

List of Tables

	1-1 RMAN Reserved Words
	1-2 Recovery Manager Commands
	1-3 Recovery Manager Subclauses
	2-1 Automated Repair Options
	2-2 RESET DB_UNIQUE_NAME Options
	2-3 Backup Optimization Algorithm
	2-4 Meaning of Crosscheck Status
	2-5 Behavior of DELETE Command Without FORCE Option
	2-6 Duplicated Files
	2-7 How FLASHBACK DATABASE Responds to Datafile Status Changes
	2-8 List of Backup Sets (for datafile backup sets)
	2-9 List of Backup Pieces (for sets with only one piece)
	2-10 List of Datafiles in backup set ...
	2-11 List of Archived Logs in backup set ...
	2-12 Backup Set Copy ... of backup set ... (only if multiple pieces)
	2-13 List of Backup Pieces for backup set ... Copy ... (if multiple pieces)
	2-14 List of Proxy Copies
	2-15 List of Backup Sets (LIST BACKUP ... SUMMARY)
	2-16 List of Backup Pieces (LIST BACKUPPIECE ...)
	2-17 List of Datafile Backups (LIST BACKUP ... BY FILE)
	2-18 List of Archived Log Backups (LIST BACKUP ... BY FILE)
	2-19 List of Control File Backups (LIST BACKUP ... BY FILE)
	2-20 List of Datafile Copies
	2-21 List of Control File Copies
	2-22 List of Archived Log Copies
	2-23 List of Database Incarnations
	2-24 List of Stored Scripts in the Recovery Catalog (LIST SCRIPT NAMES)
	2-25 List of Restore Points (LIST RESTORE POINT)
	2-26 List of Failures
	2-27 List of Databases (LIST DB_UNIQUE_NAME)
	2-28 Report of Database Schema
	2-29 Report of Files Whose Recovery Needs More Than n Days of Archived Logs
	2-30 Report of Files That Need More than n Incrementals During Recovery
	2-31 Report of Files That Must Be Backed Up to Satisfy n Days Recovery Window
	2-32 Report of Files with Fewer Than n Redundant Backups
	2-33 Report of Obsolete Backups and Copies
	2-34 Report of Files that Need Backup Due to Unrecoverable Operations
	2-35 SET NEWNAME, SWITCH, and RESTORE
	2-36 RESTORE CONTROLFILE Scenarios
	2-37 RESTORE ... FROM AUTOBACKUP
	2-38 List of Datafiles
	2-39 List of Control File and SPFILE
	2-40 List of Archived Logs
	3-1 Determining Logs for Inclusion in the Range
	4-1 Recovery Catalog Views
	A-1 Deprecated RMAN Syntax
	B-1 Components of an RMAN Environment
	B-2 RMAN Compatibility Table

Related Documentation

For more information, see these Oracle resources:

	
Oracle Database Backup and Recovery User's Guide

	
Oracle Database Reference

	
Oracle Database Utilities

Many of the examples in this book use the sample schemas of the seed database, which is installed by default when you install Oracle. Refer to Oracle Database Sample Schemas for information on how these schemas were created and how you can use them yourself.

Conventions

The text in this reference adheres to the following conventions:

	
UPPERCASE monospace

Calls attention to RMAN keywords, SQL keywords, column headings in tables and views, and initialization parameters.

	
lowercase monospace

Calls attention to variable text in RMAN examples.

	
italics

Calls attention to RMAN or SQL placeholders, that is, text that should not be entered as-is but represents a value to be entered by the user.

	
See Also:

Chapter 1, "About RMAN Commands" for more information about RMAN conventions

RMAN Syntax Diagrams

Syntax descriptions are provided in this book for RMAN command-line constructs in graphic form or Backus Naur Form (BNF). See Oracle Database SQL Language Reference for general information about how to interpret syntax diagrams and BNF notation. This section explains RMAN conventions exclusively.

Recovery Manager syntax diagrams use lines and arrows to show syntactic structure, as shown in the following example for the CATALOG command.

catalog::=

[image: Sample syntax diagram]

This section describes the components of syntax diagrams and gives examples of how to write RMAN commands. Syntax diagrams are made up of these items:

	
Keywords in RMAN Syntax

	
Placeholders in RMAN Syntax

	
Quotes in RMAN Syntax

Keywords in RMAN Syntax

Keywords have special meanings in Recovery Manager syntax. In the syntax diagrams, keywords appear in rectangular boxes and an uppercase font, like the word CATALOG in the example diagram. When used in text and code examples, RMAN keywords appear in uppercase, monospace font, for example, CATALOG DATAFILECOPY. You must use keywords in RMAN statements exactly as they appear in the syntax diagram, except that they can be either uppercase or lowercase.

Placeholders in RMAN Syntax

Placeholders in syntax diagrams indicate non-keywords. In the syntax diagrams, they appear in ovals, as in the word integer in the example diagram. When described in text, RMAN placeholders appear in lowercase italic, for example, 'filename'. Placeholders are usually:

	
Names of database objects (tablespace_name)

	
Oracle datatype names (date_string)

	
Subclauses (datafileSpec)

When you see a placeholder in a syntax diagram, substitute an object or expression of the appropriate type in the RMAN statement. For example, to write a DUPLICATE TARGET DATABASE TO 'database_name' command, use the name of the duplicate database you want to create, such as dupdb, in place of the database_name placeholder in the diagram.

The only system-independent, valid environment variables in RMAN quoted strings are a question mark (?) for the Oracle home and an at-sign (@) for the SID. However, you can use operating system-specific environment variables on the target system within quoted strings. The environment variables are interpreted by the database server and not the RMAN client.

The following table shows placeholders that appear in the syntax diagrams and provides examples of the values you might substitute for them in your statements.

	Placeholder	Description	Examples
	Quoted strings such as 'filename', 'tablespace_name', 'channel_name', 'channel_parms'	A string of characters contained in either single or double quotes. A quoted string may contain white space, punctuation, and RMAN and SQL keywords.	"?/dbs/cf.f"
'dev1'

	Nonquoted strings such as channel_id, tag_name, date_string	A sequence of characters containing no white space and no punctuation characters and starting with an alphabetic character.	ch1
	integer	Any sequence of only numeric characters.	67843

Quotes in RMAN Syntax

The RMAN syntax diagrams shows some placeholder values enclosed in required or optional quotes. The syntax diagrams show single quotes, though in all cases double quotes are also valid in RMAN syntax. For example, you may specify either 'filename' or "filename". For SQL commands, use double quotes, because the SQL statement may also contain quotes. Single and double quotes are not used interchangeably in SQL, and single quotes are the more common type of quote in a SQL statement.

Format of RMAN Commands

The RMAN language is free-form. Keywords must be separated by at least one white space character (such as a space, tab, or line break). An RMAN command starts with a keyword corresponding to one of the commands described in Chapter 2, "RMAN Commands", followed by arguments and ending with a semicolon, as shown in the syntax diagrams. The following example shows an RMAN backup command:

BACKUP DATABASE;

A command can span multiple lines. For example, you can rewrite each keyword in the preceding command on a separate line as follows:

BACKUP
 DATABASE
;

You can insert a comment by using a pound (#) character at any point in a line. After the # character, the remainder of the line is ignored. For example:

run this command once each day
BACKUP INCREMENTAL LEVEL 1
 FOR RECOVER OF COPY # using incrementally updated backups
 WITH TAG "DAILY_BACKUP" # daily backup routine
 DATABASE;

RMAN Reserved Words

The RMAN language contains a number of reserved words, which are or have been used in RMAN commands. In general, avoid using reserved words in ways that conflict with their primary meaning in the RMAN command language.

If you must use one of the reserved words as an argument to an RMAN command (for example, as a filename, tablespace name, tag name, and so on), then surround it with single or double quotes. Otherwise, RMAN cannot parse your command correctly and generates an error. Example 1-1 shows correct and incorrect usage of RMAN reserved words in RMAN commands.

Example 1-1 Using Reserved Words as Arguments to RMAN Commands

ALLOCATE CHANNEL backup DEVICE TYPE DISK; # incorrect
ALLOCATE CHANNEL "backup" DEVICE TYPE DISK; # correct
BACKUP DATABASE TAG full; # incorrect
BACKUP DATABASE TAG 'full'; # correct

Table 1-1 lists all of the current reserved words.

Table 1-1 RMAN Reserved Words

	A-C	C-D	D-L	L-P	P-S	S-W
	
,

	
CHANGE

	
DURATION

	
LOGSEQ

	
PARALLELMEDIARESTORE

	
SECTION

	
#

	
CHANNEL

	
ECHO

	
LOGS

	
PARALLEL

	
SEND

	
(

	
CHECKSYNTAX

	
ENCRYPTION

	
LOG

	
PARAMETER

	
SEQUENCE

	
)

	
CHECK

	
EXCLUDE

	
LOGSCN

	
PARAMETER_VALUE_CONVERT

	
SETLIMIT

	
\

	
CLEAR

	
EXECUTE

	
LOW

	
PARMS

	
SETSIZE

	
{

	
CLONENAME

	
EXIT

	
MAINTENANCE

	
PARTIAL

	
SET

	
}

	
CLONE

	
EXPIRED

	
MASK

	
PASSWORD

	
SHIPPED

	
<<<

	
CLONE_CF

	
EXPORT

	
MAXCORRUPT

	
PFILE

	
SHOW

	
>>>

	
CLOSED

	
FAILOVER

	
MAXDAYS

	
PIPE

	
SHUTDOWN

	
;

	
CMDFILE

	
FAILURE

	
MAXOPENFILES

	
PLATFORM

	
SINCE

	
&

	
COMMAND

	
FILESPERSET

	
MAXPIECESIZE

	
PLSQL

	
SIZE

	
_

	
COMMENT

	
FILES

	
MAXSEQ

	
PLUS

	
SKIP

	
'

	
COMPATIBLE

	
FILES

	
MAXSETSIZE

	
POINT

	
SLAXDEBUG

	
=

	
COMPLETED

	
FINAL

	
MAXSIZE

	
POLICY

	
SNAPSHOT

	
^

	
COMPRESSED

	
FLASHBACK

	
METHOD

	
POOL

	
SPFILE

	
@

	
COMPRESSION

	
FORCE

	
MINIMIZE

	
PREVIEW

	
SPOOL

	
.

	
CONFIGURE

	
FOREIGN

	
MISC

	
PRIMARY

	
SQL

	
:

	
CONNECT

	
FOREVER

	
MOUNT

	
PRINT

	
STANDBY

	
ABORT

	
CONSISTENT

	
FORMAT

	
MSGLOG

	
PRIORITY

	
STARTUP

	
ACCESSIBLE

	
CONTROLFILECOPY

	
FOR

	
MSGNO

	
PRIVILEGES

	
START

	
ACTIVE

	
CONTROLFILE

	
FROM

	
M

	
PROXY

	
STEP

	
ADVISEID

	
CONVERT

	
FULL

	
NAMES

	
PUT

	
SUMMARY

	
ADVISE

	
COPIES

	
GET

	
NAME

	
QUIT

	
SWITCH

	
AES128

	
COPY

	
GLOBAL

	
NEED

	
RATE

	
TABLESPACES

	
AES192

	
CORRUPTION

	
HIGH

	
NEW-LINE

	
RCVCAT

	
TABLESPACE

	
AES256

	
CREATE

	
GRANT

	
NEWNAME

	
RCVMAN

	
TAG

	
AFFINITY

	
CRITICAL

	
GROUP

	
NEW

	
READONLY

	
TARGET

	
AFTER

	
CROSSCHECK

	
GUARANTEE

	
NOCATALOG

	
READRATE

	
TDES168

	
ALGORITHM

	
CUMULATIVE

	
G

	
NOCFAU

	
RECALL

	
TEMPFILE

	
ALLOCATE

	
CURRENT

	
HEADER

	
NOCHECKSUM

	
RECOVERABLE

	
TEST

	
ALLOW

	
DATABASE

	
HIGH

	
NODEVALS

	
RECOVERY

	
THREAD

	
ALL

	
DATAFILECOPY

	
HOST

	
NODUPLICATES

	
RECOVER

	
TIMEOUT

	
ALTER

	
DATAFILE

	
IDENTIFIED

	
NOEXCLUDE

	
REDUNDANCY

	
TIMES

	
AND

	
DATAPUMP

	
IDENTIFIER

	
NOFILENAMECHECK

	
REGISTER

	
TIME

	
APPEND

	
DAYS

	
ID

	
NOFILEUPDATE

	
RELEASE

	
TO

	
APPLIED

	
DBA

	
IMMEDIATE

	
NOKEEP

	
RELOAD

	
TRACE

	
ARCHIVELOG

	
DBID

	
IMPORT

	
NOLOGS

	
REMOVE

	
TRANSACTIONAL

	
AREA

	
DB_FILE_NAME_CONVERT

	
INACCESSIBLE

	
NOMOUNT

	
RENORMALIZE

	
TRANSPORT

	
AS

	
DB_NAME

	
INCARNATION

	
NONE

	
REPAIRID

	
TYPE

	
AT

	
DB_RECOVERY_FILE_DEST

	
INCLUDE

	
NOPARALLEL

	
REPAIR

	
UNAVAILABLE

	
ATALL

	
DB_UNIQUE_NAME

	
INCLUDING

	
NOPROMPT

	
REPLACE

	
UNCATALOG

	
AUTOBACKUP

	
DEBUG

	
INCREMENTAL

	
NOREDO

	
REPLICATE

	
UNDO

	
AUTOLOCATE

	
DECRYPTION

	
INPUT

	
NORMAL

	
REPORT

	
UNLIMITED

	
AUXILIARY

	
DEFAULT

	
INSTANCE

	
NOT

	
RESETLOGS

	
UNRECOVERABLE

	
AUXNAME

	
DEFINE

	
IO

	
NO

	
RESET

	
UNREGISTER

	
AVAILABLE

	
DELETE

	
JOB

	
NULL

	
RESTART

	
UNTIL

	
BACKED

	
DELETION

	
KBYTES

	
OBSOLETE

	
RESTORE

	
UPGRADE

	
BACKUPPIECE

	
DESTINATION

	
KEEP

	
OFFLINE

	
RESTRICTED

	
UP

	
BACKUPSET

	
DETAIL

	
KRB

	
OFF

	
RESYNC

	
USING

	
BACKUPS

	
DEVICE

	
K

	
OF

	
RETENTION

	
VALIDATE

	
BACKUP

	
DIRECTORY

	
LEVEL

	
ONLY

	
REUSE

	
VERBOSE

	
BEFORE

	
DISKRATIO

	
LIBPARM

	
ON

	
REVOKE

	
VIRTUAL

	
BETWEEN

	
DISK

	
LIBRARY

	
OPEN

	
RPCTEST

	
WINDOW

	
BLOCKRECOVER

	
DISPLAY

	
LIKE

	
OPTIMIZATION

	
RPC

	
WITH

	
BLOCKS

	
DORECOVER

	
LIMIT

	
OPTION

	
RUN

	
	
BLOCK

	
DROP

	
LIST

	
ORPHAN

	
SAVE

	
	
BY

	
DUMP

	
LOAD

	
OR

	
SCHEMA

	
	
CANCEL

	
DUPLEX

	
LOGFILE

	
PACKAGES

	
SCN

	
	
CATALOG

	
DUPLICATE

	
LOGICAL

	
PARALLELISM

	
SCRIPT

	

2 RMAN Commands

This chapter describes RMAN commands in alphabetical order. For a summary of the RMAN commands and command-line options, refer to "Summary of RMAN Commands".

ALLOCATE CHANNEL

Purpose

Use the ALLOCATE CHANNEL command to manually allocate a channel, which is a connection between RMAN and a database instance. ALLOCATE CHANNEL must be issued within a REPAIR FAILURE block and applies only to the block in which it is issued.

Prerequisites

The target instance must be started.

Usage Notes

Manually allocated channels are distinct from automatically allocated channels specified with CONFIGURE. Automatic channels apply to any RMAN job in which you do not manually allocate channels. You can override automatic channel configurations by manually allocating channels within a RUN command, but you cannot use BACKUP DEVICE TYPE or RESTORE DEVICE TYPE to use automatic channels after specifying manual channels with ALLOCATE CHANNEL.

Multiple Channels

You can allocate up to 255 channels; each channel can read up to 64 files in parallel. You can control the degree of parallelism within a job by the number of channels that you allocate. Allocating multiple channels simultaneously allows a single job to read or write multiple backup sets or disk copies in parallel, which each channel operating on a separate backup set or copy.

When making backups to disk, the guideline is to allocate one channel for each output device (see Example 2-7). If RMAN is writing to a striped file system or an ASM disk group, however, then multiple channels can improve performance. When backing up to tape, the guideline is that the number of tape channels should equal the number of tape devices divided by the number of duplexed copies (see Example 2-8).

Channels in an Oracle RAC Environment

As long as the SYSDBA password for all Oracle RAC instances is the same, then you never need to put passwords in the CONNECT option of the ALLOCATE or CONFIGURE command. If you use a connect string of the form user@database, then RMAN automatically uses the same password that was used for the TARGET connection when the RMAN session was started.

Syntax

allocate::=

[image: Description of allocate.gif follows]

(deviceSpecifier::=, allocOperandList::=)

Semantics

	Syntax Element	Description
	AUXILIARY	Specifies a connection between RMAN and an auxiliary database instance.
An auxiliary instance is used when executing the DUPLICATE or TRANSPORT TABLESPACE command, and when performing TSPITR with RECOVER TABLESPACE (see Example 2-9). When specifying this option, the auxiliary instance must be started but not mounted.

See Also: DUPLICATE to learn how to duplicate a database, and CONNECT to learn how to connect to a duplicate database instance

	CHANNEL channel_id	Specifies a connection between RMAN and the target database instance. The channel_id is the case-sensitive name of the channel. The database uses the channel_id to report I/O errors.
Each connection initiates an database server session on the target or auxiliary instance: this session performs the work of backing up, restoring, or recovering RMAN backups. You cannot make a connection to a shared server session.

Whether ALLOCATE CHANNEL allocates operating system resources immediately depends on the operating system. On some platforms, operating system resources are allocated at the time the command is issued. On other platforms, operating system resources are not allocated until you open a file for reading or writing.

Each channel operates on one backup set or image copy at a time. RMAN automatically releases the channel at the end of the job.

Note: You cannot prefix ORA_ to a channel name. RMAN reserves channel names beginning with the ORA_ prefix for its own use.

	DEVICE TYPE deviceSpecifier	Specifies the type of storage for a backup. Query the V$BACKUP_DEVICE view for information about available device types and names.
Note: When you specify DEVICE TYPE DISK, no operating system resources are allocated other than for the creation of the server session.

See Also: deviceSpecifier

	 allocOperandList
	Specifies control options for the allocated channel. Note that the channel parameters for sequential I/O devices are platform-specific (see Example 2-6).
See Also: allocOperandList

Examples

Example 2-6 Manually Allocating a Channel for a Backup

This example allocates a single tape channel for a whole database and archived redo log backup. The PARMS parameter specifies the Oracle Secure Backup media family named wholedb_mf.

RUN
{
 ALLOCATE CHANNEL c1 DEVICE TYPE sbt
 PARMS 'ENV=(OB_MEDIA_FAMILY=wholedb_mf)';
 BACKUP DATABASE;
 BACKUP ARCHIVELOG ALL NOT BACKED UP;
}

Example 2-7 Distributing a Backup Across Multiple Disks

When backing up to disk, you can spread the backup across several disk drives. Allocate one DEVICE TYPE DISK channel for each disk drive and specify the format string so that the output files are on different disks.

RUN
{
 ALLOCATE CHANNEL disk1 DEVICE TYPE DISK FORMAT '/disk1/%U';
 ALLOCATE CHANNEL disk2 DEVICE TYPE DISK FORMAT '/disk2/%U';
 BACKUP DATABASE PLUS ARCHIVELOG;
}

Example 2-8 Creating Multiple Copies of a Backup on Tape

In this example, four tape drives are available for writing: stape1, stape2, stape3, and stape4. You use the SET BACKUP COPIES command to indicate that RMAN should create two identical copies of the database backup. Because the guideline is that the number of tape channels should equal the number of tape devices divided by the number of duplexed copies, you allocate two channels. Note that in this case the BACKUP_TAPE_IO_SLAVES initialization parameter must be set to TRUE.

In the OB_DEVICE_n parameter for Oracle Secure Backup, the n specifies the copy number of the backup piece. RMAN writes copy 1 of each backup piece to tape drives stape1 and stape2 and writes copy 2 of each backup piece to drives stape3 and stape4. Thus, each copy of the database backup is distributed between two tape drives, so that part of the data is on each drive.

RUN
{
 ALLOCATE CHANNEL t1 DEVICE TYPE sbt
 PARMS 'ENV=(OB_DEVICE_1=stape1,OB_DEVICE_2=stape3)';
 ALLOCATE CHANNEL t2 DEVICE TYPE sbt
 PARMS 'ENV=(OB_DEVICE_1=stape2,OB_DEVICE_2=stape4)';
 SET BACKUP COPIES 2;
 BACKUP DATABASE;
}

Example 2-9 Allocating an Auxiliary Channel for Database Duplication

This example creates a duplicate database from backups. RMAN can use configured channels for duplication even if they do not specify the AUXILIARY option. In this example, no SBT channel is preconfigured, so an auxiliary SBT channel is manually allocated.

RUN
{
 ALLOCATE AUXILIARY CHANNEL c1 DEVICE TYPE sbt;
 DUPLICATE TARGET DATABASE
 TO dupdb
 DB_FILE_NAME_CONVERT '/disk2/dbs/','/disk1/'
 SPFILE
 PARAMETER_VALUE_CONVERT '/disk2/dbs/',
 '/disk1/'
 SET LOG_FILE_NAME_CONVERT '/disk2/dbs/',
 '/disk1/';
}

ALTER DATABASE

Purpose

Use the ALTER DATABASE command to mount or open a database.

	
See Also:

Oracle Database SQL Language Reference for ALTER DATABASE syntax and semantics

Syntax

alterDatabase::=

[image: Description of alterdatabase.gif follows]

Prerequisites

Execute this command either within the braces of a RUN command or at the RMAN prompt. The target instance must be started.

Semantics

	Syntax Element	Description
	MOUNT	Mounts the database without opening it. Issuing the command with this option is equivalent to the SQL statement ALTER DATABASE MOUNT.
	OPEN	Opens the database (see Example 2-13). When you open the database after RECOVER DATABASE, RMAN re-creates any locally managed tempfiles recorded in the RMAN repository if necessary. However, if you perform recovery with a backup control file and no recovery catalog, then RMAN does not record tempfiles created after the control file backup in the RMAN repository. Also, RMAN does not re-create the tempfiles automatically.
	 RESETLOGS	Archives the current online redo logs (or up to the last redo record before redo corruption if corruption is found), clears the contents of the online redo logs, and resets the online redo logs to log sequence 1. The RMAN command ALTER DATABASE OPEN RESETLOGS is equivalent to the SQL statement ALTER DATABASE OPEN RESETLOGS.
If you use a recovery catalog, then RMAN issues an implicit RESET DATABASE after the database is opened to make this new incarnation the current one in the catalog. If you execute the SQL statement ALTER DATABASE OPEN RESETLOGS rather than the RMAN command of the same name, then you must manually run the RESET DATABASE command.

Examples

Example 2-13 Making a Consistent Database Backup

Assume that the database is open and you want to make a consistent backup of the whole database. This example shuts down the database consistently, mounts the database, makes a consistent whole database backup, and then opens the database.

SHUTDOWN IMMEDIATE;
STARTUP MOUNT;
BACKUP DATABASE PLUS ARCHIVELOG;
Now that the backup is complete, open the database.
ALTER DATABASE OPEN;

Example 2-14 Mounting the Database After Restoring the Control File

This example restores the control file, mounts it, and performs recovery. Finally, the example resets the online redo logs.

STARTUP FORCE NOMOUNT;
RESTORE CONTROLFILE FROM AUTOBACKUP;
ALTER DATABASE MOUNT;
You must run the RECOVER command after restoring a control file even if no
datafiles require recovery.
RECOVER DEVICE TYPE DISK DATABASE;
ALTER DATABASE OPEN RESETLOGS;

CONVERT

Purpose

Use the CONVERT command to convert a tablespace, datafile, or database to the format of a destination platform in preparation for transport across different platforms.

In Oracle Database 10g and later releases, CONVERT DATAFILE or CONVERT TABLESPACE is required in the following scenarios:

	
Transporting datafiles between platforms for which the value in V$TRANSPORTABLE_PLATFORM.ENDIAN_FORMAT differs.

	
Transporting tablespaces with undo segments (typically SYSTEM and UNDO tablespaces, but also tablespaces using rollback segments) between platforms, regardless of whether the ENDIAN_FORMAT is the same or different. Typically, the SYSTEM and UNDO tablespaces are converted only when converting the entire database.

One use of CONVERT is to transport a tablespace into a database stored in ASM. Native operating system commands such as Linux cp and Windows COPY cannot read from or write to ASM disk groups.

	
See Also:

Oracle Database Backup and Recovery User's Guide for a complete discussion of the use of CONVERT DATAFILE, CONVERT TABLESPACE, and CONVERT DATABASE

Prerequisites

The platforms must be supported by the CONVERT command. Query V$TRANSPORTABLE_PLATFORM to determine the supported platforms. Cross-platform tablespace transport is only supported when both the source and destination platforms are contained in this view.

Both source and destination databases must be running with initialization parameter COMPATIBLE set to 10.0.0 or higher. Note the following compatibility prerequisites:

	
If COMPATIBLE is less than 11.0.0, then read-only tablespaces or existing transported tablespaces must have been made read/write at least once before they can be transported to a different platform. Note that you can open a tablespace read/write and then immediately make it read-only again.

	
If COMPATIBLE is 11.0.0 or higher, then the preceding read/write tablespace restriction does not apply. However, any existing transported tablespaces must already have the 10.0 format, that is, they must have been have been made read/write with COMPATIBLE set to 10.0 before they were transported.

CONVERT TABLESPACE Prerequisites

You can only use CONVERT TABLESPACE when connected as TARGET to the source database and converting tablespaces on the source platform.

The source database must be mounted or open. The tablespaces to be converted must be read-only at the time of the conversion. The state of the destination database is irrelevant when converting tablespaces on the source database.

CONVERT DATAFILE Prerequisites

You can only use CONVERT DATAFILE when connected as TARGET to the destination database and converting datafile copies on the destination platform.

If you are running a CONVERT DATAFILE script generated by CONVERT DATABASE ON DESTINATION, then the destination database instance must be started with the NOMOUNT option. If you are not running a CONVERT DATAFILE script generated by CONVERT DATABASE ON DESTINATION, then the destination database can be started, mounted, or open.

The state of the source database is irrelevant when converting datafile copies on the destination database. However, if you are running a CONVERT DATAFILE script as part of a database conversion on the destination database, and if the script is directly accessing the datafiles on the source database (for example, through an NFS mount), then the source database must be open read-only.

When converting a tablespace on the destination host, you must use CONVERT DATAFILE rather than CONVERT TABLESPACE because the target database cannot associate the datafiles with tablespaces during the conversion. After you have converted the datafiles required for a tablespace, you can transport them into the destination database.

CONVERT DATABASE Prerequisites

You can only use CONVERT DATABASE when connected as TARGET to the source database, which must be opened read-only. The state of the destination database is irrelevant when executing CONVERT DATABASE, even if you run CONVERT DATABASE ON DESTINATION.

Because CONVERT DATABASE uses the same mechanism as CONVERT TABLESPACE and CONVERT DATAFILE to convert the datafiles, the usage notes and restrictions for tablespaces and datafiles also apply.

The primary additional prerequisite for CONVERT DATABASE is that the source and target platforms must share the same endian format. For example, you can transport a database from Microsoft Windows to Linux for x86 (both little-endian), or from HP-UX to AIX (both big-endian), but not from Solaris to Linux x86. You can create a new database on a target platform manually, however, and transport individual tablespaces from the source database with CONVERT TABLESPACE or CONVERT DATAFILE.

Even if the endian formats for the source and destination platform are the same, the datafiles for a transportable database must undergo a conversion on either the source or destination host. Unlike transporting tablespaces across platforms, where conversion is not necessary if the endian formats are the same, transporting an entire database requires that certain types of blocks, such as blocks in undo segments, be reformatted to ensure compatibility with the destination platform.

Usage Notes

Input files are not altered by CONVERT because the conversion is not performed in place. Instead, RMAN writes converted files to a specified output destination.

Datatype Restrictions

CONVERT does not process user datatypes that require endian conversions. To transport objects between databases that are built on underlying types that store data in a platform-specific format, use the Data Pump Import and Export utilities.

Before Oracle Database 10g, CLOBs in a variable-width character set such as UTF8 were stored in an endian-dependent fixed width format. The CONVERT command does not perform conversions on these CLOBs. Instead, RMAN captures the endian format of each LOB column and propagates it to the target database. Subsequent reads of this data by the SQL layer interpret the data correctly based on either endian format and write it out in an endian-independent way if the tablespace is writeable. CLOBs created in Oracle Database 10g and later releases are stored in character set AL16UTF16, which is platform-independent.

	
See Also:

Oracle Database Administrator's Guide to learn how to transport tablespaces

Syntax

convert::=

[image: Description of convert.gif follows]

(transportOptionList::=, convertOptionList::=)

transportOptionList::=

[image: Description of transportoptionlist.gif follows]

(skipSpec::=)

skipSpec::=

[image: Description of skipspec.gif follows]

convertOptionList::=

[image: Description of convertoptionlist.gif follows]

(fileNameConversionSpec::=, formatSpec::=)

formatSpec::=

[image: Description of formatspec.gif follows]

Semantics

convert

This clause specifies the objects to be converted: datafiles, tablespaces, or database.

	Syntax Element	Description
	DATABASE	Converts the datafiles to the format of the destination platform and ensures the creation of other required database files.
You use CONVERT DATABASE to transport an entire database from a source platform to a destination platform. The source and destination platforms must have the same endian format.

Depending on the situation, you can use CONVERT DATABASE on either the source or destination platform (see Example 2-54). The following parts of the database are not transported directly:

	
Redo logs and control files from the source database are not transported. RMAN creates new control files and redo logs for the target database during the transport and performs an OPEN RESETLOGS after the new database is created. The control file for the converted database does not contain the RMAN repository from the source database. Backups from the source database are not usable with the converted database.

	
BFILEs are not transported. The CONVERT DATABASE output provides a list of objects that use the BFILE datatype, but you must copy the BFILEs manually and fix their locations on the target platform.

	
Datafiles for locally managed temporary tablespaces are not transported. The temporary tablespaces are re-created at the target platform by running the transport script.

	
External tables and directories are not transported. The CONVERT DATABASE output shows a list of affected objects, but you must redefine these objects on the target platform. See Oracle Database Administrator's Guide for more information on managing external tables and directories.

	
Password files are not transported. If a password file was used with the source database, then the output of CONVERT DATABASE includes a list of all user names and their associated privileges. Create a new password file on the target database with this information. See Oracle Database Administrator's Guide for more information on managing password files.

When using CONVERT DATABASE, RMAN detects the following problems and will not proceed until they are fixed:

	
The database has active or in-doubt transactions.

	
The database has save undo segments.

	
The database COMPATIBILITY setting is below 10.

	
Some tablespaces have not been open read/write when the database COMPATIBILITY setting is 10 or higher.

	 transportOptionList
	Specifies options that control the transport.
See Also: transportOptionList

	

[convertOptionList]

DATAFILE 'filename'

convertOptionList	Specifies the name of a datafile to be transported into a destination database (see Example 2-52).
The CONVERT DATAFILE command is only one part of a multiple-step procedure for transporting datafiles across platforms. You can transport datafiles using your live datafiles with the procedure described in Oracle Database Administrator's Guide or from backups using the procedure described in Oracle Database Backup and Recovery User's Guide. Refer to that document before attempting to transport a tablespace across platforms.

Use FROM PLATFORM in convertOptionList to identify the source platform of the datafiles to be converted. If you do not specify FROM PLATFORM, then the value defaults to the platform of the destination database, that is, the database to which RMAN is connected as TARGET. The destination platform is, implicitly, the platform of the destination host.

You can use CONVERT DATAFILE without FROM PLATFORM or TO PLATFORM to move datafiles into and out of ASM (see Example 2-53). In this case, CONVERT DATAFILE creates datafiles copies that do not belong to the target database. Thus, a LIST DATAFILECOPY command does not display them. The following SQL query shows all converted datafiles that do not belong to the database:

SELECT NAME
FROM V$DATAFILE_COPY
WHERE CONVERTED_FILE='YES';

The CONVERT DATAFILE syntax supports multiple format names, so that each datafile can have a separate format. The DATAFILE syntax supports convertOptionList both immediately following the CONVERT keyword and after each DATAFILE 'filename' clause. However, RMAN generates an error in the following situations:

	
Any option in convertOptionList except FORMAT is specified more than once

	
Any option in convertOptionList except FORMAT is specified in the DATAFILE options list when multiple DATAFILE clauses are specified

	

TABLESPACE

tablespace_name

convertOptionList	Specifies the name of a tablespace in the source database that you intend to transport into the destination database on a different platform (see Example 2-51).
Specify this option to produce datafiles for the specified tablespaces in the format of a different destination platform. You can then transport the converted files to the destination platform.

You can only use CONVERT TABLESPACE when connected as TARGET to the source database and converting on the source platform. The tablespaces to be converted must be read-only at the time of the conversion. You use CONVERT TABLESPACE when the datafiles that you intend to convert are known to the database.

Use TO PLATFORM to identify the destination platform of the tablespaces to be converted. If you do not specify TO PLATFORM, then the value defaults to the platform of the database to which RMAN is connected as TARGET. The source platform is, implicitly, the platform of the source host.

The CONVERT TABLESPACE command is only one part of a multiple-step process for transporting tablespaces across platforms. You can transport tablespaces using your live datafiles with the procedure described in Oracle Database Administrator's Guide or from backups using the procedure described in Oracle Database Backup and Recovery User's Guide. Refer to that document before attempting to transport a tablespace across platforms.

Note: To convert the datafiles of a tablespace on the source host, use CONVERT TABLESPACE ... TO and identify the tablespace to be converted and the destination platform. You should not convert individual datafiles on the source platform with CONVERT DATAFILE because RMAN does not verify that datafiles belong to a read-only tablespace, which means you might convert active datafiles.

	convertOptionList
	Specifies options that control the conversion.
See Also: convertOptionList

transportOptionList

This clause specifies options for the datafiles, tablespaces, or database to be transported.

	Syntax Element	Description
	

NEW DATABASE

database_name	Specifies the DB_NAME for the new database produced by the CONVERT DATABASE command.
	ON DESTINATION PLATFORM	Generates a convert script of CONVERT DATAFILE commands (see CONVERT SCRIPT parameter) that you can run on the destination host to create the database.
Note: When this option is specified, CONVERT generates a script but does not generate converted datafile copies.

This option is useful for avoiding the overhead of the conversion on the source platform, or in cases in which you do not know the destination platform. For example, you may want to publish a transportable tablespace to be used by recipients with many different target platforms.

When you run CONVERT with the ON DESTINATION PLATFORM option, the source database must be open read-only. However, the script generated by CONVERT ON DESTINATION PLATFORM must be run on a database instance that is started NOMOUNT. If the convert script will be reading datafiles from the source database during execution of the CONVERT DATAFILE commands, then the source database must not be open read/write during the execution.

	

 CONVERT SCRIPT

 script_name	Specifies the location of the file to contain the convert script generated by CONVERT DATABASE ... ON TARGET PLATFORM.
If not specified, the convert script is not generated.

	skipSpec
	Specifies that CONVERT DATABASE should skip inaccessible, offline, or read-only datafiles during the conversion process.
	

TRANSPORT SCRIPT

script_name	Specifies the location of the file to contain the transport script generated by CONVERT DATABASE. If omitted, the transport script is not generated.

skipSpec

This subclause specifies which files should be excluded from the conversion.

	Syntax Element	Description
	SKIP	Excludes datafiles from the conversion according to the criteria specified by the following keywords.
	INACCESSIBLE	Specifies that datafiles that cannot be read due to I/O errors should be excluded from the conversion.
A datafile is only considered inaccessible if it cannot be read. Some offline datafiles can still be read because they still exist on disk. Others have been deleted or moved and so cannot be read, making them inaccessible.

	OFFLINE	Specifies that offline datafiles should be excluded from the conversion.
	READONLY	Specifies that read-only datafiles should be excluded from the conversion.

convertOptionList

This subclause specifies input and output options for the conversion.

You can use either the FORMAT or fileNameConversionSpec arguments to control the names of the output files generated by the CONVERT command. If you do not specify either, then the rules governing the location of the output files are the same as those governing the output files from a BACKUP AS COPY operation. These rules are described in the backupTypeSpec entry.

	Syntax Element	Description
	fileNameConversionSpec
	A set of string pairs. Whenever any of the input filenames contains one of the first halves of a pair, anywhere in the filename, it will be replaced with the second half of the same pair. You can use as many pairs of replacement strings as required. You can use single or double quotation marks.
See Also: "Duplication with Oracle Managed Files" to learn about restrictions related to ASM and Oracle Managed Files

	FORMAT formatSpec	Specifies the name template for the output files. See the BACKUP AS COPY command for the format values that are valid here.
If the database to which RMAN is connected as TARGET uses a recovery area, then you must specify the FORMAT clause.

You can use CONVERT ... FORMAT without specifying FROM PLATFORM or TO PLATFORM. If you do not specify platforms, then running CONVERT TABLESPACE on the source database generates datafile copies that are not cataloged. If you run CONVERT DATAFILE on the destination database, and if the datafile copy already uses the same endianess, then the command generates another datafile copy.

As shown in Example 2-53, you can use CONVERT DATAFILE ... FORMAT to convert a datafile into ASM format. For very large datafiles, copying datafiles between hosts consumes a large amount of space. Consider using NFS or disk sharing. You can create a backup on the source host, mount the disk containing the backups on the destination host, and then convert the datafile into ASM.

	FROM PLATFORM 'platform'	Specifies the name of the source platform. If not specified, the default is the platform of the database to which RMAN is connected as TARGET.
The specified platform must be one of the platforms listed in the PLATFORM_NAME column of V$TRANSPORTABLE_PLATFORM. You must use the exact name of the source or target platform as a parameter to the CONVERT command. The following SQL statement queries supported Linux platforms:

SELECT PLATFORM_NAME, ENDIAN_FORMAT
FROM V$TRANSPORTABLE_PLATFORM
WHERE UPPER(PLATFORM_NAME) LIKE 'LINUX%';

	PARALLELISM integer	Specifies the number of channels to be used to perform the operation. If not used, then channels allocated or configured for disk determine the number of channels.
	TO PLATFORM 'platform'	Specifies the name of the destination platform. If not specified, the default is the platform of the database to which RMAN is connected as TARGET.
The specified platform must be one of the platforms listed in the PLATFORM_NAME column of V$TRANSPORTABLE_PLATFORM. You must use the exact name of the source or target platform as a parameter to the CONVERT command. The following SQL statement queries supported Linux platforms:

SELECT PLATFORM_NAME, ENDIAN_FORMAT
FROM V$TRANSPORTABLE_PLATFORM
WHERE UPPER(PLATFORM_NAME) LIKE 'LINUX%';

Examples

Example 2-51 Converting Tablespaces on the Source Platform

Suppose you must convert tablespaces finance and hr in source database prodlin to the platform format of destination database prodsun. The finance tablespace includes datafiles /disk2/orahome/fin/fin01.dbf and /disk2/orahome/fin/fin02.dbf. The hr tablespace includes datafiles /disk2/orahome/fin/hr01.dbf and /disk2/orahome/fin/hr02.dbf.

The prodlin database runs on Linux host lin01. You query V$DATABASE and discover that platform name is Linux IA (32-bit) and uses a little-endian format. The prodsun database runs on Solaris host sun01. You query V$TRANSPORTABLE_PLATFORM and discover that the PLATFORM_NAME for the Solaris host is Solaris[tm] OE (64-bit), which uses a big-endian format.

You plan to convert the tablespaces on the source host and store the converted datafiles in /tmp/transport_to_solaris/ on host lin01. The example assumes that you have set COMPATIBLE is to 10.0 or greater on the source database.

On source host lin01, you start the RMAN client and run the following commands:

CONNECT TARGET SYS@prodlin

target database Password: password
connected to target database: PRODLIN (DBID=39525561)

SQL 'ALTER TABLESPACE finance READ ONLY';
SQL 'ALTER TABLESPACE hr READ ONLY';
CONVERT TABLESPACE finance, hr
 TO PLATFORM 'Solaris[tm] OE (64-bit)'
 FORMAT '/tmp/transport_to_solaris/%U';

The result is a set of converted datafiles in the /tmp/transport_to_solaris/ directory, with data in the right endian-order for the Solaris 64-bit platform.

From this point, you can follow the rest of the general outline for tablespace transport. Use the Data Pump Export utility to create the file of structural information, if you have not already, move the structural information file and the converted datafiles from /tmp/transport_to_solaris/ to the desired directories on the destination host, and plug the tablespace into the new database with the Data Pump Import utility.

Example 2-52 Converting Datafiles on the Destination Platform

This example assumes that you want to convert the finance and hr tablespaces from database prodsun on host sun01 into a format usable by database prodlin on destination host lin01. You will temporarily store the unconverted datafiles in directory /tmp/transport_from_solaris/ on destination host lin01 and perform the conversion with CONVERT DATAFILE. When you transport the datafiles into the destination database, they will be stored in /disk2/orahome/dbs.

The example assumes that you have carried out the following steps in preparation for the tablespace transport:

	
You used the Data Pump Export utility to create the structural information file (named, in our example, expdat.dmp).

	
You made the finance and hr tablespaces read-only on the source database.

	
You used an operating system utility to copy expdat.dmp and the unconverted datafiles to be transported to the destination host lin01 in the /tmp/transport_from_solaris directory. The datafiles are stored as:

	
/tmp/transport_from_solaris/fin/fin01.dbf

	
/tmp/transport_from_solaris/fin/fin02.dbf

	
/tmp/transport_from_solaris/hr/hr01.dbf

	
/tmp/transport_from_solaris/hr/hr02.dbf

	
You queried the name for the source platform in V$TRANSPORTABLE_PLATFORM and discovered that the PLATFORM_NAME is Solaris[tm] OE (64-bit).

Note the following considerations when performing the conversion:

	
Identify the datafiles by filename, not by tablespace name. Until the datafiles are plugged in, the local instance has no way of knowing the intended tablespace names.

	
The FORMAT argument controls the name and location of the converted datafiles.

	
When converting on the destination host, you must specify the source platform with the FROM argument. Otherwise, RMAN assumes that the source platform is the same as the platform of the host performing the conversion.

You start the RMAN client and connect to the destination database prodlin as TARGET. The following CONVERT command converts the datafiles to be transported to the destination host format and deposits the results in /disk2/orahome/dbs:

CONNECT TARGET SYS@prodlin

target database Password: password
connected to target database: PRODLIN (DBID=39525561)

CONVERT DATAFILE
 '/tmp/transport_from_solaris/fin/fin01.dbf',
 '/tmp/transport_from_solaris/fin/fin02.dbf',
 '/tmp/transport_from_solaris/hr/hr01.dbf',
 '/tmp/transport_from_solaris/hr/hr02.dbf'
 DB_FILE_NAME_CONVERT
 '/tmp/transport_from_solaris/fin','/disk2/orahome/dbs/fin',
 '/tmp/transport_from_solaris/hr','/disk2/orahome/dbs/hr'
 FROM PLATFORM 'Solaris[tm] OE (64-bit)';

The result is that the following datafiles have been converted to the Linux format:

	
/disk2/orahome/dbs/fin/fin01.dbf

	
/disk2/orahome/dbs/fin/fin02.dbf

	
/disk2/orahome/dbs/hr/hr01.dbf

	
/disk2/orahome/dbs/hr/hr02.dbf

From this point, follow the rest of the general outline for tablespace transport. Use Data Pump Import to plug the converted tablespaces into the new database, and make the tablespaces read/write if applicable.

Example 2-53 Copying Datafiles to and from ASM with CONVERT DATAFILE

This example illustrates copying datafiles into ASM from normal storage. Note that the generated files are not considered datafile copies that belong to the target database, so LIST DATAFILECOPY does not display them.

Use CONVERT DATAFILE without specifying a source or destination platform. Specify ASM disk group +DATAFILE for the output location, as shown here:

RMAN> CONVERT DATAFILE '/disk1/oracle/dbs/my_tbs_f1.df',
 '/disk1/oracle/dbs/t_ax1.f'
 FORMAT '+DATAFILE';

Starting conversion at 29-MAY-05
using channel ORA_DISK_1
channel ORA_DISK_1: starting datafile conversion
input filename=/disk1/oracle/dbs/t_ax1.f
converted datafile=+DATAFILE/asmv/datafile/sysaux.280.559534477
channel ORA_DISK_1: datafile conversion complete, elapsed time: 00:00:16
channel ORA_DISK_1: starting datafile conversion
input filename=/disk1/oracle/dbs/my_tbs_f1.df
converted datafile=+DATAFILE/asmv/datafile/my_tbs.281.559534493
channel ORA_DISK_1: datafile conversion complete, elapsed time: 00:00:04
Finished conversion at 29-MAY-05

The following example illustrates copying the datafiles of a tablespace out of ASM storage to directory /tmp, with uniquely generated filenames.

RMAN> CONVERT TABLESPACE tbs_2 FORMAT '/tmp/tbs_2_%U.df';

Starting conversion at 03-JUN-05
using target database control file instead of recovery catalog
allocated channel: ORA_DISK_1
channel ORA_DISK_1: sid=20 devtype=DISK
channel ORA_DISK_1: starting datafile conversion
input datafile fno=00006 name=+DATAFILE/tbs_21.f
converted datafile=/tmp/tbs_2_data_D-L2_I-2786301554_TS-TBS_2_FNO-6_11gm2fq9.df
channel ORA_DISK_1: datafile conversion complete, elapsed time: 00:00:01
channel ORA_DISK_1: starting datafile conversion
input datafile fno=00007 name=+DATAFILE/tbs_22.f
converted datafile=/tmp/tbs_2_data_D-L2_I-2786301554_TS-TBS_2_FNO-7_12gm2fqa.df
channel ORA_DISK_1: datafile conversion complete, elapsed time: 00:00:01
channel ORA_DISK_1: starting datafile conversion
input datafile fno=00019 name=+DATAFILE/tbs_25.f
converted datafile=/tmp/tbs_2_data_D-L2_I-2786301554_TS-TBS_2_FNO-19_13gm2fqb.df
channel ORA_DISK_1: datafile conversion complete, elapsed time: 00:00:01
channel ORA_DISK_1: starting datafile conversion
input datafile fno=00009 name=+DATAFILE/tbs_23.f
converted datafile=/tmp/tbs_2_data_D-L2_I-2786301554_TS-TBS_2_FNO-9_14gm2fqc.df
channel ORA_DISK_1: datafile conversion complete, elapsed time: 00:00:01
channel ORA_DISK_1: starting datafile conversion
input datafile fno=00010 name=+DATAFILE/tbs_24.f
converted datafile=/tmp/tbs_2_data_D-L2_I-2786301554_TS-TBS_2_FNO-10_15gm2fqd.df
channel ORA_DISK_1: datafile conversion complete, elapsed time: 00:00:01
Finished conversion at 03-JUN-05

Example 2-54 Transporting a Database to a Different Platform

The arguments to CONVERT DATABASE vary depending on whether you plan to convert the datafiles on the source or destination platform. For a description of the conversion process on source and destination platforms and extended examples, refer to Oracle Database Backup and Recovery User's Guide. Read that discussion in its entirely before attempting a database conversion.

Assume that you want to transport database prod on a Linux host to a Windows host. You decide to convert the datafiles on the source host rather than on the destination host. The following example connects RMAN to the prod database on the Linux host and uses CONVERT DATABASE NEW DATABASE to convert the datafiles and generate the transport script:

CONNECT TARGET SYS@lin01

target database Password: password
connected to target database: PROD (DBID=39525561)

CONVERT DATABASE
 NEW DATABASE 'prodwin'
 TRANSPORT SCRIPT '/tmp/convertdb/transportscript'
 TO PLATFORM 'Microsoft Windows IA (32-bit)'
 DB_FILE_NAME_CONVERT '/disk1/oracle/dbs' '/tmp/convertdb';

In the following variation, you want to transport a database running on a Linux host to a Windows host, but you want to convert the datafiles on the destination host rather than the source host. The following example connects RMAN to the prod database on the Linux host and executes CONVERT DATABASE ON DESTINATION PLATFORM:

CONNECT TARGET SYS@lin01

target database Password: password
connected to target database: PROD (DBID=39525561)

CONVERT DATABASE
 ON DESTINATION PLATFORM
 CONVERT SCRIPT '/tmp/convertdb/convertscript.rman'
 TRANSPORT SCRIPT '/tmp/convertdb/transportscript.sql'
 NEW DATABASE 'prodwin'
 FORMAT '/tmp/convertdb/%U';

The CONVERT DATABASE ON DESTINATION PLATFORM command, which is executed on a Linux database, generates a convert script that can be run on the Windows host to convert the datafiles to the Windows format. The CONVERT DATABASE command also generates a transport script.

Example 2-55 Transporting a Database to a Different Platform and Storage Type

In this scenario, you have a database prod on a Solaris host named sun01 that you want to move to an AIX host named aix01. The Solaris datafiles are stored in a non-ASM file system, but you want to store the datafiles in ASM on the AIX host.

The following example connects to sun01 and runs CONVERT DATABASE to generate the necessary scripts:

CONNECT TARGET SYS@sun01

target database Password: password
connected to target database: PROD (DBID=39525561)

CONVERT DATABASE
 ON DESTINATION PLATFORM
 CONVERT SCRIPT '/tmp/convert_newdb.rman'
 TRANSPORT SCRIPT '/tmp/transport_newdb.sql'
 NEW DATABASE 'prodaix'
 DB_FILE_NAME_CONVERT '/u01/oradata/DBUA/datafile','+DATA';

The convert script will contain statements of the following form, where your_source_platform stands for your source platform:

CONVERT DATAFILE '/u01/oradata/DBUA/datafile/o1_mf_system_2lg3905p_.dbf'
 FROM PLATFORM 'your_source_platform'
 FORMAT '+DATA/o1_mf_system_2lg3905p_.dbf';

To reduce downtime for the conversion, you can use NFS rather than copying datafiles over the network or restoring a backup. For example, you could mount the Solaris files system on the AIX host as /net/solaris/oradata. In this case, you would edit the convert script to reference the NFS-mounted directory as the location of the source datafiles to convert, putting the commands into the following form:

CONVERT DATAFILE '/net/solaris/oradata/DBUA/datafile/o1_mf_system_2lg3905p_.dbf'
 FROM PLATFORM 'your_source_platform'
 FORMAT '+DATA/o1_mf_system_2lg3905p_.dbf';

You then connect RMAN to the destination database instance, in this case the instance on host aix01, and run the convert script to convert the datafiles. Afterward, you connect SQL*Plus to the database instance on aix01 and run the transport script to create the database.

CREATE SCRIPT

Purpose

Use the CREATE SCRIPT command to create a stored script in the recovery catalog. A stored script is a sequence of RMAN commands that is given a name and stored in the recovery catalog for later execution.

	
See Also:

	
Oracle Database Backup and Recovery User's Guide to learn how to use stored scripts

	
REPLACE SCRIPT to learn how to update a stored script

Prerequisites

Execute CREATE SCRIPT only at the RMAN prompt. RMAN must be connected to a target database and a recovery catalog. The recovery catalog database must be open.

If GLOBAL is specified, then a global script with this name must not already exist in the recovery catalog. If GLOBAL is not specified, then a local script must not already exist with the same name for the same target database. In you do not meet these prerequisites, then RMAN returns error RMAN-20401.

Usage Notes

A stored script may be local or global. A local script is created for the current target database only, whereas a global script is available for use with any database registered in the recovery catalog.

It is permissible to create a global script with the same name as a local script, or a local script with the same name as a global script.

Substitution Variables in Stored Scripts

RMAN supports the use of substitution variables in a stored script. &1 indicates where to place the first value, &2 indicate where to place the second value, and so on. Special characters must be quoted.

The substitution variable syntax is &integer followed by an optional period, for example, &1.3. The optional period is part of the variable and replaced with the value, thus enabling the substitution text to be immediately followed by another integer. For example, if you pass the value mybackup to a command file that contains the substitution variable &1.3, then the result of the substitution is mybackup3. Note that to create the result mybackup.3, you would use the syntax &1..3.

When you create a stored script with substitution variables, you must provide example values at create time. You can provide these values with the USING clause when starting RMAN (see RMAN) or enter them when prompted (see Example 2-60).

Syntax

createScript::=

[image: Description of createscript.gif follows]

(backupCommands::=, maintenanceCommands::=, miscellaneousCommands::=, restoreCommands::=)

Semantics

	Syntax Element	Description
	GLOBAL	Identifies the script as global.
Note: A virtual private catalog has read-only access to global scripts. Creating or updating global scripts must be done while connected to the base recovery catalog.

	SCRIPT script_name	Specifies the name of the script. Quotes must be used around the script name when the name contains either spaces or reserved words.
	 COMMENT 'comment'	Associates an explanatory comment with the stored script in the recovery catalog. The comment is used in the output of LIST SCRIPT NAMES.
	backupCommands
maintenanceCommands

miscellaneousCommands

restoreCommands

	Specifies commands to include in the stored script. The commands allowable within the brackets of the CREATE SCRIPT 'script_name' {...} command are the same commands supported within a RUN command. Any command that is valid within a RUN command is permitted in the stored script. The following commands are not valid within stored scripts: RUN, @ (at sign), and @@ (double at sign).
	FROM FILE 'filename'	Reads the sequence of commands to define the script from the specified file.
The file should look like the body of a valid stored script. The first line of the file must be a left brace ({) and the last line must contain a right brace (}). The RMAN commands in the file must be valid in a stored script.

Examples

Example 2-58 Creating a Local Stored Script

Assume that you want to create a local stored script for backing up database prod. You start RMAN, connect to prod as TARGET, and connect to a recovery catalog. You create a stored script called backup_whole and then use EXECUTE SCRIPT to run it as follows:

CREATE SCRIPT backup_whole
COMMENT "backup whole database and archived redo logs"
{
 BACKUP
 INCREMENTAL LEVEL 0 TAG backup_whole
 FORMAT "/disk2/backup/%U"
 DATABASE PLUS ARCHIVELOG;
}
RUN { EXECUTE SCRIPT backup_whole; }

Example 2-59 Creating a Global Stored Script

This example connects RMAN to target database prod and recovery catalog database catdb as catalog user rco. The example creates a global script called global_backup_db that backs up the database and archived redo logs:

RMAN> CONNECT TARGET SYS@prod

target database Password: password
connected to target database: PROD (DBID=39525561)

RMAN> CONNECT CATALOG rco@catdb

recovery catalog database Password: password
connected to recovery catalog database

RMAN> CREATE GLOBAL SCRIPT global_backup_db { BACKUP DATABASE PLUS ARCHIVELOG; }
RMAN> EXIT;

You can now connect RMAN to a different target database such as prod2 and run the global stored script:

RMAN> CONNECT TARGET SYS@prod2

target database Password: password
connected to target database: PROD2 (DBID=36508508)

RMAN> CONNECT CATALOG rco@catdb

recovery catalog database Password: password
connected to recovery catalog database

RMAN> RUN { EXECUTE SCRIPT global_backup_db; }

Example 2-60 Creating a Stored Script That Uses Substitution Variables

The following example connects RMAN to a target database and recovery catalog and uses CREATE SCRIPT to create a backup script that includes three substitution variables. RMAN prompts you to enter initial values for the variables (user input is shown in bold).

RMAN> CONNECT TARGET /
RMAN> CONNECT CATALOG rman@catdb

recovery catalog database Password: password
connected to recovery catalog database

RMAN> CREATE SCRIPT backup_df
2> { BACKUP DATAFILE &1 TAG &2.1 FORMAT '/disk1/&3_%U'; }
 Enter value for 1: 1

Enter value for 2: df1_backup

Enter value for 3: df1

starting full resync of recovery catalog
full resync complete
created script backup_df

When you run EXECUTE SCRIPT, you can pass different values to the script. The following example passes the values 3, test_backup, and test to the substitution variables in the stored script:

RMAN> RUN { EXECUTE SCRIPT backup_df USING 3 test_backup df3; }

After the values are substituted, the script executes as follows:

BACKUP DATAFILE 3 TAG test_backup1 FORMAT '/disk1/df3_%U';

CROSSCHECK

Purpose

Use the CROSSCHECK command to synchronize the physical reality of backups and copies with their logical records in the RMAN repository.

	
See Also:

Oracle Database Backup and Recovery User's Guide to learn how to manage database records in the recovery catalog

Prerequisites

RMAN must be connected to a target database instance, which must be started.

A maintenance channel is not required for a disk crosscheck. If you use a media manager and have not configured automatic channels for it, then you must use run ALLOCATE CHANNEL FOR MAINTENANCE before CROSSCHECK. For example, if you created a backup on an SBT channel, but have not configured automatic SBT channels for this device, then you must manually allocate an SBT channel before CROSSCHECK can check the backup. Furthermore, if you have performed backups with different media manager options (pools, servers, libraries, and so on), then you should allocate maintenance channels for each combination.

Crosscheck validates all specified backups and copies, even if they were created in previous database incarnations.

Usage Notes

RMAN always maintains logical metadata about backups in the control file of every target database on which it performs operations. If you use RMAN with a recovery catalog, then RMAN also maintains the metadata from every registered database in the recovery catalog.

If a backup is on disk, then CROSSCHECK determines whether the header of the file is valid. If a backup is on tape, then RMAN queries the RMAN repository for the names and locations of the backup pieces to be checked. RMAN sends this metadata to the target database server, which queries the media management software about the backups. The media management software then checks its media catalog and reports back to the server with the status of the backups.

EXPIRED and AVAILABLE Status

You can view the status of backup sets and copies recorded in the RMAN repository through LIST, V$ views, or recovery catalog views (if you use RMAN with a catalog). Table 2-4 describes the meaning of each status.

The CROSSCHECK command only processes files created on the same device type as the channels used for the crosscheck. The CROSSCHECK command checks only objects marked AVAILABLE or EXPIRED in the repository by examining the files on disk for DISK channels or by querying the media manager for sbt channels.

Table 2-4 Meaning of Crosscheck Status

	Status	Description
	
EXPIRED

	
Object is not found either in file system (for DISK) or in the media manager (for sbt). A backup set is EXPIRED if any backup piece in the set is EXPIRED.

The CROSSCHECK command does not delete files that it does not find, but updates their repository records to EXPIRED. You can run DELETE EXPIRED to remove the repository records for expired files and any existing physical files whose status is EXPIRED.

If backups are EXPIRED, then you can reexecute the crosscheck later and determine whether expired backups are available. This precaution is especially useful when you use RMAN with a media manager. For example, if some backup pieces or copies were erroneously marked as EXPIRED because the PARMS channel settings were incorrect, then after ensuring that the files really do exist in the media manager, run the CROSSCHECK BACKUP command again to restore those files to AVAILABLE status.

	
AVAILABLE

	
Object is available for use by RMAN. For a backup set to be AVAILABLE, all backup pieces in the set must have the status AVAILABLE.

Crosschecks in a Data Guard Environment

"RMAN Backups in a Data Guard Environment" explains the difference between the association and accessibility of a backup. In a Data Guard environment, the database that creates a backup or copy is associated with the file. You can use maintenance commands such as CHANGE, DELETE, and CROSSCHECK for backups when connected to any database in the Data Guard environment as long as the backups are accessible. In general, RMAN considers tape backups created on any database as accessible to all databases in the environment, whereas disk backups are accessible only to the database that created them.

RMAN can only update the status of a backup from AVAILABLE to EXPIRED or DELETED when connected as TARGET to the database associated with the backup. If RMAN cannot delete a backup because it is not associated with the target database, then RMAN prompts you to perform the same CROSSCHECK operation for the file at the database with which it is associated. In this way RMAN protects against unwanted status changes that result from incorrect SBT configurations.

For example, assume that you connect RMAN as TARGET to standby database standby1 and back it up to tape. If the backup is manually removed from the tape, and if you perform a crosscheck of the backup on standby2, then RMAN prompts you to run the crosscheck on standby1. A crosscheck on standby1 updates the status of the tape backup to EXPIRED when the media manager reports that the backup has been deleted.

Syntax

crosscheck::=

[image: Description of crosscheck.gif follows]

maintSpec::=

[image: Description of maintspec.gif follows]

(listObjList::=, archivelogRecordSpecifier::=, foreignlogRecordSpecifier::=, maintQualifier::=, recordSpec::=, deviceSpecifier::=)

Semantics

	Syntax Element	Description
	maintSpec
	Crosschecks backups and copies. For maintSpec options, refer to the parameter descriptions in maintSpec.

Examples

Example 2-61 Crosschecking All Backups and Copies

This example, which assumes that the default configured channel is DEVICE TYPE sbt, crosschecks all backups and copies on tape and disk (partial output is included). Because RMAN preconfigures a disk channel, you do not need to manually allocate a disk channel.

RMAN> CROSSCHECK BACKUP;

allocated channel: ORA_SBT_TAPE_1
channel ORA_SBT_TAPE_1: SID=84 device type=SBT_TAPE
channel ORA_SBT_TAPE_1: Oracle Secure Backup
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=86 device type=DISK
backup piece handle=/disk2/backup/08i9umon_1_1 RECID=7 STAMP=614423319
crosschecked backup piece: found to be 'EXPIRED'
backup piece handle=/disk2/backup/09i9umso_1_1 RECID=8 STAMP=614423448
crosschecked backup piece: found to be 'EXPIRED'
backup piece handle=/disk1/cfauto/c-26213402-20070213-00 RECID=9 STAMP=614423452
crosschecked backup piece: found to be 'AVAILABLE'
backup piece handle=0bi9uo81_1_1 RECID=10 STAMP=614424833
crosschecked backup piece: found to be 'AVAILABLE'
backup piece handle=c-26213402-20070213-01 RECID=11 STAMP=614424851
crosschecked backup piece: found to be 'AVAILABLE'
.
.
.

Example 2-62 Crosschecking Within a Range of Dates

This example queries the media manager for the status of the backup sets in a given six week range. Note that RMAN uses the date format specified in the NLS_DATE_FORMAT parameter, which is 'DD-MON-YY' in this example. The first command crosschecks backups on tape only:

ALLOCATE CHANNEL FOR MAINTENANCE DEVICE TYPE sbt;
CROSSCHECK BACKUP
 COMPLETED BETWEEN '01-JAN-07' AND '14-FEB-07';
RELEASE CHANNEL;

The following command specifies DEVICE TYPE DISK to crosscheck only disk:

CROSSCHECK BACKUP DEVICE TYPE DISK
 COMPLETED BETWEEN '01-JAN-07' AND '14-FEB-07';

If the default channel is SBT, then you can crosscheck both disk and SBT backups by running CROSSCHECK with the default channels:

CROSSCHECK BACKUP COMPLETED BETWEEN '01-JAN-07' AND '14-FEB-07';

DROP CATALOG

Purpose

Use the DROP CATALOG command to remove the recovery catalog or a virtual private catalog.

	
See Also:

Oracle Database Backup and Recovery User's Guide to learn how to drop the recovery catalog

Prerequisites

Execute this command only at the RMAN prompt.

You must be connected to the recovery catalog schema or virtual private catalog schema with the CATALOG command-line option or the CONNECT CATALOG command. The recovery catalog database must be open.

You do not have to be connected to a target database.

Usage Notes

After you execute DROP CATALOG, RMAN prompts you to enter the command again to confirm that you want to perform the operation.

A base recovery catalog is created with CREATE CATALOG, whereas a virtual private catalog is created with CREATE VIRTUAL CATALOG. To drop the base recovery catalog, execute DROP CATALOG while connected to the recovery catalog database as the recovery catalog owner.

	
Caution:

When you drop the base recovery catalog, all RMAN metadata is removed from the recovery catalog. Any backups recorded in the recovery catalog but not in a target database control are not usable by RMAN.

To drop a virtual private catalog, execute the DROP CATALOG command while connected to the virtual private catalog. When connected to a virtual private catalog, the DROP CATALOG command does not remove the base recovery catalog itself, but only drops the synonyms and views that refer to the base catalog.

Note that you must use a different technique to drop a virtual catalog when using a 10.2 or earlier release of the RMAN client. Before dropping the virtual private catalog, the user must connect to the recovery catalog database as the virtual private catalog owner and execute the following PL/SQL procedure (where base_catalog_owner is the database user who owns the base recovery catalog):

base_catalog_owner.DBMS_RCVCAT.DROP_VIRTUAL_CATALOG

If you drop the base recovery catalog but not the virtual private catalog, then the virtual catalog is unusable. However, if a dedicated database user owns the virtual private catalog, then you can execute DROP USER ... CASCADE to remove the virtual catalog.

Syntax

dropCatalog::=

[image: Description of dropcatalog.gif follows]

Example

Example 2-68 Dropping a Virtual Private Catalog

Assume that you want to remove the virtual private catalog belonging to database user vpu1, but do not want to drop the base recovery catalog. This example connects to the recovery catalog database as vpu1 and drops the virtual private catalog for this user. The base recovery catalog is not affected by the removal of this virtual private catalog.

RMAN> CONNECT CATALOG vpu1@catdb

recovery catalog database Password: password
connected to recovery catalog database

RMAN> DROP CATALOG;

recovery catalog owner is VPU1
enter DROP CATALOG command again to confirm catalog removal

RMAN> DROP CATALOG;

virtual catalog dropped

DUPLICATE

Purpose

Use the DUPLICATE command to create a copy of a source database. RMAN can create either of the following types of databases:

	
A duplicate database, which is a copy of the source database (or a subset of the source database) with a unique DBID. Because a duplicate database has a unique DBID, it is independent of the source database and can be registered in the same recovery catalog. Typically, duplicate databases are used for testing.

	
A standby database, which is a special copy of the source database (called a primary database in a Data Guard environment) that is updated by applying archived redo logs from the primary database. A standby database does not get a new DBID.

RMAN can perform the duplication either directly from an open or mounted database or from pre-existing RMAN backups and copies.

	
See Also:

	
Oracle Database Backup and Recovery User's Guide to learn how to create a duplicate database with the DUPLICATE command

	
Oracle Data Guard Concepts and Administration to learn how to create, manage, and back up a standby database

Additional Topics

	
Prerequisites

	
Usage Notes

	
Syntax

	
Semantics

	
Examples

Prerequisites

RMAN must be connected as TARGET to the source database, which is the database that is being copied. The source database must be mounted or open. The source database must not be a standby database.

RMAN must be connected as AUXILIARY to the instance of the duplicate database. The instance of the duplicate database is called the auxiliary instance. The auxiliary instance must be started with the NOMOUNT option.

The source and duplicate databases must be on the same platform. In the context of DUPLICATE, 32-bit and 64-bit versions of the same platform are considered the same platform. For example, Linux IA (32-bit) Little is considered the same platform as Linux IA (64-bit) Little. However, after duplicating a database between 32-bit and 64-bit platforms, you must run the utlirp.sql script to convert the PL/SQL code to the new format. This script is located in ORACLE_HOME/rdbms/admin on Linux and UNIX platforms.

The DUPLICATE command requires one or more configured or allocated auxiliary channels. These channels perform the work of the duplication on the auxiliary database instance. RMAN is connected as TARGET to the source database. In the following circumstances, RMAN uses the channel configuration from the source database for auxiliary channels:

	
You have not used ALLOCATE CHANNEL to manually allocate auxiliary channels.

	
You have not used CONFIGURE to configure auxiliary channels.

If you have configured automatic target channels to use CONNECT strings, then RMAN attempts to use the same channel configuration for the channels on the auxiliary instance. It is recommended that you manually allocate auxiliary channels instead.

The source host is the database on which the source database resides. The destination host is the database on which you intend to create the duplicate database. If you intend to create the duplicate database on the source host, then set the CONTROL_FILES initialization parameter appropriately so that the DUPLICATE command does not generate an error because the source control file is in use. Also, set all *_DEST initialization parameters appropriately so that the source database files are not overwritten by the duplicate database files.

If the COMPATIBLE initialization parameter is set greater than or equal to 11.0.0, then by default RMAN duplicates transportable tablespaces that were not made read/write after being transported. Otherwise, RMAN cannot duplicate transportable tablespaces unless they have been made read/write after being transported.

Tablespace and Column Encryption

The following database encryption features both use the wallet: transparent data encryption, which functions at the column level, and tablespace encryption. Note the following restrictions:

	
If you are duplicating an encrypted tablespace, then you must manually copy the wallet to the duplicate database.

	
If the duplicate database has an existing wallet, then you cannot copy the wallet from the source database to the duplicate database. Thus, you cannot transport encrypted data to a database that already has a wallet. If you encrypt columns with transparent data encryption, then you can export them into an export file that is password-protected and import the data into the duplicate database.

	
You cannot duplicate an encrypted tablespace across platforms with different endianism.

	
See Also:

Oracle Database Advanced Security Administrator's Guide to learn about transparent data encryption

Prerequisites Specific to Backup-Based Duplication

When you execute DUPLICATE without FROM ACTIVE DATABASE, at least one auxiliary channel is required, but no normal channels are required in the source database.

When you duplicate the database from backups, all backups and archived redo logs used for creating and recovering the duplicate database must be accessible by the server session on the destination host. If the destination host is not the same as the source host, then you must make backups on disk on the source host available to the destination host with the same full path name as in the source database.

Prerequisites Specific to Active Database Duplication

When you connect RMAN to the source database as TARGET, you must specify a password, even if RMAN uses operating system authentication. The source database must be mounted or open. If the source database is open, then archiving must be enabled. If the source database is not open, and if it is not a standby database, then it must have been shut down consistently.

When you connect RMAN to the auxiliary database instance, you must provide a net service name. This requirement applies even if the auxiliary instance is on the local host.

The source database and auxiliary instances must use the same SYSDBA password, which means that both instances must already have password files. You can create the password file with a single password so you can start the auxiliary instance and enable the source database to connect to it.

The DUPLICATE behavior for password files varies depending on whether your duplicate database will act as a standby database. If you create a duplicate database that is not a standby database, then RMAN does not copy the password file by default. You can specify the PASSWORD FILE option to indicate that RMAN should overwrite the existing password file on the auxiliary instance. If you create a standby database, then RMAN copies the password file to the standby host by default, overwriting the existing password file. In this case, the PASSWORD FILE clause is not necessary.

When you execute DUPLICATE with FROM ACTIVE DATABASE, at least one normal target channel and at least one AUXILIARY channel are required. You cannot use the UNTIL clause when performing active database duplication. RMAN chooses a time based on when the online datafiles have been completely copied, so that the datafiles can be recovered to a consistent point in time.

	
See Also:

Oracle Database Security Guide to learn about password protection

Usage Notes

Active database duplication uses the auxiliary service name to copy the source database over the network to the auxiliary instance on the destination host, whereas backup-based duplication uses pre-existing RMAN backups and copies. Table 2-6 shows which files from the source database are duplicated.

Table 2-6 Duplicated Files

	Source Database Files	Active Database	Backup-Based
	
Control files

	
Copied from source database when FOR STANDBY specified; otherwise re-created

	
Restored from backups when FOR STANDBY specified; otherwise re-created

	
Datafiles

	
Copied from source database (unless excluded with a SKIP option)

	
Restored from backups (unless excluded with a SKIP option)

	
Tempfiles

	
Re-created (see "Tempfile Re-Creation")

	
Re-created (see "Tempfile Re-Creation")

	
Online redo log files

	
Re-created

	
Re-created

	
Standby redo log files

	
Re-created when FOR STANDBY specified and defined on primary database

	
Re-created when FOR STANDBY specified and defined on primary database

	
Archived redo log files

	
Copied from source database, but only if needed for the duplication

	
Obtained from backups or cataloged copies, but only if needed for the duplication

	
Server parameter file

	
Copied from source database (see SPFILE clause in dupOptionList)

	
Restored from backup if SPFILE clause is specified (see dupOptionList)

	
Flashback log files

	
Not re-created

	
Not re-created

	
Block change tracking file

	
Not re-created

	
Not re-created

	
Password file

	
Copied by default for standby databases; for nonstandby databases, copied only if PASSWORD FILE option is specified

	
Not re-created

	
Backups and other files in flash recovery area

	
Not copied

	
Not copied

All datafiles are included in the duplicate database unless they are offline or excluded. You can exclude tablespaces by means of the SKIP clause, or by including only a subset of tablespaces with DUPLICATE ... TABLESPACE.

	
Note:

The recovery catalog only knows about current read-only tablespaces. If a tablespace is currently read/write, but you use UNTIL to duplicate the database to a past SCN at which a tablespace was read-only, then this tablespace is not included in the duplicate database. Tablespaces that were read-only in the past are considered offline tablespaces and so are not included in the duplication.

The flash recovery area is defined on the duplicate or standby database if you explicitly define it. Also, if a flash recovery was defined on the source database, and if the auxiliary instance uses a server parameter file that was copied or restored with the DUPLICATE command, then a flash recovery is defined on the duplicate or standby database.

If you use active database duplication, then see the FROM ACTIVE DATABASE description in dupsbyOptionList or dupOptionList for usage notes.

Backup-Based Duplication

In backup-based duplication of databases in NOARCHIVELOG mode, media recovery uses the NOREDO option. Thus, if incremental backups exist, RMAN applies only these incremental backups to the restored files during recovery. For backup-based duplication of databases in ARCHIVELOG mode, RMAN recovers by default up to the last archived redo log generated at the time the command was executed, or until a time specified with a SET UNTIL clause.

If you are using backup-based duplication, and if the source database and auxiliary instances reside on different hosts, then you must decide how to make the backups of the source database available to the auxiliary instance.

If the target database does not use a recovery area in ASM storage, then perform one of the following tasks before executing the DUPLICATE command:

	
If you are using SBT backups, then make the tapes with the backups accessible to the destination host.

	
If you are using disk backups, and if you can use the same backup directory names on the destination host as the source host, then do one of the following:

	
Manually transfer the backups and copies from the source host to the destination host to an identical path.

	
Use NFS or shared disks and make sure that the same path is accessible in the destination host.

	
If you are using disk backups, and if you cannot use the same backup directory names on the destination host as the source host, then use of the techniques described in Oracle Database Backup and Recovery User's Guide.

If the source database uses a recovery area in ASM storage, then perform one of the following tasks before executing the DUPLICATE command:

	
Make a database backup to a location outside the flash recovery area. You can make this backup accessible in the following ways:

	
Use NFS to mount the backup on the destination host with the same name.

	
Use NFS to mount the backup on the destination host with a different name, and then CATALOG the backup while RMAN is connected as TARGET to the source database.

	
Back up the flash recovery area to tape and use it for duplication.

Duplication with Oracle Managed Files

If the source database files are in the Oracle Managed Files (OMF) format, then you cannot use the DB_FILE_NAME_CONVERT and LOG_FILE_NAME_CONVERT initialization parameters or the fileNameConversionSpec clause to generate new OMF filenames for the duplicate database. OMF filenames are unique and generated by Oracle Database.

The only exception to this rule is when changing only an ASM disk group name. Assume that source datafiles and online redo log files are stored in ASM disk group +SOURCEDSK. You want to store the duplicate database files in ASM disk group +DUPDSK. In this case, you can set the initialization parameters as follows:

DB_FILE_NAME_CONVERT = ("+SOURCEDSK","+DUPDSK")
LOG_FILE_NAME_CONVERT = ("+SOURCEDSK","+DUPDSK")

RMAN uses DB_FILE_NAME_CONVERT or LOG_FILE_NAME_CONVERT to convert the disk group name, and then generates a new, valid filename based on the converted disk group name.

You have the following other supported options for naming datafiles when the source files are in the Oracle Managed Files format:

	
Use SET NEWNAME to specify names for individual datafiles.

	
Set DB_FILE_CREATE_DEST to make all datafiles of the new database Oracle-managed files, with the exception of the files for which SET NEWNAME is used. You should not set DB_FILE_NAME_CONVERT if you set DB_FILE_CREATE_DEST.

Supported options for naming online redo logs duplicated from Oracle-managed files are DB_CREATE_FILE_DEST, DB_RECOVERY_FILE_DEST, or DB_CREATE_ONLINE_LOG_DEST_n.

Tempfile Re-Creation

When using DUPLICATE with Oracle-managed files, RMAN re-creates tempfiles in the current DB_CREATE_FILE_DEST, either when the database is opened to become a primary or when it is opened read-only. When not using Oracle-managed files, RMAN uses DB_FILE_NAME_CONVERT to convert the tempfile names for the new database. When the standby or duplicate database is opened in read-only or read/write mode, Oracle automatically creates temporary files as needed, with the converted names based upon DB_FILE_NAME_CONVERT. To specify different filenames for the tempfiles, see the discussion of SWITCH TEMPFILE .

Syntax

duplicate::=

[image: Description of duplicate.gif follows]

(dupsbyOptionList::=, dupOptionList::=)

dupsbyOptionList::=

[image: Description of dupsbyoptionlist.gif follows]

(fileNameConversionSpec::=, setParameter::=)

dupOptionList::=

[image: Description of dupoptionlist.gif follows]

(deviceSpecifier::=, fileNameConversionSpec::=, logSpec::=, setParameter::=, untilClause::=)

setParameter::=

[image: Description of setparameter.gif follows]

logSpec::=

[image: Description of logspec.gif follows]

sizeSpec::=

[image: Description of sizespec.gif follows]

Semantics

duplicate

This clause enables you to duplicate a database or tablespace. Refer to the duplicate::= diagram for the syntax.

	Syntax Element	Description
	FOR STANDBY	Specifies that database being duplicated is to be used as a standby database (see Example 2-75).
To create a standby database with the DUPLICATE command you must specify the FOR STANDBY option. The DUPLICATE ... FOR STANDBY command creates the standby database by restoring a standby control file and mounting the standby control file. If you specify FROM ACTIVE DATABASE, then RMAN copies the datafiles from the primary to standby database. Otherwise, RMAN restores backups of the source database datafiles to the standby database. RMAN restores the most recent files, unless SET UNTIL is specified.

If DORECOVER is specified, then RMAN also recovers the database. The standby database is left mounted after duplication is complete.

You cannot use SET NEWNAME or CONFIGURE AUXNAME to transform the filenames for the online redo logs on the standby database.

You cannot CONNECT RMAN to the standby database and then use DUPLICATE ... FOR STANDBY to create an additional standby database. To create additional standby databases, connect RMAN to the original primary database and run DUPLICATE ... FOR STANDBY.

Note: Although you can use the DUPLICATE command to create a standby database, you cannot use this command to activate a standby database.

When you connect RMAN to the standby database and the recovery catalog in which the primary database is already registered, RMAN recognizes the standby database and implicitly registers it. Do not attempt to use the REGISTER command for the standby database.

	 dupsbyOptionList
	Specifies options that only apply when creating a standby database. See dupsbyOptionList.
	TO database_name	Specifies the name of the duplicate database. This duplicate database will not be a standby database.
If you do not specify the SPFILE clause, then the specified database name should match the name in the initialization parameter file of the duplicate database instance, which is the instance to which RMAN is connected as AUXILIARY. Otherwise, the database signals an error.

You cannot use the same database name for the source database and duplicate database when the duplicate database resides in the same Oracle home as the source database. However, if the duplicate database resides in a different Oracle home from the source database, then its database name just has to differ from other database names in its Oracle home. To simplify administration of duplicate database, Oracle recommends that you use different names for the source and duplicate databases.

	 dupOptionList
	Specifies options that only apply when creating a duplicate database that is not a standby database. See dupOptionList.

dupsbyOptionList

This subclause specifies options that only apply when creating a standby database. Refer to the dupsbyOptionList::= diagram for the syntax.

	Syntax Element	Description
	DORECOVER	Specifies that RMAN should recover the standby database after creating it. If you specify an untilClause, then RMAN recovers to the specified SCN or time and leaves the database mounted.
RMAN leaves the standby database mounted after media recovery is complete, but does not place the standby database in manual or managed recovery mode. After RMAN creates the standby database, you must resolve any gap sequence before placing it in manual or managed recovery mode, or opening it in read-only mode.

The checkpoint SCN of the control file must be included in an archived redo log that is either available at the standby site or included in an RMAN backup. For example, assume that you create the standby control file and then immediately afterward archive the current log, which has a sequence of 100. In this case, you must recover the standby database up to at least log sequence 100, or the database signals an ORA-1152 error message because the standby control file backup was taken after the point in time.

	fileNameConversionSpec
	Specifies how to convert original datafile names to new datafile names in the standby database.
See Also: fileNameConversionSpec

	FROM ACTIVE DATABASE	Specifies that the files for the standby database should be provided directly from the source database and not from a backup of the source database (see Example 2-71).
See Also: "Prerequisites Specific to Active Database Duplication" for command prerequisites

	NOFILENAMECHECK	Prevents RMAN from checking whether datafiles of the source database share the same names as the standby database files that are in use.
The NOFILENAMECHECK option is required when the standby and primary datafiles and online redo logs have identical filenames (see Example 2-74). Thus, if you want the duplicate database filenames to be the same as the source database filenames, and if the databases are in different hosts, then you must specify NOFILENAMECHECK.

See Also: The description of NOFILENAMECHECK in dupOptionList

	SPFILE	Copies the server parameter file from the source database to the operating system-specific default location for this file on the standby database.
RMAN uses the server parameter file to start the auxiliary instance for standby database creation. Any remaining options of the DUPLICATE command are processed after the database instance is started with the server parameter file.

If you execute DUPLICATE with the SPFILE clause, then the auxiliary instance must already be started with a text-based initialization parameter file. In this case, the only required parameter in the temporary initialization parameter file is DB_NAME, which can be set to any arbitrary value. RMAN copies the binary server parameter file, modifies the parameters based on the settings in the SPFILE clause, and then restarts the standby instance with the server parameter file. When you specify SPFILE, RMAN never uses the temporary text-based initialization parameter file to start the instance.

If FROM ACTIVE DATABASE is specified on DUPLICATE, then a server parameter file must be in use by the source database instance. If FROM ACTIVE DATABASE is not specified on DUPLICATE, then RMAN restores a backup of the server parameter file to the standby database.

See Also: Example 2-70 and Example 2-71 for examples of SPFILE usage

	 setParameter
	Sets the specified initialization parameters to the specified values. Refer to setParameter.
	

 PARAMETER_VALUE_CONVERT

 string_pattern

 [setParameter]	Replaces the first string with the second string in all matching initialization parameter values. Note that DB_FILE_NAME_CONVERT and LOG_FILE_NAME_CONVERT are exceptions to this rule and are not affected.
You can use PARAMETER_VALUE_CONVERT to set a collection of initialization parameter values and avoid explicitly setting them all. For example, if the source database uses disk group +ALPHA while the standby database will use +BETA, then you could modify all parameters that refer to these disk groups by specifying SPFILE PARAMETER_VALUE_CONVERT ('+ALHPA','+BETA').

Note: Parameter values are case-sensitive in PARAMETER_VALUE_CONVERT even though the same values may not be case-sensitive when setting them directly in an initialization parameter file or server parameter file.

dupOptionList

This subclause includes options that control aspects of the duplication such as naming the files and determining an end point for the duplication. Refer to the dupOptionList::= diagram for the syntax.

	
Note:

Several options in this clause are identical to options in the dupsbyOptionList. Descriptions of these options are not repeated here.

Specify new filenames or convert source database filenames for the datafiles and online redo logs when the filenames of the duplicate database must be different from the filenames of the source database (as when the destination host and source host are the same). If you do not specify filenames for the online redo logs and datafiles of the duplicate database, then RMAN uses the datafile names from the source database.

	Syntax Element	Description
	DEVICE TYPE deviceSpecifier	Allocates automatic channels for the specified device only (for example, DISK or sbt).
This option is valid only if you have configured automatic channels and have not manually allocated channels. For example, if you CONFIGURE automatic disk and tape channels, and if you run DUPLICATE...DEVICE TYPE DISK, then RMAN allocates only disk channels.

See Also: deviceSpecifier

	fileNameConversionSpec
	Specifies one or more patterns to map source database filenames to duplicate database filenames (see Example 2-72).
DB_FILE_NAME_CONVERT set on the DUPLICATE command overrides the initialization parameter DB_FILE_NAME_CONVERT (if set). For example, if the initialization parameter file setting is DB_FILE_NAME_CONVERT=('disk1','disk2'), but you execute DUPLICATE ... DB_FILE_NAME_CONVERT ('disk1','disk3'), then RMAN does not convert the disk1 substring to disk2. Instead, RMAN converts the disk1 substring to disk3.

If a file in the specification list is not affected by the conversion parameter in DUPLICATE, then you must rename it by other means, such as SET NEWNAME.

Note: If you specify the SPFILE clause, then DUPLICATE ... DB_FILE_NAME_CONVERT overrides any conversion parameter specified in the SPFILE syntax. For example, if you specify DB_FILE_NAME_CONVERT twice in the DUPLICATE command, both in the SPFILE clause and outside of the SPFILE clause, then the setting outside of the SPFILE clause takes precedence.

See Also: fileNameConversionSpec

	FROM ACTIVE DATABASE	Specifies that the files for the duplicate database should be provided directly from the source database and not from a backup of the source database (see Example 2-70). If you do not specify an UNTIL time, then RMAN chooses an end time for the duplication based on when the online datafiles are copied.
See Also: "Prerequisites Specific to Active Database Duplication" for command prerequisites

	LOGFILE	Specifies options for creating online redo logs when creating a duplicate database that is not a standby database (see Example 2-72).
	 INSTANCE 'inst_name'	Creates online redo logs for the specified instance in a Real Applications Cluster (Oracle RAC) database. The instance name is a string of up to 80 characters.
RMAN automatically uses the thread mapped to the specified instance. If no INSTANCE name is specified, then the log files are for the default instance.

This clause is relevant when you use DUPLICATE TARGET DATABASE to duplicate an Oracle RAC database to a single-instance database. Otherwise, you do not need to use INSTANCE. If you use the LOGFILE clause, then use INSTANCE to specify the name of the RAC instance for each thread that was open during the database backup (for backup-based duplication) or during the UNTIL TIME (for active database duplication).

	 logSpec
	Specifies the filenames and groups for the online redo log files.
See Also: logSpec for the valid options

	NOFILENAMECHECK	Prevents RMAN from checking whether the datafiles and online redo logs files of the source database are in use when the source database files share the same names as the duplicate database files (see Example 2-73). You are responsible for determining that the duplicate operation will not overwrite useful data.
This option is necessary when you are creating a duplicate database in a different host that has the same disk configuration, directory structure, and filenames as the host of the source database. For example, assume that you have a small database located in the /dbs directory of host1:

/oracle/dbs/system_prod1.dbf
/oracle/dbs/users_prod1.dbf
/oracle/dbs/rbs_prod1.dbf

Assume that you want to duplicate this database to host2, which has the same file system /oracle/dbs/*, and you want to use the same filenames in the duplicate database as in the source database. In this case, specify the NOFILENAMECHECK option to avoid an error message. Because RMAN is not aware of the different hosts, RMAN cannot determine automatically that it should not check the filenames.

If duplicating a database on the same host as the source database, then make sure that NOFILENAMECHECK is not set. Otherwise, RMAN may signal the following error:

RMAN-10035: exception raised in RPC: ORA-19504: failed to create
 file "/oracle/dbs/tbs_01.f"
ORA-27086: skgfglk: unable to lock file - already in use
SVR4 Error: 11: Resource temporarily unavailable
Additional information: 8
RMAN-10031: ORA-19624 occurred during call to
DBMS_BACKUP_RESTORE.RESTOREBACKUPPIECE

	OPEN RESTRICTED	Enables a restricted session in the duplicate database by issuing the following SQL statement: ALTER SYSTEM ENABLE RESTRICTED SESSION. RMAN issues this statement immediately before the duplicate database is opened.
	PASSWORD FILE	Specifies that RMAN should use the password file on the source database to overwrite the password file currently used by the auxiliary instance (see Example 2-70). This option is only valid when FROM ACTIVE DATABASE is specified; otherwise, RMAN signals an error.
If FOR STANDBY is specified, then RMAN copies the password file by default; if not specified, then RMAN does not copy the password file by default. You can use PASSWORD FILE to request that RMAN overwrite the existing password file with the password file from the source database. If you want the duplicate database to contain all the passwords available on your production database, then use the PASSWORD FILE option.

	PFILE filename	Specifies a text-based initialization parameter file used by the auxiliary instance (see Example 2-72). RMAN automatically shuts down and restarts the auxiliary instance during duplication. If the auxiliary does not use a server parameter file in the default location, then you must specify the text-based initialization parameter file that RMAN should use when starting the auxiliary instance. The initialization parameter file must reside on the same host as the RMAN client used to perform the duplication.
If the auxiliary instance uses a server parameter file in the default location, then you do not need to specify PFILE.

	SKIP READONLY	Excludes datafiles in current read-only tablespaces from the duplicate database (see Example 2-73). By default RMAN duplicates current read-only tablespaces.
If a tablespace is currently read/write, but you use untilClause to duplicate the database to an SCN at which the tablespace was read-only, then RMAN does not include the tablespace in the duplicate database. Tablespaces that were read-only in the past are considered offline tablespaces and so are not included in the duplication.

Note: A record for the skipped read-only tablespace still appears in DBA_TABLESPACES. By using this feature, you can activate the read-only tablespace later. For example, you can store the read-only tablespace data on a writable DVD, then mount the DVD later and view the data.

	SKIP TABLESPACE tbs_name	Excludes the specified tablespace from the duplicate database (see Example 2-72). Note that you cannot exclude the SYSTEM tablespace, SYSAUX tablespace, undo tablespaces, and tablespaces with rollback segments.
If you need to duplicate a database when some backups of the source database do not exist, then SKIP TABLESPACE is required. If you do not specify SKIP TABLESPACE, then RMAN attempts to duplicate the following:

	
All datafiles in online tablespaces, whether or not the datafiles are online.

	
All tablespaces taken offline with an option other than NORMAL. For example, RMAN attempts to duplicate tablespaces taken offline with the IMMEDIATE option. You cannot duplicate OFFLINE NORMAL tablespaces, although you can add these tablespaces manually after duplication.

	
If no valid backups exist of any tablespace or datafile, then the DUPLICATE command fails.

RMAN does not check for completeness. For example, you can duplicate a data tablespace but not the tablespace containing the index for the data, or duplicate a tablespace that contains only one partition of a partitioned table.

	SPFILE	Copies the server parameter file from the source database to the duplicate database. Refer to the description of SPFILE in dupsbyOptionList.
	 setParameter
	Sets the specified initialization parameters to the specified values. Refer to setParameter.
	

 PARAMETER_VALUE_CONVERT

 string_pattern

 [setParameter]	Replaces the first string with the second string in all matching initialization parameter values. Refer to the description of PARAMETER_VALUE_CONVERT in dupsbyOptionList.
	TABLESPACE tablespace_name	Specifies which tablespaces should be included in the specified database. Unlike SKIP TABLESPACE, which specifies which tablespaces should be excluded from the duplicate database, this option specified which tablespaces should be included and then skips the remaining tablespaces.
Note: RMAN automatically includes the SYSTEM, SYSAUX, and undo tablespaces in the duplicate database: these tablespaces cannot be skipped.

	

TO RESTORE POINT

restore_point_name	Specifies a restore point for backup-based duplication, with the SCN at which the restore point was created as the upper, inclusive limit. Because the limit is inclusive, RMAN selects only files that can be used to duplicate a database up to and including the corresponding SCN.
Note: The same restrictions that apply to untilClause also apply to TO RESTORE POINT.

	untilClause
	Sets the end time, SCN, or log sequence number for point-in-time recovery in backup-based duplication (see Example 2-72). The UNTIL clause is not supported in active database duplication.
You can achieve the same result by running SET UNTIL before the DUPLICATE command. If you specify the UNTIL clause for duplication, then the following restrictions apply:

	
RMAN determines whether to use NOREDO based on the current state of the database. If the database was in an archiving mode at the specified UNTIL time or SCN that is different from the current archiving mode, then RMAN does not use NOREDO.

	
If a tablespace was read-only at the time of the duplication, then RMAN does not include it even if SKIP READONLY was not used.

	
The end point for a DUPLICATE command cannot be before the SCN of the most recent ALTER DATABASE OPEN RESETLOGS. Duplication to previous database incarnations is not supported.

	
You cannot recover the duplicate database to the current point in time, that is, the most recent SCN. RMAN recovers the duplicate database up to or before the most recent available archived log, but cannot recover into the online redo logs.

See Also: untilClause

setParameter

This subclause specifies server parameter file values.

	Syntax Element	Description
	SET identifier string	Sets the specified initialization parameters to the specified values (see Example 2-71). You can use SET to adjust for differences in memory, turn off replication options, and set other options for the duplicate database.
This SET functionality is equivalent to pausing the duplication after restoring the server parameter file and issuing ALTER SYSTEM SET statements to change the initialization parameter file.

RMAN processes SET after PARAMETER_VALUE_CONVERT. If PARAMETER_VALUE_CONVERT sets the filename specified by a parameter, and if SET sets the filename specified by the same parameter, then the SET value overrides the PARAMETER_VALUE_CONVERT setting.

Note: If DB_FILE_NAME_CONVERT is specified on the DUPLICATE command, then its filename settings override competing settings specified by SPFILE SET.

	 COMMENT 'string'	Specifies an optional comment for the parameter setting.

logSpec

This subclause specifies the online redo logs when creating a duplicate database that is not a standby database. Refer to the logSpec::= diagram for the syntax diagram.

If you do not specify LOGFILE, then RMAN uses LOG_FILE_NAME_CONVERT if it is set. If neither LOGFILE nor LOG_FILE_NAME_CONVERT is set, then RMAN uses the original redo log filenames of the source database for redo log files of the duplicate database. You must specify the NOFILENAMECHECK option in this case.

	Syntax Element	Description
	'filename' SIZE sizeSpec	Specifies the filename of the online redo log member and the size of the file in kilobytes (K) or megabytes (M). The default is in bytes.
	 REUSE	Allows the database to reuse an existing file. If the file already exists, then the database verifies that its size matches the value of the SIZE parameter. If the file does not exist, then it is created.
	

GROUP integer

('filename', ...)

SIZE sizeSpec	Specifies the group containing the online redo log members, the filename of the online redo log member, and the size of the file in kilobytes (K) or megabytes (M). The default is in bytes.
	 REUSE	Allows the database to reuse an existing log.

Examples

Example 2-70 Duplicating from an Active Database

Assume that you want to create a test database from database prod1 on a new host. The new host has the same directory structure as the source host, so the files in the duplicate database can use the same names as the files in the source database. You want to create the database without using RMAN backups and allow prod1 to remain open during the duplication.

If prod1 uses a server parameter file, then you can create an initialization parameter file on the destination host that contains only the DB_NAME parameter set to an arbitrary value. Before starting the auxiliary instance you should create a password file that has the same SYSDBA password as the source database. Afterward, start the auxiliary instance.

By default, RMAN does not duplicate the password file when creating a duplicate database that is not a standby database. The PASSWORD FILE option specifies that RMAN should copy the password file to the destination host. If you want the duplicate database to contain all the passwords available on your source database, then use the PASSWORD FILE option.

You do not need to configure auxiliary channels because RMAN uses the normal channels configured on the source database to copy the database files. Start the RMAN client, connect to the source and auxiliary database instances, and duplicate the database as follows:

% rman
RMAN> CONNECT TARGET SYS@prod1

target database Password: password
connected to target database: PROD1 (DBID=39525561)

RMAN> CONNECT AUXILIARY SYS@dup1

auxiliary database Password: password
connected to auxiliary database: DUP1 (not mounted)

RMAN> DUPLICATE TARGET DATABASE TO dup1
2> FROM ACTIVE DATABASE
3> PASSWORD FILE
4> SPFILE;

Example 2-71 Copying the Server Parameter File in Active Database Duplication

Assume that you want to create a standby database from database prod1 on a new host. The destination host has a different directory structure from the source host, so the standby database files will be stored in /disk2 rather than /disk1. You want to create the standby database without using RMAN backups and let prod1 remain open during the duplication.

Your first step is to create a minimal initialization parameter file for the standby database and then start the standby instance. This parameter file is minimal because when you use the SPFILE option, RMAN copies the server parameter file to the new host and sets various parameters to the new values provided.

Start the RMAN client, CONNECT to the source database as TARGET, and connect to the auxiliary instance. You do not need to configure auxiliary channels because RMAN uses the normal channels on the source host to copy the database files. You can then enter the following command:

DUPLICATE TARGET DATABASE TO dup1
 FOR STANDBY
 FROM ACTIVE DATABASE
 PASSWORD FILE
 SPFILE
 PARAMETER_VALUE_CONVERT '/disk1', '/disk2'
 SET DB_FILE_NAME_CONVERT '/disk1','/disk2'
 SET LOG_FILE_NAME_CONVERT '/disk1','/disk2'
 SET SGA_MAX_SIZE 200M
 SET SGA_TARGET 125M;

Example 2-72 Setting New Filenames Manually for Duplication

Assume that you want to duplicate the source database on host1 to newdb on host2.

In this scenario, your source database does not use a server parameter file. You create a text-based initialization parameter file on host2 and start the instance.

When executing DUPLICATE on host2, you must use the PFILE parameter to specify the location of the initialization parameter file. Note that you must use the RMAN client on the same host as the initialization parameter file for the duplicate database.

You do not want the tablespaces example and history to be included in the duplicate database, so you specify DUPLICATE ... SKIP TABLESPACE for these tablespaces. Also, you want the duplicate database to be in the state that the production database was in 24 hours ago, so you use DUPLICATE ... UNTIL TIME.

This example assumes that the datafiles of the source database are on host1 in directory /h1/oracle/dbs/trgt. You want to duplicate the datafiles to the directory /h2/oracle/oradata/newdb, so you specify DUPLICATE ... DB_FILE_NAME_CONVERT generate the names for the duplicate datafiles. You use DUPLICATE ... LOGFILE to specify names for the online redo log files in the duplicate database.

Start the RMAN client on host2, CONNECT to the source database as TARGET, and connect to the auxiliary instance. You can then enter the following RUN command:

RUN
{
 ALLOCATE AUXILIARY CHANNEL newdb DEVICE TYPE sbt;
 DUPLICATE TARGET DATABASE TO newdb
 PFILE ?/dbs/initNEWDB.ora
 UNTIL TIME 'SYSDATE-1' # specifies incomplete recovery
 SKIP TABLESPACE example, history # skip desired tablespaces
 DB_FILE_NAME_CONVERT ('/h1/oracle/dbs/trgt/','/h2/oracle/oradata/newdb/')
 LOGFILE
 GROUP 1 ('?/oradata/newdb/redo01_1.f',
 '?/oradata/newdb/redo01_2.f') SIZE 4M,
 GROUP 2 ('?/oradata/newdb/redo02_1.f',
 '?/oradata/newdb/redo02_2.f') SIZE 4M,
 GROUP 3 ('?/oradata/newdb/redo03_1.f',
 '?/oradata/newdb/redo03_2.f') SIZE 4M REUSE;
}

Example 2-73 Using the Source Database Filenames for the Duplicate Database

Assume that you want to use RMAN backups to create a duplicate database for testing. The following conditions apply:

	
You are restoring to a destination host that is different from the source host.

	
RMAN is not connected to a recovery catalog.

	
You have configured automatic channels.

	
The source host and destination host have the same file structure.

	
You want to name the duplicate database files exactly like the source database files.

	
You do not want to duplicate read-only tablespaces.

	
You want to prevent RMAN from checking whether files on the source database are in use if these files have the same names as the duplicate database files.

Start the RMAN client, CONNECT to the source database as TARGET, and connect to the auxiliary instance. You can then enter the following command:

DUPLICATE TARGET DATABASE TO ndbnewh
 LOGFILE
 '?/dbs/log_1.f' SIZE 4M,
 '?/dbs/log_2.f' SIZE 4M
 SKIP READONLY
 NOFILENAMECHECK;

Example 2-74 Creating a Standby Database with the Same Directory Structure

Assume that you want to use RMAN backups to create a standby database on a remote host with the same directory structure as the source host. The source database is called prod1 and will be the primary database in the Data Guard environment.

First, start the RMAN client, CONNECT to the source database prod1 as TARGET, and connect to the auxiliary instance. You can then CONFIGURE the default device type to sbt for a standby database with the DB_UNIQUE_NAME of standby1:

CONFIGURE DEFAULT DEVICE TYPE sbt FOR DB_UNIQUE_NAME standby1;
CONFIGURE DEVICE TYPE sbt PARALLELISM 2 FOR DB_UNIQUE_NAME standby1;

Assume all backups needed to create the standby database are on tape. In the standby database initialization parameter file, you set DB_UNIQUE_NAME to standby1.

The default initialization parameter file location is in use on the standby database. After starting the standby instance NOMOUNT, you start the RMAN client, CONNECT to the source database as TARGET, and connect to the auxiliary instance and recovery catalog. You run the following DUPLICATE command, specifying the NOFILENAMECHECK option because the standby and primary datafiles and online redo log files have the same names:

DUPLICATE TARGET DATABASE FOR STANDBY
 NOFILENAMECHECK;

Example 2-75 Creating a Standby Database in OMF and ASM

Assume that you want to use RMAN backups to create a standby database on a host that uses OMF and ASM. The source database is called prod1 and will be the primary database in the Data Guard environment.

First, start the RMAN client, CONNECT to database prod1 as TARGET, and connect to the recovery catalog. Run the following commands to CONFIGURE the default device type to sbt for a standby database that will have the DB_UNIQUE_NAME of standby1 and the net service name sby1.

CONFIGURE CONNECT IDENTIFIER "sby1" FOR DB_UNIQUE_NAME standby1;
CONFIGURE DEFAULT DEVICE TYPE TO sbt FOR DB_UNIQUE_NAME standby1;
CONFIGURE DEVICE TYPE sbt PARALLELISM 2 FOR DB_UNIQUE_NAME standby1;

Assume all backups needed to create the standby database are stored on tape. You set the following parameters in the initialization parameter file for database standby1:

	
Set DB_UNIQUE_NAME to the value standby1.

	
Se DB_CREATE_FILE_DEST and DB_RECOVERY_FILE_DEST to the desired ASM disk groups on the standby host. For example, set DB_CREATE_FILE_DEST to +DATAFILE and DB_RECOVERY_FILE_DEST to +FLASH_REC_AREA.

Ensure that the standby instance is in NOMOUNT mode. Start the RMAN client, CONNECT to database prod1 as TARGET, connect to the standby1 instance as AUXILIARY, and connect to the recovery catalog. Enter the following command to create the standby database:

DUPLICATE TARGET DATABASE FOR STANDBY TO standby1;

RMAN automatically generates new OMF/ASM datafile names for the restored datafiles. The new database name and file names will be automatically resynchronized with the recovery catalog.

EXIT

Purpose

Use the EXIT command to shut down the Recovery Manager utility. This command is functionally equivalent to the QUIT command.

Prerequisites

Execute only at the RMAN prompt.

Syntax

exit::=

[image: Description of exit.gif follows]

Example

Example 2-78 Exiting RMAN

This example terminates RMAN:

RMAN> EXIT

GRANT

Purpose

Use the GRANT command to assign privileges for a virtual private catalog schema to a database user. By default, a virtual catalog user has no access to the base recovery catalog.

Prerequisites

Execute this command at the RMAN prompt.

A base recovery catalog must have been created with CREATE CATALOG before you can use GRANT to assign privileges for a virtual private catalog.

Usage Notes

The best practice is to create a base recovery catalog that stores metadata for all databases. You can then create an Oracle Database user that will own the virtual private catalog schema. The virtual private catalog user must be granted the RECOVERY_CATALOG_OWNER role.

Connect RMAN to the base recovery catalog and use the GRANT command to assign recovery catalog privileges to the virtual catalog owner. Afterwards, run CREATE VIRTUAL CATALOG to create a virtual catalog schema for this user. You can use REVOKE to revoke catalog privileges.

Relationship Between Users with CATALOG Privileges on the Same Database

As an illustration of GRANT usage, suppose databases prod1 and prod2 are registered in the base recovery catalog. While logged in as SYS to the base recovery catalog, you create two virtual private catalog users: vpc1 and vpc2. You grant both users CATALOG FOR DATABASE access for database prod1, but not prod2.

In this scenario, both vpc1 and vpc2 can access the metadata for backups of prod1 made by the base recovery catalog owner. Both users can also access the metadata for backups of prod1 made by each other. Neither vpc1 nor vpc2 can access backup metadata for database prod2.

Relationship Between GRANT REGISTER and GRANT CATALOG

When you grant REGISTER DATABASE to a user, RMAN implicitly grants recovery CATALOG FOR DATABASE privileges for any database registered by this user. If you REVOKE only the REGISTER DATABASE privilege from a user (for example, virtcat), then it does not implicitly revoke the CATALOG FOR DATABASE privilege for a database registered by virtcat (for example, prod). Because the CATALOG FOR DATABASE privilege includes registration privileges for prod, virtcat can continue to unregister and register prod. To prevent virtcat from performing any operations on prod, including reregistering it, REVOKE ALL PRIVILEGES from virtcat.

Syntax

grant::=

[image: Description of grant.gif follows]

Semantics

	Syntax Element	Description
	

CATALOG FOR DATABASE

[database_name │ integer]

TO userid	Grants recovery catalog access for the specified database to the specified user.
Note: The catalog operations granted on the specified database include registering and unregistering this database.

Specify the database by either database name or DBID. If you specify a name when more than one database with this name is registered in the catalog, then RMAN returns an error. In this case, specify the database by DBID.

To grant access to databases that are already registered in the recovery catalog, you must use the GRANT CATALOG command. You can also grant access for a target database that is not yet registered in the catalog, thereby enabling a virtual private catalog user to register a database. You must grant access by using the DBID of the database that has not yet been registered.

	

REGISTER DATABASE

TO userid	Grants the ability to for the specified user to use REGISTER DATABASE to register databases that are currently unknown to the recovery catalog.
When you grant REGISTER DATABASE to a user, RMAN implicitly grants recovery CATALOG FOR DATABASE privileges for any database registered by the user. The CATALOG FOR DATABASE privileges on the database include registering and unregistering this database.

For example, assume that user virtcat is granted REGISTER DATABASE and registers database prod in the catalog. RMAN implicitly grants recovery CATALOG FOR DATABASE privileges for prod to virtcat.

Examples

Example 2-81 Granting Privileges for a Virtual Private Catalog

Assume that database user rco own the base recovery catalog in database catdb. This base recovery catalog stores the RMAN metadata for a large number of databases in a data center. Your goal is to create virtual private catalogs for two backup operators in the data center.

You start SQL*Plus and connect to the catdb database as SYS. You then use the CREATE USER statement to create the bckop2 and bckop3 users on catdb. You can grant recovery catalog ownership to these users as follows:

SQL> GRANT recovery_catalog_owner TO bckop2, bckop3;
SQL> EXIT

You then start the RMAN client and connect to the recovery catalog database as user rco. You use the RMAN GRANT command to give bckop2 the ability to register any database in her virtual private catalog, but grant bckop3 access to only a subset of the databases in the data center:

RMAN> CONNECT CATALOG rco@catdb

recovery catalog database Password: password
connected to recovery catalog database

RMAN> GRANT REGISTER DATABASE TO bckop2;
RMAN> GRANT CATALOG FOR DATABASE prod TO bckop3;
RMAN> GRANT CATALOG FOR DATABASE prodb TO bckop3;
RMAN> EXIT;

You start a new RMAN session and create the virtual catalog for bckop2 (sample CREATE VIRTUAL CATALOG output included). Note that you must exit and restart RMAN after creating each virtual catalog.

RMAN> CONNECT CATALOG bckop2@catdb

recovery catalog database Password: password
connected to recovery catalog database

RMAN> CREATE VIRTUAL CATALOG;

found eligible base catalog owned by RCO
created virtual catalog against base catalog owned by RCO

RMAN> EXIT;

You start a new RMAN session and create the virtual catalog for bckop3 (sample CREATE VIRTUAL CATALOG output included):

RMAN> CONNECT CATALOG bckop3@catdb

recovery catalog database Password: password
connected to recovery catalog database

RMAN> CREATE VIRTUAL CATALOG;

found eligible base catalog owned by RCO
created virtual catalog against base catalog owned by RCO

RMAN> EXIT;

In the following example, backup operator dba1 uses her virtual private catalog, which is stored in the bckop3 schema on catdb, to store the metadata for a backup of a target database:

RMAN> CONNECT TARGET /
RMAN> CONNECT CATALOG bckop3@catdb

recovery catalog database Password: password
connected to recovery catalog database

RMAN> BACKUP DATABASE PLUS ARCHIVELOG;

HOST

Purpose

Use the HOST command to invoke an operating system command-line sub-shell from within RMAN.

Syntax

host::=

[image: Description of host.gif follows]

Prerequisites

Execute this command at the RMAN prompt or within the braces of a RUN command.

Semantics

	Syntax Element	Description
	HOST	Displays a command prompt and resumes after you exit the subshell (see Example 2-82).
	 'command'	Runs the command in the specified string and then continues (see Example 2-83).

Examples

Example 2-82 Hosting to the Operating System Within a Backup

This example makes an image copy of datafile 3, hosts out to the Linux prompt to check that the copy is in the directory (the Linux session output is indented and displayed in bold), and then resumes the RMAN session:

RMAN> BACKUP DATAFILE 3 FORMAT '/disk2/df3.cpy';

Starting backup at 15-FEB-07
using channel ORA_DISK_1
channel ORA_DISK_1: starting full datafile backup set
channel ORA_DISK_1: specifying datafile(s) in backup set
input datafile file number=00003 name=/disk1/oracle/oradata/prod/undotbs01.d bf
channel ORA_DISK_1: starting piece 1 at 15-FEB-07
channel ORA_DISK_1: finished piece 1 at 15-FEB-07
piece handle=/disk2/df3.cpy tag=TAG20070215T111326 comment=NONE
channel ORA_DISK_1: backup set complete, elapsed time: 00:00:01
Finished backup at 15-FEB-07

RMAN> HOST;

% ls /disk2/df3.copy
/disk2/df3.cpy
% exit
exit
host command complete

RMAN>

Example 2-83 Executing an Operating System Copy Within RMAN

This example makes a backup of datafile system01.dbf and then executes the Linux ls command to display all files in the /disk2 directory:

BACKUP DATAFILE '?/oradata/prod/system01.dbf'
 FORMAT '/disk2/system01.dbf';
HOST 'ls -lt /disk2/*';

IMPORT CATALOG

Purpose

Use the IMPORT CATALOG command to import the metadata from one recovery catalog schema into a different catalog schema. If you created catalog schemas of different versions to store metadata for multiple target databases, then this command enables you to maintain a single catalog schema for all databases.

	
See Also:

CREATE CATALOG

Prerequisites

RMAN must be connected to the destination recovery catalog, which is the catalog into which you want to import catalog data. This recovery catalog must not be a virtual private catalog.

No target database connection is needed in order to merge catalog schemas. Execute this command at the RMAN prompt or within the braces of a RUN command.

The version of the source recovery catalog schema must be equal to the current version of the RMAN executable. If the source schema is a lower version, then upgrade the catalog schema to the current version. If the source schema is a higher version, then retry the operation with a higher version RMAN executable.

Ensure that the same database is not registered in both the source recovery catalog schema and destination catalog schema. If a database is registered in both schemas, then UNREGISTER this database from source recovery catalog and execute the IMPORT command again.

Usage Notes

If the operation fails in the middle of the import, then the import is rolled back. Thus, a partial import is not permitted. The unregister operation is separate from the import. By default, the imported database IDs are unregistered from the source recovery catalog schema after a successful import.

Stored scripts are either global or local. It is possible for global scripts, but not local scripts, to have name conflicts during import because the destination schema already contains the script name. In this case, RMAN renames the global script name to COPY OF script_name. For example, RMAN renames bp_cmd to COPY OF bp_cmd.

If the renamed global script is still not unique, then RMAN renames it to COPY(2) OF script_name. If this script name also exists, then RMAN renames the script to COPY(3) OF script_name. RMAN continues the COPY(n) OF pattern until the script is uniquely named.

Syntax

import::=

[image: IMPORT Command]

(connectStringSpec::=)

Semantics

	Syntax Element	Description
	connectStringSpec
	Specifies the connection string for the source recovery catalog, which is the catalog whose metadata will be imported.
	DBID integer	Specifies the list of DBIDs for the databases whose metadata should be imported from the source catalog schema (see Example 2-85).
When not specified, RMAN merges metadata for all database IDs from the source catalog schema into the destination catalog schema. RMAN issues an error if the database whose metadata is merged is already registered in the recovery catalog schema.

	DB_NAME database_name	Specifies the list of databases whose metadata should be imported from the source catalog schema (see Example 2-85).
When not specified, RMAN merges metadata for all databases from the source catalog schema into the destination catalog schema. RMAN issues an error if the same DBID is registered in both recovery catalogs.

	NO UNREGISTER	Forces RMAN to keep imported database IDs in the source catalog schema. By default, the imported database IDs are unregistered from source recovery catalog schema.

Examples

Example 2-84 Importing Metadata for All Registered Databases

In this example, database inst1 contains a 10.2 catalog schema owned by user rcat, while database catdb contains an 11.1 catalog schema owned by user rco. RMAN imports metadata for all database IDs registered in rcat into the recovery catalog owned by rco. All target databases registered in rcat are unregistered.

RMAN> CONNECT CATALOG rco@catdb

recovery catalog database Password: password
connected to recovery catalog database

RMAN> IMPORT CATALOG rcat@prod;

Starting import catalog at 15-FEB-07
source recovery catalog database Password: password
connected to source recovery catalog database
import validation complete
database unregistered from the source recovery catalog
Finished import catalog at 15-FEB-07

Example 2-85 Importing Metadata for a Subset of Registered Databases

This example is a variation on Example 2-84. Instead of importing the entire recovery catalog, it imports only the metadata for the database with DBID 1618984270.

RMAN> CONNECT CATALOG rco@catdb

recovery catalog database Password: password
connected to recovery catalog database

RMAN> IMPORT CATALOG rcat@inst1 DBID=1618984270;

Starting import catalog at 15-FEB-07
source recovery catalog database Password: password
connected to source recovery catalog database
import validation complete
database unregistered from the source recovery catalog
Finished import catalog at 15-FEB-07

RELEASE CHANNEL

Purpose

Use the RELEASE CHANNEL command to release a normal or maintenance channel while maintaining a connection to a target database instance. A normal channel is allocated with ALLOCATE CHANNEL, whereas a maintenance channel is allocated with ALLOCATE CHANNEL FOR MAINTENANCE.

Prerequisites

To release a normal channel, use the syntax shown in the release::= diagram. Execute this form of RELEASE CHANNEL only within a RUN command and specify the channel name with the same identifier used in the ALLOCATE CHANNEL command.

To release a maintenance channel, use the syntax shown in the releaseForMaint::= diagram. Execute this form of RELEASE CHANNEL only at the RMAN prompt, not within a RUN command.

Usage Notes

Maintenance channels are unaffected by ALLOCATE CHANNEL and RELEASE CHANNEL commands issued within a RUN command.

Using RELEASE CHANNEL to release channels within RUN is optional, because RMAN automatically releases all normal channels when a RUN command terminates.

Syntax

release::=

[image: Description of release.gif follows]

releaseForMaint::=

[image: Description of releaseformaint.gif follows]

Semantics

	Syntax Element	Description
	channel_id	Specifies the case-sensitive channel ID used in the ALLOCATE CHANNEL command (see Example 2-103).

Examples

Example 2-103 Releasing a Channel Allocated in a RUN Command

This example allocates an SBT channel named ch1 with parameters for a set of tapes intended for daily backups, backs up the database, and then releases this channel. The example then allocates an SBT channel named ch1 with parameters for a set of tapes intended for weekly backups, and makes another database backup:

RUN
{
 ALLOCATE CHANNEL ch1 DEVICE TYPE sbt
 PARMS='ENV=(OB_MEDIA_FAMILY=daily_bkp)';
 BACKUP DATABASE;
 RELEASE CHANNEL ch1;
 ALLOCATE CHANNEL ch1 DEVICE TYPE sbt
 PARMS='ENV=(OB_MEDIA_FAMILY=weekly_bkp)';
 BACKUP DATABASE;
}

Note that a RELEASE CHANNEL command is not necessary at the end of the RUN command because RMAN automatically releases channel ch1.

Example 2-104 Releasing a Maintenance Channel

This example shows the transcript of an RMAN session. The example allocates an SBT maintenance channel and then crosschecks and deletes backups on tape. After the SBT channel is released, RMAN uses the default disk channel to back up the database.

RMAN> ALLOCATE CHANNEL FOR MAINTENANCE DEVICE TYPE sbt;

allocated channel: ORA_MAINT_SBT_TAPE_1
channel ORA_MAINT_SBT_TAPE_1: SID=105 device type=SBT_TAPE
channel ORA_MAINT_SBT_TAPE_1: Oracle Secure Backup

RMAN> CROSSCHECK BACKUP;

crosschecked backup piece: found to be 'AVAILABLE'
backup piece handle=1jiah8ln_1_1 RECID=25 STAMP=615031479
crosschecked backup piece: found to be 'AVAILABLE'
backup piece handle=1kiah8pk_1_1 RECID=26 STAMP=615031612
crosschecked backup piece: found to be 'AVAILABLE'
backup piece handle=1niah973_1_1 RECID=28 STAMP=615032036
Crosschecked 3 objects

RMAN> DELETE BACKUP;

List of Backup Pieces
BP Key BS Key Pc# Cp# Status Device Type Piece Name
------- ------- --- --- ----------- ----------- ----------
1333 1331 1 1 AVAILABLE SBT_TAPE 1jiah8ln_1_1
1334 1332 1 1 AVAILABLE SBT_TAPE 1kiah8pk_1_1
1427 1423 1 1 AVAILABLE SBT_TAPE 1niah973_1_1

Do you really want to delete the above objects (enter YES or NO)? YES
deleted backup piece
backup piece handle=1jiah8ln_1_1 RECID=25 STAMP=615031479
deleted backup piece
backup piece handle=1kiah8pk_1_1 RECID=26 STAMP=615031612
deleted backup piece
backup piece handle=1niah973_1_1 RECID=28 STAMP=615032036
Deleted 3 objects

RMAN> RELEASE CHANNEL;

released channel: ORA_MAINT_SBT_TAPE_1

RMAN> BACKUP DATABASE;

Starting backup at 20-FEB-07
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=105 device type=DISK
channel ORA_DISK_1: starting full datafile backup set
channel ORA_DISK_1: specifying datafile(s) in backup set

RESTORE

Purpose

Use the RESTORE command to restore, validate, or preview RMAN backups. Typically, you restore backups when a media failure has damaged a current datafile, control file, or archived redo log or before performing a point-in-time recovery.

Prerequisites

To restore datafiles to their current location, the database must be started, mounted, or open with the tablespaces or datafiles to be restored offline.

If you use RMAN in a Data Guard environment, then RMAN should be connected to a recovery catalog.

If you are performing a trial restore of the production database, then perform either of the following actions before restoring the database in the test environment:

	
If the test database will use a flash recovery area that is physically different from the recovery area used by the production database, then set DB_RECOVERY_FILE_DEST in the test database instance to the new location.

	
If the test database will use a flash recovery area that is physically the same as the recovery area used by the production database, then set DB_UNIQUE_NAME in the test database instance to a different name from the production database.

If you do not perform either of the preceding actions, then RMAN assumes that you are restoring the production database and deletes flashback logs from the flash recovery area because they are considered unusable.

Usage Notes

The RESTORE command restores full backups, level 0 incremental backups, or image copies. You can restore files to their default location or a different location.

By default, RMAN examines read-only datafiles to make sure they exist, are readable, and have the correct checkpoint. If any of the conditions is not met, then RMAN restores the files. If all of the conditions are met, then RMAN does not restore the files.

Backup Selection

By default, RESTORE chooses the most recent backup set or file copy, that is, the file copy or backup set that needs the least media recovery. RMAN only restores backups created on the same type of channels allocated by the RESTORE command. For example, if you made backups of a datafile with DISK and sbt channels, and if only a DISK channel is allocated for the RESTORE command, then RMAN will not restore the sbt backups. If you do not manually allocate channels, then RMAN allocates all automatic channels that it possibly needs, subject to any restrictions imposed by the DEVICE TYPE option.

In an Oracle RAC configuration, RMAN automatically restores backups, control file copies, and datafile copies from channels that can read the files on tape or a local file system. For example, if channel ch1 connected to inst1 can read log 1000 from its tape drive, but channel ch2 connected to inst2 cannot read the same log from its tape drive, then ch1 cannot participate in restoring the log and so ch2 restores the log. Autolocation is automatically enabled when the channels have different PARMS or CONNECT settings.

If datafile names are symbolic links, then the control file stores the filenames of the link files but RMAN performs I/O on the datafiles pointed to by the link files. If a link file is lost and you restore a datafile without re-creating the symbolic link, then RMAN restores the datafile to the location of the link file rather than to the location pointed to by the link file.

	
See Also:

Oracle Database Backup and Recovery User's Guide for details on restore failover

Restore Operations Using Encrypted Backup Sets

As explained in "Encryption of Backup Sets", how RMAN handles encrypted backup sets during restore operations depends on the encryption mode with which the backup was created. You can use CONFIGURE and SET to manage the RMAN backup encryption settings for your database. Note the following restore considerations:

	
For transparent-mode encrypted backups, the required passwords must be available in the database wallet. The same wallet used when creating the backup must be open and available when restoring it. SET DECRYPTION is not required.

	
For password-mode encrypted backups, the required passwords must be provided with SET DECRYPTION.

	
For dual-mode encrypted backups, the required passwords must be available in the database wallet or provided with SET DECRYPTION.

	
Note:

Wallet-based encryption is more secure than password-based encryption because no passwords are involved. You should use password-based encryption only when absolutely necessary because your backups need to be transportable.

Restore Failover

If a backup piece, image copy or proxy copy is inaccessible or if a block is corrupted, then RMAN performs restore failover. The RESTORE command automatically looks for another usable copy of a backup or image copy on the same device and other devices. If no usable copies are available, then RMAN searches for previous backups. RMAN continuously searches for previous usable backups until it has exhausted all possibilities. RMAN automatically uses eligible backups from previous database incarnations if required.

If you are restoring a datafile for which no backups are available, then RMAN will create an empty datafile with the checkpoint change as creation SCN. During recovery, all archived redo logs back to the creation of the datafile will be restored, and all changes during the history of the datafile will be reapplied to re-create its contents.

	
See Also:

"Encryption of Backup Sets" and the extended discussion in Oracle Database Backup and Recovery User's Guide

Location of Restored Datafiles

If you restore datafiles to the default location, then RMAN overwrites files with the same filenames. By default, RMAN will not restore a datafile if the datafile is in the correct place and its header contains the expected data. Note that RMAN does not scan the datafile body for corrupt blocks.

If RMAN detects that the default filename cannot be used (for example, the file may be an Oracle-managed file or on an Automatic Storage Management disk group), then RMAN attempts to create a new file in the same location or disk group.

To restore files to a nondefault location, use SET NEWNAME commands to rename the restored files and then use a SWITCH command to make the restored files current (as illustrated in Example 2-113). If you do not issue SWITCH commands, then RMAN considers the restored files as valid copies for use in future restore operations. Table 2-35 describes the behavior of the RESTORE, SET NEWNAME, and SWITCH commands.

Table 2-35 SET NEWNAME, SWITCH, and RESTORE

	SET NEWNAME Run	SWITCH Run	RESTORE Behavior
	
No

	
N/A

	
RMAN restores the files to their current path names.

	
Yes

	
Yes

	
RMAN restores the files to the path names specified by SET NEWNAME. RMAN replaces the current datafile names in the control file with the names of the restored files. RMAN records the datafiles with the old names as datafile copies.

	
Yes

	
No

	
RMAN restores the files to the path names specified by SET NEWNAME. RMAN does not update the current datafile names in the control file. The restored files are listed in the RMAN repository as datafile copies.

Because tempfiles cannot be backed up and because no redo is ever generated for them, RMAN never restores or recovers tempfiles. RMAN does track the names of tempfiles, but only so that it can automatically re-create them when needed.

RMAN Behavior When Restoring Control Files

The behavior of RMAN when restoring control files depend on a variety of factors, which are summarized in Table 2-36. Required commands and options for restoring autobackups are summarized in Table 2-37.

Table 2-36 RESTORE CONTROLFILE Scenarios

	RMAN Connection	RESTORE CONTROLFILE;	RESTORE CONTROLFILE FROM AUTOBACKUP;	RESTORE CONTROLFILE ... TO 'filename';	RESTORE CONTROLFILE ... FROM 'media_handle' or TAG 'user_tag';
	
No catalog, target database started in NOMOUNT state

	
Error. Must specify FROM AUTOBACKUP.

	
Restores to CONTROL_FILES locations. See Table 2-37 for required commands and options.

	
Must specify FROM AUTOBACKUP. Restores only to filename.

	
First run SET DBID. Restores from specified file (cannot restore from TAG). If TO 'filename' not used, restores to all CONTROL_FILES locations.

	
No catalog, target database mounted or open

	
Error. Must use TO 'filename', where filename is not in CONTROL_FILES list.

	
Error. Must use TO 'filename', where filename is not in CONTROL_FILES list.

	
Restores only to filename, where filename is not in CONTROL_FILES list.

	
RMAN issues error RMAN-06496. Use TO 'filename' instead.

	
Catalog, target database started in NOMOUNT state

	
Restores to CONTROL_FILES locations. Run SET DBID only if DB_NAME not unique in catalog.

	
Only use with recovery catalog for testing.

	
Restores only to filename, where filename is not in CONTROL_FILES list.

	
Restores from specified file. If TO 'filename' not used, restores to all CONTROL_FILES locations.

	
Catalog, target database mounted or open

	
Error. Must use TO 'filename', where filename is not in CONTROL_FILES list.

	
Do not use with recovery catalog.

	
Restores only to filename, where filename is not in CONTROL_FILES list.

	
RMAN issues error RMAN-06496. Use TO 'filename' instead.

If you use RMAN in a Data Guard environment, then RMAN transparently converts primary control files to standby control files and vice versa. RMAN automatically updates filenames for datafiles, online redo logs, standby redo logs, and temp files when you issue RESTORE and RECOVER. The recovery catalog always contains the correct information about the backup filenames for each database, as explained in "RMAN Backups in a Data Guard Environment".

Control File and Server Parameter File Autobackup Options

When restoring an autobackup, the commands and options that you use depend on the autobackup type (control file or server parameter file) and location (inside or outside flash recovery area). The options are summarized in Table 2-37.

Table 2-37 RESTORE ... FROM AUTOBACKUP

	Restore Object	Autobackup Location	Run SET DBID?	Specify RECOVERY AREA on RESTORE?	Specify DB_NAME or DB_UNIQUE_NAME on RESTORE?	Run SET CONTROLFILE AUTOBACKUP FORMAT?
	
SPFILE

	
Recovery area

	
No

	
Yes

	
Yes

	
No

	
SPFILE

	
Outside recovery area

	
Yes

	
No

	
No

	
Only if autobackup is not in default location

	
Control file

	
Recovery area

	
No

	
Only if autobackup is in noncurrent recovery area

	
Only if autobackup is in noncurrent recovery area and uses a noncurrent DB_UNIQUE_NAME

	
No

	
Control file

	
Outside recovery area

	
Yes

	
No

	
No

	
Only if autobackup is not in default location

Syntax

restore::=

[image: Description of restore.gif follows]

(restoreObject::=, restoreSpecOperand::=, deviceSpecifier::=, untilClause::=)

restoreObject::=

[image: Description of restoreobject.gif follows]

(archivelogRecordSpecifier::=, datafileSpec::=)

restoreSpecOperand::=

[image: Description of restorespecoperand.gif follows]

autoBackupOptList::=

[image: Description of autobackupoptlist.gif follows]

Semantics

restore

This clause enables you to select which files you want to restore and specify parameters that control the behavior of the restore operation.

	Syntax Element	Description
	restoreObject
	Specifies the files to be restored.
	restoreSpecOperand
	Specifies options for the restoreObject clause.
	CHANNEL channel_id	Refer to the restoreSpecOperand clause.
	CHECK LOGICAL	Tests data and index blocks that pass physical corruption checks for logical corruption, for example, corruption of a row piece or index entry. If RMAN finds logical corruption, then it logs the block in the alert log and server session trace file.
If the total number of physical and logical corruptions detected in a file is less than its SET MAXCORRUPT setting, then the RMAN command completes and the database populates the V$DATABASE_BLOCK_CORRUPTION view with corrupt block ranges. If MAXCORRUPT is exceeded, then the command terminates without populating the views.

When restoring a backup datafile, RMAN honors the DB_BLOCK_CHECKSUM initialization parameter setting. RMAN clears the checksum if DB_BLOCK_CHECKSUM is set to false. If set to typical, then RMAN verifies the checksum when restoring from the backup and writing to the datafile. If the initialization parameter DB_BLOCK_CHECKSUM=typical, and if MAXCORRUPT is not set, then specifying CHECK LOGICAL detects all types of corruption that are possible to detect.

Note: The MAXCORRUPT setting represents the total number of physical and logical corruptions permitted on a file.

	DEVICE TYPE deviceSpecifier	Allocates automatic channels for the specified device type only. For example, if you configure automatic disk and tape channels, and issue RESTORE ... DEVICE TYPE DISK, then RMAN allocates only disk channels. You must have already configured a device type by using CONFIGURE (except for DISK, which is preconfigured) before specifying the DEVICE TYPE option.
Note: You cannot manually allocate channels within a RUN block and then run RESTORE with the DEVICE TYPE clause.

See Also: deviceSpecifier

	FORCE	Overrides the restartable restore feature and restores all files regardless of whether they need to be restored. If you do not specify FORCE, then RMAN restores a file only if its header information does not match the information in the control file.
	FROM BACKUPSET	Specifies that RMAN should restore from backup sets only. By default RESTORE chooses the file copy or backup set that needs the least media recovery.
If you use the FROM BACKUPSET option, then channels for the appropriate type of storage devices must be allocated for the backup sets that need to be restored. For example, if needed backups are only available on tape, and no sbt channels have been allocated, then RMAN cannot find a candidate backup set to restore, and the RESTORE command fails.

	FROM DATAFILECOPY	Specifies that RMAN should restore datafile copies only. By default RESTORE chooses the file copy or backup set that needs the least media recovery. If you use the FROM DATAFILECOPY option, then the allocated channels must be of DEVICE TYPE DISK.
	FROM TAG tag_name	Refer to the restoreSpecOperand clause.
	PREVIEW	Reports—but does not restore—the backups and archived redo logs that RMAN could use to restore and recover the database to the specified time. RMAN queries the metadata and does not actually read the backup files.
The RESTORE ... PREVIEW output is in the same format as the LIST BACKUP output (see Example 2-118).

Some media managers provide status information to RMAN about which backups are offsite. Offsite backups are stored in a remote location, such as a secure storage facility, and cannot be used without retrieving media.

Offsite backups are marked as AVAILABLE in the RMAN repository even though the media must be retrieved from storage before the backup can be restored. If RMAN attempts to restore a offsite backup, then the restore operation fails. RESTORE ... PREVIEW can identify backups needed for a RESTORE operation that are stored on media that requires retrieval. The output indicates whether backups are stored offsite.

If a needed backup is stored offsite, but the media manager does not support offsite backups, then your options are:

	
Use CHANGE ... UNAVAILABLE to prevent RMAN from selecting the needed offsite backups, and attempt the RESTORE ... PREVIEW operation again to determine whether RMAN selects another offsite backup. When RMAN does not select any offsite backups, you can perform the restore operation.

	
Use RESTORE ... PREVIEW with the RECALL option.

See Also: LIST, specifically the BACKUPS and SUMMARY options, and the RECOVER ... VALIDATE HEADER command

	 RECALL	Instructs the media manager to retrieve the backup media needed for the specified restore operation from offsite storage (see Example 2-119).
Note: This option only works if your media manager supports this functionality. You can use RESTORE ... PREVIEW periodically to monitor whether the needed backups are stored locally again.

	 SUMMARY	Summarizes the backups that RMAN would restore. The output is in the same format as the output of the LIST BACKUPS ... SUMMARY command.
	SKIP READONLY	Does not restore read-only files.
	

TO RESTORE POINT

restore_point_name	Specifies a restore point, with the SCN at which the restore point was created as the upper, inclusive limit. Because the limit is inclusive, RMAN selects only files that can be used to restore files up to and including the SCN corresponding to the restore point.
	untilClause
	Limits the selection to backup sets or file copies that are suitable for a point-in-time recovery to the specified time, SCN, or log sequence number.
In the absence of any other criteria, RMAN selects the most current file copy or backup set to restore. Note that the time specified in the UNTIL clause must fall within the current database incarnation.

See Also: untilClause

	VALIDATE	Specifies that RMAN should decide which backup sets, datafile copies, and archived redo log files need to be restored, and then validate them (see Example 2-120). No files are restored.
For files on both disk and tape, RMAN reads all blocks in the backup piece or image copy. RMAN also validates offsite backups. The validation is identical to a real restore operation except that RMAN does not write output files.

Note: If you use RESTORE with the VALIDATE option, then the database can be open with datafiles online.

See Also: VALIDATE

	 HEADER	Reports and validates—but does not restore—the backups that RMAN could use to restore to the specified time.
When you specify this option, RMAN performs the same functions as when you run RESTORE with the PREVIEW option. However, in addition to listing the files needed for restore and recovery, RMAN validates the backup file headers to determine whether the files on disk or in the media management catalog correspond to the metadata in the RMAN repository.

See Also: The descriptions of the RESTORE PREVIEW option and the RECOVER ... VALIDATE HEADER option

restoreObject

This subclause specifies the objects to be restored: control files, datafiles, archived redo logs, or the server parameter file. Note that RMAN does not support backup and recovery of the change tracking file. RMAN re-creates the change tracking file after database restore and recovery; the next incremental backup after any recovery is able to use the file. Thus, restore and recovery has no user-visible effect on change tracking.

	Syntax Element	Description
	archivelogRecordSpecifier
	Restores the specified range of archived redo logs.
The default restore location is DB_RECOVERY_FILE_DEST (if one of LOG_ARCHIVE_DEST_n is configured to USE_DB_RECOVERY_FILE_DEST either implicitly or explicitly). Otherwise, the default restore filenames are constructed with the LOG_ARCHIVE_FORMAT and LOG_ARCHIVE_DEST_1 initialization parameters of the target database. These parameters combine in a port-specific fashion to derive the name of the restored log. You can override the default location with the SET ARCHIVELOG DESTINATION command.

Because the RECOVER command automatically restores archived redo logs as needed, you should seldom need to restore logs manually. Possible reasons for manually restoring archived redo logs are to speed up recovery, to stage the logs to multiple destinations, or to analyze the log contents after a point-in-time recovery. To restore logs from a previous incarnation without shutting down the database, you can use RESTORE ARCHIVELOG with the FROM SCN or SCN BETWEEN ... AND ... clause.

Note: The database can be started, mounted, or open for this operation.

See Also: archivelogRecordSpecifier

	CONTROLFILE	Restores either a standby or backup control file depending on the target database role.
If the control file is lost, then restore the control file (see Table 2-36) and restore the database after mounting the restored control file. You must always run the RECOVER command after mounting a restored control file and you must open the database with the RESETLOGS option.

Note: If the target database is not mounted, and if RMAN is not connected to a recovery catalog, then you must specify the FROM AUTOBACKUP clause with RESTORE CONTROLFILE. If the autobackup is in a nondefault format, then first use the SET CONTROLFILE AUTOBACKUP FORMAT command to specify the format. If the target database is mounted or open, then you must specify the TO filename clause with RESTORE CONTROLFILE.

When you run RESTORE with a backup control file while connected to a recovery catalog (see Example 2-114), RMAN automatically updates the control file to reflect the structure of the restored database based on the metadata in the catalog.

	 TO 'filename'	Restores the control file to the specified filename.
Table 2-36 explains RMAN behavior when restoring the control file with the TO clause.

	DATABASE	Restores all datafiles in the database except those that are offline. By default, RMAN restores datafiles in read-only tablespaces.
Unlike BACKUP DATABASE, RESTORE DATABASE does not automatically include the control file and the server parameter file—you must issue additional RESTORE CONTROLFILE and RESTORE SPFILE commands to restore these files.

Note: To restore offline datafiles you must use RESTORE DATAFILE or RESTORE TABLESPACE.

	

 SKIP [FOREVER]

 TABLESPACE

 tablespace_name	Excludes the specifies tablespaces from the restore operation. This option is useful to avoid restoring tablespaces containing temporary data.
Specifying the FOREVER keyword does not change the behavior of SKIP. The FOREVER keyword exists solely to maintain compatible syntax between RESTORE SKIP FOREVER and RECOVER SKIP FOREVER.

	DATAFILE datafileSpec	Restores the datafiles specified by filename or absolute datafile number (see Example 2-113).
Note: Do not specify a datafile more than once in a restore job. For example, the following command is invalid because datafile 1 is both specified explicitly and implied by the SYSTEM tablespace:

RESTORE TABLESPACE SYSTEM DATAFILE 1;

See Also: datafileSpec

	PRIMARY CONTROLFILE	Restores a control file for a primary database in a Data Guard environment.
RMAN restores either a normal or standby control file as appropriate, depending on the most recent database role known to the recovery catalog (RC_SITE.DATABASE_ROLE) for the target database. The purpose of this option to override the default setting in cases where the most recent database role is out-of-date.

Assume that you perform a switchover from primary database dgny to standby database dgsf, so that dgsf is the new primary database. You want to restore a control file on dgsf, but the recovery catalog was not resynchronized and still shows dgsf as a standby database. In this case, you can specify PRIMARY CONTROLFILE to override the default RMAN behavior and restore a normal control file.

	SPFILE	Restores a primary or standby server parameter file to the location from which it was backed up. RMAN cannot overwrite a server parameter file currently in use by the target database.
By default RMAN restores the most current server parameter file. Specify the UNTIL or TAG options to restore older versions of the server parameter file.

If the server parameter file is lost, then connect RMAN to the target database (and recovery catalog if used) and run SET DBID. Run STARTUP FORCE NOMOUNT before running RESTORE SPFILE. Then run STARTUP FORCE to restart the database instance with the restored server parameter file.

Note: If the target database is not mounted, and if RMAN is not connected to a recovery catalog, then you must specify the FROM AUTOBACKUP clause with RESTORE SPFILE. If the autobackup is in a nondefault format, then first use the SET CONTROLFILE AUTOBACKUP FORMAT command to specify the format. If the target database is started, mounted, or open, and if the database was started with a server parameter file, then you must specify the TO filename clause with RESTORE SPFILE.

	 TO [PFILE] 'filename'	Restores a primary or standby server parameter file to the location specified by the TO clause. Specify PFILE to save the server parameter file as a text-based initialization parameter file.
	

 FOR DB_UNIQUE_NAME

 db_unique_name	Specifies the DB_UNIQUE_NAME for the target database when the instance is not started. This parameter is only useful in a Data Guard environment.
When FOR DB_UNIQUE_NAME is specified, RMAN can locate the correct RMAN configurations for the host on which the SPFILE is being restored and use them to access backup devices. Otherwise, RMAN cannot choose the correct channel configurations and returns an RMAN-6758 error.

In a Data Guard environment, the primary and standby hosts may have different channel configurations for communicating with their associated SBT backup and disk devices. If both the primary and standby databases are known to the recovery catalog, then the configuration settings for both databases are recorded in the recovery catalog. Because the two databases have the same DB_NAME, the records in the recovery catalog can only be distinguished with the DB_UNIQUE_NAME initialization parameter.

Note: Using RESTORE SPFILE when the DB_NAME is not unique in the recovery catalog produces an RMAN-6758 error.

See Also: Oracle Data Guard Concepts and Administration for a detailed procedure for restoring the server parameter file in a Data Guard environment

	 TO 'filename'	Restores the standby control file to the specified filename. Table 2-36 explains the RMAN behavior when restoring the control file with the TO clause.
	STANDBY CONTROLFILE	Restores a control file for a standby database. RMAN can transparently restore a normal control file backup and make it usable for a standby database.
RMAN restores either a normal or standby control file as appropriate, depending on the most recent database role known to the recovery catalog (RC_SITE.DATABASE_ROLE) for the target database. The purpose of this option to override the default setting in cases where the most recent database role is out-of-date. Assume that you perform a switchover from primary database dgny to standby database dgsf, so that dgsf is the new primary database. Later, you make dgny a standby database for dgsf. You want to restore a control file on dgny, but the recovery catalog was not resynchronized and still shows dgny as a primary database. In this case, you can specify STANDBY CONTROLFILE to override the default RMAN behavior and restore a standby control file.

If you restore the control file of a database whose DB_UNIQUE_NAME is known to the recovery catalog, then RMAN updates all filenames in the control file to filenames known to the recovery catalog. Any filenames explicitly renamed with ALTER DATABASE RENAME FILE take precedence over the filenames in the recovery catalog.

See Also: Table 2-36 for restrictions and usage notes

Note: You must always run the RECOVER command after mounting a restored control file, and must also always open the database with the RESETLOGS option.

	TABLESPACE tablespace_name	Restores all datafiles in the specified tablespaces (see Example 2-112).
RMAN translates the tablespace name internally into a list of datafiles. If you rename a tablespace (for example, from users to customers), then so long as an additional tablespace with the old name (users) has not been created, you can use either the old name (users) or the new name (customers) for the tablespace. RMAN detects that the tablespace has changed its name and updates the recovery catalog on the next resynchronization.

Note: RMAN can back up and restore dictionary-managed temporary tablespaces, but it cannot back up locally managed temporary tablespaces. However, RMAN automatically re-creates locally managed temporary tablespaces after restoring the database.

restoreSpecOperand

This subclause specifies options for the restoreObject clause. These parameters override the parameters with the same name at the RESTORE command level.

	Syntax Element	Description
	CHANNEL channel_id	Specifies the case-sensitive name of a channel to use for this restore operation. If you do not specify a channel, then RESTORE uses any available channel allocated with the correct device type.
	FROM AUTOBACKUP	Restores a control file autobackup (see Example 2-115).
This option is only valid on the RESTORE CONTROLFILE and RESTORE SPFILE commands. When restoring either type of file in NOCATALOG mode, the FROM AUTOBACKUP clause is required.

RMAN begins the search on the current day or on the day specified with the SET UNTIL. On the first day searched, the search begins with sequence number 256 (or the sequence number specified by MAXSEQ, if provided) and counts back to sequence 0. If no autobackup is found in the current or SET UNTIL day, then RMAN checks preceding days, starting with sequence 256 and counting back to 0. The search continues up to MAXDAYS days (default of 7, maximum of 366) prior to the current or SET UNTIL day. If no autobackup is found within MAXDAYS days, then RMAN signals an error and the command stops.

See Also: Table 2-36 for restrictions and usage notes.

	 autoBackupOptList
	Specifies parameters that control the search for a control file autobackup.
	 'media_handle'	Specifies the name of the control file copy or backup piece containing a control file. The media_handle can be any backup piece that contains a backup of a control file: the control file backup does not need to be an autobackup.
See Also: Table 2-36 for restrictions and usage notes.

	FROM TAG tag_name	Overrides the default selection of the most recent backups or file copy available. The tag restricts the automatic selection to backup sets or file copies created with the specified tag. If multiple backup sets or copies have a matching tag, then RMAN selects the most recent one. Tag names are not case sensitive.
See Also: BACKUP for a description of how a tag can be applied to an individual copy of a duplexed backup set, and for a description of the default filename format for tags.

autoBackupOptList

This subclause specifies parameters that control the search for a control file autobackup.

	Syntax Element	Description
	DB_NAME database_name	Provides a DB_NAME to be used in searching for control file autobackups. See Table 2-37 to determine when to set this parameter.
The default value of the DB_UNIQUE_NAME initialization parameter is the DB_NAME initialization parameter setting. If no DB_UNIQUE_NAME initialization parameter is set for a target database, then use either RESTORE ... DB_NAME or RESTORE ... DB_UNIQUE_NAME. If the DB_UNIQUE_NAME initialization parameter setting for a target database is different from DB_NAME, then use RESTORE ... DB_UNIQUE_NAME.

	MAXDAYS integer	Limits the search for a control file autobackup to within the specified number of days in the past.
	MAXSEQ integer	Specifies the highest sequence number for the control file autobackup search.
	RECOVERY AREA 'pathname'	Specifies a path to the flash recovery area to search for autobackups. RECOVERY AREA and DB_RECOVERY_FILE_DEST are synonyms. See Table 2-37 to determine when to set this parameter.
	

DB_RECOVERY_FILE_DEST

'pathname'	RECOVERY AREA and DB_RECOVERY_FILE_DEST are synonyms.
	

 DB_NAME

 database_name	Provides a DB_NAME to be used in searching for control file autobackups. See Table 2-37 to determine when to set this parameter.
The default value of the DB_UNIQUE_NAME initialization parameter is the DB_NAME initialization parameter setting. If no DB_UNIQUE_NAME initialization parameter is set for a target database, then use either RESTORE ... DB_NAME or RESTORE ... DB_UNIQUE_NAME. If the DB_UNIQUE_NAME initialization parameter setting for a target database is different from DB_NAME, then use RESTORE ... DB_UNIQUE_NAME.

	

 DB_UNIQUE_NAME

 db_unique_name	Specifies the DB_UNIQUE_NAME of the database in the specified flash recovery area that is the target of the restore operation.
The default value of the DB_UNIQUE_NAME initialization parameter is the DB_NAME initialization parameter setting. If no DB_UNIQUE_NAME initialization parameter is set for a target database, then use either RESTORE ... DB_NAME or RESTORE ... DB_UNIQUE_NAME. If the DB_UNIQUE_NAME initialization parameter setting for a target database is different from DB_NAME, then use RESTORE ... DB_UNIQUE_NAME.

Examples

Example 2-112 Restoring a Tablespace

This example takes a tablespace offline, restores it, then performs media recovery.

SQL "ALTER TABLESPACE users OFFLINE IMMEDIATE";
RESTORE TABLESPACE users;
RECOVER TABLESPACE users;
SQL "ALTER TABLESPACE users ONLINE";

Example 2-113 Setting a New Name for a Restored Datafile

Assume that /disk1, which contains datafile 9, suffers a media failure. This example specifies a new name for the datafile, restores it, updates the control file to use the new name, recovers it, and then brings it online:

RUN
{
 SQL "ALTER DATABASE DATAFILE 9 OFFLINE";
 SET NEWNAME FOR DATAFILE 9 TO '/disk2/users01.dbf';
 RESTORE DATAFILE 9;
 SWITCH DATAFILE ALL;
 RECOVER DATAFILE 9;
 SQL "ALTER DATABASE DATAFILE 9 ONLINE";
}

Example 2-114 Restoring the Control File When Using a Recovery Catalog

Assume that you want to restore the control file backup with the tag monday_cf_backup. You start the RMAN client, connect to the target and recovery catalog databases, and run the following commands:

RUN
{ # SET DBID is not necessary when RMAN is connected to a recovery catalog
 STARTUP FORCE NOMOUNT;
 RESTORE CONTROLFILE FROM TAG 'monday_cf_backup';
 ALTER DATABASE MOUNT;
 RESTORE DATABASE;
 RECOVER DATABASE;
}
ALTER DATABASE OPEN RESETLOGS; # required after recovery with backup control file

RMAN restores the control file to its default location and replicates it automatically to all CONTROL_FILES locations. RMAN mounts the control file and restores and recovers the database. RMAN automatically updates the control file to reflect the structure of the restored database based on the metadata in the recovery catalog.

Example 2-115 Recovering the Database with a Control File Autobackup

Assume that the control file and some datafiles are lost and need to be restored from tape. Because RMAN does not use a recovery catalog in this scenario, the SET DBID command is necessary to identify the control file to be restored. The example restores the control file from tape, mounts the database, and then restores and recovers the database.

CONNECT TARGET /
STARTUP FORCE NOMOUNT;
SET DBID 36508508; # required when restoring control file in NOCATALOG mode
RUN
{
 ALLOCATE CHANNEL c1 DEVICE TYPE sbt;
 RESTORE CONTROLFILE FROM AUTOBACKUP;
 ALTER DATABASE MOUNT;
 RESTORE DATABASE;
 RECOVER DATABASE;
}
ALTER DATABASE OPEN RESETLOGS;

Example 2-116 Restoring a Control File Autobackup to a Nondefault Location

This example is a variation on Example 2-115. In this scenario, the control file autobackup is located on disk in a nondefault location. RMAN starts searching for backups with a sequence number of 20, and searches backward for 5 months:

CONNECT TARGET /
STARTUP FORCE NOMOUNT
SET DBID 36508508; # required when restoring control file in NOCATALOG mode
RUN
{
 SET CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK
 TO '/disk1/prod_cf_auto_%F';
 RESTORE CONTROLFILE TO '/tmp/cf_auto.dbf' FROM AUTOBACKUP
 MAXSEQ 20 MAXDAYS 150;
 ALTER DATABASE MOUNT;
 RESTORE DATABASE;
 RECOVER DATABASE;
}
ALTER DATABASE OPEN RESETLOGS;

Example 2-117 Restoring a Server Parameter File Autobackup to the Current Location

The following series of commands restores the current server parameter file in NOCATALOG mode and then starts the instance with the restored server parameter file.

CONNECT TARGET /
SET DBID 1620189241; # set dbid to dbid of target database
STARTUP FORCE NOMOUNT; # start instance with dummy SPFILE
RUN
{
 ALLOCATE CHANNEL c1 DEVICE TYPE sbt;
 RESTORE SPFILE FROM AUTOBACKUP; # FROM AUTOBACKUP needed in NOCATALOG mode
 STARTUP FORCE; # startup with restored SPFILE
}

Example 2-118 Previewing Backups

This example shows the results of a RESTORE ... PREVIEW command, which identifies the backup sets RMAN selects for use in restoring archived redo logs.

RMAN> RESTORE ARCHIVELOG ALL DEVICE TYPE sbt PREVIEW;

Starting restore at 01-MAR-07
released channel: ORA_SBT_TAPE_1
allocated channel: ORA_SBT_TAPE_1
channel ORA_SBT_TAPE_1: SID=85 device type=SBT_TAPE
channel ORA_SBT_TAPE_1: Oracle Secure Backup

List of Backup Sets
===================

BS Key Size Device Type Elapsed Time Completion Time
------- ---------- ----------- ------------ ---------------
53 1.25M SBT_TAPE 00:00:18 01-MAR-07
 BP Key: 53 Status: AVAILABLE Compressed: NO Tag: TAG20070301T150155
 Handle: 2aibhej3_1_1 Media: RMAN-DEFAULT-000001

 List of Archived Logs in backup set 53
 Thrd Seq Low SCN Low Time Next SCN Next Time
 ---- ------- ---------- --------- ---------- ---------
 1 8 526376 01-MAR-07 527059 01-MAR-07
 1 9 527059 01-MAR-07 527074 01-MAR-07
 1 10 527074 01-MAR-07 527091 01-MAR-07
 1 11 527091 01-MAR-07 527568 01-MAR-07
 1 12 527568 01-MAR-07 527598 01-MAR-07
validation succeeded for backup piece
Finished restore at 01-MAR-07

Example 2-119 Recalling Offsite Backups from Offsite Storage

When used with a media manager that reports information about offsite storage of backups and supports recalling offsite backups, RESTORE ... PREVIEW RECALL requests that any media needed in the restore of archived logs from backup be recalled from offsite storage.

RMAN> RESTORE ARCHIVELOG ALL PREVIEW RECALL;

Starting restore at 10-JUN-06
using channel ORA_DISK_1
using channel ORA_SBT_TAPE_1

List of Backup Sets
===================

BS Key Size Device Type Elapsed Time Completion Time
------- ---------- ----------- ------------ ---------------
31 12.75M SBT_TAPE 00:00:02 10-JUN-06
 BP Key: 33 Status: AVAILABLE Compressed: NO Tag: TAG20050610T152755
 Handle: 15gmknbs Media: /v1,15gmknbs

 List of Archived Logs in backup set 31
 Thrd Seq Low SCN Low Time Next SCN Next Time
 ---- ------- ---------- --------- ---------- ---------
 1 1 221154 06-JUN-06 222548 06-JUN-06
 1 2 222548 06-JUN-06 222554 06-JUN-06
 1 3 222554 06-JUN-06 222591 06-JUN-06
 1 4 222591 06-JUN-06 246629 07-JUN-06
 1 5 246629 07-JUN-06 262451 10-JUN-06

BS Key Size Device Type Elapsed Time Completion Time
------- ---------- ----------- ------------ ---------------
32 256.00K SBT_TAPE 00:00:01 10-JUN-06
 BP Key: 34 Status: AVAILABLE Compressed: NO Tag: TAG20050610T153105
 Handle: 17gmknhp_1_1 Media: /v1,17gmknhp_1_1

 List of Archived Logs in backup set 32
 Thrd Seq Low SCN Low Time Next SCN Next Time
 ---- ------- ---------- --------- ---------- ---------
 1 6 262451 10-JUN-06 262547 10-JUN-06
 1 7 262547 10-JUN-06 262565 10-JUN-06

Initiated recall for the following list of offsite backup files
==
 Handle: 15gmknbs Media: /v1,15gmknbs
Finished restore at 10-JUN-06

Example 2-120 Validating the Restore of a Backup

The following example illustrates using RESTORE... VALIDATE to confirm that backups required to restore the database are present on disk or tape, readable, and not corrupted:

RMAN> RESTORE DATABASE VALIDATE;

Starting restore at 01-MAR-07
using channel ORA_DISK_1
allocated channel: ORA_SBT_TAPE_1
channel ORA_SBT_TAPE_1: SID=85 device type=SBT_TAPE
channel ORA_SBT_TAPE_1: Oracle Secure Backup

channel ORA_DISK_1: starting validation of datafile backup set
channel ORA_DISK_1: reading from backup piece /disk2/PROD/backupset/2007_03_01/o1_mf_nnndf_TAG20070301T161038_2ygtvzg0_.bkp
channel ORA_DISK_1: piece handle=/disk2/PROD/backupset/2007_03_01/o1_mf_nnndf_TAG20070301T161038_2ygtvzg0_.bkp tag=TAG20070301T161038
channel ORA_DISK_1: restored backup piece 1
channel ORA_DISK_1: validation complete, elapsed time: 00:00:16
Finished restore at 01-MAR-07

RESYNC CATALOG

Purpose

Use the RESYNC CATALOG command to perform a full resynchronization of metadata in a recovery catalog schema with metadata in a target database control file. You can also use the FROM CONTROLFILECOPY clause to resynchronize the current control file with the RMAN metadata in a control file copy.

Typically, you run RESYNC CATALOG in the following situations:

	
The recovery catalog was unavailable when you executed RMAN commands that automatically perform a resynchronization.

	
The target database is running in ARCHIVELOG mode, because the recovery catalog is not updated automatically when an online redo log switch occurs or when a redo log is archived.

	
You made changes to the physical structure of the target database such as adding or dropping a tablespace. As with log archiving, the recovery catalog is not updated automatically when the physical schema changes.

	
RMAN is connected as TARGET to a standby database. You want to update the recovery catalog with metadata about RMAN operations performed on this database.

	
RMAN is connected as TARGET to a standby database. You want to update the recovery catalog with metadata about a physical change on the primary database (see Example 2-123).

Prerequisites

RMAN must be connected as TARGET to a mounted or open database and connected as CATALOG to a recovery catalog database.

Usage Notes

Resynchronizations are full or partial. If full, and if the target database has mounted the current control file (but not a newly created control file or a control file that is less current than a control file that was used previously), then RMAN updates all changed records for the physical schema: datafiles, tablespaces, redo threads, and online redo logs. If the database is open, then RMAN also obtains data about rollback segments. If the resynchronization is partial, then RMAN does not resynchronize metadata about the physical schema or rollback segments.

If the target control file is mounted and the catalog database is available at command execution, then RMAN automatically resynchronizes the recovery catalog as needed when you use RMAN commands. RMAN performs a full resynchronization after structural changes to database (adding or dropping database files, creating new incarnation, and so on) or after changes to the RMAN persistent configuration.

Starting with Oracle Database 11g, a single recovery catalog schema can keep track of database filenames for all databases in a Data Guard environment. This catalog schema also keeps track of where the online redo logs, standby redo logs, tempfiles, archived redo logs, backup sets, and image copies are created for all databases. If RMAN is connected as TARGET to a standby database, then RMAN implicitly executes a full resynchronization if the standby control file contains information about a physical schema change on the primary database.

Syntax

resync::=

[image: Description of resync.gif follows]

Semantics

	Syntax Element	Description
	RESYNC CATALOG	Updates the recovery catalog with RMAN metadata in the current control file of the target database (default).
RMAN creates a snapshot control file in order to obtain a read-consistent view of the control file, then updates the recovery catalog with any new information from the snapshot. The RESYNC CATALOG command updates the following classes or records:

	
Log history records, which are created when a log switch occurs. Note that log history records describe an online log switch, not a log archival.

	
Archived redo log records, which are associated with archived logs created by archiving an online redo log, copying an existing archived log, or restoring backups of archived logs.

	
Backup records, which are records of backup sets, backup pieces, proxy copies, and image copies.

	
Physical schema records, which are associated with datafiles and tablespaces. If the target database is open, then rollback segment information is also updated.

	

 FROM CONTROLFILECOPY

 'filename'	Updates the current control file and recovery catalog with RMAN metadata from a control file copy (see Example 2-122). Use filename to specify the name of the control file copy to use for resynchronization.
The primary use for FROM CONTROLFILECOPY occurs when you re-create the control file, which causes you to lose RMAN records stored in the control file. You can then resynchronize the newly created control file with an old copy. Physical schema information is not updated when you use this option.

Note: The control file copy can either be in the current database incarnation, or created in a prior incarnation (that is, prior to the most recent OPEN RESETLOGS).

	

 FROM DB_UNIQUE_NAME

 {ALL │

 db_unique_name}	Resynchronizes the recovery catalog with control file metadata in the specified database or databases (see Example 2-124).
You can specify a single database with db_unique_name or use ALL for all databases in the recovery catalog that share the DBID of the target database. If you specify ALL, then RMAN resynchronizes all databases in the Data Guard environment that are known to the recovery catalog.

Note: You must have previously used CONFIGURE DB_UNIQUE_NAME ... CONNECT IDENTIFIER to specify a net service name to be used for an Oracle Net connection to the database specified in FROM DB_UNIQUE_NAME.

When you run RESYNC FROM DB_UNIQUE_NAME for a specified database, RMAN performs both a normal resynchronization and a reverse resynchronization. In a normal resynchronization, RMAN updates the recovery catalog with metadata from the control file. In a reverse resynchronization, RMAN updates the persistent configurations in the control file if they do not match the information in the recovery catalog for the specified database.

For a sample use case, suppose that you recently connected RMAN as TARGET to the primary database and ran CONFIGURE to create an RMAN configuration for standby database standby_new. However, you have not yet connected RMAN as TARGET to standby_new. In this case, you can run RESYNC CATALOG FROM DB_UNIQUE_NAME standby_new. When you later connect RMAN to standby_new as TARGET, RMAN pushes the configuration from the recovery catalog to the mounted control file of standby_new.

Examples

Example 2-121 Resynchronizing the Recovery Catalog in ARCHIVELOG Mode

This example performs a full resynchronization of the target database after archiving all unarchived redo logs.

RMAN> CONNECT TARGET /
RMAN> CONNECT CATALOG rman@catdb

recovery catalog database Password: password
connected to recovery catalog database

RMAN> SQL "ALTER SYSTEM ARCHIVE LOG CURRENT";
RMAN> RESYNC CATALOG;

Example 2-122 Resynchronizing the Recovery Catalog from a Control File Copy

Assume that you start the RMAN client and connect to a target database and recovery catalog. The following commands shut down and mount the target database, update the RMAN repository in the current control file with metadata from a backup control file, and then open the database.

STARTUP FORCE MOUNT
RESYNC CATALOG FROM CONTROLFILECOPY '/disk1/cfile.dbf';
ALTER DATABASE OPEN;

Example 2-123 Resynchronizing the Recovery Catalog After a Structural Change

Suppose that you have a Data Guard environment containing primary database prod and standby database standby3. You start SQL*Plus, connect to database prod, and add a datafile to tablespace users as follows:

SQL> ALTER TABLESPACE users ADD DATAFILE ''?/oradata/prod/users03.dbf''
 2 SIZE 1M AUTOEXTEND ON
 3 NEXT 10K MAXSIZE 10M";

Your goal is update the recovery catalog with metadata about this change. After the change has propagated to standby3, you start the RMAN client, connect to standby3 as TARGET, and connect to the recovery catalog. You then use the RESYNC command to resynchronize the catalog with the control file of the standby database:

RMAN> RESYNC CATALOG;

The recovery catalog is updated with metadata about the datafile added to the users tablespace of database prod.

Example 2-124 Resynchronizing the Recovery Catalog with a Standby Database

Suppose that primary database prod and standby database dgprod3 exist in a Data Guard environment. Your goal is to create an RMAN configuration for dgprod3.

You connect RMAN to database prod as TARGET and then connect to the recovery catalog. You use CONFIGURE to update the persistent RMAN configuration for dgprod3 in the recovery catalog as follows:

CONFIGURE DEFAULT DEVICE TYPE TO sbt FOR DB_UNIQUE_NAME dgprod3;
CONFIGURE DB_UNIQUE_NAME dgprod3 CONNECT IDENTIFIER 'inst3';

You have not yet performed any backups or other RMAN operations on dgprod3, so the control file of dgprod3 and the recovery catalog metadata for dgprod3 are not synchronized. In the same RMAN session, you synchronize the dgprod3 control file with the recovery catalog as follows:

RESYNC CATALOG FROM DB_UNIQUE_NAME dgprod3;

RMAN updates the default device type to SBT at dgprod3 and also updates the recovery catalog with the names from the dgprod3 control file.

RMAN

Purpose

Use the RMAN command to start RMAN from the operating system command line.

RMAN connections to a database are specified and authenticated in the same way as SQL*Plus connections to a database. The only difference is that RMAN connections to a target or auxiliary database require the SYSDBA privilege. The AS SYSDBA keywords are implied and cannot be explicitly specified. See Oracle Database Administrator's Guide to learn about database connection options when using SQL*Plus.

	
Caution:

Good security practice requires that passwords should not be entered in plain text on the command line. You should enter passwords in RMAN only when requested by an RMAN prompt. See Oracle Database Security Guide to learn about password protection.

	
See Also:

Oracle Database Backup and Recovery User's Guide to learn how to start RMAN from the command line

Prerequisites

You must issue the RMAN command and any options at the operating system command line rather than at the RMAN prompt.

Usage Notes

The command name that you enter at the operating system prompt is operating system-dependent. For example, enter rman in lowercase on Linux and UNIX systems.

If you start RMAN without specifying either CATALOG or NOCATALOG on the operating system command line, then the RMAN session is effectively in NOCATALOG mode unless you execute a CONNECT CATALOG command (see Example 2-126). If you maintain a recovery catalog, then the best practice is to connect RMAN to the recovery catalog before performing RMAN operations.

Syntax

cmdLine::=

[image: Description of cmdline.gif follows]

Semantics

cmdLine

	Syntax Element	Description
	APPEND	Causes new output to be appended to the end of the message log file. If you do not specify this parameter, and if a file with the same name as the message log file already exists, then RMAN overwrites it.
	CHECKSYNTAX	Causes RMAN to start in a mode in which commands entered are checked for syntax errors, but no other processing is performed (see Example 2-129). If used with a CMDFILE or @ argument, then the RMAN client starts, checks all commands in the file, then exits. If used without specifying a command file, then RMAN prompts the user for input and parses each command until the user exits the RMAN client.
RMAN reports an RMAN-0558 error for each command that is not syntactically correct.

	AUXILIARY connectStringSpec	Specifies a connect string to an auxiliary database, for example, AUXILIARY SYS@dupdb.
See Also: connectStringSpec

	CATALOG connectStringSpec	Specifies a connect string to the database containing the recovery catalog, for example, CATALOG catowner@inst2.
See Also: connectStringSpec

	CMDFILE filename	Parses and compiles all RMAN commands in a file and then sequentially executes each command in the file. RMAN exits if it encounters a syntax error during the parse phase or if it encounters a run-time error during the execution phase. If no errors are found, then RMAN exits after the job completes.
If the first character of the filename is alphabetic, then you can omit the quotes around the filename. The contents of the command file should be identical to commands entered at the RMAN prompt.

Note: If you run a command file at the RMAN prompt rather than as an option on the operating system command line, then RMAN does not run the file as a single job. RMAN reads each line sequentially and executes it, only exiting when it reaches the last line of the script.

	@filename	Equivalent to CMDFILE.
	

 {string_or_identifier

 │ integer}	Equivalent to options specified after USING syntax.
	LOG filename	Specifies the file where RMAN records its output, that is, the commands that were processed and their results. RMAN displays command input at the prompt but does not display command output, which is written to the log file. By default RMAN writes its message log file to standard output.
RMAN output is also stored in the V$RMAN_OUTPUT view, which is a memory-only view for jobs in progress, and in V$RMAN_STATUS, which is a control file view for completed jobs and jobs in progress.

The LOG parameter does not cause RMAN to terminate if the specified file cannot be opened. Instead, RMAN writes to standard output.

Note: The easiest way to send RMAN output both to a log file and to standard output is to use the Linux tee command or its equivalent. For example:

% rman │ tee rman.log

	MSGNO	Causes RMAN to print message numbers, that is, RMAN-xxxx, for the output of all commands. By default, RMAN does not print the RMAN-xxxx prefix.
	NOCATALOG	Indicates that you are using RMAN without a recovery catalog.
	SEND 'command'	Sends a vendor-specific command string to all allocated channels.
See Also: Your media management documentation to determine whether this feature is supported, and SEND

	PIPE pipe_name	Invokes the RMAN pipe interface. RMAN uses two public pipes: one for receiving commands and the other for sending output. The names of the pipes are derived from the value of the PIPE parameter. For example, you can invoke the RMAN pipe interface with the following options: PIPE rpi TARGET /.
RMAN opens the following pipes in the target database:

	
ORA$RMAN_RPI_IN, which RMAN uses to receive user commands

	
ORA$RMAN_RPI_OUT, which RMAN uses to send all output

All messages on both the input and output pipes are of type VARCHAR2.

See Also: Oracle Database Backup and Recovery User's Guide to learn how to pass commands to RMAN through a pipe

	SCRIPT script_name	Specifies the name of a stored script.
After connecting to a target database and recovery catalog (which must be specified with the TARGET and CATALOG options), RMAN runs the named stored script from the recovery catalog against the target database. If both a global script and a local stored script exist on the target database with the name script_name, then RMAN runs the local script.

The single quotes around the stored script name are required when the script name either begins with a number or is an RMAN reserved word (see "RMAN Reserved Words"). You should avoid creating script names that begin with a number or that match RMAN reserved words.

See Also: CREATE SCRIPT for more details about stored scripts

	TARGET connectStringSpec	Specifies a connect string to the target database, for example, TARGET /.
See Also: connectStringSpec

	TIMEOUT integer	Causes RMAN to exit automatically if it does not receive input from an input pipe within integer seconds. The PIPE parameter must be specified when using TIMEOUT.
See Also: Oracle Database Backup and Recovery User's Guide to learn how to pass commands to RMAN through a pipe

	USING {string_or_identifier │ integer}	Specifies one or more values for use in substitution variables in a command file. As in SQL*Plus, &1 indicates where to place the first value, &2 indicate where to place the second value, and so on. Example 2-128 illustrates how to pass values specified in a USING clause to an RMAN command file.
The substitution variable syntax is &integer followed by an optional dot, for example, &1.3. The optional dot is part of the variable and replaced with the value, thus enabling the substitution text to be immediately followed by another integer. For example, if you pass the value mybackup to a command file that contains the substitution variable &1.3, then the result of the substitution is mybackup3.

See Also: EXECUTE SCRIPT to learn how to specify the USING clause when executing a stored script

Examples

Example 2-126 Connecting RMAN to a Target Database in Default NOCATALOG Mode

In this example, you start the RMAN client without specifying database connection options at the operating system prompt. At the RMAN prompt, you run the CONNECT command to connect to a target database. Because CONNECT CATALOG was not run at the RMAN prompt, RMAN connects in default NOCATALOG mode when the first command requiring a repository connection is run, which in this case is the BACKUP DATABASE command.

% rman
RMAN> CONNECT TARGET /
RMAN> BACKUP DATABASE;

Example 2-127 Connecting RMAN to an Auxiliary Database Instance

This example connects to target database prod and recovery catalog database catdb with net service names, and connects to an auxiliary database instance with operating system authentication.

% rman TARGET SYS@prod

Recovery Manager: Release 11.1.0.6.0 - Production

Copyright (c) 1982, 2007, Oracle. All rights reserved.

target database Password: password
connected to target database: PROD (DBID=39525561)

RMAN> CONNECT CATALOG rman@catdb

recovery catalog database Password: password
connected to recovery catalog database

RMAN> CONNECT AUXILIARY /

Example 2-128 Specifying Substitution Variables

Suppose that you want to create a Linux shell script that backs up the database. You want to use shell variables so that you can pass arguments to the RMAN backup script at run time. Substitution variables solve this problem. First, you create a command file named whole_db.cmd with the following contents:

cat > /tmp/whole_db.cmd <<EOF
name: whole_db.cmd
CONNECT TARGET /
BACKUP TAG &1 COPIES &2 DATABASE FORMAT '/disk2/db_%U';
EXIT;
EOF

Next, you write the following Linux shell script, which sets csh shell variables tagname and copies. The shell script starts RMAN, connects to target database prod1, and runs whole_db.cmd. The USING clause passes the values in the variables tagname and copies to the RMAN command file at execution time.

#!/bin/csh
name: runbackup.sh
usage: use the tag name and number of copies as arguments
set tagname = $argv[1]
set copies = $argv[2]
rman @'/tmp/whole_db.cmd' USING $tagname $copies LOG /tmp/runbackup.out
note that the preceding line is equivalent to:
rman @'/tmp/whole_db.cmd' $tagname $copies LOG /tmp/runbackup.out

Finally, you execute the shell script runbackup.sh from a Linux shell as follows to create two backups of the database with the tag Q106:

% runbackup.sh Q106 2

Example 2-129 Checking the Syntax of a Command File

Suppose that you create command file backup_db.cmd as follows:

cat > /tmp/backup_db.cmd <<EOF
CONNECT TARGET /
BACKUP DATABASE;
EXIT;
EOF

The following example checks the syntax of the contents of command file backup_db.cmd (sample output included):

% rman CHECKSYNTAX @'/tmp/backup_db.cmd'

Recovery Manager: Release 11.1.0.6.0 - Production on Wed Jul 11 17:51:30 2007

Copyright (c) 1982, 2007, Oracle. All rights reserved.

RMAN> CONNECT TARGET *
2> BACKUP DATABASE;
3> EXIT;
The cmdfile has no syntax errors

Recovery Manager complete.

Example 2-130 Running a Stored Script and Appending Output to a Message Log

This example connects to a target database using operating system authentication and then runs stored script wdbb. RMAN writes output to message log /tmp/wdbb.log.

% rman TARGET / SCRIPT wdbb LOG /tmp/wdbb.log

Example 2-131 Invoking the RMAN Pipe Interface

This example invokes the RMAN pipe newpipe with a 90 second timeout option.

% rman PIPE newpipe TARGET / TIMEOUT 90

SPOOL

Purpose

Use the SPOOL command to direct RMAN output to a log file.

	
See Also:

RMAN for a description of LOG files

Prerequisites

Execute the SPOOL command at the RMAN prompt.

Syntax

spool::=

[image: Description of spool.gif follows]

Semantics

	Syntax Element	Description
	OFF	Turns off spooling.
	TO filename	Specifies the name of the log file to which RMAN directs its output. RMAN creates the file if it does not exist, or overwrites the file if it does exist. If the specified file cannot be opened for writing, then RMAN turns SPOOL to OFF and continues execution.
	 APPEND	Appends the RMAN output to the end of the existing log.

Example

Example 2-142 Spooling RMAN Output to a File

This example directs RMAN output to standard output for configuration of the default device type, spools output of the SHOW command to log file current_config.log, and then spools output to db_backup.log for the whole database backup:

CONFIGURE DEFAULT DEVICE TYPE TO sbt;
SPOOL LOG TO '/tmp/current_config.log';
SHOW ALL;
SPOOL LOG OFF;
SPOOL LOG TO '/tmp/db_backup.log';
BACKUP DATABASE;
SPOOL LOG OFF;

STARTUP

Purpose

Use the STARTUP command to start the target database from within the RMAN environment. This command is equivalent to using the SQL*Plus STARTUP command.

Additionally, the RMAN STARTUP command can start an instance in NOMOUNT mode even if no server parameter file or initialization parameter file exists. This feature is useful when you need to restore a lost server parameter file.

	
See Also:

Oracle Database Administrator's Guide to learn how to start up and shut down a database, and SQL*Plus User's Guide and Reference for SQL*Plus STARTUP syntax

Prerequisites

RMAN must be connected to a target database. You can only use this command to start the target database.

Usage Notes

The RMAN STARTUP command can start an instance in NOMOUNT mode even if no server parameter file or initialization parameter file exists. This feature is useful when you need to restore a lost server parameter file (see Example 2-146).

Syntax

startup::=

[image: Description of startup.gif follows]

Semantics

	Syntax Element	Description
	STARTUP	If you specify only STARTUP with no other options, then the instance starts the instance with the default server parameter file, mounts the control file, and opens the database.
	 DBA	Restricts access to users with the RESTRICTED SESSION privilege.
	 FORCE	If the database is open, then FORCE shuts down the database with a SHUTDOWN ABORT statement before re-opening it. If the database is closed, then FORCE opens the database.
	 MOUNT	Starts the instance, then mounts the database without opening it
	 NOMOUNT	Starts the instance without mounting the database. If no parameter file exists, then RMAN starts the instance with a temporary parameter file. You can then run RESTORE SPFILE to restore a backup server parameter file.
	 PFILE filename	Specifies the filename of the text-based initialization parameter file for the target database. If PFILE is not specified, then the default initialization parameter filename is used.

Examples

Example 2-145 Mounting the Database While Specifying the Parameter File

This example forces a SHUTDOWN ABORT and then mounts the database with restricted access, specifying a nondefault initialization parameter file location:

CONNECT TARGET /
STARTUP FORCE MOUNT DBA PFILE=/tmp/initPROD.ora;

Example 2-146 Starting an Instance Without a Parameter File

Assume that the server parameter file was accidentally deleted from the file system. The following example starts an instance without using a parameter file, then runs RESTORE SPFILE FROM AUTOBACKUP. In this example, the autobackup location is the flash recovery area, so SET DBID is not necessary.

CONNECT TARGET /
STARTUP FORCE NOMOUNT; # RMAN starts instance with dummy parameter file
RESTORE SPFILE TO '?/dbs/spfileprod.ora'
 FROM AUTOBACKUP
 RECOVERY AREA '/disk2' DB_NAME='prod';
STARTUP FORCE; # restart instance with restored server parameter file

SWITCH

Purpose

Use the SWITCH command to perform either of the following operations:

	
Update the filenames for a database, tablespace, or datafile to the latest image copies available for the specified files

	
Update the filenames for datafiles and tempfiles for which you have issued a SET NEWNAME command

A SWITCH is equivalent to the SQL statement ALTER DATABASE RENAME FILE: the names of the files in the RMAN repository are updated, but the database does not rename the files at the operating system level.

Prerequisites

RMAN must be connected to a target database. When switching tablespaces, datafiles, or tempfiles, the files must be offline. When switching the whole database, the database must not be open.

Usage Notes

The SWITCH command deletes the RMAN repository records for the datafile copy from the recovery catalog and updates the control file records to status DELETED.

If RMAN is connected to a recovery catalog, and if the database is using a control file restored from backup, then SWITCH updates the control file with records of any datafiles known to the recovery catalog but missing from the control file.

Execute SWITCH ... TO COPY only at the RMAN prompt. Use SWITCH without TO COPY only within a RUN block.

Syntax

switch::=

[image: Description of switch.gif follows]

(datafileSpec::=)

switchFile::=

[image: Description of switchfile.gif follows]

(datafileSpec::=, tempfileSpec::=)

Semantics

switch

This subclause switches filenames for a database, tablespace, or datafile to the latest image copies available for the specified files. By executing this command, you avoid restoring datafiles from backups. Execute SWITCH ... TO COPY only at the RMAN prompt.

	Syntax Element	Description
	DATABASE	Renames the datafiles and control files to use the filenames of image copies of these files. RMAN switches to the latest image copy of each database file.
After a database switch, RMAN considers the previous database files as datafile copies.

	DATAFILE datafileSpec	Switches the specified datafiles to the latest image copies.
After the switch, the control file no longer considers the specified datafile as current.

	TABLESPACE tablespace_name	Switches all datafiles within the specified tablespace, as with SWITCH DATAFILE ... TO COPY (see Example 2-147).
	 TO COPY	Switches the specified active database files to image copies.

switchFile

This subclause updates the names for datafiles and tempfiles for which you have issued a SET NEWNAME command. Use this clause only within a RUN block.

	Syntax Element	Description
	DATAFILE ALL	Specifies that all datafiles for which a SET NEWNAME FOR DATAFILE command has been issued in this job are switched to their new name (see Example 2-148).
	DATAFILE datafileSpec	Specifies the datafile that are renaming. After the switch, the control file no longer considers the specified file as current. If you do not specify a TO option, then RMAN uses the filename specified on a prior SET NEWNAME command in the RUN block for this file as the switch target.
	

 TO DATAFILECOPY

 {'filename' │

 TAG tag_name}	Specifies the input copy file for the switch, that is, the datafile copy that you intend to rename (see Example 2-150).
	TEMPFILE ALL	Specifies that all tempfiles for which a SET NEWNAME FOR TEMPFILE command has been issued in this job are switched to their new name.
	TEMPFILE tempfileSpec	Specifies the tempfile that you are renaming. If you do not specify a TO option, then RMAN uses the filename specified on a prior SET NEWNAME command in the RUN block for this file as the switch target. The target database must be mounted but not open.
	 TO 'filename'	Renames the tempfile to the specified name (see Example 2-149). The target database must be mounted but not open.

Examples

Example 2-147 Switching to Image Copies to Avoid Restoring from Backup

Assume that a disk fails, rendering all datafiles in the users tablespace inaccessible. Image copies of all datafiles in this tablespace exist in the flash recovery area. After starting RMAN and connecting to the database as TARGET, you can run SWITCH to point to the control file to the new datafiles and then run RECOVER as follows:

SQL "ALTER TABLESPACE users OFFLINE IMMEDIATE";
SWITCH TABLESPACE users TO COPY;
RECOVER TABLESPACE users;
SQL "ALTER TABLESPACE users ONLINE";

Example 2-148 Switching Datafile Filenames After a Restore to a New Location

Assume that a disk fails, forcing you to restore a datafile to a new disk location. After starting RMAN and connecting to the database as TARGET, you can use the SET NEWNAME command to rename the datafile, then RESTORE to restore the missing datafile. You run SWITCH to point to the control file to the new datafile and then RECOVER. This example allocates both disk and tape channels.

RUN
{
 ALLOCATE CHANNEL dev1 DEVICE TYPE DISK;
 ALLOCATE CHANNEL dev2 DEVICE TYPE sbt;
 SQL "ALTER TABLESPACE users OFFLINE IMMEDIATE";
 SET NEWNAME FOR DATAFILE '/disk1/oradata/prod/users01.dbf'
 TO '/disk2/users01.dbf';
 RESTORE TABLESPACE users;
 SWITCH DATAFILE ALL;
 RECOVER TABLESPACE users;
 SQL "ALTER TABLESPACE users ONLINE";
}

Example 2-149 Renaming Tempfiles Using SET NEWNAME and SWITCH TEMPFILE ALL

This example demonstrates using SET NEWNAME to specify new names for several tempfiles, and SWITCH TEMPFILE ALL to rename the tempfiles to the specified names. The database must be closed at the beginning of this procedure. The tempfiles are re-created at the new locations when the database is opened.

CONNECT TARGET /
STARTUP FORCE MOUNT
RUN
{
 SET NEWNAME FOR TEMPFILE 1 TO '/disk2/temp01.dbf';
 SET NEWNAME FOR TEMPFILE 2 TO '/disk2/temp02.dbf';
 SET NEWNAME FOR TEMPFILE 3 TO '/disk2/temp03.dbf';
 SWITCH TEMPFILE ALL;
 RESTORE DATABASE;
 RECOVER DATABASE;
 ALTER DATABASE OPEN;
}

Example 2-150 Switching to a Datafile Copy

The following command switches the datafile in the tools tablespace to the datafile copy named /disk2/tools.copy:

RUN
{
 SQL "ALTER TABLESPACE tools OFFLINE IMMEDIATE";
 SWITCH DATAFILE '/disk1/oradata/prod/tools01.dbf'
 TO DATAFILECOPY '/disk2/tools.copy';
 RECOVER TABLESPACE tools;
 SQL "ALTER TABLESPACE tools ONLINE";
}

TRANSPORT TABLESPACE

Purpose

Use the TRANSPORT TABLESPACE command to create transportable tablespace sets from RMAN backups instead of the live datafiles of the source database.

	
See Also:

Oracle Database Backup and Recovery User's Guide to learn how to transport tablespaces with RMAN

Prerequisites

The limitations on creating transportable tablespace sets described in Oracle Database Administrator's Guide apply to transporting tablespaces from backup, with the exception of the requirement to make the tablespaces read-only.

Note that the SYSAUX tablespace must not be part of the recovery set, which is the set of tablespaces to be transported. RMAN enforces inclusion of the SYSAUX tablespace in the auxiliary set, which contains datafiles and other files required for the tablespace transport.

TRANSPORT TABLESPACE does not convert endian formats. If the target platform has a different endian format, then after running TRANSPORT TABLESPACE use the CONVERT command to convert the endian format of the transportable set datafiles.

If you drop a tablespace, then you cannot later use TRANSPORT TABLESPACE to include this tablespace in a transportable tablespace set, even if the SCN for TRANSPORT TABLESPACE is earlier than the SCN at which the table was dropped. If you rename a tablespace, then you cannot use TRANSPORT TABLESPACE to create a transportable tablespace set as of a point in time before the tablespace was renamed.

Backups and Backup Metadata

You must have a backup of all needed tablespaces (including those in the auxiliary set) and archived redo logs needed to recover to the target point in time.

If you do not use a recovery catalog, and if the database has re-used control file records containing metadata about required backups, then the command fails because RMAN cannot locate the backups. You may be able to use CATALOG to add the needed backups to the RMAN repository if they are still available, but if the database is already overwriting control file records you may lose records of other needed backups.

Data Pump Export and Import

Because the RMAN uses the Data Pump Export and Import utilities, you cannot use TRANSPORT TABLESPACE if the tablespaces to be transported use XMLType. In this case you must use the procedure in Oracle Database Administrator's Guide.

If a file under the name of the export dump file already in the tablespace destination, then TRANSPORT TABLESPACE fails when it calls Data Pump Export. If you are repeating a previous TRANSPORT TABLESPACE job, then make sure to delete the previous output files, including the export dump file.

Tablespace and Column Encryption

The following database encryption features both use the wallet: transparent data encryption, which functions at the column level, and tablespace encryption. Note the following restrictions for tablespaces that are encrypted or contain encrypted columns:

	
If you are transporting an encrypted tablespace, then you must manually copy the wallet to the destination database.

	
If the destination database has an existing wallet, then you cannot copy the wallet from the source database to the destination database. Thus, you cannot transport encrypted data to a database that already has a wallet. If you encrypt columns with transparent data encryption, then you can export them into an export file that is password-protected and import the data into the destination database.

	
See Also:

Oracle Database Advanced Security Administrator's Guide to learn about transparent data encryption

Usage Notes

Because RMAN creates the automatic auxiliary instance used for restore and recovery on the same node as the source instance, there is some performance overhead during the operation of the TRANSPORT TABLESPACE command.

If RMAN is not part of the backup strategy for your database, then you can still use TRANSPORT TABLESPACE as long as the needed datafile copies and archived logs are available on disk. Use the CATALOG command to record the datafile copies and archived logs in the RMAN repository. You can then use TRANSPORT TABLESPACE. You also have the option of using RMAN to back up your database specifically so you can use TRANSPORT TABLESPACE.

Syntax

transpt_tbs::=

[image: Description of transpt_tbs.gif follows]

(transpt_tbs_optlist::=)

transpt_tbs_optlist::=

[image: Description of transpt_tbs_optlist.gif follows]

(untilClause::=)

Semantics

transpt_tbs

	Syntax Element	Description
	tablespace_name	Specifies the name of each tablespace to transport.
You must have a backup of all needed tablespaces (including those in the auxiliary set) and archived redo log files available for use by RMAN that can be recovered to the target time for the TRANSPORT TABLESPACE operation.

transpt_tbs_optlist

This subclause specifies optional parameters that affect the tablespace transport.

	Syntax Element	Description
	

AUXILIARY DESTINATION

'location'	Specifies the location for files for the auxiliary instance.
You can use SET NEWNAME and CONFIGURE AUXNAME to override this argument for individual files. If using your own initialization parameter file to customize the auxiliary instance, then you can use the DB_FILE_NAME_CONVERT and LOG_FILE_NAME_CONVERT initialization parameters instead of AUXILIARY DESTINATION.

See Also: Oracle Database Backup and Recovery User's Guide for details on the interactions among the different techniques for naming the auxiliary instance files

	

DATAPUMP DIRECTORY

datapump_directory	Specifies a database directory object where Data Pump Export outputs are created (see Example 2-152). If not specified, then RMAN creates files in the location specified by TABLESPACE DESTINATION.
See Also: Oracle Database Utilities for more details on Data Pump Export and database directory objects

	DUMP FILE 'filename'	Specifies where to create the Data Pump Export dump file. If not specified, the export dump file is named dmpfile.dmp and stored in the location specified by the DATAPUMP DIRECTORY clause or in the tablespace destination.
Note: If a file under the name of the export dump file already in the tablespace destination, then TRANSPORT TABLESPACE fails when it calls Data Pump Export. If you are repeating a previous TRANSPORT TABLESPACE job, then make sure to delete the previous output files, including the export dump file.

	EXPORT LOG 'filename'	Specifies the location of the log generated by Data Pump Export. If omitted, the export log is named explog.log and stored in the location specified by the DATAPUMP DIRECTORY clause or in the tablespace destination.
	IMPORT SCRIPT 'filename'	Specifies the filename for the sample input script generated by RMAN for use in plugging in the transported tablespace at the destination database. If omitted, the import script is named impscript.sql. The script is stored in the tablespace destination.
	

TABLESPACE DESTINATION

tablespace_destination	Specifies the location of the datafiles for the transported tablespaces after the tablespace transport operation completes.
	

TO RESTORE POINT

restore_point_name	Specifies a restore point for tablespace restore and recovery, with the SCN at which the restore point was created as the upper, inclusive limit. Because the limit is inclusive, RMAN selects only files that can be used to restore or recover tablespaces up to and including the SCN corresponding to the restore point.
	untilClause
	Specifies a past time, SCN, or log sequence number (see Example 2-151). If specified, RMAN restores and recovers the tablespaces at the auxiliary instance to their contents at that past point in time before export.
If you rename a tablespace, then you cannot use this command to create a transportable tablespace set as of a point in time before the tablespace was renamed. RMAN has no knowledge of the previous name of the tablespace.

Tablespaces including undo segments as of the UNTIL time or SCN for TRANSPORT TABLESPACE must be part of the auxiliary set. The control file only contains a record of tablespaces that include undo segments at the current time. If the set of tablespaces with undo segments was different at the UNTIL time or SCN, then TRANSPORT TABLESPACE fails. Thus, if you use RMAN in NOCATALOG mode and specify UNTIL, then the set of tablespaces with undo segments at the time TRANSPORT TABLESPACE executes must be the same as the set of tablespaces with undo segments at the UNTIL time or SCN.

Examples

Example 2-151 Using TRANSPORT TABLESPACE with a Past Time

In this example, the tablespaces for the transportable set are example and tools, the transportable set files are to be stored at /disk1/transport_dest, and the transportable tablespaces are to be recovered to a time 15 minutes ago:

TRANSPORT TABLESPACE example, tools
 TABLESPACE DESTINATION '/disk1/transportdest'
 AUXILIARY DESTINATION '/disk1/auxdest'
 UNTIL TIME 'SYSDATE-15/1440';

Partial sample output follows:

Creating automatic instance, with SID='egnr'

initialization parameters used for automatic instance:
db_name=PROD
compatible=11.0.0
db_block_size=8192
.
.
.
starting up automatic instance PROD
.
.
.
executing Memory Script

executing command: SET until clause

Starting restore at 07-JUN-07
allocated channel: ORA_AUX_DISK_1
channel ORA_AUX_DISK_1: SID=44 device type=DISK

channel ORA_AUX_DISK_1: starting datafile backup set restore
channel ORA_AUX_DISK_1: restoring control file
.
.
.
output file name=/disk1/auxdest/cntrl_tspitr_PROD_egnr.f
Finished restore at 07-JUN-07

sql statement: alter database mount clone database

sql statement: alter system archive log current

sql statement: begin dbms_backup_restore.AutoBackupFlag(FALSE); end;

starting full resync of recovery catalog
full resync complete
.
.
.
executing Memory Script
.
.
.

Starting restore at 07-JUN-07
using channel ORA_AUX_DISK_1

channel ORA_AUX_DISK_1: starting datafile backup set restore
channel ORA_AUX_DISK_1: specifying datafile(s) to restore from backup set
channel ORA_AUX_DISK_1: restoring datafile 00001 to /disk1/auxdest/TSPITR_PROD_EGNR/datafile/o1_mf_system_%u_.dbf
datafile 1 switched to datafile copy
.
.
.
starting media recovery
.
.
.
Finished recover at 07-JUN-07

database opened
.
.
.
executing Memory Script
.
.
.
sql statement: alter tablespace EXAMPLE read only
Removing automatic instance
shutting down automatic instance
Oracle instance shut down
Automatic instance removed
auxiliary instance file /disk1/auxdest/cntrl_tspitr_PROD_egnr.f deleted
.
.
.

Example 2-152 Using TRANSPORT TABLESPACE with Customized File Locations

This example illustrates the use of the optional arguments that control the locations of Data Pump-related files such as the dump file. Note that the DATAPUMP DIRECTORY must refer to an object that exists in the target database. Use the CREATE DIRECTORY SQL statement to create a directory object.

TRANSPORT TABLESPACE example
 TABLESPACE DESTINATION '/disk1/transportdest'
 AUXILIARY DESTINATION '/disk1/auxdest'
 DATAPUMP DIRECTORY mypumpdir
 DUMP FILE 'mydumpfile.dmp'
 IMPORT SCRIPT 'myimportscript.sql'
 EXPORT LOG 'myexportlog.log';

VALIDATE

Purpose

Use the VALIDATE command to check for corrupt blocks and missing files, or to determine whether a backup set can be restored.

If VALIDATE detects a problem during validation, then RMAN displays it and triggers execution of a failure assessment. If a failure is detected, then RMAN logs it into the Automated Diagnostic Repository. You can use LIST FAILURE to view the failures.

Prerequisites

The target database must be mounted or open.

Usage Notes

The options in the VALIDATE command are semantically equivalent to options in the BACKUP VALIDATE command. Unlike BACKUP VALIDATE, however, VALIDATE can check individual backup sets and data blocks.

The VALIDATE command skips never-used blocks. RMAN also skips currently unused (as opposed to never used) blocks for locally managed tablespaces when the COMPATIBLE parameter is set to 10.2 or greater. If RMAN does not read a block because of unused block compression, and if the block is corrupt, then RMAN does not detect the corruption. A corrupt unused block is not harmful.

In a physical corruption, the database does not recognize the block at all. In a logical corruption, the contents of the block are logically inconsistent. By default, the VALIDATE command checks for physical corruption only. You can specify CHECK LOGICAL to check for logical corruption as well. RMAN populates the V$DATABASE_BLOCK_CORRUPTION view with its findings.

Block corruptions can be divided into interblock corruption and intrablock corruption. In intrablock corruption, the corruption occurs within the block itself and can be either physical or logical corruption. In interblock corruption, the corruption occurs between blocks and can only be logical corruption. The VALIDATE command checks for intrablock corruptions only.

Syntax

validate::=

[image: Description of validate.gif follows]

(validateObject::=, validateOperand::=)

validateObject::=

[image: Description of validateobject.gif follows]

(archivelogRecordSpecifier::=, copyOfSpec::=, blockObject::=, datafileCopySpec::=, datafileSpec::=)

copyOfSpec::=

[image: Description of copyofspec.gif follows]

(datafileSpec::=)

blockObject::=

[image: Description of blockobject.gif follows]

(datafileSpec::=)

validateOperand::=

[image: Description of validateoperand.gif follows]

(deviceSpecifier::=, sizeSpec::=, skipSpec::=)

skipSpec::=

[image: Description of skipspec.gif follows]

sizeSpec::=

[image: Description of sizespec.gif follows]

Semantics

validate

This subclause specifies backup sets for validation. Refer to validate::= for syntax.

	Syntax Element	Description
	validateOperand
	Specifies options that control the validation.
See Also: validateOperand

	validateObject
	Specifies the files to be validated.
See Also: validateObject

	

 INCLUDE CURRENT

 CONTROLFILE	Creates a snapshot of the current control file and validates it.
	 PLUS ARCHIVELOG	Includes archived redo logs in the validation. Causes RMAN to perform the following steps:

	
Run an ALTER SYSTEM ARCHIVE LOG CURRENT statement.

	
Run the VALIDATE ARCHIVELOG ALL command. Note that if backup optimization is enabled, then RMAN only validates logs that have not yet been backed up.

	
Validate the files specified in the VALIDATE command.

	
Run an ALTER SYSTEM ARCHIVE LOG CURRENT statement.

	
Validate any remaining archived redo logs.

validateObject

This subclause specifies database files for validation. Refer to validateObject::= for syntax.

	Syntax Element	Description
	archivelogRecordSpecifier
	Validates a range of archived redo logs. VALIDATE ARCHIVELOG is equivalent to BACKUP VALIDATE ARCHIVELOG.
	BACKUPSET primary_key	Checks that the backup sets specified by primary_key exist and can be restored.
You can obtain the primary keys of backup sets by executing a LIST statement or, if you use a recovery catalog, by querying the RC_BACKUP_SET recovery catalog view.

The VALIDATE BACKUPSET command checks every block in the backup set to ensure that the backup is restorable. If RMAN finds block corruption, then it issues an error and terminates the validation. In contrast, the CROSSCHECK command examines the headers of the specified files if they are on disk or queries the media management catalog if they are on tape.

Use VALIDATE BACKUPSET when you suspect that one or more backup pieces in a backup set are missing or have been damaged. Note that VALIDATE BACKUPSET selects which backups to test, whereas the VALIDATE option of the RESTORE command lets RMAN choose which backups to validate. For validating image copies, run RESTORE VALIDATE FROM DATAFILECOPY.

If you do not have automatic channels configured, then manually allocate at least one channel before executing VALIDATE BACKUPSET.

Note: If multiple copies of a backup set exist, then RMAN validates only the most recent copy. The VALIDATE command does not support an option to validate a specific copy. If one copy is on a different device from another copy, however, then you can use VALIDATE DEVICE TYPE to validate the copy on the specified device. If both copies exists on the same device, then you can use CHANGE to make one copy temporarily UNAVAILABLE and then reissue VALIDATE.

	

CONTROLFILECOPY

{'filename' │ ALL │

LIKE 'string_pattern'}	Validates control file copies. You can specify a control file copy in one of the following ways:
	
'filename' specifies a control file copy by filename

	
ALL specifies that all control file copies should be backed up

	
LIKE 'pattern' specifies a filename pattern. The percent sign (%) as a wildcard meaning 0 or more characters; an underscore (_) is a wildcard meaning 1 character.

The control file copy can be created with the BACKUP AS COPY CURRENT CONTROLFILE command or the SQL statement ALTER DATABASE BACKUP CONTROLFILE TO '...'.

	copyOfSpec
	Validates image copies of datafiles and control files.
See Also: copyOfSpec for details.

	blockObject
	Validates individual data blocks.
See Also: blockObject

	CURRENT CONTROLFILE	Validates the current control file.
	DATABASE	Validates the database.
RMAN validates all datafiles and control files. If the database is currently using a server parameter file, then RMAN validates the server parameter file.

Note: The online redo log files and tempfiles are not validated.

	datafileCopySpec
	Validates one or more datafile image copies.
When validating datafile copies, RMAN checks for block corruption but does not terminate the validation if corruption is discovered. Unlike VALIDATE BACKUPSET, RMAN proceeds and reports the number of blocks that are corrupted.

See Also: datafileCopySpec for details

	DATAFILE datafileSpec	Specifies a list of one or more datafiles that contain blocks requiring validation.
Note: You do not have to take a datafile offline if you are validating it.

See Also: datafileSpec

	RECOVERY AREA	Validates recovery files created in the current and all previous flash recovery area destinations. Recovery files are full and incremental backup sets, control file autobackups, archived redo logs, and datafile copies. Flashback logs, the current control file, and online redo logs are not validated.
	DB_RECOVERY_FILE_DEST	Semantically equivalent to RECOVERY AREA.
	RECOVERY FILES	Validates all recovery files on disk, whether they are stored in the flash recovery area or other locations on disk. Recovery files include full and incremental backup sets, control file autobackups, archived redo log files, and datafile copies. Flashback logs are not validated.
	SPFILE	Validates the server parameter file currently used by the database. RMAN cannot validates other copies of the server parameter file, and cannot validate the server parameter file when the instance was started with an initialization parameter file.
	

TABLESPACE

tablespace_name	Validates the specified tablespaces. RMAN translates tablespace names internally into a list of datafiles, then validates all datafiles that are currently part of the tablespaces. RMAN validates all datafiles that are currently members of the specified tablespaces.

validateOperand

This subclause specifies modifiers for the validation. Refer to validateOperand::= for syntax.

	Syntax Element	Description
	CHECK LOGICAL	Tests data and index blocks in the files that pass physical corruption checks for logical corruption, for example, corruption of a row piece or index entry. If RMAN finds logical corruption, then it logs the block in the alert log and server session trace file. The RMAN command completes and V$DATABASE_BLOCK_CORRUPTION is populated with corrupt block ranges.
Note: VALIDATE does not use MAXCORRUPT.

	DEVICE TYPE deviceSpecifier	Allocates automatic channels for the specified device type only. This option is valid only if you have configured automatic channels and have not manually allocated channels. For example, if you configure automatic disk and tape channels, and run VALIDATE ...DEVICE TYPE DISK, RMAN allocates only disk channels.
See Also: deviceSpecifier

	NOEXCLUDE	When specified on a VALIDATE DATABASE or VALIDATE COPY OF DATABASE command, RMAN validates all tablespaces, including any for which a CONFIGURE EXCLUDE command has been entered. This option does not override SKIP OFFLINE or SKIP READONLY.
	SECTION SIZE sizeSpec	Parallelizes the validation by dividing each file into the specified section size.
Only specify this parameter when multiple channels are configured or allocated and you want the channels to parallelize the validation, so that multiple channels can validate a single datafile. This parameter applies only when validating datafiles.

If you specify a section size that is larger than the size of the file, then RMAN does not parallelize validation for the file. If you specify a small section size that would produce more than 256 sections, then RMAN increases the section size to a value that results in exactly 256 sections.

See Also: BACKUP SECTION SIZE to learn how to make multisection backups

	skipSpec
	Excludes the specified files from the validation.

skipSpec

This subclauses specifies files to be excluded from the validation.

	Syntax Element	Description
	SKIP	Excludes datafiles or archived redo logs from the validation if they are inaccessible, offline, or read-only.
	 INACCESSIBLE	Specifies that datafiles and archived redo logs that cannot be read due to I/O errors should be excluded from the validation.
A datafile is only considered inaccessible if it cannot be read. Some offline datafiles can still be read because they still exist on disk. Others have been deleted or moved and so cannot be read, making them inaccessible.

	 OFFLINE	Specifies that offline datafiles should be excluded from the validation.
	 READONLY	Specifies that read-only datafiles should be excluded from the validation.

VALIDATE Command Output

Table 2-38 List of Datafiles

	Column	Indicates
	
File

	
Absolute number of the datafile being validated.

	
Status

	
OK if no corruption, or FAILED if block corruption is found.

	
Marked Corrupt

	
Number of blocks marked corrupt. These blocks were previously marked corrupt by the database. For example, the database may intentionally mark blocks corrupt during a recovery involving a NOLOGGING operation. Also, an RMAN backup may contain corrupt blocks permitted by the SET MAXCORRUPT command. When this backup is restored, the file contains blocks that are marked corrupt.

	
Empty Blocks

	
Number of blocks that either have never been used.

	
Blocks Examined

	
Total number of blocks in the file.

	
High SCN

	
The highest SCN recorded in the file.

	
File Name

	
The name of the file being validated.

	
Block Type

	
The type of block validated: Data, Index, or Other.

	
Blocks Failing

	
The number of blocks that fail the corruption check. These blocks are newly corrupt.

	
Blocks Processed

	
The number of blocks checked for corruption.

Table 2-39 List of Control File and SPFILE

	Column	Indicates
	
File TYPE

	
Type of file: SPFILE or Control File.

	
Status

	
OK if no corruption, or FAILED if block corruption is found.

	
Blocks Failing

	
The number of blocks that fail the corruption check. These blocks are newly corrupt.

	
Blocks Examined

	
Total number of blocks in the file.

Table 2-40 List of Archived Logs

	Column	Indicates
	
Thrd

	
The redo thread number.

	
Seq

	
The log sequence number.

	
Status

	
OK if no corruption, or FAILED if block corruption is found.

	
Blocks Failing

	
The number of blocks that fail the corruption check. These blocks are newly corrupt.

	
Blocks Examined

	
Total number of blocks in the file.

	
Name

	
The name of the archived redo log file.

Examples

Example 2-157 Validating a Backup Set

This example lists all available backup sets and then validates them. As the sample output indicates, RMAN confirms that it is possible to restore the backups.

RMAN> LIST BACKUP SUMMARY;

List of Backups
===============
Key TY LV S Device Type Completion Time #Pieces #Copies Compressed Tag
------- -- -- - ----------- --------------- ------- ------- ---------- ---
3871 B F A DISK 08-MAR-07 1 1 NO TAG20070308T092426
3890 B F A DISK 08-MAR-07 1 1 NO TAG20070308T092534

RMAN> VALIDATE BACKUPSET 3871, 3890;

Starting validate at 08-MAR-07
using channel ORA_DISK_1
channel ORA_DISK_1: starting validation of datafile backup set
channel ORA_DISK_1: reading from backup piece
 /disk2/PROD/backupset/2007_03_08/o1_mf_nnndf_TAG20070308T092 426_2z0kpc72_.bkp
channel ORA_DISK_1: piece
 handle=/disk2/PROD/backupset/2007_03_08/o1_mf_nnndf_TAG20070308T092426_2z0kpc72_.bkp ta
 g=TAG20070308T092426
channel ORA_DISK_1: restored backup piece 1
channel ORA_DISK_1: validation complete, elapsed time: 00:00:18
channel ORA_DISK_1: starting validation of datafile backup set
channel ORA_DISK_1: reading from backup piece
 /disk2/PROD/autobackup/2007_03_08/o1_mf_s_616670734_2z0krhjv_.bkp
channel ORA_DISK_1: piece
 handle=/disk2/PROD/autobackup/2007_03_08/o1_mf_s_616670734_2z0krhjv_.bkp
 tag=TAG20070308T092534
channel ORA_DISK_1: restored backup piece 1
channel ORA_DISK_1: validation complete, elapsed time: 00:00:00
Finished validate at 08-MAR-07

Example 2-158 Validating the Database

This example validates the database and includes sample output. The validation finds one corrupt block in datafile 1. The VALIDATE output indicates that more information about the corruption can be found in the specified trace file.

RMAN> VALIDATE DATABASE;

Starting validate at 26-FEB-07
using channel ORA_DISK_1
channel ORA_DISK_1: starting validation of datafile
channel ORA_DISK_1: specifying datafile(s) for validation
input datafile file number=00001 name=/disk1/oradata/prod/system01.dbf
input datafile file number=00002 name=/disk1/oradata/prod/sysaux01.dbf
input datafile file number=00003 name=/disk1/oradata/prod/undotbs01.dbf
input datafile file number=00004 name=/disk1/oradata/prod/cwmlite01.dbf
input datafile file number=00005 name=/disk1/oradata/prod/drsys01.dbf
input datafile file number=00006 name=/disk1/oradata/prod/example01.dbf
input datafile file number=00007 name=/disk1/oradata/prod/indx01.dbf
input datafile file number=00008 name=/disk1/oradata/prod/tools01.dbf
input datafile file number=00009 name=/disk1/oradata/prod/users01.dbf
channel ORA_DISK_1: validation complete, elapsed time: 00:01:25
List of Datafiles
=================
File Status Marked Corrupt Empty Blocks Blocks Examined High SCN
---- ------ -------------- ------------ --------------- ----------
1 FAILED 0 4140 57600 498288
 File Name: /disk1/oradata/prod/system01.dbf
 Block Type Blocks Failing Blocks Processed
 ---------- -------------- ----------------
 Data 1 41508
 Index 0 7653
 Other 0 4299

File Status Marked Corrupt Empty Blocks Blocks Examined High SCN
---- ------ -------------- ------------ --------------- ----------
2 OK 0 8918 20040 498237
 File Name: /disk1/oradata/prod/sysaux01.dbf
 Block Type Blocks Failing Blocks Processed
 ---------- -------------- ----------------
 Data 0 2473
 Index 0 2178
 Other 0 6471

File Status Marked Corrupt Empty Blocks Blocks Examined High SCN
---- ------ -------------- ------------ --------------- ----------
3 OK 0 36 2560 498293
 File Name: /disk1/oradata/prod/undotbs01.dbf
 Block Type Blocks Failing Blocks Processed
 ---------- -------------- ----------------
 Data 0 0
 Index 0 0
 Other 0 2524

File Status Marked Corrupt Empty Blocks Blocks Examined High SCN
---- ------ -------------- ------------ --------------- ----------
4 OK 0 1 1280 393585
 File Name: /disk1/oradata/prod/cwmlite01.dbf
 Block Type Blocks Failing Blocks Processed
 ---------- -------------- ----------------
 Data 0 0
 Index 0 0
 Other 0 1279

File Status Marked Corrupt Empty Blocks Blocks Examined High SCN
---- ------ -------------- ------------ --------------- ----------
5 OK 0 1 1280 393644
 File Name: /disk1/oradata/prod/drsys01.dbf
 Block Type Blocks Failing Blocks Processed
 ---------- -------------- ----------------
 Data 0 0
 Index 0 0
 Other 0 1279

File Status Marked Corrupt Empty Blocks Blocks Examined High SCN
---- ------ -------------- ------------ --------------- ----------
6 OK 0 1 1280 393690
 File Name: /disk1/oradata/prod/example01.dbf
 Block Type Blocks Failing Blocks Processed
 ---------- -------------- ----------------
 Data 0 0
 Index 0 0
 Other 0 1279

File Status Marked Corrupt Empty Blocks Blocks Examined High SCN
---- ------ -------------- ------------ --------------- ----------
7 OK 0 1 1280 393722
 File Name: /disk1/oradata/prod/indx01.dbf
 Block Type Blocks Failing Blocks Processed
 ---------- -------------- ----------------
 Data 0 0
 Index 0 0
 Other 0 1279

File Status Marked Corrupt Empty Blocks Blocks Examined High SCN
---- ------ -------------- ------------ --------------- ----------
8 OK 0 1 1280 393754
 File Name: /disk1/oradata/prod/tools01.dbf
 Block Type Blocks Failing Blocks Processed
 ---------- -------------- ----------------
 Data 0 0
 Index 0 0
 Other 0 1279

File Status Marked Corrupt Empty Blocks Blocks Examined High SCN
---- ------ -------------- ------------ --------------- ----------
9 OK 0 1272 1280 393785
 File Name: /disk1/oradata/prod/users01.dbf
 Block Type Blocks Failing Blocks Processed
 ---------- -------------- ----------------
 Data 0 0
 Index 0 0
 Other 0 8

validate found one or more corrupt blocks
See trace file /disk2/oracle/log/diag/rdbms/prod/prod/trace/prod_ora_10609.trc for details
channel ORA_DISK_1: starting validation of datafile
channel ORA_DISK_1: specifying datafile(s) for validation
including current control file for validation
including current SPFILE in backup set
channel ORA_DISK_1: validation complete, elapsed time: 00:00:01
List of Control File and SPFILE
===============================
File Type Status Blocks Failing Blocks Examined
------------ ------ -------------- ---------------
SPFILE OK 0 2
Control File OK 0 506
Finished validate at 26-FEB-07

archivelogRecordSpecifier

Purpose

Use the archivelogRecordSpecifier subclause to specify a set of archived redo logs for use in RMAN operations.

Syntax

archivelogRecordSpecifier::=

[image: Description of archivelogrecordspecifier.gif follows]

archlogRange::=

[image: Description of archlogrange.gif follows]

Semantics

archivelogRecordSpecifier

This subclause specifies either all archived redo logs or logs whose filenames match a specified pattern.

	Syntax Element	Description
	ALL	Specifies all available archived logs.
	LIKE 'string_pattern'	Specifies all archived logs that match the specified string_pattern. You can use the same pattern matching characters that are valid in the LIKE operator in the SQL language to match multiple files.
See Also: Oracle Real Application Clusters Administration and Deployment Guide to learn about using RMAN in an Oracle RAC configuration

archlogRange

This subclause specifies a range of archived redo logs by SCN, time, restore point (which is a label for a timestamp or SCN), or log sequence number. This subclause is useful for identifying the point to which you want the database to be recoverable.

RMAN queries the V$ARCHIVED_LOG or RC_ARCHIVED_LOG view to determine which logs to include in the range. When you specify a time, SCN, or restore point, RMAN determines the range according to the contents of the archived redo logs, not when the logs were created or backed up. When you specify the range by log sequence number, then RMAN uses the sequence number to determine the range.

Table 3-1 explains how RMAN determines which logs are in the range. The columns FIRST_TIME, NEXT_TIME, and so on refer to columns in V$ARCHIVED_LOG. For example, if you specify FROM SCN 1000 UNTIL SCN 2000, then RMAN includes all logs whose V$ARCHIVED_LOG.NEXT_SCN value is greater than 1000 and whose V$ARCHIVED_LOG.FIRST_SCN value is less than or equal to 2000.

Table 3-1 Determining Logs for Inclusion in the Range

	Subclause	FIRST_TIME	NEXT_TIME	FIRST_SCN	NEXT_SCN	SEQUENCE#
	
FROM TIME t1

	
n/a

	
Later than t1

	
n/a

	
n/a

	
n/a

	
FROM TIME t1 UNTIL TIME t2

	
Earlier than or the same as t2

	
Later than t1

	
n/a

	
n/a

	
n/a

	
UNTIL TIME t2

	
Earlier than or the same as t2

	
n/a

	
n/a

	
n/a

	
n/a

	
FROM SCN s1

	
n/a

	
n/a

	
n/a

	
Greater than s1

	
n/a

	
FROM SCN s1 UNTIL SCN s2

	
n/a

	
n/a

	
Less than or equal to s2

	
Greater than s1

	
n/a

	
UNTIL SCN s2

	
n/a

	
n/a

	
Less than or equal to s2

	
n/a

	
n/a

	
FROM SEQUENCE q1

	
n/a

	
n/a

	
n/a

	
n/a

	
Between q1 and the maximum sequence (inclusive)

	
FROM SEQUENCE q1 UNTIL SEQUENCE q2

	
n/a

	
n/a

	
n/a

	
n/a

	
Between q1 and q2 (inclusive)

	
UNTIL SEQUENCE q2

	
n/a

	
n/a

	
n/a

	
n/a

	
Between 0 and q2 (inclusive)

The time must be formatted according to the Globalization Technology date format specification currently in effect. If your current Globalization settings do not specify the time, then string dates default to 00 hours, 00 minutes, and 00 seconds.

The date_string can be any SQL expression of type DATE, such as SYSDATE. You can use TO_DATE to specify hard-coded dates that work regardless of the current Globalization Technology settings. SYSDATE always has seconds precision regardless of the Globalization settings. Thus, if today is March 15, 2007, then SYSDATE-10 is not equivalent to 05-MAR-07 or TO_DATE('03/15/2007','MM/DD/YYYY')-10.

Specifying a sequence of archived redo logs does not guarantee that RMAN includes all redo data in the sequence. For example, the last available archived log file may end before the end of the sequence, or an archived log file in the range may be missing from all archiving destinations. RMAN includes the archived redo logs it finds and does not issue a warning for missing files.

	
See Also:

Oracle Database Reference to learn how to use the NLS_LANG and NLS_DATE_FORMAT environment variables to specify time format

	Syntax Element	Description
	FROM SCN integer	Specifies the beginning SCN for a range of archived redo log files. If you do not specify the UNTIL SCN parameter, then RMAN includes all available log files beginning with SCN specified in the FROM SCN parameter.
	SCN BETWEEN integer AND integer	Specifies the beginning and ending SCN for a range of logs. This syntax is semantically equivalent to FROM SCN integer1 UNTIL SCN integer2.
	UNTIL SCN integer	Specifies the ending SCN for a range of archived redo log files (see Table 3-1 for the rules determining the range).
	FROM SEQUENCE integer	Specifies the beginning log sequence number for a sequence of archived redo log files (see Table 3-1 for the rules determining the range).
Note: You can specify all log sequence numbers in a thread by using the syntax shown in Example 3-6.

	SEQUENCE integer	Specifies a single log sequence number.
	

SEQUENCE BETWEEN

integer AND integer	Specifies a range of log sequence numbers. This syntax is semantically equivalent to FROM SEQUENCE integer1 UNTIL SEQUENCE integer2.
	UNTIL SEQUENCE integer	Specifies the terminating log sequence number for a sequence of archived redo log files (see Table 3-1 for the rules determining the range).
	 THREAD integer	Specifies the thread containing the archived redo log files you want to include. This parameter is only necessary the database is in an Oracle RAC configuration.
Although the SEQUENCE parameter does not require that THREAD be specified, a given log sequence always implies a thread. The thread defaults to 1 if not specified. Query V$ARCHIVED_LOG to determine the thread number for a log.

	FROM TIME 'date_string'	Specifies the beginning time for a range of archived redo logs (see Table 3-1 for the rules determining the range). Example 3-5 shows FROM TIME in a LIST command.
	

TIME BETWEEN

'date_string'

AND 'date_string'	Specifies a range of times. This syntax is semantically equivalent to FROM TIME 'date_string' UNTIL TIME 'date_string'.
	UNTIL TIME 'date_string'	Specifies the end time for a range of archived redo logs (see Table 3-1 for the rules determining the range). Example 3-4 shows UNTIL TIME in a BACKUP command.

Examples

Example 3-4 Specifying Records by Recovery Point-in-Time

Assume that you want to be able to recover the database to a point in time 5 days before now. You want to back up a range of archived redo logs that makes this point-in-time recovery possible.

You can use the UNTIL TIME 'SYSDATE-5' clause to specify that all logs in the range have a first time (shown by V$ARCHIVED_LOG.FIRST_TIME) that is earlier than or the same as SYSDATE-5. This function resolves to a time with seconds precision five days before now.

CONNECT TARGET /
BACKUP ARCHIVELOG UNTIL TIME 'SYSDATE-5';

Example 3-5 Listing Archived Log Backups by Time

As shown in Table 3-1, when you specify date_string for a range of archived redo logs, you are not specifying the backup time or creation time of the log. Assume that archived log 32 has a next time of March 6.

SQL> SELECT SEQUENCE#, NEXT_TIME
 2 FROM V$ARCHIVED_LOG
 3 WHERE SEQUENCE#='32';

 SEQUENCE# NEXT_TIME
---------- ---------
 50 06-MAR-07

On March 8 you run the following BACKUP and LIST commands:

RMAN> BACKUP ARCHIVELOG SEQUENCE 32;

Starting backup at 08-MAR-07
allocated channel: ORA_SBT_TAPE_1
channel ORA_SBT_TAPE_1: SID=109 device type=SBT_TAPE
channel ORA_SBT_TAPE_1: Oracle Secure Backup
channel ORA_SBT_TAPE_1: starting archived log backup set
channel ORA_SBT_TAPE_1: specifying archived log(s) in backup set
input archived log thread=1 sequence=32 RECID=125 STAMP=616528547
channel ORA_SBT_TAPE_1: starting piece 1 at 08-MAR-07
channel ORA_SBT_TAPE_1: finished piece 1 at 08-MAR-07
piece handle=6kic3fkm_1_1 tag=TAG20070308T111014 comment=API Version 2.0,MMS Version 10.1.0.3
channel ORA_SBT_TAPE_1: backup set complete, elapsed time: 00:00:25
Finished backup at 08-MAR-07

Starting Control File and SPFILE Autobackup at 08-MAR-07
piece handle=c-28014364-20070308-08 comment=API Version 2.0,MMS Version 10.1.0.3
Finished Control File and SPFILE Autobackup at 08-MAR-07

RMAN> LIST BACKUP OF ARCHIVELOG FROM TIME 'SYSDATE-1';

RMAN>

Because the next time of log 32 is earlier than the range of times specified in the FROM TIME clause, the preceding LIST BACKUP command does not show the backup of archived log 32.

Example 3-6 Crosschecking All Logs in a Redo Thread

Assume that you are managing an Oracle RAC database with two threads of redo. This example crosschecks all archived redo logs in thread 1 only.

CROSSCHECK ARCHIVELOG FROM SEQUENCE 0 THREAD 1;

completedTimeSpec

Purpose

Use the completedTimeSpec subclause to specify when a backup or copy completed.

Usage Notes

All date strings must be either:

	
Formatted according to the Global Technology date format specification currently in effect.

	
Created by a SQL expression that returns a DATE value, as in the following examples:

	
'SYSDATE-30'

	
TO_DATE('09/30/2000 08:00:00','MM/DD/YY HH24:MI:SS')

The TO_DATE function specifies dates independently of the current Global Technology environment variable settings.

Syntax

completedTimeSpec::=

[image: This diagram shows the syntax of completedTimeSpec]

Semantics

	Syntax Element	Description
	AFTER 'date_string'	Specifies the time after which the backup was completed (see Example 3-7).
	BEFORE 'date_string'	Specifies the time before which the backup was completed (see Example 3-9).
	

BETWEEN 'date_string'

AND 'date_string'	Specifies a time range during which the backup was completed (see Example 3-8). Note that BETWEEN 'date1' AND 'date2' is exactly equivalent to AFTER 'date1' BEFORE 'date2'.

Examples

Example 3-7 Crosschecking Backups Within a Time Range

This example crosschecks the backup sets of the database made last month:

CROSSCHECK BACKUP OF DATABASE
 COMPLETED BETWEEN 'SYSDATE-62' AND 'SYSDATE-31';

Example 3-8 Deleting Expired Backups

This example deletes expired backups of archived logs made in the last two weeks:

DELETE EXPIRED BACKUP OF ARCHIVELOG ALL
 COMPLETED AFTER 'SYSDATE-14';

Example 3-9 Listing Copies

This example lists image copies of datafile /disk1/oradata/prod/users01.dbf made before March 9, 2007:

RMAN> LIST COPY OF DATAFILE '/disk1/oradata/prod/users01.dbf' COMPLETED BEFORE '9-MAR-07';

List of Datafile Copies
=======================

Key File S Completion Time Ckp SCN Ckp Time
------- ---- - --------------- ---------- ---------------
3794 28 A 06-MAR-07 1010097 06-MAR-07
 Name: /disk1/oradata/prod/users01.dbf
3793 28 A 06-MAR-07 1009950 06-MAR-07
 Name: /disk2/PROD/datafile/o1_mf_users_2yvg4v6o_.dbf
 Tag: TAG20070306T105314

connectStringSpec

Purpose

Use the connectStringSpec subclause to specify the username, password, and net service name for connecting to a target, recovery catalog, or auxiliary database. The connection is necessary to authenticate the user and identify the database.

Prerequisites

You must have SYSDBA privileges to CONNECT to a target or auxiliary database. Do not connect to the recovery catalog database as user SYS.

Usage Notes

RMAN connections to a database are specified and authenticated in the same way as SQL*Plus connections to a database. The only difference is that RMAN connections to a target or auxiliary database require the SYSDBA privilege. The AS SYSDBA keywords are implied and cannot be explicitly specified. See Oracle Database Administrator's Guide to learn about database connection options when using SQL*Plus.

	
Caution:

Good security practice requires that passwords should not be entered in plain text on the command line. You should enter passwords in RMAN only when requested by an RMAN prompt. See Oracle Database Security Guide to learn about password protection.

Syntax

connectStringSpec::=

[image: Description of connectstringspec.gif follows]

Semantics

	Syntax Element	Description
	/
	If you do not specify a user ID or password when connecting to a target database, then a forward slash establishes a connection as user SYS by using operating system authentication (see Example 3-12).
Note: The forward slash depends on platform-specific environment variables.

	userid	Establishes a connection to the database for the specified user. If you do not specify a password, then RMAN obtains the password interactively by displaying a prompt (see Example 3-11). The characters will not be echoed to the terminal.
Note: The connect string must not contain any white space, but it can contain punctuation characters such as a forward slash (/) and an at sign (@).

	/password	Establishes a connection for the specified user by using a password. If the target database is not open, then a password file must exist.
Caution: Passwords entered in plain text on the command line are a security vulnerability. More secure alternatives, such as entering passwords in response to a prompt, are available.

	@net_service_name	Establishes a connection to the database through an optional Oracle Net net service name (see Example 3-10).

Examples

Example 3-10 Connecting to a Target Database Without a Recovery Catalog

This example starts RMAN without specifying a database connection. The CONNECT command connects to a target database by using the Oracle Net service name prod in the default NOCATALOG mode. The SYS password is entered in response to a prompt.

% rman
RMAN> CONNECT TARGET SYS@prod

target database Password: password
connected to target database: PROD (DBID=39525561)

Example 3-11 Connecting to a Target Database at the Operating System Command Line

This example connects to the target database as user SYS at the operating system command line, but without specifying a password. RMAN prompts for the password.

% rman TARGET SYS

Recovery Manager: Release 11.1.0.6.0 - Production on Wed Jul 11 17:51:30 2007

Copyright (c) 1982, 2007, Oracle. All rights reserved.

target database Password: password

Example 3-12 Connecting to a Target Database with Operating System Authentication

This example starts RMAN and then connects to the target database prod using operating system authentication. The example also connects to the recovery catalog database catdb using a net service name.

% rman
RMAN> CONNECT TARGET /

connected to target database: PROD (DBID=39525561)

RMAN> CONNECT CATALOG rman@catdb

recovery catalog database Password: password
connected to recovery catalog database

forDbUniqueNameOption

Purpose

Use the forDbUniqueNameOption subclause to specify either all databases or a specific database in a Data Guard environment.

Usage Notes

The DBID for a primary database is identical to the DBID of its associated physical standby databases. A database is uniquely identified in the recovery catalog by a DBID and the value of its DB_UNIQUE_NAME initialization parameter.

When you specify forDbUniqueNameOption for any command, RMAN restricts its operations to the objects that are associated exclusively with the database with the specified DB_UNIQUE_NAME. For example, if you use this option with the LIST command, then RMAN lists only the objects associated exclusively with the database with the specified DB_UNIQUE_NAME. Note that objects that are not associated with any database (SITE_KEY column in the recovery catalog view is null) are not listed.

Syntax

forDbUniqueNameOption::=

[image: Description of fordbuniquenameoption.gif follows]

Semantics

	Syntax Element	Description
	FOR DB_UNIQUE_NAME ALL	Specifies all primary and standby databases in the recovery catalog that share the DBID of the target database (or DBID specified by the SET DBID command).
	

FOR DB_UNIQUE_NAME

db_unique_name	Specifies the primary or standby database in the recovery catalog with the specified db_unique_name.

Examples

Example 3-19 Listing Expired Backups Associated with a Standby Database

This example connects to a recovery catalog and sets the DBID for the Data Guard environment. All primary and standby databases in this environment share the same DBID. The LIST command lists all expired backups associated with database standby1:

RMAN> CONNECT CATALOG rman@catdb;

recovery catalog database Password: password
connected to recovery catalog database

RMAN> SET DBID 3257174182;
RMAN> LIST EXPIRED BACKUP FOR DB_UNIQUE_NAME standby1;

formatSpec

Purpose

Use the formatSpec subclause to specify a filename format or an Automatic Storage Management disk group for a backup piece or image copy. If you do not specify a value for the FORMAT parameter, then RMAN either creates the backup in the flash recovery area if it is enabled, or in a platform-specific directory (for example, ?/dbs on UNIX) if a flash recovery area is not enabled. In either case, RMAN uses the variable %U to name the backup.

	
Tip:

Oracle Database SQL Language Reference to learn how to create and name Automated Storage Manager disk groups

Usage Notes

Any name that is valid as a sequential filename on the platform is allowed, so long as each backup piece or copy has a unique name. If backing up to disk, then any valid disk filename is allowed, provided it is unique.

You cannot specify an Oracle Managed Files filename as the format for a backup. For example, if +DISK1/datafile/system.732.609791431 is an OMF filename, then you cannot specify this filename in the FORMAT parameter.

Environment variables are not valid in the FORMAT parameter.

The entire format_string is processed in a port-specific manner by the target instance to derive the final backup piece name. The substitution variables listed in "Semantics" are available in FORMAT strings to aid in generating unique filenames. The formatting of this information varies by platform.

You can specify up to four FORMAT strings. RMAN uses the second, third, and fourth values only when BACKUP COPIES, SET BACKUP COPIES, or CONFIGURE ... BACKUP COPIES is in effect. When choosing the format for each backup piece, RMAN uses the first format value for copy 1, the second format value for copy 2, and so on. If the number of format values exceeds the number of copies, then the extra formats are not used. If the number of format values is less than the number of copies, then RMAN reuses the format values, starting with the first one.

Specify format_string in any of the following places, listed in order of precedence:

	
The backupSpec clause

	
The BACKUP command

	
The ALLOCATE CHANNEL command

	
The CONFIGURE CHANNEL command

If specified in more than one of these places, then RMAN searches for the FORMAT parameter in the order shown.

Syntax

formatSpec::=

[image: Description of formatspec.gif follows]

Semantics

formatSpec

The following table lists RMAN substitution variables that are valid in format strings.

	Syntax Element	Description
	%a	Specifies the activation ID of the database.
	%c	Specifies the copy number of the backup piece within a set of duplexed backup pieces. If you did not duplex a backup, then this variable is 1 for backup sets and 0 for proxy copies. If one of these commands is enabled, then the variable shows the copy number. The maximum value for %c is 256.
	%d	Specifies the name of the database (see Example 3-22).
	%D	Specifies the current day of the month from the Gregorian calendar in format DD.
	%e	Specifies the archived log sequence number.
	%f	Specifies the absolute file number (see Example 3-22).
	%F	Combines the DBID, day, month, year, and sequence into a unique and repeatable generated name. This variable translates into c-IIIIIIIIII-YYYYMMDD-QQ, where:
	
IIIIIIIIII stands for the DBID. The DBID is printed in decimal so that it can be easily associated with the target database.

	
YYYYMMDD is a time stamp in the Gregorian calendar of the day the backup is generated

	
QQ is the sequence in hexadecimal number that starts with 00 and has a maximum of 'FF' (256)

	%h	Specifies the archived redo log thread number.
	%I	Specifies the DBID.
	%M	Specifies the month in the Gregorian calendar in format MM.
	%N	Specifies the tablespace name. This substitution variable is only valid when backing up datafiles as image copies.
	%n	Specifies the name of the database, padded on the right with x characters to a total length of eight characters. For example, if prod1 is the database name, then the padded name is prod1xxx.
	%p	Specifies the piece number within the backup set. This value starts at 1 for each backup set and is incremented by 1 as each backup piece is created.
Note: If you specify PROXY, then the %p variable must be included in the FORMAT string either explicitly or implicitly within %U.

	%s	Specifies the backup set number. This number is a counter in the control file that is incremented for each backup set. The counter value starts at 1 and is unique for the lifetime of the control file. If you restore a backup control file, then duplicate values can result. Also, CREATE CONTROLFILE initializes the counter back to 1.
	%t	Specifies the backup set time stamp, which is a 4-byte value derived as the number of seconds elapsed since a fixed reference time. The combination of %s and %t can be used to form a unique name for the backup set.
	%T	Specifies the year, month, and day in the Gregorian calendar in this format: YYYYMMDD.
	%u	Specifies an 8-character name constituted by compressed representations of the backup set or image copy number and the time the backup set or image copy was created.
	%U	Specifies a system-generated unique filename (default).
The meaning of %U is different for image copies and backup pieces. For a backup piece, %U specifies a convenient shorthand for %u_%p_%c that guarantees uniqueness in generated backup filenames. For an image copy of a datafile, %U means the following:

data-D-%d_id-%I_TS-%N_FNO-%f_%u

For an image copy of an archived redo log, %U means the following:

arch-D_%d-id-%I_S-%e_T-%h_A-%a_%u

For an image copy of a control file, %U means the following:

cf-D_%d-id-%I_%u

	%Y	Specifies the year in this format: YYYY.
	%%
	Specifies the percent (%) character. For example, %%Y translates to the string %Y.

Example

Example 3-21 Specifying an ASM Disk Group

This example copies the database to ASM disk group DISK1:

BACKUP AS COPY DATABASE FORMAT '+DATAFILE';

Example 3-22 Specifying a Format for Datafile Copies

This example copies two datafiles with tag LATESTCOPY to directory /disk2:

BACKUP AS COPY
 COPY OF DATAFILE 27, 28
 FROM TAG 'LATESTCOPY'
 FORMAT '/disk2/Datafile%f_Database%d';

keepOption

Purpose

Use the keepOption subclause to specify the status of a backup or copy in relation to a retention policy.

Syntax

keepOption::=

[image: Description of keepoption.gif follows]

Usage Notes

RMAN does not consider backup pieces with the KEEP option when computing the backup retention policy. If available, RMAN uses these backups for disaster recovery restore operations, but their purpose is to produce a snapshot of the database that can be restored on another system for testing or historical usage.

Semantics

	Syntax Element	Description
	KEEP	Specifies the backup as an archival backup, which is a self-contained backup that is exempt from the configured retention policy.
An archival backup is self-contained because is contains all files necessary to restore the backup and recover it to a consistent state. If the database is open during the backup, then RMAN automatically generates and backs up the archived redo logs needed to make the database backup consistent (see Example 2-26).

RMAN does not consider backup pieces with the KEEP option when computing the retention policy. If available, RMAN uses these backups for disaster recovery restore operations, but their purpose is to produce a snapshot of the database that can be restored on another system for testing or historical usage.

Note: You cannot use KEEP to override the retention policy for files stored in the flash recovery area. If you specify KEEP when backing up to the recovery area, then RMAN issues an error.

When KEEP is specified, RMAN creates multiple backup sets. RMAN backs up datafiles, archived redo logs, the control file, and the server parameter file with the options specified in the first backupOperand. RMAN uses the FORMAT, POOL, and TAG parameters for all the backups. For this reason, the FORMAT string must allow for the creation of multiple backup pieces. Specifying %U is the easiest way to meet this requirement.

Note: A recovery catalog is only required for KEEP FOREVER. No other KEEP options require a catalog.

	 FOREVER	Specifies that the backup or copy never becomes obsolete (see Example 2-27). A recovery catalog is required when FOREVER is specified because the backup records eventually age out of the control file.
	

 UNTIL TIME

 'date_string'	Specifies the time until which the backup or copy must be kept. After this time the backup is obsolete, regardless of the backup retention policy settings.
You can either specify a specific time by using the current NLS_DATE_FORMAT, or a SQL date expression such as 'SYSDATE+365'. If you specify a KEEP TIME such as 01-JAN-07, then the backup becomes obsolete one second after midnight on this date. If you specify a KEEP time such as 9:00 p.m, then the backup becomes obsolete at 9:01 p.m.

	

 RESTORE POINT

 restore_point_name	Creates a normal restore point matching the SCN to which RMAN must recover the backup to a consistent state (see Example 2-26). The restore point name must not already exist.
The SCN is captured just after the datafile backups complete. The restore point is a label for the SCN to which this archival backup can be restored and recovered, enabling the database to be opened. In contrast, the UNTIL TIME clause specifies the date until which the backup must be kept.

Note: The RESTORE POINT parameter is not valid with the CHANGE command.

	NOKEEP	Specifies that any KEEP attributes no longer apply to the backup. Thus, the backup is a normal backup that is subject to the configured backup retention policy. This is the default behavior if no KEEP option is specified.

Examples

Example 3-23 Creating a Consistent Database Backup for Archival

This example makes a database backup with tag Q107 and specifies that it should never be considered obsolete (partial sample output included). The archived redo logs necessary to make the datafiles consistent are included in the backup set.

RMAN> BACKUP TAG Q107 DATABASE KEEP FOREVER;

Starting backup at 24-JAN-07

current log archived
allocated channel: ORA_SBT_TAPE_1
channel ORA_SBT_TAPE_1: SID=105 device type=SBT_TAPE
channel ORA_SBT_TAPE_1: Oracle Secure Backup
backup will never be obsolete
archived logs required to recover from this backup will be backed up
channel ORA_SBT_TAPE_1: starting full datafile backup set
channel ORA_SBT_TAPE_1: specifying datafile(s) in backup set
.
.
.

Example 3-24 Removing the KEEP Attributes for a Backup

This example backs up all archived redo logs. The KEEP clause specifies that one second after midnight on January 1, 2008 the backup is considered obsolete.

RMAN> BACKUP KEEP UNTIL TIME '01-JAN-08' ARCHIVELOG ALL;

The following command removes the KEEP attributes of all archived redo log backups (sample output included):

RMAN> CHANGE BACKUP OF ARCHIVELOG ALL NOKEEP;

using channel ORA_SBT_TAPE_1
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=77 device type=DISK
keep attributes for the backup are deleted
backup set key=330 RECID=19 STAMP=612722760
keep attributes for the backup are deleted
backup set key=397 RECID=22 STAMP=612722884

maintQualifier

Purpose

Use the maintQualifier subclause to specify database files and archived redo logs.

Syntax

maintQualifier::=

[image: Description of maintqualifier.gif follows]

(completedTimeSpec::=, deviceSpecifier::=)

Semantics

maintQualifier

	Syntax Element	Description
	completedTimeSpec
	Specifies a range of time for completion of the backup or copy.
See Also: completedTimeSpec

	DEVICE TYPE deviceSpecifier	Allocates automatic channels for the specified device type only. This option is valid only if you have configured automatic channels and have not manually allocated channels. For example, if you configure automatic disk and tape channels, and issue CHANGE...DEVICE TYPE DISK, then RMAN allocates only disk channels.
See Also: deviceSpecifier

	LIKE 'string_pattern'	Restricts datafile copies by specifying a filename pattern. The pattern can contain Oracle pattern matching characters percent sign (%) and underscore (_). RMAN only operates on those files whose name matches the pattern.
Note: You cannot use the LIKE option with the LIST ... ARCHIVELOG command or with backup pieces.

	

BACKED UP integer

TIMES TO DEVICE TYPE deviceSpecifier	Restricts the command to archived logs that have been successfully backed up integer or more times to the specified media. This option applies only to archived redo logs.
When the BACKED UP option is used with the DELETE ARCHIVELOG command, RMAN uses the BACKED UP setting rather than the configured settings to determine whether an archived log can be deleted. That is, CONFIGURE ARCHIVELOG DELETION POLICY is overridden. Use FORCE with DELETE ARCHIVELOG to override this configuration as well as any mismatches between media and repository.

	TAG tag_name	Specifies the datafile copies and backup sets by tag. Tag names are not case sensitive and display in all uppercase.
See Also: BACKUP for a description of how a tag can be applied to an individual copy of a duplexed backup set, and also for a description of the default filename format for tags

Example

Example 3-28 Listing Backups in a Specific Location

The following command lists all image copies located in directory /disk2:

RMAN> LIST COPY LIKE '/disk2/%';

List of Datafile Copies
=======================

Key File S Completion Time Ckp SCN Ckp Time
------- ---- - --------------- ---------- ---------------
9855 1 A 08-MAR-07 1394701 08-MAR-07
 Name: /disk2/data_D-PROD_I-28014364_TS-SYSTEM_FNO-1_8eic410j
 Tag: TAG20070308T160643

9856 2 A 08-MAR-07 1394735 08-MAR-07
 Name: /disk2/data_D-PROD_I-28014364_TS-SYSAUX_FNO-2_8fic412a
 Tag: TAG20070308T160643

Example 3-29 Deleting Archived Logs That Are Already Backed Up

The following command deletes only those archived logs that have been successfully backed up two or more times to tape. In this example, only the sequence 36 archived log meets these criteria.

RMAN> DELETE ARCHIVELOG ALL BACKED UP 2 TIMES TO DEVICE TYPE sbt;

released channel: ORA_SBT_TAPE_1
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=104 device type=DISK
RMAN-08138: WARNING: archived log not deleted - must create more backups
archived log file name=/disk1/oradata/prod/arch/archiver_1_37_616443024.arc thread=1 sequence=37
List of Archived Log Copies for database with db_unique_name PROD
===

Key Thrd Seq S Low Time
------- ---- ------- - ---------
9940 1 36 A 08-MAR-07
 Name: /disk1/oradata/prod/arch/archiver_1_36_616443024.arc

Do you really want to delete the above objects (enter YES or NO)? Y
deleted archived log
archived log file name=/disk1/oradata/prod/arch/archiver_1_36_616443024.arc RECID=129 STAMP=616695115
Deleted 1 objects

recordSpec

Purpose

Use the recordSpec subclause to specify which backups or copies the CHANGE, CROSSCHECK, DELETE, and LIST commands should process.

Most recordSpec options allow you to specify a primary key. Use the output of the LIST command to obtain primary keys.

Syntax

recordSpec::=

[image: Description of recordspec.gif follows]

Semantics

	Syntax Element	Description
	ARCHIVELOG	Specifies an archived redo log by either primary key or filename.
	BACKUPSET	Specifies a backup set by primary key.
	BACKUPPIECE	Specifies a backup piece by media handle, primary key, or tag name.
	PROXY	Specifies a proxy copy by media handle, primary key, or tag name.
	CONTROLFILECOPY	Specifies a control file copy by primary key, filename pattern ('filename'), or TAG tag_name. If you crosscheck a control file copy, then you must specify a filename rather than a primary key.
	DATAFILECOPY	Specifies a datafile copy by primary key, filename pattern ('filename'), tag (TAG tag_name), or matching string (LIKE 'string_pattern'). Specify ALL to indicate all datafile copies recorded in the RMAN repository.
	 NODUPLICATES	Specifies that only one copy of the control file or datafile copy specified by the rest of the clause should be the target of the operation, even when there are multiple copies.

Examples

Example 3-32 Crosschecking Backups

This example crosschecks backup sets specified by primary key:

RMAN> LIST BACKUP SUMMARY;

List of Backups
===============
Key TY LV S Device Type Completion Time #Pieces #Copies Compressed Tag
------- -- -- - ----------- --------------- ------- ------- ---------- ---
8504 B A A SBT_TAPE 08-MAR-07 1 1 NO TAG20070308T155057
8558 B F A SBT_TAPE 08-MAR-07 1 1 NO TAG20070308T155114
9872 B F A DISK 08-MAR-07 1 1 NO TAG20070308T160830
9954 B A A SBT_TAPE 08-MAR-07 1 1 NO TAG20070308T161157
9972 B F A SBT_TAPE 08-MAR-07 1 1 NO TAG20070308T161224
10021 B A A SBT_TAPE 08-MAR-07 1 1 NO TAG20070308T161251
10042 B F A SBT_TAPE 08-MAR-07 1 1 NO TAG20070308T161308
10185 B F A DISK 08-MAR-07 1 1 NO TAG20070308T170532
10210 B F A DISK 08-MAR-07 1 1 NO TAG20070308T170535

RMAN> CROSSCHECK BACKUPSET 9872, 10185, 10210;

allocated channel: ORA_SBT_TAPE_1
channel ORA_SBT_TAPE_1: SID=103 device type=SBT_TAPE
channel ORA_SBT_TAPE_1: Oracle Secure Backup
using channel ORA_DISK_1
crosschecked backup piece: found to be 'AVAILABLE'
backup piece handle=/disk2/PROD/autobackup/2007_03_08/o1_mf_s_616694910_2z19d0wg_.bkp RECID=197 STAMP=616694912
crosschecked backup piece: found to be 'AVAILABLE'
backup piece handle=/disk2/PROD/backupset/2007_03_08/o1_mf_nnsnf_TAG20070308T170532_2z1dpwz6_.bkp RECID=202 STAMP=616698332
crosschecked backup piece: found to be 'AVAILABLE'
backup piece handle=/disk2/PROD/autobackup/2007_03_08/o1_mf_s_616698335_2z1dq0d0_.bkp RECID=203 STAMP=616698336
Crosschecked 3 objects

Example 3-33 Deleting Datafile Copies

This example deletes the specified datafile copy:

RMAN> DELETE NOPROMPT DATAFILECOPY '/disk1/oradata/prod/users01.dbf';

untilClause

Purpose

Use the untilClause subclause to specify an upper limit by time, SCN, restore point or log sequence number for various RMAN operations.

Syntax

untilClause::=

[image: untilClause syntax diagram]

Semantics

	Syntax Element	Description
	UNTIL SCN integer	Specifies an SCN as an upper, noninclusive limit.
RMAN selects only files that can be used to restore or recover up to but not including the specified SCN (see Example 3-35). For example, RESTORE DATABASE UNTIL SCN 1000 chooses only backups that could be used to recover to SCN 1000.

	UNTIL SEQUENCE integer	Specifies a redo log sequence number and thread as an upper, noninclusive limit.
RMAN selects only files that can be used to restore or recover up to but not including the specified sequence number. For example, REPORT OBSOLETE UNTIL SEQUENCE 8000 reports only backups that could be used to recover through log sequence 7999.

	 THREAD integer	Specifies the number of the redo thread.
	UNTIL TIME 'date_string'	Specifies a time as an upper, noninclusive limit (see Example 3-36).
RMAN selects only files that can be used to restore and recover up to but not including the specified time. For example, LIST BACKUP UNTIL TIME 'SYSDATE-7' lists all backups that could be used to recover to a point one week ago.

When specifying dates in RMAN commands, the date string must be either:

	
A literal string whose format matches the NLS_DATE_FORMAT setting.

	
A SQL expression of type DATE, for example, 'SYSDATE-10' or "TO_DATE('01/30/2007', 'MM/DD/YYYY')". Note that the second example includes its own date format mask and so is independent of the current NLS_DATE_FORMAT setting.

Following are examples of typical date settings in RMAN commands:

BACKUP ARCHIVELOG FROM TIME 'SYSDATE-31' UNTIL TIME 'SYSDATE-14';
RESTORE DATABASE UNTIL TIME "TO_DATE('09/20/06','MM/DD/YY')";

Note: The granularity of time-based recovery is dependent on time stamps in the redo log. For example, suppose that you specify the following command:

RECOVER DATABASE UNTIL TIME '2007-07-26 17:45:00';

If no redo was written with a time stamp of 17:45:00, then recovery proceeds until it finds the next redo time stamp that is higher. For example, the next redo time stamp may be 17:45:04. You can check for the nearest time for a specific SCN by querying the FIRST_TIME and FIRST_CHANGE# columns in V$LOG_HISTORY TABLE.

Examples

Example 3-35 Performing Incomplete Recovery to a Specified SCN

This example, which assumes a mounted database, recovers the database up to (but not including) the specified SCN:

STARTUP FORCE MOUNT
RUN
{
 SET UNTIL SCN 1418901; # set to 1418901 to recover database through SCN 1418900
 RESTORE DATABASE;
 RECOVER DATABASE;
}
ALTER DATABASE OPEN RESETLOGS;

Example 3-36 Reporting Obsolete Backups

This example assumes that you want to be able to recover to any point within the last week. It considers as obsolete all backups that could be used to recover the database to a point one week ago:

REPORT OBSOLETE UNTIL TIME 'SYSDATE-7';

4 Recovery Catalog Views

This chapter contains descriptions of recovery catalog views. You can only access these views if you have created a recovery catalog (see CREATE CATALOG). For a summary of the recovery catalog views, refer to "Summary of RMAN Recovery Catalog Views".

	
Note:

These views are not normalized, but are optimized for RMAN and Enterprise Manager usage. Hence, most catalog views have redundant values that result from joining of several underlying tables.
The views intended for use by Enterprise Manager are generally less useful for direct querying than the other views.

RC_BACKUP_COPY_SUMMARY

RC_BACKUP_COPY_SUMMARY contains summary information about all AVAILABLE control file and datafile copies for each database.

This view is primarily intended to be used internally by Enterprise Manager.

	Column	Datatype	Description
	DB_NAME	VARCHAR2(8)	The DB_NAME of the database incarnation to which this record belongs.
	DB_KEY	NUMBER	The primary key for this database in the recovery catalog. Use this column to join with almost any other catalog view.
	NUM_COPIES	NUMBER	Total number of image copy backups.
	NUM_DISTINCT_COPIES	NUMBER	Number of distinct image copy backups.
	MIN_CHECKPOINT_CHANGE#	NUMBER	Minimum checkpoint SCN among all image copy backups described in this view.
	MAX_CHECKPOINT_CHANGE#	NUMBER	Maximum checkpoint SCN among all image copy backups described in this view.
	MIN_CHECKPOINT_TIME	DATE	Earliest checkpoint time among all copies described in this view.
	MAX_CHECKPOINT_TIME	DATE	Latest checkpoint time among all copies described in this view.
	OUTPUT_BYTES	NUMBER	Sum of sizes of all datafile and control file copies.
	OUTPUT_BYTES_DISPLAY	VARCHAR2(4000)	Same value as OUTPUT_BYTES, but converted to a user-displayable format, for example, 798.01M or 5.25G.

RC_BACKUP_SET_DETAILS

RC_BACKUP_SET_DETAILS provides details about currently available backup sets, including backup sets created by the use of the BACKUP BACKUPSET command.

This view is primarily intended to be used internally by Enterprise Manager.

	Column	Datatype	Description
	SESSION_KEY	NUMBER	Session identifier. Use in joins with RC_RMAN_OUTPUT and RC_RMAN_BACKUP_JOB_DETAILS.
	SESSION_RECID	NUMBER	Together with SESSION_STAMP, uniquely identifies output for this backup job from RC_RMAN_OUTPUT.
	SESSION_STAMP	NUMBER	Together with SESSION_RECID, uniquely identifies output for this backup job from RC_RMAN_OUTPUT.
	DB_KEY	NUMBER	The primary key for this database in the recovery catalog. Use this column to join with almost any other catalog view.
	DB_NAME	VARCHAR2(8)	The DB_NAME of the database incarnation to which this record belongs.
	BS_KEY	NUMBER	The primary key of the backup set to which this record belongs in the recovery catalog. Use this column to joint with RC_BACKUP_SET or RC_BACKUP_PIECE.
	RECID	NUMBER	The backup set RECID and STAMP form a concatenated primary key that uniquely identifies this record in the target database control file.
	STAMP	NUMBER	The backup set RECID and STAMP form a concatenated primary key that uniquely identifies this record in the target database control file.
	SET_STAMP	NUMBER	The SET_STAMP value from V$BACKUP_SET. SET_STAMP and SET_COUNT form a concatenated key that uniquely identifies this record in the target database control file.
	SET_COUNT	NUMBER	The SET_COUNT value from V$BACKUP_SET. SET_STAMP and SET_COUNT form a concatenated key that uniquely identifies this record in the target database control file.
	BACKUP_TYPE	VARCHAR2(1)	The type of the backup: D (full backup or level 0 incremental), I (incremental level 1), L (archived redo log).
	CONTROLFILE_INCLUDED	VARCHAR2(7)	Possible values are NONE (backup set does not include a backup control file), BACKUP (backup set includes a normal backup control file), and STANDBY (backup set includes a standby control file).
	INCREMENTAL_LEVEL	NUMBER	The level of the incremental backup: NULL, 0, or 1.
	PIECES	NUMBER	The number of backup pieces in the backup set.
	START_TIME	DATE	The time when the backup began.
	COMPLETION_TIME	DATE	The time when the backup completed
	ELAPSED_SECONDS	NUMBER	The duration of the backup in seconds.
	BLOCK_SIZE	VARCHAR2	The block size used when creating the backup pieces in the backup set.
	KEEP	VARCHAR2(3)	Indicates whether this backup set has a retention policy different from the value for CONFIGURE RETENTION POLICY. Possible values are YES and NO.
	KEEP_UNTIL	DATE	If the KEEP UNTIL TIME clause of the BACKUP command was specified, then this column shows the date after which this backup becomes obsolete. If the column is NULL and KEEP OPTIONS is not NULL, the backup never becomes obsolete.
	KEEP_OPTIONS	VARCHAR2(11)	The KEEP options specified for this backup set. Possible values are NOLOGS, BACKUP_LOGS, LOGS, and NULL. NOLOGS indicates a consistent backup made when the database was mounted. BACKUP_LOGS indicates that the backup was made in open mode, so archived log backups must be applied to make it consistent. LOGS indicates a long-term backup made with the LOGS keyword, which is now deprecated. NULL indicates that this backup has no KEEP options and becomes obsolete based on the retention policy.
	DEVICE_TYPE	VARCHAR2(255)	Device type on which the backup is stored. If the backup set is stored on more than one type of device (for example, if a backup set created on disk and still present on disk has also been backed up to tape using BACKUP BACKUPSET), then this column contains an asterisk (*). Values are DISK or SBT_TAPE.
	COMPRESSED	VARCHAR2(3)	YES if RMAN's binary compression was used in creating the backup set. NO, otherwise.
	NUM_COPIES	NUMBER	Number of identical copies of this backup set created during the backup, for example if duplexing was used.
	OUTPUT_BYTES	NUMBER	Sum of sizes of all output pieces generated by this job.
	ORIGINAL_INPUT_BYTES	NUMBER	Sum of sizes of all input files backed up for this job.
	COMPRESSION_RATIO	NUMBER	Compression ratio for this backup.
	STATUS	CHAR(1)	The status of the backup set: always A (all backup pieces available), because this view only reflects available backup sets.
	ORIGINAL_INPRATE_BYTES	NUMBER	Number of bytes read each second when the backup set was initially created.
	OUTPUT_RATE_BYTES	NUMBER	Number of bytes written each second when the backup set was initially created.
	ORIGINAL_INPUT_BYTES_DISPLAY	VARCHAR2(4000)	Same value as ORIGINAL_INPUT_BYTES, but converted to a user-displayable format, for example, 798.01M or 5.25G.
	OUTPUT_BYTES_DISPLAY	VARCHAR2(4000)	Same value as OUTPUT_BYTES, but converted to a user-displayable format, for example, 798.01M or 5.25G.
	ORIGINAL_INPRATE_BYTES_DISPLAY	VARCHAR2(4000)	Same value as ORIGINAL_INPRATE_BYTES, but converted to a user-displayable format, for example, 798.01M or 5.25G.
	OUTPUT_RATE_BYTES_DISPLAY	VARCHAR2(4000)	Same value as OUTPUT_RATE_BYTES, but converted to a user-displayable format, for example, 798.01M or 5.25G.
	TIME_TAKEN_DISPLAY	VARCHAR2(4000)	Same value as ELAPSED_SECONDS, but converted to a user-displayable format in hours, minutes and seconds.
	ENCRYPTED	VARCHAR2(3)	Indicates whether the backup piece is encrypted (YES) or not (NO).
	BACKED_BY_OSB	VARCHAR2(3)	Indicates whether the backup piece is backed up to Oracle Secure Backup (YES) or not (NO).

RC_BACKUP_SET_SUMMARY

RC_BACKUP_SET_SUMMARY provides aggregate information about available backup sets for each database registered in the recovery catalog.

This view is primarily intended to be used internally by Enterprise Manager.

	Column	Datatype	Description
	DB_NAME	VARCHAR2(8)	The DB_NAME of the database incarnation to which this record belongs.
	DB_KEY	NUMBER	The primary key for this database in the recovery catalog. Use this column to join with almost any other catalog view.
	NUM_BACKUPSETS	NUMBER	Total number of available backup sets recorded in the recovery catalog for this database.
	OLDEST_BACKUP_TIME	DATE	Creation time of the oldest available backup set recorded in the recovery catalog for this database.
	NEWEST_BACKUP_TIME	DATE	Creation time of the newest available backup set recorded in the recovery catalog for this database.
	OUTPUT_BYTES	NUMBER	Sum of sizes of all backup pieces for all available backup sets recorded in the recovery catalog for this database.
	ORIGINAL_INPUT_BYTES	NUMBER	Sum of sizes of all input files for all available backup sets recorded in the recovery catalog for this database.
	ORIGINAL_INPRATE_BYTES	NUMBER	Average input rate in bytes for the creation of all available backup sets recorded in the recovery catalog for this database.
	OUTPUT_RATE_BYTES	NUMBER	Average output rate in bytes for the creation of all available backup sets recorded in the recovery catalog for this database.
	COMPRESSION_RATIO	NUMBER	Aggregate compression ratio for all available backup sets recorded in the recovery catalog for this database.
	ORIGINAL_INPUT_BYTES_DISPLAY	VARCHAR2(4000)	Total size of all input files stored in all available backup sets recorded in the recovery catalog for this database.
	OUTPUT_BYTES_DISPLAY	VARCHAR2(4000)	Same value as OUTPUT_BYTES, but converted to a user-displayable format, for example, 798.01M or 5.25G.
	ORIGINAL_INPRATE_BYTES_DISPLAY	VARCHAR2(4000)	Same value as ORIGINAL_INPRATE_BYTES, but converted to a user-displayable format, for example, 798.01M or 5.25G.
	OUTPUT_RATE_BYTES_DISPLAY	VARCHAR2(4000)	Same value as OUTPUT_RATE_BYTES, but converted to a user-displayable format, for example, 798.01M or 5.25G.

RC_BACKUP_SPFILE

This view lists information about server parameter files in backup sets.

	Column	Datatype	Description
	DB_KEY	NUMBER	The primary key for the target database. Use this column to join with almost any other catalog view.
	BSF_KEY	NUMBER	The primary key of the server parameter file in the recovery catalog. If you issue the LIST command while RMAN is connected to the recovery catalog, then this value appears in the KEY column of the output.
	RECID	NUMBER	The record identifier propagated from V$BACKUP_SPFILE. RECID and STAMP form a concatenated primary key that uniquely identifies this record in the target database control file.
	STAMP	NUMBER	The stamp from V$BACKUP_SPFILE. RECID and STAMP form a concatenated primary key that uniquely identifies this record in the target database control file.
	BS_KEY	NUMBER	The primary key of the backup set to which this record belongs in the recovery catalog. Use this column to join with RC_BACKUP_SET.
	SET_STAMP	NUMBER	The SET_STAMP value from V$BACKUP_SET. SET_STAMP and SET_COUNT form a concatenated key that uniquely identifies the backup set to which this record belongs in the target database control file.
	SET_COUNT	NUMBER	The SET_COUNT value from V$BACKUP_SET. SET_STAMP and SET_COUNT form a concatenated key that uniquely identifies the backup set to which this record belongs in the target database control file.
	MODIFICATION_TIME	DATE	The time when the server parameter file was last modified.
	STATUS	VARCHAR2(1)	The status of the backup set: A (all backup pieces available), D (all backup pieces deleted), O (some backup pieces are available but others are not, so the backup set is unusable).
	BS_RECID	NUMBER	The RECID value from V$BACKUP_SET.
	BS_STAMP	NUMBER	The STAMP value from V$BACKUP_SET. Note that BS_STAMP is different from SET_STAMP. BS_STAMP is the stamp of the backup set record when created in the control file, whereas SET_STAMP joins with SET_COUNT to make a unique identifier.
	COMPLETION_TIME	DATE	The time when the backup set completed.
	BYTES	NUMBER	The size of the backup set in bytes.
	DB_UNIQUE_NAME	VARCHAR2(30)	The DB_UNIQUE_NAME of the database to which this record belongs.

RC_COPY_CORRUPTION

This view lists corrupt block ranges in datafile copies. It corresponds to the V$COPY_CORRUPTION view.

	Column	Datatype	Description
	DB_KEY	NUMBER	The primary key for the target database. Use this column to join with almost any other catalog view.
	DBINC_KEY	NUMBER	The primary key for the incarnation of the target database. Use this column to join with RC_DATABASE_INCARNATION.
	DB_NAME	VARCHAR2(8)	The DB_NAME of the database incarnation to which this record belongs.
	RECID	NUMBER	The record identifier from V$COPY_CORRUPTION. RECID and STAMP form a concatenated primary key that uniquely identifies this record in the target database control file.
	STAMP	NUMBER	The stamp from V$COPY_CORRUPTION. RECID and STAMP form a concatenated primary key that uniquely identifies this record in the target database control file.
	CDF_KEY	NUMBER	The primary key of the datafile copy in the recovery catalog. If you issue the LIST command while RMAN is connected to the recovery catalog, then this value appears in the KEY column of the output. Use this column to join with RC_DATAFILE_COPY.
	COPY_RECID	NUMBER	The RECID from RC_DATAFILE_COPY. This value is propagated from the control file.
	COPY_STAMP	NUMBER	The STAMP from RC_DATAFILE_COPY. This value is propagated from the control file.
	FILE#	NUMBER	The absolute file number of the datafile.
	CREATION_CHANGE#	NUMBER	The creation SCN of this data file. Because file numbers can be reused, FILE# and CREATION_CHANGE# are both required to uniquely identify a specified file over the life of the database.
	BLOCK#	NUMBER	The block number of the first corrupted block in the file.
	BLOCKS	NUMBER	The number of corrupted blocks found beginning with BLOCK#.
	CORRUPTION_CHANGE#	NUMBER	For media corrupt blocks, this value is zero. For logically corrupt blocks, this value is the lowest SCN in the blocks in this corrupt range.
	MARKED_CORRUPT	VARCHAR2(3)	YES if this corruption was not previously detected by the database server or NO if it was already known by the database server.
	CORRUPTION_TYPE	VARCHAR2(9)	Same as RC_DATABASE_BLOCK_CORRUPTION.CORRUPTION_TYPE.

RC_DATABASE

This view gives information about the databases registered in the recovery catalog. It corresponds to the V$DATABASE view.

	Column	Datatype	Description
	DB_KEY	NUMBER	The primary key for the database. Use this column to join with almost any other catalog view.
	DBINC_KEY	NUMBER	The primary key for the current incarnation. Use this column to join with RC_DATABASE_INCARNATION.
	DBID	NUMBER	Unique identifier for the database obtained from V$DATABASE.
	NAME	VARCHAR2(8)	The DB_NAME of the database for the current incarnation.
	RESETLOGS_CHANGE#	NUMBER	The SCN of the RESETLOGS of the current database incarnation.
	RESETLOGS_TIME	DATE	The timestamp of the RESETLOGS of the current database incarnation.

RC_DATAFILE

This view lists information about all datafiles registered in the recovery catalog. It corresponds to the V$DATAFILE view. A datafile is shown as dropped if its tablespace was dropped.

	Column	Datatype	Description
	DB_KEY	NUMBER	The primary key for this database in the recovery catalog. Use this column to join with almost any other catalog view.
	DBINC_KEY	NUMBER	The primary key for the incarnation of the target database. Use this column to join with RC_DATABASE_INCARNATION.
	DB_NAME	VARCHAR2(8)	The DB_NAME of the database incarnation to which this record belongs.
	TS#	NUMBER	The number of the tablespace to which the datafile belongs. The TS# may exist multiple times in the same incarnation if the tablespace is dropped and re-created.
	TABLESPACE_NAME	VARCHAR2(30)	The tablespace name. The name may exist multiple times in the same incarnation if the tablespace is dropped and re-created.
	FILE#	NUMBER	The absolute file number of the datafile. The same datafile number may exist multiple times in the same incarnation if the datafile is dropped and re-created.
	CREATION_CHANGE#	NUMBER	The SCN at datafile creation.
	CREATION_TIME	DATE	The time of datafile creation.
	DROP_CHANGE#	NUMBER	The SCN recorded when the datafile was dropped. If a new datafile with the same file number is discovered, then the DROP_CHANGE# is set to CREATION_CHANGE# for the datafile; otherwise the value is set to RC_CHECKPOINT.CKP_SCN.
	DROP_TIME	DATE	The time when the datafile was dropped. If a new datafile with the same file number is discovered, then the DROP_TIME is set to CREATION_TIME for the datafile; otherwise the value is set to RC_CHECKPOINT.CKP_TIME.
	BYTES	NUMBER	The size of the datafile in bytes.
	BLOCKS	NUMBER	The size of the datafile in blocks.
	BLOCK_SIZE	NUMBER	The size of the data blocks in bytes.
	NAME	VARCHAR2(1024)	The datafile filename.
	STOP_CHANGE#	NUMBER	For offline or read-only datafiles, the SCN value such that no changes in the redo stream at an equal or greater SCN apply to this file.
	STOP_TIME	DATE	For offline normal or read-only datafiles, the time beyond which there are no changes in the redo stream that apply to this datafile.
	READ_ONLY	NUMBER	1 if the file is read-only; otherwise 0.
	RFILE#	NUMBER	The relative file number of this datafile within its tablespace.
	INCLUDED_IN_DATABASE_BACKUP	VARCHAR2(3)	Indicates whether this tablespace is included in whole database backups: YES or NO. The NO value occurs only if CONFIGURE EXCLUDE was run on the tablespace that owns this datafile.
	AUX_NAME	VARCHAR2(1024)	Indicates the auxiliary name for the datafile as set by CONFIGURE AUXNAME.
	ENCRYPT_IN_BACKUP	VARCHAR2(3)	YES if this datafile has been configured to be transparently encrypted when backed up; otherwise NULL.
	SITE_KEY	NUMBER	Primary key of the Data Guard database associated with this file. Each database in a Data Guard environment has a unique SITE_KEY value. You can use SITE_KEY in a join with the RC_SITE view to obtain the DB_UNIQUE_NAME of the database.
	DB_UNIQUE_NAME	VARCHAR2(512)	The DB_UNIQUE_NAME of the database incarnation to which this record belongs. All databases in a Data Guard environment share the same DBID but different DB_UNIQUE_NAME values. The value in this column is null when the database name is not known for a specific file. For example, rows for databases managed by versions of RMAN before Oracle Database 11g are null.
	FOREIGN_DBID	NUMBER	Foreign DBID from which this data file came from. The value is 0 if this file is not a foreign database file.
	FOREIGN_CREATION_CHANGE#	NUMBER	Creation SCN of a foreign datafile. The value is 0 if this file is not a foreign database file.
	FOREIGN_CREATION_TIME	DATE	Creation time of a foreign datafile. The value is 0 if this file is not a foreign database file.
	PLUGGED_READONLY	VARCHAR2(3)	YES if this is a transported read-only foreign file; otherwise NO.
	PLUGIN_CHANGE#	NUMBER	SCN at which the foreign datafile was transported into the database. The value is 0 if this file is not a foreign database file.
	PLUGIN_RESETLOGS_CHANGE#	NUMBER	The SCN of the RESETLOGS operation for the incarnation into which this foreign file was transported. The value is 0 if this file is not a foreign database file.
	PLUGIN_RESETLOGS_TIME	DATE	The time of the RESETLOGS operation for the incarnation into which this foreign file was transported. The value is 0 if this file is not a foreign database file.

RC_PROXY_ARCHIVEDLOG

This view contains descriptions of archived log backups that were taken using the proxy copy functionality. It corresponds to the V$PROXY_ARCHIVEDLOG view.

In a proxy copy, the media manager takes over the operations of backing up and restoring data. Each row represents a backup of one control file.

	Column	Datatype	Description
	DB_KEY	NUMBER	The primary key for the target database. Use this column to join with almost any other catalog view.
	DBINC_KEY	NUMBER	The primary key for the incarnation of the target database. Use this column to join with RC_DATABASE_INCARNATION.
	DB_NAME	VARCHAR2(8)	The DB_NAME of the database incarnation to which this record belongs.
	XAL_KEY	NUMBER	The proxy copy primary key in the recovery catalog. If you issue the LIST command while RMAN is connected to the recovery catalog, then this value appears in the KEY column of the output.
	RECID	NUMBER	The proxy copy record identifier from V$PROXY_ARCHIVEDLOG. RECID and STAMP form a concatenated primary key that uniquely identifies this record in the target database control file.
	STAMP	NUMBER	The proxy copy stamp from V$PROXY_ARCHIVEDLOG. RECID and STAMP form a concatenated primary key that uniquely identifies this record in the target database control file.
	TAG	VARCHAR2(32)	The tag for the proxy copy.
	DEVICE_TYPE	VARCHAR2(255)	The type of media device that stores the proxy copy.
	HANDLE	VARCHAR2(1024)	The name or "handle" for the proxy copy. RMAN passes this value to the media manager that created the proxy copy of the archived redo log.
	COMMENTS	VARCHAR2(255)	Comments about the proxy copy.
	MEDIA	VARCHAR2(80)	A comment that contains further information about the media manager that created this backup.
	MEDIA_POOL	NUMBER	The number of the media pool in which the proxy copy is stored.
	STATUS	VARCHAR2(1)	The status of the backup set: A (available), U (unavailable), X (expired), or D (deleted).
	THREAD#	NUMBER	The number of the redo thread.
	SEQUENCE#	NUMBER	The log sequence number.
	RESETLOGS_CHANGE#	NUMBER	The RESETLOGS SCN of the database incarnation to which this archived log belongs.
	RESETLOGS_TIME	DATE	The RESETLOGS time stamp of the database incarnation to which this archived log belongs.
	FIRST_CHANGE#	NUMBER	The first SCN of this redo log.
	FIRST_TIME	DATE	The time when Oracle switched into the redo log.
	NEXT_CHANGE#	NUMBER	The first SCN of the next redo log in the thread.
	NEXT_TIME	DATE	The first time stamp of the next redo log in the thread.
	BLOCKS	NUMBER	The size of this archived redo log in operating system blocks.
	BLOCK_SIZE	NUMBER	The block size for the copy in bytes.
	DEVICE_TYPE	VARCHAR2(255)	The type of sequential media device.
	START_TIME	DATE	The time when proxy copy was initiated.
	COMPLETION_TIME	DATE	The time when the proxy copy was completed.
	ELAPSED_SECONDS	NUMBER	The duration of the proxy copy.
	RSR_KEY	NUMBER	The primary key from the RMAN status record. Use this column to perform a join with RC_RMAN_STATUS.
	TERMINAL	VARCHAR2(3)	YES if this record corresponds to a terminal archived redo log, as defined in V$ARCHIVED_LOG.
	KEEP	VARCHAR2(3)	Indicates whether this proxy copy has a retention policy different from the value for CONFIGURE RETENTION POLICY. Possible values are YES and NO.
	KEEP_OPTIONS	VARCHAR2(11)	The KEEP options specified for this proxy copy. Possible values are NOLOGS, BACKUP_LOGS, LOGS, and NULL. NOLOGS indicates a consistent backup made when the database was mounted. BACKUP_LOGS indicates that the backup was made in open mode, so archived log backups must be applied to make it consistent. LOGS indicates a long-term backup made with the LOGS keyword, which is now deprecated. NULL indicates that this backup has no KEEP options and becomes obsolete based on the retention policy.
	KEEP_UNTIL	DATE	If the KEEP UNTIL TIME clause of the BACKUP command was specified, then this column shows the date after which this proxy copy becomes obsolete. If the column is NULL and KEEP OPTIONS is not NULL, then the proxy copy never becomes obsolete.
	SITE_KEY	NUMBER	Primary key of the Data Guard database associated with this file. Each database in a Data Guard environment has a unique SITE_KEY value. You can use SITE_KEY in a join with the RC_SITE view to obtain the DB_UNIQUE_NAME of the database.

RC_PROXY_CONTROLFILE

This view contains descriptions of control file backups that were taken using the proxy copy functionality. It corresponds to the V$PROXY_DATAFILE view.

In a proxy copy, the media manager takes over the operations of backing up and restoring data. Each row represents a backup of one control file.

	Column	Datatype	Description
	DB_KEY	NUMBER	The primary key for the target database. Use this column to join with almost any other catalog view.
	DBINC_KEY	NUMBER	The primary key for the incarnation of the target database. Use this column to join with RC_DATABASE_INCARNATION.
	DB_NAME	VARCHAR2(8)	The DB_NAME of the database incarnation to which this record belongs.
	XCF_KEY	NUMBER	The proxy copy primary key in the recovery catalog. If you issue the LIST command while RMAN is connected to the recovery catalog, then this value appears in the KEY column of the output.
	RECID	NUMBER	The proxy copy record identifier from V$PROXY_DATAFILE. RECID and STAMP form a concatenated primary key that uniquely identifies this record in the target database control file.
	STAMP	NUMBER	The proxy copy stamp from V$PROXY_DATAFILE.RECID and STAMP form a concatenated primary key that uniquely identifies this record in the target database control file.
	TAG	VARCHAR2(32)	The tag for the proxy copy.
	RESETLOGS_CHANGE#	NUMBER	The RESETLOGS SCN of the database incarnation to which this datafile belongs.
	RESETLOGS_TIME	DATE	The RESETLOGS time stamp of the database incarnation to which this datafile belongs.
	CHECKPOINT_CHANGE#	NUMBER	Datafile checkpoint SCN when this copy was made.
	CHECKPOINT_TIME	DATE	Datafile checkpoint time when this copy was made.
	CREATION_TIME	DATE	The control file creation time.
	BLOCK_SIZE	NUMBER	The block size for the copy in bytes.
	BLOCKS	NUMBER	The number of blocks in the copy.
	MIN_OFFR_RECID	NUMBER	Internal use only.
	OLDEST_OFFLINE_RANGE	NUMBER	Internal use only.
	DEVICE_TYPE	VARCHAR2(255)	The type of sequential media device.
	HANDLE	VARCHAR2(1024)	The name or "handle" for the proxy copy. RMAN passes this value to the operating system-dependent layer that identifies the file.
	COMMENTS	VARCHAR2(255)	Comments about the proxy copy.
	MEDIA	VARCHAR2(80)	A comment that contains further information about the media manager that created this backup.
	MEDIA_POOL	NUMBER	The number of the media pool in which the proxy copy is stored.
	START_TIME	DATE	The time when proxy copy was initiated.
	COMPLETION_TIME	DATE	The time when the proxy copy was completed.
	ELAPSED_SECONDS	NUMBER	The duration of the proxy copy.
	STATUS	VARCHAR2(1)	The status of the backup set: A (available), U (unavailable), X (expired), or D (deleted).
	KEEP	VARCHAR2(3)	Indicates whether this proxy copy has a retention policy different from the value for CONFIGURE RETENTION POLICY. Possible values are YES and NO.
	KEEP_OPTIONS	VARCHAR2(11)	The KEEP options specified for this control file backup. Possible values are NOLOGS, BACKUP_LOGS, LOGS, and NULL. NOLOGS indicates a consistent backup made when the database was mounted. BACKUP_LOGS indicates that the backup was made in open mode, so archived log backups must be applied to make it consistent. LOGS indicates a long-term backup made with the LOGS keyword, which is now deprecated. NULL indicates that this backup has no KEEP options and becomes obsolete based on the retention policy.
	KEEP_UNTIL	DATE	If the KEEP UNTIL TIME clause of the BACKUP command was specified, then this column shows the date after which this control file backup becomes obsolete. If the column is NULL and KEEP OPTIONS is not NULL, the backup never becomes obsolete.
	CONTROLFILE_TYPE	VARCHAR2(1)	The type of control file copy: B (normal copy) or S (standby copy).
	RSR_KEY	NUMBER	Unique key for the row in RC_RMAN_STATUS that created this backup piece.
	SITE_KEY	NUMBER	Primary key of the Data Guard database associated with this file. Each database in a Data Guard environment has a unique SITE_KEY value. You can use SITE_KEY in a join with the RC_SITE view to obtain the DB_UNIQUE_NAME of the database.

RC_PROXY_COPY_DETAILS

RC_PROXY_COPY_DETAILS contains detailed information about proxy copy backups for databases registered in the recovery catalog.

This view is primarily intended to be used internally by Enterprise Manager.

	Column	Datatype	Description
	SESSION_KEY	NUMBER	Session identifier. Use in joins with RC_RMAN_OUTPUT and RC_RMAN_BACKUP_JOB_DETAILS.
	SESSION_RECID	NUMBER	Together with SESSION_STAMP, uniquely identifies output for this proxy copy operation from RC_RMAN_OUTPUT.
	SESSION_STAMP	NUMBER	Together with SESSION_RECID, uniquely identifies output for this proxy copy operation from RC_RMAN_OUTPUT.
	DB_KEY	NUMBER	The primary key for this database in the recovery catalog. Use this column to join with almost any other catalog view.
	DB_NAME	VARCHAR2(8)	The DB_NAME of the database incarnation to which this record belongs.
	RSR_KEY	NUMBER	Unique key for the row in RC_RMAN_STATUS corresponding to the job that created this proxy copy.
	COPY_KEY	NUMBER	Unique identifier for this proxy copy.
	FILE#	NUMBER	The absolute file number of the datafile that is proxy copied.
	HANDLE	VARCHAR2(1024)	The proxy copy handle identifies the copy for purposes of restore operations.
	COMMENTS	VARCHAR2(255)	A comment that contains further information about the media manager that stores this backup.
	MEDIA	VARCHAR2(80)	Identifies the media manager that stores this backup.
	MEDIA_POOL	NUMBER	The number of the media pool in which the copy is stored. This is the same value that was entered in the POOL operand of the Recovery Manager BACKUP command.
	TAG	VARCHAR2(32)	Tag associated with this proxy copy.
	CREATION_CHANGE#	NUMBER	The datafile creation SCN.
	CREATION_TIME	DATE	The time corresponding to CREATION_CHANGE#.
	CHECKPOINT_CHANGE#	NUMBER	Checkpoint SCN when the proxy copy was made.
	CHECKPOINT_TIME	DATE	The time corresponding to CHECKPOINT_CHANGE#.
	OUTPUT_BYTES	NUMBER	Sum of sizes of all output pieces generated by this proxy copy operation.
	COMPLETION_TIME	DATE	Time when the proxy copy was completed.
	CONTROLFILE_TYPE	VARCHAR2(1)	Possible values are: B for a normal control file, and S for a standby control file.
	KEEP	VARCHAR2(3)	Indicates whether this backup has a retention policy different from the value for CONFIGURE RETENTION POLICY. Possible values are YES and NO.
	KEEP_UNTIL	DATE	If the KEEP UNTIL TIME clause was specified, then this column shows the date after which this backup becomes obsolete. If the column is NULL and KEEP OPTIONS is not NULL, the backup never becomes obsolete.
	KEEP_OPTIONS	VARCHAR2(11)	The KEEP options specified for this backup. Possible values are NOLOGS, BACKUP_LOGS, LOGS, and NULL. NOLOGS indicates a consistent backup made when the database was mounted. BACKUP_LOGS indicates that the backup was made in open mode, so archived log backups must be applied to make it consistent. LOGS indicates a long-term backup made with the LOGS keyword, which is now deprecated. NULL indicates that this backup has no KEEP options and becomes obsolete based on the retention policy.
	OUTPUT_BYTES_DISPLAY	VARCHAR2(4000)	Same value as OUTPUT_BYTES, but converted to a user-displayable format, for example, 798.01M or 5.25G.

RC_PROXY_COPY_SUMMARY

RC_PROXY_COPY_SUMMARY contains aggregate information about all available proxy copy backups for databases registered in the recovery catalog.

This view is primarily intended to be used internally by Enterprise Manager.

	Column	Datatype	Description
	DB_KEY	NUMBER	The primary key for this database.
	DB_NAME	VARCHAR2(8)	The DB_NAME of the database incarnation to which this record belongs.
	NUM_COPIES	NUMBER	Number of copies created by all proxy copy operations for this database.
	NUM_DISTINCT_COPIES	NUMBER	Number of distinct copies created by all proxy copy operations for this database.
	MIN_CHECKPOINT_CHANGE#	NUMBER	Minimum checkpoint SCN among any proxy copies for this database.
	MAX_CHECKPOINT_CHANGE#	NUMBER	Maximum checkpoint SCN among any proxy copies for this database.
	MIN_CHECKPOINT_TIME	DATE	The oldest checkpoint time among any proxy copies for this database.
	MAX_CHECKPOINT_TIME	DATE	The most recent checkpoint time among any proxy copies for this database.
	OUTPUT_BYTES	NUMBER	Sum of sizes of all output files generated by proxy copies.
	OUTPUT_BYTES_DISPLAY	VARCHAR2(4000)	Same value as OUTPUT_BYTES, but converted to a user-displayable format, for example, 798.01M or 5.25G.

RC_PROXY_DATAFILE

This view contains descriptions of datafile backups that were taken using the proxy copy functionality. It corresponds to the V$PROXY_DATAFILE view.

In a proxy copy, the media manager takes over the operations of backing up and restoring data. Each row represents a backup of one database file.

	Column	Datatype	Description
	DB_KEY	NUMBER	The primary key for the target database. Use this column to join with almost any other catalog view.
	DBINC_KEY	NUMBER	The primary key for the incarnation of the target database. Use this column to join with RC_DATABASE_INCARNATION.
	DB_NAME	VARCHAR2(8)	The DB_NAME of the database incarnation to which this record belongs.
	XDF_KEY	NUMBER	The proxy copy primary key in the recovery catalog. If you issue the LISTRC_REDO_LOG

RC_REDO_LOG

This view lists information about the online redo logs for all incarnations of the database since the last catalog resynchronization. This view corresponds to a join of the V$LOG and V$LOGFILE views.

	Column	Datatype	Description
	DB_KEY	NUMBER	The primary key for the target database. Use this column to join with almost any other catalog view.
	DBINC_KEY	NUMBER	The primary key for the incarnation of the target database. Use this column to join with RC_DATABASE_INCARNATION.
	DB_NAME	VARCHAR2(8)	The DB_NAME of the database incarnation to which this record belongs.
	THREAD#	NUMBER	The number of the redo thread.
	GROUP#	NUMBER	The number of the online redo log group.
	NAME	VARCHAR2(1024)	The name of the online redo log file.
	SITE_KEY	NUMBER	Primary key of the Data Guard database associated with this file. Each database in a Data Guard environment has a unique SITE_KEY value. You can use SITE_KEY in a join with the RC_SITE view to obtain the DB_UNIQUE_NAME of the database.
	BYTES	NUMBER	The size of the file in bytes.
	TYPE	VARCHAR2(7)	The type of redo log: ONLINE or STANDBY.

RC_RMAN_BACKUP_TYPE

RC_RMAN_BACKUP_TYPE

This view is used internally by Enterprise Manager.

It contains information used in filtering the other Enterprise Manager views when generating reports on specific backup types.

	Column	Datatype	Description
	WEIGHT	NUMBER	Used internally by Enterprise Manager to set precedence order of different backup types in reports.
	INPUT_TYPE	VARCHAR2(13)	Used internally by Enterprise Manager to represent possible filters used in creating various reporting screens.

RC_RMAN_CONFIGURATION

RC_RMAN_CONFIGURATION

This view lists information about RMAN persistent configuration settings. It corresponds to the V$RMAN_CONFIGURATION view.

	Column	Datatype	Description
	DB_KEY	NUMBER	The primary key for the target database corresponding to this configuration. Use this column to join with almost any other catalog view.
	CONF#	NUMBER	A unique key identifying this configuration record within the target database that owns it.
	NAME	VARCHAR2(65)	The type of configuration. All options of CONFIGURE command are valid types except: CONFIGURE EXCLUDE, (described in RC_TABLESPACE), CONFIGURE AUXNAME (described in RC_DATAFILE), and CONFIGURE SNAPSHOT CONTROLFILE (stored only in control file).
	VALUE	VARCHAR2(1025)	The CONFIGURE command setting. For example: RETENTION POLICY TO RECOVERY WINDOW OF 1 DAYS.
	DB_UNIQUE_NAME	VARCHAR2(512)	The DB_UNIQUE_NAME of the database incarnation to which this record belongs. All databases in a Data Guard environment share the same DBID but different DB_UNIQUE_NAME values. The value in this column is null when the database name is not known for a specific file. For example, rows for databases managed by versions of RMAN before Oracle Database 11g are null.
	SITE_KEY	NUMBER	Primary key of the Data Guard database associated with this configuration. Each database in a Data Guard environment has a unique SITE_KEY value. You can use SITE_KEY in a join with the RC_SITE view to obtain the DB_UNIQUE_NAME of the database.

RC_SITE

RC_SITE

This view lists information about all databases in a Data Guard environment that are known to the recovery catalog. You can use this view to obtain the DB_UNIQUE_NAME value for views which do not have this column.

	Column	Datatype	Description
	SITE_KEY	NUMBER	The unique key of this database. You can join the RC_SITE.SITE_KEY column with the RC_SITE column of other views to determine which DB_UNIQUE_NAME is associated with a backup.
	DB_KEY	NUMBER	The primary key for this database in the recovery catalog. Use this column to join with almost any other catalog view.
	DATABASE_ROLE	VARCHAR2(7)	The role of the database in the Data Guard environment.
	CF_CREATE_TIME	DATE	The creation date of the control file.
	DB_UNIQUE_NAME	VARCHAR2(30)	The DB_UNIQUE_NAME of the database. All databases in a Data Guard environment share the same DBID but different DB_UNIQUE_NAME values.

RC_STORED_SCRIPT_LINE

RC_STORED_SCRIPT_LINE

This view lists information about individual lines of stored scripts in the recovery catalog. The view contains one row for each line of each stored script.

	Column	Datatype	Description
	DB_KEY	NUMBER	The primary key for the database that owns this stored script. Use this column to join with almost any other catalog view.
	SCRIPT_NAME	VARCHAR2(100)	The name of the stored script.
	LINE	NUMBER	The number of the line in the stored script. Each line of a stored script is uniquely identified by SCRIPT_NAME and LINE.
	TEXT	VARCHAR2(1024)	The text of the line of the stored script.

Deprecated RMAN Syntax

A Deprecated RMAN Syntax

This appendix describes Recovery Manager syntax that is deprecated and describes preferred syntax if any exists.

Deprecated RMAN syntax continues to be supported in subsequent releases for backward compatibility. For example, the SET AUXNAME command replaced the SET CLONENAME command in Oracle8i, and the CONFIGURE AUXNAME command replaced the SET AUXNAME command in Oracle9i. However, you can continue to run both SET CLONENAME and SET AUXNAME in all subsequent RMAN releases.

Table A-1 Deprecated RMAN Syntax

	Deprecated in Release	Deprecated Syntax	Preferred Current Syntax
	
11.1.0

	
CONVERT ON TARGET PLATFORM

	
CONVERT ON DESTINATION PLATFORM

	
11.1.0

	
UNTIL RESTORE POINT

	
TO RESTORE POINT

	
11.1.0

	
BACKUP ... AS STANDBY

	
n/a

	
11.1.0

	
... KEEP [LOGS │ NOLOGS]

	
... KEEP

	
11.1.0

	
BLOCKRECOVER

	
RECOVER

	
10.0.1

	
BACKUP ... INCREMENTAL LEVEL [2,3,4]

	
Levels other than 0 and 1 are deprecated.

	
10.0.1

	
BACKUP ... PARMS

	
CONFIGURE CHANNEL ... PARMS

	
10.0.1

	
COPY

	
BACKUP AS COPY

	
10.0.1

	
CREATE CATALOG TABLESPACE

	
CREATE CATALOG

	
10.0.1

	
LIST ... BY BACKUP [SUMMARY]

	
n/a

	
10.0.1

	
LIST ... VERBOSE

	
n/a

	
10.0.1

	
RESTORE ... PARMS

	
CONFIGURE CHANNEL ... PARMS

	
10.0.1

	
SEND ... PARMS

	
CONFIGURE CHANNEL ... PARMS

	
9.2

	
REPLICATE

	
RESTORE CONTROLFILE FROM ...

	
9.2

	
SET AUTOLOCATE

	
Enabled by default

	
9.0.1

	
ALLOCATE CHANNEL FOR DELETE

	
n/a

	
9.0.1

	
ALLOCATE CHANNEL ... TYPE

	
CONFIGURE CHANNEL ... DEVICE TYPE

	
9.0.1

	
ALLOCATE CHANNEL ... KBYTES

	
CONFIGURE CHANNEL ... MAXPIECESIZE

	
9.0.1

	
ALLOCATE CHANNEL ... READRATE

	
CONFIGURE CHANNEL ... RATE

	
9.0.1

	
... ARCHIVELOG ... LOGSEQ

	
... ARCHIVELOG ... SEQUENCE

	
9.0.1

	
BACKUP ... SETSIZE

	
BACKUP ... MAXSETSIZE

	
9.0.1

	
CHANGE ... CROSSCHECK

	
CROSSCHECK

	
9.0.1

	
CHANGE ... DELETE

	
DELETE

	
9.0.1

	
REPORT ... AT LOGSEQ

	
REPORT ... AT SEQUENCE

	
9.0.1

	
SET AUXNAME

	
CONFIGURE AUXNAME

	
9.0.1

	
SET DUPLEX

	
SET BACKUP COPIES

CONFIGURE BACKUP COPIES

	
9.0.1

	
SET LIMIT CHANNEL ...

	
ALLOCATE CHANNEL ...

CONFIGURE CHANNEL ...

	
9.0.1

	
SET SNAPSHOT

	
CONFIGURE SNAPSHOT

	
9.0.1

	
UNTIL LOGSEQ (see untilClause)

	
UNTIL SEQUENCE (see untilClause)

	
8.1.7

	
CONFIGURE COMPATIBLE

	
n/a

	
8.1.5

	
ALLOCATE CHANNEL CLONE

	
CONFIGURE AUXILIARY CHANNEL

	
8.1.5

	
CHANGE ... VALIDATE

	
CROSSCHECK

	
8.1.5

	
CLONE (see RMAN)

	
AUXILIARY (see RMAN)

	
8.1.5

	
CONFIGURE CLONE

	
CONFIGURE AUXILIARY

	
8.1.5

	
MSGLOG (see RMAN)

	
LOG (see RMAN)

	
8.1.5

	
RCVCAT (see RMAN)

	
CATALOG (see RMAN)

RMAN Compatibility Matrix

RMAN Compatibility Matrix

In general, the rules of RMAN compatibility are as follows:

	
You can create an 8.x or 9.x recovery catalog schema in any Oracle database release 8.1.x (or higher), and a 10.0.1 (or higher) recovery catalog schema in any Oracle database release 9.0.1 (or higher).

	
The recovery catalog schema version must be greater than or equal to the RMAN client version.

	
If the recovery catalog is a virtual private catalog (see CREATE CATALOG), then the RMAN client connecting to it must be at patch level 10.1.0.6 or 10.2.0.3. Oracle9i RMAN clients cannot connect to a virtual private catalog. This version restriction does not affect RMAN client connections to an Oracle Database 11g base recovery catalog, even if the base catalog has virtual private catalog users.

	
Ideally, the versions of the RMAN client and the target database should be the same (although there are other valid combinations, listed in Table B-2). The RMAN client cannot be a greater version than the target or auxiliary database.

	
While backing up an Oracle Database 10g or later database with the Oracle9i RMAN client, you cannot include a control file that was created using COMPATIBLE=10.0.0 in a datafile backup set. The workaround is to turn control file autobackup ON.

	
The version of an auxiliary database instance must be equal to the version of the RMAN client.

	
Any release of Oracle database can restore backup sets and copies created by any prior release back to Oracle8i.

Table B-2 shows version requirements for RMAN components. Note that the symbol >= before a release means all Oracle Database releases from this release or later along with their patches.

Table B-2 RMAN Compatibility Table

	Target/Auxiliary Database	RMAN client	Recovery Catalog Database	Recovery Catalog Schema
	
8.0.6

	
8.0.6

	
>=8.1.7

	
>=8.0.6

	
8.1.7

	
8.0.6.1

	
>=8.1.7

	
>=8.1.7

	
8.1.7

	
8.1.7

	
>=8.1.7

	
>=RMAN client

	
8.1.7.4

	
8.1.7.4

	
>=8.1.7

	
8.1.7.4

	
8.1.7.4

	
8.1.7.4

	
>=8.1.7

	
>= 9.0.1.4

	
9.0.1

	
9.0.1

	
>=8.1.7

	
>= RMAN client

	
9.2.0

	
>=9.0.1.3 and <= target database executable

	
>=8.1.7

	
>= RMAN client

	
10.1.0

	
>=9.0.1.3 and <= target database executable

	
>=9.0.1

	
>= RMAN client

	
10.2.0

	
>=9.0.1.3 and <= target database executable

	
>=9.0.1

	
>= RMAN client

	
11.1.0

	
>=9.0.1.3 and <= target database executable

	
>=9.0.1

	
>= RMAN client

When using an older version of the RMAN client with a newer version of the database, you do not get the features of the newer version. For example, when using the Oracle9i RMAN client to back up an Oracle Release 10g database, you will not have access to features like the flash recovery area, flashback database, TSPITR with an RMAN-managed auxiliary instance, or recovery through RESETLOGS.

Cross-Version Compatibility of Recovery Catalog Exports and Imports

Cross-Version Compatibility of Recovery Catalog Exports and Imports

Data Pump Exports of the recovery catalog are often used as a way to backup its contents. When planning to use Data Pump Export to make a logical backup of the recovery catalog, see Oracle Database Utilities for details on compatibility issues relating to the use of database exports across versions of Oracle Database.

Exports from a later version of the database cannot be imported into databases running under earlier versions. You must export your recovery catalog data using the export utility from the earliest version of Oracle Database that you need to use for a recovery catalog.

For example, if you want to export recovery catalog data from a 9.2.0.5 database and you expect to import it into an 8.1.7.4 version of Oracle for disaster recovery, you must use the export utility from the 8.1.7.4 release of Oracle to perform the export operation. Otherwise, the import operation will fail.

Index

Index

A B C D E F G H I J K L M N O P Q R S T U V W X Z

Symbols

	%U format, 3
	? symbol in quoted strings, 1.2.2
	@ command, 2
	@ parameter, RMAN command, 2
	@ symbol in quoted strings, 1.2.2
	@@ command, 2

A

	ABORT parameter, SHUTDOWN command, 2
	ACTIVE DATABASE parameter, DUPLICATE command, 2, 2
	Advanced Compression, 2
	Advanced Security option, 2
	ADVISE FAILURE command, 2
	ADVISE OPTION parameter, REPAIR FAILURE command, 2
	AFTER parameter, completedTimeSpec subclause, 3
	AL16UTF16 character set, CLOB storage, 2
	ALGORITHM parameter, SET command, 2
	ALL parameter
	
	BACKUP command, 2
	SHOW command, 2

	ALL parameter, archivelogRecordSpecifier subclause, 3
	ALL PRIVILEGES parameter, REVOKE command, 2
	ALL SCRIPT NAMES parameter, LIST command, 2
	ALLOCATE CHANNEL command, 2
	
	allocOperandList subclause, 3

	ALLOCATE CHANNEL FOR MAINTENANCE command, 2
	
	shared server, 2

	allocOperandList subclause
	
	parameter descriptions, 3
	syntax diagram, 3

	ALLOW CORRUPTION parameter, RECOVER command, 2
	ALTER DATABASE BACKUP command (SQL), 2
	ALTER DATABASE command, 2
	analyzing RMAN repositories, 2
	APPEND parameter, RMAN command, 2
	archived log backups, 2
	archived log copies, 2
	archived log failover, 2
	archived logs
	
	in backup sets, 2
	validation report, 2

	archived redo files, optimization algorithms, 2
	archived redo logs, 3
	
	adding to repository, 2
	backing up, 2, 2, 3
	backing up n times, 2
	cataloging in RMAN repository, 2
	days for recovery, 2
	deleting, 2, 2, 2, 2
	deletion policies, 2
	displaying information, 2
	excluding from backup, 2, 2
	excluding from validation, 2
	foreign (LogMiner), 3
	image copies, 2
	limiting number of backups, 2
	missing or inaccessible, 2
	number of backups, 2
	obsolete, 2
	previewing, 2
	recovering, 2
	report output, 2
	restoring, 2
	restoring a range, 2
	setting the destination, 2
	specifying a range, 3
	using for recovery (example), 2
	validating, 2, 2

	ARCHIVELOG BACKUP COPIES parameter
	
	CONFIGURE command, 2
	SHOW command, 2

	ARCHIVELOG DELETION POLICY parameter
	
	CONFIGURE command, 2
	SHOW command, 2

	ARCHIVELOG DESTINATION parameter, SET command, 2
	ARCHIVELOG mode, 2, 2, 2
	ARCHIVELOG parameter
	
	CATALOG command, 2
	VALIDATE command, 2
	recordSpec subclause, 3

	ARCHIVELOG TAG parameter, RECOVER command, 2
	archivelogRecordSpecifier subclause, 3, 3
	
	parameter descriptions, 3
	syntax diagram, 3

	archiving redo logs, 2, 2
	archlogRange subclause
	
	parameter descriptions, 3
	syntax diagram, 3, 3

	arguments to stored scripts, 2
	AS BACKUPSET parameter, BACKUP command, 2
	AS COPY parameter, BACKUP command, 2
	ASM
	
	See Automatic Storage Management (ASM)

	AT SCN parameter, REPORT command, 2
	AT SEQUENCE parameter, REPORT command, 2
	at sign command (@), 2
	at sign parameter, RMAN command, 2
	AT TIME parameter, REPORT command, 2
	atClause subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	AUTOBACKUP parameter, RESTORE command, 2
	autoBackupOptList subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	autobackups, control file, 2
	Automated Diagnostic Repository, logging failures, 2
	automated repair, 2
	automatic diagnostic repository
	
	changing failure status, 2
	changing logged failures, 2
	See diagnostic repository

	Automatic Storage Management (ASM)
	
	channel allocation, 2
	converting format to, 2
	converting format to (example), 2
	converting formats, 2
	disk groups, 2
	duplicating databases, 2
	specifying disk groups, 2

	AUXILIARY CHANNEL parameter
	
	CONFIGURE command, 2
	SHOW command, 2

	auxiliary databases
	
	connecting to, 2, 3
	initialization files, 2

	AUXILIARY DESTINATION parameter
	
	RECOVER command, 2
	TRANSPORT TABLESPACE command, 2

	auxiliary filename settings, 2
	AUXILIARY FORMAT parameter
	
	allocOperandList subclause, 3
	BACKUP command, 2

	AUXILIARY INSTANCE PARAMETER FILE TO parameter, SET command, 2
	auxiliary instances, specifying channels, 2
	AUXILIARY parameter
	
	ALLOCATE CHANNEL command, 2
	CONNECT command, 2
	RMAN command, 2

	AUXNAME parameter
	
	CONFIGURE command, 2
	SHOW command, 2

	availability, changing status for backup or copy, 2, 2
	AVAILABLE parameter, CHANGE command, 2
	AVAILABLE status
	
	definition, 2
	effect of DELETE command, 2

B

	BACKED UP parameter, maintQualifier subclause, 3
	backing up, excluded files, 2
	backup clause
	
	parameter descriptions, 2
	syntax diagram, 2

	BACKUP command, 2
	
	backup clause, 2, 2
	backupOperand subclause, 2, 2
	backupSpec subclause, 2, 2, 2
	backupSpecOperand subclause, 2, 2
	backupTypeSpec subclause, 2, 2
	copyOfSpec subclause, 2, 2
	datafileCopySpec subclause, 2, 2
	duration subclause, 2, 2
	fileNameConversionSpec parameter, 3
	forRecoveryOfSpec subclause, 2, 2
	limiting processing time, 2
	notBackedUpSpec subclause, 2, 2
	sizeSpec subclause, 2, 2
	skipSpec subclause, 2, 2

	backup commands, 2
	BACKUP COPIES parameter
	
	SET command, 2
	SHOW command, 2

	backup levels, 2
	backup media, 2
	BACKUP OPTIMIZATION parameter
	
	SHOW command, 2

	BACKUP OPTIMIZATION parameter, CONFIGURE command, 2
	BACKUP parameter
	
	LIST command, 2
	maintSpec subclause, 3

	backup pieces
	
	adding to repository, 2, 2
	available information, 2, 2
	crosschecking or deleting, 2
	definition, 2
	displaying information, 2
	format, 3, 3
	maximum size, 3
	obsolete, 2
	overriding default copies, 2
	restoring, 2
	validating, 2

	backup retention policies, 2
	backup sections, sizing, 2
	backup set failover, 2
	backup sets
	
	about archived logs, 2
	available information, 2
	backing up, 2
	backing up encrypted, 2
	backup pieces, available information, 2
	binary compression, 2, 2
	cataloging in RMAN repository, 2
	date ranges, 2
	deleting, 2, 2
	displaying information, 2
	encryption, 2, 2
	information about copies, 2
	information about datafiles, 2
	maximum size, 2
	maximum size per channel, 2
	obsolete
	
	report output, 2

	optimization algorithms, 2
	recovering, 2
	restoring only from, 2
	retention policies, 2
	status, 2
	summary information, 2
	tag names, 2
	unused block compression, 2, 2
	validating, 2, 2

	BACKUP_TAPE_IO_SLAVES initialization parameter, 2, 2
	backupCommands subclause, syntax diagram, 2
	backupConf subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	backupOperand subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	BACKUPPIECE parameter
	
	CATALOG command, 2
	recordSpec subclause, 3

	backups
	
	applying incremental, 2
	binary compression, 2, 2
	changing availability, 2, 2
	configuration, 2
	corruption tolerance (example), 2
	creating multiple copies, 2
	creating transportable tablespaces, 2
	criteria for obsolescence, 3
	cumulative, 2
	datafiles, 2, 2
	datafiles requiring new, 2
	deleting, 2
	deleting obsolete, 2
	duplexing example, 2
	duplicate copies, 2
	duplicating, 2
	failures, 2
	inconsistent, 2
	incremental, 2, 2, 2
	limiting duration, 2
	listing, 2, 2
	minimum required, 2
	multisection, 2
	obsolete, 2
	overriding defaults in restore, 2
	overwriting, 2
	partial, 2
	previewing, 2
	redundant, 2
	removing from recovery catalog, 2
	restarting, 2
	retaining multiple full (level 0), 2
	retention policies, 2
	summary list, 2
	using incremental (example), 2
	using incremental updates (example), 2
	validating files, 2
	validating in repository, 2

	BACKUPS parameter, UNREGISTER command, 2
	BACKUPSET parameter
	
	BACKUP command, 2, 2
	RECOVER command, 2
	RESTORE command, 2
	VALIDATE command, 2
	recordSpec subclause, 3

	backupSpec subclause
	
	parameter descriptions, 2, 2
	syntax diagram, 2

	backupSpecOperand subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	backupTypeSpec subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	Backus Naur Form syntax diagrams, 1.2
	base recovery catalog
	
	See recovery catalog

	batch files
	
	See command files

	BEFORE parameter, completedTimeSpec subclause, 3
	BEFORE RESETLOGS parameter, FLASHBACK DATABASE command, 2
	BEFORE SCN parameter, FLASHBACK DATABASE command, 2
	BEFORE SEQUENCE parameter, FLASHBACK DATABASE command, 2
	BEFORE TIME parameter, FLASHBACK DATABASE command, 2
	BETWEEN parameter, completedTimeSpec subclause, 3
	BFILE datatype, excluded from backup, 2
	binary compression, 2, 2
	block change tracking files
	
	excluded from backup, 2
	improving performance, 2

	block checksums, 2
	block corruptions
	
	checking for, 2
	flashback, 2

	block media recovery, 2
	block sizes of backup media, 2
	blockObject subclause
	
	parameter descriptions, 2
	syntax diagram, 2, 2

	blocks
	
	corrupt, 2
	creating, 2
	See also data blocks

	BNF syntax diagrams, 1.2
	braces {}, 2
	BY FILE parameter, LIST command, 2
	BZIP2 compression algorithm, 2, 2

C

	CATALOG command, 2
	CATALOG FOR DATABASE parameter
	
	GRANT command, 2
	REVOKE command, 2

	CATALOG parameter
	
	CONNECT command, 2
	RMAN command, 2

	CATALOG privilege, 2
	catalogs
	
	importing, 2
	virtual private, 2

	CDs as backup media, 2
	cfauConf subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	CHANGE command, 2
	
	changeFailure subclause, 2, 2
	forDbUniqueNameOption subclause, 2
	maintSpec subclause, 2, 3
	recordSpec subclause, 3
	resetDbUniqueNameOption subclause, 2, 2

	changeFailure subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	changes, reversing, 2
	channel names, 2
	CHANNEL parameter
	
	ALLOCATE CHANNEL command, 2
	BACKUP command, 2
	CONFIGURE command, 2
	RESTORE command, 2, 2
	SEND command, 2
	SHOW command, 2
	SQL command, 2

	channel parameters, 2
	channels
	
	allocating for duplication, 2
	allocating for restore, 2
	allocating for validation, 2
	allocating manually, 2, 2
	allocating to shared server sessions, 2
	configuring for RAC (example), 2
	configuring type for recovery, 2
	device type default, 2
	identifying database server sessions, 2
	maximum number, 2
	naming conventions, 2
	releasing, 2
	restoring in Data Guard, 2
	setting for restore (example), 2
	with proxy capabilities, 2

	character sets, CLOB storage, 2
	CHECK LOGICAL parameter
	
	BACKUP command, 2, 2
	RECOVER command, 2
	RESTORE command, 2
	VALIDATE command, 2

	checksums, 2
	CHECKSYNTAX parameter, RMAN command, 2
	client compatibility, B.1
	client, opening RMAN, 2
	CLOB datatype, transporting, 2
	closing RMAN, 2, 2
	CMDFILE parameter, RMAN command, 2
	cmdLine clause
	
	parameter descriptions, 2
	syntax diagram, 2

	cmdLine command
	
	See RMAN command

	command entry description, 1.1
	command files, 2, 2, 2
	command format, 1.3
	COMMAND ID TO parameter
	
	SET command, 2

	command line arguments, 2
	command subclause summary, 1.6
	command subclauses
	
	See specific subclause name

	command summary, 1.5
	command terminator, 1.3
	commands
	
	creating blocks, 2
	deprecated, A, A
	executing host, 2
	executing SQL, 2
	RMAN, 2
	sending to media manager, 2
	sending to media managers, 2
	See specific command name

	comment character (#), 1.3
	COMMENT parameter
	
	CREATE SCRIPT command, 2
	DUPLICATE command, 2
	REPLACE SCRIPT command, 2

	compatibility, B.1
	COMPATIBLE initialization parameter, 2
	completedTimeSpec subclause, 3
	compression, 2
	COMPRESSION ALGORITHM parameter
	
	CONFIGURE command, 2
	SHOW command, 2

	compression algorithms, 2
	configuration
	
	displaying, 2
	displaying settings, 2
	overriding, 2, 2
	restoring default settings, 2
	setting, 2

	configuration files, excluded from backup, 2
	CONFIGURE BACKUP OPTIMIZATION setting, 2
	configure clause
	
	parameter descriptions, 2
	syntax diagram, 2

	CONFIGURE command, 2
	
	backupConf subclause, 2, 2
	cfauConf subclause, 2, 2
	configure clause, 2, 2
	delalConf subclause, 2, 2
	deviceConf subclause, 2, 2
	encryption settings, 2
	forDbUniqueNameOption subclause, 2
	sizeSpec subclause, 2

	CONFIGURE commands, 2
	CONFIGURE CONTROLFILE AUTOBACKUP parameter, 2
	CONNECT command, 2
	CONNECT IDENTIFIER parameter, CONFIGURE command, 2
	CONNECT parameter, allocOperandList subclause, 3
	connect strings, 3
	
	to auxiliary database, 2
	to recovery catalog database, 2
	to target database, 2

	connections, changing, 2
	connectStringSpec subclause, 3
	consistent shutdowns, 2
	control file backups, available information, 2
	control file copies
	
	available information, 2
	tag names, 2

	control files
	
	adding copies to repository, 2
	autobackup validation, 2
	automatic backups, 2
	backing up copies, 2
	copies
	
	cataloging in RMAN repository, 2
	validating, 2

	filenames for control file autobackup, 2
	including in database backup, 2
	limiting search, 2
	re-creating, 2
	restoring, 2, 2, 2
	restoring (example), 2
	restoring autobackups, 2
	restoring for primary database, 2
	resynchronization, 2
	snapshots, 2, 2
	validating, 2
	validation report, 2

	CONTROL_FILES initialization parameter, 2
	CONTROLFILE AUTOBACKUP FORMAT parameter, SET command, 2
	CONTROLFILE AUTOBACKUP parameter
	
	CONFIGURE command, 2
	SHOW command, 2

	CONTROLFILE parameter
	
	RESTORE command, 2, 2
	VALIDATE command, 2, 2

	CONTROLFILE parameter, listObjList subclause, 3
	CONTROLFILECOPY parameter
	
	BACKUP command, 2
	CATALOG command, 2
	RESYNC CATALOG command, 2
	VALIDATE command, 2
	recordSpec subclause, 3

	convert clause
	
	parameter descriptions, 2
	syntax diagram, 2

	CONVERT command, 2
	
	convert clause, 2, 2
	convertOptionList subclause, 2, 2
	fileNameConversionSpec parameter, 3
	skipSpec subclause, 2, 2
	transportOptionList subclause, 2, 2

	CONVERT command, formatSpec subclause, 2
	convertOptionList subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	copies
	
	changing availability, 2, 2
	creating multiple backups, 2
	deleting, 2, 2
	deleting obsolete, 2
	expired, 2
	minimum required, 2
	of backup sets, available information, 2
	validating in repository, 2
	viewing status, 2

	COPIES parameter, BACKUP command, 2
	copy location, 2
	COPY OF parameter
	
	BACKUP command, 2
	RECOVER command, 2

	COPY parameter
	
	BACKUP command, 2
	LIST command, 2
	maintSpec subclause, 3

	copying files, 2
	copyOfSpec subclause
	
	parameter descriptions, 2
	syntax diagram, 2, 2

	corrupt blocks
	
	checking for, 2
	restoring, 2
	tolerance for, 2
	tolerance for (example), 2

	CORRUPTION LIST parameter, RECOVER command, 2
	CORRUPTION parameter
	
	RECOVER command, 2

	CPU_COUNT initialization parameter, 2
	CREATE CATALOG command, 2
	CREATE SCRIPT command, 2
	CREATE TYPE privilege, 2
	CROSSCHECK command, 2
	
	maintSpec subclause, 2, 3
	recordSpec subclause, 3

	cross-platform compatibility, 2
	cumulative backups, 2
	CUMULATIVE parameter
	
	BACKUP command, 2

	CURRENT CONTROLFILE parameter
	
	BACKUP command, 2
	VALIDATE command, 2, 2

D

	data block address (DBA), 2
	data blocks
	
	checking for corrupted, 2
	recovering corrupt, 2
	recovering individual, 2
	recovering logically corrupt, 2
	recovering physically corrupt, 2

	data compression, 2
	data encryption, 2
	Data Guard
	
	changing backup associations, 2
	configuring databases, 2
	creating physical standby databases, 2
	creating standby databases (example), 2
	deleting backups and copies, 2
	restoring backups, 2
	RMAN configuration in recovery catalog, 2
	specifying databases, 3
	updating backup status, 2

	Data Guard backups
	
	accessibility by databases, 2
	changing associated database, 2
	database association, 2

	Data Pump, 2, 2, 2, B.4
	Data Recovery Advisor, 2, 2
	database changes, reversing, 2
	database configuration
	
	See configuration

	database duplication
	
	See duplication

	database failure, repairing, 2
	database identifiers
	
	changing, 2
	duplicates, 2

	database incarnations, 2
	DATABASE parameter
	
	BACKUP command, 2
	RECOVER clause, 2
	REPORT command, 2
	RESTORE command, 2
	SWITCH command, 2
	UNREGISTER command, 2
	VALIDATE command, 2

	database point-in-time recovery (DBPITR), 2
	database registration, 2
	database schemas
	
	report output, 2

	database server sessions
	
	identifying channels, 2

	DATABASE SKIP TABLESPACE parameter, listObjList subclause, 3
	databases, 2
	
	available information, 2
	backing up, 2
	changing connections, 2
	connecting to, 2
	converting platform format, 2
	copying, 2
	deleting, 2
	encryption settings, 2
	mounting, 2
	opening, 2
	platform conversion scripts, 2
	recovering, 2, 2
	recovering with incremental backups (example), 2
	recovering with incremental updates, 2
	registering, 2, 2
	removing from recovery catalog, 2
	resetting incarnation, 2
	resynchronization, 2
	revoking registration privileges, 2
	shutting down target, 2
	specifying in Data Guard environment, 3
	standby, restoring control files, 2
	starting target from RMAN, 2
	transparent encryption, 2
	transporting re-created files, 2
	updating filenames, 2
	validating, 2

	DATAFILE BACKUP COPIES parameter
	
	CONFIGURE command, 2
	SHOW command, 2

	datafile backup sets, available information, 2
	datafile backups
	
	available information, 2
	expired, 2

	DATAFILE BLOCK parameter
	
	RECOVER command, 2

	datafile copies
	
	available information, 2
	deleting, 2
	displaying information, 2
	listing, 2
	obsolete, 2
	
	report output, 2

	restoring only from, 2
	tag names, 2
	validating, 2

	DATAFILE parameter
	
	BACKUP command, 2
	CONVERT command, 2
	RECOVER command, 2
	REPORT command, 2
	RESTORE command, 2
	SWITCH command, 2, 2
	VALIDATE command, 2

	DATAFILECOPY parameter
	
	CATALOG command, 2
	RECOVER command, 2, 2
	RESTORE command, 2
	recordSpec subclause, 3

	datafileCopySpec subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	datafiles
	
	auxiliary filenames, 2
	backing up, 2, 2, 2
	backing up copies, 2
	backing up large, 2
	backing up new only, 2
	backups
	
	deleting obsolete, 2

	converting platform format, 2
	copies
	
	adding to repository, 2
	cataloging in RMAN repository, 2
	incremental backups, 2
	tag names, 2
	validating, 2

	days of archived redo logs, 2
	excluding from backup, 2, 2
	excluding from conversion, 2
	excluding from validation, 2
	flashback status changes, 2
	forcing restore, 2
	image copies, 2
	in backup sets
	
	available information, 2

	listing within a tablespace, 2
	minimum number of backups, 2
	offline, 2
	optimization algorithms, 2
	point-in-time lists, 2
	readonly, 2
	read-only, omitting from restore, 2
	recovering, 2, 2
	recovering corrupt data blocks, 2
	renaming, 2
	report output, 2, 2, 2, 2, 2
	requiring backup
	
	report output, 2

	requiring new backups, 2
	restored location, 2
	restoring, 2
	
	all online, 2
	from image copies, 2
	individual, 2
	to new locations, 2

	reversing changes, 2
	unrecoverable, 2
	updating filenames, 2
	validating, 2, 2
	validation report, 2

	datafileSpec subclause, 3
	DATAPUMP DIRECTORY parameter, TRANSPORT TABLESPACE command, 2
	datatypes, endian conversion, 2
	date ranges of backup sets, 2
	dates in RMAN commands, 3
	DAYS parameter, REPORT command, 2
	DB_BLOCK_CHECKSUM initialization parameter, 2
	DB_CREATE_FILE_DEST initialization parameter, 2, 3
	DB_FILE_NAME_CONVERT initialization parameter, 2, 2, 2, 2, 3
	DB_FLASHBACK_RETENTION_TARGET initialization parameter, 2
	DB_NAME initialization parameter, 2
	DB_NAME parameter
	
	IMPORT CATALOG command, 2
	RESTORE command, 2

	DB_NAME, changing, 2
	DB_RECOVERY_FILE_DEST initialization parameter, 2
	DB_RECOVERY_FILE_DEST parameter
	
	BACKUP command, 2
	CATALOG command, 2
	RESTORE command, 2
	VALIDATE command, 2

	DB_UNIQUE_NAME initialization parameter, 2
	DB_UNIQUE_NAME parameter
	
	CHANGE command, 2
	CONFIGURE command, 2, 2
	DELETE command, 2
	LIST command, 2
	RESTORE command, 2
	RESYNC CATALOG command, 2
	SHOW command, 2
	UNREGISTER command, 2

	DB_UNIQUE_NAME parameter, forDbUniqueNameOption, 3
	DB_UNIQUE_NAME setting, 2, 2, 2, 2
	DBA parameter, STARTUP command, 2
	DBID parameter
	
	IMPORT CATALOG command, 2
	SET command, 2

	DBIDs
	
	available information, 2
	changing, 2
	duplicates, 2
	of standby databases, 2

	DBNEWID utility, 2
	dbObject subclause
	
	parameter descriptions, 2, 3
	syntax diagram, 2, 3

	DECRYPTION parameter, SET command, 2
	DEFAULT DEVICE TYPE parameter
	
	CONFIGURE command, 2
	SHOW command, 2

	delalConf subclause
	
	command parameters, 2
	syntax diagram, 2

	DELETE ARCHIVELOG parameter, RECOVER command, 2
	delete clause, syntax diagram, 2
	DELETE command, 2
	
	delete clause, 2
	forDbUniqueNameOption subclause, 2
	maintSpec subclause, 2, 3
	recordSpec subclause, 3

	DELETE INPUT parameter, BACKUP command, 2
	DELETE SCRIPT command, 2
	deprecated commands, A
	DESTINATION parameter, RECOVER command, 2
	DESTINATION PLATFORM parameter, CONVERT command, 2
	destinations for restoring datafiles, 2
	DEVICE TYPE parameter
	
	ALLOCATE CHANNEL command, 2
	ALLOCATE CHANNEL FOR MAINTENANCE command, 2
	BACKUP command, 2
	CHANGE command, 2
	CONFIGURE command, 2
	DELETE command, 2
	DUPLICATE command, 2
	FLASHBACK DATABASE command, 2
	RECOVER command, 2
	REPORT command, 2
	RESTORE command, 2
	SEND command, 2
	SHOW command, 2
	VALIDATE command, 2
	maintSpec subclause, 3

	DEVICE TYPE parameter, maintQualifier subclause, 3
	device types, specifying, 2
	deviceConf subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	deviceSpecifier subclause, 3
	diagnostic repository, 2
	diagrams of syntax, 1.2
	disk device type setting, 2
	disk drives, using several for backup, 2
	disk files, creating from stored scripts, 2
	DISK parameter, deviceSpecifier subclause, 3
	DISKRATIO parameter, BACKUP command, 2
	displaying scripts, 2
	DORECOVER parameter, DUPLICATE command, 2
	double at sign command (@@), 2
	double quotes, 1.2.3
	DROP CATALOG command, 2
	DROP DATABASE command, 2
	dual-mode encryption, 2
	duplexing, 2, 2, 2, 2
	duplicate clause
	
	parameter descriptions, 2
	syntax diagram, 2

	DUPLICATE command, 2
	
	duplicate clause, 2, 2
	dupOptionList subclause, 2, 2
	dupsbyOptionList subclause, 2, 2
	fileNameConversionSpec parameter, 3
	logSpec subclause, 2, 2
	setParameter subclause, 2, 2
	sizeSpec subclause, 2

	duplicate databases, opening, 2
	duplicating files, 2
	duplication
	
	backup based, 2
	configuration, 2
	example using auxiliary channels, 2

	dupOptionList subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	dupsbyOptionList subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	DURATION parameter, BACKUP command, 2
	duration subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	DVDs as backup media, 2
	dynamic performance views
	
	summary list, 4.1
	V$BACKUP_PIECE, 2
	V$BACKUP_SET, 2
	V$DATABASE, 2
	V$DATABASE_BLOCK_CORRUPTION, 2, 2, 2, 2, 2, 2, 2
	V$DATABASE_FLASHBACK_ON, 2
	V$DATABASE_INCARNATION, 2
	V$DATABASE.CURRENT_SCN, 2
	V$DATAFILE_COPY, 2
	V$FLASHBACK_DATABASE_LOG, 2
	V$RMAN_COMPRESSION_ALGORITHM, 2, 2
	V$RMAN_ENCRYPTION_ALGORITHMS, 2, 2, 2, 2
	V$RMAN_OUTPUT, 2, 2
	V$RMAN_STATUS, 2
	V$SESSION, 2
	V$TABLESPACE, 2
	V$TRANSPORTABLE_PLATFORM, 2

E

	ECHO parameter, SET command, 2
	encryption
	
	backup sets, 2, 2, 2
	of duplicate databases, 2
	recovering tablespaces, 2
	specifying decryption passwords, 2

	ENCRYPTION ALGORITHM parameter, CONFIGURATION command, 2
	encryption algorithms, 2, 2
	ENCRYPTION parameter
	
	CONFIGURE command, 2
	SET command, 2
	SHOW command, 2

	encryption settings
	
	overriding, 2, 2
	transparent mode, 2
	V$RMAN_ENCRYPTION_ALGORITHMS view, 2

	encryption wallets
	
	See wallets

	end times
	
	for restore, 2

	endian formats
	
	converting, 2
	duplicating databases, 2
	transportable tablespaces, 2
	transporting across platforms, 2

	environment variables
	
	in RMAN strings, 1.2.2
	NLS_DATE_FORMAT, 2
	NLS_LANG, 2

	error messages
	
	ORA-1152, 2
	ORA-1578, 2
	ORA-19504, 2
	ORA-19624, 2
	ORA-19916, 2
	ORA-27086, 2
	RMAN-0558, 2
	RMAN-06004, 2, 2, 2
	RMAN-06445, 2, 2
	RMAN-06496, 2, 2
	RMAN-06710, 2
	RMAN-10031, 2
	RMAN-10035, 2
	RMAN-20401, 2
	RMAN-6758, 2
	too many open files, 3

	EXCLUDE FLASHBACK LOG parameter, RECOVER command, 2
	EXCLUDE FOR TABLESPACE parameter, CONFIGURE command, 2
	EXCLUDE parameter, SHOW command, 2
	EXECUTE SCRIPT command, 2
	EXIT command, 2
	exiting RMAN, 2
	EXPIRED parameter
	
	DELETE command, 2
	LIST command, 2

	EXPIRED status, 2, 2
	EXPORT LOG parameter, TRANSPORT TABLESPACE command, 2
	export utilities, 2
	external tables, excluded from backup, 2

F

	failed backups, restarting, 2
	FAILURE parameter
	
	CHANGE command, 2
	LIST command, 2

	failure summary, 2
	failures, available information, 2
	file copies, 2, 2
	
	See also backups

	FILE parameter
	
	CREATE SCRIPT command, 2
	LIST command, 2
	PRINT SCRIPT command, 2
	REPLACE SCRIPT command, 2

	file recovery, 2
	file sections, sizing, 2
	filename formats, 2
	fileNameConversionSpec subclause, 3
	filenames
	
	changing during platform conversion, 2
	datafile image copies, 2
	duplication, 2
	generating new, 3
	setting auxiliary, 2
	updating, 2

	files
	
	backing up new only, 2
	backing up with proxy copy, 2
	changing availability, 2, 2
	creating from stored scripts, 2
	excluded from backup, 2
	listing those needing backup, 2
	naming backups, 2
	overwriting backups, 2
	sources for duplication, 2
	unavailable, 2
	validating, 2

	FILESPERSET parameter, BACKUP command, 2
	flash recovery, 2
	flash recovery areas
	
	cataloging contents, 2
	defining for duplicate databases, 2
	location of autobackup, 2
	specifying for restore, 2
	validating, 2

	flashback, 2
	FLASHBACK DATABASE command, 2
	FLASHBACK LOG parameter, RECOVER command, 2
	flashback logs, 2, 2
	flashback NOLOGGING operations, 2
	FOR DB_UNIQUE_NAME parameter, forDbUniqueNameOption subclause, 3
	FOR DB_UNIQUE_NAME parameter, RESTORE command, 2
	FOR RECOVER OF COPY parameter, BACKUP command, 2
	FOR RECOVER OF TAG parameter, BACKUP command, 2
	FORCE parameter
	
	BACKUP command, 2
	DELETE command, 2
	RESTORE command, 2
	STARTUP command, 2

	forDbUniqueNameOption subclause
	
	parameter descriptions, 3
	syntax, 3
	syntax diagram, 2, 2, 2

	foreignlogRecordSpecifier subclause
	
	syntax diagram, 3

	FOREVER parameter, RECOVER command, 2
	FORMAT parameter
	
	ALLOCATE CHANNEL command, 3
	BACKUP command, 2
	CONVERT command, 2

	FORMAT parameter, allocOperandList subclause, 3
	formatSpec subclause, syntax diagram, 2
	forRecoveryOfSpec subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	FROM ACTIVE DATABASE parameter
	
	DUPLICATE command, 2

	FROM AUTOBACKUP parameter, RESTORE command, 2
	FROM BACKUPSET parameter
	
	RECOVER command, 2
	RESTORE command, 2

	FROM CONTROLFILECOPY parameter, RESYNC CATALOG command, 2
	FROM DATAFILECOPY parameter
	
	RECOVER command, 2
	RESTORE command, 2

	FROM DB_UNIQUE_NAME parameter, RESYNC CATALOG command, 2
	FROM FILE parameter, REPLACE SCRIPT command, 2
	FROM SCN parameter, archlogRange subclause, 3
	FROM SEQUENCE parameter, archlogRange subclause, 3
	FROM TAG parameter
	
	BACKUP command, 2, 2
	RECOVER command, 2
	RESTORE command, 2, 2

	FROM TIME parameter, archlogRange subclause, 3
	FTP, moving backups, 2
	FULL parameter, BACKUP command, 2

G

	GLOBAL parameter
	
	CREATE SCRIPT command, 2
	DELETE SCRIPT command, 2
	EXECUTE SCRIPT command, 2
	PRINT SCRIPT command, 2
	REPLACE SCRIPT command, 2

	GLOBAL SCRIPT NAMES parameter, LIST command, 2
	global scripts
	
	executing, 2
	importing, 2
	listing names, 2
	printing, 2
	See also scripts

	GRANT command, 2

H

	hardware error recovery (example), 2
	header blocks, 2
	HEADER parameter
	
	RECOVER command, 2
	RESTORE command, 2

	HOST command, 2

I

	image copies
	
	adding to repository, 2
	applying incremental backups, 2
	backing up, 2
	creating, 2
	deleting, 2
	displaying information, 2
	format, 3, 3, 3
	restoring, 2, 2
	retention policies, 2

	IMMEDIATE parameter, SHUTDOWN command, 2
	IMPORT CATALOG command, 2
	IMPORT SCRIPT parameter, TRANSPORT TABLESPACE command, 2
	import utilities, 2
	INACCESSIBLE parameter
	
	CONVERT command, 2
	VALIDATE command, 2

	INCARNATION parameter, LIST command, 2
	incarnations, 2, 2
	INCLUDE CURRENT CONTROLFILE parameter
	
	BACKUP command, 2, 2
	VALIDATE command, 2

	INCLUDING BACKUPS parameter
	
	DROP DATABASE command, 2
	UNREGISTER command, 2

	inconsistent backups, 2
	inconsistent shutdowns, 2
	incremental backups, 2, 2
	
	adding datafile copies, 2
	bitmap limit, 2
	report output, 2
	sample script, 2
	using datafile copy, 2

	INCREMENTAL parameter
	
	BACKUP command, 2
	REPORT command, 2

	index blocks, logical corruption, 2
	initialization files
	
	for auxiliary databases, 2
	for database startup, 2

	initialization parameters
	
	BACKUP_TAPE_IO_SLAVES, 2
	COMPATIBLE, 2
	CONTROL_FILES, 2
	CPU_COUNT, 2
	DB_BLOCK_CHECKSUM, 2
	DB_CREATE_FILE_DEST, 2, 3
	DB_FILE_NAME_CONVERT, 2, 2, 2, 3
	DB_FLASHBACK_RETENTION_TARGET, 2
	DB_NAME, 2
	DB_RECOVERY_FILE_DEST, 2
	DB_UNIQUE_NAME, 2
	LOG_ARCHIVE_DEST_n, 2, 2
	LOG_ARCHIVE_FORMAT, 2
	LOG_FILE_NAME_CONVERT, 2, 2
	RECOVERY_PARALLELISM, 2
	replacing values, 2
	setting collections, 2
	setting for duplicate database, 2

	input files, deleting, 2

J

	job commands, 2

K

	KEEP parameter
	
	BACKUP command, 2

	KEEP parameter, keepOption subclause, 3
	keepOption subclause, 3
	keywords in syntax diagrams, 1.2.1

L

	LIKE parameter
	
	archivelogRecordSpecifier subclause, 3
	maintQualifier subclause, 3

	LIKE parameter, BACKUP command, 2
	Linux commands, 2
	Linux-to-Windows conversion (example), 2
	list clause
	
	parameter descriptions, 2
	syntax diagram, 2

	LIST command, 2
	
	list clause, 2, 2
	listBackupOption subclause, 2, 2
	listObjectSpec subclause, 2, 2
	maintQualifier subclause, 2
	recordSpec subclause, 3
	recoverableClause subclause, 2, 2

	listBackupOption subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	listObjectSpec subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	listObjList subclause, 3
	
	parameter descriptions, 3
	syntax diagram, 3

	LOB datatypes, transporting, 2
	local scripts
	
	executing, 2
	listing names, 2
	printing, 2
	See also scripts

	LOCATION parameter, 2
	log files
	
	appending output, 2
	creating for RMAN sessions, 2
	directing output to, 2

	LOG parameter, RMAN command, 2
	log sequence number, 2
	log sequence numbers
	
	point-in-time recovery, 2
	undoing changes, 2

	log sequence, resetting, 2
	LOG_ARCHIVE_DEST_n initialization parameter, 2, 2, 2
	LOG_ARCHIVE_FORMAT initialization parameter, 2
	LOG_FILE_NAME_CONVERT initialization parameter, 2, 2
	LOG_FILE_NAME_CONVERT parameter, DUPLICATE command, 2
	LOGFILE parameter
	
	DUPLICATE command, 2, 2

	logging in, 3
	logical corruption, checking for, 2
	LogMiner utility, 2, 2, 2, 2, 3
	logSpec subclause
	
	parameter descriptions, 2
	syntax diagram, 2

M

	maintenance channels
	
	allocating, 2
	naming conventions, 2
	releasing, 2

	maintenance commands, 2
	maintenance job configuration, 2
	maintenanceCommands subclause, syntax diagram, 2
	maintQualifier subclause
	
	parameter descriptions, 3
	syntax diagram, 2, 3

	maintSpec subclause, 3
	
	syntax diagram, 2, 2, 2

	MAXCORRUPT parameter
	
	SET command, 2

	MAXDAYS parameter, RESTORE command, 2
	MAXOPENFILES parameter, allocOperandList subclause, 3
	MAXPIECESIZE parameter, allocOperandList subclause, 3
	MAXSEQ parameter, RESTORE command, 2
	MAXSETSIZE parameter
	
	BACKUP command, 2
	CONFIGURE command, 2
	SHOW command, 2

	media failure, restoring backups, 2
	media libraries for sbt channels, 3
	media managers, 2
	
	compressing data, 2
	controlling data transfer, 2
	sending commands, 2, 2
	specifying environment variables, 3
	status of offsite backups, 2
	validating metadata, 2
	See also Oracle Secure Backup

	media pool, backup storage, 2
	media recovery
	
	parallel processing, 2
	single processing, 2

	message logs
	
	appending output, 2
	controlling content, 2

	message numbers, 2
	metadata
	
	changing catalog schemas, 2
	resynchronization, 2
	validating in repository, 2

	miscellaneous commands, 2
	missing files
	
	checking for, 2
	deleting from repository, 2

	MOUNT parameter
	
	ALTER DATABASE command, 2
	STARTUP command, 2

	mounting databases, 2
	moving backups, 2
	MSGNO parameter, RMAN command, 2
	multisection backups, 2

N

	NEED BACKUP parameter, REPORT command, 2
	needBackupOption subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	nested command files, 2
	net service names, 2, 3
	NEW DATABASE parameter, CONVERT command, 2
	new files, backing up only, 2
	NEWNAME FOR DATAFILE parameter, SET command, 2
	NEWNAME FOR TEMPFILE parameter, SET command, 2
	NEWNAME setting, persistent alternative, 2
	NLS_DATE_FORMAT configuration setting, 2
	NLS_DATE_FORMAT environment variable, 2
	NLS_LANG environment variable, 2
	NLS_LANG environment variables, 2
	NO UNREGISTER parameter, IMPORT CATALOG command, 2
	NOARCHIVELOG mode, 2, 2
	NOCATALOG parameter, RMAN command, 2
	NOCHECKSUM parameter, BACKUP command, 2
	NOEXCLUDE parameter
	
	BACKUP command, 2
	VALIDATE command, 2

	NOFILENAMECHECK parameter, DUPLICATE command, 2, 2, 2
	NOKEEP parameter, keepOption subclause, 3
	NOMOUNT parameter, STARTUP command, 2
	nonquoted strings, 1.2.2
	NOPARALLEL parameter, RECOVER command, 2
	NOPROMPT parameter
	
	DELETE command, 2
	DROP DATABASE command, 2

	NOREDO parameter
	
	DUPLICATE command, 2
	RECOVER command, 2

	NORMAL parameter, SHUTDOWN command, 2
	normal resynchronization, 2
	NOT BACKED UP parameter, BACKUP command, 2
	notBackedUpSpec subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	numbers, displaying message, 2

O

	OBSOLETE parameter
	
	DELETE command, 2
	REPORT command, 2

	obsOperandList subclause, 3
	OFF parameter, SPOOL command, 2
	OFFLINE parameter
	
	CONVERT command, 2
	VALIDATE command, 2

	offsite backups, 2
	OMF format, 2
	online redo logs
	
	for duplicate database, 2
	for RAC, 2

	OPEN parameter, ALTER DATABASE command, 2
	OPEN RESTRICTED parameter, DUPLICATE command, 2
	opening databases, 2
	operating system commands, 2
	operating systems
	
	compatibility, 2
	duplicating databases across, 2
	transporting across, 2

	optimization algorithms, 2
	optimization, overriding backup, 2
	ORA$RMAN_RPI_IN pipe, 2
	ORA$RMAN_RPI_OUT pipe, 2
	ORA-1152 error message, 2
	ORA-1578 error message, 2
	ORA-19504 error message, 2
	ORA-19624 error message, 2
	ORA-19916 error message, 2
	ORA-27086 error message, 2
	Oracle Advanced Compression, 2
	Oracle home, excluded from backup, 2
	Oracle Managed Files (OMF), 2, 3
	
	duplicating databases (example), 2

	Oracle Net connections, 2
	Oracle RAC
	
	recovering from failure, 2
	See RAC

	Oracle Secure Backup, 2
	
	creating encrypted backups, 2
	sending commands to (example), 2
	undo data, 2

	Oracle wallets, 2, 2
	Oracle10g compatibility, B.1
	Oracle8i compatibiity, B.1
	Oracle9i compatibiity, B.1
	output
	
	displaying message numbers, 2
	storing in files, 2

	overwriting backup files, 2

P

	PARALLEL parameter, RECOVER command, 2
	parallelism
	
	allocating channels, 2
	backup using channels (example), 2
	channel allocation, 2
	specifying for recovery, 2
	validation, 2

	PARALLELISM parameter, CONVERT command, 2
	parallelism settings, 2
	parameter files
	
	backing up, 2, 2
	restoring, 2, 2
	See also initialization parameter files, server parameter files, 2
	specifying path, 2

	PARAMETER_VALUE_CONVERT parameter
	
	DUPLICATE command, 2, 2
	overriding, 2

	parameters
	
	deprecated, A
	for sbt channels, 3
	in syntax diagrams, 1.2.2

	parameters in stored scripts, 2
	PARMS parameter
	
	allocOperandList subclause, 3
	SEND command, 2

	partial backups, 2
	password encryption, 2
	PASSWORD FILE parameter, DUPLICATE command, 2
	password files
	
	excluded from backup, 2
	for duplicate databases, 2

	password-based encryption, 2
	passwords, 3
	
	encrypted, 2
	encrypted backup sets, 2
	for decryption, 2
	RAC SYSDBA, 2

	performance
	
	allocating channels, 2
	incremental backups, 2

	PFILE parameter
	
	DUPLICATE command, 2
	STARTUP command, 2

	PIPE parameter, RMAN command, 2
	pipes
	
	opening input and output, 2
	timing out, 2

	placeholders in syntax diagrams, 1.2.2
	platform compatibility, 2
	PLATFORM parameter, CONVERT command, 2
	platforms
	
	duplicating databases across, 2
	transporting across, 2

	PL/SQL code, converting formats, 2
	PL/SQL stored procedures, 2
	PLUS ARCHIVELOG parameter, VALIDATE command, 2
	point-in-time recovery, 2, 2, 2, 3
	POOL parameter, BACKUP command, 2
	PREVIEW parameter, RESTORE command, 2
	previewing backups, 2
	PRIMARY CONTROLFILE parameter, RESTORE command, 2
	primary databases
	
	backing up, 2
	copying, 2

	PRINT SCRIPT command, 2
	private catalog schema, assigning privileges, 2
	privileges
	
	assigning, 2
	CATALOG, 2
	CREATE TYPE, 2
	REGISTER, 2
	revoking, 2
	SYSDBA, 2

	processing time for backup, 2
	proxy backups, restoring, 2
	proxy copies
	
	available information, 2
	crosschecking, 2
	definition, 2
	deleting, 2, 2
	obsolete
	
	report output, 2

	restoring, 2
	tag names, 2

	PROXY parameter
	
	BACKUP command, 2
	recordSpec subclause, 3

Q

	QUIT command, 2
	quoted strings, 1.2.2, 1.2.2

R

	RAC
	
	automatic channels (example), 2
	creating online redo logs, 2
	crosschecking backups, 2
	crosschecking or deleting, 2
	spreading work, 3
	SYSDBA passwords, 2

	RATE parameter, allocOperandList subclause, 3
	RC_ARCHIVED_LOG view, 4.1
	RC_BACKUP_ARCHIVELOG_DETAILS view, 4.1
	RC_BACKUP_ARCHIVELOG_SUMMARY view, 4.1
	RC_BACKUP_CONTROLFILE view, 4.1
	RC_BACKUP_CONTROLFILE_DETAILS view, 4.1
	RC_BACKUP_CONTROLFILE_SUMMARY view, 4.1
	RC_BACKUP_COPY_DETAILS view, 4.1
	RC_BACKUP_COPY_SUMMARY view, 4.1
	RC_BACKUP_CORRUPTION view, 4.1, 4.1
	RC_BACKUP_DATAFILE view, 4.1, 4.1
	RC_BACKUP_DATAFILE_DETAILS view, 4.1
	RC_BACKUP_DATAFILE_SUMMARY view, 4.1
	RC_BACKUP_FILES view, 4.1
	RC_BACKUP_PIECE view, 4.1
	RC_BACKUP_PIECE_DETAILS, 4.1
	RC_BACKUP_REDOLOG view, 4.1
	RC_BACKUP_SET view, 4.1
	RC_BACKUP_SET_DETAILS view, 4.1
	RC_BACKUP_SET_SUMMARY view, 4.1
	RC_BACKUP_SPFILE view, 4.1
	RC_BACKUP_SPFILE_DETAILS view, 4.1
	RC_BACKUP_SPFILE_SUMMARY view, 4.1
	RC_CHECKPOINT view
	
	See RC_RESYNC view

	RC_CONTROLFILE_COPY view, 4.1
	RC_COPY_CORRUPTION view, 4.1
	RC_DATABASE view, 2, 4.1
	RC_DATABASE_BLOCK_CORRUPTION view, 4.1
	RC_DATABASE_INCARNATION view, 2, 4.1
	RC_DATAFILE view, 4.1
	RC_DATAFILE_COPY view, 4.1
	RC_LOG_HISTORY view, 4.1
	RC_OFFLINE_RANGE view, 4.1
	RC_PROXY_ARCHIVEDLOG view, 4.1
	RC_PROXY_ARCHIVELOG_DETAILS view, 4.1
	RC_PROXY_CONTROLFILE view, 4.1
	RC_PROXY_COPY_DETAILS view, 4.1
	RC_PROXY_COPY_SUMMARY view, 4.1
	RC_PROXY_DATAFILE view, 4.1
	RC_REDO_LOG view, 4.1
	RC_REDO_THREAD view, 4.1
	RC_RESTORE_POINT view, 4.1
	RC_RESYNC view, 4.1
	RC_RMAN_BACKUP_JOB_DETAILS view, 4.1
	RC_RMAN_BACKUP_SUBJOB_DETAILS view, 4.1
	RC_RMAN_BACKUP_TYPE view, 4.1
	RC_RMAN_CONFIGURATION view, 4.1
	RC_RMAN_OUTPUT view, 4.1
	RC_RMAN_STATUS view, 4.1
	RC_SITE view, 4.1
	RC_STORED_SCRIPT view, 4.1
	RC_STORED_SCRIPT_LINE view, 4.1
	RC_TABLESPACE view, 4.1
	RC_TEMPFILE view, 4.1
	RC_UNUSABLE_BACKUPFILE_DETAILS view, 4.1
	RCMRF1938|RC_PROXY_ARCHIVEDLOG view, 4.1
	RCMRF1947|RC_UNUSABLE_BACKUPFILE_DETAILS view, 4.1
	READONLY parameter
	
	CONVERT command, 2
	RECOVER command, 2
	VALIDATE command, 2

	Real Application Clusters
	
	See RAC

	recordSpec subclause, 3
	recover clause
	
	parameter descriptions, 2
	syntax diagram, 2

	RECOVER command, 2
	
	blockObject subclause, 2, 2
	dbObject subclause, 2, 2
	recover clause, 2, 2
	recoverObject subclause, 2, 2
	recoverOptionList subclause, 2, 2
	recoverSpec subclause, 2, 2
	sizeSpec subclause, 2

	RECOVER OF COPY parameter, BACKUP command, 2
	RECOVER OF TAG parameter, BACKUP command, 2
	RECOVERABLE parameter, LIST command, 2
	recoverableClause subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	recoverObject subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	recoverOptionList subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	recoverSpec subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	recovery
	
	allowing corrupt blocks, 2
	database in NOARCHIVELOG mode (example), 2
	incremental, 2
	point-in-time of duplicate databases, 2
	search order for backups, 2

	RECOVERY AREA parameter
	
	BACKUP command, 2
	CATALOG command, 2
	RESTORE command, 2
	VALIDATE command, 2

	recovery catalog
	
	connecting to, 3
	DB_UNIQUE_NAME, 2
	granting access, 2
	registering databases, 2
	removing databases, 2
	removing references, 2
	removing repository records, 2
	replacing scripts, 2
	updating DB_UNIQUE_NAME, 2
	upgrading versions, 2

	recovery catalog databases, connecting to, 2
	recovery catalog views, 4
	
	RC_DATABASE, 2
	RC_DATABASE_INCARNATION, 2
	summary list, 4.1
	See also specific view names

	recovery catalogs
	
	creating, 2
	creating stored scripts, 2
	deleting, 2
	removing references, 2
	resynchronization, 2
	revoking privileges, 2, 2
	running RMAN without, 2
	stored scripts, available information, 2
	unregistering, 2

	recovery catalogs, moving metadata, 2
	recovery catalogs.NOCATALOG mode, 2
	RECOVERY FILES parameter
	
	BACKUP command, 2
	VALIDATE command, 2

	recovery files, backing up, 2
	Recovery Manager
	
	compatibility, B.1
	dates in commands, 3

	Recovery Manager client, opening, 2
	Recovery Manager, control file autobackups, 2
	RECOVERY WINDOW OF parameter, obsOperandList subclause, 3
	RECOVERY WINDOW parameter
	
	CONFIGURE command, 2
	REPORT command, 2

	recovery windows
	
	report output, 2

	recovery windows, report output, 2
	RECOVERY_CATALOG_OWNER role, 2, 2, 2, 2
	RECOVERY_PARALLELISM initialization parameter, 2
	redo logs
	
	archiving, 2
	backing up, 2
	for duplicate databases, 2
	for RAC, 2
	omitting from recovery, 2
	sequence numbers, 2

	redo threads, 3
	REDUNDANCY parameter
	
	CONFIGURE command, 2
	REPORT command, 2

	REDUNDANCY parameter, obsOperandList subclause, 3
	redundant backups, 2
	REGISTER DATABASE command, 2
	REGISTER DATABASE parameter
	
	GRANT command, 2
	REVOKE command, 2

	REGISTER privilege, 2
	RELEASE CHANNEL command, 2
	
	release clause, 2
	releaseForMaint clause, 2

	release clause, syntax diagram, 2
	releaseForMaint clause
	
	syntax diagram, 2

	repair clause
	
	parameter description, 2
	syntax diagram, 2

	REPAIR FAILURE command, 2
	
	repair clause, 2, 2

	repair options, 2, 2
	repair status, 2
	repair strategies, 2
	REPLACE SCRIPT command, 2
	
	replaceScript clause, 2

	replaceScript clause
	
	syntax diagram, 2

	report clause
	
	parameter descriptions, 2
	syntax diagram, 2

	REPORT command, 2
	
	atClause subclause, 2, 2
	needBackupOption subclause, 2, 2
	report clause, 2, 2
	reportObject subclause, 2, 2

	reportObject subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	repositories
	
	analyzing, 2
	listing contents, 2
	updating, 2
	updating availability status, 2
	updating filenames, 2
	validating contents, 2

	reserved words, 1.4
	reset clause, syntax diagram, 2
	RESET DATABASE command, 2
	
	reset clause, 2

	RESET DB_UNIQUE_NAME parameter, CHANGE command, 2
	resetDbUniqueNameOption subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	RESETLOGS parameter, FLASHBACK DATABASE command, 2
	restoration configuration, 2
	restore clause
	
	parameter descriptions, 2
	syntax diagram, 2

	RESTORE command, 2
	
	autoBackupOptList subclause, 2, 2
	restore clause, 2, 2
	restoreObject subclause, 2, 2
	restoreSpecOperand subclause, 2

	restore commands, 2
	restore failover, 2
	RESTORE POINT parameter
	
	DUPLICATE command, 2
	FLASHBACK DATABASE command, 2
	LIST command, 2
	RECOVER command, 2
	RESTORE command, 2
	SET command, 2
	TRANSPORT TABLESPACE command, 2

	restore points, 2, 2
	restoreCommands subclause, syntax diagram, 2
	restoreObject subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	restoreSpecOperand subclause, syntax diagram, 2
	RESTRICTED SESSION privilege, 2
	RESYNC CATALOG command, 2
	RESYNC CATALOG, resync clause, 2
	resync clause, syntax diagram, 2
	resynchronization, 2
	retention policies, 3
	
	exemptions (example), 2
	overriding, 2, 2
	window-based, 2

	RETENTION POLICY parameter
	
	CONFIGURE command, 2
	SHOW command, 2

	REUSE parameter, BACKUP command, 2
	reverse resynchronization, 2
	revoke clause, syntax diagram, 2
	REVOKE command, 2
	
	revoke clause, 2

	RMAN command, 2
	
	cmdLine clause, 2, 2

	RMAN command (operating system), 2
	RMAN commands
	
	See specific command names
	executing from files, 2

	RMAN-0558 error message, 2
	RMAN-06004 error message, 2, 2, 2
	RMAN-06445 error message, 2, 2
	RMAN-06496 error message, 2, 2
	RMAN-06710 error message, 2
	RMAN-10031 error message, 2
	RMAN-10035 error message, 2
	RMAN-20401 error message, 2
	RMAN-6758 error message, 2
	roles
	
	RECOVER_CATALOG_OWNER, 2
	RECOVERY_CATALOG_OWNER, 2, 2

	rollback segments, resynchronization, 2
	run clause, syntax diagram, 2
	RUN command, 2
	
	backupCommands subclause, 2
	maintenanceCommands subclause, 2
	restoreCommands subclause, 2
	run clause, 2

S

	saving scripts, 2
	sbt channels, specifying parameters, 3
	SCHEMA parameter, REPORT command, 2
	SCN
	
	for restore, 2
	setting restore point, 2
	See also system change numbers

	SCN BETWEEN parameter, archlogRange subclause, 3
	SCN parameter
	
	FLASHBACK DATABASE command, 2
	REPORT command, 2

	scopes, creating for scripts, 2
	SCRIPT NAMES parameter, LIST command, 2
	SCRIPT parameter
	
	DELETE SCRIPT command, 2
	EXECUTE SCRIPT command, 2
	REPLACE SCRIPT command, 2
	RMAN command, 2

	scripts
	
	available information, 2
	creating from files, 2
	creating in recovery catalog, 2
	listing names, 2
	printing, 2
	replacing, 2
	See command files
	substitution variables, 2

	SECTION SIZE parameter
	
	BACKUP command, 2
	VALIDATE command, 2

	Secure Backup, 2
	SEND command, 2
	SEND parameter
	
	RMAN command, 2

	SEND parameter, allocOperandList subclause, 3
	SEQUENCE BETWEEN parameter, archlogRange subclause, 3
	SEQUENCE parameter
	
	FLASHBACK DATABASE command, 2, 2
	REPORT command, 2

	SEQUENCE parameter, archivelogRecordSpecifier subclause, 3
	server parameter files
	
	backing up, 2, 2
	for auxiliary databases, 2
	restoring, 2, 2
	restoring lost, 2
	validating, 2
	validation report, 2

	sessions
	
	ending RMAN, 2
	identifying channels, 2

	set clause, syntax diagram, 2
	SET command, 2
	
	encryption settings, 2
	set clause, 2
	setRmanOption subclause, 2, 2
	setRmanOrRunOption subclause, 2, 2
	setRunOption subclause, 2, 2

	SET MAXCORRUPT command, 2
	SET NEWNAME command, 2
	SET parameter, DUPLICATE command, 2
	setParameter subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	setRmanOption subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	setRmanOrRunOption subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	setRunOption subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	shared servers, allocating channels, 2
	shell commands, 2
	show clause, syntax diagram, 2
	SHOW command, 2
	
	show clause, 2

	SHUTDOWN command, 2
	shutdowns, 2
	single quotes, 1.2.3
	SITE_KEY column null values, 2
	sizeSpec subclause
	
	parameter descriptions, 2, 3
	syntax diagram, 2, 2, 2, 2, 2, 3

	SKIP keyword, CONVERT command, 2
	SKIP parameter
	
	BACKUP command, 2
	RECOVER command, 2
	RESTORE command, 2
	VALIDATE command, 2

	SKIP READONLY parameter
	
	DUPLICATE command, 2
	RECOVER command, 2
	RESTORE command, 2

	SKIP TABLESPACE parameter, DUPLICATE command, 2
	SKIP TABLESPACE parameter, listObjList subclause, 3
	skipSpec subclause
	
	parameter descriptions, 2, 2, 2
	syntax diagram, 2, 2, 2

	SNAPSHOT CONTROLFILE NAME parameter, CONFIGURE command, 2
	SNAPSHOT CONTROLFILE parameter, SHOW command, 2
	snapshots
	
	control file, 2
	Volume Shadow Copy Service (VSS), 2

	source databases
	
	copying, 2
	used for duplication, 2

	SPFILE parameter
	
	BACKUP command, 2
	DUPLICATE command, 2, 2
	RESTORE command, 2
	VALIDATE command, 2
	listObjList subclause, 3

	SPFILE SET, overriding, 2
	SPOOL command, 2
	SQL command, 2
	standard output
	
	printing scripts, 2
	redirecting to files, 2

	STANDBY CONTROLFILE parameter, RESTORE command, 2
	standby databases
	
	backing up, 2
	copying, 2
	flash recovery areas, 2
	password files, 2
	updating (example), 2

	STANDBY parameter, DUPLICATE command, 2
	STARTUP command, 2
	stdout, redirecting, 2
	stored scripts
	
	available information, 2
	deleting, 2
	executing, 2, 2
	printing, 2
	See also scripts

	strings
	
	valid characters in RMAN commands, 1.2.2

	striped files, allocating channels, 2
	striping backup sets, 2
	subclause summary, 1.6
	subclauses
	
	See specific subclause name

	substitution variables, 2
	
	complete list, 3
	example of %D, 2
	example of %F, 2
	example of %U, 2
	in scripts, 2, 2, 2
	passing to stored scripts, 2
	providing values, 2

	SUMMARY parameter, LIST command, 2
	switch clause
	
	parameter descriptions, 2
	syntax diagram, 2

	SWITCH command, 2
	
	effect on RESTORE, 2
	switch clause, 2, 2
	switchFile subclause, 2, 2

	switchFile subclause
	
	parameter descriptions, 2
	syntax diagram, 2

	syntax conventions, 1.2
	syntax diagrams
	
	keywords, 1.2.1
	parameters, 1.2.2
	placeholders, 1.2.2

	syntax errors, checking for, 2
	syntax, deprecated, A
	SYSAUX tablespaces, 2
	SYSDBA passwords
	
	for active duplication, 2
	RAC environment, 2

	SYSDBA privilege, 2, 3
	system change numbers
	
	See also SCN

	system change numbers (SCN), 2, 2, 2

T

	TABLESPACE DBA parameter, RECOVER command, 2
	TABLESPACE DESTINATION parameter, TRANSPORT TABLESPACE command, 2
	TABLESPACE parameter
	
	BACKUP command, 2
	CONVERT command, 2
	DUPLICATE command, 2
	RECOVER command, 2, 2
	REPORT command, 2
	RESTORE command, 2
	SWITCH command, 2
	VALIDATE command, 2

	tablespace point-in-time recovery (TSPITR), 2, 2
	tablespace recovery (example), 2
	tablespaces
	
	backing up, 2
	converting platform format, 2
	duplicating, 2
	encryption settings, 2
	excluding from database backup, 2
	excluding from duplicate database, 2
	including in duplicate database, 2
	listing datafiles, 2
	point-in-time lists, 2
	recovering individual, 2
	recovering undo segments, 2
	renamed, 2
	show excluded, 2
	transparent encryption, 2
	updating filenames, 2
	validating individual, 2
	See also transportable tablespaces

	TAG parameter
	
	BACKUP command, 2
	RECOVER command, 2, 2, 2
	RESTORE command, 2
	RESTORE commands, 2
	maintQualifier subclause, 3

	tape backups, allocating channels, 2
	tape device type setting, 2
	target control files, 2
	target databases
	
	connecting to, 2, 3
	deleting, 2
	maintaining single metadata catalog, 2
	registering, 2
	starting from RMAN, 2

	TARGET parameter
	
	CONNECT command, 2
	RMAN command, 2

	target times, undoing changes, 2
	tee command (Linux), 2
	TEMPFILE parameter, SWITCH command, 2
	tempfiles
	
	re-creating, 2, 2
	renaming, 2

	tempfileSpec subclause, 3
	temporary tablespaces, 2
	TEST parameter, RECOVER command, 2
	THREAD parameter
	
	FLASHBACK DATABASE command, 2
	REPORT command, 2

	THREAD parameter, archlogRange subclause, 3
	TIME BETWEEN parameter, archlogRange clause, 3
	time constraints
	
	partial backups, 2
	recovery period, 2

	time limits, 3
	TIME parameter
	
	FLASHBACK DATABASE command, 2, 2
	REPORT command, 2

	time ranges, 3
	time, backup completion, 3
	time-based backups, 2
	TIMEOUT parameter, RMAN command, 2
	TO BEFORE RESETLOGS parameter, FLASHBACK DATABASE command, 2
	TO BEFORE SCN parameter, FLASHBACK