

List of Figures

	1-1 Scope of Data Security Needs
	1-2 Oracle Label Security Architecture
	1-3 Oracle Label Security Label-Based Security
	1-4 Oracle Database 11g Release 1 (11.1) Enterprise Edition Virtual Private Database Technology
	2-1 Data Categorization with Levels, Compartments and Groups
	2-2 Label Matrix
	2-3 Group Example
	2-4 Example: Data Labels and User Labels
	2-5 How Label Components Interrelate
	3-1 Relationships Between Users, Data, and Labels
	3-2 User Session Label
	3-3 Setting Up Authorized Levels In Enterprise Manager
	3-4 Setting Up Authorized Compartments In Enterprise Manager
	3-5 Setting Up Authorized Groups in Enterprise Manager
	3-6 Subgroup Inheritance of Read/Write Access
	3-7 Label Evaluation Process for Read Access
	3-8 Label Evaluation Process for Write Access
	3-9 Label Evaluation Process for Read Access with COMPACCESS Privilege
	3-10 Label Evaluation Process for Write Access with COMPACCESS Privilege
	3-11 Stored Program Unit Execution
	6-1 Diagram of Oracle Label Security Metadata Storage in Oracle Internet Directory
	6-2 Oracle Label Security Policies Applied through Oracle Internet Directory
	7-1 Using Enterprise Manager to Configure Oracle Label Security Policies
	9-1 Label Evaluation Process for LABEL_UPDATE
	13-1 Using Oracle Label Security with a Distributed Database
	13-2 Label Tags in a Distributed Database
	13-3 Label Components in a Distributed Database
	13-4 Use of Materialized Views for Replication
	15-1 Read Access Label Evaluation with Inverse Groups
	15-2 Write Access Label Evaluation with Inverse Groups
	15-3 Read Access Label Evaluation: COMPACCESS Privilege and Inverse Groups
	15-4 Write Access Label Evaluation: COMPACCESS Privilege and Inverse Groups

List of Tables

	1-1 Access Mediation Factors in Oracle Label Security
	2-1 Sensitivity Label Components
	2-2 Level Example
	2-3 Forms of Specifying Levels
	2-4 Compartment Example
	2-5 Forms of Specifying Compartments
	2-6 Group Example
	2-7 Forms of Specifying Groups
	2-8 Typical Levels, Compartments, and Groups, by Industry
	3-1 Authorized Levels Set by the Administrator
	3-2 Computed Session Labels
	3-3 Oracle Label Security Privileges
	3-4 Types of Privilege
	5-1 Administratively Defined Label Tags (Example)
	5-2 Generated Label Tags (Example)
	5-3 Data Returned from Sample SQL Statements re Hidden Column
	5-4 Data Returned from Sample SQL Statements re Least_UBound
	5-5 MERGE_LABEL Format Constants
	5-6 Functions to Change Session Labels
	5-7 Security Attribute Names and Types
	5-8 SA_SESSION Functions to View Security Attributes
	6-1 Contents of Each Policy
	6-2 Elements in a DIP Provisioning Profile
	6-3 Tasks That Certain Entities Can Perform
	6-4 Access Levels Allowed by Users in OID
	6-5 Procedures Superseded by olsadmintool When Using Oracle Internet Directory
	7-1 Oracle Label Security Administrative Packages
	7-2 Parameters for SA_SYSDBA.CREATE_POLICY
	7-3 Parameters for SA_SYSDBA.ALTER_POLICY
	7-4 Parameters for SA_SYSDBA.DISABLE_POLICY
	7-5 Parameters for SA_SYSDBA.ENABLE_POLICY
	7-6 Parameters for SA_SYSDBA.DROP_POLICY
	7-7 Parameters for SA_COMPONENTS.CREATE_LEVEL
	7-8 Parameters for SA_COMPONENTS.ALTER_LEVEL
	7-9 Parameters for SA_COMPONENTS.DROP_LEVEL
	7-10 Parameters for SA_COMPONENTS.CREATE_COMPARTMENT
	7-11 Parameters for SA_COMPONENTS.ALTER_COMPARTMENT
	7-12 Parameters for SA_COMPONENTS.DROP_COMPARTMENT
	7-13 Parameters for SA_COMPONENTS.CREATE_GROUP
	7-14 Parameters for SA_COMPONENTS.ALTER_GROUP
	7-15 Parameters for SA_COMPONENTS.ALTER_GROUP_PARENT
	7-16 Parameters for SA_COMPONENTS.DROP_GROUP
	7-17 Parameters for SA_LABEL_ADMIN.CREATE_LABEL
	7-18 Parameters for SA_LABEL_ADMIN.ALTER_LABEL
	7-19 Parameters for SA_LABEL_ADMIN.DROP_LABEL
	8-1 Parameters for SA_USER_ADMIN.SET_LEVELS
	8-2 Parameters for SA_USER_ADMIN.SET_COMPARTMENTS
	8-3 Parameters for SA_USER_ADMIN.SET_GROUPS
	8-4 Parameters for SA_USER_ADMIN.ALTER_COMPARTMENTS
	8-5 Parameters for SA_USER_ADMIN.ADD_COMPARTMENTS
	8-6 Parameters for SA_USER_ADMIN.DROP_COMPARTMENTS
	8-7 Parameters for SA_USER_ADMIN.DROP_ALL_COMPARTMENTS
	8-8 Parameters for SA_USER_ADMIN.ADD_GROUPS
	8-9 Parameters for SA_USER_ADMIN.ALTER_GROUPS
	8-10 Parameters for SA_USER_ADMIN.DROP_GROUPS
	8-11 Parameters for SA_USER_ADMIN.DROP_ALL_GROUPS
	8-12 Parameters for SA_USER_ADMIN.SET_USER_LABELS
	8-13 Parameters for SA_USER_ADMIN.SET_DEFAULT_LABEL
	8-14 Parameters for SA_USER_ADMIN.SET_ROW_LABEL
	8-15 Parameters for SA_USER_ADMIN.DROP_USER_ACCESS
	8-16 Parameters for SA_USER_ADMIN.SET_USER_PRIVS
	8-17 Parameters for SA_SESSION.SET_ACCESS_PROFILE
	8-18 Parameters for SA_SESSION.SA_USER_NAME
	8-19 Oracle Label Security Views
	9-1 When Policy Enforcement Options Take Effect
	9-2 Policy Enforcement Options
	9-3 What Policy Enforcement Options Control
	9-4 Suggested Policy Enforcement Option Combinations
	10-1 Policy Administration Functions
	12-1 AUDIT_TRAIL Parameter Settings
	12-2 Auditing Options for Oracle Label Security
	12-3 Columns in the DBA_SA_AUDIT_OPTIONS View
	12-4 DBA_SA_AUDIT_OPTIONS Sample Output
	14-1 Input Choices for Oracle Label Security Input to SQL*Loader
	14-2 Label Tag Performance Example: Correct Values
	14-3 Label Tag Performance Example: Incorrect Values
	15-1 Access to Standard Groups and Inverse Groups
	15-2 Policy Example
	15-3 Computed Session Labels with Inverse Groups
	15-4 Sets of Groups for Evaluating Read and Write Access
	15-5 Read and Write Authorizations for Standard Groups and Inverse Groups
	15-6 Labels for Inverse Groups Example 1
	15-7 Labels for Inverse Groups Example 2
	15-8 Access Authorized by Values of access_mode Parameter
	15-9 Assigning Groups to a User
	15-10 Inverse Group Label Definitions
	A-1 Dominance in the Comparison of Labels
	A-2 Functions to Determine Dominance
	B-1 Oracle Label Security Commands in Categories
	B-2 olsadmintool Commands Linked to Their Explanations
	B-3 Summary: olsadmintool Command Parameters
	B-4 Summary of Profile and Default Command Parameters
	B-5 Label Component Definitions from Using olsadmintool Commands
	B-6 Contents of Profile1 from Using olsadmintool Commands
	C-1 Policy Functions Preserving Status in an RAC Environment
	C-2 Session Functions Preserving Status in an RAC Environment

1 Introduction to Oracle Label Security

Control of access to sensitive information is of concern to managers, information officers, DBAs, application developers, and many others. Selective access control based on a user's level of security clearance can ensure confidentiality without overbroad limitations. This level of access control ensures that sensitive information will be unavailable to unauthorized persons even while authorized users have access to needed information, sometimes in the same tables.

Data can be viewed as sensitive for different reasons. Examples include personal and private matters or communications, professional trade secrets, company plans for marketing or finance, military information, or government plans for research, purchases, or other actions.

Allowing information to be seen or used by inappropriate persons can be embarrassing, damaging, or dangerous to individuals, careers, organizations, agencies, governments, or countries.

However, such data is often intermingled with other, less sensitive information that is legitimately needed by diverse users. Restricting access to entire tables or segregating sensitive data into separate databases can create an awkward working environment that is costly in hardware, software, user time, and administration.

Oracle Label Security obviates the need for such measures by enabling row-level access control, based on the virtual private database technology of Oracle Database 11g Release 1 (11.1) Enterprise Edition. It controls access to the contents of a row by comparing that row's label with a user's label and privileges. Administrators can easily add selective row-restrictive policies to existing databases by means of the user-friendly graphical interface provided by Enterprise Manager Database Control. Developers can readily add label-based access control to their Oracle Database applications.

This chapter introduces Oracle Label Security in the larger context of data security. It contains the following sections:

	
Computer Security and Data Access Controls

	
Oracle Label Security Architecture

	
Features of Oracle Label Security

	
Oracle Label Security Integration with Oracle Internet Directory

	
Note:

This book assumes that you understand the basic concepts and terminology of Oracle Database administration and application development. It supplements core Oracle Database 11g Release 1 (11.1) documentation by focusing on the additional considerations involved in using, administering, and developing applications for Oracle Label Security.

	
See Also:

For a complete introduction to Oracle Database 11g Release 1 (11.1) features and terminology, refer to Oracle Database Concepts

1.1 Computer Security and Data Access Controls

Computer security involves the protection of computerized data and processes from unauthorized modification, destruction, disclosure, or delay. In the Internet age, the risks to valuable and sensitive data are greater than ever before. Figure 1-1, "Scope of Data Security Needs" shows the complex computing environment that your data security plan must encompass.

This section introduces basic terms and concepts of computer security as they relate to Oracle Label Security, in the following topics:

	
Oracle Label Security and Security Standards

	
Security Policies

	
Access Control

Figure 1-1 Scope of Data Security Needs

[image: Scope of data security needs]

Security officers, administrators, and application programmers must protect databases and the servers on which those databases reside. Also they must administer and protect the rights of internal database users, and they must guarantee electronic commerce confidentiality as customers access those databases. Oracle provides products to address this full spectrum of computer security issues.

1.1.1 Oracle Label Security and Security Standards

Oracle is a leader in information assurance. Security evaluation is a formal assessment process performed by independent bodies against national and international criteria. It provides external and objective assurance that a system meets the security criteria for which it was designed. On successful completion of evaluation, a security rating is assigned to the system or product. This certification provides confidence in the security of products and systems to commercial and government users.

Oracle RDBMS has met the Database Management System Protection Profile (DBMS PP). Oracle Label Security has been evaluated under the Common Criteria (ISO 15408) at Evaluation Assurance Level (EAL) 4, the highest level generally achieved by commercial software vendors.

1.1.2 Security Policies

A database security policy implements an overall system security policy within a broad, organizational security policy. The overall security policy can enforce the following types of rules:

	Type of Rules	Purpose
	Data Integrity Rules	To ensure that information in the system is consistent
	Availability Rules	To ensure that information in the system is available
	Access Control Rules	To prevent unauthorized disclosure of information
Oracle Label Security provides a default policy for information access control and also enables you to define other, more customized policies for use at any given site.

1.1.3 Access Control

Access control defines a user's ability to read, write, update, insert, or delete information. The following approaches are available to meet access control needs:

	
Discretionary Access Control

	
Oracle Label Security

	
How Oracle Label Security Works with Discretionary Access Control

1.1.3.1 Discretionary Access Control

Oracle Database 11g Release 1 (11.1) provides discretionary access control (DAC) on each table, controlling access to information through privileges (SELECT, INSERT, UPDATE, and DELETE) that authorize corresponding SQL operations on the table.

DAC controls access to data in a one-dimensional, binary way, meaning that access is granted or denied to the entire object. The administrator grants users privileges that determine the operations they can perform upon data. To access an object, such as a table or view, a user or process must have the proper privilege, such as the SELECT privilege. To access the data in an object, a user or process must first have the necessary DAC privileges.

1.1.3.2 Oracle Label Security

Labels enable sophisticated access control rules beyond those of DAC by using data in the row. When a policy is applied, a new column is added to each data row. This column will store the label reflecting each row's sensitivity within that policy. Level access is then determined by comparing the user's identity and label with that of the row.

Oracle Label Security access control depends first on the basic DAC policy. Together, DAC and Oracle Label Security dictate the criteria controlling whether access to a row is permitted or denied.

In most applications, only a relatively small number of tables need the extra security of label-based access controls. The protection provided by standard DAC is sufficient for the majority of application tables.

1.1.3.3 How Oracle Label Security Works with Discretionary Access Control

To be allowed access to a row, a user must first satisfy Oracle Database DAC requirements and then satisfy Oracle Label Security requirements.

Oracle Database enforces DAC based on the user's system and object privileges: The user must be authenticated to the Oracle Database and must also have the object and system privileges DAC requires for the requested operation.

If DAC permits access, the user's requested operation must then meet the criteria added by Oracle Label Security, using all of the following guidelines:

	
Oracle Label Security label definitions and label hierarchies

	
the labels of the user and row

	
Oracle Label Security enforcement options

	
the user's Oracle Label Security policy privileges

The flexibility and functionality of Oracle Label Security supports applications in a wide variety of production environments. It maintains standard Oracle Database 11g Release 1 (11.1) data integrity, availability, and recovery capabilities, including user accountability and auditing, while enforcing a site's security policies.

Figure 1-2, "Oracle Label Security Architecture" illustrates how data is accessed under Oracle Label Security, showing the sequence of DAC and label security checks. An application user in an Oracle Database 11g Release 1 (11.1) session sends out a SQL request. Oracle Database checks the DAC privileges, making sure that the user has SELECT privileges on the table. Then it checks whether a Virtual private Database (VPD) policy has been attached to the table, finding that the table is protected by Oracle Label Security. The SQL statement is modified.

Oracle Label Security is started for each row. Access is granted or denied based on result of comparing the data label and the session label of the user, which is again based on the Oracle Label Security privileges of the user.

1.2 Oracle Label Security Architecture

Oracle Label Security is built on the VPD technology delivered in the Oracle Database 11g Release 1 (11.1) Enterprise Edition and leverages that product's Application Context functionality.

Figure 1-2 Oracle Label Security Architecture

[image: Oracle label security architecture]

1.3 Features of Oracle Label Security

Oracle Label Security provides row-level security access controls that operate in addition to the underlying access controls of the Oracle Database. This section presents Oracle Label Security features in the following topics:

	
Overview of Oracle Label Security Policy Functionality

	
Oracle Enterprise Edition: VPD Technology

	
Oracle Label Security: An Out-of-the-Box VPD

	
Label Policy Features

1.3.1 Overview of Oracle Label Security Policy Functionality

A Label Security administrator defines a set of labels for data and users, along with authorizations for users and program units, that govern access to specified protected objects. A policy is nothing more than a name associated with these labels, rules, and authorizations.

For example, assume that a user has the SELECT privilege on an application table. As illustrated in Figure 1-3, "Oracle Label Security Label-Based Security", when the user runs a SELECT statement, Oracle Label Security evaluates each row selected to determine whether the user can access it. The decision is based on the privileges and access labels assigned to the user by the security administrator. Oracle Label Security can be configured to perform security checks on UPDATE, DELETE, and INSERT statements as well.

Figure 1-3 Oracle Label Security Label-Based Security

[image: label-based security]

	
Oracle Label Security enables a comprehensive set of access authorizations, explained in Chapter 3, "Understanding Access Controls and Privileges", to ensure that the sensitivity label itself can be protected, separately from the other data contained in the row.

	
Oracle Label Security provides for flexible policy enforcement to handle special processing requirements. Examples include limiting enforcement to only one type of Data Manipulation Language (DML) statement, limiting label creation by users, or enabling default labels.

	
Policies can protect individual application tables. Usually not all tables in an application need to be protected. For example, lookup tables such as zip codes do not need such protection.

	
Oracle Label Security allows the security administrator to add special labeling functions and SQL predicates to a policy, possibly simplifying user operations.

	
Administrators or application developers can create multiple Oracle Label Security policies. For example, a human resources policy can coexist with a defense policy in the same database. Each policy can be independently configured, with its own unique label definitions and its own column for data labels.

	
A single policy can be defined and applied to multiple application tables.

1.3.2 Oracle Enterprise Edition: VPD Technology

VPD supports policy-driven access control. VPD policies enforce object-level access control or row-level security. It provides an application programming interface (API) that allows security policies to be assigned to database tables and views. For example, one can allow access to salary data only for managers in the same facility. Using PL/SQL, developers and security administrators can create security policies with stored procedures. These procedures can be bound to a table or view by means of a call to an RDBMS package. Such policies restrict access by using the content of application data stored in Oracle Database or context variables provided by Oracle, such as user name or IP address. Using VPD policies permits developers to remove access security mechanisms from applications and centralize them within Oracle Database.

As illustrated in Figure 1-4, "Oracle Database 11g Release 1 (11.1) Enterprise Edition Virtual Private Database Technology", VPD lets you associate security conditions with tables, views, or synonyms. In this example, when each user selects from the ORDERS table, the required security condition is automatically enforced. No matter how the data is accessed, the server automatically enforces security policies, eliminating the need to use many views to implement security.

Figure 1-4 Oracle Database 11g Release 1 (11.1) Enterprise Edition Virtual Private Database Technology

[image: VPD technology]

Description of "Figure 1-4 Oracle Database 11g Release 1 (11.1) Enterprise Edition Virtual Private Database Technology"

1.3.3 Oracle Label Security: An Out-of-the-Box VPD

Oracle Label Security provides a built-in security policy and infrastructure that easily enforces row-level security. This out-of-the-box solution requires no programming, thereby reducing both total cost of ownership and the time to market for new products and applications.

Oracle Label Security administrators can create policies for row-level security by providing a descriptive name, without writing PL/SQL. There is no need to write additional code. In a single step you can apply a security policy to a given table. This straightforward, efficient way to implement fine-grained security policies allows a granularity and flexibility not easily achieved with VPD alone. This way Oracle Label Security is a generic solution that can be used in different circumstances.

1.3.4 Label Policy Features

Oracle Label Security adds label-based access controls to the Oracle object-relational database management system. Access to data is mediated based on these factors:

Table 1-1 Access Mediation Factors in Oracle Label Security

	Label or Policy Factor	Chapter Reference
	
The label of the data row to which access is requested

	
Chapter 3, "Understanding Access Controls and Privileges"

	
The label of the user session requesting access

	
Chapter 3, "Understanding Access Controls and Privileges"

	
The policy privileges for that user session

	
Chapter 3, "Understanding Access Controls and Privileges"

	
The policy enforcement options established for that table

	
Chapter 3, "Understanding Access Controls and Privileges"

Consider, for example, a standard DML operation (such as SELECT) performed on a row of data. When evaluating this access request by a user with the CONFIDENTIAL label, to a data row labeled CONFIDENTIAL, Oracle Label Security determines that this access can, in fact, be achieved. If the row label were higher, say TOP SECRET, access would be denied.

In this way, data of different sensitivities, or belonging to different companies, can be stored and managed on a single system, while preserving data security through standard Oracle access controls. Likewise, applications from a broad range of industries can use row labels with policies providing additional highly targeted access control wherever necessary, without disturbing other existing uses for the same tables.

Labels and policy enforcement depend on the factors explained in the following sections:

	
Data Labels

	
Label Authorizations

	
Policy Privileges

	
Policy Enforcement Options

	
Summary: Four Aspects of Label-Based Row Access

1.3.4.1 Data Labels

In Oracle Label Security, each row of a table can be labeled based on its level of confidentiality. Every label contains three components:

	
a single level (sensitivity) ranking

	
zero or more horizontal compartments or categories

	
zero or more hierarchical groups

Levels represent a hierarchy of data sensitivity to exposure or corruption, where the concern is maintaining privacy or security. Levels constitute the primary mechanism to exclude users who are not authorized to see or alter certain data. A user with a lower authorization level, represented by a numerically lower number, is automatically restricted from accessing data labeled with a higher level number. A typical government organization might define levels CONFIDENTIAL, SENSITIVE, and HIGHLY_SENSITIVE. A commercial organization might define a single level for COMPANY_CONFIDENTIAL data.

The compartment component is not hierarchical, but it designates some useful categories typically defined to segregate data, such as data related to separate ongoing strategic initiatives. Some organizations omit using compartments initially.

The group component is hierarchical and is used to reflect ownership. For example, FINANCE and ENGINEERING groups can be defined as children of the CEO group, creating an ownership relation. This hierarchy determines that a user labeled with only ENGINEERING could not view data labeled with FINANCE, but a user labeled CEO could see data labeled as either subgroup. The full rules for how groups determine access are described in Chapter 3, "Understanding Access Controls and Privileges".

A label can be any one of the following four combinations of components:

	
a single level component, with no groups or compartments, such as U::

	
a level and a set of compartments with no groups, such as U:Alpha, Beta:

	
a level and a set of groups with no compartments, such as U::FIN, ASIA

	
a level with both compartments and groups, such as U:Beta, Psi:ASIA, FIN

1.3.4.2 Label Authorizations

Users can be granted label authorizations that determine the kind of access (read or write) they have to the rows that are labeled. When a label has been applied to a row, only users authorized for access to that label can see it or possibly change it. No user can access or affect rows for which that user lacks necessary authorization. If a row has multiple labels, then a user must have the required authorizations for each such label to see or alter that row.

1.3.4.3 Policy Privileges

Policy privileges enable a user or stored program unit to bypass some aspects of the label-based access control policy. In addition, the administrator can authorize the user or program unit to perform specific actions, such as the ability of one user to assume the authorizations of a different user. Chapter 3, "Understanding Access Controls and Privileges" explains privileges.

Privileges can be granted to program units, authorizing the procedure, rather than the user, to perform privileged operations. System security is at its highest when only stored program units, and not individual users, have Oracle Label Security privileges. Further, such program units encapsulate the policy, minimizing the amount of application code that must be reviewed for security.

1.3.4.4 Policy Enforcement Options

In Oracle Label Security, administrators or application developers can apply different policy enforcement options for maximum flexibility in controlling the DML operations users can perform. Chapter 8, "Administering User Labels and Privileges" explains policy enforcement options.

1.3.4.5 Summary: Four Aspects of Label-Based Row Access

When label-based access is enforced within a protected table, access to a row requires a user's label to meet certain criteria determined by policy definitions. These access controls act as a secondary access mediation check, after the discretionary access controls implemented by the application developers.

In summary, Oracle Label Security provides four aspects of label-based access control:

	
A user's label indicates the information that a user is permitted to access, and determines the type of access (read or write) the user is allowed to perform.

	
A row's label indicates the sensitivity of the information that the row contains, and can also indicate its ownership and its affiliation with similar data.

	
A user's policy privileges can enable bypassing some aspects of a label-based access control policy.

	
A table's policy enforcement options determine various aspects of how access controls are enforced for read and write operations.

1.4 Oracle Label Security Integration with Oracle Internet Directory

Sites that integrate their use of Oracle Label Security with Oracle Internet Directory gain significant efficiencies of label security operation and administration. Policies and user authorization profiles are created and managed directly in the directory by means of the commands described in Appendix B, "Command-line Tools for Label Security Using Oracle Internet Directory". Changes are automatically propagated to the associated directories.

A complete introduction to this integration is presented in Chapter 6, "Oracle Label Security Using Oracle Internet Directory".

3 Understanding Access Controls and Privileges

Chapter 2, "Understanding Data Labels and User Labels" introduced the concept of labels (with their levels, compartments, and groups) and the basic notion of access control based on the row's data label and the user's label. This chapter examines the access controls and privileges that determine the type of access users can have to labeled rows.

This chapter contains these sections:

	
Introducing Access Mediation

	
Understanding Session Label and Row Label

	
Understanding User Authorizations

	
Evaluating Labels for Access Mediation

	
Using Oracle Label Security Privileges

	
Working with Multiple Oracle Label Security Policies

3.1 Introducing Access Mediation

To access data protected by an Oracle Label Security policy, a user must have authorizations based on the labels defined for the policy. Figure 3-1, "Relationships Between Users, Data, and Labels" illustrates the relationships between users, data, and labels.

	
Data labels specify the sensitivity of data rows.

	
User labels provide the appropriate authorizations to users.

	
Access mediation between users and rows of data depends on users' labels.

Figure 3-1 Relationships Between Users, Data, and Labels

[image: relationship between users data and labels]

	
Note:

Oracle Label Security enforcement options affect how access controls apply to tables and schemas. This chapter assumes that all policy enforcement options are in effect.

	
See Also:

For more information, Refer to "Choosing Policy Options"

3.2 Understanding Session Label and Row Label

This section introduces the basic user labels.

	
The Session Label

	
The Row Label

	
Session Label Example

3.2.1 The Session Label

Each Oracle Label Security user has a set of authorizations that include:

	
A maximum and minimum level

	
A set of authorized compartments

	
A set of authorized groups

	
For each compartment and group, a specification of read-only access, or read/write access

The administrator also specifies the user's initial session label when setting up these authorizations for the user.

The session label is the particular combination of level, compartments, and groups at which a user works at any given time. The user can change the session label to any combination of components for which the user is authorized.

	
See Also:

"Changing Your Session and Row Labels with SA_SESSION"

3.2.2 The Row Label

When a user writes data without specifying its label, a row label is assigned automatically, using the user's session label. However, the user can set the label for the written row, within certain restrictions on the components of the label he specifies.

The level of this label can be set to any level within the range specified by the administrator. For example, it can be set to the level of the user's current session label down to the user's minimum level. However, the compartments and groups for this row's new label are more restricted. The new label can include only those compartments and groups contained in the current session label and, among those, only the ones for which the user has write access.

When the administrator sets up the user authorizations, he or she also specifies an initial default row label.

	
See Also:

	
"Managing User Labels by Component, with SA_USER_ADMIN"

	
"Changing Your Session and Row Labels with SA_SESSION"

3.2.3 Session Label Example

The session label and the row label can fall anywhere within the range of the user's level, compartment, and group authorizations. In Figure 3-2, "User Session Label", the user's maximum level is SENSITIVE and the minimum level is UNCLASSIFIED. However, his default session label is C:FIN,OP:WR. In this example, the administrator has set the user's session label so that the user connects to the database at the CONFIDENTIAL level.

Similarly, although the user is authorized for compartments FIN and OP, and group WR, the administrator could set the session label so that the user connects with only compartment FIN and group WR.

	
See Also:

	
"SA_USER_ADMIN.SET_COMPARTMENTS" or

	
"SA_USER_ADMIN.ALTER_COMPARTMENTS"

Figure 3-2 User Session Label

[image: user session label]

3.3 Understanding User Authorizations

There are two types of user authorizations:

	
Authorizations Set by the Administrator

	
Computed Session Labels

3.3.1 Authorizations Set by the Administrator

The administrator explicitly sets a number of user authorizations:

	
Authorized Levels

	
Authorized Compartments

	
Authorized Groups

3.3.1.1 Authorized Levels

The administrator explicitly sets the following level authorizations:

Table 3-1 Authorized Levels Set by the Administrator

	Authorization	Meaning
	
User Max Level

	
The maximum ranking of sensitivity that a user can access during read and write operations

	
User Min Level

	
The minimum ranking of sensitivity that a user can access during write operations. The User Max Level must be equal to or greater than the User Min Level.

	
User Default Level

	
The level that is assumed by default when connecting to Oracle Database

	
User Default Row Level

	
The level that is used by default when inserting data into Oracle Database

For example, in Oracle Enterprise Manager, the administrator might set the following level authorizations for user Joe:

	Type	Short Name	Long Name	Description
	Maximum	HS	HIGHLY_SENSITIVE	User's highest level
	Minimum	P	PUBLIC	User's lowest level
	Default	C	CONFIDENTIAL	User's default level
	Row	C	CONFIDENTIAL	Row level on INSERT

Figure 3-3 Setting Up Authorized Levels In Enterprise Manager

[image: setting up authorized levels]

3.3.1.2 Authorized Compartments

The administrator specifies the list of compartments that a user can place in their session label. Write access must be explicitly given for each compartment. A user cannot directly insert, update, or delete a row that contains a compartment that she does not have authorization to write.

For example, in Oracle Enterprise Manager, the administrator might set the following compartment authorizations for user Joe:

	Short Name	Long Name	WRITE	DEFAULT	ROW
	CHEM	CHEMICAL	YES	YES	NO
	FINCL	FINANCIAL	YES	YES	NO
	OP	OPERATIONAL	YES	YES	YES

Figure 3-4 Setting Up Authorized Compartments In Enterprise Manager

[image: setting up authorized compartments]

In Figure 3-4, "Setting Up Authorized Compartments In Enterprise Manager", the row designation indicates whether the compartment should be used as part of the default row label for newly inserted data. Note also that the LABEL_DEFAULT policy option must be in effect for this setting to be valid.

3.3.1.3 Authorized Groups

The administrator specifies the list of groups that a user can place in session label. Write access must be explicitly given for each group listed.

For example, in Oracle Enterprise Manager, the administrator might set the following group authorizations:

	Short Name	Long Name	WRITE	DEFAULT	ROW	Parent
	WR_HR	WR_HUMAN_RESOURCES	YES	YES	YES	WR
	WR_AP	WR_ACCOUNTS_PAYABLE	YES	YES	NO	WR_FIN
	WR_AR	WR_ACCOUNTS_RECEIVABLE	YES	YES	NO	WR_FIN

Figure 3-5 Setting Up Authorized Groups in Enterprise Manager

[image: setting up authorized groups]

In Figure 3-5, "Setting Up Authorized Groups in Enterprise Manager", the row designation indicates whether the group should be used as part of the default row label for newly inserted data. Note also that the LABEL_DEFAULT policy option must be in effect for this setting to be valid.

	
See Also:

	
Chapter 8, "Administering User Labels and Privileges" for instructions on setting the authorizations

	
"LABEL_DEFAULT: Using the Session's Default Row Label"

3.3.2 Computed Session Labels

Oracle Label Security automatically computes a number of labels based on the value of the session label. These include:

Table 3-2 Computed Session Labels

	Computed Label	Definition
	
Maximum Read Label

	
The user's maximum level combined with any combination of compartments and groups for which the user is authorized.

	
Maximum Write Label

	
The user's maximum level combined with the compartments and groups for which the user has been granted write access.

	
Minimum Write Label

	
The user's minimum level.

	
Default Read Label

	
The single default level combined with compartments and groups that have been designated as default for the user.

	
Default Write Label

	
A subset of the default read label, containing the compartments and groups to which the user has been granted write access. The level component is equal to the level default in the read label. This label is automatically derived from the read label based on the user's write authorizations.

	
Default Row Label

	
The combination of components between the user's minimum write label and the maximum write label, which has been designated as the default value for the data label for inserted data.

	
See Also:

"Computed Labels with Inverse Groups"

3.4 Evaluating Labels for Access Mediation

When a table is protected by an Oracle Label Security policy, the user's label components are compared to the row's label components to determine whether the user can access the data. In this way, Oracle Label Security evaluates whether the user is authorized to perform the requested operation on the data in the row. This section explains the rules and options by which user access is mediated. It contains these topics:

	
Introducing Read/Write Access

	
The Oracle Label Security Algorithm for Read Access

	
The Oracle Label Security Algorithm for Write Access

3.4.1 Introducing Read/Write Access

Although data labels are stored in a column within data records, information about user authorizations is stored in relational tables. When a user logs on, the tables are used to dynamically generate user labels for use during the session.

3.4.1.1 Difference Between Read and Write Operations

Two fundamental types of access mediation on Data Manipulation language (DML) operations exist, within protected tables:

	
Read access

	
Write access

The user has a maximum authorization for the data he or she can read; the user's write authorization is a subset of that. The minimum write level controls the user's ability to disseminate data by lowering its sensitivity. The user cannot write data with a level lower than the minimum level the administrator assigned to this user.

In addition, there are separate lists of compartments and groups for which the user is authorized; that is, for which the user has at least read access. An access flag indicates whether the user can also write to individual compartments or groups.

3.4.1.2 Propagation of Read/Write Authorizations on Groups

When groups are organized hierarchically, a user's assigned groups include all subgroups that are subordinate to the group to which she belongs. In this case, the user's read/write authorizations on a parent group flow down to all the subgroups.

Consider the parent group WESTERN_REGION, with three subgroups as illustrated in Figure 3-6, "Subgroup Inheritance of Read/Write Access". If the user has read access to WESTERN_REGION, then the read access is also granted to the three subgroups. The administrator can give the user write access to subgroup WR_FINANCE, without granting write access to the WESTERN_REGION parent group (or to the other subgroups). On the other hand, if the user has read/write access on WESTERN_REGION, then read/write access is also granted on all of the subgroups subordinate to it in the tree.

Write authorization on a group does not give a user write authorization on the parent group. If a user has read-only access to WESTERN_REGION and WR_FINANCE, then the administrator can grant write access to WR_ACCOUNTS_RECEIVABLE, without affecting the read-only access to the higher-level groups.

Figure 3-6 Subgroup Inheritance of Read/Write Access

[image: subgroup inheritance of read write]

	
See Also:

	
"Introduction to User Label and Privilege Management"

	
"How Inverse Groups Work"

3.4.2 The Oracle Label Security Algorithm for Read Access

The READ_CONTROL enforcement determines the ability to read data in a row. The following rules are used, in the sequence listed, to determine a user's read access to a row of data:

	
The user's level must be greater than or equal to the level of the data.

	
The user's label must include at least one of the groups that belong to the data (or the parent group of one such subgroup).

	
The user's label must include all the compartments that belong to the data.

If the user's label passes these tests, then it is said to dominate the row's label.

Note that there is no notion of read or write access connected with levels. This is because the administrator specifies a range of levels (minimum to maximum) within which a user can potentially read and write. At any time, the user can read all data equal to or less than the current session level. No privileges (other than FULL) allow the user to write below the minimum authorized level.

The label evaluation process proceeds from levels to groups to compartments, as illustrated in Figure 3-7, "Label Evaluation Process for Read Access". Note that if the data label is null or invalid, then the user is denied access.

Figure 3-7 Label Evaluation Process for Read Access

[image: label evaluation process for read access]

As a read access request comes in, Oracle Label Security evaluates each row to determine the following:

	
Is the user's level equal to, or greater than, the level of the data?

	
If so, does the user have access to at least one of the groups present in the data label?

	
If so, does the user have access to all the compartments present in the data label? (That is, are the data's compartments a subset of the user's compartments?)

If the answer is no at any stage in this evaluation process, then Oracle Label Security denies access to the row and moves on to evaluate the next row of data.

Oracle Label Security policies allow user sessions to read rows at their label and below, which is called reading down. Sessions cannot read rows at labels that they do not dominate.

For example, if you are logged in at SENSITIVE:ALPHA,BETA, you can read a row labeled SENSITIVE:ALPHA because your label dominates that of the row. However, you cannot read a row labeled SENSITIVE:ALPHA,GAMMA because your label does not dominate that of the row.

Note that the user can gain access to the rows otherwise denied, if she or he has special Oracle Label Security privileges.

	
See Also:

	
"Privileges Defined by Oracle Label Security Policies"

	
"The Access Control Enforcement Options"

	
"Algorithm for Read Access with Inverse Groups"

	
"Analyzing the Relationships Between Labels"

3.4.3 The Oracle Label Security Algorithm for Write Access

In the context of Oracle Label Security, WRITE_CONTROL enforcement determines the ability to insert, update, or delete data in a row.

WRITE_CONTROL enables you to control data access with ever finer granularity. Granularity increases when compartments are added to levels. It increases again when groups are added to compartments. Access control becomes even more fine grained when you can manage the user's ability to write the data that he can read.

To determine whether a user can write a particular row of data, Oracle Label Security evaluates the following rules, in the order given:

	
The level in the data label must be greater than or equal to the user's minimum level and less than or equal to the user's session level.

	
When groups are present, the user's label must include at least one of the groups with write access that appear in the data label (or the parent of one such subgroup). In addition, the user's label must include all the compartments in the data label.

	
When no groups are present, the user's label must have write access on all of the compartments in the data label.

To state tests 2 and 3 another way:

	
If the label has no groups, then the user must have write access on all the compartments in the label in order to write the data.

	
If the label does have groups and the user has write access to one of the groups, she only needs read access to the compartments in order to write the data.

Just as with read operations, the label evaluation process proceeds from levels to groups to compartments. Note that the user cannot write any data below the authorized minimum level, nor above the current session level. The user can always read below the minimum level.

The following figure illustrates how the process works with INSERT, UPDATE, and DELETE operations. Note that if the data label is null or invalid, then the user is denied access.

Figure 3-8 Label Evaluation Process for Write Access

[image: label evaluation process for write access]

As an access request comes in, Oracle Label Security evaluates each row to determine the following:

	
Is the data's level equal to, or less than the level of the user?

	
Is the data's level equal to, or greater than the user's minimum level?

	
If the data's level falls within the foregoing bounds, then does the user have write access to at least one of the groups present in the data label?

	
If so, does the user have access to all the compartments with at least read access that are present in the data label?

	
If there are no groups but there are compartments, then does the user have write access to all of the compartments?

If the answer is no at any stage in this evaluation process, then Oracle Label Security denies access to the row, and moves on to evaluate the next row of data.

Consider a situation in which your session label is S:ALPHA,BETA but you have write access to only compartment ALPHA. In this case, you can read a row with the label S:ALPHA,BETA but you cannot update it.

In summary, write access is enforced on INSERT, UPDATE and DELETE operations upon the data in the row.

In addition, each user may have an associated minimum level below which the user cannot write. The user cannot update or delete any rows labeled with levels below the minimum, and cannot insert a row with a row label containing a level less than the minimum.

	
See Also:

	
"The Access Control Enforcement Options"

	
"Algorithm for Write Access with Inverse Groups"

3.5 Using Oracle Label Security Privileges

This section introduces the Oracle Label Security database and row label privileges:

	
Privileges Defined by Oracle Label Security Policies

	
Special Access Privileges

	
Special Row Label Privileges

	
System Privileges, Object Privileges, and Policy Privileges

3.5.1 Privileges Defined by Oracle Label Security Policies

Oracle Label Security supports special privileges that allow authorized users to bypass certain parts of the policy. Table 3-3 summarizes the full set of privileges that can be granted to users or trusted stored program units. Each privilege is more fully discussed after the table.

Table 3-3 Oracle Label Security Privileges

	Security Privilege	Explanation
	
READ

	
Allows read access to all data protected by the policy

	
FULL

	
Allows full read and write access to all data protected by the policy

	
COMPACCESS

	
Allows a session access to data authorized by the row's compartments, independent of the row's groups

	
PROFILE_ACCESS

	
Allows a session to change its labels and privileges to those of a different user

	
WRITEUP

	
Allows users to set or raise only the level, within a row label, up to the maximum level authorized for the user. (Active only if LABEL_UPDATE is active.)

	
WRITEDOWN

	
Allows users to set or lower the level, within a row label, to any level equal to or greater than the minimum level authorized for the user. (Active only if LABEL_UPDATE is active.)

	
WRITEACROSS

	
Allows a user to set or change groups and compartments of a row label, but does not allow changes to the level. (Active only if LABEL_UPDATE is active.)

3.5.2 Special Access Privileges

A user's authorizations can be modified with any of four privileges:

	
READ

	
FULL

	
COMPACCESS

	
PROFILE_ACCESS

3.5.2.1 READ

A user with the READ privilege can read all data protected by the policy, regardless of the authorizations or session label. The user does not even need to have label authorizations. Note, in addition, that a user with READ privilege can write to any data rows for which he or she has write access, based on any label authorizations.

	
Note:

However, access mediation is still enforced on UPDATE, INSERT, and DELETE operations.
Refer to Chapter 9, "Implementing Policy Enforcement Options and Labeling Functions", particularly

	
"Overview of Policy Enforcement Options",

	
Table 9-2, "Policy Enforcement Options", and

	
"The Access Control Enforcement Options".

This privilege is useful for system administrators who need to export data but who should not be allowed to change data. It is also useful for people who must run reports and compile information but not change data. The READ privilege enables optimal performance on SELECT statements, because the system behaves as though the Oracle Label Security policy were not even present.

3.5.2.2 FULL

The FULL privilege has the same effect and benefits as the READ privilege, with one difference. A user with the FULL privilege can also write to all the data. For a user with the FULL privilege, the READ and WRITE algorithms are not enforced.

Note that Oracle system and object authorizations are still enforced. For example, a user must still have SELECT on the application table. The FULL authorization turns off the access mediation check at the individual row level.

3.5.2.3 COMPACCESS

The COMPACCESS privilege allows a user to access data based on the row label's compartments, independent of the row label's groups. If a row label has no compartments, then access is determined by the group authorizations. However, when compartments do exist and access to them is authorized, then the group authorization is bypassed. This allows a privileged user whose label matches all the compartments of the data to access any data in any particular compartment, independent of what groups may own or otherwise be allowed access to the data.

Figure 3-9, "Label Evaluation Process for Read Access with COMPACCESS Privilege" shows the label evaluation process for read access with the COMPACCESS privilege. Note that if the data label is null or invalid, then the user is denied access.

Figure 3-9 Label Evaluation Process for Read Access with COMPACCESS Privilege

[image: process for read access with COMPACCESS privilege]

Figure 3-10, "Label Evaluation Process for Write Access with COMPACCESS Privilege" shows the label evaluation process for write access with COMPACCESS privilege. Note that if the data label is null or invalid, then the user is denied access.

Figure 3-10 Label Evaluation Process for Write Access with COMPACCESS Privilege

[image: process for write process with COMPACCESS privilege]

3.5.2.4 PROFILE_ACCESS

The PROFILE_ACCESS privilege allows a session to change its session labels and session privileges to those of a different user. This is a very powerful privilege, because the user can potentially become a user with FULL privileges. This privilege cannot be granted to a trusted stored program unit.

3.5.3 Special Row Label Privileges

Once the label on a row has been set, Oracle Label Security privileges are required to modify the label. These privileges include WRITEUP, WRITEDOWN, and WRITEACROSS.

Note that the LABEL_UPDATE enforcement option must be on for these label modification privileges to be enforced. When a user updates a row label, the new label and old label are compared, and the required privileges are determined.

3.5.3.1 WRITEUP

The WRITEUP privilege enables the user to raise the level of data within a row, without compromising the compartments or groups. The user can raise the level up to his or her maximum authorized level.

For example, an authorized user can raise the level of a data row that has a level lower than his own minimum level. If a row is UNCLASSIFIED and the user's maximum level is SENSITIVE, then the row's level can be raised to SENSITIVE. It can be raised above the current session level, but it cannot change the compartments.

3.5.3.2 WRITEDOWN

The WRITEDOWN privilege enables the user to lower the level of data within a row, without compromising the compartments or groups. The user can lower the level to any level equal to or greater than his or her minimum authorized level.

3.5.3.3 WRITEACROSS

The WRITEACROSS privilege allows the user to change the compartments and groups of data, without altering its sensitivity level. This guarantees, for example, that SENSITIVE data remains at the SENSITIVE level, but at the same time enables the data's dissemination to be managed.

It lets the user change compartments and groups to anything that is currently defined as a valid compartment or group within the policy, while maintaining the level. With the WRITEACROSS privilege, a user with read access to one group (or more) can write to a different group without explicitly being given access to it.

3.5.4 System Privileges, Object Privileges, and Policy Privileges

Remember that Oracle Label Security privileges are different from the standard Oracle Database system and object privileges.

Table 3-4 Types of Privilege

	Source	Privileges	Definition
	
Oracle Database

	
System Privileges

	
The right to run a particular type of SQL statement

	
	
Object Privileges

	
The right to access another user's object

	
Oracle Label Security

	
Policy Privileges

	
The ability to bypass certain parts of the label security policy

Oracle Database enforces the discretionary access control privileges that a user has been granted. By default, a user has no privileges except those granted to the PUBLIC user group. A user must explicitly be granted the appropriate privilege to perform an operation.

For example, to read an object in Oracle Database, you must either be the object's owner, or be granted the SELECT privilege on the object, or be granted the SELECT ANY TABLE system privilege. Similarly, to update an object, you must either be the object's owner, or be granted the UPDATE privilege on the object, or be granted the UPDATE ANY TABLE privilege.

	
See Also:

For more information about which Oracle Database privileges are required to perform a certain operation and how to grant and revoke these discretionary access control privileges, see Oracle Database Administrator's Guide

3.5.5 Access Mediation and Views

Prior to accessing data through a view, the users must have the appropriate system and object privileges on the view. If the underlying table (on which the view is based) is protected by Oracle Label Security, then the user of the view must have authorization from Oracle Label Security to access specific rows of labeled data.

3.5.6 Access Mediation and Program Unit Execution

In Oracle Database, if User1 executes a procedure that belongs to User2, the procedure runs with User2's system and object privileges. However, any procedure executed by User1 runs with User1's own Oracle Label Security labels and privileges. This is true even when User1 executes stored program units owned by other users.

Figure 3-11, "Stored Program Unit Execution" illustrates this process:

	
Stored program units run with the DAC privileges of the procedure's owner (User2).

	
In addition, stored program units accessing tables protected by Oracle Label Security mediate access to data rows based on the label attached to the row, and the Oracle Label Security labels and privileges of the invoker of the procedure (User1).

Figure 3-11 Stored Program Unit Execution

[image: stored program unit execution]

Stored program units can become trusted when an administrator assigns them Oracle Label Security privileges. A stored program unit can be run with its own autonomous Oracle Label Security privileges rather than those of the user who calls it. For example, if you possess no Oracle Label Security privileges in your own right but run a stored program unit that has the WRITEDOWN privilege, then you can update labels. In this case, the privileges used are those of the stored program unit, and not your own.

Trusted program units can encapsulate privileged operations in a controlled manner. By using procedures, packages, and functions with assigned privileges, you may be able to access data that your own labels and privileges would not authorize. For example, to perform aggregate functions over all data in a table, not just the data visible to you, you might use a trusted program set up by an administrator. This way program units can thus perform operations on behalf of users, without the need to grant privileges directly to users.

	
See Also:

Chapter 11, "Administering and Using Trusted Stored Program Units"

3.5.7 Access Mediation and Policy Enforcement Options

An administrator can choose from among a set of policy enforcement options when applying an Oracle Label Security policy to individual tables. These options enable enforcement to be tailored differently for each database table. In addition to the access controls based on the labels, a SQL predicate can also be associated with each table. The predicate can further define which rows in the table are accessible to the user. Policy enforcement options and predicates are discussed in Chapter 9, "Implementing Policy Enforcement Options and Labeling Functions".

In cases where the label to be associated with a new or updated row should be automatically computed, an administrator can specify a labeling function when applying the policy. That function will thereafter always be invoked to provide the data labels written under that policy, because active labeling functions take precedence over any alternative means of supplying a label.

Except where noted, this guide assumes that all enforcement options are in effect.

	
See Also:

	
"Using a Labeling Function"

	
"Applying a Policy with SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY"

3.6 Working with Multiple Oracle Label Security Policies

This section describes aspects of using multiple policies.

3.6.1 Multiple Oracle Label Security Policies in a Single Database

Several Oracle Label Security policies may be protecting data in a single database. Each defined policy is associated with a set of labels used only by that policy. Data labels are constrained by the set of defined labels for each policy.

Each policy may protect a different table, but multiple policies can also apply to a single table. To access data, you must have label authorizations for all policies protecting that data. To access any particular row, you must be authorized by all policies protecting the table containing your desired rows. If you require privileges, then you may need privileges for all of the policies affecting your work.

3.6.2 Multiple Oracle Label Security Policies in a Distributed Environment

If you work in a distributed environment, where multiple databases may be protected by the same or different Oracle Label Security policies, your remote connections will also be controlled by Oracle Label Security.

	
See Also:

Chapter 13, "Using Oracle Label Security with a Distributed Database"

Part II

Using Oracle Label Security Functionality

This part presents the following chapters, each discussing the indicated contents:

	
Chapter 4, "Getting Started with Oracle Label Security"

	
Chapter 5, "Working with Labeled Data"

	
Chapter 6, "Oracle Label Security Using Oracle Internet Directory"

5 Working with Labeled Data

This chapter explains how to

	
Use Oracle Label Security features to manage labeled data

	
View the value of security attributes for a session

	
Change the value of those session attributes

The chapter contains these sections:

	
The Policy Label Column and Label Tags

	
Presenting the Label

	
Filtering Data Using Labels

	
Inserting Labeled Data

	
Changing Your Session and Row Labels with SA_SESSION

	
Note:

Many of the examples in this book use the HUMAN_RESOURCES sample policy. Its policy name is HR and its policy label column is HR_LABEL. Unless otherwise noted, the examples assume that the SQL statements are performed on rows within the user's authorization and with full Oracle Label Security policy enforcement in effect.

5.1 The Policy Label Column and Label Tags

This section explains how policy label columns in a table or schema are created and filled, using these topics:

	
The Policy Label Column

	
Label Tags

5.1.1 The Policy Label Column

Each policy that is applied to a table creates a column in the database. By default, the data type of the policy label column is NUMBER.

	
Note:

The act of creating a policy does not in itself have any effect on tables or schemas. It only applyies the policy to a table or schema. Refer to these sections:
	
"Creating a Policy with SA_SYSDBA.CREATE_POLICY"

	
Applying a Policy with SA_POLICY_ADMIN.APPLY_TABLE_POLICY

	
Applying a Policy with SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY

Each row's label for that policy is represented by a tag in that column, using the numeric equivalent of the character-string label value. The label tag is automatically generated when the label is created, unless the administrator specifies the tag manually at that time.

The automatic label generation follows the rules established by the administrator while defining the label components, as described in Chapter 2, "Understanding Data Labels and User Labels".

5.1.1.1 Hiding the Policy Label Column

The administrator can decide not to display the column representing a policy by applying the HIDE option to the table. After a policy using HIDE is applied to a table, a user executing a SELECT * or performing a DESCRIBE operation will not see the policy label column. If the policy label column is not hidden, then the label tag is displayed as data type NUMBER. Refer to "The HIDE Policy Column Option".

5.1.1.2 Example 1: Numeric Column Data Type (NUMBER)

SQL> describe emp;
 Name Null? Type
 --- -------- --------
 EMPNO NOT NULL NUMBER(4)
 ENAME CHAR(10)
 JOB CHAR(9)
 MGR NUMBER(4)
 SAL NUMBER(7,2)
 DEPTNO NOT NULL NUMBER(2)
 HR_LABEL NUMBER(10)

5.1.1.3 Example 2: Numeric Column Data Type with Hidden Column

Notice that in this example, the HR_LABEL column is not displayed.

SQL> describe emp;
 Name Null? Type
 --- -------- --------
 EMPNO NOT NULL NUMBER(4)
 ENAME CHAR(10)
 JOB CHAR(9)
 MGR NUMBER(4)
 SAL NUMBER(7,2)
 DEPTNO NOT NULL NUMBER(2)

5.1.2 Label Tags

As noted in Chapter 2, "Understanding Data Labels and User Labels", the administrator first defines a set of label components to be used in a policy. When creating labels, the administrator specifies the set of valid combinations of components that can make up a label, that is, a level optionally combined with one or more groups or compartments. Each such valid label within a policy is uniquely identified by an associated numeric tag assigned by the administrator or generated automatically upon its first use. Manual definition has the advantage of allowing the administrator to control the ordering of label values when they are sorted or logically compared.

However, label tags must be unique across all policies in the database. When you use multiple policies in a database, you cannot use the same numeric label tag in different policies. Remember that each label tag uniquely identifies one label, and that numeric tag is what is stored in the data rows, not the label's character-string representation.

This section contains these topics:

	
Manually Defining Label Tags to Order Labels

	
Manually Defining Label Tags to Manipulate Data

	
Automatically Generated Label Tags

5.1.2.1 Manually Defining Label Tags to Order Labels

By manually defining label tags, the administrator can implement a data manipulation strategy that permits labels to be meaningfully sorted and compared. To do this, the administrator predefines all of the labels to be associated with protected data, and assigns to each label a meaningful label tag value. Manually assigned label tags can have up to eight digits. The value of a label tag must be greater than zero.

It may be advantageous to implement a strategy in which label tag values are related to the numeric values of label components. In this way, you can use the tags to group data rows in a meaningful way. This approach, however, is not mandatory. It is good practice to set tags for labels of higher sensitivity to a higher numeric value than tags for labels of lower sensitivity.

Table 5-1 illustrates a set of label tags that have been assigned by an administrator. Notice that, in this example, the administrator has based the label tag value on the numeric form of the levels, compartments, and rows that were discussed in Chapter 2, "Understanding Data Labels and User Labels".

Table 5-1 Administratively Defined Label Tags (Example)

	Label Tag	Label String
	
10000

	
P

	
20000

	
C

	
21000

	
C:FNCL

	
21100

	
C:FNCL,OP

	
30000

	
S

	
31110

	
S:OP:WR

	
40000

	
HS

	
42000

	
HS:OP

In this example, labels with a level of PUBLIC begin with "1", labels with a level of CONFIDENTIAL begin with "2", labels with a level of SENSITIVE begin with "3", and labels with a level of HIGHLY_SENSITIVE begin with "4".

Labels with the FINANCIAL compartment then come in the 1000 range, labels with the compartment OP are in the 1100 range, and so on. The tens place is used to indicate the group WR, for example.

Another strategy might be completely based on groups, where the tags might be 3110, 3120, 3130, and so on.

Note, however, that label tags identify the whole label, independent of the numeric values assigned for the individual label components. The label tag is used as a whole integer, not as a set of individually evaluated numbers.

5.1.2.2 Manually Defining Label Tags to Manipulate Data

An administratively defined label tag can serve as a convenient way to reference a complete label string (that is, a particular combination of label components). As illustrated in Table 5-1, for example, the tag "31110" could stand for the complete label string "S:OP:WR".

Label tags can be used as a convenient way to partition data. For example, all data with labels in the range 1000 - 1999 could be placed in tablespace A, all data with labels in the range 2000 - 2999 could be placed in tablespace B, and so on.

This simplified notation also comes in handy when there is a finite number of labels and you need to perform various operations upon them. Consider a situation in which one company hosts a human resources system for many other companies. Assume that all users from Company Y have the label "C:ALPHA:CY", for which the tag "210" has been set. To determine the total number of application users from Company Y, the host administrator can enter:

SELECT * FROM tab1
 WHERE hr_label = 210;

5.1.2.3 Automatically Generated Label Tags

Dynamically generated label tags, illustrated in Table 5-2, have 10 digits, with no relationship to numbers assigned to any label component. There is no way to group the data by label.

Table 5-2 Generated Label Tags (Example)

	Label Tag	Label String
	
100000020

	
P

	
100000052

	
C

	
100000503

	
C:FNCL

	
100000132

	
C:FNCL,OP

	
100000003

	
S

	
100000780

	
S:OP:WR

	
100000035

	
HS

	
100000036

	
HS:OP

	
See Also:

	
"Creating a Valid Data Label with SA_LABEL_ADMIN.CREATE_LABEL"

	
"Planning a Label Tag Strategy to Enhance Performance"

5.2 Assigning Labels to Data Rows

For rows that are being inserted, refer to Inserting Labeled Data.

For existing data rows, labels can be assigned by a labeling function that you create. In such a function, you specify the exact table and row conditions defining what label to insert. The function can be named in the call to apply a policy to a table or schema, or in an update by the administrator.

	
See Also:

	
"Using a Labeling Function"

	
Applying a Policy with SA_POLICY_ADMIN.APPLY_TABLE_POLICY.

	
"Applying a Policy with SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY"

5.3 Presenting the Label

When you retrieve labels, you do not automatically obtain the character string value. By default, the label tag value is returned. Two label manipulation functions enable you to convert the label tag value to and from its character string representation:

	
Converting a Character String to a Label Tag, with CHAR_TO_LABEL

	
Converting a Label Tag to a Character String, with LABEL_TO_CHAR

5.3.1 Converting a Character String to a Label Tag, with CHAR_TO_LABEL

Use the CHAR_TO_LABEL function to convert a character string to a label tag. This function returns the label tag for the specified character string.

Syntax:

FUNCTION CHAR_TO_LABEL (
 policy_name IN VARCHAR2,
 label_string IN VARCHAR2)
RETURN NUMBER;

Example:

INSERT INTO emp (empno,hr_label)
VALUES (999, CHAR_TO_LABEL('HR','S:A,B:G5');

Here, HR is the label policy name, S is a sensitivity level, A,B compartments, and G5 a group.

5.3.2 Converting a Label Tag to a Character String, with LABEL_TO_CHAR

When you query a table or view, you automatically retrieve all of the rows in the table or view that satisfy the qualifications of the query and are dominated by your label. If the policy label column is not hidden, then the label tag value for each row is displayed. You must use the LABEL_TO_CHAR function to display the character string value of each label.

Note that all conversions must be explicit. There is no automatic casting to and from tag and character string representations.

Syntax:

FUNCTION LABEL_TO_CHAR (
 label IN NUMBER)
RETURN VARCHAR2;

5.3.2.1 LABEL_TO_CHAR Examples

The examples that follow illustrate the use of LABEL_TO_CHAR.

5.3.2.1.1 Example 1:

To retrieve the label of a row from a table or view, specify the policy label column in the SELECT statement as follows:

SELECT label_to_char (hr_label) AS label, ename FROM tab1;
 WHERE ename = 'RWRIGHT';

This statement returns the following:

LABEL ENAME
------------ ----------
S:A,B:G1 RWRIGHT

5.3.2.1.2 Example 2:

You can also specify the policy label column in the WHERE clause of a SELECT statement. The following statement displays all rows that have the policy label S:A,B:G1

SELECT label_to_char (hr_label) AS label,ename FROM emp
 WHERE hr_label = char_to_label ('HR', 'S:A,B:G1');

This statement returns the following:

LABEL ENAME
------------- ---------
S:A,B:G1 RWRIGHT
S:A,B:G1 ESTANTON

Alternatively, you could use a more flexible statement to look up data that contains the string "S:A,B:G1" anywhere in the text of the HR_LABEL column:

SELECT label_to_char (hr_label) AS label,ename FROM emp
 WHERE label_to_char (hr_label) like '%S:A,B:G1%';

If you do not use the LABEL_TO_CHAR function, then you will see the label tag.

5.3.2.1.3 Example 3:

The following example is with the numeric column data type (NUMBER) and dynamically generated label tags, but without using the LABEL_TO_CHAR function. If you do not use the LABEL_TO_CHAR function, then you will see the label tag.

SQL> select empno, hr_label from emp
 where ename='RWRIGHT';

EMPNO HR_LABEL
---------- ----------
7839 1000000562

5.3.2.2 Retrieving All Columns from a Table When the Policy Label Column Is Hidden

If the policy label column is hidden, then it is not automatically returned when you select all columns from a table using the SELECT * command. You must explicitly specify that you want to retrieve the label. For example, to retrieve all columns from the DEPT table (including the policy label column in its character representation), enter the following:

SQL> column label format a10
SQL> select label_to_char (hr_label) as label, dept.*
 2 from dept;

Running these SQL statements returns the following data:

Table 5-3 Data Returned from Sample SQL Statements re Hidden Column

	LABEL	DEPTNO	DNAME	LOC
	
L1

	
10

	
ACCOUNTING

	
NEW YORK

	
L1

	
20

	
RESEARCH

	
DALLAS

	
L1

	
30

	
SALES

	
CHICAGO

	
L1

	
40

	
OPERATIONS

	
BOSTON

By contrast, if you do not explicitly specify the HR_LABEL column, the label is not displayed at all. Note that while the policy column name is on a policy basis, the HIDE option is on a table-by-table basis.

	
See Also:

"The HIDE Policy Column Option"

5.4 Filtering Data Using Labels

During the processing of SQL statements, Oracle Label Security makes calls to the security policies defined in the database by the create and apply procedures discussed in Chapter 7, "Creating an Oracle Label Security Policy" and Chapter 10, "Applying Policies to Tables and Schemas". For SELECT statements, the policy filters the data rows that the user is authorized to see. For INSERT, UPDATE, and DELETE statements, Oracle Label Security permits or denies the requested operation, based on the user's authorizations.

This section contains these topics:

	
Using Numeric Label Tags in WHERE Clauses

	
Ordering Labeled Data Rows

	
Ordering by Character Representation of Label

	
Determining Upper and Lower Bounds of Labels

	
Merging Labels with the MERGE_LABEL Function

	
See Also:

"Partitioning Data Based on Numeric Label Tags"

5.4.1 Using Numeric Label Tags in WHERE Clauses

This section describes techniques of using numeric label tags in WHERE clauses of SELECT statements.

When using labels in the NUMBER format, the administrator can set up labels so that a list of their label tags distinguishes the different levels. Comparisons of these numeric label tags can be used for ORDER BY processing, and with the logical operators.

For example, if the administrator has assigned all UNCLASSIFIED labels to the 1000 range, all SENSITIVE labels to the 2000 range, and all HIGHLY_SENSITIVE labels to the 3000 range, then you can list all SENSITIVE records by entering:

SELECT * FROM emp
WHERE hr_label BETWEEN 2000 AND 2999;

To list all SENSITIVE and UNCLASSIFIED records, you can enter:

SELECT * FROM emp
WHERE hr_label <3000;

To list all HIGHLY_SENSITIVE records, you can enter:

SELECT * FROM emp
WHERE hr_label=3000;

	
Note:

Remember that such queries have meaning only if the administrator has applied a numeric ordering strategy to the label tags that he or she originally assigned to the labels. In this way, the administrator can provide for convenient dissemination of data. If, however, the label tag values are generated automatically, then there is no intrinsic relationship between the value of the tag and the order of the labels.

Alternatively, you can use dominance relationships to set up an ordering strategy.

	
See Also:

"Using Dominance Functions"

5.4.2 Ordering Labeled Data Rows

You can perform an ORDER BY referencing the policy label column to order rows by the numeric label tag value that the administrator has set. For example:

SELECT * from emp
ORDER BY hr_label;

Notice that no functions were necessary in this statement. The statement made use of label tags set up by the administrator.

	
Note:

Again, such queries have meaning only if the administrator has applied a numeric ordering strategy to the label tags originally assigned to the labels.

5.4.3 Ordering by Character Representation of Label

Using the LABEL_TO_CHAR function, you can order data rows by the character representation of the label. For example, the following statement returns all rows sorted by the text order of the label:

SELECT * FROM emp
ORDER BY label_to_char (hr_label);

5.4.4 Determining Upper and Lower Bounds of Labels

This section describes the Oracle Label Security functions that determine the least upper bound or the greatest lower bound of two or more labels. Two single-row functions operate on each row returned by a query. They return one result for each row.

	
Finding Least Upper Bound with LEAST_UBOUND

	
Finding Greatest Lower Bound with GREATEST_LBOUND

	
Note:

In all functions that take multiple labels, the labels must all belong to the same policy.

5.4.4.1 Finding Least Upper Bound with LEAST_UBOUND

The LEAST_UBOUND (LUBD) function returns a character string label that is the least upper bound of label1 and label2: that is, the one label that dominates both. The least upper bound is the highest level, the union of the compartments in the labels, and the union of the groups in the labels. For example, the least upper bound of HIGHLY_SENSITIVE:ALPHA and SENSITIVE:BETA is HIGHLY_SENSITIVE:ALPHA,BETA.

Syntax:

FUNCTION LEAST_UBOUND (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN VARCHAR2;

The LEAST_UBOUND function is useful when joining rows with different labels, because it provides a high water mark label for joined rows.

The following query compares each employee's label with the label of his or her department, and returns the higher label, whether it be in the EMP table or the DEPT table.

SELECT ename,dept.deptno,
 LEAST_UBOUND(emp.hr_label,dept.hr_label) as label
 FROM emp, dept
 WHERE emp.deptno=dept.deptno;

This query returns the following data:

Table 5-4 Data Returned from Sample SQL Statements re Least_UBound

	ENAME	DEPTNO	LABEL
	
KING

	
10

	
L3:M:D10

	
BLAKE

	
30

	
L3:M:D30

	
CLARK

	
10

	
L3:M:D10

	
JONES

	
20

	
L3:M:D20

	
MARTIN

	
30

	
L2:E:D30

5.4.4.2 Finding Greatest Lower Bound with GREATEST_LBOUND

The GREATEST_LBOUND (GLBD) function can be used to determine the lowest label of the data that can be involved in an operation, given two different labels. It returns a character string label that is the greatest lower bound of label1 and label2. The greatest lower bound is the lowest level, the intersection of the compartments in the labels and the groups in the labels. For example, the greatest lower bound of HIGHLY_SENSITIVE:ALPHA and SENSITIVE is SENSITIVE.

Syntax:

FUNCTION GREATEST_LBOUND (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN VARCHAR2;

5.4.5 Merging Labels with the MERGE_LABEL Function

The MERGE_LABEL function is a utility for merging two labels together. It accepts the character string form of two labels and the three-character specification of a merge format. Its syntax is as follows:

Syntax:

FUNCTION merge_label (label1 IN number,
 label2 IN number,
 merge_format IN VARCHAR2)
RETURN number;

The valid merge format is specified with a three-character string:

<highest level or lowest level><union or intersection of compartments><union or intersection of groups>

	
The first character indicates whether to merge using the highest level or the lowest level of the two labels.

	
The second character indicates whether to merge using the union or the intersection of the compartments in the two labels.

	
The third character indicates whether to merge using the union or the intersection of the groups in the two labels.

The following table defines the MERGE_LABEL format constants.

Table 5-5 MERGE_LABEL Format Constants

	Format Specification	Data Type	Constant	Meaning	Positions in Which Format Is Used
	
max_lvl_fmt

	
CONSTANT varchar2(1)

	
H

	
Maximum level

	
First (level)

	
min_lvl_fmt

	
CONSTANT varchar2(1)

	
L

	
Minimum level

	
First (Level)

	
union_fmt

	
CONSTANT varchar2(1)

	
U

	
Union of the two labels

	
Second (compartments) and Third (groups)

	
inter_fmt

	
CONSTANT varchar2(1)

	
I

	
Intersection of the two labels

	
Second (compartments) and Third (groups)

	
minus_fmt

	
CONSTANT varchar2(1)

	
M

	
Remove second label from first label

	
Second (compartments) and Third (groups)

	
null_fmt

	
CONSTANT varchar2(1)

	
N

	
If specified in compartments column, returns no compartments. If specified in groups column, returns no groups.

	
Second (compartments) and Third (groups)

For example, HUI specifies the highest level of the two labels, union of the compartments, intersection of the groups.

The MERGE_LABEL function is particularly useful to developers if the LEAST_UBOUND function does not provide the intended result. The LEAST_UBOUND function, when used with two labels containing groups, may result in a less sensitive data label than expected. The MERGE_LABEL function enables you to compute an intersection on the groups, instead of the union of groups that is provided by the LEAST_UBOUND function.

For example, if the label of one data record contains the group UNITED_STATES, and the label of another data record contains the group UNITED_KINGDOM, and the LEAST_UBOUND function is used to compute the least upper bound of these two labels, then the resulting label would be accessible to users authorized for either the UNITED_STATES or the UNITED_KINGDOM.

If, by contrast, the MERGE_LABEL function is used with a format clause of HUI, then the resulting label would contain the highest level, the union of the compartments, and no groups. This is because UNITED_STATES and UNITED_KINGDOM do not intersect.

5.5 Inserting Labeled Data

When you insert data into a table protected by a policy under Oracle Label Security, a numeric label value tag must be supplied, usually in the INSERT statement itself.

To do this, you must explicitly specify the tag for the desired label or explicitly convert the character string representation of the label into the correct tag. Note that this does not mean generating new label tags, but referencing the correct tag. When Oracle Label Security is using Oracle Internet Directory, the only permissible labels (and corresponding tags) are those pre-defined by the administrator and already in Oracle Internet Directory.

The only times an INSERT statement may omit a label value are:

	
if the LABEL_DEFAULT enforcement option was specified when the policy was applied, or

	
if no enforcement options were specified when the policy was applied and LABEL_DEFAULT was specified when the policy was created, or

	
if the statement applying the policy named a labeling function.

In cases 1 and 2, the user's session default row label is used as the inserted row's label. In case 3, the inserted row's label is created by that labeling function.

	
See Also:

	
"Applying a Policy with SA_POLICY_ADMIN.APPLY_TABLE_POLICY", or to schemas

	
"Creating a Policy with SA_SYSDBA.CREATE_POLICY"

	
"Using a Labeling Function"

	
All of Chapter 9, "Implementing Policy Enforcement Options and Labeling Functions" regarding reading and writing labeled data (and labels) and according to policy enforcement options

This section explains the different ways to specify a label in an INSERT statement:

	
Inserting Labels Using CHAR_TO_LABEL

	
Inserting Labels Using Numeric Label Tag Values

	
Inserting Data Without Specifying a Label

	
Inserting Data When the Policy Label Column Is Hidden

	
Inserting Labels Using TO_DATA_LABEL

5.5.1 Inserting Labels Using CHAR_TO_LABEL

To insert a row label, you can specify the label character string and then transform it into a label using the CHAR_TO_LABEL function. Using the definition for table emp, the following example shows how to insert data with explicit labels:

INSERT INTO emp (ename,empno,hr_label)
VALUES ('ESTANTON',10,char_to_label ('HR', 'SENSITIVE'));

5.5.2 Inserting Labels Using Numeric Label Tag Values

You can insert data using the numeric label tag value of a label, rather than using the CHAR_TO_LABEL function. For example, if the numeric label tag for SENSITIVE is 3000, it would look like this:

INSERT INTO emp (ename, empno, hr_label)
VALUES ('ESTANTON', 10, 3000);

5.5.3 Inserting Data Without Specifying a Label

If LABEL_DEFAULT is set, or if there is a labeling function applied to the table, then you do not need to specify a label in your INSERT statements. The label will be provided automatically. You can enter the following command:

INSERT INTO emp (ename, empno)
VALUES ('ESTANTON', 10);

The resulting row label is set according to the default value (or by a labeling function).

	
See Also:

	
"Overview of Policy Enforcement Options"

	
"The Label Management Enforcement Options"

	
"Using a Labeling Function"

	
"Applying a Policy with SA_POLICY_ADMIN.APPLY_TABLE_POLICY"

	
"Creating a Policy with SA_SYSDBA.CREATE_POLICY"

5.5.4 Inserting Data When the Policy Label Column Is Hidden

If the label column is hidden, then the existence of the column is transparent to the insertion of data. INSERT statements can be written that do not explicitly list the table columns and do not include a value for the label column. The session's row label is used to label the data, or a labeling function is used if one was specified when the policy was applied to the table or schema.

You can insert into a table without explicitly naming the columns, as long as you specify a value for each non-hidden column in the table. The following example shows how to insert a row into the table described in "Example 2: Numeric Column Data Type with Hidden Column":

INSERT INTO emp
VALUES ('196','ESTANTON',Technician,RSTOUT,50000,10);

Its label will be one of the following three possibilities:

	
The label you specify

	
The label established by the LABEL_DEFAULT option of the policy being applied

	
The label created by a labeling function named by the policy being applied

	
Note:

If the policy label column is not hidden, then you must explicitly include a label value (possibly null, indicated by a comma) in the INSERT statement.

5.5.5 Inserting Labels Using TO_DATA_LABEL

	
Note:

When Oracle Label Security is installed to work with Oracle Internet Directory, dynamic label generation is not allowed, because labels are managed centrally in Oracle Internet Directory, using olsadmintool commands. Refer to Appendix B, "Command-line Tools for Label Security Using Oracle Internet Directory"
So, when Oracle Label Security is directory-enabled, this function, TO_DATA_LABEL, is not available and will generate an error message if used.

If you are generating new labels dynamically as you insert data, then you can use the TO_DATA_LABEL function to guarantee that this produces valid data labels. To do this, you must the have EXECUTE authority on the TO_DATA_LABEL function.

Whereas the CHAR_TO_LABEL function requires that the label already be an existing data label for the transaction to succeed, the TO_DATA_LABEL does not have this requirement. It will automatically create a valid data label.

For example:

INSERT INTO emp (ename, empno, hr_label)
VALUES ('ESTANTON', 10, to_data_label ('HR', 'SENSITIVE'));

	
Note:

The TO_DATA_LABEL function must be explicitly granted to individuals, in order to be used. Its usage should be tightly controlled.

	
See Also:

Chapter 10, "Applying Policies to Tables and Schemas" for more information about inserting, updating, and deleting labeled data

5.6 Changing Your Session and Row Labels with SA_SESSION

During a given session, a user can change his or her labels, within the authorizations set by the administrator.

This section contains these topics:

	
SA_SESSION Functions to Change Session and Row Labels

	
Changing the Session Label with SA_SESSION.SET_LABEL

	
Changing the Row Label with SA_SESSION.SET_ROW_LABEL

	
Restoring Label Defaults with SA_SESSION.RESTORE_DEFAULT_LABELS

	
Saving Label Defaults with SA_SESSION.SAVE_DEFAULT_LABELS

	
Viewing Session Attributes with SA_SESSION Functions

5.6.1 SA_SESSION Functions to Change Session and Row Labels

The following functions enable the user to change the session and row labels:

Table 5-6 Functions to Change Session Labels

	Function	Purpose
	
SA_SESSION.SET_LABEL

	
Lets the user set a new level and new compartments and groups to which he or she has read access

	
SA_SESSION.SET_ROW_LABEL

	
Lets the user set the default row label that will be applied to new rows

	
SA_SESSION.RESTORE_DEFAULT_LABELS

	
Lets the user reset the current session label and row label to the stored default settings

	
SA_SESSION.SAVE_DEFAULT_LABELS

	
Lets the user store the current session label and row label as the default for future sessions

5.6.2 Changing the Session Label with SA_SESSION.SET_LABEL

Use the SET_LABEL procedure to set the label of the current database session.

Syntax:

PROCEDURE SET_LABEL (policy_name IN VARCHAR2,
 label IN VARCHAR2);

	Parameter	Specifies
	policy_name	The name of an existing policy.
	label	The value to set as the label

A user can set the session label to:

	
Any level equal to or less than the maximum, and equal to or greater than the minimum level

	
Include any compartments in the authorized compartment list

	
Include any groups in the authorized group list. (Subgroups of authorized groups are implicitly included in the authorized list.)

Note that if you change the session label, this change may affect the value of the session's row label. The session's row label contains the subset of compartments and groups for which the user has write access. This may or may not be equivalent to the session label. For example, if you use the SA_SESSION.SET_LABEL command to set your current session label to C:A,B:US and you have write access only on the A compartment, then your row label would be set to C:A.

	
See Also:

"SA_USER_ADMIN.SET_DEFAULT_LABEL"

5.6.3 Changing the Row Label with SA_SESSION.SET_ROW_LABEL

Use the SET_ROW_LABEL procedure to set the default row label value for the current database session. The compartments and groups in the label must be a subset of the compartments and groups in the session label to which the user has write access. When the LABEL_DEFAULT option is set, this row label value is used on insert if the user does not explicitly specify the label.

Syntax:

PROCEDURE SET_ROW_LABEL (policy_name IN VARCHAR2,
 row_label IN VARCHAR2);

	Parameter	Specifies
	policy_name	The name of an existing policy
	label	The value to set as the default row label

If the SA_SESSION.SET_ROW_LABEL procedure is not used to set the default row label value, then this value is automatically derived from the session label. It contains the level of the session label and the subset of the compartments and groups in the session label for which the user has write authorization.

The row label is automatically reset if the session label changes. For example, if you change your session level from HIGHLY_SENSITIVE to SENSITIVE, then the level component of the row label automatically changes to SENSITIVE.

The user can set the row label independently, but only to include:

	
A level that is less than or equal to the level of the session label, and greater than or equal to the user's minimum level

	
A subset of the compartments and groups from the session label, for which the user is authorized to have write access

If the user tries to set the row label to an invalid value, then the operation is not permitted and the row label value is unchanged.

	
See Also:

"SA_USER_ADMIN.SET_ROW_LABEL"

5.6.4 Restoring Label Defaults with SA_SESSION.RESTORE_DEFAULT_LABELS

The RESTORE_DEFAULT_LABELS procedure restores the session label and row label to those stored in the data dictionary. This command is useful to reset values after a SA_SESSION.SET_LABEL command has been processed.

Syntax:

PROCEDURE RESTORE_DEFAULT_LABELS (policy_name in VARCHAR2);

where policy_name provides the name of an existing policy.

5.6.5 Saving Label Defaults with SA_SESSION.SAVE_DEFAULT_LABELS

The SAVE_DEFAULT_LABELS procedure stores the current session label and row label as your initial session label and default row label. It permits you to change your defaults to reflect your current session label and row label. The saved labels will be used as the initial default settings for future sessions.

Syntax:

PROCEDURE SAVE_DEFAULT_LABELS (policy_name in VARCHAR2);

where policy_name provides the name of an existing policy.

When you log in to a database, your default session label and row label are used to initialize the session label and row label. When the administrator originally authorized your Oracle Label Security labels, he or she also defined your default level, default compartments, and default groups. If you change your session label and row label, and want to save these values as the default labels, you can use the SA_SESSION.SAVE_DEFAULT_LABELS procedure.

This procedure is useful if you have multiple sessions and want to be sure that all additional sessions have the same labels. You can save the current labels as the default, and all future sessions will have these as the initial labels.

Consider a situation in which you connect to the database through Oracle Forms and want to run a report. By saving the current session labels as the default before you call Oracle Reports, you ensure that Oracle Reports will initialize at the same labels as are being used by Oracle Forms.

	
Note:

The SA_SESSION.SAVE_DEFAULT_LABELS procedure overrides the settings established by the administrator.

5.6.6 Viewing Session Attributes with SA_SESSION Functions

You can use SA_SESSION functions to view the policy attributes for a session.

	
USER_SA_SESSION View to Return All Security Attributes

	
Functions to Return Individual Security Attributes

5.6.6.1 USER_SA_SESSION View to Return All Security Attributes

You can display security attribute values by using the USER_SA_SESSION view. Access to this view is PUBLIC. It lets you see the security attributes for your current session. For example:

Table 5-7 Security Attribute Names and Types

	Name	Null?	Type
	
POLICY_NAME

	
NOT NULL

	
VARCHAR2(30)

	
SA_USER_NAME

	
	
VARCHAR2(4000)

	
PRIVS

	
	
VARCHAR2(4000)

	
MAX_READ_LABEL

	
	
VARCHAR2(4000)

	
MAX_WRITE_LABEL

	
	
VARCHAR2(4000)

	
MIN_LEVEL

	
	
VARCHAR2(4000)

	
LABEL

	
	
VARCHAR2(4000)

	
COMP_WRITE

	
	
VARCHAR2(4000)

	
GROUP_WRITE

	
	
VARCHAR2(4000)

	
ROW_LABEL

	
	
VARCHAR2(4000)

5.6.6.2 Functions to Return Individual Security Attributes

The SA_SESSION functions take a policy_name as the only input parameter. They return VARCHAR2 character string values for use in SQL statements.

Table 5-8 SA_SESSION Functions to View Security Attributes

	Function	Purpose
	
SA_SESSION.PRIVS

	
Returns the set of current session privileges, in a comma-delimited list

	
SA_SESSION.MIN_LEVEL

	
Returns the minimum level authorized for the session

	
SA_SESSION.MAX_LEVEL

	
Returns the maximum level authorized for the session

	
SA_SESSION.COMP_READ

	
Returns a comma-delimited list of compartments that the user is authorized to read

	
SA_SESSION.COMP_WRITE

	
Returns a comma-delimited list of compartments that the user is authorized to write. This is a subset of SA_SESSION.COMP_READ.

	
SA_SESSION.GROUP_READ

	
Returns a comma-delimited list of groups that the user is authorized to read

	
SA_SESSION.GROUP_WRITE

	
Returns a comma-delimited list of groups that the user is authorized to write. This is a subset of SA_SESSION.GROUP_READ.

	
SA_SESSION.LABEL

	
Returns the session label (the level, compartments, and groups) with which the user is currently working. The user can change this value with SA_SESSION.SET_LABEL. Refer to Changing the Session Label with SA_SESSION.SET_LABEL.

	
SA_SESSION.ROW_LABEL

	
Returns the session's default row label value. The user can change this value with SA_SESSION.SET_ROW_LABEL. Refer to Changing the Row Label with SA_SESSION.SET_ROW_LABEL.

	
SA_SESSION.SA_USER_NAME

	
Returns the username associated with the current Oracle Label Security session

For example, the following statement shows the current session label for the Human Resources policy:

SQL> select sa_session.label ('human_resources')
 2 from dual;

SA_SESSION.LABEL('HUMAN_RESOURCES')

L3:M,E

	
See Also:

"Using SA_UTL Functions to Set and Return Label Information" for additional functions that return numeric label tags and BOOLEAN values

6 Oracle Label Security Using Oracle Internet Directory

Managing Oracle Label Security metadata in a centralized LDAP repository provides many benefits. Policies and user label authorizations can be easily provisioned and distributed throughout the enterprise. In addition, when employees are terminated, their label authorizations can be revoked in one place and the change automatically propagated throughout the enterprise. This chapter describes the integration between Oracle Label Security and Oracle Internet Directory, in the following sections:

	
Introducing Label Management on Oracle Internet Directory

	
Configuring Oracle Internet Directory-Enabled Label Security

	
Oracle Label Security Profiles

	
Integrated Capabilities When Label Security Uses the Directory

	
Oracle Label Security Policy Attributes in Oracle Internet Directory

	
Restrictions on New Data Label Creation

	
Two Types of Administrators

	
Bootstrapping Databases

	
Synchronizing the Database and Oracle Internet Directory

	
Security Roles and Permitted Actions

	
Superseded PL/SQL Statements

	
Procedures for Policy Administrators Only

6.1 Introducing Label Management on Oracle Internet Directory

Previous releases of Oracle Label Security have relied on the Oracle Database as the central repository for policy and user label authorizations. This architecture leveraged the scalability and high availability of the Oracle Database, but did not leverage the identity management infrastructure, which includes the Oracle Internet Directory. This directory is part of Oracle Identity Management Platform. Integrating your installation of Oracle Label Security with Oracle Internet Directory allows label authorizations to be part of your standard provisioning process.

These advantages accrue also to directory-stored information about policies, user labels, and privileges that Oracle Label Security assigns to users. These labels and privileges are specific to the installation's policies defining access control on tables and schemas.If a site is not using Oracle Internet Directory, then such information is stored locally in the database.

The following Oracle Label Security information is stored in the directory:

	
Policy information, namely policy name, column name, policy enforcement options, and audit options

	
User profiles identifying their labels and privileges

	
Policy label components: levels, compartments, groups

	
Policy data labels

Database-specific metadata is not stored in the directory. Examples include

	
Lists of schemas or tables, with associated policy information, and

	
Program units, with associated policy privileges

The following three notes identify important aspects of integrating your installation of Oracle Label Security with Oracle Internet Directory:

	
Note:

Oracle will continue to support both the database and directory-based architectures for Oracle Label Security. However, a single database environment cannot host both architectures. Administrators must decide whether to use the centralized LDAP administration model or the database-centric model.

	
Note:

Managing Oracle Label Security policies directly in the directory is done using a new command-line tool, the Oracle Label Security administration tool (olsadmintool), described in Appendix B, "Command-line Tools for Label Security Using Oracle Internet Directory".
Starting this release, you can also use the graphical user interface provided by Oracle Enterprise Manager Database Control or Grid Control to manage Oracle Label Security. Detailed documentation can be found in Oracle Enterprise Manager help.

For sites that use Oracle Internet Directory, databases retrieve Oracle Label Security policy information from the directory. Administrators use the olsadmintool policy administration tool or the Enterprise Manager graphical user interface to operate directly on the directory to insert, alter, or remove metadata as needed. Because enterprise users can log in to multiple databases using the credentials stored in Oracle Internet Directory, it is logical to store their Oracle Label Security policy authorizations and privileges there as well. An administrator can then modify these authorizations and privileges by updating such metadata in the directory.

For distributed databases, centralized policy management removes the need for replicating policies, because the appropriate policy information is available in the directory. Changes are effective without further effort, synchronized with policy information in the databases by means of the Directory Integration Platform.

	
See Also:

Synchronization using the Directory Integration Platform is described in the Oracle Internet Directory Administrator's Guide.

Figure 6-1, "Diagram of Oracle Label Security Metadata Storage in Oracle Internet Directory" illustrates the structure of metadata storage in Oracle Internet Directory.

Figure 6-2, "Oracle Label Security Policies Applied through Oracle Internet Directory" illustrates applying different policies stored in Oracle Internet Directory to the databases accessed by different enterprise users. Determining the policy to be applied is controlled by the directory entries corresponding to the user and the accessed database.

Figure 6-1 Diagram of Oracle Label Security Metadata Storage in Oracle Internet Directory

[image: This illustration is described in the text.]

Figure 6-2 Oracle Label Security Policies Applied through Oracle Internet Directory

[image: This illustration is described in the text.]

In this example, the directory has information about two Oracle Label Security policies, Alpha, applying to database DB1, and Beta, applying to database DB2 Although both policies are known to each database, only the appropriate one is applied in each case. In addition, enterprise users who are to access rows protected by Oracle Label Security are listed in profiles within the Oracle Label Security attributes in Oracle Internet Directory.

As Figure 6-2, "Oracle Label Security Policies Applied through Oracle Internet Directory" shows, the connections between different databases and the directory are established over either SSL or SASL. The database always binds to the directory as a known identity using password-based authentication. Links between databases and their clients (such as a sqlplus session, any PL/SQL programs , and so on) can use either SSL or non-SSL connections. The example of Figure 6-2, "Oracle Label Security Policies Applied through Oracle Internet Directory" assumes that users are logged on through password authentication. The choice of connection type depends on the enterprise user model.

The Oracle Label Security policy administration tool operates directly on metadata in Oracle Internet Directory. Changes in the directory are then propagated to the Oracle Directory Integration and Provisioning server, which is configured to send changes to the databases at specific time intervals.

The databases update the policy information in Oracle Internet Directory only when policies are being applied to tables or schemas. These updates ensure that policies that are in use will not be dropped from the directory.

	
See Also:

	
Oracle Database Enterprise User Security Administrator's Guide for more information on enterprise domains, user models and authentication activities

	
Oracle Internet Directory Administrator's Guide for detailed information on Oracle Internet Directory

6.2 Configuring Oracle Internet Directory-Enabled Label Security

You can configure a database for Oracle Internet Directory-enabled Label Security at any time after database creation or during custom database creation. Oracle Internet Directory-enabled label security relies on the Entrerprise User security feature.

	
See Also:

	
"Enterprise User Security Configuration Tasks and Troubleshooting" in the Oracle Database Enterprise User Security Administrator's Guide, for prerequisites and steps to configure a database for directory usage, and

	
"Database Configuration Assistant" in the Oracle Database Enterprise User Security Administrator's Guide, for information about DBCA, the Database Configuration Assistant.

6.2.1 Granting Permissions for Configuring Oracle Internet Directory enabled Oracle Label Security

Users who perform Oracle Internet Directory enabled Oracle Label Security using the Database Configuration Assistant (DBCA) need additional privileges. The following steps describe what permissions are needed, and how to grant them:

	
Use Enterprise Manager to add the user to the OracleDBCreators group.

	
See Also:

"Managing Identity Management Realm Administrators" in the Oracle Database Enterprise User Security Administrator's Guide for more information on adding a user to an administrative group

	
Add the user to the Provisioning Admins group. This is necessary because DBCA creates a DIP provisioning profile for Oracle Label Security. Use ldapmodify command with the following .ldif file to add a user to the Provisioning Admins group:

dn: cn=Provisioning Admins,cn=changelog subscriber, cn=oracle internet directory
changetype: modify
add: uniquemember
uniquemember: DN of the user who is to be added

	
Add the user to the policyCreators group using the olsadmintool command line tool . DBCA bootstraps the database with the Oracle Label Security policy information from Oracle Internet Directory, and only policyCreators can perform this bootstrap.

	
If the database is already registered with the Oracle Internet Directory using DBCA, use Enterprise Manager to add the user to the OracleDBAdmins group of that database.

Note that the permissions specified earlier are also needed by the administrator who unregisters the database that has Oracle Internet Directory enabled Oracle Label Security configuration.

6.2.2 Registering a Database and Configuring Oracle Internet Directory enabled Oracle Label Security

To achieve this goal, do the following major tasks:

6.2.2.1 Task 1 Configure Your Oracle Home for Directory Usage.

	
See Also:

"Configuring Your Database to Use the Directory" in the Oracle Database Enterprise User Security Administrator's Guide

6.2.2.2 Task 2 Configure the Database for Oracle Internet Directory enabled Oracle Label Security

	
Register your database in the directory using DBCA (Database Configuration Assistant).

	
See Also:

"Registering Your Database with the Directory" in the Oracle Database Enterprise User Security Administrator's Guide

	
After your database is registered in the directory, configure Label Security:

	
Start DBCA, select Configure database options in a database, and click Next.

	
Select a database and click Next.

	
Regarding the option of unregistering the database or keeping it registered, select Keep the database registered.

	
If the database is registered with Oracle Internet Directory, the Database options screen shows a customize button beside the Label Security check box. Select the Label Security option and click Customize.

	
This customize dialog has two configuration options, for standalone Oracle Label Security or for Oracle Internet Directory-enabled Oracle Label Security. Click OID-enabled Label security configuration and enter the Oracle Internet Directory credentials of an appropriate administrator. Click Ok.

	
Continue with the remaining DBCA steps and click Finish when it appears.

	
Note:

You can configure a standalone Oracle Label Security on a database that is registered with Oracle Internet Directory. Select the standalone option in step e.

When configuring for Oracle Internet Directory-enabled Oracle Label Security, DBCA also does the following things in addition to registering the database:

	
Creates a provisioning profile for propagating Label Security policy changes to to the database. This Directory Integration Platform (DIP) provisioning profile is enabled by default.

	
Installs the required packages on the database side for Oracle Internet Directory-enabled Oracle Label Security.

	
Bootstraps the database with all the existing Label Security policy information in the Oracle Internet Directory.

	
See Also:

Bootstrapping Databases for more information.

6.2.2.3 Alternate Method for Task 2, Configuring Database for Oracle Internet Directory enabled Oracle Label Security

Registering the database and configuring Oracle Label Security can be done in one invocation of DBCA.

	
Start DBCA.

	
Select Configure database options in a database and click Next.

	
Select a database and click Next.

	
Click Register the database.

	
Enter the Oracle Internet Directory credentials of an appropriate administrator, and the corresponding password for the database wallet that will be created.

	
The Database options screen shows a Customize button beside the Label Security check box. Select the Label Security option and click Customize.

The Customize dialog box is displayed, showing two configuration options, for standalone Oracle Label Security or for Oracle Internet Directory-enabled Oracle Label Security.

	
Click OID-enabled Label Security Configuration.

	
Continue with the remaining DBCA steps and click Finish.

6.2.2.4 Task3: Set the DIP Password and Connect Data

	
Use the command line tool oidprovtool to set the password for the DIP user and update the interface connect information in the DIP provisioning profile for that database with the new password.

	
See:

Oracle Directory Integration and Provisioning (DIP) Provisioning Profiles for more details

	
Upon creation, the DIP profile uses a schedule value of 3600 seconds by default, meaning that Oracle Label Security changes are propagated to the database every hour. You can use oidprovtool to change this value if deployment considerations require that.

Once the the database is configured for Oracle Internet Directory-enabled Oracle Label Security, further considerations regarding enterprise user security may apply.

	
See Also:

Oracle Database Enterprise User Security Administrator's Guide for further concepts, tools, steps, and procedures

6.2.3 Unregistering a Database with Oracle Internet Directory enabled OLS

To perform this task, you use DBCA, which does the following things:

	
Deletes the DIP provisioning profile for the database created for Oracle Label Security.

	
Installs the required packages for standalone Oracle Label Security, so that at the end of unregistration, Oracle Internet Directory enabled Oracle Label Security becomes standalone Oracle Label Security.

	
Note:

Specific instructions for DB unregistration appear in the Oracle Database Enterprise User Security Administrator's Guide. No special steps are required when Oracle Internet Directory-enabled Oracle Label Security is configured.

	
Note:

If a database has standalone Oracle Label Security, it cannot be converted to Oracle Internet Directory-enabled Oracle Label Security. You need to drop Oracle Label Security from the database and then use DBCA again to configure Oracle Internet Directory-enabled Oracle Label Security.

6.3 Removing Directory-enabled Oracle Label Security from Database

To remove Oracle Internet Directory-enabled Oracle Label Security from a database, first unregister the database using DBCA, and then run the following script:

$ORACLE_HOME/rdbms/admin/catnools.sql

6.4 Oracle Label Security Profiles

A user profile is a set of user authorizations and privileges. Profiles are maintained as part of each Oracle Label Security policy stored in the Directory.

If a user is added to a profile, then the authorizations and privileges defined in that profile for that particular policy are aquired by the user, which include the following attributes:

	
Five label authorizations:

	
maximum read label

	
maximum write label

	
minimum write label

	
default read label

	
default row label

	
Privileges

	
The list of enterprise users to whom these authorizations apply

	
See Also:

	
Oracle Label Security Policy Attributes in Oracle Internet Directory

	
"Getting Started with Enterprise User Security" in the Oracle Database Enterprise User Security Administrator's Guide for more infomation on creating and managing enterprise users

	
Oracle Enterprise Manager help for information on creating and administering Oracle Label Security profiles and policies

An enterprise user can belong to only one profile, or none.

6.5 Integrated Capabilities When Label Security Uses the Directory

The integration of Oracle Label Security and Oracle Internet Directory enables the following capabilities:

	
User/administrator actions

	
Storing multiple Oracle Label Security policies in Oracle Internet Directory

	
Managing Oracle Label Security policies and options in the directory, including

	
creating or dropping a policy

	
changing policy options

	
changing audit settings

	
Creating label components for any Oracle Label Security policies by

	
creating or removing levels, compartments, or groups

	
assigning numeric values to levels, compartments, or groups

	
changing long names of levels, compartments, or groups

	
creating children groups

	
Managing enterprise users configured as users of any Oracle Label Security policies, including

	
assigning or removing enterprise users to/from profiles within policies

	
assigning policy-specific privileges to enterprise users, or removing them

	
changing policy label authorizations assigned to enterprise users

	
Managing all user/administrator actions and capabilities by means of an integrated set of command line tools that monitor and manage Oracle Label Security policies in Oracle Internet Directory.

	
Automatic results of Oracle Label Security

	
Limiting database policy usage to directory-defined policies only (no local policies defined or applied)

	
Synchronizing changes to policies in the directory with the databases using Oracle Label Security (to apply after enterprise users reconnect)

	
After changes are propagated by the Directory Integration Platform, having immediate access to enterprise users' Oracle Label Security attributes when these users log on to any database using Oracle Label Security, assuming they are configured within any Oracle Label Security policies. These attributes include users' label authorizations and users' privileges.

6.6 Oracle Label Security Policy Attributes in Oracle Internet Directory

In Oracle Internet Directory, Oracle-related metadata is stored under cn=OracleContext. Within Label Security, each policy holds the information and parameters shown in Figure 6-1, "Diagram of Oracle Label Security Metadata Storage in Oracle Internet Directory":

When Oracle Label Security is used without Oracle Internet Directory, it supports automatic creation of data labels by means of a label function. However, when Oracle Label Security is used with Oracle Internet Directory, such functions can create labels only using data labels that are already defined in the directory.

Table 6-1 Contents of Each Policy

	Type of Entry	Contents	Meaning/Sample Usage/References
	
Policy Name

	
The name assigned to this policy at its creation

	
Used in olsadmintool commands such as olsadmintool createpolicy (refer to Appendix B, "Command-line Tools for Label Security Using Oracle Internet Directory")

	
Column Name

	
The name of the column that will hold the label values relevant to this policy

	
Column is added to database. Refer to "The Policy Label Column and Label Tags"

"Inserting Labeled Data"

"The HIDE Policy Column Option"

Appendix E, "Reference".

Used in

olsadmintool createpolicy

	
Enforcement Options

	
Any combination of the following entries:

LABEL_DEFAULT, LABEL_UPDATE, CHECK_CONTROL, READ_CONTROL, WRITE_CONTROL, INSERT_CONTROL, DELETE_CONTROL, UPDATE_CONTROL, ALL_CONTROL, or NO_CONTROL

	
Refer to the discussions in Chapter 9, "Implementing Policy Enforcement Options and Labeling Functions" and Appendix E, "Reference".

Used in

olsadmintool createpolicy

and olsadmintool alterpolicy

	
Options

	
Enabled: TRUE or FALSE, Type: ACCESS or SESSION, Success: SUCCESSFUL, UNSUCCESSFUL, or BOTH.

	
Used in

olsadmintool audit

	
Levels

	
Name and number for each level

	
Used in olsadmintool create/alter/droplevel

	
Compartments

	
Name and number for each compartment

	
Used in olsadmintool create/alter/drop compartment

	
Groups

	
Name, number, and parent for each group

	
Used in olsadmintool create/alter/dropgroup

	
Profiles

	
Maximum and default read labels, maximum and minimum write labels, default row label, list of users, and a set of privileges from this list:

READ, FULL,

WRITEUP, WRITEDOWN, WRITEACROSS,

PROFILE_ACCESS, or COMPACCESS

	
Policies can have one or more profiles, each of which can be assigned to many users. Profiles reduce the need to set up label authorizations for individual users.

All users with the same set of labels and privileges are grouped in a single profile. Each profile represents a different set of labels, privileges, and users. Each profile in a policy is unique.

	
Data Labels

	
Full name and number for each valid data label

	
Refer to Restrictions on New Data Label Creation.

	
Administrators

	
Name of each administrator authorized to modify the parameters within this policy.

	
Policy administrators can modify parameters within a policy. They are not necessarily also policy creators, who have the right to create or remove policies or policy administrators. Refer to Security Roles and Permitted Actions.

6.7 Restrictions on New Data Label Creation

When Oracle Label Security is used with Oracle Internet Directory, data labels must be pre-defined in the directory.

They cannot be created dynamically by a label function, as is possible when label security is not integrated with the directory.

6.8 Two Types of Administrators

Administrators listed within a policy are those individuals authorized to do the following policy-specific administrative tasks:

	
Modify existing policy options and audit settings.

	
Enable or disable auditing for a policy.

	
Create or remove levels, compartments, groups or children groups.

	
Modify full/long names for levels, compartment, or groups.

	
Define or modify enterprise user settings, in this policy, for:

	
Privileges

	
Maximum or minimum levels

	
Read, write, or row access for levels, compartments, or groups

	
Label profiles

	
Remove enterprise users from a policy.

There is a higher level of administrators, called policy creators, who can create and remove Oracle Label Security policies and the policy administrators named within them.

6.9 Bootstrapping Databases

After a new database is registered with Oracle Internet Directory, the administrator can install Oracle Internet Directory enabled Oracle Label Security on that database. This installation process automatically creates a Directory Integration Platform (DIP) provisioning profile enabling policy information to be periodically refreshed in the future by downloading it to the database. Refer to Oracle Directory Integration and Provisioning (DIP) Provisioning Profiles.

When configuring the database for Oracle Internet Directory enabled Oracle Label Security, the DBCA tool puts all the policy information in Oracle Internet Directory into the database. At any point, the administrator can decide to bootstrap the database with the policy information again, using the bootstrap utility script at $ORACLE_HOME/bin/olsoidsync. The parameters it requires are as follows:

olsoidsync --dbconnectstring <"database connect string in host:port:sid format"> --dbuser <database user> --dbuserpassword <database user password> [-c] [-r] [-b <admin context>] -h <OID host> [-p <port>] -D <bind DN> -w <bind password>

For example,

olsoidsync --dbconnectstring yippee:1521:ora101 --dbuser lbacsys --dbuserpassword lbacsys -c -b "ou=Americas,o=Oracle,c=US" -h yippee -D cn=policycreator -w welcome1

The olsoidsync command pulls policy information from Oracle Internet Directory and populates the information in the database. Users must provide the database TNS name, the database user name, the database user's password, the administrative context (if any), the Oracle Internet Directory host name, the bind DN and bind password, and optionally the Oracle Internet Directory port number.

The optional -c switch causes the command to drop all the existing policies in the database and refresh it with policy information from Oracle Internet Directory.

The optional -r switch causes the command to drop all the policy metadata (without dropping the policies themselves) and refresh the policies with new metadata from Oracle Internet Directory.

Without these two switches, the command will only create new policies from Oracle Internet Directory, and will halt on any errors encountered during the refresh.

6.10 Synchronizing the Database and Oracle Internet Directory

Oracle Label Security metadata in the directory is synchronized with the databases using the Oracle Directory Provisioning Integration Service of the Directory Integration Platform.

Changes to the label security data in the directory are conveyed by the provisioning integration service in the form of provisioning events. A software agent receives these events and generates appropriate SQL or PL/SQL statements to update the database. After these statements are processed, Oracle Label Security data dictionaries are updated to match the changes already made in the directory.

Oracle Label Security subscribes itself to the Provisioning Integration Service automatically during installation. The provisioning service stores the information associated with each database in the form of a provisioning profile. The software agent uses the identity of the user "DIP" to connect to the database, and the password "DIP", when synchronizing the changes in Oracle Internet Directory with the database.

If the password for the user DIP is changed, that information must be updated in the provisioning profile of the provisioning integration service.

The steps to change the database connection information in the DIP profile are as follows:

	
Disable the provisioning profile. This temporarily stops the propagation of label security changes in the directory to the database, but no data is lost. Once the profile is enabled, any label security changes that happened in the directory since the profile was disabled are synchronized with the database.

	
Update the database connection information in the profile.

	
Enable the profile.

	
Note:

The database character set must be compatible with Oracle Internet Directory for Oracle Internet Directory-enabled Oracle Label Security to work correctly. Only then can there be successful synchronization of the Label Security metadata in Oracle Internet Directory with the Database.
Please refer to Chapters 2 and 3 of Oracle Database Globalization Support Guide for more information about Character sets and Globalization Support parameters.

	
See Also:

	
Disabling, Changing, and Enabling a Provisioning Profile

	
Oracle Internet Directory Administrator's Guide for more information about enabling and disabling of provisioning profiles

6.10.1 Oracle Directory Integration and Provisioning (DIP) Provisioning Profiles

The DIP server synchronizes policy changes in the directory with the connected databases, using a separate DIP provisioning profile created for each database. This profile is created automatically as part of the installation process for Oracle Internet Directory-enabled Oracle Label Security. The administrator can use the provisioning tool oidprovtool to modify the password for a database profile, using the script $ORACLE_HOME/bin/oidprovtool. Each such profile contains the following information:

Table 6-2 Elements in a DIP Provisioning Profile

	Element	Name for This Element When Invoking oidprovtool
	
The LDAP host name

	
ldap_host

	
The LDAP port number

	
ldap_port

	
The user DN and password to bind to Oracle Internet Directory to retrieve policy information

	
ldap_user

ldap_user_password

	
The database DN

	
application_dn

	
The organization DN, that is, the administrative context in which changes are being made

	
organization_dn

	
The callback function to be invoked, that is, LBACSYS.OLS_DIP_NTFY

	
interface_name

	
The database connect information, which is the hostname of the database, the port number used to connect to the database, the database SID, the database user name and password

	
interface_connect_info

	
Event subscriptions, including all MODIFY, ADD and DELETE events under cn=LabelSecurity in Oracle Internet Directory

	
operation

	
The time interval between synchronizations

	
schedule

Here is an example of using oidprovtool, followed by an explanation of the parameters in this example:

oidprovtool operation=modify ldap_host=yippee ldap_port=389 ldap_user=cn=defense_admin ldap_user_password=welcome1 application_dn="cn=db1,cn=OracleContext,ou=Americas,o=Oracle,c=US" organization_dn="ou=Americas,o=Oracle,c=US" interface_name=LBACSYS.OLS_DIP_NTFY interface_type=PLSQL interface_connect_info=yippee:1521:db1:dip:newdip schedule=60 event_subscription= "ENTRY:cn=LabelSecurity,cn=Products,cn=OracleContext, ou=Americas,o=Oracle,c=US:ADD(*)" event_subscription= "ENTRY:cn=LabelSecurity,cn=Products, cn=OracleContext,ou=Americas, o=Oracle,c=US:MODIFY(*)" event_subscription="ENTRY:cn=LabelSecurity,cn=Products, cn=OracleContext, ou=Americas,o=Oracle,c=US:DELETE"

This sample oidprovtool command creates and enables a new DIP provisioning profile with the following attributes:

	
Oracle Internet Directory in host yippee using port 389

	
Oracle Internet Directory user bind DN: cn=defense_admin with password welcome1

	
Database DN: cn=db1,cn=OracleContext,ou=Americas,o=Oracle,c=US

	
Organization DN (administrative context): ou=Americas,o=Oracle,c=US

	
Database on host yippee, listening on port 1521

	
Oracle SID: db1

	
Database user: dip with new password newdip

	
Interval to synchronize directory with connected databases : 60 seconds

	
All the ADD, MODIFY and DELETE events under cn=LabelSecurity to be sent to DIP

To start the DIP server, use $ORACLE_HOME/bin/oidctl. For example:

oidctl server=odisrv connect=db2 config=0 instance=0 start

This command will start the DIP server by connecting to db2 (the Oracle Internet Directory database) with config set 0 and instance number 0.

	
See also:

Oracle Internet Directory Administrator's Guide for more information on DIP provisioning profiles

6.10.2 Disabling, Changing, and Enabling a Provisioning Profile

You can change the password for the interface_connect_info, which is the database password, by using the oidprovtool modify command, but first you must disable the profile. After changing the password, you then reenable the profile.

You can disable the Oracle Label Security provisioning profile using oidprovtool, specifying the disable operation and the first six original parameters shown here. (The other original parameters are not needed.) The command form is:

oidprovtool operation=disable ldap_host=< > ldap_port=< > ldap_user_dn=< >
 ldap_user_password=< > application_dn=< > organization_dn=< >

Using parameters from the example given in the previous section, this command would look like this:

oidprovtool operation=disable ldap_host=yippee ldap_port=389

ldap_user=cn=defense_admin ldap_user_password=welcome1
application_dn="cn=db1,cn=OracleContext,ou=Americas,o=Oracle,c=US"
organization_dn="ou=Americas,o=Oracle,c=US"

To modify the password in the connection information, use the oidprovtool command, specifying the modify operation, the first six original parameters, and the new DIPuser password given in the connection info. The command form is:

oidprovtool operation=modify ldap_host=< > ldap_port=< >

ldap_user_dn=< > ldap_user_password=< > application_dn=< >
organization_dn=< > interface_connect_info=< new_connect _info >

Using parameters from the example given in the previous section, this command would look like this:

oidprovtool operation=modify ldap_host=yippee ldap_port=389

ldap_user=cn=defense_admin ldap_user_password=welcome1
application_dn="cn=db1,cn=OracleContext,ou=Americas,o=Oracle,c=US"
organization_dn="ou=Americas,o=Oracle,c=US"
interface_connect_info=yippee:1521:db1:dip:NewestDIPpassword

Similarly, you can re-enable the Directory Integration Platform provisioning profile using oidprovtool as follows, again specifying the desired operation and the first six original parameters. (The other original parameters are not needed.) The command form is:

oidprovtool operation=enable ldap_host=< > ldap_port=< > ldap_user_dn=< >

ldap_user_password=< > application_dn=< > organization_dn=< >

Again using parameters from the example given in the previous section, this command would look like this:

oidprovtool operation=enable ldap_host=yippee ldap_port=389

ldap_user=cn=defense_admin ldap_user_password=welcome1
application_dn="cn=db1,cn=OracleContext,ou=Americas,o=Oracle,c=US"
organization_dn="ou=Americas,o=Oracle,c=US"

6.11 Security Roles and Permitted Actions

To manage Oracle Label Security policies in Oracle Internet Directory, certain entities are given access control rights in the directory. The access control mechanisms are provided by Oracle Internet Directory.

Table 6-3 describes, in abstract terms, these entities and the tasks they are enabled to perform.

Table 6-4, "Access Levels Allowed by Users in OID", lists the specific access level operations permitted or disallowed for policy creators, policy administrators, and label security users.

Table 6-3 Tasks That Certain Entities Can Perform

	Entity	Tasks This Entity Can Perform
	
Policy creators

	
Create new (or delete existing) policies, create new (or remove existing) policy administrators.

	
Policy administrators

	
For Policies: modify existing policy options and audit settings, enable or disable auditing for a policy.

For Label components: create, modify, or remove levels, compartments and groups, such as by changing their full or long names or (for groups) by creating or deleting their children groups.

For enterprise users: remove enterprise users from a policy, modify enterprise users' maximum or minimum levels, their read, write, and row access for compartments or groups, their privileges for a policy, and their label profiles.

Table 6-4 Access Levels Allowed by Users in OID

	Entries	Policy Creators	Policy Administrators	Databases
	
cn=Policies

	
can modify

	
no access

	
no access

	
cn=Admins,cn=Policy1

	
can modify

	
no access

	
no access

	
uniqueMember: cn=Policy1

	
can browse

	
can browse

	
can modify

	
cn=PolicyCreators

	
no accessFoot 1

	
no access

	
no access

	
cn=Levels,cn=Policy1

	
can browse and delete

	
can modify

	
no access

	
cn=Compartments,cn=Policy1

	
can browse and delete

	
can modify

	
no access

	
cn=Groups,cn=Policy1

	
can browse and delete

	
can modify

	
no access

	
cn=AuditOptions,cn=Policy1

	
can browse and delete

	
can modify

	
no access

	
cn=Profiles,cn=Policy1

	
can browse and delete

	
can modify

	
no access

	
cn=Labels,cn=Policy1

	
can browse and delete

	
can modify

	
no access

	
cn=DBServers

	
no accessFoot 2

	
no access

	
no access

Footnote 1 The group cn=OracleContextAdmins is the owner of the group cn=PolicyCreators, so members in cn=OracleContextAdmins can modify cn=PolicyCreators.

Footnote 2 The group cn=OracleDBCreators is the owner of the group cn=DBServers, so members in cn=OracleDBCreators can modify cn=DBServers.

6.11.1 Restriction on Policy Creators for Directory-enabled Oracle Label Security

A member of the Policy Creators group can only create, browse, and delete Oracle Label Security policies.

This user cannot perform policy administrative tasks, such as creating label components and adding users, even if explicitly added to the Policy Admins group of that policy. In short, a policy creator cannot be the administrator of any policy.

6.12 Superseded PL/SQL Statements

When Oracle Internet Directory is enabled with Oracle Label Security, the procedures listed in the following table are superseded. Only LBACSYS is allowed to run these procedures.

For some of the procedures listed in the table, the functionality they provided is replaced by the olsadmintool command named in the second column (and explained in Appendix E, "Reference").

Table 6-5 Procedures Superseded by olsadmintool When Using Oracle Internet Directory

	Disabled Procedure	Replaced by olsadmintool Command
	
SA_SYSDBA.CREATE_POLICY

	
olsadmintool createpolicy

	
SA_SYSDBA.ALTER_POLICY

	
olsadmintool alterpolicy

	
SA_SYSDBA.DROP_POLICY

	
olsadmintool droppolicy

	
SA_COMPONENTS.CREATE_LEVEL

	
olsadmintool createlevel

	
SA_COMPONENTS.ALTER_LEVEL

	
olsadmintool alterlevel

	
SA_COMPONENTS.DROP_LEVEL

	
olsadmintool droplevel

	
SA_COMPONENTS.CREATE_COMPARTMENT

	
olsadmintool createcompartment

	
SA_COMPONENTS.ALTER_COMPARTMENT

	
olsadmintool altercompartment

	
SA_COMPONENTS.DROP_COMPARTMENT

	
olsadmintool dropcompartment

	
SA_COMPONENTS.CREATE_GROUP

	
olsadmintool creategroup

	
SA_COMPONENTS.ALTER_GROUP

	
olsadmintool altergroup

	
SA_COMPONENTS.ALTER_GROUP_PARENT

	
olsadmintool altergroup

	
SA_COMPONENTS.DROP_GROUP

	
olsadmintool dropgroup

	
SA_USER_ADMIN.SET_LEVELS

	
None

	
SA_USER_ADMIN.SET_COMPARTMENTS

	
None

	
SA_USER_ADMIN.SET_GROUPS

	
None

	
SA_USER_ADMIN.ADD_COMPARTMENTS

	
None

	
SA_USER_ADMIN.ALTER_COMPARTMENTS

	
None

	
SA_USER_ADMIN.DROP_COMPARTMENTS

	
None

	
SA_USER_ADMIN.DROP_ALL_COMPARTMENTS

	
None

	
SA_USER_ADMIN.ADD_GROUPS

	
None

	
SA_USER_ADMIN.ALTER_GROUPS

	
None

	
SA_USER_ADMIN.DROP_GROUPS

	
None

	
SA_USER_ADMIN.DROP_ALL_GROUPS

	
None

	
SA_USER_ADMIN.SET_USER_LABELS

	
olsadmintool createprofile; olsadmintool adduser; olsadmintool dropprofile; olsadmintool dropuser;

	
SA_USER_ADMIN.SET_DEFAULT_LABEL

	
None

	
SA_USER_ADMIN.SET_ROW_LABEL

	
None

	
SA_USER_ADMIN.DROP_USER_ACCESS

	
olsadmintool dropuser

	
SA_USER_ADMIN.SET_USER_PRIVS

	
olsadmintool createprofile; olsadmintool adduser;olsadmintool dropprofile; olsadmintool dropuser;

	
SA_AUDIT_ADMIN.AUDIT

	
olsadmintool audit

	
SA_AUDIT_ADMIN.NOAUDIT

	
olsadmintool noaudit

	
SA_AUDIT_ADMIN.AUDIT_LABEL

	
None

	
SA_AUDIT_ADMIN.NOAUDIT_LABEL

	
None

6.13 Procedures for Policy Administrators Only

The following procedures are allowed to be run only by policy administrators (enterprise users defined in Oracle Internet Directory):

	
SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY

	
SA_POLICY_ADMIN.APPLY_TABLE_POLICY

	
SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY

	
SA_POLICY_ADMIN.DISABLE_TABLE_POLICY

	
SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY

	
SA_POLICY_ADMIN.ENABLE_TABLE_POLICY

	
SA_POLICY_ADMIN.GRANT_PROG_PRIVS

	
SA_POLICY_ADMIN.POLICY_SUBSCRIBE

	
SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE

	
SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY

	
SA_POLICY_ADMIN.REMOVE_TABLE_POLICY

	
SA_POLICY_ADMIN.SET_PROG_PRIVS

	
SA_POLICY_ADMIN.REVOKE_PROG_PRIVS

8 Administering User Labels and Privileges

This chapter discusses using Oracle Label Security packages to administer user labels and privileges. You can also use the Web interface provided by Oracle Enterprise Manager Database Control or Grid Control to administer these. This is discussed in Chapter 4, "Getting Started with Oracle Label Security".

This chapter includes the following topics:

	
Introduction to User Label and Privilege Management

	
Managing User Labels by Component, with SA_USER_ADMIN

	
Managing User Labels by Label String, with SA_USER_ADMIN

	
Managing User Privileges with SA_USER_ADMIN.SET_USER_PRIVS

	
Setting Labels & Privileges with SA_SESSION.SET_ACCESS_PROFILE

	
Returning User Name with SA_SESSION.SA_USER_NAME

	
Using Oracle Label Security Views

8.1 Introduction to User Label and Privilege Management

To manage user labels and privileges, you must have the EXECUTE privilege for the SA_USER_ADMIN package, and must have been granted the policy_DBA role.

The SA_USER_ADMIN package provides the functions to manage the Oracle Label Security user security attributes. It contains several procedures to manage user labels by component: that is, specifying user levels, compartments, and groups. For convenience, there are additional procedures that accept character string representations of full labels, rather than components. Note that the level, compartment and group parameters use the short name defined for each component.

All of the label and privilege information is stored in Oracle Label Security data dictionary tables. When a user connects to the database, his session labels are established based on the information stored in the Oracle Label Security data dictionary.

Note that a user can be authorized under multiple policies.

8.2 Managing User Labels by Component, with SA_USER_ADMIN

The following SA_USER_ADMIN procedures enable you to manage user labels by label component:

	
SA_USER_ADMIN.SET_LEVELS

	
SA_USER_ADMIN.SET_COMPARTMENTS

	
SA_USER_ADMIN.SET_GROUPS

	
SA_USER_ADMIN.ADD_COMPARTMENTS

	
SA_USER_ADMIN.ALTER_COMPARTMENTS

	
SA_USER_ADMIN.DROP_COMPARTMENTS

	
SA_USER_ADMIN.DROP_ALL_COMPARTMENTS

	
SA_USER_ADMIN.ADD_GROUPS

	
SA_USER_ADMIN.ALTER_GROUPS

	
SA_USER_ADMIN.DROP_GROUPS

	
SA_USER_ADMIN.DROP_ALL_GROUPS

8.2.1 SA_USER_ADMIN.SET_LEVELS

The SET_LEVELS procedure assigns a minimum and maximum level to a user and identifies default values for the user's session label and row label.

	
If the min_level is NULL, then it is set to the lowest defined level for the policy.

	
If the def_level is not specified, then it is set to the max_level.

	
If the row_level is not specified, then it is set to the def_level.

Syntax:

PROCEDURE SET_LEVELS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 max_level IN VARCHAR2,
 min_level IN VARCHAR2 DEFAULT NULL,
 def_level IN VARCHAR2 DEFAULT NULL,
 row_level IN VARCHAR2 DEFAULT NULL);

Table 8-1 Parameters for SA_USER_ADMIN.SET_LEVELS

	Parameter	Meaning
	
policy_name

	
Specifies the policy

	
user_name

	
Specifies the user name

	
max_level

	
The highest level for read and write access

	
min_level

	
The lowest level for write access

	
def_level

	
Specifies the default level (equal to or greater than the minimum level, and equal to or less than the maximum level)

	
row_level

	
Specifies the row level (equal to or greater than the minimum level, and equal to or less than the default level)

8.2.2 SA_USER_ADMIN.SET_COMPARTMENTS

The SET_COMPARTMENTS procedure assigns compartments to a user and identifies default values for the user's session label and row label.

	
If write_comps are NULL, then they are set to the read_comps.

	
If the def_comps are NULL, then they are set to the read_comps.

	
If the row_comps are NULL, then they are set to the components in def_comps that are authorized for write access.

All users must have their levels set before their authorized compartments can be established.

The write compartments, if specified, must be a subset of the read compartments. (The write compartments are those to which the user should have write access.)

Syntax:

PROCEDURE SET_COMPARTMENTS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 read_comps IN VARCHAR2,
 write_comps IN VARCHAR2 DEFAULT NULL,
 def_comps IN VARCHAR2 DEFAULT NULL,
 row_comps IN VARCHAR2 DEFAULT NULL);

Table 8-2 Parameters for SA_USER_ADMIN.SET_COMPARTMENTS

	Parameter	Meaning
	
policy_name

	
Specifies the policy

	
user_name

	
Specifies the user name

	
read_comps

	
A comma-delimited list of compartments authorized for read access

	
write_comps

	
A comma-delimited list of compartments authorized for write access (subset of read_comps)

	
def_comps

	
Specifies the default compartments. This must be a subset of read_comps.

	
row_comps

	
Specifies the row compartments. This must be a subset of write_comps and def_comps.

8.2.3 SA_USER_ADMIN.SET_GROUPS

The SET_GROUPS procedure assigns groups to a user and identifies default values for the user's session label and row label.

	
If the write_groups are NULL, they are set to the read_groups.

	
If the def_groups are NULL, they are set to the read_groups.

	
If the row_groups are NULL, they are set to the groups in def_groups that are authorized for write access.

All users must have their levels set before their authorized groups can be established.

Syntax:

PROCEDURE SET_GROUPS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 read_groups IN VARCHAR2,
 write_groups IN VARCHAR2 DEFAULT NULL,
 def_group IN VARCHAR2 DEFAULT NULL,
 row_groups IN VARCHAR2 DEFAULT NULL);

Table 8-3 Parameters for SA_USER_ADMIN.SET_GROUPS

	Parameter	Meaning
	
policy_name

	
Specifies the policy

	
user_name

	
Specifies the user name

	
read_groups

	
A comma-delimited list of groups authorized for read

	
write_groups

	
A comma-delimited list of groups authorized for write. This must be a subset of read_groups.

	
def_groups

	
Specifies the default groups. This must be a subset of

read_groups

	
row_groups

	
Specifies the row groups. This must be a subset of

write_groups and def_groups.

8.2.4 SA_USER_ADMIN.ALTER_COMPARTMENTS

The ALTER_COMPARTMENTS procedure changes the write access, the default label indicator, and the row label indicator for each of the compartments in the list.

Syntax:

PROCEDURE ALTER_COMPARTMENTS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 comps IN VARCHAR2,
 access_mode IN VARCHAR2 DEFAULT NULL,
 in_def IN VARCHAR2 DEFAULT NULL,
 in_row IN VARCHAR2 DEFAULT NULL);

Table 8-4 Parameters for SA_USER_ADMIN.ALTER_COMPARTMENTS

	Parameter	Meaning
	
policy_name

	
Specifies the policy

	
user_name

	
Specifies the user name

	
comps

	
A comma-delimited list of compartments to modify

	
access_mode

	
One of two public variables that contain string values that can specify the type of access authorized. The variable names, values, and meaning are as follows:

SA_UTL.READ_ONLY READ_ONLY Indicates no write access

SA_UTL.READ_WRITE READ_WRITE Indicates that write is authorized

If access_mode is NULL, then access_mode for the compartment is unaltered.

	
in_def

	
Specifies whether these compartments should be in the default compartments (Y/N)

If in_def is NULL, then in_def for the compartment is unaltered.

	
in_row

	
Specifies whether these compartments should be in the row label (Y/N)

If in_row is NULL, then in_row for the compartment is unaltered.

8.2.5 SA_USER_ADMIN.ADD_COMPARTMENTS

This procedure adds compartments to a user's authorizations, indicating whether the compartments are authorized for write as well as read.

Syntax:

PROCEDURE ADD_COMPARTMENTS (policy_name IN VARCHAR2,
user_name IN VARCHAR2,
comps IN VARCHAR2,
access_model IN VARCHAR2 DEFAULT NULL,
in_def IN VARCHAR2 DEFAULT NULL,
in_row IN VARCHAR2 DEFAULT NULL);

Table 8-5 Parameters for SA_USER_ADMIN.ADD_COMPARTMENTS

	Parameter	Meaning
	
policy_name

	
Specifies the policy

	
user_name

	
Specifies the user name

	
comps

	
A comma-delimited list of read compartments to add

	
access_mode

	
One of two public variables that contain string values that can specify the type of access authorized. The variable names, values, and meaning are as follows:

SA_UTL.READ_ONLY READ_ONLY Indicates no write access

SA_UTL.READ_WRITE READ_WRITE Indicates that write is authorized

If access_mode is NULL, then it is set to SA_UTL.READ_ONLY.

	
in_def

	
Specifies whether these compartments should be in the default compartments (Y/N)

If in_def is NULL, then it is set to Y.

	
in_row

	
Specifies whether these compartments should be in the row label (Y/N)

If in_row is NULL, then it is set to N.

8.2.6 SA_USER_ADMIN.DROP_COMPARTMENTS

The DROP_COMPARTMENTS procedure drops the specified compartments from a user's authorizations.

Syntax:

PROCEDURE DROP_COMPARTMENTS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 comps IN VARCHAR2);

Table 8-6 Parameters for SA_USER_ADMIN.DROP_COMPARTMENTS

	Parameter	Meaning
	
policy_name

	
Specifies the policy

	
user_name

	
Specifies the user name

	
comps

	
A comma-delimited list of compartments to drop

8.2.7 SA_USER_ADMIN.DROP_ALL_COMPARTMENTS

The DROP_ALL_COMPARTMENTS procedure drops all compartments from a user's authorizations.

Syntax:

PROCEDURE DROP_ALL_COMPARTMENTS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2);

Table 8-7 Parameters for SA_USER_ADMIN.DROP_ALL_COMPARTMENTS

	Parameter	Meaning
	
policy_name

	
Specifies the policy

	
user_name

	
Specifies the user name

8.2.8 SA_USER_ADMIN.ADD_GROUPS

The ADD_GROUPS procedure adds groups to a user, indicating whether the groups are authorized for write as well as read.

Syntax:

PROCEDURE ADD_GROUPS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 groups IN VARCHAR2,
 access_mode IN VARCHAR2 DEFAULT NULL,
 in_def IN VARCHAR2 DEFAULT NULL,
 in_row IN VARCHAR2 DEFAULT NULL);

Table 8-8 Parameters for SA_USER_ADMIN.ADD_GROUPS

	Parameter	Meaning
	
policy_name

	
Specifies the policy

	
user_name

	
Specifies the user name

	
groups

	
A comma-delimited list of read groups to add

	
access_mode

	
One of two public variables that contain string values that can specify the type of access authorized. The variable names, values, and meaning are as follows:

SA_UTL.READ_ONLY READ_ONLY Indicates no write access

SA_UTL.READ_WRITE READ_WRITE Indicates that write is authorized

If access_mode is NULL, then access_mode is set to SA_UTL.READ_ONLY.

	
in_def

	
Specifies whether these groups should be in the default groups (Y/N)

If in_def is NULL, then it is set to Y.

	
in_row

	
Specifies whether these groups should be in the row label (Y/N)

If in_row is NULL, then it is set to N.

8.2.9 SA_USER_ADMIN.ALTER_GROUPS

The ALTER_GROUPS procedure changes the write access, the default label indicator, and the row label indicator for each of the groups in the list.

Syntax:

PROCEDURE ALTER_GROUPS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 groups IN VARCHAR2,
 access_mode IN VARCHAR2 DEFAULT NULL,
 in_def IN VARCHAR2 DEFAULT NULL,
 in_row IN VARCHAR2 DEFAULT NULL);

Table 8-9 Parameters for SA_USER_ADMIN.ALTER_GROUPS

	Parameter	Meaning
	
policy_name

	
Specifies the policy

	
user_name

	
Specifies the user name

	
groups

	
A comma-delimited list of groups to alter

	
access_mode

	
Two public variables contain string values that can specify the type of access authorized. The variable names, values, and meaning are as follows:

SA_UTL.READ_ONLY READ_ONLY Indicates no write access

SA_UTL.READ_WRITE READ_WRITE Indicates that write is authorized

If access_mode is NULL, then access_mode for the group is unaltered.

	
in_def

	
Specifies whether these groups should be in the default groups (Y/N)

If in_def is NULL, then in_def for the group is unaltered.

	
in_row

	
Specifies whether these groups should be in the row label (Y/N)

If in_row is NULL, then in_row for the group is unaltered.

8.2.10 SA_USER_ADMIN.DROP_GROUPS

The DROP_GROUPS procedure drops the specified groups from a user's authorizations.

Syntax:

PROCEDURE DROP_GROUPS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 groups IN VARCHAR2);

Table 8-10 Parameters for SA_USER_ADMIN.DROP_GROUPS

	Parameter	Meaning
	
policy_name

	
Specifies the policy

	
user_name

	
Specifies the user name

	
groups

	
A comma-delimited list of groups to drop

8.2.11 SA_USER_ADMIN.DROP_ALL_GROUPS

The DROP_ALL_GROUPS procedure drops all groups from a user's authorizations.

Syntax:

PROCEDURE DROP_ALL_GROUPS (policy_name IN VARCHAR2,
 user_name IN VARCHAR2);

Table 8-11 Parameters for SA_USER_ADMIN.DROP_ALL_GROUPS

	Parameter	Meaning
	
policy_name

	
Specifies the policy

	
user_name

	
Specifies the user name

8.3 Managing User Labels by Label String, with SA_USER_ADMIN

The following SA_USER_ADMIN procedures enable you to manage user labels by specifying the complete character label string:

	
SA_USER_ADMIN.SET_USER_LABELS

	
SA_USER_ADMIN.SET_DEFAULT_LABEL

	
SA_USER_ADMIN.SET_ROW_LABEL

	
SA_USER_ADMIN.SET_DEFAULT_LABEL

8.3.1 SA_USER_ADMIN.SET_USER_LABELS

The SET_USER_LABELS procedure sets the user's levels, compartments, and groups using a set of labels, instead of the individual components.

Syntax:

PROCEDURE SET_USER_LABELS (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 max_read_label IN VARCHAR2,
 max_write_label IN VARCHAR2 DEFAULT NULL,
 min_write_label IN VARCHAR2 DEFAULT NULL,
 def_label IN VARCHAR2 DEFAULT NULL,
 row_label IN VARCHAR2 DEFAULT NULL);

Table 8-12 Parameters for SA_USER_ADMIN.SET_USER_LABELS

	Parameter	Meaning
	
max_read_label

	
Specifies the label string to be used to initialize the user's maximum authorized read label. Composed of the user's maximum level, compartments authorized for read access, and groups authorized for read access.

	
max_write_label

	
Specifies the label string to be used to initialize the user's maximum authorized write label. Composed of the user's maximum level, compartments authorized for write access, and groups authorized for write access. If max_write_label is not specified, then it is set to max_read_label.

	
min_write_label

	
Specifies the label string to be used to initialize the user's minimum authorized write label. Contains only the level, with no compartments or groups. If min_write_label is not specified, then it is set to the lowest defined level for the policy, with no compartments or groups.

	
def_label

	
Specifies the label string to be used to initialize the user's session label, including level, compartments, and groups (a subset of max_read_label). If default_label is not specified, then it is set to max_read_label.

	
policy_name

	
Specifies the policy

	
user_name

	
Specifies the user name

	
row_label

	
Specifies the label string to be used to initialize the program's row label. Includes level, components, and groups: subsets of max_write_label and def_label. If row_label is not specified, then it is set to def_label, with only the compartments and groups authorized for write access.

	
See Also:

"Managing Program Unit Privileges with SET_PROG_PRIVS"

8.3.2 SA_USER_ADMIN.SET_DEFAULT_LABEL

The SET_DEFAULT_LABEL procedure sets the user's initial session label to the one specified.

Syntax:

PROCEDURE SET_DEFAULT_LABELS (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 def_label IN VARCHAR2);

Table 8-13 Parameters for SA_USER_ADMIN.SET_DEFAULT_LABEL

	Parameter	Meaning
	
policy_name

	
Specifies the policy

	
user_name

	
Specifies the user name

	
def_label

	
Specifies the label string to be used to initialize the user's default labels. This label may contain any compartments and groups that are authorized for read access.

As long as the row label will still be dominated by the new write label, the user can set the session label to:

	
Any level equal to or less than his maximum, and equal to or greater than his minimum label

	
Include any compartments in the authorized compartment list

	
Include any groups in the authorized group list. (Subgroups of authorized groups are implicitly included in the authorized list.)

The row label must be dominated by the new write label that will result from resetting the session label. If this condition is not true, then the SET_DEFAULT_LABEL procedure will fail.

For example, suppose the current row label is S:A,B, and that you have write access to both compartments. If you attempt to set the new default label to C:A,B, then the SET_LABEL procedure will fail. This is because the new write label would be C:A,B, which does not dominate the current row label.

To successfully reset the session label in this case, you must first lower the row label to a value that will be dominated by the resulting session label.

	
See Also:

"Changing Your Session and Row Labels with SA_SESSION"
"Session Labels and Inverse Groups"

8.3.3 SA_USER_ADMIN.SET_ROW_LABEL

Use the SET_ROW_LABEL procedure to set the user's initial row label to the one specified.

Syntax:

PROCEDURE SET_ROW_LABEL (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 row_label IN VARCHAR2);

Table 8-14 Parameters for SA_USER_ADMIN.SET_ROW_LABEL

	Parameter	Meaning
	
policy_name

	
Specifies the policy

	
user_name

	
Specifies the user name

	
row_label

	
Specifies the label string to be used to initialize the user's row label. The label must contain only those compartments and groups from the default label that are authorized for write access.

The user can set the row label independently, but only to:

	
A level that is less than or equal to the level of the session label, and greater than or equal to the user's minimum level

	
Include a subset of the compartments and groups from the session label, for which the user is authorized to have write access

If you try to set the row label to an invalid value, then the operation is disallowed, and the row label value is unchanged.

	
See Also:

"Changing the Row Label with SA_SESSION.SET_ROW_LABEL"

8.3.4 SA_USER_ADMIN.DROP_USER_ACCESS

Use the DROP_USER_ACCESS procedure to remove all Oracle Label Security authorizations and privileges from the specified user. This procedure must be issued from the command line.

Syntax:

PROCEDURE DROP_USER_ACCESS (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2);

Table 8-15 Parameters for SA_USER_ADMIN.DROP_USER_ACCESS

	Parameter	Meaning
	
policy_name

	
Specifies the policy

	
user_name

	
Specifies the user name

8.4 Managing User Privileges with SA_USER_ADMIN.SET_USER_PRIVS

The SET_USER_PRIVS procedure sets policy-specific privileges for users. These privileges do not become effective in the current session. However, they become effective the next time the user logs in. The new set of privileges replaces any existing privileges. A NULL value for the privileges parameter removes the user's privileges for the policy.

To assign policy privileges to users, you must have the EXECUTE privilege for the SA_USER_ADMIN package, and must have been granted the policy_DBA role.

Syntax:

PROCEDURE SET_USER_PRIVS (
 policy_name IN VARCHAR2,
 user_name IN VARCHAR2,
 privileges IN VARCHAR2);

Table 8-16 Parameters for SA_USER_ADMIN.SET_USER_PRIVS

	Parameter	Meaning
	
policy_name

	
Specifies the policy name of an existing policy

	
user_name

	
The name of the user to be granted privileges

	
privileges

	
A character string of policy-specific privileges separated by commas

	
See Also:

"Managing Program Unit Privileges with SET_PROG_PRIVS"

8.5 Setting Labels & Privileges with SA_SESSION.SET_ACCESS_PROFILE

The SET_ACCESS_PROFILE procedure sets the Oracle Label Security authorizations and privileges of the database session to those of the specified user. (Note that the originating user retains the PROFILE_ACCESS privilege.)

The user executing the SA_SESSION.SET_ACCESS_PROFILE procedure must have the PROFILE_ACCESS privilege. Note that the logged-in database user (the Oracle userid) does not change. That user assumes only the authorizations and privileges of the specified user. By contrast, the Oracle Label Security user name is changed.

This administrative procedure is useful for various tasks:

	
With SET_ACCESS_PROFILE, the administrator can see the result of the authorization and privilege settings for a particular user.

	
Applications need to have proxy accounts connect as (and assume the identity of) application users, for purposes of accessing labeled data. With the SET_ACCESS_PROFILE privilege, the proxy account can act on behalf of the application users.

Syntax:

PROCEDURE SET_ACCESS_PROFILE (policy_name IN VARCHAR2
 user_name IN VARCHAR2);

Table 8-17 Parameters for SA_SESSION.SET_ACCESS_PROFILE

	Parameter	Meaning
	
policy_name

	
The name of an existing policy

	
user_name

	
Name of the user whose authorizations and privileges should be assumed

8.6 Returning User Name with SA_SESSION.SA_USER_NAME

The SA_USER_NAME function returns the name of the current Oracle Label Security user, as set by the SET_ACCESS_PROFILE procedure (or as established at login). This is how you can determine the identity of the current user in relation to Oracle Label Security, rather than in relation to your Oracle login name.

Syntax:

FUNCTION SA_USER_NAME (policy_name IN VARCHAR2)
RETURN VARCHAR2;

Table 8-18 Parameters for SA_SESSION.SA_USER_NAME

	Parameter	Meaning
	
policy_name

	
The name of an existing policy

8.7 Using Oracle Label Security Views

This section describes views you can use to see the user authorization and privilege assignments made by the administrator.

	
View to Display All User Security Attributes: DBA_SA_USERS

	
Views to Display User Authorizations by Component

8.7.1 View to Display All User Security Attributes: DBA_SA_USERS

The DBA_SA_USERS view displays the values assigned for privileges, levels, compartments, and groups all together, corresponding to how you enter these values through the SA_USER_ADMIN command-line interface. The values include:

USER_PRIVILEGES

MAX_READ_LABEL

MAX_WRITE_LABEL

MIN_WRITE_LABEL

DEFAULT_READ_LABEL

DEFAULT_WRITE_LABEL

DEFAULT_ROW_LABEL

USER_LABELS

MAX_READ_LABEL

MAX_WRITE_LABEL

MIN_WRITE_LABEL

DEFAULT_READ_LABEL

DEFAULT_WRITE_LABEL

DEFAULT_ROW_LABEL

This information is stored in data dictionary tables, and used to establish session and row labels when a user logs in.

	
Note:

The field USER_LABELS in DBA_SA_USERS is retained solely for backward compatibility and will be removed in the next release.

8.7.2 Views to Display User Authorizations by Component

The following views individually display each component of the label:

Table 8-19 Oracle Label Security Views

	View	Contents
	
DBA_SA_USER_LEVELS

	
Displays the levels assigned to the user: minimum level, maximum level, default level, and level for the row label

	
DBA_SA_USER_COMPARTMENTS

	
Displays the compartments assigned to the user

	
DBA_SA_USER_GROUPS

	
Displays the groups assigned to the user

11 Administering and Using Trusted Stored Program Units

This chapter explains how to use trusted stored program units to enhance system security. It contains these topics:

	
Introduction to Trusted Stored Program Units

	
Managing Program Unit Privileges with SET_PROG_PRIVS

	
Creating and Compiling Trusted Stored Program Units

	
Using SA_UTL Functions to Set and Return Label Information

11.1 Introduction to Trusted Stored Program Units

Oracle Database 11g Release 1 (11.1) stored procedures, functions, and packages are sets of PL/SQL statements stored in a database in compiled form. The single difference between functions and procedures is that functions return a value and procedures do not. Trusted stored program units are like any other stored program units in Oracle Database: the underlying logic is the same.

A package is a set of procedures and functions, together with the cursors and variables they use, stored as a unit. There are two parts to a package, the package specification and the package body. The package specification declares the external definition of the public procedures, functions, and variables that the package contains. The package body contains the actual text of the procedures and functions, as well as any private procedures and variables.

A trusted stored program unit is a stored procedure, function, or package that has been granted one or more Oracle Label Security privileges. Trusted stored program units are typically used to let users perform privileged operations in a controlled manner, or update data at several labels. This is the optimal approach to permit users to access data beyond their authorization.

Trusted stored program units provide fine-grained control over the use of privileges. Although you can potentially grant privileges to many users, the granting of privileges should be done with great discretion because it might violate the security policy established for your application. Rather than assigning privileges to users, you can identify any application operations requiring privileges, and implement them as trusted program units. When you grant privileges to these stored program units, you effectively restrict the Oracle Label Security privileges required by users. This approach employs the principle of least privilege.

For example, if a user with the label CONFIDENTIAL needs to insert data into SENSITIVE rows, then you can grant the WRITEUP privilege to a trusted stored program to which the user has access. In this way, the user can perform the task by means of the trusted stored program, while staying at the CONFIDENTIAL level.

The trusted program unit performs all the actions on behalf of the user. You can thus effectively encapsulate the security policy into a module that can be verified to make sure that it is valid.

11.1.1 How a Trusted Stored Program Unit Runs

A trusted stored program unit runs using its own privileges, and the caller's labels. In this way, it can perform privileged operations on the set of rows constrained by the user's labels.

Oracle Database system and object privileges are intended to be bundled into roles. Users are then granted roles as necessary. By contrast, Oracle Label Security privileges can only be assigned to users or to stored program units. These trusted stored program units provide a more manageable mechanism than roles to control the use of Oracle Label Security privileges.

11.1.2 Trusted Stored Program Unit Example

A trusted stored program unit with the READ privilege can read all unprotected data and all data protected by this policy in the database. Consider, for example, a user who is responsible for creating purchasing forecast reports. The user must perform a summation operation on the amount of all purchases. Regardless of whether or not user's own labels authorize access to the individual purchase orders. The syntax for creating the summation procedure in this example is as follows:

CREATE FUNCTION sum_purchases RETURN NUMBER IS
 psum NUMBER;
BEGIN
 SELECT SUM(amount) INTO psum
 FROM purchase_orders;
RETURN psum;
END sum_purchases;

In this way, the program unit can gather information the end user is not able to gather, and can make it available by means of a summation.

Note that to run SUM_PURCHASES, the user would need to be granted the standard Oracle Database EXECUTE object privilege upon this procedure.

	
See Also:

Chapter 3, "Understanding Access Controls and Privileges"

11.2 Managing Program Unit Privileges with SET_PROG_PRIVS

To grant privileges to a stored program unit, you must have the policy_DBA role, and the EXECUTE permission on the SA_USER_ADMIN package. You can use either the SA_USER_ADMIN package or Oracle Enterprise Manager to manage Oracle Label Security privileges.

Use the SA_USER_ADMIN.SET_PROG_PRIVS procedure to set policy-specific privileges for program units. If the privileges parameter is NULL, then the program unit's privileges for the policy are removed.

Syntax:

PROCEDURE SET_PROG_PRIVS (
 policy_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 program_unit_name IN VARCHAR2,
 privileges IN VARCHAR2);

	Parameter	Specifies
	policy_name	The policy name of an existing policy
	program_unit_name	Specifies the program unit to be granted privileges
	privileges	A comma-delimited character string of policy-specific privileges

For example, to give the READ privilege to the SUM_PURCHASES function (described in "Trusted Stored Program Unit Example"), you could enter:

EXECUTE sa_user_admin.set_prog_privs (
'HR','myschema','sum_purchases','READ');

When the SUM_PURCHASES procedure is then called, it runs with the READ privilege as well as the current user's Oracle Label Security privileges. Using this technique, the user can be allowed to find the value of the total corporate payroll, without learning what salary any individual employee receives.

	
Warning:

When you create a trusted stored program unit, have the Oracle Label Security administrator review it carefully and evaluate the privileges you are granting to it. Ensure, for example, that procedures in trusted packages do not perform privileged database operations and then write result or status information into a public variable of the package. In this way, you can make sure that no violations of your site's Oracle Label Security policy can occur.

11.3 Creating and Compiling Trusted Stored Program Units

This section contains these topics:

	
Creating Trusted Stored Program Units

	
Setting Privileges for Trusted Stored Program Units

	
Recompiling Trusted Stored Program Units

	
Re-creating Trusted Stored Program Units

	
Running Trusted Stored Program Units

11.3.1 Creating Trusted Stored Program Units

You create a trusted stored program unit in the same way that you create a standard procedure, function, or package, that is by using the CREATE PROCEDURE, CREATE FUNCTION, or CREATE PACKAGE and CREATE PACKAGE BODY statements. The program unit becomes trusted when you grant it Oracle Label Security privileges.

	
See Also:

Oracle Database SQL Language Quick Reference

11.3.2 Setting Privileges for Trusted Stored Program Units

When a developer creates a stored program unit, the Oracle Label Security administrator can verify the correctness of the code before granting the necessary privileges to the stored program unit. Whenever the trusted stored program unit is re-created or replaced, its privileges are removed. The Oracle Label Security administrator must then verify the code again and grant the privileges once again.

11.3.3 Recompiling Trusted Stored Program Units

Recompiling a trusted stored program unit, either automatically or manually (using ALTER PROCEDURE), does not affect its Oracle Label Security privileges. You must, however, grant the EXECUTE privilege on the program unit again after recompiling.

11.3.4 Re-creating Trusted Stored Program Units

Oracle Label Security privileges are revoked if you perform a CREATE OR REPLACE operation on a trusted stored program unit. This limits the potential for misuse of a procedure's Oracle Label Security privileges. Note that the procedure, function, or package can still run even if the Oracle Label Security privileges have been removed.

If you re-create a procedure, function, or package, then you should carefully review its text. When you are certain that the re-created program unit does not violate your site's Oracle Label Security policy, you can then grant it the required privileges again.

In a development environment where trusted stored program units must frequently be replaced (for example, during the first few months of a live system), it is advisable to create a script that can grant the proper Oracle Label Security privileges, as required.

11.3.5 Running Trusted Stored Program Units

Under Oracle Label Security all the standard Oracle Database controls on procedure call (regarding access to tables and schemas) are still in force. Oracle Label Security complements these security mechanisms by controlling access to rows. When a trusted stored program unit is carried out, the policy privileges in force are a union of the invoking user's privileges and the program unit's privileges. Whether a trusted stored program unit calls another trusted program unit or a non-trusted program unit, the program unit called runs with the same privileges as the original program unit.

If a sequence of non-trusted and trusted stored program units is carried out, the first trusted program unit will determine the privileges of the entire calling sequence from that point on. Consider the following sequence:

Procedure A (non-trusted)

Procedure B with WRITEUP

Procedure C with WRITEDOWN

Procedure D (non-trusted)
Here, Procedures B, C, and D all runs with the WRITEUP privilege, because B was the first trusted procedure in the sequence. When the sequence ends, the privilege pertaining to Procedure B is no longer in force for subsequent procedures.

	
Note:

Unhandled exceptions raised in trusted program units are caught by Oracle Label Security. This means that error messages may not be displayed to the user. For this reason, you should always thoroughly test and debug any program units before granting them privileges.

11.4 Using SA_UTL Functions to Set and Return Label Information

The SA_UTL package provides several functions for use within PL/SQL programs. These functions return information about the current values of the session security attributes, in the form of numeric label values. Although they can be used in program units that are not trusted, these functions are primarily for use in trusted stored program units.

Note that these are public functions; you do not need the policy_DBA role to use them. In addition, each of the functions has a parallel SA_SESSION function that returns the same labels in character string format.

	
Viewing Session Label and Row Label Using SA_UTL

	
Checking Rights to Read and Update Table Row Data

	
Setting the Session Label and Row Label Using SA_UTL

	
Returning Greatest Lower Bound and Least Upper Bound

	
See Also:

"Viewing Session Attributes with SA_SESSION Functions"

11.4.1 Viewing Session Label and Row Label Using SA_UTL

SA_UTL provides the following procedures for viewing session label and row label.

11.4.1.1 SA_UTL.NUMERIC_LABEL

This procedure returns the current session label. It takes a policy name as the input parameter and returns a NUMBER value.

SA_UTL.NUMERIC_LABEL (policy_name) RETURN NUMBER;

11.4.1.2 SA_UTL.NUMERIC_ROW_LABEL

This procedure returns the current row label. It takes a policy name as the input parameter and returns a NUMBER value.

SA_UTL.NUMERIC_ROW_LABEL (policy_name) RETURN NUMBER;

11.4.1.3 SA_UTL.DATA_LABEL

This function returns TRUE if the label is a data label.

FUNCTION DATA_LABEL(label IN NUMBER)
RETURN BOOLEAN;

11.4.2 Checking Rights to Read and Update Table Row Data

SA_UTL provides the following functions for checking the current session user rights to policy labeled data.

11.4.2.1 SA_UTL.CHECK_READ

Use this function to check if the user can read a policy protected table row. This function returns 1 if the user can read the table row. It returns 0 if the user cannot read the table row. The input values are the policy name and the row data label.

FUNCTION CHECK_READ (
 policy_name IN VARCHAR2,
 label IN NUMBER)
RETURN NUMBER;

	
Note:

The user should already have read privileges on the table to read any data from the table.

11.4.2.2 SA_UTL.CHECK_WRITE

Use this function to check if the user can insert, update, or delete data in a policy protected table row. This function returns 1 if the user can write to the table row. It returns 0 if the user cannot write to the table row. The input values are the policy name and the row data label.

FUNCTION CHECK_WRITE (
 policy_name IN VARCHAR2,
 label IN NUMBER)
RETURN NUMBER;

	
Note:

The user should already have update privileges on the table to write any data into the table.

11.4.2.3 SA_UTL.CHECK_LABEL_CHANGE

Use this function to check if the user can change the data label for a policy protected table row. This function returns 1 if the user can change the data label. It returns 0 if the user cannot change the data label. The input values are the policy name, the current data label, and the new data label.

FUNCTION CHECK_LABEL_CHANGE (
 policy_name IN VARCHAR2,
 current_label IN NUMBER,
 new_label IN NUMBER)
RETURN NUMBER;

	
Note:

The user should already have update privileges on the table to write any data into the table.

11.4.3 Setting the Session Label and Row Label Using SA_UTL

These procedures use numeric labels instead of character strings as input values. Available SA_SESSION procedures perform the same functions as these, but in character string format.

11.4.3.1 SA_UTL.SET_LABEL

Use this procedure to set the label of the current database session. The session's write label and row label are set to the subset of the label's compartments and groups that are authorized for write access.

PROCEDURE SET_LABEL (policy_name IN VARCHAR2,
 label IN NUMBER);

	Parameter	Specifies
	policy_name	The name of an existing policy
	label	The label to set as the session label

11.4.3.2 SA_UTL.SET_ROW_LABEL

Use this procedure to set the row label of the current database session. The compartments and groups in the label must be a subset of compartments and groups in the session label that are authorized for write access.

PROCEDURE SET_ROW_LABEL (policy_name IN VARCHAR2,
 row_label IN NUMBER);

	Parameter	Specifies
	policy_name	The name of an existing policy
	row_label	The label to set as the session default row label

	
See Also:

"Changing Your Session and Row Labels with SA_SESSION"

11.4.4 Returning Greatest Lower Bound and Least Upper Bound

Functions for greatest lower bound and least upper bound are available.

11.4.4.1 GREATEST_LBOUND

This function returns a label that is the greatest lower bound of the two label arguments.

Syntax:

FUNCTION GREATEST_LBOUND (label1 IN NUMBER,
 label2 IN NUMBER)
RETURN NUMBER;

11.4.4.2 LEAST_UBOUND

This function returns an Oracle Label Security label that is the least upper bound of the label arguments.

Syntax:

FUNCTION LEAST_UBOUND (label1 IN NUMBER,
 label2 IN NUMBER)
RETURN NUMBER;

	
See Also:

"Determining Upper and Lower Bounds of Labels". The functions described here are the same as those described in Chapter 4, except that these return a number instead of a character string.

12 Auditing Under Oracle Label Security

The Oracle Database 11g Release 1 (11.1) audit facility lets you hold database users accountable for the operations they perform. It can track specific database objects, operations, users, and privileges. Oracle Label Security supplements this by tracking use of its own administrative operations and policy privileges. It provides the SA_AUDIT_ADMIN package to set and change the policy auditing options.

This chapter explains how to use Oracle Label Security auditing. It contains these topics:

	
Overview of Oracle Label Security Auditing

	
Enabling Systemwide Auditing: AUDIT_TRAIL Initialization Parameter

	
Creating and Dropping an Audit Trail View for Oracle Label Security

	
Oracle Label Security Auditing Tips

12.1 Overview of Oracle Label Security Auditing

Oracle Label Security auditing supplements standard Oracle Database auditing by tracking use of its own administrative operations and policy privileges. You can use either the SA_AUDIT_ADMIN package or Oracle Enterprise Manager to set and change the auditing options for an Oracle Label Security policy.

When you create a new policy, a label column for that policy is added to the database audit trail. The label column is created regardless of whether auditing is enabled or disabled, and independent of whether database auditing or operating system auditing is used. Whenever a record is written to the audit table, each policy provides a label for that record to indicate the session label. The administrator can create audit views to display these labels. Note that in the audit table, the label does not control access to the row, instead it only records the sensitivity of the row.

The auditing options that you specify apply only to subsequent sessions, not to the current session. You can specify audit options even if auditing is disabled. No overhead is created by making only these specifications. When you do enable Oracle Label Security auditing, the options come into effect, and overhead is created beyond that created by standard Oracle Database auditing.

Note that Oracle Label Security does not provide labels for audit data written to the operating system audit trial. All Oracle Label Security audit records are written directly to the database audit trail, even if operating system auditing is enabled. If auditing is disabled, then no Oracle Label Security audit records are generated.

12.2 Enabling Systemwide Auditing: AUDIT_TRAIL Initialization Parameter

For Oracle Label Security to generate audit records, you must first enable systemwide auditing by setting the Oracle Database AUDIT_TRAIL initialization parameter in the database's parameter file. The parameter can be set to one of the following values:

Table 12-1 AUDIT_TRAIL Parameter Settings

	Setting	Explanation
	
DB

	
Enables database auditing and directs all audit records to the database audit trail. This approach is recommended by Oracle.

Note that even with AUDIT_TRAIL set to DB, some records are always sent to the operating system audit trail. These include STARTUP and SHUTDOWN statements, as well as CONNECT AS SYSOPER or SYSDBA.

	
DB_EXTENDED

	
Does all actions of AUDIT_TRAIL=DB and also populates the SqlBind and SqlText CLOB-type columns of the AUD$ table.

	
OS

	
Enables operating system auditing. This directs most of your Oracle Database audit records to the operating system, rather than to the database; the records will not contain Oracle Label Security labels. By contrast, any Oracle Label Security auditing will go to the database, with labels.

If you set AUDIT_TRAIL to OS, then the Oracle Label Security-specific audit records are written to the database audit trail and the other Oracle Database audit records are written to the operating system audit trail (with no policy column in the operating system data).

	
NONE

	
Disables auditing. This is the default.

After you have edited the parameter file, restart the database instance to enable or disable database auditing as specified.

Set the AUDIT_TRAIL parameter before you set audit options. If you do not set this parameter, then you are still able to set audit options. However, audit records are not written to the database until the parameter is set and the database instance is restarted.

	
See Also:

For information about enabling and disabling systemwide auditing, setting audit options, and managing the audit trail, refer to Oracle Database Administrator's Guide
For information about editing initialization parameters, refer to Oracle Database Reference

For details about systemwide AUDIT and NOAUDIT functioning, see Oracle Database SQL Language Reference

12.3 Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN

After you have enabled systemwide auditing, you can use SA_AUDIT_ADMIN procedures to enable or disable Oracle Label Security auditing. To use Oracle Label Security auditing, you must have the policy_type role.

	
Auditing Options for Oracle Label Security

	
Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN.AUDIT

	
Disabling Oracle Label Security Auditing with SA_AUDIT_ADMIN.NOAUDIT

	
Examining Audit Options with the DBA_SA_AUDIT_OPTIONS View

12.3.1 Auditing Options for Oracle Label Security

The AUDIT and NOAUDIT options are as follows:

Table 12-2 Auditing Options for Oracle Label Security

	Option	Description
	
APPLY

	
Audits application of specified Oracle Label Security policies to tables and schemas

	
REMOVE

	
Audits removal of specified Oracle Label Security policies from tables and schemas

	
SET

	
Audits the setting of user authorizations, and user and program privileges

	
PRIVILEGES

	
Audits use of all policy-specific privileges

12.3.2 Enabling Oracle Label Security Auditing with SA_AUDIT_ADMIN.AUDIT

Use the AUDIT procedure to enable policy-specific auditing.

Syntax:

PROCEDURE AUDIT (
 policy_name IN VARCHAR2,
 users IN VARCHAR2 DEFAULT NULL,
 option IN VARCHAR2 DEFAULT NULL,
 type IN VARCHAR2 DEFAULT NULL,
 success IN VARCHAR2 DEFAULT NULL);

	Parameter	Description	Default Behavior
	policy_name	Required. Specifies the name of an existing policy. Auditing of each policy is independent of all others.	None
	users	Optional. A comma-delimited list of user names to audit. If not specified, then all users are audited.	All users
	option	Optional. A comma-delimited list of options to be audited. Refer to .
If not specified, then all default options (that is, options not including privileges) are audited. Audit options for privileged operations should be set explicitly by specifying the PRIVILEGES option, which sets audit options for all privileges.

	All options
	type	Optional. BY ACCESS or BY SESSION. If not specified, then audit records are written by session.	BY SESSION
	success	Optional. SUCCESSFUL or NOT SUCCESSFUL. If not specified, then audit is written for both.	SUCCESSFUL and NOT SUCCESSFUL

If the administrator does not specify any audit options, then all options except the privilege-related ones are audited. Auditing of privileges must be specified explicitly. For example, if the administrator enters

SA_AUDIT_ADMIN.AUDIT ('HR');

then default auditing options are set for the HR policy. When the administrator enables auditing, it will be performed on all users by session, whether successful or not.

When you set auditing parameters and options, the new values apply only to subsequent sessions, not to the current session.

Consider also a case in which one AUDIT call (with no users specified) enables auditing for APPLY operations for all users, and then a second call enables auditing of REMOVE operations for a specific user. For example:

SA_AUDIT_ADMIN.AUDIT ('HR', NULL, 'APPLY');
SA_AUDIT_ADMIN.AUDIT ('HR', 'SCOTT', 'REMOVE');

In this case, SCOTT is audited for both APPLY and REMOVE operations.

12.3.3 Disabling Oracle Label Security Auditing with SA_AUDIT_ADMIN.NOAUDIT

To disable policy-specific auditing, use the SA_AUDIT_ADMIN.NOAUDIT procedure.

Syntax:

PROCEDURE NOAUDIT (
 policy_name IN VARCHAR2,
 users IN VARCHAR2 DEFAULT NULL,
 option IN VARCHAR2 DEFAULT NULL);

	Parameter	Description	Default Behavior
	policy_name	Required. Specifies the name of an existing policy.	None
	users	Optional. A comma-delimited list of user names to audit. If not specified, then auditing is disabled for all users.	All users
	option	Optional. A comma-delimited list of options to be disabled.Refer to . If not specified, then all default options are disabled. Privileges must be disabled explicitly.	All options

You can disable auditing for all enabled options, or only for a subset of enabled options. All auditing for the specified options is disabled for all specified users (or all users, if the users parameter is NULL). For example, the following statement disables auditing of the APPLY and REMOVE operations for users John, Mary, and Scott:

SA_AUDIT_ADMIN.NOAUDIT ('HR', 'JOHN, MARY, SCOTT', 'APPLY, REMOVE');

Consider also a case in which one AUDIT call enables auditing for a specific user, and a second call (with no user specified) enables auditing for all users. For example:

SA_AUDIT_ADMIN.AUDIT ('HR', 'SCOTT');
SA_AUDIT_ADMIN.AUDIT ('HR');

In this case, a subsequent call to NOAUDIT with no users specified (such as the following)

SA_AUDIT_ADMIN.NOAUDIT ('HR');

does not reverse the auditing that was set for SCOTT explicitly in the first call. So, auditing continues to be performed on SCOTT. In this way, even if NOAUDIT is set for all users, Oracle Label Security still audits any users for whom auditing was explicitly set.

Auditing of privileged operations must be specified explicitly. If you run NOAUDIT with no options, the Oracle Label Security will nonetheless continue to audit privileged operations. For example, if auditing is enabled and you enter

SA_AUDIT_ADMIN.NOAUDIT ('HR');

then auditing will continue to be performed on the privileged operations (such as WRITEDOWN).

NOAUDIT parameters and options that you set apply only to subsequent sessions, not to current sessions.

If you try to enable an audit option that has already been set, or if you try to disable an audit option that has not been set, then Oracle Label Security processes the statement without indicating an error. An attempt to specify an invalid option results in an error message.

12.3.4 Examining Audit Options with the DBA_SA_AUDIT_OPTIONS View

This section describes the view that displays the Oracle Label Security auditing options and privileges.

The DBA_SA_AUDIT_OPTIONS view contains the following columns:

Table 12-3 Columns in the DBA_SA_AUDIT_OPTIONS View

	Name	Null?	Type
	
POLICY_NAME

	
NOT NULL

	
VARCHAR2(30)

	
USER_NAME

	
NOT NULL

	
VARCHAR2(30)

	
APY

	
	
VARCHAR2(3)

	
REM

	
	
VARCHAR2(3)

	
SET_

	
	
VARCHAR2(3)

	
PRV

	
	
VARCHAR2(30

Output is similar to the following:

Table 12-4 DBA_SA_AUDIT_OPTIONS Sample Output

	POLICY_NAME	USER_NAME	APY	REM	SET	PRV
	
HR

	
SCOTT

	
-/-

	
-/-

	
-/-

	
A/A

	
HR

	
LBACSYS

	
S/S

	
S/S

	
S/S

	
-/-

	
See Also:

Chapter 11 of the Oracle Database Security Guide

12.4 Managing Policy Label Auditing

This section describes procedures available to manage policy label auditing:

	
Policy Label Auditing with SA_AUDIT_ADMIN.AUDIT_LABEL

	
Disabling Policy Label Auditing with SA_AUDIT_ADMIN.NOAUDIT_LABEL

	
Finding Label Audit Status with AUDIT_LABEL_ENABLED

12.4.1 Policy Label Auditing with SA_AUDIT_ADMIN.AUDIT_LABEL

Use the AUDIT_LABEL procedure to record policy labels during auditing. It causes the user's session label to be stored in the audit table.

Syntax:

PROCEDURE AUDIT_LABEL (
 policy_name IN VARCHAR2);

	Parameter	Description	Default
	policy_name	Required. Specifies the name of an existing policy.	None

12.4.2 Disabling Policy Label Auditing with SA_AUDIT_ADMIN.NOAUDIT_LABEL

Use the NOAUDIT_LABEL procedure to disable auditing of policy labels.

Syntax:

PROCEDURE NOAUDIT_LABEL (
 policy_name IN VARCHAR2);

	Parameter	Description	Default
	policy_name	Required. Specifies the name of an existing policy.	None

12.4.3 Finding Label Audit Status with AUDIT_LABEL_ENABLED

Use the AUDIT_LABEL_ENABLED function to show whether labels are being recorded in audit records for the policy.

Syntax:

FUNCTION AUDIT_LABEL_ENABLED (policy_name IN VARCHAR2)
 RETURN boolean;

12.5 Creating and Dropping an Audit Trail View for Oracle Label Security

This section contains these topics:

	
Creating a View with SA_AUDIT_ADMIN.CREATE_VIEW

	
Dropping a View with SA_AUDIT_ADMIN.DROP_VIEW

12.5.1 Creating a View with SA_AUDIT_ADMIN.CREATE_VIEW

The CREATE_VIEW procedure creates an audit trail view named DBA_policyname_AUDIT_TRAIL, which contains the specified policy's label column as well as all the entries in the audit trail written on behalf of this policy. If the view name exceeds the database limit of 30 characters, then the user can optionally specify a shorter view name.

Syntax (either of two):

	
A one-parameter procedure:

PROCEDURE CREATE_VIEW (
 policy_name IN VARCHAR2);

where policy_name specifies the name of an existing policy.

or

	
A two-parameter procedure:

PROCEDURE CREATE_VIEW (
 policy_name IN VARCHAR2,
 view_name IN VARCHAR2 DEFAULT NULL);

where policy_name specifies the name of an existing policy and view_name is an optional parameter, maximum 14 characters, specifying the desired view name.

12.5.2 Dropping a View with SA_AUDIT_ADMIN.DROP_VIEW

The DROP_VIEW procedure drops the audit trail view for the specified policy.

Syntax (either of two):

	
A one-parameter procedure:

PROCEDURE DROP_VIEW (
 policy_name IN VARCHAR2);

where policy_name specifies the name of an existing policy.

or

	
A two-parameter procedure:

PROCEDURE DROP_VIEW (
 policy_name IN VARCHAR2,
 view_name IN VARCHAR2 DEFAULT NULL);

where policy_name specifies the name of an existing policy and view_name is an optional parameter, maximum 14 characters, specifying an existing view's name .

	
Note:

When sa_audit_admin.create_view was used to create a pre-10i audit view, that view did not show the timestamp field for the audit records in 10i. Oracle Label Security recommends that all pre-10i Oracle Label Security audit views be dropped and re-created, by using sa_audit_admin.drop_view and sa_audit_admin.create_view.

12.6 Oracle Label Security Auditing Tips

This section contains these topics:

	
Strategy for Setting SA_AUDIT_ADMIN Options

	
Auditing Privileged Operations

12.6.1 Strategy for Setting SA_AUDIT_ADMIN Options

Before setting any audit options, you must devise an auditing strategy that monitors events of interest, without recording extraneous events. You should periodically review this strategy, because applications, user base, configurations, and other external factors can change.

The Oracle Label Security options, and those provided by the Oracle Database audit facility, might not directly address all of your specific or application-dependent auditing requirements. However, through use of database triggers, you can audit specific events and record specific information that you cannot audit and record using the more generic audit facility.

	
See Also:

For more information about using triggers for auditing, see Oracle Database Concepts

12.6.2 Auditing Privileged Operations

Consider auditing any operations that require Oracle Label Security privileges. Because these privileges perform sensitive operations, and because their abuse could jeopardize security, you should closely monitor their dissemination and use.

A Advanced Topics in Oracle Label Security

This appendix covers topics of interest to advanced users of Oracle Label Security. It contains these sections:

	
Analyzing the Relationships Between Labels

	
OCI Interface for Setting Session Labels

A.1 Analyzing the Relationships Between Labels

This section describes relationships between labels. It contains these topics:

	
Dominant and Dominated Labels

	
Non-Comparable Labels

	
Using Dominance Functions

A.1.1 Dominant and Dominated Labels

The relationship between two labels can be described in terms of dominance. A user's ability to access an object depends on whether the user's label dominates the label of the object. If a user's label does not dominate the object's label, then the user is not allowed to access the object.

Label dominance is analyzed in terms of all its components: levels, compartments, and groups.

Table A-1 Dominance in the Comparison of Labels

	Factor	Criteria for Dominance
	
Level

	
For label1 to dominate label2, the level of label1 must be greater than or equal to that of label2.

	
Compartment

	
For label1 to dominate label2, the compartments of label1 must contain all the compartments of label2.

	
Group

	
For label1 to dominate label2, label1 must contain at least one of the groups of label2.

One label dominates another label if all of its components dominate the components of the other label. For example, the label HIGHLY_SENSITIVE:FINANCE,OPERATIONS dominates the label HIGHLY_SENSITIVE:FINANCE. Similarly, the label HIGHLY_SENSITIVE::WR_AP dominates the label HIGHLY_SENSITIVE::WR_AP, WR_AR.

	
See Also:

"Dominance Rules for Labels with Inverse Groups"

A.1.2 Non-Comparable Labels

The relationship between two labels cannot always be defined by dominance. Two labels are non-comparable if neither label dominates the other. If any compartments differ between the two labels (as with HS:A and HS:B), then they are non-comparable. Similarly, the labels HS:A and S:B are non-comparable.

A.1.3 Using Dominance Functions

You can use dominance functions to specify ranges in queries. The following functions enable you to indicate dominance relationships between specified labels.

Table A-2 Functions to Determine Dominance

	Function	Meaning
	
STRICTLY_DOMINATES

	
The value of label1 dominates that of label2, and is not equal to it.

	
DOMINATES

	
The value of label1 dominates, or is equal to, that of label2.

	
DOMINATED_BY

	
The value of label1 is dominated by that of label2.

	
STRICTLY_DOMINATED_BY

	
The value of label1 is dominated by that of label2, and is not equal to it.

Note that there are two types of dominance function. While the SA_UTL dominance functions return BOOLEAN values, the standalone dominance functions return integers.

	
The DOMINATES Standalone Function

	
The STRICTLY_DOMINATES Standalone Function

	
The DOMINATED_BY Standalone Function

	
The STRICTLY_DOMINATED_BY Standalone Function

	
SA_UTL.DOMINATES

	
SA_UTL.STRICTLY_DOMINATES

	
SA_UTL.DOMINATED_BY

	
SA_UTL.STRICTLY_DOMINATED_BY

	
See Also:

"Ordering Labeled Data Rows"

A.1.3.1 The DOMINATES Standalone Function

The DOMINATES (DOM) function returns 1 (TRUE) if label1 dominates label2, or 0 (FALSE) if it does not.

Syntax:

FUNCTION DOMINATES (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN INTEGER;

A.1.3.2 The STRICTLY_DOMINATES Standalone Function

The STRICTLY_DOMINATES (SDOM) function returns 1 (TRUE) if label1 dominates label2 and is not equal to it.

Syntax:

FUNCTION STRICTLY_DOMINATES (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN INTEGER;

A.1.3.3 The DOMINATED_BY Standalone Function

The DOMINATED_BY (DOM_BY) function returns 1 (TRUE) if label1 is dominated by label2.

Syntax:

FUNCTION DOMINATED_BY (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN INTEGER;

A.1.3.4 The STRICTLY_DOMINATED_BY Standalone Function

The STRICTLY_DOMINATED_BY (SDOM_BY) function returns 1 (TRUE) if label1 is dominated by label2 and is not equal to it.

Syntax:

FUNCTION STRICTLY_DOMINATED_BY (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN INTEGER;

A.1.3.5 SA_UTL.DOMINATES

The SA_UTL.DOMINATES function returns TRUE if label1 dominates label2.

Syntax:

FUNCTION DOMINATES (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN BOOLEAN;

A.1.3.6 SA_UTL.STRICTLY_DOMINATES

The SA_UTL.STRICTLY_DOMINATES function returns TRUE if label1 dominates label2 and is not equal to it.

Syntax:

FUNCTION STRICTLY_DOMINATES (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN BOOLEAN;

A.1.3.7 SA_UTL.DOMINATED_BY

The SA_UTL.DOMINATED_BY function returns TRUE if label1 is dominated by label2.

Syntax:

FUNCTION DOMINATED_BY (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN BOOLEAN;

A.1.3.8 SA_UTL.STRICTLY_DOMINATED_BY

The SA_UTL.STRICTLY_DOMINATED_BY function returns TRUE if label1 is dominated by label2 and is not equal to it.

Syntax:

FUNCTION STRICTLY_DOMINATED_BY (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN BOOLEAN;

	
See Also::

"Determining Upper and Lower Bounds of Labels".

A.2 OCI Interface for Setting Session Labels

When using Oracle Call Interface (OCI) to connect, the policy's SYS_CONTEXT variables can be used to initialize the session label and the row label. The variables are set using the OCIAttrSet function to initialize externally initialized SYS_CONTEXT variables. These are available in Release 8.1.7 only when Oracle Label Security is installed.

Each policy has a SYS_CONTEXT named SA$policy_name_X. There are two variables that can be set, INITIAL_LABEL and INITIAL_ROW_LABEL.

When set to valid labels within the user's authorizations, the new values will be used instead of the default values stored for the user. This is the same mechanism used for remote connections

	
See Also:

Chapter 13, "Using Oracle Label Security with a Distributed Database"

A.2.1 OCIAttrSet

Additional attributes are defined for OCIAttrSet to insert context. Use OCI_ATTR_APPCTX_SIZE to initialize the context array size with the desired number of context attributes:

OCIAttrSet(session, OCI_HTYPE_SESSION,
 (dvoid *)&size, (ub4)0, OCI_ATTR_APPCTX_SIZE, error_handle);

Note that size is ub4 type.

A.2.2 OCIAttrGet

Then call OCIAttrGet with OCI_ATTR_APPCTX_LIST to get a handle on the application context list descriptor for the session:

OCIAttrGet(session, OCI_HTYPE_SESSION,
 (dvoid *)&ctxl_desc, (ub4)0, OCI_ATTR_APPCTX_LIST, error_handle);

Note that ctxl_desc is (OCIParam *) type.

A.2.3 OCIParamGet

Then use the application context list descriptor to obtain an individual descriptor for the i-th application context:

OCIParamGet(ctxl_desc, OCI_DTYPE_PARAM, error_handle,(dvoid **)&ctx_desc, i);

Note that ctx_desc is (OCIParam *) type.

A.2.4 OCIAttrSet

Set the proper values in the application context by using the three new attributes OCI_ATTR_APPCTX_NAME, OCI_ATTR_APPCTX_ATTR, and OCI_ATTR_APPCTX_VALUE:

OCIAttrSet(ctx_desc, OCI_DTYPE_PARAM,
 (dvoid *)ctx_name, sizeof(ctx_name), OCI_ATTR_APPCTX_NAME,
 error_handle);

OCIAttrSet(ctx_desc, OCI_DTYPE_PARAM,
 (dvoid *)attr_name, sizeof(attr_name), OCI_ATTR_APPCTX_ATTR,
 error_handle);

OCIAttrSet(ctx_desc, OCI_DTYPE_PARAM,
 (dvoid *)value, sizeof(value), OCI_ATTR_APPCTX_VALUE,
 error_handle);

Note that only character type is supported, because application context operations are based on the VARCHAR2 type.

A.2.5 OCI Example

The following example shows how to use externalized SYS_CONTEXT with Oracle Label Security.

#ifdef RCSID
static char *RCSid =
 "$Header: ext_mls.c 09-may-00.10:07:08 jdoe Exp $ ";
#endif /* RCSID */

/* Copyright (c) Oracle Corporation 1999, 2000. All Rights Reserved. */

/*

 NAME

ext_mls.c - externalized SYS_CONTEXT with Label Security

 DESCRIPTION

Run olsdemo.sql script before executing this example.
Usage: <executable obtained with .c file> <user_name> <password> <session-initial-label
Example: avg_sal sa_demo sa_demo L3:M,E:D10

 PUBLIC FUNCTION(S)

<list of external functions declared/defined - with one-line descriptions>

 PRIVATE FUNCTION(S)

<list of static functions defined in .c file - with one-line descriptions>

 RETURNS

The average salary in the EMP table of the SA_DEMO schema querying as the specified user with the specified session label.

 NOTES

<other useful comments, qualifications, and so on>

 MODIFIED (MM/DD/YY)

jlev 09/18/03 - cleanup
jdoe 05/09/00 - cleanup

 jdoe 10/13/99 - standalone OCI program to test MLS SYS_CONTEXT
 jdoe 10/13/99 - Creation

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

static OCIEnv *envhp;
static OCIError *errhp;

int main(/*_ int argc, char *argv[] _*/);

/* get and print error */
static void checkerr(/*_OCIError *errhp, sword status _*/);
/* print error */
static void printerr(char *call);
static sword status;

/* return the average of employees' salary */
static CONST text *const selectstmt = (text *)
 "select avg(sal) from sa_demo.emp";

int main(argc, argv)
int argc;
char *argv[];
{
 OCISession *authp = (OCISession *) 0;
 OCIServer *srvhp;
 OCISvcCtx *svchp;
 OCIDefine *defnp = (OCIDefine *) 0;
 dvoid *parmdp;
 ub4 ctxsize;
 OCIParam *ctxldesc;
 OCIParam *ctxedesc;
 OCIStmt *stmtp = (OCIStmt *) 0;
 ub4 avg_sal = 0;
 sword status;

 if (OCIInitialize((ub4) OCI_DEFAULT, (dvoid *) 0,
 (dvoid * (*)(dvoid *, size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t)) 0,
 (void (*)(dvoid *, dvoid *)) 0))
 printerr("OCIInitialize");

 if (OCIEnvInit((OCIEnv **) &envhp, OCI_DEFAULT, (size_t) 0, (dvoid **) 0))
 printerr("OCIEnvInit");

 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, OCI_HTYPE_ERROR,
 (size_t) 0, (dvoid **) 0))
 printerr("OCIHandleAlloc:OCI_HTYPE_ERROR");

 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, OCI_HTYPE_SERVER,
 (size_t) 0, (dvoid **) 0))
 printerr("OCIHandleAlloc:OCI_HTYPE_SERVER");

 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, OCI_HTYPE_SVCCTX,
 (size_t) 0, (dvoid **) 0))
 printerr("OCIHandleAlloc:OCI_HTYPE_SVCCTX");

 if (OCIServerAttach(srvhp, errhp, (text *) "", strlen(""), 0))
 printerr("OCIServerAttach");

 /* set attribute server context in the service context */
 if (OCIAttrSet((dvoid *) svchp, OCI_HTYPE_SVCCTX, (dvoid *) srvhp,
 (ub4) 0, OCI_ATTR_SERVER, (OCIError *) errhp))
 printerr("OCIAttrSet:OCI_HTYPE_SVCCTX");

 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &authp,
 (ub4) OCI_HTYPE_SESSION, (size_t) 0, (dvoid **) 0))
 printerr("OCIHandleAlloc:OCI_HTYPE_SESSION");

 /* set application context to 1 */
 ctxsize = 1;

 /* set up app ctx buffer */
 if (OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION, (dvoid *) &ctxsize,
 (ub4) 0, (ub4) OCI_ATTR_APPCTX_SIZE, errhp))
 printerr("OCIAttrSet:OCI_ATTR_APPCTX_SIZE");

 /* retrieve the list descriptor */
 if (OCIAttrGet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) &ctxldesc, 0, OCI_ATTR_APPCTX_LIST, errhp))
 printerr("OCIAttrGet:OCI_ATTR_APPCTX_LIST");

 if (status = OCIParamGet(ctxldesc, OCI_DTYPE_PARAM, errhp,
 (dvoid **) &ctxedesc, 1))
 {
 if (status == OCI_NO_DATA)
 {
 printf("No Data found!\n");
 exit(1);
 }
 }

 /* set context namespace to SA$<pol_name>_X */
 if (OCIAttrSet((dvoid *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
 (dvoid *) "SA$HUMAN_RESOURCES_X",
 (ub4) strlen((char *) "SA$HUMAN_RESOURCES_X"),
 (ub4) OCI_ATTR_APPCTX_NAME, errhp))
 printerr("OCIAttrSet:OCI_ATTR_APPCTX_NAME:SA$HUMAN_RESOURCES_X");

 /* set context attribute to INITIAL_LABEL */
 if (OCIAttrSet((dvoid *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
 (dvoid *) "INITIAL_LABEL",
 (ub4) strlen((char *) "INITIAL_LABEL"),
 (ub4) OCI_ATTR_APPCTX_ATTR, errhp))
 printerr("OCIAttrSet:OCI_DTYPE_PARAM:INITIAL_LABEL");

 /* set context value to argv[3] - initial label */
 if (OCIAttrSet((dvoid *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
 (dvoid *) argv[3],
 (ub4) strlen((char *) argv[3]),
 (ub4) OCI_ATTR_APPCTX_VALUE, errhp))
 printerr("OCIAttrSet:argv[3]");

 /* username first command line argument */
 if (OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION, (dvoid *) argv[1],
 (ub4) strlen((char *) argv[1]), (ub4) OCI_ATTR_USERNAME,
 errhp))
 printerr("OCIAttrSet:username");

 /* password second command line argument */
 if (OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION, (dvoid *) argv[2],
 (ub4) strlen((char *) argv[2]), (ub4) OCI_ATTR_PASSWORD,
 errhp))
 printerr("OCIAttrSet:password");

 if (OCISessionBegin(svchp, errhp, authp, OCI_CRED_RDBMS, (ub4) OCI_DEFAULT))
 printerr("OCISessionBegin");

 if (OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *) authp,
 (ub4) 0, (ub4) OCI_ATTR_SESSION, errhp))
 printerr("OCIAttrSet:OCI_ATTR_SESSION");

 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmtp, OCI_HTYPE_STMT,
 0, 0))
 printerr("OCIHandleAlloc:OCI_HTYPE_STMT");

 if (OCIStmtPrepare(stmtp, errhp, (CONST OraText *) selectstmt,
 (ub4) strlen((const char *) selectstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 printerr("OCIStmtPrepare");

 if (OCIDefineByPos(stmtp, &defnp, errhp, (ub4) 1, (dvoid *) &avg_sal,
 (sb4) sizeof(avg_sal), SQLT_INT, 0, 0, 0, OCI_DEFAULT))
 printerr("OCIDefineByPos");

 if (status = OCIStmtExecute(svchp, stmtp, errhp, 1, 0, NULL, NULL,
 OCI_DEFAULT))
 {
 if (status == OCI_NO_DATA)
 {
 printf("No Data found!\n");
 exit(1);
 }
 }

 if (OCISessionEnd(svchp, errhp, authp, OCI_DEFAULT))
 printerr("OCISessionEnd");

 printf("average salary is: %d\n", avg_sal);
}

void checkerr(errhp, status)
 OCIError *errhp;
 sword status;
{
 text errbuf[512];
 sb4 errcode = 0;

 switch (status)
 {
 case OCI_ERROR:
 (void) OCIErrorGet((dvoid *) errhp, 1, NULL, &errcode, errbuf,
 (ub4) sizeof(errbuf), OCI_HTYPE_ERROR);
 printf("Error - %.*s\n", 512, errbuf);
 break;
 default:
 break;
 }
}

void printerr(call)
 char *call;
{
 printf("Error: %s\n", call);
}
/* end of file ext_mls.c */

C Oracle Label Security in an RAC Environment

This appendix discusses using Oracle Label Security in a Real Application Clusters (RAC) environment. It includes the following sections:

	
Using Oracle Label Security Policy Functions in an RAC Environment

	
Using Transparent Application Failover in Oracle Label Security

C.1 Using Oracle Label Security Policy Functions in an RAC Environment

Policy changes made on one instance are available to other instances in the RAC immediately. It is not necessary to restart the other instances to pick up the changes.

Important changes made on one database instance are automatically propagated to the other instances. One example would be creating a new policy. Another would be altering the policy options.

Propagating such changes ensures two valuable protections:

	
That all users of the table are subject to the same policy

	
That if any instance fails, continuation of its work by other instances will use the same policies and parameters that were in force immediately prior to that failure. So, if a policy had been enabled or disabled, it would be seen as such in all instances.

If an administrator changes policy information in one instance by using the policy functions listed in Table C-1, Oracle Label Security stores the relevant information about whatever that function call changed. The new information is immediately available to the other active instances in the RAC, enabling uniformity among users of the affected policies.

Table C-1 Policy Functions Preserving Status in an RAC Environment

	Policy Functions	Comments
	
sa_sysdba.create_policy()

	
Creates a new policy

	
sa_sysdba.drop_policy()

	
Drops an existing policy

	
sa_sysdba.enable_policy()

	
Enables an existing policy

	
sa_sysdba.disable_policy()

	
Disables an existing policy

	
sa_sysdba.alter_policy()

	
Alters an existing policy

C.2 Using Transparent Application Failover in Oracle Label Security

Session information is preserved on Transparent Application Failover. Any changes to the session's information by way of session functions listed in Table C-2 are preserved on Transparent Application Failover.

For example, suppose a user Scott is logged on with default label Top Secret. If he calls sa_session.set_label() to change his session label to Secret, and a failover to another instance occurs, he will see no change but his session label remains Secret.

Preserving current user session information means that the access permissions and restrictions on what data that user can see or affect remain as they were. Despite the failover, the user can see and affect only the tables and rows accessible before the failover. If preservation were not the case, failing over to another instance could cause or enable the user to see a different set of data.

Whenever one of the session functions listed in Table C-2 is used, Oracle Label Security stores the relevant information about whatever was changed by that function call.

Table C-2 Session Functions Preserving Status in an RAC Environment

	Session Functions	Comments
	
sa_session.set_label()

	
Lets the user set a new level and new compartments and groups to which he or she has read access

	
sa_session.set_row_label()

	
Lets the user set the default row label that will be applied to new rows

	
sa_session.save_default_labels()

	
Lets the user store the current session label and row label as the default for future sessions

	
sa_session.restore_default_labels()

	
Lets the user reset the current session label and row label to the stored default settings

	
sa_session.set_access_profile()

	
Sets the Oracle Label Security authorizations and privileges of the database session to those of the specified user

Index

A B C D E F G H I L M N O P R S T U V W

A

	access control
	
	discretionary, 1.1.3.1, 1.1.3.3, 3.5.4
	label-based, 1.3.3, 1.3.4.5
	policies, 1.1.2
	understanding, 3

	access mediation
	
	and views, 3.5.5
	enforcement options, 3.5.7
	introduction, 3.1
	label evaluation, 3.4
	program units, 3.5.6

	ADD_COMPARTMENTS function, 8.2.5, 8.2.5, 8.2.5, 8.2.5
	ADD_GROUPS procedure, 8.2.8
	
	inverse groups, 15.8.3

	ALL_CONTROL option, 9.1.1, 9.1.1, 9.1.1, 9.1.5
	ALL_SA_AUDIT_OPTIONS view, E.1.2.1
	ALL_SA_COMPARTMENTS view, E.1.2.2
	ALL_SA_DATA_LABELS view, E.1.2.3
	ALL_SA_GROUPS view, E.1.2.4
	ALL_SA_LABELS view, E.1.2.5
	ALL_SA_LEVELS view, E.1.2.6
	ALL_SA_POLICIES view, E.1.2.7
	ALL_SA_PROG_PRIVS view, E.1.2.8
	ALL_SA_SCHEMA_POLICIES view, E.1.2.9
	ALL_SA_TABLE_POLICIES view, E.1.2.10
	ALL_SA_USER_LABELS view, E.1.2.12
	ALL_SA_USER_LEVELS view, E.1.2.13
	ALL_SA_USER_PRIVS view, E.1.2.14
	ALL_SA_USERS view, E.1.2.11
	ALTER_COMPARTMENT procedure, 7.5.6
	ALTER_COMPARTMENTS procedure, 8.2.4
	ALTER_GROUP procedure, 7.5.9
	ALTER_GROUP_PARENT
	
	inverse groups, 15.8.10

	ALTER_GROUP_PARENT procedure, 7.5.10
	ALTER_GROUPS function, 8.2.9
	ALTER_GROUPS procedure
	
	inverse groups, 15.8.4

	ALTER_LABEL function, 7.6.2
	ALTER_LEVEL procedure, 7.5.1, 7.5.3
	ALTER_POLICY procedure, 7.4.5
	
	inverse groups, 15.8.2

	ALTER_SCHEMA_POLICY procedure, 10.3, 10.5.2
	ANALYZE command, 14.4.1
	APPLY_SCHEMA_POLICY procedure, 10.3, 10.5.1
	
	with inverse groups, 15.3.1

	APPLY_TABLE_POLICY procedure, 10.3, 10.4.1
	
	with inverse groups, 15.3.1

	architecture, Oracle Label Security, 1.1.3.3
	AS SYSDBA clause, 14.5
	AUDIT procedure, 12.3.2
	AUDIT_LABEL procedure, 12.4.1, 12.4.3
	AUDIT_LABEL_ENABLED function, 12.4.3
	AUDIT_TRAIL parameter, 12.2
	auditing
	
	audit trails, 1.1.3.3, 12.1, 12.2, 12.5.1
	options for Oracle Label Security, 12.3.1
	Oracle Label Security, 12, 12.1
	security and, 12.3.2
	strategy, 12.6.1
	systemwide, 12.2
	types of, 7.1.7
	views, 12.5.1

B

	B-tree indexes, 14.4.2

C

	CHAR_TO_LABEL function, 5.3.1, 5.5.1, 5.5.5
	characters, valid, 2.2.1, 2.2.1, 7.4.3
	CHECK_CONTROL option
	
	and label update, 9.4.2, 9.4.3
	and labeling functions, 9.3.1
	definition, 9.1.1, 9.1.1
	with other options, 9.1.6

	CHECK_LABEL_CHANGE function, 11.4.2.3
	CHECK_READ function, 11.4.2.1
	CHECK_WRITE function, 11.4.2.2
	child rows
	
	deleting, 9.5
	inserting, 9.3.3
	updating, 9.4.4

	Common Criteria, 1.1.1
	COMP_READ function, 5.6.6.2
	COMP_WRITE function, 5.6.6.2
	COMPACCESS privilege, 3.5.1, 3.5.2.3
	
	inverse groups, 15.3.5, 15.6

	compartments
	
	definition, 2.2.3
	example, 2.2.3
	setting authorizations, 3.3.1.2

	COMPATIBLE parameter, 14.5
	components. See label components
	CON, B.2
	connection parameters, B.2
	CREATE FUNCTION statement, 11.3.1
	CREATE PACKAGE BODY statement, 11.3.1
	CREATE PACKAGE statement, 11.3.1
	CREATE PROCEDURE statement, 11.3.1
	CREATE TABLE AS SELECT statement, E.2.1
	CREATE_COMPARTMENT procedure, 7.5.5
	CREATE_GROUP procedure, 7.5.8
	
	inverse groups, 15.8.9

	CREATE_LABEL procedure, 7.6.1
	CREATE_LEVEL procedure, 7.5.2
	CREATE_POLICY procedure, 7.1.1, 7.4.4
	
	inverse groups, 15.8.1

	CREATE_VIEW procedure, 12.5.1, E.1.3
	creating databases, 14.5

D

	DAC. See discretionary access control (DAC)
	data
	
	access rules, 1.3.1
	label-based access, 2.1, 2.1
	sensitivity, 1.3.4.1, 7.6.2

	data dictionary tables, 8.1, 8.7.1, 14.4.1, 14.5, E.1.1
	DATA_LABEL function, 11.4.1.3
	database links, 13.2
	Database Management System Protection Profile (DBMS PP), 1.1.1
	databases, creating additional, 14.5
	DBA_policyname_AUDIT_TRAIL view, E.1.3
	DBA_SA_AUDIT_OPTIONS view, 12.3.4, E.1.2.15, E.1.3
	DBA_SA_COMPARTMENTS view, 14.2.2, E.1.2.16
	DBA_SA_DATA_LABELS view, E.1.2.17
	DBA_SA_GROUP_HIERARCHY view, E.1.2.19
	DBA_SA_GROUPS view, 14.2.2, E.1.2.18
	DBA_SA_LABELS view, 14.2.2, E.1.2.20
	DBA_SA_LEVELS view, 14.2.2, E.1.2.21
	DBA_SA_POLICIES view, E.1.2.22
	DBA_SA_PROG_PRIVS view, E.1.2.23
	DBA_SA_SCHEMA_POLICIES view, 9.1.8, E.1.2.24
	DBA_SA_TABLE_POLICIES view, 9.1.8, E.1.2.25
	DBA_SA_USER_COMPARTMENTS view, 8.7.2, E.1.2.27
	DBA_SA_USER_GROUPS view, 8.7.2, E.1.2.28
	DBA_SA_USER_LABELS view, E.1.2.29
	DBA_SA_USER_LEVELS view, 8.7.2, E.1.2.30
	DBA_SA_USER_PRIVS view, E.1.2.31
	DBA_SA_USERS view, E.1.2.26
	default port, B.2
	default row label, 5.6.3
	DELETE_CONTROL option, 9.1.1, 9.1.1, 9.5
	DELETE_RESTRICT option, 9.5
	deleting labeled data, 9.5
	demobld.sql file, 7.3.1.1
	DISABLE_POLICY procedure, 7.4.6
	DISABLE_SCHEMA_POLICY procedure, 10.3, 10.5.4
	DISABLE_TABLE_POLICY procedure, 10.3, 10.4.3
	discretionary access control (DAC), 1.1.3.1, 3.5.4
	distributed databases
	
	connecting to, 13.2
	multiple policies, 3.6.2
	Oracle Label Security configuration, 13.1
	remote session label, 13.3

	dominance
	
	definition, 3.4.2, 3.4.2
	functions, A.1.3
	greatest lower bound, 5.4.4.2
	inverse groups, 15.9
	least upper bound, 5.4.4.1
	overview, A.1.1

	DOMINATED_BY function, A.1.3, A.1.3.3, A.1.3.7
	DOMINATES function, A.1.1, A.1.3, A.1.3.1, A.1.3.5
	DROP USER CASCADE restriction, E.2.4
	DROP_ALL_COMPARTMENTS procedure, 8.2.7
	DROP_ALL_GROUPS procedure, 8.2.11
	DROP_COMPARTMENT procedure, 7.5.7
	DROP_COMPARTMENTS function, 8.2.6
	DROP_GROUP procedure, 7.5.11
	DROP_GROUPS procedure, 8.2.10
	DROP_LABEL function, 7.6.3
	DROP_LEVEL procedure, 7.5.4
	DROP_POLICY procedure, 7.4.8
	DROP_USER_ACCESS procedure, 8.3.4
	DROP_VIEW procedure, 12.5.2
	duties, of security administrators, 7.2

E

	ENABLE_POLICY procedure, 7.4.7
	ENABLE_SCHEMA_POLICY procedure, 10.3, 10.5.5
	ENABLE_TABLE_POLICY procedure, 10.3, 10.4.4
	enforcement options
	
	and UPDATE, 9.4.2
	combinations of, 9.1.6
	exemptions, 9.1.7
	guidelines, 9.1.6
	INVERSE_GROUP, 15.3.1
	list of, 9.1.1
	overview, 9.1.1
	viewing, 9.1.8

	Evaluation Assurance Level (EAL) 4, 1.1.1
	examples
	
	Oracle Label Security, 4.3

	EXEMPT ACCESS POLICY privilege, 9.1.7, 9.1.7
	Export utility
	
	LBACSYS restriction, E.2.3
	policy enforcement, 9.1.7
	row labels, 3.5.2.1, 14.1, 14.2.2

F

	FULL privilege, 3.5.1, 3.5.2.2, 3.5.2.4
	function call, C.1, C.2

G

	GLBD function, 5.4.4.2
	granularity, data access, 3.4.3
	GREATEST_LBOUND function, 5.4.4.2, 11.4.4.1
	
	inverse groups, 15.8.14

	GROUP_READ function, 5.6.6.2
	GROUP_WRITE function, 5.6.6.2
	groups
	
	definition, 2.2.4
	example, 2.2.4
	hierarchical, 2.2.4, 2.2.4, 2.4, 2.4, E.1.2.19
	inverse, 15.2
	parent, 2.2.4, 2.2.4, 2.2.4, 3.4.1.2, 3.4.1.2, 7.5.8, 7.5.10, 15.3.4
	read/write access, 3.4.1.2
	setting authorizations, 3.3.1.3

H

	HIDE, 5.1.1.1, 7.4.4, 7.4.5
	HIDE option
	
	default, 7.4.4
	discussion of, 9.1.2
	example, 5.1.1.3
	importing hidden column, 14.2.5
	inserting data, 5.5.4
	not exported, 14.1
	per-table basis, 5.3.2.2
	PL/SQL restriction, E.2.6
	schema level, 9.1.1

I

	Import utility
	
	importing labeled data, 14.2.1.2, 14.2.2
	importing policies, 14.1
	importing unlabeled data, 14.2.4
	with Oracle Label Security, 14.2

	indexes, 14.4.2, 14.4.2
	INITIAL_LABEL variable, A.2
	INITIAL_ROW_LABEL variable, A.2
	initialization parameters
	
	AUDIT_TRAIL, 12.2
	COMPATIBLE, 14.5

	INSERT_CONTROL option, 9.1.1, 9.1.1, 9.3.1
	inserting labeled data, 5.5, 9.3
	INTO TABLE clause, 14.3.2
	inverse groups
	
	and label components, 15.3.2
	COMPACCESS privilege, 15.3.5, 15.6
	computed labels, 15.3.3
	dominance, 15.9
	implementation of, 15.3
	introduction, 15.2
	Max Read Groups, 15.3.3.2
	Max Write Groups, 15.3.3.2
	parent-child unsupported, 15.3.4
	read algorithm, 15.4
	session labels, 15.7
	SET_DEFAULT_LABEL, 15.7.1
	SET_LABEL, 15.7.2
	SET_ROW_LABEL, 15.7.1, 15.7.2
	user privileges, 15.3.5
	write algorithm, 15.5

	INVERSE_GROUP enforcement option
	
	behavior of procedures, 15.8
	implementation, 15.3.1

L

	label components
	
	defining, 7.1.2, 7.5
	in distributed environment, 13.4
	industry examples, 2.2.5
	interrelation, 2.4
	valid characters, 2.2.1, 2.2.1, 7.4.3

	label evaluation process
	
	COMPACCESS read, 3.5.2.3
	COMPACCESS write, 3.5.2.3
	inverse groups, COMPACCESS, 15.6
	LABEL_UPDATE, 9.4.2
	read access, 3.4.2
	read access, inverse groups, 15.4
	write access, 3.4.3
	write access, inverse groups, 15.5

	LABEL function, 5.6.6.2
	label tags
	
	converting from string, 5.3.1
	converting to string, 5.3.2
	distributed environment, 13.4.1
	example, 5.1.2.1
	inserting data, 5.5.2
	introduction, 2.3
	manually defined, 5.1.2.1, 5.1.2.2
	strategy, 14.4.3
	using in WHERE clauses, 5.4.1

	LABEL_DEFAULT option
	
	and labeling functions, 9.1.3.1, 9.2.1, 9.2.2
	authorizing compartments, 3.3.1.2
	authorizing groups, 3.3.1.3
	definition, 9.1.1
	importing unlabeled data, 14.2.4
	inserting labeled data, 5.5.3
	with enforcement options, 9.1.6, 9.1.6
	with SET_ROW_LABEL, 5.6.3

	LABEL_TO_CHAR function, 5.3.2, 5.3.2.1.3, 5.4.3
	LABEL_UPDATE option
	
	and labeling functions, 9.1.3.2, 9.2.2
	and privileges, 9.1.3.2
	and WRITE_CONTROL, 9.1.4.2
	and WRITEDOWN, 3.5.3
	and WRITEUP, 3.5.1, 3.5.1, 3.5.1, 3.5.3
	definition, 9.1.1, 9.1.1
	evaluation process, 9.4.2
	with enforcement options, 9.1.6

	label-based security, 2.1
	labeling functions
	
	ALL_CONTROL and NO_CONTROL, 9.1.5
	and CHECK_CONTROL, 9.3.1
	and LABEL_DEFAULT, 9.1.3.1, 9.1.3.2, 9.2.1
	and LABEL_UPDATE, 9.1.3, 9.1.3.3
	and LBACSYS, 9.2.2
	creating, 9.2.3
	example, 9.2.1
	how they work, 9.2.2
	importing unlabeled data, 14.2.4
	in force, 9.1.3
	inserting data, 5.5.3
	introduction, 3.5.7
	override manual insert, 9.3.2
	specifying, 9.2.4
	testing, 9.2.2
	UPDATE, 9.4.3
	using, 9.2.1
	with enforcement options, 9.1.6, 9.1.6

	labels
	
	administering, 2.5
	and performance, 3.5.2.1
	data and user, 2.4
	merging, 5.4.5
	non-comparable, A.1.2
	relationships between, A.1
	syntax, 2.3
	valid, 2.3, 5.1.2
	with inverse groups, 15.3.3

	LBAC_DBA role, 7.4.1
	LBAC_LABEL datatype, 9.2.2
	LBACSYS schema
	
	and labeling functions, 9.2.2
	creating additional databases, 14.5
	data dictionary tables, 14.4.1
	export restriction, 14.1, E.2.3

	LEAST_UBOUND function, 5.4.4.1, 5.4.5, 11.4.4.2
	
	inverse groups, 15.8.13

	levels
	
	definition, 2.2.2
	example, 2.2.2
	setting authorizations, 3.3.1.1

	LUBD function, 5.4.4.1

M

	materialized views, 13.6.1.1, 13.6.3.2
	Max Read Groups, 15.3.3.2
	Max Write Group, 15.3.3.2, 15.3.3.2
	MAX_LEVEL function, 5.6.6.2
	MERGE_LABEL function, 5.4.5, 5.4.5
	MIN_LEVEL function, 5.6.6.2

N

	NO_CONTROL option, 9.1.1, 9.1.1, 9.1.5
	NOAUDIT procedure, 12.3.1, 12.3.3, 12.3.3, 12.4.2
	NUMBER datatype, 5.1.1
	NUMERIC_LABEL function, 11.4.1.1
	NUMERIC_ROW_LABEL function, 11.4.1.2

O

	object privileges
	
	and Oracle Label Security privileges, 3.5.4
	and trusted stored program units, 3.5.6, 11.1.1
	discretionary access control, 1.1.3.3

	OCI example, A.2.5
	OCI interface, A.2
	OCI_ATTR_APPCTX_LIST, A.2.2
	OCI_ATTR_APPCTX_SIZE, A.2.1
	OCIAttrGet, A.2.2
	OCIAttrSet, A.2, A.2.1, A.2.4
	OCIParamGet, A.2.3
	OptionsA, B.2.1
	Oracle Database Conrfiguration Assistant (DBCA)
	
	Oracle Label Security, installing, 4.1

	Oracle Enterprise Manager
	
	administering labels, 2.5

	Oracle Internet Directory Administrator's Guide, 6.10
	Oracle Label Security (OLS)
	
	creating, 4.2
	example, 4.3
	installing, 4.1

	ORDER BY clause, 5.4.1, 5.4.2

P

	packages
	
	Oracle Label Security, 7.3.1
	trusted stored program units, 11.1

	partitioning, 5.1.2.2, 14.4.4
	performance, Oracle Label Security
	
	ANALYZE command, 14.4
	indexes, 14.4.2
	label tag strategy, 14.4.3
	partitioning, 14.4.4
	READ privilege, 3.5.2.1

	PL/SQL
	
	creating VPD policies, 1.3.2
	overloaded procedures, 7.5.1
	recreating labels for import, 14.2.2
	SA_UTL package, 11.4
	trusted stored program units, 11.1

	policies
	
	applying to schemas, 10.3, 10.5
	applying to tables, 10.3, 10.4
	creating, 7.1.1
	enforcement guidelines, 9.1.6
	enforcement options, 1.3.4.4, 3.5.7, 5, 9.1.1, 9.1.1, 9.1.6
	managing, 7.4
	multiple, 5.1.2, 8.1, E.2.2
	privileges, 1.1.3.3, 1.3.4.3, 3.5.4, 8.4
	terminology, 10.1

	policy label column
	
	indexing, 14.4.2
	inserting data when hidden, 5.5.4
	introduction, 5.1.1, 5.1.1
	retrieving, 5.3.2.1.1
	retrieving hidden, 5.3.2.2
	storing label tag, 2.3

	policy_DBA role, 7.2, 7.4.2, 7.6, 8.1, 8.4, 10.4, 10.5
	predicates
	
	access mediation, 3.5.7
	errors, 9.6.1
	label tag performance strategy, 14.4.3
	multiple, 9.6.2
	used with policy, 9.6.1

	privileges
	
	COMPACCESS, 3.5.1, 3.5.2.3
	FULL, 3.5.1, 3.5.2.2, 3.5.2.4
	Oracle Label Security, 3.5.1
	PROFILE_ACCESS, 3.5.1, 3.5.2.4
	program units, 3.5.6
	READ, 3.5.1, 3.5.2.1
	row label, 3.5.3
	trusted stored program units, 11.3.5
	WRITEACROSS, 3.5.1, 3.5.3, 3.5.3.3
	WRITEDOWN, 3.5.1, 3.5.3, 3.5.3.2, 3.5.6
	WRITEUP, 3.5.1, 3.5.3, 3.5.3.1

	PRIVS function, 5.6.6.2
	procedures, overloaded, 7.5.1
	PROFILE_ACCESS privilege, 3.5.1, 3.5.2.4
	propagated, C.1

R

	RAC, C.1
	read access
	
	algorithm, 3.4.2, 3.5.2.2
	introduction, 3.4.1.1

	read label, 3.3.2
	READ privilege, 3.5.1, 3.5.2.1
	READ_CONTROL option
	
	algorithm, 3.4.2
	and CHECK_CONTROL, 9.1.3.3
	and child rows, 9.3.3
	definition, 9.1.1, 9.1.1
	referential integrity, 9.4.4
	with other options, 9.1.6
	with predicates, 9.6.1

	READ_ONLY function, 8.2.4, 8.2.5, 8.2.8, 8.2.9
	READ_WRITE function, 8.2.4, 8.2.5, 8.2.8, 8.2.9
	reading down, 3.4.2
	referential integrity, 9.3.3, 9.4.4, 9.5
	releasability, 15.2
	remote users, 13.2
	REMOVE_SCHEMA_POLICY procedure, 10.3, 10.5.3
	REMOVE_TABLE_POLICY procedure, 10.3, 10.4.2
	REPADMIN account, 13.6.1.1, 13.6.3.1, 13.6.3.2
	replication
	
	materialized views (snapshots), 13.6.1.1, 13.6.3.2, 13.6.4
	with Oracle Label Security, 13.6, 13.6.1.2

	RESTORE_DEFAULT_LABELS procedure, 5.6.1, 5.6.4
	restrictions, Oracle Label Security, E.2
	row label
	
	default, 5.6.3

	row labels
	
	changing compartments, 8.2.4
	default, 3.3.1.2, 3.3.1.3, 3.3.2, 5.6.1, 11.4.3.2, C.2
	example, 3.2.3
	in distributed environment, 13.3
	inserting, 5.5.1
	LABEL_DEFAULT option, 5.5, 9.1.3.1
	privileges, 3.5.3
	restoring, 5.6.4
	saving defaults, 5.6.5
	setting, 5.6.3, 11.4.3.2
	setting compartments, 8.2.2
	setting groups, 8.2.3
	setting levels, 8.2.1
	understanding, 3.2.2
	updating, 3.5.3
	viewing, 11.4.1.2

	ROW_LABEL function, 5.6.6.2

S

	SA_COMPONENTS package, 7.5
	SA_POLICY_ADMIN, 10
	SA_POLICY_ADMIN package, 10
	SA_SESSION functions
	
	defined, 5.6.1
	viewing security attributes, 5.6.6.2

	SA_SYSDBA package, 7.4
	SA_USER_ADMIN package
	
	administering stored program units, 11.2
	overview, 8.1

	SA_USER_NAME function, 5.6.6.2, 8.6
	SA_UTL package
	
	dominance functions, A.1.3.5
	overview, 11.4

	SAVE_DEFAULT_LABELS procedure, 5.6.1, 5.6.5
	schemas
	
	applying policies to, 7.1.4, 7.4.5, 9.1.6
	default policy options, 7.4.4
	restrictions on shared, E.2.5

	security
	
	introduction, 1.1
	standards, 1.1.1

	security evaluations
	
	EAL4, 1.1.1

	security policies
	
	introduction, 1.1.2
	VPD, 1.3.3

	session labels
	
	changing, 5.6.2
	computed, 3.3.2
	distributed database, 13.3
	example, 3.2.3
	OCI interface, A.2
	restoring, 5.6.4
	SA_UTL.SET_LABEL, 11.4.3.1
	saving defaults, 5.6.5
	setting compartments, 8.2.2
	setting groups, 8.2.3
	setting levels, 8.2.1
	understanding, 3.2.1
	viewing, 11.4.1.1

	SET_ACCESS_PROFILE function, E.2.5
	SET_ACCESS_PROFILE procedure, 8.5, 8.6
	SET_COMPARTMENTS procedure, 8.2.2
	SET_DEFAULT_LABEL function, 8.3.2
	
	inverse groups, 15.7.1

	SET_DEFAULT_LABEL procedure
	
	inverse groups, 15.8.7

	SET_GROUPS procedure, 8.2.3
	
	inverse groups, 15.8.5

	SET_LABEL function
	
	and RESTORE_DEFAULT_LABELS, 5.6.4
	definition, 5.6.1, 5.6.6.2, 5.6.6.2
	inverse groups, 15.7.2
	on remote database, 13.3
	SA_UTL.SET_LABEL, 11.4.3.1
	using, 5.6.2

	SET_LABEL procedure
	
	inverse groups, 15.8.11

	SET_LEVELS procedure, 8.2.1
	SET_PROG_PRIVS function, 11.2, 11.2, 11.2
	SET_ROW_LABEL function
	
	inverse groups, 15.7.1, 15.7.2

	SET_ROW_LABEL procedure, 5.6.1, 5.6.3, 8.3.3, 11.4.3.2, 15.7.2.1, 15.7.2.2
	
	inverse groups, 15.8.8, 15.8.12

	SET_USER_LABELS procedure, 8.3.1
	
	inverse groups, 15.8.6

	SET_USER_PRIVS function, 8.4
	shared schema restrictions, E.2.5
	SQL*Loader, 14.3
	STRICTLY_DOMINATED_BY function, A.1.3, A.1.3.4, A.1.3.8
	STRICTLY_DOMINATES function, A.1.3, A.1.3.2, A.1.3.6
	SYS account
	
	policy enforcement, 9.1.7

	SYS_CONTEXT
	
	and labeling functions, 9.2.2
	variables, A.2

	SYSDBA privilege, 12.2
	system privileges, 1.1.3.3, 3.5.4, 3.5.5, 3.5.6

T

	tasks, overview, 7.1
	TO_DATA_LABEL function, 5.5.5, 7.1.3, 7.6.1
	TO_LBAC_DATA_LABEL function, 9.2.2
	triggers, 9.2.2
	trusted stored program units
	
	creating, 11.3.1
	error handling, 11.3.5
	example, 11.1.2
	executing, 11.3.5
	introduction, 11.1
	privileges, 3.5.6, 11.3.5
	re-compiling, 11.3.3
	replacing, 11.3.4

U

	UPDATE_CONTROL option, 9.1.1, 9.1.1, 9.4.2
	updating labeled data, 9.4
	user authorizations
	
	compartments, 3.3.1.2
	groups, 3.3.1.3
	levels, 3.3.1.1
	understanding, 3.3

	USER_SA_SESSION view, 5.6.6.1

V

	views
	
	access mediation, 3.5.5
	ALL_SA_AUDIT_OPTIONS, E.1.2.1
	ALL_SA_COMPARTMENTS, E.1.2.2
	ALL_SA_GROUPS, E.1.2.4
	ALL_SA_LABELS, E.1.2.3, E.1.2.5
	ALL_SA_LEVELS, E.1.2.6
	ALL_SA_POLICIES, E.1.2.7
	ALL_SA_PROG_PRIVS, E.1.2.8
	ALL_SA_SCHEMA_POLICIES, E.1.2.9
	ALL_SA_TABLE_POLICIES, E.1.2.10
	ALL_SA_USER_LABELS, E.1.2.12
	ALL_SA_USER_LEVELS, E.1.2.13
	ALL_SA_USER_PRIVS, E.1.2.14
	ALL_SA_USERS, E.1.2.11
	auditing, E.1.3
	DBA_policyname_AUDIT_TRAIL, E.1.3
	DBA_SA_AUDIT_OPTIONS, 12.3.4, E.1.2.15, E.1.3
	DBA_SA_COMPARTMENTS, E.1.2.16
	DBA_SA_DATA_LABELS, E.1.2.17
	DBA_SA_GROUP_HIERARCHY, E.1.2.19
	DBA_SA_GROUPS, E.1.2.18
	DBA_SA_LABELS, E.1.2.20
	DBA_SA_LEVELS, E.1.2.21
	DBA_SA_POLICIES, E.1.2.22
	DBA_SA_PROG_PRIVS, E.1.2.23
	DBA_SA_SCHEMA_POLICIES, 9.1.8, E.1.2.24
	DBA_SA_TABLE_POLICIES, 9.1.8, E.1.2.25
	DBA_SA_USER_COMPARTMENTS, E.1.2.27
	DBA_SA_USER_GROUPS, E.1.2.28
	DBA_SA_USER_LABELS, E.1.2.29
	DBA_SA_USER_LEVELS, E.1.2.30
	DBA_SA_USER_PRIVS, E.1.2.31
	DBA_SA_USERS, E.1.2.26
	USER_SA_SESSION, 5.6.6.1

	virtual private database (VPD)
	
	policies, 1.3.2

W

	write access
	
	algorithm, 3.4.3, 3.5.2.2
	introduction, 3.4.1

	write label, 3.3.2
	WRITE_CONTROL option
	
	algorithm, 3.4.3
	definition, 9.1.1, 9.1.1
	introduction, 9.1.4.2
	LABEL_UPDATE, 9.1.4.2
	with INSERT, UPDATE, DELETE, 9.1.4.2
	with other options, 9.1.6

	WRITEACROSS privilege, 3.5.1, 3.5.3, 3.5.3.3, 9.1.1, 9.1.3.2, 9.4.2
	WRITEDOWN privilege, 3.5.1, 3.5.3, 3.5.3.2, 3.5.6, 9.1.1, 9.1.3.2, 9.4.2
	WRITEUP privilege, 3.5.1, 3.5.3, 3.5.3.1

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Alpha and Beta Draft Documentation Notice

If this document is in preproduction status:

This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.

[image: Oracle Logo]

OEBPS/img/olsag012.gif
Default Sassion Labal
CFINOPWR

Data_| Data Labal

UNCLASSIFED FIN

UNCLASSIFIED _FIN

UNCLASSIFIED _CHEM WA

SENSTVE PN HR

CONFIDENTIAL 0P WA

TOPSEGRET P Wm

Lovels Groups
Compartments

OEBPS/img/net81070.gif
Databasa
Sarver

Appiication
Wab Sarvar

Databasos

OEBPS/img/ols_apply.gif
Eain) (View) Create Like) Delete
Select Name.

|schema

[Enforcement options

© LOCATIONS

HR

READ_CONTROL,
LABEL_DEFAULT

Enabled

Creae

OEBPS/img/olsag020.gif
EASTERN_REGION

WESTERN_REGION

Labol | LabalTag Labol | LabaiTag
SA at SA i
oA 21 oA 3
U 10 U 5

OEBPS/img/joe_groups.gif
Groups
Specky 2ero or more groups to be assigned to the user

(Remove

seect | select e

(ang

Select Short Rame. Vite | Default | Row |
P wem " [2
P weae 4 [=]
P wrar [2 r

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Label Security
Administrator's Guide,
11lg Release 1 (11.1)

OEBPS/img/olsag029.gif

OEBPS/dcommon/oracle.gif

OEBPS/img/olsag021.gif
EASTERN_REGION

WESTERN_REGION

Tovel | Numeric Loval | tumeric
Form Form

s £ s 3

c £ c g
10 U 7

U

OEBPS/img/olsag030.gif
Usar

- —
‘compartments?, access?

Usar
pan Daa hasar kastone
evel < ear evel = 5t min n goup win Wi
legeiz sl accgss?
Y ¥ ¥ ¥
n n Dan n Daa
s groups? has

compartments?

Userhasal
compariens?

No
Acoass

OEBPS/img/olsag028.gif
Dati has
arowps?

Usar has al
compaerts?
3

No
Acoess

OEBPS/img/olsag027.gif
Usar
has allconganments
N Wi Wi

.
2
o

ous

w25
o
e s AR,
o e,
" " Dam Usar

st i

No
ocess

OEBPS/img/olsag031.gif
Newgoips New corrp

Nowlawal Naw vl rotequalio notequalio
Jodpwer Sodker aldgoups? ok come?
u u
d d
warte
DOWN s
Piiviege?’ W
ACROSS
Piviege?

i
Piiiege

Acdiss

OEBPS/img/ols_auth.gif
Users

Create User

Privileges Labels, Compartments And Groups

Policy Name ACCESS_LOCATIONS
Users[SKING]

Privileges
Levels
Mairmurn Level SENS
Minirum Level CONF
Compartments
Short Name write Default
No Compartrments Found
Groups
Short Name write Default
No Groups Found
Audit
Operation Audit On Success By
Folicy Applied None
Folicy Removed None
Labels And Privileges Set None
All Policy Specifc Frivieges None

Default Level SENS
Row Level SENS

Row

Row

Audit On Failure By
None
None
None
None

Audit

Review

Cancel) (Back] Step Sof 5 (Finish

OEBPS/img/joe_comps.gif
Compartments
Specify 2010 or more compartments to be assigned to the user.

(Remove

seect | select e

(ang

Select Short Rame. [wmte [befuk [Row |
P oem " [5]
P e 4 [=]
F o [4 %

OEBPS/img/aso_type_ctxt_ols.gif
Oracle-Label-Security-Related Entries in an Oracle Context

Products

Oracle
Context

‘Groups

OracieDBCreators’
OracieContextAamins’
‘OracleDBSecurityAdmins
OracieUserSecurityAdmins
OraciePasswordAccessibleDomains

Sales
(Example
Database)

——

——Tt——

Common
Nicknarme.
Attribute

Oracle Label
security

OracleDBadmins | |U5gESchema
Group (Eximple)

Networking

Policy1

Policy options|

Policy2

Poticy options

Policy3

Policy Options

Yoo an

Policy Options

l—|—|_|_|—|—|—|

Labels

Aud
options

Levels

compart-| | croups
ments

Profiles

Palicy
Creatars

DB
servers

OEBPS/img/olsag017.gif
Execute
priilege

Ussr involies stared
program urit

Storod Program Unit

Tablo accassad using storad
program unit's system and
objoct privioges

LABEL

Row accoss madiatad by User's
Oracla Labal Sacurity sassion
labols and priviiogos.

OEBPS/img/olsag033.gif
Datahas al
groups in
user abel?

¥

User has N
groups?

Data
has
comparments?

Userhas all
compartments?

Access

No
Access

OEBPS/img/olsag016.gif
Read

WESTERN_REGION

Administator grants
usar wite access
1o WR_FINANCE

s e [
TR,
rnes W e
v N e e
wiscconrs | [ceouts.

RECEIVABLE

PAVABLE

OEBPS/img/olsag008.gif
HP—

Usar session abel
is UNCLASSIFIED

GRADE | RATE | ROW LABEL
Vanager | 800 | UNCLASSIFIED
Seror |00 | UNGLASSIFIED
Director | 750 | HIGHLY_SENSITIVE
Pricipal | 800 | SENSITIVE

Seror | 450 | SENSITIVE

OEBPS/img/olsag034.gif
Datahas all
groups in user
N Tabel?

User has
groups?

Data has
compartments?

Data
has
compartments?

Userhas all
compartments?
y

AccesS

No
Access

OEBPS/img/ols_config.gif
Database Control
_—

Database Instance: testdb2

Home performence Avalohlty | Server | Sthems DataMovement Software and Support
Storage Database Configuration

Control Fles Memory Advisors

Tablespaces Unda Management

Temporary Tablespace Groups Al Inffalzation Parameters

Datafls Datahase Featire Usage

Rolback Seqments
Redo Loa Graups
fuchive Logs

Statistics Management Change Database
Automatic Workload Repostory Hirate to A5

AR Baselnes ke Tablespace Localy Menaged
Manae Optinize Staisics 4 Instence

Delete Instance

Security

Transparent Data Encruption
Oiack Label securl
P Bhte Polices

‘pplication Contets
Enterpris ser Security

|

OEBPS/img/olsag036.gif

OEBPS/img/ols_new_policy.gif
Database Instance: database >
Label Security Policies

Oracle Label Security
Specify a policy t filtr the data that Is displayed In your results set

Narme (G

Selection Mode [Single v
(Create

(Edit) View) Create Like)(Delete Jactions| Autrorizaton | Go)

Select Name Enabled |l abel Column
© |ACCESS LOCATIONS v OLS_COLUMN
@TIP Use caution while disabling a policy as anyone who connects to the.
database can access all the data normally protected by the policy

OEBPS/img/olsag018.gif
Master lode Local lode.

Emp dblink aceount:
REPADMIN

muEMP.
miogs_EMP.

OEBPS/img/olsag011.gif
Usors

Data

Data Sensitivity

OEBPS/img/olsag019.gif
Clients

=

Clients

=

Clients

[l Oracle Net and TCP/IP

[l Oracle Net and TCP/IP

[. Oracle Net and TCP/IP

Server

WESTERN_
REGION

Server

Oracle Label

Security policy
installed: HR

EASTERN_
REGION

Server

Oracle Label

Security policies
installed: HR and
DEFENSE

Oracle 10g.

HQ

Oracle Net and TCP/IP

OEBPS/img/olsag006.gif

