Cover
[image: Oracle Corporation]

5 Updating Data

In this chapter, you extend the Anyco HR application with forms that enable you to insert, update, and delete an employee record.

	
Building the Basic Employees page

	
Extending the Basic Employees Page

	
Combining Departments and Employees

	
Adding Error Recovery

	
Further Error Handling

Building the Basic Employees page

In this section, you will extend your application to include a basic employees page.

To display employee records, perform the following tasks:

	
Create the chap5 directory, copy the application files from chap4, and change to the newly created directory:

On Windows:

mkdir c:\program files\Zend\Apache2\htdocs\chap5
cd c:\program files\Zend\Apache2\htdocs\chap5
copy ..\chap4* .

On Linux:

mkdir $HOME/public_html/chap5
cd $HOME/public_html/chap5
cp ../chap4/* .

	
Edit the anyco.php file. Add a construct_employees() function. This function constructs the employee query, calls the db_do_query() function to execute the query, and prints the results using the ui_print_employees() function:

function construct_employees()
{
 $query =
 "SELECT employee_id,
 substr(first_name,1,1) || '. '|| last_name as employee_name,
 hire_date,
 to_char(salary, '9999G999D99') as salary,
 nvl(commission_pct,0) as commission_pct
 FROM employees
 ORDER BY employee_id asc";

 $conn = db_connect();
 $emp = db_do_query($conn, $query);

 ui_print_header('Employees');
 ui_print_employees($emp);
 ui_print_footer(date('Y-m-d H:i:s'));
}

There is no need to pass a $bindargs parameter to the db_do_query() call because this query does not use bind variables. The db_do_query() declaration will provide a default value of an empty array automatically. PHP allows functions to have variable numbers of parameters.

	
Edit the anyco.php file. Replace the call to construct_departments() with a call to construct_employees():

<?php // File: anyco.php

require('anyco_cn.inc');
require('anyco_db.inc');
require('anyco_ui.inc');

session_start();
construct_employees();
...
?>

	
Edit the anyco_ui.inc file. Implement the presentation of employee data in an HTML table by adding a ui_print_employees() function:

function ui_print_employees($employeerecords)
{
 if (!$employeerecords) {
 echo '<p>No Employee found</p>';
 }
 else {
 echo <<<END
 <table>
 <tr>
 <th>Employee
ID</th>
 <th>Employee
Name</th>
 <th>Hiredate</th>
 <th>Salary</th>
 <th>Commission
(%)</th>
 </tr>
END;
 // Write one row per employee
 foreach ($employeerecords as $emp) {
 echo '<tr>';
 echo '<td align="right">'.
 htmlentities($emp['EMPLOYEE_ID']).'</td>';
 echo '<td>'.htmlentities($emp['EMPLOYEE_NAME']).'</td>';
 echo '<td>'.htmlentities($emp['HIRE_DATE']).'</td>';
 echo '<td align="right">'.
 htmlentities($emp['SALARY']).'</td>';
 echo '<td align="right">'.
 htmlentities($emp['COMMISSION_PCT']).'</td>';
 echo '</tr>';
 }
 echo <<<END
 </table>
END;
 }
}

	
Save the changes to the anyco.php and anyco_ui.inc files. Test the result of these changes by entering the following URL in your Web browser:

On Windows:

http://localhost/chap5/anyco.php

On Linux:

http://localhost/~<username>/chap5/anyco.php

Examine the result page, and scroll down to view all the employee records displayed in the page:

[image: Description of chap5_basic_emp_001.gif follows]

Extending the Basic Employees Page

In this section, you will extend the basic employees page to include the ability to manipulate employee records.

To enable employee records to be manipulated, perform the following tasks:

	
Edit the anyco.php file. Replace the construct_employees() call with the form handler control logic to manage the requests for showing, inserting, updating, and deleting employee records:

<?php // File: anyco.php

require('anyco_cn.inc');
require('anyco_db.inc');
require('anyco_ui.inc');

session_start();
// Start form handler code
if (isset($_POST['insertemp'])) {
 construct_insert_emp();
}
elseif (isset($_POST['saveinsertemp'])) {
 insert_new_emp();
}
elseif (isset($_POST['modifyemp'])) {
 construct_modify_emp();
}
elseif (isset($_POST['savemodifiedemp'])) {
 modify_emp();
}
elseif (isset($_POST['deleteemp'])) {
 delete_emp();
}
else {
 construct_employees();
}

...

	
Edit the anyco.php file. Add the construct_insert_emp() function:

function construct_insert_emp()
{
 $conn = db_connect();

 $query = "SELECT job_id, job_title
 FROM jobs
 ORDER BY job_title ASC";
 $jobs = db_do_query($conn, $query,
 OCI_FETCHSTATEMENT_BY_COLUMN);

 $query = "SELECT sysdate FROM dual";
 $date = db_do_query($conn, $query,
 OCI_FETCHSTATEMENT_BY_COLUMN);
 $emp = array(
 'DEPARTMENT_ID' => 10, // Default to department 10
 'HIRE_DATE' => $date['SYSDATE'][0],
 'ALLJOBIDS' => $jobs['JOB_ID'],
 'ALLJOBTITLES' => $jobs['JOB_TITLE']
);

 ui_print_header('Insert New Employee');
 ui_print_insert_employee($emp, $_SERVER['SCRIPT_NAME']);
 // Note: The two kinds of date used:
 // 1) SYSDATE for current date of the database system, and
 // 2) The PHP date for display in the footer of each page
 ui_print_footer(date('Y-m-d H:i:s'));
}

The construct_insert_emp() function executes two queries to obtain default data to be used to populate the Insert New Employee form, which is displayed by the ui_print_insert_employee() function.

The $query of the JOBS table obtains a list of all the existing job IDs and their descriptions in order to build a list for selecting a job type in the HTML form generated by the ui_print_insert_employee() function.

The $query using SYSDATE obtains the current database date and time for setting the default hire date of the new employee.

There are two kinds of date used in the application code, the PHP date() function for printing the date and time in the page footer, and the Oracle SYSDATE function to obtain the default date and time for displaying in the hire date field of the Employees page and to ensure that text is entered in the correct database format.

The two db_do_query() function calls provide an additional parameter value OCI_FETCHSTATEMENT_BY_COLUMN to specify that the return type for the query is an array of column values.

	
Edit the anyco.php file. Add the insert_new_emp() function to insert an employee record into the EMPLOYEES table:

function insert_new_emp()
{
 $newemp = $_POST;
 $statement =
 "INSERT INTO employees
 (employee_id, first_name, last_name, email, hire_date,
 job_id, salary, commission_pct, department_id)
 VALUES (employees_seq.nextval, :fnm, :lnm, :eml, :hdt, :jid,
 :sal, :cpt, :did)";

 $conn = db_connect();
 $emailid = $newemp['firstname'].$newemp['lastname'];

 $bindargs = array();
 array_push($bindargs, array('FNM', $newemp['firstname'], -1));
 array_push($bindargs, array('LNM', $newemp['lastname'], -1));
 array_push($bindargs, array('EML', $emailid, -1));
 array_push($bindargs, array('HDT', $newemp['hiredate'], -1));
 array_push($bindargs, array('JID', $newemp['jobid'], -1));
 array_push($bindargs, array('SAL', $newemp['salary'], -1));
 array_push($bindargs, array('CPT', $newemp['commpct'], -1));
 array_push($bindargs, array('DID', $newemp['deptid'], -1));

 $r = db_execute_statement($conn, $statement, $bindargs);
 construct_employees();
}

The return value from the db_execute_statement() function is ignored and not even assigned to a variable, because no action is performed on its result.

	
Edit the anyco.php file. Add the construct_modify_emp() function to build the HTML form for updating an employee record.

function construct_modify_emp()
{
 $empid = $_POST['emprec'];
 $query =
 "SELECT employee_id, first_name, last_name, email, hire_date,
 salary, nvl(commission_pct,0) as commission_pct
 FROM employees
 WHERE employee_id = :empid";

 $conn = db_connect();
 $bindargs = array();
 array_push($bindargs, array('EMPID', $empid, -1));

 $emp = db_do_query($conn, $query, OCI_FETCHSTATEMENT_BY_ROW,
 $bindargs);

 ui_print_header('Modify Employee ');
 ui_print_modify_employee($emp[0], $_SERVER['SCRIPT_NAME']);
 ui_print_footer(date('Y-m-d H:i:s'));
}

	
Edit the anyco.php file. Add the modify_emp() function to update the employee record in the EMPLOYEES table, using the update form field values:

function modify_emp()
{
 $newemp = $_POST;
 $statement =
 "UPDATE employees
 SET first_name = :fnm, last_name = :lnm, email = :eml,
 salary = :sal, commission_pct = :cpt
 WHERE employee_id = :eid";

 $conn = db_connect();
 $bindargs = array();
 array_push($bindargs, array('EID', $newemp['empid'], -1));
 array_push($bindargs, array('FNM', $newemp['firstname'], -1));
 array_push($bindargs, array('LNM', $newemp['lastname'], -1));
 array_push($bindargs, array('EML', $newemp['email'], -1));
 array_push($bindargs, array('SAL', $newemp['salary'], -1));
 array_push($bindargs, array('CPT', $newemp['commpct'], -1));

 $r = db_execute_statement($conn, $statement, $bindargs);
 construct_employees();
}

	
Edit the anyco.php file. Add the delete_emp() function to delete an employee record from the EMPLOYEES table:

function delete_emp()
{
 $empid = $_POST['emprec'];
 $statement = "DELETE FROM employees
 WHERE employee_id = :empid";
 $conn = db_connect();
 $bindargs = array();
 array_push($bindargs, array('EMPID', $empid, 10));
 $r = db_execute_statement($conn, $statement, $bindargs);

 construct_employees();
}

	
Edit the anyco.php file. In the construct_employees() function, modify the db_do_query() call to supply OCI_FETCHSTATEMENT_BY_ROW as the last parameter, and provide $_SERVER['SCRIPT_NAME'] as second parameter in the ui_print_employees() call. The function becomes:

function construct_employees()
{
 $query =
 "SELECT employee_id,
 substr(first_name,1,1) || '. '|| last_name as employee_name,
 hire_date,
 to_char(salary, '9999G999D99') as salary,
 nvl(commission_pct,0) as commission_pct
 FROM employees
 ORDER BY employee_id asc";

 $conn = db_connect();
 $emp = db_do_query($conn, $query, OCI_FETCHSTATEMENT_BY_ROW);

 ui_print_header('Employees');
 ui_print_employees($emp, $_SERVER['SCRIPT_NAME']);
 ui_print_footer(date('Y-m-d H:i:s'));
}

	
Edit the anyco_db.inc file. Add $resulttype as a third parameter to the db_do_query() function. Replace the last parameter value, OCI_FETCHSTATEMENT_BY_ROW, in the oci_fetch_all() call with a variable, so that callers can choose the output type.

function db_do_query($conn, $statement, $resulttype,
 $bindvars = array())
{
 $stid = oci_parse($conn, $statement);

 ...

 $r = oci_fetch_all($stid, $results, null, null, $resulttype);
 return($results);
}

	
Edit the anyco_db.inc file. Inside the db_get_page_data() function, insert OCI_FETCHSTATEMENT_BY_ROW as the third parameter value in the db_do_query() call:

function db_get_page_data($conn, $q1, $current = 1,
 $rowsperpage = 1, $bindvars = array())
{

 ...

 $r = db_do_query($conn, $query, OCI_FETCHSTATEMENT_BY_ROW, $bindvars);
 return($r);
}

	
Edit the anyco_db.inc file. Add a db_execute_statement() function to execute data manipulation statements such as INSERT statements:

function db_execute_statement($conn, $statement, $bindvars = array())
{
 $stid = oci_parse($conn, $statement);
 if (!$stid) {
 db_error($conn, __FILE__, __LINE__);
 }
 // Bind parameters
 foreach ($bindvars as $b) {
 // create local variable with caller specified bind value
 $$b[0] = $b[1];
 $r = oci_bind_by_name($stid, ":$b[0]", $$b[0], $b[2]);
 if (!$r) {
 db_error($stid, __FILE__, __LINE__);
 }
 }

 $r = oci_execute($stid);
 if (!$r) {
 db_error($stid, __FILE__, __LINE__);
 }
 return($r);
}

	
Edit the anyco_ui.inc file. Change the ui_print_employees() function to produce an HTML form containing the employee rows. The function becomes:

function ui_print_employees($employeerecords, $posturl)
{
 if (!$employeerecords) {
 echo '<p>No Employee found</p>';
 }
 else {
 echo <<<END
 <form method="post" action="$posturl">
 <table>
 <tr>
 <th> </th>
 <th>Employee
ID</th>
 <th>Employee
Name</th>
 <th>Hiredate</th>
 <th>Salary</th>
 <th>Commission
(%)</th>
 </tr>
END;
 // Write one row per employee
 foreach ($employeerecords as $emp) {
 echo '<tr>';
 echo '<td><input type="radio" name="emprec" value="'.
 htmlentities($emp['EMPLOYEE_ID']).'"></td>';
 echo '<td align="right">'.
 htmlentities($emp['EMPLOYEE_ID']).'</td>';
 echo '<td>'.htmlentities($emp['EMPLOYEE_NAME']).'</td>';
 echo '<td>'.htmlentities($emp['HIRE_DATE']).'</td>';
 echo '<td align="right">'.
 htmlentities($emp['SALARY']).'</td>';
 echo '<td align="right">'.
 htmlentities($emp['COMMISSION_PCT']).'</td>';
 echo '</tr>';
 }
 echo <<<END
 </table>
 <input type="submit" value="Modify" name="modifyemp">
 <input type="submit" value="Delete" name="deleteemp">

 <input type="submit" value="Insert new employee"
 name="insertemp">
 </form>
END;
 }
}

A radio button is displayed in the first column of each row to enable you to select the record to be modified or deleted.

	
Edit the anyco_ui.inc file. Add the ui_print_insert_employee() function to generate the form to input new employee data:

function ui_print_insert_employee($emp, $posturl)
{
 if (!$emp) {
 echo "<p>No employee details found</p>";
 }
 else {
 $deptid = htmlentities($emp['DEPARTMENT_ID']);
 $hiredate = htmlentities($emp['HIRE_DATE']);

 echo <<<END
 <form method="post" action="$posturl">
 <table>
 <tr>
 <td>Department ID</td>
 <td><input type="text" name="deptid" value="$deptid"
 size="20"></td>
 </tr>
 <tr>
 <td>First Name</td>
 <td><input type="text" name="firstname" size="20"></td>
 </tr>
 <tr>
 <td>Last Name</td>
 <td><input type="text" name="lastname" size="20"></td>
 </tr>
 <tr>
 <td>Hiredate</td>
 <td><input type="text" name="hiredate" value="$hiredate"
 size="20"></td>
 </tr>
 <tr>
 <td>Job</td>
 <td><select name="jobid">
END;
 // Write the list of jobs
 for ($i = 0; $i < count($emp['ALLJOBIDS']); $i++)
 {
 echo '<option
 label="'.htmlentities($emp['ALLJOBTITLES'][$i]).'"'.
 ' value="'.htmlentities($emp['ALLJOBIDS'][$i]).'">'.
 htmlentities($emp['ALLJOBTITLES'][$i]).'</option>';
 }
 echo <<<END
 </select>
 </td>
 </tr>
 <tr>
 <td>Salary</td>
 <td><input type="text" name="salary" value="1"
 size="20"></td>
 </tr>
 <tr>
 <td>Commission (%)</td>
 <td><input type="text" name="commpct" value="0"
 size="20"></td>
 </tr>
 </table>
 <input type="submit" value="Save" name="saveinsertemp">
 <input type="submit" value="Cancel" name="cancel">
 </form>
END;
 }
}

	
Edit the anyco_ui.inc file. Add the ui_print_modify_employee() function to generate the form to update an employee record:

function ui_print_modify_employee($empdetails, $posturl)
{
 if (!$empdetails) {
 echo '<p>No Employee record selected</p>';
 }
 else {
 $fnm = htmlentities($empdetails['FIRST_NAME']);
 $lnm = htmlentities($empdetails['LAST_NAME']);
 $eml = htmlentities($empdetails['EMAIL']);
 $sal = htmlentities($empdetails['SALARY']);
 $cpt = htmlentities($empdetails['COMMISSION_PCT']);
 $eid = htmlentities($empdetails['EMPLOYEE_ID']);

 echo <<<END
 <form method="post" action="$posturl">
 <table>
 <tr>
 <td>Employee ID</td>
 <td>$eid</td></tr>
 <tr>
 <td>First Name</td>
 <td><input type="text" name="firstname" value="$fnm"></td>
 </tr>
 <tr>
 <td>Last Name</td>
 <td><input type="text" name="lastname" value="$lnm"></td>
 </tr>
 <tr>
 <td>Email Address</td>
 <td><input type="text" name="email" value="$eml"></td>
 </tr>
 <tr>
 <td>Salary</td>
 <td><input type="text" name="salary" value="$sal"></td>
 </tr>
 <tr>
 <td>Commission (%)</td>
 <td><input type="text" name="commpct" value="$cpt"></td>
 </tr>
 </table>
 <input type="hidden" value="{$empdetails['EMPLOYEE_ID']}"
 name="empid">
 <input type="submit" value="Save" name="savemodifiedemp">
 <input type="submit" value="Cancel" name="cancel">
 </form>
END;
 }
}

	
Save the changes to your Anyco application files, and test the changes by entering the following URL in your Web browser:

On Windows:

http://localhost/chap5/anyco.php

On Linux:

http://localhost/~<username>/chap5/anyco.php

The list of all employees is displayed with a radio button in each row.

[image: Description of chap5_test_emp_001.gif follows]

Scroll to the bottom of the Employees page to view the Modify, Delete, and Insert new employee buttons:

[image: Description of chap5_test_emp_002.gif follows]

	
To insert a new employee record, click Insert new employee:

[image: Description of chap5_test_emp_003.gif follows]

When you create or modify employee records, you will see that the database definitions require the salary to be greater than zero, and the commission to be less than 1. The commission will be rounded to two decimal places. In the Insert New Employee page, the Department ID field contains 10 (the default), Hiredate contains the current date (in default database date format), Salary contains 1, and Commission (%) contains 0. Enter the following field values:

First Name: James

Last Name: Bond

Job: Select Programmer from the list.

Salary: replace the 1 with 7000

Click Save.

[image: Description of chap5_test_emp_004.gif follows]

	
When the new employee record is successfully inserted, the Web page is refreshed with the form listing all employees. Scroll theWeb page to the last record and check that the new employee record is present. The employee ID assigned to the new record on your system may be different than the one shown in the following example:

[image: Description of chap5_test_emp_005.gif follows]

	
To modify the new employee record, select the radio button next to the new employee record, and click Modify:

[image: Description of chap5_test_emp_006.gif follows]

	
In the Modify Employee page, modify the Email Address field to JBOND, increase the Salary to 7100, and click Save:

[image: Description of chap5_test_emp_007.gif follows]

	
Successfully updating the employee record causes the Employees page to be redisplayed. Scroll to the last employee record and confirm that the salary for James Bond is now 7,100:

[image: Description of chap5_test_emp_008.gif follows]

	
To remove the new employee record, select the radio button for the new employee record, and click Delete:

[image: Description of chap5_test_emp_009.gif follows]

On successful deletion, the deleted row does not appear in the list of employee records redisplayed in the Employees page:

[image: Description of chap5_test_emp_010.gif follows]

Combining Departments and Employees

In this section, you will modify your application to enable access to both Employees and Departments pages.

To combine the Departments and Employees pages, perform the following tasks:

	
Edit the anyco.php file. Modify the query in the construct_employees() function to include a WHERE clause to compare the department_id with a value in a bind variable called :did. This makes the page display employees in one department at a time. Get the deptid session parameter value to populate the bind variable:

$query =
 "SELECT employee_id,
 substr(first_name,1,1) || '. '|| last_name as employee_name,
 hire_date,
 to_char(salary, '9999G999D99') as salary,
 nvl(commission_pct,0) as commission_pct
 FROM employees
 WHERE department_id = :did
 ORDER BY employee_id asc";

$deptid = $_SESSION['deptid'];

	
Edit the anyco.php file. In the construct_employees() function, update the call to the db_do_query() function to pass the bind information:

$conn = db_connect();

$bindargs = array();
array_push($bindargs, array('DID', $deptid, -1));

$emp = db_do_query($conn, $query, OCI_FETCHSTATEMENT_BY_ROW, $bindargs);

	
Edit the anyco.php file. In the construct_departments() function, save the department identifier in a session parameter:

$_SESSION['currentdept'] = $current;
$_SESSION['deptid'] = $deptid;

This saves the current department identifier from the Departments page as a session parameter, which is used in the Employees page.

	
Edit the anyco.php file. Create a function get_dept_name() to query the department name for printing in the Departments and Employees page titles:

function get_dept_name($conn, $deptid)
{
 $query =
 'SELECT department_name
 FROM departments
 WHERE department_id = :did';

 $conn = db_connect();
 $bindargs = array();
 array_push($bindargs, array('DID', $deptid, -1));
 $dn = db_do_query($conn, $query,OCI_FETCHSTATEMENT_BY_COLUMN, $bindargs);

 return($dn['DEPARTMENT_NAME'][0]);
}

	
Edit the anyco.php file. Modify the construct_employees() function to print the department name in the Employees page heading:

$deptname = get_dept_name($conn, $deptid);
ui_print_header('Employees: '.$deptname);

	
Edit the anyco.php file. Modify the construct_departments() function to print the department name in the Departments page heading:

$deptname = get_dept_name($conn, $deptid);
ui_print_header('Department: '.$deptname);

	
Edit the anyco.php file. Modify the construct_insert_emp() function so that the default department is obtained from the session parameter passed in the $emp array to the ui_print_insert_employee() function. The function becomes:

function construct_insert_emp()
{
 $deptid = $_SESSION['deptid'];

 $conn = db_connect();
 $query = "SELECT job_id, job_title FROM jobs ORDER BY job_title ASC";
 $jobs = db_do_query($conn, $query, OCI_FETCHSTATEMENT_BY_COLUMN);
 $query = "SELECT sysdate FROM dual";
 $date = db_do_query($conn, $query, OCI_FETCHSTATEMENT_BY_COLUMN);
 $emp = array(
 'DEPARTMENT_ID' => $deptid,
 'HIRE_DATE' => $date['SYSDATE'][0],
 'ALLJOBIDS' => $jobs['JOB_ID'],
 'ALLJOBTITLES' => $jobs['JOB_TITLE']
);
 ui_print_header('Insert New Employee');
 ui_print_insert_employee($emp, $_SERVER['SCRIPT_NAME']);
 ui_print_footer(date('Y-m-d H:i:s'));
}

	
Edit the anyco.php file. Modify the final else statement in the HTML form handler. The handler becomes:

// Start form handler code
if (isset($_POST['insertemp'])) {
 construct_insert_emp();
}
elseif (isset($_POST['saveinsertemp'])) {
 insert_new_emp();
}
elseif (isset($_POST['modifyemp'])) {
 construct_modify_emp();
}
elseif (isset($_POST['savemodifiedemp'])) {
 modify_emp();
}
elseif (isset($_POST['deleteemp'])) {
 delete_emp();
}
elseif (isset($_POST['showemp'])) {
 construct_employees();
}
elseif (isset($_POST['nextdept'])
 || isset($_POST['prevdept'])
 || isset($_POST['firstdept'])
 || isset($_POST['showdept'])) {
 construct_departments();
}
else {
 construct_departments();
}

	
Edit the anyco_ui.inc file. In the ui_print_department() function, change the HTML form to enable it to call the Employees page:

...
<form method="post" action="$posturl">
<input type="submit" value="First" name="firstdept">
<input type="submit" value="< Previous" name="prevdept">
<input type="submit" value="Next >" name="nextdept">

<input type="submit" value="Show Employees" name="showemp">
</form>
...

	
Edit the anyco_ui.inc file. In the ui_print_employees() function, change the HTML form to enable it to call the Departments page:

...
</table>
<input type="submit" value="Modify" name="modifyemp">
<input type="submit" value="Delete" name="deleteemp">

<input type="submit" value="Insert new employee" name="insertemp">

<input type="submit" value="Return to Departments" name="showdept">
</form>
...

	
Save the changes to your PHP files. In your browser, test the changes by entering the following URL:

On Windows:

http://localhost/chap5/anyco.php

On Linux:

http://localhost/~<username>/chap5/anyco.php

The Departments page is displayed.

[image: Description of chap5_combine_deptemp_001.gif follows]

To display a list of employees in the department, click the Show Employees button.

[image: Description of chap5_combine_deptemp_002.gif follows]

You can return to the Departments page by clicking the Return to Departments button. Experiment by navigating to another department and listing its employees to show the process of switching between the Departments and Employees pages.

Adding Error Recovery

Error management is always a significant design decision. In production systems, you might want to classify errors and handle them in different ways. Fatal errors could be redirected to a standard "site not available" page or home page. Data errors for new record creation might return to the appropriate form with invalid fields highlighted.

In most production systems, you would set the display_errors configuration option in the php.ini file to off, and the log_errors configuration option to on.

You can use the PHP output buffering functionality to trap error text when a function is executing. Using ob_start() prevents text from displaying on the screen. If an error occurs, the ob_get_contents() function allows the previously generated error messages to be stored in a string for later display or analysis.

Now you change the application to display error messages and database errors on a new page using a custom error handling function. Errors are now returned from the db* functions keeping them silent.

	
Edit the anyco_db.inc file. Change the db_error() function to return the error information in an array structure, instead of printing and quitting. The function becomes:

function db_error($r = false, $file, $line)
{
 $err = $r ? oci_error($r) : oci_error();

 if (isset($err['message'])) {
 $m = htmlentities($err['message']);
 $c = $err['code'];
 }
 else {
 $m = 'Unknown DB error';
 $c = null;
 }

 $rc = array(
 'MESSAGE' => $m,
 'CODE' => $c,
 'FILE' => $file,
 'LINE' => $line
);
 return $rc;
}

	
Edit the anyco_db.inc file. For every call to the db_error() function, assign the return value to a variable called $e and add a return false; statement after each call:

if (<error test>)
{
 $e = db_error(<handle>, __FILE__, __LINE__);
 return false;
}

Make sure to keep the <error test> and <handle> parameters the same as they are currently specified for each call. Remember that the __FILE__ and __LINE__ constants help to pinpoint the location of the failure during development. This is useful information to log for fatal errors in a production deployment of an application.

	
Edit the anyco_db.inc file. Add a $e parameter to every function to enable the return of error information. Use the & reference prefix to ensure that results are returned to the calling function. Each function declaration becomes:

function db_connect(&$e) {...}

function db_get_page_data($conn, $q1, $currrownum = 1, $rowsperpage = 1,
 &$e, $bindvars = array()) {...}

function db_do_query($conn, $statement, $resulttype, &$e,
 $bindvars = array()) {...}

function db_execute_statement($conn, $statement, &$e,
 $bindvars = array()) {...}

	
Edit the anyco_db.inc file. In the db_get_page_data() function, change the call to the db_do_query() function to pass down the error parameter $e:

$r = db_do_query($conn, $query, OCI_FETCHSTATEMENT_BY_ROW, $e, $bindvars);

	
Edit the anyco_db.inc file. Add an @ prefix to all oci_* function calls. For example:

@ $r = @oci_execute($stid);

The @ prefix prevents errors from displaying because each return result is tested. Preventing errors from displaying can hide incorrect parameter usage, which may hinder testing the changes in this section. You do not need to add @ prefixes, but it can effect future results when errors are displayed.

	
Edit the anyco.php file. Create a function to handle the error information:

function handle_error($message, $err)
{
 ui_print_header($message);
 ui_print_error($err, $_SERVER['SCRIPT_NAME']);
 ui_print_footer(date('Y-m-d H:i:s'));
}

	
Edit the anyco.php file. Modify all calls to db_* functions to include the additional error parameter:

Steps 8 to 15 show the complete new functions, so the code changes in this step can be skipped.

	
Change all db_connect() calls to db_connect($err).

	
Change all db_do_query() calls and insert a $err parameter as the fourth parameter. For example, the call in construct_employees() becomes:

$emp = db_do_query($conn, $query,
 OCI_FETCHSTATEMENT_BY_ROW, $err, $bindargs);

Change the other four db_do_query() calls in anyco.php remembering to keep the existing parameter values of each specific call.

	
Change the db_get_page_data() call and insert a $err parameter as the fifth parameter:

$dept = db_get_page_data($conn, $query, $current, 1, $err);

	
Change the db_execute_statement() calls and insert a $err parameter as the third parameter, for example:

$r = db_execute_statement($conn, $statement, $err, $bindargs);

	
Edit the anyco.php file. Modify the construct_departments() function to handle errors returned. The function becomes:

function construct_departments()
{
 if (isset($_SESSION['currentdept']) && isset($_POST['prevdept']) &&
 $_SESSION['currentdept'] > 1)
 $current = $_SESSION['currentdept'] - 1;
 elseif (isset($_SESSION['currentdept']) && isset($_POST['nextdept']))
 $current = $_SESSION['currentdept'] + 1;
 elseif (isset($_POST['showdept']) && isset($_SESSION['currentdept']))
 $current = $_SESSION['currentdept'];
 else
 $current = 1;

 $query =
 "SELECT d.department_id, d.department_name,
 substr(e.first_name,1,1)||'. '|| e.last_name as manager_name,
 c.country_name, count(e2.employee_id) as number_of_employees
 FROM departments d, employees e, locations l,
 countries c, employees e2
 WHERE d.manager_id = e.employee_id
 AND d.location_id = l.location_id
 AND d.department_id = e2.department_id
 AND l.country_id = c.country_id
 GROUP BY d.department_id, d.department_name,
 substr(e.first_name,1,1)||'. '||e.last_name, c.country_name
 ORDER BY d.department_id ASC";

 $conn = db_connect($err);

 if (!$conn) {
 handle_error('Connection Error', $err);
 }
 else {
 $dept = db_get_page_data($conn, $query, $current, 1, $err);
 if ($dept === false) {
 // Use === so empty array at end of fetch is not matched
 handle_error('Cannot fetch Departments', $err);
 } else {

 if (!isset($dept[0]['DEPARTMENT_ID']) && $current > 1) {
 // no more records so go back one

 $current--;
 $dept = db_get_page_data($conn, $query, $current, 1, $err);
 }

 $deptid = $dept[0]['DEPARTMENT_ID'];

 $_SESSION['deptid'] = $deptid;
 $_SESSION['currentdept'] = $current;

 $deptname = get_dept_name($conn, $deptid);
 ui_print_header('Department: '.$deptname);
 ui_print_department($dept[0], $_SERVER['SCRIPT_NAME']);
 ui_print_footer(date('Y-m-d H:i:s'));
 }
 }
}

	
Edit the anyco.php file. Modify the construct_employees() function to handle errors. The function becomes:

function construct_employees()
{
 $query =
 "SELECT employee_id,
 substr(first_name,1,1) || '. '|| last_name as employee_name,
 hire_date,
 to_char(salary, '9999G999D99') as salary,
 nvl(commission_pct,0) as commission_pct
 FROM employees
 WHERE department_id = :did
 ORDER BY employee_id asc";

 $deptid = $_SESSION['deptid'];

 $conn = db_connect($err);

 if (!$conn) {
 handle_error('Connection Error', $err);
 }
 else {
 $bindargs = array();
 array_push($bindargs, array('DID', $deptid, -1));
 $emp = db_do_query($conn, $query, OCI_FETCHSTATEMENT_BY_ROW, $err,
 $bindargs);

 if (!$emp) {
 handle_error('Cannot fetch Employees', $err);
 }
 else {
 $deptname = get_dept_name($conn, $deptid);
 ui_print_header('Employees: '.$deptname);
 ui_print_employees($emp, $_SERVER['SCRIPT_NAME']);
 ui_print_footer(date('Y-m-d H:i:s'));
 }
 }
}

	
Edit the anyco.php file. Modify the construct_insert_emp() function to handle errors. The function becomes:

function construct_insert_emp()
{
 $deptid = $_SESSION['deptid'];
 $conn = db_connect($err);
 if (!$conn) {
 handle_error('Connection Error', $err);
 }
 else {
 $query = "SELECT job_id, job_title FROM jobs ORDER BY job_title ASC";
 $jobs = db_do_query($conn, $query, OCI_FETCHSTATEMENT_BY_COLUMN, $err);
 $query = "SELECT sysdate FROM dual";
 $date = db_do_query($conn, $query, OCI_FETCHSTATEMENT_BY_COLUMN, $err);

 $emp = array(
 'DEPARTMENT_ID' => $deptid,
 'HIRE_DATE' => $date['SYSDATE'][0],
 'ALLJOBIDS' => $jobs['JOB_ID'],
 'ALLJOBTITLES' => $jobs['JOB_TITLE']
);

 ui_print_header('Insert New Employee');
 ui_print_insert_employee($emp, $_SERVER['SCRIPT_NAME']);
 ui_print_footer(date('Y-m-d H:i:s'));
 }
}

	
Edit the anyco.php file. Modify the insert_new_emp() function to handle errors. The function becomes:

function insert_new_emp()
{
 $statement =
 'INSERT INTO employees
 (employee_id, first_name, last_name, email, hire_date,
 job_id, salary, commission_pct, department_id)
 VALUES (employees_seq.nextval, :fnm, :lnm, :eml, :hdt,
 :jid, :sal, :cpt, :did)';

 $newemp = $_POST;

 $conn = db_connect($err);
 if (!$conn) {
 handle_error('Connect Error', $err);
 }
 else {
 $emailid = $newemp['firstname'].$newemp['lastname'];

 $bindargs = array();
 array_push($bindargs, array('FNM', $newemp['firstname'], -1));
 array_push($bindargs, array('LNM', $newemp['lastname'], -1));
 array_push($bindargs, array('EML', $emailid, -1));
 array_push($bindargs, array('HDT', $newemp['hiredate'], -1));
 array_push($bindargs, array('JID', $newemp['jobid'], -1));
 array_push($bindargs, array('SAL', $newemp['salary'], -1));
 array_push($bindargs, array('CPT', $newemp['commpct'], -1));
 array_push($bindargs, array('DID', $newemp['deptid'], -1));

 $r = db_execute_statement($conn, $statement, $err, $bindargs);
 if ($r) {
 construct_employees();
 }
 else {
 handle_error('Cannot insert employee', $err);
 }
 }
}

	
Edit the anyco.php function. Modify the construct_modify_emp() function to handle errors. The function becomes:

function construct_modify_emp()
{
 if (!isset($_POST['emprec'])) { // User did not select a record
 construct_employees();
 }
 else {
 $empid = $_POST['emprec'];

 $query =
 "SELECT employee_id, first_name, last_name, email, hire_date,
 salary, nvl(commission_pct,0) as commission_pct
 FROM employees
 WHERE employee_id = :empid";

 $conn = db_connect($err);
 if (!$conn) {
 handle_error('Connect Error', $err);
 }
 else {
 $bindargs = array();
 array_push($bindargs, array('EMPID', $empid, -1));

 $emp = db_do_query($conn, $query, OCI_FETCHSTATEMENT_BY_ROW, $err,
 $bindargs);

 if (!$emp) {
 handle_error('Cannot find details for employee '.$empid, $err);
 }
 else {
 ui_print_header('Modify Employee ');
 ui_print_modify_employee($emp[0], $_SERVER['SCRIPT_NAME']);
 ui_print_footer(date('Y-m-d H:i:s'));
 }
 }
 }
}

	
Edit the anyco.php file. Change the modify_emp() function to handle errors. The function becomes:

function modify_emp()
{
 $newemp = $_POST;

 $statement =
 "UPDATE employees
 SET first_name = :fnm, last_name = :lnm, email = :eml,
 salary = :sal, commission_pct = :cpt
 WHERE employee_id = :eid";

 $conn = db_connect($err);
 if (!$conn) {
 handle_error('Connect Error', $err);
 }
 else {
 $bindargs = array();
 array_push($bindargs, array('EID', $newemp['empid'], -1));
 array_push($bindargs, array('FNM', $newemp['firstname'], -1));
 array_push($bindargs, array('LNM', $newemp['lastname'], -1));
 array_push($bindargs, array('EML', $newemp['email'], -1));
 array_push($bindargs, array('SAL', $newemp['salary'], -1));
 array_push($bindargs, array('CPT', $newemp['commpct'], -1));

 $r = db_execute_statement($conn, $statement, $err, $bindargs);

 if (!$r) {
 handle_error('Cannot update employee '.$newemp['empid'], $err);
 }
 else {
 construct_employees();
 }
 }
}

	
Edit the anyco.php file. Modify the delete_emp() function to handle errors. The function becomes:

function delete_emp()
{
 if (!isset($_POST['emprec'])) { // User did not select a record
 construct_employees();
 }
 else {
 $empid = $_POST['emprec'];

 $conn = db_connect($err);
 if (!$conn) {
 handle_error('Connection Error', $err);
 }
 else {
 $statement = "DELETE FROM employees WHERE employee_id = :empid";
 $bindargs = array();
 array_push($bindargs, array('EMPID', $empid, -1));
 $r = db_execute_statement($conn, $statement, $err, $bindargs);

 if (!$r) {
 handle_error("Error deleting employee $empid", $err);
 }
 else {
 construct_employees();
 }
 }
 }
}

	
Edit the anyco.php file. Modify the get_dept_name() function to handle errors. The function becomes:

function get_dept_name($conn, $deptid)
{
 $query =
 'SELECT department_name
 FROM departments
 WHERE department_id = :did';

 $conn = db_connect($err);
 if (!$conn) {
 return ('Unknown');
 }
 else {
 $bindargs = array();
 array_push($bindargs, array('DID', $deptid, -1));
 $dn = db_do_query($conn, $query, OCI_FETCHSTATEMENT_BY_COLUMN,
 $err, $bindargs);
 if ($dn == false)
 return ('Unknown');
 else
 return($dn['DEPARTMENT_NAME'][0]);
 }
}

	
Edit the anyco_ui.inc file. Add a new function ui_print_error():

function ui_print_error($message, $posturl)
{
 if (!$message) {
 echo '<p>Unknown error</p>';
 }
 else {
 echo "<p>Error at line {$message['LINE']} of "
 ."{$message['FILE']}</p>"; // Uncomment for debugging
 echo "<p>{$message['MESSAGE']}</p>";
 }
 echo <<<END
 <form method="post" action="$posturl">
 <input type="submit" value="Return to Departments" name="showdept">
END;
}

Remember not to put leading spaces in the END; line. Leading spaces in the END;line cause the rest of the document to be treated as part of the text to be printed.

	
Save the changes to your application files. Test the changes by entering the following URL in your browser:

On Windows:

http://localhost/chap5/anyco.php

On Linux:

http://localhost/~<username>/chap5/anyco.php

The Departments page is displayed:

[image: Description of chap5_err_handling_001.gif follows]

	
Click Next to navigate to the last department record, the Accounting department with ID 110. Try to navigate past the last department record by clicking Next.

[image: Description of chap5_err_handling_002.gif follows]

The error handling prevents navigation past the last department record.

	
If a new employee is inserted with a salary of 0, or the department ID is changed to one that does not exist, the new error page is shown with the heading "Cannot insert employee".

Further Error Handling

Specific Oracle errors can be handled individually. For example, if a new employee record is created by clicking the Insert new employee button on the Employees page, and the Department ID is changed to a department that does not exist, you can trap this error and display a more meaningful message:

	
Edit the anyco.php file. Change the error handling in the insert_new_emp() function:

 $r = db_execute_statement($conn, $statement, $err, $bindargs);
 if ($r) {
 construct_employees();
 }
 else {
 if ($err['CODE'] == 2291) { // Foreign key violated
 handle_error("Department {$newemp['deptid']} does not yet exist",
 $err);
 }
 else {
 handle_error('Cannot insert employee', $err);
 }
 }

	
Save the changes to your application files. Test the changes by entering the following URL:

On Windows:

http://localhost/chap5/anyco.php

On Linux:

http://localhost/~<username>/chap5/anyco.php

	
In the Departments page, click Show Employees.

[image: Description of chap5_err_handling_003.gif follows]

	
In the Employees page, click Insert new employee.

[image: Description of chap5_err_handling_004.gif follows]

	
In the Insert New Employee page, enter employee details as shown, setting the Department ID to 99, and click Save.

[image: Description of chap5_err_handling_005.gif follows]

The following error page is displayed:

[image: Description of chap5_err_handling_006.gif follows]

You can click Return to Departments to return to the Departments page and then click Show Employees to verify that the new employee record has not been added to the Administration department.

2 Getting Started

This chapter explains how to install and test Oracle Database and PHP environment. It has the following topics:

	
What You Need

	
Installing Oracle Database

	
Installing Apache HTTP Server

	
Installing Zend Core for Oracle

	
Configuring Zend Core for Oracle

	
Testing the Zend Core for Oracle Installation

What You Need

To install your Oracle Database and PHP environment, you need:

	
Oracle Database Server

	
Oracle Database Client

	
Zend Core for Oracle

	
A text editor for editing PHP code. A code editor such as Oracle JDeveloper with the optional PHP Extension can also be used.

Installing Oracle Database

You should install a copy of Oracle Database Server on your computer. The sample data used in this tutorial is installed by default. It is the HR component of the Sample Schemas.

Throughout this tutorial Oracle SQL Developer is the graphical user interface used to perform Database tasks. Oracle SQL Developer is a free graphical tool for database development.

	
See Also:

	
Oracle Database Sample Schemas guide for information about the HR sample schema.

	
Oracle SQL Developer web page

http://www.oracle.com/technology/products/database/sql_developer/

Unlocking the HR User

The PHP application connects to the database as the HR user. You may need to unlock the HR account as a user with DBA privileges. To unlock the HR user:

	
Open SQL Developer and open a connection to your Oracle database.

	
Login to your Oracle database as system.

	
Open SQL Workheet or SQL*Plus and run the following SQL statement:

alter user hr account unlock;

[image: Description of chap2_unlock.gif follows]

For further information about unlocking an Oracle Database account, see Chapter 6, "Managing Users and Security," in the Oracle Database 2 Day DBA guide.

	
See Also:

	
Oracle Database documentation

http://www.oracle.com/technology/documentation

Installing Apache HTTP Server

Zend Core for Oracle includes Apache HTTP Server. Follow the Zend Core installation instructions to install Apache.

Testing the Apache Installation on Windows

To test the Apache HTTP Server installation:

	
Start your Web browser on the host on which you installed Apache.

	
Enter the following URL:

http://localhost/

Your Web browser will display a page similar to the following:

[image: Description of chap2_test_install_013.gif follows]

If this page does not appear check your Apache configuration. Common problems are that Apache is not running, or that it is listening on a non-default port.

Testing the Apache Installation on Linux

To test the Apache HTTP Server installation:

	
Start your Web browser on the host on which you installed Apache, and enter the following URL:

http://localhost/

Your Web browser will display a page similar to the following:

[image: Description of chap2_install_001.gif follows]

If this page does not appear, check your Apache configuration. Common problems are that Apache is not running, or that it is listening on a nondefault port.

	
In the default Apache HTTP Server configuration file, set up a public virtual directory as public_html for accessing your PHP files. Use your preferred editor to open the Apache configuration file /etc/httpd/conf/httpd.conf (the directory may be different in your installation of Linux), and remove the pound sign (#) at the start of the following line:

In this example, your Apache httpd.conf file contains the following lines:

<IfModule mod_userdir.c>
 #
 # UserDir is disabled by default since it can confirm the presence
 # of a username on the system (depending on home directory
 # permissions).
 #
 #UserDir disable

 #
 # To enable requests to /~user/ to serve the user's public_html
 # directory, remove the "UserDir disable" line above, and uncomment
 # the following line instead:
 #
 UserDir public_html
</IfModule>

This enables the Web browser to make an HTTP request using a registered user on the system and to serve files from the $HOME/public_html directory of the user. For example:

http://localhost/~user/

	
To use the new Apache configuration file, in a command window, restart Apache by entering the following commands:

su -
Password: <enter your su (root) password>
apachectl restart

[image: Description of chap2_install_002.gif follows]

If the Apache HTTP Server does not start, check the error log files to determine the cause. It may be a configuration error.

	
In the command window, log in (not root) and create a public_html subdirectory in the $HOME directory with the following command:

mkdir $HOME/public_html

[image: Description of chap2_install_003.gif follows]

Installing Zend Core for Oracle

Perform the following steps to obtain Zend Core for Oracle for Windows or Linux:

	
Enter the following URL in your Web browser:

http://www.oracle.com/technology/tech/php/zendcore/index.html

	
To the right of the Zend Core for Oracle Web page, click the Free Download button.

[image: Description of chap2_zcdownload.gif follows]

	
Save the downloaded file in a temporary directory, such as c:\tmp on Windows or \tmp on Linux.

Installing Zend Core for Oracle on Windows

This section describes how to install Zend Core for Oracle on Windows.

This tutorial is specific to PHP in Zend Core for Oracle.

For detailed setup information for Zend Core for Oracle, see the Installation Guide under Product Information on the Zend Core for Oracle Web page at

http://www.oracle.com/technology/tech/php/zendcore/index.html

This procedure assumes you downloaded the Zend Core for Oracle software to c:\tmp. If not, in Step 1 you must change to the directory that contains the downloaded software.

The file name and extraction directory are based on the current version. Throughout this procedure, ensure you use the directory name for the version you are installing.

You must be the administrator user to install Zend Core for Oracle. To install Zend Core for Oracle, perform the following steps:

	
In Windows Explorer, go to the directory where you downloaded the Zend Core for Oracle software.

	
To start the Zend Core for Oracle installation process, double-click the .exe file.

Review the README file and installation documentation distributed with Zend Core for Oracle.

Use the Tab or arrow keys, or use your mouse to move between input fields and buttons in the Zend installer. Press Enter, or click with the mouse to select a button.

	
In the initial Zend Core for Oracle Installation page, click Next.

[image: Description of chap2_zcwelcome.gif follows]

Copyright, 2006, Zend Technologies Ltd.

	
In the Zend Core for Oracle License Agreement page, read the license agreement. To continue with the installation, select I accept the terms of the license agreement, and click Next.

[image: Description of chap2_zclicence.gif follows]

Copyright, 2006, Zend Technologies Ltd.

	
You are prompted to select the type of installation you want. Select Complete, and click Next.

[image: Description of chap2_zcsetup.gif follows]

Copyright, 2006, Zend Technologies Ltd.

	
When you are prompted to specify the location for installing Zend Core for Oracle, accept the default (or enter your preferred location), and click Next.

[image: Description of chap2_zclocation.gif follows]

Copyright, 2006, Zend Technologies Ltd.

	
The next page prompts you to select the Web server for Zend Core installation. Accept the Install Bundled Apache option, and click Next.

[image: Description of chap2_zcapache.gif follows]

Copyright, 2006, Zend Technologies Ltd.

	
You are then prompted to enter the port number Apache will use. Accept the default value 80, and click Next.

[image: Description of chap2_zcapacheport.gif follows]

Copyright, 2006, Zend Technologies Ltd.

	
You are then prompted to select the Web Server API to use. Select Apache Module, and click Next.

[image: Description of chap2_zcwebserverapi.gif follows]

Copyright, 2006, Zend Technologies Ltd.

	
When you are prompted to select extensions to associate with your Zend Core for Oracle installation, select all four, and click Next.

[image: Description of chap2_zcextensions.gif follows]

Copyright, 2006, Zend Technologies Ltd.

	
You are now prompted to enter a Zend Core GUI password. This password enables you to log in to the Zend Core Console to configure directives or property values.

Enter the password you want to use to access the Zend Core Console, and click Next.

[image: Description of chap2_zcadminpassword.gif follows]

Copyright, 2006, Zend Technologies Ltd.

	
You can optionally enter your Zend network user ID and password to be able to use the Zend Core Console to track when updates to Zend Core and PHP components are available. If you have not registered, or do not want to track updates, select No, and click Next.

[image: Description of chap2_zcnetwork.gif follows]

Copyright, 2006, Zend Technologies Ltd.

	
The installation wizard is now ready to begin installing Zend Core for Oracle on your computer. To start the installation wizard, click Install.

[image: Description of chap2_zcinstall.gif follows]

Copyright, 2006, Zend Technologies Ltd.

	
To complete the installation, you are prompted to restart your computer. Select Yes, I want to restart my computer now, and click Finish.

Copyright, 2006, Zend Technologies Ltd.

Installation is complete and Zend Core for Oracle is ready to be configured.

Installing Zend Core for Oracle on Linux

This section describes how to install Zend Core for Oracle on Linux.

This tutorial is specific to PHP in Zend Core for Oracle.

For detailed setup information for Zend Core for Oracle, see the Installation Guide under Product Information on the Zend Core for Oracle Web page at

http://www.oracle.com/technology/tech/php/zendcore/index.html

This procedure assumes you downloaded the Zend Core for Oracle software to /tmp. If not, in Step 1 you must change to the directory that contains the downloaded software.

The file name and extraction directory are based on the current version. Throughout this procedure, ensure you use the directory name for the version you are installing.

You must be the root user to install Zend Core for Oracle. Perform the following steps to install Zend Core for Oracle:

	
Enter the following commands in a command window to extract the contents of the downloaded Zend Core for Oracle software:

su -
Password: <enter the root password>
cd /tmp
tar -zxf ZendCoreForOracle-v1.2.1-Linux-x86.tar.gz

[image: Description of chap2_install_012.gif follows]

By default, files are extracted to a subdirectory called ZendCoreForOracle-v1.2.1-Linux-x86.

Review the README file and installation documentation distributed with Zend Core for Oracle.

	
To start the Zend Core for Oracle installation process, enter the following commands:

cd ZendCoreForOracle-v1.2.1-Linux-x86
./install

[image: Description of chap2_install_013.gif follows]

The install command must be executed with root user privileges. After you enter the ./install command, the installation process begins (documented in subsequent steps).

Use the Tab or arrow keys, or use your mouse to move between input fields and buttons in the Zend installer. Press Enter or click with the mouse to select a button.

	
In the initial Zend Core for Oracle Installation page, click OK.

[image: Description of chap2_install_014.gif follows]

Copyright, 2006, Zend Technologies Ltd.

	
In the Zend Core for Oracle V.1 page, read the license agreement. To continue with the installation, click Exit.

[image: Description of chap2_install_015.gif follows]

Copyright, 2006, Zend Technologies Ltd.

	
When you are prompted to accept the terms of the license, click Yes.

[image: Description of chap2_install_016.gif follows]

Copyright, 2006, Zend Technologies Ltd.

	
When you are prompted to specify the location for installing Zend Core for Oracle, accept the default (or enter your preferred location), and click OK.

[image: Description of chap2_install_017.gif follows]

Copyright, 2006, Zend Technologies Ltd.

The installer begins extracting the files required for the installation. The following progress screen is visible during the installation process:

[image: Description of chap2_install_018.gif follows]

Copyright, 2006, Zend Technologies Ltd.

	
When the progress window indicates that all the software was installed, you are prompted to Please enter the GUI password. In the Password field, enter the password you want to use to access the Zend Core Console, and click OK.

[image: Description of chap2_install_019.gif follows]

Copyright, 2006, Zend Technologies Ltd.

The password you specify here lets you log in to the Zend Core for Oracle administration Web pages. These pages enable you to configure Zend Core for Oracle engine directives and property values.

	
When you are prompted to Verify the password, enter the same password that you specified in Step 7, and click OK.

[image: Description of chap2_install_020.gif follows]

Copyright, 2006, Zend Technologies Ltd.

	
In the Zend Core support page, you can optionally enter your Zend network user ID and password to be able to use the Zend Core Console to track when updates to Zend Core and PHP components are available. If you have not registered, or do not want to track updates, click No.

[image: Description of chap2_install_021.gif follows]

Copyright, 2006, Zend Technologies Ltd.

	
The next page prompts you to select the Web server for Zend Core installation. Select the default (Apache installed with Linux), and click OK.

[image: Description of chap2_install_022.gif follows]

Copyright, 2006, Zend Technologies Ltd.

If you choose, you can install Zend Core for Oracle with another supported Web server that is installed on your system.

	
In the page confirming your Web server selection, you are prompted whether or not to proceed. Click Yes.

[image: Description of chap2_install_023.gif follows]

Copyright, 2006, Zend Technologies Ltd.

	
In the next installation page you are prompted to select an installation method for Apache 2.0.52. Select Apache module as the method, and click OK.

[image: Description of chap2_install_024.gif follows]

Copyright, 2006, Zend Technologies Ltd.

	
In the next installation page you are prompted to select a virtual server for the Zend Core GUI. Select Main Server, and click OK.

[image: Description of chap2_install_025.gif follows]

Copyright, 2006, Zend Technologies Ltd.

	
In the next installation page, you are prompted whether or not to restart the Web Server. Click Yes.

[image: Description of chap2_install_026.gif follows]

Copyright, 2006, Zend Technologies Ltd.

	
In the next installation page, you are asked whether or not to configure another Web Server to use Zend Core for Oracle. Click No.

[image: Description of chap2_install_027.gif follows]

Copyright, 2006, Zend Technologies Ltd.

	
The final installation page lists useful configuration commands and a Web page for the administration of the Zend Core engine. Take note of the information, and click EXIT.

[image: Description of chap2_install_028.gif follows]

Copyright, 2006, Zend Technologies Ltd.

	
When the Zend Core installation ends, the text from the final installation screen is displayed in your terminal.

[image: Description of chap2_install_029.gif follows]

Copyright, 2006, Zend Technologies Ltd.

Installation is complete and Zend Core for Oracle is ready to be configured.

Configuring Zend Core for Oracle

In this section, you configure environment variables and Zend Core directives that control default error reporting in Web pages.

	
Enter the following URL in a Web browser to access the Zend Core Administration page:

http://localhost/ZendCore/

The Zend Core for Oracle Welcome page is displayed.

	
Enter the GUI password that you provided during Zend Core for Oracle installation in the Password field. Click the login (>>>) icon.

[image: Description of chap2_zcconflog.gif follows]

Copyright, 2006, Zend Technologies Ltd.

The Control Center System Overview page is displayed.

	
To display the configuration options, click the Configuration tab.

	
To expand the Error Handling and Logging configuration entry, click the (+) icon .

	
To enable the display of errors in the HTML script output during development, set the display_errors directive to On.

[image: Description of chap2_zcerrconf.gif follows]

Copyright, 2006, Zend Technologies Ltd.

	
To save the configuration changes, click Save Settings.

Because you made configuration changes, you must restart the Apache HTTP Server. Under the page header notice the "Please Restart Apache" message reminding you to do so.

	
Click Logout to exit the Zend Core for Oracle Administration page.

	
Restart Apache. You can either use the ApacheMonitor utility, or you can use Windows Services.

To use the ApacheMonitor utility, navigate to the Apache bin directory and double click ApacheMonitor.exe. In a default installation, Apache bin is located at c:\Program Files\Zend\Apache2\bin.

You can access Windows Services from the Windows Start menu at Start > Control Panel > Administrative Tools > Services. Select the Standard tab. Right click the Apache2 HTTP Server and then select Restart.

Now that you have completed the basic configuration changes, proceed to the next section to test the Zend Core for Oracle installation.

Testing the Zend Core for Oracle Installation

To test the Zend Core for Oracle installation:

	
Create a subdirectory called chap2. To create a directory for your application files, and to change to the newly created directory, enter the following commands in a command window:

On Windows:

mkdir "c:\program files\Zend\Apache2\htdocs\chap2"
cd c:\program files\Zend\Apache2\htdocs\chap2

On Linux:

mkdir $HOME/public_html/chap2
cd $HOME/public_html/chap2

[image: Description of chap2_test_install_002.gif follows]

If you create files in a different location, you must change the steps for file editing and execution to match your working directory name and URL.

	
Create a file called hello.php that contains the following HTML text:

<?php
 echo "Hello, world!";
?>

	
Open a Web browser and enter the following URL in your browser:

On Windows:

http://localhost/chap2/hello.php

On Linux:

http://localhost/~<username>/chap2/hello.php

The line "Hello, world!" appears in the browser.

[image: Description of chap2_hello_001.gif follows]

Index

A B C D E F G H I J L M N O P Q R S T U V W Z

Symbols

	$bindargs array, 4.2
	$bindargs parameter, 5.1
	$bindvars parameter, 4.2, 4.2, 7.1
	$conn parameter, 3.2
	$current variable, 4.3
	$date parameter, 3.1
	$DID variable, 4.2
	$e parameter, 5.4, 5.4, 5.4
	$emp variable, 5.3
	$file parameter, 4.1
	$line parameter, 4.1
	$posturl parameter, 4.3, 4.3
	$q1 parameter, 4.3
	$query parameter, 5.2
	$r parameter, 4.1
	$refcur variable, 6.2
	$results parameter, 4.1
	$resulttype parameter, 5.2
	$rowsperpage parameter, 4.3
	$stid parameter, 4.1, 4.2
	$title parameter, 3.1
	@ preventing error display, 5.4
	__FILE__ variable, 4.1, 5.4
	__LINE__ variable, 4.1, 5.4

A

	AL32UTF8 character set, 8.1
	AnyCo Corp
	
	tutorial application, 1.3

	anyco_cn.inc
	
	creating, 4.1
	description, 1.3

	anyco_db.inc
	
	calling bind variable, 4.2
	calling PL/SQL packaged procedure, 6.2
	changing the bind variable, 7.1
	choosing output type, 5.2, 5.2
	creating, 4.1
	creating a thumbnail image, 7.2
	description, 1.3
	executing data manipulation statements, 5.2
	including in anyco.php, 4.1
	inserting thumbnail image, 7.1
	passing error parameter, 5.4
	preventing error display, 5.4
	return error variable, 5.4
	returning errors, 5.4
	returning errors from all functions, 5.4
	subset query, 4.3
	testing, 4.2

	anyco_im.php
	
	creating, 7.1
	description, 1.3
	employee image display, 7.1

	anyco_ui.inc
	
	add employee remuneration column, 6.1
	adding an employee image column, 7.1
	adding navigation, 4.3
	creating, 3.1, 3.1
	description, 1.3
	employee data in HTML table, 5.1
	error printing, 5.4
	extending, 4.4
	formatting results, 4.1
	functions, 3.1
	generating an employee img tag, 7.1
	generating employee data HTML form, 5.2
	HTML form for employee data, 5.2
	including, 3.1
	including in anyco.php, 4.1
	testing changes, 5.1
	updating an employee record, 5.2
	uploading employee image, 7.1

	anyco.php
	
	adding db connection, 3.2
	bind variables, 4.2
	building employee records, 5.2
	calling a PL/SQL function, 6.1
	creating, 3.1
	data manipulation logic, 5.2
	deleting employee records, 5.2
	departments instead of employees, 5.1
	description, 1.3
	employees and departments pages, 5.3
	employees page, 5.1
	error handling, 5.4, 5.5
	executing the query, 3.2
	fetching all rows, 3.2
	include files, 4.1
	inserting an image, 7.1
	inserting employee records, 5.2
	navigation, 4.3
	obtaining the default department, 5.3
	printing page titles, 5.3
	query to execute, 3.2
	replace query, 4.4
	testing, 3.1, 3.2, 4.1, 4.2, 4.3, 4.4, 5.1, 5.2, 5.3, 5.4, 5.5, 6.1, 6.2, 7.1, 7.2
	updating employee records, 5.2
	usable database connection, 3.2
	using a bind variable, 4.2

	Apache
	
	creating public_html, 2.3.2
	httpd.conf configuration file, 2.3.2
	obtaining and installing, 2.3
	public_html, 2.3.2
	restarting, 2.3.2
	testing installation on Linux, 2.3.2
	testing installation on Windows, 2.3.1

	application, 5.4
	
	adding an employee image, 7.1
	adding employee remuneration column, 6.1
	building employee records, 5.2
	calling departments instead of employees, 5.1
	calling locale specific functions, 8.4
	centralizing database logic, 4.1
	choosing output type, 5.2, 5.2
	combining departments and employees, 5.3
	connection functions, 4.1
	constants for database connection, 4.1
	creating employees page, 5.1
	deleting employee records, 5.2
	employee image display, 7.1
	employee images in BLOBs, 7.1
	error recovery, 5.4
	executing data manipulation statements, 5.2
	executing the query, 3.2
	extending departments page, 4.4
	extending employees page, 5.2
	externalizing translatable strings, 8.6.1
	fetching all rows, 3.2
	file naming convention, 1.3
	files directory, 2.6, 3.1
	generating an employee img tag, 7.1
	globalizing, 8
	implementing subset query, 4.3
	inserting employee records, 5.2
	inserting employee thumbnail, 7.1
	Next and Previous buttons, 4.3
	obtaining the default department, 5.3
	Oracle errors, 5.5
	PL/SQL procedures and functions, 6.1
	printing errors, 5.4
	printing page titles, 5.3
	query to execute, 3.2
	report page, 3
	return error variable, 5.4
	thumbnail images, 7.2
	translating HTML and GIF, 8.6.2
	translating the user interface, 8.6
	updating employee records, 5.2
	uploading employee image, 7.1
	user interface, 3.1
	UTF-8 page encoding, 8.5

	array_push() function, 7.1

B

	bind variables, 4.2, 4.2
	
	anyco.php, 4.2
	calling in anyco_db.inc, 4.2
	DID, 4.2, 4.2, 5.3
	FIRST, 4.3
	LAST, 4.3
	modify query, 4.2
	NEWEID, 7.1
	OUT, 7.1
	returning from database, 7.1

	BLOBs
	
	storing employee images, 7.1

C

	calc_remuneration() function, 6.1
	character sets
	
	AL32UTF8, 8.1
	globalization settings, 8.2
	UTF-8, 8.1

	charset parameter, 8.5.1.1
	configuring
	
	Apache httpd.conf, 2.3.2
	Zend Core for Oracle, 2.5
	Zend Core for Oracle configuration tab, 2.5

	connections
	
	disconnecting, 3.3
	Easy Connect syntax, 3.2.1
	HR user, 2.2.1, 6.1
	Oracle Database, 3
	persistent, 3.2.2
	settings, 3.2.2

	construct_departments() function, 4.3, 4.3, 4.3, 4.4, 5.1
	construct_employees() function, 5.1, 5.1, 5.3, 6.1
	construct_image() function, 7.1
	construct_insert_emp() function, 5.2, 5.3
	construct_modify_emp() function, 5.2
	Content-type, 7.1
	conventions
	
	presenting data, 8.7

	COUNTRIES table, 4.4
	creating
	
	anyco_ui.inc application user interface, 3.1
	directory for application files, 2.6, 3.1
	PHP files, 3
	public_html, 2.3.2

	cv_types.et_employees() procedure, 6.2

D

	database
	
	centralizing logic, 4.1
	connection functions, 4.1
	constants for connection, 4.1
	disconnection, 3.3
	dynamic information, 8.6.3
	Easy Connect syntax, 3.2.1
	executing the query, 3.2
	fetching all rows, 3.2
	navigating records, 4.3
	storing employee images, 7.1
	tnsnames.ora, 3.2.1
	validating connection, 3.2

	date formats in Oracle, 8.7.1
	date() function, 5.2
	db_do_query() function, 4.1, 4.2, 4.2, 5.1, 5.1, 5.2, 5.2, 5.2, 5.4
	db_error () function, 4.1
	db_error() function, 4.1, 5.4, 5.4
	db_execute_statement() function, 5.2, 5.2, 7.1
	db_get_employees_rc() function, 6.2
	db_get_page_data() function, 4.3, 4.3, 4.3, 5.2, 5.4
	db_insert_thumbnail() function, 7.1, 7.2, 7.2
	debugging, 4.1
	delete_emp() function, 5.2
	department_id variable, 5.3
	departments page
	
	combining with employees, 5.3
	extending, 4.4

	DEPARTMENTS table, 1.3, 3.2, 4.3, 4.4
	deptid parameter, 5.3
	DID bind variable, 4.2, 4.2, 5.3
	directives
	
	display_errors, 3.2.1
	error_reporting, 3.2.1

	disconnection, 3.3
	display_errors directive, 3.2.1
	do_query() function, 3.2

E

	Easy Connect syntax, 3.2.1
	EMPLOYEE_PHOTOS table, 7.1, 7.1
	employees page, 5.1
	
	combining with departments, 5.3
	creating, 5.1
	extending, 5.2

	EMPLOYEES table, 1.3, 3.2, 4.4, 5.2, 5.2, 5.2, 7.1
	enctype attribute, 7.1
	environment variables
	
	NLS_LANG, 8.1
	NLS_LANGUAGE, 8.4, 8.7.4
	NLS_TERRITORY, 8.4

	error_reporting directive, 3.2.1
	errors
	
	assigning to variable, 5.4
	handling, 5.4
	NLS_LANGUAGE, 8.7.4
	Oracle, 5.5
	passing parameter, 5.4
	preventing display, 5.4
	recovery, 5.4
	returning, 5.4
	returning from all functions, 5.4

F

	files
	
	adding data manipulation logic to anyco.php, 5.2
	adding db connection to anyco.php, 3.2
	adding navigation to anyco.php, 4.3
	anyco_cn.inc description, 1.3
	anyco_db.inc description, 1.3
	anyco_im.php description, 1.3
	anyco_ui.inc description, 1.3
	anyco.php description, 1.3
	application, 2.6, 3.1
	application naming convention, 1.3
	creating anyco_cn.inc, 4.1
	creating anyco_db.inc, 4.1
	creating anyco_im.php, 7.1
	creating anyco_ui.inc, 3.1
	creating anyco.php, 3.1
	employees and departments pages, 5.3
	employees page in anyco.php, 5.1
	error handling in anyco.php, 5.4, 5.5
	extending anyco_ui.inc, 4.4
	include file in anyco_ui.inc, 3.1
	include files in anyco.php, 4.1
	JPEG, 7.2
	style.css description, 1.3
	testing anyco_ui.inc, 5.1
	testing anyco.php, 3.1, 3.2, 4.1, 4.2, 4.3, 4.4, 5.1, 5.2, 5.3, 5.4, 5.5, 6.1, 6.2, 7.1, 7.2
	translating HTML and GIF, 8.6.2

	FIRST bind variable, 4.3
	format
	
	function in anyco_ui.inc, 4.1

	functions
	
	anyco_ui.inc, 3.1
	array_push(), 7.1
	calc_remuneration(), 6.1
	construct_departments(), 4.3, 4.3, 4.3, 4.4, 5.1
	construct_employees(), 5.1, 5.1, 5.3, 6.1
	construct_image(, 7.1
	construct_insert_emp(), 5.2, 5.3
	construct_modify_emp(), 5.2
	date(), 5.2
	db_do_query(), 4.1, 4.2, 4.2, 5.1, 5.1, 5.2, 5.2, 5.2, 5.4
	db_error (), 4.1
	db_error(), 4.1, 5.4, 5.4
	db_execute_statement(), 5.2, 5.2, 7.1
	db_get_employees_rc(), 6.2
	db_get_page_data(), 4.3, 4.3, 4.3, 5.2, 5.4
	db_insert_thumbnail(), 7.1, 7.2, 7.2
	delete_emp(), 5.2
	do_query(), 3.2
	get_dept_name(), 5.3
	header(), 7.1
	htmlentities(), 3.1
	imagecopyresampled(), 7.2
	imagecreatefromjpeg(), 7.2
	imagecreatetruecolor(), 7.2
	insert_new_emp(), 5.2, 5.5, 7.1
	isset(), 4.1
	modify_emp(), 5.2
	oci_bind_by_name(), 4.2, 4.2
	oci_close(), 3.3
	oci_connect(), 3.2, 3.2.1, 3.3
	oci_error(), 4.1
	oci_execute(), 4.2
	oci_fetch_all(), 4.1, 5.2
	oci_fetch_array(), 3.2
	oci_parse(), 3.2
	OCI8 oci_pconnect(), 3.2.2
	OCI8 oci_pconnect() function, 3.2.2
	OCI-Lob->load(), 7.1
	session_start(), 4.3
	SYSDATE, 5.2
	ui_print_department(), 4.3, 4.3, 4.4
	ui_print_employees(), 5.1, 5.1, 5.2, 6.1, 7.1, 7.1
	ui_print_error(), 5.4
	ui_print_footer(), 3.1
	ui_print_header(), 3.1
	ui_print_insert_employee(), 5.2, 5.3, 7.1
	ui_print_modify_employee(), 5.2
	var_dump(), 3.2.1, 4.1

G

	GD graphicsextension, 7.2
	get_dept_name() function, 5.3
	globalizing
	
	applications, 8
	calling locale specific functions, 8.4
	character sets, 8.2
	date formats, 8.7.1
	determining user locale, 8.3
	dynamic information, 8.6.3
	HTML page encoding, 8.5
	linguistic sorts, 8.7.3
	NLS_LANGUAGE, 8.7.4
	number formats, 8.7.2
	PHP and Oracle environment, 8.1
	presenting data, 8.7
	sorting data, 8.7
	translating the user interface, 8.6

	GUI password
	
	Zend Core for Oracle, 2.4.2

H

	header() function, 7.1
	hello.php
	
	testing Zend Core for Oracle installation, 2.6

	HTML
	
	cascading style sheet, 3.1
	employee data output, 5.1
	form containing employee data, 5.2
	generating employee data form, 5.2
	page encoding, 8.5, 8.5.1.1, 8.5.1.2, 8.5.2
	page header, 8.5.1.2

	htmlentities() function, 3.1
	HTTP header
	
	page encoding, 8.5.1.1

	httpd.conf Apache configuration file, 2.3.2
	Human Resources (HR) application, 1.3

I

	imagecopyresampled() function, 7.2
	imagecreatefromjpeg() function, 7.2
	imagecreatetruecolor() function, 7.2
	images
	
	creating a thumbnail, 7.2
	creating thumbnails, 7.2
	inserting employee thumbnail, 7.1
	inserting in anyco.php, 7.1
	storing in BLOBs, 7.1

	include files
	
	anyco_ui.inc, 3.1
	anyco.php, 4.1
	in anyco.php, 4.1, 4.1

	insert_new_emp() function, 5.2, 5.5, 7.1
	installation, 2.4.1, 2.4.2
	
	Apache, 2.3
	Oracle Database, 2, 2.2
	root user, 2.4.2
	Zend Core for Oracle, 2.4
	Zend Core for Oracle install directory, 2.4.1, 2.4.2
	Zend Core for Oracle on Linux, 2.4.2
	Zend Core for Oracle on Windows, 2.4.1

	isset() function, 4.1

J

	JOBS table, 5.2
	JPEG file, 7.2

L

	LAST bind variable, 4.3
	linguistic sorts, 8.7.3
	locale, 8.3
	location
	
	Zend Core for Oracle, 2.4.1, 2.4.2

	LOCATIONS table, 4.4

M

	modify_emp() function, 5.2

N

	navigating database records, 4.3, 4.3
	NEWEID bind variable, 7.1
	NLS_LANG environment variable, 8.1
	NLS_LANGUAGE environment variable, 8.4, 8.7.4
	NLS_TERRITORY environment variable, 8.4
	NULL values, 3.2
	number formats in Oracle, 8.7.2

O

	obtaining
	
	Apache, 2.3
	Oracle Database, 2.2
	Zend Core for Oracle, 2.4

	OCI_B_CURSOR ref cursor, 6.2
	oci_bind_by_name() function, 4.2, 4.2
	oci_close() function, 3.3
	OCI_COMMIT_ON_SUCCESS parameter, 3.2
	oci_connect() function, 3.2, 3.2.1, 3.3
	OCI_DEFAULT parameter, 3.2
	oci_error() function, 4.1
	oci_execute() function, 4.2
	oci_fetch_all() function, 4.1, 5.2
	oci_fetch_array() function, 3.2
	OCI_FETCHSTATEMENT_BY_COLUMN parameter, 5.2
	OCI_FETCHSTATEMENT_BY_ROW parameter, 4.1, 5.2, 5.2
	oci_parse() function, 3.2
	OCI_RETURN_NULLS parameter, 3.2
	OCI8 oci_pconnect(), 3.2.2
	OCI8 oci_pconnect() function, 3.2.2
	oci8.max_persistent setting, 3.2.2
	oci8.persistent_timeout setting, 3.2.2
	oci8.ping_interval setting, 3.2.2
	OCI-Lob->load() function, 7.1
	Oracle
	
	date formats, 8.7.1
	establishing environment, 8.1
	number formats, 8.7.2
	tnsnames.ora, 3.2.1

	Oracle Database
	
	connecting, 3
	installing, 2
	obtaining and installing, 2.2
	prerequisites, 2.1

	OUT bind variable, 7.1

P

	parameters
	
	$bindargs, 5.1
	$bindvars, 4.2, 4.2, 7.1
	$conn, 3.2
	$date, 3.1
	$e, 5.4, 5.4, 5.4
	$file, 4.1
	$line, 4.1
	$posturl, 4.3, 4.3
	$q1, 4.3
	$query, 5.2
	$r, 4.1
	$results, 4.1
	$resulttype, 5.2
	$rowsperpage, 4.3
	$stid, 4.1, 4.2
	$title, 3.1
	charset, 8.5.1.1
	deptid, 5.3
	OCI_COMMIT_ON_SUCCESS, 3.2
	OCI_DEFAULT, 3.2
	OCI_FETCHSTATEMENT_BY_COLUMN, 5.2
	OCI_FETCHSTATEMENT_BY_ROW, 4.1, 5.2, 5.2
	OCI_RETURN_NULLS, 3.2

	PHP, 1
	
	application logic, 4.1
	cascading style sheet, 3.1
	character sets, 8.2
	creating files, 3
	determining user locale, 8.3
	display_errors directive, 3.2.1
	error_reporting directive, 3.2.1
	establishing environment, 8.1
	externalizing translatable strings, 8.6.1
	GD graphicsextension, 7.2, 7.2
	globalizing your application, 8
	here document, 3.1
	HTML page encoding, 8.5.2
	NULL values, 3.2
	oci8.max_persistent, 3.2.2
	oci8.persistent_timeout, 3.2.2
	oci8.ping_interval, 3.2.2
	translating HTML and GIF files, 8.6.2

	PHP functions
	
	ui_print_footer(), 3.1
	ui_print_header(), 3.1

	PL/SQL
	
	application procedures and functions, 6.1
	calling function in anyco.php, 6.1
	calling packaged procedure, 6.2
	cv_types.et_employees() packaged procedure, 6.2
	UTL_I18N package, 8.4

	prerequisites for Oracle Database, 2.1
	public virtual directory in Apache, 2.3.2
	public_html
	
	Apache, 2.3.2
	creating, 2.3.2

Q

	queries with bind variables, 4.2

R

	ref cursors
	
	OCI_B_CURSOR, 6.2

	reporting in the application, 3
	restarting Apache, 2.3.2
	returning errors, 5.4
	returning false statements, 5.4

S

	session_start() function, 4.3
	sorting, 8.7, 8.7.3
	statements, returning false, 5.4
	style.css
	
	HTML presentation, 3.1

	style.css description, 1.3
	SYSDATE function, 5.2

T

	tables
	
	COUNTRIES, 4.4
	DEPARTMENTS, 1.3, 3.2, 4.3, 4.4
	EMPLOYEE_PHOTOS, 7.1, 7.1
	EMPLOYEES, 1.3, 3.2, 4.4, 5.2, 5.2, 5.2, 7.1
	JOBS, 5.2
	LOCATIONS, 4.4

	testing
	
	anyco_db.inc, 4.2
	anyco_ui.inc, 5.1
	Apache installation on Linux, 2.3.2
	Apache installation on Windows, 2.3.1

	thumbnail images, 7.2
	tnsnames.ora, 3.2.1
	tutorial AnyCo Corp, 1.3

U

	ui_print_department() function, 4.3, 4.3, 4.4
	ui_print_employees() function, 5.1, 5.1, 5.2, 6.1, 7.1, 7.1
	ui_print_error() function, 5.4
	ui_print_footer() function, 3.1
	ui_print_header() function, 3.1
	ui_print_insert_employee() function, 5.2, 5.3, 7.1
	ui_print_modify_employee() function, 5.2
	unlocking HR account, 2.2.1, 6.1
	user interface
	
	externalizing translatable strings, 8.6.1
	translating, 8.6

	UTF-8
	
	character set, 8.1
	HTML page encoding, 8.5

	UTL_I18N package, 8.4

V

	var_dump() function, 3.2.1, 4.1
	variables
	
	$current, 4.3
	$DID, 4.2
	$emp, 5.3
	$refcur, 6.2
	__FILE__, 4.1, 5.4
	__LINE__, 4.1, 5.4
	department_id, 5.3

W

	Web browser
	
	testing Apache installation on Linux, 2.3.2
	testing Apache installation on Windows, 2.3.1

	Web server
	
	Zend Core for Oracle, 2.4.1, 2.4.2

Z

	Zend Core for Oracle, 1
	
	configuration tab, 2.5
	configuring, 2.5
	GUI password, 2.4.2
	hello.php, 2.6
	installing on Linux, 2.4.2
	installing on Windows, 2.4.1
	obtaining and installing, 2.4
	Web server, 2.4.1, 2.4.2

3 Getting Connected

In this chapter, you create HR application files that implement PHP functions to connect and disconnect to the Oracle Database. You also develop a PHP function that enables you to execute a query to validate that a database connection has been successfully established.

This chapter also guides you through the creation and modification of PHP files that call a function to produce the header and footer for the Departments page, where the footer section of the page includes a date and time.

This chapter has the following topics:

	
Building the Departments Page

	
Connecting to the Database

	
Disconnecting from the Database

	
Note:

For simplicity, the user name and password are written into this sample application code. For applications that will be deployed, coding the user name and password strings directly into your application source code is not recommended. Oracle recommends that you use a more secure technique, such as implementing a dialog that prompts the user for the user name and password.
See Oracle Database Security Guide and the documentation for your development environment for details on security features and practices.

Building the Departments Page

In this section, you will create the functions and styles for the first screen of your application.

Follow these steps to build the Departments page:

	
To create a directory for your application files, and to change to the newly created directory, enter the following commands in a command window:

On Windows:

mkdir c:\program files\Zend\Apache2\htdocs\chap3
cd c:\program files\Zend\Apache2\htdocs\chap3

On Linux:

mkdir $HOME/public_html/chap3
cd $HOME/public_html/chap3

If you create files in a different location, you must change the steps for file editing and execution to match your working directory name and URL.

	
To start developing your application user interface, use your preferred text editor to create a file called anyco_ui.inc that contains the two functions ui_print_header() and ui_print_footer() with their parameters to enable your application Web pages to have consistent header and footer sections:

<?php

function ui_print_header($title)
{
 $title = htmlentities($title);
 echo <<<END
 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
 <html>
 <head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=ISO-8859-1">
 <link rel="stylesheet" type="text/css" href="style.css">
 <title>Any Co.: $title</title>
 </head>
 <body>
 <h1>$title</h1>
END;
}

function ui_print_footer($date)
{
 $date = htmlentities($date);
 echo <<<END
 <div class="footer">
 <div class="date">$date</div>
 <div class="company">Any Co.</div>
 </div>
END;
}

?>

	
This application design uses PHP function definitions to enable modular reusable code.

	
The functions in anyco_ui.inc use a PHP language construct called a "here document." This enables you to place any amount of HTML formatted text between the following two lines:

echo <<<END
END;

	
Do not put leading spaces in the END; line. If you do, the rest of the document will be treated as part of the text to be printed.

	
Any PHP parameters appearing inside the body of a "here document" are replaced with their values, for example, the $title or $date parameters.

	
The PHP function htmlentities() is used to prevent user-supplied text from accidentally containing HTML markup and affecting the output formatting.

	
The PHP file uses a Cascading Style Sheet (CSS) file called style.css to specify the presentation style in HTML in the browser.

Create a style.css file in the chap3 directory with the following CSS text:

body
{ background: #CCCCFF;
 color: #000000;
 font-family: Arial, sans-serif; }

h1
{ border-bottom: solid #334B66 4px;
 font-size: 160%; }

table
{ padding: 5px; }

td
{ border: solid #000000 1px;
 text-align: left;
 padding: 5px; }

th
{ text-align: left;
 padding: 5px; }

.footer
{ border-top: solid #334B66 4px;
 font-size: 90%; }

.company
{ padding-top: 5px;
 float: right; }

.date
{ padding-top: 5px;
 float: left; }

	
To call the user interface functions, create the anyco.php file with the following text:

<?php

require('anyco_ui.inc');

ui_print_header('Departments');
ui_print_footer(date('Y-m-d H:i:s'));

?>

The require() PHP command is used to include anyco_ui.inc. The new functions can be called to produce HTML output.

	
To test the anyco.php file, enter the following URL in your browser:

On Windows:

http://localhost/chap3/anyco.php

On Linux:

http://localhost/~<username>/chap3/anyco.php

The resulting Web page is similar to the following:

[image: Description of chap3_test_install_005.gif follows]

The date and time appear in the page footer section.

Connecting to the Database

In this section, you will add a database connection to your Departments screen so that you can display Department data.

Follow these steps to add a database connection to your application.

To form a database connection, you use the oci_connect() function with three string parameters:

$conn = oci_connect($username, $password, $db)

The first and second parameters are the database user name and password, respectively. The third parameter is the database connection identifier. The oci_connect() function returns a connection resource needed for other OCI8 calls; it returns FALSE if an error occurs. The connection identifier returned is stored in a variable called $conn.

	
Edit the anyco.php file to add a database connection with the following parameter values:

	
Username is hr.

	
Password for this example is hr. Remember to use the actual password of your HR user.

	
Oracle connection identifier is //localhost/orcl.

	
Edit the anyco.php file to validate that the oci_connect() call returns a usable database connection, write a do_query() function that accepts two parameters: the database connection identifier, obtained from the call to oci_connect(), and a query string to select all the rows from the DEPARTMENTS table.

	
Edit the anyco.php file to prepare the query for execution, add an oci_parse() call. The oci_parse() function has two parameters, the connection identifier and the query string. It returns a statement identifier needed to execute the query and fetch the resulting data rows. It returns FALSE if an error occurs.

	
Edit the anyco.php file to execute the query, add a call to the oci_execute() function. The oci_execute() function executes the statement associated with the statement identifier provided in its first parameter. The second parameter specifies the execution mode. OCI_DEFAULT is used to indicate that you do not want statements to be committed automatically. The default execution mode is OCI_COMMIT_ON_SUCCESS. The oci_execute() function returns TRUE on success; otherwise it returns FALSE.

	
Edit the anyco.php file to fetch all the rows for the query executed, add a while loop and a call to the oci_fetch_array() function. The oci_fetch_array() function returns the next row from the result data; it returns FALSE if there are no more rows. The second parameter of the oci_fetch_array() function, OCI_RETURN_NULLS, indicates that NULL database fields will be returned as PHP NULL values.

Each row of data is returned as a numeric array of column values. The code uses a PHP foreach construct to loop through the array and print each column value in an HTML table cell, inside a table row element. If the item value is NULL then a nonbreaking space is printed; otherwise the item value is printed.

After the edits in Steps 1 to 5, the anyco.php file becomes:

<?php // File: anyco.php

require('anyco_ui.inc');

// Create a database connection
$conn = oci_connect('hr', 'hr', '//localhost/orcl');

ui_print_header('Departments');
do_query($conn, 'SELECT * FROM DEPARTMENTS');
ui_print_footer(date('Y-m-d H:i:s'));

// Execute query and display results
function do_query($conn, $query)
{
 $stid = oci_parse($conn, $query);
 $r = oci_execute($stid, OCI_DEFAULT);

 print '<table border="1">';
 while ($row = oci_fetch_array($stid, OCI_ASSOC+OCI_RETURN_NULLS)) {
 print '<tr>';
 foreach ($row as $item) {
 print '<td>'.
 ($item ? htmlentities($item) : ' ').'</td>';
 }
 print '</tr>';
 }
 print '</table>';
}

?>

	
To test the changes made to anyco.php, save the modified anyco.php file. In a browser window, enter the following URL:

On Windows:

http://localhost/chap3/anyco.php

On Linux:

http://localhost/~<username>/chap3/anyco.php

The page returned in the browser window should resemble the following page:

[image: Description of chap3_db_connect_001.gif follows]

If you want to query the EMPLOYEES data, you can optionally change the query in the do_query() function call to:

do_query($conn, 'SELECT * FROM EMPLOYEES');

If You Have Connection Problems

Check that the username, password and connection string are valid. The connect string '//localhost/orcl' uses the Oracle Easy Connect syntax. If you are using an Oracle Net tnsnames.ora file to specify the database you want to connect to, then use the network alias as the third parameter to the oci_connect() function.

If you are not seeing errors, check that you have set the display_errors directive ON and the error_reporting directive is set to E_ALL|E_STRICT.

If you have a PHP code problem and are not using a debugger, you can examine variables using the PHP var_dump() function. For example:

print '<pre>';
var_dump($r);
print '</pre>';

Other Ways to Connect

In some applications, using a persistent connection improves performance by removing the need to reconnect each time the script is called. Depending on your Apache configuration, this may cause a number of database connections to remain open simultaneously. You must balance the connection performance benefits against the overhead on the database server.

Persistent connections are made with the OCI8 oci_pconnect() function. Several settings in the PHP initialization file enable you to control the lifetime of persistent connections. Some settings include:

oci8.max_persistent - This controls the number of persistent connections per process.

oci8.persistent_timeout - This specifies the time (in seconds) that a process maintains an idle persistent connection.

oci8.ping_interval - This specifies the time (in seconds) that must pass before a persistent connection is "pinged" to check its validity.

For more information, see the PHP reference manual at

http://www.php.net/manual/en/ref.oci8.php

For information about shared sessions, see Connection Pooling in OCI in the Oracle Call Interface Programmer's Guide and the Oracle Database Net Services Administrator's Guide.

Disconnecting from the Database

The PHP engine automatically closes the database connection at the end of the script unless a persistent connection was made. If you want to explicitly close a non-persistant database connection, you can call the oci_close() OCI function with the connection identifier returned by the oci_connect() call. For example:

<?php

$conn = oci_connect('hr', '<your_password>', '//localhost/orcl');
...
oci_close($conn);

...

?>

4 Querying Data

In this chapter, you extend the Anyco HR application from Chapter 3 by adding information to the Departments page. You also implement the functionality to query, insert, update, and delete employee records in a specific department.

This chapter has the following topics:

	
Centralizing the Database Application Logic

	
Writing Queries with Bind Variables

	
Navigating Through Database Records

	
Extending the Basic Departments Page

Centralizing the Database Application Logic

In this section, you will modify your application code by moving the database access logic into separate files for inclusion in the PHP application.

	
Copy the files that you completed in Chapter 3 to a new chap4 directory, and change to the newly created directory:

On Windows:

mkdir c:\program files\Zend\Apache2\htdocs\chap4
cd c:\program files\Zend\Apache2\htdocs\chap4
copy ..\chap3* .

On Linux:

mkdir $HOME/public_html/chap4
cd $HOME/public_html/chap4
cp ../chap3/* .

	
Using your preferred editor, create a file called anyco_cn.inc that defines named constants for the database connection information. This file enables you to change connection information in one place.

<?php // File: anyco_cn.inc

define('ORA_CON_UN', 'hr'); // User name
define('ORA_CON_PW', 'hr'); // Password
define('ORA_CON_DB', '//localhost/orcl'); // Connection identifier

?>

For simplicity, the user name and password are written into this sample application code. For applications that will be deployed, coding the user name and password strings directly into your application source code is not recommended. Oracle recommends that you use a more secure technique, such as implementing a dialog that prompts the user for the user name and password.

See Oracle Database Security Guide and the documentation for your development environment for details on security features and practices.

	
Create a file called anyco_db.inc that declares functions for creating a database connection, executing a query, and disconnecting from the database. Use the following logic, which includes some error handling that is managed by calling an additional function called db_error ():

<?php // File: anyco_db.inc

function db_connect()
{
 // use constants defined in anyco_cn.inc
 $conn = oci_connect(ORA_CON_UN, ORA_CON_PW, ORA_CON_DB);
 if (!$conn) {
 db_error(null, __FILE__, __LINE__);
 }
 return($conn);
}

function db_do_query($conn, $statement)
{
 $stid = oci_parse($conn, $statement);
 if (!$stid) {
 db_error($conn, __FILE__, __LINE__);
 }

 $r = oci_execute($stid, OCI_DEFAULT);
 if (!$r) {
 db_error($stid, __FILE__, __LINE__);
 }
 $r = oci_fetch_all($stid, $results, null, null,
 OCI_FETCHSTATEMENT_BY_ROW);
 return($results);
}

// $r is the resource containing the error.
// Pass no argument or false for connection errors

function db_error($r = false, $file, $line)
{
 $err = $r ? oci_error($r) : oci_error();

 if (isset($err['message'])) {
 $m = htmlentities($err['message']);
 }
 else {
 $m = 'Unknown DB error';
 }

 echo '<p>Error: at line '.$line.' of '.$file.'</p>';
 echo '<pre>'.$m.'</pre>';

 exit;
}

?>

The db_do_query() function in this example uses the oci_fetch_all() OCI8 function. The oci_fetch_all() function accepts the following five parameters:

	
$stid, the statement identifier for the statement executed

	
$results, the output array variable containing the data returned for the query

	
The null in the third parameter for the number of initial rows to skip is ignored.

	
The null in the fourth parameter for the maximum number of rows to fetch is ignored. In this case, all the rows for the query are returned. For this example where the result set is not large, it is acceptable.

	
The last parameter flag OCI_FETCHSTATEMENT_BY_ROW indicates that the data in the $results array is organized by row, where each row contains an array of column values. A value of OCI_FETCHSTATEMENT_BY_COLUMN causes the results array to be organized by column, where each column entry contains an array of column values for each row. Your choice of value for this flag depends on how you intend to process the data in your logic.

To examine the structure of the result array, use the PHP var_dump() function after the query has been executed. This is useful for debugging. For example:

print '<pre>';
var_dump($results);
print '</pre>';

The db_error() function accepts three arguments. The $r parameter can be false or null for obtaining connection errors, or a connection resource or statement resource to obtain an error for those contexts. The $file and $line values are populated by using __FILE__ and __LINE__, respectively, as the actual parameters to enable the error message to display the source file and line from which the database error is reported. This enables you to easily track the possible cause of errors.

The db_ error() function calls the oci_error() function to obtain database error messages.

The db_error() function calls the isset() function before printing the message. The isset() function checks if the message component of the database error structure is set, or if the error is unknown.

	
Edit anyco_ui.inc. To format the results of a single row from the DEPARTMENTS table query in an HTML table format, insert the following function:

function ui_print_department($dept)
{
 if (!$dept) {
 echo '<p>No Department found</p>';
 }
 else {
 echo <<<END
 <table>
 <tr>
 <th>Department
ID</th>
 <th>Department
Name</th>
 <th>Manager
Id</th>
 <th>Location ID</th>
 </tr>
 <tr>
END;
 echo '<td>'.htmlentities($dept['DEPARTMENT_ID']).'</td>';
 echo '<td>'.htmlentities($dept['DEPARTMENT_NAME']).'</td>';
 echo '<td>'.htmlentities($dept['MANAGER_ID']).'</td>';
 echo '<td>'.htmlentities($dept['LOCATION_ID']).'</td>';
 echo <<<END
 </tr>
 </table>
END;
 }
}

As noted in Chapter 3, do not prefix END; lines with leading spaces. If you do, the rest of the document will be treated as part of the text to be printed.

	
Edit the anyco.php file. Include the anyco_ui.inc and anyco_db.inc files, and call the database functions to query and display information for a department with a department_id of 80 by using the following code. The file becomes:

<?php // File: anyco.php

require('anyco_cn.inc');
require('anyco_db.inc');
require('anyco_ui.inc');

$query =
 'SELECT department_id, department_name, manager_id, location_id
 FROM departments
 WHERE department_id = 80';

$conn = db_connect();

$dept = db_do_query($conn, $query);
ui_print_header('Departments');
ui_print_department($dept[0]);
ui_print_footer(date('Y-m-d H:i:s'));

?>

	
To test the resulting changes to the application, enter the following URL in a browser window:

On Windows:

http://localhost/chap4/anyco.php

On Linux:

http://localhost/~<username>/chap4/anyco.php

The page returned in the browser window should resemble the following page:

[image: Description of chap4_db_connect_002.gif follows]

Writing Queries with Bind Variables

Using queries with values included in the WHERE clause may be useful for some situations. However, if the conditional values in the query are likely to change it is not appropriate to encode a value into the query. Oracle recommends that you use bind variables.

A bind variable is a symbolic name preceded by a colon in the query that acts as a placeholder for literal values. For example, the query string created in the anyco.php file could be rewritten with the bind variable :did as follows:

$query =
 'SELECT department_id, department_name, manager_id, location_id
 FROM departments
 WHERE department_id = :did';

By using bind variables to parameterize SQL statements:

	
The statement is reusable with different input values without needing to change the code.

	
The query performance is improved through a reduction of the query parse time in the server, because the Oracle database can reuse parse information from the previous invocations of the identical query string.

	
There is protection against "SQL Injection" security problems.

	
There is no need to specially handle quotation marks in user input.

When a query uses a bind variable, the PHP code must associate an actual value with each bind variable (placeholder) used in the query before it is executed. This process is known as run-time binding.

To enable your PHP application to use bind variables in the query, perform the following changes to your PHP application code:

	
Edit the anyco.php file. Modify the query to use a bind variable, create an array to store the value to be associated with the bind variable, and pass the $bindargs array to the db_do_query() function:

<?php // File: anyco.php
...

$query =
'SELECT department_id, department_name, manager_id, location_id
 FROM departments
 WHERE department_id = :did';

$bindargs = array();
// In the $bindargs array add an array containing
// the bind variable name used in the query, its value, a length
array_push($bindargs, array('DID', 80, -1));

$conn = db_connect();
$dept = db_do_query($conn, $query, $bindargs);

...
?>

In this example, the bind variable, called DID, is an input argument in the parameterized query, and it is associated with the value 80. Later, the value of the bind variable will be dynamically determined. In addition, the length component is passed as -1 so that the OCI8 layer can determine the length. If the bind variable was used to return output from the database an explicit size would be required.

	
Edit the anyco_db.inc file. Modify the db_do_query() function to accept a $bindvars array variable as a third parameter. Call the oci_bind_by_name() OCI8 call to associate the PHP values supplied in $bindvars parameter with bind variables in the query. The function becomes:

function db_do_query($conn, $statement, $bindvars = array())
{
 $stid = oci_parse($conn, $statement);
 if (!$stid) {
 db_error($conn, __FILE__, __LINE__);
 }

 // Bind the PHP values to query bind parameters
 foreach ($bindvars as $b) {
 // create local variable with caller specified bind value
 $$b[0] = $b[1];
 // oci_bind_by_name(resource, bv_name, php_variable, length)
 $r = oci_bind_by_name($stid, ":$b[0]", $$b[0], $b[2]);
 if (!$r) {
 db_error($stid, __FILE__, __LINE__);
 }
 }
 $r = oci_execute($stid, OCI_DEFAULT);
 if (!$r) {
 db_error($stid, __FILE__, __LINE__);
 }
 $r = oci_fetch_all($stid, $results, null, null,
 OCI_FETCHSTATEMENT_BY_ROW);
 return($results);
}

The binding is performed in the foreach loop before the oci_execute() is done.

For each entry in $bindvars array, the first element contains the query bind variable name that is used to create a PHP variable of the same name; that is, $$b[0] takes the value DID in $b[0] and forms a PHP variable called $DID whose value is assigned from the second element in the entry.

The oci_bind_by_name() function accepts four parameters: the $stid as the resource, a string representing the bind variable name in the query derived from the first element in the array entry, the PHP variable containing the value to be associated with the bind variable, and the length of the input value.

	
To test the results of the preceding modifications, save the anyco.php and anyco_db.inc files and enter the following URL:

On Windows:

http://localhost/chap4/anyco.php

On Linux:

http://localhost/~<username>/chap4/anyco.php

The page returned in the browser window should resemble the following page:

[image: Description of chap4_db_connect_003.gif follows]

Navigating Through Database Records

Adding navigation through the database records requires several important changes to the application logic. The modifications require the combination of:

	
Including an HTML form to provide Next and Previous navigation buttons to step through database records.

	
Detecting if the HTTP request for the page was posted by clicking the Next or Previous button.

	
Tracking the last row queried by using the HTTP session state. A PHP session is started to maintain state information for a specific client between HTTP requests. The first HTTP request will retrieve the first data row and initialize the session state. A subsequent request, initiated with navigation buttons, combined with the session state from a previous HTTP request, enables the application to set variables that control the next record retrieved by the query.

	
Writing a query that returns a subset of rows based on a set of conditions whose values are determined by the application state.

To add navigation through database rows, perform the following steps:

	
Edit the anyco_ui.inc file. Add Next and Previous navigation buttons to the Departments page. Change the ui_print_department() function to append a second parameter called $posturl that supplies the value for the form attribute action. After printing the </table> tag include HTML form tags for the Next and Previous buttons:

<?php // File: anyco_ui.inc
...
function ui_print_department($dept, $posturl)
{
 ...
 echo <<<END
 </tr>
 </table>
 <form method="post" action="$posturl">
 <input type="submit" value="< Previous" name="prevdept">
 <input type="submit" value="Next >" name="nextdept">
 </form>
END;
 }
}

?>

	
Edit the anyco.php file. To detect if the Next or Previous button was used to invoke the page and track the session state, call the PHP function session_start(), and create a function named construct_departments():

Move and modify the database access logic into a new construct_departments() function, which detects if navigation has been performed, manages the session state, defines a subquery for the database access layer to process, and connects and calls a function db_get_page_data(). The file becomes:

<?php // File: anyco.php

require('anyco_cn.inc');
require('anyco_db.inc');
require('anyco_ui.inc');

session_start();
construct_departments();

function construct_departments()
{
 if (isset($_SESSION['currentdept']) &&
 isset($_POST['prevdept']) &&
 $_SESSION['currentdept'] > 1) {
 $current = $_SESSION['currentdept'] - 1;
 }
 elseif (isset($_SESSION['currentdept']) &&
 isset($_POST['nextdept'])) {
 $current = $_SESSION['currentdept'] + 1;
 }
 elseif (isset($_POST['showdept']) &&
 isset($_SESSION['currentdept'])) {
 $current = $_SESSION['currentdept'];
 }
 else {
 $current = 1;
 }

 $query = 'SELECT department_id, department_name,
 manager_id, location_id
 FROM departments
 ORDER BY department_id asc';

 $conn = db_connect();

 $dept = db_get_page_data($conn, $query, $current, 1);
 $deptid = $dept[0]['DEPARTMENT_ID'];

 $_SESSION['currentdept'] = $current;

 ui_print_header('Department');
 ui_print_department($dept[0], $_SERVER['SCRIPT_NAME']);
 ui_print_footer(date('Y-m-d H:i:s'));
}

?>

The if and elseif construct at the start of the construct_departments() function is used to detect if a navigation button was used with an HTTP post request to process the page, and tracks if the currentdept number is set in the session state. Depending on the circumstances, the variable $current is decremented by one when the previous button is clicked, $current is incremented by one when the Next button is clicked, otherwise $current is set to the current department, or initialized to one for the first time through.

A query is formed to obtain all the department rows in ascending sequence of the department_id. The ORDER BY clause is an essential part of the navigation logic. The query is used as a subquery inside the db_get_page_data() function to obtain a page of a number of rows, where the number of rows per page is specified as the fourth argument to the db_get_page_data() function. After connecting to the database, db_get_page_data() is called to retrieve the set of rows obtained for the specified query. The db_get_page_data() function is provided with the connection resource, the query string, a value in $current specifying the first row in the next page of data rows required, and the number of rows per page (in this case one row per page).

After db_get_page_data()has been called to obtain a page of rows, the value of $current is stored in the application session state.

Between printing the page header and footer, the ui_print_department() function is called to display the recently fetched department row. The ui_print_department() function uses $_SERVER['SCRIPT_NAME'] to supply the current PHP script name for the $posturl parameter. This sets the action attribute in the HTML form, so that each Next or Previous button click calls the anyco.php file.

	
Edit the anyco_db.inc file. Implement the db_get_page_data() function to query a subset of rows:

// Return subset of records
function db_get_page_data($conn, $q1, $current = 1,
 $rowsperpage = 1, $bindvars = array())
{
 // This query wraps the supplied query, and is used
 // to retrieve a subset of rows from $q1
 $query = 'SELECT *
 FROM (SELECT A.*, ROWNUM AS RNUM
 FROM ('.$q1.') A
 WHERE ROWNUM <= :LAST)
 WHERE :FIRST <= RNUM';

 // Set up bind variables.
 array_push($bindvars, array('FIRST', $current, -1));
 array_push($bindvars,
 array('LAST', $current+$rowsperpage-1, -1));

 $r = db_do_query($conn, $query, $bindvars);
 return($r);
}

The structure of the query in the db_get_page_data() function enables navigation through a set (or page) of database rows.

The query supplied in $q1 is nested as a subquery inside the following subquery:

SELECT A.*, ROWNUM AS RNUM FROM $q1 WHERE ROWNUM <= :LAST

Remember that the query supplied in $q1 retrieves an ordered set of rows, which is filtered by its enclosing query to return all the rows from the first row to the next page size ($rowsperpage) of rows. This is possible because the Oracle ROWNUM function (or pseudocolumn) returns an integer number starting at 1 for each row returned by the query in $q1.

The set of rows, returned by the subquery enclosing query $q1, is filtered a second time by the condition in the following outermost query:

WHERE :FIRST <= RNUM

This condition ensures that rows prior to the value in :FIRST (the value in $current) are excluded from the final set of rows. The query enables navigation through a set rows where the first row is determined by the $current value and the page size is determined by the $rowsperpage value.

The $current value is associated with the bind variable called :FIRST. The expression $current+$rowsperpage-1 sets the value associated with the :LAST bind variable.

	
To test the changes made to your application, save the changed files, and enter the following URL in your Web browser:

On Windows:

http://localhost/chap4/anyco.php

On Linux:

http://localhost/~<username>/chap4/anyco.php

When you request the anyco.php page, the first DEPARTMENT table record, the Administration department, is displayed:

[image: Description of chap4_db_nagivation_001.gif follows]

	
To navigate to the next department record (Marketing), click Next:

[image: Description of chap4_db_nagivation_002.gif follows]

	
To navigate back to the first department record (Administration), click Previous:

[image: Description of chap4_db_nagivation_003.gif follows]

You may continue to test and experiment with the application by clicking Next and Previous to navigate to other records in the DEPARTMENTS table, as desired.

	
Note:

If you navigate past the last record in the DEPARTMENTS table, an error will occur. Error handling is added in Adding Error Recovery in Chapter 5.

ROWNUM vs ROW_NUMBER()

If you were writing a PHP function with a hard coded query, the ROW_NUMBER() function may be a simpler alernative for limiting the number of rows returned. For example, a query that returns the last name of all employees:

SELECT last_name FROM employees ORDER BY last_name;

could be written to select rows 51 to 100 inclusive as:

SELECT last_name FROM
 SELECT last_name, ROW_NUMBER() OVER (ORDER BY last_name R FROM employees)
 where R BETWEEN 51 AND 100;

Extending the Basic Departments Page

The Departments page is extended to include the following additional information:

	
The name of the manager of the department

	
The number of employees assigned to the department

	
The country name identifying the location of the department

The additional information is obtained by modifying the query to perform a join operation between the DEPARTMENTS, EMPLOYEES, LOCATIONS, and COUNTRIES tables.

To extend the Departments page, perform the following tasks:

	
Edit the anyco_ui.inc file. Modify the ui_print_department() function by replacing the Manager ID and Location ID references with the Manager Name and Location, respectively, and insert a Number of Employees field after Department Name. Make the necessary changes in the table header and data fields. The function becomes:

function ui_print_department($dept, $posturl)
{
 if (!$dept) {
 echo '<p>No Department found</p>';
 }
 else {
 echo <<<END
 <table>
 <tr>
 <th>Department
ID</th>
 <th>Department
Name</th>
 <th>Number of
Employees</th>
 <th>Manager
Name</th>
 <th>Location</th>
 </tr>
 <tr>
END;
 echo '<td>'.htmlentities($dept['DEPARTMENT_ID']).'</td>';
 echo '<td>'.htmlentities($dept['DEPARTMENT_NAME']).'</td>';
 echo '<td>'.htmlentities($dept['NUMBER_OF_EMPLOYEES']).'</td>';
 echo '<td>'.htmlentities($dept['MANAGER_NAME']).'</td>';
 echo '<td>'.htmlentities($dept['COUNTRY_NAME']).'</td>';
 echo <<<END
 </tr>
 </table>
 <form method="post" action="$posturl">
 <input type="submit" value="< Previous" name="prevdept">
 <input type="submit" value="Next >" name="nextdept">
 </form>
END;
 }
}

	
Edit the anyco.php file. Replace the query string in construct_departments() with:

$query =
 "SELECT d.department_id, d.department_name,
 substr(e.first_name,1,1)||'. '|| e.last_name as manager_name,
 c.country_name, count(e2.employee_id) as number_of_employees
 FROM departments d, employees e, locations l,
 countries c, employees e2
 WHERE d.manager_id = e.employee_id
 AND d.location_id = l.location_id
 AND d.department_id = e2.department_id
 AND l.country_id = c.country_id
 GROUP BY d.department_id, d.department_name,
 substr(e.first_name,1,1)||'. '||e.last_name,
 c.country_name
 ORDER BY d.department_id ASC";

The query string is enclosed in double quotation marks to simplify writing this statement, which contains SQL literal strings in single quotation marks.

	
Save the changes to your files, and test the changes by entering the following URL in a Web browser:

On Windows:

http://localhost/chap4/anyco.php

On Linux:

http://localhost/~<username>/chap4/anyco.php

The Web page result should resemble the following output:

[image: Description of chap4_enhance_dept_001.gif follows]

Preface

Oracle Database 2 Day + PHP Developer's Guide introduces developers to the use of PHP to access Oracle Database.

This preface contains these topics:

	
Audience

	
Documentation Accessibility

	
Related Documents

	
Conventions

Audience

Oracle Database 2 Day + PHP Developer's Guide is an introduction to application development using PHP and Oracle Database.

This document assumes that you have a cursory understanding of SQL, PL/SQL, and PHP.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible, with good usability, to the disabled community. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the United States of America 24 hours a day, seven days a week. For TTY support, call 800.446.2398.

Related Documents

For more information, see these Oracle resources:

	
Oracle Database 2 Day Developer's Guide

	
Oracle Database SQL Language Reference

	
Oracle Database PL/SQL Language Reference

	
SQL*Plus User's Guide and Reference

	
Oracle Database Globalization Support Guide

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

Oracle® Database

2 Day + PHP Developer's Guide

11g Release 1 (11.1)

B28845-01

July 2007

Oracle Database 2 Day + PHP Developer's Guide, 11g Release 1 (11.1)

B28845-01

Copyright © 2007 Oracle. All rights reserved.

Primary Author: Simon Watt

Contributors: Christopher Jones, Simon Law, Glenn Stokol

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third party.

