
[image: Oracle Corporation]

Oracle® Database

Concepts

11g Release 1 (11.1)

B28318-06

January 2011

Oracle Database Concepts, 11g Release 1 (11.1)

B28318-06

Copyright © 1993, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Richard Strohm

Contributing Authors: Lance Ashdown, Mark Bauer, Michele Cyran, Steve Fogel, Janis Greenberg, Sumit Jeloka, Paul Lane, Diana Lorentz, Jack Melnick, Sheila Moore, Antonio Romero, Vivian Schupmann, Cathy Shea, Douglas Williams

Contributors: Omar Alonso, Penny Avril, Hermann Baer, Sandeepan Banerjee, Bill Bridge, Sandra Cheevers, Carol Colrain, Vira Goorah, Mike Hartstein, John Haydu, Wei Hu, Ramkumar Krishnan, Vasudha Krishnaswamy, Bill Lee, Bryn Llewellyn, Rich Long, Paul Manning, Mughees Minhas, Valarie Moore, Gopal Mulagund, Muthu Olagappan, Jennifer Polk, Kathy Rich, John Russell, Bob Thome, Randy Urbano, Mark Van de Wiel, Michael Verheij, Ron Weiss, Steve Wertheimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Part I

What Is Oracle?

Part I provides an overview of Oracle Database concepts and terminology. It contains the following chapter:

	
Chapter 1, "Introduction to Oracle Database"

Part II

Oracle Database Architecture

Part II describes the basic structural architecture of the Oracle database, including physical and logical storage structures. Part II contains the following chapters:

	
Chapter 2, "Data Blocks, Extents, and Segments"

	
Chapter 3, "Tablespaces, Datafiles, and Control Files"

	
Chapter 4, "Transaction Management"

	
Chapter 5, "Schema Objects"

	
Chapter 6, "Schema Object Dependencies"

	
Chapter 7, "The Data Dictionary"

	
Chapter 8, "Memory Architecture"

	
Chapter 9, "Process Architecture"

	
Chapter 10, "Application Architecture"

	
Chapter 11, "Oracle Database Utilities"

	
Chapter 12, "Database and Instance Startup and Shutdown"

7 The Data Dictionary

This chapter describes the central set of read-only reference tables and views of each Oracle database, known collectively as the data dictionary.

This chapter contains the following topics:

	
Introduction to the Data Dictionary

	
How the Data Dictionary Is Used

	
Dynamic Performance Tables

	
Database Object Metadata

Introduction to the Data Dictionary

One of the most important parts of an Oracle database is its data dictionary, which is a read-only set of tables that provides information about the database. A data dictionary contains:

	
The definitions of all schema objects in the database (tables, views, indexes, clusters, synonyms, sequences, procedures, functions, packages, triggers, and so on)

	
How much space has been allocated for, and is currently used by, the schema objects

	
Default values for columns

	
Integrity constraint information

	
The names of Oracle Database users

	
Privileges and roles each user has been granted

	
Auditing information, such as who has accessed or updated various schema objects

	
Other general database information

The data dictionary is structured in tables and views, just like other database data. All the data dictionary tables and views for a given database are stored in that database's SYSTEM tablespace.

Not only is the data dictionary central to every Oracle database, it is an important tool for all users, from end users to application designers and database administrators. Use SQL statements to access the data dictionary. Because the data dictionary is read only, you can issue only queries (SELECT statements) against it's tables and views.

	
See Also:

"Bigfile Tablespaces" for more information about SYSTEM tablespaces

This section includes the following topics:

	
Structure of the Data Dictionary

	
SYS, Owner of the Data Dictionary

Structure of the Data Dictionary

The data dictionary consists of the following:

Base Tables: The underlying tables that store information about the associated database. Only Oracle Database should write to and read these tables. Users rarely access them directly because they are normalized, and most of the data is stored in a cryptic format.

User-Accessible Views: The views that summarize and display the information stored in the base tables of the data dictionary. These views decode the base table data into useful information, such as user or table names, using joins and WHERE clauses to simplify the information. Most users are given access to the views rather than the base tables.

SYS, Owner of the Data Dictionary

The Oracle Database user SYS owns all base tables and user-accessible views of the data dictionary. No Oracle Database user should ever alter (UPDATE, DELETE, or INSERT) any rows or schema objects contained in the SYS schema, because such activity can compromise data integrity. The security administrator must keep strict control of this central account.

	
Caution:

Altering or manipulating the data in data dictionary tables can permanently and detrimentally affect the operation of a database.

How the Data Dictionary Is Used

The data dictionary has three primary uses:

	
Oracle Database accesses the data dictionary to find information about users, schema objects, and storage structures.

	
Oracle Database modifies the data dictionary every time that a data definition language (DDL) statement is issued.

	
Any Oracle Database user can use the data dictionary as a read-only reference for information about the database.

This section includes the following topics:

	
How Oracle Database Uses the Data Dictionary

	
How to Use the Data Dictionary

How Oracle Database Uses the Data Dictionary

Data in the base tables of the data dictionary is necessary for Oracle Database to function. Therefore, only Oracle Database should write or change data dictionary information. Oracle Database provides scripts to modify the data dictionary tables when a database is upgraded or downgraded.

	
Caution:

No data in any data dictionary table should be altered or deleted by any user.

During database operation, Oracle Database reads the data dictionary to ascertain that schema objects exist and that users have proper access to them. Oracle Database also updates the data dictionary continuously to reflect changes in database structures, auditing, grants, and data.

For example, if user Kathy creates a table named parts, then new rows are added to the data dictionary that reflect the new table, columns, segment, extents, and the privileges that Kathy has on the table. This new information is then visible the next time the dictionary views are queried.

This section includes the following topics:

	
Public Synonyms for Data Dictionary Views

	
Cache the Data Dictionary for Fast Access

	
Other Programs and the Data Dictionary

Public Synonyms for Data Dictionary Views

Oracle Database creates public synonyms for many data dictionary views so users can access them conveniently. The security administrator can also create additional public synonyms for schema objects that are used systemwide. Users should avoid naming their own schema objects with the same names as those used for public synonyms.

Cache the Data Dictionary for Fast Access

Much of the data dictionary information is kept in the SGA in the dictionary cache, because Oracle Database constantly accesses the data dictionary during database operation to validate user access and to verify the state of schema objects. All information is stored in memory using the least recently used (LRU) algorithm.

Parsing information is typically kept in the caches. The COMMENTS columns describing the tables and their columns are not cached unless they are accessed frequently.

Other Programs and the Data Dictionary

Other Oracle Database products can reference existing views and create additional data dictionary tables or views of their own. Application developers who write programs that refer to the data dictionary should refer to the public synonyms rather than the underlying tables: the synonyms are less likely to change between software releases.

How to Use the Data Dictionary

The views of the data dictionary serve as a reference for all database users. Access the data dictionary views with SQL statements. Some views are accessible to all Oracle Database users, and others are intended for database administrators only.

The data dictionary is always available when the database is open. It resides in the SYSTEM tablespace, which is always online.

The data dictionary consists of sets of views. In many cases, a set consists of three views containing similar information and distinguished from each other by their prefixes, as shown in Table 7-1.

Table 7-1 Data Dictionary View Prefixes

	Prefix	Scope
	
USER

	
User's view (what is in the user's schema)

	
ALL

	
Expanded user's view (what the user can access)

	
DBA

	
Database administrator's view (what is in all users' schemas)

The set of columns is identical across views, with these exceptions:

	
Views with the prefix USER usually exclude the column OWNER. This column is implied in the USER views to be the user issuing the query.

	
Some DBA views have additional columns containing information useful to the administrator.

	
See Also:

Oracle Database Reference for a complete list of data dictionary views and their columns

This section includes the following topics:

	
Views with the Prefix USER

	
Views with the Prefix ALL

	
Views with the Prefix DBA

	
The DUAL Table

Views with the Prefix USER

The views most likely to be of interest to typical database users are those with the prefix USER. These views:

	
Refer to the user's own private environment in the database, including information about schema objects created by the user, grants made by the user, and so on

	
Display only rows pertinent to the user

	
Have columns identical to the other views, except that the column OWNER is implied

	
Return a subset of the information in the ALL views

	
Can have abbreviated PUBLIC synonyms for convenience

For example, the following query returns all the objects contained in your schema:

SELECT object_name, object_type FROM USER_OBJECTS;

Views with the Prefix ALL

Views with the prefix ALL refer to the user's overall perspective of the database. These views return information about schema objects to which the user has access through public or explicit grants of privileges and roles, in addition to schema objects that the user owns. For example, the following query returns information about all the objects to which you have access:

SELECT owner, object_name, object_type FROM ALL_OBJECTS;

Views with the Prefix DBA

Views with the prefix DBA show a global view of the entire database. Synonyms are not created for these views, because DBA views should be queried only by administrators. Therefore, to query the DBA views, administrators must prefix the view name with its owner, SYS, as in the following:

SELECT owner, object_name, object_type FROM SYS.DBA_OBJECTS;

Oracle recommends that you implement data dictionary protection to prevent users having the ANY system privileges from using such privileges on the data dictionary. If you enable dictionary protection (O7_DICTIONARY_ACCESSIBILITY is false), then access to objects in the SYS schema (dictionary objects) is restricted to users with the SYS schema. These users are SYS and those who connect as SYSDBA.

	
See Also:

Oracle Database Administrator's Guide for detailed information on system privileges restrictions

The DUAL Table

The table named DUAL is a small table in the data dictionary that Oracle Database and user-written programs can reference to guarantee a known result. This table has one column called DUMMY and one row containing the value X.

	
See Also:

Oracle Database SQL Language Reference for more information about the DUAL table

Dynamic Performance Tables

Throughout its operation, Oracle Database maintains a set of virtual tables that record current database activity. These tables are called dynamic performance tables.

Dynamic performance tables are not true tables, and they should not be accessed by most users. However, database administrators can query and create views on the tables and grant access to those views to other users. These views are sometimes called fixed views because they cannot be altered or removed by the database administrator.

SYS owns the dynamic performance tables; their names all begin with V_$. Views are created on these tables, and then public synonyms are created for the views. The synonym names begin with V$. For example, the V$DATAFILE view contains information about the database's datafiles, and the V$FIXED_TABLE view contains information about all of the dynamic performance tables and views in the database.

	
See Also:

Oracle Database Reference for a complete list of the dynamic performance views' synonyms and their columns

Database Object Metadata

The DBMS_METADATA package provides interfaces for extracting complete definitions of database objects. The definitions can be expressed either as XML or as SQL DDL. Two styles of interface are provided:

	
A flexible, sophisticated interface for programmatic control

	
A simplified interface for ad hoc querying

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about DBMS_METADATA

8 Memory Architecture

This chapter discusses the memory architecture of an Oracle Database instance. It contains the following topics:

	
Introduction to Oracle Database Memory Structures

	
Overview of the System Global Area

	
Overview of the Program Global Area

	
Overview of Memory Management Methods

	
About Software Code Areas

	
See Also:

Oracle Database Administrator's Guide for instructions for configuring and managing memory

Introduction to Oracle Database Memory Structures

Oracle Database uses memory to store information such as the following:

	
Program code

	
Information about a connected session, even if it is not currently active

	
Information needed during program execution (for example, the current state of a query from which rows are being fetched)

	
Information that is shared and communicated among Oracle Database processes (for example, locking information)

	
Cached data (for example, data blocks and redo log entries) that is also permanently stored on storage devices

Basic Memory Structures

The basic memory structures associated with Oracle Database include:

	
Software code areas

Software code areas are portions of memory used to store code that is being run or can be run. Oracle Database code is stored in a software area that is typically at a different location from users' programs—a more exclusive or protected location.

	
System global area (SGA)

The SGA is a group of shared memory structures, known as SGA components, that contain data and control information for one Oracle Database instance. The SGA is shared by all server and background processes. Examples of data stored in the SGA include cached data blocks and shared SQL areas.

	
Program global area (PGA)

A PGA is a memory region that contains data and control information for a server process. It is nonshared memory created by Oracle Database when a server process is started. Access to the PGA is exclusive to the server process. There is one PGA for each server process. Background processes also allocate their own PGAs. The total memory used by all individual PGAs is known as the total instance PGA memory, and the collection of individual PGAs is referred to as the total instance PGA, or just instance PGA. You use database initialization parameters to set the size of the instance PGA, not individual PGAs.

Figure 8-1 illustrates the relationships among these memory structures.

Figure 8-1 Oracle Database Memory Structures

[image: Description of Figure 8-1 follows]

	
See Also:

	
"Overview of the System Global Area"

	
"Overview of the Program Global Area"

	
"About Software Code Areas"

	
"Overview of Oracle Database Processes"

Overview of the System Global Area

The System Global Area (SGA) and the set of database processes constitute an Oracle Database instance. Oracle Database automatically allocates memory for an SGA when you start an instance, and the operating system reclaims the memory when you shut down the instance. Each instance has its own SGA.

The SGA is read/write. All database background processes and all server processes that execute on behalf of users can read information contained within the instance's SGA, and several processes write to the SGA during database operation.

Part of the SGA contains general information about the state of the database and the instance, which the background processes need to access. This is called the fixed SGA. No user data is stored here. The SGA also includes information communicated between processes, such as locking information.

If the system uses shared server architecture, then the request and response queues and some contents of the PGA are in the SGA.

As shown in Figure 8-1, the SGA consists of a number of memory components, which are pools of memory used to satisfy a particular class of memory allocation requests.

The most important SGA components are the following:

	
Database Buffer Cache

	
Redo Log Buffer

	
Shared Pool

	
Large Pool

	
Java Pool

	
Streams Pool

	
See Also:

	
"Introduction to an Oracle Instance" for more information about an Oracle Database instance

	
"Overview of the Program Global Area"

	
"Dispatcher Request and Response Queues"

Database Buffer Cache

The database buffer cache is the portion of the SGA that holds copies of data blocks read from datafiles. All users concurrently connected to the instance share access to the database buffer cache.

This section includes the following topics:

	
Organization of the Database Buffer Cache

	
The LRU Algorithm and Full Table Scans

Organization of the Database Buffer Cache

The buffers in the cache are organized in two lists: the write list and the least recently used (LRU) list. The write list holds dirty buffers, which contain data that has been modified but has not yet been written to disk. The LRU list holds free buffers, pinned buffers, and dirty buffers that have not yet been moved to the write list. Free buffers do not contain any useful data and are available for use. Pinned buffers are currently being accessed.

When an Oracle Database process accesses a buffer, the process moves the buffer to the most recently used (MRU) end of the LRU list. As more buffers are continually moved to the MRU end of the LRU list, dirty buffers age toward the LRU end of the LRU list.

The first time an Oracle Database user process requires a particular piece of data, it searches for the data in the database buffer cache. If the process finds the data already in the cache (a cache hit), it can read the data directly from memory. If the process cannot find the data in the cache (a cache miss), it must copy the data block from a datafile on disk into a buffer in the cache before accessing the data. Accessing data through a cache hit is faster than data access through a cache miss.

Before reading a data block into the cache, the process must first find a free buffer. The process searches the LRU list, starting at the least recently used end of the list. The process searches either until it finds a free buffer or until it has searched the threshold limit of buffers.

If the user process finds a dirty buffer as it searches the LRU list, it moves that buffer to the write list and continues to search. When the process finds a free buffer, it reads the data block from disk into the buffer and moves the buffer to the MRU end of the LRU list.

If an Oracle Database user process searches the threshold limit of buffers without finding a free buffer, the process stops searching the LRU list and signals the DBW0 background process to write some of the dirty buffers to disk.

	
See Also:

"Database Writer Process (DBWn)" for more information about DBWn processes

The LRU Algorithm and Full Table Scans

When the user process is performing a full table scan, it reads the blocks of the table into buffers and puts them on the LRU end (instead of the MRU end) of the LRU list. This is because a fully scanned table usually is needed only briefly, so the blocks should be moved out quickly to leave more frequently used blocks in the cache.

You can control this default behavior of blocks involved in table scans on a table-by-table basis. To specify that blocks of the table are to be placed at the MRU end of the list during a full table scan, use the CACHE clause when creating or altering a table or cluster. You can specify this behavior for small lookup tables or large static historical tables to avoid I/O on subsequent accesses of the table.

	
See Also:

Oracle Database SQL Language Reference for information about the CACHE clause

Redo Log Buffer

The redo log buffer is a circular buffer in the SGA that holds information about changes made to the database. This information is stored in redo entries. Redo entries contain the information necessary to reconstruct, or redo, changes made to the database by INSERT, UPDATE, DELETE, CREATE, ALTER, or DROP operations. Redo entries are used for database recovery, if necessary.

Redo entries are copied by Oracle Database processes from the user's memory space to the redo log buffer in the SGA. The redo entries take up continuous, sequential space in the buffer. The background process LGWR writes the redo log buffer to the active redo log file (or group of files) on disk.

	
See Also:

	
"Log Writer Process (LGWR)" for more information about how the redo log buffer is written to disk

	
Oracle Database Backup and Recovery User's Guide for information about redo log files and groups

Shared Pool

The shared pool portion of the SGA contains the library cache, the dictionary cache, the result cache, buffers for parallel execution messages, and control structures.

This section includes the following topics:

	
Library Cache

	
Dictionary Cache

	
Result Cache

Library Cache

The library cache includes the shared SQL areas, private SQL areas (in the case of a shared server configuration), PL/SQL procedures and packages, and control structures such as locks and library cache handles.

Shared SQL areas are accessible to all users, so the library cache is contained in the shared pool within the SGA.

Shared SQL Areas and Private SQL Areas

Oracle Database represents each SQL statement it runs with a shared SQL area and a private SQL area. Oracle Database recognizes when two users are executing the same SQL statement and reuses the shared SQL area for those users. However, each user must have a separate copy of the statement's private SQL area.

A shared SQL area contains the parse tree and execution plan for a given SQL statement. Oracle Database saves memory by using one shared SQL area for SQL statements run multiple times, which often happens when many users run the same application.

Oracle Database allocates memory from the shared pool when a new SQL statement is parsed, to store in the shared SQL area. The size of this memory depends on the complexity of the statement. If the entire shared pool has already been allocated, Oracle Database can deallocate items from the pool using a modified LRU (least recently used) algorithm until there is enough free space for the new statement's shared SQL area. If Oracle Database deallocates a shared SQL area, the associated SQL statement must be reparsed and reassigned to another shared SQL area at its next execution.

	
See Also:

	
"Private SQL Area"

	
Oracle Database Performance Tuning Guide

PL/SQL Program Units and the Shared Pool

Oracle Database processes PL/SQL program units (procedures, functions, packages, anonymous blocks, and database triggers) much the same way it processes individual SQL statements. Oracle Database allocates a shared area to hold the parsed, compiled form of a program unit. Oracle Database allocates a private area to hold values specific to the session that runs the program unit, including local, global, and package variables (also known as package instantiation) and buffers for executing SQL. If more than one user runs the same program unit, then a single, shared area is used by all users, while each user maintains a separate copy of his or her private SQL area, holding values specific to his or her session.

Individual SQL statements contained within a PL/SQL program unit are processed as described in the previous sections. Despite their origins within a PL/SQL program unit, these SQL statements use a shared area to hold their parsed representations and a private area for each session that runs the statement.

Allocation and Reuse of Memory in the Shared Pool

In general, any item (shared SQL area or dictionary row) in the shared pool remains until it is flushed according to a modified LRU algorithm. The memory for items that are not being used regularly is freed if space is required for new items that must be allocated some space in the shared pool. A modified LRU algorithm allows shared pool items that are used by many sessions to remain in memory as long as they are useful, even if the process that originally created the item terminates. As a result, the overhead and processing of SQL statements associated with a multiuser Oracle Database system is minimized.

When a SQL statement is submitted to Oracle Database for execution, Oracle Database automatically performs the following memory allocation steps:

	
Oracle Database checks the shared pool to see if a shared SQL area already exists for an identical statement. If so, that shared SQL area is used for the execution of the subsequent new instances of the statement. Alternatively, if there is no shared SQL area for a statement, Oracle Database allocates a new shared SQL area in the shared pool. In either case, the user's private SQL area is associated with the shared SQL area that contains the statement.

	
Note:

A shared SQL area can be flushed from the shared pool, even if the shared SQL area corresponds to an open cursor that has not been used for some time. If the open cursor is subsequently used to run its statement, Oracle Database reparses the statement, and a new shared SQL area is allocated in the shared pool.

	
Oracle Database allocates a private SQL area on behalf of the session. The location of the private SQL area depends on the type of connection established for the session.

Oracle Database also flushes a shared SQL area from the shared pool in these circumstances:

	
When the ANALYZE statement is used to update or delete the statistics of a table, cluster, or index, all shared SQL areas that contain statements referencing the analyzed schema object are flushed from the shared pool. The next time a flushed statement is run, the statement is parsed in a new shared SQL area to reflect the new statistics for the schema object.

	
If a schema object is referenced in a SQL statement and that object is later modified in any way, the shared SQL area is invalidated (marked invalid), and the statement must be reparsed the next time it is run.

	
If you change a database's global database name, all information is flushed from the shared pool.

	
The administrator can manually flush all information in the shared pool to assess the performance (with respect to the shared pool, not the data buffer cache) that can be expected after instance startup without shutting down the current instance. The statement ALTER SYSTEM FLUSH SHARED_POOL is used to do this.

	
See Also:

	
"Shared SQL Areas and Private SQL Areas" for more information about the location of the private SQL area

	
Chapter 6, "Schema Object Dependencies" for more information about the invalidation of SQL statements and dependency issues

	
Oracle Database SQL Language Reference for information about using ALTER SYSTEM FLUSH SHARED_POOL

	
Oracle Database Reference for information about V$SQL and V$SQLAREA dynamic views

Dictionary Cache

The data dictionary is a collection of database tables and views containing reference information about the database, its structures, and its users. Oracle Database accesses the data dictionary frequently during SQL statement parsing. This access is essential to the continuing operation of Oracle Database.

The data dictionary is accessed so often by Oracle Database that two special locations in memory are designated to hold dictionary data. One area is called the data dictionary cache, also known as the row cache because it holds data as rows instead of buffers (which hold entire blocks of data). The other area in memory to hold dictionary data is the library cache. All Oracle Database user processes share these two caches for access to data dictionary information.

	
See Also:

Chapter 7, "The Data Dictionary"

Result Cache

The result cache is composed of the SQL query result cache and PL/SQL function result cache, which share the same infrastructure.

The DBMS_RESULT_CACHE package provides administration subprograms, which, for example, flush all cached results and turn result-caching on or off systemwide. The dynamic performance views V$RESULT_CACHE_* allow the developer and DBA to determine, for example, the cache-hit success for a certain SQL query or PL/SQL function.

Similar to the result cache, the client result cache also caches results, except that the caching is done on the client side.

	
See Also:

	
Oracle Database Administrator's Guide for information about sizing the result cache

	
Oracle Database PL/SQL Packages and Types Reference for information about the DBMS_RESULT_CACHE package

	
Oracle Database Reference for information about dynamic performance ($V) views

	
Oracle Call Interface Programmer's Guide for more information about the client result cache

SQL Query Result Cache

Results of queries and query fragments can be cached in memory in the SQL query result cache. The database can then use cached results to answer future executions of these queries and query fragments. Because retrieving results from the SQL query result cache is faster than rerunning a query, frequently run queries experience a significant performance improvement when their results are cached. Users can annotate a query or query fragment with a result cache hint to indicate that results are to be stored in the SQL query result cache.

You can set the RESULT_CACHE_MODE initialization parameter to control whether the SQL query result cache is used for all queries (when possible), or only for queries that are annotated.

The database automatically invalidates a cached result whenever a transaction modifies the data or metadata of any of the database objects used to construct that cached result.

	
See Also:

Oracle Database Performance Tuning Guide for information about the RESULT_CACHE_MODE initialization parameter

PL/SQL Function Result Cache

A PL/SQL function is sometimes used to return the result of a computation whose inputs are one or several parameterized queries issued by the function. In some cases, these queries access data (for example, the catalog of wares in a shopping application) that changes very infrequently compared to the frequency of calling the function. You can include syntax in the source text of a PL/SQL function to request that its results be cached and, to ensure correctness, that the cache be purged when any of a list of tables experiences DML. The look-up key for the cache is the combination of actual arguments with which the function is invoked. When a particular invocation of the result-cached function is a cache hit, then the function body is not executed; instead, the cached value is returned immediately.

	
See Also:

Oracle Database PL/SQL Language Reference for more information about the PL/SQL function result cache

Large Pool

The database administrator can configure an optional memory area called the large pool to provide large memory allocations for:

	
Session memory for the shared server and the Oracle XA interface (used where transactions interact with more than one database)

	
I/O server processes

	
Oracle Database backup and restore operations

By allocating session memory from the large pool for shared server, Oracle XA, or parallel query buffers, Oracle Database can use the shared pool primarily for caching shared SQL and avoid the performance overhead caused by shrinking the shared SQL cache.

In addition, the memory for Oracle Database backup and restore operations, for I/O server processes, and for parallel buffers is allocated in buffers of a few hundred kilobytes. The large pool is better able to satisfy such large memory requests than the shared pool.

The large pool does not have an LRU list. It is different from reserved space in the shared pool, which uses the same LRU list as other memory allocated from the shared pool.

	
See Also:

	
"Shared Server Architecture" for information about allocating session memory from the large pool for the shared server

	
Oracle Database Advanced Application Developer's Guide for information about Oracle XA

	
Oracle Database Performance Tuning Guide for more information about the large pool, reserve space in the shared pool, and I/O server processes

	
"Overview of Parallel Execution" for information about allocating memory for parallel execution

Java Pool

Java pool memory is used in server memory for all session-specific Java code and data within the JVM. Java pool memory is used in different ways, depending on the mode in which Oracle Database is running.

The Java Pool Advisor statistics provide information about library cache memory used for Java and predict how changes in the size of the Java pool can affect the parse rate. The Java Pool Advisor is internally turned on when statistics_level is set to TYPICAL or higher. These statistics reset when the advisor is turned off.

	
See Also:

Oracle Database Java Developer's Guide

Streams Pool

The streams pool is used exclusively by Oracle Streams. The Streams pool stores buffered queue messages, and it provides memory for Oracle Streams capture processes and apply processes.

Unless you specifically configure it, the size of the Streams pool starts at zero. The pool size grows dynamically as needed when Oracle Streams is used.

	
See Also:

Oracle Streams Concepts and Administration

Overview of the Program Global Area

Oracle Database allocates a program global area (PGA) for each server process. The PGA is used to process SQL statements and to hold logon and other session information. For the purposes of memory management, the collection of all PGAs is known as the instance PGA. Using an initialization parameter, you set the size of the instance PGA, and the database distributes memory to individual PGAs as needed.

	
Note:

Background processes also allocate their own PGAs. This discussion focuses on server process PGAs only.

This section contains the following topics:

	
Content of the PGA

	
PGA Memory Use in Dedicated and Shared Server Modes

	
See Also:

"Connections and Sessions" for information about sessions

Content of the PGA

The content of the PGA memory varies, depending on whether or not the instance is running the shared server option. Generally speaking, the PGA memory is divided into the following areas:

	
Session Memory

	
Private SQL Area

Session Memory

Session memory is the memory allocated to hold a session's variables (logon information) and other information related to the session. For a shared server, the session memory is shared and not private.

	
See Also:

	
"Connections and Sessions" for more information about sessions

	
Oracle Database Net Services Administrator's Guide

Private SQL Area

The private SQL area contains data such as bind variable values, query execution state information, and query execution work areas. Each session that issues a SQL statement has a private SQL area. Each user that submits the same SQL statement has his or her own private SQL area that uses a single shared SQL area. Thus, many private SQL areas can be associated with the same shared SQL area.

The location of a private SQL area depends on the type of connection established for a session. If a session is connected through a dedicated server, private SQL areas are located in the server process's PGA. However, if a session is connected through a shared server, part of the private SQL area is kept in the SGA.

This section includes the following topics:

	
Cursors and SQL Areas

	
Private SQL Area Components

	
SQL Work Areas

	
See Also:

"Shared SQL Areas and Private SQL Areas"

Cursors and SQL Areas

The application developer of an Oracle Database precompiler program or OCI program can explicitly open cursors, or handles to specific private SQL areas, and use them as a named resource throughout the execution of the program. Recursive cursors that Oracle Database issues implicitly for some SQL statements also use shared SQL areas.

The management of private SQL areas is the responsibility of the user process. The allocation and deallocation of private SQL areas depends largely on which application tool you are using, although the number of private SQL areas that a user process can allocate is always limited by the initialization parameter OPEN_CURSORS. The default value of this parameter is 50.

A private SQL area continues to exist until the corresponding cursor is closed or the statement handle is freed. Although Oracle Database frees the run-time area after the statement completes, the persistent area remains waiting. Application developers close all open cursors that will not be used again to free the persistent area and to minimize the amount of memory required for users of the application.

	
See Also:

"Cursors"

Private SQL Area Components

The private SQL area of a cursor is itself divided into two areas whose lifetimes are different:

	
The persistent area—This area contains bind variable values. It is freed only when the cursor is closed.

	
The runtime area—Oracle Database creates this area as the first step of an execute request. It contains the following structures:

	
Query execution state information

For example, for a full table scan, this area contains information on the progress of the scan

	
SQL work areas

These areas are allocated as needed for memory-intensive operations like sorting or hash-joins. More detail is provided later in this section.

For DML, the run-time area is freed when the statement finishes running. For queries, it is freed after all rows are fetched or the query is canceled.

SQL Work Areas

SQL work areas are allocated to support memory-intensive operators such as the following:

	
Sort-based operators (order by, group-by, rollup, window function)

	
Hash-join

	
Bitmap merge

	
Bitmap create

For example, a sort operator uses a work area (sometimes called the sort area) to perform the in-memory sort of a set of rows. Similarly, a hash-join operator uses a work area (also called the hash area) to build a hash table from its left input. If the amount of data to be processed by these two operators does not fit into a work area, the input data is divided into smaller pieces. This enables some data pieces to be processed in memory while the rest are spilled to temporary disk storage to be processed later. Although bitmap operators do not spill to disk when their associated work area is too small, their complexity is inversely proportional to the size of their work area. Thus, these operators run faster with larger work area.

The size of a work area can be controlled and tuned. The database automatically tunes work area sizes when automatic PGA memory management is enabled. See "Overview of Memory Management Methods" for more information.

Generally, bigger work areas can significantly improve the performance of a particular operator at the cost of higher memory consumption. Optimally, the size of a work area is big enough to accommodate the input data and auxiliary memory structures allocated by its associated SQL operator. If not, response time increases, because part of the input data must be spilled to temporary disk storage. In the extreme case, if the size of a work area is far too small compared to the input data size, multiple passes over the data pieces must be performed. This can dramatically increase the response time of the operator.

PGA Memory Use in Dedicated and Shared Server Modes

PGA memory allocation depends, in some specifics, on whether the system uses dedicated or shared server architecture. Table 8-1 shows the differences.

Table 8-1 Differences in Memory Allocation Between Dedicated and Shared Servers

	Memory Area	Dedicated Server	Shared Server
	
Nature of session memory

	
Private

	
Shared

	
Location of the persistent area

	
PGA

	
SGA

	
Location of part of the run-time area for SELECT statements

	
PGA

	
PGA

	
Location of the run-time area for DML/DDL statements

	
PGA

	
PGA

Overview of Memory Management Methods

Memory management involves maintaining optimal sizes for the Oracle database instance memory structures as demands on the database change. The memory that must be managed is the system global area (SGA) memory and the instance program global area (instance PGA) memory. The instance PGA memory is the collection of memory allocations for all individual PGAs.

Oracle Database supports various memory management methods, which are chosen by initialization parameter settings. Oracle recommends that you enable the automatic memory management method.

Automatic Memory Management – For Both the SGA and Instance PGA

Beginning with Oracle Database 11g, Oracle Database can manage the SGA memory and instance PGA memory completely automatically. You designate only the total memory size to be used by the instance, and Oracle Database dynamically exchanges memory between the SGA and the instance PGA as needed to meet processing demands. This capability is referred to as automatic memory management. With this memory management method, the database also dynamically tunes the sizes of the individual SGA components and the sizes of the individual PGAs.

Automatic Shared Memory Management – For the SGA

If you want to exercise more direct control over the size of the SGA, you can disable automatic memory management and enable automatic shared memory management. With automatic shared memory management, you set target and maximum sizes for the SGA. The database then tunes the total size of the SGA to your designated target, and dynamically tunes the sizes of all SGA components.

Manual Shared Memory Management – For the SGA

If you want complete control of individual SGA component sizes, you can disable both automatic memory management and automatic shared memory management. This effectively enables manual shared memory management. In this mode, you set the sizes of several individual SGA components, thereby determining the overall SGA size. You then manually tune these individual SGA components on an ongoing basis.

Automatic PGA Memory Management – For the Instance PGA

When you disable automatic memory management and enable automatic shared memory management or manual shared memory management, you also implicitly enable automatic PGA memory management. With automatic PGA memory management, you set a target size for the instance PGA. The database then tunes the size of the instance PGA to your target, and dynamically tunes the sizes of individual PGAs. Because automatic PGA memory management is the default method for the instance PGA, if you do not explicitly set a target size, the database automatically computes and configures a reasonable default.

Manual PGA Memory Management – For the Instance PGA

Previous releases of Oracle Database required the DBA to manually specify the maximum work area size for each type of SQL operator (such as sort or hash-join). This proved to be very difficult, because the workload is always changing. Although the current release of Oracle Database supports this manual PGA memory management method, Oracle strongly recommends that you leave automatic PGA memory management enabled.

Summary of Memory Management Methods

Table 8-2 summarizes the various memory management methods. If you do not enable automatic memory management, you must separately configure one memory management method for the SGA and one for the PGA.

	
Note:

When automatic memory management is not enabled, the default method for the instance PGA is automatic PGA memory management.

Table 8-2 Oracle Database Memory Management Modes

	Memory Management Mode	For	You Set	Oracle Database Automatically Tunes
	
Automatic memory management

	
SGA and PGA

	
	
Total memory target size for the Oracle instance

	
(Optional) Maximum memory size for the Oracle instance

	
	
Total SGA size

	
SGA component sizes

	
Instance PGA size

	
Individual PGA sizes

	
Automatic shared memory management

(Automatic memory management disabled)

	
SGA

	
	
SGA target size

	
(Optional) SGA maximum size

	
SGA component sizes

	
Manual shared memory management

(Automatic memory management and automatic shared memory management disabled)

	
SGA

	
	
Shared pool size

	
Buffer cache size

	
Java pool size

	
Large pool size

	
-

	
Automatic PGA memory management

	
PGA

	
Instance PGA target size

	
Individual PGA sizes

	
Manual PGA memory management

(not recommended)

	
PGA

	
Maximum work area size for each type of SQL operator

	
-

	
See Also:

Oracle Database Administrator's Guide because automatic memory management is not available on all platforms

Memory Management Options and Defaults for Database Installation

If you create your database with Database Configuration Assistant (DBCA) and choose the basic installation option, automatic memory management is enabled by default. If you choose advanced installation, Database Configuration Assistant (DBCA) enables you to select from the following three memory management configurations:

	
Automatic memory management

	
Automatic shared memory management + automatic PGA memory management

	
Manual shared memory management + automatic PGA memory management

If you create the database with a CREATE DATABASE SQL statement and do not choose the memory management mode by specifying the required memory initialization parameters, manual shared memory management and automatic PGA memory management are configured by default.

	
See also:

Oracle Database Administrator's Guide for more information about memory management and about memory management initialization parameters.

About Software Code Areas

Software code areas are portions of memory used to store code that is being run or can be run. Oracle Database code is stored in a software area that is typically at a different location from users' programs—a more exclusive or protected location.

Software areas are usually static in size, changing only when software is updated or reinstalled. The required size of these areas varies by operating system.

Software areas are read only and can be installed shared or nonshared. When possible, Oracle Database code is shared so that all users can access it without having multiple copies in memory. This results in a saving of real main memory and improves overall performance.

User programs can be shared or nonshared. Some Oracle tools and utilities (such as Oracle Forms and SQL*Plus) can be installed shared, but some cannot. Multiple instances of Oracle Database can use the same Oracle Database code area with different databases if running on the same computer.

	
Note:

The option of installing software shared is not available for all operating systems (for example, on PCs operating Windows).
See your Oracle Database operating system-specific documentation for more information.

11 Oracle Database Utilities

This chapter describes Oracle Database utilities for data transfer, data maintenance, and database administration.

This chapter contains the following topics:

	
Introduction to Oracle Database Utilities

	
Overview of Data Pump Export and Import

	
Overview of the Data Pump API

	
Overview of the Metadata API

	
Overview of SQL*Loader

	
Overview of External Tables

	
Overview of LogMiner

	
Overview of DBVERIFY Utility

	
Overview of DBNEWID Utility

	
ADRCI: ADR Command Interpreter

Introduction to Oracle Database Utilities

Oracle Database utilities let you perform the following tasks:

	
High-speed movement of data and metadata from one database to another using Data Pump Export and Import

	
Extract and manipulate complete representations of the metadata for database objects, using the Metadata API

	
Move all or part of the data and metadata for a site from one database to another, using the Data Pump API

	
Load data into Oracle Database tables from operating system files using SQL*Loader or from external sources using external tables

	
Manage Oracle Database diagnostic data using the ADR Command Interpreter (ADRCI).

	
Query redo log files through a SQL interface with LogMiner

	
Perform physical data structure integrity checks on an offline (for example, backup) database or datafile with DBVERIFY.

	
Maintain the internal database identifier (DBID) and the database name (DBNAME) for an operational database, using the DBNEWID utility

	
See Also:

Oracle Database Utilities for more information on all of the utilities described in this chapter

Overview of Data Pump Export and Import

Oracle Data Pump technology enables very high-speed movement of data and metadata from one database to another. This technology is the basis for Oracle Database data movement utilities, Data Pump Export and Data Pump Import.

Data Pump enables you to specify whether a job should move a subset of the data and metadata. This is done using data filters and metadata filters, which are implemented through Export and Import parameters.

This section includes the following topics:

	
Data Pump Export

	
Data Pump Import

Data Pump Export

Data Pump Export (hereinafter referred to as Export for ease of reading) is a utility for unloading data and metadata into a set of operating system files called a dump file set. The dump file set can be moved to another system and loaded by the Data Pump Import utility.

The dump file set is made up of one or more disk files that contain table data, database object metadata, and control information. The files are written in a proprietary, binary format, which can be read only by Data Pump Import. During an import operation, the Data Pump Import utility uses these files to locate each database object in the dump file set.

Data Pump Import

Data Pump Import (hereinafter referred to as Import for ease of reading) is a utility for loading an export dump file set into a target system. The dump file set is made up of one or more disk files that contain table data, database object metadata, and control information. The files are written in a proprietary, binary format.

Import can also be used to load a target database directly from a source database with no intervening files, which allows export and import operations to run concurrently, minimizing total elapsed time. This is known as network import.

Import also enables you to see all of the SQL DDL that the Import job will be executing, without actually executing the SQL. This is implemented through the Import SQLFILE parameter.

Overview of the Data Pump API

The Data Pump API provides a high-speed mechanism to move all or part of the data and metadata for a site from one database to another. To use the Data Pump API, you use the procedures provided in the DBMS_DATAPUMP PL/SQL package. The Data Pump Export and Data Pump Import utilities are based on the Data Pump API.

	
See Also:

	
Oracle Database Utilities for information about how the Data Pump API works

	
Oracle Database PL/SQL Packages and Types Reference for a description of the DBMS_DATAPUMP package

Overview of the Metadata API

The Metadata application programming interface (API), provides a means for you to do the following:

	
Retrieve an object's metadata as XML

	
Transform the XML in a variety of ways, including transforming it into SQL DDL

	
Submit the XML to re-create the object extracted by the retrieval

To use the Metadata API, you use the procedures provided in the DBMS_METADATA PL/SQL package. For the purposes of the Metadata API, every entity in the database is modeled as an object that belongs to an object type. For example, the table scott.emp is an object and its object type is TABLE. When you fetch an object's metadata you must specify the object type.

	
See Also:

	
Oracle Database Utilities for information about how to use the Metadata API

	
Oracle Database PL/SQL Packages and Types Reference for a description of the DBMS_METADATA package

Overview of SQL*Loader

SQL*Loader loads data from external files into tables of an Oracle database. It has a powerful data parsing engine that puts little limitation on the format of the data in the datafile. You can use SQL*Loader to do the following:

	
Load data from multiple datafiles during the same load session.

	
Load data into multiple tables during the same load session.

	
Specify the character set of the data.

	
Selectively load data (you can load records based on the records' values).

	
Manipulate the data before loading it, using SQL functions.

	
Generate unique sequential key values in specified columns.

	
Use the operating system's file system to access the datafiles.

	
Load data from disk, tape, or named pipe.

	
Generate sophisticated error reports, which greatly aids troubleshooting.

	
Load arbitrarily complex object-relational data.

	
Use secondary datafiles for loading LOBs and collections.

	
Use either conventional or direct path loading. While conventional path loading is very flexible, direct path loading provides superior loading performance.

A typical SQL*Loader session takes as input a control file, which controls the behavior of SQL*Loader, and one or more datafiles. The output of SQL*Loader is an Oracle database (where the data is loaded), a log file, a bad file, and potentially, a discard file.

	
See Also:

Oracle Database Utilities to learn more about LogMiner

Overview of External Tables

The external tables feature is a complement to existing SQL*Loader functionality. It lets you access data in external sources as if it were in a table in the database. External tables can be written to using the ORACLE_DATAPUMP access driver. Neither data manipulation language (DML) operations nor index creation are allowed on an external table. Therefore, SQL*Loader may be the better choice in data loading situations that require additional indexing of the staging table.

To use the external tables feature, you must have some knowledge of the file format and record format of the datafiles on your platform. You must also know enough about SQL to be able to create an external table and perform queries against it.

	
See Also:

"External Tables"

Overview of LogMiner

Oracle LogMiner enables you to query redo log files through a SQL interface. All changes made to user data or to the database dictionary are recorded in the Oracle Database redo log files. Therefore, redo log files contain all the necessary information to perform recovery operations.

LogMiner functionality is available through a command-line interface or through the Oracle LogMiner Viewer graphical user interface (GUI). The LogMiner Viewer is a part of Oracle Enterprise Manager.

The following are some of the potential uses for data contained in redo log files:

	
Pinpointing when a logical corruption to a database, such as errors made at the application level, may have begun. This enables you to restore the database to the state it was in just before corruption.

	
Detecting and whenever possible, correcting user error, which is a more likely scenario than logical corruption. User errors include deleting the wrong rows because of incorrect values in a WHERE clause, updating rows with incorrect values, dropping the wrong index, and so forth.

	
Determining what actions you would have to take to perform fine-grained recovery at the transaction level. If you fully understand and consider existing dependencies, it may be possible to perform a table-based undo operation to roll back a set of changes.

	
Performance tuning and capacity planning through trend analysis. You can determine which tables get the most updates and inserts. That information provides a historical perspective on disk access statistics, which can be used for tuning purposes.

	
Performing post-auditing. The redo log files contain all the information necessary to track any DML and DDL statements run on the database, the order in which they were run, and who executed them.

Overview of DBVERIFY Utility

DBVERIFY is an external command-line utility that performs a physical data structure integrity check. It can be used on offline or online databases, as well on backup files. You use DBVERIFY primarily when you must ensure that a backup database (or datafile) is valid before it is restored or as a diagnostic aid when you have encountered data corruption problems.

Because DBVERIFY can be run against an offline database, integrity checks are significantly faster.

DBVERIFY checks are limited to cache-managed blocks (that is, data blocks). Because DBVERIFY is only for use with datafiles, it will not work against control files or redo logs.

There are two command-line interfaces to DBVERIFY. With the first interface, you specify disk blocks of a single datafile for checking. With the second interface, you specify a segment for checking.

Overview of DBNEWID Utility

DBNEWID is a database utility that can change the internal, unique database identifier (DBID) and the database name (DBNAME) for an operational database. The DBNEWID utility lets you change any of the following:

	
Only the DBID of a database

	
Only the DBNAME of a database

	
Both the DBNAME and DBID of a database

Therefore, you can manually create a copy of a database and give it a new DBNAME and DBID by re-creating the control file, and you can register a seed database and a manually copied database together in the same RMAN repository.

ADRCI: ADR Command Interpreter

ADRCI is a command-line tool that is part of the fault diagnosability infrastructure introduced in Oracle Database 11g. ADRCI enables you to:

	
View diagnostic data within the Automatic Diagnostic Repository (ADR)

	
Package incident and problem information into a zip file for transmission to Oracle Support

Diagnostic data includes incident and problem descriptions, trace files, dumps, health monitor reports, alert log entries, and more.

ADRCI has a rich command set, and can be used in interactive mode or within scripts. In addition, ADRCI can execute scripts of ADRCI commands in the same way that SQL*Plus executes scripts of SQL and PL/SQL commands.

	
See Also:

Oracle Database Utilities for more information on ADRCI

Part III

Oracle Database Features

Part III describes the core feature areas in the Oracle Database.

Part III contains the following chapters:

	
Chapter 13, "Data Concurrency and Consistency"

	
Chapter 14, "Manageability"

	
Chapter 15, "Backup and Recovery"

	
Chapter 16, "Business Intelligence"

	
Chapter 17, "High Availability"

	
Chapter 18, "Very Large Databases (VLDB)"

	
Chapter 19, "Content Management"

	
Chapter 20, "Database Security"

	
Chapter 21, "Data Integrity"

	
Chapter 22, "Triggers"

	
Chapter 23, "Information Integration"

13 Data Concurrency and Consistency

This chapter explains how Oracle Database maintains consistent data in a multiuser database environment.

This chapter contains the following topics:

	
Introduction to Data Concurrency and Consistency in a Multiuser Environment

	
How Oracle Database Manages Data Concurrency and Consistency

	
How Oracle Database Locks Data

	
Overview of Oracle Flashback Query

Introduction to Data Concurrency and Consistency in a Multiuser Environment

In a single-user database, the user can modify data in the database without concern for other users modifying the same data at the same time. However, in a multiuser database, the statements within multiple simultaneous transactions can update the same data. Transactions executing at the same time need to produce meaningful and consistent results. Therefore, control of data concurrency and data consistency is vital in a multiuser database.

	
Data concurrency means that many users can access data at the same time.

	
Data consistency means that each user sees a consistent view of the data, including visible changes made by the user's own transactions and transactions of other users.

To describe consistent transaction behavior when transactions run at the same time, database researchers have defined a transaction isolation model called serializability. The serializable mode of transaction behavior tries to ensure that transactions run in such a way that they appear to be executed one at a time, or serially, rather than concurrently.

While this degree of isolation between transactions is generally desirable, running many applications in this mode can seriously compromise application throughput. Complete isolation of concurrently running transactions could mean that one transaction cannot perform an insert into a table being queried by another transaction. In short, real-world considerations usually require a compromise between perfect transaction isolation and performance.

Oracle Database offers two isolation levels, providing application developers with operational modes that preserve consistency and provide high performance.

	
See Also:

Chapter 21, "Data Integrity" for information about data integrity, which enforces business rules associated with a database

This section includes the following topics:

	
Preventable Phenomena and Transaction Isolation Levels

	
Overview of Locking Mechanisms

Preventable Phenomena and Transaction Isolation Levels

The ANSI/ISO SQL standard (SQL92) defines four levels of transaction isolation with differing degrees of impact on transaction processing throughput. These isolation levels are defined in terms of three phenomena that must be prevented between concurrently executing transactions.

The three preventable phenomena are:

	
Dirty reads: A transaction reads data that has been written by another transaction that has not been committed yet.

	
Nonrepeatable (fuzzy) reads: A transaction rereads data it has previously read and finds that another committed transaction has modified or deleted the data.

	
Phantom reads (or phantoms): A transaction re-runs a query returning a set of rows that satisfies a search condition and finds that another committed transaction has inserted additional rows that satisfy the condition.

SQL92 defines four levels of isolation in terms of the phenomena a transaction running at a particular isolation level is permitted to experience. They are shown in Table 13-1.

Table 13-1 Preventable Read Phenomena by Isolation Level

	Isolation Level	Dirty Read	Nonrepeatable Read	Phantom Read
	
Read uncommitted

	
Possible

	
Possible

	
Possible

	
Read committed

	
Not possible

	
Possible

	
Possible

	
Repeatable read

	
Not possible

	
Not possible

	
Possible

	
Serializable

	
Not possible

	
Not possible

	
Not possible

Oracle Database offers the read committed and serializable isolation levels, as well as a read-only mode that is not part of SQL92. Read committed is the default.

	
See Also:

"How Oracle Database Manages Data Concurrency and Consistency" for a full discussion of read committed and serializable isolation levels

Overview of Locking Mechanisms

In general, multiuser databases use some form of data locking to solve the problems associated with data concurrency, consistency, and integrity. Locks are mechanisms that prevent destructive interaction between transactions accessing the same resource.

Resources include two general types of objects:

	
User objects, such as tables and rows (structures and data)

	
System objects not visible to users, such as shared data structures in the memory and data dictionary rows

	
See Also:

"How Oracle Database Locks Data" for more information about locks

How Oracle Database Manages Data Concurrency and Consistency

Oracle Database maintains data consistency in a multiuser environment by using a multiversion consistency model and various types of locks and transactions. The following topics are discussed in this section:

	
Multiversion Concurrency Control

	
Statement-Level Read Consistency

	
Transaction-Level Read Consistency

	
Read Consistency with Oracle Real Application Clusters

	
Oracle Database Isolation Levels

	
Comparison of Read Committed and Serializable Isolation

	
Choice of Isolation Level

Multiversion Concurrency Control

Oracle Database automatically provides read consistency to a query so that all the data that the query sees comes from a single point in time (statement-level read consistency). Oracle Database can also provide read consistency to all of the queries in a transaction (transaction-level read consistency).

Oracle Database uses the information maintained in its rollback segments to provide these consistent views. The rollback segments contain the old values of data that have been changed by uncommitted or recently committed transactions. Figure 13-1 shows how Oracle Database provides statement-level read consistency using data in rollback segments.

Figure 13-1 Transactions and Read Consistency

[image: Description of Figure 13-1 follows]

As a query enters the execution stage, the current system change number (SCN) is determined. In Figure 13-1, this system change number is 10023. As data blocks are read on behalf of the query, only blocks written with the observed SCN are used. Blocks with changed data (more recent SCNs) are reconstructed from data in the rollback segments, and the reconstructed data is returned for the query. Therefore, each query returns all committed data with respect to the SCN recorded at the time that query execution began. Changes of other transactions that occur during a query's execution are not observed, guaranteeing that consistent data is returned for each query.

Statement-Level Read Consistency

Oracle Database always enforces statement-level read consistency. This guarantees that all the data returned by a single query comes from a single point in time—the time that the query began. Therefore, a query never sees dirty data or any of the changes made by transactions that commit during query execution. As query execution proceeds, only data committed before the query began is visible to the query. The query does not see changes committed after statement execution begins.

A consistent result set is provided for every query, guaranteeing data consistency, with no action on the user's part. The SQL statements SELECT, INSERT with a subquery, UPDATE, and DELETE all query data, either explicitly or implicitly, and all return consistent data. Each of these statements uses a query to determine which data it will affect (SELECT, INSERT, UPDATE, or DELETE, respectively).

A SELECT statement is an explicit query and can have nested queries or a join operation. An INSERT statement can use nested queries. UPDATE and DELETE statements can use WHERE clauses or subqueries to affect only some rows in a table rather than all rows.

Queries used in INSERT, UPDATE, and DELETE statements are guaranteed a consistent set of results. However, they do not see the changes made by the DML statement itself. In other words, the query in these operations sees data as it existed before the operation began to make changes.

	
Note:

If a SELECT list contains a function, then the database applies statement-level read consistency at the statement level for SQL run within the PL/SQL function code, rather than at the parent SQL level. For example, a function could access a table whose data is changed and committed by another user. For each execution of the SELECT in the function, a new read consistent snapshot is established.

Transaction-Level Read Consistency

Oracle Database also offers the option of enforcing transaction-level read consistency. When a transaction runs in serializable mode, all data accesses reflect the state of the database as of the time the transaction began. Thus, the data seen by all queries within the same transaction is consistent with respect to a single point in time, except that queries made by a serializable transaction do see changes made by the transaction itself. Transaction-level read consistency produces repeatable reads and does not expose a query to phantoms.

Read Consistency with Oracle Real Application Clusters

Oracle Real Application Clusters (Oracle RAC)s uses a cache-to-cache block transfer mechanism known as Cache Fusion to transfer read-consistent images of blocks from one instance to another. Oracle RAC does this using high speed, low latency interconnects to satisfy remote requests for data blocks.

	
See Also:

Oracle Real Application Clusters Administration and Deployment Guide

Oracle Database Isolation Levels

Oracle Database provides the transaction isolation levels shown in Table 13-2.

Table 13-2 Transaction Isolation Levels

	Isolation Level	Description
	
Read committed

	
This is the default transaction isolation level. Each query executed by a transaction sees only data that was committed before the query (not the transaction) began. An Oracle Database query never reads dirty (uncommitted) data.

Because Oracle Database does not prevent other transactions from modifying the data read by a query, that data can be changed by other transactions between two executions of the query. Thus, a transaction that runs a given query twice can experience both nonrepeatable read and phantoms.

	
Serializable

	
Serializable transactions see only those changes that were committed at the time the transaction began, plus those changes made by the transaction itself through INSERT, UPDATE, and DELETE statements. Serializable transactions do not experience nonrepeatable reads or phantoms.

	
Read-only

	
Read-only transactions see only those changes that were committed at the time the transaction began and do not allow INSERT, UPDATE, and DELETE statements.

This section includes the following topics:

	
Set the Isolation Level

	
Read Committed Isolation

	
Serializable Isolation

Set the Isolation Level

Application designers, application developers, and database administrators can choose appropriate isolation levels for different transactions, depending on the application and workload. You can set the isolation level of a transaction by using one of these statements at the beginning of a transaction:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

SET TRANSACTION READ ONLY;

To save the networking and processing cost of beginning each transaction with a SET TRANSACTION statement, you can use the ALTER SESSION statement to set the transaction isolation level for all subsequent transactions:

ALTER SESSION SET ISOLATION_LEVEL = SERIALIZABLE;

ALTER SESSION SET ISOLATION_LEVEL = READ COMMITTED;

	
See Also:

Oracle Database SQL Language Reference for detailed information on any of these SQL statements

Read Committed Isolation

The default isolation level for Oracle Database is read committed. This degree of isolation is appropriate for environments where few transactions are likely to conflict. Oracle Database causes each query to run with respect to its own materialized view time, thereby permitting nonrepeatable reads and phantoms for multiple executions of a query, but providing higher potential throughput. Read committed isolation is the appropriate level of isolation for environments where few transactions are likely to conflict.

Serializable Isolation

Serializable isolation is suitable for environments:

	
With large databases and short transactions that update only a few rows

	
Where the chance that two concurrent transactions will modify the same rows is relatively low

	
Where relatively long-running transactions are primarily read only

Serializable isolation permits concurrent transactions to make only those database changes they could have made if the transactions had been scheduled to run one after another. Specifically, Oracle Database permits a serializable transaction to modify a data row only if it can determine that prior changes to the row were made by transactions that had committed when the serializable transaction began.

To make this determination efficiently, Oracle Database uses control information stored in the data block that indicates which rows in the block contain committed and uncommitted changes. In a sense, the block contains a recent history of transactions that affected each row in the block. The amount of history that is retained is controlled by the INITRANS parameter of CREATE TABLE and ALTER TABLE.

Under some circumstances, Oracle Database can have insufficient history information to determine whether a row has been updated by a too recent transaction. This can occur when many transactions concurrently modify the same data block, or do so in a very short period. You can avoid this situation by setting higher values of INITRANS for tables that will experience many transactions updating the same blocks. Doing so enables Oracle Database to allocate sufficient storage in each block to record the history of recent transactions that accessed the block.

Oracle Database generates an error when a serializable transaction tries to update or delete data modified by a transaction that commits after the serializable transaction began:

ORA-08177: Cannot serialize access for this transaction

When a serializable transaction fails with the Cannot serialize access error, the application can take any of several actions:

	
Commit the work executed to that point

	
Execute additional (but different) statements (perhaps after rolling back to a savepoint established earlier in the transaction)

	
Undo the entire transaction

Figure 13-2 shows an example of an application that rolls back and retries the transaction after it fails with the Cannot serialize access error:

Figure 13-2 Serializable Transaction Failure

[image: Description of Figure 13-2 follows]

Comparison of Read Committed and Serializable Isolation

Oracle Database gives the application developer a choice of two transaction isolation levels with different characteristics. Both the read committed and serializable isolation levels provide a high degree of consistency and concurrency. Both levels provide the contention-reducing benefits of the Oracle Database read consistency multiversion concurrency control model and exclusive row-level locking implementation and are designed for real-world application deployment.

This section includes the following topics:

	
Transaction Set Consistency

	
Row-Level Locking

	
Referential Integrity

	
Distributed Transactions

Transaction Set Consistency

A useful way to view the read committed and serializable isolation levels in Oracle Database is to consider the following scenario: Assume you have a collection of database tables (or any set of data), a particular sequence of reads of rows in those tables, and the set of transactions committed at any particular time. An operation (a query or a transaction) is transaction set consistent if all its reads return data written by the same set of committed transactions. An operation is not transaction set consistent if some reads reflect the changes of one set of transactions and other reads reflect changes made by other transactions. An operation that is not transaction set consistent in effect sees the database in a state that reflects no single set of committed transactions.

Oracle Database provides transactions executing in read committed mode with transaction set consistency for each statement. Serializable mode provides transaction set consistency for each transaction.

Table 13-3 summarizes key differences between read committed and serializable transactions in Oracle Database.

Table 13-3 Read Committed and Serializable Transactions

	Behavior	Read Committed	Serializable
	
Dirty write

	
Not possible

	
Not possible

	
Dirty read

	
Not possible

	
Not possible

	
Nonrepeatable read

	
Possible

	
Not possible

	
Phantoms

	
Possible

	
Not possible

	
Compliant with ANSI/ISO SQL 92

	
Yes

	
Yes

	
Read materialized view time

	
Statement

	
Transaction

	
Transaction set consistency

	
Statement level

	
Transaction level

	
Row-level locking

	
Yes

	
Yes

	
Readers block writers

	
No

	
No

	
Writers block readers

	
No

	
No

	
Different-row writers block writers

	
No

	
No

	
Same-row writers block writers

	
Yes

	
Yes

	
Waits for blocking transaction

	
Yes

	
Yes

	
Subject to cannot serialize access

	
No

	
Yes

	
Error after blocking transaction terminates

	
No

	
No

	
Error after blocking transaction commits

	
No

	
Yes

Row-Level Locking

Both read committed and serializable transactions use row-level locking, and both will wait if they try to change a row updated by an uncommitted concurrent transaction. The second transaction that tries to update a given row waits for the other transaction to commit or undo and release its lock. If that other transaction rolls back, the waiting transaction, regardless of its isolation mode, can proceed to change the previously locked row as if the other transaction had not existed.

However, if the other blocking transaction commits and releases its locks, a read committed transaction proceeds with its intended update. A serializable transaction, however, fails with the error Cannot serialize access error, because the other transaction has committed a change that was made since the serializable transaction began.

Referential Integrity

Because Oracle Database does not use read locks in either read-consistent or serializable transactions, data read by one transaction can be overwritten by another. Transactions that perform database consistency checks at the application level cannot assume that the data they read will remain unchanged during the execution of the transaction even though such changes are not visible to the transaction. Database inconsistencies can result unless such application-level consistency checks are coded with this in mind, even when using serializable transactions.

	
See Also:

Oracle Database Advanced Application Developer's Guide for more information about referential integrity and serializable transactions

	
Note:

You can use both read committed and serializable transaction isolation levels with Oracle Real Application Clusters.

Distributed Transactions

In a distributed database environment, a given transaction updates data in multiple physical databases protected by two-phase commit to ensure all nodes or none commit. In such an environment, all servers, whether Oracle or non-Oracle, that participate in a serializable transaction are required to support serializable isolation mode.

If a serializable transaction tries to update data in a database managed by a server that does not support serializable transactions, the transaction receives an error. The transaction can undo and retry only when the remote server does support serializable transactions.

In contrast, read committed transactions can perform distributed transactions with servers that do not support serializable transactions.

	
See Also:

Oracle Database Administrator's Guide

Choice of Isolation Level

Application designers and developers should choose an isolation level based on application performance and consistency needs as well as application coding requirements.

For environments with many concurrent users rapidly submitting transactions, designers must assess transaction performance requirements in terms of the expected transaction arrival rate and response time demands. Frequently, for high-performance environments, the choice of isolation levels involves a trade-off between consistency and concurrency.

Application logic that checks database consistency must take into account the fact that reads do not block writes in either mode.

Oracle Database isolation modes provide high levels of consistency, concurrency, and performance through the combination of row-level locking and the Oracle Database multiversion concurrency control system. Readers and writers do not block one another in Oracle Database. Therefore, while queries still see consistent data, both read committed and serializable isolation provide a high level of concurrency for high performance, without the need for reading uncommitted data.

This section includes the following topics:

	
Read Committed Isolation

	
Serializable Isolation

	
Quiesce Database

Read Committed Isolation

For many applications, read committed is the most appropriate isolation level. Read committed isolation can provide considerably more concurrency with a somewhat increased risk of inconsistent results due to phantoms and non-repeatable reads for some transactions.

Many high-performance environments with high transaction arrival rates require more throughput and faster response times than can be achieved with serializable isolation. Other environments that supports users with a very low transaction arrival rate also face very low risk of incorrect results due to phantoms and nonrepeatable reads. Read committed isolation is suitable for both of these environments.

Oracle Database read committed isolation provides transaction set consistency for every query. That is, every query sees data in a consistent state. Therefore, read committed isolation will suffice for many applications that might require a higher degree of isolation if run on other database management systems that do not use multiversion concurrency control.

Read committed isolation mode does not require application logic to trap the Cannot serialize access error and loop back to restart a transaction. In most applications, few transactions have a functional need to issue the same query twice, so for many applications protection against phantoms and non-repeatable reads is not important. Therefore many developers choose read committed to avoid the need to write such error checking and retry code in each transaction.

Serializable Isolation

The Oracle Database serializable isolation is suitable for environments where there is a relatively low chance that two concurrent transactions will modify the same rows and the long-running transactions are primarily read only. It is most suitable for environments with large databases and short transactions that update only a few rows.

Serializable isolation mode provides somewhat more consistency by protecting against phantoms and nonrepeatable reads and can be important where a read/write transaction runs a query more than once.

Unlike other implementations of serializable isolation, which lock blocks for read as well as write, Oracle Database provides nonblocking queries and the fine granularity of row-level locking, both of which reduce read/write contention. For applications that experience mostly read/write contention, Oracle Database serializable isolation can provide significantly more throughput than other systems. Therefore, some applications might be suitable for serializable isolation on Oracle Database but not on other systems.

All queries in an Oracle Database serializable transaction see the database as of a single point in time, so this isolation level is suitable where multiple consistent queries must be issued in a read/write transaction. A report-writing application that generates summary data and stores it in the database might use serializable mode because it provides the consistency that a READ ONLY transaction provides, but also allows INSERT, UPDATE, and DELETE.

	
Note:

Transactions containing DML statements with subqueries should use serializable isolation to guarantee consistent read.

Coding serializable transactions requires extra work by the application developer to check for the Cannot serialize access error and to undo and retry the transaction. Similar extra coding is needed in other database management systems to manage deadlocks. For adherence to corporate standards or for applications that are run on multiple database management systems, it may be necessary to design transactions for serializable mode. Transactions that check for serializability failures and retry can be used with Oracle Database read committed mode, which does not generate serializability errors.

Serializable mode is probably not the best choice in an environment with relatively long transactions that must update the same rows accessed by a high volume of short update transactions. Because a longer running transaction is unlikely to be the first to modify a given row, it will repeatedly need to roll back, wasting work. Note that a conventional read-locking, pessimistic implementation of serializable mode would not be suitable for this environment either, because long-running transactions—even read transactions—would block the progress of short update transactions and vice versa.

Application developers should consider the cost of rolling back and retrying transactions when using serializable mode. As with read-locking systems, where deadlocks occur frequently, use of serializable mode requires rolling back the work done by terminated transactions and retrying them. In a high contention environment, this activity can use significant resources.

In most environments, a transaction that restarts after receiving the Cannot serialize access error is unlikely to encounter a second conflict with another transaction. For this reason, it can help to run those statements most likely to contend with other transactions as early as possible in a serializable transaction. However, there is no guarantee that the transaction will complete successfully, so the application should be coded to limit the number of retries.

Although Oracle Database serializable mode is compatible with SQL92 and offers many benefits compared with read-locking implementations, it does not provide semantics identical to such systems. Application designers must consider the fact that reads in Oracle Database do not block writes as they do in other systems. Transactions that check for database consistency at the application level can require coding techniques such as the use of SELECT FOR UPDATE. This issue should be considered when applications using serializable mode are ported to Oracle Database from other environments.

Quiesce Database

You can put the system into quiesced state. The system is in quiesced state if there are no active sessions, other than SYS and SYSTEM. An active session is defined as a session that is currently inside a transaction, a query, a fetch or a PL/SQL procedure, or a session that is currently holding any shared resources (for example, enqueues--enqueues are shared memory structures that serialize access to database resources and are associated with a session or transaction). Database administrators are the only users who can proceed when the system is in quiesced state.

Database administrators can perform certain actions in the quiesced state that cannot be safely done when the system is not quiesced. These actions include:

	
Actions that might fail if there are concurrent user transactions or queries. For example, changing the schema of a database table will fail if a concurrent transaction is accessing the same table.

	
Actions whose intermediate effect could be detrimental to concurrent user transactions or queries. For example, suppose there is a big table T and a PL/SQL package that operates on it. You can split table T into two tables T1 and T2, and change the PL/SQL package to make it refer to the new tables T1 and T2, instead of the old table T.

When the database is in quiesced state, you can do the following:

CREATE TABLE T1 AS SELECT ... FROM T;
CREATE TABLE T2 AS SELECT ... FROM T;
DROP TABLE T;

You can then drop the old PL/SQL package and re-create it.

For systems that must operate continuously, the ability to perform such actions without shutting down the database is critical.

The Database Resource Manager blocks all actions that were initiated by a user other than SYS or SYSTEM while the system is quiesced. Such actions are allowed to proceed when the system goes back to normal (unquiesced) state. Users do not get any additional error messages from the quiesced state.

How a Database Is Quiesced

The database administrator uses the ALTER SYSTEM QUIESCE RESTRICTED statement to quiesce the database. Only users SYS and SYSTEM can issue the ALTER SYSTEM QUIESCE RESTRICTED statement. For all instances with the database open, issuing this statement has the following effect:

	
Oracle Database instructs the Database Resource Manager in all instances to prevent all inactive sessions (other than SYS and SYSTEM) from becoming active. No user other than SYS and SYSTEM can start a new transaction, a new query, a new fetch, or a new PL/SQL operation.

	
Oracle Database waits for all existing transactions in all instances that were initiated by a user other than SYS or SYSTEM to finish (either commit or terminate). Oracle Database also waits for all running queries, fetches, and PL/SQL procedures in all instances that were initiated by users other than SYS or SYSTEM and that are not inside transactions to finish. If a query is carried out by multiple successive OCI fetches, Oracle Database does not wait for all fetches to finish. It waits for the current fetch to finish and then blocks the next fetch. Oracle Database also waits for all sessions (other than those of SYS or SYSTEM) that hold any shared resources (such as enqueues) to release those resources. After all these operations finish, Oracle Database places the database into quiesced state and finishes executing the QUIESCE RESTRICTED statement.

	
If an instance is running in shared server mode, Oracle Database instructs the Database Resource Manager to block logins (other than SYS or SYSTEM) on that instance. If an instance is running in non-shared-server mode, Oracle Database does not impose any restrictions on user logins in that instance.

During the quiesced state, you cannot change the Resource Manager plan in any instance.

The ALTER SYSTEM UNQUIESCE statement puts all running instances back into normal mode, so that all blocked actions can proceed. An administrator can determine which sessions are blocking a quiesce from completing by querying the v$blocking_quiesce view.

	
See Also:

	
Oracle Database SQL Language Reference

	
Oracle Database Administrator's Guide

How Oracle Database Locks Data

Locks are mechanisms that prevent destructive interaction between transactions accessing the same resource—either user objects such as tables and rows or system objects not visible to users, such as shared data structures in memory and data dictionary rows.

In all cases, Oracle Database automatically obtains necessary locks when executing SQL statements, so users need not be concerned with such details. Oracle Database automatically uses the lowest applicable level of restrictiveness to provide the highest degree of data concurrency yet also provide fail-safe data integrity. Oracle Database also allows the user to lock data manually.

	
See Also:

"Types of Locks"

This section includes the following topics:

	
Transactions and Data Concurrency

	
Deadlocks

	
Types of Locks

	
DML Locks

	
DDL Locks

	
Latches and Internal Locks

	
Explicit (Manual) Data Locking

	
Oracle Database Lock Management Services

Transactions and Data Concurrency

Oracle Database provides data concurrency and integrity between transactions using its locking mechanisms. Because the locking mechanisms of Oracle Database are tied closely to transaction control, application designers need only define transactions properly, and Oracle Database automatically manages locking.

Keep in mind that Oracle Database locking is fully automatic and requires no user action. Implicit locking occurs for all SQL statements so that database users never need to lock any resource explicitly. The Oracle Database default locking mechanisms lock data at the lowest level of restrictiveness to guarantee data integrity while allowing the highest degree of data concurrency.

	
See Also:

"Explicit (Manual) Data Locking"

This section includes the following topics:

	
Modes of Locking

	
Lock Duration

	
Data Lock Conversion Versus Lock Escalation

Modes of Locking

Oracle Database uses two modes of locking in a multiuser database:

	
Exclusive lock mode prevents the associated resource from being shared. This lock mode is obtained to modify data. The first transaction to lock a resource exclusively is the only transaction that can alter the resource until the exclusive lock is released.

	
Share lock mode allows the associated resource to be shared, depending on the operations involved. Multiple users reading data can share the data, holding share locks to prevent concurrent access by a writer (who needs an exclusive lock). Several transactions can acquire share locks on the same resource.

Lock Duration

All locks acquired by statements within a transaction are held for the duration of the transaction, preventing destructive interference including dirty reads, lost updates, and destructive DDL operations from concurrent transactions. The changes made by the SQL statements of one transaction become visible only to other transactions that start after the first transaction is committed.

Oracle Database releases all locks acquired by the statements within a transaction when you either commit or undo the transaction. Oracle Database also releases locks acquired after a savepoint when rolling back to the savepoint. However, only transactions not waiting for the previously locked resources can acquire locks on the now available resources. Waiting transactions will continue to wait until after the original transaction commits or rolls back completely.

Data Lock Conversion Versus Lock Escalation

A transaction holds exclusive row locks for all rows inserted, updated, or deleted within the transaction. Because row locks are acquired at the highest degree of restrictiveness, no lock conversion is required or performed.

Oracle Database automatically converts a table lock of lower restrictiveness to one of higher restrictiveness as appropriate. For example, assume that a transaction uses a SELECT statement with the FOR UPDATE clause to lock rows of a table. As a result, it acquires the exclusive row locks and a row share table lock for the table. If the transaction later updates one or more of the locked rows, the row share table lock is automatically converted to a row exclusive table lock.

Lock escalation occurs when numerous locks are held at one level of granularity (for example, rows) and a database raises the locks to a higher level of granularity (for example, table). For example, if a single user locks many rows in a table, some databases automatically escalate the user's row locks to a single table. The number of locks is reduced, but the restrictiveness of what is being locked is increased.

Oracle Database never escalates locks. Lock escalation greatly increases the likelihood of deadlocks. Imagine the situation where the system is trying to escalate locks on behalf of transaction T1 but cannot because of the locks held by transaction T2. A deadlock is created if transaction T2 also requires lock escalation of the same data before it can proceed.

	
See Also:

"Table Locks (TM)"

Deadlocks

A deadlock can occur when two or more users are waiting for data locked by each other. Deadlocks prevent some transactions from continuing to work. Figure 13-3 is a hypothetical illustration of two transactions in a deadlock.

In Figure 13-3, no problem exists at time point A, as each transaction has a row lock on the row it attempts to update. Each transaction proceeds without being terminated. However, each tries next to update the row currently held by the other transaction. Therefore, a deadlock results at time point B, because neither transaction can obtain the resource it must proceed or terminate. It is a deadlock because no matter how long each transaction waits, the conflicting locks are held.

Figure 13-3 Two Transactions in a Deadlock

[image: Description of Figure 13-3 follows]

This section includes the following topics:

	
Deadlock Detection

	
Avoid Deadlocks

Deadlock Detection

Oracle Database automatically detects deadlock situations and resolves them by rolling back one of the statements involved in the deadlock, thereby releasing one set of the conflicting row locks. A corresponding message also is returned to the transaction that undergoes statement-level rollback. The statement rolled back is the one belonging to the transaction that detects the deadlock. Usually, the signalled transaction should be rolled back explicitly, but it can retry the rolled-back statement after waiting.

	
Note:

In distributed transactions, local deadlocks are detected by analyzing wait data, and global deadlocks are detected by a time out. Once detected, nondistributed and distributed deadlocks are handled by the database and application in the same way.

Deadlocks most often occur when transactions explicitly override the default locking of Oracle Database. Because Oracle Database itself does no lock escalation and does not use read locks for queries, but does use row-level locking (rather than page-level locking), deadlocks occur infrequently in Oracle Database.

	
See Also:

"Explicit (Manual) Data Locking" for more information about manually acquiring locks

Avoid Deadlocks

Multitable deadlocks can usually be avoided if transactions accessing the same tables lock those tables in the same order, either through implicit or explicit locks. For example, all application developers might follow the rule that when both a master and detail table are updated, the master table is locked first and then the detail table. If such rules are properly designed and then followed in all applications, deadlocks are very unlikely to occur.

When you know you will require a sequence of locks for one transaction, consider acquiring the most exclusive (least compatible) lock first.

Types of Locks

Oracle Database automatically uses different types of locks to control concurrent access to data and to prevent destructive interaction between users. Oracle Database automatically locks a resource on behalf of a transaction to prevent other transactions from doing something also requiring exclusive access to the same resource. The lock is released automatically when some event occurs so that the transaction no longer requires the resource.

Throughout its operation, Oracle Database automatically acquires different types of locks at different levels of restrictiveness depending on the resource being locked and the operation being performed.

Oracle Database locks fall into one of three general categories shown in Table 13-4.

Table 13-4 Types of Locks

	Lock	Description
	
DML locks (data locks)

	
DML locks protect data. For example, table locks lock entire tables, row locks lock selected rows.

	
DDL locks (dictionary locks)

	
DDL locks protect the structure of schema objects—for example, the definitions of tables and views.

	
Internal locks and latches

	
Internal locks and latches protect internal database structures such as datafiles. Internal locks and latches are entirely automatic.

The following sections discuss DML locks, DDL locks, and internal locks.

DML Locks

The purpose of a DML lock (data lock) is to guarantee the integrity of data being accessed concurrently by multiple users. DML locks prevent destructive interference of simultaneous conflicting DML or DDL operations. DML statements automatically acquire both table-level locks and row-level locks.

	
Note:

The acronym in parentheses after each type of lock or lock mode is the abbreviation used in the Locks Monitor of Enterprise Manager. Enterprise Manager might display TM for any table lock, rather than indicate the mode of table lock (such as RS or SRX).

This section includes the following topics:

	
Row Locks (TX)

	
Table Locks (TM)

	
DML Locks Automatically Acquired for DML Statements

Row Locks (TX)

Row-level locks are primarily used to prevent two transactions from modifying the same row. When a transaction must modify a row, a row lock is acquired.

There is no limit to the number of row locks held by a statement or transaction, and Oracle Database does not escalate locks from the row level to a coarser granularity. Row locking provides the finest grain locking possible and so provides the best possible concurrency and throughput.

The combination of multiversion concurrency control and row-level locking means that users contend for data only when accessing the same rows, specifically:

	
Readers of data do not wait for writers of the same data rows.

	
Writers of data do not wait for readers of the same data rows unless SELECT ... FOR UPDATE is used, which specifically requests a lock for the reader.

	
Writers only wait for other writers if they attempt to update the same rows at the same time.

	
Note:

Readers of data may have to wait for writers of the same data blocks in some very special cases of pending distributed transactions.

A transaction acquires an exclusive row lock for each individual row modified by one of the following statements: INSERT, UPDATE, DELETE, and SELECT with the FOR UPDATE clause.

A modified row is always locked exclusively so that other transactions cannot modify the row until the transaction holding the lock is committed or rolled back. However, if the transaction dies due to instance failure, block-level recovery makes a row available before the entire transaction is recovered. Row locks are always acquired automatically by Oracle Database as a result of the statements listed previously.

If a transaction obtains a row lock for a row, the transaction also acquires a table lock for the corresponding table. The table lock prevents conflicting DDL operations that would override data changes in a current transaction.

	
See Also:

"DDL Locks"

Table Locks (TM)

Table-level locks are primarily used to do concurrency control with concurrent DDL operations, such as preventing a table from being dropped in the middle of a DML operation. When a DDL or DML statement is on a table, a table lock is acquired. Table locks do not affect concurrency of DML operations. For partitioned tables, table locks can be acquired at both the table and the subpartition level.

A transaction acquires a table lock when a table is modified in the following DML statements: INSERT, UPDATE, DELETE, SELECT with the FOR UPDATE clause, and LOCK TABLE. These DML operations require table locks for two purposes: to reserve DML access to the table on behalf of a transaction and to prevent DDL operations that would conflict with the transaction. Any table lock prevents the acquisition of an exclusive DDL lock on the same table and thereby prevents DDL operations that require such locks. For example, a table cannot be altered or dropped if an uncommitted transaction holds a table lock for it.

A table lock can be held in any of several modes: row share (RS), row exclusive (RX), share (S), share row exclusive (SRX), and exclusive (X). The restrictiveness of a table lock's mode determines the modes in which other table locks on the same table can be obtained and held.

Table 13-5 shows the table lock modes that statements acquire. The last five columns of the table show operations that the table locks permit (Y) and prohibit (N).

Table 13-5 Summary of Table Locks

	SQL Statement	Table Lock Mode	RS	RX	S	SRX	X
	
SELECT...FROM table...

	
none

	
Y

	
Y

	
Y

	
Y

	
Y

	
INSERT INTO table ...

	
RX

	
Y

	
Y

	
N

	
N

	
N

	
UPDATE table ...

	
RX

	
Y*

	
Y*

	
N

	
N

	
N

	
DELETE FROM table ...

	
RX

	
Y*

	
Y*

	
N

	
N

	
N

	
SELECT ... FROM table FOR UPDATE OF ...

	
RX

	
Y*

	
Y*

	
N

	
N

	
N

	
LOCK TABLE table IN ROW SHARE MODE

	
RS

	
Y

	
Y

	
Y

	
Y

	
N

	
LOCK TABLE table IN ROW EXCLUSIVE MODE

	
RX

	
Y

	
Y

	
N

	
N

	
N

	
LOCK TABLE table IN SHARE MODE

	
S

	
Y

	
N

	
Y

	
N

	
N

	
LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE

	
SRX

	
Y

	
N

	
N

	
N

	
N

	
LOCK TABLE table IN EXCLUSIVE MODE

	
X

	
N

	
N

	
N

	
N

	
N

RS: row share

RX: row exclusive

S: share

SRX: share row exclusive

X: exclusive

*Yes, if no conflicting row locks are held by another transaction. Otherwise, waits occur.

The following sections explain each mode of table lock, from least restrictive to most restrictive. They also describe the actions that cause the transaction to acquire a table lock in that mode and which actions are permitted and prohibited in other transactions by a lock in that mode.

	
See Also:

"Explicit (Manual) Data Locking"

This section includes the following topics:

	
Row Share Table Locks (RS)

	
Row Exclusive Table Locks (RX)

	
Share Table Locks (S)

	
Share Row Exclusive Table Locks (SRX)

	
Exclusive Table Locks (X)

Row Share Table Locks (RS)

A row share table lock (also sometimes called a subshare table lock, SS) indicates that the transaction holding the lock on the table has locked rows in the table and intends to update them. A row share table lock is automatically acquired for a table when the following SQL statement is run:

LOCK TABLE table IN ROW SHARE MODE;

A row share table lock is the least restrictive mode of table lock, offering the highest degree of concurrency for a table.

Permitted Operations: A row share table lock held by a transaction allows other transactions to query, insert, update, delete, or lock rows concurrently in the same table. Therefore, other transactions can obtain simultaneous row share, row exclusive, share, and share row exclusive table locks for the same table.

Prohibited Operations: A row share table lock held by a transaction prevents other transactions from exclusive write access to the same table using only the following statement:

LOCK TABLE table IN EXCLUSIVE MODE;

Row Exclusive Table Locks (RX)

A row exclusive table lock (also called a subexclusive table lock, SX) generally indicates that the transaction holding the lock has made one or more updates to rows in the table or issued SELECT ... FOR UPDATE. A row exclusive table lock is acquired automatically for a table modified by the following types of statements:

SELECT ... FROM table ... FOR UPDATE OF ...;

INSERT INTO table ... ;

UPDATE table ... ;

DELETE FROM table ... ;

LOCK TABLE table IN ROW EXCLUSIVE MODE;

A row exclusive table lock is slightly more restrictive than a row share table lock.

Permitted Operations: A row exclusive table lock held by a transaction allows other transactions to query, insert, update, delete, or lock rows concurrently in the same table. Therefore, row exclusive table locks allow multiple transactions to obtain simultaneous row exclusive and row share table locks for the same table.

Prohibited Operations: A row exclusive table lock held by a transaction prevents other transactions from manually locking the table for exclusive reading or writing. Therefore, other transactions cannot concurrently lock the table using the following statements:

LOCK TABLE table IN SHARE MODE;

LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;

LOCK TABLE table IN EXCLUSIVE MODE;

Share Table Locks (S)

A share table lock is acquired automatically for the table specified in the following statement:

LOCK TABLE table IN SHARE MODE;

Permitted Operations: A share table lock held by a transaction allows other transactions only to query the table (without using SELECT ... FOR UPDATE) or to run LOCK TABLE ... IN SHARE MODE statements successfully. No updates are allowed by other transactions. Multiple transactions can hold share table locks for the same table concurrently. In this case, no transaction can update the table. Therefore, a transaction that has a share table lock can update the table only if no other transactions also have a share table lock on the same table.

Prohibited Operations: A share table lock held by a transaction prevents other transactions from modifying the same table and from executing the following statements:

LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;

LOCK TABLE table IN EXCLUSIVE MODE;

LOCK TABLE table IN ROW EXCLUSIVE MODE;

Share Row Exclusive Table Locks (SRX)

A share row exclusive table lock (also sometimes called a share-subexclusive table lock, SSX) is more restrictive than a share table lock. A share row exclusive table lock is acquired for a table as follows:

LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;

Permitted Operations: Only one transaction at a time can acquire a share row exclusive table lock on a given table. A share row exclusive table lock held by a transaction allows other transactions to query the table (without using SELECT ... FOR UPDATE) but not update the table.

Prohibited Operations: A share row exclusive table lock held by a transaction prevents other transactions from obtaining row exclusive table locks and modifying the same table. A share row exclusive table lock also prohibits other transactions from obtaining share, share row exclusive, and exclusive table locks, which prevents other transactions from executing the following statements:

LOCK TABLE table IN SHARE MODE;

LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;

LOCK TABLE table IN ROW EXCLUSIVE MODE;

LOCK TABLE table IN EXCLUSIVE MODE;

Exclusive Table Locks (X)

An exclusive table lock is the most restrictive mode of table lock, allowing the transaction that holds the lock exclusive write access to the table. An exclusive table lock is acquired for a table as follows:

LOCK TABLE table IN EXCLUSIVE MODE;

Permitted Operations: Only one transaction can obtain an exclusive table lock for a table. An exclusive table lock permits other transactions only to query the table.

Prohibited Operations: An exclusive table lock held by a transaction prohibits other transactions from performing any type of DML statement or placing any type of lock on the table.

DML Locks Automatically Acquired for DML Statements

The previous sections explained the different types of data locks, the modes in which they can be held, when they can be obtained, when they are obtained, and what they prohibit. The following sections summarize how Oracle Database automatically locks data on behalf of different DML operations.

Table 13-6 summarizes the information in the following sections.

Table 13-6 Locks Obtained By DML Statements

	DML Statement	Row Locks?	Mode of Table Lock
	
SELECT ... FROM table

		
	
INSERT INTO table ...

	
X

	
RX

	
UPDATE table ...

	
X

	
RX

	
DELETE FROM table ...

	
X

	
RX

	
SELECT ... FROM table ... FOR UPDATE OF ...

	
X

	
RX

	
LOCK TABLE table IN ...

		
	
ROW SHARE MODE

		
RS

	
ROW EXCLUSIVE MODE

		
RX

	
SHARE MODE

		
S

	
SHARE EXCLUSIVE MODE

		
SRX

	
EXCLUSIVE MODE

		
X

X: exclusive

RX: row exclusive

RS: row share

S: share

SRX: share row exclusive

This section includes the following topics:

	
Default Locking for Queries

	
Default Locking for INSERT, UPDATE, DELETE, and SELECT ... FOR UPDATE

Default Locking for Queries

Queries are the SQL statements least likely to interfere with other SQL statements because they only read data. INSERT, UPDATE, and DELETE statements can have implicit queries as part of the statement. Queries include the following kinds of statements:

SELECT

INSERT ... SELECT ... ;

UPDATE ... ;

DELETE ... ;

They do not include the following statement:

SELECT ... FOR UPDATE OF ... ;

The following characteristics are true of all queries that do not use the FOR UPDATE clause:

	
A query acquires no data locks. Therefore, other transactions can query and update a table being queried, including the specific rows being queried. Because queries lacking FOR UPDATE clauses do not acquire any data locks to block other operations, such queries are often referred to in Oracle Database as nonblocking queries.

	
A query does not have to wait for any data locks to be released; it can always proceed. (Queries may have to wait for data locks in some very specific cases of pending distributed transactions.)

Default Locking for INSERT, UPDATE, DELETE, and SELECT ... FOR UPDATE

The locking characteristics of INSERT, UPDATE, DELETE, and SELECT ... FOR UPDATE statements are as follows:

	
The transaction that contains a DML statement acquires exclusive row locks on the rows modified by the statement. Other transactions cannot update or delete the locked rows until the locking transaction either commits or rolls back.

	
The transaction that contains a DML statement does not need to acquire row locks on any rows selected by a subquery or an implicit query, such as a query in a WHERE clause. A subquery or implicit query in a DML statement is guaranteed to be consistent as of the start of the query and does not see the effects of the DML statement it is part of.

	
A query in a transaction can see the changes made by previous DML statements in the same transaction, but cannot see the changes of other transactions begun after its own transaction.

	
In addition to the necessary exclusive row locks, a transaction that contains a DML statement acquires at least a row exclusive table lock on the table that contains the affected rows. If the containing transaction already holds a share, share row exclusive, or exclusive table lock for that table, the row exclusive table lock is not acquired. If the containing transaction already holds a row share table lock, Oracle Database automatically converts this lock to a row exclusive table lock.

DDL Locks

A data dictionary lock (DDL) protects the definition of a schema object while that object is acted upon or referred to by an ongoing DDL operation. Recall that a DDL statement implicitly commits its transaction. For example, assume that a user creates a procedure. On behalf of the user's single-statement transaction, Oracle Database automatically acquires DDL locks for all schema objects referenced in the procedure definition. The DDL locks prevent objects referenced in the procedure from being altered or dropped before the procedure compilation is complete.

Oracle Database acquires a dictionary lock automatically on behalf of any DDL transaction requiring it. Users cannot explicitly request DDL locks. Only individual schema objects that are modified or referenced are locked during DDL operations. The whole data dictionary is never locked.

DDL locks fall into three categories: exclusive DDL locks, share DDL locks, and breakable parse locks.

This section includes the following topics:

	
Exclusive DDL Locks

	
Share DDL Locks

	
Breakable Parse Locks

	
Duration of DDL Locks

	
DDL Locks and Clusters

Exclusive DDL Locks

Most DDL operations, except for those listed in the section, "Share DDL Locks" require exclusive DDL locks for a resource to prevent destructive interference with other DDL operations that might modify or reference the same schema object. For example, a DROP TABLE operation is not allowed to drop a table while an ALTER TABLE operation is adding a column to it, and vice versa.

During the acquisition of an exclusive DDL lock, if another DDL lock is already held on the schema object by another operation, the acquisition waits until the older DDL lock is released and then proceeds.

DDL operations also acquire DML locks (data locks) on the schema object to be modified.

Share DDL Locks

Some DDL operations require share DDL locks for a resource to prevent destructive interference with conflicting DDL operations, but allow data concurrency for similar DDL operations. For example, when a CREATE PROCEDURE statement is run, the containing transaction acquires share DDL locks for all referenced tables. Other transactions can concurrently create procedures that reference the same tables and therefore acquire concurrent share DDL locks on the same tables, but no transaction can acquire an exclusive DDL lock on any referenced table. No transaction can alter or drop a referenced table. As a result, a transaction that holds a share DDL lock is guaranteed that the definition of the referenced schema object will remain constant for the duration of the transaction.

A share DDL lock is acquired on a schema object for DDL statements that include the following statements: AUDIT, NOAUDIT, COMMENT, CREATE [OR REPLACE] VIEW/ PROCEDURE/PACKAGE/PACKAGE BODY/FUNCTION/ TRIGGER, CREATE SYNONYM, and CREATE TABLE (when the CLUSTER parameter is not included).

Breakable Parse Locks

A SQL statement (or PL/SQL program unit) in the shared pool holds a parse lock for each schema object it references. Parse locks are acquired so that the associated shared SQL area can be invalidated if a referenced object is altered or dropped. A parse lock does not disallow any DDL operation and can be broken to allow conflicting DDL operations, hence the name breakable parse lock.

A parse lock is acquired during the parse phase of SQL statement execution and held as long as the shared SQL area for that statement remains in the shared pool.

	
See Also:

Chapter 6, "Schema Object Dependencies"

Duration of DDL Locks

The duration of a DDL lock depends on its type. Exclusive and share DDL locks last for the duration of DDL statement execution and automatic commit. A parse lock persists as long as the associated SQL statement remains in the shared pool.

DDL Locks and Clusters

A DDL operation on a cluster acquires exclusive DDL locks on the cluster and on all tables and materialized views in the cluster. A DDL operation on a table or materialized view in a cluster acquires a share lock on the cluster, in addition to a share or exclusive DDL lock on the table or materialized view. The share DDL lock on the cluster prevents another operation from dropping the cluster while the first operation proceeds.

Latches and Internal Locks

Latches and internal locks protect internal database and memory structures. Both are inaccessible to users, because users have no need to control over their occurrence or duration. The following section helps to interpret the Enterprise Manager LOCKS and LATCHES monitors.

This section includes the following topics:

	
Latches

	
Internal Locks

Latches

Latches are simple, low-level serialization mechanisms to protect shared data structures in the system global area (SGA). For example, latches protect the list of users currently accessing the database and protect the data structures describing the blocks in the buffer cache. A server or background process acquires a latch for a very short time while manipulating or looking at one of these structures. The implementation of latches is operating system dependent, particularly in regard to whether and how long a process will wait for a latch.

Internal Locks

Internal locks are higher-level, more complex mechanisms than latches and serve a variety of purposes.

This section includes the following topics:

	
Dictionary Cache Locks

	
File and Log Management Locks

	
Tablespace and Rollback Segment Locks

Dictionary Cache Locks

These locks are of very short duration and are held on entries in dictionary caches while the entries are being modified or used. They guarantee that statements being parsed do not see inconsistent object definitions.

Dictionary cache locks can be shared or exclusive. Shared locks are released when the parse is complete. Exclusive locks are released when the DDL operation is complete.

File and Log Management Locks

These locks protect various files. For example, one lock protects the control file so that only one process at a time can change it. Another lock coordinates the use and archiving of the redo log files. Datafiles are locked to ensure that multiple instances mount a database in shared mode or that one instance mounts it in exclusive mode. Because file and log locks indicate the status of files, these locks are necessarily held for a long time.

Tablespace and Rollback Segment Locks

These locks protect tablespaces and rollback segments. For example, all instances accessing a database must agree on whether a tablespace is online or offline. Rollback segments are locked so that only one instance can write to a segment.

Explicit (Manual) Data Locking

Oracle Database always performs locking automatically to ensure data concurrency, data integrity, and statement-level read consistency. However, you can override the Oracle Database default locking mechanisms. Overriding the default locking is useful in situations such as these:

	
Applications require transaction-level read consistency or repeatable reads. In other words, queries in them must produce consistent data for the duration of the transaction, not reflecting changes by other transactions. You can achieve transaction-level read consistency by using explicit locking, read-only transactions, serializable transactions, or by overriding default locking.

	
Applications require that a transaction have exclusive access to a resource so that the transaction does not have to wait for other transactions to complete.

Oracle Database automatic locking can be overridden at the transaction level or the session level.

At the transaction level, transactions that include the following SQL statements override Oracle Database default locking:

	
The SET TRANSACTION ISOLATION LEVEL statement

	
The LOCK TABLE statement (which locks either a table or, when used with views, the underlying base tables)

	
The SELECT ... FOR UPDATE statement

Locks acquired by these statements are released after the transaction commits or rolls back.

At the session level, a session can set the required transaction isolation level with the ALTER SESSION statement.

	
Note:

If Oracle Database default locking is overridden at any level, the database administrator or application developer should ensure that the overriding locking procedures operate correctly. The locking procedures must satisfy the following criteria: data integrity is guaranteed, data concurrency is acceptable, and deadlocks are not possible or are appropriately handled.

	
See Also:

Oracle Database SQL Language Reference for detailed descriptions of the SQL statements LOCK TABLE and SELECT ... FOR UPDATE

Oracle Database Lock Management Services

With Oracle Database Lock Management services, an application developer can include statements in PL/SQL blocks that:

	
Request a lock of a specific type

	
Give the lock a unique name recognizable in another procedure in the same or in another instance

	
Change the lock type

	
Release the lock

Because a reserved user lock is the same as an Oracle Database lock, it has all the Oracle Database lock functionality including deadlock detection. User locks never conflict with Oracle Database locks, because they are identified with the prefix UL.

The Oracle Database Lock Management services are available through procedures in the DBMS_LOCK package.

	
See Also:

	
Oracle Database Advanced Application Developer's Guide for more information about Oracle Database Lock Management services

	
Oracle Database PL/SQL Packages and Types Reference for information about DBMS_LOCK

Overview of Oracle Flashback Query

Oracle Flashback Query lets you view and repair historical data. You can perform queries on the database as of a certain wall clock time or user-specified system change number (SCN).

Flashback Query uses the Oracle Database multiversion read-consistency capabilities to restore data by applying undo as needed. Oracle Database 11g automatically tunes a parameter called the undo retention period. The undo retention period indicates the amount of time that must pass before old undo information—that is, undo information for committed transactions—can be overwritten. The database collects usage statistics and tunes the undo retention period based on these statistics and on undo tablespace size.

Using Flashback Query, you can query the database as it existed this morning, yesterday, or last week. The speed of this operation depends only on the amount of data being queried and the number of changes to the data that need to be backed out.

You can query the history of a given row or a transaction. Using undo data stored in the database, you can view all versions of a row and revert to a previous version of that row. Flashback Transaction Query history lets you examine changes to the database at the transaction level.

You can audit the rows of a table and get information about the transactions that changed the rows and the times when it was changed. With the transaction ID, you can do transaction mining through LogMiner to get complete information about the transaction.

	
See Also:

	
Oracle Database Administrator's Guide for more information on the automatic tuning of undo retention and on LogMiner

	
"Automatic Undo Retention"

You set the date and time you want to view. Then, any SQL query you run operates on data as it existed at that time. If you are an authorized user, then you can correct errors and back out the restored data without needing the intervention of an administrator.

With the AS OF SQL clause, you can choose different snapshots for each table in the query. Associating a snapshot with a table is known as table decoration. If you do not decorate a table with a snapshot, then a default snapshot is used for it. All tables without a specified snapshot get the same default snapshot.

For example, suppose you want to write a query to find all the new customer accounts created in the past hour. You could do set operations on two instances of the same table decorated with different AS OF clauses.

DML and DDL operations can use table decoration to choose snapshots within subqueries. Operations such as INSERT TABLE AS SELECT and CREATE TABLE AS SELECT can be used with table decoration in the subqueries to repair tables from which rows have been mistakenly deleted. Table decoration can be any arbitrary expression: a bind variable, a constant, a string, date operations, and so on. You can open a cursor and dynamically bind a snapshot value (a timestamp or an SCN) to decorate a table with.

	
See Also:

	
"Overview of High Availability Features" for an overview of all Oracle Flashback features

	
Oracle Database SQL Language Reference for information on the AS OF clause

This section includes the following topics:

	
Flashback Query Benefits

	
Some Uses of Flashback Query

Flashback Query Benefits

This section lists some of the benefits of using Flashback Query.

	
Application Transparency

Packaged applications, like report generation tools that only do queries, can run in Flashback Query mode by using logon triggers. Applications can run transparently without requiring changes to code. All the constraints that the application must be satisfied are guaranteed to hold good, because there is a consistent version of the database as of the Flashback Query time.

	
Application Performance

If an application requires recovery actions, it can do so by saving SCNs and flashing back to those SCNs. This is a lot easier and faster than saving data sets and restoring them later, which would be required if the application were to do explicit versioning. Using Flashback Query, there are no costs for logging that would be incurred by explicit versioning.

	
Online Operation

Flashback Query is an online operation. Concurrent DMLs and queries from other sessions are allowed while an object is queried inside Flashback Query.The speed of these operations is unaffected. Moreover, different sessions can flash back to different Flashback times or SCNs on the same object concurrently. The speed of the Flashback Query itself depends on the amount of undo that must be applied, which is proportional to how far back in time the query goes.

	
Easy Manageability

There is no additional management on the part of the user, except setting the appropriate retention interval, having the right privileges, and so on. No additional logging has to be turned on, because past versions are constructed automatically, as needed.

	
Note:

	
Flashback Query does not undo anything. It is only a query mechanism. You can take the output from a Flashback Query and perform an undo yourself in many circumstances.

	
Flashback Query does not tell you what changed. LogMiner does that.

	
Flashback Query can undo changes and can be very efficient if you know the rows that need to be moved back in time. You can use it to move a full table back in time, but this is very expensive if the table is large since it involves a full table copy.

	
Flashback Query does not work through DDL operations that modify columns, or drop or truncate tables.

	
In general, LogMiner is very good for getting change history, but it gives you changes in terms of deltas (insert, update, delete) and not in terms of the before and after image of a row. The SQL ALTER DATABASE ADD SUPPLEMENTAL LOG DATA statement only adds minimal supplemental logging and does not log all columns for a modified row.

Some Uses of Flashback Query

This section lists some ways to use Flashback Query.

	
Self-Service Repair

Perhaps you accidentally deleted some important rows from a table and wanted to recover the deleted rows. To do the repair, you can move backward in time and see the missing rows and re-insert the deleted row into the current table.

	
E-mail or Voice Mail Applications

You might have deleted mail in the past. Using Flashback Query, you can restore the deleted mail by moving back in time and re-inserting the deleted message into the current message box.

	
Account Balances

You can view account prior account balances as of a certain day in the month.

	
Packaged Applications

Packaged applications (like report generation tools) can make use of Flashback Query without any changes to application logic. Any constraints that the application expects are guaranteed to be satisfied, because users see a consistent version of the Database as of the given time or SCN.

In addition, Flashback Query could be used after examination of audit information to see the before-image of the data. In DSS environments, it could be used for extraction of data as of a consistent point in time from OLTP systems.

	
See Also:

	
Oracle Database Advanced Application Developer's Guide for more information about using Oracle Flashback Query

	
Oracle Database PL/SQL Packages and Types Reference for a description of the DBMS_FLASHBACK package

	
Oracle Database Administrator's Guide for information about undo tablespaces and setting retention period

14 Manageability

Oracle Database 11g represents a major milestone in Oracle's drive toward self-managing databases. It automates many routine administrative tasks, and considerably simplifies key DBA functions, such as performance diagnostics, SQL tuning, and space and memory management. It also provides several advisors that guide DBAs in managing key components of the database by giving specific recommendations along with potential benefit. Furthermore, Oracle Database 11g proactively sends alerts when a problem is anticipated, thus facilitating proactive rather than reactive database management.

This chapter contains the following topics:

	
Installing Oracle Database 11g and Getting Started

	
Intelligent Infrastructure

	
Performance Diagnostics and Troubleshooting

	
Application and SQL Tuning

	
Memory Management

	
Space Management

	
Automatic Storage Management

	
Backup and Recovery

	
Configuration Management

	
Workload Management

	
Oracle Scheduler

Installing Oracle Database 11g and Getting Started

The Oracle Universal Installer is a GUI tool for installing Oracle software. It automates all installation tasks, performs comprehensive prerequisite checks (such as operating system version, software patches, and capacity), installs selected software components, and performs all postinstall configuration.

The installation process is self-contained to automatically set up the required infrastructure for routine monitoring and administration. The Oracle Enterprise Manager Database Management Console is automatically configured to let you to get started with database administrative tasks without any manual configuration. The Oracle Enterprise Manager Database Console provides all essential functionality for managing a single database, including alert notification, job scheduling, and software management. In addition, all Oracle Database server components such as the database, listener, management framework, and so on, are configured for automated startup and shutdown.

	
See Also:

"Configuration Management" for more information about Oracle Enterprise Manager

This section includes the following topics:

	
Simplified Database Creation

	
Instant Client

	
Automated Upgrades

	
Basic Initialization Parameters

	
Data Loading, Transfer, and Archiving

Simplified Database Creation

The Database Creation Assistant (DBCA) is a GUI tool for database creation. It lets you create all possible configurations of the database, be it a standalone database, an Oracle Real Application Clusters database, or a standby database. During the database creation process, the DBCA guides you in setting up an automated disk-based backup and registering the database with a LDAP server, if available. A database created using the DBCA is fully setup and ready to use in all respects.

Instant Client

The Instant Client is the simplest way to deploy a full Oracle Client application built with OCI, OCCI, JDBC-OCI, or ODBC drivers. It provides the necessary Oracle Client libraries in a small set of files. Installation is as easy as copying a few shared libraries to a directory on the client computer. If this directory is accessible through the operating system library path variable (for instance, LD_LIBRARY_PATH or PATH) then the application will operate in the Instant Client mode. Instant Client deployment does not require the ORACLE_HOME environment, nor does it require the large number of code and data files provided in a full Oracle Client install, thereby significantly reducing the client application disk space needs. There is no loss in functionality or performance for an application deployed using Instant Client when compared to the same application running in a full ORACLE_HOME environment.

	
See Also:

	
Chapter 24, "SQL" and Chapter 25, "Supported Application Development Languages" for more information about JDBC, OCI, and OCCI

	
Oracle Call Interface Programmer's Guide for more information about Instant Client

Automated Upgrades

With the Database Upgrade Assistant (DBUA), you can upgrade any database configuration, including Oracle Real Application Clusters (Oracle RAC) and standby, just by answering a few simple questions. It automatically checks that adequate resources are available, ensures adherence to the best practices – such as backing up the database before beginning the upgrade process, replacing the obsolete and deprecate initialization parameters, and so on – and, verifies the successful completion of the operation.

The upgrade process is restartable, allowing it to automatically resume from the point of interruption. You can also get a time estimation of how long the upgrade process is likely to take.

Basic Initialization Parameters

The Oracle Database provides a number of initialization parameters to optimize its operation in diverse environments. Only a few of these parameters need to be explicitly set, because the default values are adequate in the majority of cases.

There are approximately 30 basic parameters. The remainder of the parameters are preserved to allow expert DBAs to adapt the behavior of the Oracle Database to meet unique requirements without overwhelming those who have no such requirements.

	
See Also:

Oracle Database Administrator's Guide

Data Loading, Transfer, and Archiving

Data Pump enables very high-speed data and metadata loading and unloading to and from the Oracle Database. It automatically manages and schedules multiple, parallel streams of load or unload for maximum throughput.

The transportable tablespace feature lets you quickly move a tablespace across Oracle databases. This can be much faster than performing either an export/import or unload/load of the same data, because transporting a tablespace only requires the copying of datafiles and integrating the tablespace structural information. You can also use transportable tablespaces to move index data, thereby avoiding the index rebuilds you would have to perform when importing or loading table data.

Data Pump functionality together with cross-platform transportable tablespace feature provides powerful, easy to use, and high performance tools for moving data in and out of the database.

	
See Also:

	
"Overview of Data Pump Export and Import"

	
"Transport of Tablespaces Between Databases"

Intelligent Infrastructure

Oracle Database has a sophisticated self-management infrastructure that allows the database to learn about itself and use this information to adapt to workload variations or to automatically remedy any potential problem. The self-management infrastructure includes the following:

	
Automatic Workload Repository

	
Automatic Maintenance Tasks

	
Fault Diagnosability Infrastructure

	
Server-Generated Alerts

	
Advisor Framework

	
Hang Manager

Automatic Workload Repository

The Automatic Workload Repository (AWR) is a built-in repository that contains performance statistics used by Oracle Database for problem detection and self-tuning purposes. At regular intervals, Oracle Database makes a snapshot of vital statistics and workload information and stores them in the AWR. The data contained in the snapshots is then analyzed by the Automatic Database Diagnostic Monitor (ADDM). The difference between snapshots is compared to determine which SQL statements to capture based on the effect on the system load. This reduces the number of SQL statements that need to be captured over time. By default, the snapshots are taken once every hour and retained in the AWR for 8 days, after which they are automatically purged. You can change both the frequency and the retention period of snapshots.

Snapshots from specific time periods can be preserved in a baseline for comparison with other similar workload periods. The snapshots contained in a baseline are excluded from the automatic AWR purging process and are retained indefinitely. There are several types of available baselines in Oracle Database: fixed baselines, moving window baselines, and baseline templates. A fixed baseline corresponds to a fixed, contiguous time period in the past. Fixed baselines captured when the system is operating at an optimal level can be compared with other baselines or snapshots captured during periods of poor performance to analyze performance degradation over time. A moving window baseline corresponds to all AWR data that exists within the AWR retention period. This is useful when using adaptive thresholds because the AWR data in the entire AWR retention period can be used to compute metric threshold values. Baseline templates can be used to create baselines for contiguous time periods in the future. There are two types of baseline templates: single and repeating. A single baseline template can be used to create a baseline for a single contiguous time period in the future. This is useful if you know beforehand of a time period that you want to capture in the future. A repeating baseline template can be used to create and drop baselines based on a repeating time schedule. This is useful if you want Oracle Database to automatically capture a contiguous time period on an ongoing basis.

AWR forms the foundation for all self-management functionality of Oracle Database. It is the source of information that gives Oracle Database a historical perspective on how the database is being used, and enables ADDM to accurately diagnose and resolve potential performance problems.

	
See Also:

Oracle Database Performance Tuning Guide for information about the Automatic Workload Repository

Automatic Maintenance Tasks

By analyzing the information stored in AWR, the database can identify the need to perform routine maintenance tasks. The automated maintenance tasks infrastructure (known as AutoTask) enables Oracle Database to automatically schedule such operations. AutoTask schedules automatic maintenance tasks to run in a set of Oracle Scheduler windows known as maintenance windows. Maintenance windows are those windows that are members of the Oracle Scheduler window group MAINTENANCE_WINDOW_GROUP.

By default, MAINTENANCE_WINDOW_GROUP contains one window for each day of the week. Weekday windows (Monday through Friday) are configured to be open (active) for 4 hours starting at 10:00 p.m. Weekend windows (Saturday and Sunday) begin at 6:00 a.m. and remain open for 20 hours. You can customize all attributes of these maintenance windows, including start and end time, frequency, days of the week, and so on. You can also add and remove maintenance windows from the group.

The following are the tasks that AutoTask automatically schedules in these maintenance windows:

	
Optimizer statistics gathering

	
Automatic Segment Advisor

	
SQL Tuning Advisor

Using Oracle Enterprise Manager or PL/SQL package procedures, you can adjust which of these tasks run in which maintenance windows.

Limiting Automatic Maintenance Task Resource Allocation

The impact of automated maintenance tasks on normal database operations is limited by the default Database Resource Manager resource plan. You can modify the default plan, or create your own resource plans and activate them either at the systemwide level or at the individual maintenance window level. AutoTask runs all automatic maintenance tasks as Oracle Scheduler jobs that belong to particular resource consumer groups. Resource plans then limit CPU resources that are allocated to these resource consumer groups. Because your user applications can be assigned to resource consumer groups, you can adjust the resource allocation for maintenance tasks not only relative to other maintenance tasks, but also relative to your applications.

	
See Also:

	
Oracle Database Administrator's Guide and Oracle Database 2 Day DBA for instructions for managing automatic maintenance tasks

	
"Oracle Scheduler"

	
"Overview of the Database Resource Manager"

	
Oracle Database Administrator's Guide for information about Automatic Segment Advisor

	
Oracle Database Performance Tuning Guide for information about SQL Tuning Advisor

Fault Diagnosability Infrastructure

Oracle Database includes an advanced fault diagnosability infrastructure for preventing, detecting, diagnosing, and resolving problems. The problems that are targeted are critical errors such as those caused by database code bugs, metadata corruption, and customer data corruption. The goals of the advanced fault diagnosability infrastructure are the following:

	
Detecting problems proactively

	
Limiting damage and interruptions after a problem is detected

	
Reducing problem diagnostic time

	
Reducing problem resolution time

	
Simplifying customer interaction with Oracle Support

The keys to achieving these goals are the following technologies:

	
The Health Monitor, which performs deeper analysis of a critical error upon detection, creates health check reports and adds these reports to the diagnostic data collected for the error. The DBA can also manually invoke health checks and obtain reports.

	
First-failure data capture, which captures comprehensive diagnostic data upon the first occurrence of a critical error

	
Standardized trace and dump formats for easier analysis

	
Incident packaging service, which enables the DBA to automatically package all diagnostic information surrounding a critical error into an archive suitable for transmission to Oracle Support.

	
Data Recovery Advisor, which displays data corruption problems, assesses the extent of the problems, and recommends repair options

	
SQL Test Case Builder, which helps Oracle Support reproduce customer problems that are related to SQL failures

	
Support Workbench, which is a guided workflow that assists you with capturing critical error diagnostic information, transmitting it to Oracle Support, and filing a service request

	
See Also:

Oracle Database Administrator's Guide for more information on the fault diagnosability infrastructure and on the Support Workbench

This section further discusses two components of this new infrastructure:

	
Automatic Diagnostic Repository

	
Incident Packaging Service

Automatic Diagnostic Repository

The Automatic Diagnostic Repository (ADR) is a file-based repository for database diagnostic data such as traces, the alert log, health monitor reports, and more. It has a unified directory structure across multiple instances and multiple products. Beginning with Oracle Database 11g, the database, Automatic Storage Management (ASM), and other Oracle products or components store all diagnostic data in the ADR. Each instance of each product stores diagnostic data underneath its own ADR home directory. For example, in an Oracle Real Application Clusters environment with shared storage and ASM, each database instance and each ASM instance has a home directory within the ADR. ADR's unified directory structure, consistent diagnostic data formats across products and instances, and a unified set of tools enable customers and Oracle Support to correlate and analyze diagnostic data across multiple instances.

Incident Packaging Service

A DBA can automatically and easily gather all diagnostic data (traces, health check reports, SQL test cases, and more) pertaining to a critical error and package the data into a zip file suitable for transmission to Oracle Support. Because all diagnostic data relating to a critical error are tagged with that error's incident number, the DBA does not have to search through trace files and other files to determine the files that are required for analysis; the incident packaging service identifies all required files automatically and adds them to the package.

	
See Also:

	
Oracle Database Administrator's Guide for more information about these components

	
Oracle Database Net Services Administrator's Guide and Oracle Database Net Services Reference for information on ADR usage

Server-Generated Alerts

For problems that cannot be resolved automatically and require administrators to be notified, such as running out of space, the Oracle Database provides server-generated alerts. Oracle Database can monitor itself and send out alerts to notify you of any problem in an efficient and timely manner.

Monitoring activities take place as the database performs its regular operation. This ensures that the database is aware of problems the moment they arise. The alerts produced by Oracle Database not only notify the problem, they also provide recommendations on how the reported problem can be resolved. This ensures quick problem resolution and helps prevent potential failures.

Advisor Framework

Oracle Database includes a number of advisors for different sub-systems in the database to automatically determine how the operation of the corresponding subcomponents could be further optimized. The SQL Tuning Advisor and the SQL Access Advisor, for example, provide recommendations for running SQL statements faster. Memory advisors help size the various memory components without resorting to trial-and-error techniques. The Segment Advisor handles space-related issues, such as recommending wasted-space reclamation and analyzing growth trends, while the Undo Advisor guides you in sizing the undo tablespace correctly. The various advisors are discussed more throughout this chapter.

To ensure the consistency and uniformity in the way advisors function and allow them to interact with each other seamlessly, Oracle Database includes an advisor framework. The advisor framework provides a consistent manner in which advisors are invoked and results are reported. Although these advisors are primarily used by the database to optimize its own performance, they can be invoked by administrators to get more insight into the functioning of a particular subcomponent.

	
See Also:

Oracle Database 2 Day DBA for more information about using advisors

Hang Manager

Active entities that attempt to obtain restrictive access to shared resources or request services from other Oracle Database processes, sessions, and transactions are in danger of hanging. A hang chain is a chain of processes with each one waiting on a resource held by the next, with a single process serving as the root of the hang.

Hangs in Oracle Database can cost a great deal in terms of system unavailability. Specifically, hangs lead to the following problems:

	
Extended system outages. These outages may occur frequently before a fix is found, which adds to the total downtime.

	
Analyzing the hang to determine where the problem lies can be lengthy, complex, and prone to error.

The Hang Manager is an Oracle Database infrastructure that can detect hangs, analyze them, and then obtain the required diagnostic data from Oracle. The Hang Manager is enabled by default in Oracle RAC databases and Automatic Storage Management (ASM) instances. Hang manager data is output to trace files.

Performance Diagnostics and Troubleshooting

Building upon the data captured in AWR, the Automatic Database Diagnostic Monitor (ADDM) lets Oracle Database diagnose its own performance and determine how identified problems could be resolved. ADDM runs automatically after each AWR statistics capture, making the performance diagnostic data readily available.

ADDM examines data captured in AWR and performs analysis to determine the major issues on the system on a proactive basis. In many cases, it recommends solutions and quantifies expected benefits. ADDM takes a holistic approach to the performance of the system, using time as a common currency between components. ADDM identifies those areas of the system that are consuming the most time. ADDM drills down to identify the root cause of problems, rather than just the symptoms, and reports the impact that the problem is having on the system overall. If a recommendation is made, it reports the benefits that can be expected in terms of time. The use of time throughout allows the impact of several problems or recommendations to be compared.

ADDM focuses on activities that the database is spending most time on and then drills down through a sophisticated problem classification tree. Some common problems detected by ADDM include the following:

	
CPU bottlenecks

	
Poor connection management

	
Excessive parsing

	
Lock contention

	
I/O capacity

	
Undersizing of Oracle Database memory structures; for example, PGA, buffer cache, log buffer

	
High load SQL statements

	
High PL/SQL and Java time

	
High checkpoint load and cause; for example, small log files, aggressive MTTR setting

	
Oracle RAC-specific issues

Besides reporting potential performance issues, ADDM also documents non-problem areas of the system. The subcomponents, such as I/O and memory, that are not significantly impacting system performance are pruned from the classification tree at an early stage and are listed so that you can quickly see that there is little to be gained by performing actions in those areas.

You no longer need to first collect huge volumes of diagnostic data and spend hours analyzing them in order to find out answers to performance issues. You can simply follow the recommendation made by ADDM with just a few mouse clicks.

Application and SQL Tuning

Oracle Database completely automates the SQL tuning process. ADDM identifies SQL statements consuming unusually high system resources and therefore causing performance problems. In addition, the top SQL statements in terms of CPU and shared memory consumption are automatically captured in AWR. Thus, the identification of high load SQL statements happens automatically in Oracle Database and requires no intervention.

After identifying the top resource-consuming SQL statements, Oracle Database can automatically analyze them and recommend solutions using the Automatic SQL Tuning Advisor. Automatic SQL Tuning is exposed with an advisor, called the SQL Tuning Advisor. The SQL Tuning Advisor takes one or more SQL statements as input and produces well-tuned plans along with tuning advice. You do not need to do anything other than invoke the SQL Tuning Advisor.

The solution comes right from the optimizer and not from external tools using pre-defined heuristics. This provides several advantages: a) the tuning is done by the system component that is ultimately responsible for the execution plans and SQL performance, b) the tuning process is fully cost-based, and it naturally accounts for any changes and enhancements done to the query optimizer, c) the tuning process considers the past execution statistics of a SQL statement and customizes the optimizer settings for that statement, and d) it collects auxiliary information in conjunction with the regular statistics based on what is considered useful by the query optimizer.

The recommendation of the Automatic SQL Tuning Advisor can fall into one of the following categories

	
Statistics Analysis: The Automatic SQL Tuning Advisor checks each query object for missing or stale statistics and makes recommendations to gather relevant statistics. It also collects auxiliary information to supply missing statistics or correct stale statistics in case recommendations are not implemented. Because Oracle Database automatically gathers optimizer statistics, this should not be the problem unless the automatic statistics gathering functionality has been disabled.

	
SQL Profiling: The Automatic SQL Tuning Advisor verifies its own estimates and collects auxiliary information to remove estimation errors. It also collects auxiliary information in the form of customized optimizer settings (for example, first rows or all rows) based on past execution history of the SQL statement. It builds a SQL profile using the auxiliary information and makes a recommendation to create it. It then enables the query optimizer (under normal mode) to generate a well-tuned plan. The most powerful aspect of SQL profiles is that they enable tuning of queries without requiring any syntactical changes and thereby proving a unique database –resident solution to tune the SQL statements embedded in packaged applications.

	
Access Path Analysis: The Automatic SQL Tuning Advisor considers whether a new index can be used to significantly improve access to each table in the query and when appropriate makes recommendations to create such indexes.

	
SQL Structure Analysis: The Automatic SQL Tuning Advisor tries to identify SQL statements that lend themselves to bad plans and makes relevant suggestions to restructure them. The suggested restructuring can be syntactic as well as semantic changes to the SQL code.

Both access path and SQL structure analysis can be useful in tuning the performance of an application under development or a homegrown production application where the administrators and developers have access to application code.

The SQL Access Advisor can automatically analyze the schema design for a given workload and recommend indexes, function-based indexes, partitions, and materialized views to create, retain, or drop as appropriate for the workload. For single statement scenarios, the advisor only recommends adjustments that affect the current statement. For complete business workloads, the advisor makes recommendations after considering the impact on the entire workload.

While generating recommendations, the SQL Access Advisor considers the impact of adding new indexes, partitions, and materialized views on data manipulation activities, such as insert, update, and delete, in addition to the performance improvement they are likely to provide for queries. After the SQL Access Advisor has filtered the workload, but while it is still identifying all possible solutions, you can asynchronously interrupt the process to get the best solution up to that point in time.

The SQL Access Advisor provides an easy to use interface and requires very little system knowledge. It can be run without affecting production systems, because the data can be gathered from the production system and taken to another computer where the SQL Access Advisor can be run.

	
See Also:

Oracle Database Performance Tuning Guide for more information about the SQL Tuning Advisor and the SQL Access Advisor

Memory Management

Oracle Database memory management allows for dynamic resizing of system global area (SGA) and program global area (PGA) memory components, either automatically or manually.

Automatic Memory Management

By default, new database installations are configured to automatically tune the various components of the SGA and PGA. You can make simple high-level adjustments to memory allocation by changing one database parameter: MEMORY_TARGET. As you allocate more system memory to the database with this parameter, the database automatically adjusts various component sizes for optimal database performance.

The performance of each component is monitored by the Oracle database instance. The instance uses internal views and statistics to determine how to optimally distribute memory among the automatically-sized components. Thus, as the workload changes, memory is redistributed to ensure optimal performance with the new workload. The database arrives at optimal distribution by taking into consideration long term and short terms trends.

You can exercise some control over the size of the auto-tuned components by specifying minimum values for each component. This can be useful in cases where you know that an application needs a minimum amount of memory in certain components to function properly.

The sizes of the automatically-tuned components are remembered across shutdowns if a server parameter file (SPFILE) is used. Thus, the system picks up where it left off from the last shutdown.

Manual Memory Management and Memory Advisors

If you want to exercise more precise control over allocation for multiple memory components, you can enable manual memory management. You can then take advantage of a set of memory advisors, which graphically display current component sizes and the estimated affect of changing these sizes.

The Shared Pool Advisor determines the optimal shared pool size by tracking its use by the library cache. The amount of memory available for the library cache can drastically affect the parse rate of an Oracle database instance. The shared pool advisor statistics provide information about library cache memory, letting you predict how changes in the size of the shared pool can affect aging out of objects in the shared pool.

The Buffer Cache Advisor determines the optimal size of the buffer cache. When manually configuring memory for a new instance, it is difficult to know the correct size for the buffer cache. Typically, you make a first estimate for the cache size, run a representative workload on the instance, and then examine the relevant statistics to see whether the cache is under- or over-configured. A number of statistics can be used to examine buffer cache activity. These include the V$DB_CACHE_ADVICE view and the buffer cache hit ratio.

The Java Pool Advisor provides information about library cache memory used for Java, and predicts how changes in the size of the Java pool can affect the parse rate.

The Streams Pool Advisor determines the optimal size of the Streams pool. The view V$STREAMS_POOL_ADVICE gives estimates of the amount of bytes spilled and unspilled for the different values of the STREAMS_POOL_SIZE parameter. You can use this to tune the STREAMS_POOL_SIZE parameter for Streams and for logical standby. AWR reports on the V$STREAMS_POOL_ADVICE view and CPU usage to help you tune Streams performance.

The Program Global Area (PGA) Advisor helps you determine an appropriate setting for PGA_AGGREGATE_TARGET, which is the total amount of memory to allocate for all PGAs for server and background processes.

	
See Also:

	
Chapter 8, "Memory Architecture"

	
Oracle Database Performance Tuning Guide for more information about memory advisors

	
Oracle Database Administrator's Guide for information about the various initialization parameters for manual and automatic memory management, and for information about server parameter files

Space Management

Oracle Database automatically manages its space consumption, sends alerts on potential space problems, and recommends possible solutions. Oracle Database features that help you to easily manage space include the following:

	
Automatic Undo Management

	
Oracle-Managed Files

	
Free Space Management

	
Proactive Space Management

	
Intelligent Capacity Planning

	
Space Reclamation

	
See Also:

Oracle Database Storage Administrator's Guide

Automatic Undo Management

Earlier releases of Oracle Database used rollback segments to store undo. Space management for these rollback segments was complex. Automatic undo management eliminates the complexities of managing rollback segments by automatically managing space in an undo tablespace. Automatic undo management also optimally tunes the length of time that undo is retained before being overwritten. This automatic tuning of undo retention improves the success rate of long running queries and of certain Oracle Flashback features, which may require the presence of old undo information.

Although you can configure the database to use rollback segments, automatic undo management is the default. An autoextending undo tablespace is automatically created upon database installation.

Automatic tuning of undo retention generally achieves better results with a fixed size undo tablespace. If you want to change the undo tablespace to fixed size for this or other reasons, the Undo Advisor can help you determine the proper fixed size to allocate. You provide the desired undo retention period for your long-running queries or Oracle Flashback operations, and the Undo Advisor suggests the required undo tablespace size. The Undo Advisor makes its recommendations based on system activity statistics, including the longest running query and undo generation rate. Advisor information includes the following:

	
Current undo retention

	
Current undo tablespace size

	
Longest query duration

	
Best undo retention possible

	
Undo tablespace size necessary for current undo retention

	
See Also:

	
"Introduction to Undo Segments and Automatic Undo Management"

	
Oracle Database 2 Day DBA for information about managing undo and running the Undo Advisor

	
Oracle Database Administrator's Guide for more information about the undo tablespace and on undo retention

Oracle-Managed Files

With Oracle-managed files, you do not need to directly manage the files comprising an Oracle database. Oracle Database uses standard file system interfaces to create and delete files as needed. This automates the routine task of creation and deletion of database files.

Free Space Management

Oracle Database allows for managing free space within a table with bitmaps, as well as traditional dictionary based space management. The bitmapped implementation eliminates much space-related tuning of tables, while providing improved performance during peak loads. Additionally, Oracle Database provides automatic extension of data files, so the files can grow automatically based on the amount of data in the files. Database administrators do not need to manually track and reorganize the space usage in all the database files.

Proactive Space Management

Oracle Database introduces a nonintrusive and timely check for space utilization monitoring. It automatically monitors space utilization during normal space allocation and de-allocation operations and alerts you if the free space availability falls below the pre-defined thresholds. Space monitoring functionality is set up out of box, causes no performance impact, and is uniformly available across all tablespace types. Also, the same functionality is available both through Oracle Enterprise Manager as well as SQL. Because the monitoring is performed at the same time as space is allocated and freed up in the database, this guarantees immediate availability of space usage information whenever you need it.

Notification is performed using server-generated alerts. The alerts are triggered when certain space-related events occur in the database. For example, when the space usage threshold of a tablespace is crossed or when a resumable session encounters an out of space situation, then an alert is raised. An alert is sent instantaneously to take corrective measures. You may choose to get paged with the alert information and add space to the tablespace to allow the suspended operation to continue from where it left off.

The database comes with a default set of alert thresholds. You can override the default for a given tablespace or set a new default for the entire database through Oracle Enterprise Manager.

Intelligent Capacity Planning

Space may get overallocated because of the difficulty to predict the space requirement of an object or the inability to predict the growth trend of an object. On tables that are heavily updated, the resulting segment may have a lot of internal fragmentation and maybe even row chaining. These issues can result in a wide variety of problems from poor performance to space wastage. Oracle Database offers several features to address these challenges.

Oracle Database can predict the size of a given table based on its structure and estimated number of rows. This is a powerful "what if" tool that allows estimation of the size of an object before it is created or rebuilt. If tablespaces have different extent management policies, then the tool will help decide the tablespace that will cause least internal fragmentation.

The growth trend report takes you to the next step of capacity planning: planning for growth. Most database systems grow over time. Planning for growth is an important aspect of provisioning resources. To aid this process, Oracle Database tracks historical space utilization in the AWR and uses this information to predict the future resource requirements.

Space Reclamation

Oracle Database provides in-place reorganization of data for optimal space utilization by shrinking it. Shrinking of a segment makes unused space available to other segments in the tablespace and may improve the performance of queries and DML operations.

The segment shrink functionality both compacts the space used in a segment and then deallocates it from the segment. The deallocated space is returned to the tablespace and is available to other objects in the tablespace. Sparsely populated tables may cause a performance problem for full table scans. By performing shrink, data in the table is compacted and the high water mark of the segment is pushed down. This makes full table scans read less blocks run faster.

Segment shrink is an online operation – the table being shrunk is open to queries and DML while the segment is being shrunk. Additionally, segment shrink is performed in place. This is an advantage over online table redefinition for compaction and reclaiming space. You can schedule segment shrink for one or all the objects in the database as nightly jobs without requiring any additional space to be provided to the database.

Segment shrink works on heaps, IOTs, IOT overflow segments, LOBs, LOB segments, materialized views, and indexes with row movement enabled in tablespaces with automatic segment space management. When segment shrink is performed on tables with indexes on them, the indexes are automatically maintained when rows are moved around for compaction. User-defined triggers are not fired, however, because compaction is a purely physical operation and does not impact the application.

	
Note:

Segment shrink can be performed only on tables with row movement enabled. Applications that explicitly track rowids of objects cannot be shrunk, because the application tracks the physical location of rows in the objects.

To easily identify candidate segments for shrinking, Oracle Database automatically runs the Segment Advisor to evaluate the entire database. The Segment Advisor performs growth trend analysis on individual objects to determine if there will be any additional space left in the object in seven days. It then uses the reclaim space target to select candidate objects to shrink.

	
Note:

The Segment Advisor does not evaluate undo and temporary tablespaces.

In addition to using the pre-computed statistics in the workload repository, the Segment Advisor performs sampling of the objects under consideration to refine the statistics for the objects. Although this operation is more resource intensive, it can be used to perform a more accurate analysis.

Although segment shrink reduces row chaining, and Oracle Database recommends online redefinition to remove chained rows, the Segment Advisor actually detects certain chained rows that are above a threshold. For example, if a row size increases during an update such that it no longer fits into the block, then the Segment Advisor recommends that the segment be reorganized to improve I/O performance.

	
Note:

The Segment Advisor does not detect chained rows created by inserts.

	
See Also:

	
"Row Chaining and Migrating" for more information about row chaining

	
Oracle Database Administrator's Guide and Oracle Database 2 Day DBA for more information about using the Segment Advisor

Automatic Storage Management

Automatic Storage Management (ASM) provides a vertical integration of the file system and volume manager specifically built for Oracle database files. ASM distributes I/O load across all available resources to optimize performance while removing the need for manual I/O tuning; spreading out the database files avoids hotspots. ASM helps you manage a dynamic database environment by enabling you to increase a database's size without having to shutdown the database to adjust the storage allocation.

ASM lets you define a pool of storage, called a disk group, and then the Oracle kernel manages the file naming and placement of the database files on that disk group. You can change the storage allocation, such as by adding or removing disks, by using SQL statements such as CREATE DISKGROUP, ALTER DISKGROUP, and DROP DISKGROUP. You can also manage disk groups with Oracle Enterprise Manager and Database Configuration Assistant (DBCA).

Oracle Database provides a simplified management interface for storage resources. ASM eliminates the need for manual I/O performance tuning. It virtualizes storage to a set of disk groups and provides redundancy options to enable a high level of protection. ASM facilitates nonintrusive storage configuration changes with automatic rebalancing. It spreads database files across all available storage to optimize performance and resource utilization. ASM reduces your storage administrative overhead by automating manual storage and thereby increasing your ability to manage larger databases and more of them with increased efficiency.

The following are some of the basic ASM concepts:

	
Automatic Storage Management Instances

The ASM instance is a special Oracle instance that manages the disks in disk groups. The ASM instance must be configured and running to enable the database instance to access ASM files. This configuration is done automatically if Database Configuration Assistant was used for database creation. An ASM instance cannot mount a database. The ASM instance simply coordinates data layout for database instances. Database instances direct the I/O to disks in disk groups without going through an ASM instance.

	
Disk Groups

A disk group is one or more ASM disks managed as a logical unit. The data structures in a disk group are self contained and consume some of the disk space in a disk group. ASM disks can be added or dropped from a disk group while the database is running. ASM rebalances the data to ensure an even I/O load to all disks in a disk group even as the disk group configuration changes.

	
Automatic Storage Management Files

When the database requests it, ASM creates files. ASM assigns each file a fully qualified name ending in a dotted pair of numbers. You can create more user-friendly alias names for the ASM filenames. To see alias names for ASM files, query the V$ASM_ALIAS data dictionary view from an ASM instance. In general, users need not be aware of file names.

	
Automatic Storage Management Disks

Storage is added and removed from disk groups in units of ASM disks. ASM disks can be entire physical disks, Logical Unit Numbers (LUNs) from a storage array, or pre-created files in a NAS filer. ASM disks should be independent of each other to obtain optimal I/O performance. For instance, with a storage array, you might specify a LUN that represents a hardware mirrored pair of physical disks to ASM as a single ASM disk.

	
See Also:

Oracle Database Storage Administrator's Guide for information about ASM

Backup and Recovery

Oracle Database provides several features that help you to easily manage backup and recovery. These include the following:

	
Recovery Manager

	
Mean Time to Recovery

	
Self Service Error Correction

Recovery Manager

Oracle Recovery Manager (RMAN) is a powerful tool that simplifies, automates, and improves the performance of backup and recovery operations. RMAN enables one time backup configuration, automatic management of backups and archived logs based on a user-specified recovery window, restartable backups and restores, and test restore/recovery. RMAN implements a recovery window to control when backups expire. This lets you establish a period of time during which it is possible to discover logical errors and fix the affected objects by doing a database or tablespace point-in-time recovery. RMAN also automatically expires backups that are no longer required to restore the database to a point-in-time within the recovery window. Control file autobackup also allows for restoring or recovering a database, even when a RMAN repository is not available.

DBCA can automatically schedule an on disk backup procedure. All you do is specify the time window for the automatic backups to run. A unified storage location for all recovery related files and activities in an Oracle database, called the flash recovery area, can be defined with the initialization parameter DB_RECOVERY_FILE_DEST. All files needed to completely recover a database from a media failure, such as control files, archived log files, Flashback logs, RMAN backups, and so on, are part of the flash recovery area.

Allocating sufficient space to the flash recovery area ensures faster, simpler, and automatic recovery of the Oracle database. Flash recovery actually manages the files stored in this location in an intelligent manner to maximize the space utilization and avoid out of space situations to the extent possible. Based on the specified RMAN retention policy, the flash recovery area automatically deletes obsolete backups and archive logs that are no longer required based on that configuration.

Incremental backups let you back up only the changed blocks since the previous backup. When the block change tracking feature is enabled, Oracle Database tracks the physical location of all database changes. RMAN automatically uses the change tracking file to determine which blocks need to be read during an incremental backup and directly accesses that block to back it up. It reduces the amount of time needed for daily backups, saves network bandwidth when backing up over a network, and reduces the backup file storage.

Incremental backups can be used for updating a previously made backup. With incrementally updated backups, you can merge the image copy of a datafile with a RMAN incremental backup, resulting in an updated backup that contains the changes captured by the incremental backup. This eliminates the requirement to make a whole database backup repeatedly. You can make a full database backup once for a given database and use incremental backups subsequently to keep the full back up updated. A backup strategy based on incrementally updated backups can help keep the time required for media recovery of your database to a minimum.

	
See Also:

	
Oracle Database Administrator's Guide

	
Oracle Database Backup and Recovery User's Guide

Mean Time to Recovery

Oracle Database allows for better control over database downtime by letting you specify the mean time to recover (MTTR) from system failures in number of seconds. A user-specified MTTR, coupled with dynamic initialization parameters, helps improve database availability. After you set a time limit for how long a system failure recovery can take, Oracle Database automatically and transparently makes sure that the system can restart in that time frame, regardless of the application activity running on the system at the time of the failure. This provides the fastest possible up time after a system failure.

The smaller the online logfiles are, the more aggressively DBWRs do incremental checkpoints, which means more physical writes. This may adversely affect the run-time performance of the database. Furthermore, if you set FAST_START_MTTR_TARGET, then the smallest logfile size may drive incremental checkpointing more aggressively than needed by the MTTR.

The Logfile Size Advisor determines the optimal smallest logfile size from the current FAST_START_MTTR_TARGET setting and the MTTR statistics. A smallest logfile size is considered optimal if it does not drive incremental checkpointing more aggressively than needed by FAST_START_MTTR_TARGET.

The MTTR Advisor helps you evaluate the effect of different MTTR settings on system performance in terms of extra physical writes. When MTTR advisor is enabled, after the system runs a typical workload, you can query V$MTTR_TARGET_ADVICE to see the ratio of the estimated number of cache writes under other MTTR settings to the number of cache writes under the current MTTR. For instance, a ratio of 1.2 indicates 20% more cache writes.

By looking at the different MTTR settings and their corresponding cache write ratio, you can decide which MTTR value fits your recovery and performance needs. V$MTTR_TARGET_ADVICE also gives the ratio on total physical writes, including direct writes, and the ratio on total I/O, including reads.

	
See Also:

Oracle Database Backup and Recovery User's Guide for information about using the MTTR Advisor

Self Service Error Correction

Oracle Flashback technology lets you view and rewind data back and forth in time. You can query past versions of schema objects, query historical data, perform change analysis, or perform self-service repair to recover from logical corruptions while the database is online.

This revolutionizes recovery by just operating on the changed data. The time it takes to recover the error is equal to the amount of time it took to make the mistake.

	
See Also:

	
"Overview of High Availability Features"

	
"Oracle Flashback Technology"

	
"Overview of Oracle Flashback Query"

Configuration Management

Oracle Enterprise Manager has several powerful configuration management facilities that help detect configuration changes and differences and enforce best practice configuration parameter settings. These capabilities also encompass the underlying hosts and operating systems.

Oracle Enterprise Manager continuously monitors the configuration of all Oracle systems for such things as best practice parameter settings, security set-up, storage and file space conditions, and recommended feature usage. Non-conforming systems are automatically flagged with a detailed explanation of the specific-system configuration issue. For example, Oracle Enterprise Manager advises you to use new functionality such as automatic undo management or locally managed tablespaces if they are not being used. This automatic monitoring of system configurations promotes best practices configuration management, reduces administrator workload and the risk of availability, performance, or security compromises.

Oracle Enterprise Manager also automatically alerts you to new critical patches – such as important security patches – and flags all systems that require that patch. In addition, you can invoke the Oracle Enterprise Manager patch wizard to find out what interim patches are available for that installation.

	
See Also:

Oracle Enterprise Manager Concepts

Workload Management

Oracle Database provides the following resource management features:

	
Overview of the Database Resource Manager

	
Overview of Services

Overview of the Database Resource Manager

The Database Resource Manager provides the ability to prioritize work within the Oracle database system. High priority users get resources, so as to minimize response time for online workers, for example, while lower priority users, such as batch jobs or reports, could take longer. This allows for more granular control over resources and provides features such as automatic consumer group switching, maximum active sessions control, query execution time estimation and undo pool quotas for consumer groups.

You can specify the maximum number of concurrently active sessions for each consumer group. When this limit is reached, the Database Resource Manager queues all subsequent requests and runs them only after existing active sessions complete.

The Database Resource Manager solves many resource allocation problems that an operating system does not manage so well:

	
Excessive overhead. This results from operating system context switching between Oracle database server processes when the number of server processes is high.

	
Inefficient scheduling. The operating system deschedules Oracle database servers while they hold latches, which is inefficient.

	
Inappropriate allocation of resources. The operating system distributes resources equally among all active processes and is unable to prioritize one task over another.

	
Inability to manage database-specific resources.

With the Database Resource Manager, you can do the following:

	
Guarantee certain users a minimum amount of processing resources regardless of the load on the system and the number of users.

	
Distribute available processing resources by allocating percentages of CPU time or I/O requests per second to different users and applications.

For example, in a data warehouse, a higher percentage of CPU may be given to ROLAP (relational on-line analytical processing) applications than to batch jobs. If I/O resource management is enabled with a shared storage configuration, then you could also the maximum number of I/O requests per second that can be issued by this database, or the maximum megabytes of I/O per second.

	
Limit the degree of parallelism of any operation performed by members of a group of users.

	
Create an active session pool.

This pool consists of a specified maximum number of user sessions allowed to be concurrently active within a group of users. Additional sessions beyond the maximum are queued for execution, but you can specify a timeout period, after which queued jobs terminate.

	
Allow automatic switching of users from one group to another group based on administrator-defined criteria.

If a member of a particular group of users creates a session that runs for longer than a specified amount of time or uses a larger amount of I/O (in MB) or a higher number of I/O requests than allocated, then this session can be automatically switched to another group of users with different resource requirements.

	
Prevent the execution of operations that are estimated to run for a longer time than a predefined limit.

	
Note:

Switching users or preventing operations could be based on amount of I/O, as well as amount of CPU time.

	
See Also:

Oracle Database Administrator's Guide for more information about automatic switching

	
Create an undo pool.

This pool consists of the amount of undo space that can be consumed in by a group of users.

	
Configure an instance to use a particular method of allocating resources.

You can dynamically change the method, for example, from a daytime setup to a nighttime setup, without having to shut down and restart the instance.

	
Identify sessions that would block a quiesce from completing.

It is thus possible to balance one user's resource consumption against that of other users and to partition system resources among tasks of varying importance, to achieve overall enterprise goals.

Database Resource Manager Concepts

Resources are allocated to users according to a resource plan specified by the database administrator. The following terms are used in specifying a resource plan:

A resource plan specifies how the resources are to be distributed among various users (resource consumer groups).

Resource consumer groups let you group user sessions together by resource requirements. Resource consumer groups are different from user roles; one database user can have different sessions assigned to different resource consumer groups.

Resource allocation methods determine what policy to use when allocating for any particular resource. Resource allocation methods are used by resource plans and resource consumer groups.

Resource plan directives are a means of assigning consumer groups to particular plans and partitioning resources among consumer groups by specifying parameters for each resource allocation method.

The Database Resource Manager also allows for creation of plans within plans, called subplans. Subplans allow further subdivision of resources among different users of an application.

Levels provide a mechanism to specify distribution of unused resources among available users. Up to eight levels of resource allocation can be specified.

	
See Also:

	
Oracle Database Administrator's Guide for information about using the Database Resource Manager

	
Oracle Database Performance Tuning Guide for information about how to tune resource plans

Overview of Services

Services represent groups of applications or a subset of a large application with common attributes, service level thresholds, and priorities. Application functions can be divided into workloads identified by services. For example, the Oracle E*Business suite can define a service for each module, such as general ledger, accounts receivable, order entry, and so on. Oracle Mail can define services for IMAP processes, postman, garbage collector, monitors, and so on. A service can span one or more instances of an Oracle database or multiple databases in a cluster, and a single instance can support multiple services.

The number of instances offering the service is transparent to the application. Services provide a single system image to manage competing applications, and they allow each workload to be managed as a single unit.

Middle tier applications and clients select a service by specifying the service name as part of the connection in the TNS connect data. For example, data sources for the Web server or the application server are set to route to a service. Using Net Easy*Connection, this connection includes the service name and network address. For example, service:IP.

Server side work, such as the Scheduler, parallel execution, and Oracle Streams Advanced Queuing set the service name as part of the workload definition. For the Scheduler, jobs are assigned to job classes, and job classes run within services. For parallel execution and parallel DML, the query coordinator connects to a service, and the parallel execution processes inherit the service for the duration of the query. For Oracle Streams Advanced Queuing, streams queues are accessed using services. Work running under a service inherits the thresholds and attributes for the service and is measured as part of the service.

The Database Resource Manager binds services to consumer groups and priorities. This lets services be managed in the database in the order of their importance. For example, you can define separate services for high priority online users and lower priority internal reporting applications. Likewise, you can define gold, silver, and bronze services to prioritize the order in which requests are serviced for the same application.

When planning the services for a system, include the priority of each service relative to the other services. In this way, the Database Resource Manager can satisfy the highest priority services first, followed by the next priority services, and so on.

This section includes the following topics:

	
Workload Management with Services

	
High Availability with Services

Workload Management with Services

AWR lets you analyze the performance of workloads using the aggregation dimension for service. AWR automatically maintains response time and CPU consumption metrics, performance and resource statistics wait events, threshold-based alerts, and performance indexes for all services.

Service, module, and action tags identify operations within a service at the server. (MODULE and ACTION are set by the application) End to end monitoring enables aggregation and tracing at service, module, and action levels to identify high load operations. Oracle Enterprise Manager administers the service quality thresholds for response time and CPU consumption, monitors the top services, and provides drill down to the top modules and top actions for each service.

With AWR, performance management by the service aggregation makes sense when monitoring by sessions may not. For example, in systems using connection pools or transaction processing monitors, the sessions are shared, making accountability difficult.

The service, module, and action tags provide major and minor boundaries to discriminate the work and the processing flow. This aggregation level lets you tune groups of SQL that run together (at service, module, and action levels). These statistics can be used to manage service quality, to assess resource consumption, to adjust priorities of services relative to other services, and to point to places where tuning is required. With Oracle Real Application Clusters (Oracle RAC), services can be provisioned on different instances based on their current performance.

Connect time routing and run-time routing algorithms balance the workload across the instances offering a service. The metrics for server-side connection load balancing are extended to include service performance. Connections are shared across instances according to the current service performance. Using service performance for load balancing accommodates nodes of different sizes and workloads with competing priorities. It also prevents sending work to nodes that are hung or failed.

AWR maintains metrics for service performance continuously. These metrics are available when routing run-time requests from mid-tier servers and TP monitors to Oracle RAC. For example, Oracle JDBC connection pools use the service data when routing the run-time requests to instances offering a service.

High Availability with Services

Oracle RAC use services to enable uninterrupted database operations. Services are tightly integrated with the Oracle Clusterware high availability framework that supports Oracle RAC. When a failure occurs, the service continues uninterrupted on the nodes and instances unaffected by the failure. Those elements of the services affected by the failure are recovered fast by Oracle Clusterware, and the recovering sessions are balanced across the surviving system automatically. For planned outages, Oracle RAC provides interfaces to relocate, disable, and enable services. Relocate migrates the service to another instance, and, as an option, the sessions are disconnected. To prevent the Oracle Clusterware system from responding to an unplanned failure that happens during maintenance or repair, the service is disabled on the node doing maintenance at the beginning of the planned outage. It is then enabled at the end of the outage. These service-based operations, in combination with schema pre-compilation (DBMS_SCHEMA_COPY) on a service basis, minimize the downtime for many planned outages. For example, application upgrades, operating system upgrades, hardware upgrades and repairs, Oracle patches approved for rolling upgrade, and parameter changes can be implemented by isolating one or more services at a time.The continuous service built into Oracle RAC is extended to applications and mid-tier servers. When the state of a service changes, (for example, up, down, or not restarting), the new status is notified to interested subscribers through events and callouts. Applications can use this notification to achieve very fast detection of failures, balancing of connection pools following failures, and balancing of connection pools again when the failed components are repaired. For example, when the service at an instance starts, the event and callouts are used to immediately trigger work at the service. When the service at an instance stops, the event is used to interrupt applications using the service at that instance. Using the notification eliminates the client waiting on TCP timeouts. The events are integrated with Oracle JDBC connection pools, Oracle Data Provider for .Net Connection Pools, and Oracle Call Interface, including Transparent Application Failover (TAF).

With Oracle Data Guard, production services are offered at the production site. Other standby sites can offer reporting services when operating in read only mode. Oracle RAC and Data Guard Broker are integrated, so that when running failover, switchover, and protection mode changes, the production services are torn down at the original production site and built up at the new production site. There is a controlled change of command between Oracle Clusterware managing the services locally and Data Guard managing the transition. When the Data Guard transition is complete, Oracle Clusterware resumes management of the high availability operation automatically.

	
See Also:

	
Oracle Real Application Clusters Administration and Deployment Guide

	
Oracle Database Advanced Application Developer's Guide

	
Oracle Database PL/SQL Packages and Types Reference

	
Oracle Database Performance Tuning Guide

	
"Oracle Scheduler"

	
"Overview of the Database Resource Manager"

Oracle Scheduler

Oracle Database includes a feature rich job scheduler. You can schedule jobs to run at a designated date and time (such as every weeknight at 11:00pm), or upon the occurrence of a designated event (such as when inventory drops below a certain level). You can define custom calendars such as the last workday of every fiscal quarter.

You create and manipulate Scheduler objects such as jobs, programs, and schedules with the DBMS_SCHEDULER package or with Oracle Enterprise Manager. Because Scheduler objects are standard database objects, you can control access to them with system and object privileges.

Program objects (or programs) contain metadata about the command that the Scheduler will run, including default values for any arguments. Schedule objects (schedules) contain information about run date and time and recurrence patterns. Job objects (jobs) associate a program with a schedule, and are the principal object that you work with in the Scheduler. You can create multiple jobs that refer to the same program but that run at different schedules. A job can override the default values of program arguments, so multiple jobs can refer to the same program but provide different argument values.

The Scheduler provides comprehensive job logging in Oracle Enterprise Manager and in a variety of views available from SQL*Plus. You can configure a job to raise an event when a specified job state change occurs. Your application can process the event and take appropriate action. For example, the Scheduler can page or send an e-mail to the DBA if a job terminates abnormally.

The Scheduler also includes chains, which are named groups of steps that work together to accomplish a task. Steps in the chain can be a program, subchain or an event, and you specify rules that determine when each step runs and what the dependencies between steps are. An example of a chain is to run programs A and B, and only run program C if programs A and B complete successfully, otherwise run program D.

The Scheduler is integrated with the Database Resource Manager. You can associate Scheduler jobs with resource consumer groups, and you can create Scheduler objects called windows that automatically activate different resource plans at different times. Running jobs can then see a change in the resources that are allocated to them when there is a change in resource plan. A Scheduler job can name a window as its schedule instead of a schedule object. Such a job runs when the named window opens. Additionally, windows can be grouped into window groups, and a job can name a window group as its schedule. Such a job runs whenever any of the windows in the named window group opens.

	
See Also:

Oracle Database Administrator's Guide for a detailed overview of the Scheduler and for information about how to use and administer the Scheduler

What Can the Scheduler Do?

The Scheduler provides complex enterprise scheduling functionality. You can use this functionality to do the following:

	
Schedule Job Execution

	
Time-Based Scheduling

	
Event-Based Scheduling

	
Define Multi-Step Jobs

	
Schedule Job Processes that Model Business Requirements

	
Manage and Monitor Jobs

	
Execute and Manage Jobs in a Clustered Environment

Schedule Job Execution

The most basic capability of a job scheduler is to schedule the execution of a job. The Scheduler supports both time-based and event-based scheduling.

Time-Based Scheduling

Time-based scheduling enables users to specify a fixed date and time (for example, Jan. 23rd 2006 at 1:00 AM), a repeating schedule (for example, every Monday), or a defined rule (for example the last Sunday of every other month or the fourth Thursday in November which defines Thanksgiving).

Users can create new composite schedules with minimum effort by combining existing schedules. For example if a HOLIDAY and WEEKDAY schedule were already defined, a WORKDAY schedule can be easily created by excluding the HOLIDAY schedule from the WEEKDAY schedule.

Companies often use a fiscal calendar as opposed to a regular calendar and thus have the requirement to schedule jobs on the last workday of their fiscal quarter. The Scheduler supports user-defined frequencies which enables users to define not only the last workday of every month but also the last workday of every fiscal quarter.

Event-Based Scheduling

Event-based scheduling as the name implies triggers jobs based on real-time events. Events are defined as any state changes or occurrences in the system such as the arrival of a file. Scheduling based on events enables you to handle situations where a precise time is not known in advance for when you would want a job to execute.

Define Multi-Step Jobs

The Scheduler has support for single or multi-step jobs. Multi-step jobs are defined using a Chain. A Chain consists of multiple steps combined using dependency rules. Since each step represents a task, Chains enable users to specify dependencies between tasks, for example execute task C one hour after the successful completion of task A and task B.

Schedule Job Processes that Model Business Requirements

The Scheduler enables job processing in a way that models your business requirements. It enables limited computing resources to be allocated appropriately among competing jobs, thus aligning job processing with your business needs. Jobs that share common characteristic and behavior can be grouped into larger entities called job classes. You can prioritize among the classes by controlling the resources allocated to each class. This lets you ensure that critical jobs have priority and enough resources to complete. Jobs can also be prioritized within a job class.

The Scheduler also provides the ability to change the prioritization based on a schedule. Because the definition of a critical job can change across time, the Scheduler lets you define different class priorities at different times.

Manage and Monitor Jobs

There are multiple states that a job undergoes from its creation to its completion. All Scheduler activity is logged, and information, such as the status of the job and the time to completion, can be easily tracked. This information is stored in views. It can be queried with Oracle Enterprise Manager or a SQL query. The views provide information about jobs and their execution that can help you schedule and manage your jobs better. For example, you can easily track all jobs that failed for user scott.

In order to facilitate the monitoring of jobs, users can also flag the Scheduler to raise an event if unexpected behavior occurs and indicate the actions that should be taken if the specified event occurs. For example if a job failed an administrator should be notified.

Execute and Manage Jobs in a Clustered Environment

A cluster is a set of database instances that cooperates to perform the same task. Oracle Real Application Clusters provides scalability and reliability without any change to your applications. The Scheduler fully supports execution of jobs in such a clustered environment. To balance the load on your system and for better performance, you can also specify the service where you want a job to run.

	
See Also:

	
Oracle Database Administrator's Guide for more information about transferring files with the DBMS_SCHEDULER package and also the DBMS_FILE_TRANSFER package

	
Oracle Database SQL Language Reference for more information about fixed user database links

15 Backup and Recovery

Backup and recovery procedures protect your database against data loss and reconstruct the data, should loss occur. This chapter introduces concepts fundamental to designing a backup and recovery strategy.

This chapter contains the following topics:

	
Introduction to Backup and Recovery

	
Database Backups

	
Problems Requiring Data Repair

	
Data Repair

	
See Also:

	
"Overview of Database Backup and Recovery Features"

	
Oracle Database Backup and Recovery User's Guide for backup and recovery concepts and tasks

Introduction to Backup and Recovery

A backup is a copy of data. This copy can include important parts of the database such as datafiles, which contain user data, and the server parameter file and control file, which contain configuration information.

The main purpose of a backup is as a safeguard against unexpected data loss and application errors. For example, a disk may fail, causing the loss of datafiles. You can restore a backup of the data and reconstruct the lost data through media recovery. Media recovery refers to the various operations involved in restoring, rolling forward, and rolling back a backup of database files.

You have two ways to perform backup and recovery of an Oracle database: Recovery Manager (RMAN) and user-managed techniques. RMAN is an Oracle Database utility that can back up, restore, and recover database files. It is a feature of Oracle Database and does not require separate installation. You can also use operating system commands for backups and SQL*Plus for media recovery. This technique, also called user-managed backup and recovery, is fully supported by Oracle, although use of RMAN is recommended because it is more robust and simplifies administration.

Oracle Flashback Technology is an alternative to traditional backup and recovery. You can use flashback features to view past states of data, and move data back and forth in time, without restoring data from backups. Instead, you can issue a single command to rewind your entire database, or a single table, to a time in the past. The flashback features of Oracle Database are more efficient and less disruptive than media recovery in most circumstances in which they are applicable.

No matter which backup and recovery tool you use, it is recommended that you configure a flash recovery area to manage your recovery-related files.

Flash Recovery Area

The flash recovery area is an optional Oracle Database-managed directory, file system, or Automatic Storage Management disk group that provides a centralized disk location for backup and recovery files. You can configure the flash recovery area when creating a database with the Database Configuration Assistant or add it later.

Oracle Database can write archived logs to the flash recovery area. RMAN can store backups in the flash recovery are and restore them from the flash recovery area during media recovery. The flash recovery area also acts as a disk cache for tape.

Oracle Database recovery components interact with the flash recovery area to ensure that the database is completely recoverable by using files stored in the recovery area. All files necessary to recover the database following a media failure are part of the flash recovery area.

The following recovery-related files are stored in the flash recovery area:

	
Current control file

	
Online redo logs

	
Archived redo logs

	
Flashback logs

	
Control file autobackups

	
Datafile and control file copies

	
Backup pieces

Oracle Database enables you to define a disk limit, which is the amount of space that the database can use in the flash recovery area. A disk limit enables you to use the remaining disk space for other purposes and not to dedicate a complete disk for the flash recovery area. It does not include any overhead that is not known to Oracle Database. For example, the disk limit does not include the extra size of a file system that is compressed, mirrored, or uses some other redundancy mechanism.

Oracle Database and RMAN create files in the flash recovery area until the space used reaches the recovery area disk limit. When it must make room for new files, Oracle Database deletes files from the flash recovery area that are obsolete, redundant, or backed up to tertiary storage. Oracle Database prints a warning when available disk space is less than 15%, but it continues to fill the disk to 100% of the disk limit.

The bigger the flash recovery area, the more useful it becomes. The recommended disk limit is the sum of the database size, the size of incremental backups, and the size of all archive logs that have not been copied to tape.

	
See Also:

	
Oracle Database Backup and Recovery User's Guide for the rules that define the priority of file deletion, as well as other information about the flash recovery area

	
Oracle Database Administrator's Guide for information about how to set up and administer the flash recovery area

Database Backups

This section describes physical backups. This section includes the following topics:

	
What Are Database Backups?

	
Whole Database and Partial Database Backups

	
Consistent and Inconsistent Backups

	
RMAN and User-Managed Backups

What Are Database Backups?

Database backups can be either physical or logical. Physical backups, which are the primary concern in a backup and recovery strategy, are copies of physical database files. You can make physical backups with either RMAN or operating system utilities.

In contrast, logical backups contain logical data such as tables and stored procedures. You can extract the logical data with an Oracle Database utility such as Data Pump Export and store it in a binary file. Logical backups can supplement physical backups.

The primary purpose of a database backup is for data protection, but you can also create archival database backups for data preservation. For example, suppose you have a business requirement to preserve customer transaction records for a specified period of time. You can use RMAN to create an archival backup of the database, along with the redo necessary to make it consistent, for offsite storage. You can control how long this database backup is exempt from the RMAN retention policies that govern the deletion of obsolete backups.

Whole Database and Partial Database Backups

A whole database backup is a backup of every datafile in the database, plus the control file. Whole database backups are the most common type of backup.

As shown in Figure 15-1, a whole database backups can be taken in either ARCHIVELOG or NOARCHIVELOG mode and is either a consistent backup or an inconsistent backup. Whether a backup is consistent determines whether you must apply redo logs after restoring the backup.

Figure 15-1 Whole Database Backup Options

[image: Description of Figure 15-1 follows]

A partial backup includes a subset of the database, that is, individual tablespaces or datafiles. A tablespace backup is a backup of the datafiles that make up the tablespace. Tablespace backups, whether online or offline, are valid only if the database is operating in ARCHIVELOG mode. The reason is that redo is required to make the restored tablespace consistent with the other tablespaces in the database.

A datafile backup is a backup of a single datafile. Datafile backups, which are not as common as tablespace backups, are valid in ARCHIVELOG databases.

	
See Also:

Oracle Database Backup and Recovery Reference and Oracle Database Utilities for information about logical backups

Consistent and Inconsistent Backups

Database backups are either consistent or inconsistent. This section explains the difference between them.

This section includes the following topics:

	
Overview of Consistent Backups

	
Overview of Inconsistent Backups

Overview of Consistent Backups

In a consistent database backup, all read/write datafiles and control files are checkpointed with the same system change number (SCN). The files in the backup are guaranteed to contain all changes up to the same SCN. Unlike an inconsistent backup, a consistent whole database backup does not require recovery after it is restored.

The only way to make a consistent whole database backup is to shut down the database with the NORMAL, IMMEDIATE, or TRANSACTIONAL options and make the backup while the database is closed. If a database is not shut down consistently, for example, an instance fails or you issue a SHUTDOWN ABORT statement, then the datafiles are always inconsistent—unless the database is a read-only database.

The important point is that you can open the database after restoring a consistent whole database backup without needing recovery because the data is already consistent: no action is required to make the data in the restored datafiles correct. Thus, you can restore a year-old consistent backup of your database without performing media recovery and without the database performing instance recovery.

	
Note:

When you restore a consistent whole database backup without applying redo, you lose all transactions that were made after the backup was taken.

A consistent whole database backup is the only valid backup option for databases operating in NOARCHIVELOG mode. Other backup options require recovery for consistency, which is not possible without archived redo logs.

A consistent whole database backup is also a valid backup option for databases operating in ARCHIVELOG mode. When this type of backup is restored and archived logs are available, you have the option of either opening the database immediately and losing transactions that were made after the backup was made, or applying the archived logs to recover those transactions.

Overview of Inconsistent Backups

In an inconsistent database backup, read/write datafiles and control files are not guaranteed to be checkpointed to the same SCN. The files in the backup can contain data taken from different points in time, which means that changes can be missing. This situation can occur when datafiles are modified while backups are being taken.

If you back up the database when it is open or mounted after an inconsistent shutdown, then the backup is inconsistent. A backup of online datafiles is called an online backup. You must run the database in ARCHIVELOG mode for online backups.

As long as the database runs in ARCHIVELOG mode, and you back up the archived redo logs and datafiles, inconsistent backups can be the foundation for a sound backup and recovery strategy. Inconsistent backups offer superior availability because you do not have to shut down the database to make backups that fully protect the database.

Oracle Database recovery makes inconsistent backups consistent by reading all archived and online redo logs, starting with the earliest SCN in any of the datafile headers, and applying the changes from the logs back into the datafiles. After making an inconsistent backup, always ensure that you have the redo necessary to recover the backup by archiving the unarchived redo logs. If you do not have all archived redo logs produced during the backup, then you cannot recover it because you do not have all the redo necessary to make it consistent.

	
See Also:

Oracle Database Backup and Recovery User's Guide

RMAN and User-Managed Backups

The RMAN BACKUP command generates either image copies or backup sets. An image copy is an exact duplicate of a datafile, control file, or archived log. You can create image copies of physical files with operating system utilities or RMAN, and you can restore them as-is without performing additional processing by using either operating system utilities or RMAN.

	
Note:

Unlike operating system copies, RMAN validates the blocks in the file and records the image copy in the repository.

A backup set is a backup in a proprietary format that consists of one or more physical files called backup pieces. A backup set can contain multiple datafiles. The smallest unit of a backup set is a binary file called a backup piece. Backup sets, which are only created and accessed through RMAN, are the only form in which RMAN can write backups to sequential devices such as tape drives.

This section includes the following topics:

	
Online Backups

	
Control File Backups

	
Archived Redo Log Backups

Online Backups

Because the database continues writing to the file during an online backup, it is possible to back up inconsistent data within a block. For example, assume that either RMAN or an operating system utility reads the block while database writer is in the middle of updating the block. In this case, RMAN or the copy utility could read the new data in the first half of the block and the old data in the second half of the block. The block is fractured, meaning that the data in this block is not consistent.

During an RMAN backup, the Oracle database reads the datafiles, not an operating system utility. The server reads each block and determines whether the block is fractured. If the block is fractured, then the database re-reads the block until it gets a valid block.

When you back up an online datafile with an operating system utility rather than with RMAN, you must use a different method to handle fractured blocks. You must first place the files in backup mode with the ALTER TABLESPACE BEGIN BACKUP statement (to back up an individual tablespace), or the ALTER DATABASE BEGIN BACKUP statement (to back up the entire database). After an online backup is completed, you must run the ALTER TABLESPACE...END BACKUP or ALTER DATABASE END BACKUP statement to take the files out of backup mode.

When updates are made to files in backup mode, additional redo data is logged. This additional data is needed to repair fractured blocks that might be backed up by the operating system utility.

Control File Backups

Backing up the control file is a crucial aspect of backup and recovery. Without a control file, you cannot mount or open the database. You can instruct RMAN to automatically backup the control file whenever you run backup jobs by executing CONFIGURE CONTROLFILE AUTOBACKUP ON. Because the autobackup uses a default filename, RMAN can restore this backup even if the RMAN repository is unavailable. Hence, this feature is extremely useful in a disaster recovery scenario.

You can make manual backups of the control file by using the following methods:

	
The RMAN BACKUP CURRENT CONTROLFILE command makes a binary backup of the control file, as either a backup set or an image copy.

	
The SQL statement ALTER DATABASE BACKUP CONTROLFILE makes a binary backup of the control file.

	
The SQL statement ALTER DATABASE BACKUP CONTROLFILE TO TRACE exports the control file contents to a SQL script file. You can use the script to create a new control file. Trace file backups have one major disadvantage: they contain no records of archived redo logs, and RMAN backups and copies. For this reason, binary backups are preferable.

	
See Also:

	
Oracle Database Backup and Recovery User's Guide

	
Oracle Database Backup and Recovery Reference

Archived Redo Log Backups

You can use archived redo logs to roll a backup forward in time. To recover a backup through the most recent archived redo log, every log generated after the backup was made must be available. In other words, you cannot recover from archived redo log 100 to log 200 if log 173 is missing. If log 173 is missing, then you must halt recovery after applying log 172 and open the database with the RESETLOGS option.

Because archived redo logs are essential to recovery, you should back them up regularly. If you use a media manager, then back up the logs regularly to tape. You can make backups of archived logs by using the following methods:

	
The RMAN BACKUP ARCHIVELOG command

	
The RMAN BACKUP...PLUS ARCHIVELOG command

	
An operating system utility

	
See Also:

	
Oracle Database Backup and Recovery User's Guide

	
Oracle Database Backup and Recovery Reference

Problems Requiring Data Repair

The following failures may require DBA intervention, and may even crash a database instance, but will not generally cause data loss or the need to recover from backup.

	
Instance failures

	
Network failures

	
Failure of Oracle Database background processes

	
Failure of a statement to execute due to, for example, exhaustion of some resource such as space in a datafile

Typically, data recovery is a response to media failures or user errors.

This section includes the following topics:

	
Media Failures

	
User Errors

Media Failures

A media failure occurs when a problem external to the database prevents Oracle Database from reading from or writing to a file during database operations. Typical media failures include physical failures, such as head crashes, and the overwriting, deletion or corruption of a database file. Media failures are less common than user or application errors, but your backup and recovery strategy should prepare for them.

Database operation after a media failure of online redo log files or control files depends on whether the files are protected by multiplexing. When an online redo log or control file is multiplexed, the database maintains multiple copies of the file.

If a media failure damages a disk containing one copy of a multiplexed online redo log, then the database can usually continue to operate without significant interruption. Damage to a nonmultiplexed online redo log causes database operation to halt and may cause permanent loss of data.

Damage to any control file, whether it is multiplexed or not, halts the database when it attempts to read or write to the damaged control file. The database accesses the control file frequently, for example, at every checkpoint and online redo log switch.

Media failures are either read errors or write errors. In a read error, the instance cannot read a datafile and an operating system error is returned to the application, along with an error indicating that the file cannot be found, cannot be opened, or cannot be read. The database continues to run, but the error is returned each time an unsuccessful read occurs. At the next checkpoint, a write error will occur when the database attempts to write to the datafile header as part of the checkpoint process.

The effect of a datafile write error depends upon which tablespace the datafile is in. If the instance cannot write to a datafile in the SYSTEM tablespace, an undo tablespace, or a datafile with active rollback segments, then the database issues an error and shuts down. All files in the SYSTEM tablespace and all datafiles containing undo or rollback segments must be online in order for the database to operate properly.

If the instance cannot write to a datafile other than those in the preceding list, then the result depends on whether the database is running in ARCHIVELOG mode. In ARCHIVELOG mode, the database records an error in the database writer trace file and takes the affected datafile offline. All other datafiles in the tablespace containing this datafile remain online. You can then rectify the underlying problem and restore and recover the affected tablespace.

In NOARCHIVELOG mode, the database writer background process fails and the instance fails. The cause of the problem determines the required response. If the problem is temporary, then crash recovery usually can be performed using the online redo log files. In such situations, the instance can be restarted without resorting to media recovery. If a datafile is damaged, however, then you must restore a consistent backup of the entire database.

User Errors

A user or application may make unwanted changes to your database, such as erroneous updates, deleting the contents of a table, or dropping database objects. An adequate backup and recovery strategy uses the many features of Oracle Database to let you return your database to the desired state, with the minimum possible impact upon database availability, and minimal DBA effort.

	
See Also:

	
Oracle Database Backup and Recovery User's Guide to learn how to perform point-in-time recovery for an entire database

	
Oracle Database Backup and Recovery User's Guide to learn how to perform tablespace point-in-time recovery

	
Oracle Database Backup and Recovery User's Guide to learn how to use the flashback features of Oracle Database

Data Repair

Typically, you have more than one way to solve the problems described in "Problems Requiring Data Repair".

Data Recovery Advisor is an integrated solution that performs much of the diagnosis and repair work for you. Data Recovery Advisor can diagnose failures, suggest both manual and automated repair options, and in some cases automatically repair failures.

To correct problems caused by logical data corruptions or user errors, you can use Oracle Flashback as an alternative to media recovery. Oracle Flashback features enable you to rewind the whole database or a subset of the database to a previous time.

To correct media failures, you can use media recovery. Media recovery is the application of redo or incremental backups to a backup to update it with lost changes. Block media recovery is a more specialized operation that you use when just a few blocks in one or more files have been corrupted.

This section includes the following topics:

	
Data Recovery Advisor

	
Oracle Flashback Technology

	
Media Recovery

	
See Also:

	
Oracle Database Backup and Recovery User's Guide

	
Oracle Database Backup and Recovery Reference

Data Recovery Advisor

Oracle Database includes the Data Recovery Advisor tool, which automatically diagnoses persistent data failures, presents appropriate repair options, and executes them at your request. You can use Data Recovery Advisor either through the Enterprise Manager interface or through the RMAN client.

A checker is a diagnostic operation or procedure registered with the Health Monitor to assess the health of the database or its components. The health assessment is known as a data integrity check and can be invoked reactively or proactively.

Failures are normally detected reactively. A database operation involving corrupted data results in an error, which automatically invokes a data integrity check that searches the database for failures related to the error. If failures are diagnosed, then they are recorded in the Automatic Diagnostic Repository (ADR). You can also invoke a data integrity check proactively through the Health Monitor or by checking for block corruption with the VALIDATE and BACKUP commands in RMAN.

You can use Data Recovery Advisor to generate repair advice and repair failures only after failures have been detected by the database and stored in ADR. Each failure has a status: open or closed. Each failure also has a priority: critical, high, or low. Failures with critical priority require immediate attention because they make the whole database unavailable. Failures with high priority make a database partly unavailable or unrecoverable, and usually have to be repaired in a reasonably short time. Examples of high-priority failures include data block corruptions and non-fatal I/O errors. Low priority failures can wait until more important failures are fixed.

Data Recovery Advisor automatically determines the best repair options and their impact on the database. Typically, Data Recovery Advisor generates both manual and automated repair options for each failure or group of failures. The manual options are categorized as either mandatory or optional.

Before presenting an automated repair option, Data Recovery Advisor validates it with respect to the specific environment, as well as availability of media components required to complete the proposed repair. If you choose an automatic repair, then Oracle Database executes it for you. The Data Recovery Advisor tool verifies the repair success and closes the appropriate failures.

	
See Also:

	
Oracle Database Backup and Recovery User's Guide to learn how to use the Data Recovery Advisor in the RMAN command-line interface

	
Oracle Database 2 Day DBA to learn how to use the Data Recovery Advisor in Enterprise Manager

Oracle Flashback Technology

Oracle Database provides a group of features known as Oracle Flashback Technology that support viewing past states of data, and winding data back and forth in time, without requiring the restore of the database from backup. Depending on the changes to your database, Flashback features can often reverse the unwanted changes more quickly and with less impact on database availability than media recovery.

	
See Also:

"Overview of High Availability Features" for an overview of all Oracle Flashback features, including those not directly related to backup and recovery

This section includes the following topics:

	
Oracle Flashback Database

	
Oracle Flashback Table

	
Oracle Flashback Drop

Oracle Flashback Database

Oracle Flashback Database enables you to rewind an Oracle database to a previous time to correct problems caused by logical data corruptions or user errors.

If a flash recovery area is configured, and if you have enabled the Flashback database functionality, then you can use the RMAN or SQL FLASHBACK DATABASE command to return the database to a prior time. Flashback Database is not true media recovery because it does not involve restoring physical files. Flashback Database is preferable to using the RESTORE and RECOVER commands in some cases because it is faster and easier and does not require restoring the whole database.

When you use Flashback Database, Oracle Database uses past block images to back out changes to the database. During normal database operation, Oracle Database occasionally logs these block images in flashback logs. Flashback logs are written sequentially and are not archived. Oracle Database automatically creates, deletes, and resizes flashback logs in the flash recovery area. You only need to be aware of flashback logs for monitoring performance and deciding how much disk space to allocate to the flash recovery area for flashback logs.

The time it takes to rewind a database with FLASHBACK DATABASE is proportional to how far back in time you must go and the amount of database activity after the target time. The time it would take to restore and recover the whole database could be much longer. The before images in the flashback logs are only used to restore the database to a point in the past, and forward recovery is used to bring the database to a consistent state at some time in the past. Oracle Database returns datafiles to the previous point-in-time, but not auxiliary files, such as initialization parameter files.

Flashback database can also be used to compliment Data Guard, Recovery Advisor, and for synchronizing clone databases.

	
See Also:

	
Oracle Database Backup and Recovery User's Guide for details about using Oracle Flashback Database

	
Oracle Database SQL Language Reference for information about the FLASHBACK DATABASE statement

	
Oracle Data Guard Concepts and Administration for information on how flashback database compliments Oracle Data Guard

	
Oracle Database High Availability Overview for information on further uses of flashback database and restore points

Oracle Flashback Table

Oracle Flashback Table enables you to rewind tables to a specified point in time with a single statement. You can restore table data along with associated indexes, triggers, and constraints, while the database is online, undoing changes to only the specified tables. Oracle Flashback Table does not address physical corruption such as bad disks or data segment and index inconsistencies.

Oracle Flashback Table works like a self-service repair tool. Suppose a user accidentally deletes some important rows from a table and wants to recover the deleted rows. You can restore the table to the time before the deletion and see the missing rows in the table with the FLASHBACK TABLE statement.

You can restore the table and its contents to a certain wall clock time or user-specified system change number (SCN). Use Oracle Flashback Table with Oracle Flashback Version Query and Oracle Flashback Transaction Query to find a time to which to restore the table.

For Oracle Flashback Table to succeed, the system must retain enough undo information to satisfy the specified SCN or timestamp, and the integrity constraints specified on the tables cannot be violated. Also, row movement must be enabled on the table.

The availability of retained undo information for Oracle Flashback Table is controlled by the automatically tuned undo retention period of the system. The undo retention period indicates the amount of time that must pass before old undo information—that is, undo information for committed transactions—can be overwritten. The database collects usage statistics and tunes the undo retention period based on these statistics and on undo tablespace size. You can request a minimum undo retention period by setting the UNDO_RETENTION initialization parameter.

	
Note:

Automatic tuning of undo retention occurs only when the database is in automatic undo management mode (the default). The database may or may not be able to honor your request for a minimum undo retention period. This depends on a number of factors, including the current transaction activity on the system, whether the undo tablespace is autoextending or fixed size, and whether you specified RETENTION GUARANTEE for the undo tablespace.
See Oracle Database Administrator's Guide for more information about the automatic tuning of undo retention.

	
See Also:

	
"Automatic Undo Retention"

	
Oracle Database Backup and Recovery User's Guide for details about using Oracle Flashback Table

	
Oracle Database SQL Language Reference for information on the UNDO_RETENTION initialization parameter and information about the FLASHBACK TABLE statement

Oracle Flashback Drop

Oracle Flashback Drop reverses the effects of a DROP TABLE operation. Flashback Drop is substantially faster than other recovery mechanisms that can be used in this situation, such as point-in-time recovery, and does not lead to any loss of recent transactions or downtime.

When you drop a table, the database does not immediately remove the space associated with the table. Instead, the table is renamed and, along with any associated objects, is placed in the recycle bin of the database. Oracle Database uses the recycle bin to manage dropped database objects until the space they occupied is needed to store new data. The recycle bin is actually a data dictionary table that contains information about the dropped objects.

	
See Also:

Oracle Database Backup and Recovery User's Guide for details about using Oracle Flashback Drop

Media Recovery

To restore a physical backup of a datafile or control file is to reconstruct it and make it available to the Oracle database. To recover a restored datafile is to update it by applying archived redo logs and online redo logs, that is, records of changes made to the database after the backup was taken. If you use RMAN, then you can also recover datafiles with incremental backups, which are backups of a datafile that contain only blocks that changed after a previous incremental backup.

After the necessary files are restored, media recovery must be initiated by the user. Media recovery involves various operations to restore, roll forward, and roll back a backup of database files.

Media recovery applies archived redo logs and online redo logs to recover the datafiles. Whenever a change is made to a datafile, the change is first recorded in the online redo logs. Media recovery selectively applies the changes recorded in the online and archived redo logs to the restored datafile to roll it forward.

Figure 15-2 illustrates the basic principle of backing up, restoring, and performing media recovery on a database.

Figure 15-2 Media Recovery

[image: Description of Figure 15-2 follows]

Unlike media recovery, Oracle Database performs crash recovery and instance recovery automatically after an instance failure. Crash and instance recovery recover a database to its transaction-consistent state just before instance failure. Crash recovery is the recovery of a database in a single-instance configuration or an Oracle Real Application Clusters configuration after all instances have crashed. In contrast, instance recovery is the recovery of one or more failed instances by a live instance in an Oracle Real Application Clusters configuration.

This section includes the following topics:

	
Datafile Media Recovery

	
Block Media Recovery

	
Complete Recovery

	
Database Point-in-Time Recovery

	
RMAN and User-Managed Recovery

Datafile Media Recovery

Datafile media recovery is used to recover from a lost or damaged current datafile or control file. It is also used to recover changes that were lost when a tablespace went offline without the OFFLINE NORMAL option. Both datafile media recovery and instance recovery must repair database integrity. However, these types of recovery differ with respect to their additional features. Media recovery has the following characteristics:

	
Applies changes to restored backups of damaged datafiles.

	
Can use archived logs as well as online logs.

	
Requires explicit invocation by a user.

	
Does not detect media failure (that is, the need to restore a backup) automatically. After a backup has been restored, however, detection of the need to recover it through media recovery is automatic.

	
Has a recovery time governed solely by user policy (for example, frequency of backups, parallel recovery parameters, number of database transactions since the last backup) rather than by Oracle Database internal mechanisms.

The database cannot be opened if any of the online datafiles needs media recovery, nor can a datafile that needs media recovery be brought online until media recovery is complete. The following scenarios necessitate media recovery:

	
You restore a backup of a datafile.

	
You restore a backup control file (even if all datafiles are current).

	
A datafile is taken offline (either by you or automatically by Oracle Database) without the OFFLINE NORMAL option.

Unless the database is not open by any instance, datafile media recovery can only operate on offline datafiles.

Block Media Recovery

Block media recovery is a technique for restoring and recovering individual data blocks while all database files remain online and available. If only a few blocks are corrupt, then block media recovery may be preferable to datafile recovery.

	
See Also:

Oracle Database Backup and Recovery User's Guide to learn how to perform block media recovery

Complete Recovery

Complete recovery applies all of the redo changes contained in the archived and online logs to a backup. Typically, you perform complete media recovery after a media failure damages datafiles or the control file.You can perform complete recovery on a database, tablespace, or datafile.

If you are performing complete recovery on the whole database, then you must:

	
Mount the database

	
Ensure that all datafiles you want to recover are online

	
Restore a backup of the whole database

	
Run the RMAN RECOVER DATABASE command, which will apply the correct redo logs and incremental backups.

If you are performing complete recovery on a tablespace or datafile, then you must:

	
Take the tablespace or datafile to be recovered offline if the database is open

	
Restore a backup of the datafiles you want to recover

	
Apply online or archived redo logs, or a combination of the two

Database Point-in-Time Recovery

Database point-in-time recovery, which is also called incomplete recovery, results in a noncurrent version of the database. In other words, you do not apply all of the redo records generated after the restored backup. Typically, you perform point-in-time recovery of the whole database in the following situations:

	
Media failure destroys some or all of the online redo logs.

	
A user error causes data loss, for example, a user inadvertently drops a table.

	
You cannot perform complete recovery because an archived redo log is missing.

	
Complete recovery is possible with a backup control file. If using RMAN it is seamless and automatic.

To perform database point-in-time recovery, you must restore all datafiles from backups created prior to the time to which you want to recover and then open the database with the RESETLOGS option when recovery completes. The RESETLOGS operation creates a new incarnation of the database—in other words, a database with a new stream of log sequence numbers starting with log sequence 1.

Before using the OPEN RESETLOGS command to open the database in read/write mode after an incomplete recovery, it is a good idea to first open the database in read-only mode, and inspect the data to make sure that the database was recovered to the correct point. If the recovery was done to the wrong point, then it is easier to re-run the recovery if no OPEN RESETLOGS has been done. If you open the database read-only and discover that not enough recovery was done, then just run the recovery again to the desired time. If you discover that too much recovery was done, then you must restore the database again and re-run the recovery.

	
Note:

Flashback Database is an alternative to database point-in-time recovery.

	
See Also:

"Oracle Flashback Database"

Tablespace Point-in-Time Recovery

The tablespace point-in-time recovery (TSPITR) feature lets you recover one or more tablespaces to a point in time older than the rest of the database. TSPITR is most useful when you want to:

	
Recover from an erroneous drop or truncate table operation

	
Recover a table that has become logically corrupted

	
Recover from an incorrect batch job or other DML statement that has affected only a subset of the database

	
Recover one independent schema to a point different from the rest of a physical database (in cases where there are multiple independent schemas in separate tablespaces of one physical database)

	
Recover a tablespace on a very large database (VLDB) rather than restore the whole database from a backup and perform a complete database roll-forward

TSPITR has the following limitations:

	
You cannot use it on the SYSTEM tablespace, an UNDO tablespace, or any tablespace that contains rollback segments.

	
Tablespaces that contain interdependent data must be recovered together. For example, if two tables are in separate tablespaces and have a foreign key relationship, then both tablespaces must be recovered at the same time; you cannot recover just one of them. Oracle Database can enforce this limitation when it detects data relationships that have been explicitly declared with database constraints. There could be other data relationships that are not declared with database constraints. Oracle Database cannot detect these relationships, so the DBA must be careful to always restore a consistent set of tablespaces.

	
See Also:

Oracle Database Backup and Recovery User's Guide and Oracle Database Backup and Recovery Reference for more information on TSPITR

RMAN and User-Managed Recovery

You have a choice between two basic techniques for recovering physical files. You can:

	
Use the RMAN utility to restore and recover the database

	
Restore backups by means of operating system utilities, and then recover them by running the SQL*Plus RECOVER command

Whichever method you choose, you can recover a database, tablespace, or datafile. Before performing media recovery, you must determine which datafiles to recover. Often you can use the fixed view V$RECOVER_FILE. This view lists all files that require recovery and explains the error that necessitates recovery.

	
See Also:

Oracle Database Backup and Recovery Reference for more about using V$ views in a recovery scenario

RMAN Restore and Recovery

The basic RMAN recovery commands are RESTORE and RECOVER. Use RESTORE to restore datafiles from backup sets or from image copies on disk, either to their current location or to a new location. You can also restore backup sets containing archived redo logs, but this is usually unnecessary, because RMAN automatically restores the archived logs that are needed for recovery and deletes them after the recovery is finished. Use the RMAN RECOVER command to perform media recovery and apply archived logs or incremental backups.

	
See Also:

Oracle Database Backup and Recovery Reference for details about how to restore and recover using RMAN

User-Managed Restore and Recovery

If you do not use RMAN, then you can restore backups with operating system utilities and then run the SQL*Plus RECOVER command to recover the database.

	
See Also:

Oracle Database Backup and Recovery User's Guide for details about how to restore and recover with operating system utilities and SQL*Plus

16 Business Intelligence

This chapter describes some of the basic ideas in business intelligence.

This chapter contains the following topics:

	
Introduction to Data Warehousing and Business Intelligence

	
Overview of Extraction, Transformation, and Loading (ETL)

	
Overview of Materialized Views for Data Warehouses

	
Overview of Bitmap Indexes in Data Warehousing

	
Overview of Parallel Execution

	
Overview of Analytic SQL

	
Overview of OLAP Capabilities

	
Overview of Data Mining

Introduction to Data Warehousing and Business Intelligence

A data warehouse is a relational database that is designed for query and analysis rather than for transaction processing. It usually contains historical data derived from transaction data, but it can include data from other sources. It separates analysis workload from transaction workload and enables an organization to consolidate data from several sources.

In addition to a relational database, a data warehouse environment includes an extraction, transportation, transformation, and loading (ETL) solution, an online analytical processing (OLAP) engine, Oracle Warehouse Builder, client analysis tools, and other applications that manage the process of gathering data and delivering it to business users.

This section includes the following topics:

	
Characteristics of Data Warehousing

	
Differences Between Data Warehouse and OLTP Systems

	
Data Warehouse Architecture

Characteristics of Data Warehousing

Data warehouses all share the following basic characteristics:

	
Subject Oriented

	
Integrated

	
Nonvolatile

	
Time Variant

Subject Oriented

Data warehouses are designed to help you analyze data. For example, to learn more about your company's sales data, you can build a warehouse that concentrates on sales. Using this warehouse, you can answer questions like "Who was our best customer for this item last year?" This ability to define a data warehouse by subject matter, sales in this case, makes the data warehouse subject oriented.

Integrated

Integration is closely related to subject orientation. Data warehouses must put data from disparate sources into a consistent format. They must resolve such problems as naming conflicts and inconsistencies among units of measure. When they achieve this goal, they are said to be integrated.

Nonvolatile

Nonvolatile means that, once entered into the warehouse, data should not change. This is logical because the purpose of a warehouse is to enable you to analyze what has occurred.

Time Variant

In order to discover trends in business, analysts need large amounts of data. This is very much in contrast to online transaction processing (OLTP) systems, where performance requirements demand that historical data be moved to an archive. A data warehouse's focus on change over time is what is meant by the term time variant.

Typically, data flows from one or more online transaction processing (OLTP) databases into a data warehouse on a monthly, weekly, or daily basis. The data is normally processed in a staging file before being added to the data warehouse. Data warehouses commonly range in size from tens of gigabytes to a few terabytes. Usually, the vast majority of the data is stored in a few very large fact tables.

Differences Between Data Warehouse and OLTP Systems

Data warehouses and OLTP systems have very different requirements. Here are some examples of differences between typical data warehouses and OLTP systems:

	
Workload

	
Data Modifications

	
Schema Design

	
Typical Operations

	
Historical Data

Workload

Data warehouses are designed to accommodate ad hoc queries. You might not know the workload of your data warehouse in advance, so a data warehouse should be optimized to perform well for a wide variety of possible query operations.

OLTP systems support only predefined operations. Your applications might be specifically tuned or designed to support only these operations.

Data Modifications

A data warehouse is updated on a regular basis by the ETL process (run nightly or weekly) using bulk data modification techniques. The end users of a data warehouse do not directly update the data warehouse.

In OLTP systems, end users routinely issue individual data modification statements to the database. The OLTP database is always up to date, and reflects the current state of each business transaction.

Schema Design

Data warehouses often use denormalized or partially denormalized schemas (such as a star schema) to optimize query performance.

OLTP systems often use fully normalized schemas to optimize update/insert/delete performance, and to guarantee data consistency.

Typical Operations

A typical data warehouse query scans thousands or millions of rows.For example, "Find the total sales for all customers last month."

A typical OLTP operation accesses only a handful of records. For example, "Retrieve the current order for this customer."

Historical Data

Data warehouses usually store many months or years of data. This is to support historical analysis.

OLTP systems usually store data from only a few weeks or months. The OLTP system stores only historical data as needed to successfully meet the requirements of the current transaction.

Data Warehouse Architecture

Data warehouses and their architectures vary depending upon the specifics of an organization's situation. Three common architectures are:

	
Data Warehouse Architecture (Basic)

	
Data Warehouse Architecture (with a Staging Area)

	
Data Warehouse Architecture (with a Staging Area and Data Marts)

Data Warehouse Architecture (Basic)

Figure 16-1 shows a simple architecture for a data warehouse. End users directly access data derived from several source systems through the data warehouse.

Figure 16-1 Architecture of a Data Warehouse

[image: Description of Figure 16-1 follows]

In Figure 16-1, the metadata and raw data of a traditional OLTP system is present, as is an additional type of data, summary data. Summaries are very valuable in data warehouses because they pre-compute long operations in advance. For example, a typical data warehouse query is to retrieve something like August sales.

Summaries in Oracle Database are called materialized views.

Data Warehouse Architecture (with a Staging Area)

As shown in Figure 16-1, you must clean and process your operational data before putting it into the warehouse. You can do this programmatically, although most data warehouses use a staging area instead. A staging area simplifies building summaries and general warehouse management. Figure 16-2 illustrates this typical architecture.

Figure 16-2 Architecture of a Data Warehouse with a Staging Area

[image: Description of Figure 16-2 follows]

Data Warehouse Architecture (with a Staging Area and Data Marts)

Although the architecture in Figure 16-2 is quite common, you might want to customize your warehouse's architecture for different groups within your organization.

Do this by adding data marts, which are systems designed for a particular line of business. Figure 16-3 illustrates an example where purchasing, sales, and inventories are separated. In this example, a financial analyst might want to analyze historical data for purchases and sales.

Figure 16-3 Architecture of a Data Warehouse with a Staging Area and Data Marts

[image: Description of Figure 16-3 follows]

	
See Also:

Oracle Database Data Warehousing Guide

Overview of Extraction, Transformation, and Loading (ETL)

You must load your data warehouse regularly so that it can serve its purpose of facilitating business analysis. To perform this operation, data from one or more operational systems must be extracted and copied into the warehouse. The process of extracting data from source systems and bringing it into the data warehouse is commonly called ETL, which stands for extraction, transformation, and loading. The acronym ETL is perhaps too simplistic, because it omits the transportation phase and implies that each of the other phases of the process is distinct. The entire process, including data loading, is referred to as ETL. You should understand that ETL refers to a broad process, and not three well-defined steps.

The methodology and tasks of ETL have been well known for many years, and are not necessarily unique to data warehouse environments: a wide variety of proprietary applications and database systems are the IT backbone of any enterprise. Data has to be shared between applications or systems, trying to integrate them, giving at least two applications the same picture of the world. This data sharing was mostly addressed by mechanisms similar to what is now called ETL.

Data warehouse environments face the same challenge with the additional burden that they not only have to exchange but to integrate, rearrange and consolidate data over many systems, thereby providing a new unified information base for business intelligence. Additionally, the data volume in data warehouse environments tends to be very large.

What happens during the ETL process? During extraction, the desired data is identified and extracted from many different sources, including database systems and applications. Very often, it is not possible to identify the specific subset of interest, therefore more data than necessary has to be extracted, so the identification of the relevant data will be done at a later point in time. Depending on the source system's capabilities (for example, operating system resources), some transformations may take place during this extraction process. The size of the extracted data varies from hundreds of kilobytes up to gigabytes, depending on the source system and the business situation. The same is true for the time delta between two (logically) identical extractions: the time span may vary between days/hours and minutes to near real-time. Web server log files for example can easily become hundreds of megabytes in a very short period of time.

After extracting data, it has to be physically transported to the target system or an intermediate system for further processing. Depending on the chosen way of transportation, some transformations can be done during this process, too. For example, a SQL statement which directly accesses a remote target through a gateway can concatenate two columns as part of the SELECT statement.

If any errors occur during loading, an error is logged and the operation can continue.

This section includes the following topics:

	
Transportable Tablespaces

	
Table Functions

	
External Tables

	
Table Compression

	
Change Data Capture

Transportable Tablespaces

Transportable tablespaces are the fastest way for moving large volumes of data between two Oracle databases. You can transport tablespaces between different computer architectures and operating systems.

Previously, the most scalable data transportation mechanisms relied on moving flat files containing raw data. These mechanisms required that data be unloaded or exported into files from the source database. Then, after transportation, these files were loaded or imported into the target database. Transportable tablespaces entirely bypass the unload and reload steps.

Using transportable tablespaces, Oracle Database data files (containing table data, indexes, and almost every other Oracle database object) can be directly transported from one database to another. Furthermore, like import and export, transportable tablespaces provide a mechanism for transporting metadata in addition to transporting data.

The most common applications of transportable tablespaces in data warehouses are in moving data from a staging database to a data warehouse, or in moving data from a data warehouse to a data mart.

Table Functions

Table functions provide the support for pipelined and parallel execution of transformations implemented in PL/SQL, C, or Java. Scenarios as mentioned earlier can be done without requiring the use of intermediate staging tables, which interrupt the data flow through various transformations steps.

A table function is defined as a function that can produce a set of rows as output. Additionally, table functions can take a set of rows as input. Table functions extend database functionality by allowing:

	
Multiple rows to be returned from a function

	
Results of SQL subqueries (that select multiple rows) to be passed directly to functions

	
Functions take cursors as input

	
Functions can be parallelized

	
Returning result sets incrementally for further processing as soon as they are created. This is called incremental pipelining

Table functions can be defined in PL/SQL using a native PL/SQL interface, or in Java or C using the Oracle Data Cartridge Interface (ODCI).

External Tables

External tables let you use external data as a virtual table that can be queried and joined directly and in parallel without requiring the external data to be first loaded in the database. You can then use SQL, PL/SQL, and Java to access the external data.

External tables enable the pipelining of the loading phase with the transformation phase. The transformation process can be merged with the loading process without any interruption of the data streaming. It is no longer necessary to stage the data inside the database for further processing inside the database, such as comparison or transformation. For example, the conversion functionality of a conventional load can be used for a direct-path INSERT AS SELECT statement in conjunction with the SELECT from an external table. Figure 16-4 illustrates a typical example of pipelining.

Figure 16-4 Pipelined Data Transformation

[image: Description of Figure 16-4 follows]

The main difference between external tables and regular tables is that externally organized tables are read-only. No DML operations (UPDATE/INSERT/DELETE) are possible and no indexes can be created on them.

External tables are a complement to SQL*Loader and are especially useful for environments where the complete external source has to be joined with existing database objects and transformed in a complex manner, or where the external data volume is large and used only once. SQL*Loader, on the other hand, might still be the better choice for loading of data where additional indexing of the staging table is necessary. This is true for operations where the data is used in independent complex transformations or the data is only partially used in further processing.

Table Compression

You can save disk space by compressing heap-organized tables. A typical type of heap-organized table you should consider for table compression is partitioned tables.

To reduce disk use and memory use (specifically, the buffer cache), you can store tables and partitioned tables in a compressed format inside the database. This often leads to a better scaleup for read-only operations. Table compression can also speed up query execution. There is, however, a slight cost in CPU overhead.

Table compression should be used with highly redundant data, such as tables with many foreign keys. You should avoid compressing tables with much update or other DML activity. Although compressed tables or partitions are updatable, there is some overhead in updating these tables, and high update activity may work against compression by causing some space to be wasted.

	
See Also:

"Table Compression"

Change Data Capture

Change Data Capture efficiently identifies and captures data that has been added to, updated, or removed from Oracle Database relational tables, and makes the change data available for use by applications.

Oftentimes, data warehousing involves the extraction and transportation of relational data from one or more source databases into the data warehouse for analysis. Change Data Capture quickly identifies and processes only the data that has changed, not entire tables, and makes the change data available for further use.

Change Data Capture does not depend on intermediate flat files to stage the data outside of the relational database. It captures the change data resulting from INSERT, UPDATE, and DELETE operations made to user tables. The change data is then stored in a database object called a change table, and the change data is made available to applications in a controlled way.

	
See Also:

Oracle Database Data Warehousing Guide

Overview of Materialized Views for Data Warehouses

One technique employed in data warehouses to improve performance is the creation of summaries. Summaries are special kinds of aggregate views that improve query execution times by precalculating expensive joins and aggregation operations prior to execution and storing the results in a table in the database. For example, you can create a table to contain the sums of sales by region and by product.

The summaries or aggregates that are referred to in this book and in literature on data warehousing are created in Oracle Database using a schema object called a materialized view. Materialized views can perform a number of roles, such as improving query performance or providing replicated data.

Previously, organizations using summaries spent a significant amount of time and effort creating summaries manually, identifying which summaries to create, indexing the summaries, updating them, and advising their users on which ones to use. Summary management eased the workload of the database administrator and meant that the user no longer needed to be aware of the summaries that had been defined. The database administrator creates one or more materialized views, which are the equivalent of a summary. The end user queries the tables and views at the detail data level.

The query rewrite mechanism in Oracle Database automatically rewrites the SQL query to use the summary tables. This mechanism reduces response time for returning results from the query. Materialized views within the data warehouse are transparent to the end user or to the database application.

Although materialized views are usually accessed through the query rewrite mechanism, an end user or database application can construct queries that directly access the summaries. However, serious consideration should be given to whether users should be allowed to do this because any change to the summaries will affect the queries that reference them.

To help you select from among the many possible materialized views in your schema, Oracle Database provides a collection of materialized view analysis and advisor functions and procedures in the DBMS_ADVISOR package. Collectively, these functions are called the SQL Access Advisor, and they are callable from any PL/SQL program. The SQL Access Advisor recommends materialized views from a hypothetical or user-defined workload or one obtained from the SQL cache. You can run the SQL Access Advisor from Oracle Enterprise Manager or by invoking the DBMS_ADVISOR package.

	
See Also:

Oracle Database Performance Tuning Guide for information about materialized views and the SQL Access Advisor

Overview of Bitmap Indexes in Data Warehousing

Bitmap indexes are widely used in data warehousing environments. The environments typically have large amounts of data and ad hoc queries, but a low level of concurrent DML transactions. For such applications, bitmap indexing provides:

	
Reduced response time for large classes of ad hoc queries

	
Reduced storage requirements compared to other indexing techniques

	
Dramatic performance gains even on hardware with a relatively small number of CPUs or a small amount of memory

	
Efficient maintenance during parallel DML and loads

Fully indexing a large table with a traditional B-tree index can be prohibitively expensive in terms of space because the indexes can be several times larger than the data in the table. Bitmap indexes are typically only a fraction of the size of the indexed data in the table.

An index provides pointers to the rows in a table that contain a given key value. A regular index stores a list of rowids for each key corresponding to the rows with that key value. In a bitmap index, a bitmap for each key value replaces a list of rowids.

Each bit in the bitmap corresponds to a possible rowid, and if the bit is set, it means that the row with the corresponding rowid contains the key value. A mapping function converts the bit position to an actual rowid, so that the bitmap index provides the same functionality as a regular index. If the number of different key values is small, bitmap indexes save space.

Bitmap indexes are most effective for queries that contain multiple conditions in the WHERE clause. Rows that satisfy some, but not all, conditions are filtered out before the table itself is accessed. This improves response time, often dramatically. A good candidate for a bitmap index would be a gender column due to the low number of possible values.

Parallel query and parallel DML work with bitmap indexes as they do with traditional indexes. Bitmap indexing also supports parallel create indexes and concatenated indexes.

	
See Also:

Oracle Database Data Warehousing Guide

Overview of Parallel Execution

When Oracle Database runs SQL statements in parallel, multiple processes work together simultaneously to run a single SQL statement. By dividing the work necessary to run a statement among multiple processes, Oracle Database can run the statement more quickly than if only a single process ran it. This is called parallel execution or parallel processing.

Parallel execution dramatically reduces response time for data-intensive operations on large databases typically associated with decision support systems (DSS) and data warehouses. Symmetric multiprocessing (SMP), clustered systems, and large-scale cluster systems gain the largest performance benefits from parallel execution because statement processing can be split up among many CPUs on a single Oracle Database system. You can also implement parallel execution on certain types of online transaction processing (OLTP) and hybrid systems.

Parallelism is the idea of breaking down a task so that, instead of one process doing all of the work in a query, many processes do part of the work at the same time. An example of this is when 12 processes handle 12 different months in a year instead of one process handling all 12 months by itself. The improvement in performance can be quite high.

Parallel execution helps systems scale in performance by making optimal use of hardware resources. If your system's CPUs and disk controllers are already heavily loaded, you must alleviate the system's load or increase these hardware resources before using parallel execution to improve performance.

In Oracle RAC environments, parallel execution is controlled by the service placement of a particular service. Specifically, parallel processes run on the nodes on which you have configured the service. The default behavior is for Oracle Database to run the parallel process only on the instance that offers the service that you used to connect to the database. This does not affect other parallel operations such as parallel recovery or the processing of GV$queries.

Some tasks are not well-suited for parallel execution. For example, many OLTP operations are relatively fast, completing in mere seconds or fractions of seconds, and the overhead of utilizing parallel execution would be large, relative to the overall execution time.

	
See Also:

Oracle Database Data Warehousing Guide for specific information on tuning your parameter files and database to take full advantage of parallel execution and the Oracle Real Application Clusters Administration and Deployment Guide for considerations regarding parallel execution in Oracle RAC environments

How Parallel Execution Works

When parallel execution is not used, a single server process performs all necessary processing for the sequential execution of a SQL statement. For example, to perform a full table scan (such as SELECT * FROM emp), one process performs the entire operation, as illustrated in Figure 16-5.

Figure 16-5 Serial Full Table Scan

[image: Description of Figure 16-5 follows]

Figure 16-6 illustrates several parallel execution servers performing a scan of the table emp. The table is divided dynamically (dynamic partitioning) into load units called granules and each granule is read by a single parallel execution server. The granules are generated by the coordinator. Each granule is a range of physical blocks of the table emp. The mapping of granules to execution servers is not static, but is determined at execution time. When an execution server finishes reading the rows of the table emp corresponding to a granule, it gets another granule from the coordinator if there are any granules remaining. This continues until all granules are exhausted, in other words, until the entire table emp has been read. The parallel execution servers send results back to the parallel execution coordinator, which assembles the pieces into the desired full table scan.

Figure 16-6 Parallel Full Table Scan

[image: Description of Figure 16-6 follows]

Given a query plan for a SQL query, the parallel execution coordinator breaks down each operator in a SQL query into parallel pieces, runs them in the right order as specified in the query, and then integrates the partial results produced by the parallel execution servers executing the operators. The number of parallel execution servers assigned to a single operation is the degree of parallelism (DOP) for an operation. Multiple operations within the same SQL statement all have the same degree of parallelism.

	
See Also:

Oracle Database Data Warehousing Guide for information on granules as well as how Oracle Database divides work and handles DOP in multiuser environments

Overview of Analytic SQL

Oracle has introduced many SQL operations for performing analytic operations in the database. These operations include ranking, moving averages, cumulative sums, ratio-to-reports, and period-over-period comparisons. Although some of these calculations were previously possible using SQL, this syntax offers much better performance.

This section discusses:

	
SQL for Aggregation

	
SQL for Analysis

	
SQL for Modeling

SQL for Aggregation

Aggregation is a fundamental part of data warehousing. To improve aggregation performance in your warehouse, Oracle Database provides extensions to the GROUP BY clause to make querying and reporting easier and faster. Some of these extensions enable you to:

	
Aggregate at increasing levels of aggregation, from the most detailed up to a grand total

	
Calculate all possible combinations of aggregations with a single statement

	
Generate the information needed in cross-tabulation reports with a single query

These extension let you specify exactly the groupings of interest in the GROUP BY clause. This allows efficient analysis across multiple dimensions without performing a CUBE operation. Computing a full cube creates a heavy processing load, so replacing cubes with grouping sets can significantly increase performance. CUBE, ROLLUP, and grouping sets produce a single result set that is equivalent to a UNION ALL of differently grouped rows.

To enhance performance, these extensions can be parallelized: multiple processes can simultaneously run all of these statements. These capabilities make aggregate calculations more efficient, thereby enhancing database performance, and scalability.

One of the key concepts in decision support systems is multidimensional analysis: examining the enterprise from all necessary combinations of dimensions. The term dimension is used to mean any category used in specifying questions. Among the most commonly specified dimensions are time, geography, product, department, and distribution channel, but the potential dimensions are as endless as the varieties of enterprise activity. The events or entities associated with a particular set of dimension values are usually referred to as facts. The facts might be sales in units or local currency, profits, customer counts, production volumes, or anything else worth tracking.

Here are some examples of multidimensional requests:

	
Show total sales across all products at increasing aggregation levels for a geography dimension, from state to country to region, for 1999 and 2000.

	
Create a cross-tabular analysis of our operations showing expenses by territory in South America for 1999 and 2000. Include all possible subtotals.

	
List the top 10 sales representatives in Asia according to 2000 sales revenue for automotive products, and rank their commissions.

All these requests involve multiple dimensions. Many multidimensional questions require aggregated data and comparisons of data sets, often across time, geography or budgets.

	
See Also:

Oracle Database Data Warehousing Guide

SQL for Analysis

Oracle has advanced SQL analytical processing capabilities using a family of analytic SQL functions. These analytic functions enable you to calculate:

	
Rankings and percentiles

	
Moving window calculations

	
Lag/lead analysis

	
First/last analysis

	
Linear regression statistics

Ranking functions include cumulative distributions, percent rank, and N-tiles. Moving window calculations allow you to find moving and cumulative aggregations, such as sums and averages. Lag/lead analysis enables direct inter-row references so you can calculate period-to-period changes. First/last analysis enables you to find the first or last value in an ordered group.

Other features include the CASE expression. CASE expressions provide if-then logic useful in many situations.

To enhance performance, analytic functions can be parallelized: multiple processes can simultaneously run all of these statements. These capabilities make calculations easier and more efficient, thereby enhancing database performance, scalability, and simplicity.

	
See Also:

Oracle Database Data Warehousing Guide

SQL for Modeling

The Oracle MODEL clause brings a new level of power and flexibility to SQL calculations. With the MODEL clause, you can create a multidimensional array from query results and then apply formulas to this array to calculate new values. The formulas can range from basic arithmetic to simultaneous equations using recursion. For some applications, the MODEL clause can replace PC-based spreadsheets. Models in SQL leverage the Oracle Database strengths in scalability, manageability, collaboration, and security. The core query engine can work with unlimited quantities of data. By defining and executing models within the database, users avoid transferring large datasets to and from separate modeling environments. Models can be shared easily across workgroups, ensuring that calculations are consistent for all applications. Just as models can be shared, access can also be controlled precisely with the Oracle Database security features. With its rich functionality, the MODEL clause can enhance all types of applications.

	
See Also:

Oracle Database Data Warehousing Guide

Overview of OLAP Capabilities

Oracle online analytical processing (OLAP) adds power to your SQL applications by providing extensive analytic content and fast query response times. A SQL query interface enables any application to query cubes and dimensions without any knowledge of OLAP.

The OLAP option automatically generates a set of relational views on cubes, dimensions, and hierarchies. SQL applications query these views to display the information-rich contents of these objects to analysts and decision makers. You can also create custom views that comply with the structure expected by your applications, using the system-generated views like base tables.

Analysts can choose any SQL query and analysis tool for selecting, viewing, and analyzing the data. You can use your favorite tool or application, or use one of the tools supplied with Oracle Database, such as Oracle Application Express and Business Intelligence Publisher.

	
See Also:

Oracle OLAP User's Guide

This section includes the following topics:

	
Full Integration of Multidimensional Technology

	
Ease of Application Development

	
Ease of Administration

	
Security

	
Unmatched Performance and Scalability

	
Reduced Costs

Full Integration of Multidimensional Technology

By integrating multidimensional objects and analytics into the database, Oracle provides the best of both worlds: the power of multidimensional analysis along with the reliability, availability, security, and scalability of Oracle Database.

Oracle OLAP is fully integrated into Oracle Database. At a technical level, this means:

	
The OLAP engine runs within the kernel of Oracle Database

	
Dimensional objects are stored in Oracle Database in their native multidimensional format

	
Cubes and other dimensional objects are first class data objects represented in the Oracle data dictionary

	
Data security is administered in the standard way, by granting and revoking privileges to Oracle Database users and roles

	
Applications can query dimensional objects using SQL

The benefits to your organization are significant. Oracle OLAP offers the power of simplicity. One database, standard administration and security, standard interfaces and development tools.

Ease of Application Development

Oracle OLAP makes it easy to enrich your database and your applications with interesting analytic content. Native SQL access to Oracle multidimensional objects and calculations greatly eases the task of developing dashboards, reports, business intelligence, and analytical applications of any type compared to systems that offer proprietary interfaces. Moreover, SQL access means that the power of Oracle OLAP analytics can be used by any database application, not just by the traditional limited collection of OLAP applications.

Ease of Administration

Because Oracle OLAP is completely embedded in Oracle Database, there is no administration learning curve as is typically associated with standalone OLAP servers. You can leverage your existing DBA staff, rather than invest in specialized administration skills.

One major administrative advantage of Oracle's embedded OLAP technology is automated cube maintenance. With standalone OLAP servers, the burden of refreshing the cube is left entirely to the administrator. This can be a complex and potentially error-prone job. The administrator must create procedures to extract the changed data from the relational source, move the data from the source system to the system running the standalone OLAP server, load and rebuild the cube. The administrator must take responsibility for the security of the changed values during this process, as well.

With Oracle OLAP, in contrast, cube refresh is handled entirely by Oracle Database. The database tracks the staleness of the dimensional objects, automatically keeps track of the deltas in the source tables, and automatically applies only the changed values during the refresh process. The administrator simply schedules the refresh at appropriate intervals, and Oracle Database takes care of everything else.

Security

With Oracle OLAP, standard Oracle Database security features are used to secure your multidimensional data.

In contrast, with a standalone OLAP server, administrators must manage security twice: once on the relational source system and again on the OLAP server system. Additionally, they must manage the security of data in transit from the relational system to the standalone OLAP system.

Unmatched Performance and Scalability

Business intelligence and analytical applications are dominated by actions such as drilling up and down hierarchies and comparing aggregate values such as period-over-period, share of parent, projections onto future time periods, and a myriad of similar calculations. Often these actions are essentially random across the entire space of potential hierarchical aggregations. Because Oracle OLAP pre-computes or efficiently computes on the fly all aggregates in the defined multidimensional space, it delivers unmatched performance for typical business intelligence applications.

Oracle OLAP queries take advantage of Oracle shared cursors, dramatically reducing memory requirements and increasing performance.

When Oracle Database is installed with Oracle Real Application Clusters (Oracle RAC), OLAP applications receive the same benefits in performance, scalability, failover, and load balancing as any other application.

Reduced Costs

All these features add up to reduced costs. Administrative costs are reduced because existing personnel skills can be leveraged. Moreover, Oracle Database can manage the refresh of dimensional objects, a complex task left to administrators in other systems. Standard security reduces administration costs as well. Application development costs are reduced because the availability of a large pool of application developers who are SQL knowledgeable, and a large collection of SQL-based development tools means applications can be developed and deployed more quickly. Any SQL-based development tool can take advantage of Oracle OLAP. Hardware costs are reduced by Oracle OLAP's efficient management of aggregations, use of shared cursors, and Oracle RAC, which enables highly scalable systems to be built from low-cost commodity components.

Overview of Data Mining

Oracle Data Mining embeds data mining in the Oracle Database. The data never leaves the database — data preparation, model building, and model scoring are all performed within the database. Since the data never leaves the database, there are significant advantages in scalability, manageability, and user access. Thus, the Oracle Database provides an infrastructure for application developers to integrate data mining seamlessly with database applications. Data mining is often used in applications such as call centers, ATMs, ERM, and business planning.

As of Oracle Database 11g, Oracle Data Mining models are implemented as data dictionary objects in the SYS schema. A set of new data dictionary views present mining models and their properties. New system and object privileges control access to mining model objects.

Support of Generalized Linear Models (GLM) is new for Oracle Data Mining 11g. Oracle Data Mining supports two forms of GLM, one for classification and one for regression:

	
Binary Logistic Regression, used for classification, predicts the probability for each row of scoring data. The dependent variable (target) is binary and categorical. For example, demographic attributes might be used to predict whether customer response to a promotion is low or high.

	
Multivariate Linear Regression, used for regression, predicts the best estimate within a continuum for each row of scoring data. For example, demographic attributes such as age bracket, income level, gender, and town of residence might be used to predict sales per customer.

Oracle Data Mining GLM can handle many hundreds or thousands of input attributes, unlike traditional implementations that typically support 30 or fewer input attributes.

Data mining activities such as model building, testing, and scoring are accomplished through a PL/SQL API, a Java API, and SQL Data Mining functions. The Java API is compliant with the data mining standard JSR 73. The Java API and the PL/SQL API are fully interoperable.

Optionally, Oracle Data Mining can automatically perform all algorithm-required data preparation, such as binning, normalization, and outlier treatment. Additionally, user-specified data transformations can be integrated with the algorithm-specific data preparation to simplify testing and scoring; models like this are supermodels.

The SQL Data Mining functions are SQL language operators for the deployment of data mining models. The Data Mining functions support the scoring of classification, regression, clustering, and feature extraction models. Within the context of standard SQL statements, pre-created models can be applied to new data and the results returned for further processing.

Predictive Analytics is a technology that captures data mining processes in simple routines. Sometimes called "one-click data mining," predictive analytics simplify and automate the data mining process. The procedure returns the results of analytic processing. The models and other intermediate objects are not preserved. The DBMS_PREDICTIVE_ANALYTICS PL/SQL package implements Predictive Analytics with the following procedures:

	
EXPLAIN - Ranks attributes in order of strongest relationships with a target attribute.

	
PREDICT - Predicts the value of a target attribute.

	
PROFILE - Creates rules that identify the records that have the same target value.

Oracle Data Mining supports the following algorithms (Generalized Linear Models are new for Oracle Database 11g):

	
For classification, Naive Bayes, Decision Tree, Generalized Linear Models (Binary Logistic Regression), and Support Vector Machine

	
For regression, Support Vector Machine and Generalized Linear Models (Multivariate Linear Regression)

	
For associations (market basket analysis), Apriori

	
For clustering, k-Means and O-Cluster

	
For attribute importance, Minimum Description Length

	
For anomaly detection, One Class Support Vector Machine

	
For feature extraction, Non-Negative Matrix Factorization

	
See Also:

	
Oracle Data Mining Concepts

	
Oracle Data Mining Administrator's Guide

	
Oracle Data Mining Application Developer's Guide

	
Oracle Data Mining Java API Reference contains Javadoc descriptions of the classes that constitute the Oracle Data Mining Java API

	
The PL/SQL API is described in the DBMS_DATA_MINING, DBMS_DATA_MINING_TRANSFORM, and DBMS_PREDICTIVE_ANALYTICS chapters of Oracle Database PL/SQL Packages and Types Reference

	
The SQL Data Mining functions are described in Oracle Database SQL Language Reference

20 Database Security

This chapter provides an overview of Oracle Database database security.

This chapter contains the following topics:

	
Introduction to Database Security

	
Overview of Transparent Data Encryption

	
Overview of Authentication Methods

	
Overview of Authorization

	
Overview of Access Restrictions on Tables, Views, Synonyms, or Rows

	
Overview of Security Policies

	
Overview of Database Auditing

	
See Also:

Oracle Database Security Guide for more detailed information on everything in this chapter

Introduction to Database Security

Database security entails allowing or disallowing user actions on the database and the objects within it. Oracle Database uses schemas and security domains to control access to data and to restrict the use of various database resources.

Oracle Database provides comprehensive discretionary access control. Discretionary access control regulates all user access to named objects through privileges. A privilege is permission to access a named object in a prescribed manner; for example, permission to query a table. Privileges are granted to users at the discretion of other users.

This section includes the following topics:

	
Database Users and Schemas

	
Privileges

	
Roles

	
Storage Settings and Quotas

Database Users and Schemas

Each Oracle database has a list of user names. To access a database, a user must use a database application and attempt a connection with a valid user name of the database. Each user name has an associated password to prevent unauthorized use.

Security Domain

Each user has a security domain—a set of properties that determine such things as:

	
The actions (privileges and roles) available to the user

	
The tablespace quotas (available disk space) for the user

	
The system resource limits (for example, CPU processing time) for the user

Each property that contributes to a user's security domain is discussed in the following sections.

Privileges

A privilege is a right to run a particular type of SQL statement. Some examples of privileges include the right to:

	
Connect to the database (create a session)

	
Create a table in your schema

	
Select rows from someone else's table

	
Run someone else's stored procedure

	
See Also:

	
Oracle Database Security Guide for more information on privileges

	
"Introduction to Privileges"

Roles

Oracle Database provides for easy and controlled privilege management through roles. Roles are named groups of related privileges that you grant to users or other roles.

	
See Also:

"Introduction to Roles" information about role properties

Storage Settings and Quotas

You can direct and limit the use of disk space allocated to the database for each user, including default and temporary tablespaces and tablespace quotas.

This section includes the following topics:

	
Default Tablespace

	
Temporary Tablespace

	
Tablespace Quotas

	
Profiles and Resource Limits

Default Tablespace

Each user is associated with a default tablespace. When a user creates a table, index, or cluster and no tablespace is specified to physically contain the schema object, the user's default tablespace is used if the user has the privilege to create the schema object and a quota in the specified default tablespace. The default tablespace provides Oracle Database with information to direct space use in situations where schema object's location is not specified.

Temporary Tablespace

Each user has a temporary tablespace. When a user runs a SQL statement that requires the creation of temporary segments (such as the creation of an index), the user's temporary tablespace is used. By directing all users' temporary segments to a separate tablespace, the temporary tablespace can reduce I/O contention among temporary segments and other types of segments.

Tablespace Quotas

Oracle Database can limit the collective amount of disk space available to the objects in a schema. Quotas (space limits) can be set for each tablespace available to a user. This permits selective control over the amount of disk space that can be consumed by the objects of specific schemas.

Profiles and Resource Limits

Each user is assigned a profile that specifies limitations on several system resources available to the user, including the following:

	
Number of concurrent sessions the user can establish

	
CPU processing time available for the user's session and a single call to Oracle Database made by a SQL statement

	
Amount of logical I/O available for the user's session and a single call to Oracle Database made by a SQL statement

	
Amount of idle time available for the user's session

	
Amount of connect time available for the user's session

	
Password restrictions:

	
Account locking after multiple unsuccessful login attempts

	
Password expiration and grace period

	
Password reuse and complexity restrictions

	
See Also:

	
Oracle Database Security Guide for more information on profiles and resource limits

	
"Profiles"

Overview of Transparent Data Encryption

Oracle Database provides security in the form of authentication, authorization, and auditing. Authentication ensures that only legitimate users gain access to the system. Authorization ensures that those users only have access to resources they are permitted to access. Auditing ensures accountability when users access protected resources. Although these security mechanisms effectively protect data in the database, they do not prevent access to the operating system files where the data is stored.

Transparent data encryption enables encryption of sensitive data in database columns as it is stored in the operating system files. In addition, it provides for secure storage and management of encryption keys in a security module external to the database.

Using an external security module separates ordinary program functions from those that pertain to security, such as encryption. Consequently, it is possible to divide administration duties between DBAs and security administrators, a strategy that enhances security because no administrator is granted comprehensive access to data. External security modules generate encryption keys, perform encryption and decryption, and securely store keys outside of the database.

Transparent data encryption is a key-based access control system that enforces authorization by encrypting data with a key that is kept secret. There can be only one key for each database table that contains encrypted columns regardless of the number of encrypted columns in a given table. Each table's column encryption key is, in turn, encrypted with the database server's master key. No keys are stored in the database. Instead, they are stored in an Oracle wallet, which is part of the external security module.

Before you can encrypt any database columns, you must generate or set a master key. This master key is used to encrypt the column encryption key which is generated automatically when you issue a SQL command with the ENCRYPT clause on a database column.

	
See Also:

Oracle Database Advanced Security Administrator's Guide for details about using transparent data encryption

Tablespace Encryption

Tablespace encryption is a new feature introduced in this release. Tablespace encryption enables you to encrypt an entire tablespace. This secures all data stored in the tablespace. When an authorized user accesses data in the tablespace, the data is transparently decrypted for him.

Tablespace encryption eliminates the need for granular analysis of applications to determine which columns to encrypt. You can use tablespace encryption to encrypt entire tables that might contain sensitive data.

Transparent encryption/decryption takes place during disk I/O and not for every logical access to the data. This leads to improved performance.

	
See Also:

Oracle Database Advanced Security Administrator's Guide for details about using tablespace encryption

Overview of Authentication Methods

Authentication means verifying the identity of someone (a user, device, or other entity) who wants to use data, resources, or applications. Validating that identity establishes a trust relationship for further interactions. Authentication also enables accountability by making it possible to link access and actions to specific identities. After authentication, authorization processes can allow or limit the levels of access and action permitted to that entity.

For simplicity, the same authentication method is generally used for all database users, but Oracle Database allows a single database instance to use any or all methods. Oracle Database requires special authentication procedures for database administrators, because they perform special database operations. Oracle Database also encrypts passwords during transmission to ensure the security of network authentication.

To validate the identity of database users and prevent unauthorized use of a database user name, you can authenticate using any combination of the methods described in the following sections:

	
Authentication by the Operating System

	
Authentication by the Network

	
Authentication by Oracle Database

	
Multitier Authentication and Authorization

	
Authentication by the Secure Socket Layer Protocol

	
Authentication of Database Administrators

	
See Also:

Oracle Database Security Guide for more information about authentication methods

Authentication by the Operating System

Some operating systems let Oracle Database use information they maintain to authenticate users, with the following benefits:

	
Once authenticated by the operating system, users can connect to Oracle Database more conveniently, without specifying a user name or password. For example, an operating-system-authenticated user can invoke SQL*Plus and skip the user name and password prompts by entering the following:

SQLPLUS /

	
With control over user authentication centralized in the operating system, Oracle Database need not store or manage user passwords, though it still maintains user names in the database.

	
Audit trails in the database and operating system use the same user names.

When an operating system is used to authenticate database users, managing distributed database environments and database links requires special care.

Authentication by the Network

Oracle Database supports the following methods of authentication by the network:

	
Third Party-Based Authentication Technologies

	
Public-Key-Infrastructure-Based Authentication

	
Remote Authentication

	
Note:

These methods require Oracle Database Enterprise Edition with the Oracle Advanced Security option.

Third Party-Based Authentication Technologies

If network authentication services are available to you (such as DCE, Kerberos, or SESAME), Oracle Database can accept authentication from the network service. If you use a network authentication service, then some special considerations arise for network roles and database links.

Public-Key-Infrastructure-Based Authentication

Authentication systems based on public key cryptography issue digital certificates to user clients, which use them to authenticate directly to servers in the enterprise without directly involving an authentication server. Oracle Database provides a public key infrastructure (PKI) for using public keys and certificates, consisting of the following components:

	
Authentication and secure session key management using Secure Sockets Layer (SSL).

	
Oracle Call Interface (OCI) and PL/SQL functions to sign user-specified data using a private key and certificate, and verify the signature on data using a trusted certificate.

	
Trusted certificates, identifying third-party entities that are trusted as signers of user certificates when an identity is being validated as the entity it claims to be.

	
Oracle wallets, which are data structures that contain a user private key, a user certificate, and the user's set of trust points (trusted certificate authorities).

	
Oracle Wallet Manager, a standalone Java application used to manage and edit the security credentials in Oracle wallets.

	
X.509v3 certificates obtained from (and signed by) a trusted entity, a certificate authority outside of Oracle Database.

	
Oracle Internet Directory to manage security attributes and privileges for users, including users authenticated by X.509 certificates. It enforces attribute-level access control and enables read, write, or update privileges on specific attributes to be restricted to specific named users, such as administrators.

	
Oracle Enterprise Security Manager, provides centralized privilege management to make administration easier and increase your level of security. This lets you store and retrieve roles from Oracle Internet Directory.

	
Oracle Enterprise Login Assistant, a Java-based tool to open and close a user wallet to enable or disable secure SSL-based communications for an application.

Remote Authentication

Oracle Database supports remote authentication of users through Remote Dial-In User Service (RADIUS), a standard lightweight protocol used for user authentication, authorization, and accounting.

Authentication by Oracle Database

Oracle Database can authenticate users attempting to connect to a database by using information stored in that database.

To set up Oracle Database to use database authentication, create each user with an associated password that must be supplied when the user attempts to establish a connection. This prevents unauthorized use of the database, since the connection will be denied if the user provides an incorrect password. Oracle Database stores a user's password in the data dictionary in an encrypted format to prevent unauthorized alteration, but a user can change the password at any time.

Database authentication includes the following facilities:

	
Password Encryption

	
Account Locking

	
Password Lifetime and Expiration

	
Password Complexity Verification

Password Encryption

To protect password confidentiality, Oracle Database never sends cleartext passwords over the network. If transmission of passwords over the network is required, then Oracle Database encrypts the password using the AES (Advanced Encryption Standard) algorithm approved by the NIST (National Institute of Standards and Technology).

Account Locking

Oracle Database can lock a user's account after a specified number of consecutive failed log-in attempts. You can configure the account to unlock automatically after a specified time interval or to require database administrator intervention to be unlocked. The database administrator can also lock accounts manually, so that they must be unlocked explicitly by the database administrator.

Password Lifetime and Expiration

The database administrator can specify a lifetime for passwords, after which they expire and must be changed before account login is again permitted. A grace period can be established, during which each attempt to login to the database account receives a warning message to change the password. If it is not changed by the end of that period, then the account is locked. No further logins to that account are allowed without assistance by the database administrator.

The database administrator can also set the password state to expired, causing the user's account status to change to expired. The user or the database administrator must then change the password before the user can log in to the database.

The password history option checks each newly specified password to ensure that a password is not reused for a specified amount of time or for a specified number of password changes.

Password Complexity Verification

Complexity verification checks that each password is complex enough to provide reasonable protection against intruders who try to break into the system by guessing passwords.

The Oracle Database default password complexity verification routine checks that each password meet the following requirements:

	
Be at least eight characters and no more than 30 characters in length

	
Not equal to the user name, the user name spelled backward, nor the user name appended with numbers

	
Is not the same as the server name, nor the server name with the numbers 1-100 appended

	
The password is not to simple, such as welcome1, oracle1, user1234, alphabetically sequential letters with numbers, or change_on_install

	
Include at least one alphabet character and one numeric character

	
Differ from the previous password by at least three characters

	
See Also:

Oracle Database Security Guide for more information about how Oracle Database verifies password complexity

Multitier Authentication and Authorization

In a multitier environment, Oracle Database controls the security of middle-tier applications by limiting their privileges, preserving client identities through all tiers, and auditing actions taken on behalf of clients. In applications that use a heavy middle tier, such as a transaction processing monitor, the identity of the client connecting to the middle tier must be preserved. Yet one advantage of a middle tier is connection pooling, which allows multiple users to access a data server without each of them needing a separate connection. In such environments, you must be able to set up and break down connections very quickly.

For these environments, Oracle database administrators can use the Oracle Call Interface (OCI) to create lightweight sessions, allowing database password authentication for each user. This preserves the identity of the real user through the middle tier without the overhead of a separate database connection for each user.

You can create lightweight sessions with or without passwords. However, if a middle tier is outside or on a firewall, then security is better when each lightweight session has its own password. For an internal application server, lightweight sessions without passwords might be appropriate.

Oracle Database 11g enables you to implement server-side connection pooling. This allows different applications and application processes to share database connections. Server-side connection pooling supports only password based authentication. Advanced Security Option (ASO) and enterprise users are currently not supported.

	
See Also:

Oracle Database Administrator's Guide and Oracle Call Interface Programmer's Guide for more details on server-side connection pooling

Authentication by the Secure Socket Layer Protocol

The Secure Socket Layer (SSL) protocol is an application layer protocol. Users identified either externally or globally (external or global users) can authenticate to a database through SSL.

Authentication of Database Administrators

Database administrators perform special operations (such as shutting down or starting up a database) that should not be performed by normal database users. Oracle Database provides a more secure authentication scheme for database administrator user names.

You can choose between strong authentication, operating system authentication, or password files to authenticate database administrators. Different choices apply to administering your database locally (on the computer where the database resides) and to administering many different database computers from a single remote client.

Strong authentication lets you centrally control SYSDBA and SYSOPER access to multiple databases. Consider this type of authentication for database administration when password file security is a concern, if the site has very strict security requirements, or you want to separate the identity management from your database.

Operating system authentication for a database administrator typically involves placing his operating system user name in a special group or giving it a special process right. (On UNIX systems, the group is the dba group.)

The database uses password files to keep track of database user names that have been granted the SYSDBA and SYSOPER privileges, enabling the following operations:

	
SYSOPER lets database administrators perform STARTUP, SHUTDOWN, ALTER DATABASE OPEN/MOUNT, ALTER DATABASE BACKUP, ARCHIVE LOG, and RECOVER, and includes the RESTRICTED SESSION privilege.

	
SYSDBA contains all system privileges with ADMIN OPTION, and the SYSOPER system privilege. Permits CREATE DATABASE and time-based recovery.

	
See Also:

	
Oracle Database Administrator's Guide for information on authentication and distributed database concepts

	
Oracle Database Advanced Security Administrator's Guide for information about the Oracle Advanced Security option

	
Oracle Database Security Guide for more information about authenticating database administrators

	
Your Oracle Database operating system-specific documentation for information about authenticating

Overview of Authorization

Authorization primarily includes two processes:

	
Permitting only certain users to access, process, or alter data

	
Applying varying limitations on users' access or actions. The limitations placed on (or removed from) users can apply to objects, such as schemas, tables, or rows; or to resources, such as time (CPU, connect, or idle times).

This section introduces the basic concepts and mechanisms for placing or removing such limitations on users, individually or in groups.

This section includes the following topics:

	
User Resource Limits and Profiles

	
Introduction to Privileges

	
Introduction to Roles

	
Secure Application Roles

User Resource Limits and Profiles

You can set limits on the amount of various system resources available to each user as part of a user's security domain. By doing so, you can prevent the uncontrolled consumption of valuable system resources such as CPU time.

This is very useful in large, multiuser systems, where system resources are expensive. Excessive consumption of resources by one or more users can detrimentally affect the other users of the database.

Manage a user's resource limits and password management preferences with his or her profile—a named set of resource limits that you can assign to that user. Each database can have an unlimited number of profiles. The security administrator can enable or disable the enforcement of profile resource limits universally.

If you set resource limits, then a slight degradation in performance occurs when users create sessions. This is because Oracle Database loads all resource limit data for the user when a user connects to a database.

	
See Also:

	
Oracle Database Administrator's Guide for information about security administrators

	
Oracle Database Security Guide for more information about authenticating database administrators

Resource limits and profiles are discussed in the following sections:

	
Types of System Resources and Limits

	
Profiles

Types of System Resources and Limits

Oracle Database can limit the use of several types of system resources, including CPU time and logical reads. In general, you can control each of these resources at the session level, the call level, or both.

This section includes the following topics:

	
Session Level

	
Call Level

	
CPU Time

	
Logical Reads

	
Other Resources

Session Level

Each time a user connects to a database, a session is created. Each session consumes CPU time and memory on the computer that runs Oracle Database. You can set several resource limits at the session level.

If a user exceeds a session-level resource limit, Oracle Database terminates (rolls back) the current statement and returns a message indicating that the session limit has been reached. At this point, all previous statements in the current transaction are intact, and the only operations the user can perform are COMMIT, ROLLBACK, or disconnect (in this case, the current transaction is committed). All other operations produce an error. Even after the transaction is committed or rolled back, the user can accomplish no more work during the current session.

Call Level

Each time a SQL statement is run, several steps are taken to process the statement. During this processing, several calls are made to the database as part of the different execution phases. To prevent any one call from using the system excessively, Oracle Database lets you set several resource limits at the call level.

If a user exceeds a call-level resource limit, Oracle Database halts the processing of the statement, rolls back the statement, and returns an error. However, all previous statements of the current transaction remain intact, and the user's session remains connected.

CPU Time

When SQL statements and other types of calls are made to Oracle Database, an amount of CPU time is necessary to process the call. Average calls require a small amount of CPU time. However, a SQL statement involving a large amount of data or a runaway query can potentially consume a large amount of CPU time, reducing CPU time available for other processing.

To prevent uncontrolled use of CPU time, limit the CPU time for each call and the total amount of CPU time used for Oracle Database calls during a session. Limits are set and measured in CPU one-hundredth seconds (0.01 seconds) used by a call or a session.

Logical Reads

Input/output (I/O) is one of the most expensive operations in a database system. SQL statements that are I/O intensive can monopolize memory and disk use and cause other database operations to compete for these resources.

To prevent single sources of excessive I/O, Oracle Database lets you limit the logical data block reads for each call and for each session. Logical data block reads include data block reads from both memory and disk. The limits are set and measured in number of block reads performed by a call or during a session.

Other Resources

Oracle Database also provides for the limitation of several other resources at the session level:

	
You can limit the number of concurrent sessions for each user. Each user can create only up to a predefined number of concurrent sessions.

	
You can limit the idle time for a session. If the time between Oracle Database calls for a session reaches the idle time limit, then the current transaction is rolled back, the session is aborted, and the resources of the session are returned to the system. The next call receives an error that indicates the user is no longer connected to the instance. This limit is set as a number of elapsed minutes.

Shortly after a session is aborted because it has exceeded an idle time limit, the process monitor (PMON) background process cleans up after the aborted session. Until PMON completes this process, the aborted session is still counted in any session/user resource limit.

	
You can limit the elapsed connect time for each session. If a session's duration exceeds the elapsed time limit, then the current transaction is rolled back, the session is dropped, and the resources of the session are returned to the system. This limit is set as a number of elapsed minutes.

Oracle Database does not constantly monitor the elapsed idle time or elapsed connection time. Doing so would reduce system performance. Instead, it checks every few minutes. Therefore, a session can exceed this limit slightly (for example, by five minutes) before Oracle Database enforces the limit and aborts the session.

	
You can limit the amount of private SGA space (used for private SQL areas) for a session. This limit is only important in systems that use the shared server configuration. Otherwise, private SQL areas are located in the PGA. This limit is set as a number of bytes of memory in an instance's SGA. Use the characters K or M to specify kilobytes or megabytes.

	
See Also:

Oracle Database Administrator's Guide for instructions about enabling and disabling resource limits

Profiles

In the context of system resources, a profile is a named set of specified resource limits that can be assigned to a valid user name in Oracle Database. Profiles provide for easy management of resource limits. Profiles are also the way in which you administer password policy.

Different profiles can be created and assigned individually to each user of the database. A default profile is present for all users not explicitly assigned a profile. The resource limit feature prevents excessive consumption of global database system resources.

This section includes the following topics:

	
When to Use Profiles

	
Determine Values for Resource Limits of a Profile

When to Use Profiles

You must create and manage user profiles only if resource limits are a requirement of your database security policy. To use profiles, first categorize the related types of users in a database. Just as roles are used to manage the privileges of related users, profiles are used to manage the resource limits of related users. Determine how many profiles are needed to encompass all types of users in a database and then determine appropriate resource limits for each profile.

Determine Values for Resource Limits of a Profile

Before creating profiles and setting the resource limits associated with them, determine appropriate values for each resource limit. You can base these values on the type of operations a typical user performs. Usually, the best way to determine the appropriate resource limit values for a given user profile is to gather historical information about each type of resource usage.

You can gather statistics for other limits using the Monitor feature of Oracle Enterprise Manager (or SQL*Plus), specifically the Statistics monitor.

Introduction to Privileges

A privilege is a right to run a particular type of SQL statement or to access another user's object.

Grant privileges to users so that they can accomplish tasks required for their job. Grant privileges only to users who absolutely require them. Excessive granting of unnecessary privileges can compromise security. A user can receive a privilege in two different ways:

	
You can grant privileges to users explicitly. For example, you can explicitly grant the privilege to insert records into the employees table to the user SCOTT.

	
You can grant privileges to a role (a named group of privileges), and then grant the role to one or more users. For example, you can grant the privileges to select, insert, update, and delete records from the employees table to the role named clerk, which in turn you can grant to the users scott and brian.

Because roles allow for easier and better management of privileges, you should generally grant privileges to roles and not to specific users.

There are two distinct categories of privileges:

	
System Privileges

	
Schema Object Privileges

	
See Also:

Oracle Database Administrator's Guide for a list of all system and schema object privileges, as well as instructions for privilege management

System Privileges

A system privilege is the right to perform a particular action, or to perform an action on any schema objects of a particular type. For example, the privileges to create tablespaces and to delete the rows of any table in a database are system privileges. There are over 100 distinct system privileges.

Schema Object Privileges

A schema object privilege is a privilege or right to perform a particular action on a specific schema object:

Different object privileges are available for different types of schema objects. For example, the privilege to delete rows from the departments table is an object privilege.

Some schema objects, such as clusters, indexes, triggers, and database links, do not have associated object privileges. Their use is controlled with system privileges. For example, to alter a cluster, a user must own the cluster or have the ALTER ANY CLUSTER system privilege.

A schema object and its synonym are equivalent with respect to privileges. That is, the object privileges granted for a table, view, sequence, procedure, function, or package apply whether referencing the base object by name or using a synonym.

Granting object privileges on a table, view, sequence, procedure, function, or package to a synonym for the object has the same effect as if no synonym were used. When a synonym is dropped, all grants for the underlying schema object remain in effect, even if the privileges were granted by specifying the dropped synonym.

	
See Also:

Oracle Database Security Guide for more information about schema object privileges

Introduction to Roles

Managing and controlling privileges is made easier by using roles, which are named groups of related privileges that you grant, as a group, to users or other roles. Within a database, each role name must be unique, different from all user names and all other role names. Unlike schema objects, roles are not contained in any schema. Therefore, a user who creates a role can be dropped with no effect on the role.

Roles ease the administration of end-user system and schema object privileges. However, roles are not meant to be used by application developers, because the privileges to access schema objects within stored programmatic constructs must be granted directly.

Table 20-1 lists properties of roles that enable easier privilege management within a database.

Table 20-1 Properties of Roles

	Property	Description
	
Reduced privilege administration

	
Rather than granting the same set of privileges explicitly to several users, you can grant the privileges for a group of related users to a role, and then only the role must be granted to each member of the group.

	
Dynamic privilege management

	
If the privileges of a group must change, then only the privileges of the role need to be modified. The security domains of all users granted the group's role automatically reflect the changes made to the role.

	
Selective availability of privileges

	
You can selectively enable or disable the roles granted to a user. This allows specific control of a user's privileges in any given situation.

	
Application awareness

	
The data dictionary records which roles exist, so you can design applications to query the dictionary and automatically enable (or disable) selective roles when a user attempts to run the application by way of a given user name.

	
Application-specific security

	
You can protect role use with a password. Applications can be created specifically to enable a role when supplied the correct password. Users cannot enable the role if they do not know the password.

Database administrators often create roles for a database application. The DBA grants a secure application role all privileges necessary to run the application. The DBA then grants the secure application role to other roles or users. An application can have several different roles, each granted a different set of privileges that allow for more or less data access while using the application.

The DBA can create a role with a password to prevent unauthorized use of the privileges granted to the role. Typically, an application is designed so that when it starts, it enables the proper role. As a result, an application user does not need to know the password for an application's role.

	
See Also:

Oracle Database Advanced Application Developer's Guide for instructions for enabling roles from an application

This section includes the following topics:

	
Common Uses for Roles

	
Role Mechanisms

	
The Operating System and Roles

Common Uses for Roles

In general, you create a role to serve one of two purposes:

	
To manage the privileges for a database application

	
To manage the privileges for a user group

Figure 20-1 and the sections that follow describe the two uses of roles.

Figure 20-1 Common Uses for Roles

[image: Description of Figure 20-1 follows]

This section includes the following topics:

	
Application Roles

	
User Roles

Application Roles

You grant an application role all privileges necessary to run a given database application. Then, you grant the secure application role to other roles or to specific users. An application can have several different roles, with each role assigned a different set of privileges that allow for more or less data access while using the application.

User Roles

You create a user role for a group of database users with common privilege requirements. You manage user privileges by granting secure application roles and privileges to the user role and then granting the user role to appropriate users.

Role Mechanisms

Database roles have the following functionality:

	
A role can be granted system or schema object privileges.

	
A role can be granted to other roles. However, a role cannot be granted to itself and cannot be granted circularly. For example, role A cannot be granted to role B if role B has previously been granted to role A.

	
Any role can be granted to any database user.

	
Each role granted to a user is, at a given time, either enabled or disabled. A user's security domain includes the privileges of all roles currently enabled for the user and excludes the privileges of any roles currently disabled for the user. Oracle Database allows database applications and users to enable and disable roles to provide selective availability of privileges.

	
An indirectly granted role is a role granted to a role. It can be explicitly enabled or disabled for a user. However, by enabling a role that contains other roles, you implicitly enable all indirectly granted roles of the directly granted role.

The Operating System and Roles

In some environments, you can administer database security using the operating system. The operating system can be used to manage the granting (and revoking) of database roles and to manage their password authentication. This capability is not available on all operating systems.

Secure Application Roles

Oracle Database provides secure application roles, which are roles that can only be enabled by authorized PL/SQL packages. This mechanism restricts the enabling of such roles to the invoking application.

Security is strengthened when passwords are not embedded in application source code or stored in a table. Instead, a secure application role can be created, specifying which PL/SQL package is authorized to enable the role. Package identity is used to determine whether privileges are sufficient to enable the roles. Before enabling the role, the application can perform authentication and customized authorization, such as checking whether the user has connected through a proxy.

Because of the restriction that users cannot change security domain inside definer's right procedures, secure application roles can only be enabled inside invoker's right procedures.

	
See Also:

	
Oracle Database Security Guide for more information about default roles

	
Oracle Database 2 Day + Security Guide for more information about secure application roles

	
Oracle Database Advanced Application Developer's Guide

Overview of Access Restrictions on Tables, Views, Synonyms, or Rows

This section describes restrictions associated not with users, but with objects. The restrictions provide protection regardless of the entity who seeks to access or alter them.

You provide this protection by designing and using policies to restrict access to specific tables, views, synonyms, or rows. These policies invoke functions that you design to specify dynamic predicates establishing the restrictions. You can also group established policies, applying a policy group to a particular application.

Having established such protections, you must be notified when they are threatened or breached. Given notification, you can strengthen your defenses or deal with the consequences of inappropriate actions and the entities who caused them.

This section includes the following topics:

	
Fine-Grained Access Control

	
Application Context

	
Fine-Grained Auditing

Fine-Grained Access Control

Fine-grained access control lets you use functions to implement security policies and to associate those security policies with tables, views, or synonyms. The database server automatically enforces your security policies, no matter how the data is accessed (for example, by ad hoc queries).

You can:

	
Use different policies for SELECT, INSERT, UPDATE, and DELETE (and INDEX, for row level security policies).

	
Use security policies only where you need them (for example, on salary information).

	
Use more than one policy for each table, including building on top of base policies in packaged applications.

	
Distinguish policies between different applications, by using policy groups. Each policy group is a set of policies that belong to an application. The database administrator designates an application context, called a driving context, to indicate the policy group in effect. When tables, views, or synonyms are accessed, the fine-grained access control engine looks up the driving context to determine the policy group in effect and enforces all the associated policies that belong to that policy group.

The PL/SQL package DBMS_RLS let you administer your security policies. Using this package, you can add, drop, enable, disable, and refresh the policies (or policy groups) you create.

	
See Also:

	
Oracle Database PL/SQL Packages and Types Reference for information about package implementation

	
Oracle Database Security Guide for more information about fine-grained access control

Dynamic Predicates

Dynamic predicates are acquired at statement parse time, when the base table or view is referenced in a DML statement, rather than having the security rules embedded in views.

The function or package that implements the security policy you create returns a predicate (a WHERE condition). This predicate controls access according to the policy specifications. Rewritten queries are fully optimized and sharable.

A dynamic predicate for a table, view, or synonym is generated by a PL/SQL function, which is associated with a security policy through a PL/SQL interface.

Application Context

Application context helps you apply fine-grained access control because you can associate your function-based security policies with applications.

Each application has its own application-specific context, which users cannot arbitrarily change (for example, through SQL*Plus). Context attributes are accessible to the functions implementing your security policies. For example, context attributes for a human resources application could include "position," "organizational unit," and "country," whereas attributes for an order-entry control might be "customer number" and "sales region".

Application contexts thus permit flexible, parameter-based access control using attributes of interest to an application.

You can:

	
Base predicates on context values

	
Use context values within predicates, as bind variables

	
Set user attributes

	
Access user attributes

	
See Also:

	
Oracle Database PL/SQL Language Reference

	
Oracle Database Advanced Application Developer's Guide

Dynamic Contexts

Your policies can identify run-time efficiencies by specifying whether a policy is static, shared, context-sensitive, or dynamic.

If it is static, producing the same predicate string for anyone accessing the object, then it is run once and cached in SGA. Policies for statements accessing the same object do not re-run the policy function, but use the cached predicate instead.

This is also true for shared-static policies, for which the server first looks for a cached predicate generated by the same policy function of the same policy type. Shared-static policies are ideal for data partitions on hosting because almost all objects share the same function and the policy is static.

If you label your policy context-sensitive, then the server always runs the policy function on statement parsing; it does not cache the value returned. The policy function is not re-evaluated at statement execution time unless the server detects context changes since the last use of the cursor. (For session pooling where multiple clients share a database session, the middle tier must reset context during client switches.)

When a context-sensitive policy is shared, the server first looks for a cached predicate generated by the same policy function of the same policy type within the same database session. If the predicate is found in the session memory, then the policy function is not re-run and the cached value is valid until session private application context changes occur.

For dynamic policies, the server assumes the predicate may be affected by any system or session environment at any time, and so always re-runs the policy function on each statement parsing or execution.

Fine-Grained Auditing

Fine-grained auditing allows the monitoring of data access based on content. It provides granular auditing of queries, as well as INSERT, UPDATE, and DELETE operations. For example, a central tax authority must track access to tax returns to guard against employee snooping, with enough detail to determine what data was accessed. It is not enough to know that SELECT privilege was used by a specific user on a particular table. Fine-grained auditing provides this deeper functionality.

In general, fine-grained auditing policy is based on simple user-defined SQL predicates on table objects as conditions for selective auditing. During fetching, whenever policy conditions are met for a returning row, the query is audited. Later, Oracle Database runs user-defined audit event handlers using autonomous transactions to process the event.

Fine-grained auditing can be implemented in user applications using the DBMS_FGA package or by using database triggers.

	
See Also :

Oracle Database Security Guide for more information on fine-grained auditing

Overview of Security Policies

This section contains the following topics:

	
System Security Policy

	
Data Security Policy

	
User Security Policy

	
Password Management Policy

	
Auditing Policy

System Security Policy

Each database has one or more administrators responsible for maintaining all aspects of the security policy: the security administrators. If the database system is small, then the database administrator might have the responsibilities of the security administrator. However, if the database system is large, then a special person or group of people might have responsibilities limited to those of a security administrator.

A security policy must be developed for every database. A security policy should include several sub-policies, as explained in the following sections.

This section includes the following topics:

	
Database User Management

	
User Authentication

	
Operating System Security

Database User Management

Depending on the size of a database system and the amount of work required to manage database users, the security administrator might be the only user with the privileges required to create, alter, or drop database users. Or, there may be several administrators with privileges to manage database users. Regardless, only trusted individuals should have the powerful privileges to administer database users.

User Authentication

Database users can be authenticated (verified as the correct person) by Oracle Database using database passwords, the host operating system, network services, or by Secure Sockets Layer (SSL).

	
See Also:

"Overview of Authentication Methods"

Operating System Security

If applicable, the following security issues must also be considered for the operating system environment executing Oracle Database and any database applications:

	
Database administrators must have the operating system privileges to create and delete files.

	
Typical database users should not have the operating system privileges to create or delete files related to the database.

	
If the operating system identifies database roles for users, then the security administrators must have the operating system privileges to modify the security domain of operating system accounts.

Data Security Policy

Data security includes mechanisms that control access to and use of the database at the object level. Your data security policy determines which users have access to a specific schema object, and the specific types of actions allowed for each user on the object. For example, user scott can issue SELECT and INSERT statements but not DELETE statements using the employees table. Your data security policy should also define the actions, if any, that are audited for each schema object.

Your data security policy is determined primarily by the level of security you want for the data in your database. For example, it might be acceptable to have little data security in a database when you want to allow any user to create any schema object, or grant access privileges for their objects to any other user of the system. Alternatively, it might be necessary for data security to be very controlled when you want to make a database or security administrator the only person with the privileges to create objects and grant access privileges for objects to roles and users.

Overall data security should be based on the sensitivity of data. If information is not sensitive, then the data security policy can be more lax. However, if data is sensitive, then a security policy should be developed to maintain tight control over access to objects.

Some means of implementing data security include system and object privileges, and through roles. A role is a set of privileges grouped together that can be granted to users. Views can also implement data security because their definition can restrict access to table data. They can exclude columns containing sensitive data.

Another means of implementing data security is through fine-grained access control and use of an associated application context. Fine-grained access control lets you implement security policies with functions and associate those security policies with tables or views. In effect, the security policy function generates a WHERE condition that is appended to a SQL statement, thereby restricting the users access to rows of data in the table or view. An application context is a secure data cache for storing information used to make access control decisions.

	
See Also:

	
Oracle Database Administrator's Guide for more about views

	
Oracle Database Advanced Application Developer's Guide for more about fine-grained access control and application context

	
Oracle Database PL/SQL Packages and Types Reference

User Security Policy

This section describes aspects of user security policy, and contains the following topics:

	
General User Security

	
End-User Security

	
Administrator Security

	
Application Developer Security

	
Application Administrator Security

General User Security

For all types of database users, consider password security and privilege management.

If user authentication is managed by the database, then security administrators should develop a password security policy to maintain database access security. For example, database users must change their passwords at regular intervals. By forcing a user to modify passwords, unauthorized database access can be reduced.

Also consider issues related to privilege management for all types of users. For example, a database with many users, applications, or objects, would benefit from using roles to manage the privileges available to users. Alternatively, in a database with a handful of user names, it might be easier to grant privileges explicitly to users and avoid the use of roles.

End-User Security

Security administrators must define a policy for end-user security. If a database has many users, then the security administrator can decide which groups of users can be categorized into user groups, and then create user roles for these groups. The security administrator can grant the necessary privileges or application roles to each user role, and assign the user roles to the users. To account for exceptions, the security administrator must also decide what privileges must be explicitly granted to individual users.

Roles are the easiest way to grant and manage the common privileges needed by different groups of database users. You can also manage users and their authorizations centrally, in a directory service, through the enterprise user and enterprise role features of Oracle Advanced Security.

Administrator Security

Security administrators should have a policy addressing database administrator security. For example, when the database is large and there are several types of database administrators, the security administrator might decide to group related administrative privileges into several administrative roles. The administrative roles can then be granted to appropriate administrator users. Alternatively, when the database is small and has only a few administrators, it might be more convenient to create one administrative role and grant it to all administrators.

Protection for Connections as SYS and SYSTEM

After database creation, and if you used the default passwords for SYS and SYSTEM, immediately change the passwords for the SYS and SYSTEM administrative user names. Connecting as SYS or SYSTEM gives a user powerful privileges to modify a database.

If you have installed options that have caused other administrative user names to be created, then such user name accounts are initially created locked.

Protection for Administrator Connections

Only database administrators should have the capability to connect to a database with administrative privileges. For example:

CONNECT SYS/AS SYSOPER|SYSDBA
Enter password: enter the password

Connecting as SYSOPER gives a user the ability to perform basic operational tasks (such as STARTUP, SHUTDOWN, and recovery operations). Connecting as SYSDBA gives the user these abilities plus unrestricted privileges to do anything to a database or the objects within a database (including, CREATE, DROP, and DELETE). SYSDBA puts a user in the SYS schema, where they can alter data dictionary tables.

Application Developer Security

Security administrators must define a special security policy for the application developers using a database. A security administrator could grant the privileges to create necessary objects to application developers. Or, alternatively, the privileges to create objects could be granted only to a database administrator, who then receives requests for object creation from developers.

	
See Also:

Oracle Database Security Guide for more information for application developers

Application Developers and Their Privileges

Database application developers are unique database users who require special groups of privileges to accomplish their jobs. Unlike end users, developers need system privileges, such as CREATE TABLE, CREATE PROCEDURE, and so on. However, only specific system privileges should be granted to developers to restrict their overall capabilities in the database.

In many cases, application development is restricted to test databases and is not allowed on production databases. This restriction ensures that application developers do not compete with end users for database resources, and that they cannot detrimentally affect a production database. After an application has been thoroughly developed and tested, it is permitted access to the production database and made available to the appropriate end users of the production database.

Security administrators can create roles to manage the privileges required by the typical application developer.

While application developers are typically given the privileges to create objects as part of the development process, security administrators must maintain limits on what and how much database space can be used by each application developer. For example, the security administrator should specifically set or restrict the following limits for each application developer:

	
The tablespaces in which the developer can create tables or indexes

	
The quota for each tablespace accessible to the developer

Both limitations can be set by altering a developer's security domain.

Application Administrator Security

In large database systems with many database applications, consider assigning application administrators responsible for the following types of tasks:

	
Creating roles for an application and managing the privileges of each application role

	
Creating and managing the objects used by a database application

	
Maintaining and updating the application code and Oracle Database procedures and packages, as necessary

Often, an application administrator is also the application developer who designed an application. However, an application administrator could be any individual familiar with the database application.

Password Management Policy

Database security systems dependent on passwords require that passwords be kept secret at all times. But, passwords are vulnerable to theft, forgery, and misuse. To allow for greater control over database security, the Oracle Database password management policy is controlled by DBAs and security officers through user profiles.

	
See Also:

	
"Authentication by Oracle Database"

	
Oracle Database Security Guide for more information on password protection

Auditing Policy

Security administrators should define a policy for the auditing procedures of each database. You may decide to have database auditing disabled unless questionable activities are suspected. When auditing is required, decide what level of detail to audit the database; usually, general system auditing is followed by more specific types of auditing after the origins of suspicious activity are determined. Auditing is discussed in the following section.

Overview of Database Auditing

Auditing is the monitoring and recording of selected user database actions. It can be based on individual actions, such as the type of SQL statement run, or on combinations of factors that can include name, application, time, and so on. Security policies can cause auditing when specified elements in Oracle Database are accessed or altered, including content.

Auditing is generally used to:

	
Enable future accountability for current actions taken in a particular schema, table, or row, or affecting specific content

	
Investigate suspicious activity. For example, if an unauthorized user is deleting data from tables, then the security administrator could audit all connections to the database and all successful and unsuccessful deletions of rows from all tables in the database.

	
Monitor and gather data about specific database activities. For example, the database administrator can gather statistics about which tables are being updated, how many logical I/Os are performed, or how many concurrent users connect at peak times.

You can use Enterprise Manager to view and configure audit-related initialization parameters and administer audited objects for statement auditing and schema object auditing. For example, Enterprise Manager shows the properties for current audited statements, privileges, and objects. You can view the properties of each object, and you can search audited objects by their properties. You can also turn on and turn off auditing on objects, statements, and privileges.

Types and Records of Auditing

Oracle Database allows audit options to be focused or broad. You can audit:

	
Successful statement executions, unsuccessful statement executions, or both

	
Statement executions once in each user session or once every time the statement is run

	
Activities of all users or of a specific user

Oracle Database auditing enables the use of several different mechanisms, with the features listed in Table 20-2.

Table 20-2 Types of Auditing

	Type of Auditing	Meaning/Description
	
Statement auditing

	
Audits SQL statements by type of statement, not by the specific schema objects on which they operate. Typically broad, statement auditing audits the use of several types of related actions for each option. For example, AUDIT TABLE tracks several DDL statements regardless of the table on which they are issued. You can also set statement auditing to audit selected users or every user in the database.

	
Privilege auditing

	
Audits the use of powerful system privileges enabling corresponding actions, such as AUDIT CREATE TABLE. Privilege auditing is more focused than statement auditing because it audits only the use of the target privilege. You can set privilege auditing to audit a selected user or every user in the database.

	
Schema object auditing

	
Audits specific statements on a particular schema object, such as AUDIT SELECT ON employees. Schema object auditing is very focused, auditing only a specific statement on a specific schema object. Schema object auditing always applies to all users of the database.

	
Fine-grained auditing

	
Audits data access and actions based on content. Using DBMS_FGA, the security administrator creates an audit policy on the target table. If any rows returned from a DML statement block match the audit condition, then an audit event entry is inserted into the audit trail.

Audit Records and the Audit Trails

Audit records include information such as the operation that was audited, the user performing the operation, and the date and time of the operation. Audit records can be stored in either a data dictionary table, called the database audit trail, or in operating system files, called an operating system audit trail.

This section includes the following topics:

	
Database Audit Trail

	
Auditing in a Distributed Database

	
Operating System Audit Trail

	
Operating System Audit Records

	
Records Always in the Operating System Audit Trail

	
When Are Audit Records Created?

Database Audit Trail

The database audit trail is a single table named SYS.AUD$ in the SYS schema of each Oracle database's data dictionary. Several predefined views are provided to help you use the information in this table.

Audit trail records can contain different types of information, depending on the events audited and the auditing options set. The following information is always included in each audit trail record, if the information is meaningful to the particular audit action:

User name

Instance number

Process identifier

Session identifier

Terminal identifier

Name of the schema object accessed

Operation performed or attempted

Completion code of the operation

Date and time stamp

System privileges used

Auditing in a Distributed Database

Auditing is site autonomous. An instance audits only the statements issued by directly connected users. A local Oracle Database node cannot audit actions that take place in a remote database. Because remote connections are established through the user account of a database link, statements issued through the database link's connection are audited by the remote Oracle Database node.

Operating System Audit Trail

Oracle Database allows audit trail records to be directed to an operating system audit trail if the operating system makes such an audit trail available to Oracle Database. If not, then audit records are written to a file outside the database, with a format similar to other Oracle Database trace files.

Oracle Database allows certain actions that are always audited to continue, even when the operating system audit trail (or the operating system file containing audit records) is unable to record the audit record. The usual cause of this is that the operating system audit trail or the file system is full and unable to accept new records.

System administrators configuring operating system auditing should ensure that the audit trail or the file system does not fill completely. Most operating systems provide administrators with sufficient information and warning to ensure this does not occur. Note, however, that configuring auditing to use the database audit trail removes this vulnerability, because Oracle Database prevents audited events from occurring if the audit trail is unable to accept the database audit record for the statement.

Operating System Audit Records

The operating system audit trail is encoded, but it is decoded in data dictionary files and error messages.

	
Action code describes the operation performed or attempted. The AUDIT_ACTIONS data dictionary table describes these codes.

	
Privileges used describes any system privileges used to perform the operation. The SYSTEM_PRIVILEGE_MAP table describes all of these codes.

	
Completion code describes the result of the attempted operation. Successful operations return a value of zero, and unsuccessful operations return the Oracle Database error code describing why the operation was unsuccessful.

	
See Also:

	
Oracle Database Administrator's Guide for instructions for creating and using predefined views

	
Oracle Database Security Guide for more information on auditing

	
Oracle Database Error Messages for a list of completion codes

Records Always in the Operating System Audit Trail

Some database-related actions are always recorded into the operating system audit trail regardless of whether database auditing is enabled:

	
At instance startup, an audit record is generated that details the operating system user starting the instance, the user's terminal identifier, the date and time stamp, and whether database auditing was enabled or disabled. This information is recorded into the operating system audit trail, because the database audit trail is not available until after startup has successfully completed. Recording the state of database auditing at startup also acts as an auditing flag, inhibiting an administrator from performing unaudited actions by restarting a database with database auditing disabled.

	
At instance shutdown, an audit record is generated that details the operating system user shutting down the instance, the user's terminal identifier, the date and time stamp.

	
During connections with administrator privileges, an audit record is generated that details the operating system user connecting to Oracle Database with administrator privileges. This record provides accountability regarding users connected with administrator privileges.

On operating systems that do not make an audit trail accessible to Oracle Database, these audit trail records are placed in an Oracle Database audit trail file in the same directory as background process trace files.

When Are Audit Records Created?

Any authorized database user can set his own audit options at any time, but the recording of audit information is enabled or disabled by the security administrator.

When auditing is enabled in the database, an audit record is generated during the execute phase of statement execution.

SQL statements inside PL/SQL program units are individually audited, as necessary, when the program unit is run.

The generation and insertion of an audit trail record is independent of a user's transaction being committed. That is, even if a user's transaction is rolled back, the audit trail record remains committed.

Statement and privilege audit options in effect at the time a database user connects to the database remain in effect for the duration of the session. Setting or changing statement or privilege audit options in a session does not cause effects in that session. The modified statement or privilege audit options take effect only when the current session is ended and a new session is created. In contrast, changes to schema object audit options become effective for current sessions immediately.

Operations by the SYS user and by users connected through SYSDBA or SYSOPER can be fully audited with the AUDIT_SYS_OPERATIONS initialization parameter. Successful SQL statements from SYS are audited indiscriminately. The audit records for sessions established by the user SYS or connections with administrative privileges are sent to an operating system location. Sending them to a location separate from the usual database audit trail in the SYS schema provides for greater auditing security.

	
See Also:

	
Oracle Database Security Guide for instructions on enabling and disabling auditing

	
Chapter 24, "SQL" for information about the different phases of SQL statement processing and shared SQL

Part IV

Oracle Database Application Development

Part IV describes the languages and datatypes included with Oracle that can be used in application development. It contains the following chapters:

	
Chapter 24, "SQL"

	
Chapter 25, "Supported Application Development Languages"

	
Chapter 26, "Oracle Data Types"

25 Supported Application Development Languages

This chapter presents brief overviews of Oracle application development systems.

This chapter includes the following topics:

	
Introduction to Oracle Application Development Languages

	
Overview of C/C++ Programming Languages

	
Overview of PL/SQL

	
Overview of Java

	
Overview of Microsoft Programming Languages

	
Overview of Legacy Languages

	
See Also:

Chapter 24, "SQL"

Introduction to Oracle Application Development Languages

Oracle Database developers have a choice of languages for developing applications—C, C++, Java, COBOL, PL/SQL, Visual Basic, and C#. All language-specific standards are supported. Developers can choose the languages in which they are most proficient or one that is most suitable for a specific task. For example an application might use Java on the server side to create dynamic Web pages, PL/SQL to implement stored procedures in the database, and C++ to implement computationally intensive logic in the middle tier.

Oracle also provides the Pro* series of precompilers, which allow you to embed SQL and PL/SQL in your C, C++, COBOL, or FORTRAN application programs.

	
See Also:

	
Oracle Database Advanced Application Developer's Guide for information on how to choose a programming environment

	
Oracle Database Globalization Support Guide

	
Chapter 26, "Oracle Data Types"

Overview of C/C++ Programming Languages

This section includes the following topics:

	
Overview of Oracle Call Interface (OCI)

	
Overview of Oracle C++ Call Interface (OCCI)

	
Overview of the Oracle Type Translator

	
Overview of Pro*C/C++ Precompiler

Overview of Oracle Call Interface (OCI)

Oracle Call Interface (OCI) is an application programming interface (API) that lets you create applications that use the native function calls of the C language to access an Oracle database and control all phases of SQL statement execution. OCI supports the data types, calling conventions, syntax, and semantics of C. OCI can directly access data in Oracle Database tables or can enqueue and dequeue data into or out of Oracle Streams.

OCI provides the following:

	
Instant client, a way to deploy applications in a much reduced disk space.

	
Thread management, connection pooling, globalization functions, and direct path loading of data (SQL*Loader Utility) from a C application.

	
N-tiered authentication.

	
Comprehensive support for application development using Oracle Database objects.

	
Access to external databases.

	
Applications that can service an increasing number of users and requests without additional hardware investments.

OCI lets you manipulate data and schemas in an Oracle database using the C host programming language. It provides a library of standard database access and retrieval functions in the form of a dynamic run-time library (OCI library) that can be linked in an application at run time.

Query results can be cached in memory in the OCI client result cache. The OCI client can then use cached results for future executions of these queries. Because retrieving results from the result cache is faster than making a database call and rerunning the query, frequently run queries experience a significant performance improvement when their results are cached. The result cache on the OCI client is per process and shared between the different sessions.

	
See Also:

Oracle Call Interface Programmer's Guide for more information about the OCI client result cache

OCI supports object-relational features of Oracle Database. One important component is a set of calls that allows application programs to use a workspace called the object cache. The object cache is a memory block on the client side that allows programs to store entire objects and to navigate among them without round-trips to the server.

The object cache is completely under the control and management of the application programs using it. Oracle Database has no access to it. The application programs using it must maintain data coherency with the server and protect the workspace against simultaneous conflicting access.

Query results can be cached in memory in the OCI client result cache. The OCI client can then use cached results for future executions of these queries. Because retrieving results from the result cache is faster than making a database call and rerunning the query, frequently run queries experience a significant performance improvement when their results are cached. The result cache on the OCI client is per process and shared between the different sessions.

	
See Also:

Oracle Call Interface Programmer's Guide for more information about the OCI client result cache

OCI provides functions to:

	
Access objects on the server using SQL

	
Access, manipulate and manage objects in the object cache by traversing pointers or REFs

	
Convert Oracle Database dates, strings, and numbers to C data types

	
Manage the size of the object cache's memory

	
Create transient type descriptions. Transient type descriptions are not stored persistently in the database.

OCI improves concurrency by allowing individual objects to be locked. It improves performance by supporting complex object retrieval.

OCI developers can use the object type translator to generate the C structure data types corresponding to Oracle Database object types.

	
See Also:

Oracle Call Interface Programmer's Guide

Overview of Oracle C++ Call Interface (OCCI)

The Oracle C++ Call Interface (OCCI) is a C++ API that lets you use the object-oriented features, native classes, and methods of the C++ programing language to access Oracle Database. OCCI is built on top of OCI and combines its power and performance with the significantly more accessible interface of an object-oriented paradigm.

This section includes the following topics:

	
OCCI Associative Relational and Object Interfaces

	
OCCI Navigational Interface

OCCI Associative Relational and Object Interfaces

The associative relational API and object classes provide SQL access to the database. Through these interfaces, SQL is run on the server to create, manipulate, and fetch object or relational data. Applications can access any dataype on the server, including: large objects, objects and structured types, arrays, and references.

OCCI Navigational Interface

The navigational interface is a C++ interface that lets you seamlessly access and modify object-relational data in the form of C++ objects without using SQL. The C++ objects are transparently accessed and stored in the database as needed.

With the OCCI navigational interface, you can retrieve an object and navigate through references from that object to other objects. Server objects are materialized as C++ class instances in the application cache. An application can use OCCI object navigational calls to perform the following functions on the server's objects:

	
Create, access, lock, delete, and flush objects

	
Get references to the objects and navigate through them

	
See Also:

Oracle C++ Call Interface Programmer's Guide

Overview of the Oracle Type Translator

The Oracle type translator (OTT) is a program that automatically generates C language structure declarations corresponding to object types. It generates C++ class definitions for Oracle Database object types that can be used by OCCI applications for a native C++ object interface. OTT uses the Pro*C/C++ precompiler and the OCI server access package.

	
See Also:

	
Oracle Call Interface Programmer's Guide

	
Oracle C++ Call Interface Programmer's Guide

	
Pro*C/C++ Programmer's Guide

Overview of Pro*C/C++ Precompiler

An Oracle precompiler is a programming tool that lets you embed SQL statements in a high-level source program. The precompiler accepts the host program as input, translates the embedded SQL statements into standard Oracle Database run-time library calls, and generates a source program that you can compile, link, and run in the usual way. Oracle precompilers are available (but not on all systems) for C, C++, COBOL, and FORTRAN.

The Oracle Pro*C/C++ Precompiler lets you embed SQL statements in a C or C++ source file. Pro*C/C++ reads the source file as input and outputs a C or C++ source file that replaces the embedded SQL statements with Oracle Database run-time library calls, and is then compiled by the C or C++ compiler.

Pro*C/C++ lets you create highly customized applications. For example, you can create user interfaces that incorporate the latest windowing and mouse technology. You can also create applications that run in the background without the need for user interaction.

Furthermore, Pro*C/C++ helps you fine-tune your applications. It allows close monitoring of resource use, SQL statement execution, and various run-time indicators. With this information, you can change program parameters for maximum performance.

Although precompiling adds a step to the application development process, it saves time. The precompiler, not you, translates each embedded SQL statement into calls to the Oracle Database run-time library (SQLLIB). The Pro*C/C++ precompiler also analyzes host variables, defines mappings of structures into columns, and, with SQLCHECK=FULL, performs semantic analysis of the embedded SQL statements.

The Oracle Pro*C/C++ precompiler also allows programmers to use object data types in C and C++ programs. Pro*C/C++ developers can use the Object Type Translator to map Oracle Database object types and collections into C data types to be used in the Pro*C/C++ application.

Pro*C/C++ developers can also call OCI functions from their programs.

Pro*C/C++ provides compile time type checking of object types and collections and automatic type conversion from database types to C data types. Pro*C/C++ includes an EXEC SQL syntax to create and destroy objects and offers two ways to access objects in the server:

	
SQL statements and PL/SQL functions or procedures embedded in Pro*C/C++ programs

	
A simple interface to the object cache, where objects can be accessed by traversing pointers, then modified and updated on the server

	
See Also:

	
"Overview of Microsoft Programming Languages"

	
Pro*C/C++ Programmer's Guide for a complete description of the Pro*C/C++ precompiler

Dynamic Creation and Access of Type Descriptions

Oracle provides a C API to enable dynamic creation and access of type descriptions. Additionally, you can create transient type descriptions, type descriptions that are not stored persistently in the database.

The C API enables creation and access of OCIAnyData and OCIAnyDataSet.

	
The OCIAnyData type models a self descriptive (with regard to type) data instance of a given type.

	
The OCIAnyDataSet type models a set of data instances of a given type.

Oracle also provides SQL data types (in Oracle's Open Type System) that correspond to these data types.

	
SYS.ANYTYPE corresponds to OCIType

	
SYS.ANYDATA corresponds to OCIAnyData

	
SYS.ANYDATASET corresponds to OCIAnyDataSet

You can create database table columns and SQL queries on such data.

The C API uses the following terms:

	
Transient types - Type descriptions (type metadata) that are not stored persistently in the database.

	
Persistent types - SQL types created using the CREATE TYPE SQL statement. Their type descriptions are stored persistently in the database.

	
Self-descriptive data - Data encapsulating type information along with the actual contents. The ANYDATA type (OCIAnyData) models such data. A data value of any SQL type can be converted to an ANYDATA, which can be converted back to the old data value. An incorrect conversion attempt results in an error.

	
Self-descriptive MultiSet - Encapsulation of a set of data instances (all of the same type), along with their type description.

	
See Also:

	
Oracle Database Object-Relational Developer's Guide

	
Oracle Call Interface Programmer's Guide

Overview of PL/SQL

PL/SQL is the Oracle procedural language extension to SQL. It provides a server-side, stored procedural language that is easy-to-use, seamless with SQL, robust, portable, and secure. The PL/SQL compiler and interpreter are embedded in Oracle Developer, providing developers with a consistent and leveraged development model on both the client and the server side. In addition, PL/SQL stored procedures can be called from a number of Oracle Database clients, such as Pro*C or Oracle Call Interface, and from Oracle Reports and Oracle Forms.

PL/SQL enables you to mix SQL statements with procedural constructs. With PL/SQL, you can define and run PL/SQL program units such as procedures, functions, and packages. PL/SQL program units generally are categorized as anonymous blocks and stored procedures.

An anonymous block is a PL/SQL block that appears in your application and is not named or stored in the database. In many applications, PL/SQL blocks can appear wherever SQL statements can appear.

A stored procedure is a PL/SQL block that Oracle Database stores in the database and can be called by name from an application. When you create a stored procedure, Oracle Database parses the procedure and stores its parsed representation in the database. Oracle Database also lets you create and store functions (which are similar to procedures) and packages (which are groups of procedures and functions).

	
See Also:

"Overview of Java"

Chapter 22, "Triggers"

This section includes the following topics:

	
How PL/SQL Runs

	
Language Constructs for PL/SQL

	
PL/SQL Program Units

	
Stored Procedures and Functions

	
PL/SQL Packages

	
PL/SQL Collections and Records

	
PL/SQL Server Pages

How PL/SQL Runs

PL/SQL can run with either of the following:

	
Interpreted Execution

	
Native Execution

Interpreted Execution

In versions earlier than Oracle9i, PL/SQL source code was always compiled into a so-called bytecode representation, which is run by a portable virtual computer implemented as part of Oracle Database, and also in products such as Oracle Forms. Starting with Oracle9i, you can choose between native execution and interpreted execution

Native Execution

For best performance on computationally intensive program units, compile the source code of PL/SQL program units stored in the database directly to object code for the given platform. (This object code is linked into Oracle Database.)

	
See Also:

Oracle Database PL/SQL Language Reference

The PL/SQL engine is the tool you use to define, compile, and run PL/SQL program units. This engine is a special component of many Oracle products, including Oracle Database.

While many Oracle products have PL/SQL components, this section specifically covers the program units that can be stored in Oracle Database and processed using Oracle Database PL/SQL engine. The PL/SQL capabilities of each Oracle tool are described in the appropriate tool's documentation.

Figure 25-1 illustrates the PL/SQL engine contained in Oracle Database.

Figure 25-1 The PL/SQL Engine and Oracle Database

[image: Description of Figure 25-1 follows]

The program unit is stored in a database. When an application calls a procedure stored in the database, Oracle Database loads the compiled program unit into the shared pool in the system global area (SGA). The PL/SQL and SQL statement executors work together to process the statements within the procedure.

The following Oracle products contain a PL/SQL engine:

	
Oracle Database

	
Oracle Forms (version 3 and later)

	
SQL*Menu (version 5 and later)

	
Oracle Reports (version 2 and later)

	
Oracle Graphics (version 2 and later)

You can call a stored procedure from another PL/SQL block, which can be either an anonymous block or another stored procedure. For example, you can call a stored procedure from Oracle Forms (version 3 or later).

Also, you can pass anonymous blocks to Oracle Database from applications developed with these tools:

	
Oracle precompilers (including user exits)

	
Oracle Call Interfaces (OCIs)

	
SQL*Plus

	
Oracle Enterprise Manager

Language Constructs for PL/SQL

PL/SQL blocks can include the following PL/SQL language constructs:

	
Variables and constants

	
Cursors

	
Exceptions

	
See Also:

Oracle Database PL/SQL Language Reference

This section includes the following topics:

	
Variables and Constants

	
Cursors

	
Exceptions

	
Dynamic SQL in PL/SQL

Variables and Constants

Variables and constants can be declared within a procedure, function, or package. A variable or constant can be used in a SQL or PL/SQL statement to capture or provide a value when one is needed.

Some interactive tools, such as SQL*Plus, let you define variables in your current session. You can use such variables just as you would variables declared within procedures or packages.

Cursors

Cursors can be declared explicitly within a procedure, function, or package to facilitate record-oriented processing of Oracle Database data. Cursors also can be declared implicitly (to support other data manipulation actions) by the PL/SQL engine.

	
See Also:

"Scrollable Cursors"

Exceptions

PL/SQL lets you explicitly handle internal and user-defined error conditions, called exceptions, that arise during processing of PL/SQL code. Internal exceptions are caused by illegal operations, such as division by zero, or Oracle Database errors returned to the PL/SQL code. User-defined exceptions are explicitly defined and signaled within the PL/SQL block to control processing of errors specific to the application (for example, debiting an account and leaving a negative balance).

When an exception is raised, the execution of the PL/SQL code stops, and a routine called an exception handler is invoked. Specific exception handlers can be written for any internal or user-defined exception.

Dynamic SQL in PL/SQL

PL/SQL can run dynamic SQL statements whose complete text is not known until run time. Dynamic SQL statements are stored in character strings that are entered into, or built by, the program at run time. This enables you to create general purpose procedures. For example, dynamic SQL lets you create a procedure that operates on a table whose name is not known until run time.

You can write stored procedures and anonymous PL/SQL blocks that include dynamic SQL in two ways:

	
By embedding dynamic SQL statements in the PL/SQL block

	
By using the DBMS_SQL package

Additionally, you can issue DML or DDL statements using dynamic SQL. This helps solve the problem of not being able to statically embed DDL statements in PL/SQL. For example, you can choose to issue a DROP TABLE statement from within a stored procedure by using the EXECUTE IMMEDIATE statement or the PARSE procedure supplied with the DBMS_SQL package.

	
See Also:

	
Oracle Database Advanced Application Developer's Guide for a comparison of the two approaches to dynamic SQL

	
Oracle Database PL/SQL Language Reference for details about dynamic SQL

	
Oracle Database PL/SQL Packages and Types Reference

PL/SQL Program Units

Oracle Database lets you access and manipulate database information using procedural schema objects called PL/SQL program units. Procedures, functions, and packages are all examples of PL/SQL program units.

Stored Procedures and Functions

A procedure or function is a schema object that consists of a set of SQL statements and other PL/SQL constructs, grouped together, stored in the database, and run as a unit to solve a specific problem or perform a set of related tasks. Procedures and functions permit the caller to provide parameters that can be input only, output only, or input and output values. Procedures and functions let you combine the ease and flexibility of SQL with the procedural functionality of a structured programming language.

Procedures and functions are identical except that functions always return a single value to the caller, while procedures do not. For simplicity, procedure as used in the remainder of this chapter means procedure or function.

You can run a procedure or function interactively by:

	
Using an Oracle tool, such as SQL*Plus

	
Calling it explicitly in the code of a database application, such as an Oracle Forms or precompiler application

	
Calling it explicitly in the code of another procedure or trigger

	
See Also:

	
Pro*C/C++ Programmer's Guide for information about how to call stored C or C++ procedures

	
Pro*COBOL Programmer's Guide for information about how to call stored COBOL procedures

	
Other programmer's guides for information about how to call stored procedures of specific kinds of application

Figure 25-2 illustrates a simple procedure that is stored in the database and called by several different database applications.

Figure 25-2 Stored Procedure

[image: Description of Figure 25-2 follows]

The following stored procedure example inserts an employee record into the employees table:

Procedure hire_employees (last_name VARCHAR2, job_id VARCHAR2, manager_id NUMBER, hire_date DATE, salary NUMBER, commission_pct NUMBER, department_id NUMBER)

BEGIN
.
.
INSERT INTO employees VALUES (emp_sequence.NEXTVAL, last_name, job_id, manager_id, hire_date, salary, commission_pct, department_id);
.
.
END

All of the database applications in this example call the hire_employees procedure. Alternatively, a privileged user can use Oracle Enterprise Manager or SQL*Plus to run the hire_employees procedure using a statement such as the following:

EXECUTE hire_employees ('TSMITH', 'CLERK', 1037, SYSDATE, 500, NULL, 20);

This statement places a new employee record for TSMITH in the employees table.

	
See Also:

Oracle Database PL/SQL Language Reference

This section includes the following topics:

	
Benefits of Procedures

	
Procedure Guidelines

	
Anonymous PL/SQL Blocks Compared with Stored Procedures

	
Standalone Procedures

	
Dependency Tracking for Stored Procedures

	
External Procedures

	
Table Functions

Benefits of Procedures

Stored procedures provide advantages in the following areas:

	
Security with definer's rights procedures

Stored procedures can help enforce data security. You can restrict the database operations that users can perform by allowing them to access data only through procedures and functions that run with the definer's privileges.

For example, you can grant users access to a procedure that updates a table but not grant them access to the table itself. When a user invokes the procedure, the procedure runs with the privileges of the procedure's owner. Users who have only the privilege to run the procedure (but not the privileges to query, update, or delete from the underlying tables) can invoke the procedure, but they cannot manipulate table data in any other way.

	
See Also:

"Dependency Tracking for Stored Procedures"

	
Inherited privileges and schema context with invoker's rights procedures

An invoker's rights procedure inherits privileges and schema context from the procedure that calls it. In other words, an invoker's rights procedure is not tied to a particular user or schema, and each invocation of an invoker's rights procedure operates in the current user's schema with the current user's privileges. Invoker's rights procedures make it easy for application developers to centralize application logic, even when the underlying data is divided among user schemas.

For example, a user who runs an update procedure on the employees table as a manager can update salary, whereas a user who runs the same procedure as a clerk can be restricted to updating address data.

	
Improved performance

	
The amount of information that must be sent over a network is small compared with issuing individual SQL statements or sending the text of an entire PL/SQL block to Oracle Database, because the information is sent only once and thereafter invoked when it is used.

	
A procedure's compiled form is readily available in the database, so no compilation is required at execution time.

	
If the procedure is already present in the shared pool of the system global area (SGA), then retrieval from disk is not required, and execution can begin immediately.

	
Memory allocation

Because stored procedures take advantage of the shared memory capabilities of Oracle Database, only a single copy of the procedure must be loaded into memory for execution by multiple users. Sharing the same code among many users results in a substantial reduction in Oracle Database memory requirements for applications.

	
Improved productivity

Stored procedures increase development productivity. By designing applications around a common set of procedures, you can avoid redundant coding and increase your productivity.

For example, procedures can be written to insert, update, or delete employee records from the employees table. These procedures can then be called by any application without rewriting the SQL statements necessary to accomplish these tasks. If the methods of data management change, only the procedures need to be modified, not all of the applications that use the procedures.

	
Integrity

Stored procedures improve the integrity and consistency of your applications. By developing all of your applications around a common group of procedures, you can reduce the likelihood of committing coding errors.

For example, you can test a procedure or function to guarantee that it returns an accurate result and, once it is verified, reuse it in any number of applications without testing it again. If the data structures referenced by the procedure are altered in any way, then only the procedure must be recompiled. Applications that call the procedure do not necessarily require any modifications.

Procedure Guidelines

Use the following guidelines when designing stored procedures:

	
Define procedures to complete a single, focused task. Do not define long procedures with several distinct subtasks, because subtasks common to many procedures can be duplicated unnecessarily in the code of several procedures.

	
Do not define procedures that duplicate the functionality already provided by other features of Oracle Database. For example, do not define procedures to enforce simple data integrity rules that you could easily enforce using declarative integrity constraints.

Anonymous PL/SQL Blocks Compared with Stored Procedures

A stored procedure is created and stored in the database as a schema object. Once created and compiled, it is a named object that can be run without recompiling. Additionally, dependency information is stored in the data dictionary to guarantee the validity of each stored procedure.

As an alternative to a stored procedure, you can create an anonymous PL/SQL block by sending an unnamed PL/SQL block to Oracle Database from an Oracle tool or an application. Oracle Database compiles the PL/SQL block and places the compiled version in the shared pool of the SGA, but it does not store the source code or compiled version in the database for reuse beyond the current instance. Shared SQL allows anonymous PL/SQL blocks in the shared pool to be reused and shared until they are flushed out of the shared pool.

In either case, by moving PL/SQL blocks out of a database application and into database procedures stored either in the database or in memory, you avoid unnecessary procedure recompilations by Oracle Database at run time, improving the overall performance of the application and Oracle Database.

Standalone Procedures

Stored procedures not defined within the context of a package are called standalone procedures. Procedures defined within a package are considered a part of the package.

	
See Also:

"PL/SQL Packages" for information about the advantages of packages

Dependency Tracking for Stored Procedures

A stored procedure depends on the objects referenced in its body. Oracle Database automatically tracks and manages such dependencies. For example, if you alter the definition of a table referenced by a procedure, then the procedure must be recompiled to validate that it will still work as designed. Usually, Oracle Database automatically administers such dependency management.

	
See Also:

Chapter 6, "Schema Object Dependencies" for more information about dependency tracking

External Procedures

A PL/SQL procedure executing on Oracle Database can call an external procedure or function that is written in the C programming language and stored in a shared library. The C routine runs in a separate address space from that of Oracle Database.

	
See Also:

Oracle Database Advanced Application Developer's Guide for more information about external procedures

Table Functions

Table functions are functions that can produce a set of rows as output. In other words, table functions return a collection type instance (nested table and VARRAY datatypes). You can use a table function in place of a regular table in the FROM clause of a SQL statement.

Oracle Database allows table functions to pipeline results (act like an Oracle Database rowsource) out of the functions. This can be achieved by either providing an implementation of the ODCITable interface, or using native PL/SQL instructions.

Pipelining helps to improve the performance of a number of applications, such as Oracle Warehouse Builder (OWB) and cartridges groups.

The ETL (Extraction-Transformation-Load) process in data warehouse building extracts data from an OLTP system. The extracted data passes through a sequence of transformations (written in procedural languages, such as PL/SQL) before it is loaded into a data warehouse.

Oracle Database also allows parallel execution of table and non-table functions. Parallel execution provides the following extensions:

	
Functions can directly accept a set of rows corresponding to a subquery operand.

	
A set of input rows can be partitioned among multiple instances of a parallel function. The function developer specifies how the input rows should be partitioned between parallel instances of the function.

Thus, table functions are similar to views. However, instead of defining the transform declaratively in SQL, you define it procedurally in PL/SQL. This is especially valuable for the arbitrarily complex transformations typically required in ETL.

	
See Also:

	
"Overview of Extraction, Transformation, and Loading (ETL)"

	
Oracle Database Data Cartridge Developer's Guide

	
Oracle Database PL/SQL Language Reference

PL/SQL Packages

A package is a group of related procedures and functions, along with the cursors and variables they use, stored together in the database for continued use as a unit. Similar to standalone procedures and functions, packaged procedures and functions can be called explicitly by applications or users.

Oracle Database supplies many PL/SQL packages to extend database functionality and provide PL/SQL access to SQL features. For example, the ULT_HTTP supplied package enables HTTP callouts from PL/SQL and SQL to access data on the Internet or to call Oracle Web Server Cartridges. You can use the supplied packages when creating your applications or for ideas on creating your own stored procedures.

You create a package in two parts: the specification and the body. The package specification declares all public constructs of the package, and the body defines all constructs (public and private) of the package. The package body must be created in the same schema as the package. This separation of the two parts provides the following advantages:

	
You have more flexibility in the development cycle. You can create specifications and reference public procedures without actually creating the package body.

	
You can alter procedure bodies contained within the package body separately from their publicly declared specifications in the package specification. As long as the procedure specification does not change, objects that reference the altered procedures of the package are never marked invalid. That is, they are never marked as needing recompilation.

	
Note:

The package body and package specification always must be in the same schema.

Figure 25-3 illustrates a package that encapsulates a number of procedures used to manage an employee database.

Figure 25-3 A Stored Package

[image: Description of Figure 25-3 follows]

Database applications explicitly call packaged procedures as necessary. After being granted the privileges for the employees_management package, a user can explicitly run any of the procedures contained in it. For example, Oracle Enterprise Manager or SQL*Plus can issue the following statement to run the hire_employees package procedure:

EXECUTE employees_management.hire_employees ('TSMITH', 'CLERK', 1037, SYSDATE, 500, NULL, 20);

	
See Also:

	
Oracle Database PL/SQL Language Reference

	
Oracle Database PL/SQL Packages and Types Reference

Benefits of Packages

Packages provide advantages in the following areas:

	
Encapsulation of related procedures and variables

Stored packages allow you to encapsulate or group stored procedures, variables, datatypes, and so on in a single named, stored unit in the database. This provides better organization during the development process. Encapsulation of procedural constructs also makes privilege management easier. Granting the privilege to use a package makes all constructs of the package accessible to the grantee.

	
Declaration of public and private procedures, variables, constants, and cursors

The methods of package definition allow you to specify which variables, cursors, and procedures are public and private. Public means that it is directly accessible to the user of a package. Private means that it is hidden from the user of a package.

For example, a package can contain 10 procedures. You can define the package so that only three procedures are public and therefore available for execution by a user of the package. The remainder of the procedures are private and can only be accessed by the procedures within the package. Do not confuse public and private package variables with grants to PUBLIC.

	
See Also:

Chapter 20, "Database Security" for more information about grants to PUBLIC

	
Better performance

An entire package is loaded into memory when a procedure within the package is called for the first time. This load is completed in one operation, as opposed to the separate loads required for standalone procedures. Therefore, when calls to related packaged procedures occur, no disk I/O is necessary to run the compiled code already in memory.

A package body can be replaced and recompiled without affecting the specification. As a result, schema objects that reference a package's constructs (always through the specification) need not be recompiled unless the package specification is also replaced. By using packages, unnecessary recompilations can be minimized, resulting in less impact on overall database performance.

PL/SQL Collections and Records

Many programming techniques use collection types such as arrays, bags, lists, nested tables, sets, and trees. To support these techniques in database applications, PL/SQL provides the datatypes TABLE and VARRAY, which allow you to declare index-by tables, nested tables, and variable-size arrays.

This section includes the following topics:

	
Collections

	
Records

Collections

A collection is an ordered group of elements, all of the same type. Each element has a unique subscript that determines its position in the collection.

Collections work like the arrays found in most third-generation programming languages. Also, collections can be passed as parameters. So, you can use them to move columns of data into and out of database tables or between client-side applications and stored subprograms.

Records

You can use the %ROWTYPE attribute to declare a record that represents a row in a table or a row fetched from a cursor. But, with a user-defined record, you can declare fields of your own.

Records contain uniquely named fields, which can have different datatypes. Suppose you have various data about an employee such as name, salary, and hire date. These items are dissimilar in type but logically related. A record containing a field for each item lets you treat the data as a logical unit.

	
See Also:

Oracle Database PL/SQL Language Reference for detailed information on using collections and records

PL/SQL Server Pages

PL/SQL Server Pages (PSP) are server-side Web pages (in HTML or XML) with embedded PL/SQL scripts marked with special tags. To produce dynamic Web pages, developers have usually written CGI programs in C or Perl that fetch data and produce the entire Web page within the same program. The development and maintenance of such dynamic pages is costly and time-consuming.

Scripting fulfills the demand for rapid development of dynamic Web pages. Small scripts can be embedded in HTML pages without changing their basic HTML identity. The scripts contain the logic to produce the dynamic portions of HTML pages and are run when the pages are requested by the users.

The separation of HTML content from application logic makes script pages easier to develop, debug, and maintain. The simpler development model, along the fact that scripting languages usually demand less programming skill, enables Web page writers to develop dynamic Web pages.

There are two kinds of embedded scripts in HTML pages: client-side scripts and server-side scripts. Client-side scripts are returned as part of the HTML page and are run in the browser. They are mainly used for client-side navigation of HTML pages or data validation. Server-side scripts, while also embedded in the HTML pages, are run on the server side. They fetch and manipulate data and produce HTML content that is returned as part of the page. PSP scripts are server-side scripts.

A PL/SQL gateway receives HTTP requests from an HTTP client, invokes a PL/SQL stored procedure as specified in the URL, and returns the HTTP output to the client. A PL/SQL Server Page is processed by a PSP compiler, which compiles the page into a PL/SQL stored procedure. When the procedure is run by the gateway, it generates the Web page with dynamic content. PSP is built on one of two existing PL/SQL gateways:

	
PL/SQL cartridge of Oracle Application Server

	
WebDB

	
See Also:

Oracle Database Advanced Application Developer's Guide for more information about PL/SQL Server Pages

Overview of Java

Java is an object-oriented programming language efficient for application-level programs. It includes the following features:

	
A Java Virtual Machine (JVM), which provides the fundamental basis for platform independence

	
Automatic storage management techniques, such as gathering scattered memory into contiguous memory space

	
Language syntax that borrows from C and enforces strong typing

This section contains the following topics:

	
Java and Object-Oriented Programming Terminology

	
Class Hierarchy

	
Interfaces

	
Polymorphism

	
Overview of the Java Virtual Machine (JVM)

	
Why Use Java in Oracle Database?

	
Oracle's Java Application Strategy

Java and Object-Oriented Programming Terminology

This section covers some basic terminology of Java application development in the Oracle Database environment.

This section includes the following topics:

	
Classes

	
Attributes

	
Methods

Classes

All object-oriented programming languages support the concept of a class. As with a table definition, a class provides a template for objects that share common characteristics. Each class can contain the following:

	
Attributes—static or instance variables that each object of a particular class has

	
Methods—you can invoke methods defined by the class or inherited by any classes extended from the class

When you create an object from a class, you are creating an instance of that class. The instance contains the fields of an object, which are known as its data, or state.

Figure 25-4 shows an example of an Employee class defined with two attributes: last name (lastName) and employee identifier (ID).

Figure 25-4 Classes and Instances

[image: Description of Figure 25-4 follows]

When you create an instance, the attributes store individual and private information relevant only to the employee. That is, the information contained within an employee instance is known only for that single employee. The example in Figure 25-4 shows two instances of employee—Smith and Jones. Each instance contains information relevant to the individual employee.

Attributes

Attributes within an instance are known as fields. Instance fields are analogous to the fields of a relational table row. The class defines the fields, as well as the type of each field. You can declare fields in Java to be static, public, private, protected, or default access.

	
Public, private, protected, or default access fields are created within each instance.

	
Static fields are like global variables in that the information is available to all instances of the employee class.

The language specification defines the rules of visibility of data for all fields. Rules of visibility define under what circumstances you can access the data in these fields.

Methods

The class also defines the methods you can invoke on an instance of that class. Methods are written in Java and define the behavior of an object. This bundling of state and behavior is the essence of encapsulation, which is a feature of all object-oriented programming languages. If you define an Employee class, declaring that each employee's id is a private field, other objects can access that private field only if a method returns the field. In this example, an object could retrieve the employee's identifier by invoking the Employee.getId method.

In addition, with encapsulation, you can declare that the Employee.getId method is private, or you can decide not to write an Employee.getId method. Encapsulation helps you write programs that are reusable and not misused. Encapsulation makes public only those features of an object that are declared public; all other fields and methods are private. Private fields and methods can be used for internal object processing.

Class Hierarchy

Java defines classes within a large hierarchy of classes. At the top of the hierarchy is the Object class. All classes in Java inherit from the Object class at some level, as you walk up through the inheritance chain of superclasses. When it is said that Class B inherits from Class A, each instance of Class B contains all the fields defined in class B, as well as all the fields defined in Class A. For example, in Figure 25-5, the FullTimeEmployee class contains the id and lastName fields defined in the Employee class, because it inherits from the Employee class. In addition, the FullTimeEmployee class adds another field, bonus, which is contained only within FullTimeEmployee.

You can invoke any method on an instance of Class B that was defined in either Class A or B. In our employee example, the FullTimeEmployee instance can invoke methods defined only within its own class, or methods defined within the Employee class.

Figure 25-5 Using Inheritance to Localize Behavior and State

[image: Description of Figure 25-5 follows]

Instances of Class B are substitutable for instances of Class A, which makes inheritance another powerful construct of object-oriented languages for improving code reuse. You can create new classes that define behavior and state where it makes sense in the hierarchy, yet make use of pre-existing functionality in class libraries.

Interfaces

Java supports only single inheritance; that is, each class has one and only one class from which it inherits. If you must inherit from more than one source, Java provides the equivalent of multiple inheritance, without the complications and confusion that usually accompany it, through interfaces. Interfaces are similar to classes; however, interfaces define method signatures, not implementations. The methods are implemented in classes declared to implement an interface. Multiple inheritance occurs when a single class simultaneously supports many interfaces.

Polymorphism

Assume in our Employee example that the different types of employees must be able to respond with their compensation to date. Compensation is computed differently for different kinds of employees.

	
FullTimeEmployees are eligible for a bonus

	
NonExemptEmployees get overtime pay

In traditional procedural languages, you would write a long switch statement, with the different possible cases defined.

switch (employee.type) {
case: Employee
return employee.salaryToDate;
case: FullTimeEmployee
return employee.salaryToDate + employee.bonusToDate;
...

If you add a new kind of employee, then you must update your switch statement. If you modify your data structure, then you must modify all switch statements that use it.

In an object-oriented language such as Java, you implement a method, compensationToDate, for each subclass of Employee class that requires any special treatment beyond what is already defined in Employee class. For example, you could implement the compensationToDate method of NonExemptEmployee, as follows:

private float compensationToDate() {
return super.compensationToDate() + this.overtimeToDate();
}

Implement FullTimeEmployee's method as follows:

private float compensationToDate() {
return super.compensationToDate() + this.bonusToDate();
}

The common usage of the method name compensationToDate lets you invoke the identical method on different classes and receive different results, without knowing the type of employee you are using. You do not have to write a special method to handle FullTimeEmployees and PartTimeEmployees. This ability for the different objects to respond to the identical message in different ways is known as polymorphism.

In addition, you could create an entirely new class that does not inherit from Employee at all—Contractor—and implement a compensationToDate method in it. A program that calculates total payroll to date would iterate over all people on payroll, regardless of whether they were full-time, part-time, or contractors, and add up the values returned from invoking the compensationToDate method on each. You can safely make changes to the individual compensationToDate methods with the knowledge that callers of the methods will work correctly. For example, you can safely add new fields to existing classes.

Overview of the Java Virtual Machine (JVM)

As with other high-level computer languages, Java source compiles to low-level instructions. In Java, these instructions are known as bytecodes (because their size is uniformly one byte of storage). Most other languages—such as C—compile to computer-specific instructions, such as instructions specific to an Intel or HP processor. Java source compiles to a standard, platform-independent set of bytecodes, which interacts with a Java Virtual Machine (JVM). The JVM is a separate program that is optimized for the specific platform on which you run your Java code.

Figure 25-6 illustrates how Java can maintain platform independence. Java source is compiled into bytecodes, which are platform independent. Each platform has installed a JVM that is specific to its operating system. The Java bytecodes from your source get interpreted through the JVM into appropriate platform dependent actions.

Figure 25-6 Java Component Structure

[image: Description of Figure 25-6 follows]

When you develop a Java program, you use predefined core class libraries written in the Java language. The Java core class libraries are logically divided into packages that provide commonly-used functionality, such as basic language support (java.lang), I/O (java.io), and network access (java.net). Together, the JVM and core class libraries provide a platform on which Java programmers can develop with the confidence that any hardware and operating system that supports Java will execute their program. This concept is what drives the "write once, run anywhere" idea of Java.

Figure 25-7 illustrates how Oracle's Java applications sit on top of the Java core class libraries, which in turn sit on top of the JVM. Because Oracle's Java support system is located within the database, the JVM interacts with Oracle Database libraries, instead of directly with the operating system.

Figure 25-7 Java Component Structure

[image: Description of Figure 25-7 follows]

Sun Microsystems furnishes publicly available specifications for both the Java language and the JVM. The Java Language Specification (JLS) defines things such as syntax and semantics; the JVM specification defines the necessary low-level behavior for the computer that runs the bytecodes. In addition, Sun Microsystems provides a compatibility test suite for JVM implementors to determine if they have complied with the specifications. This test suite is known as the Java Compatibility Kit (JCK). Oracle's JVM implementation complies fully with JCK. Part of the overall Java strategy is that an openly specified standard, together with a simple way to verify compliance with that standard, allows vendors to offer uniform support for Java across all platforms.

Why Use Java in Oracle Database?

You can write and load Java applications within the database, because it is a safe language. Java prevents anyone from tampering with the operating system that the Java code resides in. Some languages, such as C, can introduce security problems within the database; Java, because of its design, is a safe language to allow within the database.

Although Java presents many advantages to developers, providing an implementation of a JVM that supports Java server applications in a scalable manner is a challenge. This section discusses some of these challenges.

	
Multithreading

	
Automated Storage Management

	
Footprint

	
Performance

	
Dynamic Class Loading

Multithreading

Multithreading support is often cited as one of the key scalability features of Java. Certainly, the Java language and class libraries make it simpler to write shared server applications in Java than many other languages, but it is still a daunting task in any language to write reliable, scalable shared server code.

As a database server, Oracle Database efficiently schedules work for thousands of users. The Oracle JVM uses the facilities of the RDBMS server to concurrently schedule Java execution for thousands of users. Although Oracle Database supports Java language level threads required by the JLS and JCK, using threads within the scope of the database does not increase scalability. Using the embedded scalability of the database eliminates the need for writing shared server Java servers. You should use the database's facilities for scheduling users by writing single-threaded Java applications. The database takes care of the scheduling between each application; thus, you achieve scalability without having to manage threads. You can still write shared server Java applications, but multiple Java threads does not increase your server's performance.

One difficulty multithreading imposes on Java is the interaction of threads and automated storage management, or garbage collection. The garbage collector executing in a generic JVM has no knowledge of which Java language threads are executing or how the underlying operating system schedules them.

	
Non-Oracle model—A single user maps to a single Java language level thread; the same single garbage collector manages all garbage from all users. Different techniques typically deal with allocation and collection of objects of varying lifetimes and sizes. The result in a heavily shared server application is, at best, dependent upon operating system support for native threads, which can be unreliable and limited in scalability. High levels of scalability for such implementations have not been convincingly demonstrated.

	
Oracle JVM model—Even when thousands of users connect to the server and run the same Java code, each user experiences it as if he is executing his own Java code on his own Java Virtual Machine. The responsibility of the Oracle JVM is to make use of operating system processes and threads, using the scalable approach of the Oracle RDBMS. As a result of this approach, the JVM's garbage collector is more reliable and efficient because it never collects garbage from more than one user at any time.

Automated Storage Management

Garbage collection is a major feature of Java's automated storage management, eliminating the need for Java developers to allocate and free memory explicitly. Consequently, this eliminates a large source of memory leaks that commonly plague C and C++ programs. There is a price for such a benefit: garbage collection contributes to the overhead of program execution speed and footprint. Although many papers have been written qualifying and quantifying the trade-off, the overall cost is reasonable, considering the alternatives.

Garbage collection imposes a challenge to the JVM developer seeking to supply a highly scalable and fast Java platform. The Oracle JVM meets these challenges in the following ways:

	
The Oracle JVM uses the Oracle Database scheduling facilities, which can manage multiple users efficiently.

	
Garbage collection is performs consistently for multiple users because garbage collection is focused on a single user within a single session. The Oracle JVM enjoys a huge advantage because the burden and complexity of the memory manager's job does not increase as the number of users increases. The memory manager performs the allocation and collection of objects within a single session—which typically translates to the activity of a single user.

	
The Oracle JVM uses different garbage collection techniques depending on the type of memory used. These techniques provide high efficiency and low overhead.

Footprint

The footprint of an executing Java program is affected by many factors:

	
Size of the program itself—how many classes and methods and how much code they contain.

	
Complexity of the program—the amount of core class libraries that the Oracle JVM uses as the program runs, as opposed to the program itself.

	
Amount of state the JVM uses—how many objects the JVM allocates, how large they are, and how many must be retained across calls.

	
Ability of the garbage collector and memory manager to deal with the demands of the executing program, which is often non-deterministic. The speed with which objects are allocated and the way they are held on to by other objects influences the importance of this factor.

From a scalability perspective, the key to supporting many concurrent clients is a minimum user session footprint. The Oracle JVM keeps the user session footprint to a minimum by placing all read-only data for users, such as Java bytecodes, in shared memory. Appropriate garbage collection algorithms are applied against call and session memories to maintain a small footprint for the user's session. The Oracle JVM uses three types of garbage collection algorithms to maintain the user's session memory:

	
Generational scavenging for short-lived objects

	
Mark and lazy sweep collection for objects that exist for the life of a single call

	
Copying collector for long-lived objects—objects that live across calls within a session

Performance

Oracle JVM performance is enhanced by implementing a native compiler. Java runs platform-independent bytecodes on top of a JVM, which in turn interacts with the specific hardware platform. Any time you add levels within software, your performance is degraded. Because Java requires going through an intermediary to interpret platform-independent bytecodes, a degree of inefficiency exists for Java applications that does not exists within a platform-dependent language, such as C. To address this issue, several JVM suppliers create native compilers. Native compilers translate Java bytecodes into platform-dependent native code, which eliminates the interpreter step and improves performance.

Table 25-1 describes two methods for native compilation.

Table 25-1 Native Compilation Methods

	Method	Description
	
Just-In-Time (JIT) Compilation

	
JIT compilers quickly compile Java bytecodes to native (platform-specific) computer code during run time. This does not produce an executable to be run on the platform; instead, it provides platform-dependent code from Java bytecodes that is run directly after it is translated. This should be used for Java code that is run frequently, which will be run at speeds closer to languages such as C.

	
Static Compilation

	
Static compilation translates Java bytecodes to platform-independent C code before run time. Then a standard C compiler compiles the C code into an executable for the target platform. This approach is more suitable for Java applications that are modified infrequently. This approach takes advantage of the mature and efficient platform-specific compilation technology found in modern C compilers.

Oracle Database uses static compilation to deliver its core Java class libraries: the ORB and JDBC code in natively compiled form. It is applicable across all the platforms Oracle supports, whereas a JIT approach requires low-level, processor-dependent code to be written and maintained for each platform. You can use this native compilation technology with your own Java code.

Dynamic Class Loading

Another strong feature of Java is dynamic class loading. The class loader loads classes from the disk (and places them in the JVM-specific memory structures necessary for interpretation) only as they are used during program execution. The class loader locates the classes in the CLASSPATH and loads them during program execution. This approach, which works well for applets, poses the problems listed in Table 25-2 in a server environment.

Table 25-2 Problems Associated with Dynamic Class Loading

	Problem	Description	Solution
	
Predictability

	
The class loading operation places a severe penalty on first-time execution. A simple program can cause the Oracle JVM to load many core classes to support its needs. A programmer cannot easily predict or determine the number of classes loaded.

	
The Oracle JVM loads classes dynamically, just as with any other Java Virtual Machine. The same one-time class loading speed hit is encountered. However, because the classes are loaded into shared memory, no other users of those classes will cause the classes to load again—they will simply use the same pre-loaded classes.

	
Reliability

	
A benefit of dynamic class loading is that it supports program updating. For example, you would update classes on a server, and clients who download the program and load it dynamically see the update whenever they next use the program. Server programs tend to emphasize reliability. As a developer, you must know that every client runs a specific program configuration. You do not want clients to inadvertently load some classes that you did not intend them to load.

	
Oracle Database separates the upload and resolve operation from the class loading operation at run time. You upload Java code you developed to the server using the loadjava utility. Instead of using CLASSPATH, you specify a resolver at installation time. The resolver is analogous to CLASSPATH, but lets you specify the schemas in which the classes reside. This separation of resolution from class loading means you always know what program users run.

Oracle's Java Application Strategy

One appeal of Java is its ubiquity and the growing number of programmers capable of developing applications using it. Oracle furnishes enterprise application developers with an end-to-end Java solution for creating, deploying, and managing Java applications. The total solution consists of client-side and server-side programmatic interfaces, tools to support Java development, and a Java Virtual Machine integrated with Oracle Database. All these products are compatible with Java standards.

In addition to the Oracle JVM, the Java programming environment consists of the following:

	
Java stored procedures as the Java equivalent and companion for PL/SQL. Java stored procedures are tightly integrated with PL/SQL. You can call a Java stored procedure from a PL/SQL package; you can call PL/SQL procedures from a Java stored procedure.

	
SQL data can be accessed through the JDBC programming interface.

	
Tools and scripts used in assisting in development, class loading, and class management.

This section includes the following topics:

	
Java Stored Procedures

	
PL/SQL Integration and Oracle Database Functionality

	
JDBC

	
JPublisher

	
Java Messaging Service

Java Stored Procedures

A Java stored procedure is a program you write in Java to run in the server, exactly as a PL/SQL stored procedure. You invoke it directly with products like SQL*Plus, or indirectly with a trigger. You can access it from any Oracle Net client—OCI, precompiler, or JDBC.

In addition, you can use Java to develop powerful programs independently of PL/SQL. Oracle Database provides a fully-compliant implementation of the Java programming language and JVM.

	
See Also:

Oracle Database Java Developer's Guide explains how to write stored procedures in Java, how to access them from PL/SQL, and how to access PL/SQL functionality from Java.

PL/SQL Integration and Oracle Database Functionality

You can invoke existing PL/SQL programs from Java and invoke Java programs from PL/SQL. This solution protects and leverages your existing investment while opening up the advantages and opportunities of Java-based Internet computing.

JDBC

Java database connectivity (JDBC) is an application programming interface (API) for Java developers to access SQL data. It is available on client and server, so you can deploy the same code in either place.

Oracle's JDBC allows access to objects and collection types defined in the database from Java programs through dynamic SQL. Dynamic SQL means that the embedded SQL statement to be run is not known before the application is run, and requires input to build the statement. It provides for translation of types defined in the database into Java classes through default or customizable mappings, and it also enables you to monitor, trace, and correlate resource consumption of Java and J2EE applications down to the database operation level.

Core Java class libraries provide only one JDBC API. JDBC is designed, however, to allow vendors to supply drivers that offer the necessary specialization for a particular database. Oracle delivers the following three distinct JDBC drivers.

Table 25-3 JDBC Drivers

	Driver	Description
	
JDBC Thin Driver

	
You can use the JDBC Thin driver to write 100% pure Java applications and applets that access Oracle SQL data. The JDBC Thin driver is especially well-suited to Web browser-based applications and applets, because you can dynamically download it from a Web page just like any other Java applet.

	
JDBC Oracle Call Interface Driver

	
The JDBC Oracle Call Interface (OCI) driver accesses Oracle-specific native code (that is, non-Java) libraries on the client or middle tier, providing a richer set of functionality and some performance boost compared to the JDBC Thin driver, at the cost of significantly larger size and client-side installation.

	
JDBC Server-side Internal Driver

	
Oracle Database uses the server-side internal driver when Java code runs on the server. It allows Java applications running in the server's JVM to access locally defined data (that is, on the same computer and in the same process) with JDBC. It provides a further performance boost because of its ability to use underlying Oracle RDBMS libraries directly, without the overhead of an intervening network connection between your Java code and SQL data. By supporting the same Java-SQL interface on the server, Oracle Database does not require you to rework code when deploying it.

	
See Also:

	
Oracle Database JDBC Developer's Guide and Reference

	
Oracle Database Advanced Application Developer's Guide for examples of JDBC programs

SQLJ

SQLJ allows developers to use object datatypes in Java programs. Developers can use JPublisher to map Oracle object and collection types into Java classes to be used in the application.

SQLJ provides access to server objects using SQL statements embedded in the Java code. SQLJ provides compile-time type checking of object types and collections in the SQL statements. The syntax is based on an ANSI standard (SQLJ Consortium).

You can specify Java classes as SQL user-defined object types. You can define columns or rows of this SQLJ type. You can also query and manipulate the objects of this type as if they were SQL primitive types. Additionally, you can do the following:

	
Make the static fields of a class visible in SQL

	
Allow the user to call a Java constructor

	
Maintain the dependency between the Java class and its corresponding type

JPublisher

Java Publisher (JPublisher) is a utility, written entirely in Java, that generates Java classes to represent the following user-defined database entities in your Java program:

	
SQL object types

	
Object reference types ("REF types")

	
SQL collection types (VARRAY types or nested table types)

	
PL/SQL packages

JPublisher lets you to specify and customize the mapping of these entities to Java classes in a strongly typed paradigm.

	
See Also:

Oracle Database JPublisher User's Guide

Java Messaging Service

Java Messaging Service (JMS) is a messaging standard developed by Sun Microsystems along with Oracle, IBM, and other vendors. It defines a set of interfaces for JMS applications and specifies the behavior implemented by JMS providers. JMS provides a standard-based API to enable asynchronous exchange of business events within the enterprise, as well as with customers and partners. JMS facilitates reliable communication between loosely coupled components in a distributed environment, significantly simplifying the effort required for enterprise integration. The combination of Java technology with enterprise messaging enables development of portable applications.

Oracle Java Messaging Service is a Java API for Oracle Streams, based on the JMS standard. Multiple client applications can send and receive messages of any type through a central JMS provider (Oracle Streams). The JMS client consists of the Java application as well as a messaging client run-time library that implements the JMS interface and communicates with Oracle Streams.

Java Messaging Oracle JMS supports the standard JMS interfaces and has extensions to support other Streams features that are not a part of the standard. It can be used to enqueue and dequeue messages in the queue available with Oracle Streams. Oracle JMS includes the standard JMS features:

	
Point-to-point communication using queues

	
Publish-subscribe communication using topics

	
Synchronous and asynchronous message exchange

	
Subject-based routing

Oracle Streams also provides extensions to the standard JMS features:

	
Point-to-multipoint communication using a recipient list for specifying the applications to receive the messages

	
Administrative API to create the queue tables, queues and subjects

	
Automatic propagation of messages between queues on different databases, enabling the application to define remote subscribers

	
Transacted session support, allowing both JMS and SQL operations in one transaction

	
Message retention after message is consumed

	
Exception handling

	
Delay specification before a message is visible

Overview of Microsoft Programming Languages

Oracle offers a variety of data access methods from COM-based programming languages, such as Visual Basic and Active Server Pages. These include Oracle Objects for OLE (OO40) and the Oracle Provider for OLE DB. The latter can be used with Microsoft's ActiveX Data Objects (ADO). Server-side programming to COM Automation servers, such as Microsoft Office, is available through the COM Automation Feature. More traditional ODBC access is available through Oracle's ODBC Driver. C/C++ applications can also use the Oracle Call Interface (OCI). These data access drivers have been engineered to provide superior performance with Oracle Database and expose the database's advanced features which may not be available in third-party drivers.

Oracle also provides optimum .NET data access support through the Oracle Data Provider for .NET, allowing .NET to access advanced Oracle features. Oracle also supports OLE DB .NET and ODBC .NET.

This section includes the following topics:

	
Open Database Connectivity

	
Overview of Oracle Objects for OLE

	
Oracle Data Provider for .NET

Open Database Connectivity

Open database connectivity (ODBC), is a database access protocol that lets you connect to a database and then prepare and run SQL statements against the database. In conjunction with an ODBC driver, an application can access any data source including data stored in spreadsheets, like Excel. Because ODBC is a widely accepted standard API, applications can be written to comply to the ODBC standard. The ODBC driver performs all mappings between the ODBC standard and the particular database the application is accessing. Using a data source-specific driver, an ODBC compliant program can access any data source without any more development effort.

Oracle provides the ODBC interface so that applications of any type that are ODBC compliant can access Oracle Database using the ODBC driver provided by Oracle. For example, an application written in Visual Basic can use ODBC to access Oracle Database.

Overview of Oracle Objects for OLE

Oracle Objects for OLE (OO4O) allows easy access to data stored in Oracle Databases with any programming or scripting language that supports the Microsoft COM Automation and ActiveX technology. This includes Visual Basic, Visual C++, Visual Basic For Applications (VBA), IIS Active Server Pages (VBScript and JavaScript), and others.

OO4O consists of the following software layers:

	
OO4O Automation Server

	
Oracle Data Control

	
The Oracle Objects for OLE C++ Class Library

OO4O Automation Server

The OO4O Automation Server is a set of COM Automation objects for connecting to Oracle Database servers, executing SQL statements and PL/SQL blocks, and accessing the results.

OO4O provides key features for accessing Oracle Databases in environments ranging from the typical two-tier client/server applications, such as those developed in Visual Basic or Excel, to application servers deployed in multitiered application server environments, such as Web server applications in Microsoft Internet Information Server (IIS) or Microsoft Transaction Server.

Oracle Data Control

The Oracle Data Control (ODC) is an ActiveX Control designed to simplify the exchange of data between Oracle Database and visual controls, such edit, text, list, and grid controls in Visual Basic and other development tools that support custom controls.

ODC acts an agent to handle the flow of information from Oracle Database and a visual data-aware control, such as a grid control, that is bound to it. The data control manages various user interface (UI) tasks such as displaying and editing data. It also runs and manages the results of database queries.

	
See Also:

Oracle Objects for OLE Developer's Guide

The Oracle Objects for OLE C++ Class Library

The Oracle Objects for OLE C++ Class Library is a collection of C++ classes that provide programmatic access to the Oracle Object Server. Although the class library is implemented using OLE Automation, neither the OLE development kit nor any OLE development knowledge is necessary to use it. This library helps C++ developers avoid writing COM client code for accessing the OO4O interfaces.

	
See Also:

Oracle Objects for OLE C++ Class Library help from the Start menu

Oracle Data Provider for .NET

Oracle Data Provider for .NET (ODP.NET) is an implementation of a data provider for Oracle Database. ODP.NET uses Oracle native APIs for fast and reliable access to Oracle Database data and features from any .NET application. ODP.NET also uses and inherits classes and interfaces available in the Microsoft .NET Framework Class Library.

Following the .NET Framework, ODP.NET uses the ADO.NET model, which allows native providers to expose provider-specific features and data types.

Using ODP.NET, developers can write programs in Visual Basic .NET, C#, and other .NET languages.

	
See Also:

Oracle Data Provider for .NET Developer's Guide

Overview of Legacy Languages

This section contains the following topics:

	
Overview of Pro*COBOL Precompiler

	
Overview of Pro*FORTRAN Precompiler

Overview of Pro*COBOL Precompiler

The Pro*COBOL Precompiler is a programming tool that lets you embed SQL statements in a host COBOL program. Pro*COBOL reads the source file as input and outputs a COBOL source file that replaces the embedded SQL statements with Oracle run-time library calls, and is then compiled by the COBOL compiler.

Like the Pro*C/C++ Precompiler, Pro*COBOL lets you create highly customized applications. For example, you can create user interfaces that incorporate the latest windowing and mouse technology. You can also create applications that run in the background without the need for user interaction.

Furthermore, with Pro*COBOL you can fine-tune your applications. It enables close monitoring of resource usage, SQL statement execution, and various run-time indicators. With this information, you can adjust program parameters for maximum performance.

	
See Also:

Pro*COBOL Programmer's Guide

Overview of Pro*FORTRAN Precompiler

The Oracle Pro*FORTRAN Precompiler lets you embed SQL in a host FORTRAN program.

Pro*FORTRAN is not supported on Windows.

	
See Also:

Pro*FORTRAN Supplement to the Oracle Precompilers Guide

26 Oracle Data Types

This chapter discusses the Oracle built-in datatypes, their properties, and how they map to non-Oracle datatypes.

This chapter includes the following topics:

	
Introduction to Oracle Datatypes

	
Overview of Character Datatypes

	
Overview of Numeric Datatypes

	
Overview of DATE Datatype

	
Overview of LOB Datatypes

	
Overview of RAW and LONG RAW Datatypes

	
Overview of ROWID and UROWID Datatypes

	
Overview of ANSI, DB2, and SQL/DS Datatypes

	
Overview of XML Datatypes

	
Overview of URI Datatypes

	
Overview of Object Datatypes and Object Views

	
Data Conversion

Introduction to Oracle Datatypes

Each column value and constant in a SQL statement has a datatype, which is associated with a specific storage format, constraints, and a valid range of values. When you create a table, you must specify a datatype for each of its columns.

Oracle provides the following categories of built-in datatypes:

	
Overview of Character Datatypes

	
Overview of Numeric Datatypes

	
Overview of DATE Datatype

	
Overview of LOB Datatypes

	
Overview of RAW and LONG RAW Datatypes

	
Overview of ROWID and UROWID Datatypes

	
Note:

PL/SQL has additional datatypes for constants and variables, which include BOOLEAN, reference types, composite types (collections and records), and user-defined subtypes.

	
See Also:

	
Oracle Database PL/SQL Language Reference for more information about PL/SQL datatypes

	
Oracle Database Advanced Application Developer's Guide for information about how to use the built-in datatypes

The following sections that describe each of the built-in datatypes in more detail.

Overview of Character Datatypes

The character datatypes store character (alphanumeric) data in strings, with byte values corresponding to the character encoding scheme, generally called a character set or code page.

The database's character set is established when you create the database. Examples of character sets are 7-bit ASCII (American Standard Code for Information Interchange), EBCDIC (Extended Binary Coded Decimal Interchange Code), Code Page 500, Japan Extended UNIX, and Unicode UTF-8. Oracle supports both single-byte and multibyte encoding schemes.

	
See Also:

	
Oracle Database Advanced Application Developer's Guide for information about how to select a character datatype

	
Oracle Database Globalization Support Guide for more information about converting character data

This section includes the following topics:

	
CHAR Datatype

	
VARCHAR2 and VARCHAR Datatypes

	
Length Semantics for Character Datatypes

	
NCHAR and NVARCHAR2 Datatypes

	
Use of Unicode Data in Oracle Database

	
LOB Character Datatypes

	
LONG Datatype

CHAR Datatype

The CHAR datatype stores fixed-length character strings. When you create a table with a CHAR column, you must specify a string length (in bytes or characters) between 1 and 2000 bytes for the CHAR column width. The default is 1 byte. Oracle then guarantees that:

	
When you insert or update a row in the table, the value for the CHAR column has the fixed length.

	
If you give a shorter value, then the value is blank-padded to the fixed length.

	
If a value is too large, Oracle Database returns an error.

Oracle Database compares CHAR values using blank-padded comparison semantics.

	
See Also:

Oracle Database SQL Language Reference for details about blank-padded comparison semantics

VARCHAR2 and VARCHAR Datatypes

The VARCHAR2 datatype stores variable-length character strings. When you create a table with a VARCHAR2 column, you specify a maximum string length (in bytes or characters) between 1 and 4000 bytes for the VARCHAR2 column. For each row, Oracle Database stores each value in the column as a variable-length field unless a value exceeds the column's maximum length, in which case Oracle Database returns an error. Using VARCHAR2 and VARCHAR saves on space used by the table.

For example, assume you declare a column VARCHAR2 with a maximum size of 50 characters. In a single-byte character set, if only 10 characters are given for the VARCHAR2 column value in a particular row, the column in the row's row piece stores only the 10 characters (10 bytes), not 50.

Oracle Database compares VARCHAR2 values using nonpadded comparison semantics.

	
See Also:

Oracle Database SQL Language Reference for details about nonpadded comparison semantics

VARCHAR Datatype

The VARCHAR datatype is synonymous with the VARCHAR2 datatype. To avoid possible changes in behavior, always use the VARCHAR2 datatype to store variable-length character strings.

Length Semantics for Character Datatypes

Globalization support allows the use of various character sets for the character datatypes. Globalization support lets you process single-byte and multibyte character data and convert between character sets. Client sessions can use client character sets that are different from the database character set.

Consider the size of characters when you specify the column length for character datatypes. You must consider this issue when estimating space for tables with columns that contain character data.

The length semantics of character datatypes can be measured in bytes or characters.

	
Byte semantics treat strings as a sequence of bytes. This is the default for character datatypes.

	
Character semantics treat strings as a sequence of characters. A character is technically a codepoint of the database character set.

For single byte character sets, columns defined in character semantics are basically the same as those defined in byte semantics. Character semantics are useful for defining varying-width multibyte strings; it reduces the complexity when defining the actual length requirements for data storage. For example, in a Unicode database (UTF8), you must define a VARCHAR2 column that can store up to five Chinese characters together with five English characters. In byte semantics, this would require (5*3 bytes) + (1*5 bytes) = 20 bytes; in character semantics, the column would require 10 characters.

VARCHAR2(20 BYTE) and SUBSTRB(<string>, 1, 20) use byte semantics. VARCHAR2(10 CHAR) and SUBSTR(<string>, 1, 10) use character semantics.

The parameter NLS_LENGTH_SEMANTICS decides whether a new column of character datatype uses byte or character semantics. The default length semantic is byte. If all character datatype columns in a database use byte semantics (or all use character semantics) then users do not have to worry about which columns use which semantics. The BYTE and CHAR qualifiers shown earlier should be avoided when possible, because they lead to mixed-semantics databases. Instead, the NLS_LENGTH_SEMANTICS initialization parameter should be set appropriately in the server parameter file (SPFILE) or initialization parameter file, and columns should use the default semantics.

	
See Also:

	
"Use of Unicode Data in Oracle Database"

	
Oracle Database Globalization Support Guide for information about Oracle's globalization support feature

	
Oracle Database Advanced Application Developer's Guide for information about setting length semantics and choosing the appropriate Unicode character set.

	
Oracle Database Upgrade Guide for information about migrating existing columns to character semantics

NCHAR and NVARCHAR2 Datatypes

NCHAR and NVARCHAR2 are Unicode datatypes that store Unicode character data. The character set of NCHAR and NVARCHAR2 datatypes can only be either AL16UTF16 or UTF8 and is specified at database creation time as the national character set. AL16UTF16 and UTF8 are both Unicode encoding.

	
The NCHAR datatype stores fixed-length character strings that correspond to the national character set.

	
The NVARCHAR2 datatype stores variable length character strings.

When you create a table with an NCHAR or NVARCHAR2 column, the maximum size specified is always in character length semantics. Character length semantics is the default and only length semantics for NCHAR or NVARCHAR2.

For example, if national character set is UTF8, then the following statement defines the maximum byte length of 90 bytes:

CREATE TABLE tab1 (col1 NCHAR(30));

This statement creates a column with maximum character length of 30. The maximum byte length is the multiple of the maximum character length and the maximum number of bytes in each character.

This section includes the following topics:

	
NCHAR

	
NVARCHAR2

NCHAR

The maximum length of an NCHAR column is 2000 bytes. It can hold up to 2000 characters. The actual data is subject to the maximum byte limit of 2000. The two size constraints must be satisfied simultaneously at run time.

NVARCHAR2

The maximum length of an NVARCHAR2 column is 4000 bytes. It can hold up to 4000 characters. The actual data is subject to the maximum byte limit of 4000. The two size constraints must be satisfied simultaneously at run time.

	
See Also:

Oracle Database Globalization Support Guide for more information about the NCHAR and NVARCHAR2 datatypes

Use of Unicode Data in Oracle Database

Unicode is an effort to have a unified encoding of every character in every language known to man. It also provides a way to represent privately-defined characters. A database column that stores Unicode can store text written in any language.

Oracle Database users deploying globalized applications have a strong need to store Unicode data in Oracle Databases. They need a datatype which is guaranteed to be Unicode regardless of the database character set.

Oracle Database supports a reliable Unicode datatype through NCHAR, NVARCHAR2, and NCLOB. These datatypes are guaranteed to be Unicode encoding and always use character length semantics. The character sets used by NCHAR/NVARCHAR2 can be either UTF8 or AL16UTF16, depending on the setting of the national character set when the database is created. These datatypes allow character data in Unicode to be stored in a database that may or may not use Unicode as database character set.

Implicit Type Conversion

In addition to all the implicit conversions for CHAR/VARCHAR2, Oracle Database also supports implicit conversion for NCHAR/NVARCHAR2. Implicit conversion between CHAR/VARCHAR2 and NCHAR/NVARCHAR2 is also supported.

LOB Character Datatypes

The LOB datatypes for character data are CLOB and NCLOB. They can store up to 8 terabytes of character data (CLOB) or national character set data (NCLOB).

	
See Also:

"Overview of LOB Datatypes"

LONG Datatype

	
Note:

Do not create tables with LONG columns. Use LOB columns (CLOB, NCLOB) instead. LONG columns are supported only for backward compatibility.
Oracle also recommends that you convert existing LONG columns to LOB columns. LOB columns are subject to far fewer restrictions than LONG columns. Further, LOB functionality is enhanced in every release, whereas LONG functionality has been static for several releases.

Columns defined as LONG can store variable-length character data containing up to 2 gigabytes of information. LONG data is text data that is to be appropriately converted when moving among different systems.

LONG datatype columns are used in the data dictionary to store the text of view definitions. You can use LONG columns in SELECT lists, SET clauses of UPDATE statements, and VALUES clauses of INSERT statements.

	
See Also:

	
Oracle Database Advanced Application Developer's Guide for information about the restrictions on the LONG datatype

	
"Overview of RAW and LONG RAW Datatypes" for information about the LONG RAW datatype

Overview of Numeric Datatypes

The numeric datatypes store positive and negative fixed and floating-point numbers, zero, infinity, and values that are the undefined result of an operation (that is, is "not a number" or NAN).

This section includes the following topics:

	
NUMBER Datatype

	
Floating-Point Numbers

NUMBER Datatype

The NUMBER datatype stores fixed and floating-point numbers. Numbers of virtually any magnitude can be stored and are guaranteed portable among different systems operating Oracle Database, up to 38 digits of precision.

The following numbers can be stored in a NUMBER column:

	
Positive numbers in the range 1 x 10-130 to 9.99...9 x 10125 with up to 38 significant digits

	
Negative numbers from -1 x 10-130 to 9.99...99 x 10125 with up to 38 significant digits

	
Zero

	
Positive and negative infinity (generated only by importing from an Oracle Database, Version 5)

For numeric columns, you can specify the column as:

column_name NUMBER

Optionally, you can also specify a precision (total number of digits) and scale (number of digits to the right of the decimal point):

column_name NUMBER (precision, scale)

If a precision is not specified, the column stores values as given. If no scale is specified, the scale is zero.

Oracle guarantees portability of numbers with a precision equal to or less than 38 digits. You can specify a scale and no precision:

column_name NUMBER (*, scale)

In this case, the precision is 38, and the specified scale is maintained.

When you specify numeric fields, it is a good idea to specify the precision and scale. This provides extra integrity checking on input.

Table 26-1 shows examples of how data would be stored using different scale factors.

Table 26-1 How Scale Factors Affect Numeric Data Storage

	Input Data	Specified As	Stored As
	
7,456,123.89

	
NUMBER

	
7456123.89

	
7,456,123.89

	
NUMBER(*,1)

	
7456123.9

	
7,456,123.89

	
NUMBER(9)

	
7456124

	
7,456,123.89

	
NUMBER(9,2)

	
7456123.89

	
7,456,123.89

	
NUMBER(9,1)

	
7456123.9

	
7,456,123.89

	
NUMBER(6)

	
(not accepted, exceeds precision)

	
7,456,123.89

	
NUMBER(7,-2)

	
7456100

If you specify a negative scale, Oracle Database rounds the actual data to the specified number of places to the left of the decimal point. For example, specifying (7,-2) means Oracle Database rounds to the nearest hundredths, as shown in Table 26-1.

For input and output of numbers, the standard Oracle Database default decimal character is a period, as in the number 1234.56. The decimal is the character that separates the integer and decimal parts of a number. You can change the default decimal character with the initialization parameter NLS_NUMERIC_CHARACTERS. You can also change it for the duration of a session with the ALTER SESSION statement. To enter numbers that do not use the current default decimal character, use the TO_NUMBER function.

Internal Numeric Format

Oracle Database stores numeric data in variable-length format. Each value is stored in scientific notation, with 1 byte used to store the exponent and up to 20 bytes to store the mantissa. The resulting value is limited to 38 digits of precision. Oracle Database does not store leading and trailing zeros. For example, the number 412 is stored in a format similar to 4.12 x 102, with 1 byte used to store the exponent(2) and 2 bytes used to store the three significant digits of the mantissa(4,1,2). Negative numbers include the sign in their length.

Taking this into account, the column size in bytes for a particular numeric data value NUMBER(p), where p is the precision of a given value, can be calculated using the following formula:

ROUND((length(p)+s)/2))+1

where s equals zero if the number is positive, and s equals 1 if the number is negative.

Zero and positive and negative infinity (only generated on import from Oracle Database, Version 5) are stored using unique representations. Zero and negative infinity each require 1 byte; positive infinity requires 2 bytes.

Floating-Point Numbers

Oracle Database provides two numeric datatypes exclusively for floating-point numbers: BINARY_FLOAT and BINARY_DOUBLE. They support all of the basic functionality provided by the NUMBER datatype. However, while NUMBER uses decimal precision, BINARY_FLOAT and BINARY_DOUBLE use binary precision. This enables faster arithmetic calculations and usually reduces storage requirements.

BINARY_FLOAT and BINARY_DOUBLE are approximate numeric datatypes. They store approximate representations of decimal values, rather than exact representations. For example, the value 0.1 cannot be exactly represented by either BINARY_DOUBLE or BINARY_FLOAT. They are frequently used for scientific computations. Their behavior is similar to the datatypes FLOAT and DOUBLE in Java and XMLSchema.

This section includes the following topics:

	
BINARY_FLOAT Datatype

	
BINARY_DOUBLE Datatype

BINARY_FLOAT Datatype

BINARY_FLOAT is a 32-bit, single-precision floating-point number datatype. Each BINARY_FLOAT value requires 5 bytes, including a length byte.

BINARY_DOUBLE Datatype

BINARY_DOUBLE is a 64-bit, double-precision floating-point number datatype. Each BINARY_DOUBLE value requires 9 bytes, including a length byte.

	
Note:

BINARY_DOUBLE and BINARY_FLOAT implement most of the Institute of Electrical and Electronics Engineers (IEEE) Standard for Binary Floating-Point Arithmetic, IEEE Standard 754-1985 (IEEE754). For a full description of the Oracle Database implementation of floating-point numbers and its differences from IEEE754, see the Oracle Database SQL Language Reference

Overview of DATE Datatype

The DATE datatype stores point-in-time values (dates and times) in a table. The DATE datatype stores the year (including the century), the month, the day, the hours, the minutes, and the seconds (after midnight).

Oracle Database can store dates in the Julian era, ranging from January 1, 4712 BCE through December 31, 9999 CE (Common Era, or 'AD'). Unless BCE ('BC' in the format mask) is specifically used, CE date entries are the default.

Oracle Database uses its own internal format to store dates. Date data is stored in fixed-length fields of seven bytes each, corresponding to century, year, month, day, hour, minute, and second.

For input and output of dates, the standard Oracle date format is DD-MON-YY, as follows:

'13-NOV-92'

You can change this default date format for an instance with the parameter NLS_DATE_FORMAT. You can also change it during a user session with the ALTER SESSION statement. To enter dates that are not in standard Oracle date format, use the TO_DATE function with a format mask:

TO_DATE ('November 13, 1992', 'MONTH DD, YYYY')

Oracle Database stores time in 24-hour format—HH:MI:SS. By default, the time in a date field is 00:00:00 A.M. (midnight) if no time portion is entered. In a time-only entry, the date portion defaults to the first day of the current month. To enter the time portion of a date, use the TO_DATE function with a format mask indicating the time portion, as in:

INSERT INTO birthdays (bname, bday) VALUES
 ('ANDY',TO_DATE('13-AUG-66 12:56 A.M.','DD-MON-YY HH:MI A.M.'));

This section includes the following topics:

	
Use of Julian Dates

	
Date Arithmetic

	
Centuries and the Year 2000

	
Daylight Savings Support

	
Time Zones

Use of Julian Dates

Julian dates allow continuous dating by the number of days from a common reference. (The reference is 01-01-4712 years BCE, so current dates are somewhere in the 2.4 million range.) A Julian date is nominally a noninteger, the fractional part being a portion of a day. Oracle Database uses a simplified approach that results in integer values. Julian dates can be calculated and interpreted differently. The calculation method used by Oracle Database results in a seven-digit number (for dates most often used), such as 2449086 for 08-APR-93.

	
Note:

Oracle Julian dates might not be compatible with Julian dates generated by other date algorithms.

The format mask 'J' can be used with date functions (TO_DATE or TO_CHAR) to convert date data into Julian dates. For example, the following query returns all dates in Julian date format:

SELECT TO_CHAR (hire_date, 'J') FROM employees;

You must use the TO_NUMBER function if you want to use Julian dates in calculations. You can use the TO_DATE function to enter Julian dates:

INSERT INTO employees (hire_date) VALUES (TO_DATE(2448921, 'J'));

Date Arithmetic

Oracle date arithmetic takes into account the anomalies of the calendars used throughout history. For example, the switch from the Julian to the Gregorian calendar, 15-10-1582, eliminated the previous 10 days (05-10-1582 through 14-10-1582). The year 0 does not exist.

You can enter missing dates into the database, but they are ignored in date arithmetic and treated as the next "real" date. For example, the next day after 04-10-1582 is 15-10-1582, and the day following 05-10-1582 is also 15-10-1582.

	
Note:

This discussion of date arithmetic might not apply to all countries' date standards (such as those in Asia).

Centuries and the Year 2000

Oracle Database stores year data with the century information. For example, Oracle Database stores 1996 or 2001, and not simply 96 or 01. The DATE datatype always stores a four-digit year internally, and all other dates stored internally in the database have four digit years. Oracle Database utilities such as import, export, and recovery also deal with four-digit years.

Daylight Savings Support

Oracle Database provides daylight savings support for DATETIME datatypes in the server. You can insert and query DATETIME values based on local time in a specific region. The DATETIME datatypes TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE are time-zone aware.

	
See Also:

	
Oracle Database Advanced Application Developer's Guide for more information about centuries and date format masks

	
Oracle Database SQL Language Reference for information about date format codes

Time Zones

You can include the time zone in your date/time data and provides support for fractional seconds. Three new datatypes are added to DATE, with the differences listed in Table 26-2.

Table 26-2 Time Zone Datatypes

	Datatype	Time Zone	Fractional Seconds
	
DATE

	
No

	
No

	
TIMESTAMP

	
No

	
Yes

	
TIMESTAMP WITH TIME ZONE

	
Explicit

	
Yes

	
TIMESTAMP WITH LOCAL TIME ZONE

	
Relative

	
Yes

TIMESTAMP WITH LOCAL TIME ZONE is stored in the database time zone. When a user selects the data, the value is adjusted to the user's session time zone.

For example, a San Francisco database has system time zone = -8:00. When a New York client (session time zone = -5:00) inserts into or selects from the San Francisco database, TIMESTAMP WITH LOCAL TIME ZONE data is adjusted as follows:

	
The New York client inserts TIMESTAMP'1998-1-23 6:00:00-5:00' into a TIMESTAMP WITH LOCAL TIME ZONE column in the San Francisco database. The inserted data is stored in San Francisco as binary value 1998-1-23 3:00:00.

	
When the New York client selects that inserted data from the San Francisco database, the value displayed in New York is '1998-1-23 6:00:00'.

	
A San Francisco client, selecting the same data, see the value '1998-1-23 3:00:00'.

	
Note:

To avoid unexpected results in your DML operations on datatime data, you can verify the database and session time zones by querying the built-in SQL functions DBTIMEZONE and SESSIONTIMEZONE. If the database time zone or the session time zone has not been set manually, Oracle Database uses the operating system time zone by default. If the operating system time zone is not a valid Oracle time zone, Oracle Database uses UTC as the default value.

	
See Also:

Oracle Database SQL Language Reference for details about the syntax of creating and entering data in time stamp columns

Overview of LOB Datatypes

The LOB datatypes BLOB, CLOB, NCLOB, and BFILE enable you to store and manipulate large blocks of unstructured data (such as text, graphic images, video clips, and sound waveforms) in binary or character format. They provide efficient, random, piece-wise access to the data. Oracle recommends that you always use LOB datatypes over LONG datatypes. You can perform parallel queries (but not parallel DML or DDL) on LOB columns.

LOB datatypes differ from LONG and LONG RAW datatypes in several ways. For example:

	
A table can contain multiple LOB columns but only one LONG column.

	
A table containing one or more LOB columns can be partitioned, but a table containing a LONG column cannot be partitioned.

	
The maximum size of a LOB is 128 terabytes depending on database block size, and the maximum size of a LONG is only 2 gigabytes.

	
LOBs support random access to data, but LONGs support only sequential access.

	
LOB datatypes (except NCLOB) can be attributes of a user-defined object type but LONG datatypes cannot.

	
Temporary LOBs that act like local variables can be used to perform transformations on LOB data. Temporary internal LOBs (BLOBs, CLOBs, and NCLOBs) are created in a temporary tablespace and are independent of tables. For LONG datatypes, however, no temporary structures are available.

	
Tables with LOB columns can be replicated, but tables with LONG columns cannot.

SQL statements define LOB columns in a table and LOB attributes in a user-defined object type. When defining LOBs in a table, you can explicitly specify the tablespace and storage characteristics for each LOB.

LOB datatypes can be stored inline (within a table), out-of-line (within a tablespace, using a LOB locator), or in an external file (BFILE datatypes). With compatibility set to Oracle9i or higher, you can use LOBs with SQL VARCHAR operators and functions.

	
See Also:

	
Oracle Database SQL Language Reference for a list of differences between the LOB datatypes and the LONG and LONG RAW datatypes

	
Oracle Database SecureFiles and Large Objects Developer's Guide for more information about LOB storage and LOB locators

This section includes the following topics:

	
BLOB Datatype

	
CLOB and NCLOB Datatypes

	
BFILE Datatype

BLOB Datatype

The BLOB datatype stores unstructured binary data in the database. BLOBs can store up to 128 terabytes of binary data.

BLOBs participate fully in transactions. Changes made to a BLOB value by the DBMS_LOB package, PL/SQL, or the OCI can be committed or rolled back. However, BLOB locators cannot span transactions or sessions.

CLOB and NCLOB Datatypes

The CLOB and NCLOB datatypes store up to 128 terabytes of character data in the database. CLOBs store database character set data, and NCLOBs store Unicode national character set data. Storing varying-width LOB data in a fixed-width Unicode character set internally enables Oracle Database to provide efficient character-based random access on CLOBs and NCLOBs.

CLOBs and NCLOBs participate fully in transactions. Changes made to a CLOB or NCLOB value by the DBMS_LOB package, PL/SQL, or the OCI can be committed or rolled back. However, CLOB and NCLOB locators cannot span transactions or sessions. You cannot create an object type with NCLOB attributes, but you can specify NCLOB parameters in a method for an object type.

	
See Also:

Oracle Database Globalization Support Guide for more information about national character set data and Unicode

BFILE Datatype

The BFILE datatype stores unstructured binary data in operating-system files outside the database. A BFILE column or attribute stores a file locator that points to an external file containing the data. The amount of BFILE data that can be stored is limited by the operating system.

BFILEs are read only; you cannot modify them. They support only random (not sequential) reads, and they do not participate in transactions. The underlying operating system must maintain the file integrity, security, and durability for BFILEs. The database administrator must ensure that the file exists and that Oracle Database processes have operating-system read permissions on the file.

Overview of RAW and LONG RAW Datatypes

	
Note:

The LONG RAW datatype is provided for backward compatibility with existing applications. For new applications, use the BLOB and BFILE datatypes for large amounts of binary data.
Oracle also recommends that you convert existing LONG RAW columns to LOB columns. LOB columns are subject to far fewer restrictions than LONG columns. Further, LOB functionality is enhanced in every release, whereas LONG RAW functionality has been static for several releases.

The RAW and LONG RAW datatypes are used for data that is not to be interpreted (not converted when moving data between different systems) by Oracle Database. These datatypes are intended for binary data or byte strings. For example, LONG RAW can be used to store graphics, sound, documents, or arrays of binary data. The interpretation depends on the use.

RAW is a variable-length datatype like the VARCHAR2 character datatype, except Oracle Net Services (which connects user sessions to the instance) and the Import and Export utilities do not perform character conversion when transmitting RAW or LONG RAW data. In contrast, Oracle Net Services and Import/Export automatically convert CHAR, VARCHAR2, and LONG data between the database character set and the user session character set, if the two character sets are different.

When Oracle Database automatically converts RAW or LONG RAW data to and from CHAR data, the binary data is represented in hexadecimal form with one hexadecimal character representing every four bits of RAW data. For example, one byte of RAW data with bits 11001011 is displayed and entered as 'CB'.

LONG RAW data cannot be indexed, but RAW data can be indexed.

	
See Also:

Oracle Database Advanced Application Developer's Guide for information about other restrictions on the LONG RAW datatype

Overview of ROWID and UROWID Datatypes

Oracle Database uses a ROWID datatype to store the address (rowid) of every row in the database.

	
Physical rowids store the addresses of rows in ordinary tables (excluding index-organized tables), clustered tables, table partitions and subpartitions, indexes, and index partitions and subpartitions.

	
Logical rowids store the addresses of rows in index-organized tables.

A single datatype called the universal rowid, or UROWID, supports both logical and physical rowids, as well as rowids of foreign tables such as non-Oracle tables accessed through a gateway.

A column of the UROWID datatype can store all kinds of rowids. The value of the COMPATIBLE initialization parameter (for file format compatibility) must be set to 8.1 or higher to use UROWID columns.

	
See Also:

"Rowids in Non-Oracle Databases"

This section includes the following topics:

	
The ROWID Pseudocolumn

	
Physical Rowids

	
Logical Rowids

	
Rowids in Non-Oracle Databases

The ROWID Pseudocolumn

Each table in an Oracle database internally has a pseudocolumn named ROWID. This pseudocolumn is not evident when listing the structure of a table by executing a SELECT * FROM ... statement, or a DESCRIBE ... statement using SQL*Plus, nor does the pseudocolumn take up space in the table. However, each row's address can be retrieved with a SQL query using the reserved word ROWID as a column name, for example:

SELECT ROWID, last_name FROM employees;

You cannot set the value of the pseudocolumn ROWID in INSERT or UPDATE statements, and you cannot delete a ROWID value. Oracle Database uses the ROWID values in the pseudocolumn ROWID internally for the construction of indexes.

You can reference rowids in the pseudocolumn ROWID like other table columns (used in SELECT lists and WHERE clauses), but rowids are not stored in the database, nor are they database data. However, you can create tables that contain columns having the ROWID datatype, although Oracle does not guarantee that the values of such columns are valid rowids. The user must ensure that the data stored in the ROWID column truly is a valid ROWID.

	
See Also:

"How Rowids Are Used"

Physical Rowids

Physical rowids provide the fastest possible access to a row of a given table. They contain the physical address of a row (down to the specific block) and allow you to retrieve the row in a single block access.

Every row in a nonclustered table is assigned a unique rowid that corresponds to the physical address of a row's row piece (or the initial row piece if the row is chained among multiple row pieces). In the case of clustered tables, rows in different tables that are in the same data block can have the same rowid.

After a rowid is assigned to a row piece, the rowid can change in special circumstances. For example, if row movement is enabled, then the rowid can change because of partition key updates, Flashback Table operations, shrink table operations, and so on. If row movement is disabled, then a rowid can change if the row is exported and imported using Oracle Database utilities.

A physical rowid datatype has one of two formats:

	
The extended rowid format supports tablespace-relative data block addresses and efficiently identifies rows in partitioned tables and indexes as well as nonpartitioned tables and indexes. Tables and indexes created by an Oracle8i (or higher) server always have extended rowids.

	
A restricted rowid format is also available for backward compatibility with applications developed with Oracle Database Version 7 or earlier releases.

This section includes the following topics:

	
Extended Rowids

	
Restricted Rowids

	
Examples of Rowid Use

	
How Rowids Are Used

Extended Rowids

Extended rowids use a base 64 encoding of the physical address for each row selected. The encoding characters are A-Z, a-z, 0-9, +, and /. For example, the following query:

SELECT ROWID, last_name FROM employees WHERE department_id = 20;

can return the following row information:

ROWID LAST_NAME
------------------ ----------
AAAAaoAATAAABrXAAA BORTINS
AAAAaoAATAAABrXAAE RUGGLES
AAAAaoAATAAABrXAAG CHEN
AAAAaoAATAAABrXAAN BLUMBERG

An extended rowid has a four-piece format, OOOOOOFFFBBBBBBRRR:

	
OOOOOO: The data object number that identifies the database segment (AAAAao in the example). Schema objects in the same segment, such as a cluster of tables, have the same data object number.

	
FFF: The tablespace-relative datafile number of the datafile that contains the row (file AAT in the example).

	
BBBBBB: The data block that contains the row (block AAABrX in the example). Block numbers are relative to their datafile, not tablespace. Therefore, two rows with identical block numbers could reside in two different datafiles of the same tablespace.

	
RRR: The row in the block.

You can retrieve the data object number from data dictionary views USER_OBJECTS, DBA_OBJECTS, and ALL_OBJECTS. For example, the following query returns the data object number for the employees table in the SCOTT schema:

SELECT DATA_OBJECT_ID FROM DBA_OBJECTS
 WHERE OWNER = 'SCOTT' AND OBJECT_NAME = 'EMPLOYEES';

You can also use the DBMS_ROWID package to extract information from an extended rowid or to convert a rowid from extended format to restricted format (or vice versa).

	
See Also:

Oracle Database Advanced Application Developer's Guide for information about the DBMS_ROWID package

Restricted Rowids

Restricted rowids use a binary representation of the physical address for each row selected. When queried using SQL*Plus, the binary representation is converted to a VARCHAR2/hexadecimal representation. The following query:

SELECT ROWID, last_name FROM employees
 WHERE department_id = 30;

can return the following row information:

ROWID ENAME
------------------ ----------
00000DD5.0000.0001 KRISHNAN
00000DD5.0001.0001 ARBUCKLE
00000DD5.0002.0001 NGUYEN

As shown, a restricted rowid's VARCHAR2/hexadecimal representation is in a three-piece format, block.row.file:

	
The data block that contains the row (block DD5 in the example). Block numbers are relative to their datafile, not tablespace. Two rows with identical block numbers could reside in two different datafiles of the same tablespace.

	
The row in the block that contains the row (rows 0, 1, 2 in the example). Row numbers of a given block always start with 0.

	
The datafile that contains the row (file 1 in the example). The first datafile of every database is always 1, and file numbers are unique within a database.

Examples of Rowid Use

You can use the function SUBSTR to break the data in a rowid into its components. For example, you can use SUBSTR to break an extended rowid into its four components (database object, file, block, and row):

SELECT ROWID,
 SUBSTR(ROWID,1,6) "OBJECT",
 SUBSTR(ROWID,7,3) "FIL",
 SUBSTR(ROWID,10,6) "BLOCK",
 SUBSTR(ROWID,16,3) "ROW"
 FROM products;

ROWID OBJECT FIL BLOCK ROW
------------------ ------ --- ------ ----
AAAA8mAALAAAAQkAAA AAAA8m AAL AAAAQk AAA
AAAA8mAALAAAAQkAAF AAAA8m AAL AAAAQk AAF
AAAA8mAALAAAAQkAAI AAAA8m AAL AAAAQk AAI

Or you can use SUBSTR to break a restricted rowid into its three components (block, row, and file):

SELECT ROWID, SUBSTR(ROWID,15,4) "FILE",
 SUBSTR(ROWID,1,8) "BLOCK",
 SUBSTR(ROWID,10,4) "ROW"
 FROM products;

ROWID FILE BLOCK ROW
------------------ ---- -------- ----
00000DD5.0000.0001 0001 00000DD5 0000
00000DD5.0001.0001 0001 00000DD5 0001
00000DD5.0002.0001 0001 00000DD5 0002

Rowids can be useful for revealing information about the physical storage of a table's data. For example, if you are interested in the physical location of a table's rows (such as for table striping), the following query of an extended rowid tells how many datafiles contain rows of a given table:

SELECT COUNT(DISTINCT(SUBSTR(ROWID,7,3))) "FILES" FROM tablename;

 FILES

 2

	
See Also:

	
Oracle Database SQL Language Reference

	
Oracle Database PL/SQL Language Reference

	
Oracle Database Performance Tuning Guide

for more examples using rowids

How Rowids Are Used

Oracle Database uses rowids internally for the construction of indexes. Each key in an index is associated with a rowid that points to the associated row's address for fast access. End users and application developers can also use rowids for several important functions:

	
Rowids are the fastest means of accessing particular rows.

	
Rowids can be used to see how a table is organized.

	
Rowids are unique identifiers for rows in a given table.

Before you use rowids in DML statements, they should be verified and guaranteed not to change. The intended rows should be locked so they cannot be deleted. Under some circumstances, requesting data with an invalid rowid could cause a statement to fail.

You can also create tables with columns defined using the ROWID datatype. For example, you can define an exception table with a column of datatype ROWID to store the rowids of rows in the database that violate integrity constraints. Columns defined using the ROWID datatype behave like other table columns: values can be updated, and so on. Each value in a column defined as datatype ROWID requires six bytes to store pertinent column data.

Logical Rowids

Rows in index-organized tables do not have permanent physical addresses—they are stored in the index leaves and can move within the block or to a different block as a result of insertions. Therefore their row identifiers cannot be based on physical addresses. Instead, Oracle provides index-organized tables with logical row identifiers, called logical rowids, that are based on the table's primary key. Oracle Database uses these logical rowids for the construction of secondary indexes on index-organized tables.

Each logical rowid used in a secondary index includes a physical guess, which identifies the block location of the row in the index-organized table at the time the guess was made; that is, when the secondary index was created or rebuilt.

Oracle Database can use guesses to probe into the leaf block directly, bypassing the full key search. This ensures that rowid access of nonvolatile index-organized tables gives comparable performance to the physical rowid access of ordinary tables. In a volatile table, however, if the guess becomes stale the probe can fail, in which case a primary key search must be performed.

The values of two logical rowids are considered equal if they have the same primary key values but different guesses.

This section includes the following topics:

	
Comparison of Logical Rowids with Physical Rowids

	
Guesses in Logical Rowids

Comparison of Logical Rowids with Physical Rowids

Logical rowids are similar to the physical rowids in the following ways:

	
Logical rowids are accessible through the ROWID pseudocolumn.

You can use the ROWID pseudocolumn to select logical rowids from an index-organized table. The SELECT ROWID statement returns an opaque structure, which internally consists of the table's primary key and the physical guess (if any) for the row, along with some control information.

You can access a row using predicates of the form WHERE ROWID = value, where value is the opaque structure returned by SELECT ROWID.

	
Access through the logical rowid is the fastest way to get to a specific row, although it can require more than one block access.

	
A row's logical rowid does not change as long as the primary key value does not change. This is less stable than the physical rowid, which stays immutable through all updates to the row.

	
Logical rowids can be stored in a column of the UROWID datatype

One difference between physical and logical rowids is that logical rowids cannot be used to see how a table is organized.

	
Note:

An opaque type is one whose internal structure is not known to the database. The database provides storage for the type. The type designer can provide access to the contents of the type by implementing functions, typically 3GL routines.

	
See Also:

"Overview of ROWID and UROWID Datatypes"

Guesses in Logical Rowids

When a row's physical location changes, the logical rowid remains valid even if it contains a guess, although the guess could become stale and slow down access to the row. Guess information cannot be updated dynamically. For secondary indexes on index-organized tables, however, you can rebuild the index to obtain fresh guesses. Note that rebuilding a secondary index on an index-organized table involves reading the base table, unlike rebuilding an index on an ordinary table.

Collect index statistics with the DBMS_STATS package or ANALYZE statement to keep track of the staleness of guesses, so Oracle Database does not use them unnecessarily. This is particularly important for applications that store rowids with guesses persistently in a UROWID column, then retrieve the rowids later and use them to fetch rows.

When you collect index statistics with the DBMS_STATS package or ANALYZE statement, Oracle Database checks whether the existing guesses are still valid and records the percentage of stale/valid guesses in the data dictionary. After you rebuild a secondary index (recomputing the guesses), collect index statistics again.

In general, logical rowids without guesses provide the fastest possible access for a highly volatile table. If a table is static or if the time between getting a rowid and using it is sufficiently short to make row movement unlikely, logical rowids with guesses provide the fastest access.

	
See Also:

Oracle Database Performance Tuning Guide for more information about collecting statistics

Rowids in Non-Oracle Databases

Oracle Database applications can be run against non-Oracle database servers using SQL*Connect. The format of rowids varies according to the characteristics of the non-Oracle system. Furthermore, no standard translation to VARCHAR2/hexadecimal format is available. Programs can still use the ROWID datatype. However, they must use a nonstandard translation to hexadecimal format of length up to 256 bytes.

Rowids of a non-Oracle database can be stored in a column of the UROWID datatype.

	
See Also:

	
Oracle Call Interface Programmer's Guide for details on handling rowids with non-Oracle systems

	
"Overview of ROWID and UROWID Datatypes"

Overview of ANSI, DB2, and SQL/DS Datatypes

SQL statements that create tables and clusters can also use ANSI datatypes and datatypes from IBM's products SQL/DS and DB2. Oracle Database recognizes the ANSI or IBM datatype name that differs from the Oracle datatype name, records it as the name of the datatype of the column, and then stores the column's data in an Oracle datatype based on the conversions.

	
See Also:

Oracle Database SQL Language Reference for more information about the conversions

Overview of XML Datatypes

Oracle provides the XMLType datatype to handle XML data.

XMLType Datatype

XMLType can be used like any other user-defined type. XMLType can be used as the datatype of columns in tables and views. Variables of XMLType can be used in PL/SQL stored procedures as parameters, return values, and so on. You can also use XMLType in PL/SQL, SQL and Java, and through JDBC and OCI.

A number of useful functions that operate on XML content have been provided. Many of these are provided both as SQL functions and as member functions of XMLType. For example, function extract extracts a specific node(s) from an XMLType instance. You can use XMLType in SQL queries in the same way as any other user-defined datatypes in the system.

	
See Also:

	
Oracle XML Developer's Kit Programmer's Guide

	
Oracle XML DB Developer's Guide

	
Oracle Streams Advanced Queuing User's Guide for information about using XMLType with Advanced Queuing

	
Chapter 1, "Introduction to Oracle Database"

Overview of URI Datatypes

A URI, or uniform resource identifier, is a generalized kind of URL. Like a URL, it can reference any document, and can reference a specific part of a document. It is more general than a URL because it has a powerful mechanism for specifying the relevant part of the document. By using UriType, you can do the following:

	
Create table columns that point to data inside or outside the database.

	
Query the database columns using functions provided by UriType.

	
See Also:

Oracle XML DB Developer's Guide

Overview of Object Datatypes and Object Views

Object types and other user-defined datatypes let you define datatypes that model the structure and behavior of the data in their applications. An object view is a virtual object table.

	
See Also:

Oracle Database Object-Relational Developer's Guide

Data Conversion

In some cases, Oracle Database supplies data of one datatype where it expects data of a different datatype. This is allowed when Oracle Database can automatically convert the data to the expected datatype.

	
See Also:

Oracle Database SQL Language Reference for the rules for implicit datatype conversions

Index

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A

	ABORT option
	
	SHUTDOWN statement, 15.2.3.1

	access control, 20.4.2
	
	discretionary, definition, 1.2.9.1
	fine-grained access control, 20.5.1
	password encryption, 20.3.3.1
	privileges, 20.4.2
	roles, definition, 20.1.3

	ACMS processes, 9.3.2.10
	administrator privileges, 12.1.2
	ADR
	
	See Automatic Diagnostic Repository

	Advanced Queuing, 9.3.2.7
	
	event publication, 22.3.5.1
	publish-subscribe support, 22.3.5.1
	queue monitor process, 9.3.2.7, 9.3.2.7

	advisor framework, 14.2.5
	advisors
	
	Buffer Cache Advisor, 14.5
	Java Pool Advisor, 14.5
	Logfile Size Advisor, 14.8.2
	memory, 14.5
	MTTR Advisor, 14.8.2
	Segment Advisor, 14.2.5, 14.6.6
	Shared Pool Advisor, 14.5
	SQL Access Advisor, 14.2.5, 14.4, 16.3, 18.3.1
	SQL Tuning Advisor, 14.2.5, 14.4
	Streams Pool Advisor, 14.5
	Undo Advisor, 14.2.5

	AFTER triggers, 22.3.2.2
	
	defined, 22.3.2.2

	alert log, 9.3.3
	
	definition, 1.1.3.6
	redo logs, 9.3.2.5

	alias
	
	qualifying subqueries (inline views), 5.3.7

	ALL_ views, 7.2.2.2
	ALL_UPDATABLE_COLUMNS view, 5.3.5
	ALTER SESSION statement, 24.2.4
	
	SET CONSTRAINTS DEFERRED clause, 21.5.2
	transaction isolation level, 13.2.5.1

	ALTER statement, 24.2.2
	ALTER SYSTEM statement, 24.2.5
	
	ARCHIVE ALL option
	
	using to archive online redo logs, 15.2.3.2

	dynamic parameters
	
	LOG_ARCHIVE_MAX_PROCESSES, 9.3.2.1

	ALTER TABLE statement
	
	CACHE clause, 8.2.1.2
	DEALLOCATE UNUSED clause, 2.3.4
	disable or enable constraints, 21.1.3
	triggers, 22.2.1
	validate or novalidate constraints, 21.1.3

	ALTER USER statement
	
	temporary segments, 2.4.3.3.1

	American National Standards Institute (ANSI)
	
	datatypes
	
	conversion to Oracle datatypes, 26.8

	ANALYZE statement
	
	shared pool, 8.2.3.1.3

	anonymous PL/SQL blocks, 25.3, 25.3.4.3
	
	applications, 25.3.1.2
	contrasted with stored procedures, 25.3.4.3
	dynamic SQL, 25.3.2.4
	performance, 25.3.4.3

	ANSI SQL standard
	
	datatypes of, 26.8

	ANSI/ISO SQL standard
	
	data concurrency, 13.1.1
	isolation levels, 13.2.6.1

	application administrators, 20.6.3.5
	application context, 20.6.2
	application developers
	
	privileges for, 20.6.3.4.1
	roles for, 20.6.3.4.1

	applications
	
	context, 20.5.2
	data dictionary references, 7.2.1.3
	data warehousing, 5.8.12.1
	database access through, 9.1
	dependencies of, 6.9, 6.10
	enhancing security with, 20.4.3
	online transaction processing (OLTP)
	
	reverse key indexes, 5.8.11

	processes, 9.2
	program interface and, 9.7
	roles and, 20.4.3.1.1
	security
	
	application context, 20.5.2

	sharing code, 8.5
	transaction termination and, 4.2

	ARBn process, 9.3.2.10
	archived redo log files
	
	definition, 1.1.3.4

	archived redo logs
	
	ALTER SYSTEM ARCHIVE ALL statement, 15.2.3.2
	backups, 15.2.4.3

	ARCHIVELOG mode
	
	archiver process (ARCn) and, 9.3.2.1

	archiver process (ARCn)
	
	described, 9.3.2.1
	multiple processes, 9.3.2.1

	archiving
	
	after inconsistent closed backups, 15.2.3.2
	after online backups, 15.2.3.2
	ALTER SYSTEM ARCHIVE ALL statement, 15.2.3.2

	ARCn background process, 9.3.2.1
	array processing, 24.7.2.8
	ASM
	
	See Automatic Storage management

	atomic control file to memory service process 0
	
	See ACMS

	AUDIT statement, 24.2.2
	
	locks, 13.3.5.2

	auditing
	
	audit options, 20.7.1
	audit records, 20.7.1.1
	audit trails, 20.7.1.1
	
	database, 20.7.1.1.1
	operating system, 20.7.1.1.3, 20.7.1.1.5

	database and operating-system user names, 20.3.1
	described, 20.7
	distributed databases and, 20.7.1.1.2
	fine-grained, 20.5.3
	policies for, 20.6.5
	privilege use, 20.7.1
	range of focus, 20.7.1
	schema object, 20.7.1, 20.7.1
	security and, 20.7.1.1.3
	statement, 20.7.1
	transaction independence, 20.7.1.1.6
	when options take effect, 20.7.1.1.6

	authenticating database administrators
	
	operating system authentication, 20.3.6
	password file authentication, 20.3.6
	strong authentication, 20.3.6

	authentication
	
	database administrators, 20.3.6
	described, 20.3
	multitier, 20.3.4
	network, 20.3.2.1
	operating system, 20.3.1
	Oracle, 20.3.3
	password policy, 20.6.3.1
	public key infrastructure, 20.3.2.2
	remote, 20.3.2.3
	users, 20.6.1.2

	Automatic Database Diagnostic Monitor, 1.2.3.7, 14.3
	Automatic Diagnostic repository, 14.2.3.1
	automatic maintenance tasks, 1.2.3.2, 14.2.2
	automatic memory management, 1.2.3.5, 8.4
	automatic segment space management, 2.2.2
	automatic shared memory management, 8.4
	Automatic SQL Tuning Advisor, 14.4
	Automatic Storage Management, 14.7
	
	disk groups, 14.7

	Automatic Storage Management (ASM)
	
	failure groups, 17.4.1
	high availability against storage failures, 17.4.1

	automatic undo management, 2.4.4, 14.6.1
	Automatic Workload Repository
	
	about, 14.2.1
	baselines, 14.2.1
	snapshot, 14.2.1

	AutoTask, 14.2.2
	availability
	
	definition, 17.1

B

	back-end of client/server architecture, 10.1
	background processes, 9.3.2, 9.3.2
	
	described, 9.3.2
	diagrammed, 9.3.2
	MMON, 9.3.2.10
	trace files for, 9.3.3

	backing out a transaction, 17.4.2.2
	backup mode, 15.2.4.1
	backups
	
	archived redo log, 15.2.4.3
	control files, 15.2.4.2
	datafile, 15.2.2
	inconsistent
	
	whole database, 15.2.3.2, 15.2.3.2

	online datafiles, 15.2.4.1
	online tablespaces, 15.2.4.1
	overview, 1.2.5
	whole database, 15.2.2

	base tables
	
	definition, 1.1.5.3

	BEFORE triggers, 22.3.2.1
	
	defined, 22.3.2.1

	BFILE datatype, 26.5.3
	bigfile tablespaces, 1.1.4.4, 3.2.1
	
	benefits, 3.2.1.1
	considerations, 3.2.1.2

	binary data
	
	BFILEs, 26.5.3
	BLOBs, 26.5.1
	RAW and LONG RAW, 26.6

	BINARY_DOUBLE datatype, 26.3.2.2
	BINARY_FLOAT datatype, 26.3.2.1
	bitmap indexes, 1.2.7.1, 5.8.12, 16.4
	
	cardinality, 5.8.12.2
	nulls and, 5.2.3, 5.8.12.4
	parallel query and DML, 5.8.12.1, 16.4, 16.4

	bitmap tablespace management, 3.2.7.1
	bitmaps
	
	to manage free space, 2.2.2

	BLOBs (binary large objects), 26.5.1
	block recovery
	
	using Flashback logs
	
	Flashback technologies, 17.4.2.2

	block recovery using Flashback logs, 17.4.2.2
	blocking transactions, 13.2.6.1
	block-level recovery, 13.3.4.1
	blocks
	
	anonymous, 25.3, 25.3.4.3
	database, 2.2

	BOOLEAN datatype, 26.1
	branch blocks, 5.8.7.2
	B-tree indexes, 5.8.7.2
	
	compared with bitmap indexes, 5.8.12, 5.8.12.2
	index-organized tables, 5.9

	buff, 9.3.2.3
	Buffer Cache Advisor, 14.5
	buffer caches, 8.2.1
	
	database, 8.2.1, 9.3.2.3

	buffers
	
	database buffer cache
	
	incremental checkpoint, 9.3.2.3

	redo log, 8.2.2

	business rules
	
	enforcing in application code, 21.2.1
	enforcing using stored procedures, 21.2.1
	enforcing with constraints
	
	advantages of, 21.2.1

	byte semantics, 26.2.3

C

	CACHE clause, 8.2.1.2
	Cache Fusion, 13.2.4
	cache, query result, 1.2.2.3
	caches, 1.2.2.3
	
	buffer, 8.2.1
	cache hit, 8.2.1.1
	cache miss, 8.2.1.1
	data dictionary, 7.2.1.2, 8.2.3.2
	
	location of, 8.2.3

	library cache, 8.2.3, 8.2.3.1, 8.2.3.2
	object cache, 25.2.1, 25.2.4
	private SQL area, 8.2.3.1.1
	shared SQL area, 8.2.3, 8.2.3.1.1

	calls
	
	Oracle call interface, 9.7.1

	cannot serialize access, 13.2.6.1
	cardinality, 5.8.12.2
	CASCADE actions
	
	DELETE statements and, 21.3.4.3.2

	cascading invalidation, 6.4
	century, 26.4.3
	certificate authority, 20.3.2.2
	chaining of rows, 2.2.2.2, 5.2.1.1
	Change Data Capture, 16.2.5, 23.3.1.5
	CHAR datatype, 26.2.1
	
	blank-padded comparison semantics, 26.2.1

	character semantics, 26.2.3
	character sets
	
	CLOB and NCLOB datatypes, 26.5.2
	column lengths, 26.2.3
	NCHAR and NVARCHAR2, 26.2.4.2

	check constraints, 21.3.5
	
	checking mechanism, 21.4
	defined, 21.3.5
	multiple constraints on a column, 21.3.5.2
	subqueries prohibited in, 21.3.5.1

	checkpoint process (CKPT), 9.3.2.2
	checkpoints
	
	checkpoint process (CKPT), 9.3.2.2
	control files and, 3.4.1
	DBWn process, 9.3.2.2, 9.3.2.3
	incremental, 9.3.2.3
	statistics on, 9.3.2.2

	CKPT background process, 9.3.2.2
	client result cache, 8.2.3.3
	clients
	
	in client/server architecture, definition, 1.1.2.1.1

	client/server architectures, 10.1
	
	definition, 1.1.2.1
	diagrammed, 10.1
	distributed processing in, 10.1
	overview of, 10.1
	program interface, 9.7

	CLOB datatype, 26.5.2
	clone databases
	
	mounting, 12.2.2.2

	cluster keys, 5.11
	CLUSTER_DATABASE parameter, 12.2.2.1
	clustered computer systems
	
	Oracle Real Application Clusters, 12.1.1

	clusters
	
	cannot be partitioned, 18
	definition, 1.1.5.4
	dictionary locks and, 13.3.5.5
	hash, 5.12
	
	contrasted with index, 5.12

	index
	
	contrasted with hash, 5.12

	indexes on, 5.8
	
	cannot be partitioned, 18

	keys, 5.11
	
	affect indexing of nulls, 5.2.3

	overview of, 5.11
	scans of, 8.2.1.2
	storage parameters of, 5.2.1

	coalescing extents, 2.3.4.1
	coalescing free space
	
	extents
	
	SMON process, 9.3.2.9

	within data blocks, 2.2.2.1

	collections
	
	index-organized tables, 5.9.1
	
	key compression, 5.8.10.3

	columns
	
	cardinality, 5.8.12.2
	default values for, 5.2.4
	described, 5.2
	integrity constraints, 5.2, 5.2.4, 21.3
	maximum in concatenated indexes, 5.8.3
	maximum in view or table, 5.3
	nested tables, 5.2.6
	order of, 5.2.1.3
	prohibiting nulls in, 21.3.1
	pseudocolumns
	
	ROWID, 26.7.1

	COMMENT statement, 24.2.2
	COMMIT comment
	
	deprecation of, 4.2.4.2

	COMMIT statement, 24.2.3
	
	ending a transaction, 4.1
	fast commit, 9.3.2.5
	implied by DDL, 4.1
	two-phase commit, 4.2.5

	committing transactions
	
	defined, 4.1
	fast commit, 9.3.2.5
	group commits, 9.3.2.5
	implementation, 9.3.2.5

	compiled PL/SQL
	
	advantages of, 25.3.4.1
	procedures, 25.3.4.3
	pseudocode, 22.4.3
	shared pool, 25.3.1.2
	triggers, 22.4.3

	complete recovery, 15.4.3.3
	
	definition, 15.4.3.3

	composite indexes, 5.8.3, 5.8.3
	COMPRESS, 19.3
	compression, index key, 5.8.10
	concatenated indexes, 5.8.3, 5.8.3
	concurrency
	
	data, definition, 1.2.2.1
	described, 13.1
	limits on
	
	for each user, 20.4.1.1.5

	transactions and, 13.3.1

	configuration of a database
	
	process structure, 9.1.2

	configuring
	
	parameter file, 12.1.3
	process structure, 9.1

	connection pooling, 20.3.4
	connections
	
	defined, 9.2.1
	embedded SQL, 24.2.6
	listener process and, 9.4.1.1, 10.3.2
	restricting, 12.2.1.1
	sessions contrasted with, 9.2.1
	with administrator privileges, 12.1.2

	consistency
	
	read consistency, definition, 1.2.2.2

	constants
	
	in stored procedures, 25.3.2.1

	constraints
	
	CHECK, 21.3.5
	default values and, 21.4.1
	defined, 5.2
	DELETE CASCADE, 21.3.4.3.2
	enforced with indexes, 5.8.4
	
	PRIMARY KEY, 21.3.3.2

	FOREIGN KEY, 21.3.4
	integrity
	
	types listed, 1.2.10.1

	integrity, definition, 1.2.10.1
	mechanisms of enforcement, 21.4
	NOT NULL, 21.3.1
	on views, 5.4.1
	PRIMARY KEY, 21.3.3
	referential
	
	effect of updates, 21.3.4.3
	self-referencing, 21.3.4.1

	triggers cannot violate, 22.4
	triggers contrasted with, 22.1.1.2
	UNIQUE key, 21.3.2
	
	partially null, 21.3.2.2

	what happens when violated, 21.2
	when evaluated, 5.2.4

	contention
	
	for data
	
	deadlocks, 13.3.2
	lock escalation does not occur, 13.3.1.3

	control files, 3.4
	
	backups, 15.2.4.2
	changes recorded, 3.4.1
	checkpoints and, 3.4.1
	contents, 3.4.1
	definition, 1.1.3.2
	how specified, 12.1.3
	multiplexed, 3.4.2
	overview, 3.4
	used in mounting database, 12.2.2

	converting data
	
	program interface, 9.7

	correlation names
	
	inline views, 5.3.7

	CPU time limit, 20.4.1.1.3
	crash recovery
	
	overview, 12.2.3.1

	crash recovery time
	
	bounding database, 17.3.2

	CREATE CLUSTER statement
	
	storage parameters, 2.4.1

	CREATE INDEX statement
	
	storage parameters, 2.4.2
	temporary segments, 2.4.3.1

	CREATE PACKAGE statement
	
	locks, 13.3.5.2

	CREATE PROCEDURE statement
	
	locks, 13.3.5.2

	CREATE statement, 24.2.2
	CREATE SYNONYM statement
	
	locks, 13.3.5.2

	CREATE TABLE statement
	
	CACHE clause, 8.2.1.2
	enable or disable constraints, 21.1.3
	locks, 13.3.5.2
	storage parameters, 2.4.1
	triggers, 22.2.1

	CREATE TEMPORARY TABLE statement, 5.2.7
	CREATE TRIGGER statement
	
	compiled and stored, 22.4.3
	locks, 13.3.5.2

	CREATE USER statement
	
	temporary segments, 2.4.3.3.1

	CREATE VIEW statement
	
	locks, 13.3.5.2

	cursors
	
	and SQL areas, 8.3.1.2.1
	creating, 24.7.2.1
	defined, 24.3
	embedded SQL, 24.2.6
	maximum number of, 24.3
	object dependencies and, 6.11
	opening, 24.3
	private SQL areas and, 8.3.1.2.1, 24.3
	recursive, 24.3
	recursive SQL and, 24.3
	scrollable, 24.3.1
	stored procedures and, 25.3.2.2

D

	data
	
	access to
	
	concurrent, 13.1
	fine-grained access control, 20.5.1

	concurrency, definition, 1.2.2.1
	consistency of
	
	locks, 13.1.2
	manual locking, 13.3.7
	read consistency, definition, 1.2.2.2
	repeatable reads, 13.2.3
	transaction level, 13.2.3
	underlying principles, 13.3

	how stored in tables, 5.2.1
	integrity of, 5.2
	
	CHECK constraints, 21.3.5

	locks on, 13.3.4
	security of, 20.6.2

	data block corruption
	
	prevention and detection, 17.4.2.4.3

	data blocks, 2.1
	
	cached in memory, 9.3.2.3
	coalescing free space in blocks, 2.2.2.1
	controlling free space in, 2.2.3
	definition, 1.1.4.1
	format, 2.2.1
	free lists and, 2.2.3.3
	overview, 2.1
	row directory, 5.2.1.1
	shared in clusters, 5.11
	shown in rowids, 26.7.2.1, 26.7.2.2
	space available for inserted rows, 2.2.3.3
	stored in the buffer cache, 8.2.1
	writing to disk, 9.3.2.3

	data conversion
	
	program interface, 9.7

	data corruption
	
	lost writes, 17.4.2.4.2

	data definition language
	
	definition, 1.3.1.1
	described, 24.2.2
	embedding in PL/SQL, 25.3.2.4
	locks, 13.3.5
	parsing with DBMS_SQL, 25.3.2.4
	processing statements, 24.7.3.1

	data dictionary
	
	access to, 7.1.1
	ALL prefixed views, 7.2.2.2
	cache, 8.2.3.2
	
	location of, 8.2.3

	content of, 7.1, 8.2.3.2
	datafiles, 3.2.2.1
	DBA prefixed views, 7.2.2.3
	defined, 7.1
	dictionary managed tablespaces, 3.2.7.3
	DUAL table, 7.2.2.4
	dynamic performance tables, 7.3
	locks, 13.3.5
	owner of, 7.1.2
	prefixes to views of, 7.2.2
	public synonyms for, 7.2.1.1
	row cache and, 8.2.3.2
	structure of, 7.1.1
	SYSTEM tablespace, 3.2.2.1, 7.1, 7.2.2
	USER prefixed views, 7.2.2.1
	uses of, 7.2

	data failures
	
	overview of storage failures, 17.4.1
	protecting against human errors, 17.4.2
	protection against, 17.4

	data integrity, 21.1
	
	complex integrity checking, 21.1.1
	enforcing, 21.1.2, 21.2.1
	null rule, 21.1.1
	primary keys, 21.1.1
	referential integrity rules, 21.1.1
	
	cascade, 21.1.1
	no action, 21.1.1
	restrict, 21.1.1
	set to default, 21.1.1
	set to null, 21.1.1

	unique column values, 21.1.1

	data loading
	
	with external tables, 5.2.8.2

	data locks
	
	conversion, 13.3.1.3
	duration of, 13.3.1
	escalation, 13.3.1.3

	data manipulation language
	
	definition, 1.3.1.1
	described, 24.2.1
	locks acquired by, 13.3.4.3
	processing statements, 24.7.2
	serializable isolation for subqueries, 13.2.7.2
	triggers and, 1.2.10.2, 22.1.1, 22.4.2

	data mining, 16.8
	
	algorithms, 16.8
	APIs, 16.8
	documentation, 16.8
	models, 16.8
	new features, 16.8
	predictive analytics, 16.8
	SQL functions, 16.8
	supermodel, 16.8

	data object number
	
	extended rowid, 26.7.2.1

	Data Pump Export, 11.2.1
	
	dump file set, 11.2.1

	Data Pump Import, 11.2.2
	Data Recovery Advisor, 15.4.1
	
	diagnosing data corruption, 17.4.2.4.4

	data security
	
	definition, 1.2.9

	data segments, 2.4.1, 5.2.1
	data warehouse, 16.1.1.4
	data warehousing
	
	architecture, 16.1.3
	bitmap indexes, 5.8.12.1
	dimension schema objects, 5.5
	ETL, 1.2.7.1
	hierarchies, 5.5
	materialized views, 1.2.7.2, 5.4
	OLAP, 1.2.7.1
	summaries, 5.4

	database
	
	bounding database crash recovery time, 17.3.2
	staging, 16.1.1.4

	database administrators
	
	application administrator versus, 20.6.3.5
	roles
	
	for security, 20.6.3.3

	security for, 20.6.3.3
	security officer versus, 20.6.1

	database administrators (DBAs)
	
	authentication, 20.3.6
	data dictionary views, 7.2.2.3
	password files, 20.3.6

	database buffers
	
	after committing transactions, 4.2.1
	buffer cache, 8.2.1
	clean, 9.3.2.3
	committing transactions, 9.3.2.5
	defined, 8.2.1
	dirty, 9.3.2.3
	free, 8.2.1.1
	pinned, 8.2.1.1
	writing of, 9.3.2.3

	Database Change Notification, 23.3.1.4
	Database Creation Assistant, 14.1.1
	database object metadata, 7.4
	database objects
	
	comparing, 23.4

	Database Replay, 1.2.1.1
	database resident connection pooling
	
	described, 9.6

	Database Resource Manager
	
	introduction, 14.10.1
	terminology, 14.10.1.1

	database resource manager
	
	See also DBRM

	database structures
	
	control files, 3.4
	data blocks, 2, 2.2
	data dictionary, 7
	datafiles, 3, 3.3
	extents, 2.1, 2.3
	memory, 8
	processes, 9
	revealing with rowids, 26.7.2.2
	schema objects, 5.1
	segments, 2.1, 2.4
	tablespaces, 3, 3.2

	database triggers, 22
	Database Upgrade Assistant, 14.1.3
	database writer process (DBWn), 9.3.2.3
	
	checkpoints, 9.3.2.3
	defined, 9.3.2.3
	least recently used algorithm (LRU), 9.3.2.3
	media failure, 15.3.1
	multiple DBWn processes, 9.3.2.3
	when active, 9.3.2.3
	write-ahead, 9.3.2.5
	writing to disk at checkpoints, 9.3.2.2

	databases
	
	access control
	
	password encryption, 20.3.3.1

	clone database, 12.2.2.2
	closing, 12.3.1
	
	terminating the instance, 12.3.1.1

	distributed
	
	changing global database name, 8.2.3.1.3

	incarnations, 15.4.3.4
	limitations on usage, 20.4.1
	mounting, 12.2.2
	name stored in control files, 3.4.1
	open and closed, 12.1.1
	opening, 12.2.3
	opening read-only, 12.2.3.4
	production, 20.6.3.4.1, 20.6.3.5
	scalability, 10.1, 16.5
	shutting down, 12.3
	starting up, 12.1
	
	forced, 12.3.3.1

	structures
	
	control files, 3.4
	data blocks, 2, 2.2
	data dictionary, 7
	datafiles, 3, 3.3
	extents, 2.1, 2.3
	logical, 2
	memory, 8
	processes, 9
	revealing with rowids, 26.7.2.2
	schema objects, 5.1
	segments, 2.1, 2.4
	tablespaces, 3, 3.2

	test, 20.6.3.4.1

	datafiles
	
	backing up, 15.2.2
	contents of, 3.3.1
	data dictionary, 3.2.2.1
	datafile 1, 3.2.2.1
	
	SYSTEM tablespace, 3.2.2.1

	definition, 1.1.3.1
	in online or offline tablespaces, 3.3.3
	named in control files, 3.4.1
	online backups, 15.2.4.1
	overview of, 3.3
	read-only, 3.2.10
	relationship to tablespaces, 3.1
	shown in rowids, 26.7.2.1, 26.7.2.2
	SYSTEM tablespace, 3.2.2.1, 3.2.2.1
	taking offline, 3.3.3
	temporary, 3.3.4

	datatypes, 1.3.6, 26.1
	
	ANSI, 26.8
	BOOLEAN, 26.1
	CHAR, 26.2.1
	character, 26.2, 26.5.2
	classes of, 6.10.2.1
	conversions of
	
	by program interface, 9.7
	non-Oracle types, 26.8
	Oracle to another Oracle type, 26.12

	DATE, 26.4
	DB2, 26.8
	how they relate to tables, 5.2
	in PL/SQL, 26.1
	list of available, 1.3.6, 26.1
	LOB datatypes, 1.2.8.2, 26.5
	
	BFILE, 26.5.3
	BLOB, 26.5.1
	CLOB and NCLOB, 26.5.2

	LONG, 26.2.7
	
	storage of, 5.2.1.3

	NCHAR and NVARCHAR2, 26.2.4.2
	nested tables, 5.2.6
	NUMBER, 26.3.1
	RAW and LONG RAW, 26.6
	ROWID, 26.7, 26.7.2
	SQL/DS, 26.8
	TIMESTAMP, 26.4.5
	TIMESTAMP WITH LOCAL TIME ZONE, 26.4.5
	TIMESTAMP WITH TIME ZONE, 26.4.5
	URI, 26.10
	VARCHAR, 26.2.2.1
	VARCHAR2, 26.2.2
	XML, 26.9

	DATE datatype, 26.4
	
	arithmetic with, 26.4.2
	changing default format of, 26.4
	Julian dates, 26.4.1
	midnight, 26.4

	DATETIME datatypes, 26.4.4
	daylight savings support, 26.4.4
	DB_BLOCK_SIZE initialization parameter, 3.2.8
	DB_NAME parameter, 3.4.1
	DBA_ views, 7.2.2.3
	DBA_FLASHBACK_TRANSACTION_STATE view, 17.4.2.2
	DBA_UPDATABLE_COLUMNS view, 5.3.5
	DBMS_COMPARISON package, 23.4
	DBMS_FLASHBACK.TRANSACTION_BACKOUT() procedure, 17.4.2.2
	DBMS_LOCK package, 13.3.8
	DBMS_RLS package
	
	security policies, 20.5.1

	DBMS_SQL package, 25.3.2.4
	
	parsing DDL statements, 25.3.2.4

	DBRM processes, 9.3.2.10
	DBWn background process, 9.3.2.3
	DDL. See data definition language (DDL)
	deadlocks
	
	avoiding, 13.3.2.2
	defined, 13.3.2
	detection of, 13.3.2.1
	distributed transactions and, 13.3.2.1

	deallocating extents, 2.3.4, 2.3.4
	decision support systems (DSS)
	
	materialized views, 5.4

	dedicated servers, 9.5
	
	compared with shared servers, 9.4

	DEDUPLICATE, 19.3
	default access driver
	
	for external tables, 5.2.8.1

	default tablespace
	
	definition, 20.1.4.1

	default temporary tablespaces, 3.2.5
	
	specifying, 3.2.5.1

	default values, 5.2.4, 5.2.4
	
	constraints effect on, 21.4.1

	deferred constraints
	
	deferrable or nondeferrable, 21.5.1
	initially deferred or immediate, 21.5.1

	define phase of query processing, 24.7.2.5
	define variables, 24.7.2.5
	degree of parallelism
	
	parallel SQL, 16.5.1

	DELETE CASCADE constraint, 21.3.4.3.2
	DELETE statement, 24.2.1
	
	foreign key references, 21.3.4.3.1
	freeing space in data blocks, 2.2.2.1
	triggers, 22.2.1

	denormalized tables, 5.5
	dependencies, 6
	
	between schema objects, 6.1
	function-based indexes, 5.8.6.3
	on nonexistence of other objects, 6.7
	privileges and, 6.4.2
	shared pool and, 6.11
	timestamp model, 6.10.1

	describe phase of query processing, 24.7.2.4
	DETERMINISTIC functions
	
	function-based indexes, 5.8.6.3.1

	developers, application, 20.6.3.4.1
	development languages, 25.1
	development tools
	
	SQL Developer, 1.2.3.4
	SQL*Plus, 1.2.3.4

	DIA0 processes, 9.3.2.10
	DIAG processes, 9.3.2.10
	diagnosability process
	
	See DIAG

	diagnosability process 0
	
	See DIA0

	diagnosis
	
	problem, 1.2.4

	dictionary cache locks, 13.3.6.2.1
	dictionary managed tablespaces, 3.2.7.3
	different-row writers block writers, 13.2.6.1
	dimensions, 5.5
	
	attributes, 5.5
	hierarchies, 5.5
	
	join key, 5.5

	normalized or denormalized tables, 5.5

	directory service
	
	See also enterprise directory service.

	dirty buffer
	
	incremental checkpoint, 9.3.2.3

	dirty read, 13.1.1, 13.2.6.1
	dirty write, 13.2.6.1
	DISABLED indexes, 5.8.6.3.2, 5.8.6.3.3
	discretionary access control, 20.1
	
	definition, 1.2.9.1

	disk affinities
	
	disabling with large-scale clusters, 18.3.2

	disk failures, 15.3.1
	disk space
	
	controlling allocation for tables, 5.2.1
	datafiles used to allocate, 3.3, 3.3

	dispatcher processes
	
	described, 9.4.1.1

	dispatcher processes (Dnnn)
	
	limiting SGA space for each session, 20.4.1.1.5
	listener process and, 9.4.1.1
	network protocols and, 9.4.1.1
	prevent startup and shutdown, 9.4.2
	response queue and, 9.4.1
	user processes connect through Oracle Net Services, 9.4, 9.4.1.1

	distributed databases
	
	auditing and, 20.7.1.1.2
	client/server architectures and, 10.1
	deadlocks and, 13.3.2.1
	job queue processes, 9.3.2.4
	recoverer process (RECO) and, 9.3.2.8
	remote dependencies, 6.9, 6.10
	server can also be client in, 10.1

	distributed processing environment
	
	client/server architecture in, 10.1
	data manipulation statements, 24.7.2
	definition, 1.1.2.1
	described, 10.1
	materialized views (snapshots), 5.4

	distributed SQL, 23.1, 23.2.1
	distributed transactions
	
	naming, 4.2.4
	two-phase commit and, 4.2.5

	DML. See data manipulation language (DML)
	downtime
	
	avoiding during planned maintenance, 17.5
	avoiding during unplanned maintenance, 17.3
	causes, 17.2

	drivers, 9.7.2
	DROP statement, 24.2.2
	DROP TABLE statement
	
	triggers, 22.2.1

	DUAL table, 7.2.2.4
	dynamic partitioning, 16.5.1
	dynamic performance tables (V$ tables), 7.3
	dynamic predicates
	
	in security policies, 20.5.1.1

	dynamic SQL
	
	DBMS_SQL package, 25.3.2.4
	embedded, 25.3.2.4

E

	editing stored outlines, 24.8.2.2
	embedded SQL, 24.2.6
	
	dynamic SQL in PL/SQL, 25.3.2.4

	EMNC processes, 9.3.2.10
	ENCRYPT, 19.3
	enterprise directory service, 20.6.3.2
	Enterprise Grids
	
	with Oracle Real Application Clusters, 17.3.1

	Enterprise Manager
	
	alert log, 9.3.3
	checkpoint statistics, 9.3.2.2
	executing a package, 25.3.5
	executing a procedure, 25.3.4
	lock and latch monitors, 13.3.6
	PL/SQL, 25.3.1.2
	shutdown, 12.3, 12.3.3.1
	SQL statements, 24.1
	startup, 1.1.8.2, 12.2
	statistics monitor, 20.4.1.2.2

	enterprise roles, 20.6.3.2
	enterprise users, 20.6.3.2
	errors
	
	in embedded SQL, 24.2.6
	tracked in trace files, 9.3.3

	ETL. See extraction, transformation, and loading (ETL), 1.2.7.1, 16.2
	event monitor coordinator process
	
	See EMNC

	exceptions
	
	raising, 25.3.2.3
	stored procedures and, 25.3.2.3

	exclusive locks
	
	row locks (TX), 13.3.4.1
	RX locks, 13.3.4.2.2
	table locks (TM), 13.3.4.2

	execution plans, 24.8.2
	
	EXPLAIN PLAN, 24.2.1
	location of, 8.2.3.1.1

	EXPLAIN PLAN statement, 24.2.1
	explicit locking, 13.3.7, 13.3.7
	extended rowid format, 26.7.2.1
	extents
	
	allocating, 2.3.3
	as collections of data blocks, 2.3
	coalescing, 2.3.4.1
	deallocation
	
	when performed, 2.3.4, 2.3.4

	defined, 2.1
	definition, 1.1.4.2
	dictionary managed, 3.2.7.3
	incremental, 2.3.1
	locally managed, 3.2.7.1
	materialized views, 2.3.4.3
	overview of, 2.3

	external procedures, 25.3.4.6
	external tables
	
	parallel access, 5.2.8.3

	extraction, transformation, and loading (ETL), 1.2.7.1, 16.2
	
	overview, 1.2.7.1, 16.2

F

	failure groups
	
	ASM, 17.4.1

	failures
	
	database buffers and, 12.2.3.1
	instance
	
	recovery from, 12.2.3.1, 12.3.1.1

	internal errors
	
	tracked in trace files, 9.3.3

	media, 15.3.1
	statement and process, 9.3.2.6

	fast commit, 9.3.2.5
	fast refresh, 5.4.2
	fast-start
	
	rollback on demand, 12.2.3.1.2

	FBDA process, 9.3.2.10
	features
	
	new, 1.2.7.7

	fetching rows in a query, 24.7.2.9
	
	embedded SQL, 24.2.6

	file management locks, 13.3.6.2.2
	files
	
	ALERT and trace files, 9.3.3
	alert log, 9.3.2.5
	initialization parameter, 1.1.8.2, 12.1.3, 12.2.1
	password, 20.3.6
	
	administrator privileges, 12.1.2

	server parameter, 1.1.8.2, 12.1.3, 12.2.1
	trace files, 9.3.2.5

	filtering data
	
	using Data Pump import, 11.2

	fine-grained access control, 20.5.1, 20.6.2
	fine-grained auditing, 20.5.3
	fixed views, 7.3
	flash recovery area, 15.1.1
	
	description, 1.2.6

	Flashback Data Archive, 17.4.2.2
	flashback data archiver process
	
	See FBDA

	Flashback Query, 13.4
	
	overview, 13.4
	uses, 13.4.2

	Flashback row history, 13.4
	Flashback technology
	
	block recovery using Flashback logs, 17.4.2.2

	Flashback Transaction
	
	description, 17.4.2.2

	Flashback transaction history, 13.4
	floating-point numbers
	
	datatypes, 26.3.2

	foreign key constraints
	
	changes in parent key values, 21.3.4.3
	constraint checking, 21.4
	deleting parent table rows and, 21.3.4.3.2
	maximum number of columns in, 21.3.4
	nulls and, 21.3.4.2
	updating parent key tables, 21.3.4.3
	updating tables, 21.3.4.4, 21.3.4.4.1

	fractional seconds, 26.4.5
	free lists, 2.2.3.3
	free space
	
	automatic segment space management, 2.2.2
	coalescing extents
	
	SMON process, 9.3.2.9

	coalescing within data blocks, 2.2.2.1
	free lists, 2.2.3.3
	managing, 2.2.2
	section of data blocks, 2.2.1.6

	free space management, 14.6.3
	
	in-segment, 2.2.2

	front-ends, 10.1
	full table scans
	
	LRU algorithm and, 8.2.1.2
	parallel exe, 16.5.1

	function-based indexes, 5.8.6
	
	dependencies, 5.8.6.3
	DISABLED, 5.8.6.3.2, 5.8.6.3.3
	privileges, 5.8.6.3, 5.8.6.3.2
	UNUSABLE, 5.8.6.3.3

	functions
	
	function-based indexes, 5.8.6
	PL/SQL, 25.3.4, 25.3.4
	
	contrasted with procedures, 25.3.4
	DETERMINISTIC, 5.8.6.3.1

	SQL
	
	COUNT, 5.8.12.4
	in CHECK constraints, 21.3.5.1
	in views, 5.3.3.1
	NVL, 5.2.3

G

	Generic Connectivity, 23.1, 23.5.1
	global database names
	
	shared pool and, 8.2.3.1.3

	global partitioned indexes
	
	maintenance, 18.2.2.3

	global transaction processes
	
	See GTX0-j

	Globalization Development Kit, 1.3.7
	globalization support
	
	character sets for, 26.2.3
	CHECK constraints and, 21.3.5.1
	NCHAR and NVARCHAR2 datatypes, 26.2.4.2
	NCLOB datatype, 26.5.2
	views and, 5.3.3.1

	GRANT statement, 24.2.2
	
	locks, 13.3.5.2

	Grid computing
	
	architecture, 17.1

	GROUP BY clause
	
	temporary tablespaces, 3.2.11

	group commits, 9.3.2.5
	GTX0-j processes, 9.3.2.10
	guesses in logical rowids, 26.7.3
	
	staleness, 26.7.3.2
	statistics for, 26.7.3.2

H

	handles for SQL statements, 8.3.1.2.1
	hash clusters, 5.12
	
	contrasted with index, 5.12

	headers
	
	of data blocks, 2.2.1.1
	of row pieces, 5.2.1.1

	Health Monitor, 15.4.1
	hierarchies, 5.5
	
	join key, 5.5
	levels, 5.5

	high availability solution
	
	characteristics, 17.1

	high water mark
	
	definition, 2.1

	hot backups
	
	inconsistent whole database backups, 15.2.3.2

	human errors
	
	guarding against human errors, 17.4.2.1
	protecting against, 17.4.2

I

	immediate constraints, 21.5
	incarnations
	
	of databases, 15.4.3.4

	incident packaging service, 14.2.3.2
	incomplete media recovery
	
	definition, 15.4.3.4

	incomplete recovery, 15.4.3.4
	inconsistent backups
	
	whole database
	
	definition, 15.2.3.2

	incremental checkpoint, 9.3.2.3
	incremental refresh, 5.4.2
	index segments, 2.4.2
	indexes, 5.8
	
	bitmap indexes, 5.8.12, 5.8.12.5
	
	nulls and, 5.2.3
	parallel query and DML, 5.8.12.1

	branch blocks, 5.8.7.2
	B-tree structure of, 5.8.7.2
	building
	
	using an existing index, 5.8

	cardinality, 5.8.12.2
	cluster
	
	cannot be partitioned, 18

	composite, 5.8.3
	concatenated, 5.8.3
	described, 5.8
	domain, 5.10
	enforcing integrity constraints, 21.3.3.2
	extensible, 5.10
	function-based, 5.8.6
	
	dependencies, 5.8.6.3
	DETERMINISTIC functions, 5.8.6.3.1
	DISABLED, 5.8.6.3.3
	optimization with, 5.8.6.2
	privileges, 5.8.6.3, 5.8.6.3.2

	index-organized tables, 5.9
	
	logical rowids, 26.7.3
	secondary indexes, 5.9.3

	internal structure of, 5.8.7.2
	invisible, 5.8.2
	key compression, 5.8.10
	keys and, 5.8.4
	
	primary key constraints, 21.3.3.2

	leaf blocks, 5.8.7.2
	location of, 5.8.7
	LONG RAW datatypes prohibit, 26.6
	nonunique, 5.8.1
	nulls and, 5.2.3, 5.8.5, 5.8.12.4
	on complex datatypes, 5.10
	overview of, 5.8
	partitioned tables, 5.8.12.5
	partitions, 1.2.7.8, 18.1
	performance and, 5.8
	reverse key indexes, 5.8.11
	rowids and, 5.8.7.2
	storage format of, 5.8.7.1
	unique, 5.8.1
	visible, 5.8.2
	when used with views, 5.3.3.2

	index-organized tables, 5.9, 5.9.3
	
	benefits, 5.9.1
	key compression in, 5.8.10.3, 5.9.1
	logical rowids, 26.7.3
	secondary indexes on, 5.9.3

	in-doubt transactions, 12.2.3.3
	initialization parameter file, 1.1.8.2, 12.1.3, 12.2.1
	
	startup, 1.1.8.2, 12.2.1

	initialization parameters
	
	basic, 14.1.4
	CLUSTER_DATABASE, 12.2.2.1
	DB_NAME, 3.4.1
	LOG_ARCHIVE_MAX_PROCESSES, 9.3.2.1
	MAX_SHARED_SERVERS, 9.4.1.2
	NLS_NUMERIC_CHARACTERS, 26.3.1
	OPEN_CURSORS, 8.3.1.2.1, 24.3
	REMOTE_DEPENDENCIES_MODE, 6.9.1, 6.10.3
	SERVICE_NAMES, 10.3.2.1
	SHARED_SERVERS, 9.4.1.2
	SKIP_UNUSABLE_INDEXES, 5.8.6.3.3
	SORT_AREA_SIZE, 2.4.3.1

	initially deferred constraints, 21.5.1
	initially immediate constraints, 21.5.1
	INIT.ORA. See initialization parameter file.
	inline views, 5.3.7
	
	example, 5.3.7

	INSERT statement, 24.2.1
	
	free lists, 2.2.3.3
	triggers, 22.2.1
	
	BEFORE triggers, 22.3.2.1

	instance PGA
	
	definition, 8.1.1

	instance recovery
	
	overview, 12.2.3.1
	SMON process, 9.3.2.9

	instances
	
	associating with databases, 12.1.1, 12.2.2
	definition, 1.1.7
	described, 12.1
	diagrammed, 9.3.2
	memory structures of, 8.1
	multiple-process, 9.1.1, 9.1.2
	process structure, 9.1
	recovery of, 12.3.1.1
	
	opening a database, 12.2.3.1
	SMON process, 9.3.2.9

	restricted mode, 12.2.1.1
	service names, 10.3.2
	shutting down, 12.3, 12.3.3
	starting, 1.1.8.2, 12.2
	terminating, 12.3.1.1

	Instant Client, 14.1.2
	INSTEAD OF triggers, 22.3.4
	integrity constraints, 21.1
	
	advantages of, 21.2.1
	CHECK, 21.3.5
	default column values and, 5.2.4
	definition, 1.2.10.1
	types listed, 1.2.10.1

	INTERNAL
	
	security for, 20.6.3.3.2

	internal errors tracked in trace files, 9.3.3
	invalidating dependent objects, 6.4
	invisible indexes, 5.8.2
	IPS
	
	See incident packaging service

	IS NULL predicate, 5.2.3
	ISO SQL standard, 26.8
	isolation levels
	
	choosing, 13.2.7
	read committed, 13.2.5.2
	setting, 13.2.5.1, 13.3.7

J

	Java
	
	attributes, 25.4.1.2
	class hierarchy, 25.4.2
	classes, 25.4.1.1
	interfaces, 25.4.3
	methods, 25.4.1.3
	overview, 25.4
	polymorphism, 25.4.4
	triggers, 22, 22.2.3

	Java Messaging Service, 25.4.7.6
	Java Pool Advisor, 14.5
	Java stored procedures, 25.4.7.1
	Java virtual machine, 25.4.5
	JDBC
	
	overview, 25.4.7.3

	job queue processes, 9.3.2.4
	jobs, 9.1
	join views, 5.3.5
	joins
	
	encapsulated in views, 5.3.2
	views, 5.3.5

K

	KEEP_DUPLICATES, 19.3
	key compression, 5.8.10
	keys
	
	cluster, 5.11
	defined, 21.3.2.1
	foreign, 21.3.4, 21.3.4
	indexes and, 5.8.4
	
	compression, 5.8.10
	PRIMARY KEY constraints, 21.3.3.2
	reverse key, 5.8.11

	maximum storage for values, 5.8.3
	parent, 21.3.4, 21.3.4.1
	primary, 21.3.3
	referenced, 21.3.4
	reverse key indexes, 5.8.11
	unique, 21.3.2
	
	composite, 21.3.2.1, 21.3.2.2

L

	large pool, 8.2.4
	large-scale clusters
	
	disk affinity, 18.3.2
	multiple Oracle instances, 12.1.1

	latches
	
	described, 13.3.6.1

	leaf blocks, 5.8.7.2
	least recently used (LRU) algorithm
	
	database buffers and, 8.2.1.1
	dictionary cache, 7.2.1.2
	full table scans and, 8.2.1.2
	latches, 9.3.2.3
	shared SQL pool, 8.2.3.1.1, 8.2.3.1.3

	LGWR background process, 9.3.2.5
	library cache, 8.2.3, 8.2.3.1, 8.2.3.2
	listener process, 10.3.2
	
	service names, 10.3.2

	listeners, 9.4.1.1, 10.3.2
	
	service names, 10.3.2

	loader access driver, 5.2.8.1
	LOB datatypes, 1.2.8.2, 26.5
	
	BFILE, 26.5.3
	BLOBs, 26.5.1
	CLOBs and NCLOBs, 26.5.2

	local indexes, 16.4
	
	bitmap indexes
	
	on partitioned tables, 5.8.12.5
	parallel query and DML, 5.8.12.1

	locally managed tablespaces, 3.2.7.1
	LOCK TABLE statement, 24.2.1
	locking
	
	unindexed foreign keys and, 21.3.4.4, 21.3.4.4.1

	locks, 13.1.2
	
	after committing transactions, 4.2.1
	automatic, 13.3, 13.3.3
	conversion, 13.3.1.3
	data, 13.3.4
	
	duration of, 13.3.1

	deadlocks, 13.3.2, 13.3.2.1
	
	avoiding, 13.3.2.2

	dictionary, 13.3.5
	
	clusters and, 13.3.5.5
	duration of, 13.3.5.4

	dictionary cache, 13.3.6.2.1
	DML acquired, 13.3.4.3.2
	
	diagrammed, 13.3.4.3

	escalation does not occur, 13.3.1.3
	exclusive table locks (X), 13.3.4.2.5
	file management locks, 13.3.6.2.2
	how Oracle uses, 13.3
	internal, 13.3.6
	latches and, 13.3.6.1
	log management locks, 13.3.6.2.2
	manual, 13.3.7
	object level locking, 25.2.1
	Oracle Lock Management Services, 13.3.8
	overview of, 13.1.2
	parse, 13.3.5.3
	rollback segments, 13.3.6.2.3
	row (TX), 13.3.4.1
	row exclusive locks (RX), 13.3.4.2.2
	row share table locks (RS), 13.3.4.2.1
	share row exclusive locks (SRX), 13.3.4.2.4
	share table locks (S), 13.3.4.2.3
	share-subexclusive locks (SSX), 13.3.4.2.4
	subexclusive table locks (SX), 13.3.4.2.2
	subshare table locks (SS), 13.3.4.2.1
	table (TM), 13.3.4.2
	table lock modes, 13.3.4.2
	tablespace, 13.3.6.2.3
	types of, 13.3.3
	uses for, 1.2.2.4

	log entries, 1.1.3.3, 12.2.3.1.1
	
	See also redo log files, 1.1.3.3

	log management locks, 13.3.6.2.2
	log switch
	
	archiver process, 9.3.2.1

	log writer process (LGWR), 9.3.2.5
	
	group commits, 9.3.2.5
	redo log buffers and, 8.2.2
	system change numbers, 4.2.1
	write-ahead, 9.3.2.5

	LOG_ARCHIVE_MAX_PROCESSES parameter, 9.3.2.1
	Logfile Size Advisor, 14.8.2
	logical blocks, 2.1
	logical database structures
	
	definition, 1.1.4
	tablespaces, 3.2

	logical reads limit, 20.4.1.1.4
	logical rowids, 26.7.3
	
	index on index-organized table, 5.9.3
	physical guesses, 5.9.3, 26.7.3
	staleness of guesses, 26.7.3.2
	statistics for guesses, 26.7.3.2

	logical standby databases, 17.4.2.5.1
	LONG datatype
	
	automatically the last column, 5.2.1.3
	defined, 26.2.7
	storage of, 5.2.1.3

	LONG RAW datatype, 26.6
	
	indexing prohibited on, 26.6
	similarity to LONG datatype, 26.6

	lost writes
	
	form of data corruption, 17.4.2.4.2

	LRU, 8.2.1.1, 8.2.1.2, 9.3.2.3
	
	dictionary cache, 7.2.1.2
	shared SQL pool, 8.2.3.1.1, 8.2.3.1.3

M

	maintenance tasks
	
	automatic, 1.2.3.2

	maintenance tasks, automatic, 14.2.2
	maintenance window, 14.2.2
	manual locking, 13.3.7
	materialized view logs, 5.4.3
	materialized views, 5.4
	
	advisor for, 1.2.3.9
	deallocating extents, 2.3.4.3
	materialized view logs, 5.4.3
	partitioned, 5.4, 18
	refresh
	
	job queue processes, 9.3.2.4

	refreshing, 5.4.2
	uses for, 16.3

	MAX_SHARED_SERVERS parameter, 9.4.1.2
	media failures
	
	overview, 15.3.1

	media recovery
	
	complete, 15.4.3.3, 15.4.3.3
	incomplete, 15.4.3.4
	
	definition, 15.4.3.4

	methods, 15.4.3.5
	overview, 15.4.3, 15.4.3.1, 15.4.3.1
	using Recovery Manager, 15.4.3.5.1
	using SQL*Plus, 15.4.3.5.2

	memory
	
	allocation for SQL statements, 8.2.3.1.3
	content of, 8.1
	processes use of, 9.1
	shared SQL areas, 8.2.3.1.1
	software code areas, 8.5
	stored procedures, 25.3.4.1
	system global area (SGA)
	
	allocation in, 8.2

	memory advisors, 14.5
	memory management
	
	about, 8.4
	automatic, 8.4
	automatic shared, 8.4
	modes, 8.4

	MERGE statement, 24.2.1
	message queuing
	
	publish-subscribe support
	
	event publication, 22.3.5.1

	queue monitor process, 9.3.2.7

	Messaging Gateway, 23.1
	metadata
	
	viewing, 7.4

	MMAN process, 9.3.2.10
	MMNL process, 9.3.2.10
	MMON process, 9.3.2.10
	mobile computing environment
	
	materialized views, 5.4

	modes
	
	table lock, 13.3.4.2

	monitoring user actions, 20.7
	MTTR, 14.8.2
	MTTR Advisor, 14.8.2
	multiblock writes, 9.3.2.3
	multiple-process systems (multiuser systems), 9.1.1
	multiplexing
	
	control files, 3.4.2
	recovery and, 15.3.1

	multiuser environments, 9.1.1
	multiversion concurrency control, 13.2.2

N

	NCHAR datatype, 26.2.4.2
	NCLOB datatype, 26.5.2
	nested tables, 5.2.6
	
	index-organized tables, 5.9.1
	
	key compression, 5.8.10.3

	network listener process
	
	connection requests, 9.4, 9.4.1.1

	networks
	
	client/server architecture use of, 10.1
	communication protocols, 9.7.2, 9.7.3
	dispatcher processes and, 9.4, 9.4.1.1
	drivers, 9.7.2
	listener processes of, 10.3.2
	network authentication service, 20.3.2.1
	Oracle Net Services, 10.3

	NLS_DATE_FORMAT parameter, 26.4
	NLS_NUMERIC_CHARACTERS parameter, 26.3.1
	NOAUDIT statement, 24.2.2
	
	locks, 13.3.5.2

	NOCOMPRESS, 19.3
	NOENCRYPT, 19.3
	nonprefixed indexes, 18.2.1
	nonrepeatable reads, 13.2.6.1
	nonunique indexes, 5.8.1
	nonvolatile data, 16.1.1.3
	NOREVERSE clause for indexes, 5.8.11
	normalized tables, 5.5
	NOT NULL
	
	constraint, 21.3.1

	NOT NULL constraints
	
	constraint checking, 21.4
	implied by PRIMARY KEY, 21.3.3.2

	NOVALIDATE con, 21.1.3
	NOWAIT parameter
	
	with savepoints, 4.2.3

	nulls
	
	as default values, 5.2.4
	column order and, 5.2.1.3
	converting to values, 5.2.3
	defined, 5.2.3
	foreign keys and, 21.3.4.2
	how stored, 5.2.3
	indexes and, 5.2.3, 5.8.5, 5.8.12.4
	non-null values for, 5.2.3
	prohibited in primary keys, 21.3.3
	prohibiting, 21.3.1
	unknown in comparisons, 5.2.3

	NUMBER datatype, 26.3.1
	
	internal format of, 26.3.1.1
	rounding, 26.3.1

	NVARCHAR2 datatype, 26.2.4.2
	NVL function, 5.2.3

O

	object cache
	
	OCI, 25.2.1
	Pro*C, 25.2.4

	object dependencies, 6
	object identifiers
	
	c, 5.8.10.3
	collections
	
	key compression, 5.9.1

	object privileges, 20.4.2.2
	Object Type Translator (OTT)
	
	overview, 25.2.3

	object types
	
	locking in cache, 25.2.1
	object views, 5.3.6
	Oracle Type Translator, 25.2.3

	object views, 5.3.6
	
	modifiability, 22.3.4.1

	OCBC, 25.5.1
	OCCI
	
	associative relational API, 25.2.2.1
	navigational interface, 25.2.2.2
	overview, 25.2.2

	OCI, 9.7.1, 9.7.1
	
	anonymous blocks, 25.3.1.2
	bind variables, 24.7.2.6
	client result cache, 25.2.1, 25.2.1
	overview, 25.2.1

	ODP.NET, 25.5.3
	OLAP
	
	capabilities, 16.7
	introduction, 1.2.7.6

	online analytical processing
	
	See OLAP

	online redo logs
	
	checkpoints, 3.4.1
	media failure, 15.3.1
	multiplexed, 15.3.1
	overview, 1.1.3.3

	online transaction processing (OLTP)
	
	reverse key indexes, 5.8.11

	OO4O, 25.5.2
	OO4O Automation Server, 25.5.2.1
	Open database connectivity, 25.5.1
	OPEN_CURSORS parameter, 24.3
	
	managing private SQL areas, 8.3.1.2.1

	operating system authentication, 20.3.6
	operating systems
	
	authentication by, 20.3.1
	block size, 2.2
	communications software, 9.7.3
	privileges for administrator, 12.1.2
	roles and, 20.4.3.3
	security in, 20.6.1.3

	optimization
	
	function-based indexes, 5.8.6.2
	index build, 5.8
	query rewrite
	
	in security policies, 20.5.1.1

	optimization of free space in data blocks, 2.2.2.1
	optimizer, 24.8
	
	statistics gathering, 14.2.2

	Oracle
	
	client/server architecture of, 10.1
	configurations of, 9.1, 9.1.2
	
	multiple-process Oracle, 9.1.1, 9.1.2

	instances, 12.1
	processes of, 9.3
	scalability of, 10.1
	SQL processing, 24.7

	Oracle Application Express, 1.3.5
	Oracle blocks, 2.1
	Oracle Call Interface See OCI
	Oracle Certificate Authority, 20.3.2.2
	Oracle code, 9.1, 9.7
	Oracle Data Guard
	
	overview, 17.4.2.5.1

	oracle data mining, 16.8
	Oracle Data Provider for .NET, 25.5.3
	Oracle Data Pump API, 11.3
	Oracle Database
	
	alert log, 9.3.3
	background processes, 9.3.2
	
	ACMS, 9.3.2.10
	ARBn, 9.3.2.10
	DBRM, 9.3.2.10
	DIA0, 9.3.2.10
	DIAG, 9.3.2.10
	EMNC, 9.3.2.10
	FBDA, 9.3.2.10
	GTX0-j, 9.3.2.10
	MMAN, 9.3.2.10
	MMNL, 9.3.2.10
	MMON, 9.3.2.10
	PSP0, 9.3.2.10
	RBAL, 9.3.2.10
	SMCO, 9.3.2.10
	VKTM, 9.3.2.10

	server processes, 9.3.1
	trace files, 9.3.3

	Oracle Database Gateways, 23.1, 23.5.2
	Oracle Enterprise Login Assistant, 20.3.2.2
	Oracle Enterprise Manager Database Console, 14.1
	Oracle Enterprise Manager. See Enterprise Manager
	Oracle Enterprise Security Manager, 20.3.2.2
	Oracle Flashback Database, 15.4.2.1
	Oracle Flashback Query, 17.4.2.2
	Oracle Flashback Table, 15.4.2.2
	Oracle Flashback Technology, 15.4.2
	Oracle Forms
	
	PL/SQL, 25.3.1.2

	Oracle interMedia
	
	See Oracle Multimedia

	Oracle Internet Directory, 10.3.2.1, 20.3.2.2
	Oracle Multimedia, 1.2.8.6, 19.6
	Oracle Net Services, 10.3
	
	client/server systems use of, 10.3
	overview, 10.3
	shared server requirement, 9.4, 9.4.1.1

	Oracle Objects for OLE, 25.5.2
	Oracle program interface (OPI), 9.7.1, 9.7.1
	Oracle Real Application Clusters
	
	databases and instances, 12.1.1
	Enterprise Grids, 17.3.1
	isolation levels, 13.2.6.3
	mounting a database using, 12.2.2.1
	read consistency, 13.2.4
	reverse key indexes, 5.8.11
	temporary tablespaces, 3.2.11

	Oracle Real Application Testing, 1.2.1
	Oracle Streams, 23.1, 23.3.1
	Oracle Streams Advanced Queuing, 23.1
	Oracle Text, 19.4
	
	advanced features, 19.4.4
	document services, 19.4.2
	index types, 19.4.1
	query package, 19.4.3

	Oracle Ultra Search, 19.5
	Oracle Wallet Manager, 20.3.2.2
	Oracle wallets, 20.3.2.2
	Oracle XA
	
	session memory in the large pool, 8.2.4

	Oracle XML DB, 19.2
	Oracle-managed files, 14.6.2
	OTT. See Object Type Translator (OTT)

P

	packages, 25.3.5
	
	advantages of, 25.3.5.1
	as program units, definition, 1.3.2
	dynamic SQL, 25.3.2.4
	executing, 25.3.1.2
	for locking, 13.3.8
	private, 25.3.5.1
	public, 25.3.5.1
	session state and, 6.4.1
	shared SQL areas and, 8.2.3.1.2

	pages, 2.1
	parallel access
	
	to external tables, 5.2.8.3

	parallel DML
	
	bitmap indexes, 5.8.12.1, 16.4

	parallel execution, 1.2.7.4, 16.5
	
	coordinator, 16.5.1
	of table functions, 25.3.4.7
	process classification, 18.3.2
	server, 16.5.1
	servers, 16.5.1
	tuning, 1.2.7.4, 16.5

	parallel query
	
	bitmap indexes, 5.8.12.1, 16.4

	parallel SQL, 1.2.7.4, 16.5
	
	coordinator process, 16.5.1
	server processes, 16.5.1

	parameter
	
	server, 12.1.3

	parameter files
	
	definition, 1.1.3.5

	parameters
	
	initialization, 12.1.3
	
	locking behavior, 13.3.3

	storage, 2.2.3, 2.3.2

	parse trees
	
	construction of, 24.5
	in shared SQL area, 8.2.3.1.1

	parsing, 24.7.2.2
	
	DBMS_SQL package, 25.3.2.4
	embedded SQL, 24.2.6
	parse calls, 24.5
	parse locks, 13.3.5.3
	performed, 24.5
	SQL statements, 24.7.2.2, 25.3.2.4

	partitioning
	
	advisor for, 1.2.3.9

	partitions, 1.2.7.8, 18.1
	
	bitmap indexes, 5.8.12.5
	dynamic partitioning, 16.5.1
	materialized views, 5.4, 18
	nonprefixed indexes, 18.2.1
	segments, 2.4.1, 2.4.2

	password file authentication, 20.3.6
	passwords
	
	account locking, 20.3.3.2
	administrator privileges, 12.1.2
	complexity verification, 20.3.3.4
	connecting with, 9.2.1
	connecting without, 20.3.1
	database user authentication, 20.3.3
	encryption, 20.3.3.1
	password files, 20.3.6
	password reuse, 20.3.3.3
	security policy for users, 20.6.3.1
	used in roles, 20.4.3

	PCTFREE storage parameter
	
	how it works, 2.2.3.1
	PCTUSED and, 2.2.3.3

	PCTUSED storage parameter
	
	how it works, 2.2.3.2
	PCTFREE and, 2.2.3.3

	performance
	
	dynamic performance tables (V$), 7.3
	group commits, 9.3.2.5
	index build, 5.8
	packages, 25.3.5.1
	resource limits and, 20.4.1
	sort operations, 3.2.11

	PGA, instance
	
	definition, 8.1.1

	phantom reads, 13.2.6.1
	PHP, 1.3.5
	physical database structures
	
	control files, 3.4
	datafiles, 3.3

	physical guesses in logical rowids, 26.7.3
	
	staleness, 26.7.3.2
	statistics for, 26.7.3.2

	physical standby databases, 17.4.2.5.1
	pipelined table functions, 25.3.4.7
	PKI, 20.3.2.2
	plan
	
	SQL execution, 24.2.1

	planned downtime
	
	avoiding downtime during, 17.5
	causes, 17.2

	PL/SQL, 25.3
	
	anonymous blocks, 25.3, 25.3.4.3
	auditing of statements within, 20.7.1.1.6
	database triggers, 22
	datatypes, 26.1
	dynamic SQL, 25.3.2.4
	exception handling, 25.3.2.3
	executing, 25.3.1.2
	external procedures, 25.3.4.6
	gateway, 25.3.7
	language constructs, 25.3.2
	native execution, 25.3.1.2
	overview of, 25.3
	packages, 25.3.5
	parse locks, 13.3.5.3
	parsing DDL statements, 25.3.2.4
	PL/SQL engine, 25.3.1.2
	
	products containing, 25.3.1.2

	program units, 8.2.3.1.2, 25.3, 25.3.3
	
	compiled, 25.3.1.2, 25.3.4.3
	shared SQL areas and, 8.2.3.1.2

	stored procedures, 25.3, 25.3.4, 25.3.4
	user locks, 13.3.8

	PL/SQL Server Pages, 25.3.7
	PMON background process, 9.3.2.6, 10.3.2.1
	point-in-time recovery
	
	clone database, 12.2.2.2

	precompilers
	
	anonymous blocks, 25.3.1.2, 25.3.1.2
	bind variables, 24.7.2.6, 24.7.2.6
	cursors, 24.7.2.1, 24.7.2.1
	embedded SQL, 24.2.6, 24.2.6

	predicates
	
	dynamic
	
	in security policies, 20.5.1.1

	predictive analytics, 16.8
	prefixes of data dictionary views, 7.2.2
	primary key
	
	defined, 21.1.1

	PRIMARY KEY constraints, 21.3.3
	
	constraint checking, 21.4
	described, 21.3.3
	indexes used to enforce, 21.3.3.2
	
	name of, 21.3.3.2

	maximum number of columns, 21.3.3.2
	NOT NULL constraints implied by, 21.3.3.2

	primary keys, 21.3.3.1
	
	advantages of, 21.3.3.1

	private SQL areas
	
	described, 8.2.3.1.1
	how managed, 8.3.1.2.1

	privileges
	
	administrator, 12.1.2
	application developers and, 20.6.3.4.1
	definition, 20.1.2
	function-based indexes, 5.8.6.3, 5.8.6.3.2
	overview of, 20.4.2
	policies for managing, 20.6.3.1
	revoked
	
	object dependencies and, 6.4.2

	roles, 20.4.3
	schema object, 20.4.2.2
	system, 20.4.2.1
	to start up or shut down a database, 12.1.2

	Pro*C Precompiler
	
	overview, 25.2.4

	Pro*C++ Precompiler
	
	overview, 25.2.4

	Pro*C/C++
	
	processing SQL statements, 24.7.2

	Pro*COBOL Precompiler, 25.6.1
	Pro*FORTRAN Precompiler, 25.6.2
	problem prevention, diagnosis, and resolution, 1.2.4
	procedures, 25.3, 25.3.3, 25.3.4
	
	advantages of, 25.3.4.1
	contrasted with anonymous blocks, 25.3.4.3
	contrasted with functions, 25.3.4
	cursors and, 25.3.2.2
	executing, 25.3.1.2
	external procedures, 25.3.4.6
	security enhanced by, 25.3.4.1
	shared SQL areas and, 8.2.3.1.2
	stored procedures, 25.3, 25.3.1.2, 25.3.4

	process monitor process (PMON)
	
	cleans up timed-out sessions, 20.4.1.1.5
	described, 9.3.2.6

	process spawner
	
	See PSP0

	processes, 9.1
	
	archiver (ARCn), 9.3.2.1
	background, 9.3.2
	
	diagrammed, 9.3.2

	checkpoint (CKPT), 9.3.2.2
	checkpoints and, 9.3.2.3
	classes of parallel execution, 18.3.2
	dedicated server, 9.4.1.2
	distributed transaction resolution, 9.3.2.8
	job queue, 9.3.2.4
	listener, 9.4.1.1, 10.3.2
	
	shared servers and, 9.4

	log writer (LGWR), 9.3.2.5
	multiple-process Oracle, 9.1.1
	Oracle, 9.3
	parallel execution coordinator, 16.5.1
	parallel execution servers, 16.5.1
	process monitor (PMON), 9.3.2.6
	queue monitor (QMNn), 9.3.2.7
	recoverer (RECO), 9.3.2.8
	server, 9.3.1
	
	dedicated, 9.5
	shared, 9.4.1.1, 9.4.1.2

	shadow, 9.5
	shared server, 9.4
	
	client requests and, 9.4.1

	structure, 9.1
	system monitor (SMON), 9.3.2.9
	trace files for, 9.3.3
	user, 9.2
	
	recovery from failure of, 9.3.2.6
	sharing server processes, 9.4.1.1

	processing
	
	DDL statements, 24.7.3.1
	DML statements, 24.7.2
	overview, 24.7
	parallel SQL, 1.2.7.4, 16.5
	queries, 24.6

	profiles
	
	user, definition, 20.1.4.4
	when to use, 20.4.1.2.1

	program global area (PGA), 1.1.7.2, 8.1.1, 8.3
	
	shared server, 9.4.1.2
	shared servers, 9.4.1.2

	program interface, 9.7
	
	Oracle side (OPI), 9.7.1
	structure of, 9.7.1
	user side (UPI), 9.7.1

	program units, 25.3, 25.3.3
	
	shared pool and, 8.2.3.1.2

	pseudocode
	
	triggers, 22.4.3

	pseudocolumns
	
	CHECK constraints prohibit
	
	LEVEL and ROWNUM, 21.3.5.1

	modifying views, 22.3.4.2
	ROWID, 26.7.1

	PSP. See PL/SQL Server Pages
	PSP0 processes, 9.3.2.10
	public key infrastructure, 20.3.2.2
	publication
	
	DDL statements, 22.3.5.4.2
	DML statements, 22.3.5.4.3
	logon/logoff events, 22.3.5.4.1
	system events
	
	server errors, 22.3.5.3
	startup/shutdown, 22.3.5.3

	using triggers, 22.3.5

	publish-subscribe support
	
	event publication, 22.3.5.1
	triggers, 22.3.5

Q

	queries, 24.7.2.3
	
	composite indexes, 5.8.3
	default locking of, 13.3.4.3.1
	define phase, 24.7.2.5
	describe phase, 24.7.2.4
	fetching rows, 24.6
	in DML, 24.2.1
	inline views, 5.3.7
	merged with view queries, 5.3.3
	parallel processing, 1.2.7.4, 16.5
	phases of, 13.2.1
	processing, 24.6
	read consistency of, 13.2.2
	stored as views, 5.3
	temporary segments and, 2.4.3.1, 24.6
	triggers use of, 22.4.2

	query result cache, 1.2.2.3
	query rewrite
	
	dynamic predicates in security policies, 20.5.1.1

	queue monitor, 9.3.2.7
	queue monitor process, 9.3.2.7
	queuing
	
	publish-subscribe support
	
	event publication, 22.3.5.1

	queue monitor process, 9.3.2.7

	quiesce database, 13.2.7.3
	quotas
	
	tablespace, definition, 20.1.4.3

R

	RADIUS, 20.3.2.3
	RAW datatype, 26.6
	RBAL process, 9.3.2.10
	read committed isolation, 13.2.5.2
	read consistency, 13.1.1, 13.2.1
	
	Cache Fusion, 13.2.4
	definition, 1.2.2.2
	dirty read, 13.1.1, 13.2.6.1
	multiversion consistency model, 13.2.1
	nonrepeatable read, 13.2.6.1
	Oracle Real Application Clusters, 13.2.4
	phantom read, 13.2.6.1
	queries, 13.2.1, 24.6
	statement level, 13.2.2
	subqueries in DML, 13.2.7.2
	transactions, 13.2.1, 13.2.3
	triggers and, 22.4, 22.4.2

	read snapshot time, 13.2.6.1
	read uncommitted, 13.1.1
	readers block writers, 13.2.6.1
	read-only
	
	databases
	
	opening, 12.2.3.4

	tablespaces, 3.2.10
	transactions, definition, 1.2.2.2.2

	read-only databases
	
	limitations, 12.2.3.4

	reads
	
	data block
	
	limits on, 20.4.1.1.4

	dirty, 13.1.1
	repeatable, 13.2.3

	Real Application Clusters
	
	system change numbers, 9.3.2.5
	system monitor process and, 9.3.2.9

	recoverer process (RECO), 9.3.2.8
	
	in-doubt transactions, 4.2.5, 12.2.3.3

	recovery
	
	basic steps, 12.2.3.1.2
	block-level recovery, 13.3.4.1
	complete, 15.4.3.3
	crash, 12.2.3.1
	database buffers and, 12.2.3.1
	distributed processing in, 9.3.2.8
	general overview, 1.2.5
	incomplete, 15.4.3.4
	instance, 12.2.3.1
	instance failure, 12.3.1.1, 12.3.1.1
	instance recovery
	
	SMON process, 9.3.2.9

	media, 15.4.3.1, 15.4.3.1
	media recovery
	
	dispatcher processes, 9.4.2

	methods, 15.4.3.5
	of distributed transactions, 12.2.3.3
	opening a database, 12.2.3.1, 12.2.3.1
	overview of, 12.2.3.1
	point-in-time
	
	clone database, 12.2.2.2

	process recovery, 9.3.2.6
	required after terminating instance, 12.3.1.1, 12.3.1.1
	rolling back transactions, 12.2.3.1.2
	rolling forward, 12.2.3.1.1
	SMON process, 9.3.2.9
	tablespace
	
	point-in-time, 15.4.3.4.1

	using Recovery Manager, 15.4.3.5.1
	using SQL*Plus, 15.4.3.5.2

	Recovery Manager, 14.8.1
	recursive SQL
	
	cursors and, 24.3

	Redo Apply, 17.4.2.5.1
	redo logs, 12.2.3.1.1
	
	archiver process (ARCn), 9.3.2.1
	buffer management, 9.3.2.5
	buffers, 8.2.2
	circular buffer, 9.3.2.5
	committed data, 12.2.3.1, 12.2.3.1.1
	committing a transaction, 9.3.2.5
	entries, 12.2.3.1.1
	files named in control files, 3.4.1
	log sequence numbers
	
	recorded in control files, 3.4.1

	log switch
	
	archiver process, 9.3.2.1

	log writer process, 8.2.2, 9.3.2.5
	multiplexed, definition, 1.1.3.3
	rolling forward, 12.2.3.1, 12.2.3.1.1
	rolling forward and, 12.2.3.1.1
	uncommitted data, 12.2.3.1.1
	when temporary segments in, 2.4.3.3.1
	writing buffers, 9.3.2.5
	written before transaction commit, 9.3.2.5

	redo records
	
	how Oracle applies, 15.4.3

	referenced
	
	keys, 21.3.4
	objects
	
	dependencies, 6.1

	referential integrity, 13.2.6.3, 21.3.4, 21.3.4
	
	examples of, 21.4
	PRIMARY KEY constraints, 21.3.3
	self-referential constraints, 21.3.4.1, 21.4

	refresh
	
	incremental, 5.4.2
	job queue processes, 9.3.2.4
	materialized views, 5.4.2

	remote dependencies, 6.9, 6.10
	
	specifying timestamps or signatures, 6.10.3

	REMOTE_DEPENDENCIES_MODE parameter, 6.9.1, 6.10.3
	RENAME statement, 24.2.2
	repeatable reads, 13.1.1
	replication
	
	materialized views (snapshots), 5.4

	reserved words, 24.2
	resource allocation, 1.2.3.12
	
	methods, 14.10.1.1

	resource consumer groups
	
	definition, 14.10.1.1

	resource limits
	
	call level, 20.4.1.1.2
	connect time for each session, 20.4.1.1.5
	CPU time limit, 20.4.1.1.3
	determining values for, 20.4.1.2.2
	idle time in each session, 20.4.1.1.5
	logical reads limit, 20.4.1.1.4
	number of sessions for each user, 20.4.1.1.5
	private SGA space for each session, 20.4.1.1.5

	resource plan directives
	
	definition, 14.10.1.1

	resource plans
	
	definition, 14.10.1.1

	response queues, 9.4.1
	restricted mode
	
	starting instances in, 12.2.1.1

	restricted rowid format, 26.7.2.2
	result cache, 8.2.3.3, 8.2.3.3.1
	RESULT_CACHE clause, 8.2.3.3.1
	resumable space allocation
	
	overview, 4.1.3

	REVERSE clause for indexes, 5.8.11
	reverse key indexes, 5.8.11
	REVOKE statement, 24.2.2
	
	locks, 13.3.5.2

	rewrite
	
	predicates in security policies, 20.5.1.1

	RMAN, 14.8.1
	roles, 20.4.3
	
	application, 20.4.3.1.1
	application developers and, 20.6.3.4.1
	definition, 20.1.3
	enabled or disabled, 20.4.3.2
	functionality, 20.4.2
	in applications, 20.4.3
	managing through operating system, 20.4.3.3
	naming, 20.4.3
	schemas do not contain, 20.4.3
	security and, 20.6.3.2
	use of passwords with, 20.4.3
	user, 20.4.3.1.2
	uses of, 20.4.3.1

	rollback, 4.2.2
	
	described, 4.2.2
	ending a transaction, 4.1, 4.2.2
	statement-level, 4.1.2
	to a savepoint, 4.2.3
	transactions, 17.4.2.2

	rollback segments
	
	locks on, 13.3.6.2.3
	parallel recovery, 12.2.3.1.2
	read consistency and, 13.2.1
	use of in recovery, 12.2.3.1.2

	ROLLBACK statement, 24.2.3
	rolling back, 4.1, 4.2.2
	rolling forward during recovery, 12.2.3.1.1, 12.2.3.1.1
	rolling patch upgrades
	
	using Oracle Real Application Clusters, 17.5.2.1

	rolling upgrades
	
	using a transient logical standby database, 17.5.2.2

	row cache, 8.2.3.2
	row data (section of data block), 2.2.1.5
	row directories, 2.2.1.3
	row locking, 13.2.6.2, 13.3.4.1
	
	block-level recovery, 13.3.4.1
	serializable transactions and, 13.2.5.3

	row pieces
	
	headers, 5.2.1.1
	how identified, 5.2.1.2

	row triggers, 22.3, 22.3.1.1
	ROWID datatype, 26.7, 26.7.2
	
	extended rowid format, 26.7.2.1
	restricted rowid format, 26.7.2.2

	rowids, 5.2.1.2
	
	accessing, 26.7.1
	changes in, 26.7.2
	in non-Oracle databases, 26.7.4
	internal use of, 26.7.1, 26.7.2.4
	logical, 26.7
	logical rowids, 26.7.3
	
	index on index-organized table, 5.9.3
	physical guesses, 5.9.3, 26.7.3
	staleness of guesses, 26.7.3.2
	statistics for guesses, 26.7.3.2

	physical, 26.7
	row migration, 2.2.2.2, 5.2.1.1
	sorting indexes by, 5.8.7.2
	universal, 26.7

	row-level locking, 13.2.6.1, 13.3.4.1
	rows, 5.2
	
	addresses of, 5.2.1.2
	chaining across blocks, 2.2.2.2, 5.2.1.1
	clustered, 5.2.1.1
	described, 5.2
	fetched, 24.6
	format of in data blocks, 2.2.1.3
	headers, 5.2.1.1
	locking, 13.2.6.2, 13.3.4.1
	locks on, 13.3.4.1, 13.3.4.2.1
	logical rowids, 5.9.3, 26.7.3
	migrating to new block, 2.2.2.2, 5.2.1.1
	pieces of, 5.2.1.1
	row-level security, 20.5.1
	shown in rowids, 26.7.2.1, 26.7.2.2
	triggers on, 22.3.1.1
	when rowid changes, 26.7.2

S

	same-row writers block writers, 13.2.6.1
	SAVEPOINT statement, 24.2.3
	savepoints, 4.2.3
	
	described, 4.2.3
	implicit, 4.1.2
	rolling back to, 4.2.3

	scalability
	
	client/server architecture, 10.1
	parallel SQL execution, 16.5

	scans
	
	full table
	
	LRU algorithm, 8.2.1.2

	table scan and CACHE clause, 8.2.1.2

	schema object dependencies, 6
	schema object privileges, 20.4.2.2
	schema objects, 5
	
	definition, 1.1.5
	dependencies of, 6.1
	
	and views, 5.3.4
	on nonexistence of other objects, 6.7
	triggers manage, 22.4

	dependent on lost privileges, 6.4.2
	dimensions, 5.5
	information in data dictionary, 7.1
	list of, 5.1
	materialized views, 5.4
	privileges on, 20.4.2.2
	relationship to datafiles, 3.3.1, 5.1
	trigger dependencies on, 22.4.5

	schemas
	
	contents of, 5.1
	contrasted with tablespaces, 5.1
	definition of, 5.1

	SCN
	
	See system change numbers

	Secure Sockets Layer, 20.6.1.2
	SecureFiles, 1.2.8.3
	
	compression, 1.2.8.3
	deduplication, 1.2.8.3
	encryption, 1.2.8.3
	file system-like logging, 1.2.8.3

	security, 20.1
	
	accessing a database, 20.6.1
	administrator of, 20.6.1
	administrator privileges, 12.1.1
	application developers and, 20.6.3.4
	application enforcement of, 20.4.3
	auditing, 20.7, 20.7.1.1.3
	auditing policies, 20.6.5
	authentication of users, 20.6.1.2
	data, 20.6.2, 20.6.2
	data, definition, 1.2.9
	database security, 20.6.1
	database users and, 20.6.1.1
	discretionary access control, 20.1
	discretionary access control, definition, 1.2.9.1
	domains, definition, 20.1.1.1
	dynamic predicates, 20.5.1.1
	enforcement mechanisms listed, 1.2.9.1
	fine-grained access control, 20.5.1
	general users, 20.6.3.1
	level of, 20.6.2
	operating-system security and the database, 20.6.1.3
	passwords, 20.3.3
	policies
	
	implementing, 20.5.2

	policies for database administrators, 20.6.3.3
	privilege management policies, 20.6.3.1
	privileges, 20.6.1
	program interface enforcement of, 9.7
	roles to force security, 20.6.3.2
	security policies, 20.5.1
	system, 7.1.2
	system, definition, 1.2.9
	test databases, 20.6.3.4.1
	views and, 5.3.2

	security domains
	
	definition, 20.1.1.1
	enabled roles and, 20.4.3.2

	Segment Advisor, 14.2.5, 14.6.6
	segment advisor, 14.2.2
	segment shrink, 14.6.6
	segment space management, automatic, 2.2.2
	segments, 2.4
	
	data, 2.4.1
	deallocating extents from, 2.3.4, 2.3.4
	defined, 2.1
	definition, 1.1.4.3
	header block, 2.3.1
	index, 2.4.2
	overview of, 2.4
	temporary, 2.4.3, 5.2.7.1
	
	allocating, 2.4.3
	cleaned up by SMON, 9.3.2.9
	dropping, 2.3.4.5
	operations that require, 2.4.3.1
	tablespace containing, 2.4.3.3.1

	SELECT statement
	
	composite indexes, 5.8.3

	SELECT statements, 24.2.1
	
	subqueries, 24.6

	sequences, 5.6
	
	CHECK constraints prohibit, 21.3.5.1
	independence from tables, 5.6
	length of numbers, 5.6
	number generation, 5.6

	server parameter file, 12.1.3
	
	startup, 1.1.8.2, 12.2.1

	server processes, 9.3.1
	
	listener process and, 10.3.2

	server-generated alerts, 14.2.4
	servers
	
	client/server architecture, 10.1
	dedicated, 9.5
	
	shared servers contrasted with, 9.4

	in client/server architecture, definition, 1.1.2.1.2
	shared
	
	architecture, 9.1.2, 9.4
	dedicated servers contrasted with, 9.4
	processes of, 9.4, 9.4.1.2

	server-side scripts, 25.3.7
	service names, 10.3.2
	service oriented architecture, 1.1.2.3, 10.2.3.1
	SERVICE_NAMES parameter, 10.3.2.1
	session control statements, 24.2.4
	sessions
	
	connections contrasted with, 9.2.1
	defined, 9.2.1
	limits for each user, 20.4.1.1.5
	memory allocation in the large pool, 8.2.4
	package state and, 6.4.1
	time limits on, 20.4.1.1.5
	when auditing options take effect, 20.7.1.1.6

	SET CONSTRAINTS statement
	
	DEFERRABLE or IMMEDIATE, 21.5.2

	SET ROLE statement, 24.2.4
	SET TRANSACTION statement, 24.2.3
	
	ISOLATION LEVEL, 13.2.5.1, 13.3.7

	shadow processes, 9.5
	share locks
	
	share table locks (S), 13.3.4.2.3

	shared pool, 8.2.3
	
	allocation of, 8.2.3.1.3
	ANALYZE statement, 8.2.3.1.3
	dependency management and, 8.2.3.1.3
	described, 8.2.3
	flushing, 8.2.3.1.3
	object dependencies and, 6.11
	row cache and, 8.2.3.2

	Shared Pool Advisor, 14.5
	shared server, 9.4
	
	dedicated server contrasted with, 9.4
	described, 9.1.2, 9.4
	dispatcher processes, 9.4.1.1
	limiting private SQL areas, 20.4.1.1.5
	Oracle Net Services or SQL*Net V2 requirement, 9.4, 9.4.1.1
	private SQL areas, 8.3.1.2
	processes, 9.4.1.2, 9.4.1.2
	processes needed for, 9.4
	restricted operations in, 9.4.2
	session memory in the large pool, 8.2.4

	shared server processes (Snnn), 9.4.1.2
	
	described, 9.4.1.2

	shared SQL areas, 8.2.3.1.1, 24.4
	
	ANALYZE statement, 8.2.3.1.3
	dependency management and, 8.2.3.1.3
	described, 8.2.3.1.1
	overview of, 24.4
	parse locks and, 13.3.5.3
	procedures, packages, triggers and, 8.2.3.1.2
	size of, 8.2.3.1.1

	SHARED_SERVERS parameter, 9.4.1.2
	shutdown, 12.3, 12.3.3
	
	abnormal, 12.2.1.2, 12.3.3.1
	deallocation of the SGA, 8.2
	prohibited by dispatcher processes, 9.4.2
	steps, 12.3

	SHUTDOWN ABORT statement, 12.3.3.1
	
	consistent whole database backups, 15.2.3.1

	signature checking, 6.9.1
	SKIP_UNUSABLE_INDEXES parameter, 5.8.6.3.3
	SMCO processes, 9.3.2.10
	SMON background process, 9.3.2.9
	SMON process, 9.3.2.9
	snapshot standby databases, 17.4.2.5.1
	SOA, 1.1.2.3, 10.2.3.1
	software code areas, 8.5
	
	shared by programs and utilities, 8.5

	sort operations, 3.2.11
	sort segments, 3.2.11.1
	SORT_AREA_SIZE parameter, 2.4.3.1
	space management
	
	extents, 2.3
	optimization of free space in blocks, 2.2.2.1
	PCTFREE, 2.2.3.1
	PCTUSED, 2.2.3.2
	row chaining, 2.2.2.2, 5.2.1.1
	segments, 2.4

	space management coordinator process
	
	See SMCO

	SQL, 24.1
	
	cursors used in, 24.3
	data definition language (DDL), 24.2.2
	data manipulation language (DML), 24.2.1
	dynamic SQL, 25.3.2.4
	embedded, 24.2.6
	
	user-defined datatypes, 25.2.4

	functions, 24.1
	
	COUNT, 5.8.12.4
	in CHECK constraints, 21.3.5.1
	NVL, 5.2.3

	memory allocation for, 8.2.3.1.3
	overview of, 24.1
	parallel execution, 1.2.7.4, 16.5
	parsing of, 24.5
	PL/SQL and, 25.3
	recursive
	
	cursors and, 24.3

	reserved words, 24.2
	session control statements, 24.2.4
	shared SQL, 24.4
	statement-level rollback, 4.1.2
	system control statements, 24.2.5
	transaction control statements, 24.2.3
	transactions and, 4.1, 4.2.1
	types of statements in, 24.2
	user-defined datatypes
	
	embedded SQL, 25.2.4
	OCI, 25.2.1

	SQL Access Advisor, 1.2.3.9, 14.2.5, 14.4, 16.3, 18.3.1
	SQL Apply, 17.4.2.5.1
	SQL areas
	
	private, 8.2.3.1.1
	shared, 8.2.3.1.1, 24.4

	SQL Developer, 1.2.3.4
	SQL Performance Analyzer, 1.2.1.2
	SQL statements, 24.2, 24.7.1
	
	array processing, 24.7.2.8
	auditing
	
	when records generated, 20.7.1.1.6

	creating cursors, 24.7.2.1
	dictionary cache locks and, 13.3.6.2.1
	embedded, 24.2.6
	execution, 24.7.1, 24.7.2.8
	parallel execution, 1.2.7.4, 16.5
	parse locks, 13.3.5.3
	parsing, 24.7.2.2
	privileges required for, 20.4.2.2
	resource limits and, 20.4.1.1.2
	successful execution, 4.1.1
	transactions, 24.7.3.2
	triggers on, 22.3.1.2
	
	triggering events, 22.2.1

	types of, 24.2

	SQL Tuning Advisor, 14.2.5, 14.4
	SQL tuning advisor, 14.2.2
	SQL*Menu
	
	PL/SQL, 25.3.1.2

	SQL*Plus, 1.2.3.4
	
	alert log, 9.3.3
	anonymous blocks, 25.3.1.2
	connecting with, 20.3.1
	executing a package, 25.3.5
	executing a procedure, 25.3.4
	lock and latch monitors, 13.3.6
	session variables, 25.3.2.1
	SQL statements, 24.1
	statistics monitor, 20.4.1.2.2

	SQL92, 13.1.1
	SQLJ, 25.4.7.4
	
	object types, 25.4.7.4

	SQLLIB, 25.2.4
	SSL. See Secure Sockets Layer.
	staging
	
	databases, 16.1.1.4
	files, 16.1.1.4

	standards
	
	ANSI/ISO
	
	isolation levels, 13.1.1, 13.2.6.1

	standby database
	
	creating, 14.1.1

	standby databases, 17.4.2.5.1
	startup, 1.1.8.2, 12.1, 12.2
	
	allocation of the SGA, 8.2
	forcing, 12.2.1.2
	prohibited by dispatcher processes, 9.4.2
	restricted mode, 12.2.1.1
	steps, 1.1.8.2, 12.2

	statement triggers, 22.3
	
	described, 22.3.1.2
	row evaluation order, 22.4.1

	statement-level read consistency, 13.2.2
	statistics
	
	checkpoint, 9.3.2.2
	gathering for optimizer, 14.2.2

	storage
	
	datafiles, 3.3
	indexes, 5.8.7
	logical structures, 3.2, 5.1
	nulls, 5.2.3
	triggers, 22.1, 22.4.3
	view definitions, 5.3.3

	STORAGE clause
	
	using, 2.3.2

	storage failures
	
	protecting against, 17.4.1

	storage parameters
	
	setting, 2.3.2

	stored functions, 25.3.3, 25.3.4
	stored outlines, 24.8.2.1
	
	editing, 24.8.2.2

	stored procedures, 25.3, 25.3.3, 25.3.4
	
	calling, 25.3.4
	contrasted with anonymous blocks, 25.3.4.3
	triggers contrasted with, 22.1
	variables and constants, 25.3.2.1

	Streams Pool Advisor, 14.5
	strong authentication, 20.3.6
	Structured Query Language (SQL), 24.1
	structures
	
	data blocks
	
	shown in rowids, 26.7.2.2

	data dictionary, 7
	datafiles
	
	shown in rowids, 26.7.2.2

	locking, 13.3.5
	logical, 2
	
	data blocks, 2, 2.2
	extents, 2.1, 2.3
	schema objects, 5.1
	segments, 2.1, 2.4
	tablespaces, 3, 3.2

	memory, 8
	physical
	
	control files, 3.4
	datafiles, 3, 3.3

	processes, 9

	subqueries, 24.6
	
	CHECK constraints prohibit, 21.3.5.1
	in DML statements
	
	serializable isolation, 13.2.7.2

	inline views, 5.3.7
	query processing, 24.6

	summaries, 5.4
	synonyms
	
	constraints indirectly affect, 21.2
	described, 1.1.5.5, 5.7
	for data dictionary views, 7.2.1.1
	inherit privileges from object, 20.4.2.2
	private, 5.7
	public, 5.7
	uses of, 5.7

	SYS account
	
	policies for protecting, 20.6.3.3.1

	SYS user name
	
	data dictionary tables owned by, 7.1.2

	SYS username
	
	V$ views, 7.3

	SYSDBA privilege, 12.1.2
	SYSOPER privilege, 12.1.2
	SYSTEM account
	
	policies for protecting, 20.6.3.3.1

	system change numbers (SCN)
	
	committed transactions, 4.2.1
	defined, 4.2.1
	read consistency and, 13.2.1, 13.2.2
	redo logs, 9.3.2.5
	when determined, 13.2.1

	system control statements, 24.2.5
	system fault
	
	crash recovery time, 17.3.2

	system global area (SGA)
	
	allocating, 1.1.8.2, 12.2.1
	contents of, 8.2
	data dictionary cache, 7.2.1.2, 8.2.3.2
	database buffer cache, 8.2.1
	diagram, 12.1
	fixed, 8.2
	large pool, 8.2.4
	limiting private SQL areas, 20.4.1.1.5
	redo log buffer, 4.2.1, 8.2.2
	rollback segments and, 4.2.1
	shared and writable, 8.2
	shared pool, 8.2.3
	size of
	
	variable parameters, 12.1.3

	when allocated, 8.2

	system monitor process (SMON), 9.3.2.9
	
	defined, 9.3.2.9
	Real Application Clusters and, 9.3.2.9
	rolling back transactions, 12.2.3.1.2
	temporary segment cleanup, 9.3.2.9

	system privileges, 20.4.2.1
	
	described, 20.4.2.1

	system security
	
	definition, 1.2.9

	SYSTEM tablespace, 3.2.2
	
	data dictionary stored in, 3.2.2.1, 7.1, 7.2.2
	locally managed, 1.1.4.4, 3.2.2
	online requirement of, 3.2.9
	procedures stored in, 3.2.2.2

T

	table compression, 16.2.4
	
	partitioning, 16.2.4

	table functions, 25.3.4.7
	
	parallel execution, 25.3.4.7
	pipelined, 25.3.4.7

	tables
	
	base
	
	relationship to views, 5.3.1

	clustered, 5.11
	clustered, definition, 1.1.5.4
	controlling space allocation for, 5.2.1
	directories, 2.2.1.2
	DUAL, 7.2.2.4
	dynamic partitioning, 16.5.1
	enable or disable constraints, 21.1.3
	external, 5.2.8, 11.6
	full table scan and buffer cache, 8.2.1.2
	how data is stored in, 5.2.1
	indexes and, 5.8
	index-organized
	
	key compression in, 5.8.10.3, 5.9.1

	index-organized tables, 5.9
	
	logical rowid, 5.9.3
	logical rowids, 26.7.3

	integrity constraints, 21.1, 21.2
	locks on, 13.3.4.1, 13.3.4.2.1, 13.3.4.2.4
	maximum number of columns in, 5.3
	nested tables, 5.2.6
	normalized or denormalized, 5.5
	overview of, 5.2
	partitions, 1.2.7.8, 18.1
	presented in views, 5.3
	temporary, 5.2.7
	
	segments in, 2.4.3.2

	validate or novalidate constraints, 21.1.3
	virtual or viewed, 1.1.5.3
	See also external tables

	tablespace point-in-time recovery, 15.4.3.4.1
	
	clone database, 12.2.2.2

	tablespace repository, 3.2.12.1
	tablespaces, 3.2
	
	contrasted with schemas, 5.1
	default for object creation, definition, 20.1.4.1
	definition, 1.1.4.4
	described, 3.2
	dictionary managed, 3.2.7.3
	locally managed, 3.2.7.1
	locks on, 13.3.6.2.3
	moving or copying to another database, 3.2.12.2
	offline, 3.2.9, 3.3.3
	
	remain offline on remount, 3.2.9.1

	online, 3.2.9, 3.3.3
	online and offline distinguished, 1.1.4.4.1, 1.1.4.4.2
	online backups, 15.2.4.1
	overview of, 3.2
	quotas, definition, 20.1.4.3
	read-only, 3.2.10
	recovery, 15.4.3.4.1
	relationship to datafiles, 3.1
	size of, 3.1.2
	space allocation, 3.2.7
	temporary, 3.2.11
	temporary, definition, 20.1.4.2
	used for temporary segments, 2.4.3.3.1

	tasks, 9.1
	tempfiles, 3.3.4
	temporary segments, 2.4.3.2, 2.4.3.3.1, 5.2.7.1
	
	allocating, 2.4.3.3.1
	allocation for queries, 2.4.3.3.1
	deallocating extents from, 2.3.4.5
	dropping, 2.3.4.5
	operations that require, 2.4.3.1
	tablespace containing, 2.4.3.3.1
	when not in redo log, 2.4.3.3.1

	temporary tables, 5.2.7
	temporary tablespaces, 3.2.11
	
	default, 3.2.5
	definition, 20.1.4.2

	threads
	
	shared server, 9.4

	three-valued logic (true, false, unknown)
	
	produced by nulls, 5.2.3

	time stamp checking, 6.9.1
	time zones
	
	in date/time columns, 26.4.5

	TIMESTAMP datatype, 26.4.5
	TIMESTAMP WITH LOCAL TIME ZONE datatype, 26.4.5
	TIMESTAMP WITH TIME ZONE datatype, 26.4.5
	TO_CHAR function
	
	globalization support default in CHECK constraints, 21.3.5.1
	globalization support default in views, 5.3.3.1
	Julian dates, 26.4.1

	TO_DATE function, 26.4, 26.4
	
	globalization support default in CHECK constraints, 21.3.5.1
	globalization support default in views, 5.3.3.1
	Julian dates, 26.4.1

	TO_NUMBER function, 26.3.1
	
	glob, 5.3.3.1
	globalization support default in CHECK constraints, 21.3.5.1
	Julian dates, 26.4.1

	trace files, 9.3.3
	
	definition, 1.1.3.6
	LGWR trace file, 9.3.2.5

	transaction control statements, 24.2.3
	
	in autonomous PL/SQL blocks, 4.3.1.1

	transaction set consistency, 13.2.6.1, 13.2.6.1
	transaction tables
	
	reset at recovery, 9.3.2.6

	transactions, 4
	
	assigning system change numbers, 4.2.1
	autonomous, 4.3
	
	within a PL/SQL block, 4.3.1

	backing out with Flashback Transaction, 17.4.2.2
	block-level recovery, 13.3.4.1
	committing, 4.1.1, 4.2.1, 9.3.2.5
	
	group commits, 9.3.2.5

	concurrency and, 13.3.1
	controlling transactions, 24.7.3.2
	deadlocks and, 4.1.2, 13.3.2
	defining and controlling, 24.7.3.2
	definition, 1.3.3
	described, 4.1
	distributed
	
	deadlocks and, 13.3.2.1
	resolving automatically, 9.3.2.8
	two-phase commit, 4.2.5

	end of, 4.2
	
	consistent data, 24.7.3.2

	in-doubt
	
	resolving automatically, 4.2.5, 12.2.3.3

	naming, 4.2.4
	read consistency of, 13.2.3
	read consistency, definition, 1.2.2.2.1
	read-only, definition, 1.2.2.2.2
	redo log files written before commit, 9.3.2.5
	rolling back, 4.2.2
	
	partially, 4.2.3

	savepoints in, 4.2.3
	serializable, 13.2.5
	space used in data blocks for, 2.2.1.6
	start of, 4.2
	statement level rollback and, 4.1.2
	system change numbers, 9.3.2.5
	terminating the application and, 4.2
	transaction control statements, 24.2.3
	triggers and, 22.4.2

	transient logical standby databases
	
	for rolling upgrades, 17.5.2.2

	transient type descriptions, 25.2.4.1
	triggers, 1.2.10.2, 22
	
	action, 22.2.3
	
	timing of, 22.3.2

	AFTER triggers, 22.3.2.2
	BEFORE triggers, 22.3.2.1
	cascading, 22.1.1.1
	components of, 22.2
	constraints apply to, 22.4
	constraints contrasted with, 22.1.1.2
	data access and, 22.4.2
	dependency management of, 22.4.5
	
	enabled triggers, 22.4

	enabled or disabled, 22.4
	enforcing data integrity with, 21.1.2
	events, 22.2.1
	firing (executing), 22.1, 22.4.4
	
	privileges required, 22.4.4
	steps involved, 22.4

	INSTEAD OF, 22.3.4
	Java, 22.2.3
	procedures contrasted with, 22.1
	publish-subscribe support, 22.3.5
	restrictions, 22.2.2
	row, 22.3.1.1
	row evaluation order, 22.4.1
	schema object dependencies, 22.4, 22.4.5
	shared SQL areas and, 8.2.3.1.2
	statement, 22.3.1.2
	storage of, 22.4.3
	types of, 22.3.1
	UNKNOWN does not fire, 22.2.2
	uses of, 22.1.1

	TRUNCATE statement, 24.2.2
	two-phase commit
	
	transaction management, 4.2.5
	triggers, 22.4

	type descriptions
	
	dynamic creation and access, 25.2.4.1
	transient, 25.2.4.1

U

	Undo Advisor, 14.2.5, 14.6.1
	undo management, automatic, 2.4.4, 14.6.1
	undo retention, 14.6.1, 15.4.2.2
	undo tablespaces, 3.2.4
	Unicode, 26.2, 26.2.3, 26.2.4, 26.2.5, 26.5.2
	unique indexes, 5.8.1
	UNIQUE key
	
	constraint, 21.3.2

	UNIQUE key constraints
	
	composite keys, 21.3.2.1, 21.3.2.2
	constraint checking, 21.4
	NOT NULL constraints and, 21.3.2.2

	unique keys, 21.3.2.1
	
	composite, 21.3.2.1, 21.3.2.2

	unplanned downtime
	
	avoiding downtime during, 17.3
	causes, 17.2
	system faults, 17.3.2

	UNUSABLE indexes
	
	function-based, 5.8.6.3.3

	update no action constraint, 21.3.4.3
	UPDATE statement, 24.2.1
	
	foreign key references, 21.3.4.3.1
	freeing space in data blocks, 2.2.2.1
	triggers, 22.2.1
	
	BEFORE triggers, 22.3.2.1

	updates
	
	updatability of views, 5.3.5, 22.3.4, 22.3.4.1
	updatable join views, 5.3.5
	update intensive environments, 13.2.5.3

	updating tables
	
	with parent keys, 21.3.4.4, 21.3.4.4.1

	UROWID datatype, 26.7
	user errors, 15.3.2
	user processes
	
	connections and, 9.2.1
	dedicated server processes and, 9.5
	sessions and, 9.2.1
	shared server processes and, 9.4.1.2

	user profiles
	
	definition, 20.1.4.4

	user program interface (UPI), 9.7.1
	USER_ views, 7.2.2.1
	USER_UPDATABLE_COLUMNS view, 5.3.5
	users
	
	authentication
	
	about, 20.6.1.2

	authentication of, 20.3
	dedicated servers and, 9.5
	end-user security policies, 20.6.3.2
	listed in data dictionary, 7.1
	locks, 13.3.8
	multiuser environments, 9.1.1
	password encryption, 20.3.3.1
	password security, 20.6.3.1
	policies for managing privileges, 20.6.3.1
	processes of, 9.2
	profiles of, 20.4.1.2
	roles and, 20.4.3
	
	for types of users, 20.4.3.1.2

	security and, 20.6.1.1
	security for general users, 20.6.3.1
	temporary tablespaces of, 2.4.3.3.1
	user names
	
	sessions and connections, 9.2.1

V

	V$RECOVER_FILE view, 15.4.3.5
	V_$ and V$ views, 7.3
	VARCHAR datatype, 26.2.2.1
	VARCHAR2 datatype, 26.2.2
	
	non-padded comparison semantics, 26.2.2
	similarity to RAW datatype, 26.6

	variables
	
	embedded SQL, 24.2.6
	in stored procedures, 25.3.2.1

	varrays
	
	index-organized tables, 5.9.1
	
	key compression, 5.8.10.3

	views, 5.3
	
	constraints indirectly affect, 21.2
	containing expressions, 22.3.4.2
	data dictionary
	
	updatable columns, 5.3.5

	fixed views, 7.3
	globalization support parameters in, 5.3.3.1
	how stored, 5.3.1
	indexes and, 5.3.3.2
	inherently modifiable, 22.3.4.1
	inline views, 5.3.7
	INSTEAD OF triggers, 22.3.4
	materialized views, 5.4
	maximum number of columns in, 5.3
	modifiable, 22.3.4.1
	modifying, 22.3.4.1
	object views, 5.3.6
	overview of, 5.3
	pseudocolumns, 22.3.4.2
	schema object dependencies, 5.3.4
	SQL functions in, 5.3.3.1
	updatability, 5.3.5, 22.3.4.1
	uses of, 5.3.2

	virtual keeper of time process
	
	See VKTM

	Virtual Private Database (VPD)
	
	guarding against human errors, 17.4.2.1

	visible indexes, 5.8.2
	VKTM processes, 9.3.2.10

W

	waits for blocking transaction, 13.2.6.1
	Wallet Manager, 20.3.2.2
	wallets, 20.3.2.2
	warehouse
	
	materialized views, 5.4

	Web page scripting, 25.3.7
	Web services
	
	Oracle Database as provider of, 1.1.2.3, 10.2.3.1

	whole database backups
	
	consistent
	
	using SHUTDOWN ABORT statement, 15.2.3.1

	definition, 15.2.2
	inconsistent, 15.2.3.2

	write-ahead, 9.3.2.5
	writers block readers, 13.2.6.1

X

	X.509 certificates, 20.3.2.2
	XA
	
	session memory in the large pool, 8.2.4

	XML datatypes, 26.9
	XMLType datatype, 19.2, 26.9.1

Y

	year 2000, 26.4.3

Z

	Zend Core for Oracle, 1.3.5
	
	PHP, 1.3.5

