETCH CURSOR2 INTO :TABLE-OF-30 END-EXEC.
* -- now running total in SQLERRD(3) is 60 (30 + 30)

Restrictions on Using Host Tables

Using host tables in the WHERE clause of a SELECT statement is allowed only in a sub-query. (For an example, see "The WHERE Clause".) Also, since Pro*COBOL always takes the smallest dimension of table, do not mix simple host variables with host tables in the INTO clause of a SELECT or FETCH statement because only one row will be retrieved. If any of the host variables is a table, then all must be tables.

Table 7-1 shows which uses of host tables are valid in a SELECT INTO statement.

Table 7-1 Host Tables Valid in SELECT INTO

	INTO Clause	WHERE Clause	Valid?
	
table

	
table

	
no

	
scalar

	
scalar

	
yes

	
table

	
scalar

	
yes

	
scalar

	
table

	
no

Fetching NULLs

When UNSAFE_NULL=YES, if you select or fetch a NULL into a host table that lacks an indicator table, no error is generated. So, when doing table selects and fetches, Oracle recommends that you use indicator tables. This is because this makes it NULLs easier to find in the associated output host table. (To learn how to find NULLs and truncated values, see "Using Indicator Variables".)

When UNSAFE_NULL=NO, if you select or fetch a NULL into a host table that lacks an indicator table, Oracle9i stops processing, sets SQLERRD(3) to the number of rows processed, and issues an error message:

Fetching Truncated Values

If you select or fetch a truncated column value into a host table that lacks an indicator table, Oracle9i sets SQLWARN(2).

You can check SQLERRD(3) for the number of rows processed before the truncation occurred. The rows-processed count includes the row that caused the truncation error.

When doing table selects and fetches, you can use indicator tables. That way, if Oracle9i assigns one or more truncated column values to an output host table, you can find the original lengths of the column values in the associated indicator table.

Sample Program 3: Fetching in Batches

The following host table sample program can be found in the demo directory.

 * Sample Program 3: Host Tables *
 * *
 * This program logs on to ORACLE, declares and opens a cursor, *
 * fetches in batches using host tables, and prints the results. *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. HOST-TABLES.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(15) VARYING.
 01 PASSWD PIC X(15) VARYING.
 01 EMP-REC-TABLES.
 05 EMP-NUMBER OCCURS 5 TIMES PIC S9(4) COMP.
 05 EMP-NAME OCCURS 5 TIMES PIC X(10) VARYING.
 05 SALARY OCCURS 5 TIMES PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 EXEC SQL VAR SALARY IS DISPLAY(8,2) END-EXEC.
 EXEC SQL END DECLARE SECTION END-EXEC.
 EXEC SQL INCLUDE SQLCA END-EXEC.
 01 NUM-RET PIC S9(9) COMP VALUE ZERO.
 01 PRINT-NUM PIC S9(9) COMP VALUE ZERO.
 01 COUNTER PIC S9(9) COMP.
 01 DISPLAY-VARIABLES.
 05 D-EMP-NAME PIC X(10).
 05 D-EMP-NUMBER PIC 9(4).
 05 D-SALARY PIC Z(4)9.99.

 PROCEDURE DIVISION.

 BEGIN-PGM.
 EXEC SQL
 WHENEVER SQLERROR DO PERFORM SQL-ERROR
 END-EXEC.
 PERFORM LOGON.
 EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT EMPNO, SAL, ENAME
 FROM EMP
 END-EXEC.
 EXEC SQL
 OPEN C1
 END-EXEC.

 FETCH-LOOP.
 EXEC SQL
 WHENEVER NOT FOUND DO PERFORM SIGN-OFF
 END-EXEC.
 EXEC SQL
 FETCH C1
 INTO :EMP-NUMBER, :SALARY, :EMP-NAME
 END-EXEC.
 SUBTRACT NUM-RET FROM SQLERRD(3) GIVING PRINT-NUM.
 PERFORM PRINT-IT.
 MOVE SQLERRD(3) TO NUM-RET.
 GO TO FETCH-LOOP.

 LOGON.
 MOVE "SCOTT" TO USERNAME-ARR.
 MOVE 5 TO USERNAME-LEN.
 MOVE "TIGER" TO PASSWD-ARR.
 MOVE 5 TO PASSWD-LEN.
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWD
 END-EXEC.
 DISPLAY " ".
 DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.

 PRINT-IT.
 DISPLAY " ".
 DISPLAY "EMPLOYEE NUMBER SALARY EMPLOYEE NAME".
 DISPLAY "--------------- ------- -------------".
 PERFORM PRINT-ROWS
 VARYING COUNTER FROM 1 BY 1
 UNTIL COUNTER > PRINT-NUM.

 PRINT-ROWS.
 MOVE EMP-NUMBER(COUNTER) TO D-EMP-NUMBER.
 MOVE SALARY(COUNTER) TO D-SALARY.
 DISPLAY " ", D-EMP-NUMBER, " ", D-SALARY, " ",
 EMP-NAME-ARR IN EMP-NAME(COUNTER).
 MOVE SPACES TO EMP-NAME-ARR IN EMP-NAME(COUNTER).

 SIGN-OFF.
 SUBTRACT NUM-RET FROM SQLERRD(3) GIVING PRINT-NUM.
 IF (PRINT-NUM > 0) PERFORM PRINT-IT.
 EXEC SQL
 CLOSE C1
 END-EXEC.
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "HAVE A GOOD DAY.".
 DISPLAY " ".
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Inserting with Tables

You can use host tables as input variables in an INSERT statement. Just make sure your program populates the tables with data before executing the INSERT statement. If some elements in the tables are irrelevant, you can use the FOR clause to control the number of rows inserted. See "The FOR Clause".

An example of inserting with host tables follows:

 01 EMP-REC-TABLES.
 05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
 05 EMP-NAME OCCURS 50 TIMES PIC X(10) VARYING.
 05 SALARY OCCURS 50 TIMES PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
* -- populate the host tables
 EXEC SQL INSERT INTO EMP (ENAME, EMPNO, SAL)
 VALUES (:EMP-NAME, :EMP-NUMBER, :SALARY)
 END-EXEC.

The number of rows inserted will be available in SQLERRD(3).

Host tables must not be subscripted in SQL statements. For example the following INSERT statement is invalid:

 PERFORM VARYING I FROM 1 BY 1 UNTIL I = TABLE-DIMENSION.
 EXEC SQL INSERT INTO EMP (ENAME, EMPNO, SAL)
 VALUES (:EMP-NAME(I), :EMP-NUMBER(I), :SALARY(I))
 END_EXEC
 END-PERFORM.

Restrictions on Host Tables

Mixing simple host variables with host tables in the VALUES clause of an INSERT, UPDATE, or DELETE statement causes only the first element of any host table to be processed because simple host variables are treated as host tables of dimension one and Pro*COBOL always uses the smallest declared dimension. You receive a warning when this occurs.

Updating with Tables

You can also use host tables as input variables in an UPDATE statement, as the following example shows:

 01 EMP-REC-TABLES.
 05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
 05 SALARY OCCURS 50 TIMES PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 ...
* -- populate the host tables
 EXEC SQL
 UPDATE EMP SET SAL = :SALARY WHERE EMPNO = :EMP-NUMBER
 END-EXEC.

The number of rows updated by issuing this statement is available in SQLERRD(3). This is not necessarily the number of rows in the host table. The number does not include rows processed by an update cascade (which causes subsequent updates.)

If some elements in the tables are irrelevant, you can use the FOR clause to limit the number of rows updated.

The last example showed a typical update using a unique key (EMP-NUMBER). Each table element qualified just one row for updating. In the following example, each table element qualifies multiple rows:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 05 JOB-TITLE OCCURS 10 TIMES PIC X(10) VARYING.
 05 COMMISSION OCCURS 50 TIMES PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 EXEC SQL END DECLARE SECTION END-EXEC.
* -- populate the host tables
 EXEC SQL
 UPDATE EMP SET COMM = :COMMISSION WHERE JOB = :JOB-TITLE
 END-EXEC.

Restrictions in UPDATE

You cannot use host tables with the CURRENT OF clause in an UPDATE statement. For an alternative, see "Mimicking the CURRENT OF Clause".

Table 7-2 shows which uses of host tables are valid in an UPDATE statement:

Table 7-2 Host Tables Valid in UPDATE

	SET Clause	WHERE Clause	Valid?
	
table

	
table

	
yes

	
scalar

	
scalar

	
yes

	
table

	
scalar

	
no

	
scalar

	
table

	
no

Deleting with Tables

You can also use host tables as input variables in a DELETE statement. Doing so is like executing the DELETE statement repeatedly using successive elements of the host table in the WHERE clause. Thus, each execution might delete zero, one, or more rows from the table. An example of deleting with host tables follows:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.
* -- populate the host table
 EXEC SQL
 DELETE FROM EMP WHERE EMPNO = :EMP-NUMBER
 END-EXEC.

The cumulative number of rows deleted can be found in SQLERRD(3). That number does not include rows processed by a delete cascade.

The last example showed a typical delete using a unique key (EMP-NUMBER). Each table element qualified just one row for deletion. In the following example, each table element qualifies multiple rows:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 05 JOB-TITLE OCCURS 10 TIMES PIC X(10) VARYING.
 EXEC SQL END DECLARE SECTION END-EXEC.
* -- populate the host table
 EXEC SQL
 DELETE FROM EMP WHERE JOB = :JOB-TITLE
 END-EXEC.

Restrictions in DELETE

You cannot use host tables with the CURRENT OF clause in a DELETE statement. For an alternative, see "Mimicking the CURRENT OF Clause".

Using Indicator Tables

You use indicator tables to assign NULLs to input host tables and to detect NULL or truncated values in output host tables. The following example shows how to insert with indicator tables:

 01 EMP-REC-VARS.
 05 EMP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
 05 DEPT-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
 05 COMMISSION OCCURS 50 TIMES PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
* -- indicator table:
 05 COMM-IND OCCURS 50 TIMES PIC S9(4) COMP.
* -- populate the host tables
* -- populate the indicator table; to insert a NULL into
* -- the COMM column, assign -1 to the appropriate element in
* -- the indicator table
 EXEC SQL
 INSERT INTO EMP (EMPNO, DEPTNO, COMM)
 VALUES (:EMP_NUMBER, :DEPT-NUMBER, :COMMISSION:COMM-IND)
 END-EXEC.

The number of entries of the indicator table cannot be smaller than the number of entries of the host table.

The FOR Clause

You can use the optional FOR clause to set the number of table elements processed by any of the following SQL statements:

	
DELETE

	
EXECUTE (See information on Oracle dynamic SQL in Chapter 11, "Oracle Dynamic SQL: Method 4".

	
FETCH

	
INSERT

	
OPEN

	
UPDATE

The FOR clause is especially useful in UPDATE, INSERT, and DELETE statements. With these statements you might not want to use the entire table. The FOR clause lets you limit the elements used to just the number you need, as the following example shows:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 EMP-REC-VARS.
 05 EMP-NAME OCCURS 1000 TIMES PIC X(20) VARYING.
 05 SALARY OCCURS 100 TIMES PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 01 ROWS-TO-INSERT PIC S9(4) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.
* -- populate the host tables
 MOVE 25 TO ROWS-TO-INSERT.
* -- set FOR-clause variable
* -- will process only 25 rows
 EXEC SQL FOR :ROWS-TO-INSERT
 INSERT INTO EMP (ENAME, SAL)
 VALUES (:EMP-NAME, :SALARY)
 END-EXEC.

The FOR clause must use an integer host variable to count table elements. For example, the following statement is illegal:

* -- illegal
 EXEC SQL FOR 25
 INSERT INTO EMP (ENAME, EMPNO, SAL)
 VALUES (:EMP-NAME, :EMP-NUMBER, :SALARY)
 END-EXEC.

The FOR clause variable specifies the number of table elements to be processed. Make sure the number does not exceed the smallest table dimension. Internally, the value is treated as an unsigned quantity. An attempt to pass a negative value through the use of a signed host variable will result in unpredictable behavior.

Restrictions

Two restrictions keep FOR clause semantics clear: you cannot use the FOR clause in a SELECT statement or with the CURRENT OF clause.

In a SELECT Statement

If you use the FOR clause in a SELECT statement, you receive an error message.

The FOR clause is not allowed in SELECT statements because its meaning is unclear. Does it mean "execute this SELECT statement n times"? Or, does it mean "execute this SELECT statement once, but return n rows"? The problem in the former case is that each execution might return multiple rows. In the latter case, it is better to declare a cursor and use the FOR clause in a FETCH statement, as follows:

 EXEC SQL FOR :LIMIT FETCH EMPCURSOR INTO ...

With the CURRENT OF Clause

You can use the CURRENT OF clause in an UPDATE or DELETE statement to refer to the latest row returned by a FETCH statement, as the following example shows:

 EXEC SQL DECLARE EMPCURSOR CURSOR FOR
 SELECT ENAME, SAL FROM EMP WHERE EMPNO = :EMP-NUMBER
 END-EXEC.
 ...
 EXEC SQL OPEN EMPCURSOR END-EXEC.
 ...
 EXEC SQL FETCH emp_cursor INTO :EM-NAME, :SALARY END-EXEC.
 ...
 EXEC SQL UPDATE EMP SET SAL = :NEW-SALARY
 WHERE CURRENT OF EMPCURSOR
 END-EXEC.

However, you cannot use the FOR clause with the CURRENT OF clause. The following statements are invalid because the only logical value of LIMIT is 1 (you can only update or delete the current row once):

 EXEC SQL FOR :LIMIT UPDA-CURSOR END-EXEC.
 ...
 EXEC SQL FOR :LIMIT DELETE FROM EMP
 WHERE CURRENT OF emp_cursor
 END-EXEC.

The WHERE Clause

Pro*COBOL treats a SQL statement containing host tables of number of entries n like the same SQL statement executed n times with n different scalar variables (the individual table elements). The precompiler issues an error message only when such treatment is ambiguous:

For example, assuming the declarations:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 05 MGRP-NUMBER OCCURS 50 TIMES PIC S9(4) COMP.
 05 JOB-TITLE OCCURS 50 TIMES PIC X(20) VARYING.
 01 I PIC S9(4) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.

it would be ambiguous if the statement:

 EXEC SQL SELECT MGR INTO :MGR-NUMBER FROM EMP
 WHERE JOB = :JOB-TITLE
 END-EXEC.

were treated like the following statement

 PERFORM VARYING I FROM 1 BY 1 UNTIL I = 50
 SELECT MGR INTO :MGR-NUMBER(I) FROM EMP
 WHERE JOB = :JOB_TITLE(I)
 END-EXEC
 END-PERFORM.

because multiple rows might meet the WHERE-clause search condition, but only one output variable is available to receive data. Therefore, an error message is issued.

On the other hand, it would not be ambiguous if the statement

 EXEC SQL
 UPDATE EMP SET MGR = :MGR_NUMBER
 WHERE EMPNO IN (SELECT EMPNO FROM EMP WHERE
 JOB = :JOB-TITLE)
 END-EXEC.

were treated like the following statement

 PERFORM VARYING I FROM 1 BY 1 UNTIL I = 50
 UPDATE EMP SET MGR = :MGR_NUMBER(I)
 WHERE EMPNO IN
 (SELECT EMPNO FROM EMP WHERE JOB = :JOB-TITLE(I))
 END-EXEC
 END-PERFORM.

because there is a MGR-NUMBER in the SET clause for each row matching JOB-TITLE in the WHERE clause, even if each JOB-TITLE matches multiple rows. All rows matching each JOB-TITLE can be SET to the same MGR-NUMBER, so no error message is issued.

Mimicking the CURRENT OF Clause

The CURRENT OF clause enables you to do UPDATEs or DELETEs of the most recent row in the cursor. Use of the CURRENT OF clause causes the FOR UPDATE clause to be added to the cursor. Adding this clause has the effect of locking all rows identified by the cursor in exclusive mode. Note that you cannot use CURRENT OF with host tables. Instead, append FOR UPDATE to the definition of the cursor and explicitly select the ROWID column, then use that value to identify the current row during the update or delete. An example follows:

 05 EMP-NAME OCCURS 25 TIMES PIC X(20) VARYING.
 05 JOB-TITLE OCCURS 25 TIMES PIC X(15) VARYING.
 05 OLD-TITLE OCCURS 25 TIMES PIC X(15) VARYING.
 05 ROW-ID OCCURS 25 TIMES PIC X(18) VARYING.
 ...
 EXEC SQL DECLARE EMPCURSOR CURSOR FOR
 SELECT ENAME, JOB, ROWID FROM EMP
 FOR UPDATE
 END-EXEC.
 ...
 EXEC SQL OPEN EMPCURSOR END-EXEC.
 ...
 EXEC SQL WHENEVER NOT FOUND GOTO ...
 ...
 PERFORM
 EXEC SQL
 FETCH EMPCURSOR
 INTO :EMP-NAME, :JOB-TITLE, :ROW-ID
 END-EXEC
 ...
 EXEC SQL
 DELETE FROM EMP
 WHERE JOB = :OLD-TITLE AND ROWID = :ROW-ID
 END-EXEC
 EXEC SQL COMMIT WORK END-EXEC
 END-PERFORM.

Tables of Group Items as Host Variables

Pro*COBOL allows the use of tables of group items (also called records) in embedded SQL statements. The tables of group items can be referenced in the INTO clause of a SELECT or a FETCH statement, and in the VALUES list of an INSERT statement.

For example, given the following declaration:

 01 TABLES.
 05 EMP-TABLE OCCURS 20 TIMES.
 10 EMP-NUMBER PIC S9(4) COMP.
 10 EMP-NAME PIC X(10).
 10 DEPT-NUMBER PIC S9(4) COMP.

the following statement is valid:

 EXEC SQL INSERT INTO EMP(EMPNO, ENAME, DEPTNO)
 VALUES(:EMP-TABLE)
 END-EXEC.

Assuming that the group item has been filled with data already, the statement bulk inserts 20 rows consisting of the employee number, employee name, and department number into the EMP table.

Make sure that the order of the group items corresponds to the order in the SQL statement.

To use an indicator variable, set up a second table of a group item that contains an indicator variable for each variable in the group item:

 01 TABLES-IND.
 05 EMP-TABLE-IND OCCURS 20 TIMES.
 10 EMP-NUMBER-IND PIC S9(4) COMP.
 10 EMP-NAME-IND PIC S9(4) COMP.
 10 DEPT-NUMBER_IND PIC S9(4) COMP.

The host indicator table of a group item can be used as follows:

 EXEC SQL INSERT INTO EMP (EMPNO, ENAME, DEPTNO)
 VALUES (:EMP-TABLE:EMP-TABLE-IND)
 END-EXEC.

If the exact characteristics of the data are known, it is convenient to specify an elementary item indicator for a group item:

 05 EMP-TABLE-IND PIC S9(4) COMP
 OCCURS 20 TIMES.

Host tables of group items cannot have group items that are tables. For example:

 01 TABLES.
 05 EMP-TABLE OCCURS 20 TIMES.
 10 EMP-NUMBER PIC S9(4) COMP OCCURS 10 TIMES.
 10 EMP-NAME PIC X(10).
 10 DEPT-NUMBER PIC S9(4) COMP.

EMP-TABLE cannot be used as a host variable because EMP-NUMBER is a table.

Host tables of nested group items are not allowed. For example:

 01 TABLES.
 05 TEAM-TABLE OCCURS 20 TIMES
 10 EMP-TABLE
 15 EMP-NUMBER PIC S9(4) COMP.
 15 EMP-NAME PIC X(10).
 10 DEPT-TABLE.
 15 DEPT-NUMBER PIC S9(4) COMP.
 15 DEPT-NAME PIC X(10).

TEAM-TABLE cannot be used as a host variable because its members (EMP-TABLE and DEPT-TABLE) are group items themselves.

Finally, the restrictions that apply to host tables in Pro*COBOL also apply to tables of group items:

	
Multi-dimensional and variable-length tables are not allowed.

	
If multiple tables are used in a single SQL statement, their dimensions should be the same.

	
Host tables in SQL statements must not be subscripted.

Sample Program 14: Tables of Group Items

This program logs on, declares and opens a cursor, fetches in batches using a table of group items. Read the initial comments for details.

 * Sample Program 14: Tables of group items *
 * *
 * This program logs on to ORACLE, declares and opens a cursor, *
 * fetches in batches using a table of group items , and prints *
 * the results. This sample is identical to sample3 except that *
 * instead of using three separate host tables of five elements *
 * each, it uses a five-element table of three group items. *
 * The output should be identical. *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. TABLE-OF-GROUP-ITEMS.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(15) VARYING.
 01 PASSWD PIC X(15) VARYING.
 01 EMP-REC-TABLE OCCURS 5 TIMES.
 05 EMP-NUMBER PIC S9(4) COMP.
 05 SALARY PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 05 EMP-NAME PIC X(10) VARYING.
 EXEC SQL VAR SALARY IS DISPLAY(8,2) END-EXEC.
 EXEC SQL END DECLARE SECTION END-EXEC.
 EXEC SQL INCLUDE SQLCA END-EXEC.
 01 NUM-RET PIC S9(9) COMP VALUE ZERO.
 01 PRINT-NUM PIC S9(9) COMP VALUE ZERO.
 01 COUNTER PIC S9(9) COMP.
 01 DISPLAY-VARIABLES.
 05 D-EMP-NAME PIC X(10).
 05 D-EMP-NUMBER PIC 9(4).
 05 D-SALARY PIC Z(4)9.99.

 PROCEDURE DIVISION.

 BEGIN-PGM.
 EXEC SQL
 WHENEVER SQLERROR DO PERFORM SQL-ERROR
 END-EXEC.
 PERFORM LOGON.
 EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT EMPNO, SAL, ENAME
 FROM EMP
 END-EXEC.
 EXEC SQL
 OPEN C1
 END-EXEC.

 FETCH-LOOP.
 EXEC SQL
 WHENEVER NOT FOUND DO PERFORM SIGN-OFF
 END-EXEC.
 EXEC SQL
 FETCH C1
 INTO :EMP-REC-TABLE
 END-EXEC.
 SUBTRACT NUM-RET FROM SQLERRD(3) GIVING PRINT-NUM.
 PERFORM PRINT-IT.
 MOVE SQLERRD(3) TO NUM-RET.
 GO TO FETCH-LOOP.

 LOGON.
 MOVE "SCOTT" TO USERNAME-ARR.
 MOVE 5 TO USERNAME-LEN.
 MOVE "TIGER" TO PASSWD-ARR.
 MOVE 5 TO PASSWD-LEN.
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWD
 END-EXEC.
 DISPLAY " ".
 DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.

 PRINT-IT.
 DISPLAY " ".
 DISPLAY "EMPLOYEE NUMBER SALARY EMPLOYEE NAME".
 DISPLAY "--------------- ------- -------------".
 PERFORM PRINT-ROWS
 VARYING COUNTER FROM 1 BY 1
 UNTIL COUNTER > PRINT-NUM.

 PRINT-ROWS.
 MOVE EMP-NUMBER(COUNTER) TO D-EMP-NUMBER.
 MOVE SALARY(COUNTER) TO D-SALARY.
 DISPLAY " ", D-EMP-NUMBER, " ", D-SALARY, " ",
 EMP-NAME-ARR IN EMP-NAME(COUNTER).
 MOVE SPACES TO EMP-NAME-ARR IN EMP-NAME(COUNTER).

 SIGN-OFF.
 SUBTRACT NUM-RET FROM SQLERRD(3) GIVING PRINT-NUM.
 IF (PRINT-NUM > 0) PERFORM PRINT-IT.
 EXEC SQL
 CLOSE C1
 END-EXEC.
 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "HAVE A GOOD DAY.".
 DISPLAY " ".
 STOP RUN.

 SQL-ERROR.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 STOP RUN.

Additional Array Insert/Select Syntax

The Oracle precompiler also supports the DB2 insert and fetch syntax for the host tables. The supported additional array insert and fetch syntax are shown in the following images, respectively.

Figure 7-1 Additional Insert Syntax

[image: Additional Insert Syntax]

Figure 7-2 Additional Fetch Syntax

[image: Additional Fetch Syntax]

The optional ROWSET and ROWSET STARTING AT clauses are used in the fetch-orientation (FIRST, PRIOR, NEXT, LAST, CURRENT, RELATIVE and ABSOLUTE). Consider the following examples:

	
FIRST ROWSET

	
PRIOR ROWSET

	
NEXT ROWSET

	
LAST ROWSET

	
CURRENT ROWSET

	
ROWSET STARTING AT RELATIVEn

	
ROWSET STARTING AT ABSOLUTEn

Examples of the DB2 array insert/fetch syntax and their comparison with the corresponding Oracle precompiler syntax are shown in Table 7-3:

Table 7-3 DB2 Array Syntax vs. Oracle Precompiler Syntax

	DB2 Array Syntax	Oracle Precompiler Syntax
	

EXEC SQL
 INSERT INTO DSN8810.ACT
 (ACTNO, ACTKWD, ACTDESC)
 VALUES (:HVA1, :HVA2, :HVA3)
 FOR :NUM_ROWS ROWS
END-EXEC.

	

EXEC SQL FOR :NUM_ROWS
 INSERT INTO DSN8810.ACT
 (ACTNO, ACTKWD, ACTDESC)
 VALUES (:HVA1, :HVA2, :HVA3)
END-EXEC.

	

EXEC SQL
 FETCH NEXT ROWSET FROM C1
 FOR 20 ROWS
 INTO :HVA_EMPNO, :HVA_LASTNAME,
 :HVA_SALARY
END-EXEC.

	

EXEC SQL
 FOR :TWENTY
 FETCH c1
 INTO :HVA_EMPNO, :HVA_LASTNAME,
 :HVA_SALARY
END-EXEC.

In DB2 syntax, a row-set positioned cursor should be first declared before retrieving row sets of data. To enable a cursor to fetch row sets, 'WITH ROWSET POSITIONING' clause has to be used in the DECLARE CURSOR statement, which is not required and relevant in the Oracle precompiler syntax, as shown in the following table.

	DB2 Array Syntax	Oracle Precompiler Syntax
	

EXEC SQL
 DECLARE C1 CURSOR
 WITH ROWSET POSITIONING FOR
 SELECT EMPNO, LASTNAME, SALARY
 FROM DSN8810.EMP
END-EXEC.

	

EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT EMPNO, LASTNAME, SALARY
 FROM DSN8810.EMP
END-EXEC.

This additional array syntax support can be enabled with the precompiler option "db2_array", whose default option is "no". The DB2 array syntax support cannot be used together with the Oracle precompiler syntax; only one of the syntax, either Oracle precompiler, or DB2 syntax, will be supported at a time.

Example 7-1 Inserting and Fetching Rows by Using the DB2 Array Syntax

This program inserts INSCNT rows into the EMP table by using the DB2 array insert syntax, and then fetches the inserted rows by using the DB2 array fetch syntax.

 * db2arrdemo: *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. db2arrdemo.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 * EMBEDDED COBOL (file "DB2ARRDEMO.PCO")

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(10) VARYING.
 01 PASSWD PIC X(10) VARYING.
 01 EMPINDATA.
 02 EMPIN OCCURS 25 TIMES.
 03 EMPNO PIC 9(4) COMP.
 03 ENAME PIC X(10).
 03 JOB PIC X(9).
 03 MGR PIC 9(4).
 03 HIREDATE PIC X(9).
 03 SAL PIC X(6).
 03 COMM PIC X(6).
 03 DEPTNO PIC 9(2).

 01 EMPOUTDATA.
 02 EMPOUT OCCURS 5 TIMES.
 03 EMPNO1 PIC 9(4) COMP.
 03 ENAME1 PIC X(10).
 03 JOB1 PIC X(9).
 03 MGR1 PIC 9(4).
 03 HIREDATE1 PIC X(9).
 03 SAL1 PIC X(6).
 03 COMM1 PIC X(6).
 03 DEPTNO1 PIC 9(2).

 EXEC SQL END DECLARE SECTION END-EXEC.

 01 INSCNT PIC 9(3) COMP VALUE 25.
 01 FETCHCNT PIC 9(3) COMP VALUE 5.
 01 CNT PIC 9(4).
 01 CNT2 PIC 9(2).

 01 STRINGFIELDS.
 02 STR PIC X(18) VARYING.

 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 BEGIN-PGM.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.

 PERFORM LOGON.

 * Fill the array elements to insert.
 PERFORM FILL-DATA VARYING CNT FROM 1 BY 1
 UNTIL CNT > INSCNT.

 * Inserting data using DB2 array insert syntax.
 DISPLAY "Inserting data using DB2 array insert syntax".
 EXEC SQL INSERT INTO EMP (EMPNO, ENAME, JOB, MGR, HIREDATE,
 SAL, COMM, DEPTNO) VALUES (:EMPIN)
 FOR :INSCNT ROWS
 END-EXEC.

 EXEC SQL SELECT COUNT(*) INTO :CNT FROM EMP
 WHERE ENAME LIKE 'EMP_%'
 END-EXEC.
 DISPLAY "Number of rows successfully inserted into EMP "
 "table:", CNT.

 DISPLAY " ".
 * Declares scrollable cursor to fetch data.
 EXEC SQL DECLARE C1 SCROLL CURSOR FOR
 SELECT EMPNO, ENAME, JOB, MGR, HIREDATE, SAL,
 COMM, DEPTNO
 FROM EMP
 WHERE ENAME LIKE 'EMP_%'
 ORDER BY EMPNO
 END-EXEC.

 EXEC SQL OPEN C1 END-EXEC.

 DISPLAY "Fetching data using DB2 array fetch syntax ".
 PERFORM FETCH-TAB.
 ENDFETCH-TAB.

 EXEC SQL CLOSE C1 END-EXEC.

 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 LOGON.
 MOVE "scott" TO USERNAME-ARR.
 MOVE 5 TO USERNAME-LEN.
 MOVE "tiger" TO PASSWD-ARR.
 MOVE 5 TO PASSWD-LEN.
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWD
 END-EXEC.

 * FILLS ARRAY TO INSERT INTO EMP TABLE
 FILL-DATA.
 MOVE CNT TO EMPNO(CNT).

 MOVE " " TO STR.
 STRING "EMP_", CNT INTO STR
 END-STRING.
 MOVE STR TO ENAME(CNT).

 MOVE " " TO STR.
 STRING "JOB_", CNT INTO STR
 END-STRING.
 MOVE STR TO JOB(CNT).

 MOVE 100 TO MGR(CNT).

 IF CNT > 30 THEN
 COMPUTE CNT2 = 30
 ELSE
 MOVE CNT TO CNT2
 END-IF

 MOVE " " TO STR.
 STRING CNT2, "-JAN-06" INTO STR
 END-STRING.
 MOVE STR TO HIREDATE(CNT).

 MOVE " " TO STR.
 STRING CNT2, "000" INTO STR
 END-STRING.
 MOVE STR TO SAL(CNT).

 MOVE 1000 TO COMM(CNT).

 MOVE 10 TO DEPTNO(CNT).

 * FETCHES DATA FROM EMP TABLE
 FETCH-TAB.
 EXEC SQL WHENEVER NOT FOUND GOTO ENDFETCH-TAB END-EXEC.
 DISPLAY "Fetch using FETCH FIRST ROWSET".
 EXEC SQL FETCH FIRST ROWSET FROM C1 FOR :FETCHCNT ROWS
 INTO :EMPOUT
 END-EXEC.
 PERFORM PRINTDATA.

 DISPLAY " ".
 DISPLAY "Fetch using FETCH NEXT ROWSET".
 EXEC SQL FETCH NEXT ROWSET FROM C1 FOR 5 ROWS
 INTO :EMPOUT END-EXEC.
 PERFORM PRINTDATA.

 DISPLAY " ".
 DISPLAY "Fetch using FETCH CURRENT ROWSET".
 EXEC SQL FETCH CURRENT ROWSET FROM C1 FOR :FETCHCNT ROWS
 INTO :EMPOUT
 END-EXEC.
 PERFORM PRINTDATA.

 DISPLAY " ".
 DISPLAY "Fetch using FETCH LAST ROWSET".
 EXEC SQL FETCH LAST ROWSET FROM C1 FOR :FETCHCNT ROWS
 INTO :EMPOUT
 END-EXEC.
 PERFORM PRINTDATA.

 DISPLAY " ".
 DISPLAY "Fetch using FETCH ROWSET STARTING AT ABSOLUTE".
 COMPUTE CNT = 4 * FETCHCNT.
 EXEC SQL FETCH ROWSET STARTING AT ABSOLUTE :CNT FROM C1
 FOR 5 ROWS INTO :EMPOUT
 END-EXEC.
 PERFORM PRINTDATA.

 DISPLAY " ".
 DISPLAY "Fetch using FETCH ROWSET STARTING AT RELATIVE".
 EXEC SQL FETCH ROWSET STARTING AT RELATIVE -3 FROM C1
 FOR :FETCHCNT ROWS INTO :EMPOUT
 END-EXEC.
 PERFORM PRINTDATA.

 DISPLAY " ".
 DISPLAY "Fetch using FETCH PRIOR ROWSET ".
 EXEC SQL FETCH PRIOR ROWSET FROM C1 FOR :FETCHCNT ROWS
 INTO :EMPOUT
 END-EXEC.
 PERFORM PRINTDATA.

 * Prints fetched data
 PRINTDATA.
 PERFORM VARYING CNT FROM 1 BY 1 UNTIL CNT > FETCHCNT
 DISPLAY "Empno=", EMPNO1(CNT), ", Ename=", ENAME1(CNT),
 ", Job=", JOB1(CNT), ", Mgr=", MGR1(CNT),
 ", Hiredate=", HIREDATE1(CNT)
 DISPLAY "Sal=", SAL1(CNT), ", Comm=", COMM1(CNT),
 ", Deptno=", DEPTNO1(CNT)
 END-PERFORM.

 * HANDLES SQL ERROR CONDITIONS
 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

Using Implicit Buffered Insert

For improved performance, Pro*Cobol application developers can reference host arrays in their embedded SQL statements. This provides a means to execute an array of SQL statements with a single round-trip to the database. Despite the significant performance improvements afforded by array execution, some developers choose not to use this capability because it is not ANSI standard. For example, an application written to exploit array execution in Oracle cannot be precompiled using IBM's precompiler.

One workaround is to use buffered INSERT statements, which enable you to gain performance benefits while retaining ANSI standard embedded SQL syntax.

The command line option "max_row_insert" controls the number of rows to be buffered before executing the INSERT statement. By default it is zero and the feature is disabled. To enable this feature, specify any number greater than zero.

If insert bufering is enabled, precompiler runtime will flag the corresponding cursor and:

	
Allocate or re-allocate extra memory to hold bind values (first execute only).

	
Copy bind values from program host variables to internal runtime bind structures.

	
Increment the rows buffered count.

	
Flush the buffered INSERT statements if MAX_INSERT_ROWS has been buffered.

	
If MAX_INSERT_ROWS has not been hit, then return after copying the values to the internal bind buffers without flushing.

If you are executing a new embedded SQL statement that results in a flush of the buffered insert statements:

	
Flush the buffers.

	
Continue with the call that prompted the flush

The application is informed of the error through the standard precompiler error mechanisms such as SQLCODE or SQLSTATE in Pro*Cobol.

The "implicit_svpt" option controls whether an implicit savepoint is taken prior to the start of a new batched insert.

	
If yes, a savepoint is taken prior to the start of a new batch of rows. If an error occurs on the insert, an implicit "rollback to savepoint" is executed.

	
If no, there is no implicit savepoint taken. If an error occurs on the buffered insert, then it is reported back to the application, but no rollback is executed. Errors are reported asynchronously for buffer inserts. Errors for inserted rows are not reported when the INSERT statement is executed in the application.

	
Some errors for inserted rows are reported later, when the first statement other than the INSERT is executed. This may include DELETE, UPDATE, INSERT (into different tables), COMMIT, and ROLLBACK. Any statement that closes the buffered insert statement can report an error. In such cases, the statement that reports the error is not executed. You need to first handle the error and also reexecute the statement on which the buffered insert error is reported. Otherwise, you may rollback the transaction and reexecute it.

For example, consider using a COMMIT statement to close a buffered insert loop. COMMIT can report an error because of a duplicate key from an earlier insert. In this scenario, the commit is not executed. You should first handle the error and then reexecute COMMIT. Otherwise, you can rollback the transaction and reexecute it.

	
Some errors are reported on the insert itself, and may reflect an error of a previously inserted row. In such cases, no further inserts are executed. You need to handle the errors of the previously inserted row and continue inserting the current insert, which is a long process. Instead, you may rollback and reexecute the transaction.

For example, consider that the limit of internal buffer is 10 rows and the application is inserting 15 rows in a loop. Suppose there is an error on the 8th row. The error is reported when the 11th row insert happens and the insert is no more executed further.

The following are some of the possible errors that you might face during buffered insert:

	
ORA-00001: duplicate key in index

	
ORA-01400: mandatory (not null) column is missing or Null during insert

	
ORA-01401: inserted value too large for column

	
ORA-01438: value larger than specified precision allows for this column

Example 7-2 inserting Buffered Rows into a Table

This program inserts LOOPCNT number of rows into the EMP table. At loop counter=5, this program attempts to insert an invalid empno. Without the max_row_insert option, the program inserts all rows except the invalid row. When the max_row_insert option is set to LOOPCNT, only the first four rows are inserted.

Using the max_row_insert option, when the erroneous statement is removed, the program performs the same way an array insert program would.

 * bufinsdemo: *
 * *
 * This program inserts LOOPCNT number of rows into EMP table. *
 * At loop counter=5, this program attempts to insert an invalid *
 * empno. Without max_row_insert option, this program inserts *
 * all rows except this invalid row. When max_row_insert option *
 * is set to LOOPCNT, only the first 4 rows are inserted. *
 * *
 * With max_row_insert option, when this errorneous statement *
 * is removed, the performance of this program is similar to *
 * having an array insert in this program. *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. bufinsdemo.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 * EMBEDDED COBOL (file "BUFINSDEMO.PCO")

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(10) VARYING.
 01 PASSWD PIC X(10) VARYING.

 01 EMPIN.
 02 EMPNO PIC 9(6) COMP.
 02 ENAME PIC X(10).
 02 JOB PIC X(9).
 02 MGR PIC 9(4).
 02 HIREDATE PIC X(9).
 02 SAL PIC X(6).
 02 COMM PIC X(6).
 02 DEPTNO PIC 9(2).

 01 EMPOUT.
 02 EMPNO1 PIC 9(4) COMP.
 02 ENAME1 PIC X(10).
 02 JOB1 PIC X(9).
 02 MGR1 PIC 9(4).
 02 HIREDATE1 PIC X(9).
 02 SAL1 PIC X(6).
 02 COMM1 PIC X(6).
 02 DEPTNO1 PIC 9(2).

 EXEC SQL END DECLARE SECTION END-EXEC.

 01 LOOPCNT PIC 9(4) COMP VALUE 100.
 01 CNT PIC 9(4).
 01 CNT2 PIC 9(2).

 01 STRINGFIELDS.
 02 STR PIC X(18) VARYING.

 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 BEGIN-PGM.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.

 PERFORM LOGON.

 * When max_row_insert option is set to LOOPCNT and when the errorneous
 * statement is removed, all the rows will be inserted into the database
 * in one stretch and hence maximum performance gain will be achieved.
 DISPLAY "Inserting ", LOOPCNT, " rows into EMP table".
 PERFORM INS-TAB VARYING CNT FROM 1 BY 1
 UNTIL CNT > LOOPCNT.

 EXEc SQL COMMIT END-EXEC.

 EXEC SQL SELECT COUNT(*) INTO :CNT FROM EMP
 WHERE ENAME LIKE 'EMP_%'
 END-EXEC.
 DISPLAY "Number of rows successfully inserted into EMP "
 "table:", CNT.

 DISPLAY " ".
 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT EMPNO, ENAME, JOB, MGR, HIREDATE, SAL,
 COMM, DEPTNO
 FROM EMP
 WHERE ENAME LIKE 'EMP_%'
 ORDER BY EMPNO
 END-EXEC.

 EXEC SQL OPEN C1 END-EXEC.

 DISPLAY "Fetching inserted rows from EMP table".
 PERFORM FETCH-TAB.
 ENDFETCH-TAB.

 EXEC SQL CLOSE C1 END-EXEC.

 EXEC SQL DELETE FROM EMP WHERE EMPNO < 1000 END-EXEC.

 EXEC SQL COMMIT WORK RELEASE END-EXEC.
 STOP RUN.

 LOGON.
 MOVE "scott" TO USERNAME-ARR.
 MOVE 5 TO USERNAME-LEN.
 MOVE "tiger" TO PASSWD-ARR.
 MOVE 5 TO PASSWD-LEN.
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWD
 END-EXEC.

 * INSERTS DATA INTO EMP TABLE
 INS-TAB.
 IF CNT = 5 THEN
 MOVE 10000 TO EMPNO
 ELSE
 MOVE CNT TO EMPNO
 END-IF

 MOVE " " TO STR.
 STRING "EMP_", CNT INTO STR
 END-STRING.
 MOVE STR TO ENAME.

 MOVE " " TO STR.
 STRING "JOB_", CNT INTO STR
 END-STRING.
 MOVE STR TO JOB.

 MOVE 100 TO MGR.

 IF CNT > 30 THEN
 COMPUTE CNT2 = 30
 ELSE
 MOVE CNT TO CNT2
 END-IF

 MOVE " " TO STR.
 STRING CNT2, "-JAN-06" INTO STR
 END-STRING.
 MOVE STR TO HIREDATE.

 MOVE " " TO STR.
 STRING CNT2, "000" INTO STR
 END-STRING.
 MOVE STR TO SAL.

 MOVE 1000 TO COMM.

 MOVE 10 TO DEPTNO.

 EXEC SQL INSERT INTO EMP (EMPNO, ENAME, JOB, MGR, HIREDATE,
 SAL, COMM, DEPTNO) VALUES (:EMPIN)
 END-EXEC.

 * FETCHES DATA FROM EMP TABLE
 FETCH-TAB.
 EXEC SQL WHENEVER NOT FOUND GOTO ENDFETCH-TAB END-EXEC.
 EXEC SQL FETCH C1 INTO :EMPOUT END-EXEC.
 DISPLAY "Empno=", EMPNO1, ", Ename=", ENAME1,
 ", Job=", JOB1, ", Mgr=", MGR1,
 ", Hiredate=", HIREDATE1.
 DISPLAY "Sal=", SAL1, ", Comm=", COMM1, ", Deptno=", DEPTNO1.
 GO TO FETCH-TAB.

 * HANDLES SQL ERROR CONDITIONS
 SQL-ERROR.
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY SQLERRMC.

Error Handling and Diagnostics

8 Error Handling and Diagnostics

An application program must anticipate runtime errors and attempt to recover from them. This chapter provides an in-depth discussion of error reporting and recovery. You learn how to handle warnings and errors using the ANSI status variables SQLCODE and SQLSTATE, or the Oracle SQLCA (SQL Communications Area) structure. You also learn how to use the WHENEVER statement and how to diagnose problems using the Oracle ORACA (Oracle Communications Area) structure.

The following topics are discussed:

	
Why Error Handling is Needed

	
Error Handling Alternatives

	
Using the SQL Communications Area

	
Using the Oracle Communications Area

	
How Errors Map to SQLSTATE Codes

Why Error Handling is Needed

A significant part of every application program must be devoted to error handling. The main benefit of error handling is that it enables your program to continue operating in the presence of errors. Errors arise from design faults, coding mistakes, hardware failures, invalid user input, and many other sources

You cannot anticipate all possible errors, but you can plan to handle certain kinds of errors meaningful to your program. For Pro*COBOL, error handling means detecting and recovering from SQL statement execution errors. You must trap errors because the precompiler will continue regardless of the errors encountered unless you halt processing.

You can also prepare to handle warnings such as "value truncated" and status changes such as "end of data." It is especially important to check for error and warning conditions after every data manipulation statement because an INSERT, UPDATE, or DELETE statement might fail before processing all eligible rows in a table.

Error Handling Alternatives

Pro*COBOL supports two general methods of error handling:

	
The Oracle-specific method with SQLCA and optional ORACA.

	
ANSI SQL92 standard method with SQLSTATE status variable.

The precompiler MODE option governs ANSI/ISO compliance. When MODE={ANSI | ANSI14}, you declare the SQLSTATE status variable as PIC X(5). Additionally, the ANSI SQL89 SQLCODE status variable is still supported, but it is deprecated and not recommended for new programs. When MODE={ORACLE | ANSI13}, you must include the SQLCA through an EXEC SQL INCLUDE statement. It is possible to use both methods in one program but usually not necessary.

For detailed information on mixing methods see "Status Variable Combinations".

SQLCA

The SQLCA is a record-like, host-language data structure which includes Oracle warnings, error numbers and error text. Oracle9i updates the SQLCA after every executable SQL or PL/SQL statement. (SQLCA values are undefined after a declarative statement.) By checking return codes stored in the SQLCA, your program can determine the outcome of a SQL statement. This can be done in two ways:

	
Implicit checking with the WHENEVER statement

	
Explicit checking of SQLCA variables

When you use the WHENEVER statement to implicitly check the status of your SQL statements, Pro*COBOL automatically inserts error checking code after each executable statement. Alternatively, you can explicitly write your own code to test the value of the SQLCODE member of the SQLCA structure. Include SQLCA by using the embedded SQL INCLUDE statement:

EXEC SQL INCLUDE SQLCA END-EXEC.

ORACA

When more information is needed about runtime errors than the SQLCA provides, you can use the ORACA, which contains cursor statistics, SQL statement text, certain option settings and system statistics. Include ORACA by using the embedded SQL INCLUDE statement:

EXEC SQL INCLUDE ORACA END-EXEC.

The ORACA is optional and can be declared regardless of the MODE setting. For more information about the ORACA status variable, see "Using the Oracle Communications Area".

ANSI SQLSTATE Variable

When MODE=ANSI, you can declare the ANSI SQLSTATE variable inside the Declare Section for implicit or explicit error checking. If the option DECLARE_SECTION is set to NO, then you can also declare it outside of the Declare Section.

	
Note:

When MODE=ANSI, you can also declare the SQLCODE variable with a picture S9(9) COMP. While it can be used instead of or with the SQLSTATE variable, this is not recommended for new programs. You can also use the SQLCA with the SQLSTATE variable. When MODE=ANSI14, then SQLSTATE is not supported and you must declare either SQLCODE or include SQLCA. You cannot declare both SQLCODE and SQLCA for any setting of mode.

Declaring SQLSTATE

This section describes how to declare SQLSTATE. SQLSTATE must be declared as a five-character alphanumeric string as in the following example:

* Declare the SQLSTATE status variable.
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 01 SQLSTATE PIC X(5).
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.

SQLSTATE Values

SQLSTATE status codes consist of a two-character class code followed by a three-character subclass code. Aside from class code 00 (successful completion), the class code denotes a category of exceptions. Aside from subclass code 000 (not applicable), the subclass code denotes a specific exception within that category. For example, the SQLSTATE value '22012' consists of class code 22 (data exception) and subclass code 012 (division by zero).

Each of the five characters in a SQLSTATE value is a digit (0..9) or an uppercase Latin letter (A..Z). Class codes that begin with a digit in the range 0..4 or a letter in the range A..H are reserved for predefined conditions (those defined in SQL92). All other class codes are reserved for implementation-defined conditions. Within predefined classes, subclass codes that begin with a digit in the range 0..4 or a letter in the range A..H are reserved for predefined sub-conditions. All other subclass codes are reserved for implementation-defined sub-conditions. Figure 8-1 shows the coding scheme:

Figure 8-1 SQLSTATE Coding Scheme

[image: SQLSTATE Coding Scheme]

Table 8-1 shows the classes predefined by SQL92.

Table 8-1 Predefined Classes

	Class	Condition
	
00

	
successful completion

	
01

	
warning

	
02

	
no data

	
07

	
dynamic SQL error

	
08

	
connection exception

	
0A

	
feature not supported

	
21

	
cardinality violation

	
22

	
data exception

	
23

	
integrity constraint violation

	
24

	
invalid cursor state

	
25

	
invalid transaction state

	
26

	
invalid SQL statement name

	
27

	
triggered data change violation

	
28

	
invalid authorization specification

	
2A

	
direct SQL syntax error or access rule violation

	
2B

	
dependent privilege descriptors still exist

	
2C

	
invalid character set name

	
2D

	
invalid transaction termination

	
2E

	
invalid connection name

	
33

	
invalid SQL descriptor name

	
34

	
invalid cursor name

	
35

	
invalid condition number

	
37

	
dynamic SQL syntax error or access rule violation

	
3C

	
ambiguous cursor name

	
3D

	
invalid catalog name

	
3F

	
invalid schema name

	
40

	
transaction rollback

	
42

	
syntax error or access rule violation

	
44

	
with check option violation

	
HZ

	
remote database access

	
Note:

The class code HZ is reserved for conditions defined in International Standard ISO/IEC DIS 9579-2, Remote Database Access.

Table 8-4, "SQLSTATE Codes" shows how errors map to SQLSTATE status codes. In some cases, several errors map to the status code. In other cases, no error maps to the status code (so the last column is empty). Status codes in the range 60000..99999 are implementation-defined.

Using the SQL Communications Area

Oracle9i uses the SQL Communications Area (SQLCA) to store status information passed to your program at run time. The SQLCA is a record-like, COBOL data structure that is a updated after each executable SQL statement, so it always reflects the outcome of the most recent SQL operation. Its fields contain error, warning, and status information updated by Oracle9i whenever a SQL statement is executed. To determine that outcome, you can check variables in the SQLCA explicitly with your own COBOL code or implicitly with the WHENEVER statement.

When MODE={ORACLE | ANSI13}, the SQLCA is required; if the SQLCA is not declared, compile-time errors will occur. The SQLCA is optional when MODE={ANSI | ANSI14}, but if you want to use the WHENEVER SQLWARNING statement, you must declare the SQLCA. The SQLCA must also be included when using multibyte NCHAR host variables.

	
Note:

When your application uses Oracle Net to access a combination of local and remote databases concurrently, all the databases write to one SQLCA. There is not a different SQLCA for each database. For more information, see "Concurrent Logons".

Contents of the SQLCA

The SQLCA contains runtime information about the execution of SQL statements, such as error codes, warning flags, event information, rows-processed count, and diagnostics.

Figure 8-2 shows all the variables in the SQLCA.

Figure 8-2 SQLCA Variable Declarations for Pro*COBOL

[image: SQLCA Variable Declarations]

Declaring the SQLCA

To declare the SQLCA, simply include it (using an EXEC SQL INCLUDE statement) in your Pro*COBOL source file outside the Declare Section as follows:

* Include the SQL Communications Area (SQLCA).
 EXEC SQL INCLUDE SQLCA END-EXEC.

The SQLCA must be declared outside the Declare Section.

	
Warning:

 Do not declare SQLCODE if SQLCA is declared. Likewise, do not declare SQLCA if SQLCODE is declared. The status variable declared by the SQLCA structure is also called SQLCODE, so errors will occur if both error-reporting mechanisms are used.

When you precompile your program, the INCLUDE SQLCA statement is replaced by several variable declarations that allow Oracle9i to communicate with the program.

Key Components of Error Reporting

The key components of Pro*COBOL error reporting depend on several fields in the SQLCA.

Status Codes

Every executable SQL statement returns a status code in the SQLCA variable SQLCODE, which you can check implicitly with WHENEVER SQLERROR or explicitly with your own COBOL code.

Warning Flags

Warning flags are returned in the SQLCA variables SQLWARN0 through SQLWARN7, which you can check with WHENEVER SQLWARNING or with your own COBOL code. These warning flags are useful for detecting runtime conditions that are not considered errors.

Rows-Processed Count

The number of rows processed by the most recently executed SQL statement is returned in the SQLCA variable SQLERRD(3). For repeated FETCHes on an OPEN cursor, SQLERRD(3) keeps a running total of the number of rows fetched.

Parse Error Offset

Before executing a SQL statement, Oracle9i must parse it; that is, examine it to make sure it follows syntax rules and refers to valid database objects. If Oracle9i finds an error, an offset is stored in the SQLCA variable SQLERRD(5), which you can check explicitly. The offset specifies the character position in the SQL statement at which the parse error begins. The first character occupies position zero. For example, if the offset is 9, the parse error begins at the tenth character.

If your SQL statement does not cause a parse error, Oracle9i sets SQLERRD(5) to zero. Oracle9i also sets SQLERRD(5) to zero if a parse error begins at the first character (which occupies position zero). So, check SQLERRD(5) only if SQLCODE is negative, which means that an error has occurred.

Error Message Text

The error code and message for errors are available in the SQLCA variable SQLERRMC. For example, you might place the following statements in an error-handling routine:

* Handle SQL execution errors.
 MOVE SQLERRMC TO ERROR-MESSAGE.
 DISPLAY ERROR-MESSAGE.

At most, the first 70 characters of message text are stored. For messages longer than 70 characters, you must call the SQLGLM subroutine, which is discussed in "Getting the Full Text of Error Messages".

SQLCA Structure

This section describes the structure of the SQLCA, its fields, and the values they can store.

SQLCAID

This string field is initialized to "SQLCA" to identify the SQL Communications Area.

SQLCABC

This integer field holds the length, in bytes, of the SQLCA structure.

SQLCODE

This integer field holds the status code of the most recently executed SQL statement. The status code, which indicates the outcome of the SQL operation, can be any of the following numbers:

	Status Code	Description
	0	Oracle9i executed the statement without detecting an error or exception.
	> 0	Oracle9i executed the statement but detected an exception. This occurs when Oracle9i cannot find a row that meets your WHERE-clause search condition or when a SELECT INTO or FETCH returns no rows.
	< 0	When MODE={ANSI | ANSI14 | ANSI113}, +100 is returned to SQLCODE after an INSERT of no rows. This can happen when a subquery returns no rows to process.
Oracle9i did not execute the statement because of a database, system, network, or application error. Such errors can be fatal. When they occur, the current transaction should, in most cases, be rolled back.

Negative return codes correspond to error codes listed in Oracle Database Error Messages.

SQLERRM

This sub-record contains the following two fields:

	Fields	Description
	SQLERRML	This integer field holds the length of the message text stored in SQLERRMC.
	SQLERRMC	This string field holds the message text for the error code stored in SQLCODE and can store up to 70 characters. For the full text of messages longer than 70 characters, use the SQLGLM function.
Verify SQLCODE is negative before you reference SQLERRMC. If you reference SQLERRMC when SQLCODE is zero, you get the message text associated with a prior SQL statement.

SQLERRP

This string field is reserved for future use.

SQLERRD

This table of binary integers has six elements. Descriptions of the fields in SQLERRD follow:

	Fields	Description
	SQLERRD(1)	This field is reserved for future use.
	SQLERRD(2)	This field is reserved for future use.
	SQLERRD(3)	This field holds the number of rows processed by the most recently executed SQL statement. However, if the SQL statement failed, the value of SQLERRD(3) is undefined, with one exception. If the error occurred during a table operation, processing stops at the row that caused the error, so SQLERRD(3) gives the number of rows processed successfully.
The rows-processed count is zeroed after an OPEN statement and incremented after a FETCH statement. For the EXECUTE, INSERT, UPDATE, DELETE, and SELECT INTO statements, the count reflects the number of rows processed successfully. The count does not include rows processed by an update or delete cascade. For example, if 20 rows are deleted because they meet WHERE-clause criteria, and 5 more rows are deleted because they now (after the primary delete) violate column constraints, the count is 20 not 25.

	SQLERRD(4)	This field is reserved for future use.
	SQLERRD(5)	This field holds an offset that specifies the character position at which a parse error begins in the most recently executed SQL statement. The first character occupies position zero.
	SQLERRD(6)	This field is reserved for future use.

SQLWARN

This table of single characters has eight elements. They are used as warning flags. Oracle9i sets a flag by assigning it a 'W' (for warning) character value. The flags warn of exceptional conditions.

For example, a warning flag is set when Oracle9i assigns a truncated column value to an output host character variable.

	
Note:

Figure 8-2, "SQLCA Variable Declarations for Pro*COBOL" illustrates SQLWARN implementation in Pro*COBOL as a group item with elementary PIC X items named SQLWARN0 through SQLWARN7.

Descriptions of the fields in SQLWARN follow:

	Fields	Description
	SQLWARN0	This flag is set if another warning flag is set.
	SQLWARN1	This flag is set if a truncated column value was assigned to an output host variable. This applies only to character data. Oracle9i truncates certain numeric data without setting a warning or returning a negative SQLCODE value.
To find out if a column value was truncated and by how much, check the indicator variable associated with the output host variable. The (positive) integer returned by an indicator variable is the original length of the column value. You can increase the length of the host variable accordingly.

	SQLWARN2	This flag is set if one or more NULLs were ignored in the evaluation of a SQL group function such as AVG, COUNT, or MAX. This behavior is expected because, except for COUNT(*), all group functions ignore NULLs. If necessary, you can use the SQL function NVL to temporarily assign values (zeros, for example) to the NULL column entries.
	SQLWARN3	This flag is set if the number of columns in a query select list does not equal the number of host variables in the INTO clause of the SELECT or FETCH statement. The number of items returned is the lesser of the two.
	SQLWARN4	This flag is no longer in use.
	SQLWARN5	This flag is set when an EXEC SQL CREATE {PROCEDURE | FUNCTION | PACKAGE | PACKAGE BODY} statement fails because of a PL/SQL compilation error.
	SQLWARN6	This flag is no longer in use.
	SQLWARN7	This flag is no longer in use.

SQLEXT

This string field is reserved for future use.

PL/SQL Considerations

When your Pro*COBOL program executes an embedded PL/SQL block, not all fields in the SQLCA are set. For example, if the block fetches several rows, the rows-processed count, SQLERRD(3), is set to 1, not the actual number of rows fetched. So, you should rely only on the SQLCODE and SQLERRM fields in the SQLCA after executing a PL/SQL block.

Getting the Full Text of Error Messages

Regardless of the setting of MODE, you can use SQLGLM to get the full text of error messages if you have explicitly declared SQLCODE and not included SQLCA. The SQLCA can accommodate error messages up to 70 characters long. To get the full text of longer (or nested) error messages, you need the SQLGLM subroutine.

If connected to a database, you can call SQLGLM using the syntax

 CALL "SQLGLM" USING MSG-TEXT, MAX-SIZE, MSG-LENGTH

where the parameters are:

	Parameter	Datatype	Parameter Definition
	MSG-TEXT	PIC X(n)	The field in which to store the error message. (Oracle9i blank-pads to the end of this field.)
	MAX-SIZE	PIC S9(9) COMP	An integer that specifies the maximum size of the MSG-TEXT field in bytes.
	MSG-LENGTH	PIC S9(9) COMP	An integer variable in which Oracle9i stores the actual length of the error message.

All parameters must be passed by reference. This is usually the default parameter passing convention; you need not take special action.

The maximum length of an error message is 512 characters including the error code, nested messages, and message inserts such as table and column names. The maximum length of an error message returned by SQLGLM depends on the value specified for MAX-SIZE.

The following example uses SQLGLM to get an error message of up to 200 characters in length:

 ...
* Declare variables for the SQL-ERROR subroutine call.
 01 MSG-TEXT PIC X(200).
 01 MAX-SIZE PIC S9(9) COMP VALUE 200.
 01 MSG-LENGTH PIC S9(9) COMP.
 ...
 PROCEDURE DIVISION.
 MAIN.
 EXEC SQL WHENEVER SQLERROR GOTO SQL-ERROR END-EXEC.
 ...
 SQL-ERROR.
* Clear the previous message text.
 MOVE SPACES TO MSG-TEXT.
* Get the full text of the error message.
 CALL "SQLGLM" USING MSG-TEXT, MAX-SIZE, MSG-LENGTH.
 DISPLAY MSG-TEXT.

In the example, SQLGLM is called only when a SQL error has occurred. Always make sure SQLCODE is negative before calling SQLGLM. If you call SQLGLM when SQLCODE is zero, you get the message text associated with a prior SQL statement.

	
Note:

If your application calls SQLGLM to get message text, the message length must be passed. Do not use the SQLCA variable SQLERRML. SQLERRML is a PIC S9(4) COMP integer while SQLGLM and SQLIEM expect a PIC S9(9) COMP integer. Instead, use another variable declared as PIC S9(9) COMP.

DSNTIAR

DB2 provides an assembler routine called DSNTIAR to obtain a form of the SQLCA that can be displayed. For users migrating to Oracle from DB2, Pro*COBOL provides DSNTIAR. The DSNTIAR implementation is a wrapper around SQLGLM. The DSNTIAR interface is as follows

 CALL 'DSNTIAR' USING SQLCA MESSAGE LRECL

where MESSAGE is the output message area, in VARCHAR form of size greater than or equal to 240, and LRECL is a full word containing the length of the output messages, between 72 and 240. The first half-word of the MESSAGE argument contains the length of the remaining area. The possible error codes returned by DSNTIAR are listed in the following table.

Table 8-2 DSNTIAR Error Codes and Their Meanings

	Error Codes	Description
	
0

	
Successful execution

	
4

	
More data was available than could fit into the provided message

	
8

	
The logical record length (LRECL) was not between 72 and 240

	
12

	
The message area was not large enough (greater than 240)

WHENEVER Directive

By default, Pro*COBOL ignores error and warning conditions and continues processing, if possible. To do automatic condition checking and error handling, you need the WHENEVER statement.

With the WHENEVER statement you can specify actions to be taken when Oracle9i detects an error, warning condition, or "not found" condition. These actions include continuing with the next statement, PERFORMing a paragraph, branching to a paragraph, or stopping.

Conditions

You can have Oracle9i automatically check the SQLCA for any of the following conditions.

SQLWARNING

SQLWARN(0) is set because Oracle9i returned a warning (one of the warning flags, SQLWARN(1) through SQLWARN(7), is also set) or SQLCODE has a positive value other than +1403. For example, SQLWARN(1) is set when Oracle9 assigns a truncated column value to an output host variable.

Declaring the SQLCA is optional when MODE={ANSI | ANSI14}. To use WHENEVER SQLWARNING, however, you must declare the SQLCA.

	
Note:

You have to have included SQLCA for this to work.

SQLERROR

SQLCODE has a negative value if Oracle9i returns an error.

NOT FOUND or NOTFOUND

SQLCODE has a value of +1403 (or +100 when MODE={ANSI | ANSI14 | ANSI13} or when END_OF_FETCH=100) when the end of fetch has been reached. This can happen when all the rows that meet the search criteria have been fetched or no rows meet that criteria.

You may use the END_OF_FETCH option to override the value use by the MODE macro option.

END_OF_FETCH = 100 | 1403 (default 1403)

For more details, see "END_OF_FETCH".

Actions

You can use the WHENEVER statement to specify the following actions.

CONTINUE

Your program continues to run with the next statement if possible. This is the default action, equivalent to not using the WHENEVER statement. You can use it to "turn off" condition checking.

DO CALL

Your program calls a nested subprogram. When the end of the subprogram is reached, control transfers to the statement that follows the failed SQL statement.

DO PERFORM

Your program transfers control to a COBOL section or paragraph. When the end of the section is reached, control transfers to the statement that follows the failed SQL statement.

 EXEC SQL
 WHENEVER <condition> DO PERFORM <section_name>
 END-EXEC.

GOTO or GO TO

Your program branches to the specified paragraph or section.

STOP

Your program stops running and uncommitted work is rolled back.

Be careful. The STOP action displays no messages before logging off.

	
Note:

Though in the generated code EXEC SQL WHENEVER SQLERROR STOP is converted to IF SQLCODE IN SQLCA IS EQUAL TO 1403 THEN STOP RUN END-IF, Oracle server will take care of rolling back uncommitted data.

Coding the WHENEVER Statement

Code the WHENEVER statement using the following syntax:

 EXEC SQL
 WHENEVER <condition> <action>
 END-EXEC.

DO PERFORM

When using the WHENEVER ... DO PERFORM statement, the usual rules for PERFORMing a paragraph or section apply. However, you cannot use the THRU, TIMES, UNTIL, or VARYING clauses.

For example, the following WHENEVER ... DO statement is invalid:

 PROCEDURE DIVISION.
* Invalid statement
 EXEC SQL WHENEVER SQLERROR DO
 PERFORM DISPLAY-ERROR THRU LOG-OFF
 END-EXEC.
 ...
 DISPLAY-ERROR.
 ...
 LOG-OFF.
 ...

In the following example, WHENEVER SQLERROR DO PERFORM statements are used to handle specific errors:

 PROCEDURE DIVISION.
 MAIN SECTION.
 MSTART.
 ...
 EXEC SQL
 WHENEVER SQLERROR DO PERFORM INS-ERROR
 END-EXEC.
 EXEC SQL
 INSERT INTO EMP (EMPNO, ENAME, DEPTNO)
 VALUES (:EMP-NUMBER, :EMP-NAME, :DEPT-NUMBER)
 END-EXEC.
 EXEC SQL
 WHENEVER SQLERROR DO PERFORM DEL-ERROR
 END-EXEC.
 EXEC SQL
 DELETE FROM DEPT
 WHERE DEPTNO = :DEPT-NUMBER
 END-EXEC.
 ...
 MEXIT.
 STOP RUN.
 INS-ERROR SECTION.
 INSSTART.
* Check for "duplicate key value" Oracle9 error
 IF SQLCA.SQLCODE = -1
 ...
* Check for "value too large" Oracle9 error
 ELSE IF SQLCA.SQLCODE = -1401
 ...
 ELSE
 ...
 END-IF.
 ...
 INSEXIT.
 EXIT.
*
 DEL-ERROR SECTION.
 DSTART.
* Check for the number of rows processed.
 IF SQLCA.SQLERRD(3) = 0
 ...
 ELSE
 ...
 END-IF.
 ...
 DEXIT.
 EXIT.

Notice how the paragraphs check variables in the SQLCA to determine a course of action.

DO CALL

This clause calls an action subprogram. Here is the syntax of this clause:

 EXEC SQL
 WHENEVER <condition> DO CALL <subprogram_name>
 [USING <param1> ...]
 END-EXEC.

The following restrictions or rules apply:

	
You cannot use the RETURNING, ON_EXCEPTION, or OVER_FLOW phrases in the USING clause.

	
You may have to enter the subprogram name followed by the keyword COMMON in the PROGRAM-ID statement of your COBOL source code.

	
You must use a WHENEVER CONTINUE statement in the action subprogram.

	
The action subprogram name may have to be in double quotes in the DO CALL clause of the WHENEVER directive.

Here is an example of a program that can call the error subprogram SQL-ERROR from inside the subprogram LOGON, or inside the MAIN program, without having to repeat code in two places, as when using the DO PERFORM clause:

IDENTIFICATION DIVISION.
 PROGRAM-ID. MAIN.
 ENVIRONMENT DIVISION.
 ...
 PROCEDURE DIVISION.
 BEGIN-PGM.
 EXEC SQL
 WHENEVER SQLERROR DO CALL "SQL-ERROR"
 END-EXEC.
 CALL "LOGON".
 ...
 IDENTIFICATION DIVISION.
 PROGRAM-ID. LOGON.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 USERNAME PIC X(15) VARYING.
 01 PASSWD PIC X(15) VARYING.
 PROCEDURE DIVISION.
 MOVE "SCOTT" TO USERNAME-ARR.
 MOVE 5 TO USERNAME-LEN.
 MOVE "TIGER" TO PASSWD-ARR.
 MOVE 5 TO PASSWD-LEN.
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWD
 END-EXEC.
 DISPLAY " ".
 DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME-ARR.
 END PROGRAM LOGON.
 ...
 IDENTIFICATION DIVISION.
 PROGRAM-ID. SQL-ERROR COMMON.
 PROCEDURE DIVISION.
 EXEC SQL
 WHENEVER SQLERROR CONTINUE
 END-EXEC.
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL
 ROLLBACK WORK RELEASE
 END-EXEC.
 END PROGRAM SQL-ERROR.
 END PROGRAM MAIN.

Scope

Because WHENEVER is a declarative statement, its scope is positional, not logical. It tests all executable SQL statements that follow it in the source file, not in the flow of program logic. So, code the WHENEVER statement before the first executable SQL statement you want to test.

A WHENEVER statement stays in effect until superseded by another WHENEVER statement checking for the same condition. 

Suggestion: You can place WHENEVER statements at the beginning of each program unit that contains SQL statements. That way, SQL statements in one program unit will not reference WHENEVER actions in another program unit, causing errors at compile or run time.

Careless Usage: Examples

Careless use of the WHENEVER statement can cause problems. For example, the following code enters an infinite loop if the DELETE statement sets the NOT FOUND condition, because no rows meet the search condition:

* Improper use of WHENEVER.
 EXEC SQL
 WHENEVER NOT FOUND GOTO NO-MORE
 END-EXEC.
 PERFORM GET-ROWS UNTIL DONE = "YES".
 ...
 GET-ROWS.
 EXEC SQL
 FETCH emp_cursor INTO :EMP-NAME, :SALARY
 END-EXEC.
 ...
 NO-MORE.
 MOVE "YES" TO DONE.
 EXEC SQL
 DELETE FROM EMP WHERE EMPNO = :EMP-NUMBER
 END-EXEC.
 ...

In the next example, the NOT FOUND condition is properly handled by resetting the GOTO target:

* Proper use of WHENEVER.
 EXEC SQL WHENEVER NOT FOUND GOTO NO-MORE END-EXEC.
 PERFORM GET-ROWS UNTIL DONE = "YES".
 ...
 GET-ROWS.
 EXEC SQL
 FETCH emp_cursor INTO :EMP-NAME, :SALARY
 END-EXEC.
 ...
 NO-MORE.
 MOVE "YES" TO DONE.
 EXEC SQL WHENEVER NOT FOUND GOTO NONE-FOUND END-EXEC.
 EXEC SQL
 DELETE FROM EMP WHERE EMPNO = :EMP-NUMBER
 END-EXEC.
 ...
 NONE-FOUND.
 ...

Getting the Text of SQL Statements

In many Pro*COBOL applications, it is convenient to know the text of the statement being processed, its length, and the SQL command (such as INSERT or SELECT) that it contains. This is especially true for applications that use dynamic SQL.

The routine SQLGLS, which is part of the SQLLIB runtime library, returns the following information:

	
The text of the most recently parsed SQL statement

	
The length of the statement

	
A function code

You can call SQLGLS after issuing a static SQL statement. With dynamic SQL Method 1, you can call SQLGLS after the SQL statement is executed. With dynamic SQL Method 2, 3, or 4, you can call SQLGLS after the statement is prepared.

To call SQLGLS, you use the following syntax:

 CALL "SQLGLS" USING SQLSTM STMLEN SQLFC.

Table 8-3 shows the host-language datatypes available for the parameters in the SQLGLS argument list.tt

Table 8-3 Parameter Datatypes

	Parameter	Datatype
	
SQLSTM

	
PIC X(n)

	
STMLEN

	
PIC S9(9) COMP

	
SQLFC

	
PIC S9(9) COMP

All parameters must be passed by reference. This is usually the default parameter passing convention; you need not take special action.

The parameter SQLSTM is a blank-padded (not null-terminated) character buffer that holds the returned text of the SQL statement. Your program must statically declare the buffer or dynamically allocate memory for it.

The length parameter STMLEN is a four-byte integer. Before calling SQLGLS, set this parameter to the actual size (in bytes) of the SQLSTM buffer. When SQLGLS returns, the SQLSTM buffer contains the SQL statement text blank padded to the length of the buffer. STMLEN returns the actual number of bytes in the returned statement text, not counting the blank padding. However, STMLEN returns a zero if an error occurred.

Some possible errors follow:

	
No SQL statement was parsed.

	
You passed an invalid parameter (for example, a negative length value).

	
An internal exception occurred in SQLLIB.

The parameter SQLFC is a four-byte integer that returns the SQL function code for the SQL command in the statement. A complete table of the function code for each SQL command is found in Oracle Call Interface Programmer's Guide.

There are no SQL function codes for these statements:

	
CONNECT

	
COMMIT

	
FETCH

	
ROLLBACK

	
RELEASE

Using the Oracle Communications Area

The SQLCA handles standard SQL communications. The Oracle Communications Area (ORACA) is a similar structure that you can include in your program to handle Oracle9i-specific communications. When you need more runtime information than the SQLCA provides, use the ORACA.

Besides helping you to diagnose problems, the ORACA lets you monitor your program's use of resources such as the SQL Statement Executor and the cursor cache, an area of memory reserved for cursor management.

Contents of the ORACA

The ORACA contains option settings, system statistics, and extended diagnostics. Figure 8-3 shows all the variables in the ORACA:

Figure 8-3 ORACA Variable Declarations for Pro*COBOL

[image: ORACA Variable Declarations]

Declaring the ORACA

To declare the ORACA, simply include it (using an EXEC SQL INCLUDE statement) in your Pro*COBOL source file outside the Declare Section as follows:

* Include the Oracle Communications Area (ORACA).
 EXEC SQL INCLUDE ORACA END-EXEC.

Enabling the ORACA

To enable the ORACA, you must set the ORACA precompiler option to YES on the command line or in a configuration file with:

ORACA=YES

or inline with:

 EXEC Oracle OPTION (ORACA=YES) END-EXEC.

Then, you must choose appropriate runtime options by setting flags in the ORACA. Enabling the ORACA is optional because it adds to runtime overhead. The default setting is ORACA=NO.

Choosing Runtime Options

The ORACA includes several option flags. Setting these flags by assigning them nonzero values enables you to:

	
Save the text of SQL statements

	
Enable DEBUG operations

	
Check cursor cache consistency (the cursor cache is a continuously updated area of memory used for cursor management)

	
Check heap consistency (the heap is an area of memory reserved for dynamic variables)

	
Gather cursor statistics

The following descriptions will help you choose the options you need.

ORACA Structure

This section describes the structure of the ORACA, its fields, and the values they can store.

ORACAID

This string field is initialized to ORACA to identify the Oracle Communications Area.

ORACABC

This integer field holds the length, expressed in bytes, of the ORACA data structure.

ORACCHF

If the master DEBUG flag (ORADBGF) is set, this flag lets you check the cursor cache for consistency before every cursor operation.

The runtime library does the consistency checking and can issue error messages, which are listed in Oracle Database Error Messages.

This flag has the following settings:

	Settings	Description
	0	Disable cache consistency checking (the default).
	1	Enable cache consistency checking.

ORADBGF

This master flag lets you choose all the DEBUG options. It has the following settings:

	Settings	Description
	0	Disable all DEBUG operations (the default).
	1	Allow DEBUG operations to be enabled.

ORAHCHF

If the master DEBUG flag (ORADBGF) is set, this flag tells the runtime library to check the heap for consistency every time Pro*COBOL dynamically allocates or frees memory. This is useful for detecting program bugs that upset memory.

This flag must be set before the CONNECT command is issued and, once set, cannot be cleared; subsequent change requests are ignored. It has the following settings:

	Settings	Description
	0	Enable heap consistency checking (the default).
	1	Disable heap consistency checking.

ORASTXTF

This flag lets you specify when the text of the current SQL statement is saved. It has the following settings:

	Settings	Description
	0	Never save the SQL statement text (the default).
	1	Save the SQL statement text on SQLERROR only.
	2	Save the SQL statement text on SQLERROR or SQLWARNING.
	3	Always save the SQL statement text.

The SQL statement text is saved in the ORACA sub-record named ORASTXT.

Diagnostics

The ORACA provides an enhanced set of diagnostics; the following variables help you to locate errors quickly.

ORASTXT

This sub-record helps you find faulty SQL statements. It lets you save the text of the last SQL statement parsed by Oracle9i. It contains the following two fields:

	Settings	Description
	ORASTXTL	This integer field holds the length of the current SQL statement.
	ORASTXTC	This string field holds the text of the current SQL statement. At most, the first 70 characters of text are saved.

Statements parsed by Pro*COBOL, such as CONNECT, FETCH, and COMMIT, are not saved in the ORACA.

ORASFNM

This sub-record identifies the file containing the current SQL statement and so helps you find errors when multiple files are precompiled for one application. It contains the following two fields:

	Settings	Description
	ORASFNML	This integer field holds the length of the filename stored in ORASFNMC.
	ORASFNMC	This string field holds the filename. At most, the first 70 characters are stored.

ORASLNR

This integer field identifies the line at (or near) which the current SQL statement can be found.

Cursor Cache Statistics

The following variables let you gather cursor cache statistics. They are automatically set by every COMMIT or ROLLBACK statement your program issues. Internally, there is a set of these variables for each CONNECTed database. The current values in the ORACA pertain to the database against which the last commit or rollback was executed.

ORAHOC

This integer field records the highest value to which MAXOPENCURSORS was set during program execution.

ORAMOC

This integer field records the maximum number of open cursors required by your program. This number can be higher than ORAHOC if MAXOPENCURSORS was set too low, which forced Pro*COBOL to extend the cursor cache.

ORACOC

This integer field records the current number of open cursors required by your program.

ORANOR

This integer field records the number of cursor cache reassignments required by your program. This number shows the degree of "thrashing" in the cursor cache and should be kept as low as possible.

ORANPR

This integer field records the number of SQL statement parses required by your program.

ORANEX

This integer field records the number of SQL statement executions required by your program. The ratio of this number to the ORANPR number should be kept as high as possible. In other words, avoid unnecessary re-parsing. For help, see Appendix C, "Performance Tuning".

ORACA Example Program

The following program prompts for a department number, inserts the name and salary of each employee in that department into one of two tables, and then displays diagnostic information from the ORACA:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. ORACAEX.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 EXEC SQL INCLUDE SQLCA END-EXEC.
 EXEC SQL INCLUDE ORACA END-EXEC.

 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(20).
 01 PASSWORD PIC X(20).
 01 EMP-NAME PIC X(10) VARYING.
 01 DEPT-NUMBER PIC S9(4) COMP.
 01 SALARY PIC S9(6)V99
 DISPLAY SIGN LEADING SEPARATE.
 EXEC SQL END DECLARE SECTION END-EXEC.

 PROCEDURE DIVISION.
 DISPLAY "Username? " WITH NO ADVANCING.
 ACCEPT USERNAME.
 DISPLAY "Password? " WITH NO ADVANCING.
 ACCEPT PASSWORD.
 EXEC SQL
 WHENEVER SQLERROR GOTO SQL-ERROR
 END-EXEC.
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWORD
 END-EXEC.
 DISPLAY "Connected to Oracle".

* -- set flags in the ORACA
* -- enable debug operations
 MOVE 1 TO ORADBGF.
* -- enable cursor cache consistency check
 MOVE 1 TO ORACCHF.
* -- always save the SQL statement
 MOVE 3 TO ORASTXTF.
 DISPLAY "Department number? " WITH NO ADVANCING.
 ACCEPT DEPT-NUMBER.
 EXEC SQL DECLARE EMPCURSOR CURSOR FOR
 SELECT ENAME, SAL + NVL(COMM,0)
 FROM EMP
 WHERE DEPTNO = :DEPT-NUMBER
 END-EXEC.
 EXEC SQL OPEN EMPCURSOR END-EXEC.
 EXEC SQL
 WHENEVER NOT FOUND GOTO NO-MORE
 END-EXEC.
 LOOP.
 EXEC SQL
 FETCH EMPCURSOR INTO :EMP-NAME, :SALARY
 END-EXEC.
 IF SALARY < 2500
 EXEC SQL
 INSERT INTO PAY1 VALUES (:EMP-NAME, :SALARY)
 END-EXEC
 ELSE
 EXEC SQL
 INSERT INTO PAY2 VALUES (:EMP-NAME, :SALARY)
 END-EXEC
 END-IF.
 GO TO LOOP.

 NO-MORE.
 EXEC SQL CLOSE EMPCURSOR END-EXEC.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 EXEC SQL COMMIT WORK RELEASE END-EXEC.
 DISPLAY "(NO-MORE.) Last SQL statement: ", ORASTXTC.
 DISPLAY "... at or near line number: ", ORASLNR.
 DISPLAY " ".
 DISPLAY " Cursor Cache Statistics".
 DISPLAY "---".
 DISPLAY "Maximum value of MAXOPENCURSORS ", ORAHOC.
 DISPLAY "Maximum open cursors required: ", ORAMOC.
 DISPLAY "Current number of open cursors: ", ORACOC.
 DISPLAY "Number of cache reassignments: ", ORANOR.
 DISPLAY "Number of SQL statement parses: ", ORANPR.
 DISPLAY "Number of SQL statement executions: ", ORANEX.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 DISPLAY "(SQL-ERROR.) Last SQL statement: ", ORASTXTC.
 DISPLAY "... at or near line number: ", ORASLNR.
 DISPLAY " ".
 DISPLAY " Cursor Cache Statistics".
 DISPLAY "---".
 DISPLAY "MAXIMUM VALUE OF MAXOPENCURSORS ", ORAHOC.
 DISPLAY "Maximum open cursors required: ", ORAMOC.
 DISPLAY "Current number of open cursors: ", ORACOC.
 DISPLAY "Number of cache reassignments: ", ORANOR.
 DISPLAY "Number of SQL statement parses: ", ORANPR.
 DISPLAY "Number of SQL statement executions: ", ORANEX.
 STOP RUN.

How Errors Map to SQLSTATE Codes

The following table describes SQLSTATE the codes, what they signify, and the returned errors.

Table 8-4 SQLSTATE Codes

	Code	Condition	Oracle9i Error
	
00000

	
successful completion

	
ORA-00000

	
01000

	
warning

	

	
01001

	
cursor operation conflict

	

	
01002

	
disconnect error

	

	
01003

	
null value eliminated in set function

	

	
01004

	
string data - right truncation

	

	
01005

	
insufficient item descriptor areas

	

	
01006

	
privilege not revoked

	

	
01007

	
privilege not granted

	

	
01008

	
implicit zero-bit padding

	

	
01009

	
search condition too long for info schema

	

	
0100A

	
query expression too long for info schema

	

	
02000

	
no data

	
ORA-01095

ORA-01403

	
07000

	
dynamic SQL error

	

	
07001

	
using clause does not match parameter specs

	

	
07002

	
using clause does not match target specs

	

	
07003

	
cursor specification cannot be executed

	

	
07004

	
using clause required for dynamic parameters

	

	
07005

	
prepared statement not a cursor specification

	

	
07006

	
restricted datatype attribute violation

	

	
07007

	
using clause required for result fields

	

	
07008

	
invalid descriptor count

	
SQL-02126

	
07009

	
invalid descriptor index

	

	
08000

	
connection exception

	

	
08001

	
SQL client unable to establish SQL connection

	

	
08002

	
connection name in use

	

	
08003

	
connection does not exist

	
SQL-02121

	
08004

	
SQL server rejected SQL connection

	

	
08006

	
connection failure

	

	
08007

	
transaction resolution unknown

	

	
0A000

	
feature not supported

	
ORA-03000 .. 03099

	
0A001

	
multiple server transactions

	

	
21000

	
cardinality violation

	
ORA-01427

SQL-02112

	
22000

	
data exception

	

	
22001

	
string data - right truncation

	
ORA-01401

ORA-01406

	
22002

	
null value - no indicator parameter

	
ORA-01405

SQL-02124

	
22003

	
numeric value out of range

	
ORA-01426

ORA-01438

ORA-01455

ORA-01457

	
22005

	
error in assignment

	

	
22007

	
invalid datetime format

	

	
22008

	
datetime field overflow

	
ORA-01800 .. 01899

	
22009

	
invalid time zone displacement value

	

	
22011

	
substring error

	

	
22012

	
division by zero

	
ORA-01476

	
22015

	
interval field overflow

	

	
22018

	
invalid character value for cast

	

	
22019

	
invalid escape character

	
ORA-00911

ORA-01425

	
22021

	
character not in repertoire

	

	
22022

	
indicator overflow

	
ORA-01411

	
22023

	
invalid parameter value

	
ORA-01025

ORA-01488

ORA-04000 .. 04019

	
22024

	
unterminated C string

	
ORA-01479 .. 01480

	
22025

	
invalid escape sequence

	
ORA-01424

	
22026

	
string data - length mismatch

	

	
22027

	
trim error

	

	
23000

	
integrity constraint violation

	
ORA-00001

ORA-02290 .. 02299

	
24000

	
invalid cursor state

	
ORA-01001 .. 01003

ORA-01410

ORA-08006

SQL-02114

SQL-02117

SQL-02118

SQL-02122

	
25000

	
invalid transaction state

	

	
26000

	
invalid SQL statement name

	

	
27000

	
triggered data change violation

	

	
28000

	
invalid authorization specification

	

	
2A000

	
direct SQL syntax error or access rule violation

	

	
2B000

	
dependent privilege descriptors still exist

	

	
2C000

	
invalid character set name

	

	
2D000

	
invalid transaction termination

	

	
2E000

	
invalid connection name

	

	
33000

	
invalid SQL descriptor name

	

	
34000

	
invalid cursor name

	

	
35000

	
invalid condition number

	

	
37000

	
dynamic SQL syntax error or access rule violation

	

	
3C000

	
ambiguous cursor name

	

	
3D000

	
invalid catalog name

	

	
3F000

	
invalid schema name

	

	
40000

	
transaction rollback

	
ORA-02091 .. 02092

	
40001

	
serialization failure

	

	
40002

	
integrity constraint violation

	

	
40003

	
statement completion unknown

	

	
42000

	
syntax error or access rule violation

	
ORA-00022

ORA-00251

ORA-00900 .. 00999

ORA-01031

ORA-01490 .. 01493

ORA-01700 .. 01799

ORA-01900 .. 02099

ORA-02140 .. 02289

ORA-02420 .. 02424

ORA-02450 .. 02499

ORA-03276 .. 03299

ORA-04040 .. 04059

ORA-04070 .. 04099

	
44000

	
with check option violation

	
ORA-01402

	
60000

	
system errors

	
ORA-00370 .. 00429

ORA-00600 .. 00899

ORA-06430 .. 06449

ORA-07200 .. 07999

ORA-09700 .. 09999

	
61000

	
resource error

	
ORA-00018 .. 00035

ORA-00050 .. 00068

ORA-02376 .. 02399

ORA-04020 .. 04039

	
62000

	
multithreaded server and detached process errors

	
ORA-00100 .. 00120

ORA-00440 .. 00569

	
63000

	
Oracle XA and two-task interface errors

	
ORA-00150 .. 00159

SQL-02128

ORA-02700 .. 02899

ORA-03100 .. 03199

ORA-06200 .. 06249 SQL-02128

	
64000

	
control file, database file, and redo file errors;

archival and media recovery errors

	
ORA-00200 .. 00369

ORA-01100 .. 01250

	
65000

	
PL/SQL errors

	
ORA-06500 .. 06599

	
66000

	
Oracle Net driver errors

	
ORA-06000 .. 06149

ORA-06250 .. 06429

ORA-06600 .. 06999

ORA-12100 .. 12299

ORA-12500 .. 12599

	
67000

	
licensing errors

	
ORA-00430 .. 00439

	
69000

	
SQL*Connect errors

	
ORA-00570 .. 00599

ORA-07000 .. 07199

	
72000

	
SQL execute phase errors

	
ORA-01000 .. 01099

ORA-01400 .. 01489

ORA-01495 .. 01499

ORA-01500 .. 01699

ORA-02400 .. 02419

ORA-02425 .. 02449

ORA-04060 .. 04069

ORA-08000 .. 08190

ORA-12000 .. 12019

ORA-12300 .. 12499

ORA-12700 .. 21999

	
82100

	
out of memory (could not allocate)

	
SQL-02100

	
82101

	
inconsistent cursor cache: unit cursor/global cursor mismatch

	
SQL-02101

	
82102

	
inconsistent cursor cache: no global cursor entry

	
SQL-02102

	
82103

	
inconsistent cursor cache: out of range cursor cache reference

	
SQL-02103

	
82104

	
inconsistent host cache: no cursor cache available

	
SQL-02104

	
82105

	
inconsistent cursor cache: global cursor not found

	
SQL-02105

	
82106

	
inconsistent cursor cache: invalid cursor number

	
SQL-02106

	
82107

	
program too old for runtime library

	
SQL-02107

	
82108

	
invalid descriptor passed to runtime library

	
SQL-02108

	
82109

	
inconsistent host cache: host reference is out of range

	
SQL-02109

	
82110

	
inconsistent host cache: invalid host cache entry type

	
SQL-02110

	
82111

	
heap consistency error

	
SQL-02111

	
82112

	
unable to open message file

	
SQL-02113

	
82113

	
code generation internal consistency failed

	
SQL-02115

	
82114

	
reentrant code generator gave invalid context

	
SQL-02116

	
82115

	
invalid hstdef argument

	
SQL-02119

	
82116

	
first and second arguments to sqlrcn both null

	
SQL-02120

	
82117

	
invalid OPEN or PREPARE for this connection

	
SQL-02122

	
82118

	
application context not found

	
SQL-02123

	
82119

	
connect error; can't get error text

	
SQL-02125

	
82120

	
precompiler/SQLLIB version mismatch.

	
SQL-02127

	
82121

	
FETCHed number of bytes is odd

	
SQL-02129

	
82122

	
EXEC TOOLS interface is not available

	
SQL-02130

	
82123

	
runtime context in use

	
SQL-02131

	
82124

	
unable to allocate runtime context

	
SQL-02131

	
82125

	
unable to initialize process for use with threads

	
SQL-02133

	
82126

	
invalid runtime context

	
SQL-02134

	
90000

	
debug events

	
ORA-10000 .. 10999

	
99999

	
catch all

	
all others

	
HZ000

	
remote database access

	

Status Variable Combinations

When MODE={ANSI | ANSI14}, the behavior of the status variables depends on the following:

	
Which variables are declared.

	
Declaration placement (inside or outside the Declare Section).

	
The ASSUME_SQLCODE setting.

Table 8-5 and Table 8-6 describe the resulting behavior of each status variable combination when ASSUME_SQLCODE=NO and when ASSUME_SQLCODE=YES, respectively.

For both Tables: when DECLARE_SECTION=NO, any declaration of a status variable is treated as IN as far as these tables are concerned.

Do not use ASSUME_SQLCODE=YES with DECLARE_SECTION=NO.

Table 8-5 Status Variable Behavior with ASSUME_SQLCODE=NO and MODE=ANSI | ANSI14 and DECLARE_SECTION=YES

	Declare Section	(IN/OUT------)	Behavior
	SQLCODE	SQLSTATE	SQLCA	-
	
OUT

	
—

	
—

	
SQLCODE is declared and is presumed to be a status variable.

	
OUT

	
—

	
OUT

	
This status variable configuration is not supported.

	
OUT

	
—

	
IN

	
This status variable configuration is not supported.

	
OUT

	
OUT

	
—

	
SQLCODE is declared and is presumed to be a status variable, and SQLSTATE is declared but is not recognized as a status variable.

	
OUT

	
OUT

	
OUT

	
This status variable configuration is not supported.

	
OUT

	
OUT

	
IN

	
This status variable configuration is not supported.

	
OUT

	
IN

	
—

	
SQLSTATE is declared as a status variable, and SQLCODE is declared but is not recognized as a status variable.

	
OUT

	
IN

	
OUT

	
This status variable configuration is not supported.

	
OUT

	
IN

	
IN

	
This status variable configuration is not supported.

	
IN

	
—

	
—

	
SQLCODE is declared as a status variable.

	
IN

	
—

	
OUT

	
This status variable configuration is not supported.

	
IN

	
—

	
IN

	
This status variable configuration is not supported.

	
IN

	
OUT

	
—

	
SQLCODE is declared as a status variable, and SQLSTATE is declared but is not recognized as a status variable.

	
IN

	
OUT

	
OUT

	
This status variable configuration is not supported.

	
IN

	
OUT

	
IN

	
This status variable configuration is not supported.

	
IN

	
IN

	
—

	
SQLCODE and SQLSTATE are declared as a status variables.

	
IN

	
IN

	
OUT

	
This status variable configuration is not supported.

	
IN

	
IN

	
IN

	
This status variable configuration is not supported.

	
—

	
—

	
—

	
This status variable configuration is not supported.

	
—

	
—

	
OUT

	
SQLCA is declared as a status variable.

	
—

	
—

	
IN

	
SQLCA is declared as a status host variable.

	
—

	
OUT

	
—

	
This status variable configuration is not supported.

	
—

	
OUT

	
OUT

	
SQLCA is declared as a status variable, and SQLSTATE is declared but is not recognized as a status variable.

	
—

	
OUT

	
IN

	
SQLCA is declared as a status host variable, and SQLSTATE is declared but is not recognized as a status variable.

	
—

	
IN

	
—

	
SQLSTATE is declared as a status variable.

	
—

	
IN

	
OUT

	
SQLSTATE and SQLCA are declared as status variables.

	
—

	
IN

	
IN

	
SQLSTATE and SQLCA are declared as status host variables.

Table 8-6 Status Variable Behavior with ASSUME_SQLCODE=YES and MODE=ANSI | ANSI14 and DECLARE_SECTION=YES

	Declare Section (IN/OUT/ —)	Behavior
	SQLCODE	SQLSTATE	SQLCA	

	
OUT

	
—

	
—

	
SQLCODE is declared and is presumed to be a status variable.

	
OUT

	
—

	
OUT

	
This status variable configuration is not supported.

	
OUT

	
—

	
IN

	
This status variable configuration is not supported.

	
OUT

	
OUT

	
—

	
SQLCODE is declared and is presumed to be a status variable, and SQLSTATE is declared but is not recognized as a status variable.

	
OUT

	
OUT

	
OUT

	
This status variable configuration is not supported.

	
OUT

	
OUT

	
IN

	
This status variable configuration is not supported.

	
OUT

	
IN

	
—

	
SQLSTATE is declared as a status variable, and SQLCODE is declared and is presumed to be a status variable.

	
OUT

	
IN

	
OUT

	
This status variable configuration is not supported.

	
OUT

	
IN

	
IN

	
This status variable configuration is not supported.

	
IN

	
—

	
—

	
SQLCODE is declared as a status variable.

	
IN

	
—

	
OUT

	
This status variable configuration is not supported.

	
IN

	
—

	
IN

	
This status variable configuration is not supported.

	
IN

	
OUT

	
—

	
SQLCODE is declared as a status variable, and SQLSTATE is declared but not as a status variable.

	
IN

	
OUT

	
OUT

	
This status variable configuration is not supported.

	
IN

	
OUT

	
IN

	
This status variable configuration is not supported.

	
IN

	
IN

	
—

	
SQLCODE and SQLSTATE are declared as a status variables.

	
IN

	
IN

	
OUT

	
This status variable configuration is not supported.

	
IN

	
IN

	
IN

	
This status variable configuration is not supported.

	
—

—

—

—

—

—

—

—

—

	
—

—

—

OUT

OUT

OUT

IN

IN

IN

	
—

OUT

IN

—

OUT

IN

—

OUT

IN

	
These status variable configurations are not supported. SQLCODE must be declared when ASSUME_SQLCODE=YES.

Oracle Dynamic SQL

9 Oracle Dynamic SQL

This chapter shows you how to use dynamic SQL, an advanced programming technique that adds flexibility and functionality to your applications. After weighing the advantages and disadvantages of dynamic SQL, you learn four methods—from simple to complex—for writing programs that accept and process SQL statements "on the fly" at run time. You learn the requirements and limitations of each method and how to choose the right method for a given job.

Topics are:

	
Dynamic SQL

	
Advantages and Disadvantages of Dynamic SQL

	
When to Use Dynamic SQL

	
Requirements for Dynamic SQL Statements

	
How Dynamic SQL Statements Are Processed

	
Methods for Using Dynamic SQL

	
Using Method 1

	
Sample Program 6: Dynamic SQL Method 1

	
Using Method 2

	
Sample Program 7: Dynamic SQL Method 2

	
Using Method 3

	
Sample Program 8: Dynamic SQL Method 3

	
Using Oracle Method 4

	
Using the DECLARE STATEMENT Statement

	
Using Host Tables

	
Using PL/SQL

	
Dynamic SQL Statement Caching

Dynamic SQL

Most database applications do a specific job. For example, a simple program might prompt the user for an employee number, then update rows in the EMP and DEPT tables. In this case, you know the makeup of the UPDATE statement at precompile time. That is, you know which tables might be changed, the constraints defined for each table and column, which columns might be updated, and the datatype of each column.

However, some applications must accept (or build) and process a variety of SQL statements at run time. For example, a general-purpose report writer must build different SELECT statements for the various reports it generates. In this case, the statement's makeup is unknown until run time. Such statements can, and probably will, change from execution to execution. They are aptly called dynamic SQL statements.

Unlike static SQL statements, dynamic SQL statements are not embedded in your source program. Instead, they are stored in character strings input to or built by the program at run time. They can be entered interactively or read from a file.

Advantages and Disadvantages of Dynamic SQL

Host programs that accept and process dynamically defined SQL statements are more versatile than plain embedded SQL programs. Dynamic SQL statements can be built interactively with input from users having little or no knowledge of SQL.

For example, your program might simply prompt users for a search condition to be used in the WHERE clause of a SELECT, UPDATE, or DELETE statement. A more complex program might allow users to choose from menus listing SQL operations, table and view names, column names, and so on. Thus, dynamic SQL lets you write highly flexible applications.

However, some dynamic queries require complex coding, the use of special data structures, and more runtime processing. While you might not notice the added processing time, you might find the coding difficult unless you fully understand dynamic SQL concepts and methods.

When to Use Dynamic SQL

In practice, static SQL will meet nearly all your programming needs. Use dynamic SQL only if you need its open-ended flexibility. Its use is suggested when one or more of the following items is unknown at precompile time:

	
Text of the SQL statement (commands, clauses, and so on)

	
The number of host variables

	
The datatypes of host variables

	
References to database objects such as columns, indexes, sequences, tables, usernames, and views

Requirements for Dynamic SQL Statements

To represent a dynamic SQL statement, a character string must contain the text of a valid DML or DDL SQL statement, but not contain the EXEC SQL clause, host-language delimiter or statement terminator.

In most cases, the character string can contain dummy host variables. They hold places in the SQL statement for actual host variables. Because dummy host variables are just place-holders, you do not declare them and can name them anything you like (hyphens are not allowed). For example, Oracle9i makes no distinction between the following two strings

'DELETE FROM EMP WHERE MGR = :MGRNUMBER AND JOB = :JOBTITLE'
'DELETE FROM EMP WHERE MGR = :M AND JOB = :J'

How Dynamic SQL Statements Are Processed

Typically, an application program prompts the user for the text of a SQL statement and the values of host variables used in the statement. Then Oracle9i parses the SQL statement. That is, Oracle9i examines the SQL statement to make sure it follows syntax rules and refers to valid database objects. Parsing also involves checking database access rights, reserving needed resources, and finding the optimal access path.

Next, Oracle9i binds the host variables to the SQL statement. That is, Oracle9i gets the addresses of the host variables so that it can read or write their values.

If the statement is a query, you define the SELECT variables and then Oracle9i FETCHes them until all rows are retrieved. The cursor is then closed.

Then Oracle9i executes the SQL statement. That is, Oracle9i does what the SQL statement requested, such as deleting rows from a table.

The SQL statement can be executed repeatedly using new values for the host variables.

Methods for Using Dynamic SQL

This section introduces the four methods you can use to define dynamic SQL statements. It briefly describes the capabilities and limitations of each method, then offers guidelines for choosing the right method. Later sections show you how to use the methods.

The four methods are increasingly general. That is, Method 2 encompasses Method 1, Method 3 encompasses Methods 1 and 2, and so on. However, each method is most useful for handling a certain kind of SQL statement, as Table 9-1 shows:

Table 9-1 Appropriate Method to Use

	Method	Kind of SQL Statement
	
1

	
Non-query without input host variables.

	
2

	
Non-query with known number of input host variables.

	
3

	
Query with known number of select-list items and input host variables.

	
4

	
Query with unknown number of select-list items or input host variables.

The term select-list item includes column names and expressions.

Method 1

This method lets your program accept or build a dynamic SQL statement, then immediately execute it using the EXECUTE IMMEDIATE command. The SQL statement must not be a query (SELECT statement) and must not contain any place-holders for input host variables. For example, the following host strings qualify:

'DELETE FROM EMP WHERE DEPTNO = 20'

'GRANT SELECT ON EMP TO SCOTT'

With Method 1, the SQL statement is parsed every time it is executed (regardless of whether you have set HOLD_CURSOR=YES).

Method 2

This method lets your program accept or build a dynamic SQL statement, then process it using the PREPARE and EXECUTE commands. The SQL statement must not be a query. The number of place-holders for input host variables and the datatypes of the input host variables must be known at precompile time. For example, the following host strings fall into this category:

'INSERT INTO EMP (ENAME, JOB) VALUES (:EMPNAME, :JOBTITLE)'
'DELETE FROM EMP WHERE EMPNO = :EMPNUMBER'

With Method 2, the SQL statement can be parsed just once by calling PREPARE once, and executed many times with different values for the host variables. This is not true when RELEASE_CURSOR=YES is also specified, because the statement has to be prepared again before each execution.

	
Note:

SQL data definition statements such as CREATE are executed once the PREPARE is completed.

Method 3

This method lets your program accept or build a dynamic query then process it using the PREPARE command with the DECLARE, OPEN, FETCH, and CLOSE cursor commands. The number of select-list items, the number of place-holders for input host variables, and the datatypes of the input host variables must be known at precompile time. For example, the following host strings qualify:

'SELECT DEPTNO, MIN(SAL), MAX(SAL) FROM EMP GROUP BY DEPTNO'
'SELECT ENAME, EMPNO FROM EMP WHERE DEPTNO = :DEPTNUMBER'

Method 4

This method lets your program accept or build a dynamic SQL statement, then process it using descriptors (discussed in "Using Oracle Method 4"). The number of select-list items, the number of place-holders for input host variables, and the datatypes of the input host variables can be unknown until run time. For example, the following host strings fall into this category:

'INSERT INTO EMP (unknown) VALUES (unknown)'

'SELECT unknown FROM EMP WHERE DEPTNO = 20'

Method 4 is required for dynamic SQL statements that contain an unknown number of select-list items or input host variables.

Guidelines

With all four methods, you must store the dynamic SQL statement in a character string, which must be a host variable or quoted literal. When you store the SQL statement in the string, omit the keywords EXEC SQL and the statement terminator.

With Methods 2 and 3, the number of place-holders for input host variables and the datatypes of the input host variables must be known at precompile time.

Each succeeding method imposes fewer constraints on your application, but is more difficult to code. As a rule, use the simplest method you can. However, if a dynamic SQL statement will be executed repeatedly by Method 1, use Method 2 instead to avoid re-parsing for each execution.

Method 4 provides maximum flexibility, but requires complex coding and a full understanding of dynamic SQL concepts. In general, use Method 4 only if you cannot use Methods 1, 2, or 3.

The decision logic in Figure 9-1, "Choosing the Right Method", will help you choose the correct method.

Avoiding Common Errors

If you use a character array to store the dynamic SQL statement, blank-pad the array before storing the SQL statement. That way, you clear extraneous characters. This is especially important when you reuse the array for different SQL statements. As a rule, always initialize (or re-initialize) the host string before storing the SQL statement.

Do not null-terminate the host string. Oracle9i does not recognize the null terminator as an end-of-string marker. Instead, Oracle9i treats it as part of the SQL statement.

If you use a VARCHAR variable to store the dynamic SQL statement, make sure the length of the VARCHAR is set (or reset) correctly before you execute the PREPARE or EXECUTE IMMEDIATE statement.

EXECUTE resets the SQLWARN warning flags in the SQLCA. So, to catch mistakes such as an unconditional update (caused by omitting a WHERE clause), check the SQLWARN flags after executing the PREPARE statement but before executing the EXECUTE statement.

Figure 9-1 shows how to choose the right method.

Figure 9-1 Choosing the Right Method

[image: Choosing the Right Method]

Using Method 1

The simplest kind of dynamic SQL statement results only in "success" or "failure" and uses no host variables. Some examples follow:

'DELETE FROM table_name WHERE column_name = constant'
'CREATE TABLE table_name ...'
'DROP INDEX index_name'
'UPDATE table_name SET column_name = constant'
'GRANT SELECT ON table_name TO username'

The EXECUTE IMMEDIATE Statement

Method 1 parses, then immediately executes the SQL statement using the EXECUTE IMMEDIATE command. The command is followed by a character string (host variable or literal) containing the SQL statement to be executed, which cannot be a query.

The syntax of the EXECUTE IMMEDIATE statement follows:

EXEC SQL EXECUTE IMMEDIATE { :HOST-STRING | STRING-LITERAL }END-EXEC.

In the following example, you use the host variable SQL-STMT to store SQL statements input by the user:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 01 SQL-STMT PIC X(120);
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 LOOP.
 DISPLAY 'Enter SQL statement: ' WITH NO ADVANCING.
 ACCEPT SQL-STMT END-EXEC.
* -- sql_stmt now contains the text of a SQL statement
 EXEC SQL EXECUTE IMMEDIATE :SQL-STMT END-EXEC.
 NEXT.
 ...

Because EXECUTE IMMEDIATE parses the input SQL statement before every execution, Method 1 is best for statements that are executed only once. Data definition statements usually fall into this category.

An Example

The following fragment of a program prompts the user for a search condition to be used in the WHERE clause of an UPDATE statement, then executes the statement using Method 1:

 ...
* THE RELEASE_CURSOR=YES OPTION INSTRUCTS PRO*COBOL TO
* RELEASE IMPLICIT CURSORS ASSOCIATED WITH EMBEDDED SQL
* STATEMENTS. THIS ENSURES THAT Oracle8 DOES NOT KEEP PARSE
* LOCKS ON TABLES, SO THAT SUBSEQUENT DATA MANIPULATION
* OPERATIONS ON THOSE TABLES DO NOT RESULT IN PARSE-LOCK
* ERRORS.

 EXEC ORACLE OPTION (RELEASE_CURSOR=YES) END-EXEC.

*
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(10) VALUE "SCOTT".
 01 PASSWD PIC X(10) VALUE "TIGER".
 01 DYNSTMT PIC X(80).
 EXEC SQL END DECLARE SECTION END-EXEC.
 01 UPDATESTMT PIC X(40).
 01 SEARCH-COND PIC X(40).
 ...
 DISPLAY "ENTER A SEARCH CONDITION FOR STATEMENT:".
 MOVE "UPDATE EMP SET COMM = 500 WHERE " TO UPDATESTMT.
 DISPLAY UPDATESTMT.
 ACCEPT SEARCH-COND.
* Concatenate SEARCH-COND to UPDATESTMT and store result
* in DYNSTMT.
 STRING UPDATESTMT DELIMITED BY SIZE
 SEARCH-COND DELIMITED BY SIZE INTO DYNSTMT.
 EXEC SQL EXECUTE IMMEDIATE :DYNSTMT END-EXEC.

Sample Program 6: Dynamic SQL Method 1

This program uses dynamic SQL Method 1 to create a table, insert a row, commit the insert, then drop the table.

 * Sample Program 6: Dynamic SQL Method 1 *
 * *
 * This program uses dynamic SQL Method 1 to create a table, *
 * insert a row, commit the insert, then drop the table. *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DYNSQL1.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 * INCLUDE THE ORACLE COMMUNICATIONS AREA, A STRUCTURE
 * THROUGH WHICH ORACLE MAKES ADDITIONAL RUNTIME STATUS
 * INFORMATION AVAILABLE TO THE PROGRAM.

 EXEC SQL INCLUDE SQLCA END-EXEC.

 * INCLUDE THE ORACLE COMMUNICATIONS AREA, A STRUCTURE
 * THROUGH WHICH ORACLE MAKES ADDITIONAL RUNTIME STATUS
 * INFORMATION AVAILABLE TO THE PROGRAM.

 EXEC SQL INCLUDE ORACA END-EXEC.

 * THE OPTION ORACA=YES MUST BE SPECIFIED TO ENABLE USE OF
 * THE ORACA.

 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.

 * THE RELEASE_CURSOR=YES OPTION INSTRUCTS PRO*COBOL TO
 * RELEASE IMPLICIT CURSORS ASSOCIATED WITH EMBEDDED SQL
 * STATEMENTS. THIS ENSURES THAT ORACLE DOES NOT KEEP PARSE
 * LOCKS ON TABLES, SO THAT SUBSEQUENT DATA MANIPULATION
 * OPERATIONS ON THOSE TABLES DO NOT RESULT IN PARSE-LOCK
 * ERRORS.

 EXEC ORACLE OPTION (RELEASE_CURSOR=YES) END-EXEC.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(10) VALUE "SCOTT".
 01 PASSWD PIC X(10) VALUE "TIGER".
 01 DYNSTMT PIC X(80) VARYING.
 EXEC SQL END DECLARE SECTION END-EXEC.

 * DECLARE VARIABLES NEEDED TO DISPLAY COMPUTATIONALS.
 01 ORASLNRD PIC 9(9).

 PROCEDURE DIVISION.

 MAIN.

 * BRANCH TO PARAGRAPH SQLERROR IF AN ORACLE ERROR OCCURS.
 EXEC SQL WHENEVER SQLERROR GOTO SQLERROR END-EXEC.

 * SAVE TEXT OF CURRENT SQL STATEMENT IN THE ORACA IF AN ERROR
 * OCCURS.
 MOVE 1 TO ORASTXTF.

 * CONNECT TO ORACLE.
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWD
 END-EXEC.
 DISPLAY " ".
 DISPLAY "CONNECTED TO ORACLE AS USER: " WITH NO ADVANCING.
 DISPLAY USERNAME.
 DISPLAY " ".

 * EXECUTE A STRING LITERAL TO CREATE THE TABLE. HERE, YOU
 * GENERALLY USE A STRING VARIABLE INSTEAD OF A LITERAL, AS IS
 * DONE LATER IN THIS PROGRAM. BUT, YOU CAN USE A LITERAL IF
 * YOU WISH.
 DISPLAY "CREATE TABLE DYN1 (COL1 CHAR(4))".
 DISPLAY " ".
 EXEC SQL EXECUTE IMMEDIATE
 "CREATE TABLE DYN1 (COL1 CHAR(4))"
 END-EXEC.

 * ASSIGN A SQL STATEMENT TO THE VARYING STRING DYNSTMT.
 * SET THE -LEN PART TO THE LENGTH OF THE -ARR PART.
 MOVE "INSERT INTO DYN1 VALUES ('TEST')" TO DYNSTMT-ARR.
 MOVE 36 TO DYNSTMT-LEN.
 DISPLAY DYNSTMT-ARR.
 DISPLAY " ".

 * EXECUTE DYNSTMT TO INSERT A ROW. THE SQL STATEMENT IS A
 * STRING VARIABLE WHOSE CONTENTS THE PROGRAM MAY DETERMINE
 * AT RUN TIME.
 EXEC SQL EXECUTE IMMEDIATE :DYNSTMT END-EXEC.

 * COMMIT THE INSERT.
 EXEC SQL COMMIT WORK END-EXEC.

 * CHANGE DYNSTMT AND EXECUTE IT TO DROP THE TABLE.
 MOVE "DROP TABLE DYN1" TO DYNSTMT-ARR.
 MOVE 19 TO DYNSTMT-LEN.
 DISPLAY DYNSTMT-ARR.
 DISPLAY " ".
 EXEC SQL EXECUTE IMMEDIATE :DYNSTMT END-EXEC.

 * COMMIT ANY PENDING CHANGES AND DISCONNECT FROM ORACLE.
 EXEC SQL COMMIT RELEASE END-EXEC.
 DISPLAY "HAVE A GOOD DAY!".
 DISPLAY " ".
 STOP RUN.

 SQLERROR.

 * ORACLE ERROR HANDLER. PRINT DIAGNOSTIC TEXT CONTAINING
 * ERROR MESSAGE, CURRENT SQL STATEMENT, AND LOCATION OF ERROR.
 DISPLAY SQLERRMC.
 DISPLAY "IN ", ORASTXTC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY "ON LINE ", ORASLNRD, " OF ", ORASFNMC.

 * DISABLE ORACLE ERROR CHECKING TO AVOID AN INFINITE LOOP
 * SHOULD ANOTHER ERROR OCCUR WITHIN THIS PARAGRAPH.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.

 * ROLL BACK ANY PENDING CHANGES AND DISCONNECT FROM ORACLE.
 EXEC SQL ROLLBACK RELEASE END-EXEC.
 STOP RUN.

Using Method 2

What Method 1 does in one step, Method 2 does in two. The dynamic SQL statement, which cannot be a query, is first prepared (named and parsed), then executed.

With Method 2, the SQL statement can contain place-holders for input host variables and indicator variables. You can PREPARE the SQL statement once, then EXECUTE it repeatedly using different values of the host variables. Also, if you have not specified MODE=ANSI, you need not re-prepare the SQL statement after a COMMIT or ROLLBACK (unless you log off and reconnect).

The syntax of the PREPARE statement follows:

 EXEC SQL PREPARE STATEMENT-NAME
 FROM { :HOST-STRING | STRING-LITERAL }
 END-EXEC.

PREPARE parses the SQL statement and gives it a name.

STATEMENT-NAME is an identifier used by the precompiler, not a host or program variable, and should not be declared in a COBOL statement. It simply designates the prepared statement you want to EXECUTE.

The syntax of the EXECUTE statement is

 EXEC SQL
 EXECUTE STATEMENT-NAME [USING HOST-VARIABLE-LIST]
 END-EXEC.

where HOST-VARIABLE-LIST stands for the following syntax:

:HOST-VAR1[:INDICATOR1] [, HOST-VAR2[:INDICATOR2], ...]

EXECUTE executes the parsed SQL statement, using the values supplied for each input host variable. In the following example, the input SQL statement contains the place-holder n:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 01 EMP-NUMBER PIC S9(4) COMP VALUE ZERO.
 ...
 01 DELETE-STMT PIC X(120) VALUE SPACES.
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
 01 WHERE-STMT PIC X(40).
 01 SEARCH-COND PIC X(40).
 ...
 MOVE 'DELETE FROM EMP WHERE EMPNO = :N AND ' TO WHERE-STMT.
 DISPLAY 'Complete this statement's search condition:'.
 DISPLAY WHERE-STMT.
 ACCEPT SEARCH-COND.
* Concatenate SEARCH-COND to WHERE-STMT and store in DELETE-STMT
 STRING WHERE-STMT DELIMITED BY SIZE
 SEARCH-COND DELIMITED BY SIZE INTO
 DELETE-STMT.
 EXEC SQL PREPARE SQLSTMT FROM :DELETE-STMT END-EXEC.
 LOOP.
 DISPLAY 'Enter employee number: ' WITH NO ADVANCING.
 ACCEPT EMP-NUMBER.
 IF EMP-NUMBER = 0
 GO TO NEXT.
 EXEC SQL EXECUTE SQLSTMT USING :EMP-NUMBER END-EXEC.
 NEXT.

With Method 2, you must know the datatypes of input host variables at precompile time. In the last example, EMP-NUMBER was declared as type PIC S9(4) COMP. It could also have been declared as type PIC X(4) or COMP-1, because Oracle9i supports all these datatype conversions to the NUMBER internal datatype.

The USING Clause

When the SQL statement EXECUTE is completed, input host variables in the USING clause replace corresponding place-holders in the prepared dynamic SQL statement.

Every place-holder in the dynamic SQL statement after PREPARE must correspond to a host variable in the USING clause. So, if the same place-holder appears two or more times in the statement after PREPARE, each appearance must correspond to a host variable in the USING clause. If one of the host variables in the USING clause is an array, all must be arrays. Otherwise, only one record is then processed.

The names of the place-holders need not match the names of the host variables. However, the order of the place-holders in the dynamic SQL statement after PREPARE must match the order of corresponding host variables in the USING clause.

To specify NULLs, you can associate indicator variables with host variables in the USING clause. For more information, see "Using Indicator Variables".

Sample Program 7: Dynamic SQL Method 2

This program uses dynamic SQL Method 2 to insert two rows into the EMP table and then delete them.

 * Sample Program 7: Dynamic SQL Method 2 *
 * *
 * This program uses dynamic SQL Method 2 to insert two rows *
 * into the EMP table, then delete them. *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DYNSQL2.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 * INCLUDE THE SQL COMMUNICATIONS AREA, A STRUCTURE THROUGH
 * WHICH ORACLE MAKES RUNTIME STATUS INFORMATION (SUCH AS ERROR
 * CODES, WARNING FLAGS, AND DIAGNOSTIC TEXT) AVAILABLE TO THE
 * PROGRAM.
 EXEC SQL INCLUDE SQLCA END-EXEC.

 * INCLUDE THE ORACLE COMMUNICATIONS AREA, A STRUCTURE THROUGH
 * WHICH ORACLE MAKES ADDITIONAL RUNTIME STATUS INFORMATION
 * AVAILABLE TO THE PROGRAM.
 EXEC SQL INCLUDE ORACA END-EXEC.

 * THE OPTION ORACA=YES MUST BE SPECIFIED TO ENABLE USE OF
 * THE ORACA.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(10) VALUE "SCOTT".
 01 PASSWD PIC X(10) VALUE "TIGER".
 01 DYNSTMT PIC X(80) VARYING.
 01 EMPNO PIC S9(4) COMPUTATIONAL VALUE 1234.
 01 DEPTNO1 PIC S9(4) COMPUTATIONAL VALUE 10.
 01 DEPTNO2 PIC S9(4) COMPUTATIONAL VALUE 20.
 EXEC SQL END DECLARE SECTION END-EXEC.

 * DECLARE VARIABLES NEEDED TO DISPLAY COMPUTATIONALS.
 01 EMPNOD PIC 9(4).
 01 DEPTNO1D PIC 9(2).
 01 DEPTNO2D PIC 9(2).
 01 ORASLNRD PIC 9(9).

 PROCEDURE DIVISION.
 MAIN.

 * BRANCH TO PARAGRAPH SQLERROR IF AN ORACLE ERROR OCCURS.
 EXEC SQL WHENEVER SQLERROR GOTO SQLERROR END-EXEC.

 * SAVE TEXT OF CURRENT SQL STATEMENT IN THE ORACA IF AN ERROR
 * OCCURS.
 MOVE 1 TO ORASTXTF.

 * CONNECT TO ORACLE.
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWD
 END-EXEC.
 DISPLAY " ".
 DISPLAY "CONNECTED TO ORACLE.".
 DISPLAY " ".

 * ASSIGN A SQL STATEMENT TO THE VARYING STRING DYNSTMT. BOTH
 * THE ARRAY AND THE LENGTH PARTS MUST BE SET PROPERLY. NOTE
 * THAT THE STATEMENT CONTAINS TWO HOST VARIABLE PLACEHOLDERS,
 * V1 AND V2, FOR WHICH ACTUAL INPUT HOST VARIABLES MUST BE
 * SUPPLIED AT EXECUTE TIME.
 MOVE "INSERT INTO EMP (EMPNO, DEPTNO) VALUES (:V1, :V2)"
 TO DYNSTMT-ARR.
 MOVE 49 TO DYNSTMT-LEN.

 * DISPLAY THE SQL STATEMENT AND ITS CURRENT INPUT HOST
 * VARIABLES.
 DISPLAY DYNSTMT-ARR.
 MOVE EMPNO TO EMPNOD.
 MOVE DEPTNO1 TO DEPTNO1D.
 DISPLAY " V1 = ", EMPNOD, " V2 = ", DEPTNO1D.

 * THE PREPARE STATEMENT ASSOCIATES A STATEMENT NAME WITH A
 * STRING CONTAINING A SQL STATEMENT. THE STATEMENT NAME IS
 * A SQL IDENTIFIER, NOT A HOST VARIABLE, AND THEREFORE DOES
 * NOT APPEAR IN THE DECLARE SECTION.

 * A SINGLE STATEMENT NAME MAY BE PREPARED MORE THAN ONCE,
 * OPTIONALLY FROM A DIFFERENT STRING VARIABLE.
 EXEC SQL PREPARE S FROM :DYNSTMT END-EXEC.

 * THE EXECUTE STATEMENT EXECUTES A PREPARED SQL STATEMENT
 * USING THE SPECIFIED INPUT HOST VARIABLES, WHICH ARE
 * SUBSTITUTED POSITIONALLY FOR PLACEHOLDERS IN THE PREPARED
 * STATEMENT. FOR EACH OCCURRENCE OF A PLACEHOLDER IN THE
 * STATEMENT THERE MUST BE A VARIABLE IN THE USING CLAUSE.
 * THAT IS, IF A PLACEHOLDER OCCURS MULTIPLE TIMES IN THE
 * STATEMENT, THE CORRESPONDING VARIABLE MUST APPEAR
 * MULTIPLE TIMES IN THE USING CLAUSE. THE USING CLAUSE MAY
 * BE OMITTED ONLY IF THE STATEMENT CONTAINS NO PLACEHOLDERS.
 * A SINGLE PREPARED STATEMENT MAY BE EXECUTED MORE THAN ONCE,
 * OPTIONALLY USING DIFFERENT INPUT HOST VARIABLES.
 EXEC SQL EXECUTE S USING :EMPNO, :DEPTNO1 END-EXEC.

 * INCREMENT EMPNO AND DISPLAY NEW INPUT HOST VARIABLES.
 ADD 1 TO EMPNO.
 MOVE EMPNO TO EMPNOD.
 MOVE DEPTNO2 TO DEPTNO2D.
 DISPLAY " V1 = ", EMPNOD, " V2 = ", DEPTNO2D.

 * REEXECUTE S TO INSERT THE NEW VALUE OF EMPNO AND A
 * DIFFERENT INPUT HOST VARIABLE, DEPTNO2. A REPREPARE IS NOT
 * NECESSARY.
 EXEC SQL EXECUTE S USING :EMPNO, :DEPTNO2 END-EXEC.

 * ASSIGN A NEW VALUE TO DYNSTMT.
 MOVE "DELETE FROM EMP WHERE DEPTNO = :V1 OR DEPTNO = :V2"
 TO DYNSTMT-ARR.
 MOVE 50 TO DYNSTMT-LEN.

 * DISPLAY THE NEW SQL STATEMENT AND ITS CURRENT INPUT HOST
 * VARIABLES.
 DISPLAY DYNSTMT-ARR.
 DISPLAY " V1 = ", DEPTNO1D, " V2 = ", DEPTNO2D.

 * REPREPARE S FROM THE NEW DYNSTMT.
 EXEC SQL PREPARE S FROM :DYNSTMT END-EXEC.

 * EXECUTE THE NEW S TO DELETE THE TWO ROWS PREVIOUSLY
 * INSERTED.
 EXEC SQL EXECUTE S USING :DEPTNO1, :DEPTNO2 END-EXEC.

 * ROLLBACK ANY PENDING CHANGES AND DISCONNECT FROM ORACLE.
 EXEC SQL ROLLBACK RELEASE END-EXEC.
 DISPLAY " ".
 DISPLAY "HAVE A GOOD DAY!".
 DISPLAY " ".
 STOP RUN.

 SQLERROR.
 * ORACLE ERROR HANDLER. PRINT DIAGNOSTIC TEXT CONTAINING
 * ERROR MESSAGE, CURRENT SQL STATEMENT, AND LOCATION OF ERROR.
 DISPLAY SQLERRMC.
 DISPLAY "IN ", ORASTXTC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY "ON LINE ", ORASLNRD, " OF ", ORASFNMC.

 * DISABLE ORACLE ERROR CHECKING TO AVOID AN INFINITE LOOP
 * SHOULD ANOTHER ERROR OCCUR WITHIN THIS PARAGRAPH.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.

 * ROLL BACK ANY PENDING CHANGES AND DISCONNECT FROM ORACLE.
 EXEC SQL ROLLBACK RELEASE END-EXEC.
 STOP RUN.

Using Method 3

Method 3 is similar to Method 2 but combines the PREPARE statement with the statements needed to define and manipulate a cursor. This allows your program to accept and process queries. In fact, if the dynamic SQL statement is a query, you must use Method 3 or 4.

For Method 3, the number of columns in the query select list and the number of place-holders for input host variables must be known at precompile time. However, the names of database objects such as tables and columns need not be specified until run time (they cannot duplicate the names of host variables). Clauses that limit, group, and sort query results (such as WHERE, GROUP BY, and ORDER BY) can also be specified at run time.

With Method 3, you use the following sequence of embedded SQL statements:

 EXEC SQL
 PREPARE STATEMENTNAME FROM { :HOST-STRING | STRING-LITERAL }
 END-EXEC.
 EXEC SQL DECLARE CURSORNAME CURSOR FOR STATEMENTNAME END-EXEC.
 EXEC SQL OPEN CURSORNAME [USING HOST-VARIABLE-LIST] END-EXEC.
 EXEC SQL FETCH CURSORNAME INTO HOST-VARIABLE-LIST END-EXEC.
 EXEC SQL CLOSE CURSORNAME END-EXEC.

Now let us look at what each statement does.

PREPARE

The PREPARE statement parses the dynamic SQL statement and gives it a name. In the following example, PREPARE parses the query stored in the character string SELECT-STMT and gives it the name SQLSTMT:

 MOVE 'SELECT MGR, JOB FROM EMP WHERE SAL < :SALARY'
 TO SELECT-STMT.
 EXEC SQL PREPARE SQLSTMT FROM :SELECT-STMT END-EXEC.

Commonly, the query WHERE clause is input from a terminal at run time or is generated by the application.

The identifier SQLSTMT is not a host or program variable, but must be unique. It designates a particular dynamic SQL statement.

The following statement is correct also:

 EXEC SQL
 PREPARE SQLSTMT FROM 'SELECT MGR, JOB FROM EMP WHERE SAL < :SALARY'
 END-EXEC.

The following PREPARE statement, which uses the '%' wildcard, is also correct:

 MOVE "SELECT ENAME FROM TEST WHERE ENAME LIKE 'SMIT%'" TO MY-STMT.
 EXEC SQL
 PREPARE S FROM MY-STMT
 END-EXEC.

DECLARE

The DECLARE statement defines a cursor by giving it a name and associating it with a specific query. The cursor declaration is local to its precompilation unit. Continuing our example, DECLARE defines a cursor named EMPCURSOR and associates it with SQLSTMT, as follows:

 EXEC SQL DECLARE EMPCURSOR CURSOR FOR SQLSTMT END-EXEC.

The identifiers SQLSTMT and EMPCURSOR are not host or program variables, but must be unique. If you declare two cursors using the same statement name, Pro*COBOL considers the two cursor names synonymous. For example, if you execute the statements

 EXEC SQL PREPARE SQLSTMT FROM :SELECT-STMT END-EXEC.
 EXEC SQL DECLARE EMPCURSOR FOR SQLSTMT END-EXEC.
 EXEC SQL PREPARE SQLSTMT FROM :DELETE-STMT END-EXEC.
 EXEC SQL DECLARE DEPCURSOR FOR SQLSTMT END-EXEC.

when you OPEN EMPCURSOR, you will process the dynamic SQL statement stored in DELETE-STMT, not the one stored in SELECT-STMT.

OPEN

The OPEN statement allocates a cursor, binds input host variables, and executes the query, identifying its active set. OPEN also positions the cursor on the first row in the active set and zeroes the rows-processed count kept by the third element of SQLERRD in the SQLCA. Input host variables in the USING clause replace corresponding place-holders in the PREPAREd dynamic SQL statement.

In our example, OPEN allocates EMPCURSOR and assigns the host variable SALARY to the WHERE clause, as follows:

 EXEC SQL OPEN EMPCURSOR USING :SALARY END-EXEC.

FETCH

The FETCH statement returns a row from the active set, assigns column values in the select list to corresponding host variables in the INTO clause, and advances the cursor to the next row. When no more rows are found, FETCH returns the "no data found" error code to SQLCODE in the SQLCA.

In our example, FETCH returns a row from the active set and assigns the values of columns MGR and JOB to host variables MGR-NUMBER and JOB-TITLE, as follows:

 EXEC SQL FETCH EMPCURSOR INTO :MGR-NUMBER,:JOB-TITLE END-EXEC.

Host tables can be used with Method 3.

CLOSE

The CLOSE statement disables the cursor. Once you CLOSE a cursor, you can no longer FETCH from it. In our example, the CLOSE statement disables EMPCURSOR, as follows:

 EXEC SQL CLOSE EMPCURSOR END-EXEC.

Sample Program 8: Dynamic SQL Method 3

This program uses dynamic SQL Method 3 to retrieve the names of all employees in a given department from the EMP table.

 * Sample Program 8: Dynamic SQL Method 3 *
 * *
 * This program uses dynamic SQL Method 3 to retrieve the names *
 * of all employees in a given department from the EMP table. *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DYNSQL3.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 * INCLUDE THE SQL COMMUNICATIONS AREA, A STRUCTURE THROUGH
 * WHICH ORACLE MAKES RUNTIME STATUS INFORMATION (SUCH AS ERROR
 * CODES, WARNING FLAGS, AND DIAGNOSTIC TEXT) AVAILABLE TO THE
 * PROGRAM.
 EXEC SQL INCLUDE SQLCA END-EXEC.

 * INCLUDE THE ORACLE COMMUNICATIONS AREA, A STRUCTURE THROUGH
 * WHICH ORACLE MAKES ADDITIONAL RUNTIME STATUS INFORMATION
 * AVAILABLE TO THE PROGRAM.
 EXEC SQL INCLUDE ORACA END-EXEC.

 * THE ORACA=YES OPTION MUST BE SPECIFIED TO ENABLE USE OF
 * THE ORACA.
 EXEC ORACLE OPTION (ORACA=YES) END-EXEC.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(10) VALUE "SCOTT".
 01 PASSWD PIC X(10) VALUE "TIGER".
 01 DYNSTMT PIC X(80) VARYING.
 01 ENAME PIC X(10).
 01 DEPTNO PIC S9999 COMPUTATIONAL VALUE 10.
 EXEC SQL END DECLARE SECTION END-EXEC.

 * DECLARE VARIABLES NEEDED TO DISPLAY COMPUTATIONALS.
 01 DEPTNOD PIC 9(2).
 01 ENAMED PIC X(10).
 01 SQLERRD3 PIC 9(2).
 01 ORASLNRD PIC 9(4).

 PROCEDURE DIVISION.
 MAIN.

 * BRANCH TO PARAGRAPH SQLERROR IF AN ORACLE ERROR OCCURS.
 EXEC SQL WHENEVER SQLERROR GO TO SQLERROR END-EXEC.

 * SAVE TEXT OF CURRENT SQL STATEMENT IN THE ORACA IF AN ERROR
 * OCCURS.
 MOVE 1 TO ORASTXTF.

 * CONNECT TO ORACLE.
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWD
 END-EXEC.
 DISPLAY " ".
 DISPLAY "CONNECTED TO ORACLE.".
 DISPLAY " ".

 * ASSIGN A SQL QUERY TO THE VARYING STRING DYNSTMT. BOTH THE
 * ARRAY AND THE LENGTH PARTS MUST BE SET PROPERLY. NOTE THAT
 * THE STATEMENT CONTAINS ONE HOST VARIABLE PLACEHOLDER, V1,
 * FOR WHICH AN ACTUAL INPUT HOST VARIABLE MUST BE SUPPLIED
 * AT OPEN TIME.
 MOVE "SELECT ENAME FROM EMP WHERE DEPTNO = :V1"
 TO DYNSTMT-ARR.
 MOVE 40 TO DYNSTMT-LEN.

 * DISPLAY THE SQL STATEMENT AND ITS CURRENT INPUT HOST
 * VARIABLE.
 DISPLAY DYNSTMT-ARR.
 MOVE DEPTNO TO DEPTNOD.
 DISPLAY " V1 = ", DEPTNOD.
 DISPLAY " ".
 DISPLAY "EMPLOYEE".
 DISPLAY "--------".

 * THE PREPARE STATEMENT ASSOCIATES A STATEMENT NAME WITH A
 * STRING CONTAINING A SELECT STATEMENT. THE STATEMENT NAME,
 * WHICH MUST BE UNIQUE, IS A SQL IDENTIFIER, NOT A HOST
 * VARIABLE, AND SO DOES NOT APPEAR IN THE DECLARE SECTION.
 EXEC SQL PREPARE S FROM :DYNSTMT END-EXEC.

 * THE DECLARE STATEMENT ASSOCIATES A CURSOR WITH A PREPARED
 * STATEMENT. THE CURSOR NAME, LIKE THE STATEMENT NAME, DOES
 * NOT APPEAR IN THE DECLARE SECTION.
 EXEC SQL DECLARE C CURSOR FOR S END-EXEC.

 * THE OPEN STATEMENT EVALUATES THE ACTIVE SET OF THE PREPARED
 * QUERY USING THE SPECIFIED INPUT HOST VARIABLES, WHICH ARE
 * SUBSTITUTED POSITIONALLY FOR PLACEHOLDERS IN THE PREPARED
 * QUERY. FOR EACH OCCURRENCE OF A PLACEHOLDER IN THE
 * STATEMENT THERE MUST BE A VARIABLE IN THE USING CLAUSE.
 * THAT IS, IF A PLACEHOLDER OCCURS MULTIPLE TIMES IN THE
 * STATEMENT, THE CORRESPONDING VARIABLE MUST APPEAR MULTIPLE
 * TIMES IN THE USING CLAUSE. THE USING CLAUSE MAY BE
 * OMITTED ONLY IF THE STATEMENT CONTAINS NO PLACEHOLDERS.
 * OPEN PLACES THE CURSOR AT THE FIRST ROW OF THE ACTIVE SET
 * IN PREPARATION FOR A FETCH.

 * A SINGLE DECLARED CURSOR MAY BE OPENED MORE THAN ONCE,
 * OPTIONALLY USING DIFFERENT INPUT HOST VARIABLES.
 EXEC SQL OPEN C USING :DEPTNO END-EXEC.

 * BRANCH TO PARAGRAPH NOTFOUND WHEN ALL ROWS HAVE BEEN
 * RETRIEVED.
 EXEC SQL WHENEVER NOT FOUND GO TO NOTFOUND END-EXEC.

 GETROWS.

 * THE FETCH STATEMENT PLACES THE SELECT LIST OF THE CURRENT
 * ROW INTO THE VARIABLES SPECIFIED BY THE INTO CLAUSE, THEN
 * ADVANCES THE CURSOR TO THE NEXT ROW. IF THERE ARE MORE
 * SELECT-LIST FIELDS THAN OUTPUT HOST VARIABLES, THE EXTRA
 * FIELDS ARE NOT RETURNED. SPECIFYING MORE OUTPUT HOST
 * VARIABLES THAN SELECT-LIST FIELDS RESULTS IN AN ORACLE ERROR.
 EXEC SQL FETCH C INTO :ENAME END-EXEC.
 MOVE ENAME TO ENAMED.
 DISPLAY ENAMED.

 * LOOP UNTIL NOT FOUND CONDITION IS DETECTED.
 GO TO GETROWS.

 NOTFOUND.
 MOVE SQLERRD(3) TO SQLERRD3.
 DISPLAY " ".
 DISPLAY "QUERY RETURNED ", SQLERRD3, " ROW(S).".

 * THE CLOSE STATEMENT RELEASES RESOURCES ASSOCIATED WITH THE
 * CURSOR.
 EXEC SQL CLOSE C END-EXEC.

 * COMMIT ANY PENDING CHANGES AND DISCONNECT FROM ORACLE.
 EXEC SQL COMMIT RELEASE END-EXEC.
 DISPLAY " ".
 DISPLAY "HAVE A GOOD DAY!".
 DISPLAY " ".
 STOP RUN.

 SQLERROR.

 * ORACLE ERROR HANDLER. PRINT DIAGNOSTIC TEXT CONTAINING
 * ERROR MESSAGE, CURRENT SQL STATEMENT, AND LOCATION OF ERROR.
 DISPLAY SQLERRMC.
 DISPLAY "IN ", ORASTXTC.
 MOVE ORASLNR TO ORASLNRD.
 DISPLAY "ON LINE ", ORASLNRD, " OF ", ORASFNMC.

 * DISABLE ORACLE ERROR CHECKING TO AVOID AN INFINITE LOOP
 * SHOULD ANOTHER ERROR OCCUR WITHIN THIS PARAGRAPH.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.

 * RELEASE RESOURCES ASSOCIATED WITH THE CURSOR.
 EXEC SQL CLOSE C END-EXEC.

 * ROLL BACK ANY PENDING CHANGES AND DISCONNECT FROM ORACLE.
 EXEC SQL ROLLBACK RELEASE END-EXEC.
 STOP RUN.

Using Oracle Method 4

This section gives only an overview. For details, see Chapter 11, "Oracle Dynamic SQL: Method 4".

LOBs are not supported in Oracle Method 4. Use ANSI dynamic SQL for LOB applications and all other new applications.

There is a kind of dynamic SQL statement that your program cannot process using Method 3. When the number of select-list items or place-holders for input host variables is unknown until run time, your program must use a descriptor. A descriptor is an area of memory used by your program and Oracle9i to hold a complete description of the variables in a dynamic SQL statement.

Recall that for a multi-row query, you FETCH selected column values INTO a list of declared output host variables. If the select list is unknown, the host-variable list cannot be established at precompile time by the INTO clause. For example, you know the following query returns two column values:

 EXEC SQL
 SELECT ENAME, EMPNO FROM EMP WHERE DEPTNO = :DEPT-NUMBER
 END-EXEC.

However, if you let the user define the select list, you might not know how many column values the query will return.

Need for the SQLDA

To process this kind of dynamic query, your program must issue the DESCRIBE SELECT LIST command and declare a data structure called the SQL Descriptor Area (SQLDA). Because it holds descriptions of columns in the query select list, this structure is also called a select descriptor.

Likewise, if a dynamic SQL statement contains an unknown number of place-holders for input host variables, the host-variable list cannot be established at precompile time by the USING clause.

To process the dynamic SQL statement, your program must issue the DESCRIBE BIND VARIABLES command and declare another kind of SQLDA called a bind descriptor to hold descriptions of the place-holders for the input host variables. (Input host variables are also called bind variables.)

If your program has more than one active SQL statement (it might have used OPEN for two or more cursors, for example), each statement must have its own SQLDAs statement. However, non-concurrent cursors can reuse SQLDAs. There is no set limit on the number of SQLDAs in a program.

The DESCRIBE Statement

DESCRIBE initializes a descriptor to hold descriptions of select-list items or input host variables.

If you supply a select descriptor, the DESCRIBE SELECT LIST statement examines each select-list item in a prepared dynamic query to determine its name, datatype, constraints, length, scale, and precision. It then stores this information in the select descriptor.

If you supply a bind descriptor, the DESCRIBE BIND VARIABLES statement examines each place-holder in a prepared dynamic SQL statement to determine its name, length, and the datatype of its associated input host variable. It then stores this information in the bind descriptor for your use. For example, you might use place-holder names to prompt the user for the values of input host variables.

SQLDA Contents

A SQLDA is a host-program data structure that holds descriptions of select-list items or input host variables.

Though SQLDAs differ among host languages, a generic select SQLDA contains the following information about a query select list:

	
Maximum number of columns that can be DESCRIBEd

	
Actual number of columns found by DESCRIBE

	
Addresses of buffers to store column values

	
Lengths of column values

	
Datatypes of column values

	
Addresses of indicator-variable values

	
Addresses of buffers to store column names

	
Sizes of buffers to store column names

	
Current lengths of column names

A generic bind SQLDA contains the following information about the input host variables in a SQL statement:

	
Maximum number of place-holders that can be DESCRIBEd

	
Actual number of place-holders found by DESCRIBE

	
Addresses of input host variables

	
Lengths of input host variables

	
Datatypes of input host variables

	
Addresses of indicator variables

	
Addresses of buffers to store place-holder names

	
Sizes of buffers to store place-holder names

	
Current lengths of place-holder names

	
Addresses of buffers to store indicator-variable names

	
Sizes of buffers to store indicator-variable names

	
Current lengths of indicator-variable names

Implementing Method 4

With Method 4, you generally use the following sequence of embedded SQL statements:

 EXEC SQL
 PREPARE STATEMENT-NAME
 FROM { :HOST-STRING | STRING-LITERAL }
 END-EXE
 EXEC SQL
 DECLARE CURSOR-NAME CURSOR FOR STATEMENT-NAME
 END-EXEC.
 EXEC SQL
 DESCRIBE BIND VARIABLES FOR STATEMENT-NAME
 INTO BIND-DESCRIPTOR-NAME
 END-EXEC.
 EXEC SQL
 OPEN CURSOR-NAME
 [USING DESCRIPTOR BIND-DESCRIPTOR-NAME]
 END-EXEC.
 EXEC SQL
 DESCRIBE [SELECT LIST FOR] STATEMENT-NAME
 INTO SELECT-DESCRIPTOR-NAME
 END-EXEC.
 EXEC SQL
 FETCH CURSOR-NAME
 USING DESCRIPTOR SELECT-DESCRIPTOR-NAME
 END-EXEC.
 EXEC SQL CLOSE CURSOR-NAME END-EXEC.

Select and bind descriptors need not work in tandem. If the number of columns in a query select list is known, but the number of place-holders for input host variables is unknown, you can use the Method 4 OPEN statement with the following Method 3 FETCH statement:

 EXEC SQL FETCH EMPCURSOR INTO :HOST-VARIABLE-LIST END-EXEC.

Conversely, if the number of place-holders for input host variables is known, but the number of columns in the select list is unknown, you can use the following Method 3 OPEN statement with the Method 4 FETCH statement:

 EXEC SQL OPEN CURSORNAME [USING HOST-VARIABLE-LIST] END-EXEC.

Note that EXECUTE can be used for non-queries with Method 4.

Using the DECLARE STATEMENT Statement

With Methods 2, 3, and 4, you might need to use the statement

 EXEC SQL [AT dbname] DECLARE statementname STATEMENT END-EXEC.

where dbname and statementname are identifiers used by Pro*COBOL, not host or program variables.

DECLARE STATEMENT declares the name of a dynamic SQL statement so that the statement can be referenced by PREPARE, EXECUTE, DECLARE CURSOR, and DESCRIBE. It is required if you want to execute the dynamic SQL statement at a nondefault database. An example using Method 2 follows:

 EXEC SQL AT remotedb DECLARE sqlstmt STATEMENT END-EXEC.
 EXEC SQL PREPARE sqltmt FROM :sqlstring END-EXEC.
 EXEC SQL EXECUTE sqlstmt END-EXEC.

In the example, remotedb tells Oracle9i where to EXECUTE the SQL statement.

With Methods 3 and 4, DECLARE STATEMENT is also required if the DECLARE CURSOR statement precedes the PREPARE statement, as shown in the following example:

 EXEC SQL DECLARE sqlstmt STATEMENT END-EXEC.
 EXEC SQL DECLARE empcursor CURSOR FOR sqlstmt END-EXEC.
 EXEC SQL PREPARE sqlstmt FROM :sqlstring END-EXEC.

The usual sequence of statements is

 EXEC SQL PREPARE sqlstmt FROM :sqlstring END-EXEC.
 EXEC SQL DECLARE empcursor CURSOR FOR sqlstmt END-EXEC.

Using Host Tables

Usage of host tables in static and dynamic SQL is similar. For example, to use input host tables with dynamic SQL Method 2, use the syntax

 EXEC SQL EXECUTE statementname USING :HOST-TABLE-LIST END-EXEC.

where HOST-TABLE-LIST contains one or more host tables. With Method 3, use the following syntax:

 OPEN cursorname USING :HOST-TABLE-LIST END-EXEC.

To use output host tables with Method 3, use the following syntax:

 FETCH cursorname INTO :HOST-TABLE-LIST END-EXEC.

With Method 4, you must use the optional FOR clause to tell Oracle9i the size of your input or output host table. To learn how this is done, see your host-language supplement.

Using PL/SQL

Pro*COBOL treats a PL/SQL block like a single SQL statement. So, like a SQL statement, a PL/SQL block can be stored in a string host variable or literal. When you store the PL/SQL block in the string, omit the keywords EXEC SQL EXECUTE, the keyword END-EXEC, and the statement terminator.

However, there are two differences in the way Pro*COBOL handles SQL and PL/SQL:

	
All PL/SQL host variables should be treated in the same way as input host variables regardless of whether they are input or output host variables (or both).

	
You cannot FETCH from a PL/SQL block because it might contain any number of SQL statements. However, you can implement similar functionality by using cursor variables.

With Method 1

If the PL/SQL block contains no host variables, you can use Method 1 to EXECUTE the PL/SQL string in the usual way.

With Method 2

If the PL/SQL block contains a known number of input and output host variables, you can use Method 2 to PREPARE and EXECUTE the PL/SQL string in the usual way.

You must put all host variables in the USING clause. Once the PL/SQL string EXECUTE is completed, host variables in the USING clause replace corresponding place-holders in the string after PREPARE. Though Pro*COBOL treats all PL/SQL host variables as input host variables, values are assigned correctly. Input (program) values are assigned to input host variables, and output (column) values are assigned to output host variables.

Every place-holder in the PL/SQL string after PREPARE must correspond to a host variable in the USING clause. So, if the same place-holder appears two or more times in the PREPAREd string, each appearance must correspond to a host variable in the USING clause.

With Method 3

Methods 2 and 3 are the same except that Method 3 allows completion of a FETCH. Since you cannot FETCH from a PL/SQL block, use Method 2 instead.

With Method 4

If the PL/SQL block contains an unknown number of input or output host variables, you must use Method 4.

To use Method 4, you set up one bind descriptor for all the input and output host variables. Executing DESCRIBE BIND VARIABLES stores information about input and output host variables in the bind descriptor. Because you refer to all PL/SQL host variables with the methods associated with input host variables, executing DESCRIBE SELECT LIST has no effect.

The use of bind descriptors with Method 4 is detailed in your host-language supplement.

Note that in dynamic SQL Method 4, a host array cannot be bound to a PL/SQL procedure with a parameter of type "table."

Caution

Do not use ANSI-style Comments (- - ...) in a PL/SQL block that will be processed dynamically because end-of-line characters are ignored. As a result, ANSI-style Comments extend to the end of the block, not just to the end of a line. Instead, use C-style Comments (/* ... */).

Dynamic SQL Statement Caching

Statement caching refers to the feature that provides and manages a cache of statements for each session. In the server, it means that cursors are ready to be used without the need to parse the statement again. Statement caching can be enabled in the precompiler applications, which will help in the performance improvement of all applications that rely on the dynamic SQL statements. The performance improvement is achieved by removing the overhead of parsing the dynamic statements on reuse. The precompiler application user can obtain this performance improvement using a new command line option, stmt_cache (for the statement cache size), which will enable the statement caching of the dynamic statements. By enabling the new option, the statement cache will be created at session creation time. The caching is only applicable for the dynamic statements and the cursor cache for the static statements co-exists with the new feature.

The command line option stmt_cache can be given any value in the range of 0 to 65535. Statement caching is disabled by default (value 0). The stmt_cache option can be set to hold the anticipated number of distinct dynamic SQL statements in the application.

Example 9-1 Using the stmt_cache Option

This example demonstrates the use of the stmt_cache option. In this program, you insert rows into a table and select the inserted rows by using the cursor in the loop. When the stmt_cache option is used to precompile this program, the performance increases compared to a normal precompilation.

 * stmtcache: *
 * *
 * NOTE: *
 * When this program is used to measure the performance with and *
 * without stmt_cache option, do the following changes in the *
 * program, *
 * 1. Increase ROWSCNT to high value, say 10000. *
 * 2. Remove all the DISPLAY statements, usually which comsumes *
 * significant portion of the total program execution time. *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. stmtcache.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 * EMBEDDED COBOL (file "STMTCACHE.PCO")

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 USERNAME PIC X(10) VARYING.
 01 PASSWD PIC X(10) VARYING.
 01 DYNSTMT PIC X(100) VARYING.
 01 DYNSTMT2 PIC X(100) VARYING.

 01 ENAME PIC X(10).
 01 COMM PIC X(9).

 EXEC SQL END DECLARE SECTION END-EXEC.

 01 ROWSCNT PIC 9(4) COMP VALUE 10.
 01 LOOPNO PIC 9(4).

 01 STRINGFIELDS.
 02 STR PIC X(18) VARYING.

 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 BEGIN-PGM.
 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.

 PERFORM LOGON.

 MOVE "INSERT INTO BONUS (ENAME, COMM) VALUES (:A,:B)"
 TO DYNSTMT-ARR.
 MOVE 53 TO DYNSTMT-LEN.

 DISPLAY "Inserts ", ROWSCNT, " rows into BONUS table.".
 PERFORM INSDATA VARYING LOOPNO FROM 1 BY 1
 UNTIL LOOPNO > ROWSCNT.

 DISPLAY " ".

 DISPLAY "Fetches the inserted rows from BONUS.".
 DISPLAY " ENAME COMM".

 MOVE "SELECT ENAME, COMM FROM BONUS WHERE COMM=:A"
 TO DYNSTMT2-ARR.
 MOVE 43 TO DYNSTMT2-LEN.

 MOVE 1 TO LOOPNO.

 * Loops for preparing and fetching ROWSCNT number of times
 FETCHDATA.
 * Do the prepare in the loop so that the advantage of
 * stmt_caching is visible
 EXEC SQL PREPARE S2 FROM :DYNSTMT2 END-EXEC.

 EXEC SQL DECLARE C1 CURSOR FOR S2
 END-EXEC.

 EXEC SQL OPEN C1 USING :LOOPNO END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GO TO NOTFOUND END-EXEC.

 GETROWS.
 * Close the cursor so that the reparsing is not required for
 * stmt_cache
 EXEC SQL FETCH C1 INTO :ENAME, :COMM
 END-EXEC.
 DISPLAY ENAME, COMM.
 GO TO GETROWS.

 NOTFOUND.
 EXEC SQL CLOSE C1 END-EXEC.
 COMPUTE LOOPNO = LOOPNO + 1.

 IF LOOPNO <= ROWSCNT THEN
 GO TO FETCHDATA
 END-IF.

 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 LOGON.
 MOVE "scott" TO USERNAME-ARR.
 MOVE 5 TO USERNAME-LEN.
 MOVE "tiger" TO PASSWD-ARR.
 MOVE 5 TO PASSWD-LEN.
 EXEC SQL
 CONNECT :USERNAME IDENTIFIED BY :PASSWD
 END-EXEC.

 * Populates the host variable and insert into the table
 INSDATA.
 EXEC SQL PREPARE S1 FROM :DYNSTMT END-EXEC.
 MOVE " " TO STR.
 STRING "EMP_", LOOPNO INTO STR
 END-STRING.
 MOVE STR TO ENAME.
 MOVE LOOPNO TO COMM.

 EXEC SQL EXECUTE S1 USING :ENAME, :COMM END-EXEC.

 * HANDLES SQL ERROR CONDITIONS
 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

ANSI Dynamic SQL

10 ANSI Dynamic SQL

This chapter describes Oracle's implementation of ANSI dynamic SQL (also known as SQL92 dynamic SQL) which should be used for new Method 4 applications. It has enhancements over the older Oracle dynamic SQL Method 4, which is described in Chapter 11, "Oracle Dynamic SQL: Method 4". The ANSI Method 4 supports all Oracle types, while the older Oracle Method 4 does not support cursor variables, tables of group items, the DML returning clause, and LOBs.

In ANSI dynamic SQL, descriptors are internally maintained by Oracle, while in the older Oracle dynamic SQL Method 4, descriptors are defined in the user's Pro*COBOL program. In both cases, with Method 4 your Pro*COBOL program accepts or builds SQL statements that contain a varying number of host variables.

The main sections in this chapter are:

	
Basics of ANSI Dynamic SQL

	
Overview of ANSI SQL Statements

	
Oracle Extensions

	
ANSI Dynamic SQL Precompiler Options

	
Full Syntax of the Dynamic SQL Statements

	
Sample Programs: SAMPLE12.PCO

Basics of ANSI Dynamic SQL

Consider the SQL statement:

SELECT ename, empno FROM emp WHERE deptno = :deptno_data

The steps you follow to use ANSI dynamic SQL are:

	
Declare variables, including a string to hold the statement to be executed.

	
Allocate descriptors for input and output variables.

	
Prepare the statement.

	
Describe input for the input descriptor.

	
Set the input descriptor (in our example the one input host bind variable, deptno_data).

	
Declare and open a dynamic cursor.

	
Set the output descriptors (in our example, the output host variables ename and empno).

	
Repeatedly fetch data, using GET DESCRIPTOR to retrieve the ename and empno data fields from each row.

	
Do something with the data retrieved (output it, for instance).

	
Close the dynamic cursor and deallocate the input and output descriptors.

Precompiler Options

Normally, if you are using ANSI dynamic SQL you will be writing to the ANSI standard for precompilers and will therefore be using the macro command line option MODE=ANSI. If you wish to use this method and do not wish to use MODE=ANSI, then the functionality is controlled by the micro command line option: DYNAMIC=ANSI.

You can either set the micro precompiler option DYNAMIC to ANSI, or set the macro option MODE to ANSI. This causes the default value of DYNAMIC to be ANSI. The other setting of DYNAMIC is ORACLE. For more about micro options, see "Macro and Micro Options" and "DYNAMIC".

In order to use ANSI type codes, set the precompiler micro option TYPE_CODE to ANSI, or set the macro option MODE to ANSI. This changes the default setting of TYPE_CODE to ANSI. To set TYPE_CODE to ANSI, DYNAMIC must also be ANSI.

For a list of the ANSI SQL types see Table 10-1. Use the ANSI types with precompiler option TYPE_CODE set to ANSI if you want your application to be portable across database platforms and be as compliant to ANSI as possible.

For more details, see "MODE" and "TYPE_CODE".

Overview of ANSI SQL Statements

Allocate a descriptor area before using it in a dynamic SQL statement.

The ALLOCATE DESCRIPTOR statement syntax is:

 EXEC SQL ALLOCATE DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam | string_literal}
 [WITH MAX {:occurrences | numeric_literal}]
 END-EXEC.

A global descriptor can be used in any module in the program. A local descriptor can be accessed only in the file in which it is allocated. Local is the default.

The descriptor name, desc_nam, is a host variable. A string literal can be used instead.

occurrences is the maximum number of bind variables or columns that the descriptor can hold, with a default of 100.

When a descriptor is no longer needed, deallocate it to conserve memory. Deallocation is done automatically when there are no more database connections.

The deallocate statement is:

 EXEC SQL DEALLOCATE DESCRIPTOR [GLOBAL | LOCAL]
 {:desc_nam | string_literal}
 END-EXEC.

Use the DESCRIBE statement to obtain information on a prepared SQL statement. DESCRIBE INPUT describes bind variables for the dynamic statement that has been prepared. DESCRIBE OUTPUT (the default) can give the number, type, and length of the output columns. The simplified syntax is:

 EXEC SQL DESCRIBE [INPUT | OUTPUT] sql_statement
 USING [SQL] DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam | string_literal}
 END-EXEC.

If your SQL statement has input and output values, you must allocate two descriptors: one for input and one for output values. If there are no input values, for example:

SELECT ename, empno FROM emp

then the input descriptor is not needed.

Use the SET DESCRIPTOR statement to specify input values for INSERTS, UPDATES, DELETES and the WHERE clauses of SELECT statements. Use SET DESCRIPTOR to set the number of input bind variables (stored in COUNT) when you have not done a DESCRIBE into your input descriptor:

 EXEC SQL SET DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam | string_literal}
 COUNT = {:kount | numeric_literal}
 END-EXEC.

kount can be a host variable or a numeric literal, such as 5. Use a SET DESCRIPTOR statement for each host variable, giving at least the data value of the variable:

 EXEC SQL SET DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam | string_literal}
 VALUE item_number DATA = :hv3
 END-EXEC.

You can also set the type and length of the input host variable:

Note: If you do not set the type and length, either explicitly, through the SET DESCRIPTOR statement, or implicitly by doing a DESCRIBE OUTPUT, when TYPE_CODE=ORACLE, the precompiler will use values for these derived from the host variable itself. When TYPE_CODE=ANSI, you must set the type using the values in Table 10-1, "ANSI SQL Datatypes". You should also set the length because the ANSI default lengths may not match those of your host variable.

 EXEC SQL SET DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam | string_literal}
 VALUE item_number TYPE = :hv1, LENGTH = :hv2, DATA = :hv3
 END-EXEC.

We use the identifiers hv1, hv2, and hv3 to remind us that the values must be supplied by host variables. item_number is the position of the input variable in the SQL statement. It can be a host variable or an integer number.

TYPE is the Type Code selected from the following table, if TYPE_CODE is set to ANSI:

Table 10-1 ANSI SQL Datatypes

	Datatype	Type Code
	
CHARACTER

	
1

	
CHARACTER VARYING

	
12

	
DATE

	
9

	
DECIMAL

	
3

	
DOUBLE PRECISION

	
8

	
FLOAT

	
6

	
INTEGER

	
4

	
NUMERIC

	
2

	
REAL

	
7

	
SMALLINT

	
5

See Table 11-2, "Oracle External and Related COBOL Datatypes" for the Oracle type codes. Use the negative value of the Oracle code if the ANSI datatype is not in the table, and TYPE_CODE = ANSI.

DATA is the host variable value which is input.

You can also set other input values such as indicator, precision and scale. See the more complete discussion of "SET DESCRIPTOR"for a list of all the possible descriptor item names.

The numeric values in the SET DESCRIPTOR statement must be declared as either PIC S9(9) COMP or PIC S9(4) COMP except for indicator and returned length values which you must declare as PIC S9(4)COMP.

In the following example, when you want to retrieve empno, set these values: VALUE=2, because empno is the second output host variable in the dynamic SQL statement. The host variable EMPNO-TYP is set to 3 (Oracle Type for integer). The length of a host integer, EMPNO-LEN, is set to 4, which is the size of the host variable. The DATA is equated to the host variable EMPNO-DATA which will receive the value from the database table. The code fragment is as follows:

 ...
 01 DYN-STATEMENT PIC X(58)
 VALUE "SELECT ename, empno FROM emp WHERE deptno =:deptno_number".
 01 EMPNO-DATA PIC S9(9) COMP.
 01 EMPNO-TYP PIC S9(9) COMP VALUE 3.
 01 EMPNO-LEN PIC S9(9) COMP VALUE 4.
 ...
 EXEC SQL SET DESCRIPTOR 'out' VALUE 2 TYPE=:EMPNO-TYP, LENGTH=:EMPNO-LEN,
 DATA=:EMPNO-DATA END-EXEC.

After setting the input values, execute or open your statement using the input descriptor. If there are output values in your statement, set them before doing a FETCH. If you have done a DESCRIBE OUTPUT, you may have to reset the actual types and lengths of your host variables because the DESCRIBE execution will produce internal types and lengths which differ from your host variable external types and length.

After the FETCH of the output descriptor, use GET DESCRIPTOR to access the returned data. Again we show a simplified syntax with details later in this chapter:

 EXEC SQL GET DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam | string_literal}
 VALUE item_number
 :hv1 = DATA, :hv2 = INDICATOR, :hv3 = RETURNED_LENGTH
 END-EXEC.

desc_nam and item_number can be literals or host variables. A descriptor name can be a literal such as 'out'. An item number can be a numeric literal such as 2.

hv1, hv2, and hv3 are host variables. They must be host variables, not literals. Only three are shown in the example. See Table 10-4, "Definitions of Descriptor Item Names" for a list of all possible items of returned data that you can get.

Use either PIC S9(n) COMP where n is the platform-dependent upper limit, PIC S9(9)COMP or PIC S9(4)COMPfor all numeric values, except for indicator and returned length variables, which must be PIC S9(4) COMP.

Sample Code

The following example demonstrates the use of ANSI Dynamic SQL. It allocates an input descriptor in and an output descriptor out to execute a SELECT statement. Input values are set through the SET DESCRIPTOR statement. The cursor is opened and fetched from and the resulting output values are retrieved through a GET DESCRIPTOR statement.

 ...
 01 DYN-STATEMENT PIC X(58)
 VALUE "SELECT ENAME, EMPNO FROM EMP WHERE DEPTNO =:DEPTNO-DAT".
 01 EMPNO-DAT PIC S9(9) COMP.
 01 EMPNO-TYP PIC S9(9) COMP VALUE 3.
 01 EMPNO-LEN PIC S9(9) COMP VALUE 4.
 01 DEPTNO-TYP PIC S9(9) COMP VALUE 3.
 01 DEPTNO-LEN PIC S9(9) COMP VALUE 4.
 01 DEPTNO-DAT PIC S9(9) COMP VALUE 10.
 01 ENAME-TYP PIC S9(9) COMP VALUE 3.
 01 ENAME-LEN PIC S9(9) COMP VALUE 30.
 01 ENAME-DAT PIC X(30).
 01 SQLCODE PIC S9(9) COMP VALUE 0.
 ...
* Place preliminary code, including connection, here
...
 EXEC SQL ALLOCATE DESCRIPTOR 'in' END-EXEC.
 EXEC SQL ALLOCATE DESCRIPTOR 'out' END-EXEC.
 EXEC SQL PREPARE s FROM :DYN-STATEMENT END-EXEC.
 EXEC SQL DESCRIBE INPUT s USING DESCRIPTOR 'in' END-EXEC.
 EXEC SQL SET DESCRIPTOR 'in' VALUE 1 TYPE=:DEPTNO-TYP,
 LENGTH=:DEPTNO-LEN, DATA=:DEPTNO-DAT END-EXEC.
 EXEC SQL DECLARE c CURSOR FOR s END-EXEC.
 EXEC SQL OPEN c USING DESCRIPTOR 'in' END-EXEC.
 EXEC SQL DESCRIBE OUTPUT s USING DESCRIPTOR 'out' END-EXEC.
 EXEC SQL SET DESCRIPTOR 'out' VALUE 1 TYPE=:ENAME-TYP,
 LENGTH=:ENAME-LEN, DATA=:ENAME-DAT END-EXEC.
 EXEC SQL SET DESCRIPTOR 'out' VALUE 2 TYPE=:EMPNO-TYP,
 LENGTH=:EMPNO-LEN, DATA=:EMPNO-DAT END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO BREAK END-EXEC.
 LOOP.
 IF SQLCODE NOT = 0
 GOTO BREAK.
 EXEC SQL FETCH c INTO DESCRIPTOR 'out' END-EXEC.
 EXEC SQL GET DESCRIPTOR 'OUT' VALUE 1 :ENAME-DAT = DATA END-EXEC.
 EXEC SQL GET DESCRIPTOR 'OUT' VALUE 2 :EMPNO-DAT = DATA END-EXEC.
 DISPLAY "ENAME = " WITH NO ADVANCING
 DISPLAY ENAME-DAT WITH NO ADVANCING
 DISPLAY "EMPNO = " WITH NO ADVANCING
 DISPLAY EMPNO-DAT.
 GOTO LOOP.
 BREAK:
 EXEC SQL CLOSE c END-EXEC.
 EXEC SQL DEALLOCATE DESCRIPTOR 'in' END-EXEC.
 EXEC SQL DEALLOCATE DESCRIPTOR 'out' END-EXEC.

Oracle Extensions

These extensions are described next:

	
Reference semantics for data items in SET statements.

	
Arrays for bulk operations.

	
Support for object types, NCHAR columns, and LOBs.

Reference Semantics

The ANSI standard specifies value semantics. To improve performance, Oracle has extended this standard to include reference semantics.

Value semantics makes a copy of your host variables data. Reference semantics uses the addresses of your host variables, avoiding a copy. Thus, reference semantics can provide performance improvements for large amounts of data.

To help speed up fetches, use the REF keyword before the data clauses:

 EXEC SQL SET DESCRIPTOR 'out' VALUE 1 TYPE=:ENAME-TYP,
 LENGTH=:ENAME-LEN, REF DATA=:ENAME-DAT END-EXEC.
 EXEC SQL DESCRIPTOR 'out' VALUE 2 TYPE=:EMPNO-TYP,
 LENGTH=:EMPNO-LEN, REF DATA=:EMPNO-DAT END-EXEC.

Then the host variables receive the results of the retrieves. The GET statement is not needed. The retrieved data is written directly into ename_data and empno_data after each FETCH.

Use of the REF keyword is allowed only before DATA, INDICATOR and RETURNED_LENGTH items (which can vary with each row fetched) as in this fragment of code:

 01 INDI PIC S9(4) COMP.
 01 RETRN-LEN PIC S9(9) COMP.
 ...
 EXEC SQL SET DESCRIPTOR 'out' VALUE 1 TYPE=:ENAME-TYP,
 LENGTH=:ENAME-LEN, REF DATA=:ENAME-DAT,
 REF INDICATOR=:INDI, REF RETURNED_LENGTH =:RETRN-LEN END-EXEC.

After each fetch, RETRN-LEN holds the actual retrieved length of the ename field, which is useful for CHAR or VARCHAR2 data.

ENAME-LEN will not receive the returned length. It will not be changed by the FETCH statement. Use a DESCRIBE statement, followed by a GET statement to find out the maximum column width before fetching rows of data.

REF keyword is also used for other types of SQL statements than SELECT, to speed them up. Note that with reference semantics, the host variable is used rather than a value copied into the descriptor area. The host variable data at the time of execution of the SQL statement is used, not its data at the time of the SET. Here is an example:

 ...
 MOVE 1 to VAL.
 ...
 EXEC SQL SET DESCRIPTOR 'value' VALUE 1 DATA = :VAL END-EXEC.
 EXEC SQL SET DESCRIPTOR 'reference' VALUE 1 REF DATA = :VAL END-EXEC.
 MOVE 2 to VAL.
* Will use VAL = 1
 EXEC SQL EXECUTE s USING DESCRIPTOR 'value' END-EXEC.
*Will use VAL = 2
 EXEC SQL EXECUTE s USING DESCRIPTOR 'reference' END-EXEC.

See "SET DESCRIPTOR" for many more details on the differences.

Using Tables for Bulk Operations

Oracle extends the SQL92 ANSI dynamic standard by providing bulk operations. To use bulk operations, use the FOR clause with an array size to specify the amount of input data or the number of rows you want to process.

The FOR clause is used in the ALLOCATE statement to give the maximum amount of data or number of rows. For example, to use a maximum array size of 100:

 EXEC SQL FOR 100 ALLOCATE DESCRIPTOR 'out' END-EXEC.

or:

 MOVE 100 TO INT-ARR-SIZE.
 EXEC SQL FOR :INT-ARR-SIZE ALLOCATE DESCRIPTOR 'out' END-EXEC.

The FOR clause is then used in subsequent statements that access the descriptor. In an output descriptor the FETCH statement must have an array size equal to or less than the array size already used in the ALLOCATE statement:

 EXEC SQL FOR 20 FETCH c1 USING DESCRIPTOR 'out' END-EXEC.

Subsequent GET statements for the same descriptor, that get DATA, INDICATOR, or RETURNED_LENGTH values, must use the same array size as the FETCH statement.

 01 VAL-DATA OCCURS 20 TIMES PIC S9(9) COMP.
 01 VAL-INDI OCCURS 20 TIMES PIC S9(4) COMP.
...
 EXEC SQL FOR 20 GET DESCRIPTOR 'out' VALUE 1 :VAL-DATA = DATA,
 :VAL-INDI = INDICATOR
 END-EXEC.

However, GET statements that reference other items which do not vary from row to row, such as LENGTH, TYPE and COUNT, must not use the FOR clause:

 01 CNT PIC S9(9) COMP.
 01 LEN PIC S9(9) COMP.
...
 EXEC SQL GET DESCRIPTOR 'out' :CNT = COUNT END-EXEC.
 EXEC SQL GET DESCRIPTOR 'out' VALUE 1 :LEN = LENGTH END-EXEC.

The same holds true for SET statements with reference semantics. SET statements which precede the FETCH and employ reference semantics for DATA, INDICATOR, or RETURNED_LENGTH must have the same array size as the FETCH:

 ...
 01 REF-DATA OCCURS 20 TIMES PIC S9(9) COMP.
 01 REF-INDI OCCURS 20 TIMES PIC S9(4) COMP.
...
 EXEC SQL FOR 20 SET DESCRIPTOR 'out' VALUE 1 REF DATA = :REF-DATA,
 REF INDICATOR = :REF-INDI END-EXEC.

Similarly, for a descriptor that is used for input, to insert a batch of rows, for instance, the EXECUTE or OPEN statement must use an array size equal to or less than the size used in the ALLOCATE statement. The SET statement, for both value and reference semantics, that accesses DATA, INDICATOR, or RETURNED_LENGTH must use the same array size as in the EXECUTE statement.

The FOR clause is never used on the DEALLOCATE or PREPARE statements.

The following code sample illustrates a bulk operation with no output descriptor (there is no output, only input to be inserted into the table emp). The value of CNT is 2 (there are two host variables, ENAME and EMPNO, in the INSERT statement). The data table ENAME-TABLE holds three character strings: Tom, Dick and Harry, in that order. Their employee numbers are in the table EMPNO-TABLE. The indicator table ENAME-IND has a value of -1 for the second element; so a NULL will be inserted instead of Dick.

 01 DYN-STATEMENT PIC X(240) value
 "INSERT INTO EMP(ENAME, EMPNO) VALUES (:ENAME,:EMPNO)".
 01 ARRAY-SIZE PIC S9(9) COMP VALUE 3.
 01 ENAME-VALUES.
 05 FILLER PIC X(6) VALUE "Tom ".
 05 FILLER PIC X(6) VALUE "Dick ".
 05 FILLER PIC X(6) VALUE "Harry ".
 01 ENAME-TABLE REDEFINES ENAME-VALUES.
 05 ENAME PIC X(6)OCCURS 3 TIMES.
 01 ENAME-IND PIC S9(4) COMPOCCURS 3 TIMES.
 01 ENAME-LEN PIC S9(9) COMP VALUE 6.
 01 ENAME-TYP PIC S9(9) COMP VALUE 96.
 01 EMPNO-VALUES.
 05 FILLER PIC S9(9) COMP VALUE 8001.
 05 FILLER PIC S9(9) COMP VALUE 8002.
 05 FILLER PIC S9(9) COMP VALUE 8003.
 01 EMPNO-TABLE REDEFINES EMPNO-VALUES.
 05 EMPNO PIC S9(9) DISPLAY SIGN LEADING OCCURS 3 TIMES.
 01 EMPNO-LEN PIC S9(9) COMP VALUE 4.
 01 EMPNO-TYP PIC S9(9) COMP VALUE 3.
 01 CNT PIC S9(9) COMP VALUE 2.
........
 EXEC SQL FOR :ARRAY-SIZE ALLOCATE DESCRIPTOR 'in' END-EXEC.
 EXEC SQL PREPARE S FROM :DYN-STATEMENT END-EXEC.
 MOVE 0 TO ENAME-IND(1).
 MOVE -1 TO ENAME-IND(2).
 MOVE 0 TO ENAME-IND(3).
 EXEC SQL SET DESCRIPTOR 'in' COUNT = :CNT END-EXEC.
 EXEC SQL SET DESCRIPTOR 'in' VALUE 1
 TYPE = :ENAME-TYP, LENGTH =:ENAME-LEN
 END-EXEC.
 EXEC SQL FOR :ARRAY-SIZE SET DESCRIPTOR 'in' VALUE 1
 DATA = :ENAME, INDICATOR = :ENAME-IND
 END-EXEC.
 EXEC SQL SET DESCRIPTOR 'in' VALUE 2
 TYPE = :EMPNO-TYP, LENGTH =:EMPNO-LEN
 END-EXEC.
 EXEC SQL FOR :ARRAY-SIZE SET DESCRIPTOR 'in' VALUE 2
 DATA = :EMPNO
 END-EXEC.
 EXEC SQL FOR :ARRAY-SIZE EXECUTE S
 USING DESCRIPTOR 'in' END-EXEC.
 ...

The preceding code inserts these values into the table:

 EMPNO ENAME
 8001 Tom
 8002
 8003 Harry

See the discussion in "The FOR Clause" for restrictions and cautions.

ANSI Dynamic SQL Precompiler Options

The macro option MODE (See "MODE") sets ANSI compatibility characteristics and controls a number of functions. It can have the values ANSI or ORACLE. For individual functions there are micro options that override the MODE setting.

The precompiler micro option DYNAMIC specifies the descriptor behavior in dynamic SQL. The precompiler micro option TYPE_CODE specifies whether ANSI or Oracle datatype codes are to be used.

When the macro option MODE is set to ANSI, the micro option DYNAMIC becomes ANSI automatically. When MODE is set to ORACLE, DYNAMIC becomes ORACLE.

DYNAMIC and TYPE_CODE cannot be used inline.

The following table describes how the DYNAMIC setting affects various functionality:

Table 10-2 DYNAMIC Option Settings

	Function	DYNAMIC=ANSI	DYNAMIC=ORACLE
	
Descriptor creation.

	
Must use ALLOCATE statement.

	
Must use an Oracle format descriptor.

	
Descriptor destruction.

	
May use DEALLOCATE statement.

	
N/A

	
Retrieving data.

	
May use both FETCH and GET statements.

	
Must use only FETCH statement.

	
Setting input data.

	
May use DESCRIBE INPUT statement. Must use SET statement.

	
Must set descriptor values in code. Must use DESCRIBE BIND VARIABLES statement.

	
Descriptor representation.

	
Single quoted literal or host identifier which contains the descriptor name.

	
Host variable, a pointer to SQLDA.

	
Data types available.

	
All ANSI types except BIT and all Oracle types.

	
Oracle types except objects, LOBs, and cursor variables.

The micro option TYPE_CODE is set by the precompiler to the same setting as the macro option MODE. TYPE_CODE can only equal ANSI if DYNAMIC equals ANSI.

The following table shows the functionality corresponding to the TYPE_CODE settings.

Table 10-3 TYPE_CODE Option Settings

	Function	TYPE_CODE=ANSI	TYPE_CODE=ORACLE
	
Data type code numbers input and returned in dynamic SQL.

	
Use ANSI code numbers when ANSI type exists. Otherwise, use the negative of the Oracle code number.

Only valid when DYNAMIC=ANSI.

	
Use Oracle code numbers.

May be used regardless of the setting of DYNAMIC.

Full Syntax of the Dynamic SQL Statements

For more details on all these statements, see the alphabetical listing in the appendix Appendix E, "Embedded SQL Statements and Precompiler Directives".

ALLOCATE DESCRIPTOR

This statement is used only for ANSI dynamic SQL.

Purpose

Use this statement to allocate a SQL descriptor area. Supply a descriptor, the maximum number of occurrences of host bind items, and an array size.

Syntax

 EXEC SQL [FOR [:]array_size] ALLOCATE DESCRIPTOR [GLOBAL | LOCAL]
 {:desc_nam | string_literal} [WITH MAX occurrences]
 END-EXEC.

Variables

A number of variables can be used with the ALLOCATE descriptor. These include: array_size, desc_nam, and occurrences.

	array_size
	
The optional array_size clause (an Oracle extension) supports table processing. It tells the precompiler that the descriptor is usable for table processing.

 GLOBAL | LOCAL

The optional scope clause defaults to LOCAL if not entered. A local descriptor can be accessed only in the file in which it is allocated. A global descriptor can be used in any module in the compilation unit.

	desc_nam
	
The desc_nam variable defines the local descriptors that must be unique in the module. A runtime error is generated if the descriptor has been previously allocated, but not deallocated. A global descriptor must be unique for the application or a runtime error results.

	occurrences
	
The optional occurrences clause is the maximum number of host variables possible in the descriptor. The occurrences variable must be an integer constant between 0 and 64K, or an error is returned. The default is 100. A precompiler error results if it does not conform to these rules.

Examples

 EXEC SQL ALLOCATE DESCRIPTOR 'SELDES' WITH MAX 50 END-EXEC.

 EXEC SQL FOR :BATCH ALLOCATE DESCRIPTOR GLOBAL :BINDDES WITH MAX 25
 END-EXEC.

DEALLOCATE DESCRIPTOR

Purpose

To free memory, use the deallocate statement. This statement deallocates a previously allocated SQL descriptor area.

Syntax

 EXEC SQL DEALLOCATE DESCRIPTOR [GLOBAL | LOCAL]
 {:desc_nam | string_literal}
 END-EXEC.

Variables

	desc_nam
	
The only variable available with the deallocate descriptor is desc_nam (for descriptor name.) A runtime error results when a descriptor with the same name and scope has not been allocated, or has already been allocated and deallocated.

Examples

 EXEC SQL DEALLOCATE DESCRIPTOR GLOBAL 'SELDES' END-EXEC.

 EXEC SQL DEALLOCATE DESCRIPTOR :BINDDES END-EXEC.

GET DESCRIPTOR

Purpose

Use to obtain information from a SQL descriptor area.

Syntax

 EXEC SQL [FOR [:]array_size] GET DESCRIPTOR [GLOBAL | LOCAL]
 {:desc_nam | string_literal}
 {:hv0 = COUNT | VALUE item_number :hv1 = item_name1
 [{, :hvN = item_nameN }]}
 END-EXEC.

Variables

	array_size
	
The FOR array_size variable is an optional Oracle extension. FOR array_size has to be equal to the array_size field in the FETCH statement.

	desc_nam
	
The descriptor name.

	GLOBAL | LOCAL
	
GLOBAL means that the descriptor name is known to all program files. LOCAL means that it is known only in the file in which it is allocated. LOCAL is the default.

	COUNT
	
The total number of bind variables.

	VALUE item_number
	
The position of the item in the SQL statement. item_number can be a variable or a constant. If item_number is greater than COUNT, the "no data found" condition is returned. item_number must be greater than 0.

	hv1 .. hvN
	
These are host variables to which values are transferred.

	item_name1 .. item_nameN
	
The descriptor item names corresponding to the host variables. The possible ANSI descriptor item names are listed in the following table.

Table 10-4 Definitions of Descriptor Item Names

	Descriptor Item Name	Meaning
	
TYPE

	
See Table 10-1 for the ANSI type codes. See Table 11-2 for the Oracle type codes. Use the negative value of the Oracle code if the ANSI datatype is not in the table, and TYPE_CODE = ANSI.

	
LENGTH

	
Length of data in the column. In characters for NCHAR, and otherwise in bytes. Set by the DESCRIBE OUTPUT.

	
OCTET_LENGTH

	
Length of data in bytes.

	
RETURNED_LENGTH

	
The actual data length after a FETCH. It is undefined for fixed-length character types.

	
RETURNED_OCTET_LENGTH

	
Length of the returned data in bytes.

	
PRECISION

	
The number of digits.

	
SCALE

	
For exact numeric types, the number of digits to the right of the decimal point.

	
NULLABLE

	
If 1, the column can have NULL values. If 0, the column cannot have NULL values.

	
INDICATOR

	
The associated indicator value.

	
DATA

	
The data value.

	
NAME

	
Column name.

	
CHARACTER_SET_NAME

	
Column's character set.

The following table lists the Oracle extensions to the descriptor item names.

Table 10-5 Oracle Extensions to Definitions of Descriptor Item Names

	Descriptor Item Name	Meaning
	
NATIONAL_CHARACTER

	
If 2, NCHAR or NVARCHAR2. If 1, character. If 0, non-character.

	
INTERNAL_LENGTH

	
The internal length, in bytes.

Usage Notes

Use the FOR clause in GET DESCRIPTOR statements which contain DATA, INDICATOR, and RETURNED_LENGTH items only.

The internal type is provided by the DESCRIBE OUTPUT statement. For both input and output, you must set the type to be the external type of your host variable. TYPE is the Oracle or ANSI code in Table 10-1 . You will receive the negative value of the Oracle type code if the ANSI type is not in the table.

LENGTH contains the column length in characters for fields that have fixed-width National Language character sets. It is in bytes for other character columns. It is set in DESCRIBE OUTPUT.

RETURNED_LENGTH is the actual data length set by the FETCH statement. It is in bytes or characters as described for LENGTH. The fields OCTET_LENGTH and RETURNED_OCTET_LENGTH are the lengths in bytes.

NULLABLE = 1 means that the column can have NULLS; NULLABLE = 0 means it cannot.

CHARACTER_SET_NAME only has meaning for character columns. For other types, it is undefined. The DESCRIBE OUTPUT statement obtains the value.

DATA and INDICATOR are the data value and the indicator status for that column. If data = NULL, but the indicator was not requested, an error is generated at runtime ("DATA EXCEPTION, NULL VALUE, NO INDICATOR PARAMETER").

Oracle-specific Descriptor Item Names

NATIONAL_CHARACTER = 2 if the column is an NCHAR or NVARCHAR2 column. If the column is a character (but not National Character) column, this item is set to 1. If a non-character column, this item becomes 0 after DESCRIBE OUTPUT is executed.

INTERNAL_LENGTH is for compatibility with Oracle dynamic Method 4. It has the same value as the length member of the Oracle descriptor area. See "Oracle Dynamic SQL: Method 4" .

Examples

 EXEC SQL GET DESCRIPTOR :BINDDES :COUNT = COUNT END-EXEC.

 EXEC SQL GET DESCRIPTOR 'SELDES' VALUE 1 :TYP = TYPE, :LEN = LENGTH
 END-EXEC.

 EXEC SQL FOR :BATCH GET DESCRIPTOR LOCAL 'SELDES'
 VALUE :SEL-ITEM-NO :IND = INDICATOR, :DAT = DATA END-EXEC.

SET DESCRIPTOR

Purpose

Use this statement to set information in the descriptor area from host variables. The SET DESCRIPTOR statement supports only host variables for the item names.

Syntax

 EXEC SQL [FOR [:]array_size] SET DESCRIPTOR [GLOBAL | LOCAL]
 {:desc_nam | string_literal}
 {COUNT = :hv0 | VALUE item_number
 [REF] item_name1 = :hv1
 [{, [REF] item_nameN = :hvN}]}
 END-EXEC.

Variables

	array_size
	
This optional Oracle clause permits using arrays when setting the descriptor items DATA, INDICATOR, and RETURNED_LENGTH only. You cannot use other items in a SET DESCRIPTOR that contains the FOR clause. All host variable table sizes must match. Use the same array size for the SET statement that you use for the FETCH statement.

	desc_nam
	
The descriptor name. It follows the rules in ALLOCATE DESCRIPTOR.

	COUNT
	
The number of bind (input) or define (output) variables.

	VALUE item_number
	
Position in the dynamic SQL statement of a host variable.

	hv1 .. hvN
	
The host variables (not constants) that you set.

	item_name1 .. item_nameN
	
In a similar way to the GET DESCRIPTOR syntax (see "GET DESCRIPTOR"), item_name can take on these values:

Table 10-6 Descriptor Item Names for SET DESCRIPTOR

	Descriptor Item Name	Meaning
	
TYPE

	
See Table 10-1 for the ANSI type codes. See Table 11-2 for the Oracle type codes. Use the negative value of the Oracle type code if the Oracle type is not in the table, and TYPE_CODE = ANSI.

	
LENGTH

	
Maximum length of data in the column.

	
PRECISION

	
The number of digits.

	
SCALE

	
For exact numeric types, the number of bytes to the right of the decimal point.

	
INDICATOR

	
The associated indicator value. Set for reference semantics.

	
DATA

	
Value of the data to be set. Set for reference semantics.

	
CHARACTER_SET_NAME

	
Column's character set.

The Oracle extensions to the descriptor item names are listed in the following table.

Table 10-7 Extensions to Descriptor Item Names for SET DESCRIPTOR

	Descriptor Item Name	Meaning
	
RETURNED_LENGTH

	
Length returned after a FETCH. Set if reference semantics is being used.

	
NATIONAL_CHARACTER

	
Set to 2 when the input host variable is an NCHAR or NVARCHAR2 type.

Usage Notes

Reference semantics is another optional Oracle extension that speeds performance. Use the keyword REF before these descriptor items names only: DATA, INDICATOR, RETURNED_LENGTH. When you use the REF keyword you do not need to use a GET statement. Complex data types and DML returning clauses require the REF form of SET DESCRIPTOR. See "DML Returning Clause".

When REF is used the associated host variable itself is used in the SET. The GET is not needed in this case. The RETURNED_LENGTH can only be set when you use the REF semantics, not the value semantics.

Use the same array size for the SET or GET statements that you use in the FETCH.

Set the NATIONAL_CHAR field to 2 for NCHAR host input values.

When setting an object type's characteristics, you must set USER_DEFINED_TYPE_NAME and USER_DEFINED_TYPE_NAME_LENGTH.

If omitted, USER_DEFINED_TYPE_SCHEMA and USER_DEFINED_TYPE_SCHEMA_LENGTH default to the current connection.

Example

Bulk table examples are found in "Using Tables for Bulk Operations".

 ...
 O1 BINDNO PIC S9(9) COMP VALUE 2.
 01 INDI PIC S9(4) COMP VALUE -1.
 01 DATA PIC X(6) COMP VALUE "ignore".
 01 BATCH PIC S9(9) COMP VALUE 1.
 ...
 EXEC SQL FOR :batch ALLOCATE DESCRIPTOR :BINDDES END-EXEC.
 EXEC SQL SET DESCRIPTOR GLOBAL :BINDDES COUNT = 3 END-EXEC.
 EXEC SQL FOR :batch SET DESCRIPTOR :BINDDES
 VALUE :BINDNO INDICATOR = :INDI, DATA = :DATA END-EXEC.
...

Use of PREPARE

Purpose

The PREPARE statement used in this method is the same as the PREPARE statement used in the Oracle dynamic SQL methods. An Oracle extension allows a quoted string for the SQL statement, as well as a variable.

Syntax

 EXEC SQL PREPARE statement_id FROM :sql_statement END-EXEC.

Variables

	statement_id
	
This must not be declared; it is an undeclared SQL identifier associated with the prepared SQL statement.

	sql_statement
	
A character string (a constant or a variable) holding the embedded SQL statement.

Examples

 ...
 01 STATEMENT PIC X(255)
 VALUE "SELECT ENAME FROM emp WHERE deptno = :d".
 ...
 EXEC SQL PREPARE S1 FROM :STATEMENT END-EXEC.

DESCRIBE INPUT

Purpose

This statement returns information about the input bind variables.

Syntax

 EXEC SQL DESCRIBE INPUT statement_id USING [SQL] DESCRIPTOR
 [GLOBAL | LOCAL] {:desc_nam | string_literal}
 END-EXEC.

Variables

	statement_id
	
The same as used in PREPARE and DESCRIBE OUTPUT. This must not be declared; it is a SQL identifier.

	GLOBAL | LOCAL
	
GLOBAL means that the descriptor name is known to all program files. LOCAL means that it is known only in the file in which it is allocated. LOCAL is the default.

	desc_nam
	
The descriptor name.

	Usage Notes
	
Only COUNT and NAME are implemented for bind variables in this version.

Examples

 EXEC SQL DESCRIBE INPUT S1 USING SQL DESCRIPTOR GLOBAL :BINDDES END-EXEC.
 EXEC SQL DESCRIBE INPUT S2 USING DESCRIPTOR 'input' END-EXEC.

DESCRIBE OUTPUT

Purpose

The DESCRIBE INPUT statement is used to obtain information about the columns in a PREPARE statement. The ANSI syntax differs from the older syntax. The information which is stored in the SQL descriptor area is the number of values returned and associated information such as type, length, and name.

Syntax

 EXEC SQL DESCRIBE [OUTPUT] statement_id USING [SQL] DESCRIPTOR
 [GLOBAL | LOCAL] {:desc_nam | string_literal}
 END-EXEC.

Variables

	statement_id
	
The statement_id is a SQL identifier. It must not be declared.

	GLOBAL | LOCAL
	
GLOBAL means that the descriptor name is known to all program files. LOCAL means that it is known only in the file in which it is allocated. LOCAL is the default.

	desc_nam
	
The descriptor name. Either a host variable preceded by a ':', or a single-quoted string. OUTPUT is the default and can be omitted.

Examples

 ...
 01 DESNAME PIC X(10) VALUE "SELDES".
 ...
 EXEC SQL DESCRIBE S1 USING SQL DESCRIPTOR 'SELDES' END-EXEC.
* Or:
 EXEC SQL DESCRIBE OUTPUT S1 USING DESCRIPTOR :DESNAME END-EXEC.

EXECUTE

Purpose

EXECUTE matches input and output variables in a prepared SQL statement and then executes the statement. This ANSI version of EXECUTE differs from the older EXECUTE statement by allowing two descriptors in one statement to support DML RETURNING.

Syntax

 EXEC SQL [FOR [:]array_size] EXECUTE statement_id
 [USING [SQL] DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam | string_literal}]
 [INTO [SQL] DESCRIPTOR [GLOBAL | LOCAL] {:desc_nam | string_literal}]
 END-EXEC.

Variables

	array_size
	
The number of rows the statement will process.

	statement_id
	
The same as used in PREPARE. This must not be declared; it is a SQL identifier. It can be a literal.

	GLOBAL | LOCAL
	
GLOBAL means that the descriptor name is known to all program files. LOCAL means that it is known only in the file in which it is allocated. LOCAL is the default.

	desc_nam
	
The descriptor name. Either a host variable preceded by a ':', or a single-quoted string.

Usage Notes

The INTO clause implements the RETURNING clause for INSERT, UPDATE and DELETE (See "Inserting Rows" and succeeding pages).

Examples

 EXEC SQL EXECUTE S1 USING SQL DESCRIPTOR GLOBAL :BINDDES END-EXEC.

 EXEC SQL EXECUTE S2 USING DESCRIPTOR :bv1 INTO DESCRIPTOR 'SELDES'
 END-EXEC.

Use of EXECUTE IMMEDIATE

Purpose

The EXECUTE IMMEDIATE statement executes a literal or host variable character string containing the SQL statement.The ANSI SQL form of this statement is the same as in the older dynamic SQL:

Syntax

 EXEC SQL EXECUTE IMMEDIATE [:]sql_statement END-EXEC.

Variables

	
Only one variable is available with the EXECUTE IMMEDIATE statement.

	sql_statement
	
The sql_statement variable is the SQL statement or PL/SQL block in a character string. It can be a host variable or a literal.

Examples

 EXEC SQL EXECUTE IMMEDIATE :statement END-EXEC.

Use of DYNAMIC DECLARE CURSOR

Purpose

The DYNAMIC DECLARE CURSOR statement declares a cursor that is associated with a statement which is a query. This is a form of the generic Declare Cursor statement.

Syntax

 EXEC SQL DECLARE cursor_name CURSOR FOR statement_id END-EXEC.

Variables

	cursor_name
	
A cursor variable (a SQL identifier, not a host variable).

	statement_id
	
An undeclared SQL identifier (the same as the one used in the PREPARE statement).

Examples

 EXEC SQL DECLARE C1 CURSOR FOR S1 END-EXEC.

OPEN Cursor

Purpose

The OPEN statement associates input parameters with a cursor and then opens the cursor.

Syntax

 EXEC SQL [FOR [:]array_size] OPEN dyn_cursor
 [[USING [SQL] DESCRIPTOR [GLOBAL | LOCAL] desc_nam1]
 [INTO [SQL] DESCRIPTOR [GLOBAL | LOCAL] desc_nam2]]
 END-EXEC.

Variables

	array_size
	
This limit is less than or equal to number specified when the descriptor was allocated.

	GLOBAL | LOCAL
	
GLOBAL means that the descriptor name is known to all program files. LOCAL means that it is known only in the file in which it is allocated. LOCAL is the default.

	dyn_cursor
	
The cursor variable.

	desc_nam1, desc_nam2
	
The optional descriptor names.

Usage Notes

If the prepared statement associated with the cursor contains colons or question marks, a USING clause must be specified, or an error results at runtime. The INTO clause supports DML RETURNING (See "Inserting Rows" and succeeding sections on DELETE and UPDATE).

Examples

 EXEC SQL OPEN C1 USING SQL DESCRIPTOR :BINDDES END-EXEC.

 EXEC SQL FOR :LIMIT OPEN C2 USING DESCRIPTOR :B1, :B2
 INTO SQL DESCRIPTOR :SELDES
 END-EXEC.

FETCH

Purpose

The FETCH statement fetches a row for a cursor declared with a dynamic DECLARE statement.

Syntax

 EXEC SQL [FOR [:]array_size] FETCH cursor INTO [SQL] DESCRIPTOR
 [GLOBAL | LOCAL] {:desc_nam | string_literal}
 END-EXEC.

Variables

	array_size
	
The number of rows the statement will process.

	cursor
	
The dynamic cursor that was previously declared.

	GLOBAL | LOCAL
	
GLOBAL means that the descriptor name is known to all program files. LOCAL means that it is known only in the file in which it is allocated. LOCAL is the default.

	desc_nam
	
Descriptor name.

Usage Notes

The optional array_size in the FOR clause must be less than or equal to the number specified in the ALLOCATE DESCRIPTOR statement.

RETURNED_LENGTH is undefined for fixed-length character types.

Examples

 EXEC SQL FETCH FROM C1 INTO DESCRIPTOR 'SELDES' END-EXEC.

 EXEC SQL FOR :ARSZ FETCH C2 INTO DESCRIPTOR :DESC END-EXEC.

CLOSE a Dynamic Cursor

Purpose

The CLOSE statement closes a dynamic cursor. Its syntax is identical to the Oracle Method 4.

Syntax

 EXEC SQL CLOSE cursor END-EXEC.

Variables

Only one variable is available with the CLOSE statement.

	cursor
	
The cursor variable describes the previously declared dynamic cursor.

Examples

 EXEC SQL CLOSE C1 END-EXEC.

Differences From Oracle Dynamic Method 4

The ANSI dynamic SQL interface supports all the features supported by the Oracle dynamic Method 4, with these additions:

	
All datatypes, including cursor variables, and LOB types are supported by ANSI Dynamic SQL.

	
The ANSI mode uses an internal SQL descriptor area which is an expansion of the external SQLDA used in Oracle older dynamic Method 4 to store its input and output information.

	
New embedded SQL statements are introduced: ALLOCATE DESCRIPTOR, DEALLOCATE DESCRIPTOR, DESCRIBE, GET DESCRIPTOR, and SET DESCRIPTOR.

	
The DESCRIBE statement does not return the names of indicator variables in ANSI Dynamic SQL.

	
ANSI Dynamic SQL does not allow you to specify the maximum size of the returned column name or expression. The default size is set at 128.

	
The descriptor name must be either an identifier in single-quotes or a host variable preceded by a colon.

	
For output, the optional SELECT LIST FOR clause in the DESCRIBE is replaced by the optional keyword OUTPUT. The INTO clause is replaced by the USING DESCRIPTOR clause, which can contain the optional keyword SQL.

	
For input, the optional BIND VARIABLES FOR clause of the DESCRIBE can be replaced by the keyword INPUT. The INTO clause is replaced by the USING DESCRIPTOR clause, which can contain the optional keyword SQL.

	
The optional keyword SQL can come before the keyword DESCRIPTOR in the USING clause of the EXECUTE, FETCH and OPEN statements.

Restrictions

Restrictions in effect on ANSI dynamic SQL are:

	
You cannot mix the two dynamic methods in the same module.

	
The precompiler option DYNAMIC must be set to ANSI. The precompiler option TYPE_CODE can be set to ANSI only if DYNAMIC is set to ANSI.

	
The SET statement supports only host variables as item names.

Sample Programs: SAMPLE12.PCO

The following ANSI SQL dynamic Method 4 program, SAMPLE12.PCO, is found in the demo directory. SAMPLE12 mimics SQL*Plus by prompting for SQL statements to be input by the user. Read the comments at the beginning for details of the program flow.

 **
 * Sample Program 12: Dynamic SQL Method 4 using ANSI Dynamic SQL *
 * *
 * This program shows the basic steps required to use dynamic *
 * SQL Method 4 with ANSI Dynamic SQL. After logging on to *
 * ORACLE, the program prompts the user for a SQL statement, *
 * PREPAREs the statement, DECLAREs a cursor, checks for any *
 * bind variables using DESCRIBE INPUT, OPENs the cursor, and *
 * DESCRIBEs any select-list variables. If the input SQL *
 * statement is a query, the program FETCHes each row of data, *
 * then CLOSEs the cursor. *
 * use option dynamic=ansi when precompiling this sample. *
 **

 IDENTIFICATION DIVISION.
 PROGRAM-ID. ANSIDYNSQL4.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 USERNAME PIC X(20).
 01 PASSWD PIC X(20).
 01 BDSC PIC X(6) VALUE "BNDDSC".
 01 SDSC PIC X(6) VALUE "SELDSC".
 01 BNDCNT PIC S9(9) COMP.
 01 SELCNT PIC S9(9) COMP.
 01 BNDNAME PIC X(80).
 01 BNDVAL PIC X(80).
 01 SELNAME PIC X(80) VARYING.
 01 SELDATA PIC X(80).
 01 SELTYP PIC S9(4) COMP.
 01 SELPREC PIC S9(4) COMP.
 01 SELLEN PIC S9(4) COMP.
 01 SELIND PIC S9(4) COMP.
 01 DYN-STATEMENT PIC X(80).
 01 BND-INDEX PIC S9(9) COMP.
 01 SEL-INDEX PIC S9(9) COMP.
 01 VARCHAR2-TYP PIC S9(4) COMP VALUE 1.
 01 VAR-COUNT PIC 9(2).
 01 ROW-COUNT PIC 9(4).
 01 NO-MORE-DATA PIC X(1) VALUE "N".
 01 TMPLEN PIC S9(9) COMP.
 01 MAX-LENGTH PIC S9(9) COMP VALUE 80.

 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 START-MAIN.

 EXEC SQL WHENEVER SQLERROR GOTO SQL-ERROR END-EXEC.

 DISPLAY "USERNAME: " WITH NO ADVANCING.
 ACCEPT USERNAME.
 DISPLAY "PASSWORD: " WITH NO ADVANCING.
 ACCEPT PASSWD.
 EXEC SQL CONNECT :USERNAME IDENTIFIED BY :PASSWD END-EXEC.
 DISPLAY "CONNECTED TO ORACLE AS USER: ", USERNAME.

 * ALLOCATE THE BIND AND SELECT DESCRIPTORS.

 EXEC SQL ALLOCATE DESCRIPTOR :BDSC WITH MAX 20 END-EXEC.
 EXEC SQL ALLOCATE DESCRIPTOR :SDSC WITH MAX 20 END-EXEC.

 * GET A SQL STATEMENT FROM THE OPERATOR.

 DISPLAY "ENTER SQL STATEMENT WITHOUT TERMINATOR:".
 DISPLAY ">" WITH NO ADVANCING.
 ACCEPT DYN-STATEMENT.
 DISPLAY " ".

 * PREPARE THE SQL STATEMENT AND DECLARE A CURSOR.

 EXEC SQL PREPARE S1 FROM :DYN-STATEMENT END-EXEC.
 EXEC SQL DECLARE C1 CURSOR FOR S1 END-EXEC.

 * DESCRIBE BIND VARIABLES.

 EXEC SQL DESCRIBE INPUT S1 USING DESCRIPTOR :BDSC END-EXEC.

 EXEC SQL GET DESCRIPTOR :BDSC :BNDCNT = COUNT END-EXEC.

 IF BNDCNT < 0
 DISPLAY "TOO MANY BIND VARIABLES."
 GO TO END-SQL
 ELSE
 DISPLAY "NUMBER OF BIND VARIABLES: " WITH NO ADVANCING
 MOVE BNDCNT TO VAR-COUNT
 DISPLAY VAR-COUNT
 * EXEC SQL SET DESCRIPTOR :BDSC COUNT = :BNDCNT END-EXEC
 END-IF.

 IF BNDCNT = 0
 GO TO DESCRIBE-ITEMS.
 PERFORM SET-BND-DSC
 VARYING BND-INDEX FROM 1 BY 1
 UNTIL BND-INDEX > BNDCNT.

 * OPEN THE CURSOR AND DESCRIBE THE SELECT-LIST ITEMS.

 DESCRIBE-ITEMS.
 EXEC SQL OPEN C1 USING DESCRIPTOR :BDSC END-EXEC.

 EXEC SQL DESCRIBE OUTPUT S1 USING DESCRIPTOR :SDSC END-EXEC.

 EXEC SQL GET DESCRIPTOR :SDSC :SELCNT = COUNT END-EXEC.

 IF SELCNT < 0
 DISPLAY "TOO MANY SELECT-LIST ITEMS."
 GO TO END-SQL
 ELSE
 DISPLAY "NUMBER OF SELECT-LIST ITEMS: "
 WITH NO ADVANCING
 MOVE SELCNT TO VAR-COUNT
 DISPLAY VAR-COUNT
 DISPLAY " "
 * EXEC SQL SET DESCRIPTOR :SDSC COUNT = :SELCNT END-EXEC
 END-IF.

 * SET THE INPUT DESCRIPTOR

 IF SELCNT > 0
 PERFORM SET-SEL-DSC
 VARYING SEL-INDEX FROM 1 BY 1
 UNTIL SEL-INDEX > SELCNT
 DISPLAY " ".

 * FETCH EACH ROW AND PRINT EACH SELECT-LIST VALUE.

 IF SELCNT > 0
 PERFORM FETCH-ROWS UNTIL NO-MORE-DATA = "Y".

 DISPLAY " "
 DISPLAY "NUMBER OF ROWS PROCESSED: " WITH NO ADVANCING.
 MOVE SQLERRD(3) TO ROW-COUNT.
 DISPLAY ROW-COUNT.

 * CLEAN UP AND TERMINATE.

 EXEC SQL CLOSE C1 END-EXEC.
 EXEC SQL DEALLOCATE DESCRIPTOR :BDSC END-EXEC.
 EXEC SQL DEALLOCATE DESCRIPTOR :SDSC END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 DISPLAY " ".
 DISPLAY "HAVE A GOOD DAY!".
 DISPLAY " ".
 STOP RUN.

 * DISPLAY ORACLE ERROR MESSAGE AND CODE.

 SQL-ERROR.
 DISPLAY " ".
 DISPLAY SQLERRMC.
 END-SQL.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 * PERFORMED SUBROUTINES BEGIN HERE:

 * SET A BIND-LIST ELEMENT'S ATTRIBUTE
 * LET THE USER FILL IN THE BIND VARIABLES AND
 * REPLACE THE 0S DESCRIBED INTO THE DATATYPE FIELDS OF THE
 * BIND DESCRIPTOR WITH 1S TO AVOID AN "INVALID DATATYPE"
 * ORACLE ERROR
 SET-BND-DSC.
 EXEC SQL GET DESCRIPTOR :BDSC VALUE
 :BND-INDEX :BNDNAME = NAME END-EXEC.
 DISPLAY "ENTER VALUE FOR ", BNDNAME.
 ACCEPT BNDVAL.
 EXEC SQL SET DESCRIPTOR :BDSC VALUE :BND-INDEX
 TYPE = :VARCHAR2-TYP, LENGTH = :MAX-LENGTH,
 DATA = :BNDVAL END-EXEC.

 * SET A SELECT-LIST ELEMENT'S ATTRIBUTES
 SET-SEL-DSC.
 MOVE SPACES TO SELNAME-ARR.
 EXEC SQL GET DESCRIPTOR :SDSC VALUE :SEL-INDEX
 :SELNAME = NAME, :SELTYP = TYPE,
 :SELPREC = PRECISION, :SELLEN = LENGTH END-EXEC.

 * IF DATATYPE IS DATE, LENGTHEN TO 9 CHARACTERS.
 IF SELTYP = 12
 MOVE 9 TO SELLEN.

 * IF DATATYPE IS NUMBER, SET LENGTH TO PRECISION.
 MOVE 0 TO TMPLEN.
 IF SELTYP = 2 AND SELPREC = 0
 MOVE 40 TO TMPLEN.
 IF SELTYP = 2 AND SELPREC > 0
 ADD 2 TO SELPREC
 MOVE SELPREC TO TMPLEN.

 IF SELTYP = 2
 IF TMPLEN > MAX-LENGTH
 DISPLAY "COLUMN VALUE TOO LARGE FOR DATA BUFFER."
 GO TO END-SQL
 ELSE
 MOVE TMPLEN TO SELLEN.

 * COERCE DATATYPES TO VARCHAR2.
 MOVE 1 TO SELTYP.

 * DISPLAY COLUMN HEADING.
 DISPLAY " ", SELNAME-ARR(1:SELLEN) WITH NO ADVANCING.

 EXEC SQL SET DESCRIPTOR :SDSC VALUE :SEL-INDEX
 TYPE = :SELTYP, LENGTH = :SELLEN END-EXEC.

 * FETCH A ROW AND PRINT THE SELECT-LIST VALUE.

 FETCH-ROWS.
 EXEC SQL FETCH C1 INTO DESCRIPTOR :SDSC END-EXEC.
 IF SQLCODE NOT = 0
 MOVE "Y" TO NO-MORE-DATA.
 IF SQLCODE = 0
 PERFORM PRINT-COLUMN-VALUES
 VARYING SEL-INDEX FROM 1 BY 1
 UNTIL SEL-INDEX > SELCNT
 DISPLAY " ".

 * PRINT A SELECT-LIST VALUE.

 PRINT-COLUMN-VALUES.
 MOVE SPACES TO SELDATA.
 * returned length is not set for blank padded types
 IF SELTYP EQUALS 1
 EXEC SQL GET DESCRIPTOR :SDSC VALUE :SEL-INDEX
 :SELDATA = DATA, :SELIND = INDICATOR,
 :SELLEN = LENGTH END-EXEC
 ELSE
 EXEC SQL GET DESCRIPTOR :SDSC VALUE :SEL-INDEX
 :SELDATA = DATA, :SELIND = INDICATOR,
 :SELLEN = RETURNED_LENGTH END-EXEC.
 IF (SELIND = -1)
 move " NULL" to SELDATA.

 DISPLAY SELDATA(1:SELLEN), " "
 WITH NO ADVANCING.

Performance Tuning

C Performance Tuning

This appendix shows you some simple, easy-to-apply methods for improving the performance of your applications. Using these methods, you can often reduce processing time by 25 percent or more. Topics are:

	
Causes of Poor Performance

	
Improving Performance

	
Using Host Tables

	
Using PL/SQL and Java

	
Optimizing SQL Statements

	
Using Indexes

	
Taking Advantage of Row-Level Locking

	
Eliminating Unnecessary Parsing

Causes of Poor Performance

One cause of poor performance is high Oracle communication overhead. Oracle must process SQL statements one at a time. Thus, each statement results in another call to Oracle and higher overhead. In a networked environment, SQL statements must be sent over the network, adding to network traffic. Heavy network traffic can slow down your application significantly.

Another cause of poor performance is inefficient SQL statements. Because SQL is so flexible, you can get the same result using two different statements. Using one statement might be less efficient. For example, the following two SELECT statements return the same rows (the name and number of every department having at least one employee):

 EXEC SQL SELECT DNAME, DEPTNO
 FROM DEPT
 WHERE DEPTNO IN (SELECT DEPTNO FROM EMP)
 END-EXEC.

Contrasted with:

 EXEC SQL SELECT DNAME, DEPTNO
 FROM DEPT
 WHERE EXISTS
 (SELECT DEPTNO FROM EMP WHERE DEPT.DEPTNO = EMP.DEPTNO)
 END-EXEC.

The first statement is slower because it does a time-consuming full scan of the EMP table for every department number in the DEPT table. Even if the DEPTNO column in EMP is indexed, the index is not used because the subquery lacks a WHERE clause naming DEPTNO.

Another cause of poor performance is unnecessary parsing and binding. Recall that before executing a SQL statement, Oracle must parse and bind it. Parsing means examining the SQL statement to make sure it follows syntax rules and refers to valid database objects. Binding means associating host variables in the SQL statement with their addresses so that Oracle can read or write their values.

Many applications manage cursors poorly. This results in unnecessary parsing and binding, which adds noticeably to processing overhead.

Improving Performance

If you are unhappy with the performance of your precompiled programs, there are several ways you can reduce overhead.

You can greatly reduce Oracle communication overhead, especially in networked environments, by

	
Using host tables

	
Using embedded PL/SQL

You can reduce processing overhead—sometimes dramatically—by

	
Optimizing SQL statements

	
SQL Statement Caching

	
Using indexes

	
Taking advantage of row-level locking

	
Eliminating unnecessary parsing

	
Avoiding unnecessary reparsing

The following sections look at each of these ways to cut overhead.

Using Host Tables

Host tables can boost performance because they let you manipulate an entire collection of data with a single SQL statement. For example, suppose you want to insert salaries for 300 employees into the EMP table. Without tables your program must do 300 individual inserts—one for each employee. With arrays, only one INSERT is necessary. Consider the following statement:

 EXEC SQL INSERT INTO EMP (SAL) VALUES (:SALARY) END-EXEC.

If SALARY is a simple host variable, Oracle executes the INSERT statement once, inserting a single row into the EMP table. In that row, the SAL column has the value of SALARY. To insert 300 rows this way, you must execute the INSERT statement 300 times.

However, if SALARY is a host table of size 300, Oracle inserts all 300 rows into the EMP table at once. In each row, the SAL column has the value of an element in the SALARY table.

For more information, see Chapter 7, "Host Tables"

Using PL/SQL and Java

As Figure C-1 shows, if your application is database-intensive, you can use control structures to group SQL statements in a PL/SQL block, then send the entire block to Oracle. This can drastically reduce communication between your application and the database.

Also, you can use PL/SQL and Java subprograms to reduce calls from your application to the database. For example, to execute ten individual SQL statements, ten calls are required, but to execute a subprogram containing ten SQL statements, only one call is required.

Unlike anonymous blocks, PL/SQL and Java subprograms can be compiled separately and stored in a database. When called, they are passed to the PL/SQL engine immediately. Moreover, only one copy of a subprogram need be loaded into memory for execution by multiple users.

Figure C-1 PL/SQL Boosts Performance

[image: PL/SQL Boosts Performance]

Optimizing SQL Statements

For every SQL statement, the optimizer generates an execution plan, which is a series of steps that Oracle takes to execute the statement. These steps are determined by rules given in the Oracle Database Advanced Application Developer's Guide. Following these rules will help you write optimal SQL statements.

Optimizer Hints

For every SQL statement, the optimizer generates an execution plan, which is a series of steps that Oracle takes to execute the statement. In some cases, you can suggest the way to optimize a SQL statement. These suggestions, called hints, let you influence decisions made by the optimizer.

Hints are not directives; they merely help the optimizer do its job. Some hints limit the scope of information used to optimize a SQL statement, while others suggest overall strategies. You can use hints to specify the:

	
Optimization approach for a SQL statement

	
Access path for each referenced table

	
Join order for a join

	
Method used to join tables

Giving Hints

You give hints to the optimizer by placing them in a C-style Comment immediately after the verb in a SELECT, UPDATE, or DELETE statement. You can choose rule-based or cost-based optimization. With cost-based optimization, hints help maximize throughput or response time. In the following example, the ALL_ROWS hint helps maximize query throughput:

 EXEC SQL SELECT /*+ ALL_ROWS (cost-based) */ EMPNO, ENAME, SAL
 INTO :EMP-NUMBER, :EMP-NAME, :SALARY
 FROM EMP
 WHERE DEPTNO = :DEPT-NUMBER
 END-EXEC.

The plus sign (+), which must immediately follow the Comment opener, indicates that the Comment contains one or more hints. Notice that the Comment can contain remarks as well as hints.

For more information about optimizer hints, see the Oracle Database Advanced Application Developer's Guide

Trace Facility

You can use the SQL trace facility and the EXPLAIN PLAN statement to identify SQL statements that might be slowing down your application. The trace facility generates statistics for every SQL statement executed by Oracle. From these statistics, you can determine which statements take the most time to process. You can then concentrate your tuning efforts on those statements.

The EXPLAIN PLAN statement shows the execution plan for each SQL statement in your application. You can use the execution plan to identify inefficient SQL statements.

See Also: Oracle Database Advanced Application Developer's Guide for instructions on using trace tools and analyzing their output.

SQL Statement Caching

Performance improvement is achieved in precompiler applications using statement caching. Any program using dynamic SQL statements, where the cursors have to be used with reparsing of the statements will have performance gain with statement caching. With this new feature, the overall execution time will be decreased.

The stmt_cache option can be set to hold the anticipated number of distinct dynamic SQL statements in the application. The customer can set the stmt_cache size with the new precompiler command line option. An optimal value of stmt_cache can not be set, as it depends on the input program behavior.

The performance can be measured with the change in the execution time (with and without statement caching).

Using Indexes

Using rowids, an index associates each distinct value in a table column with the rows containing that value. An index is created with the CREATE INDEX statement. For details, see the Oracle Database SQL Language Reference.

You can use indexes to boost the performance of queries that return less than 15% of the rows in a table. A query that returns 15% or more of the rows in a table is executed faster by a full scan, that is, by reading all rows sequentially. Any query that names an indexed column in its WHERE clause can use the index. For guidelines that help you choose which columns to index, see the Oracle Database Advanced Application Developer's Guide.

Taking Advantage of Row-Level Locking

By default, Oracle locks data at the row level rather than the table level. Row-level locking allows multiple users to access different rows in the same table concurrently. The resulting performance gain is significant.

You can specify table-level locking, but it lessens the effectiveness of the transaction processing option. For more information about table locking, see "Using the LOCK TABLE Statement" on "Using the LOCK TABLE Statement".

Applications that do online transaction processing benefit most from row-level locking. If your application relies on table-level locking, modify it to take advantage of row-level locking. In general, avoid explicit table-level locking.

Eliminating Unnecessary Parsing

Eliminating unnecessary parsing requires correct handling of cursors and selective use of the following cursor management options:

	
MAXOPENCURSORS

	
HOLD_CURSOR

	
RELEASE_CURSOR

These options affect implicit and explicit cursors, the cursor cache, and private SQL areas.

Note: You can use the ORACA to get cursor cache statistics. See "Using the Oracle Communications Area".

Handling Explicit Cursors

Recall that there are two types of cursors: implicit and explicit (see "Errors and Warnings"). Oracle implicitly declares a cursor for all data definition and data manipulation statements. However, for queries that return more than one row, you should explicitly declare a cursor and fetch in batches rather than select into a host table. You use the DECLARE CURSOR statement to declare an explicit cursor. How you handle the opening and closing of explicit cursors affects performance.

If you need to reevaluate the active set, simply reopen the cursor. The OPEN statement will use any new host-variable values. You can save processing time if you do not close the cursor first.

Only CLOSE a cursor when you want to free the resources (memory and locks) acquired by OPENing the cursor. For example, your program should close all cursors before exiting.

Note: To make performance tuning easier, the precompiler lets you reopen an already open cursor. However, this is an Oracle extension to the ANSI/ISO embedded SQL standard. So, when MODE=ANSI, you must close a cursor before reopening it.

Cursor Control

In general, there are three factors that affect the control of an explicitly declared cursor:

	
Using the DECLARE, OPEN, FETCH, and CLOSE statements.

	
Using the PREPARE, DECLARE, OPEN, FETCH, and CLOSE statements

	
COMMIT closes the cursor when MODE=ANSI

With the first way, beware of unnecessary parsing. The OPEN statement does the parsing, but only if the parsed statement is unavailable because the cursor was closed or never opened. Your program should declare the cursor, re-open it every time the value of a host variable changes, and close it only when the SQL statement is no longer needed.

With the second way, which is used in dynamic SQL Methods 3 and 4, the PREPARE statement does the parsing, and the parsed statement is available until a CLOSE statement is executed. Your program should prepare the SQL statement and declare the cursor, re-open the cursor every time the value of a host variable changes, re-prepare the SQL statement and re-open the cursor if the SQL statement changes, and close the cursor only when the SQL statement is no longer needed.

When possible, avoid placing OPEN and CLOSE statements in a loop; this is a potential cause of unnecessary re-parsing of the SQL statement. In the next example, both the OPEN and CLOSE statements are inside the outer loop. When MODE=ANSI, the CLOSE statement must be positioned as shown, because ANSI requires a cursor to be closed before being re-opened.

 EXEC SQL DECLARE emp_cursor CURSOR FOR
 SELECT ENAME, SAL FROM EMP
 WHERE SAL > :SALARY
 AND SAL <= :SALARY + 1000
 END-EXEC.
 MOVE 0 TO SALARY.
 TOP.
 EXEC SQL OPEN emp_cursor END-EXEC.
 LOOP.
 EXEC SQL FETCH emp_cursor INTO
 ...
 IF SQLCODE = 0
 GO TO LOOP
 ELSE
 ADD 1000 TO SALARY
 END-IF.
 EXEC SQL CLOSE emp_cursor END-EXEC.
 IF SALARY < 5000
 GO TO TOP.

With MODE=ORACLE, however, by placing the CLOSE statement outside the outer loop, you can avoid possible re-parsing at each iteration of the OPEN statement.

 TOP.
 EXEC SQL OPEN emp_cursor END-EXEC.
 LOOP.
 EXEC SQL FETCH emp_cursor INTO
 ...
 IF SQLCODE = 0
 GO TO LOOP
 ELSE
 ADD 1000 TO SALARY
 END-IF.
 IF SALARY < 5000
 GO TO TOP.
 EXEC SQL CLOSE emp_cursor END-EXEC.

Using the Cursor Management Options

A SQL statement need be parsed only once unless you change its makeup. For example, you change the makeup of a query by adding a column to its select list or WHERE clause. The HOLD_CURSOR, RELEASE_CURSOR, and MAXOPENCURSORS options give you some control over how Oracle manages the parsing and re-parsing of SQL statements. Declaring an explicit cursor gives you maximum control over parsing.

Private SQL Areas and Cursor Cache

When any statement is executed, its associated cursor is linked to an entry in the cursor cache. The cursor cache is a continuously updated area of memory used for cursor management. The cursor cache entry is in turn linked to a private SQL area.

The private SQL area, a work area created dynamically at run time by Oracle, contains the parsed SQL statement, the addresses of host variables, and other information needed to process the statement. Dynamic Method 3 lets you name a SQL statement, access the information in its private SQL area, and, to some extent, control its processing.

Figure C-2 represents the cursor cache after your program has done an insert and a delete.

Figure C-2 Cursors Linked through the Cursor Cache

[image: Cursor Cache]

Resource Use

The maximum number of open cursors for each user session is set by the initialization parameter OPEN_CURSORS.

MAXOPENCURSORS specifies the initial size of the cursor cache. If a new cursor is needed and there are no free cache entries, Oracle tries to reuse an entry. Its success depends on the values of HOLD_CURSOR and RELEASE_CURSOR and, for explicit cursors, on the status of the cursor itself.

If the value of MAXOPENCURSORS is less than the number of statements that need to be cached during the execution of the program, Oracle will search for cursor cache entries to reuse once MAXOPENCURSORS cache entries have been exhausted. For example, suppose the cache entry E(1) for an INSERT statement is marked as reusable, and the number of cache entries already equals MAXOPENCURSORS. If the program executes a new statement, cache entry E(1) and its private SQL area might be reassigned to the new statement. To reexecute the INSERT statement, Oracle would have to re-parse it and reassign another cache entry.

Oracle allocates an additional cache entry if it cannot find one to reuse. For example, if MAXOPENCURSORS=8 and all eight entries are active, a ninth is created. If necessary, Oracle keeps allocating additional cache entries until it runs out of memory or reaches the limit set by OPEN_CURSORS. This dynamic allocation adds to processing overhead.

Thus, specifying a low value for MAXOPENCURSORS with HOLD_CURSOR=NO (the default) saves memory but causes potentially expensive dynamic allocations and de-allocations of new cache entries. Specifying a high value for MAXOPENCURSORS assures speedy execution but uses more memory.

Infrequent Execution

Sometimes, the link between an infrequently executed SQL statement and its private SQL area should be temporary.

When HOLD_CURSOR=NO (the default), after Oracle executes the SQL statement and the cursor is closed, the precompiler marks the link between the cursor and cursor cache as reusable. The link is reused as soon as the cursor cache entry to which it points is needed for another SQL statement. This frees memory allocated to the private SQL area and releases parse locks. However, because a prepared cursor must remain active, its link is maintained even when HOLD_CURSOR=NO.

When RELEASE_CURSOR=YES, after Oracle executes the SQL statement and the cursor is closed, the private SQL area is automatically freed and the parsed statement lost. This might be necessary if, for example, you wish to conserve memory.

When RELEASE_CURSOR=YES, the link between the private SQL area and the cache entry is immediately removed and the private SQL area freed. Even if you tried to specify HOLD_CURSOR=YES, Oracle must still reallocate memory for a private SQL area and re-parse the SQL statement before executing it. Therefore, specifying RELEASE_CURSOR=YES overrides HOLD_CURSOR=YES.

Frequent Execution

The links between a frequently executed SQL statement and its private SQL area should be maintained, because the private SQL area contains all the information needed to execute the statement. Maintaining access to this information makes subsequent execution of the statement much faster.

When HOLD_CURSOR=YES, the link between the cursor and cursor cache is maintained after Oracle executes the SQL statement. Thus, the parsed statement and allocated memory remain available. This is useful for SQL statements that you want to keep active because it avoids unnecessary re-parsing.

Effect on the Shared SQL Area

Oracle9i caches the parsed representations of SQL statements and PL/SQL in its Shared SQL Cache. These representations are maintained until aged out by the need for the space to be used for other statements. For more information, see the Oracle Database Concepts manual. The behavior of the Oracle server in this respect is unaffected by the Precompiler's cursor management settings and so can have the following effects:

	
When RELEASE_CURSOR=YES and a statement is re executed, a request will be sent to the server to parse the statement but a full parse may not be necessary since the statement may still be cached.

	
When using HOLD_CURSOR=YES no locks are held on any objects referred to in the statement and so a redefinition of one of the objects in the statement will force the cached statement to become invalid and for the server to automatically reparse the statement. This may cause unexpected results.

	
Nonetheless, when RELEASE_CURSOR=YES, the re-parse might not require extra processing because Oracle caches the parsed representations of SQL statements and PL/SQL blocks in its Shared SQL Cache. Even if its cursor is closed, the parsed representation remains available until it is aged out of the cache.

Embedded PL/SQL Considerations

For the purposes of cursor management, an embedded PL/SQL block is treated just like a SQL statement. When an embedded PL/SQL block is executed, a parent cursor is associated with the entire block and a link is created between the cache entry and the private SQL area in the PGA for the embedded PL/SQL block. Be aware that each SQL statement inside the embedded block also requires a private SQL area in the PGA. These SQL statements use child cursors that PL/SQL manages itself. The disposition of the child cursors is determined through its associated parent cursor. That is, the private SQL areas used by the child cursors are freed after the private SQL area for its parent cursor is freed.

Note:

Using the defaults, HOLD_CURSOR=YES and RELEASE_CURSOR=NO, after executing a SQL statement with an earlier Oracle version, its parsed representation remains available. With Oracle9i, under similar conditions, the parsed representation remains available only until it is aged out of the Shared SQL Cache. Normally, this is not a problem, but you might get unexpected results if the definition of a referenced object changes before the SQL statement is re-parsed.

Parameter Interactions

Table C-1 shows how HOLD_CURSOR and RELEASE_CURSOR interact. Notice that HOLD_CURSOR=NO overrides RELEASE_CURSOR=NO and that RELEASE_CURSOR=YES overrides HOLD_CURSOR=YES.

Table C-1 HOLD_CURSOR and RELEASE _CURSOR Interactions

	HOLD_CURSOR	RELEASE_CURSOR	Links are...
	
NO

	
NO

	
marked as reusable

	
YES

	
NO

	
maintained

	
NO

	
YES

	
removed immediately

	
YES

	
YES

	
removed immediately

Avoiding Unnecessary Reparsing

When an embedded SQL statement is executed in a loop, it gets parsed only once. However, the execute phase of the SQL statement can result in errors, and statements are reparsed, with the following exceptions:

	
ORA-1403 (not found)

	
ORA-1405 (truncation)

	
ORA-1406 (null value)

By correcting the errors, you can eliminate this unnecessary reparsing.

Syntactic and Semantic Checking

D Syntactic and Semantic Checking

By checking the syntax and semantics of embedded SQL statements and PL/SQL blocks, the Oracle Precompilers help you quickly find and fix coding mistakes. This appendix shows you how to use the SQLCHECK option to control the type and extent of checking.

Topics are:

	
Syntactic and Semantic Checking Basics

	
Controlling the Type and Extent of Checking

	
Specifying SQLCHECK=SEMANTICS

Syntactic and Semantic Checking Basics

Rules of syntax specify how language elements are sequenced to form valid statements. Thus, syntactic checking verifies that keywords, object names, operators, delimiters, and so on are placed correctly in your SQL statement. It also applies to procedures and functions called from PL/SQL blocks. For example, the following embedded SQL statements contain syntax errors:

* -- misspelled keyword WHERE
 EXEC SQL DELETE FROM EMP WERE DEPTNO = 20 END-EXEC.
* -- missing parentheses around column names COMM and SAL
 EXEC SQL
 INSERT INTO EMP COMM, SAL VALUES (NULL, 1500)
 END-EXEC.

Rules of semantics specify how valid external references are made. Thus, semantic checking verifies that references to database objects and host variables are valid and that host-variable datatypes are correct. For example, the following embedded SQL statements contain semantic errors:

* -- nonexistent table, EMPP
 EXEC SQL DELETE FROM EMPP WHERE DEPTNO = 20 END-EXEC.
* -- undeclared host variable, EMP-NAME
 EXEC SQL SELECT * FROM EMP WHERE ENAME = :EMP-NAME END-EXEC.

The rules of SQL syntax and semantics are defined in the Oracle Database SQL Language Reference.

Controlling the Type and Extent of Checking

You control the type and extent of checking by specifying the SQLCHECK option on the command line. With SQLCHECK, the type of checking can be syntactic, or both syntactic and semantic. The extent of checking can include data manipulation statements and PL/SQL blocks. However, SQLCHECK cannot check dynamic SQL statements because they are not defined fully until run time.

You can specify the following values for SQLCHECK:

	
SEMANTICS | FULL

	
SYNTAX | LIMITED

The values SEMANTICS and FULL are equivalent, as are the values SYNTAX and LIMITED. The default value is SYNTAX.

Specifying SQLCHECK=SEMANTICS

When SQLCHECK=SEMANTICS, the precompiler checks the syntax and semantics of

	
Data manipulation statements such as INSERT and UPDATE.

	
PL/SQL blocks.

However, only syntactic checking is done on data manipulation statements that use the AT db_name clause.

The precompiler gets the information for a semantic check from embedded DECLARE TABLE statements or, if you specify the option USERID, by connecting to the database and accessing the data dictionary.

If you connect to the database but some table information cannot be found in the data dictionary, you must use DECLARE TABLE statements to supply the missing information. A DECLARE TABLE definition overrides a data dictionary definition if they conflict.

When checking data manipulation statements, the precompiler uses the Oracle9i set of syntax rules found in the Oracle Database SQL Language Reference but uses a stricter set of semantic rules. As a result, existing applications written for earlier versions of Oracle might not precompile successfully when SQLCHECK=SEMANTICS.

Specify SQLCHECK=SEMANTICS when precompiling new programs. If you embed PL/SQL blocks in a host program, you must specify SQLCHECK=SEMANTICS.

Enabling a Semantic Check

When SQLCHECK=SEMANTICS, the precompiler can get information needed for a semantic check in either of the following ways:

	
Connect to Oracle and access the data dictionary

	
Use embedded DECLARE TABLE statements

Connecting to Oracle

To do a semantic check, the precompiler can connect to the database that maintains definitions of tables and views referenced in your host program. After connecting, the precompiler accesses the data dictionary for needed information. The data dictionary stores table and column names, table and column constraints, column lengths, column datatypes, and so on.

If some of the needed information cannot be found in the data dictionary (because your program refers to a table not yet created, for example), you must supply the missing information using the DECLARE TABLE statement.

To connect to the database, specify the option USERID on the command line, using the syntax

USERID=username/password

where username and password comprise a valid Oracle9i userid. If you omit the password, you are prompted for it. If, instead of a username and password, you specify

USERID=/

the precompiler tries to connect to the database automatically with the userid

<prefix><username>

where prefix is the value of the initialization parameter OS_AUTHENT_PREFIX (the default value is OPS$) and username is your operating system user or task name.

If you try connecting, but cannot (for example, if the database is unavailable), the precompiler stops processing and issues an error message. If you omit the option USERID, the precompiler must get needed information from embedded DECLARE TABLE statements.

Using DECLARE TABLE

The precompiler can do a semantic check without connecting to the database as long as your program does not call any stored procedures or functions from an anonymous PL/SQL block. To do the check, the precompiler must get information about tables and views from embedded DECLARE TABLE directives. Thus, every table referenced in a data manipulation statement or PL/SQL block must be defined in a DECLARE TABLE statement.

The syntax of the DECLARE TABLE statement is

 EXEC SQL DECLARE table_name TABLE
 (col_name col_datatype [DEFAULT expr] [NULL|NOT NULL], ...)
 END-EXEC.

where expr is any expression that can be used as a default column value in the CREATE TABLE statement. col_datatype is an Oracle column declaration. Only integers can be used, not expressions. See "DECLARE TABLE (Oracle Embedded SQL Directive)".

If you use DECLARE TABLE to define a database table that already exists, the precompiler uses your definition, ignoring the one in the data dictionary.

Embedded SQL Statements and Precompiler Directives

E Embedded SQL Statements and Precompiler Directives

This appendix describes of both SQL92 embedded SQL statements and directives as well as the Oracle9i embedded SQL extensions. These statements and directives are prefaced in your source code with the keywords, EXEC SQL.

Note: Only statements which differ in syntax from non-embedded SQL are described in this appendix. For details of the non-embedded SQL statements, see the Oracle Database SQL Language Reference.

This appendix contains the following sections:

	
Summary of Precompiler Directives and Embedded SQL Statements

	
About the Statement Descriptions

	
How to Read Syntax Diagrams

	
ALLOCATE (Executable Embedded SQL Extension)

	
ALLOCATE DESCRIPTOR (Executable Embedded SQL)

	
CALL (Executable Embedded SQL)

	
CLOSE (Executable Embedded SQL)

	
COMMIT (Executable Embedded SQL)

	
CONNECT (Executable Embedded SQL Extension)

	
CONTEXT ALLOCATE (Executable Embedded SQL Extension)

	
CONTEXT FREE (Executable Embedded SQL Extension)

	
CONTEXT USE (Oracle Embedded SQL Directive)

	
DECLARE CURSOR (Embedded SQL Directive)

	
DECLARE DATABASE (Oracle Embedded SQL Directive)

	
DECLARE STATEMENT (Embedded SQL Directive)

	
DECLARE TABLE (Oracle Embedded SQL Directive)

	
DELETE (Executable Embedded SQL)

	
DESCRIBE (Executable Embedded SQL)

	
DESCRIBE DESCRIPTOR (Executable Embedded SQL)

	
ENABLE THREADS (Executable Embedded SQL Extension)

	
EXECUTE ... END-EXEC (Executable Embedded SQL Extension)

	
EXECUTE (Executable Embedded SQL)

	
EXECUTE DESCRIPTOR (Executable Embedded SQL

	
EXECUTE IMMEDIATE (Executable Embedded SQL)

	
FETCH (Executable Embedded SQL)

	
FETCH DESCRIPTOR (Executable Embedded SQL)

	
FREE (Executable Embedded SQL Extension)

	
GET DESCRIPTOR (Executable Embedded SQL)

	
INSERT (Executable Embedded SQL)

	
LOB APPEND (Executable Embedded SQL Extension)

	
LOB ASSIGN (Executable Embedded SQL Extension)

	
LOB CLOSE (Executable Embedded SQL Extension)

	
LOB COPY (Executable Embedded SQL Extension)

	
LOB CREATE TEMPORARY (Executable Embedded SQL Extension)

	
LOB DESCRIBE (Executable Embedded SQL Extension)

	
LOB DISABLE BUFFERING (Executable Embedded SQL Extension)

	
LOB ENABLE BUFFERING (Executable Embedded SQL Extension)

	
LOB ERASE (Executable Embedded SQL Extension)

	
LOB FILE CLOSE ALL (Executable Embedded SQL Extension)

	
LOB FILE SET (Executable Embedded SQL Extension)

	
LOB FLUSH BUFFER (Executable Embedded SQL Extension)

	
LOB FREE TEMPORARY (Executable Embedded SQL Extension)

	
LOB LOAD (Executable Embedded SQL Extension)

	
LOB OPEN (Executable Embedded SQL Extension)

	
LOB READ (Executable Embedded SQL Extension)

	
LOB TRIM (Executable Embedded SQL Extension)

	
LOB WRITE (Executable Embedded SQL Extension)

	
OPEN (Executable Embedded SQL)

	
OPEN DESCRIPTOR (Executable Embedded SQL)

	
PREPARE (Executable Embedded SQL)

	
ROLLBACK (Executable Embedded SQL)

	
SAVEPOINT (Executable Embedded SQL)

	
SET DESCRIPTOR (Executable Embedded SQL)

	
SELECT (Executable Embedded SQL)

	
UPDATE (Executable Embedded SQL)

	
VAR (Oracle Embedded SQL Directive)

	
WHENEVER (Embedded SQL Directive)

Summary of Precompiler Directives and Embedded SQL Statements

Embedded SQL statements place DDL, DML, and Transaction Control statements within a procedural language program. Embedded SQL is supported by the Oracle Precompilers. Table E-2 provides a functional summary of the embedded SQL statements and directives.

The Source/Type column in Table E-2 is displayed in the format source/type where:

Table E-1 Source/Type Column Meaning

	SQL Statements	Directives
	
source

	
Is either SQL92 standard SQL (S) or an Oracle extension (O).

	
type

	
Is either an executable (E) statement or a directive (D).

Table E-2 Precompiler Directives and Embedded SQL Statements and Clauses

	EXEC SQL Statement	Source/Type	Purpose
	
ALLOCATE

	
O/E

	
To allocate memory for a cursor variable, LOB locator or ROWID.

	
ALLOCATE DESCRIPTOR

	
S/E

	
To allocate a descriptor for ANSI dynamic SQL.

	
CALL

	
S/E

	
Call a stored procedure.

	
CLOSE

	
S/E

	
To disable a cursor.

	
COMMIT

	
S/E

	
To make all database changes permanent.

	
CONNECT

	
O/E

	
To log on to a database instance.

	
CONTEXT ALLOCATE

	
O/E

	
To allocate memory for a SQLLIB runtime context.

	
CONTEXT FREE

	
O/E

	
To free memory for a SQLLIB runtime context.

	
CONTEXT USE

	
O/E

	
To specify a SQLLIB runtime context.

	
DEALLOCATE DESCRIPTOR

	
S/E

	
To deallocate a descriptor area to free memory.

	
DECLARE CURSOR

	
S/D

	
To declare a cursor, associating it with a query.

	
DECLARE DATABASE

	
O/D

	
To declare an identifier for a nondefault database to be accessed in subsequent embedded SQL statements.

	
DECLARE STATEMENT

	
S/D

	
To assign a SQL variable name to a SQL statement.

	
DECLARE TABLE

	
O/D

	
To declare the table structure for semantic checking of embedded SQL statements by the Oracle Precompiler.

	
DELETE

	
S/E

	
To remove rows from a table or from a view's base table.

	
DESCRIBE

	
S/E

	
To initialize a descriptor, a structure holding host variable descriptions.

	
DESCRIBE DECRIPTOR

	
S/E

	
To obtain information about an ANSI SQL statement, and store it in a descriptor.

	
ENABLE THREADS

	
O/E

	
To initialize a process that supports multiple threads.

	
EXECUTE...END-EXEC

	
O/E

	
To execute an anonymous PL/SQL block.

	
EXECUTE

	
S/E

	
To execute a prepared dynamic SQL statement.

	
EXECUTE DESCRIPTOR

	
S/E

	
To execute a prepared statement using ANSI Dynamic SQL.

	
EXECUTE IMMEDIATE

	
S/E

	
To prepare and execute a SQL statement with no host variables.

	
FETCH

	
S/E

	
To retrieve rows selected by a query.

	
FETCH DESCRIPTOR

	
S/E

	
To retrieve rows selected by a query using ANSI Dynamic SQL.

	
FREE

	
S/E

	
To free memory used by a cursor, LOB locator, or ROWID.

	
GET DESCRIPTOR

	
S/E

	
To move information from an ANSI SQL descriptor area into host variables.

	
INSERT

	
S/E

	
To add rows to a table or to a view's base table.

	
LOB APPEND

	
O/E

	
To append a LOB to the end of another lOB.

	
LOB ASSIGN

	
O/E

	
To assign a LOB or BFILE locator to another locator.

	
LOB CLOSE

	
O/E

	
To close an open LOB or BFILE.

	
LOB COPY

	
O/E

	
To copy all or part of a LOB value into another LOB.

	
LOB CREATE TEMPORARY

	
O/E

	
To create a temporary LOB.

	
LOB DESCRIBE

	
O/E

	
To retrieve attributes from a LOB.

	
LOB DISABLE BUFFERING

	
O/E

	
To disable LOB buffering.

	
LOB ENABLE BUFFERING

	
O/E

	
To enable LOB buffering.

	
LOB ERASE

	
O/E

	
To erase a given amount of LOB data starting from a given offset.

	
LOB FILE CLOSE ALL

	
O/E

	
To close all open BFILE.

	
LOB FILE SET

	
O/E

	
To set DIRECTORY and FILENAME in a BFILE locator.

	
LOB FLUSH BUFFER

	
O/E

	
To write the LOB buffers to the database server.

	
LOB FREE TEMPORARY

	
O/E

	
To free temporary space for the LOB locator.

	
LOB LOAD

	
O/E

	
To copy all or part of a BFILE into an internal LOB.

	
LOB OPEN

	
O/E

	
To open a LOB or BFILE to read or read/write access.

	
LOB READ

	
O/E

	
To read all or part of a LOB or BFILE into a buffer.

	
LOB TRIM

	
O/E

	
To truncate a lob value.

	
LOB WRITE

	
O/E

	
To write the contents of a buffer to a LOB.

	
OPEN

	
S/E

	
To execute the query associated with a cursor.

	
OPEN DESCRIPTOR

	
S/E

	
To execute the query associated with a cursor in ANSI Dynamic SQL.

	
PREPARE

	
S/E

	
To parse a dynamic SQL statement.

	
ROLLBACK

	
S/E

	
To end the current transaction and discard all changes.

	
SAVEPOINT

	
S/E

	
To identify a point in a transaction to which you can later roll back.

	
SELECT

	
S/E

	
To retrieve data from one or more tables, views, or snapshots, assigning the selected values to host variables.

	
SET DESCRIPTOR

	
S/E

	
To set information in the ANSI SQL descriptor area from host variables.

	
UPDATE

	
S/E

	
To change existing values in a table or in a view's base table.

	
VAR

	
O/D

	
To override the default datatype and assign a specific Oracle9i external datatype to a host variable.

	
WHENEVER

	
S/D

	
To specify handling for error and warning conditions.

About the Statement Descriptions

The directives, and statements appear alphabetically. The description of each contains the following sections:

	Directives	Description
	Purpose	Describes the basic uses of the statement.
	Prerequisites	Lists privileges you must have and steps that you must take before using the statement. Unless otherwise noted, most statements also require that the database be open by your instance.
	Syntax	Shows the syntax diagram with the keywords and parameters of the statement.
	Keywords and Parameters	Describes the purpose of each keyword and parameter.
	Usage Notes	Discusses how and when to use the statement.
	Prerequisites	Lists privileges you must have and steps that you must take before using the statement. Unless otherwise noted, most statements also require that the database be open by your instance.
	Syntax	Shows the syntax diagram with the keywords and parameters of the statement.

How to Read Syntax Diagrams

Syntax diagrams are used to illustrate embedded SQL syntax. They are drawings that depict valid syntax.

Trace each diagram from left to right, in the direction shown by the arrows.

Statements keywords appear in UPPER CASE inside rectangles. Type them exactly as shown in the rectangles. Parameters appear in lower case inside ovals. Variables are used for the parameters. Operators, delimiters, and terminators appear inside circles.

If the syntax diagram has more than one path, you can choose any path to travel.

If you have the choice of more than one keyword, operator, or parameter, your options appear in a vertical list. In the following example, you can travel down the vertical line as far as you like, then continue along any horizontal line:

[image: Syntax Diagrams]

According to the diagram, all of the following statements are valid:

EXEC SQL WHENEVER NOT FOUND ...
EXEC SQL WHENEVER SQLERROR ...
EXEC SQL WHENEVER SQLWARNING ...

Statement Terminator

In all Pro*COBOL EXEC SQL diagrams, each statement is understood to end with the token END-EXEC.

Required Keywords and Parameters

Required keywords and parameters can appear singly or in a vertical list of alternatives. Single required keywords and parameters appear on the main path, that is, on the horizontal line you are currently traveling. In the following example, cursor is a required parameter:

[image: Required Keywords and Parameters]

If there is a cursor named EMPCURSOR, then, according to the diagram, the following statement is valid:

EXEC SQL CLOSE EMPCURSOR END-EXEC.

If any of the keywords or parameters in a vertical list appears on the main path, one of them is required. That is, you must choose one of the keywords or parameters, but not necessarily the one that appears on the main path. In the following example, you must choose one of the four actions:

[image: Syntax Diagram]

Optional Keywords and Parameters

If keywords and parameters appear in a vertical list preceding the main path, they are optional. In the following example, instead of traveling down a vertical line, you can continue along the main path:

[image: Optional Keywords and Parameters]

If there is a database named oracle2, then, according to the diagram, all of the following statements are valid:

 EXEC SQL ROLLBACK END-EXEC.
 EXEC SQL ROLLBACK WORK END-EXEC.
 EXEC SQL AT ORACLE2 ROLLBACK END-EXEC.

Syntax Loops

Loops let you repeat the syntax within them as many times as you like. In the following example, column_name is inside a loop. So, after choosing one column name, you can go back repeatedly to choose another.

[image: Syntax Loops]

If DEBIT, CREDIT, and BALANCE are column names, then, according to the diagram, all of the following statements are valid:

EXEC SQL SELECT DEBIT INTO ...
EXEC SQL SELECT CREDIT, BALANCE INTO ...
EXEC SQL SELECT DEBIT, CREDIT, BALANCE INTO ...

Multi-part Diagrams

Read a multi-part diagram as if all the main paths were joined end-to-end. The following example is a two-part diagram:

[image: Multi-part Diagrams]

According to the diagram, the following statement is valid:

 EXEC SQL PREPARE statement_name FROM :host_string END-EXEC.

Oracle Names

The names of Oracle database objects, such as tables and columns, must not exceed 30 characters in length. The first character must be a letter, but the rest can be any combination of letters, numerals, dollar signs ($), pound signs (#), and underscores (_).

However, if a name is enclosed by quotation marks ("), it can contain any combination of legal characters, including spaces but excluding quotation marks.

Oracle names are not case-sensitive except when enclosed by quotation marks.

ALLOCATE (Executable Embedded SQL Extension)

Purpose

To allocate a cursor variable to be referenced in a PL/SQL block, or to allocate a LOB locator, or a ROWID .

Prerequisites

A cursor variable (see Chapter 6, "Embedded PL/SQL") of type SQL-CURSOR must be declared before allocating memory for the cursor variable.

Syntax

[image: ALLOCATE]

Keywords and Parameters

	Keywords and Parameters	Description
	cursor_variable	A cursor variable of type SQL-CURSOR
	host_ptr	A variable of type SQL-ROWID for a ROWID, or SQL-BLOB, SQL-CLOB, or SQL-NCLOB for a LOB

Usage Notes

Whereas a cursor is static, a cursor variable is dynamic because it is not tied to a specific query. You can open a cursor variable for any type-compatible query.

For more information on this statement, see Oracle Database PL/SQL Language Reference and Oracle Database SQL Language Reference.

Example

This partial example illustrates the use of the ALLOCATE statement:

 ...
 01 EMP-CUR SQL-CURSOR.
 01 EMP-REC.
 ...
 EXEC SQL ALLOCATE :EMP-CUR END-EXEC.
 ...

Related Topics

CLOSE (Executable Embedded SQL).

EXECUTE (Executable Embedded SQL).

FETCH (Executable Embedded SQL).

FREE (Executable Embedded SQL Extension).

ALLOCATE DESCRIPTOR (Executable Embedded SQL)

Purpose

An ANSI dynamic SQL statement that allocates a descriptor.

Prerequisites

None.

Syntax

[image: ALLOCATE DESCRIPTOR]

Keywords and Parameters

	Keywords and Parameters	Description
	array_size
integer

	Host variable containing number of rows to be processed.
Number of rows to be processed.

	descriptor_name
descriptor name

	Host variable containing number of rows to be processed.
Number of rows to be processed.

	GLOBAL | LOCAL	LOCAL (the default) means file scope, as opposed to GLOBAL, which means application scope.
	WITH MAX integer	Maximum number of host variables. The default is 100.

Usage Notes

Use DYNAMIC=ANSI precompiler option. For information on using this statement, see "ALLOCATE DESCRIPTOR".

Example

 EXEC SQL
 FOR :batch ALLOCATE DESCRIPTOR GLOBAL :binddes WITH MAX 25
 END-EXEC.

Related Topics

DESCRIBE DESCRIPTOR (Executable Embedded SQL).

GET DESCRIPTOR (Executable Embedded SQL).

SET DESCRIPTOR (Executable Embedded SQL).

CALL (Executable Embedded SQL)

Purpose

To call a stored procedure.

Prerequisites

An active database connection must exist.

Syntax

[image: CALL]

Keywords and Parameters

	Keywords and Parameters	Description
	schema	Is the schema containing the procedure. If you omit schema, Oracle9i assumes the procedure is in your own schema.
	pkg	The package where the procedure is stored.
	st_proc	The stored procedure to be called.
	db_link	The complete or partial name of a database link to a remote database where the procedure is located. For information on referring to database links, see the Oracle Database SQL Language Reference.
	expr	The list of expressions that are the parameters of the procedure.
	ret_var	The host variable that receives the returned value of a function.
	ret_ind	The indicator variable for ret_var.

Usage Notes

For more about this statement, see Calling a Stored PL/SQL or Java Subprogram.

For a complete discussion of stored procedures, see: Oracle Database Advanced Application Developer's Guide, "External Routines" chapter.

Example

 ...
 05 EMP-NAME PIC X(10) VARYING.
 05 EMP-NUMBER PIC S9(4) COMP VALUE ZERO.
 05 SALARY PIC S9(5)V99 COMP-3 VALUE ZERO.
...
 05 D-EMP-NUMBER PIC 9(4).
...
 ACCEPT D-EMP-NUMBER.
 EXEC SQL
 CALL mypkge.getsal(:EMP-NUMBER, :D-EMP-NUMBER, :EMP-NAME) INTO :SALARY
 END-EXEC.
...

Related Topics

None

CLOSE (Executable Embedded SQL)

Purpose

To disable a cursor, freeing the resources acquired by opening the cursor, and releasing parse locks.

Prerequisites

The cursor or cursor variable must be open and MODE=ANSI.

Syntax

[image: CLOSE]

Keywords and Parameters

	Keywords and Parameters	Description
	cursor	The cursor to be closed
	cursor_variable	The cursor variable to be closed.

Usage Notes

Rows cannot be fetched from a closed cursor. A cursor need not be closed to be reopened. The HOLD_CURSOR and RELEASE_CURSOR precompiler options alter the effect of the CLOSE statement. For information on these options, see Chapter 14, "Precompiler Options".

Example

This example illustrates the use of the CLOSE statement:

 EXEC SQL CLOSE EMP-CUR END-EXEC.

Related Topics

DECLARE CURSOR (Embedded SQL Directive).

OPEN (Executable Embedded SQL).

PREPARE (Executable Embedded SQL).

COMMIT (Executable Embedded SQL)

Purpose

To end your current transaction, making permanent all its changes to the database and optionally freeing all resources and disconnecting from the database server.

Prerequisites

To commit your current transaction, no privileges are necessary.

To manually commit a distributed in-doubt transaction that you originally committed, you must have FORCE TRANSACTION system privilege. To manually commit a distributed in-doubt transaction that was originally committed by another user, you must have FORCE ANY TRANSACTION system privilege.

Syntax

[image: COMMIT]

Keyword and Parameters

	Keywords and Parameters	Description
	
	

	AT	Identifies the database to which the COMMIT statement is issued. The database can be identified by either:
	db_name	A database identifier declared in a previous DECLARE DATABASE statement or used in a CONNECT statement.
	host_variable	If you omit this clause, Oracle9i issues the statement to your default database.
	WORK	Is supported only for compliance with standard SQL. The statements COMMIT and COMMIT WORK are equivalent.
	COMMENT	Specifies a comment to be associated with the current transaction. The 'text' is a quoted literal of up to 50 characters that Oracle9i stores in the data dictionary view DBA_2PC_PENDING along with the transaction ID if the transaction becomes in-doubt.
	RELEASE	Frees all resources and disconnects the application from the Oracle9i Server.
	FORCE	Manually commits an in-doubt distributed transaction. The transaction is identified by the 'text' containing its local or global transaction ID. To find the IDs of such transactions, query the data dictionary view DBA_2PC_PENDING. You can also use the optional integer to explicitly assign the transaction a system change number (SCN). If you omit the integer, the transaction is committed using the current SCN.

Usage Notes

Always explicitly commit or rollback the last transaction in your program by using the COMMIT or ROLLBACK statement and the RELEASE option. Oracle9i automatically rolls back changes if the program terminates abnormally.

The COMMIT statement has no effect on host variables or on the flow of control in the program. For more information on this statement, see "Using the COMMIT Statement".

Example

This example illustrates the use of the embedded SQL COMMIT statement:

 EXEC SQL AT SALESDB COMMIT RELEASE END-EXEC.

Related Topics

ROLLBACK (Executable Embedded SQL).

SAVEPOINT (Executable Embedded SQL).

CONNECT (Executable Embedded SQL Extension)

Purpose

To logon to an Oracle9i database.

Prerequisites

You must have CREATE SESSION system privilege in the specified database.

Syntax

[image: CONNECT]

Keyword and Parameters

	Keywords and Parameters	Description
	user
password

	Specifies your username and password separately.
	user_password	Is a single host variable containing the connect string username/password[@dbname].
To allow Oracle9i to verify your connection through your operating system, specify "/" as the :user_password value.

	AT	Identifies the database to which the connection is made. The database can be identified by either:
	db_name	A database identifier declared in a previous DECLARE DATABASE statement.
	host_variable	A host variable whose value is a previously declared db_name.
	USING	Specifies the Oracle Net database specification string used to connect to a nondefault database. If you omit this clause, you are connected to your default database.
	ALTER AUTHORIZATION	Change password to the following string.
	new_password	New password string.
	IN SYSDBA MODE
IN SYSOPER MODE

	Connect with SYSDBA or SYSOPER system privileges. Not allowed when ALTER AUTHORIZATION is used, or precompiler option AUTO_CONNECT is set to YES.

Usage Notes

A program can have multiple connections, but can only connect once to your default database. For more information on this statement, see: "Concurrent Logons".

Example

The following example illustrate the use of CONNECT:

 EXEC SQL CONNECT :USERNAME
 IDENTIFIED BY :PASSWORD
 END-EXEC.

You can also use this statement in which the value of :userid is the value of :username and :password separated by a "/" such as 'SCOTT/TIGER':

 EXEC SQL CONNECT :USERID END-EXEC.

Related Topics

COMMIT (Executable Embedded SQL).

DECLARE DATABASE (Oracle Embedded SQL Directive).

ROLLBACK (Executable Embedded SQL).

CONTEXT ALLOCATE (Executable Embedded SQL Extension)

Purpose

To initialize a SQLLIB runtime context that is referenced in an EXEC SQL CONTEXT USE statement.

Prerequisites

The runtime context must be declared of type SQL-CONTEXT.

Syntax

[image: CONTEXT ALLOCATE]

Keywords and Parameters

	Keywords and Parameters	Description
	context	The SQLLIB runtime context for which memory is to be allocated.

Usage Notes

For more information on this statement, see "Embedded SQL Statements and Directives for Runtime Contexts".

Example

This example illustrates the use of a CONTEXT ALLOCATE statement in a Pro*COBOL embedded SQL program:

 EXEC SQL CONTEXT ALLOCATE :ctx1 END-EXEC.

Related Topics

CONTEXT FREE (Executable Embedded SQL Extension).

CONTEXT USE (Oracle Embedded SQL Directive).

CONTEXT FREE (Executable Embedded SQL Extension)

Purpose

To free all memory associated with a runtime context and place a null pointer in the host program variable.

Prerequisites

The CONTEXT ALLOCATE statement must be used to allocate memory for the specified runtime context before the CONTEXT FREE statement can free the memory allocated for it.

Syntax

[image: CONTEXT FREE]

Keywords and Parameters

	Keywords and Parameters	Description
	context	The allocated runtime context for which the memory is to be deallocated.

Usage Notes

For more information on this statement, see "Embedded SQL Statements and Directives for Runtime Contexts".

Example

This example illustrates the use of a CONTEXT FREE statement in a Pro*COBOL embedded SQL program:

 EXEC SQL CONTEXT FREE :ctx1 END-EXEC.

Related Topics

CONTEXT ALLOCATE (Executable Embedded SQL Extension).

CONTEXT USE (Oracle Embedded SQL Directive).

CONTEXT USE (Oracle Embedded SQL Directive)

Purpose

To instruct the precompiler to use the specified SQLLIB runtime context on subsequent executable SQL statements

Prerequisites

The runtime context specified by the CONTEXT USE directive must be previously declared.

Syntax

[image: CONTEXT USE]

Keywords and Parameters

	Keywords and Parameters	Description
	context	The allocated runtime context to use for subsequent executable SQL statements that follow it. For example, after specifying in your source code which context to use (multiple contexts can be allocated), you can connect to the Oracle Server and perform database operations within the scope of that context.
	DEFAULT	Indicates that the global context is to be used.

Usage Notes

This statement has no effect on declarative statements such as EXEC SQL INCLUDE or EXEC ORACLE OPTION. It works similarly to the EXEC SQL WHENEVER directive in that it affects all executable SQL statements which positionally follow it in a given source file without regard to standard C scope rules.

For more information on this statement, see "Embedded SQL Statements and Directives for Runtime Contexts".

Example

This example illustrates the use of a CONTEXT USE directive in a Pro*COBOL program:

 EXEC SQL CONTEXT USE :ctx1 END-EXEC.

Related Topics

CONTEXT ALLOCATE (Executable Embedded SQL Extension).

CONTEXT FREE (Executable Embedded SQL Extension).

DEALLOCATE DESCRIPTOR (Embedded SQL Statement)

Purpose

An ANSI dynamic SQL statement that deallocates a descriptor area to free memory.

Prerequisites

The descriptor specified by the DEALLOCATE DESCRIPTOR statement must be previously allocated using the ALLOCATE DESCRIPTOR statement.

Syntax

[image: DEALLOCATE DESCRIPTOR]

Keywords and Parameters

	Keywords and Parameters	Description
	GLOBAL | LOCAL	LOCAL (the default) means file scope, as opposed to GLOBAL, which means application scope.
	descriptor_name
'descriptor name'

	Host variable containing the name of the allocated ANSI descriptor.
Name of the allocated ANSI descriptor.

Usage Notes

Use DYNAMIC=ANSI precompiler option.

For more information on this statement, see "DEALLOCATE DESCRIPTOR".

Example

 EXEC SQL DEALLOCATE DESCRIPTOR GLOBAL 'SELDES' END-EXEC.

Related Topics

ALLOCATE DESCRIPTOR (Executable Embedded SQL).

DESCRIBE DESCRIPTOR (Executable Embedded SQL).

GET DESCRIPTOR (Executable Embedded SQL).

PREPARE (Executable Embedded SQL).

SET DESCRIPTOR (Executable Embedded SQL).

DECLARE CURSOR (Embedded SQL Directive)

Purpose

To declare a cursor, giving it a name and associating it with a SQL statement or a PL/SQL block.

Prerequisites

If you associate the cursor with an identifier for a SQL statement or PL/SQL block, you must have declared this identifier in a previous DECLARE STATEMENT statement.

Syntax

[image: DECLARE CURSOR]

Keywords and Parameters

	Keywords and Parameters	Description
	AT	Identifies the database on which the cursor is declared. The database can be identified by either:
	db_name	Database identifier declared in a previous DECLARE DATABASE statement.
	host_variable	Host variable whose value is a previously declared db_name.
If you omit this clause, Oracle9i declares the cursor on your default database.

	cursor	Name of the cursor to be declared.
	WITH HOLD	Cursor remains open after a COMMIT or a ROLLBACK. The cursor must not be declared for UPDATE.
	SELECT statement	Is a SELECT statement to be associated with the cursor. The following statement cannot contain an INTO clause.
	statement_name	Identifies a SQL statement or PL/SQL block to be associated with the cursor. The statement_name or block_name must be previously declared in a DECLARE STATEMENT statement.

Usage Notes

You must declare a cursor before referencing it in other embedded SQL statements. The scope of a cursor declaration is global within its precompilation unit and the name of each cursor must be unique in its scope. You cannot declare two cursors with the same name in a single precompilation unit.

You can reference the cursor in the WHERE clause of an UPDATE or DELETE statement using the CURRENT OF syntax, if the cursor has been opened with an OPEN statement and positioned on a row with a FETCH statement. For more information on this statement, see "WITH HOLD Clause in DECLARE CURSOR Statements".

Example

This example illustrates the use of a DECLARE CURSOR statement:

 EXEC SQL DECLARE EMPCURSOR CURSOR
 FOR SELECT ENAME, EMPNO, JOB, SAL
 FROM EMP
 WHERE DEPTNO = :DEPTNO
 END-EXEC.

Related Topics

CLOSE (Executable Embedded SQL).

DECLARE DATABASE (Oracle Embedded SQL Directive).

DECLARE STATEMENT (Embedded SQL Directive).

DELETE (Executable Embedded SQL).

FETCH (Executable Embedded SQL).

OPEN (Executable Embedded SQL).

PREPARE (Executable Embedded SQL).

SELECT (Executable Embedded SQL).

UPDATE (Executable Embedded SQL).

DECLARE DATABASE (Oracle Embedded SQL Directive)

Purpose

To declare an identifier for a nondefault database to be accessed in subsequent embedded SQL statements.

Prerequisites

You must have access to a username on the nondefault database.

Syntax

[image: DECLARE DATABASE]

Keywords and Parameters

	Keywords and Parameters	Description
	db_name	The identifier established for the nondefault database.

Usage Notes

You declare a db_name for a nondefault database so that other embedded SQL statements can refer to that database using the AT clause. Before issuing a CONNECT statement with an AT clause, you must declare a db_name for the nondefault database with a DECLARE DATABASE statement.

For more information on this statement, see "Using Username/Password".

Example

This example illustrates the use of a DECLARE DATABASE directive:

 EXEC SQL DECLARE ORACLE3 DATABASE END-EXEC.

Related Topics

COMMIT (Executable Embedded SQL)

CONNECT (Executable Embedded SQL Extension).

DECLARE CURSOR (Embedded SQL Directive).

DECLARE STATEMENT (Embedded SQL Directive).

DELETE (Executable Embedded SQL).

EXECUTE (Executable Embedded SQL).

EXECUTE IMMEDIATE (Executable Embedded SQL).

INSERT (Executable Embedded SQL).

SELECT (Executable Embedded SQL).

UPDATE (Executable Embedded SQL).

DECLARE STATEMENT (Embedded SQL Directive)

Purpose

To declare an identifier for a SQL statement or PL/SQL block to be used in other embedded SQL statements.

Prerequisites

None.

Syntax

[image: DECLARE STATEMENT]

Keywords and Parameters

	Keywords and Parameters	Description
	AT	Identifies the database on which the SQL statement or PL/SQL block is declared. The database can be identified by either:
	db_name	Database identifier declared in a previous DECLARE DATABASE statement.
	host_variable	Host variable whose value is a previously declared db_name. If you omit this clause, Oracle Database 10g declares the SQL statement or PL/SQL block on your default database.
	statement_name	Is the declared identifier for the statement or PL/SQL block.

Usage Notes

You must declare an identifier for a SQL statement or PL/SQL block with a DECLARE STATEMENT statement only if a DECLARE CURSOR statement referencing the identifier appears physically (not logically) in the embedded SQL program before the PREPARE statement that parses the statement or block and associates it with its identifier.

The scope of a statement declaration is global within its precompilation unit, like a cursor declaration. For more information on this statement, see "DECLARE".

Example I

This example illustrates the use of the DECLARE STATEMENT statement:

 EXEC SQL AT REMOTEDB
 DECLARE MYSTATEMENT STATEMENT
 END-EXEC.
 EXEC SQL PREPARE MYSTATEMENT FROM :MY-STRING
 END-EXEC.
 EXEC SQL EXECUTE MYSTATEMENT END-EXEC.

Example II

In this example, the DECLARE STATEMENT statement is required because the DECLARE CURSOR statement precedes the PREPARE statement:

 EXEC SQL DECLARE MYSTATEMENT STATEMENT END-EXEC.
 ...
 EXEC SQL DECLARE EMPCURSOR CURSOR FOR MYSTATEMENT END-EXEC.
 ...
 EXEC SQL PREPARE MYSTATEMENT FROM :MY-STRING END-EXEC.
 ...

Related Topics

CLOSE (Executable Embedded SQL).

DECLARE DATABASE (Oracle Embedded SQL Directive).

FETCH (Executable Embedded SQL).

OPEN (Executable Embedded SQL).

PREPARE (Executable Embedded SQL).

DECLARE TABLE (Oracle Embedded SQL Directive)

Purpose

To define the structure of a table or view, including each column's datatype, default value, and NULL or NOT NULL specification for semantic checking by the precompiler when option SQLCHECK=SEMANTICS (or FULL).

Prerequisites

None.

Syntax

[image: DECLARE TABLE]

Keywords and Parameters

	Keywords and Parameters	Description
	table	The name of the declared table.
	column	A column of the table.
	datatype	The datatype of a column. For information on Oracle9i datatypes, see "The Oracle Database 10g Datatypes".
	NOT NULL	Specifies that a column cannot contain nulls.

Usage Notes

Datatypes can only use integers (not expressions) for length, precision, scale. For more information on using this statement, see "Specifying SQLCHECK=SEMANTICS".

Example

The following statement declares the PARTS table with the PARTNO, BIN, and QTY columns:

 EXEC SQL DECLARE PARTS TABLE
 (PARTNO NUMBER NOT NULL,
 BIN NUMBER,
 QTY NUMBER)
 END-EXEC.

Related Topics

None.

DELETE (Executable Embedded SQL)

Purpose

To remove rows from a table or from a view's base table.

Prerequisites

For you to delete rows from a table, the table must be in your own schema or you must have DELETE privilege on the table.

For you to delete rows from the base table of a view, the owner of the schema containing the view must have DELETE privilege on the base table. Also, if the view is in a schema other than your own, you must be granted DELETE privilege on the view.

The DELETE ANY TABLE system privilege also enables you to delete rows from any table or any view's base table.

Syntax

[image: DELETE]

where the DML Returning clause is:

[image: return clause]

Keywords and Parameters

	Keywords and Parameters	Description
	AT	Identifies the database to which the DELETE statement is issued. The database can be identified by either:
	db_name	A database identifier declared in a previous DECLARE DATABASE statement.
	host_variable	A host variable whose value is a previously declared db_name. If you omit this clause, the DELETE statement is issued to your default database.
	host_integer
integer

	Limits the number of times the statement is executed if the WHERE clause contains array host variables. If you omit this clause, Oracle9i executes the statement once for each component of the smallest array.
	schema	The schema containing the table or view. If you omit schema, Oracle9i assumes the table or view is in your own schema.
	table view	The name of a table from which the rows are to be deleted. If you specify view, Oracle9i deletes rows from the view's base table.
	dblink	The complete or partial name of a database link to a remote database where the table or view is located. For information on referring to database links, see Chapter 2 of the Oracle Database SQL Language Reference. You can only delete rows from a remote table or view if you are using Oracle9i with the distributed option.
If you omit dblink, Oracle9 assumes that the table or view is located on the local database.

	part_name	Name of partition in the table
	alias	The alias assigned to the table. Aliases are generally used in DELETE statements with correlated queries.
	WHERE	Specifies which rows are deleted:
	
	condition
	
	CURRENT OF
	
	If you omit this clause entirely, Oracle9i deletes all rows from the table or view.
	DML returning clause	See "DML Returning Clause" for a discussion.

Usage Notes

The host variables in the WHERE clause should be either all scalars or all arrays. If they are scalars, Oracle9i executes the DELETE statement only once. If they are arrays, Oracle9i executes the statement once for each set of array components. Each execution may delete zero, one, or multiple rows.

Array host variables in the WHERE clause can have different sizes. In this case, the number of times Oracle9i executes the statement is determined by the smaller of the following values:

	
the size of the smallest array

	
the value of the host_integer in the optional FOR clause

If no rows satisfy the condition, no rows are deleted and the SQLCODE returns a NOT_FOUND condition.

The cumulative number of rows deleted is returned through the SQLCA. If the WHERE clause contains array host variables, this value reflects the total number of rows deleted for all components of the array processed by the DELETE statement.

If no rows satisfy the condition, Oracle9i returns an error through the SQLCODE of the SQLCA. If you omit the WHERE clause, Oracle9i raises a warning flag in the fifth component of SQLWARN in the SQLCA. For more information on this statement and the SQLCA, see "Using the SQL Communications Area".

You can use comments in a DELETE statement to pass instructions, or hints, to the Oracle9i optimizer. The optimizer uses hints to choose an execution plan for the statement. For more information on hints, see Oracle Database Performance Tuning Guide.

Example

This example illustrates the use of the DELETE statement:

 EXEC SQL DELETE FROM EMP
 WHERE DEPTNO = :DEPTNO
 AND JOB = :JOB
 END-EXEC.
 EXEC SQL DECLARE EMPCURSOR CURSOR
 FOR SELECT EMPNO, COMM
 FROM EMP
 END-EXEC.
 EXEC SQL OPEN EMPCURSOR END-EXEC.
 EXEC SQL FETCH EMPCURSOR
 INTO :EMP-NUMBER, :COMMISSION
 END-EXEC.
 EXEC SQL DELETE FROM EMP
 WHERE CURRENT OF EMPCURSOR
 END-EXEC.

Related Topics

DECLARE DATABASE (Oracle Embedded SQL Directive).

DECLARE STATEMENT (Embedded SQL Directive).

DESCRIBE (Executable Embedded SQL)

Purpose

To initialize a descriptor to hold descriptions of host variables for an Oracle dynamic SQL statement or PL/SQL block.

Prerequisites

You must have prepared the SQL statement or PL/SQL block in a previous embedded SQL PREPARE statement.

Syntax

[image: DESCRIBE]

Keywords and Parameters

	Keywords and Parameters	Description
	BIND VARIABLES FOR	Initializes the descriptor to hold information about the input variables for the SQL statement or PL/SQL block.
	SELECT LIST FOR	Initializes the descriptor to hold information about the select list of a SELECT statement.
	-	The default is SELECT LIST FOR.
	statement_name	Identifies a SQL statement or PL/SQL block previously prepared with a PREPARE statement.
	descriptor	The name of the descriptor to be initialized.

Usage Notes

You must issue a DESCRIBE statement before manipulating the bind or select descriptor within an embedded SQL program.

You cannot describe both input variables and output variables into the same descriptor.

The number of variables found by a DESCRIBE statement is the total number of placeholders in the prepare SQL statement or PL/SQL block, rather than the total number of uniquely named placeholders. For more information on this statement, see "The DESCRIBE Statement".

Example

This example illustrates the use of the DESCRIBE statement in a Pro*COBOL embedded SQL program:

 EXEC SQL PREPARE MYSTATEMENT FROM :MY-STRING END-EXEC.
 EXEC SQL DECLARE EMPCURSOR
 FOR SELECT EMPNO, ENAME, SAL, COMM
 FROM EMP
 WHERE DEPTNO = :DEPT-NUMBER
 END-EXEC.
 EXEC SQL DESCRIBE BIND VARIABLES FOR MYSTATEMENT
 INTO BINDDESCRIPTOR
 END-EXEC.
 EXEC SQL OPEN EMPCURSOR
 USING BINDDESCRIPTOR
 END-EXEC.
 EXEC SQL DESCRIBE SELECT LIST FOR MY-STATEMENT
 INTO SELECTDESCRIPTOR
 END-EXEC.
 EXEC SQL FETCH EMPCURSOR
 INTO SELECTDESCRIPTOR
 END-EXEC.

Related Topics

PREPARE (Executable Embedded SQL).

DESCRIBE DESCRIPTOR (Executable Embedded SQL)

Purpose

Used to obtain information about an ANSI SQL statement, and to store it in a descriptor.

Prerequisites

You must have prepared the SQL statement in a previous embedded SQL PREPARE statement.

Syntax

[image: DESCRIBE DESCRIPTOR]

Keywords and Parameters

	Keywords and Parameters	Description
	statement_id	The name of the previously prepared SQL statement or PL/SQL block. OUTPUT is the default.
	desc_name	Host variable containing the name of the descriptor that will hold information about the SQL statement.
	'descriptor name'	Name of the descriptor
	GLOBAL | LOCAL	LOCAL is the default. It means file scope, as opposed to GLOBAL, which means application scope.

Usage Notes

Use DYNAMIC=ANSI precompiler option. Only COUNT and NAME are implemented for the INPUT descriptor.

The number of variables found by a DESCRIBE statement is the total number of place-holders in the prepare SQL statement or PL/SQL block, rather than the total number of uniquely named place-holders. For more information on this statement, see Chapter 10, "ANSI Dynamic SQL".

Example

 EXEC SQL PREPARE s FROM :my_stament END-EXEC.
 EXEC SQL DESCRIBE INPUT s USING DESCRIPTOR 'in' END-EXEC.

Related Topics

ALLOCATE DESCRIPTOR (Executable Embedded SQL).

DEALLOCATE DESCRIPTOR (Embedded SQL Statement).

GET DESCRIPTOR (Executable Embedded SQL).

PREPARE (Executable Embedded SQL).

SET DESCRIPTOR (Executable Embedded SQL).

ENABLE THREADS (Executable Embedded SQL Extension)

Purpose

To initialize a process that supports multiple threads.

Prerequisites

You must be developing a precompiler application for and compiling it on a platform that supports multithreaded applications, and THREADS=YES must be specified on the command line.

Syntax

[image: ENABLE THREADS]

Keywords and Parameters

None.

Usage Notes

The ENABLE THREADS statement must be executed once, and only once, before any other executable SQL statement and before spawning any threads. This statement does not require a host-variable specification.

Example

This example illustrates the use of the ENABLE THREADS statement in a Pro*COBOL program:

EXEC SQL ENABLE THREADS END-EXEC.

Related Topics

CONTEXT ALLOCATE (Executable Embedded SQL Extension).

CONTEXT FREE (Executable Embedded SQL Extension).

CONTEXT USE (Oracle Embedded SQL Directive).

EXECUTE ... END-EXEC (Executable Embedded SQL Extension)

Purpose

To embed an anonymous PL/SQL block into an Oracle Pro*COBOL program.

Prerequisites

None.

Syntax

[image: EXECUTE ... END-EXEC]

Keywords and Parameters

	Keywords and Parameters	Description
	AT	Identifies the database on which the PL/SQL block is executed. The database can be identified by either:
	db_name	A database identifier declared in a previous DECLARE DATABASE statement.
	host_variable	A host variable whose value is a previously declared db_name.
	
	If you omit this clause, the PL/SQL block is executed on your default database.
	pl/sql_block	For information on PL/SQL, including how to write PL/SQL blocks, see the Oracle Database PL/SQL Language Reference.
	END-EXEC	Must appear after the embedded PL/SQL block.

Usage Notes

Since the Oracle Precompilers treat an embedded PL/SQL block like a single embedded SQL statement, you can embed a PL/SQL block anywhere in an Oracle Precompiler program that you can embed a SQL statement. For more information on embedding PL/SQL blocks in Oracle Precompiler programs, see Chapter 6, "Embedded PL/SQL".

Example

Placing this EXECUTE statement in an Oracle Precompiler program embeds a PL/SQL block in the program:

 EXEC SQL EXECUTE
 BEGIN
 SELECT ENAME, JOB, SAL
 INTO :EMP-NAME:IND-NAME, :JOB-TITLE, :SALARY
 FROM EMP
 WHERE EMPNO = :EMP-NUMBER;
 IF :EMP-NAME:IND-NAME IS NULL
 THEN RAISE NAME-MISSING;
 END IF;
 END;
 END-EXEC.

Related Topics

EXECUTE IMMEDIATE (Executable Embedded SQL).

EXECUTE (Executable Embedded SQL)

Purpose

In Oracle dynamic SQL, to execute a DELETE, INSERT, or UPDATE statement or a PL/SQL block that has been previously prepared with an embedded SQL PREPARE statement.

Prerequisites

You must first prepare the SQL statement or PL/SQL block with an embedded SQL PREPARE statement.

Syntax

[image: EXECUTE]

Keywords and Parameters

	Keywords and Parameters	Description
	FOR :array_size
FOR integer

	Host variable containing the number of rows to be processed.
Number of rows to be processed.

Limits the number of times the statement is executed when the USING clause contains array host variables If you omit this clause, Oracle9i executes the statement once for each component of the smallest array.

	statement_id	A precompiler identifier associated with the SQL statement or PL/SQL block to be executed. Use the embedded SQL PREPARE statement to associate the precompiler identifier with the statement or PL/SQL block.
	USING DESCRIPTOR SQLDA_descriptor	Uses an Oracle descriptor.
CANNOT be used together with an ANSI descriptor (INTO clause).

	USING	Specifies a list of host variables with optional indicator variables that Oracle9i substitutes as input variables into the statement to be executed. The host and indicator variables must be either all scalars or all arrays.
	host_variable	Host variables.
	indicator_variable	Indicator variables.

Usage Note

For more information on this statement, see Chapter 9, "Oracle Dynamic SQL".

Example

This example illustrates the use of the EXECUTE statement in a Pro*COBOL embedded SQL program:

 EXEC SQL PREPARE MY-STATEMENT FROM MY-STRING END-EXEC.
 EXEC SQL EXECUTE MY-STATEMENT USING :MY-VAR END-EXEC.

Related Topics

DECLARE DATABASE (Oracle Embedded SQL Directive).

PREPARE (Executable Embedded SQL).

EXECUTE DESCRIPTOR (Executable Embedded SQL

Purpose

In ANSI SQL Method 4, to execute a DELETE, INSERT, or UPDATE statement or a PL/SQL block that has been previously prepared with an embedded SQL PREPARE statement.

Prerequisites

You must first prepare the SQL statement or PL/SQL block with an embedded SQL PREPARE statement.

Syntax

[image: EXECUTE DESCRIPTOR]

Keywords and Parameters

	Keywords and Parameters	Description
	FOR :array_size
FOR integer

	Host variable containing the number of rows to be processed.
Number of rows to be processed.

Limits the number of times the statement is executed. Oracle9i executes the statement once for each component of the smallest array.

	statement_id	A precompiler identifier associated with the SQL statement or PL/SQL block to be executed. Use the embedded SQL PREPARE statement to associate the precompiler identifier with the statement or PL/SQL block.
	USING
descriptor_name

descriptor name

	An ANSI input descriptor.
Host variable containing name of the input descriptor.

Name of the input descriptor.

	INTO
descriptor_name

descriptor name

	An ANSI output descriptor.
Host variable containing the name of the output descriptor.

Name of the output descriptor.

	GLOBAL | LOCAL	LOCAL (the default) means file scope, as opposed to GLOBAL, which means application scope.

Usage Notes

For more information on this statement, see "EXECUTE".

Examples

The ANSI dynamic SQL Method 4 enables DML RETURNING in a SELECT to be supported by the INTO clause in EXECUTE:

EXEC SQL EXECUTE S2 USING DESCRIPTOR :bv1 INTO DESCRIPTOR 'SELDES' END-EXEC.

Related Topics

DECLARE DATABASE (Oracle Embedded SQL Directive).

PREPARE (Executable Embedded SQL).

EXECUTE IMMEDIATE (Executable Embedded SQL)

Purpose

To prepare and execute a DELETE, INSERT, or UPDATE statement or a PL/SQL block containing no host variables.

Prerequisites

None.

Syntax

[image: EXECUTE IMMEDIATE]

Keywords and Parameters

	Keywords and Parameters	Description
	AT	Identifies the database on which the SQL statement or PL/SQL block is executed. The database can be identified by either:
	db_name	A database identifier declared in a previous DECLARE DATABASE statement.
	host_variable	A host variable whose value is a previously declared db_name.
	
	If you omit this clause, the statement or block is executed on your default database.
	host_string	A host variable whose value is the SQL statement or PL/SQL block to be executed.
	text	A text literal containing the SQL statement or PL/SQL block to be executed. The quotes may be omitted.
	
	The SQL statement can only be a DELETE, INSERT, or UPDATE statement.

Usage Notes

When you issue an EXECUTE IMMEDIATE statement, Oracle9i parses the specified SQL statement or PL/SQL block, checking for errors, and executes it. If any errors are encountered, they are returned in the SQLCODE component of the SQLCA.

For more information on this statement, see "The EXECUTE IMMEDIATE Statement".

Example

This example illustrates the use of the EXECUTE IMMEDIATE statement:

 EXEC SQL
 EXECUTE IMMEDIATE 'DELETE FROM EMP WHERE EMPNO = 9460'
 END-EXEC.

Related Topics

PREPARE (Executable Embedded SQL).

EXECUTE (Executable Embedded SQL).

FETCH (Executable Embedded SQL)

Purpose

To retrieve one or more rows returned by a query, assigning the select list values to host variables. For ANSI Dynamic SQL Method 4, see "FETCH DESCRIPTOR (Executable Embedded SQL)".

Prerequisites

You must first open the cursor with an the OPEN statement.

Syntax

[image: FETCH]

Keywords and Parameters

	Keywords and Parameters	Description
	FOR :array_size
FOR integer

	Host variable containing the number of rows to be processed.
Number of rows to be processed.

Limits the number of rows fetched if you are using array host variables. If you omit this clause, Oracle9i fetches enough rows to fill the smallest array.

	cursor	A cursor that is declared by a DECLARE CURSOR statement. The FETCH statement returns one of the rows selected by the query associated with the cursor.
	cursor_variable	A cursor variable is allocated an ALLOCATE statement. The FETCH statement returns one of the rows selected by the query associated with the cursor variable.
	INTO	Specifies a list of host variables and optional indicator variables into which data is fetched. These host variables and indicator variables must be declared within the program.
	USING SQLDA_variable	Specifies the Oracle descriptor referenced in a previous DESCRIBE statement. Only use this clause with dynamic embedded SQL, method 4. The USING clause does not apply when a cursor variable is used.
	host_variable	The host variable into which data is returned.
	indicator_variable	The host indicator variable.

Usage Notes

The FETCH statement reads the rows of the active set and names the output variables which contain the results. Indicator values are set to -1 if their associated host variable is null.

The number of rows retrieved is specified by the size of the output host variables or the value specified in the FOR clause. The host variables to receive the data should be either all scalars or all arrays. If they are scalars, Oracle9i fetches only one row. If they are arrays, Oracle9i fetches enough rows to fill the arrays.

Array host variables can have different sizes. In this case, the number of rows Oracle9i fetches is determined by the smaller of the following values:

	
The size of the smallest array

	
The value of the host_integer in the optional FOR clause

Of course, the number of rows fetched can be further limited by the number of rows that actually satisfy the query.

If a FETCH statement does not retrieve all rows returned by the query, the cursor is positioned on the next returned row. When the last row returned by the query has been retrieved, the next FETCH statement results in an warning code returned in the SQLCODE element of the SQLCA.

If the array is not completely filled then the warning is issued and you should check SQLERRD(3) to see how many rows were actually fetched.

Note that the FETCH statement does not contain an AT clause. You must specify the database accessed by the cursor in the DECLARE CURSOR statement.

You can only move forward through the active set with FETCH statements. If you want to revisit any of the previously fetched rows, you must reopen the cursor and fetch each row in turn. If you want to change the active set, you must assign new values to the input host variables in the cursor's query and reopen the cursor.

Example

This example illustrates the FETCH statement in a Pro*COBOL embedded SQL program:

 EXEC SQL DECLARE EMPCURSOR CURSOR FOR
 SELECT JOB, SAL FROM EMP WHERE DEPTNO = 30
 END-EXEC.
 ...
 EXEC SQL WHENEVER NOT FOUND GOTO ...
 LOOP.
 EXEC SQL FETCH EMPCURSOR INTO :JOB-TITLE1, :SALARY1 END-EXEC.
 EXEC SQL FETCH EMPCURSOR INTO :JOB-TITLE2, :SALARY2 END-EXEC.
 ...
 GO TO LOOP.
 ...

Related Topics

CLOSE (Executable Embedded SQL).

DECLARE CURSOR (Embedded SQL Directive).

OPEN (Executable Embedded SQL).

PREPARE (Executable Embedded SQL).

FETCH DESCRIPTOR (Executable Embedded SQL)

Purpose

To retrieve one or more rows returned by a query, assigning the select list values to host variables. Used in ANSI Dynamic SQL Method 4.

Prerequisites

You must first open the cursor with an the OPEN statement.

Syntax

[image: FETCH DESCRIPTOR]

Keywords and Parameters

	Keywords and Parameters	Description
	FOR :array_size
FOR integer

	Host variable containing the number of rows to be processed.
Number of rows to be processed.

Limits the number of rows fetched if you are using array host variables. If you omit this clause, Oracle9i fetches enough rows to fill the smallest array.

	cursor	A cursor that is declared by a DECLARE CURSOR statement. The FETCH statement returns one of the rows selected by the query associated with the cursor.
	cursor_variable	A cursor variable is allocated an ALLOCATE statement. The FETCH statement returns one of the rows selected by the query associated with the cursor variable.
	INTO	Specifies a list of host variables and optional indicator variables into which data is fetched. These host variables and indicator variables must be declared within the program.
	INTO 'descriptor name'
INTO :descriptor_name

	Name of the output ANSI descriptor.
Host variable containing the name of the output descriptor.

	GLOBAL | LOCAL	LOCAL (the default) means file scope, as opposed to GLOBAL, which means application scope.

Usage Notes

The number of rows retrieved is specified by the size of the output host variables and the value specified in the FOR clause. The host variables to receive the data should be either all scalars or all arrays. If they are scalars, Oracle9i fetches only one row. If they are arrays, Oracle9i fetches enough rows to fill the arrays.

Array host variables can have different sizes. In this case, the number of rows Oracle9i fetches is determined by the smaller of the following values:

	
The size of the smallest array

	
The value of the array_size in the optional FOR clause

	
Of course, the number of rows fetched can be further limited by the number of rows that actually satisfy the query.

If a FETCH statement does not retrieve all rows returned by the query, the cursor is positioned on the next returned row. When the last row returned by the query has been retrieved, the next FETCH statement results in a warning code returned in the SQLCODE element of the SQLCA.

If the array is not completely filled then the warning is issued and you should check SQLERRD(3) to see how many rows were actually fetched.

Note that the FETCH statement does not contain an AT clause. You must specify the database accessed by the cursor in the DECLARE CURSOR statement.

You can only move forward through the active set with FETCH statements. If you want to revisit any of the previously fetched rows, you must reopen the cursor and fetch each row in turn. If you want to change the active set, you must assign new values to the input host variables in the cursor's query and reopen the cursor.

Use DYNAMIC=ANSI precompiler option for the ANSI SQL Method 4 application. For more information, see "FETCH" for the ANSI SQL Method 4 application.

Example

...
EXEC SQL ALLOCATE DESCRIPTOR 'output_descriptor' END-EXEC.
...
EXEC SQL PREPARE S FROM :dyn_statement END-EXEC.
EXEC SQL DECLARE mycursor CURSOR FOR S END-EXEC.
...
EXEC SQL FETCH mycursor INTO DESCRIPTOR 'output_descriptor' END-EXEC.
...

Related Topics

PREPARE statement.

FREE (Executable Embedded SQL Extension)

Purpose

To free memory used by a cursor, LOB locator, or ROWID.

Prerequisites

The memory has to have been already allocated.

Syntax

[image: FREE]

Keywords and Parameters

	Keywords and Parameters	Description
	cursor_variable	A cursor variable that has previously been allocated in an ALLOCATE statement. It is of type SQL-CURSOR.
The FETCH statement returns one of the rows selected by the query associated with the cursor variable.

	host_ptr	A variable of type SQL-ROWID for a ROWID, or SQL-BLOB, SQL-CLOB, or SQL-NCLOB for a LOB.

Usage Notes

See "Cursors" and "Cursor Variables".

Example

* CURSOR VARIABLE EXAMPLE
...
 01 CUR SQL-CURSOR.
...
 EXEC SQL ALLOCATE :CUR END-EXEC.
...
 EXEC SQL CLOSE :CUR END-EXEC.
 EXEC SQL FREE :CUR END-EXEC.
...

Related Topics

ALLOCATE (Executable Embedded SQL Extension).

CLOSE (Executable Embedded SQL).

DECLARE CURSOR (Embedded SQL Directive).

GET DESCRIPTOR (Executable Embedded SQL)

Purpose

To obtain information about host variables from a SQL descriptor area.

Prerequisites

Use only with value semantics and ANSI dynamic SQL Method 4.

Syntax

[image: GET DESCRIPTOR]

where item_name can be one of these choices:

[image: example]

Keywords and Parameters

	Keywords and Parameters	Description
	array_size
integer

	Host variable containing the number of rows to be processed.
Number of rows to be processed.

	:descriptor_name	Host variable containing the name of the allocated ANSI descriptor.
	'descriptor name'	Name of the allocated ANSI descriptor.
	GLOBAL | LOCAL	LOCAL (the default) means file scope, as opposed to GLOBAL, which means application scope.
	host_var=COUNT	Host variable containing the total number of input or output variables.
	integer	Total number of input or output variables.
	VALUE :host_integer	Host variable containing the position of the referenced input or output variable.
	VALUE integer	The position of the referenced input or output variable.
	host_var	Host variable which will receive the item's value.
	item_name	The item_name is found in Table 10-4, and Table 10-5, under the "Descriptor Item Name" column heading.

Usage Notes

Use DYNAMIC=ANSI precompiler option. The array size clause can be used with DATA, RETURNED_LENGTH, and INDICATOR item names. See "GET DESCRIPTOR".

Example

 EXEC SQL GET DESCRIPTOR GLOBAL 'mydesc' :mydesc_num_vars = COUNT END-EXEC.

Related Topics

ALLOCATE DESCRIPTOR (Executable Embedded SQL).

DESCRIBE DESCRIPTOR (Executable Embedded SQL).

SET DESCRIPTOR (Executable Embedded SQL).

INSERT (Executable Embedded SQL)

Purpose

To add rows to a table or to a view's base table.

Prerequisites

For you to insert rows into a table, the table must be in your own schema or you must have INSERT privilege on the table.

For you to insert rows into the base table of a view, the owner of the schema containing the view must have INSERT privilege on the base table. Also, if the view is in a schema other than your own, you must have INSERT privilege on the view.

The INSERT ANY TABLE system privilege also enables you to insert rows into any table or any view's base table.

Syntax

[image: INSERT]

where DML returning clause is:

[image: return clause]

Keywords and Parameters

	Keywords and Parameters	Description
	AT	Identifies the database on which the INSERT statement is executed. The database can be identified by either:
	db_name	A database identifier declared in a previous DECLARE DATABASE statement.
	host_variable	A host variable whose value is a previously declared db_name. If you omit this clause, the INSERT statement is executed on your default database.
	FOR :host_integer	Limits the number of times the statement is executed if the VALUES clause contains array host variables. If you omit this clause, Oracle9i executes the statement once for each component in the smallest array.
	schema	The schema containing the table or view. If you omit schema, Oracle9i assumes the table or view is in your own schema.
	table
view

	The name of the table into which rows are to be inserted. If you specify view, Oracle9i inserts rows into the view's base table.
	db_link	A complete or partial name of a database link to a remote database where the table or view is located. For information on referring to database links, see the Oracle Database SQL Language Reference. You can only insert rows into a remote table or view if you are using Oracle9i with the distributed option.
If you omit db_link, Oracle9i assumes that the table or view is on the local database.

	part_name	The name of partition in the table
	column	A column of the table or view. In the inserted row, each column in this list is assigned a value from the VALUES clause or the query.
If you omit one of the table's columns from this list, the column's value for the inserted row is the column's default value as specified when the table was created. If you omit the column list altogether, the VALUES clause or query must specify values for all columns in the table.

	VALUES	Specifies a row of values to be inserted into the table or view. See the syntax description of expr in the Oracle Database SQL Language Reference. Note that the expressions can be host variables with optional indicator variables. You must specify an expression in the VALUES clause for each column in the column list.
	subquery	A subquery that returns rows that are inserted into the table. The select list of this subquery must have the same number of columns as the column list of the INSERT statement. For the syntax description of a subquery, see "SELECT" in the Oracle Database SQL Language Reference.
	DML returning clause	See "DML Returning Clause" for a discussion.

Usage Notes

Any host variables that appear in the WHERE clause should be either all scalars or all arrays. If they are scalars, Oracle9 executes the INSERT statement once. If they are arrays, Oracle9i executes the INSERT statement once for each set of array components, inserting one row each time.

Array host variables in the WHERE clause can have different sizes. In this case, the number of times Oracle9i executes the statement is determined by the smaller of the following values:

	
Size of the smallest array

	
The value of the host_integer in the optional FOR clause.

For more information on this statement, see "The Basic SQL Statements".

Example I

This example illustrates the use of the embedded SQL INSERT statement:

 EXEC SQL
 INSERT INTO EMP (ENAME, EMPNO, SAL)
 VALUES (:ENAME, :EMPNO, :SAL)
 END-EXEC.

Example II

This example shows an embedded SQL INSERT statement with a subquery:

 EXEC SQL
 INSERT INTO NEWEMP (ENAME, EMPNO, SAL)
 SELECT ENAME, EMPNO, SAL FROM EMP
 WHERE DEPTNO = :DEPTNO
 END-EXEC.

Related Topics

DECLARE DATABASE (Oracle Embedded SQL Directive).

LOB APPEND (Executable Embedded SQL Extension)

Purpose

To append a LOB to the end of another LOB.

Prerequisites

LOB buffering must not be enabled.The destination LOB must have been initialized.

Syntax

[image: LOB APPEND]

Usage Notes

For usage notes as well as keywords, parameters, and examples, see "APPEND".

Related Topics

See the other LOB statements.

LOB ASSIGN (Executable Embedded SQL Extension)

Purpose

To assign a LOB or BFILE locator to another locator.

Syntax

[image: LOB ASSIGN]

Usage Notes

For usage notes as well as keywords, parameters, and examples, see "ASSIGN".

Related Topics

See the other LOB statements.

LOB CLOSE (Executable Embedded SQL Extension)

Purpose

To close an open LOB or BFILE.

Syntax

[image: LOB CLOSE]

Usage Notes

For usage notes as well as keywords, parameters, and examples, see "CLOSE" .

Related Topics

See the other LOB statements.

LOB COPY (Executable Embedded SQL Extension)

Purpose

To copy all or part of a LOB value into another LOB.

Syntax

[image: LOB COPY]

Usage Notes

For usage notes as well as keywords, parameters, and examples, see "COPY".

Related Topics

See the other LOB statements.

LOB CREATE TEMPORARY (Executable Embedded SQL Extension)

Purpose

To create a temporary LOB.

Syntax

[image: LOB CREATE TEMPORARY]

Usage Notes

For usage notes as well as keywords, parameters, and examples, see "CREATE TEMPORARY".

Related Topics

See the other LOB statements.

LOB DESCRIBE (Executable Embedded SQL Extension)

Purpose

To retrieve attributes from a LOB.

Syntax

[image: LOB DESCRIBE]

where attrib is:

[image: example]

Usage Notes

For usage notes as well as keywords, parameters, and examples, see "DESCRIBE".

Related Topics

See the other LOB statements.

LOB DISABLE BUFFERING (Executable Embedded SQL Extension)

Purpose

To disable LOB buffering.

Syntax

[image: LOB DISABLE BUFFERING]

Usage Notes

For usage notes as well as keywords, parameters, and examples, see "DISABLE BUFFERING".

Related Topics

See the other LOB statements.

LOB ENABLE BUFFERING (Executable Embedded SQL Extension)

Purpose

To enable LOB buffering.

Syntax

[image: LOB ENABLE BUFFERING]

Usage Notes

For usage notes as well as keywords, parameters, and examples, see ENABLE BUFFERING

Related Topics

See the other LOB statements.

LOB ERASE (Executable Embedded SQL Extension)

Purpose

To erase a given amount of LOB data starting from a given offset.

Syntax

[image: LOB ERASE]

Usage Notes

For usage notes as well as keywords, parameters, and examples, see "ERASE".

Related Topics

See the other LOB statements.

LOB FILE CLOSE ALL (Executable Embedded SQL Extension)

Purpose

To close all open BFILEs in the current session.

Syntax

[image: LOB FILE CLOSE ALL]

Usage Notes

For usage notes as well as keywords, parameters, and examples, see "FILE CLOSE ALL".

Related Topics

See the other LOB statements.

LOB FILE SET (Executable Embedded SQL Extension)

Purpose

To set DIRECTORY and FILENAME in a BFILE locator.

Syntax

[image: LOB FILE SET]

Usage Notes

For usage notes as well as keywords, parameters, and examples, see "FILE SET".

Related Topics

See the other LOB statements.

LOB FLUSH BUFFER (Executable Embedded SQL Extension)

Purpose

To write the LOB buffers to the database server.

Syntax

[image: LOB FLUSH BUFFER]

Usage Notes

For usage notes as well as keywords, parameters, and examples, see "FLUSH BUFFER".

Related Topics

See the other LOB statements.

LOB FREE TEMPORARY (Executable Embedded SQL Extension)

Purpose

To free temporary space for the LOB locator.

Syntax

[image: LOB FREE TEMPORARY]

Usage Notes

For usage notes as well as keywords, parameters, and examples, see "FREE TEMPORARY".

Related Topics

See the other LOB statements.

LOB LOAD (Executable Embedded SQL Extension)

Purpose

To copy all or part of a BFILE into an internal LOB.

Syntax

[image: LOB LOAD]

Usage Notes

For usage notes as well as keywords, parameters, and examples, see "LOAD FROM FILE".

Related Topics

See the other LOB statements.

LOB OPEN (Executable Embedded SQL Extension)

Purpose

To open a LOB or BFILE for read or read/write access.

Syntax

[image: LOB OPEN]

Usage Notes

For usage notes as well as keywords, parameters, and examples, see "OPEN".

Related Topics

See the other LOB statements.

LOB READ (Executable Embedded SQL Extension)

Purpose

To read all or part of a LOB or BFILE into a buffer.

Syntax

[image: LOB READ]

Usage Notes

For usage notes as well as keywords, parameters, and examples, see "READ".

Related Topics

See the other LOB statements.

LOB TRIM (Executable Embedded SQL Extension)

Purpose

To truncate a LOB value.

Syntax

[image: LOB TRIM]

Usage Notes

For usage notes as well as keywords, parameters, and examples, see "TRIM".

Related Topics

See the other LOB statements.

LOB WRITE (Executable Embedded SQL Extension)

Purpose

To write the contents of a buffer to a LOB.

Syntax

[image: LOB WRITE]

Usage Notes

For usage notes as well as keywords, parameters, and examples, see "WRITE".

Related Topics

See the other LOB statements.

OPEN (Executable Embedded SQL)

Purpose

To open a cursor, evaluating the associated query and substituting the host variable names supplied by the USING clause into the WHERE clause of the query. It can be used in place of EXECUTE in dynamic SQL. For the ANSI Dynamic SQL syntax, see "OPEN DESCRIPTOR (Executable Embedded SQL)".

Prerequisites

You must declare the cursor with a DECLARE CURSOR embedded SQL statement before opening it.

Syntax

[image: OPEN]

Keywords and Parameters

	Keywords and Parameters	Description
	array_size
integer

	Host variable containing the number of rows to be processed.
Number of rows to be processed.

Can only be used when the OPEN is equivalent to EXECUTE.

	cursor	The (previously declared) cursor to be opened.
	host_variable	Specifies a host variable with an optional indicator variable to be substituted into the statement associated with the cursor.
CANNOT be used together with an ANSI descriptor (INTO clause).

	DESCRIPTOR SQLDA_descriptor	Specifies an Oracle descriptor that describes the host variables to be substituted into the WHERE clause of the associated query. The descriptor must be initialized in a previous DESCRIBE statement. The substitution is based on position. The host variable names specified in this statement can be different from the variable names in the associated query.
CANNOT be used together with an ANSI descriptor (INTO clause).

Usage Notes

The OPEN statement defines the active set of rows and initializes the cursor just before the first row of the active set. The values of the host variables at the time of the OPEN are substituted in the statement. This statement does not actually retrieve rows; rows are retrieved by the FETCH statement.

Once you have opened a cursor, its input host variables are not reexamined until you reopen the cursor. To change any input host variables and therefore the active set, you must reopen the cursor.

All cursors in a program are in a closed state when the program is initiated or when they have been explicitly closed using the CLOSE statement.

You can reopen a cursor without first closing it. For more information on this statement, see "Opening a Cursor".

Example

This example illustrates the use of the OPEN statement in a Pro*COBOL program:

 EXEC SQL DECLARE EMPCURSOR CURSOR FOR
 SELECT ENAME, EMPNO, JOB, SAL
 FROM EMP
 WHERE DEPTNO = :DEPTNO
 END-EXEC.
 EXEC SQL OPEN EMPCURSOR END-EXEC.

Related Topics

CLOSE (Executable Embedded SQL) .

DECLARE CURSOR (Embedded SQL Directive) .

EXECUTE (Executable Embedded SQL).

FETCH (Executable Embedded SQL).

PREPARE (Executable Embedded SQL) .

OPEN DESCRIPTOR (Executable Embedded SQL)

Purpose

To open a cursor (for ANSI Dynamic SQL Method 4), evaluating the associated query and substituting the input host variable names supplied by the USING clause into the WHERE clause of the query. The INTO clause denotes the output descriptor. It can be used in place of EXECUTE in dynamic SQL.

Prerequisites

You must declare the cursor with a DECLARE CURSOR embedded SQL statement before opening it.

Syntax

[image: OPEN DESCRIPTOR]

Keywords and Parameters

	Keywords and Parameters	Description
	array_size
integer

	Host variable containing the number of rows to be processed.
Number of rows to be processed.

Used only with dynamic SQL when it is equivalent to EXECUTE.

	cursor	The (previously declared) cursor to be opened.
	USING DESCRIPTOR
descriptor_name 'descriptor name'

	Specifies an ANSI input descriptor with the host variable containing the name of the ANSI descriptor, or the name of the ANSI descriptor.
	INTO DESCRIPTOR descriptor_name 'descriptor name'	Specifies an ANSI output descriptor with the host variable containing the name of the ANSI descriptor, or the name of the ANSI descriptor.
	GLOBAL | LOCAL	LOCAL (the default) means file scope, as opposed to GLOBAL, which means application scope.

Usage Notes

Set the precompiler option DYNAMIC to ANSI.

The OPEN statement defines the active set of rows and initializes the cursor just before the first row of the active set. The values of the host variables at the time of the OPEN are substituted in the statement. This statement does not actually retrieve rows; rows are retrieved by the FETCH statement.

Once you have opened a cursor, its input host variables are not reexamined until you reopen the cursor. To change any input host variables and therefore the active set, you must reopen the cursor.

All cursors in a program are in a closed state when the program is initiated or when they have been explicitly closed using the CLOSE statement.

You can reopen a cursor without first closing it. For more information on this statement, see "Inserting Rows".

Example

 01 DYN-STATEMENT PIC X(58) VALUE "SELECT ENAME, EMPNO FROM EMP WHERE
 DEPTNO =:DEPTNO-DAT".
 01 DEPTNO-DAT PIC S9(9) COMP VALUE 10.
 ...
 EXEC SQL ALLOCATE DESCRIPTOR 'input-descriptor' END-EXEC.
 EXEC SQL ALLOCATE DESCRIPTOR 'output-descriptor'
 ...
 EXEC SQL PREPARE S FROM :DYN-STATEMENT END-EXEC.
 EXEC SQL DECLARE C CURSOR FOR S END-EXEC.
 ...
 EXEC SQL OPEN C USING DESCRIPTOR 'input-descriptor' END-EXEC.
 ...

Related Topics

CLOSE (Executable Embedded SQL).

DECLARE CURSOR (Embedded SQL Directive).

FETCH DESCRIPTOR (Executable Embedded SQL) .

PREPARE (Executable Embedded SQL).

PREPARE (Executable Embedded SQL)

Purpose

To parse a SQL statement or PL/SQL block specified by a host variable and associate it with an identifier.

Prerequisites

None.

Syntax

[image: PREPARE]

Keywords and Parameters

	Keywords and Parameters	Description
	db_name	A null-terminated string containing the database connection name, as established previously in a CONNECT statement. If it is omitted, or if it is an empty string, the default database connection is assumed.
	host_variable	A host variable containing the name of the database connection.
	array_size
integer

	Host variable containing the number of rows to be processed.
Number of rows to be processed.

	statement_id	The identifier to be associated with the prepared SQL statement or PL/SQL block. If this identifier was previously assigned to another statement or block, the prior assignment is superseded.
	host_string	A host variable whose value is the text of a SQL statement or PL/SQL block to be prepared.
	text	A text literal containing the SQL statement or PL/SQL block to be executed. The quotes may be omitted.
	select_command	A SELECT statement.

Usage Notes

Any variables that appear in the host_string or text are placeholders. The actual host variable names are assigned in the USING clause of the OPEN statement (input host variables) or in the INTO clause of the FETCH statement (output host variables).

A SQL statement is prepared only once, but can be executed any number of times.

Example

This example illustrates the use of a PREPARE statement in a Pro*COBOL embedded SQL program:

 EXEC SQL PREPARE MYSTATEMENT FROM :MY-STRING END-EXEC.
 EXEC SQL EXECUTE MYSTATEMENT END-EXEC.

Related Topics

CLOSE (Executable Embedded SQL).

DECLARE CURSOR (Embedded SQL Directive).

FETCH (Executable Embedded SQL).

OPEN (Executable Embedded SQL).

ROLLBACK (Executable Embedded SQL)

Purpose

To undo work done in the current transaction. You can also use this statement to manually undo the work done by an in-doubt distributed transaction.

Prerequisites

To roll back your current transaction, no privileges are necessary.

To manually roll back an in-doubt distributed transaction that you originally committed, you must have FORCE TRANSACTION system privilege. To manually roll back an in-doubt distributed transaction originally committed by another user, you must have FORCE ANY TRANSACTION system privilege.

Syntax

[image: ROLLBACK]

Keywords and Parameters

	Keywords and Parameters	Description
	db_name	A null-terminated string containing the database connection name, as established previously in a CONNECT statement. If it is omitted, or if it is an empty string, the default database connection is assumed.
	host_variable	A host variable containing the name of the database connection.
	
	If you omit this clause, the savepoint is created on your default database.
	WORK	Is optional and is provided for ANSI compatibility.
	TO	Rolls back the current transaction to the specified savepoint. If you omit this clause, the ROLLBACK statement rolls back the entire transaction.
	FORCE	Manually rolls back an in-doubt distributed transaction. The transaction is identified by the text containing its local or global transaction ID. To find the IDs of such transactions, query the data dictionary view DBA_2PC_PENDING.
ROLLBACK statements with the FORCE clause are not supported in PL/SQL.

	RELEASE	Frees all resources and disconnects the application from the database server. The RELEASE clause is not allowed with SAVEPOINT and FORCE clauses.
	savepoint	The name of the savepoint to be rolled back to.

Usage Notes

A transaction (or a logical unit of work) is a sequence of SQL statements that Oracle9i treats as a single unit. A transaction begins with the first executable SQL statement after a COMMIT, ROLLBACK or connection to the database. A transaction ends with a COMMIT statement, a ROLLBACK statement, or disconnection (intentional or unintentional) from the database. Note that Oracle9i issues an implicit COMMIT statement before and after processing any data definition language statement.

Using the ROLLBACK statement without the TO SAVEPOINT clause performs the following operations:

	
ends the transaction

	
undoes all changes in the current transaction

	
erases all savepoints in the transaction

	
releases the transaction's locks

Using the ROLLBACK statement with the TO SAVEPOINT clause performs the following operations:

	
rolls back just the portion of the transaction after the savepoint.

	
loses all savepoints created after that savepoint. Note that the named savepoint is retained, so you can roll back to the same savepoint multiple times. Prior savepoints are also retained.

	
releases all table and row locks acquired since the savepoint. Note that other transactions that have requested access to rows locked after the savepoint must continue to wait until the transaction is committed or rolled back. Other transactions that have not already requested the rows can request and access the rows immediately.

It is recommended that you explicitly end transactions in application programs using either a COMMIT or ROLLBACK statement. If you do not explicitly commit the transaction and the program terminates abnormally, Oracle9i rolls back the last uncommitted transaction.

Example I

The following statement rolls back your entire current transaction:

 EXEC SQL ROLLBACK END-EXEC.

Example II

The following statement rolls back your current transaction to savepoint SP5:

 EXEC SQL ROLLBACK TO SAVEPOINT SP5 END-EXEC.

Distributed Transactions

Oracle9i with the distributed option enables you to perform distributed transactions, or transactions that modify data on multiple databases. To commit or roll back a distributed transaction, you need only issue a COMMIT or ROLLBACK statement as you would any other transaction.

If there is a network failure during the commit process for a distributed transaction, the state of the transaction may be unknown, or in-doubt. After consultation with the administrators of the other databases involved in the transaction, you may decide to manually commit or roll back the transaction on your local database. You can manually roll back the transaction on your local database by issuing a ROLLBACK statement with the FORCE clause.

You cannot manually roll back an in-doubt transaction to a savepoint.

A ROLLBACK statement with a FORCE clause only rolls back the specified transaction. Such a statement does not affect your current transaction.

Example III

The following statement manually rolls back an in-doubt distributed transaction:

 EXEC SQL ROLLBACK WORK FORCE '25.32.87' END-EXEC.

Related Topics

COMMIT (Executable Embedded SQL).

SAVEPOINT (Executable Embedded SQL).

SAVEPOINT (Executable Embedded SQL)

Purpose

To identify a point in a transaction to which you can later roll back.

Prerequisites

None.

Syntax

[image: SAVEPOINT]

Keywords and Parameters

	Keywords and Parameters	Description
	AT	Identifies the database on which the savepoint is created. The database can be identified by either:
	db_name	A database identifier declared in a previous DECLARE DATABASE statement.
	host_variable	A host variable whose value is a previously declared db_name. If you omit this clause, the savepoint is created on your default database.
	savepoint	The name of the savepoint to be created.

Usage Notes

For more information on this statement, see "Using the SAVEPOINT Statement".

Example

This example illustrates the use of the embedded SQL SAVEPOINT statement:

 EXEC SQL SAVEPOINT SAVE3 END-EXEC.

Related Topics

COMMIT (Executable Embedded SQL).

ROLLBACK (Executable Embedded SQL).

SELECT (Executable Embedded SQL)

Purpose

To retrieve data from one or more tables, views, or snapshots, assigning the selected values to host variables.

Prerequisites

For you to select data from a table or snapshot, the table or snapshot must be in your own schema or you must have SELECT privilege on the table or snapshot.

For you to select rows from the base tables of a view, the owner of the schema containing the view must have SELECT privilege on the base tables. Also, if the view is in a schema other than your own, you must have SELECT privilege on the view.

The SELECT ANY TABLE system privilege also enables you to select data from any table or any snapshot or any view's base table.

Syntax

[image: SELECT]

[image: SELECT]

Keywords and Parameters

	Keywords and Parameters	Description
	AT	Identifies the database to which the SELECT statement is issued. The database can be identified by either:
	db_name	A database identifier declared in a previous DECLARE DATABASE statement.
	host_variable	A host variable whose value is a previously declared db_name.
	
	If you omit this clause, the SELECT statement is issued to your default database.
	select_list	Identical to the non-embedded SELECT statement except that a host variables can be used in place of literals.
	INTO	Specifies output host variables and optional indicator variables to receive the data returned by the SELECT statement. Note that these variables must be either all scalars or all arrays, but arrays need not have the same size.
	WHERE	Restricts the rows returned to those for which the condition is TRUE. See the syntax description of condition in the Oracle Database SQL Language Reference. The condition can contain host variables, but cannot contain indicator variables. These host variables can be either scalars or arrays.

All other keywords and parameters are identical to the non-embedded SQL SELECT statement.

Usage Notes

If no rows meet the WHERE clause condition, no rows are retrieved and Oracle9i returns an error code through the SQLCODE component of the SQLCA.

You can use comments in a SELECT statement to pass instructions, or hints, to the Oracle9i optimizer. The optimizer uses hints to choose an execution plan for the statement. For more information on hints, see Oracle Database Performance Tuning Guide.

Example

This example illustrates the use of the embedded SQL SELECT statement:

 EXEC SQL SELECT ENAME, SAL + 100, JOB
 INTO :ENAME, :SAL, :JOB
 FROM EMP
 WHERE EMPNO = :EMPNO
 END-EXEC.

Related Topics

DECLARE CURSOR (Embedded SQL Directive).

DECLARE DATABASE (Oracle Embedded SQL Directive).

EXECUTE (Executable Embedded SQL).

FETCH (Executable Embedded SQL).

PREPARE (Executable Embedded SQL).

SET DESCRIPTOR (Executable Embedded SQL)

Purpose

Use this ANSI dynamic SQL statement to set information in the descriptor area from host variables.

Prerequisites

Use after a DESCRIBE DESCRIPTOR.

Syntax

[image: SET DESCRIPTOR]

where item_name can be one of these choices:

[image: SET DESCRIPTOR]

Keywords and Parameters

	Keywords and Parameters	Description
	array_size
integer

	Host variable containing the number of rows to be processed.
Number of rows to be processed. The array size clause can only be used with DATA, RETURNED_LENGTH and INDICATOR item names.

	GLOBAL | LOCAL	LOCAL (the default) means file scope, as opposed to GLOBAL, which means application scope.
	descriptor_name
'descriptor name'

	Host variable containing the name of the allocated ANSI descriptor.
Name of the allocated ANSI descriptor.

	COUNT	The total number of input or output variables.
	VALUE	The position of the referenced host variable in the statement.
	item_name	See Table 10-6, and Table 10-7 for lists of the item_names, and their descriptions.
	host_var	Host variable containing the total number of input or output variables.
	integer	Total number of input or output variables.
	host_var	The host variables used to set the item.
	REF	Reference semantics are to be used. Can be used only with RETURNED_LENGTH, DATA, and INDICATOR item names.
Must be used to set RETURNED_LENGTH.

Usage Notes

Use DYNAMIC=ANSI precompiler option. Set CHARACTER_SET_NAME to UTF16 for client-side Unicode support. See "SET DESCRIPTOR" for complete details, including tables of descriptor item names.

Example

 EXEC SQL SET DESCRIPTOR GLOBAL :mydescr COUNT = 3 END-EXEC.

Related Topics

ALLOCATE DESCRIPTOR (Executable Embedded SQL).

DEALLOCATE DESCRIPTOR (Embedded SQL Statement).

DESCRIBE DESCRIPTOR (Executable Embedded SQL).

GET DESCRIPTOR (Executable Embedded SQL).

PREPARE (Executable Embedded SQL).

UPDATE (Executable Embedded SQL)

Purpose

To change existing values in a table or in a view's base table.

Prerequisites

For you to update values in a table or snapshot, the table must be in your own schema or you must have UPDATE privilege on the table.

For you to update values in the base table of a view, the owner of the schema containing the view must have UPDATE privilege on the base table. Also, if the view is in a schema other than your own, you must have UPDATE privilege on the view.

The UPDATE ANY TABLE system privilege also enables you to update values in any table or any view's base table.

Syntax

[image: UPDATE]

where DML returning clause is:

[image: UPDATE]

Keywords and Parameters

	Keywords and Parameters	Description
	AT	identifies the database to which the UPDATE statement is issued. The database can be identified by either:
	dbname	A database identifier declared in a previous DECLARE DATABASE statement.
	host_variable	A host variable whose value is a previously declared dbname.
	-	If you omit this clause, the UPDATE statement is issued to your default database.
	FOR :host_integer	Limits the number of times the UPDATE statement is executed if the SET and WHERE clauses contain array host variables. If you omit this clause, Oracle9i executes the statement once for each component of the smallest array.
	schema	The schema containing the table or view. If you omit schema, Oracle9i assumes the table or view is in your own schema.
	table view	The name of the table to be updated. If you specify view, Oracle9i updates the view's base table.
	dblink	A complete or partial name of a database link to a remote database where the table or view is located. For information on referring to database links, see the Oracle Database SQL Language Reference. You can only use a database link to update a remote table or view if you are using Oracle9i with the distributed option.
	part_name	Name of partition in the table
	alias	A name used to reference the table, view, or subquery elsewhere in the statement.
	column	The name of a column of the table or view that is to be updated. If you omit a column of the table from the SET clause, that column's value remains unchanged.
	expr	The new value assigned to the corresponding column. This expression can contain host variables and optional indicator variables. See the syntax of expr in the Oracle Database SQL Language Reference.
	subquery_1	A subquery that returns new values that are assigned to the corresponding columns. For the syntax of a subquery, see "SELECT" in the Oracle Database SQL Language Reference.
	subquery_2	A subquery that return a new value that is assigned to the corresponding column. For the syntax of a subquery, see "SELECT" in the Oracle Database SQL Language Reference.
	WHERE	Specifies which rows of the table or view are updated:
	-	condition
	-	CURRENT OF
	-	If you omit this clause entirely, Oracle9i updates all rows of the table or view.
	DML returning clause	See "DML Returning Clause" for a discussion.

Usage Notes

Host variables in the SET and WHERE clauses must be either all scalars or all arrays. If they are scalars, Oracle9i executes the UPDATE statement only once. If they are arrays, Oracle9i executes the statement once for each set of array components. Each execution may update zero, one, or multiple rows.

Array host variables can have different sizes. In this case, the number of times Oracle9i executes the statement is determined by the smaller

of the following values:

	
The size of the smallest array

	
The value of the host_integer in the optional FOR clause

The cumulative number of rows updated is returned through the third element of the SQLERRD component of the SQLCA. When arrays are used as input host variables, this count reflects the total number of updates for all components of the array processed in the UPDATE statement. If no rows satisfy the condition, no rows are updated and Oracle9i returns an error message through the SQLCODE element of the SQLCA. If you omit the WHERE clause, all rows are updated and Oracle9i raises a warning flag in the fifth component of the SQLWARN element of the SQLCA.

You can use comments in an UPDATE statement to pass instructions, or hints, to the Oracle9i optimizer. The optimizer uses hints to choose an execution plan for the statement. For more information on hints, see Oracle Database Performance Tuning Guide.

For more information on this statement, see "The Basic SQL Statements" andChapter 3, "Database Concepts".

Examples

The following examples illustrate the use of the embedded SQL UPDATE statement:

 EXEC SQL UPDATE EMP
 SET SAL = :SAL, COMM = :COMM INDICATOR :COMM-IND
 WHERE ENAME = :ENAME
 END-EXEC.

 EXEC SQL UPDATE EMP
 SET (SAL, COMM) =
 (SELECT AVG(SAL)*1.1, AVG(COMM)*1.1
 FROM EMP)
 WHERE ENAME = 'JONES'
 END-EXEC.

Related Topics

DECLARE DATABASE (Oracle Embedded SQL Directive).

VAR (Oracle Embedded SQL Directive)

Purpose

To perform host variable equivalencing, to assign a specific Oracle9i external datatype to an individual host variable, overriding the default datatype assignment. There is an optional clause, CONVBUFSZ, that specifies the size of a buffer for character set conversion.

Prerequisites

The host variable must be previously declared in the embedded SQL program.

Syntax

[image: VAR]

Keywords and Parameters

	Keywords and Parameters	Description
	host_variable	The host variable to be assigned an Oracle9i external datatype.
	dtyp	An Oracle9i external datatype recognized by Pro*COBOL (not an Oracle9i internal datatype). The datatype may include a length, precision, or scale. This external datatype is assigned to the host_variable. For a list of external datatypes, see "External Datatypes".
	size	The size in bytes of a buffer in the Oracle9i runtime library used to perform conversion between character sets of the host_variable.

Usage Notes

Datatype equivalencing is useful for any of the following purposes:

	
To store program data as binary data in the database

	
To override default datatype conversion

For more information about Oracle datatypes, see "Sample Program 4: Datatype Equivalencing".

Example

This example equivalences the host variable DEPT_NAME to the datatype VARCHAR2 and the host variable BUFFER to the datatype RAW(200):

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 01 DEPT-NAME PIC X(15).
* -- default datatype is CHAR
 EXEC SQL VAR DEPT-NAME IS VARCHAR2 END-EXEC.
* -- reset to STRING
 ...
 01 BUFFER-VAR.
 05 BUFFER PIC X(200).
* -- default datatype is CHAR
 EXEC SQL VAR BUFFER IS RAW(200) END-EXEC.
* -- refer to RAW
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.

Related Topics

None.

WHENEVER (Embedded SQL Directive)

Purpose

To specify the action to be taken when an error or warning results from executing an embedded SQL program.

Prerequisites

None.

Syntax

[image: WHENEVER]

where DO.CALL.CLAUSE is:

[image: WHENEVER]

Keywords and Parameters

	Keywords and Parameters	Description
	NOT FOUND | NOTFOUND	Identifies any exception condition that returns an error code of +1403 to SQLCODE (or a +100 code when MODE=ANSI).
	SQLERROR	Identifies a condition that results in a negative return code.
	SQLWARNING	Identifies a non-fatal warning condition.
	CONTINUE	Indicates that the program should progress to the next statement.
	GOTO | GO TO	Indicates that the program should branch to the statement named by label.
	STOP	Stops program execution.
	DO PERFORM	Indicates that the program should perform a paragraph or section at label.
	DO CALL	Indicates that the program should execute a subprogram.
	subprogram_name	The subprogram to be executed. It may have to be inside quotes (").
	USING	Indicates that the parameters of the subprogram follow.
	param	A list of subprogram parameters separated by blanks.

The WHENEVER directive enables your program to take one of several possible actions in the event an embedded SQL statement results in an error or warning.

The scope of a WHENEVER statement is positional, rather than logical. A WHENEVER statement applies to all embedded SQL statements that textually follow it in the source file, not in the flow of the program logic. A WHENEVER statement remains in effect until it is superseded by another WHENEVER statement checking for the same condition.

For more information about and examples of the conditions and actions of this directive, see "WHENEVER Directive".

Do not confuse the WHENEVER embedded SQL directive with the WHENEVER SQL*Plus command.

Example

The following example illustrates the use of the WHENEVER directive in a Pro*COBOL embedded SQL program:

 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 ...
 EXEC SQL WHENEVER SQLERROR GOTO SQL-ERROR END-EXEC.
 ...
 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY "ORACLE ERROR DETECTED.".
 EXEC SQL ROLLBACK RELEASE END-EXEC.
 STOP RUN.

Related Topics

None

Pro*COBOL for Windows

F Pro*COBOL for Windows

This section provides an overview of building Oracle database applications with Pro*COBOL Release 9.2 for Windows operating systems.

This section contains these topics:

	
Compiling and Linking Pro*COBOL Applications

	
Sample Programs

Compiling and Linking Pro*COBOL Applications

Pro*COBOL supports the MERANT Micro Focus NetExpress version 4.0 for 32-bit Windows 2000. This section describes how to compile and link Pro*COBOL applications using the MERANT Micro Focus compiler.

You can build and execute a MERANT Micro Focus COBOL application in two ways:

	
How to Use the IDE (using NetExpress only)

	
How to Use the Animator Products (products other than NetExpress)

	
The COBOL and CBLLINK Commands (all products)

	
The COBSQL Command

In each of these the COBSQL utility may be used with the following advantages:

	
Pro*COBOL is run by the MERANT Micro Focus compiler and does not need to be run as a separate step.

	
Animation is done using the .pco source file rather than the .cbl file produced by Pro*COBOL.

	
The MAKEYSYN directive is provided automatically and need not be specified manually.

How to Use the IDE

A program generated by Pro*COBOL can be compiled and executed from within the MERANT Micro Focus NetExpress IDE. Simply add the .cbl file generated by Pro*COBOL to a Net Express project. To avoid potential inconsistencies when calling routines in the Oracle libraries the program should be compiled using the directive:

MAKESYN "COMP-5" = "COMP"

This directive can be specified in the build setting for the source file, the project settings or through a $SET line at the start of the source file. When you select Rebuild or Rebuild All the IDE generates an executable ready to Run or Animate.

How to Use the Animator Products

Programs can be compiled and executed from within the MERANT Micro Focus COBOL debugger, Animator V2.

To avoid potential inconsistencies when calling routines in the Oracle libraries, select the menu option Compiler Directives, and enter:

This step is required because MERANT Micro Focus COBOL stores binary numbers in Big Endian format. Oracle libraries expect binary numbers to be stored in Little Endian format (machine format).

MAKESYN "COMP-5" = "COMP"

The COBOL and CBLLINK Commands

COBOL and CBLLINK can be used to build programs in two ways, depending on whether the Pro*COBOL runtime is to be statically linked or accessed through a DLL at runtime.

For dynamic linking, the commands are:

 COBOL sample1 /MAKESYN"COMP-5"="COMP";
 CBLLINK sample1

For static linking, the commands are:

 COBOL sample1 /LITLINK /MAKESYN"COMP-5"="COMP";
 CBLLINK sample1 ORACLE_BASE\ORACLE_HOME\precomp\lib\orasql9.lib

The previous commands produce sample1.exe, which can be executed like any other Windows 2000 program.

	
Note:

MERANT Micro Focus COBOL must be installed on the same system as Pro*COBOL to successfully execute the file.

The COBSQL Command

COBSQL can be used to simplify preprocessing and debugging. To use COBSQL, specify the following directive to the COBOL compiler:

PREPROCESS(COBSQL) COBSQLTYPE=ORACLE8 ENDP

or the short form:

P(COBSQL) CSQLT=ORA8 ENDP

COBSQLTYPE should be set to ORACLE or ORA for versions of Pro*COBOL prior to release 8.0. The directive may be set with a $SET line at the start of the source file, on the COBOL command line, in program build settings or project settings for NetExpress, or with SQL compiler directives settings for Animator. At compile time, COBSQL runs Pro*COBOL as a background task and passes its output to the COBOL compiler together with additional information required to enable Animator to track execution using the .pco file rather than .cbl file.

When using COBSQL there is no need to deal directly with the .cbl file. Instead, add the .pco file to a NetExpress project, or open it with Animator.

Sample Programs

Oracle provides sample programs to demonstrate the use of Pro*COBOL with Oracle database features. See "Sample Files" for a listing of these programs.

This section describes how to use the basic precompiling, compiling, and linking commands to build the sample programs. This section also describes the preparations required for running the Pro*COBOL sample programs.

Building the Demonstration Table

To run the Pro*COBOL sample programs, you must have a database account with the username scott and the password tiger. If this account does not exist on your database, create one before running the sample programs.

The scott account must contain the emp and dept tables. If the account does not contain these tables, use the demobld.sql script to create them.

To run the demobld.sql script:

	
Start SQL*Plus.

	
Connect to the database as username scott with password tiger.

	
Run the demobld.sql script. For example:

SQL> @ORACLE_BASE\ORACLE_HOME\sqlplus\demo\demobld.sql

Building the Sample Programs

Pro*COBOL supplies the makeit.bat file which is listed in the next section, for building a MERANT Micro Focus COBOL sample file:

For release 9.2.0, the batch files are located in ORACLE_BASE\ORACLE_HOME \precomp\demo\procob2.

To build the sample programs:

	
Run the batch files with any sample file. Do not include the file extension. For example:

C:\ORACLE\ORA90\PRECOMP\DEMO\PROCOB2> makeit sample1

	
Ensure that all paths and file names reflect the configuration of your system, if you encounter errors when building a sample program.

The commands to run the sample programs assume that the following are the current working directory:

ORACLE_BASE\ORACLE_HOME \precomp\demo\procob2 directory for release 9.2.0

You may need to modify the sample link script to reflect the configuration of your system. See "Compiling and Linking Pro*COBOL Applications" for more information.

The makeit.bat for release 9.2.0 contains the following:

procob iname=%1.pco ireclen=132
cobol %1 /anim /litlink makesyn "COMP-5" = "COMP";
cbllink %1 /M%1 ORACLE_BASE\ORACLE_HOME\precomp\lib\orasql9.lib

Sample Files

The Pro*COBOL sample files listed in Table F-1 are located in the ORACLE_BASE\ORACLE_HOME\precomp\demo\procob2 (release 9.2.0) directory. The SQL scripts are located in the ORACLE_BASE\ORACLE_HOME\precomp\demo\sql directory.

Table F-1 Pro*COBOL Sample Programs

	Sample Program	Description
	
sample1.pco

	
Simple query

	
sample2.pco

	
Cursor operations

	
sample3.pco

	
Host tables

	
sample4.pco

	
Datatype equivalence

	
sample6.pco

	
Dynamic SQL Method 1

	
sample7.pco

	
Dynamic SQL Method 2

	
sample8.pco

	
Dynamic SQL Method 3

	
sample9.pco

	
Stored procedure call

	
calldemo.sql

	
Stored procedure call

	
sample10.pco

	
Dynamic SQL Method 4

	
sample11.pco

	
Cursor variable operations

	
sample11.sql

	
Cursor variable operations

	
sample12.pco

	
Dynamic SQL Method 4 using ANSI dynamic SQL

	
sample13.pco

	
Nested program

	
sampleco.pco

	
Simple query and insert

	
sample14.pco

	
Host table x (release 8.1.6 and on)

	
lobdemo1.pco

	
LOB datatypes (release 8.1.6 and on)

	
lobdemo1.sql

	
LOB datatypes (release 8.1.6 and on)

Index

Index

A B C D E F G H I J L M N O P Q R S T U V W X

A

	abbreviations permitted, 2.2.1
	abnormal termination
	
	automatic rollback, E.8

	active set, 5.4
	
	changing, 5.4.2, 5.4.3
	definition, 5.4
	when empty, 5.4.3

	ALLOCATE DESCRIPTOR statement, E.5
	ALLOCATE statement, E.4
	
	use with ROWID, 4.7

	allocating
	
	cursors, E.4
	thread context, 12.4.2.3, E.10

	allocating cursor variables, 6.10.2
	ALTER AUTHORIZATION
	
	changing password, 3.2.4

	ANSI dynamic SQL, F.2.3
	
	See also dynamic SQL (ANSI), 10

	ANSI format
	
	COBOL statements, 2.2.4

	ANSI/ISO SQL
	
	extensions, 14.7.18

	application development process, 2.1.1
	ARRAYLEN statement, 6.6.1
	ASACC precompiler option, 14.7.1
	ASSUME_SQLCODE precompiler option, 14.7.2
	AT clause
	
	CONNECT statement, 3.2.2.1
	DECLARE CURSOR statement, 3.2.2.1
	DECLARE STATEMENT statement, 3.2.2.1
	EXECUTE IMMEDIATE statement, 3.2.2.1
	of COMMIT statement, E.8
	of CONNECT statement, E.9
	of DECLARE CURSOR directive, E.14
	of DECLARE STATEMENT directive, E.16
	of EXECUTE IMMEDIATE statement, E.25
	of EXECUTE statement, E.22
	of INSERT statements, E.30
	of SAVEPOINT statement, E.53
	of SELECT statement, E.54
	of UPDATE statement, E.56
	restrictions, 3.2.2.1

	AUTO_CONNECT option
	
	instead of CONNECT statement, 3.2.3.1

	AUTO_CONNECT precompiler option, 14.7.3
	automatic logons, 3.2.2, 3.2.3
	Avoiding Unnecessary Reparsing, C.10

B

	batch fetch, 7.4.1
	
	example, 7.4.1
	number of rows returned, 7.4.3

	BFILES
	
	definition, 13.1.2

	bind descriptor, 11.2.1
	bind descriptors
	
	information in, 9.13.2

	bind SQLDA, 11.1.3
	bind variables, 9.13.1
	binding host variables, 9.5
	BNDDFCLP variable (SQLDA), 11.3
	BNDDFCRCP variable (SQLDA), 11.3
	BNDDFMT variable (SQLDA), 11.3
	BNDDH-CUR-VNAMEL variable (SQLDA), 11.3
	BNDDH-MAX-VNAMEL variable (SQLDA), 11.3
	BNDDH-VNAME variable (SQLDA), 11.3
	BNDDI variable (SQLDA), 11.3
	BNDDI-CUR-VNAMEL variable (SQLDA), 11.3
	BNDDI-MAX-VNAMEL variable (SQLDA), 11.3
	BNDDI-VNAME variable (SQLDA), 11.3
	BNDDV variable (SQLDA), 11.3
	BNDDVLN variable (SQLDA), 11.3
	BNDDVTYP variable (SQLDA), 11.3

C

	CALL SQL statement, 6.8.2.2
	CALL statement, E.6
	
	example, 6.8.2.3

	case-insensitivity, 2.2.2
	CHAR datatypes
	
	external, 4.1.2.1

	character host variables
	
	as output variables, 4.6.3.2
	handling, 4.6
	server handling, 4.6.3.2
	types, 4.6

	character sets
	
	multibyte, 4.9

	character strings
	
	multibyte, 4.9.2

	CHARF datatype specifier, 4.12.3
	
	using in VAR statement, 4.12.3, 4.12.3

	CHARF datatypes
	
	external, 4.1.2.2

	CHARZ datatype
	
	external, 4.1.2.3

	CLOSE command
	
	examples, E.7

	CLOSE statement, E.7
	
	example, 5.4.4
	in dynamic SQL method 4, 11.6.17

	CLOSE_ON_COMMIT
	
	precompiler option, 3.6.2, 5.4.1

	CLOSE_ON_COMMIT precompiler option, 14.7.6
	closing
	
	cursors, E.7

	COBOL versions supported, 2.2.3, A.1.1
	COBOL-74, A.1.1
	COBOL-85, A.1.1
	COBSQL, F.1.4
	code page, 4.8
	coding area
	
	for paragraph names, 2.2.22

	coding conventions, 2.2
	column list, 5.3.3
	COMMENT clause
	
	of COMMIT statement, E.8

	comments
	
	ANSI SQL-style, 2.2.6
	C-style, 2.2.6
	embedded SQL statements, 2.2.6
	in embedded SQL, 2.2.6

	comments in dynamic PL/SQL blocks, 9.16.5
	commit, 3.4
	
	automatic, 3.5
	explicit versus implicit, 3.5

	COMMIT statement, 3.6, E.8
	
	effects, 3.6
	ending a transaction, E.52
	example, 3.6
	examples, E.8
	RELEASE option, 3.6
	using in a PL/SQL block, 3.14.3
	where to place, 3.6

	committing
	
	transactions, E.8

	COMP_CHARSET precompiler option, 14.7.7
	compilation, 2.7
	composite types, 11.4.3
	concurrency, 3.3
	concurrent logons, 3.2.1
	conditional precompilation, 2.5
	
	defining symbols, 2.5.2
	example, 2.5.1

	CONFIG precompiler option, 14.7.6, 14.7.8
	configuration file
	
	system versus user, 14.7.8

	CONNECT statement, E.9
	
	AT clause, 3.2.2.1
	enabling a semantic check, D.3.1.1
	examples, E.9
	logging on to Oracle, 3.1
	placement, 3.1
	requirements, 3.1
	USING clause, 3.2.2.1
	when not required, 3.2.3.1

	connecting to Oracle, 3.1
	
	automatically, 3.2.3
	concurrently, 3.2.1
	example of, 3.1
	via Oracle Net, 3.2.1

	connections
	
	default versus non-default, 3.2.1
	implicit, 3.2.6
	naming, 3.2.2

	CONTEXT ALLOCATE statement, 12.4.2.3, E.10, E.10
	CONTEXT FREE statement, 12.4.2.5, E.11
	CONTEXT USE directive, 12.4.2.4
	CONTEXT USE SQL directive, E.12
	CONTEXT USE SQL statement, 12.4.2.4
	continuation lines
	
	syntax, 2.2.7

	CONTINUE action
	
	of WHENEVER directive, 8.3.8.6, 8.3.8.6, E.58

	CONVBUFSZ clause in VAR statement, 4.12.2.1
	CREATE PROCEDURE statement, 6.8.1
	creating
	
	savepoints, E.53

	CURRENT OF clause, 5.4.5, 7.3.5
	
	example, 5.4.5
	mimicking with ROWID, 3.12, 7.11
	restrictions, 5.4.6

	current row, 5.4
	CURRVAL pseudocolumn, 4.1.2.23
	cursor cache, 8.4.4
	
	gathering statistics about, 8.4.5.11
	purpose, 8.4, C.9.2.1

	cursor variables, 6.10, E.4
	
	advantages, 6.10
	allocating, 6.10.2
	closing, 6.10.5
	declaring, 6.10.1
	fetching from, 6.10.4
	heap memory usage, 6.10.2
	opening
	
	anonymous block, 6.10.3.2
	stored procedure, 6.10.3.1

	restrictions, 6.10.7
	scope, 6.10.1

	cursors, 5.4
	
	allocating, E.4
	association with query, 5.4
	closing, E.7
	declaring, 5.4.1
	effects on performance, C.9.1
	explicit versus implicit, 5.4
	fetching rows from, E.26, E.27
	naming, 5.4.1
	opening, E.49, E.50
	reopening, 5.4.2, 5.4.3
	restricted scope of, 2.6.2
	restrictions, 5.4.1
	scope, 5.4.1
	using for multirow queries, 5.4
	using more than one, 5.4.1
	when closed automatically, 5.4.4

D

	data definition language (DDL)
	
	description, 5.1.1
	embedded, 14.7.35

	data integrity, 3.3
	data lock, 3.3
	database links
	
	using in DELETE statement, E.18
	using in INSERT statement, E.30
	using in UPDATE statement, E.56

	datatype
	
	internal versus external, 2.1.7

	datatype conversion
	
	between internal and external types, 4.11

	datatype equivalencing
	
	advantages, 4.12.1
	example, 4.12.2.2
	guidelines, 4.12.4

	datatypes
	
	ANSI DATE, 4.2
	coercing NUMBER to VARCHAR2, 11.4.3
	conversions, 4.10
	dealing with Oracle internal, 11.4.3
	descriptor codes, 11.4.3
	equivalencing
	
	description, 4.12
	example, 4.12.2

	internal, 11.4.2
	INTERVAL DAY TO SECOND, 4.2
	INTERVAL YEAR TO MONTH, 4.2
	need to coerce, 11.4.3
	PL/SQL equivalents, 11.4.3
	TIMESTAMP, 4.2
	TIMESTAMP WITH LOCAL TIME ZONE, 4.2
	TIMESTAMP WITH TIME ZONE, 4.2
	when to reset, 11.4.3

	DATE datatype
	
	converting, 4.11
	default format, 4.11

	DATE String Format
	
	explicit control over, 4.11

	DATE, ANSI
	
	datatype, 4.2

	DATE_FORMAT precompiler option, 14.7.9
	DBMS precompiler option, 14.7.10, 14.7.11
	DDL, 14.7.35
	DDL (Data Definition Language), 5.1.1
	deadlock, 3.3
	
	effect on transactions, 3.7.1
	how broken, 3.7.1

	DEALLOCATE DESCRIPTOR statement, E.13
	DECIMAL datatype, 4.1.2.5
	declaration
	
	cursor, 5.4.1
	host variable, 2.1.6

	declarative SQL statement, 2.1.2.1
	
	using in transactions, 3.5

	declarative statements
	
	also known as directives, 2.1.2.1

	DECLARE CURSOR directive, E.14
	
	example, 5.4.1
	examples, E.14

	DECLARE CURSOR statement
	
	AT clause, 3.2.2.1
	in dynamic SQL method 4, 11.6.7
	where to place, 5.4.1

	DECLARE DATABASE directive, E.15
	Declare Section
	
	allowable statements, 2.3.1
	example, 2.3.1.1
	purpose, 2.3.1
	requirements, 2.3.1
	rules for defining, 2.3.1
	using more than one, 2.3.2

	declare section
	
	defining usernames and passwords, 3.1

	DECLARE statement
	
	using in dynamic SQL method 3, 9.11.2

	DECLARE STATEMENT directive, E.16
	
	examples, E.16
	scope of, E.16

	DECLARE STATEMENT statement
	
	AT clause, 3.2.2.1
	example, 9.14
	using in dynamic SQL, 9.14
	when required, 9.14

	DECLARE TABLE directive, E.17
	
	examples, E.17

	DECLARE TABLE directives
	
	using with the SQLCHECK option, D.3.1.2

	DECLARE_SECTION precompiler option, 14.7.12
	declaring
	
	cursor variables, 6.10.1
	host tables, 7.3.1
	indicator variables, 4.4.2
	ORACA, 8.4.2
	SQLCA, 8.3.2
	SQLDA, 11.2.3
	VARCHAR variables, 4.5.1

	default
	
	error handling, 8.3.8
	setting of LITDELIM option, 2.2.10, 14.7.26
	setting of ORACA option, 8.4.3

	default connection, 3.2.1
	DEFINE precompiler option, 14.7.13
	DELETE statement, E.18
	
	embedded SQL examples, E.18
	example, 5.3.6
	restrictions with tables, 7.7.1
	using host tables, 7.7
	WHERE clause, 5.3.6

	DEPENDING ON clause, 7.3.1.1
	DEPT table, 2.8
	DESCRIBE BIND VARIABLES statement
	
	in dynamic SQL method 4, 11.6.8

	DESCRIBE DESCRIPTOR statement, E.20
	DESCRIBE SELECT LIST statement
	
	in dynamic SQL method 4, 11.6.12

	DESCRIBE statement, E.19
	
	example, E.19
	use with PREPARE statement, E.19
	using in dynamic SQL method 4, 9.13.1

	descriptor
	
	naming, E.19

	descriptors
	
	bind descriptor, 11.2.1
	purpose, 11.2.1
	select descriptor, 11.2.1
	SQLADR subroutine, 11.1.3

	dimension of host tables, 7.3.1.1
	directives
	
	also known as declarative statements, 2.1.2.1

	directory path
	
	INCLUDE files, 2.3.3.2

	DISPLAY datatype, 4.1.2.6
	distributed processing, 3.2.1
	DML returning clause, 5.3.3, 5.3.3
	DO CALL action
	
	of WHENEVER directive, 8.3.9.1, 8.3.9.2, E.58

	DO PERFORM action
	
	of WHENEVER directive, 8.3.8.8, E.58

	DSNTIAR
	
	DB2 compatible feature, 8.3.7

	DSNTIAR routine, 8.3.7
	DYNAMIC option
	
	effect on functionality, 10.5

	dynamic PL/SQL, 9.16
	dynamic SQL
	
	advantages and disadvantages, 9.2
	choosing the right method, 9.6.5
	guidelines, 9.6.5
	overview, 2.1.4, 9.1
	restrictions, 14.7.35
	using PL/SQL, 6.8.3
	using the AT clause, 3.2.2.1
	when useful, 9.3

	dynamic SQL (ANSI), F.2.3
	
	ALLOCATE DESCRIPTOR statement, 10.6.1
	basics, 10.1
	bulk operations, 10.4.2
	CLOSE CURSOR statement, 10.6.13
	compared to Oracle dynamic SQL method 4, 10
	DEALLOCATE DESCRIPTOR statement, 10.6.2
	DESCRIBE DESCRIPTOR statement, 10.6.6
	differences from Oracle dynamic SQL, 10.6.14
	EXECUTE statement, 10.6.8
	FETCH statement, 10.6.12
	GET DESCRIPTOR statement, 10.6.3
	OPEN statement, 10.6.11
	Oracle extensions, 10.4
	overview, 10.2
	precompiler options, 10.1.1, 10.5
	reference semantics, 10.4.1
	restrictions, 10.6.15
	sample programs, 10.7
	SAMPLE12.PCO, 10.7
	SET DESCRIPTOR statement, 10.6.4
	use of DECLARE CURSOR, 10.6.10
	use of EXECUTE IMMEDIATE statement, 10.6.9
	use of PREPARE statement, 10.6.5
	when to use, 10

	dynamic SQL method 1
	
	commands, 9.6.1
	description, 9.7.1
	example, 9.7.2
	requirements, 9.6.1
	using EXECUTE IMMEDIATE, 9.7.1
	using PL/SQL, 9.16.1

	dynamic SQL method 2
	
	commands, 9.6.2
	description, 9.9
	requirements, 9.6.2
	using PL/SQL, 9.16.2
	using the DECLARE STATEMENT statement, 9.14
	using the EXECUTE statement, 9.9
	using the PREPARE statement, 9.9

	dynamic SQL method 3
	
	commands, 9.6.3
	compared to method 2, 9.11
	requirements, 9.6.3
	using PL/SQL, 9.16.3
	using the DECLARE statement, 9.11.2
	using the DECLARE STATEMENT statement, 9.14
	using the FETCH statement, 9.11.4
	using the OPEN statement, 9.11.3
	using the PREPARE statement, 9.11.1

	dynamic SQL method 4
	
	CLOSE statement, 11.6.17
	DECLARE CURSOR statement, 11.6.7
	DESCRIBE statement, 11.6.8, 11.6.12
	external datatypes, 11.4.2
	FETCH statement, 11.6.15
	internal datatypes, 11.4.2
	OPEN statement, 11.6.11
	PREPARE statement, 11.6.6
	prerequisites, 11.4
	purpose of descriptors, 11.2.1
	requirements, 9.6.4, 11.1.1
	sequence of statements used, 11.6
	SQLDA, 11.2
	steps for, 11.5
	using descriptors, 9.13
	using PL/SQL, 9.16.4
	using the DECLARE STATEMENT statement, 9.14
	using the DESCRIBE statement, 9.13.1
	using the FOR clause, 9.15
	using the SQLDA, 9.13.1
	when needed, 9.13

	dynamic SQL statement, 9.1
	
	binding of host variables, 9.5
	how processed, 9.5
	requirements, 9.4
	using host tables, 9.15
	versus static SQL statement, 9.1

E

	embedded DDL, 14.7.35
	embedded PL/SQL
	
	advantages, 6.2.1
	cursor FOR loop, 6.2.3
	example, 6.4.1, 6.4.2
	host variables, 6.1.1
	indicator variables, 6.1.3
	multibyte Globalization Support features, 4.9.1
	need for SQLCHECK option, 6.3
	need for USERID option, 6.3
	overview, 2.1.5
	package, 6.2.5
	PL/SQL table, 6.2.6
	requirements, 6.1
	subprogram, 6.2.4
	support for SQL, 2.1.5
	user-defined record, 6.2.7
	using %TYPE, 6.2.2
	using the VARCHAR pseudotype, 6.4.3
	using to improve performance, C.4
	VARCHAR variables, 6.1.2
	where allowed, 6.1, 6.3

	embedded SQL
	
	ALLOCATE DESCRIPTOR statement, E.5
	ALLOCATE statement, 4.7, 6.10.2, E.4
	CALL statement, 6.8.2.2, E.6
	CLOSE statement, 5.4.4, 6.10.5, E.7
	COMMIT statement, E.8
	CONNECT statement, E.9
	CONTEXT ALLOCATE statement, 12.4.2.3, E.10
	CONTEXT FREE statement, 12.4.2.5, E.11
	CONTEXT USE directive, E.12
	DEALLOCATE DESCRIPTOR statement, E.13
	DECLARE [CURSOR] directive, 5.4.1
	DECLARE CURSOR directive, E.14
	DECLARE DATABASE directive, E.15
	DECLARE STATEMENT directive, E.16
	DECLARE TABLE directive, E.17
	DELETE statement, 5.3.6, E.18
	DESCRIBE DESCRIPTOR statement, E.20
	DESCRIBE statement, E.19
	ENABLE THREADS statement, 12.4.2.2
	EXECUTE IMMEDIATE statement, E.25
	EXECUTE statement, E.23
	EXECUTE...END-EXEC statement, E.22
	FETCH DESCRIPTOR statement, E.27
	FETCH statement, 5.4.3, 6.10.4, E.26, E.27
	FREE statement, 6.10.6, E.28
	GET DESCRIPTOR statement, E.29
	INSERT statement, 5.3.2, 7.5, E.30
	key concepts, 2.1
	OPEN DESCRIPTOR statement, E.50
	OPEN statement, 5.4.2, E.49, E.49, E.50
	PREPARE statement, E.51
	ROLLBACK statement, E.52
	SAVEPOINT statement, 3.8, E.53
	SELECT statement, 5.3.1, 7.4, E.54
	SET DESCRIPTOR statement, E.55
	SET TRANSACTION statement, 3.10
	UPDATE statement, 5.3.5, E.56
	VAR directive, E.57
	versus interactive SQL, 2.1.3
	when to use, 1.4
	WHENEVER directive, E.58

	embedded SQL statements
	
	associating paragraph names with, 2.2.22
	comments, 2.2.6
	continuation, 2.2.7
	figurative constants, 2.2.13
	mixing with host-language statements, 2.1.3
	referencing host tables, 7.3.2
	referencing host variables, 4.3.2
	referencing indicator variables, 4.4.3
	requirements, 2.2.12
	summary, E.1
	syntax, 2.1.3, 2.2.12
	terminator, 2.2.25

	embedding
	
	PL/SQL blocks in Oracle7 precompiler programs, E.22

	EMP table, 2.8
	ENABLE THREADS SQL statement, E.21
	ENABLE THREADS statement, 12.4.2.2
	enabling
	
	threads, 12.4.2.2

	encoding scheme, 4.8
	END_OF_FETCH precompiler option, 14.7.15, 14.7.15
	equivalencing
	
	host variable equivalencing, E.57

	equivalencing datatypes, 4.12
	error detection
	
	error reporting, E.58

	error handling
	
	alternatives, 8.2
	benefits, 8.1
	default, 8.3.8
	overview, 2.1.9
	using status variables
	
	SQLCA, 8.2.1, 8.3

	using the ROLLBACK statement, 3.7
	using the SQLGLS routine, 8.3.10

	error message text
	
	SQLGLM subroutine, 8.3.6

	error messages
	
	maximum length, 8.3.6

	error reporting
	
	error message text, 8.3.3.5
	key components of, 8.3.3
	parse error offset, 8.3.3.4
	rows-processed count, 8.3.3.3
	status codes, 8.3.3.1
	warning flags, 8.3.3.2
	WHENEVER directive, E.58

	ERRORS precompiler option, 14.7.16
	exception, PL/SQL, 6.5.1
	EXEC ORACLE DEFINE statement, 2.5
	EXEC ORACLE ELSE statement, 2.5
	EXEC ORACLE ENDIF statement, 2.5
	EXEC ORACLE IFDEF statement, 2.5
	EXEC ORACLE IFNDEF statement, 2.5
	EXEC ORACLE statement
	
	scope of, 14.4.2.2
	syntax for, 14.4.2
	uses for, 14.4.2.1
	using to enter options inline, 14.4.2

	EXEC SQL clause, 2.1.3, 2.2.12
	EXECUTE IMMEDIATE statement, E.25
	
	AT clause, 3.2.2.1
	examples, E.25
	using in dynamic SQL Method 1, 9.7.1

	EXECUTE optional keyword of ARRAYLEN statement, 6.6.1.1
	EXECUTE statement, E.23, E.23
	
	examples, E.22, E.23
	using in dynamic SQL Method 2, 9.9

	EXECUTE...END-EXEC statement, E.22
	execution plan, C.5
	EXPLAIN PLAN statement
	
	using to improve performance, C.5.1.1

	explicit logon
	
	single, 3.2.2.1

	explicit logons, 3.2.2
	external datatypes
	
	CHAR, 4.1.2.1
	CHARF, 4.1.2.2
	CHARZ, 4.1.2.3
	DECIMAL, 4.1.2.5
	definition, 2.1.7
	DISPLAY, 4.1.2.6
	dynamic SQL method 4, 11.4.2
	FLOAT, 4.1.2.7
	INTEGER, 4.1.2.8
	LONG, 4.1.2.9
	LONG RAW, 4.1.2.10
	LONG VARCHAR, 4.1.2.11
	LONG VARRAW, 4.1.2.12
	parameters, 4.12.2
	RAW, 4.1.2.15
	STRING, 4.1.2.17
	table of, 4.1.2
	UNSIGNED, 4.1.2.18
	VARCHAR, 4.1.2.19
	VARCHAR2, 4.1.2.20
	VARNUM, 4.1.2.21
	VARRAW, 4.1.2.22

F

	features
	
	new, Preface

	FETCH SQL statement, E.27, E.27
	FETCH statement, 5.4.3, 5.4.3, E.26
	
	cursor variable, 6.10.4
	example, 5.4.3
	examples, E.26
	in dynamic SQL method 4, 11.6.15
	INTO clause, 5.4.3
	used after OPEN statement, E.49, E.50
	using in dynamic SQL method 3, 9.11.4

	fetch, batch, 7.4.1
	fetching
	
	rows from cursors, E.26, E.27

	figurative constants
	
	embedded SQL statements, 2.2.13

	file extension
	
	for INCLUDE files, 2.3.3.1

	file length limit, 2.2.14
	FIPS flagger
	
	warns of array usage, 7.3.6

	FIPS precompiler option, 14.7.18
	flags, 8.3.3.2
	FLOAT datatype, 4.1.2.7
	FOR clause, 7.9
	
	example, 7.9
	of embedded SQL EXECUTE statement, E.23, E.24
	of embedded SQL INSERT statement, E.30
	restrictions, 7.9.1
	using with host tables, 7.9

	FOR UPDATE OF clause, 3.11.1
	FORCE clause
	
	of COMMIT statement, E.8
	of ROLLBACK statement, E.52

	format mask, 4.11
	FORMAT precompiler option, 14.7.19
	
	purpose, 2.2.4

	formats of COBOL statements
	
	ANSI, 2.2.4
	TERMINAL, 2.2.4

	forward reference, 5.4.1
	FREE statement, E.28, E.28
	freeing
	
	thread context, 12.4.2.5, E.11

	full scan, C.7

G

	GET DESCRIPTOR statement, E.29
	Globalization Support, 4.8, 4.8, 14.7.35
	
	multibyte character strings, 4.9

	Globalization Support parameter
	
	NLS_LANG, 4.8

	GOTO action
	
	of WHENEVER directive, 8.3.8.9, E.58

	group items
	
	allowed as host variables, 4.3.2.1
	implicit VARCHAR, 4.5.2

	guidelines
	
	datatype equivalencing, 4.12.4
	dynamic SQL, 9.6.5
	separate precompilation, 2.6.1
	transaction, 3.14.1

H

	header files, 1.7.1
	heap, 8.4.4
	heap memory
	
	allocating cursor variables, 6.10.2

	heap tables, 4.7
	hint, optimizer, C.5.1
	hints
	
	in DELETE statements, E.18
	in SELECT statements, E.54
	in UPDATE statements, E.56

	HOLD_CURSOR option
	
	of ORACLE Precompilers, E.7
	using to improve performance, C.9.2.4
	what it affects, C.9

	HOLD_CURSOR precompiler option, 14.7.20
	host language, 2.1.2
	HOST precompiler option, 14.7.21
	host programs, 2.1.2
	host table elements
	
	maximum, 7.3.1.1

	host table example, 7.4.7
	host tables, 7.1
	
	advantages, 7.2
	declaring, 7.3.1
	dimensioning, 7.3.1.1
	multi-dimensional, 7.3.1.1
	operations on, 2.1.8
	referencing, 7.3.2
	restrictions, 7.3.1.1, 7.3.1.1, 7.4.4, 7.5.1, 7.7.1
	restrictions on, 7.3.5
	support for, 4.3.1.1
	using in dynamic SQL statements, 9.15
	using in the DELETE statement, 7.7
	using in the INSERT statement, 7.5
	using in the SELECT statement, 7.4
	using in the UPDATE statement, 7.6
	using in the WHERE clause, 7.10
	using the FOR clause, 7.9
	using to improve performance, C.3
	variable-length, 7.3.1.1

	host variables, 5.1
	
	assigning a value, 2.1.6
	declaring, 2.2.1, 2.3.1
	declaring and naming, A.1.2
	definition, 2.2.16
	host variable equivalencing, E.57
	in EXECUTE statement, E.23
	in OPEN statement, E.49
	initializing, 4.3.1.2
	length up to 30 characters, 2.1.6
	naming, 2.1.6, 4.3.2, 4.3.2.2
	overview, 2.1.6
	referencing, 2.1.6, 4.3.2
	requirements, 2.1.6
	restrictions, 2.2.17, 4.3.2.2
	using in PL/SQL, 6.4
	where allowed, 2.1.6
	with PL/SQL, 6.1.1

	hyphenation
	
	of host variable names, 2.2.17

I

	IDE, F.1.1
	identifiers, ORACLE
	
	how to form, E.3.6

	implicit logons, 3.2.6
	implicit VARCHAR, 4.5.2
	IN OUT parameter mode, 6.2.4.1
	IN parameter mode, 6.2.4.1
	INAME option
	
	when a file extension is required, 14.1

	INAME precompiler option, 14.7.23
	INCLUDE precompiler option, 14.7.24
	INCLUDE statement
	
	case-sensitive operating systems, 2.3.3.2
	declaring the ORACA, 8.4.2
	declaring the SQLCA, 8.3.2
	declaring the SQLDA, 11.2.3
	effect of, 2.3.3

	INCLUDE statements, A.1.3
	index
	
	using to improve performance, C.7

	index-organized table, 4.7
	indicator table, 7.1
	indicator tables
	
	example, 7.3.3
	purpose, 7.3.3

	indicator variable
	
	using to handle NULLs, 5.2.3, 5.2.4

	indicator variables, 5.2
	
	assigning values to, 4.4.1.2
	association with host variables, 4.4, 4.4.1
	declaring, 2.2.1, 4.4.2
	function, 4.4
	function of, 4.4.1
	interpreting value, 5.2.2
	NULLs, 6.1.3.1
	referencing, 4.4.3
	required size, 4.4.2
	truncated values, 6.1.3.2
	used with multibyte character strings, 4.9.5
	using in PL/SQL, 6.5
	using to detect NULLs, 4.4.2
	using to detect truncated values, 4.4.2
	using to test for NULLs, 5.2.6
	with PL/SQL, 6.1.3

	in-doubt transaction, 3.13
	input host variable
	
	restrictions, 5.1.1
	where allowed, 5.1.1

	INSERT statement, E.30
	
	column list, 5.3.3
	example, 5.3.2
	INTO clause, 5.3.3
	using host tables, 7.5
	VALUES clause, 5.3.3

	inserting
	
	rows into tables and views, E.30

	INTEGER datatype, 4.1.2.8
	internal datatype
	
	definition, 2.1.7

	internal datatypes
	
	dynamic SQL method 4, 11.4.2

	INTERVAL DAY TO SECOND datatype, 4.2
	INTERVAL YEAR TO MONTH datatype, 4.2
	INTO clause, 5.1.1, 6.10.4
	
	FETCH statement, 5.4.3
	INSERT statement, 5.3.3
	of FETCH statement, E.26, E.27
	of SELECT statement, E.54
	SELECT statement, 5.3.1

	IRECLEN precompiler option, 14.7.25
	IS NULL operator
	
	for testing NULL values, 2.2.21

J

	Java methods
	
	calling from Pro*COBOL, 6.8

L

	language support, 1.2.1
	LEVEL pseudocolumns, 4.1.2.23
	library file, 1.7.2
	line continuation, 2.2.7
	linking, 2.7
	LITDELIM option
	
	purpose, 14.7.26

	LITDELIM precompiler option, 2.2.10, 14.7.26
	LNAME precompiler option, 14.7.27
	LOB and precompiler datatypes, 13.4.15
	LOB APPEND statement, E.31
	LOB ASSIGN statement, E.32
	LOB CLOSE statement, E.33
	LOB COPY statement, E.34
	LOB CREATE statement, E.35
	LOB DESCRIBE statement, E.36
	LOB DISABLE BUFFERING statement, E.37
	LOB ENABLE BUFFERING statement, E.38
	LOB ERASE statement, E.39
	LOB FILE CLOSE statement, E.40
	LOB FILE SET statement, E.41
	LOB FLUSH BUFFER statement, E.42
	LOB FREE TEMPORARY, E.43
	LOB LOAD statement, E.44
	LOB OPEN statement, E.45
	LOB READ statement, E.46
	LOB statements
	
	LOB APPEND, 13.4.1
	LOB ASSIGN, 13.4.2
	LOB CLOSE, 13.4.3
	LOB CLOSE ALL, 13.4.9
	LOB COPY, 13.4.4
	LOB CREATE TEMPORARY, 13.4.5
	LOB DISABLE BUFFERING, 13.4.6
	LOB ENABLE BUFFERING, 13.4.7
	LOB ERASE, 13.4.8
	LOB FILE SET, 13.4.10
	LOB FLUSH BUFFER, 13.4.11
	LOB FREE TEMPORARY, 13.4.12
	LOB LOAD FROM FILE, 13.4.13
	LOB OPEN, 13.4.14
	LOB READ, 13.4.15
	LOB TRIM, 13.4.16
	LOB WRITE, 13.4.17

	LOB TRIM statement, E.47
	LOB WRITE statement, E.48
	LOBs
	
	advantage of buffering, 13.1.7
	CHUNKSIZE attribute, 13.4.18
	compared with LONG and LONG RAW, 13.1.4
	definition, 13.1
	DIRECTORY attribute, 13.4.18
	external, 13.1.2, 13.2.2.2
	FILEEXISTS attribute, 13.4.18
	FILENAME attribute, 13.4.18
	internal, 13.1.1, 13.2.2.1
	ISOPEN attribute, 13.4.18
	ISTEMPORARY attribute, 13.4.18
	LENGTH attribute, 13.4.18
	LOB demo program, 13.5
	locators, 13.1.5
	rules for all statements, 13.3.1
	rules for buffering subsystem, 13.3.2
	rules for statements, 13.3.3
	temporary, 13.1.6, 13.2.2.3
	using polling method to read and write, 13.4.19

	lock
	
	released by ROLLBACK statement, E.52

	LOCK TABLE statement, 3.12.1
	
	example, 3.12.1
	using the NOWAIT parameter, 3.12.1

	locking, 3.3, 3.11
	
	explicit versus implicit, 3.11
	modes, 3.3
	overriding default, 3.11
	privileges needed, 3.14.2
	using the FOR UPDATE OF clause, 3.11
	using the LOCK TABLE statement, 3.12.1

	logons
	
	automatic, 3.2.3
	concurrent, 3.2.1
	explicit, 3.2.2
	requirements, 3.1

	LONG datatype
	
	external, 4.1.2.9

	LONG RAW datatype
	
	converting, 4.12.5

	LONG RAW datatypes
	
	external, 4.1.2.10

	LONG VARCHAR datatype, 4.1.2.11
	LONG VARRAW datatype, 4.1.2.12
	LRECLEN precompiler option, 14.7.28
	LTYPE precompiler option, 14.7.29

M

	MAXLITERAL, A.1.4
	MAXLITERAL precompiler option, 14.7.31
	MAXOPENCURSORS option, C.9
	
	using for separate precompilation, 2.6.1.2

	MAXOPENCURSORS precompiler option, 14.7.32
	MERANT Micro Focus COBOL
	
	COBSQL, F.1.4
	IDE, F.1.1
	NetExpress, F.1.1

	message text, 8.3.3.5
	MODE
	
	equivalent values, 14.7.33

	MODE option
	
	effects of, 4.6.2

	MODE precompiler option, 14.7.33
	mode, parameter, 6.2.4.1
	multibyte character sets, 4.9
	multi-byte Globalization Support features
	
	datatypes, 2.2.20
	with PL/SQL, 4.9.1

	multithreaded applications
	
	sample program, 12.5
	user-interface features
	
	embedded SQL statements and directives, 12.4.2

N

	namespaces
	
	reserved by Oracle, B.2

	naming
	
	host variables, 2.2.16
	of database objects, E.3.6
	select-list items, 11.2.1

	naming conventions
	
	cursor, 5.4.1
	default database, 3.2.1
	host variable, 2.1.6

	NATIVE
	
	value of DBMS option, 14.7.10

	NESTED precompiler option, 14.7.34
	nested programs
	
	support for, 2.4.1

	NetExpress, F.1.1
	NEXTVAL pseudocolumns, 4.1.2.23
	nibbles, 4.12.5
	NLS_LOCAL
	
	precompiler option, 14.7.35

	NOT FOUND condition
	
	of WHENEVER directive, 8.3.8.4, E.58

	NOWAIT parameter, 3.12.1
	
	using in LOCK TABLE statement, 3.12.1

	NULLs
	
	definition, 2.1.6
	detecting, 4.4.2
	handling
	
	in dynamic SQL method 4, 11.4.4
	indicator variables, 6.1.3.1

	hardcoding, 5.2.3
	inserting, 5.2.3
	meaning in SQL (NVL function), 2.2.21
	restrictions, 5.2.6
	retrieving, 5.2.4
	SQLNUL subroutine, 11.4.4
	testing for, 5.2.6

	NULLs in SQL
	
	how to detect, 2.2.21

	NUMBER datatype
	
	using the SQLPRC subroutine with, 11.4.3

	NVL function
	
	for retrieving NULL values, 2.2.21

O

	ONAME precompiler option, 14.7.36
	OPEN DESCRIPTOR statement, E.50
	OPEN SQL statement, E.50
	OPEN statement, E.49
	
	example, 5.4.2
	examples, E.49
	in dynamic SQL method 4, 11.6.11
	using in dynamic SQL method 3, 9.11.3

	opening
	
	cursors, E.49, E.50

	opening a cursor variable, 6.10.3
	operators
	
	relational, 2.2.25

	optimizer hint, C.5.1
	optional division headers, 2.2.11
	options
	
	precompiler concepts, 14.3

	ORACA, 1.7.1, 8.2.2
	
	declaring, 8.4.1, 8.4.2
	enabling, 8.4.3, 8.4.3
	example, 8.4.6
	fields, 8.4.5
	gathering cursor cache statistics, 8.4.5.11
	ORACABC field, 8.4.5.2
	ORACAID field, 8.4.5.1
	ORACCHF flag, 8.4.5.3
	ORACOC field, 8.4.5.14
	ORADBGF flag, 8.4.5.4
	ORAHCHF flag, 8.4.5.5
	ORAHOC field, 8.4.5.12
	ORAMOC field, 8.4.5.13
	ORANEX field, 8.4.5.17
	ORANOR field, 8.4.5.15
	ORANPR field, 8.4.5.16
	ORASFNMC field, 8.4.5.9
	ORASFNML field, 8.4.5.9
	ORASLNR field, 8.4.5.10
	ORASTXTC field, 8.4.5.8
	ORASTXTF flag, 8.4.5.6
	ORASTXTL field, 8.4.5.8
	precompiler option, 8.4.3
	purpose, 8.2.2, 8.4
	structure of, 8.4.5

	ORACA precompiler option, 14.7.22, 14.7.30, 14.7.37, 14.7.39, 14.7.40, 14.7.42, 14.7.46
	ORACABC field, 8.4.5.2
	ORACAID field, 8.4.5.1
	ORACCHF flag, 8.4.5.3
	Oracle Communications Area
	
	ORACA, 8.4

	Oracle dynamic SQL
	
	when to use, 10

	Oracle names
	
	how to form, E.3.6

	Oracle namespaces, B.2
	Oracle Net
	
	concurrent logons, 3.2.1
	using ROWID datatype, 4.1.2.16
	using to connect to Oracle, 3.2.1

	Oracle Open Gateway
	
	using ROWID datatype, 4.1.2.16

	ORACOC
	
	in ORACA, 8.4.5.14

	ORACOC field, 8.4.5.14
	ORADBGF flag, 8.4.5.4
	ORAHCHF flag, 8.4.5.5
	ORAHOC field, 8.4.5.12
	ORAMOC field, 8.4.5.13
	ORANEX
	
	in ORACA, 8.4.5.17

	ORANEX field, 8.4.5.17
	ORANOR field, 8.4.5.15
	ORANPR field, 8.4.5.16
	ORASFNM, in ORACA, 8.4.5.9
	ORASFNMC field, 8.4.5.9
	ORASFNML field, 8.4.5.9
	ORASLNR
	
	in ORACA, 8.4.5.10

	ORASLNR field, 8.4.5.10
	orasql9.lib library file, 1.7.2
	ORASTXTC field, 8.4.5.8
	ORASTXTF flag, 8.4.5.6
	ORASTXTL field, 8.4.5.8
	ORECLEN precompiler option, 14.7.38
	OUT parameter mode, 6.2.4.1
	output host variable, 5.1.1, 5.1.1
	output versus input, 5.1

P

	PAGELEN precompiler option, 14.7.41
	paragraph names
	
	associating with SQL statements, 2.2.22
	coding area for, 2.2.22

	parameter mode, 6.2.4.1
	parse error offset, 8.3.3.4
	parsing dynamic statements
	
	PREPARE statement, E.51

	passwords
	
	changing at runtime with ALTER AUTHORIZATION, 3.2.4
	defining, 3.1
	hardcoding, 3.1

	performance
	
	causes of poor, C.1
	improving, C.2

	PIC G for Globalization Support characters, A.1.5
	PIC N for Globalization Support characters, A.1.5
	PICX precompiler option, 4.6.1, 14.7.43
	placeholders
	
	duplicate, 9.16.2

	plan, execution, C.5
	PL/SQL
	
	advantages, 1.5
	cursor FOR loop, 6.2.3
	datatype equivalents, 11.4.3
	embedded, 6.1
	exception, 6.5.1
	integration with server, 6.2.2
	opening a cursor variable
	
	anonymous block, 6.10.3.2
	stored procedure, 6.10.3.1

	package, 6.2.5
	relationship with SQL, 1.5
	subprogram, 6.2.4
	user-defined record, 6.2.7

	PL/SQL block execution
	
	effect on SQLCA components, 8.3.5

	PL/SQL blocks
	
	embedded in Oracle7 precompiler programs, E.22

	PL/SQL subprogram
	
	calling from Pro*COBOL, 6.8

	PL/SQL table, 6.2.6
	precompilation
	
	conditional, 2.5
	generated code, 14.2
	separate, 2.6

	precompilation unit, 14.5
	precompiler command
	
	required arguments, 14.1

	precompiler options
	
	abbreviating name, 14.3
	ANSI Dynamic SQL, 10.5
	ASACC, 14.7.1
	ASSUME_SQLCODE, 14.7.2
	AUTO_CONNECT, 3.2.3.1, 14.7.3
	CLOSE_ON_COMMIT, 5.4.1, 5.5.2, 14.7.6
	COMP_CHARSET, 14.7.7, 14.7.7
	CONFIG, 14.7.8
	current values, 14.3.3
	DATE_FORMAT, 14.7.9, 14.7.9
	DBMS, 14.7.10, 14.7.11
	DECLARE_SECTION, 2.3.2, 14.7.12
	DEFINE, 14.7.13
	displaying, 14.3
	displaying syntax, default, purpose, 14.6
	DYNAMIC, 10.5, 14.7.14
	END_OF_FETCH, 14.7.15, 14.7.15
	entering, 14.4
	entering inline, 14.4.2
	entering on the command line, 14.1
	ERRORS, 14.7.16
	FIPS, 14.7.18
	FORMAT, 14.7.19
	HOLD_CURSOR, 14.7.20, C.9
	HOST, 14.7.21
	INAME, 14.7.23
	INCLUDE, 14.7.24
	IRECLEN, 14.7.25
	list, 14.6
	LITDELIM, 2.2.10, 14.7.26
	LNAME, 14.7.27
	LRECLEN, 14.7.28
	LTYPE, 14.7.29
	macro and micro, 14.3.2
	MAXLITERAL, 14.7.31
	MAXOPENCURSORS, 2.6.1.2, 14.7.32, C.9
	MODE, 4.6.2, 8.2.3, 10.5, 14.7.33
	name of the system configuration file, 14.4.3
	NESTED, 14.7.34
	NLS_LOCAL, 14.7.35
	ONAME, 14.7.36
	ORACA, 8.4.3, 14.7.22, 14.7.30, 14.7.37, 14.7.39, 14.7.40, 14.7.42, 14.7.46
	ORECLEN, 14.7.38
	PAGELEN, 14.7.41
	PICX, 4.6.1, 14.7.43
	precedence, 14.3.1
	PREFETCH, 5.4.9, 14.7.44
	RELEASE_CURSOR, 14.7.45, C.9
	respecifying, 14.5
	scope of, 14.5, 14.5
	SELECT_ERROR, 14.7.47
	specifying, 14.1
	SQLCHECK, 14.7.48
	syntax for, 14.1, 14.1
	table of how macro options set micro options, 14.3.2
	THREADS, 12.4.1
	TYPE_CODE, 10.5, 14.7.49, 14.7.50
	UNSAFE_NULL, 14.7.51
	USERID, 14.7.52
	VARCHAR, 14.7.53
	XREF, 14.7.54

	precompilers
	
	advantages, 1.3
	Globalization Support, 4.8
	language support, 1.2.1
	running, 14
	using PL/SQL, 6.3

	PREFETCH precompiler option, 5.4.9, 5.5.3, 14.7.44
	PREPARE statement, E.51
	
	effect on data definition statements, 9.6.2
	examples, E.51
	in dynamic SQL method 4, 11.6.6
	using in dynamic SQL, 9.9, 9.11.1

	private SQL area
	
	association with cursors, 5.4
	opening, 5.4
	purpose, C.9.2.1

	Pro*COBOL
	
	how it works, 1.2

	program termination, 3.9
	programming guidelines, 2.2
	programming language support, 1.2.1
	pseudocolumns, 4.1.2.23
	
	CURRVAL, 4.1.2.23
	LEVEL, 4.1.2.23
	NEXTVAL, 4.1.2.23
	ROWNUM, 4.1.2.23

Q

	queries
	
	association with cursor, 5.4
	single-row versus multirow, 5.3.1

	query, 5.3

R

	RAW datatype
	
	converting, 4.12.5
	external, 4.1.2.15

	RAWTOHEX function, 4.12.5
	read consistency, 3.3
	READ ONLY parameter
	
	using in SET TRANSACTION, 3.10

	read-only transaction, 3.10
	
	ending, 3.10
	example, 3.10

	record, user-defined, 6.2.7
	REDEFINES clause
	
	purpose, 2.2.23
	restrictions, 2.2.23

	reference
	
	host variable, 2.1.6

	reference cursor, 6.10
	referencing
	
	host tables, 7.3.2
	host variables, 4.3.2
	indicator variables, 4.4.3
	VARCHAR variables, 4.5.3

	relational operators
	
	COBOL versus SQL, 2.2.25

	RELEASE option, 3.6, 3.9
	
	COMMIT statement, 3.6
	omitting, 3.9
	restrictions, 3.8
	ROLLBACK statement, 3.7

	RELEASE_CURSOR option, C.9
	
	of ORACLE Precompilers, E.7

	RELEASE_CURSOR precompiler option, 14.7.45
	remote database
	
	declaration of, E.15

	restrictions
	
	AT clause, 3.2.2.1
	CURRENT OF clause, 5.4.6
	cursor declaration, 5.4.1
	cursor variables, 6.10.7
	dynamic SQL, 14.7.35
	FOR clause, 7.9.1
	host tables, 7.3.1.1, 7.4.4, 7.5.1, 7.7.1
	host variables, 4.3.2.2
	
	naming, 2.2.16
	referencing, 4.3.2.2

	input host variable, 5.1.1
	on host tables, 7.3.5
	REDEFINES clause, 2.2.23
	RELEASE option, 3.8
	separate precompilation, 2.6.1.1
	SET TRANSACTION statement, 3.10
	SQLGLM subroutine, 8.3.6
	SQLIEM subroutine, 8.3.6
	TO SAVEPOINT clause, 3.8
	use of CURRENT OF clause, 7.3.5

	retrieving rows from a table
	
	embedded SQL, E.54

	RETURN-CODE special register is unpredictable, A.1.6
	returning clause, 5.3.3
	
	in INSERT, 5.3.3

	roll back
	
	to a savepoint, E.53
	to the same savepoint multiple times, E.52

	rollback
	
	automatic, 3.7
	purpose, 3.4
	statement-level, 3.7.1

	rollback segments, 3.3
	ROLLBACK statement, 3.7, 3.7, E.52
	
	effects, 3.7
	ending a transaction, E.52
	example, 3.7
	examples, E.52
	RELEASE option, 3.7
	TO SAVEPOINT clause, 3.7
	using in a PL/SQL block, 3.14.3
	using in error-handling routines, 3.7
	where to place, 3.7

	rolling back
	
	transactions, E.52

	row lock
	
	acquiring with FOR UPDATE OF, 3.11.1
	using to improve performance, C.8
	when acquired, 3.11.1.1
	when released, 3.11.1.1

	ROWID datatype
	
	heap tables versus index-organized tables, 4.7
	Universal, 4.7
	use of, 4.7
	use of ALLOCATE, 4.7

	ROWID pseudocolumns
	
	retrieving with SQLROWIDGET, 4.7.1
	universal ROWID, 4.7
	using to mimic CURRENT OF, 3.12, 7.11

	ROWNUM pseudocolumns, 4.1.2.23
	rows
	
	fetching from cursors, E.26, E.27
	inserting into tables and views, E.30
	updating, E.56

	rows-processed count, 8.3.3.3
	RR diagrams
	
	see syntax diagrams, E.3

S

	sample database table
	
	DEPT table, 2.8
	EMP table, 2.8

	sample programs
	
	calling a stored procedure, 6.9, 6.9
	cursor operations, 5.8
	cursor variable use, 6.10.8
	cursor variables
	
	PL/SQL source, 6.10.8.1

	datatype equivalencing, 4.14, 4.14
	dynamic SQL Method 1, 9.8
	dynamic SQL method 2, 9.10
	dynamic SQL Method 3, 9.12
	dynamic SQL method 4, 11.8
	EXEC ORACLE scope, 14.4.2.2
	fetching in batches, 7.4.7, 7.13
	LOBDEMO1.PCO, 13.5
	location of, 1.7
	PL/SQL examples, 6.4.1
	SAMPLE10.PCO, 11.8
	SAMPLE11.PCO, 6.10.8
	SAMPLE12.PCO, 10.7
	SAMPLE13.PCO, 2.4.1.2
	SAMPLE14.PCO, 7.13
	SAMPLE1.PCO, 2.9
	SAMPLE2.PCO, 5.8
	SAMPLE3.PCO, 7.4.7
	SAMPLE4.PCO, 4.14
	SAMPLE6.PCO, 9.8
	SAMPLE7.PCO, 9.10
	SAMPLE8.PCO, 9.12
	SAMPLE9.PCO, 6.9
	simple query, 2.9
	tables of group items, 7.13
	WHENEVER...DO CALL example, 8.3.9.2

	savepoint, 3.8
	SAVEPOINT statement, 3.8, E.53
	
	example, 3.8
	examples, E.53

	savepoints
	
	creating, E.53
	when erased, 3.8

	scalar types, 11.4.3
	scale
	
	definition of, 4.12.2
	using SQLPRC to extract, 4.12.2
	when negative, 4.12.2

	scope
	
	cursor variables, 6.10.1
	of DECLARE STATEMENT directive, E.16
	of precompiler options, 14.5, 14.5
	of the EXEC ORACLE statement, 14.4.2.2
	WHENEVER directive, 8.3.9.3

	search condition, 5.3.7
	
	using in the WHERE clause, 5.3.7

	SELDFCLP variable (SQLDA), 11.3
	SELDFCRCP variable (SQLDA), 11.3
	SELDFMT variable (SQLDA), 11.3
	SELDH-CUR-VNAMEL variable (SQLDA), 11.3
	SELDH-MAX-VNAMEL variable (SQLDA), 11.3
	SELDH-VNAME variable (SQLDA), 11.3
	SELDI variable (SQLDA), 11.3
	SELDI-CUR-VNAMEL variable (SQLDA), 11.3
	SELDI-MAX-VNAMEL variable (SQLDA), 11.3
	SELDI-VNAME variable (SQLDA), 11.3
	SELDV variable (SQLDA), 11.3
	SELDVLN variable (SQLDA), 11.3
	SELDVTYP variable (SQLDA), 11.3
	select descriptor, 11.2.1
	select descriptors
	
	information in, 9.13.2

	select list, 5.3.1
	select SQLDA
	
	purpose of, 11.1.3

	SELECT statement, E.54
	
	available clauses, 5.3.1.1
	embedded SQL examples, E.54
	example, 5.3.1
	INTO clause, 5.3.1
	using host tables, 7.4

	SELECT_ERROR option, 5.3.1
	SELECT_ERROR precompiler option, 14.7.47
	select-list items
	
	naming, 11.2.1

	semantic checking, D.1
	
	enabling, D.3.1
	using the SQLCHECK option, D.1

	separate precompilation
	
	guidelines, 2.6.1
	restrictions, 2.6.1.1

	session, 3.3
	sessions
	
	beginning, E.9

	SET clause, 5.3.5
	
	using a subquery, 5.3.5

	SET DESCRIPTOR statement, E.55
	SET TRANSACTION statement
	
	example, 3.10
	READ ONLY parameter, 3.10
	restrictions, 3.10

	snapshot, 3.3
	SQL
	
	summary of statements, E.1

	SQL codes
	
	returned by SQLGLS routine, 8.3.10

	SQL Communications Area, 2.1.9.2
	SQL Descriptor Area, 9.13.1, 11.2
	SQL directives
	
	CONTEXT USE, 12.4.2.4
	DECLARE CURSOR, E.14
	DECLARE DATABASE, E.15
	DECLARE STATEMENT, E.16
	DECLARE TABLE, E.17
	VAR, E.57
	WHENEVER, E.58

	SQL directives CONTEXT USE, E.12
	SQL statements
	
	ALLOCATE, E.4
	ALLOCATE DESCRIPTOR, E.5
	CALL, E.6
	CLOSE, E.7
	COMMIT, E.8
	CONNECT, E.9
	CONTEXT ALLOCATE, E.10
	CONTEXT FREE, E.11
	controlling transactions, 3.4
	DEALLOCATE DESCRIPTOR, E.13
	DELETE, E.18
	DESCRIBE, E.19
	DESCRIBE DESCRIPTOR, E.20
	ENABLE THREADS, E.21
	EXECUTE, E.23
	EXECUTE DESCRIPTOR, E.24
	EXECUTE IMMEDIATE, E.25
	EXECUTE...END-EXEC, E.22
	FETCH, E.26, E.27
	FETCH DESCRIPTOR, E.27
	FREE, E.28, E.28
	GET DESCRIPTOR, E.29
	INSERT, E.30
	LOB APPEND, E.31
	LOB ASSIGN, E.32
	LOB CLOSE, E.33
	LOB COPY, E.34
	LOB CREATE, E.35
	LOB DESCRIBE, E.36
	LOB DISABLE BUFFERING, E.37
	LOB ENABLE BUFFERING, E.38
	LOB ERASE, E.39
	LOB FILE CLOSE, E.40
	LOB FILE SET, E.41
	LOB FLUSH BUFFER, E.42
	LOB FREE TEMPORARY, E.43
	LOB LOAD, E.44
	LOB OPEN, E.45
	LOB READ, E.46
	LOB TRIM, E.47
	LOB WRITE, E.48
	OPEN, E.49, E.49, E.50
	OPEN DESCRIPTOR, E.50
	optimizing to improve performance, C.5
	PREPARE, E.51
	ROLLBACK, E.52
	SAVEPOINT, E.53
	SELECT, E.54
	SET DESCRIPTOR, E.55
	static versus dynamic, 2.1.4
	summary of, E.1
	UPDATE, E.56, E.56
	using to control a cursor, 5.3, 5.4

	SQL*Plus, 1.4
	SQL_CURSOR, E.4
	SQLADR subroutine
	
	example, 11.6.4
	parameters, 11.4.1
	storing buffer addresses, 11.1.3
	syntax, 11.4.1

	SQLCA, 1.7.1, 8.2.1
	
	components set for a PL/SQL block, 8.3.5
	declaring EXTERNAL, 2.6.1.3
	fields, 8.3.4
	interaction with Oracle, 2.1.9.2
	overview, 2.1.9.2
	sharing, 2.6.1.3
	SQLCABC field, 8.3.4.2
	SQLCAID field, 8.3.4.1
	SQLCODE field, 8.3.4.4
	SQLERRD(3) field, 8.3.4.5
	SQLERRD(5) field, 8.3.4.5
	SQLERRMC field, 8.3.4.4
	SQLERRML field, 8.3.4.4
	SQLWARN(4) flag, 8.3.4.6
	using with Oracle Net, 8.3

	SQLCA status variable
	
	data structure, 8.3.1
	declaring, 8.3.2
	effect of MODE option, 8.2.3
	explicit versus implicit checking, 8.2.1
	purpose, 8.3

	SQLCABC field, 8.3.4.2
	SQLCAID field, 8.3.4.1
	SQLCHECK option
	
	using the DECLARE TABLE statement, D.3.1.2
	using to check syntax/semantics, D

	SQLCHECK precompiler option, 14.7.48
	SQLCODE field, 8.3.4.4
	
	interpreting its value, 8.3.4.4

	SQLCODE status variable
	
	effect of MODE option, 8.2.3
	usage, 8.2.3

	SQL-CONTEXT, 12.4.2
	
	host tables not allowed, 12.4.2.1
	variable declaration, 4.3.1

	SQLDA, 1.7.1, 9.13.1, 9.13.3
	
	bind versus select, 9.13.3
	BNDDFCLP variable, 11.3
	BNDDFCRCP variable, 11.3
	BNDDFMT variable, 11.3
	BNDDH-CUR-VNAMEL variable, 11.3
	BNDDH-MAX-VNAMEL variable, 11.3
	BNDDH-VNAME variable, 11.3
	BNDDI variable, 11.3
	BNDDI-CUR-VNAMEL variable, 11.3
	BNDDI-MAX-VNAMEL variable, 11.3
	BNDDI-VNAME variable, 11.3
	BNDDV variable, 11.3
	BNDDVLN variable, 11.3
	BNDDVTYP variable, 11.3
	declaring, 11.2.3
	example, 11.2.3
	information stored in, 9.13.3
	purpose, 11.2.1
	SELDFCLP variable, 11.3
	SELDFCRCP variable, 11.3
	SELDFMT variable, 11.3
	SELDH-CUR-VNAMEL variable, 11.3
	SELDH-MAX-VNAMEL variable, 11.3
	SELDH-VNAME variable, 11.3
	SELDI variable, 11.3
	SELDI-CUR-VNAMEL variable, 11.3
	SELDI-MAX-VNAMEL variable, 11.3
	SELDI-VNAME variable, 11.3
	SELDV variable, 11.3
	SELDVLN variable, 11.3
	SELDVTYP variable, 11.3
	SQLADR subroutine, 11.4.1
	SQLDFND variable, 11.3
	SQLDNUM variable, 11.3
	structure, 11.3

	SQLDFND variable (SQLDA), 11.3
	SQLDNUM variable (SQLDA), 11.3
	SQLERRD(3) field, 8.3.4.5
	
	using with batch fetch, 7.4.3

	SQLERRD(3) variable, 8.3.3.3
	SQLERRD(5) field, 8.3.4.5
	SQLERRMC field, 8.3.4.4
	SQLERRMC variable, 8.3.3.5
	SQLERRML field, 8.3.4.4
	SQLERROR condition, 8.3.8.3
	
	of WHENEVER directive, 8.3.8.3
	WHENEVER directive, E.58

	SQLFC parameter, 8.3.10
	SQLGLM subroutine
	
	example, 8.3.6
	parameters, 8.3.6
	provides DSNTIAR support for DB2 conversions, 8.3.7
	purpose, 8.3.6
	restrictions, 8.3.6
	syntax, 8.3.6

	SQLGLS routine, 8.3.10, 8.3.10
	
	parameters, 8.3.10
	SQL codes returned by, 8.3.10
	syntax, 8.3.10
	using to obtain SQL text, 8.3.10

	SQLIEM subroutine
	
	restrictions, 8.3.6

	SQLNUL subroutine
	
	example, 11.4.4
	parameters, 11.4.4
	purpose, 11.4.4
	syntax, 11.4.4

	SQLPRC subroutine
	
	example, 11.4.3
	parameters, 11.4.3
	purpose, 11.4.3
	syntax, 11.4.3

	SQLROWIDGET
	
	retrieving ROWID of last row inserted, 4.7.1

	SQLSTATE
	
	declaring, 8.2.4

	SQLSTATE status variable
	
	class code, 8.2.4.1
	coding scheme, 8.2.4.1
	effect of MODE option, 8.2.3
	interpreting values, 8.2.4.1
	predefined classes, 8.2.4.1
	subclass code, 8.2.4.1
	usage, 8.2.3

	SQLSTM parameter, 8.3.10
	SQLSTM routine, 8.3.10
	SQLWARN(4) flag, 8.3.4.6
	SQLWARNING
	
	condition WHENEVER directive, E.58

	SQLWARNING condition, 8.3.8.2
	
	of WHENEVER directive, 8.3.8.2

	statement-level rollback, 3.7.1
	
	breaking deadlocks, 3.7.1

	status codes for error reporting, 8.3.3.1
	STMLEN parameter, 8.3.10
	STOP action
	
	of WHENEVER directive, 8.3.8.10, E.58

	stored procedure
	
	opening a cursor, 6.10.8
	sample programs, 6.10.8

	stored procedures
	
	opening a cursor, 6.10.3.1
	sample programs, 6.9

	stored subprogram
	
	calling, 6.8.2.1
	creating, 6.8.1
	packaged versus standalone, 6.8
	stored versus inline, C.4
	using to improve performance, C.4

	stored subprogram, calling, 6.8
	STRING datatype, 4.1.2.17
	string literals
	
	continuing on the next line, 2.2.7

	subprogram, PL/SQL, 6.2.4
	subprogram, PL/SQL or Java, 6.8
	subquery, 5.3.4
	
	example, 5.3.4, 5.3.5
	using in the SET clause, 5.3.5
	using in the VALUES clause, 5.3.4

	syntactic checking, D.1
	syntax
	
	continuation lines, 2.2.7
	embedded SQL statements, 2.2.12
	SQLADR subroutine, 11.4.1
	SQLGLM subroutine, 8.3.6
	SQLNUL subroutine, 11.4.4
	SQLPRC, 11.4.3

	syntax diagrams
	
	description of, E.3
	how to read, E.3
	how to use, E.3
	symbols used in, E.3

	syntax, embedded SQL, 2.1.3
	SYSDATE function, 4.1.2.23
	SYSDBA privilege show to set, 3.2.5.2
	SYSOPER privilege
	
	how to set, 3.2.5.2

	system failures
	
	effect on transactions, 3.5

	System Global Area (SGA), 6.8

T

	table (host) elements
	
	maximum, 7.3.1.1

	table lock
	
	acquiring with LOCK TABLE, 3.12.1
	row share, 3.12.1
	when released, 3.12.1

	tables
	
	elements, 7.1
	inserting rows into, E.30
	updating rows in, E.56

	tables, host, 7.1
	TERMINAL format
	
	COBOL statements, 2.2.4

	terminator for embedded SQL statements, 2.2.25
	THREADS
	
	precompiler option, 12.4.1

	threads, E.10
	
	allocating context, 12.4.2.3, E.10
	enabling, 12.4.2.2, E.21
	freeing context, 12.4.2.5, E.11
	use context, 12.4.2.4, E.12

	TIMESTAMP datatype, 4.2
	TIMESTAMP WITH LOCAL TIME ZONE datatype, 4.2
	TIMESTAMP WITH TIME ZONE datatype, 4.2
	TO SAVEPOINT clause, 3.8
	
	restrictions, 3.8
	using in ROLLBACK statement, 3.8

	trace facility
	
	using to improve performance, C.5.1.1

	transaction, 3.4
	transactions
	
	committing, E.8
	contents, 3.5
	guidelines, 3.14.1
	how to begin, 3.5
	how to end, 3.5
	in-doubt, 3.13
	making permanent, 3.6
	read-only, 3.10
	rolling back, E.52, E.52
	subdividing with savepoints, 3.8
	undoing, 3.7
	undoing parts of, 3.8
	when rolled back automatically, 3.5, 3.7

	truncated values, 6.5.2
	
	detecting, 4.4.2
	indicator variables, 6.1.3.2

	truncation errors
	
	when generated, 5.2.7

	tuning, performance, C.1
	TYPE statements
	
	using the CHARF datatype specifier, 4.12.3

	TYPE_CODE option
	
	effect on functionality, 10.5

	TYPE_CODE precompiler option, 14.7.49, 14.7.50

U

	UID function, 4.1.2.23
	undo a transaction, E.52
	universal ROWID
	
	ROWID pseudocolumns, 4.7

	UNSAFE_NULL precompiler option, 14.7.51
	UNSIGNED datatype, 4.1.2.18
	UPDATE statement, E.56
	
	embedded SQL examples, E.56
	example, 5.3.5
	SET clause, 5.3.5
	using host tables, 7.6

	updating
	
	rows in tables and views, E.56

	use
	
	thread context, 12.4.2.4

	USER function, 4.1.2.23
	user session, 3.3
	user-defined record, 6.2.7
	USERID option
	
	using with the SQLCHECK option, D.3.1.1

	USERID precompiler option, 14.7.52
	usernames
	
	defining, 3.1
	hardcoding, 3.1

	USING clause
	
	CONNECT statement, 3.2.2.1
	of FETCH statement, E.26
	of OPEN statement, E.49
	using in the EXECUTE statement, 9.9.1
	using indicator variables, 9.9.1

	using dbstring
	
	Oracle Net database id specification, E.9

V

	V7
	
	value of DBMS option, 14.7.10

	VALUE clause
	
	initializing host variables, 4.3.1.2

	VALUES clause
	
	INSERT statement, 5.3.3
	of embedded SQL INSERT statement, E.30
	of INSERT statement, E.30
	using a subquery, 5.3.4

	VAR directive, E.57
	
	examples, E.57

	VAR statement
	
	CONVBUFSZ clause, 4.12.2.1
	syntax for, 4.12.2
	using the CHARF datatype specifier, 4.12.3

	VARCHAR datatype, 4.1.2.19
	VARCHAR precompiler option, 14.7.53
	VARCHAR pseudotype
	
	using with PL/SQL, 6.4.3

	VARCHAR variables
	
	advantages, 4.6.4.2
	as input variables, 4.6.4.1
	as output variables, 4.6.4.2
	declaring, 4.5.1
	implicit group items, 4.5.2
	length element, 4.5.1
	maximum length, 4.5.1
	referencing, 4.5.3
	server handling, 4.6.4.1, 4.6.4.2
	string element, 4.5.1
	structure, 4.5.1
	versus fixed-length strings, 4.6.4.2
	with PL/SQL, 6.1.2

	VARCHAR2 datatype
	
	external, 4.1.2.20

	VARNUM datatype, 4.1.2.21
	VARRAW datatype, 4.1.2.22
	VARYING keyword
	
	versus VARYING phrase, 4.5.1

	versions of COBOL supported, 2.2.3
	views
	
	inserting rows into, E.30
	updating rows in, E.56

W

	warning flags for error reporting, 8.3.3.2
	WHENEVER
	
	DO CALL example, 8.3.9.2

	WHENEVER directive, 8.3.8, E.58
	
	careless usage, 8.3.9.4
	CONTINUE action, 8.3.8.6
	DO CALL action, 8.3.8.7
	DO PERFORM action, 8.3.8.8
	example, 8.3.9.1
	examples, E.58
	GOTO action, 8.3.8.9
	overview, 2.1.9.3
	purpose, 8.3.8
	scope of, 8.3.9.3
	SQLERROR condition, 8.3.8