

18 Using LogMiner to Analyze Redo Log Files

Oracle LogMiner, which is part of Oracle Database, enables you to query online and archived redo log files through a SQL interface. Redo log files contain information about the history of activity on a database.

This chapter contains the following sections:

	
LogMiner Benefits

	
Introduction to LogMiner

	
LogMiner Dictionary Files and Redo Log Files

	
Starting LogMiner

	
Querying V$LOGMNR_CONTENTS for Redo Data of Interest

	
Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS

	
Reapplying DDL Statements Returned to V$LOGMNR_CONTENTS

	
Calling DBMS_LOGMNR.START_LOGMNR Multiple Times

	
Supplemental Logging

	
Accessing LogMiner Operational Information in Views

	
Steps in a Typical LogMiner Session

	
Examples Using LogMiner

	
Supported Datatypes, Storage Attributes, and Database and Redo Log File Versions

This chapter describes LogMiner as it is used from the command line. You can also access LogMiner through the Oracle LogMiner Viewer graphical user interface. Oracle LogMiner Viewer is a part of Oracle Enterprise Manager. See the Oracle Enterprise Manager online Help for more information about Oracle LogMiner Viewer.

LogMiner Benefits

All changes made to user data or to the database dictionary are recorded in the Oracle redo log files so that database recovery operations can be performed.

Because LogMiner provides a well-defined, easy-to-use, and comprehensive relational interface to redo log files, it can be used as a powerful data audit tool, as well as a tool for sophisticated data analysis. The following list describes some key capabilities of LogMiner:

	
Pinpointing when a logical corruption to a database, such as errors made at the application level, may have begun. These might include errors such as those where the wrong rows were deleted because of incorrect values in a WHERE clause, rows were updated with incorrect values, the wrong index was dropped, and so forth. For example, a user application could mistakenly update a database to give all employees 100 percent salary increases rather than 10 percent increases, or a database administrator (DBA) could accidently delete a critical system table. It is important to know exactly when an error was made so that you know when to initiate time-based or change-based recovery. This enables you to restore the database to the state it was in just before corruption. See Querying V$LOGMNR_CONTENTS Based on Column Values for details about how you can use LogMiner to accomplish this.

	
Determining what actions you would have to take to perform fine-grained recovery at the transaction level. If you fully understand and take into account existing dependencies, it may be possible to perform a table-specific undo operation to return the table to its original state. This is achieved by applying table-specific reconstructed SQL statements that LogMiner provides in the reverse order from which they were originally issued. See Scenario 1: Using LogMiner to Track Changes Made by a Specific User for an example.

Normally you would have to restore the table to its previous state, and then apply an archived redo log file to roll it forward.

	
Performance tuning and capacity planning through trend analysis. You can determine which tables get the most updates and inserts. That information provides a historical perspective on disk access statistics, which can be used for tuning purposes. See Scenario 2: Using LogMiner to Calculate Table Access Statistics for an example.

	
Performing postauditing. LogMiner can be used to track any data manipulation language (DML) and data definition language (DDL) statements executed on the database, the order in which they were executed, and who executed them. (However, to use LogMiner for such a purpose, you need to have an idea when the event occurred so that you can specify the appropriate logs for analysis; otherwise you might have to mine a large number of redo log files, which can take a long time. Consider using LogMiner as a complementary activity to auditing database use. See the Oracle Database Administrator's Guide for information about database auditing.)

Introduction to LogMiner

The following sections provide a brief introduction to LogMiner, including the following topics:

	
LogMiner Configuration

	
Directing LogMiner Operations and Retrieving Data of Interest

The remaining sections in this chapter describe these concepts and related topics in more detail.

LogMiner Configuration

There are four basic objects in a LogMiner configuration that you should be familiar with: the source database, the mining database, the LogMiner dictionary, and the redo log files containing the data of interest:

	
The source database is the database that produces all the redo log files that you want LogMiner to analyze.

	
The mining database is the database that LogMiner uses when it performs the analysis.

	
The LogMiner dictionary allows LogMiner to provide table and column names, instead of internal object IDs, when it presents the redo log data that you request.

LogMiner uses the dictionary to translate internal object identifiers and datatypes to object names and external data formats. Without a dictionary, LogMiner returns internal object IDs and presents data as binary data.

For example, consider the following the SQL statement:

 INSERT INTO HR.JOBS(JOB_ID, JOB_TITLE, MIN_SALARY, MAX_SALARY) VALUES('IT_WT','Technical Writer', 4000, 11000);

Without the dictionary, LogMiner will display:

insert into "UNKNOWN"."OBJ# 45522"("COL 1","COL 2","COL 3","COL 4") values
(HEXTORAW('45465f4748'),HEXTORAW('546563686e6963616c20577269746572'),
HEXTORAW('c229'),HEXTORAW('c3020b'));

	
The redo log files contain the changes made to the database or database dictionary.

Sample Configuration

Figure 18-1 shows a sample LogMiner configuration. In this figure, the source database in Boston generates redo log files that are archived and shipped to a database in San Francisco. A LogMiner dictionary has been extracted to these redo log files. The mining database, where LogMiner will actually analyze the redo log files, is in San Francisco. The Boston database is running Oracle9i, and the San Francisco database is running Oracle Database 10g.

Figure 18-1 Sample LogMiner Database Configuration

[image: Description of Figure 18-1 follows]

Figure 18-1 shows just one valid LogMiner configuration. Other valid configurations are those that use the same database for both the source and mining database, or use another method for providing the data dictionary. These other data dictionary options are described in the section about LogMiner Dictionary Options.

Requirements

The following are requirements for the source and mining database, the data dictionary, and the redo log files that LogMiner will mine:

	
Source and mining database

	
Both the source database and the mining database must be running on the same hardware platform.

	
The mining database can be the same as, or completely separate from, the source database.

	
The mining database must run the same version or a later version of the Oracle Database software as the source database.

	
The mining database must use the same character set (or a superset of the character set) used by the source database.

	
LogMiner dictionary

	
The dictionary must be produced by the same source database that generates the redo log files that LogMiner will analyze.

	
All redo log files:

	
Must be produced by the same source database.

	
Must be associated with the same database RESETLOGS SCN.

	
Must be from a release 8.0 or later Oracle Database. However, several of the LogMiner features introduced as of release 9.0.1 work only with redo log files produced on an Oracle9i or later database. See Supported Databases and Redo Log File Versions.

LogMiner does not allow you to mix redo log files from different databases or to use a dictionary from a different database than the one that generated the redo log files to be analyzed.

	
Note:

You must enable supplemental logging prior to generating log files that will be analyzed by LogMiner.
When you enable supplemental logging, additional information is recorded in the redo stream that is needed to make the information in the redo log files useful to you. Therefore, at the very least, you must enable minimal supplemental logging, as the following SQL statement shows:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

To determine whether supplemental logging is enabled, query the V$DATABASE view, as the following SQL statement shows:

SELECT SUPPLEMENTAL_LOG_DATA_MIN FROM V$DATABASE;

If the query returns a value of YES or IMPLICIT, minimal supplemental logging is enabled. See Supplemental Logging for complete information about supplemental logging.

Directing LogMiner Operations and Retrieving Data of Interest

You direct LogMiner operations using the DBMS_LOGMNR and DBMS_LOGMNR_D PL/SQL packages, and retrieve data of interest using the V$LOGMNR_CONTENTS view, as follows:

	
Specify a LogMiner dictionary.

Use the DBMS_LOGMNR_D.BUILD procedure or specify the dictionary when you start LogMiner (in Step 3), or both, depending on the type of dictionary you plan to use.

	
Specify a list of redo log files for analysis.

Use the DBMS_LOGMNR.ADD_LOGFILE procedure, or direct LogMiner to create a list of log files for analysis automatically when you start LogMiner (in Step 3).

	
Start LogMiner.

Use the DBMS_LOGMNR.START_LOGMNR procedure.

	
Request the redo data of interest.

Query the V$LOGMNR_CONTENTS view. (You must have the SELECT ANY TRANSACTION privilege to query this view.)

	
End the LogMiner session.

Use the DBMS_LOGMNR.END_LOGMNR procedure.

You must have been granted the EXECUTE_CATALOG_ROLE role to use the LogMiner PL/SQL packages and to query the V$LOGMNR_CONTENTS view.

	
Note:

When mining a specified time or SCN range of interest within archived logs generated by an Oracle RAC database, you must ensure that you have specified all archived logs from all redo threads that were active during that time or SCN range. If you fail to do this, any queries of V$LOGMNR_CONTENTS will return only partial results (based on the archived logs specified to LogMiner through the DBMS_LOGMNR.ADD_LOGFILE procedure). This restriction is also in effect when you are mining the archived logs at the source database using the CONTINUOUS_MINE option. You should only use CONTINUOUS_MINE on an Oracle RAC database if no thread is being enabled or disabled.

	
See Also:

Steps in a Typical LogMiner Session for an example of using LogMiner

LogMiner Dictionary Files and Redo Log Files

Before you begin using LogMiner, it is important to understand how LogMiner works with the LogMiner dictionary file (or files) and redo log files. This will help you to get accurate results and to plan the use of your system resources.

The following concepts are discussed in this section:

	
LogMiner Dictionary Options

	
Redo Log File Options

LogMiner Dictionary Options

LogMiner requires a dictionary to translate object IDs into object names when it returns redo data to you. LogMiner gives you three options for supplying the dictionary:

	
Using the Online Catalog

Oracle recommends that you use this option when you will have access to the source database from which the redo log files were created and when no changes to the column definitions in the tables of interest are anticipated. This is the most efficient and easy-to-use option.

	
Extracting a LogMiner Dictionary to the Redo Log Files

Oracle recommends that you use this option when you do not expect to have access to the source database from which the redo log files were created, or if you anticipate that changes will be made to the column definitions in the tables of interest.

	
Extracting the LogMiner Dictionary to a Flat File

This option is maintained for backward compatibility with previous releases. This option does not guarantee transactional consistency. Oracle recommends that you use either the online catalog or extract the dictionary from redo log files instead.

Figure 18-2 shows a decision tree to help you select a LogMiner dictionary, depending on your situation.

Figure 18-2 Decision Tree for Choosing a LogMiner Dictionary

[image: Description of Figure 18-2 follows]

The following sections provide instructions on how to specify each of the available dictionary options.

Using the Online Catalog

To direct LogMiner to use the dictionary currently in use for the database, specify the online catalog as your dictionary source when you start LogMiner, as follows:

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG);

In addition to using the online catalog to analyze online redo log files, you can use it to analyze archived redo log files, if you are on the same system that generated the archived redo log files.

The online catalog contains the latest information about the database and may be the fastest way to start your analysis. Because DDL operations that change important tables are somewhat rare, the online catalog generally contains the information you need for your analysis.

Remember, however, that the online catalog can only reconstruct SQL statements that are executed on the latest version of a table. As soon as a table is altered, the online catalog no longer reflects the previous version of the table. This means that LogMiner will not be able to reconstruct any SQL statements that were executed on the previous version of the table. Instead, LogMiner generates nonexecutable SQL (including hexadecimal-to-raw formatting of binary values) in the SQL_REDO column of the V$LOGMNR_CONTENTS view similar to the following example:

insert into HR.EMPLOYEES(col#1, col#2) values (hextoraw('4a6f686e20446f65'),
hextoraw('c306'));"

The online catalog option requires that the database be open.

The online catalog option is not valid with the DDL_DICT_TRACKING option of DBMS_LOGMNR.START_LOGMNR.

Extracting a LogMiner Dictionary to the Redo Log Files

To extract a LogMiner dictionary to the redo log files, the database must be open and in ARCHIVELOG mode and archiving must be enabled. While the dictionary is being extracted to the redo log stream, no DDL statements can be executed. Therefore, the dictionary extracted to the redo log files is guaranteed to be consistent (whereas the dictionary extracted to a flat file is not).

To extract dictionary information to the redo log files, execute the PL/SQL DBMS_LOGMNR_D.BUILD procedure with the STORE_IN_REDO_LOGS option. Do not specify a filename or location.

EXECUTE DBMS_LOGMNR_D.BUILD(-
 OPTIONS=> DBMS_LOGMNR_D.STORE_IN_REDO_LOGS);

	
See Also:

Oracle Database Backup and Recovery Basics for more information about ARCHIVELOG mode and the Oracle Database PL/SQL Packages and Types Reference for a complete description of the DBMS_LOGMNR_D.BUILD procedure

The process of extracting the dictionary to the redo log files does consume database resources, but if you limit the extraction to off-peak hours, this should not be a problem, and it is faster than extracting to a flat file. Depending on the size of the dictionary, it may be contained in multiple redo log files. If the relevant redo log files have been archived, you can find out which redo log files contain the start and end of an extracted dictionary. To do so, query the V$ARCHIVED_LOG view, as follows:

SELECT NAME FROM V$ARCHIVED_LOG WHERE DICTIONARY_BEGIN='YES';
SELECT NAME FROM V$ARCHIVED_LOG WHERE DICTIONARY_END='YES';

Specify the names of the start and end redo log files, and possibly other logs in between them, with the ADD_LOGFILE procedure when you are preparing to begin a LogMiner session.

Oracle recommends that you periodically back up the redo log files so that the information is saved and available at a later date. Ideally, this will not involve any extra steps because if your database is being properly managed, there should already be a process in place for backing up and restoring archived redo log files. Again, because of the time required, it is good practice to do this during off-peak hours.

Extracting the LogMiner Dictionary to a Flat File

When the LogMiner dictionary is in a flat file, fewer system resources are used than when it is contained in the redo log files. Oracle recommends that you regularly back up the dictionary extract to ensure correct analysis of older redo log files.

To extract database dictionary information to a flat file, use the DBMS_LOGMNR_D.BUILD procedure with the STORE_IN_FLAT_FILE option.

Be sure that no DDL operations occur while the dictionary is being built.

The following steps describe how to extract a dictionary to a flat file. Steps 1 and 2 are preparation steps. You only need to do them once, and then you can extract a dictionary to a flat file as many times as you wish.

	
The DBMS_LOGMNR_D.BUILD procedure requires access to a directory where it can place the dictionary file. Because PL/SQL procedures do not normally access user directories, you must specify a directory for use by the DBMS_LOGMNR_D.BUILD procedure or the procedure will fail. To specify a directory, set the initialization parameter, UTL_FILE_DIR, in the initialization parameter file.

	
See Also:

Oracle Database Reference for more information about the initialization parameter file (init.ora) and the Oracle Database PL/SQL Packages and Types Reference for a complete description of the DBMS_LOGMNR_D.BUILD procedure

For example, to set UTL_FILE_DIR to use /oracle/database as the directory where the dictionary file is placed, place the following in the initialization parameter file:

UTL_FILE_DIR = /oracle/database

Remember that for the changes to the initialization parameter file to take effect, you must stop and restart the database.

	
If the database is closed, use SQL*Plus to mount and then open the database whose redo log files you want to analyze. For example, entering the SQL STARTUP command mounts and opens the database:

STARTUP

	
Execute the PL/SQL procedure DBMS_LOGMNR_D.BUILD. Specify a filename for the dictionary and a directory path name for the file. This procedure creates the dictionary file. For example, enter the following to create the file dictionary.ora in /oracle/database:

EXECUTE DBMS_LOGMNR_D.BUILD('dictionary.ora', -
 '/oracle/database/', -
 DBMS_LOGMNR_D.STORE_IN_FLAT_FILE);

You could also specify a filename and location without specifying the STORE_IN_FLAT_FILE option. The result would be the same.

Redo Log File Options

To mine data in the redo log files, LogMiner needs information about which redo log files to mine. Changes made to the database that are found in these redo log files are delivered to you through the V$LOGMNR_CONTENTS view.

You can direct LogMiner to automatically and dynamically create a list of redo log files to analyze, or you can explicitly specify a list of redo log files for LogMiner to analyze, as follows:

	
Automatically

If LogMiner is being used on the source database, then you can direct LogMiner to find and create a list of redo log files for analysis automatically. Use the CONTINUOUS_MINE option when you start LogMiner with the DBMS_LOGMNR.START_LOGMNR procedure, and specify a time or SCN range. Although this example specifies the dictionary from the online catalog, any LogMiner dictionary can be used.

	
Note:

The CONTINUOUS_MINE option requires that the database be mounted and that archiving be enabled.

LogMiner will use the database control file to find and add redo log files that satisfy your specified time or SCN range to the LogMiner redo log file list. For example:

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';
EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 STARTTIME => '01-Jan-2003 08:30:00', -
 ENDTIME => '01-Jan-2003 08:45:00', -
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG + -
 DBMS_LOGMNR.CONTINUOUS_MINE);

(To avoid the need to specify the date format in the PL/SQL call to the DBMS_LOGMNR.START_LOGMNR procedure, this example uses the SQL ALTER SESSION SET NLS_DATE_FORMAT statement first.)

You can also direct LogMiner to automatically build a list of redo log files to analyze by specifying just one redo log file using DBMS_LOGMNR.ADD_LOGFILE, and then specifying the CONTINUOUS_MINE option when you start LogMiner. The previously described method is more typical, however.

	
Manually

Use the DBMS_LOGMNR.ADD_LOGFILE procedure to manually create a list of redo log files before you start LogMiner. After the first redo log file has been added to the list, each subsequently added redo log file must be from the same database and associated with the same database RESETLOGS SCN. When using this method, LogMiner need not be connected to the source database.

For example, to start a new list of redo log files, specify the NEW option of the DBMS_LOGMNR.ADD_LOGFILE PL/SQL procedure to signal that this is the beginning of a new list. For example, enter the following to specify /oracle/logs/log1.f:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/oracle/logs/log1.f', -
 OPTIONS => DBMS_LOGMNR.NEW);

If desired, add more redo log files by specifying the ADDFILE option of the PL/SQL DBMS_LOGMNR.ADD_LOGFILE procedure. For example, enter the following to add /oracle/logs/log2.f:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/oracle/logs/log2.f', -
 OPTIONS => DBMS_LOGMNR.ADDFILE);

To determine which redo log files are being analyzed in the current LogMiner session, you can query the V$LOGMNR_LOGS view, which contains one row for each redo log file.

Starting LogMiner

You call the DBMS_LOGMNR.START_LOGMNR procedure to start LogMiner. Because the options available with the DBMS_LOGMNR.START_LOGMNR procedure allow you to control output to the V$LOGMNR_CONTENTS view, you must call DBMS_LOGMNR.START_LOGMNR before querying the V$LOGMNR_CONTENTS view.

When you start LogMiner, you can:

	
Specify how LogMiner should filter data it returns (for example, by starting and ending time or SCN value)

	
Specify options for formatting the data returned by LogMiner

	
Specify the LogMiner dictionary to use

The following list is a summary of LogMiner settings that you can specify with the OPTIONS parameter to DBMS_LOGMNR.START_LOGMNR and where to find more information about them.

	
DICT_FROM_ONLINE_CATALOG — See Using the Online Catalog

	
DICT_FROM_REDO_LOGS — See Start LogMiner

	
CONTINUOUS_MINE — See Redo Log File Options

	
COMMITTED_DATA_ONLY — See Showing Only Committed Transactions

	
SKIP_CORRUPTION — See Skipping Redo Corruptions

	
NO_SQL_DELIMITER — See Formatting Reconstructed SQL Statements for Re-execution

	
PRINT_PRETTY_SQL — See Formatting the Appearance of Returned Data for Readability

	
NO_ROWID_IN_STMT — See Formatting Reconstructed SQL Statements for Re-execution

	
DDL_DICT_TRACKING — See Tracking DDL Statements in the LogMiner Dictionary

When you execute the DBMS_LOGMNR.START_LOGMNR procedure, LogMiner checks to ensure that the combination of options and parameters that you have specified is valid and that the dictionary and redo log files that you have specified are available. However, the V$LOGMNR_CONTENTS view is not populated until you query the view, as described in How the V$LOGMNR_CONTENTS View Is Populated.

Note that parameters and options are not persistent across calls to DBMS_LOGMNR.START_LOGMNR. You must specify all desired parameters and options (including SCN and time ranges) each time you call DBMS_LOGMNR.START_LOGMNR.

Querying V$LOGMNR_CONTENTS for Redo Data of Interest

You access the redo data of interest by querying the V$LOGMNR_CONTENTS view. (Note that you must have the SELECT ANY TRANSACTION privilege to query V$LOGMNR_CONTENTS.) This view provides historical information about changes made to the database, including (but not limited to) the following:

	
The type of change made to the database: INSERT, UPDATE, DELETE, or DDL (OPERATION column).

	
The SCN at which a change was made (SCN column).

	
The SCN at which a change was committed (COMMIT_SCN column).

	
The transaction to which a change belongs (XIDUSN, XIDSLT, and XIDSQN columns).

	
The table and schema name of the modified object (SEG_NAME and SEG_OWNER columns).

	
The name of the user who issued the DDL or DML statement to make the change (USERNAME column).

	
If the change was due to a SQL DML statement, the reconstructed SQL statements showing SQL DML that is equivalent (but not necessarily identical) to the SQL DML used to generate the redo records (SQL_REDO column).

	
If a password is part of the statement in a SQL_REDO column, the password is encrypted. SQL_REDO column values that correspond to DDL statements are always identical to the SQL DDL used to generate the redo records.

	
If the change was due to a SQL DML change, the reconstructed SQL statements showing the SQL DML statements needed to undo the change (SQL_UNDO column).

SQL_UNDO columns that correspond to DDL statements are always NULL. The SQL_UNDO column may be NULL also for some datatypes and for rolled back operations.

	
Note:

LogMiner supports transparent data encryption (TDE) in that V$LOGMNR_CONTENTS shows DML operations performed on tables with encrypted columns (including the encrypted columns being updated), provided the LogMiner data dictionary contains the metadata for the object in question and provided the appropriate master key is in the Oracle Wallet. The Oracle Wallet must be open or V$LOGMNR_CONTENTS cannot interpret the associated redo records. TDE support is not available if the database is not open (either read-only or read-write).

Example of Querying V$LOGMNR_CONTENTS

Suppose you wanted to find out about any delete operations that a user named Ron had performed on the oe.orders table. You could issue a SQL query similar to the following:

SELECT OPERATION, SQL_REDO, SQL_UNDO
 FROM V$LOGMNR_CONTENTS
 WHERE SEG_OWNER = 'OE' AND SEG_NAME = 'ORDERS' AND
 OPERATION = 'DELETE' AND USERNAME = 'RON';

The following output would be produced. The formatting may be different on your display than that shown here.

OPERATION SQL_REDO SQL_UNDO

DELETE delete from "OE"."ORDERS" insert into "OE"."ORDERS"
 where "ORDER_ID" = '2413' ("ORDER_ID","ORDER_MODE",
 and "ORDER_MODE" = 'direct' "CUSTOMER_ID","ORDER_STATUS",
 and "CUSTOMER_ID" = '101' "ORDER_TOTAL","SALES_REP_ID",
 and "ORDER_STATUS" = '5' "PROMOTION_ID")
 and "ORDER_TOTAL" = '48552' values ('2413','direct','101',
 and "SALES_REP_ID" = '161' '5','48552','161',NULL);
 and "PROMOTION_ID" IS NULL
 and ROWID = 'AAAHTCAABAAAZAPAAN';

DELETE delete from "OE"."ORDERS" insert into "OE"."ORDERS"
 where "ORDER_ID" = '2430' ("ORDER_ID","ORDER_MODE",
 and "ORDER_MODE" = 'direct' "CUSTOMER_ID","ORDER_STATUS",
 and "CUSTOMER_ID" = '101' "ORDER_TOTAL","SALES_REP_ID",
 and "ORDER_STATUS" = '8' "PROMOTION_ID")
 and "ORDER_TOTAL" = '29669.9' values('2430','direct','101',
 and "SALES_REP_ID" = '159' '8','29669.9','159',NULL);
 and "PROMOTION_ID" IS NULL
 and ROWID = 'AAAHTCAABAAAZAPAAe';

This output shows that user Ron deleted two rows from the oe.orders table. The reconstructed SQL statements are equivalent, but not necessarily identical, to the actual statement that Ron issued. The reason for this is that the original WHERE clause is not logged in the redo log files, so LogMiner can only show deleted (or updated or inserted) rows individually.

Therefore, even though a single DELETE statement may have been responsible for the deletion of both rows, the output in V$LOGMNR_CONTENTS does not reflect that. Thus, the actual DELETE statement may have been DELETE FROM OE.ORDERS WHERE CUSTOMER_ID ='101' or it might have been DELETE FROM OE.ORDERS WHERE PROMOTION_ID = NULL.

How the V$LOGMNR_CONTENTS View Is Populated

The V$LOGMNR_CONTENTS fixed view is unlike other views in that it is not a selective presentation of data stored in a table. Instead, it is a relational presentation of the data that you request from the redo log files. LogMiner populates the view only in response to a query against it. You must successfully start LogMiner before you can query V$LOGMNR_CONTENTS.

When a SQL select operation is executed against the V$LOGMNR_CONTENTS view, the redo log files are read sequentially. Translated information from the redo log files is returned as rows in the V$LOGMNR_CONTENTS view. This continues until either the filter criteria specified at startup are met or the end of the redo log file is reached.

In some cases, certain columns in V$LOGMNR_CONTENTS may not be populated. For example:

	
The TABLE_SPACE column is not populated for rows where the value of the OPERATION column is DDL. This is because a DDL may operate on more than one tablespace. For example, a table can be created with multiple partitions spanning multiple table spaces; hence it would not be accurate to populate the column.

	
LogMiner does not generate SQL redo or SQL undo for temporary tables. The SQL_REDO column will contain the string "/* No SQL_REDO for temporary tables */" and the SQL_UNDO column will contain the string "/* No SQL_UNDO for temporary tables */".

LogMiner returns all the rows in SCN order unless you have used the COMMITTED_DATA_ONLY option to specify that only committed transactions should be retrieved. SCN order is the order normally applied in media recovery.

	
See Also:

Showing Only Committed Transactions for more information about the COMMITTED_DATA_ONLY option to DBMS_LOGMNR.START_LOGMNR

	
Note:

Because LogMiner populates the V$LOGMNR_CONTENTS view only in response to a query and does not store the requested data in the database, the following is true:
	
Every time you query V$LOGMNR_CONTENTS, LogMiner analyzes the redo log files for the data you request.

	
The amount of memory consumed by the query is not dependent on the number of rows that must be returned to satisfy a query.

	
The time it takes to return the requested data is dependent on the amount and type of redo log data that must be mined to find that data.

For the reasons stated in the previous note, Oracle recommends that you create a table to temporarily hold the results from a query of V$LOGMNR_CONTENTS if you need to maintain the data for further analysis, particularly if the amount of data returned by a query is small in comparison to the amount of redo data that LogMiner must analyze to provide that data.

Querying V$LOGMNR_CONTENTS Based on Column Values

LogMiner lets you make queries based on column values. For instance, you can perform a query to show all updates to the hr.employees table that increase salary more than a certain amount. Data such as this can be used to analyze system behavior and to perform auditing tasks.

LogMiner data extraction from redo log files is performed using two mine functions: DBMS_LOGMNR.MINE_VALUE and DBMS_LOGMNR.COLUMN_PRESENT. Support for these mine functions is provided by the REDO_VALUE and UNDO_VALUE columns in the V$LOGMNR_CONTENTS view.

The following is an example of how you could use the MINE_VALUE function to select all updates to hr.employees that increased the salary column to more than twice its original value:

SELECT SQL_REDO FROM V$LOGMNR_CONTENTS
 WHERE
 SEG_NAME = 'EMPLOYEES' AND
 SEG_OWNER = 'HR' AND
 OPERATION = 'UPDATE' AND
 DBMS_LOGMNR.MINE_VALUE(REDO_VALUE, 'HR.EMPLOYEES.SALARY') >
 2*DBMS_LOGMNR.MINE_VALUE(UNDO_VALUE, 'HR.EMPLOYEES.SALARY');

As shown in this example, the MINE_VALUE function takes two arguments:

	
The first one specifies whether to mine the redo (REDO_VALUE) or undo (UNDO_VALUE) portion of the data. The redo portion of the data is the data that is in the column after an insert, update, or delete operation; the undo portion of the data is the data that was in the column before an insert, update, or delete operation. It may help to think of the REDO_VALUE as the new value and the UNDO_VALUE as the old value.

	
The second argument is a string that specifies the fully qualified name of the column to be mined (in this case, hr.employees.salary). The MINE_VALUE function always returns a string that can be converted back to the original datatype.

The Meaning of NULL Values Returned by the MINE_VALUE Function

If the MINE_VALUE function returns a NULL value, it can mean either:

	
The specified column is not present in the redo or undo portion of the data.

	
The specified column is present and has a null value.

To distinguish between these two cases, use the DBMS_LOGMNR.COLUMN_PRESENT function which returns a 1 if the column is present in the redo or undo portion of the data. Otherwise, it returns a 0. For example, suppose you wanted to find out the increment by which the values in the salary column were modified and the corresponding transaction identifier. You could issue the following SQL query:

SELECT
 (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID,
 (DBMS_LOGMNR.MINE_VALUE(REDO_VALUE, 'HR.EMPLOYEES.SALARY') -
 DBMS_LOGMNR.MINE_VALUE(UNDO_VALUE, 'HR.EMPLOYEES.SALARY')) AS INCR_SAL
 FROM V$LOGMNR_CONTENTS
 WHERE
 OPERATION = 'UPDATE' AND
 DBMS_LOGMNR.COLUMN_PRESENT(REDO_VALUE, 'HR.EMPLOYEES.SALARY') = 1 AND
 DBMS_LOGMNR.COLUMN_PRESENT(UNDO_VALUE, 'HR.EMPLOYEES.SALARY') = 1;

Usage Rules for the MINE_VALUE and COLUMN_PRESENT Functions

The following usage rules apply to the MINE_VALUE and COLUMN_PRESENT functions:

	
They can only be used within a LogMiner session.

	
They must be invoked in the context of a select operation from the V$LOGMNR_CONTENTS view.

	
They do not support LONG, LONG RAW, CLOB, BLOB, NCLOB, ADT, or COLLECTION datatypes.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for a description of the DBMS_LOGMNR package, which contains the MINE_VALUE and COLUMN_PRESENT functions

Querying V$LOGMNR_CONTENTS Based on XMLType Columns and Tables

LogMiner supports XMLType data when it is stored as a CLOB. Unlike LOB data, XML documents cannot be inserted as empty and then incrementally appended to with each piece of the document. Therefore, the XML document must be assembled and then inserted in its entirety.

To meet this requirement, LogMiner presents the SQL_REDO in V$LOGMNR_CONTENTS for the DML statement with a bind variable to represent the XML data. This is then followed by one or more rows that contain the pieces of the XML document.

Querying V$LOGMNR_CONTENTS For Changes to Tables With XMLType Columns

The example in this section is for a table named XML_CLOB_COL_TAB that has the following columns:

	
f1 NUMBER

	
f2 VARCHAR2(100)

	
f3 XMLTYPE

	
f4 XMLTYPE

	
f5 VARCHAR2(10)

Assume that a LogMiner session has been started with the logs and with the COMMITED_DATA_ONLY option. The following query is executed against V$LOGMNR_CONTENTS for changes to the XML_CLOB_COL_TAB table.

SELECT OPERATION, STATUS, SQL_REDO FROM V$LOGMNR_CONTENTS
 WHERE SEG_OWNER = 'SCOTT' AND TABLE_NAME = 'XML_CLOB_COL_TAB';

The query output looks similar to the following:

OPERATION STATUS SQL_REDO

INSERT 0 insert into "SCOTT"."XML_CLOB_COL_TAB"("F1","F2","F5") values
 ('5010','Aho40431','PETER')

XML DOC BEGIN 5 update "SCOTT"."XML_CLOB_COL_TAB" a set a."F3" = XMLType(:1)
 where a."F1" = '5010' and a."F2" = 'Aho40431' and a."F5" = 'PETER'

XML DOC WRITE 5 XML Data

XML DOC WRITE 5 XML Data

XML DOC WRITE 5 XML Data

XML DOC END 5

In the SQL_REDO columns for the XML DOC WRITE operations there will be actual data for the XML document. It will not be the string 'XML Data'.

This output shows that the general model for an insert into a table with an XMLType column is the following:

	
An initial insert with all of the scalar columns.

	
An XML DOC BEGIN operation with an update statement that sets the value for one XMLType column using a bind variable.

	
One or more XML DOC WRITE operations with the data for the XML document.

	
An XML DOC END operation to indicate that all of the data for that XML document has been seen.

	
If there is more than one XMLType column in the table, then steps 2 through 4 will be repeated for each XMLType column that is modified by the original DML.

If the XML document is not stored as an out-of-line column, then there will be no XML DOC BEGIN, XML DOC WRITE, or XML DOC END operations for that column. The document will be included in an update statement similar to the following:

OPERATION STATUS SQL_REDO

UPDATE 0 update "SCOTT"."XML_CLOB_COL_TAB" a
 set a."F3" = XMLType('<?xml version="1.0"?>
 <PO pono="1">
 <PNAME>Po_99</PNAME>
 <CUSTNAME>Dave Davids</CUSTNAME>
 </PO>')
 where a."F1" = '5006' and a."F2" = 'Janosik' and a."F5" = 'MMM'

Queries V$LOGMNR_CONTENTS For Changes to XMLType Tables

DMLs to XMLType tables are slightly different from DMLs to XMLType columns. The XML document represents the value for the row in the XMLType table. Unlike the XMLType column case, an initial insert cannot be done which is then followed by an update containing the XML document. Rather, the whole document must be assembled before anything can be inserted into the table.

Another difference for XMLType tables is the presence of the OBJECT_ID column. An object identifier is used to uniquely identify every object in an object table. For XMLType tables stored as CLOBs, this value is generated by Oracle Database when the row is inserted into the table. The OBJECT_ID value cannot be directly inserted into the table using SQL. Therefore, LogMiner cannot generate SQL_REDO which is executable that includes this value.

The V$LOGMNR_CONTENTS view has a new OBJECT_ID column which is populated for changes to XMLType tables. This value is the object identifier from the original table. However, even if this same XML document is inserted into the same XMLType table, a new object identifier will be generated. The SQL_REDO for subsequent DMLs, such as updates and deletes, on the XMLType table will include the object identifier in the WHERE clause to uniquely identify the row from the original table.

The following shows an example of mining changes to an XMLType table stored as CLOB:

select operation, status, object_id, sql_redo from v$logmnr_contents
where seg_owner = 'SCOTT' and table_name = 'XML_TYPE_CLOB_TAB';

OPERATION STATUS OBJECT_ID SQL_REDO

INSERT 2 300A9394B0F7B2D0E040578CF5025CC3 insert into "SCOTT"."XML_TYPE_CLOB_TAB"
 values(EMPTY_CLOB())

XML DOC BEGIN 5 300A9394B0F7B2D0E040578CF5025CC3 insert into "SCOTT"."XML_TYPE_CLOB_TAB"
 values (XMLType(:1)

XML DOC WRITE 5 300A9394B0F7B2D0E040578CF5025CC3 XML Data

XML DOC WRITE 5 300A9394B0F7B2D0E040578CF5025CC3 XML Data

XML DOC WRITE 5 300A9394B0F7B2D0E040578CF5025CC3 XML Data

XML DOC END 5

The general pattern is very similar to XMLType columns. However, there are a few key differences. The first is that now the OBJECT_ID column is populated. The second difference is that there is an initial insert, but its status is 2 for INVALID_SQL. This indicates that this record occurs in the redo as a placeholder for the change to come, but that the SQL generated for this change should not be applied. The SQL_REDO from the XML DOC BEGIN operation reflects the changes that were made to the row when used with the assembled XML document.

If the XML document is not stored as an out-of-line column, then there will be no XML DOC BEGIN, XML DOC WRITE, or XML DOC END operations for that document. The document will be included in an INSERT statement similar to the following:

OPERATION STATUS OBJECT_ID SQL_REDO

INSERT 2 300AD8CECBA75ACAE040578CF502640C insert into "SCOTT"."XML_TYPE_CLOB_TAB"
 values (EMPTY_CLOB())

INSERT 0 300AD8CECBA75ACAE040578CF502640C insert into "SCOTT"."XML_TYPE_CLOB_TAB"
 values (XMLType(
 '<?xml version="1.0"?>
 <PO pono="1">
 <PNAME>Po_99</PNAME>
 <CUSTNAME>
 Dave Davids
 </CUSTNAME>
 </PO>'))

Restrictions When Using LogMiner With XMLType Data

Mining XMLType data should only be done when using the DBMS_LOGMNR.COMMITTED_DATA_ONLY option. Otherwise, incomplete changes could be displayed or changes which should be displayed as XML might be displayed as CLOB changes due to missing parts of the row change. This can lead to incomplete and invalid SQL_REDO for these SQL DML statements.

The SQL_UNDO column is not populated for changes to XMLType data.

Example of a PL/SQL Procedure for Assembling XMLType Data

The example presented in this section shows a procedure that can be used to mine and assemble XML redo for tables that contain out of line XML data. This shows how to assemble the XML data using a temporary LOB. Once the XML document is assembled, it can be used in a meaningful way. This example queries the assembled document for the EmployeeName element and then stores the returned name, the XML document and the SQL_REDO for the original DML in the EMPLOYEE_XML_DOCS table.

	
Note:

This procedure is an example only and is simplified. It is only intended to illustrate that DMLs to tables with XMLType data can be mined and assembled using LogMiner.

Before calling this procedure, all of the relevant logs must be added to a LogMiner session and DBMS_LOGMNR.START_LOGMNR() must be called with the COMMITTED_DATA_ONLY option. The MINE_AND_ASSEMBLE() procedure can then be called with the schema and table name of the table that has XML data to be mined.

-- table to store assembled XML documents
create table employee_xml_docs (
 employee_name varchar2(100),
 sql_stmt varchar2(4000),
 xml_doc SYS.XMLType);

-- procedure to assemble the XML documents
create or replace procedure mine_and_assemble(
 schemaname in varchar2,
 tablename in varchar2)
AS
 loc_c CLOB;
 row_op VARCHAR2(100);
 row_status NUMBER;
 stmt VARCHAR2(4000);
 row_redo VARCHAR2(4000);
 xml_data VARCHAR2(32767 CHAR);
 data_len NUMBER;
 xml_lob clob;
 xml_doc XMLType;
BEGIN

-- Look for the rows in V$LOGMNR_CONTENTS that are for the appropriate schema
-- and table name but limit it to those that are valid sql or that need assembly
-- because they are XML documents.

 For item in (SELECT operation, status, sql_redo FROM v$logmnr_contents
 where seg_owner = schemaname and table_name = tablename
 and status IN (DBMS_LOGMNR.VALID_SQL, DBMS_LOGMNR.ASSEMBLY_REQUIRED_SQL))
 LOOP
 row_op := item.operation;
 row_status := item.status;
 row_redo := item.sql_redo;

 CASE row_op

 WHEN 'XML DOC BEGIN' THEN
 BEGIN
 -- save statement and begin assembling XML data
 stmt := row_redo;
 xml_data := '';
 data_len := 0;
 DBMS_LOB.CreateTemporary(xml_lob, TRUE);
 END;

 WHEN 'XML DOC WRITE' THEN
 BEGIN
 -- Continue to assemble XML data
 xml_data := xml_data || row_redo;
 data_len := data_len + length(row_redo);
 DBMS_LOB.WriteAppend(xml_lob, length(row_redo), row_redo);
 END;

 WHEN 'XML DOC END' THEN
 BEGIN
 -- Now that assembly is complete, we can use the XML document
 xml_doc := XMLType.createXML(xml_lob);
 insert into employee_xml_docs values
 (extractvalue(xml_doc, '/EMPLOYEE/NAME'), stmt, xml_doc);
 commit;

 -- reset
 xml_data := '';
 data_len := 0;
 xml_lob := NULL;
 END;

 WHEN 'INSERT' THEN
 BEGIN
 stmt := row_redo;
 END;

 WHEN 'UPDATE' THEN
 BEGIN
 stmt := row_redo;
 END;

 WHEN 'INTERNAL' THEN
 DBMS_OUTPUT.PUT_LINE('Skip rows marked INTERNAL');

 ELSE
 BEGIN
 stmt := row_redo;
 DBMS_OUTPUT.PUT_LINE('Other - ' || stmt);
 IF row_status != DBMS_LOGMNR.VALID_SQL then
 DBMS_OUTPUT.PUT_LINE('Skip rows marked non-executable');
 ELSE
 dbms_output.put_line('Status : ' || row_status);
 END IF;
 END;

 END CASE;

 End LOOP;

End;
/

show errors;

This procedure can then be called to mine the changes to the SCOTT.XML_DATA_TAB and apply the DMLs.

EXECUTE MINE_AND_ASSEMBLE ('SCOTT', 'XML_DATA_TAB');

As a result of this procedure, the EMPLOYEE_XML_DOCS table will have a row for each out-of-line XML column that was changed. The EMPLOYEE_NAME column will have the value extracted from the XML document and the SQL_STMT column and the XML_DOC column reflect the original row change.

The following is an example query to the resulting table that displays only the employee name and SQL statement:

SELECT EMPLOYEE_NAME, SQL_STMT FROM EMPLOYEE_XML_DOCS;

EMPLOYEE_NAME SQL_STMT

Scott Davis update "SCOTT"."XML_DATA_TAB" a set a."F3" = XMLType(:1)
 where a."F1" = '5000' and a."F2" = 'Chen' and a."F5" = 'JJJ'

Richard Harry update "SCOTT"."XML_DATA_TAB" a set a."F4" = XMLType(:1)
 where a."F1" = '5000' and a."F2" = 'Chen' and a."F5" = 'JJJ'

Margaret Sally update "SCOTT"."XML_DATA_TAB" a set a."F4" = XMLType(:1)
 where a."F1" = '5006' and a."F2" = 'Janosik' and a."F5" = 'MMM'

Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS

LogMiner can potentially deal with large amounts of information. You can limit the information that is returned to the V$LOGMNR_CONTENTS view, and the speed at which it is returned. The following sections demonstrate how to specify these limits and their impact on the data returned when you query V$LOGMNR_CONTENTS.

	
Showing Only Committed Transactions

	
Skipping Redo Corruptions

	
Filtering Data by Time

	
Filtering Data by SCN

In addition, LogMiner offers features for formatting the data that is returned to V$LOGMNR_CONTENTS, as described in the following sections:

	
Formatting Reconstructed SQL Statements for Re-execution

	
Formatting the Appearance of Returned Data for Readability

You request each of these filtering and formatting features using parameters or options to the DBMS_LOGMNR.START_LOGMNR procedure.

Showing Only Committed Transactions

When you use the COMMITTED_DATA_ONLY option to DBMS_LOGMNR.START_LOGMNR, only rows belonging to committed transactions are shown in the V$LOGMNR_CONTENTS view. This enables you to filter out rolled back transactions, transactions that are in progress, and internal operations.

To enable this option, specify it when you start LogMiner, as follows:

EXECUTE DBMS_LOGMNR.START_LOGMNR(OPTIONS => -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY);

When you specify the COMMITTED_DATA_ONLY option, LogMiner groups together all DML operations that belong to the same transaction. Transactions are returned in the order in which they were committed.

	
Note:

If the COMMITTED_DATA_ONLY option is specified and you issue a query, LogMiner stages all redo records within a single transaction in memory until LogMiner finds the commit record for that transaction. Therefore, it is possible to exhaust memory, in which case an "Out of Memory" error will be returned. If this occurs, you must restart LogMiner without the COMMITTED_DATA_ONLY option specified and reissue the query.

The default is for LogMiner to show rows corresponding to all transactions and to return them in the order in which they are encountered in the redo log files.

For example, suppose you start LogMiner without specifying the COMMITTED_DATA_ONLY option and you execute the following query:

SELECT (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID,
 USERNAME, SQL_REDO FROM V$LOGMNR_CONTENTS WHERE USERNAME != 'SYS'
 AND SEG_OWNER IS NULL OR SEG_OWNER NOT IN ('SYS', 'SYSTEM');

The output is as follows. Both committed and uncommitted transactions are returned and rows from different transactions are interwoven.

XID USERNAME SQL_REDO

1.15.3045 RON set transaction read write;
1.15.3045 RON insert into "HR"."JOBS"("JOB_ID","JOB_TITLE",
 "MIN_SALARY","MAX_SALARY") values ('9782',
 'HR_ENTRY',NULL,NULL);
1.18.3046 JANE set transaction read write;
1.18.3046 JANE insert into "OE"."CUSTOMERS"("CUSTOMER_ID",
 "CUST_FIRST_NAME","CUST_LAST_NAME",
 "CUST_ADDRESS","PHONE_NUMBERS","NLS_LANGUAGE",
 "NLS_TERRITORY","CREDIT_LIMIT","CUST_EMAIL",
 "ACCOUNT_MGR_ID") values ('9839','Edgar',
 'Cummings',NULL,NULL,NULL,NULL,
 NULL,NULL,NULL);
1.9.3041 RAJIV set transaction read write;
1.9.3041 RAJIV insert into "OE"."CUSTOMERS"("CUSTOMER_ID",
 "CUST_FIRST_NAME","CUST_LAST_NAME","CUST_ADDRESS",
 "PHONE_NUMBERS","NLS_LANGUAGE","NLS_TERRITORY",
 "CREDIT_LIMIT","CUST_EMAIL","ACCOUNT_MGR_ID")
 values ('9499','Rodney','Emerson',NULL,NULL,NULL,NULL,
 NULL,NULL,NULL);
1.15.3045 RON commit;
1.8.3054 RON set transaction read write;
1.8.3054 RON insert into "HR"."JOBS"("JOB_ID","JOB_TITLE",
 "MIN_SALARY","MAX_SALARY") values ('9566',
 'FI_ENTRY',NULL,NULL);
1.18.3046 JANE commit;
1.11.3047 JANE set transaction read write;
1.11.3047 JANE insert into "OE"."CUSTOMERS"("CUSTOMER_ID",
 "CUST_FIRST_NAME","CUST_LAST_NAME",
 "CUST_ADDRESS","PHONE_NUMBERS","NLS_LANGUAGE",
 "NLS_TERRITORY","CREDIT_LIMIT","CUST_EMAIL",
 "ACCOUNT_MGR_ID") values ('8933','Ronald',
 'Frost',NULL,NULL,NULL,NULL,NULL,NULL,NULL);
1.11.3047 JANE commit;
1.8.3054 RON commit;

Now suppose you start LogMiner, but this time you specify the COMMITTED_DATA_ONLY option. If you execute the previous query again, the output is as follows:

1.15.3045 RON set transaction read write;
1.15.3045 RON insert into "HR"."JOBS"("JOB_ID","JOB_TITLE",
 "MIN_SALARY","MAX_SALARY") values ('9782',
 'HR_ENTRY',NULL,NULL);
1.15.3045 RON commit;
1.18.3046 JANE set transaction read write;
1.18.3046 JANE insert into "OE"."CUSTOMERS"("CUSTOMER_ID",
 "CUST_FIRST_NAME","CUST_LAST_NAME",
 "CUST_ADDRESS","PHONE_NUMBERS","NLS_LANGUAGE",
 "NLS_TERRITORY","CREDIT_LIMIT","CUST_EMAIL",
 "ACCOUNT_MGR_ID") values ('9839','Edgar',
 'Cummings',NULL,NULL,NULL,NULL,
 NULL,NULL,NULL);
1.18.3046 JANE commit;
1.11.3047 JANE set transaction read write;
1.11.3047 JANE insert into "OE"."CUSTOMERS"("CUSTOMER_ID",
 "CUST_FIRST_NAME","CUST_LAST_NAME",
 "CUST_ADDRESS","PHONE_NUMBERS","NLS_LANGUAGE",
 "NLS_TERRITORY","CREDIT_LIMIT","CUST_EMAIL",
 "ACCOUNT_MGR_ID") values ('8933','Ronald',
 'Frost',NULL,NULL,NULL,NULL,NULL,NULL,NULL);
1.11.3047 JANE commit;
1.8.3054 RON set transaction read write;
1.8.3054 RON insert into "HR"."JOBS"("JOB_ID","JOB_TITLE",
 "MIN_SALARY","MAX_SALARY") values ('9566',
 'FI_ENTRY',NULL,NULL);
1.8.3054 RON commit;

Because the COMMIT statement for the 1.15.3045 transaction was issued before the COMMIT statement for the 1.18.3046 transaction, the entire 1.15.3045 transaction is returned first. This is true even though the 1.18.3046 transaction started before the 1.15.3045 transaction. None of the 1.9.3041 transaction is returned because a COMMIT statement was never issued for it.

	
See Also:

See Examples Using LogMiner for a complete example that uses the COMMITTED_DATA_ONLY option

Skipping Redo Corruptions

When you use the SKIP_CORRUPTION option to DBMS_LOGMNR.START_LOGMNR, any corruptions in the redo log files are skipped during select operations from the V$LOGMNR_CONTENTS view. For every corrupt redo record encountered, a row is returned that contains the value CORRUPTED_BLOCKS in the OPERATION column, 1343 in the STATUS column, and the number of blocks skipped in the INFO column.

Be aware that the skipped records may include changes to ongoing transactions in the corrupted blocks; such changes will not be reflected in the data returned from the V$LOGMNR_CONTENTS view.

The default is for the select operation to terminate at the first corruption it encounters in the redo log file.

The following SQL example shows how this option works:

-- Add redo log files of interest.
--
EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 logfilename => '/usr/oracle/data/db1arch_1_16_482701534.log' -
 options => DBMS_LOGMNR.NEW);

-- Start LogMiner
--
EXECUTE DBMS_LOGMNR.START_LOGMNR();

-- Select from the V$LOGMINER_CONTENTS view. This example shows corruptions are -- in the redo log files.
--
SELECT rbasqn, rbablk, rbabyte, operation, status, info
 FROM V$LOGMNR_CONTENTS;

ERROR at line 3:
ORA-00368: checksum error in redo log block
ORA-00353: log corruption near block 6 change 73528 time 11/06/2002 11:30:23
ORA-00334: archived log: /usr/oracle/data/dbarch1_16_482701534.log

-- Restart LogMiner. This time, specify the SKIP_CORRUPTION option.
--
EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 options => DBMS_LOGMNR.SKIP_CORRUPTION);

-- Select from the V$LOGMINER_CONTENTS view again. The output indicates that
-- corrupted blocks were skipped: CORRUPTED_BLOCKS is in the OPERATION
-- column, 1343 is in the STATUS column, and the number of corrupt blocks
-- skipped is in the INFO column.
--
SELECT rbasqn, rbablk, rbabyte, operation, status, info
 FROM V$LOGMNR_CONTENTS;

RBASQN RBABLK RBABYTE OPERATION STATUS INFO
13 2 76 START 0
13 2 76 DELETE 0
13 3 100 INTERNAL 0
13 3 380 DELETE 0
13 0 0 CORRUPTED_BLOCKS 1343 corrupt blocks 4 to 19 skipped
13 20 116 UPDATE 0

Filtering Data by Time

To filter data by time, set the STARTTIME and ENDTIME parameters in the DBMS_LOGMNR.START_LOGMNR procedure.

To avoid the need to specify the date format in the call to the PL/SQL DBMS_LOGMNR.START_LOGMNR procedure, you can use the SQL ALTER SESSION SET NLS_DATE_FORMAT statement first, as shown in the following example.

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';
EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 DICTFILENAME => '/oracle/database/dictionary.ora', -
 STARTTIME => '01-Jan-1998 08:30:00', -
 ENDTIME => '01-Jan-1998 08:45:00'-
 OPTIONS => DBMS_LOGMNR.CONTINUOUS_MINE);

The timestamps should not be used to infer ordering of redo records. You can infer the order of redo records by using the SCN.

	
See Also:

	
Examples Using LogMiner for a complete example of filtering data by time

	
Oracle Database PL/SQL Packages and Types Reference for information about what happens if you specify starting and ending times and they are not found in the LogMiner redo log file list, and for information about how these parameters interact with the CONTINUOUS_MINE option

Filtering Data by SCN

To filter data by SCN (system change number), use the STARTSCN and ENDSCN parameters to the PL/SQL DBMS_LOGMNR.START_LOGMNR procedure, as shown in this example:

 EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 STARTSCN => 621047, -
 ENDSCN => 625695, -
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG + -
 DBMS_LOGMNR.CONTINUOUS_MINE);

The STARTSCN and ENDSCN parameters override the STARTTIME and ENDTIME parameters in situations where all are specified.

	
See Also:

	
Examples Using LogMiner for a complete example of filtering data by SCN

	
Oracle Database PL/SQL Packages and Types Reference for information about what happens if you specify starting and ending SCN values and they are not found in the LogMiner redo log file list and for information about how these parameters interact with the CONTINUOUS_MINE option

Formatting Reconstructed SQL Statements for Re-execution

By default, a ROWID clause is included in the reconstructed SQL_REDO and SQL_UNDO statements and the statements are ended with a semicolon.

However, you can override the default settings, as follows:

	
Specify the NO_ROWID_IN_STMT option when you start LogMiner.

This excludes the ROWID clause from the reconstructed statements. Because row IDs are not consistent between databases, if you intend to re-execute the SQL_REDO or SQL_UNDO statements against a different database than the one against which they were originally executed, specify the NO_ROWID_IN_STMT option when you start LogMiner.

	
Specify the NO_SQL_DELIMITER option when you start LogMiner.

This suppresses the semicolon from the reconstructed statements. This is helpful for applications that open a cursor and then execute the reconstructed statements.

Note that if the STATUS field of the V$LOGMNR_CONTENTS view contains the value 2 (invalid sql), then the associated SQL statement cannot be executed.

Formatting the Appearance of Returned Data for Readability

Sometimes a query can result in a large number of columns containing reconstructed SQL statements, which can be visually busy and hard to read. LogMiner provides the PRINT_PRETTY_SQL option to address this problem. The PRINT_PRETTY_SQL option to the DBMS_LOGMNR.START_LOGMNR procedure formats the reconstructed SQL statements as follows, which makes them easier to read:

insert into "HR"."JOBS"
 values
 "JOB_ID" = '9782',
 "JOB_TITLE" = 'HR_ENTRY',
 "MIN_SALARY" IS NULL,
 "MAX_SALARY" IS NULL;
 update "HR"."JOBS"
 set
 "JOB_TITLE" = 'FI_ENTRY'
 where
 "JOB_TITLE" = 'HR_ENTRY' and
 ROWID = 'AAAHSeAABAAAY+CAAX';

update "HR"."JOBS"
 set
 "JOB_TITLE" = 'FI_ENTRY'
 where
 "JOB_TITLE" = 'HR_ENTRY' and
 ROWID = 'AAAHSeAABAAAY+CAAX';

delete from "HR"."JOBS"
 where
 "JOB_ID" = '9782' and
 "JOB_TITLE" = 'FI_ENTRY' and
 "MIN_SALARY" IS NULL and
 "MAX_SALARY" IS NULL and
 ROWID = 'AAAHSeAABAAAY+CAAX';

SQL statements that are reconstructed when the PRINT_PRETTY_SQL option is enabled are not executable, because they do not use standard SQL syntax.

	
See Also:

Examples Using LogMiner for a complete example of using the PRINT_PRETTY_SQL option

Reapplying DDL Statements Returned to V$LOGMNR_CONTENTS

Be aware that some DDL statements issued by a user cause Oracle to internally execute one or more other DDL statements. If you want to reapply SQL DDL from the SQL_REDO or SQL_UNDO columns of the V$LOGMNR_CONTENTS view as it was originally applied to the database, you should not execute statements that were executed internally by Oracle.

	
Note:

If you execute DML statements that were executed internally by Oracle you may corrupt your database. See Step 5 of Example 4: Using the LogMiner Dictionary in the Redo Log Files for an example.

To differentiate between DDL statements that were issued by a user from those that were issued internally by Oracle, query the INFO column of V$LOGMNR_CONTENTS. The value of the INFO column indicates whether the DDL was executed by a user or by Oracle.

If you want to reapply SQL DDL as it was originally applied, you should only re-execute the DDL SQL contained in the SQL_REDO or SQL_UNDO column of V$LOGMNR_CONTENTS if the INFO column contains the value USER_DDL.

Calling DBMS_LOGMNR.START_LOGMNR Multiple Times

Even after you have successfully called DBMS_LOGMNR.START_LOGMNR and selected from the V$LOGMNR_CONTENTS view, you can call DBMS_LOGMNR.START_LOGMNR again without ending the current LogMiner session and specify different options and time or SCN ranges. The following list presents reasons why you might want to do this:

	
You want to limit the amount of redo data that LogMiner has to analyze.

	
You want to specify different options. For example, you might decide to specify the PRINT_PRETTY_SQL option or that you only want to see committed transactions (so you specify the COMMITTED_DATA_ONLY option).

	
You want to change the time or SCN range to be analyzed.

The following examples illustrate situations where it might be useful to call DBMS_LOGMNR.START_LOGMNR multiple times.

Example 1 Mining Only a Subset of the Data in the Redo Log Files

Suppose the list of redo log files that LogMiner has to mine include those generated for an entire week. However, you want to analyze only what happened from 12:00 to 1:00 each day. You could do this most efficiently by:

	
Calling DBMS_LOGMNR.START_LOGMNR with this time range for Monday.

	
Selecting changes from the V$LOGMNR_CONTENTS view.

	
Repeating Steps 1 and 2 for each day of the week.

If the total amount of redo data is large for the week, then this method would make the whole analysis much faster, because only a small subset of each redo log file in the list would be read by LogMiner.

Example 1 Adjusting the Time Range or SCN Range

Suppose you specify a redo log file list and specify a time (or SCN) range when you start LogMiner. When you query the V$LOGMNR_CONTENTS view, you find that only part of the data of interest is included in the time range you specified. You can call DBMS_LOGMNR.START_LOGMNR again to expand the time range by an hour (or adjust the SCN range).

Example 2 Analyzing Redo Log Files As They Arrive at a Remote Database

Suppose you have written an application to analyze changes or to replicate changes from one database to another database. The source database sends its redo log files to the mining database and drops them into an operating system directory. Your application:

	
Adds all redo log files currently in the directory to the redo log file list

	
Calls DBMS_LOGMNR.START_LOGMNR with appropriate settings and selects from the V$LOGMNR_CONTENTS view

	
Adds additional redo log files that have newly arrived in the directory

	
Repeats Steps 2 and 3, indefinitely

Supplemental Logging

Redo log files are generally used for instance recovery and media recovery. The data needed for such operations is automatically recorded in the redo log files. However, a redo-based application may require that additional columns be logged in the redo log files. The process of logging these additional columns is called supplemental logging.

By default, Oracle Database does not provide any supplemental logging, which means that by default LogMiner is not usable. Therefore, you must enable at least minimal supplemental logging prior to generating log files which will be analyzed by LogMiner.

The following are examples of situations in which additional columns may be needed:

	
An application that applies reconstructed SQL statements to a different database must identify the update statement by a set of columns that uniquely identify the row (for example, a primary key), not by the ROWID shown in the reconstructed SQL returned by the V$LOGMNR_CONTENTS view, because the ROWID of one database will be different and therefore meaningless in another database.

	
An application may require that the before-image of the whole row be logged, not just the modified columns, so that tracking of row changes is more efficient.

A supplemental log group is the set of additional columns to be logged when supplemental logging is enabled. There are two types of supplemental log groups that determine when columns in the log group are logged:

	
Unconditional supplemental log groups: The before-images of specified columns are logged any time a row is updated, regardless of whether the update affected any of the specified columns. This is sometimes referred to as an ALWAYS log group.

	
Conditional supplemental log groups: The before-images of all specified columns are logged only if at least one of the columns in the log group is updated.

Supplemental log groups can be system-generated or user-defined.

In addition to the two types of supplemental logging, there are two levels of supplemental logging, as described in the following sections:

	
Database-Level Supplemental Logging

	
Table-Level Supplemental Logging

	
See Also:

Querying Views for Supplemental Logging Settings

Database-Level Supplemental Logging

There are two types of database-level supplemental logging: minimal supplemental logging and identification key logging, as described in the following sections. Minimal supplemental logging does not impose significant overhead on the database generating the redo log files. However, enabling database-wide identification key logging can impose overhead on the database generating the redo log files. Oracle recommends that you at least enable minimal supplemental logging for LogMiner.

Minimal Supplemental Logging

Minimal supplemental logging logs the minimal amount of information needed for LogMiner to identify, group, and merge the redo operations associated with DML changes. It ensures that LogMiner (and any product building on LogMiner technology) has sufficient information to support chained rows and various storage arrangements, such as cluster tables and index-organized tables. To enable minimal supplemental logging, execute the following SQL statement:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

	
Note:

In Oracle Database release 9.0.1, minimal supplemental logging was the default behavior in LogMiner. In release 9.2 and later, the default is no supplemental logging. Supplemental logging must be specifically enabled.

Database-Level Identification Key Logging

Identification key logging is necessary when redo log files will not be mined at the source database instance, for example, when the redo log files will be mined at a logical standby database.

Using database identification key logging, you can enable database-wide before-image logging for all updates by specifying one or more of the following options to the SQL ALTER DATABASE ADD SUPPLEMENTAL LOG statement:

	
ALL system-generated unconditional supplemental log group

This option specifies that when a row is updated, all columns of that row (except for LOBs, LONGS, and ADTs) are placed in the redo log file.

To enable all column logging at the database level, execute the following statement:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;

	
PRIMARY KEY system-generated unconditional supplemental log group

This option causes the database to place all columns of a row's primary key in the redo log file whenever a row containing a primary key is updated (even if no value in the primary key has changed).

If a table does not have a primary key, but has one or more non-null unique index key constraints or index keys, then one of the unique index keys is chosen for logging as a means of uniquely identifying the row being updated.

If the table has neither a primary key nor a non-null unique index key, then all columns except LONG and LOB are supplementally logged; this is equivalent to specifying ALL supplemental logging for that row. Therefore, Oracle recommends that when you use database-level primary key supplemental logging, all or most tables be defined to have primary or unique index keys.

To enable primary key logging at the database level, execute the following statement:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;

	
UNIQUE system-generated conditional supplemental log group

This option causes the database to place all columns of a row's composite unique key or bitmap index in the redo log file if any column belonging to the composite unique key or bitmap index is modified. The unique key can be due to either a unique constraint or a unique index.

To enable unique index key and bitmap index logging at the database level, execute the following statement:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;

	
FOREIGN KEY system-generated conditional supplemental log group

This option causes the database to place all columns of a row's foreign key in the redo log file if any column belonging to the foreign key is modified.

To enable foreign key logging at the database level, execute the following SQL statement:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (FOREIGN KEY) COLUMNS;

	
Note:

Regardless of whether or not identification key logging is enabled, the SQL statements returned by LogMiner always contain the ROWID clause. You can filter out the ROWID clause by using the NO_ROWID_IN_STMT option to the DBMS_LOGMNR.START_LOGMNR procedure call. See Formatting Reconstructed SQL Statements for Re-execution for details.

Keep the following in mind when you use identification key logging:

	
If the database is open when you enable identification key logging, all DML cursors in the cursor cache are invalidated. This can affect performance until the cursor cache is repopulated.

	
When you enable identification key logging at the database level, minimal supplemental logging is enabled implicitly.

	
Supplemental logging statements are cumulative. If you issue the following SQL statements, both primary key and unique key supplemental logging is enabled:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;

Disabling Database-Level Supplemental Logging

You disable database-level supplemental logging using the SQL ALTER DATABASE statement with the DROP SUPPLEMENTAL LOGGING clause. You can drop supplemental logging attributes incrementally. For example, suppose you issued the following SQL statements, in the following order:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;
ALTER DATABASE DROP SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;
ALTER DATABASE DROP SUPPLEMENTAL LOG DATA;

The statements would have the following effects:

	
After the first statement, primary key supplemental logging is enabled.

	
After the second statement, primary key and unique key supplemental logging are enabled.

	
After the third statement, only unique key supplemental logging is enabled.

	
After the fourth statement, all supplemental logging is not disabled. The following error is returned: ORA-32589: unable to drop minimal supplemental logging.

To disable all database supplemental logging, you must first disable any identification key logging that has been enabled, then disable minimal supplemental logging. The following example shows the correct order:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;
ALTER DATABASE DROP SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;
ALTER DATABASE DROP SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;
ALTER DATABASE DROP SUPPLEMENTAL LOG DATA;

Dropping minimal supplemental log data is allowed only if no other variant of database-level supplemental logging is enabled.

Table-Level Supplemental Logging

Table-level supplemental logging specifies, at the table level, which columns are to be supplementally logged. You can use identification key logging or user-defined conditional and unconditional supplemental log groups to log supplemental information, as described in the following sections.

Table-Level Identification Key Logging

Identification key logging at the table level offers the same options as those provided at the database level: all, primary key, foreign key, and unique key. However, when you specify identification key logging at the table level, only the specified table is affected. For example, if you enter the following SQL statement (specifying database-level supplemental logging), then whenever a column in any database table is changed, the entire row containing that column (except columns for LOBs, LONGs, and ADTs) will be placed in the redo log file:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;

However, if you enter the following SQL statement (specifying table-level supplemental logging) instead, then only when a column in the employees table is changed will the entire row (except for LOB, LONGs, and ADTs) of the table be placed in the redo log file. If a column changes in the departments table, only the changed column will be placed in the redo log file.

ALTER TABLE HR.EMPLOYEES ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;

Keep the following in mind when you use table-level identification key logging:

	
If the database is open when you enable identification key logging on a table, all DML cursors for that table in the cursor cache are invalidated. This can affect performance until the cursor cache is repopulated.

	
Supplemental logging statements are cumulative. If you issue the following SQL statements, both primary key and unique index key table-level supplemental logging is enabled:

ALTER TABLE HR.EMPLOYEES
 ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;
ALTER TABLE HR.EMPLOYEES
 ADD SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;

See Database-Level Identification Key Logging for a description of each of the identification key logging options.

Table-Level User-Defined Supplemental Log Groups

In addition to table-level identification key logging, Oracle supports user-defined supplemental log groups. With user-defined supplemental log groups, you can specify which columns are supplementally logged. You can specify conditional or unconditional log groups, as follows:

	
User-defined unconditional log groups

To enable supplemental logging that uses user-defined unconditional log groups, use the ALWAYS clause as shown in the following example:

ALTER TABLE HR.EMPLOYEES
 ADD SUPPLEMENTAL LOG GROUP emp_parttime (EMPLOYEE_ID, LAST_NAME,
 DEPARTMENT_ID) ALWAYS;

This creates a log group named emp_parttime on the hr.employees table that consists of the columns employee_id, last_name, and department_id. These columns will be logged every time an UPDATE statement is executed on the hr.employees table, regardless of whether or not the update affected these columns. (If you want to have the entire row image logged any time an update was made, use table-level ALL identification key logging, as described previously).

	
Note:

LOB, LONG, and ADT columns cannot be supplementally logged.

	
User-defined conditional supplemental log groups

To enable supplemental logging that uses user-defined conditional log groups, omit the ALWAYS clause from the SQL ALTER TABLE statement, as shown in the following example:

ALTER TABLE HR.EMPLOYEES
 ADD SUPPLEMENTAL LOG GROUP emp_fulltime (EMPLOYEE_ID, LAST_NAME,
 DEPARTMENT_ID);

This creates a log group named emp_fulltime on table hr.employees. Just like the previous example, it consists of the columns employee_id, last_name, and department_id. But because the ALWAYS clause was omitted, before-images of the columns will be logged only if at least one of the columns is updated.

For both unconditional and conditional user-defined supplemental log groups, you can explicitly specify that a column in the log group be excluded from supplemental logging by specifying the NO LOG option. When you specify a log group and use the NO LOG option, you must specify at least one column in the log group without the NO LOG option, as shown in the following example:

ALTER TABLE HR.EMPLOYEES
 ADD SUPPLEMENTAL LOG GROUP emp_parttime(
 DEPARTMENT_ID NO LOG, EMPLOYEE_ID);

This enables you to associate this column with other columns in the named supplemental log group such that any modification to the NO LOG column causes the other columns in the supplemental log group to be placed in the redo log file. This might be useful, for example, if you want to log certain columns in a group if a LONG column changes. You cannot supplementally log the LONG column itself; however, you can use changes to that column to trigger supplemental logging of other columns in the same row.

Usage Notes for User-Defined Supplemental Log Groups

Keep the following in mind when you specify user-defined supplemental log groups:

	
A column can belong to more than one supplemental log group. However, the before-image of the columns gets logged only once.

	
If you specify the same columns to be logged both conditionally and unconditionally, the columns are logged unconditionally.

Tracking DDL Statements in the LogMiner Dictionary

LogMiner automatically builds its own internal dictionary from the LogMiner dictionary that you specify when you start LogMiner (either an online catalog, a dictionary in the redo log files, or a flat file). This dictionary provides a snapshot of the database objects and their definitions.

If your LogMiner dictionary is in the redo log files or is a flat file, you can use the DDL_DICT_TRACKING option to the PL/SQL DBMS_LOGMNR.START_LOGMNR procedure to direct LogMiner to track data definition language (DDL) statements. DDL tracking enables LogMiner to successfully track structural changes made to a database object, such as adding or dropping columns from a table. For example:

EXECUTE DBMS_LOGMNR.START_LOGMNR(OPTIONS => -
 DBMS_LOGMNR.DDL_DICT_TRACKING + DBMS_LOGMNR.DICT_FROM_REDO_LOGS);

See Example 5: Tracking DDL Statements in the Internal Dictionary for a complete example.

With this option set, LogMiner applies any DDL statements seen in the redo log files to its internal dictionary.

	
Note:

In general, it is a good idea to keep supplemental logging and the DDL tracking feature enabled, because if they are not enabled and a DDL event occurs, LogMiner returns some of the redo data as binary data. Also, a metadata version mismatch could occur.

When you enable DDL_DICT_TRACKING, data manipulation language (DML) operations performed on tables created after the LogMiner dictionary was extracted can be shown correctly.

For example, if a table employees is updated through two successive DDL operations such that column gender is added in one operation, and column commission_pct is dropped in the next, LogMiner will keep versioned information for employees for each of these changes. This means that LogMiner can successfully mine redo log files that are from before and after these DDL changes, and no binary data will be presented for the SQL_REDO or SQL_UNDO columns.

Because LogMiner automatically assigns versions to the database metadata, it will detect and notify you of any mismatch between its internal dictionary and the dictionary in the redo log files. If LogMiner detects a mismatch, it generates binary data in the SQL_REDO column of the V$LOGMNR_CONTENTS view, the INFO column contains the string "Dictionary Version Mismatch", and the STATUS column will contain the value 2.

	
Note:

It is important to understand that the LogMiner internal dictionary is not the same as the LogMiner dictionary contained in a flat file, in redo log files, or in the online catalog. LogMiner does update its internal dictionary, but it does not update the dictionary that is contained in a flat file, in redo log files, or in the online catalog.

The following list describes the requirements for specifying the DDL_DICT_TRACKING option with the DBMS_LOGMNR.START_LOGMNR procedure.

	
The DDL_DICT_TRACKING option is not valid with the DICT_FROM_ONLINE_CATALOG option.

	
The DDL_DICT_TRACKING option requires that the database be open.

	
Supplemental logging must be enabled database-wide, or log groups must have been created for the tables of interest.

DDL_DICT_TRACKING and Supplemental Logging Settings

Note the following interactions that occur when various settings of dictionary tracking and supplemental logging are combined:

	
If DDL_DICT_TRACKING is enabled, but supplemental logging is not enabled and:

	
A DDL transaction is encountered in the redo log file, then a query of V$LOGMNR_CONTENTS will terminate with the ORA-01347 error.

	
A DML transaction is encountered in the redo log file, LogMiner will not assume that the current version of the table (underlying the DML) in its dictionary is correct, and columns in V$LOGMNR_CONTENTS will be set as follows:

	
The SQL_REDO column will contain binary data.

	
The STATUS column will contain a value of 2 (which indicates that the SQL is not valid).

	
The INFO column will contain the string 'Dictionary Mismatch'.

	
If DDL_DICT_TRACKING is not enabled and supplemental logging is not enabled, and the columns referenced in a DML operation match the columns in the LogMiner dictionary, then LogMiner assumes that the latest version in its dictionary is correct, and columns in V$LOGMNR_CONTENTS will be set as follows:

	
LogMiner will use the definition of the object in its dictionary to generate values for the SQL_REDO and SQL_UNDO columns.

	
The status column will contain a value of 3 (which indicates that the SQL is not guaranteed to be accurate).

	
The INFO column will contain the string 'no supplemental log data found'.

	
If DDL_DICT_TRACKING is not enabled and supplemental logging is not enabled and there are more modified columns in the redo log file for a table than the LogMiner dictionary definition for the table defines, then:

	
The SQL_REDO and SQL_UNDO columns will contain the string 'Dictionary Version Mismatch'.

	
The STATUS column will contain a value of 2 (which indicates that the SQL is not valid).

	
The INFO column will contain the string 'Dictionary Mismatch'.

Also be aware that it is possible to get unpredictable behavior if the dictionary definition of a column indicates one type but the column is really another type.

DDL_DICT_TRACKING and Specified Time or SCN Ranges

Because LogMiner must not miss a DDL statement if it is to ensure the consistency of its dictionary, LogMiner may start reading redo log files prior to your requested starting time or SCN (as specified with DBMS_LOGMNR.START_LOGMNR) when the DDL_DICT_TRACKING option is enabled. The actual time or SCN at which LogMiner starts reading redo log files is referred to as the required starting time or the required starting SCN.

No missing redo log files (based on sequence numbers) are allowed from the required starting time or the required starting SCN.

LogMiner determines where it will start reading redo log data as follows:

	
After the dictionary is loaded, the first time that you call DBMS_LOGMNR.START_LOGMNR, LogMiner begins reading as determined by one of the following, whichever causes it to begin earlier:

	
Your requested starting time or SCN value

	
The commit SCN of the dictionary dump

	
On subsequent calls to DBMS_LOGMNR.START_LOGMNR, LogMiner begins reading as determined for one of the following, whichever causes it to begin earliest:

	
Your requested starting time or SCN value

	
The start of the earliest DDL transaction where the COMMIT statement has not yet been read by LogMiner

	
The highest SCN read by LogMiner

The following scenario helps illustrate this:

Suppose you create a redo log file list containing five redo log files. Assume that a dictionary is contained in the first redo file, and the changes that you have indicated that you want to see (using DBMS_LOGMNR.START_LOGMNR) are recorded in the third redo log file. You then do the following:

	
Call DBMS_LOGMNR.START_LOGMNR. LogMiner will read:

	
The first log file to load the dictionary

	
The second redo log file to pick up any possible DDLs contained within it

	
The third log file to retrieve the data of interest

	
Call DBMS_LOGMNR.START_LOGMNR again with the same requested range.

LogMiner will begin with redo log file 3; it no longer needs to read redo log file 2, because it has already processed any DDL statements contained within it.

	
Call DBMS_LOGMNR.START_LOGMNR again, this time specifying parameters that require data to be read from redo log file 5.

LogMiner will start reading from redo log file 4 to pick up any DDL statements that may be contained within it.

Query the REQUIRED_START_DATE or the REQUIRED_START_SCN columns of the V$LOGMNR_PARAMETERS view to see where LogMiner will actually start reading. Regardless of where LogMiner starts reading, only rows in your requested range will be returned from the V$LOGMINER_CONTENTS view.

Accessing LogMiner Operational Information in Views

LogMiner operational information (as opposed to redo data) is contained in the following views. You can use SQL to query them as you would any other view.

	
V$LOGMNR_DICTIONARY

Shows information about a LogMiner dictionary file that was created using the STORE_IN_FLAT_FILE option to DBMS_LOGMNR.START_LOGMNR. The information shown includes information about the database from which the LogMiner dictionary was created.

	
V$LOGMNR_LOGS

Shows information about specified redo log files, as described in Querying V$LOGMNR_LOGS.

	
V$LOGMNR_PARAMETERS

Shows information about optional LogMiner parameters, including starting and ending system change numbers (SCNs) and starting and ending times.

	
V$DATABASE, DBA_LOG_GROUPS, ALL_LOG_GROUPS, USER_LOG_GROUPS, DBA_LOG_GROUP_COLUMNS, ALL_LOG_GROUP_COLUMNS, USER_LOG_GROUP_COLUMNS

Shows information about the current settings for supplemental logging, as described in Querying Views for Supplemental Logging Settings.

	
See Also:

Oracle Database Reference for detailed information about the contents of these views

Querying V$LOGMNR_LOGS

You can query the V$LOGMNR_LOGS view to determine which redo log files have been manually or automatically added to the list of redo log files for LogMiner to analyze. This view contains one row for each redo log file. It provides valuable information about each of the redo log files including filename, sequence #, SCN and time ranges, and whether it contains all or part of the LogMiner dictionary.

After a successful call to DBMS_LOGMNR.START_LOGMNR, the STATUS column of the V$LOGMNR_LOGS view contains one of the following values:

	
0

Indicates that the redo log file will be processed during a query of the V$LOGMNR_CONTENTS view.

	
1

Indicates that this will be the first redo log file to be processed by LogMiner during a select operation against the V$LOGMNR_CONTENTS view.

	
2

Indicates that the redo log file has been pruned and therefore will not be processed by LogMiner during a query of the V$LOGMNR_CONTENTS view. It has been pruned because it is not needed to satisfy your requested time or SCN range.

	
4

Indicates that a redo log file (based on sequence number) is missing from the LogMiner redo log file list.

The V$LOGMNR_LOGS view contains a row for each redo log file that is missing from the list, as follows:

	
The FILENAME column will contain the consecutive range of sequence numbers and total SCN range gap.

For example: 'Missing log file(s) for thread number 1, sequence number(s) 100 to 102'.

	
The INFO column will contain the string 'MISSING_LOGFILE'.

Information about files missing from the redo log file list can be useful for the following reasons:

	
The DDL_DICT_TRACKING and CONTINUOUS_MINE options that can be specified when you call DBMS_LOGMNR.START_LOGMNR will not allow redo log files to be missing from the LogMiner redo log file list for the requested time or SCN range. If a call to DBMS_LOGMNR.START_LOGMNR fails, you can query the STATUS column in the V$LOGMNR_LOGS view to determine which redo log files are missing from the list. You can then find and manually add these redo log files and attempt to call DBMS_LOGMNR.START_LOGMNR again.

	
Although all other options that can be specified when you call DBMS_LOGMNR.START_LOGMNR allow files to be missing from the LogMiner redo log file list, you may not want to have missing files. You can query the V$LOGMNR_LOGS view before querying the V$LOGMNR_CONTENTS view to ensure that all required files are in the list. If the list is left with missing files and you query the V$LOGMNR_CONTENTS view, a row is returned in V$LOGMNR_CONTENTS with the following column values:

	
In the OPERATION column, a value of 'MISSING_SCN'

	
In the STATUS column, a value of 1291

	
In the INFO column, a string indicating the missing SCN range (for example, 'Missing SCN 100 - 200')

Querying Views for Supplemental Logging Settings

You can query a number of views to determine the current settings for supplemental logging, as described in the following list:

	
V$DATABASE view

	
SUPPLEMENTAL_LOG_DATA_FK column

This column contains one of the following values:

	
NO - if database-level identification key logging with the FOREIGN KEY option is not enabled

	
YES - if database-level identification key logging with the FOREIGN KEY option is enabled

	
SUPPLEMENTAL_LOG_DATA_ALL column

This column contains one of the following values:

	
NO - if database-level identification key logging with the ALL option is not enabled

	
YES - if database-level identification key logging with the ALL option is enabled

	
SUPPLEMENTAL_LOG_DATA_UI column

	
NO - if database-level identification key logging with the UNIQUE option is not enabled

	
YES - if database-level identification key logging with the UNIQUE option is enabled

	
SUPPLEMENTAL_LOG_DATA_MIN column

This column contains one of the following values:

	
NO - if no database-level supplemental logging is enabled

	
IMPLICIT - if minimal supplemental logging is enabled because database-level identification key logging options is enabled

	
YES - if minimal supplemental logging is enabled because the SQL ALTER DATABASE ADD SUPPLEMENTAL LOG DATA statement was issued

	
DBA_LOG_GROUPS, ALL_LOG_GROUPS, and USER_LOG_GROUPS views

	
ALWAYS column

This column contains one of the following values:

	
ALWAYS - indicates that the columns in this log group will be supplementally logged if any column in the associated row is updated

	
CONDITIONAL - indicates that the columns in this group will be supplementally logged only if a column in the log group is updated

	
GENERATED column

This column contains one of the following values:

	
GENERATED NAME - if the LOG_GROUP name was system-generated

	
USER NAME - if the LOG_GROUP name was user-defined

	
LOG_GROUP_TYPES column

This column contains one of the following values to indicate the type of logging defined for this log group. USER LOG GROUP indicates that the log group was user-defined (as opposed to system-generated).

	
ALL COLUMN LOGGING

	
FOREIGN KEY LOGGING

	
PRIMARY KEY LOGGING

	
UNIQUE KEY LOGGING

	
USER LOG GROUP

	
DBA_LOG_GROUP_COLUMNS, ALL_LOG_GROUP_COLUMNS, and USER_LOG_GROUP_COLUMNS views

	
The LOGGING_PROPERTY column

This column contains one of the following values:

	
LOG - indicates that this column in the log group will be supplementally logged

	
NO LOG - indicates that this column in the log group will not be supplementally logged

Steps in a Typical LogMiner Session

This section describes the steps in a typical LogMiner session. Each step is described in its own subsection.

	
Enable Supplemental Logging

	
Extract a LogMiner Dictionary (unless you plan to use the online catalog)

	
Specify Redo Log Files for Analysis

	
Start LogMiner

	
Query V$LOGMNR_CONTENTS

	
End the LogMiner Session

To run LogMiner, you use the DBMS_LOGMNR PL/SQL package. Additionally, you might also use the DBMS_LOGMNR_D package if you choose to extract a LogMiner dictionary rather than use the online catalog.

The DBMS_LOGMNR package contains the procedures used to initialize and run LogMiner, including interfaces to specify names of redo log files, filter criteria, and session characteristics. The DBMS_LOGMNR_D package queries the database dictionary tables of the current database to create a LogMiner dictionary file.

The LogMiner PL/SQL packages are owned by the SYS schema. Therefore, if you are not connected as user sys:

	
You must include SYS in your call. For example:

EXECUTE SYS.DBMS_LOGMNR.END_LOGMNR;

	
You must have been granted the EXECUTE_CATALOG_ROLE role.

	
See Also:

	
Oracle Database PL/SQL Packages and Types Reference for details about syntax and parameters for these LogMiner packages

	
Oracle Database Advanced Application Developer's Guide for information about executing PL/SQL procedures

Enable Supplemental Logging

Enable the type of supplemental logging you want to use. At the very least, you must enable minimal supplemental logging, as follows:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

See Supplemental Logging for more information.

Extract a LogMiner Dictionary

To use LogMiner, you must supply it with a dictionary by doing one of the following:

	
Specify use of the online catalog by using the DICT_FROM_ONLINE_CATALOG option when you start LogMiner. See Using the Online Catalog.

	
Extract database dictionary information to the redo log files. See Extracting a LogMiner Dictionary to the Redo Log Files.

	
Extract database dictionary information to a flat file. See Extracting the LogMiner Dictionary to a Flat File.

Specify Redo Log Files for Analysis

Before you can start LogMiner, you must specify the redo log files that you want to analyze. To do so, execute the DBMS_LOGMNR.ADD_LOGFILE procedure, as demonstrated in the following steps. You can add and remove redo log files in any order.

	
Note:

If you will be mining in the database instance that is generating the redo log files, you only need to specify the CONTINUOUS_MINE option and one of the following when you start LogMiner:
	
The STARTSCN parameter

	
The STARTTIME parameter

For more information, see Redo Log File Options.

	
Use SQL*Plus to start an Oracle instance, with the database either mounted or unmounted. For example, enter the STARTUP statement at the SQL prompt:

STARTUP

	
Create a list of redo log files. Specify the NEW option of the DBMS_LOGMNR.ADD_LOGFILE PL/SQL procedure to signal that this is the beginning of a new list. For example, enter the following to specify the /oracle/logs/log1.f redo log file:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/oracle/logs/log1.f', -
 OPTIONS => DBMS_LOGMNR.NEW);

	
If desired, add more redo log files by specifying the ADDFILE option of the DBMS_LOGMNR.ADD_LOGFILE PL/SQL procedure. For example, enter the following to add the /oracle/logs/log2.f redo log file:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/oracle/logs/log2.f', -
 OPTIONS => DBMS_LOGMNR.ADDFILE);

The OPTIONS parameter is optional when you are adding additional redo log files. For example, you could simply enter the following:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME=>'/oracle/logs/log2.f');

	
If desired, remove redo log files by using the DBMS_LOGMNR.REMOVE_LOGFILE PL/SQL procedure. For example, enter the following to remove the /oracle/logs/log2.f redo log file:

EXECUTE DBMS_LOGMNR.REMOVE_LOGFILE(-
 LOGFILENAME => '/oracle/logs/log2.f');

Start LogMiner

After you have created a LogMiner dictionary file and specified which redo log files to analyze, you must start LogMiner. Take the following steps:

	
Execute the DBMS_LOGMNR.START_LOGMNR procedure to start LogMiner.

Oracle recommends that you specify a LogMiner dictionary option. If you do not, LogMiner cannot translate internal object identifiers and datatypes to object names and external data formats. Therefore, it would return internal object IDs and present data as binary data. Additionally, the MINE_VALUE and COLUMN_PRESENT functions cannot be used without a dictionary.

If you are specifying the name of a flat file LogMiner dictionary, you must supply a fully qualified filename for the dictionary file. For example, to start LogMiner using /oracle/database/dictionary.ora, issue the following statement:

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 DICTFILENAME =>'/oracle/database/dictionary.ora');

If you are not specifying a flat file dictionary name, then use the OPTIONS parameter to specify either the DICT_FROM_REDO_LOGS or DICT_FROM_ONLINE_CATALOG option.

If you specify DICT_FROM_REDO_LOGS, LogMiner expects to find a dictionary in the redo log files that you specified with the DBMS_LOGMNR.ADD_LOGFILE procedure. To determine which redo log files contain a dictionary, look at the V$ARCHIVED_LOG view. See Extracting a LogMiner Dictionary to the Redo Log Files for an example.

	
Note:

If you add additional redo log files after LogMiner has been started, you must restart LogMiner. LogMiner will not retain options that were included in the previous call to DBMS_LOGMNR.START_LOGMNR; you must respecify those options that you want to use. However, LogMiner will retain the dictionary specification from the previous call if you do not specify a dictionary in the current call to DBMS_LOGMNR.START_LOGMNR.

For more information about the DICT_FROM_ONLINE_CATALOG option, see Using the Online Catalog.

	
Optionally, you can filter your query by time or by SCN. See Filtering Data by Time or Filtering Data by SCN.

	
You can also use the OPTIONS parameter to specify additional characteristics of your LogMiner session. For example, you might decide to use the online catalog as your LogMiner dictionary and to have only committed transactions shown in the V$LOGMNR_CONTENTS view, as follows:

EXECUTE DBMS_LOGMNR.START_LOGMNR(OPTIONS => -
 DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG + -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY);

For more information about DBMS_LOGMNR.START_LOGMNR options, see Oracle Database PL/SQL Packages and Types Reference.

You can execute the DBMS_LOGMNR.START_LOGMNR procedure multiple times, specifying different options each time. This can be useful, for example, if you did not get the desired results from a query of V$LOGMNR_CONTENTS, and want to restart LogMiner with different options. Unless you need to respecify the LogMiner dictionary, you do not need to add redo log files if they were already added with a previous call to DBMS_LOGMNR.START_LOGMNR.

Query V$LOGMNR_CONTENTS

At this point, LogMiner is started and you can perform queries against the V$LOGMNR_CONTENTS view. See Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS for examples of this.

End the LogMiner Session

To properly end a LogMiner session, use the DBMS_LOGMNR.END_LOGMNR PL/SQL procedure, as follows:

EXECUTE DBMS_LOGMNR.END_LOGMNR;

This procedure closes all the redo log files and allows all the database and system resources allocated by LogMiner to be released.

If this procedure is not executed, LogMiner retains all its allocated resources until the end of the Oracle session in which it was invoked. It is particularly important to use this procedure to end the LogMiner session if either the DDL_DICT_TRACKING option or the DICT_FROM_REDO_LOGS option was used.

Examples Using LogMiner

This section provides several examples of using LogMiner in each of the following general categories:

	
Examples of Mining by Explicitly Specifying the Redo Log Files of Interest

	
Examples of Mining Without Specifying the List of Redo Log Files Explicitly

	
Example Scenarios

	
Note:

All examples in this section assume that minimal supplemental logging has been enabled:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

See Supplemental Logging for more information.

All examples, except Example 2: Mining the Redo Log Files in a Given SCN Range and the Example Scenarios, assume that the NLS_DATE_FORMAT parameter has been set as follows:

SQL> ALTER SESSION SET NLS_DATE_FORMAT = 'dd-mon-yyyy hh24:mi:ss';

Because LogMiner displays date data using the setting for the NLS_DATE_FORMAT parameter that is active for the user session, this step is optional. However, setting the parameter explicitly lets you predict the date format.

Examples of Mining by Explicitly Specifying the Redo Log Files of Interest

The following examples demonstrate how to use LogMiner when you know which redo log files contain the data of interest. This section contains the following list of examples; these examples are best read sequentially, because each example builds on the example or examples that precede it:

	
Example 1: Finding All Modifications in the Last Archived Redo Log File

	
Example 2: Grouping DML Statements into Committed Transactions

	
Example 3: Formatting the Reconstructed SQL

	
Example 4: Using the LogMiner Dictionary in the Redo Log Files

	
Example 5: Tracking DDL Statements in the Internal Dictionary

	
Example 6: Filtering Output by Time Range

The SQL output formatting may be different on your display than that shown in these examples.

Example 1: Finding All Modifications in the Last Archived Redo Log File

The easiest way to examine the modification history of a database is to mine at the source database and use the online catalog to translate the redo log files. This example shows how to do the simplest analysis using LogMiner.

This example finds all modifications that are contained in the last archived redo log generated by the database (assuming that the database is not an Oracle Real Application Clusters database).

Step 1 Determine which redo log file was most recently archived.

This example assumes that you know that you want to mine the redo log file that was most recently archived.

SELECT NAME FROM V$ARCHIVED_LOG
 WHERE FIRST_TIME = (SELECT MAX(FIRST_TIME) FROM V$ARCHIVED_LOG);

NAME

/usr/oracle/data/db1arch_1_16_482701534.dbf

Step 2 Specify the list of redo log files to be analyzed.

Specify the redo log file that was returned by the query in Step 1. The list will consist of one redo log file.

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_16_482701534.dbf', -
 OPTIONS => DBMS_LOGMNR.NEW);

Step 3 Start LogMiner.

Start LogMiner and specify the dictionary to use.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG);

Step 4 Query the V$LOGMNR_CONTENTS view.

Note that there are four transactions (two of them were committed within the redo log file being analyzed, and two were not). The output shows the DML statements in the order in which they were executed; thus transactions interleave among themselves.

SELECT username AS USR, (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID,
 SQL_REDO, SQL_UNDO FROM V$LOGMNR_CONTENTS WHERE username IN ('HR', 'OE');

USR XID SQL_REDO SQL_UNDO
---- --------- --
HR 1.11.1476 set transaction read write;

HR 1.11.1476 insert into "HR"."EMPLOYEES"(delete from "HR"."EMPLOYEES"
 "EMPLOYEE_ID","FIRST_NAME", where "EMPLOYEE_ID" = '306'
 "LAST_NAME","EMAIL", and "FIRST_NAME" = 'Nandini'
 "PHONE_NUMBER","HIRE_DATE", and "LAST_NAME" = 'Shastry'
 "JOB_ID","SALARY", and "EMAIL" = 'NSHASTRY'
 "COMMISSION_PCT","MANAGER_ID", and "PHONE_NUMBER" = '1234567890'
 "DEPARTMENT_ID") values and "HIRE_DATE" = TO_DATE('10-JAN-2003
 ('306','Nandini','Shastry', 13:34:43', 'dd-mon-yyyy hh24:mi:ss')
 'NSHASTRY', '1234567890', and "JOB_ID" = 'HR_REP' and
 TO_DATE('10-jan-2003 13:34:43', "SALARY" = '120000' and
 'dd-mon-yyyy hh24:mi:ss'), "COMMISSION_PCT" = '.05' and
 'HR_REP','120000', '.05', "DEPARTMENT_ID" = '10' and
 '105','10'); ROWID = 'AAAHSkAABAAAY6rAAO';

OE 1.1.1484 set transaction read write;

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION" update "OE"."PRODUCT_INFORMATION"
 set "WARRANTY_PERIOD" = set "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+05-00') where TO_YMINTERVAL('+01-00') where
 "PRODUCT_ID" = '1799' and "PRODUCT_ID" = '1799' and
 "WARRANTY_PERIOD" = "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+01-00') and TO_YMINTERVAL('+05-00') and
 ROWID = 'AAAHTKAABAAAY9mAAB'; ROWID = 'AAAHTKAABAAAY9mAAB';

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION" update "OE"."PRODUCT_INFORMATION"
 set "WARRANTY_PERIOD" = set "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+05-00') where TO_YMINTERVAL('+01-00') where
 "PRODUCT_ID" = '1801' and "PRODUCT_ID" = '1801' and
 "WARRANTY_PERIOD" = "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+01-00') and TO_YMINTERVAL('+05-00') and
 ROWID = 'AAAHTKAABAAAY9mAAC'; ROWID ='AAAHTKAABAAAY9mAAC';

HR 1.11.1476 insert into "HR"."EMPLOYEES"(delete from "HR"."EMPLOYEES"
 "EMPLOYEE_ID","FIRST_NAME", "EMPLOYEE_ID" = '307' and
 "LAST_NAME","EMAIL", "FIRST_NAME" = 'John' and
 "PHONE_NUMBER","HIRE_DATE", "LAST_NAME" = 'Silver' and
 "JOB_ID","SALARY", "EMAIL" = 'JSILVER' and
 "COMMISSION_PCT","MANAGER_ID", "PHONE_NUMBER" = '5551112222'
 "DEPARTMENT_ID") values and "HIRE_DATE" = TO_DATE('10-jan-2003
 ('307','John','Silver', 13:41:03', 'dd-mon-yyyy hh24:mi:ss')
 'JSILVER', '5551112222', and "JOB_ID" ='105' and "DEPARTMENT_ID"
 TO_DATE('10-jan-2003 13:41:03', = '50' and ROWID = 'AAAHSkAABAAAY6rAAP';
 'dd-mon-yyyy hh24:mi:ss'),
 'SH_CLERK','110000', '.05',
 '105','50');

OE 1.1.1484 commit;

HR 1.15.1481 set transaction read write;

HR 1.15.1481 delete from "HR"."EMPLOYEES" insert into "HR"."EMPLOYEES"(
 where "EMPLOYEE_ID" = '205' and "EMPLOYEE_ID","FIRST_NAME",
 "FIRST_NAME" = 'Shelley' and "LAST_NAME","EMAIL","PHONE_NUMBER",
 "LAST_NAME" = 'Higgins' and "HIRE_DATE", "JOB_ID","SALARY",
 "EMAIL" = 'SHIGGINS' and "COMMISSION_PCT","MANAGER_ID",
 "PHONE_NUMBER" = '515.123.8080' "DEPARTMENT_ID") values
 and "HIRE_DATE" = TO_DATE(('205','Shelley','Higgins',
 '07-jun-1994 10:05:01', and 'SHIGGINS','515.123.8080',
 'dd-mon-yyyy hh24:mi:ss') TO_DATE('07-jun-1994 10:05:01',
 and "JOB_ID" = 'AC_MGR' 'dd-mon-yyyy hh24:mi:ss'),
 and "SALARY"= '12000' 'AC_MGR','12000',NULL,'101','110');
 and "COMMISSION_PCT" IS NULL
 and "MANAGER_ID"
 = '101' and "DEPARTMENT_ID" =
 '110' and ROWID =
 'AAAHSkAABAAAY6rAAM';

OE 1.8.1484 set transaction read write;

OE 1.8.1484 update "OE"."PRODUCT_INFORMATION" update "OE"."PRODUCT_INFORMATION"
 set "WARRANTY_PERIOD" = set "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+12-06') where TO_YMINTERVAL('+20-00') where
 "PRODUCT_ID" = '2350' and "PRODUCT_ID" = '2350' and
 "WARRANTY_PERIOD" = "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+20-00') and TO_YMINTERVAL('+20-00') and
 ROWID = 'AAAHTKAABAAAY9tAAD'; ROWID ='AAAHTKAABAAAY9tAAD';

HR 1.11.1476 commit;

Step 5 End the LogMiner session.

SQL> EXECUTE DBMS_LOGMNR.END_LOGMNR();

Example 2: Grouping DML Statements into Committed Transactions

As shown in the first example, Example 1: Finding All Modifications in the Last Archived Redo Log File, LogMiner displays all modifications it finds in the redo log files that it analyzes by default, regardless of whether the transaction has been committed or not. In addition, LogMiner shows modifications in the same order in which they were executed. Because DML statements that belong to the same transaction are not grouped together, visual inspection of the output can be difficult. Although you can use SQL to group transactions, LogMiner provides an easier way. In this example, the latest archived redo log file will again be analyzed, but it will return only committed transactions.

Step 1 Determine which redo log file was most recently archived by the database.

This example assumes that you know that you want to mine the redo log file that was most recently archived.

SELECT NAME FROM V$ARCHIVED_LOG
 WHERE FIRST_TIME = (SELECT MAX(FIRST_TIME) FROM V$ARCHIVED_LOG);

NAME

/usr/oracle/data/db1arch_1_16_482701534.dbf

Step 2 Specify the list of redo log files to be analyzed.

Specify the redo log file that was returned by the query in Step 1. The list will consist of one redo log file.

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_16_482701534.dbf', -
 OPTIONS => DBMS_LOGMNR.NEW);

Step 3 Start LogMiner.

Start LogMiner by specifying the dictionary to use and the COMMITTED_DATA_ONLY option.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG + -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY);

Step 4 Query the V$LOGMNR_CONTENTS view.

Although transaction 1.11.1476 was started before transaction 1.1.1484 (as revealed in Example 1: Finding All Modifications in the Last Archived Redo Log File), it committed after transaction 1.1.1484 committed. In this example, therefore, transaction 1.1.1484 is shown in its entirety before transaction 1.11.1476. The two transactions that did not commit within the redo log file being analyzed are not returned.

SELECT username AS USR, (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID, SQL_REDO,
 SQL_UNDO FROM V$LOGMNR_CONTENTS WHERE username IN ('HR', 'OE');
;
USR XID SQL_REDO SQL_UNDO
---- --------- ------------------------------- ---------------------------------

OE 1.1.1484 set transaction read write;

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION" update "OE"."PRODUCT_INFORMATION"
 set "WARRANTY_PERIOD" = set "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+05-00') where TO_YMINTERVAL('+01-00') where
 "PRODUCT_ID" = '1799' and "PRODUCT_ID" = '1799' and
 "WARRANTY_PERIOD" = "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+01-00') and TO_YMINTERVAL('+05-00') and
 ROWID = 'AAAHTKAABAAAY9mAAB'; ROWID = 'AAAHTKAABAAAY9mAAB';

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION" update "OE"."PRODUCT_INFORMATION"
 set "WARRANTY_PERIOD" = set "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+05-00') where TO_YMINTERVAL('+01-00') where
 "PRODUCT_ID" = '1801' and "PRODUCT_ID" = '1801' and
 "WARRANTY_PERIOD" = "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+01-00') and TO_YMINTERVAL('+05-00') and
 ROWID = 'AAAHTKAABAAAY9mAAC'; ROWID ='AAAHTKAABAAAY9mAAC';

OE 1.1.1484 commit;

HR 1.11.1476 set transaction read write;

HR 1.11.1476 insert into "HR"."EMPLOYEES"(delete from "HR"."EMPLOYEES"
 "EMPLOYEE_ID","FIRST_NAME", where "EMPLOYEE_ID" = '306'
 "LAST_NAME","EMAIL", and "FIRST_NAME" = 'Nandini'
 "PHONE_NUMBER","HIRE_DATE", and "LAST_NAME" = 'Shastry'
 "JOB_ID","SALARY", and "EMAIL" = 'NSHASTRY'
 "COMMISSION_PCT","MANAGER_ID", and "PHONE_NUMBER" = '1234567890'
 "DEPARTMENT_ID") values and "HIRE_DATE" = TO_DATE('10-JAN-2003
 ('306','Nandini','Shastry', 13:34:43', 'dd-mon-yyyy hh24:mi:ss')
 'NSHASTRY', '1234567890', and "JOB_ID" = 'HR_REP' and
 TO_DATE('10-jan-2003 13:34:43', "SALARY" = '120000' and
 'dd-mon-yyy hh24:mi:ss'), "COMMISSION_PCT" = '.05' and
 'HR_REP','120000', '.05', "DEPARTMENT_ID" = '10' and
 '105','10'); ROWID = 'AAAHSkAABAAAY6rAAO';

HR 1.11.1476 insert into "HR"."EMPLOYEES"(delete from "HR"."EMPLOYEES"
 "EMPLOYEE_ID","FIRST_NAME", "EMPLOYEE_ID" = '307' and
 "LAST_NAME","EMAIL", "FIRST_NAME" = 'John' and
 "PHONE_NUMBER","HIRE_DATE", "LAST_NAME" = 'Silver' and
 "JOB_ID","SALARY", "EMAIL" = 'JSILVER' and
 "COMMISSION_PCT","MANAGER_ID", "PHONE_NUMBER" = '5551112222'
 "DEPARTMENT_ID") values and "HIRE_DATE" = TO_DATE('10-jan-2003
 ('307','John','Silver', 13:41:03', 'dd-mon-yyyy hh24:mi:ss')
 'JSILVER', '5551112222', and "JOB_ID" ='105' and "DEPARTMENT_ID"
 TO_DATE('10-jan-2003 13:41:03', = '50' and ROWID = 'AAAHSkAABAAAY6rAAP';
 'dd-mon-yyyy hh24:mi:ss'),
 'SH_CLERK','110000', '.05',
 '105','50');

HR 1.11.1476 commit;

Step 5 End the LogMiner session.

EXECUTE DBMS_LOGMNR.END_LOGMNR();

Example 3: Formatting the Reconstructed SQL

As shown in Example 2: Grouping DML Statements into Committed Transactions, using the COMMITTED_DATA_ONLY option with the dictionary in the online redo log file is an easy way to focus on committed transactions. However, one aspect remains that makes visual inspection difficult: the association between the column names and their respective values in an INSERT statement are not apparent. This can be addressed by specifying the PRINT_PRETTY_SQL option. Note that specifying this option will make some of the reconstructed SQL statements nonexecutable.

Step 1 Determine which redo log file was most recently archived.

This example assumes that you know that you want to mine the redo log file that was most recently archived.

SELECT NAME FROM V$ARCHIVED_LOG
 WHERE FIRST_TIME = (SELECT MAX(FIRST_TIME) FROM V$ARCHIVED_LOG);

NAME

/usr/oracle/data/db1arch_1_16_482701534.dbf

Step 2 Specify the list of redo log files to be analyzed.

Specify the redo log file that was returned by the query in Step 1. The list will consist of one redo log file.

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_16_482701534.dbf', -
 OPTIONS => DBMS_LOGMNR.NEW);

Step 3 Start LogMiner.

Start LogMiner by specifying the dictionary to use and the COMMITTED_DATA_ONLY and PRINT_PRETTY_SQL options.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG + -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY + -
 DBMS_LOGMNR.PRINT_PRETTY_SQL);

The DBMS_LOGMNR.PRINT_PRETTY_SQL option changes only the format of the reconstructed SQL, and therefore is useful for generating reports for visual inspection.

Step 4 Query the V$LOGMNR_CONTENTS view for SQL_REDO statements.

SELECT username AS USR, (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID, SQL_REDO
 FROM V$LOGMNR_CONTENTS;

USR XID SQL_REDO
---- --------- ---

OE 1.1.1484 set transaction read write;

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00')
 where
 "PRODUCT_ID" = '1799' and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+01-00') and
 ROWID = 'AAAHTKAABAAAY9mAAB';

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00')
 where
 "PRODUCT_ID" = '1801' and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+01-00') and
 ROWID = 'AAAHTKAABAAAY9mAAC';

OE 1.1.1484 commit;

HR 1.11.1476 set transaction read write;

HR 1.11.1476 insert into "HR"."EMPLOYEES"
 values
 "EMPLOYEE_ID" = 306,
 "FIRST_NAME" = 'Nandini',
 "LAST_NAME" = 'Shastry',
 "EMAIL" = 'NSHASTRY',
 "PHONE_NUMBER" = '1234567890',
 "HIRE_DATE" = TO_DATE('10-jan-2003 13:34:43',
 'dd-mon-yyyy hh24:mi:ss',
 "JOB_ID" = 'HR_REP',
 "SALARY" = 120000,
 "COMMISSION_PCT" = .05,
 "MANAGER_ID" = 105,
 "DEPARTMENT_ID" = 10;

HR 1.11.1476 insert into "HR"."EMPLOYEES"
 values
 "EMPLOYEE_ID" = 307,
 "FIRST_NAME" = 'John',
 "LAST_NAME" = 'Silver',
 "EMAIL" = 'JSILVER',
 "PHONE_NUMBER" = '5551112222',
 "HIRE_DATE" = TO_DATE('10-jan-2003 13:41:03',
 'dd-mon-yyyy hh24:mi:ss'),
 "JOB_ID" = 'SH_CLERK',
 "SALARY" = 110000,
 "COMMISSION_PCT" = .05,
 "MANAGER_ID" = 105,
 "DEPARTMENT_ID" = 50;
HR 1.11.1476 commit;

Step 5 Query the V$LOGMNR_CONTENTS view for reconstructed SQL_UNDO statements.

SELECT username AS USR, (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID, SQL_UNDO
 FROM V$LOGMNR_CONTENTS;

USR XID SQL_UNDO
---- --------- ---

OE 1.1.1484 set transaction read write;

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+01-00')
 where
 "PRODUCT_ID" = '1799' and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and
 ROWID = 'AAAHTKAABAAAY9mAAB';

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+01-00')
 where
 "PRODUCT_ID" = '1801' and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and
 ROWID = 'AAAHTKAABAAAY9mAAC';

OE 1.1.1484 commit;

HR 1.11.1476 set transaction read write;

HR 1.11.1476 delete from "HR"."EMPLOYEES"
 where
 "EMPLOYEE_ID" = 306 and
 "FIRST_NAME" = 'Nandini' and
 "LAST_NAME" = 'Shastry' and
 "EMAIL" = 'NSHASTRY' and
 "PHONE_NUMBER" = '1234567890' and
 "HIRE_DATE" = TO_DATE('10-jan-2003 13:34:43',
 'dd-mon-yyyy hh24:mi:ss') and
 "JOB_ID" = 'HR_REP' and
 "SALARY" = 120000 and
 "COMMISSION_PCT" = .05 and
 "MANAGER_ID" = 105 and
 "DEPARTMENT_ID" = 10 and
 ROWID = 'AAAHSkAABAAAY6rAAO';

HR 1.11.1476 delete from "HR"."EMPLOYEES"
 where
 "EMPLOYEE_ID" = 307 and
 "FIRST_NAME" = 'John' and
 "LAST_NAME" = 'Silver' and
 "EMAIL" = 'JSILVER' and
 "PHONE_NUMBER" = '555122122' and
 "HIRE_DATE" = TO_DATE('10-jan-2003 13:41:03',
 'dd-mon-yyyy hh24:mi:ss') and
 "JOB_ID" = 'SH_CLERK' and
 "SALARY" = 110000 and
 "COMMISSION_PCT" = .05 and
 "MANAGER_ID" = 105 and
 "DEPARTMENT_ID" = 50 and
 ROWID = 'AAAHSkAABAAAY6rAAP';
HR 1.11.1476 commit;

Step 6 End the LogMiner session.

EXECUTE DBMS_LOGMNR.END_LOGMNR();

Example 4: Using the LogMiner Dictionary in the Redo Log Files

This example shows how to use the dictionary that has been extracted to the redo log files. When you use the dictionary in the online catalog, you must mine the redo log files in the same database that generated them. Using the dictionary contained in the redo log files enables you to mine redo log files in a different database.

Step 1 Determine which redo log file was most recently archived by the database.

This example assumes that you know that you want to mine the redo log file that was most recently archived.

SELECT NAME, SEQUENCE# FROM V$ARCHIVED_LOG
 WHERE FIRST_TIME = (SELECT MAX(FIRST_TIME) FROM V$ARCHIVED_LOG);

NAME SEQUENCE#
-- --------------
/usr/oracle/data/db1arch_1_210_482701534.dbf 210

Step 2 Find the redo log files containing the dictionary.

The dictionary may be contained in more than one redo log file. Therefore, you need to determine which redo log files contain the start and end of the dictionary. Query the V$ARCHIVED_LOG view, as follows:

	
Find a redo log file that contains the end of the dictionary extract. This redo log file must have been created before the redo log file that you want to analyze, but should be as recent as possible.

SELECT NAME, SEQUENCE#, DICTIONARY_BEGIN d_beg, DICTIONARY_END d_end
 FROM V$ARCHIVED_LOG
 WHERE SEQUENCE# = (SELECT MAX (SEQUENCE#) FROM V$ARCHIVED_LOG
 WHERE DICTIONARY_END = 'YES' and SEQUENCE# <= 210);

NAME SEQUENCE# D_BEG D_END
-- ---------- ----- ------
/usr/oracle/data/db1arch_1_208_482701534.dbf 208 NO YES

	
Find the redo log file that contains the start of the data dictionary extract that matches the end of the dictionary found in the previous step:

SELECT NAME, SEQUENCE#, DICTIONARY_BEGIN d_beg, DICTIONARY_END d_end
 FROM V$ARCHIVED_LOG
 WHERE SEQUENCE# = (SELECT MAX (SEQUENCE#) FROM V$ARCHIVED_LOG
 WHERE DICTIONARY_BEGIN = 'YES' and SEQUENCE# <= 208);

NAME SEQUENCE# D_BEG D_END
-- ---------- ----- ------
/usr/oracle/data/db1arch_1_207_482701534.dbf 207 YES NO

	
Specify the list of the redo log files of interest. Add the redo log files that contain the start and end of the dictionary and the redo log file that you want to analyze. You can add the redo log files in any order.

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_210_482701534.dbf', -
 OPTIONS => DBMS_LOGMNR.NEW);
EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_208_482701534.dbf');
EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_207_482701534.dbf');

	
Query the V$LOGMNR_LOGS view to display the list of redo log files to be analyzed, including their timestamps.

In the output, LogMiner flags a missing redo log file. LogMiner lets you proceed with mining, provided that you do not specify an option that requires the missing redo log file for proper functioning.

SQL> SELECT FILENAME AS name, LOW_TIME, HIGH_TIME FROM V$LOGMNR_LOGS;
 NAME LOW_TIME HIGH_TIME
------------------------------------- -------------------- --------------------
/usr/data/db1arch_1_207_482701534.dbf 10-jan-2003 12:01:34 10-jan-2003 13:32:46

/usr/data/db1arch_1_208_482701534.dbf 10-jan-2003 13:32:46 10-jan-2003 15:57:03

Missing logfile(s) for thread number 1, 10-jan-2003 15:57:03 10-jan-2003 15:59:53
sequence number(s) 209 to 209

/usr/data/db1arch_1_210_482701534.dbf 10-jan-2003 15:59:53 10-jan-2003 16:07:41

Step 3 Start LogMiner.

Start LogMiner by specifying the dictionary to use and the COMMITTED_DATA_ONLY and PRINT_PRETTY_SQL options.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 OPTIONS => DBMS_LOGMNR.DICT_FROM_REDO_LOGS + -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY + -
 DBMS_LOGMNR.PRINT_PRETTY_SQL);

Step 4 Query the V$LOGMNR_CONTENTS view.

To reduce the number of rows returned by the query, exclude from the query all DML statements done in the SYS or SYSTEM schemas. (This query specifies a timestamp to exclude transactions that were involved in the dictionary extraction.)

The output shows three transactions: two DDL transactions and one DML transaction. The DDL transactions, 1.2.1594 and 1.18.1602, create the table oe.product_tracking and create a trigger on table oe.product_information, respectively. In both transactions, the DML statements done to the system tables (tables owned by SYS) are filtered out because of the query predicate.

The DML transaction, 1.9.1598, updates the oe.product_information table. The update operation in this transaction is fully translated. However, the query output also contains some untranslated reconstructed SQL statements. Most likely, these statements were done on the oe.product_tracking table that was created after the data dictionary was extracted to the redo log files.

(The next example shows how to run LogMiner with the DDL_DICT_TRACKING option so that all SQL statements are fully translated; no binary data is returned.)

SELECT USERNAME AS usr, SQL_REDO FROM V$LOGMNR_CONTENTS
 WHERE SEG_OWNER IS NULL OR SEG_OWNER NOT IN ('SYS', 'SYSTEM') AND
 TIMESTAMP > '10-jan-2003 15:59:53';

USR XID SQL_REDO
--- -------- -----------------------------------
SYS 1.2.1594 set transaction read write;
SYS 1.2.1594 create table oe.product_tracking (product_id number not null,
 modified_time date,
 old_list_price number(8,2),
 old_warranty_period interval year(2) to month);
SYS 1.2.1594 commit;

SYS 1.18.1602 set transaction read write;
SYS 1.18.1602 create or replace trigger oe.product_tracking_trigger
 before update on oe.product_information
 for each row
 when (new.list_price <> old.list_price or
 new.warranty_period <> old.warranty_period)
 declare
 begin
 insert into oe.product_tracking values
 (:old.product_id, sysdate,
 :old.list_price, :old.warranty_period);
 end;
SYS 1.18.1602 commit;

OE 1.9.1598 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+08-00'),
 "LIST_PRICE" = 100
 where
 "PRODUCT_ID" = 1729 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and
 "LIST_PRICE" = 80 and
 ROWID = 'AAAHTKAABAAAY9yAAA';

OE 1.9.1598 insert into "UNKNOWN"."OBJ# 33415"
 values
 "COL 1" = HEXTORAW('c2121e'),
 "COL 2" = HEXTORAW('7867010d110804'),
 "COL 3" = HEXTORAW('c151'),
 "COL 4" = HEXTORAW('800000053c');

OE 1.9.1598 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+08-00'),
 "LIST_PRICE" = 92
 where
 "PRODUCT_ID" = 2340 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and
 "LIST_PRICE" = 72 and
 ROWID = 'AAAHTKAABAAAY9zAAA';

OE 1.9.1598 insert into "UNKNOWN"."OBJ# 33415"
 values
 "COL 1" = HEXTORAW('c21829'),
 "COL 2" = HEXTORAW('7867010d110808'),
 "COL 3" = HEXTORAW('c149'),
 "COL 4" = HEXTORAW('800000053c');

OE 1.9.1598 commit;

Step 5 Issue additional queries, if desired.

Display all the DML statements that were executed as part of the CREATE TABLE DDL statement. This includes statements executed by users and internally by Oracle.

	
Note:

If you choose to reapply statements displayed by a query such as the one shown here, reapply DDL statements only. Do not reapply DML statements that were executed internally by Oracle, or you risk corrupting your database. In the following output, the only statement that you should use in a reapply operation is the CREATE TABLE OE.PRODUCT_TRACKING statement.

SELECT SQL_REDO FROM V$LOGMNR_CONTENTS
 WHERE XIDUSN = 1 and XIDSLT = 2 and XIDSQN = 1594;

SQL_REDO
--
set transaction read write;

insert into "SYS"."OBJ$"
 values
 "OBJ#" = 33415,
 "DATAOBJ#" = 33415,
 "OWNER#" = 37,
 "NAME" = 'PRODUCT_TRACKING',
 "NAMESPACE" = 1,
 "SUBNAME" IS NULL,
 "TYPE#" = 2,
 "CTIME" = TO_DATE('13-jan-2003 14:01:03', 'dd-mon-yyyy hh24:mi:ss'),
 "MTIME" = TO_DATE('13-jan-2003 14:01:03', 'dd-mon-yyyy hh24:mi:ss'),
 "STIME" = TO_DATE('13-jan-2003 14:01:03', 'dd-mon-yyyy hh24:mi:ss'),
 "STATUS" = 1,
 "REMOTEOWNER" IS NULL,
 "LINKNAME" IS NULL,
 "FLAGS" = 0,
 "OID$" IS NULL,
 "SPARE1" = 6,
 "SPARE2" = 1,
 "SPARE3" IS NULL,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "SPARE6" IS NULL;

insert into "SYS"."TAB$"
 values
 "OBJ#" = 33415,
 "DATAOBJ#" = 33415,
 "TS#" = 0,
 "FILE#" = 1,
 "BLOCK#" = 121034,
 "BOBJ#" IS NULL,
 "TAB#" IS NULL,
 "COLS" = 5,
 "CLUCOLS" IS NULL,
 "PCTFREE$" = 10,
 "PCTUSED$" = 40,
 "INITRANS" = 1,
 "MAXTRANS" = 255,
 "FLAGS" = 1,
 "AUDIT$" = '--------------------------------------',
 "ROWCNT" IS NULL,
 "BLKCNT" IS NULL,
 "EMPCNT" IS NULL,
 "AVGSPC" IS NULL,
 "CHNCNT" IS NULL,
 "AVGRLN" IS NULL,
 "AVGSPC_FLB" IS NULL,
 "FLBCNT" IS NULL,
 "ANALYZETIME" IS NULL,
 "SAMPLESIZE" IS NULL,
 "DEGREE" IS NULL,
 "INSTANCES" IS NULL,
 "INTCOLS" = 5,
 "KERNELCOLS" = 5,
 "PROPERTY" = 536870912,
 "TRIGFLAG" = 0,
 "SPARE1" = 178,
 "SPARE2" IS NULL,
 "SPARE3" IS NULL,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "SPARE6" = TO_DATE('13-jan-2003 14:01:05', 'dd-mon-yyyy hh24:mi:ss'),

insert into "SYS"."COL$"
 values
 "OBJ#" = 33415,
 "COL#" = 1,
 "SEGCOL#" = 1,
 "SEGCOLLENGTH" = 22,
 "OFFSET" = 0,
 "NAME" = 'PRODUCT_ID',
 "TYPE#" = 2,
 "LENGTH" = 22,
 "FIXEDSTORAGE" = 0,
 "PRECISION#" IS NULL,
 "SCALE" IS NULL,
 "NULL$" = 1,
 "DEFLENGTH" IS NULL,
 "SPARE6" IS NULL,
 "INTCOL#" = 1,
 "PROPERTY" = 0,
 "CHARSETID" = 0,
 "CHARSETFORM" = 0,
 "SPARE1" = 0,
 "SPARE2" = 0,
 "SPARE3" = 0,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "DEFAULT$" IS NULL;

insert into "SYS"."COL$"
 values
 "OBJ#" = 33415,
 "COL#" = 2,
 "SEGCOL#" = 2,
 "SEGCOLLENGTH" = 7,
 "OFFSET" = 0,
 "NAME" = 'MODIFIED_TIME',
 "TYPE#" = 12,
 "LENGTH" = 7,
 "FIXEDSTORAGE" = 0,
 "PRECISION#" IS NULL,
 "SCALE" IS NULL,
 "NULL$" = 0,
 "DEFLENGTH" IS NULL,
 "SPARE6" IS NULL,
 "INTCOL#" = 2,
 "PROPERTY" = 0,
 "CHARSETID" = 0,
 "CHARSETFORM" = 0,
 "SPARE1" = 0,
 "SPARE2" = 0,
 "SPARE3" = 0,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "DEFAULT$" IS NULL;

insert into "SYS"."COL$"
 values
 "OBJ#" = 33415,
 "COL#" = 3,
 "SEGCOL#" = 3,
 "SEGCOLLENGTH" = 22,
 "OFFSET" = 0,
 "NAME" = 'OLD_LIST_PRICE',
 "TYPE#" = 2,
 "LENGTH" = 22,
 "FIXEDSTORAGE" = 0,
 "PRECISION#" = 8,
 "SCALE" = 2,
 "NULL$" = 0,
 "DEFLENGTH" IS NULL,
 "SPARE6" IS NULL,
 "INTCOL#" = 3,
 "PROPERTY" = 0,
 "CHARSETID" = 0,
 "CHARSETFORM" = 0,
 "SPARE1" = 0,
 "SPARE2" = 0,
 "SPARE3" = 0,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "DEFAULT$" IS NULL;

insert into "SYS"."COL$"
 values
 "OBJ#" = 33415,
 "COL#" = 4,
 "SEGCOL#" = 4,
 "SEGCOLLENGTH" = 5,
 "OFFSET" = 0,
 "NAME" = 'OLD_WARRANTY_PERIOD',
 "TYPE#" = 182,
 "LENGTH" = 5,
 "FIXEDSTORAGE" = 0,
 "PRECISION#" = 2,
 "SCALE" = 0,
 "NULL$" = 0,
 "DEFLENGTH" IS NULL,
 "SPARE6" IS NULL,
 "INTCOL#" = 4,
 "PROPERTY" = 0,
 "CHARSETID" = 0,
 "CHARSETFORM" = 0,
 "SPARE1" = 0,
 "SPARE2" = 2,
 "SPARE3" = 0,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "DEFAULT$" IS NULL;

insert into "SYS"."CCOL$"
 values
 "OBJ#" = 33415,
 "CON#" = 2090,
 "COL#" = 1,
 "POS#" IS NULL,
 "INTCOL#" = 1,
 "SPARE1" = 0,
 "SPARE2" IS NULL,
 "SPARE3" IS NULL,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "SPARE6" IS NULL;

insert into "SYS"."CDEF$"
 values
 "OBJ#" = 33415,
 "CON#" = 2090,
 "COLS" = 1,
 "TYPE#" = 7,
 "ROBJ#" IS NULL,
 "RCON#" IS NULL,
 "RRULES" IS NULL,
 "MATCH#" IS NULL,
 "REFACT" IS NULL,
 "ENABLED" = 1,
 "CONDLENGTH" = 24,
 "SPARE6" IS NULL,
 "INTCOLS" = 1,
 "MTIME" = TO_DATE('13-jan-2003 14:01:08', 'dd-mon-yyyy hh24:mi:ss'),
 "DEFER" = 12,
 "SPARE1" = 6,
 "SPARE2" IS NULL,
 "SPARE3" IS NULL,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "CONDITION" = '"PRODUCT_ID" IS NOT NULL';

create table oe.product_tracking (product_id number not null,
 modified_time date,
 old_product_description varchar2(2000),
 old_list_price number(8,2),
 old_warranty_period interval year(2) to month);

update "SYS"."SEG$"
 set
 "TYPE#" = 5,
 "BLOCKS" = 5,
 "EXTENTS" = 1,
 "INIEXTS" = 5,
 "MINEXTS" = 1,
 "MAXEXTS" = 121,
 "EXTSIZE" = 5,
 "EXTPCT" = 50,
 "USER#" = 37,
 "LISTS" = 0,
 "GROUPS" = 0,
 "CACHEHINT" = 0,
 "HWMINCR" = 33415,
 "SPARE1" = 1024
 where
 "TS#" = 0 and
 "FILE#" = 1 and
 "BLOCK#" = 121034 and
 "TYPE#" = 3 and
 "BLOCKS" = 5 and
 "EXTENTS" = 1 and
 "INIEXTS" = 5 and
 "MINEXTS" = 1 and
 "MAXEXTS" = 121 and
 "EXTSIZE" = 5 and
 "EXTPCT" = 50 and
 "USER#" = 37 and
 "LISTS" = 0 and
 "GROUPS" = 0 and
 "BITMAPRANGES" = 0 and
 "CACHEHINT" = 0 and
 "SCANHINT" = 0 and
 "HWMINCR" = 33415 and
 "SPARE1" = 1024 and
 "SPARE2" IS NULL and
 ROWID = 'AAAAAIAABAAAdMOAAB';

insert into "SYS"."CON$"
 values
 "OWNER#" = 37,
 "NAME" = 'SYS_C002090',
 "CON#" = 2090,
 "SPARE1" IS NULL,
 "SPARE2" IS NULL,
 "SPARE3" IS NULL,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "SPARE6" IS NULL;

commit;

Step 6 End the LogMiner session.

EXECUTE DBMS_LOGMNR.END_LOGMNR();

Example 5: Tracking DDL Statements in the Internal Dictionary

By using the DBMS_LOGMNR.DDL_DICT_TRACKING option, this example ensures that the LogMiner internal dictionary is updated with the DDL statements encountered in the redo log files.

Step 1 Determine which redo log file was most recently archived by the database.

This example assumes that you know that you want to mine the redo log file that was most recently archived.

SELECT NAME, SEQUENCE# FROM V$ARCHIVED_LOG
 WHERE FIRST_TIME = (SELECT MAX(FIRST_TIME) FROM V$ARCHIVED_LOG);

NAME SEQUENCE#
-- --------------
/usr/oracle/data/db1arch_1_210_482701534.dbf 210

Step 2 Find the dictionary in the redo log files.

Because the dictionary may be contained in more than one redo log file, you need to determine which redo log files contain the start and end of the data dictionary. Query the V$ARCHIVED_LOG view, as follows:

	
Find a redo log that contains the end of the data dictionary extract. This redo log file must have been created before the redo log files that you want to analyze, but should be as recent as possible.

SELECT NAME, SEQUENCE#, DICTIONARY_BEGIN d_beg, DICTIONARY_END d_end
 FROM V$ARCHIVED_LOG
 WHERE SEQUENCE# = (SELECT MAX (SEQUENCE#) FROM V$ARCHIVED_LOG
 WHERE DICTIONARY_END = 'YES' and SEQUENCE# < 210);

NAME SEQUENCE# D_BEG D_END
-- ---------- ----- ------
/usr/oracle/data/db1arch_1_208_482701534.dbf 208 NO YES

	
Find the redo log file that contains the start of the data dictionary extract that matches the end of the dictionary found by the previous SQL statement:

SELECT NAME, SEQUENCE#, DICTIONARY_BEGIN d_beg, DICTIONARY_END d_end
 FROM V$ARCHIVED_LOG
 WHERE SEQUENCE# = (SELECT MAX (SEQUENCE#) FROM V$ARCHIVED_LOG
 WHERE DICTIONARY_BEGIN = 'YES' and SEQUENCE# <= 208);

NAME SEQUENCE# D_BEG D_END
-- ---------- ----- ------
/usr/oracle/data/db1arch_1_208_482701534.dbf 207 YES NO

Step 3 Make sure you have a complete list of redo log files.

To successfully apply DDL statements encountered in the redo log files, ensure that all files are included in the list of redo log files to mine. The missing log file corresponding to sequence# 209 must be included in the list. Determine the names of the redo log files that you need to add to the list by issuing the following query:

SELECT NAME FROM V$ARCHIVED_LOG
 WHERE SEQUENCE# >= 207 AND SEQUENCE# <= 210
 ORDER BY SEQUENCE# ASC;

NAME
--
/usr/oracle/data/db1arch_1_207_482701534.dbf
/usr/oracle/data/db1arch_1_208_482701534.dbf
/usr/oracle/data/db1arch_1_209_482701534.dbf
/usr/oracle/data/db1arch_1_210_482701534.dbf

Step 4 Specify the list of the redo log files of interest.

Include the redo log files that contain the beginning and end of the dictionary, the redo log file that you want to mine, and any redo log files required to create a list without gaps. You can add the redo log files in any order.

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_210_482701534.dbf', -

 OPTIONS => DBMS_LOGMNR.NEW);

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_209_482701534.dbf');
EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_208_482701534.dbf');
EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_207_482701534.dbf');

Step 5 Start LogMiner.

Start LogMiner by specifying the dictionary to use and the DDL_DICT_TRACKING, COMMITTED_DATA_ONLY, and PRINT_PRETTY_SQL options.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 OPTIONS => DBMS_LOGMNR.DICT_FROM_REDO_LOGS + -
 DBMS_LOGMNR.DDL_DICT_TRACKING + -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY + -
 DBMS_LOGMNR.PRINT_PRETTY_SQL);

Step 6 Query the V$LOGMNR_CONTENTS view.

To reduce the number of rows returned, exclude from the query all DML statements done in the SYS or SYSTEM schemas. (This query specifies a timestamp to exclude transactions that were involved in the dictionary extraction.)

The query returns all the reconstructed SQL statements correctly translated and the insert operations on the oe.product_tracking table that occurred because of the trigger execution.

SELECT USERNAME AS usr,(XIDUSN || '.' || XIDSLT || '.' || XIDSQN) as XID, SQL_REDO FROM
 V$LOGMNR_CONTENTS
 WHERE SEG_OWNER IS NULL OR SEG_OWNER NOT IN ('SYS', 'SYSTEM') AND
 TIMESTAMP > '10-jan-2003 15:59:53';

USR XID SQL_REDO
----------- -------- -----------------------------------
SYS 1.2.1594 set transaction read write;
SYS 1.2.1594 create table oe.product_tracking (product_id number not null,
 modified_time date,
 old_list_price number(8,2),
 old_warranty_period interval year(2) to month);
SYS 1.2.1594 commit;

SYS 1.18.1602 set transaction read write;
SYS 1.18.1602 create or replace trigger oe.product_tracking_trigger
 before update on oe.product_information
 for each row
 when (new.list_price <> old.list_price or
 new.warranty_period <> old.warranty_period)
 declare
 begin
 insert into oe.product_tracking values
 (:old.product_id, sysdate,
 :old.list_price, :old.warranty_period);
 end;
SYS 1.18.1602 commit;

OE 1.9.1598 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+08-00'),
 "LIST_PRICE" = 100
 where
 "PRODUCT_ID" = 1729 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and
 "LIST_PRICE" = 80 and
 ROWID = 'AAAHTKAABAAAY9yAAA';
OE 1.9.1598 insert into "OE"."PRODUCT_TRACKING"
 values
 "PRODUCT_ID" = 1729,
 "MODIFIED_TIME" = TO_DATE('13-jan-2003 16:07:03',
 'dd-mon-yyyy hh24:mi:ss'),
 "OLD_LIST_PRICE" = 80,
 "OLD_WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00');

OE 1.9.1598 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+08-00'),
 "LIST_PRICE" = 92
 where
 "PRODUCT_ID" = 2340 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and
 "LIST_PRICE" = 72 and
 ROWID = 'AAAHTKAABAAAY9zAAA';

OE 1.9.1598 insert into "OE"."PRODUCT_TRACKING"
 values
 "PRODUCT_ID" = 2340,
 "MODIFIED_TIME" = TO_DATE('13-jan-2003 16:07:07',
 'dd-mon-yyyy hh24:mi:ss'),
 "OLD_LIST_PRICE" = 72,
 "OLD_WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00');

OE 1.9.1598 commit;

Step 7 End the LogMiner session.

EXECUTE DBMS_LOGMNR.END_LOGMNR();

Example 6: Filtering Output by Time Range

In the previous two examples, rows were filtered by specifying a timestamp-based predicate (timestamp > '10-jan-2003 15:59:53') in the query. However, a more efficient way to filter out redo records based on timestamp values is by specifying the time range in the DBMS_LOGMNR.START_LOGMNR procedure call, as shown in this example.

Step 1 Create a list of redo log files to mine.

Suppose you want to mine redo log files generated since a given time. The following procedure creates a list of redo log files based on a specified time. The subsequent SQL EXECUTE statement calls the procedure and specifies the starting time as 2 p.m. on Jan-13-2003.

--
-- my_add_logfiles
-- Add all archived logs generated after a specified start_time.
--
CREATE OR REPLACE PROCEDURE my_add_logfiles (in_start_time IN DATE) AS
 CURSOR c_log IS
 SELECT NAME FROM V$ARCHIVED_LOG
 WHERE FIRST_TIME >= in_start_time;

count pls_integer := 0;
my_option pls_integer := DBMS_LOGMNR.NEW;

BEGIN
 FOR c_log_rec IN c_log
 LOOP
 DBMS_LOGMNR.ADD_LOGFILE(LOGFILENAME => c_log_rec.name,
 OPTIONS => my_option);
 my_option := DBMS_LOGMNR.ADDFILE;
 DBMS_OUTPUT.PUT_LINE('Added logfile ' || c_log_rec.name);
 END LOOP;
END;
/

EXECUTE my_add_logfiles(in_start_time => '13-jan-2003 14:00:00');

Step 2 Query the V$LOGMNR_LOGS to see the list of redo log files.

This example includes the size of the redo log files in the output.

SELECT FILENAME name, LOW_TIME start_time, FILESIZE bytes
 FROM V$LOGMNR_LOGS;

NAME START_TIME BYTES
----------------------------------- -------------------- ----------------
/usr/orcl/arch1_310_482932022.dbf 13-jan-2003 14:02:35 23683584
/usr/orcl/arch1_311_482932022.dbf 13-jan-2003 14:56:35 2564096
/usr/orcl/arch1_312_482932022.dbf 13-jan-2003 15:10:43 23683584
/usr/orcl/arch1_313_482932022.dbf 13-jan-2003 15:17:52 23683584
/usr/orcl/arch1_314_482932022.dbf 13-jan-2003 15:23:10 23683584
/usr/orcl/arch1_315_482932022.dbf 13-jan-2003 15:43:22 23683584
/usr/orcl/arch1_316_482932022.dbf 13-jan-2003 16:03:10 23683584
/usr/orcl/arch1_317_482932022.dbf 13-jan-2003 16:33:43 23683584
/usr/orcl/arch1_318_482932022.dbf 13-jan-2003 17:23:10 23683584

Step 3 Adjust the list of redo log files.

Suppose you realize that you want to mine just the redo log files generated between 3 p.m. and 4 p.m.

You could use the query predicate (timestamp > '13-jan-2003 15:00:00' and timestamp < '13-jan-2003 16:00:00') to accomplish this. However, the query predicate is evaluated on each row returned by LogMiner, and the internal mining engine does not filter rows based on the query predicate. Thus, although you only wanted to get rows out of redo log files arch1_311_482932022.dbf to arch1_315_482932022.dbf, your query would result in mining all redo log files registered to the LogMiner session.

Furthermore, although you could use the query predicate and manually remove the redo log files that do not fall inside the time range of interest, the simplest solution is to specify the time range of interest in the DBMS_LOGMNR.START_LOGMNR procedure call.

Although this does not change the list of redo log files, LogMiner will mine only those redo log files that fall in the time range specified.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 STARTTIME => '13-jan-2003 15:00:00', -
 ENDTIME => '13-jan-2003 16:00:00', -
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG + -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY + -
 DBMS_LOGMNR.PRINT_PRETTY_SQL);

Step 4 Query the V$LOGMNR_CONTENTS view.

SELECT TIMESTAMP, (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID,

 SQL_REDO FROM V$LOGMNR_CONTENTS WHERE SEG_OWNER = 'OE';

TIMESTAMP XID SQL_REDO
--------------------- ----------- --------------------------------
13-jan-2003 15:29:31 1.17.2376 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00')
 where
 "PRODUCT_ID" = 3399 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+02-00') and
 ROWID = 'AAAHTKAABAAAY9TAAE';
13-jan-2003 15:29:34 1.17.2376 insert into "OE"."PRODUCT_TRACKING"
 values
 "PRODUCT_ID" = 3399,
 "MODIFIED_TIME" = TO_DATE('13-jan-2003 15:29:34',
 'dd-mon-yyyy hh24:mi:ss'),
 "OLD_LIST_PRICE" = 815,
 "OLD_WARRANTY_PERIOD" = TO_YMINTERVAL('+02-00');

13-jan-2003 15:52:43 1.15.1756 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00')
 where
 "PRODUCT_ID" = 1768 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+02-00') and
 ROWID = 'AAAHTKAABAAAY9UAAB';

13-jan-2003 15:52:43 1.15.1756 insert into "OE"."PRODUCT_TRACKING"
 values
 "PRODUCT_ID" = 1768,
 "MODIFIED_TIME" = TO_DATE('13-jan-2003 16:52:43',
 'dd-mon-yyyy hh24:mi:ss'),
 "OLD_LIST_PRICE" = 715,
 "OLD_WARRANTY_PERIOD" = TO_YMINTERVAL('+02-00');

Step 5 End the LogMiner session.

EXECUTE DBMS_LOGMNR.END_LOGMNR();

Examples of Mining Without Specifying the List of Redo Log Files Explicitly

The previous set of examples explicitly specified the redo log file or files to be mined. However, if you are mining in the same database that generated the redo log files, then you can mine the appropriate list of redo log files by just specifying the time (or SCN) range of interest. To mine a set of redo log files without explicitly specifying them, use the DBMS_LOGMNR.CONTINUOUS_MINE option to the DBMS_LOGMNR.START_LOGMNR procedure, and specify either a time range or an SCN range of interest.

This section contains the following list of examples; these examples are best read in sequential order, because each example builds on the example or examples that precede it:

	
Example 1: Mining Redo Log Files in a Given Time Range

	
Example 2: Mining the Redo Log Files in a Given SCN Range

	
Example 3: Using Continuous Mining to Include Future Values in a Query

The SQL output formatting may be different on your display than that shown in these examples.

Example 1: Mining Redo Log Files in a Given Time Range

This example is similar to Example 4: Using the LogMiner Dictionary in the Redo Log Files, except the list of redo log files are not specified explicitly. This example assumes that you want to use the data dictionary extracted to the redo log files.

Step 1 Determine the timestamp of the redo log file that contains the start of the data dictionary.

SELECT NAME, FIRST_TIME FROM V$ARCHIVED_LOG

 WHERE SEQUENCE# = (SELECT MAX(SEQUENCE#) FROM V$ARCHIVED_LOG
 WHERE DICTIONARY_BEGIN = 'YES');

NAME FIRST_TIME
-- --------------------
/usr/oracle/data/db1arch_1_207_482701534.dbf 10-jan-2003 12:01:34

Step 2 Display all the redo log files that have been generated so far.

This step is not required, but is included to demonstrate that the CONTINUOUS_MINE option works as expected, as will be shown in Step 4.

SELECT FILENAME name FROM V$LOGMNR_LOGS
 WHERE LOW_TIME > '10-jan-2003 12:01:34';

NAME
--
/usr/oracle/data/db1arch_1_207_482701534.dbf
/usr/oracle/data/db1arch_1_208_482701534.dbf
/usr/oracle/data/db1arch_1_209_482701534.dbf
/usr/oracle/data/db1arch_1_210_482701534.dbf

Step 3 Start LogMiner.

Start LogMiner by specifying the dictionary to use and the COMMITTED_DATA_ONLY, PRINT_PRETTY_SQL, and CONTINUOUS_MINE options.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 STARTTIME => '10-jan-2003 12:01:34', -
 ENDTIME => SYSDATE, -
 OPTIONS => DBMS_LOGMNR.DICT_FROM_REDO_LOGS + -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY + -
 DBMS_LOGMNR.PRINT_PRETTY_SQL + -
 DBMS_LOGMNR.CONTINUOUS_MINE);

Step 4 Query the V$LOGMNR_LOGS view.

This step shows that the DBMS_LOGMNR.START_LOGMNR procedure with the CONTINUOUS_MINE option includes all of the redo log files that have been generated so far, as expected. (Compare the output in this step to the output in Step 2.)

SELECT FILENAME name FROM V$LOGMNR_LOGS;

NAME
--
/usr/oracle/data/db1arch_1_207_482701534.dbf
/usr/oracle/data/db1arch_1_208_482701534.dbf
/usr/oracle/data/db1arch_1_209_482701534.dbf
/usr/oracle/data/db1arch_1_210_482701534.dbf

Step 5 Query the V$LOGMNR_CONTENTS view.

To reduce the number of rows returned by the query, exclude all DML statements done in the SYS or SYSTEM schema. (This query specifies a timestamp to exclude transactions that were involved in the dictionary extraction.)

Note that all reconstructed SQL statements returned by the query are correctly translated.

SELECT USERNAME AS usr,(XIDUSN || '.' || XIDSLT || '.' || XIDSQN) as XID,
 SQL_REDO FROM V$LOGMNR_CONTENTS
 WHERE SEG_OWNER IS NULL OR SEG_OWNER NOT IN ('SYS', 'SYSTEM') AND
 TIMESTAMP > '10-jan-2003 15:59:53';

USR XID SQL_REDO
----------- -------- -----------------------------------
SYS 1.2.1594 set transaction read write;
SYS 1.2.1594 create table oe.product_tracking (product_id number not null,
 modified_time date,
 old_list_price number(8,2),
 old_warranty_period interval year(2) to month);
SYS 1.2.1594 commit;

SYS 1.18.1602 set transaction read write;
SYS 1.18.1602 create or replace trigger oe.product_tracking_trigger
 before update on oe.product_information
 for each row
 when (new.list_price <> old.list_price or
 new.warranty_period <> old.warranty_period)
 declare
 begin
 insert into oe.product_tracking values
 (:old.product_id, sysdate,
 :old.list_price, :old.warranty_period);
 end;
SYS 1.18.1602 commit;

OE 1.9.1598 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+08-00'),
 "LIST_PRICE" = 100
 where
 "PRODUCT_ID" = 1729 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and
 "LIST_PRICE" = 80 and
 ROWID = 'AAAHTKAABAAAY9yAAA';
OE 1.9.1598 insert into "OE"."PRODUCT_TRACKING"
 values
 "PRODUCT_ID" = 1729,
 "MODIFIED_TIME" = TO_DATE('13-jan-2003 16:07:03',
 'dd-mon-yyyy hh24:mi:ss'),
 "OLD_LIST_PRICE" = 80,
 "OLD_WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00');

OE 1.9.1598 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+08-00'),
 "LIST_PRICE" = 92
 where
 "PRODUCT_ID" = 2340 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and
 "LIST_PRICE" = 72 and
 ROWID = 'AAAHTKAABAAAY9zAAA';

OE 1.9.1598 insert into "OE"."PRODUCT_TRACKING"
 values
 "PRODUCT_ID" = 2340,
 "MODIFIED_TIME" = TO_DATE('13-jan-2003 16:07:07',
 'dd-mon-yyyy hh24:mi:ss'),
 "OLD_LIST_PRICE" = 72,
 "OLD_WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00');

OE 1.9.1598 commit;

Step 6 End the LogMiner session.

EXECUTE DBMS_LOGMNR.END_LOGMNR();

Example 2: Mining the Redo Log Files in a Given SCN Range

This example shows how to specify an SCN range of interest and mine the redo log files that satisfy that range. You can use LogMiner to see all committed DML statements whose effects have not yet been made permanent in the datafiles.

Note that in this example (unlike the other examples) it is not assumed that you have set the NLS_DATE_FORMAT parameter.

Step 1 Determine the SCN of the last checkpoint taken.

SELECT CHECKPOINT_CHANGE#, CURRENT_SCN FROM V$DATABASE;

CHECKPOINT_CHANGE# CURRENT_SCN
------------------ ---------------
 56453576 56454208

Step 2 Start LogMiner and specify the CONTINUOUS_MINE option.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-

 STARTSCN => 56453576, -
 ENDSCN => 56454208, -
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG + -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY + -
 DBMS_LOGMNR.PRINT_PRETTY_SQL + -
 DBMS_LOGMNR.CONTINUOUS_MINE);

Step 3 Display the list of archived redo log files added by LogMiner.

SELECT FILENAME name, LOW_SCN, NEXT_SCN FROM V$LOGMNR_LOGS;

NAME LOW_SCN NEXT_SCN
-- -------- --------
/usr/oracle/data/db1arch_1_215_482701534.dbf 56316771 56453579

Note that the redo log file that LogMiner added does not contain the whole SCN range. When you specify the CONTINUOUS_MINE option, LogMiner adds only archived redo log files when you call the DBMS_LOGMNR.START_LOGMNR procedure. LogMiner will add the rest of the SCN range contained in the online redo log files automatically, as needed during the query execution. Use the following query to determine whether the redo log file added is the latest archived redo log file produced.

SELECT NAME FROM V$ARCHIVED_LOG
 WHERE SEQUENCE# = (SELECT MAX(SEQUENCE#) FROM V$ARCHIVED_LOG);

NAME
--
/usr/oracle/data/db1arch_1_215_482701534.dbf

Step 4 Query the V$LOGMNR_CONTENTS view for changes made to the user tables.

The following query does not return the SET TRANSACTION READ WRITE and COMMIT statements associated with transaction 1.6.1911 because these statements do not have a segment owner (SEG_OWNER) associated with them.

Note that the default NLS_DATE_FORMAT, 'DD-MON-RR', is used to display the column MODIFIED_TIME of type DATE.

SELECT SCN, (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) as XID, SQL_REDO
 FROM V$LOGMNR_CONTENTS
 WHERE SEG_OWNER NOT IN ('SYS', 'SYSTEM');

SCN XID SQL_REDO
---------- ---------- -------------
56454198 1.6.1911 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00')
 where
 "PRODUCT_ID" = 2430 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+02-00') and
 ROWID = 'AAAHTKAABAAAY9AAAC';

56454199 1.6.1911 insert into "OE"."PRODUCT_TRACKING"
 values
 "PRODUCT_ID" = 2430,
 "MODIFIED_TIME" = TO_DATE('17-JAN-03', 'DD-MON-RR'),
 "OLD_LIST_PRICE" = 175,
 "OLD_WARRANTY_PERIOD" = TO_YMINTERVAL('+02-00');

56454204 1.6.1911 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00')
 where
 "PRODUCT_ID" = 2302 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+02-00') and
 ROWID = 'AAAHTKAABAAAY9QAAA';
56454206 1.6.1911 insert into "OE"."PRODUCT_TRACKING"
 values
 "PRODUCT_ID" = 2302,
 "MODIFIED_TIME" = TO_DATE('17-JAN-03', 'DD-MON-RR'),
 "OLD_LIST_PRICE" = 150,
 "OLD_WARRANTY_PERIOD" = TO_YMINTERVAL('+02-00');

Step 5 End the LogMiner session.

EXECUTE DBMS_LOGMNR.END_LOGMNR();

Example 3: Using Continuous Mining to Include Future Values in a Query

To specify that a query not finish until some future time occurs or SCN is reached, use the CONTINUOUS_MINE option and set either the ENDTIME or ENDSCAN option in your call to the DBMS_LOGMNR.START_LOGMNR procedure to a time in the future or to an SCN value that has not yet been reached.

This examples assumes that you want to monitor all changes made to the table hr.employees from now until 5 hours from now, and that you are using the dictionary in the online catalog.

Step 1 Start LogMiner.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-

 STARTTIME => SYSDATE, -
 ENDTIME => SYSDATE + 5/24, -
 OPTIONS => DBMS_LOGMNR.CONTINUOUS_MINE + -
 DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG);

Step 2 Query the V$LOGMNR_CONTENTS view.

This select operation will not complete until it encounters the first redo log file record that is generated after the time range of interest (5 hours from now). You can end the select operation prematurely by entering Ctrl+C.

This example specifies the SET ARRAYSIZE statement so that rows are displayed as they are entered in the redo log file. If you do not specify the SET ARRAYSIZE statement, rows are not returned until the SQL internal buffer is full.

SET ARRAYSIZE 1;
SELECT USERNAME AS usr, SQL_REDO FROM V$LOGMNR_CONTENTS
 WHERE SEG_OWNER = 'HR' AND TABLE_NAME = 'EMPLOYEES';

Step 3 End the LogMiner session.

EXECUTE DBMS_LOGMNR.END_LOGMNR();

Example Scenarios

The examples in this section demonstrate how to use LogMiner for typical scenarios. This section includes the following examples:

	
Scenario 1: Using LogMiner to Track Changes Made by a Specific User

	
Scenario 2: Using LogMiner to Calculate Table Access Statistics

Scenario 1: Using LogMiner to Track Changes Made by a Specific User

This example shows how to see all changes made to the database in a specific time range by a single user: joedevo. Connect to the database and then take the following steps:

	
Create the LogMiner dictionary file.

To use LogMiner to analyze joedevo's data, you must either create a LogMiner dictionary file before any table definition changes are made to tables that joedevo uses or use the online catalog at LogMiner startup. See Extract a LogMiner Dictionary for examples of creating LogMiner dictionaries. This example uses a LogMiner dictionary that has been extracted to the redo log files.

	
Add redo log files.

Assume that joedevo has made some changes to the database. You can now specify the names of the redo log files that you want to analyze, as follows:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => 'log1orc1.ora', -
 OPTIONS => DBMS_LOGMNR.NEW);

If desired, add additional redo log files, as follows:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => 'log2orc1.ora', -
 OPTIONS => DBMS_LOGMNR.ADDFILE);

	
Start LogMiner and limit the search to the specified time range:

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 DICTFILENAME => 'orcldict.ora', -
 STARTTIME => TO_DATE('01-Jan-1998 08:30:00','DD-MON-YYYY HH:MI:SS'), -
 ENDTIME => TO_DATE('01-Jan-1998 08:45:00', 'DD-MON-YYYY HH:MI:SS'));

	
Query the V$LOGMNR_CONTENTS view.

At this point, the V$LOGMNR_CONTENTS view is available for queries. You decide to find all of the changes made by user joedevo to the salary table. Execute the following SELECT statement:

SELECT SQL_REDO, SQL_UNDO FROM V$LOGMNR_CONTENTS
 WHERE USERNAME = 'joedevo' AND SEG_NAME = 'salary';

For both the SQL_REDO and SQL_UNDO columns, two rows are returned (the format of the data display will be different on your screen). You discover that joedevo requested two operations: he deleted his old salary and then inserted a new, higher salary. You now have the data necessary to undo this operation.

SQL_REDO SQL_UNDO
-------- --------
delete from SALARY insert into SALARY(NAME, EMPNO, SAL)
where EMPNO = 12345 values ('JOEDEVO', 12345, 500)
and NAME='JOEDEVO'
and SAL=500;

insert into SALARY(NAME, EMPNO, SAL) delete from SALARY
values('JOEDEVO',12345, 2500) where EMPNO = 12345
 and NAME = 'JOEDEVO'
2 rows selected and SAL = 2500;

	
End the LogMiner session.

Use the DBMS_LOGMNR.END_LOGMNR procedure to finish the LogMiner session properly:

DBMS_LOGMNR.END_LOGMNR();

Scenario 2: Using LogMiner to Calculate Table Access Statistics

In this example, assume you manage a direct marketing database and want to determine how productive the customer contacts have been in generating revenue for a 2-week period in January. Assume that you have already created the LogMiner dictionary and added the redo log files that you want to search (as demonstrated in the previous example). Take the following steps:

	
Start LogMiner and specify a range of times:

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 STARTTIME => TO_DATE('07-Jan-2003 08:30:00','DD-MON-YYYY HH:MI:SS'), -
 ENDTIME => TO_DATE('21-Jan-2003 08:45:00','DD-MON-YYYY HH:MI:SS'), -
 DICTFILENAME => '/usr/local/dict.ora');

	
Query the V$LOGMNR_CONTENTS view to determine which tables were modified in the time range you specified, as shown in the following example. (This query filters out system tables that traditionally have a $ in their name.)

SELECT SEG_OWNER, SEG_NAME, COUNT(*) AS Hits FROM
 V$LOGMNR_CONTENTS WHERE SEG_NAME NOT LIKE '%$' GROUP BY
 SEG_OWNER, SEG_NAME ORDER BY Hits DESC;

	
The following data is displayed. (The format of your display may be different.)

SEG_OWNER SEG_NAME Hits
--------- -------- ----
CUST ACCOUNT 384
UNIV EXECDONOR 325
UNIV DONOR 234
UNIV MEGADONOR 32
HR EMPLOYEES 12
SYS DONOR 12

The values in the Hits column show the number of times that the named table had an insert, delete, or update operation performed on it during the 2-week period specified in the query. In this example, the cust.account table was modified the most during the specified 2-week period, and the hr.employees and sys.donor tables were modified the least during the same time period.

	
End the LogMiner session.

Use the DBMS_LOGMNR.END_LOGMNR procedure to finish the LogMiner session properly:

DBMS_LOGMNR.END_LOGMNR();

Supported Datatypes, Storage Attributes, and Database and Redo Log File Versions

The following sections provide information about datatype and storage attribute support and the versions of the database and redo log files supported:

	
Supported Datatypes and Table Storage Attributes

	
Unsupported Datatypes and Table Storage Attributes

	
Supported Databases and Redo Log File Versions

Supported Datatypes and Table Storage Attributes

LogMiner supports the following datatypes and table storage attributes:

	
CHAR

	
NCHAR

	
VARCHAR2 and VARCHAR

	
NVARCHAR2

	
NUMBER

	
DATE

	
TIMESTAMP

	
TIMESTAMP WITH TIME ZONE

	
TIMESTAMP WITH LOCAL TIME ZONE

	
INTERVAL YEAR TO MONTH

	
INTERVAL DAY TO SECOND

	
RAW

	
CLOB

	
NCLOB

	
BLOB

	
LONG

	
LONG RAW

	
BINARY_FLOAT

	
BINARY_DOUBLE

	
Index-organized tables (IOTs), including those with overflows or LOB columns

	
Function-based indexes

	
XMLTYPE data when it is stored in CLOB format

Support for multibyte CLOBs is available only for redo logs generated by a database with compatibility set to a value of 10.1 or higher.

Support for LOB and LONG data types is available only for redo logs generated by a database with compatibility set to a value of 9.2.0.0 or higher.

Support for index-organized tables without overflow segment or with no LOB columns in them is available only for redo logs generated by a database with compatibility set to 10.0.0.0 or higher. Support for index-organized tables with overflow segment or with LOB columns is available only for redo logs generated by a database with compatibility set to 10.2.0.0 or higher.

Unsupported Datatypes and Table Storage Attributes

LogMiner does not support these datatypes and table storage attributes:

	
BFILE datatype

	
Simple and nested abstract datatypes (ADTs)

	
Collections (nested tables and VARRAYs)

	
Object refs

	
Tables using table compression

	
SecureFiles

Supported Databases and Redo Log File Versions

LogMiner runs only on databases of release 8.1 or later, but you can use it to analyze redo log files from release 8.0 databases. However, the information that LogMiner is able to retrieve from a redo log file depends on the version of the log, not the version of the database in use. For example, redo log files for Oracle9i can be augmented to capture additional information when supplemental logging is enabled. This allows LogMiner functionality to be used to its fullest advantage. Redo log files created with older releases of Oracle will not have that additional data and may therefore have limitations on the operations and datatypes supported by LogMiner.

	
See Also:

Steps in a Typical LogMiner Session and Supplemental Logging

4 Data Pump Performance

The Data Pump utilities are designed especially for very large databases. If your site has very large quantities of data versus metadata, you should experience a dramatic increase in performance compared to the original Export and Import utilities. This chapter briefly discusses why the performance is better and also suggests specific steps you can take to enhance performance of export and import operations.

This chapter contains the following sections:

	
Data Performance Improvements for Data Pump Export and Import

	
Tuning Performance

	
Initialization Parameters That Affect Data Pump Performance

Performance of metadata extraction and database object creation in Data Pump Export and Import remains essentially equivalent to that of the original Export and Import utilities.

Data Performance Improvements for Data Pump Export and Import

The improved performance of the Data Pump Export and Import utilities is attributable to several factors, including the following:

	
Multiple worker processes can perform intertable and interpartition parallelism to load and unload tables in multiple, parallel, direct-path streams.

	
For very large tables and partitions, single worker processes can choose intrapartition parallelism through multiple parallel queries and parallel DML I/O server processes when the external tables method is used to access data.

	
Data Pump uses parallelism to build indexes and load package bodies.

	
Dump files are read and written directly by the server and, therefore, do not require any data movement to the client.

	
The dump file storage format is the internal stream format of the direct path API. This format is very similar to the format stored in Oracle database datafiles inside of tablespaces. Therefore, no client-side conversion to INSERT statement bind variables is performed.

	
The supported data access methods, direct path and external tables, are faster than conventional SQL. The direct path API provides the fastest single-stream performance. The external tables feature makes efficient use of the parallel queries and parallel DML capabilities of the Oracle database.

	
Metadata and data extraction can be overlapped during export.

Tuning Performance

Data Pump technology fully uses all available resources to maximize throughput and minimize elapsed job time. For this to happen, a system must be well-balanced across CPU, memory, and I/O. In addition, standard performance tuning principles apply. For example, for maximum performance you should ensure that the files that are members of a dump file set reside on separate disks, because the dump files will be written and read in parallel. Also, the disks should not be the same ones on which the source or target tablespaces reside.

Any performance tuning activity involves making trade-offs between performance and resource consumption.

Controlling Resource Consumption

The Data Pump Export and Import utilities enable you to dynamically increase and decrease resource consumption for each job. This is done using the PARALLEL parameter to specify a degree of parallelism for the job. (The PARALLEL parameter is the only tuning parameter that is specific to Data Pump.) For maximum throughput, do not set PARALLEL to much more than twice the number of CPUs (two workers for each CPU).

	
See Also:

	
PARALLEL for more information about the Export PARALLEL parameter

	
PARALLEL for more information about the Import PARALLEL parameter

As you increase the degree of parallelism, CPU usage, memory consumption, and I/O bandwidth usage also increase. You must ensure that adequate amounts of these resources are available. If necessary, you can distribute files across different disk devices or channels to get the needed I/O bandwidth.

To maximize parallelism, you must supply at least one file for each degree of parallelism. The simplest way of doing this is to use substitution variables in your file names (for example, file%u.dmp). However, depending upon your disk set up (for example, simple, non-striped disks), you might not want to put all dump files on one device. In this case, it is best to specify multiple file names using substitution variables, with each in a separate directory resolving to a separate disk. Even with fast CPUs and fast disks, the path between the CPU and the disk may be the constraining factor in the amount of parallelism that can be sustained.

The PARALLEL parameter is valid only in the Enterprise Edition of Oracle Database 11g.

Effects of Compression and Encryption on Performance

The use of Data Pump parameters related to compression and encryption can possibly have a negative impact upon performance of export and import operations. This is because additional CPU resources are required to perform transformations on the raw data.

Initialization Parameters That Affect Data Pump Performance

The settings for certain initialization parameters can affect the performance of Data Pump Export and Import. In particular, you can try using the following settings to improve performance, although the effect may not be the same on all platforms.

	
DISK_ASYNCH_IO=TRUE

	
DB_BLOCK_CHECKING=FALSE

	
DB_BLOCK_CHECKSUM=FALSE

The following initialization parameters must have values set high enough to allow for maximum parallelism:

	
PROCESSES

	
SESSIONS

	
PARALLEL_MAX_SERVERS

Additionally, the SHARED_POOL_SIZE and UNDO_TABLESPACE initialization parameters should be generously sized. The exact values will depend upon the size of your database.

Setting the Size Of the Buffer Cache In a Streams Environment

Oracle Data Pump uses Streams functionality to communicate between processes. If the SGA_TARGET initialization parameter is set, then the STREAMS_POOL_SIZE initialization parameter is automatically set to a reasonable value.

If the SGA_TARGET initialization parameter is not set and the STREAMS_POOL_SIZE initialization parameter is not defined, then the size of the streams pool automatically defaults to 10% of the size of the shared pool.

When the streams pool is created, the required SGA memory is taken from memory allocated to the buffer cache, reducing the size of the cache to less than what was specified by the DB_CACHE_SIZE initialization parameter. This means that if the buffer cache was configured with only the minimal required SGA, then Data Pump operations may not work properly. A minimum size of 10M is recommended for STREAMS_POOL_SIZE in order to ensure successful Data Pump operations.

	
See Also:

Oracle Streams Concepts and Administration

Part II

SQL*Loader

The chapters in this part describe the SQL*Loader utility:

Chapter 6, "SQL*Loader Concepts"

This chapter introduces SQL*Loader and describes its features. It also introduces data loading concepts (including object support). It discusses input to SQL*Loader, database preparation, and output from SQL*Loader.

Chapter 7, "SQL*Loader Command-Line Reference"

This chapter describes the command-line syntax used by SQL*Loader. It discusses command-line arguments, suppressing SQL*Loader messages, sizing the bind array, and more.

Chapter 8, "SQL*Loader Control File Reference"

This chapter describes the control file syntax you use to configure SQL*Loader and to describe to SQL*Loader how to map your data to Oracle format. It provides detailed syntax diagrams and information about specifying datafiles, tables and columns, the location of data, the type and format of data to be loaded, and more.

Chapter 9, "SQL*Loader Field List Reference"

This chapter describes the field list section of a SQL*Loader control file. The field list provides information about fields being loaded, such as position, datatype, conditions, and delimiters.

Chapter 10, "Loading Objects, LOBs, and Collections"

This chapter describes how to load column objects in various formats. It also discusses how to load object tables, REF columns, LOBs, and collections.

Chapter 11, "Conventional and Direct Path Loads"

This chapter describes the differences between a conventional path load and a direct path load. A direct path load is a high-performance option that significantly reduces the time required to load large quantities of data.

8 SQL*Loader Control File Reference

This chapter describes the SQL*Loader control file. The following topics are included:

	
Control File Contents

	
Specifying Command-Line Parameters in the Control File

	
Specifying Filenames and Object Names

	
Identifying XMLType Tables

	
Specifying Datafiles

	
Identifying Data in the Control File with BEGINDATA

	
Specifying Datafile Format and Buffering

	
Specifying the Bad File

	
Specifying the Discard File

	
Handling Different Character Encoding Schemes

	
Interrupted Loads

	
Assembling Logical Records from Physical Records

	
Loading Logical Records into Tables

	
Index Options

	
Benefits of Using Multiple INTO TABLE Clauses

	
Bind Arrays and Conventional Path Loads

Control File Contents

The SQL*Loader control file is a text file that contains data definition language (DDL) instructions. DDL is used to control the following aspects of a SQL*Loader session:

	
Where SQL*Loader will find the data to load

	
How SQL*Loader expects that data to be formatted

	
How SQL*Loader will be configured (memory management, rejecting records, interrupted load handling, and so on) as it loads the data

	
How SQL*Loader will manipulate the data being loaded

See Appendix A for syntax diagrams of the SQL*Loader DDL.

To create the SQL*Loader control file, use a text editor such as vi or xemacs.

In general, the control file has three main sections, in the following order:

	
Session-wide information

	
Table and field-list information

	
Input data (optional section)

Example 8-1 shows a sample control file.

Example 8-1 Sample Control File

1 -- This is a sample control file
2 LOAD DATA
3 INFILE 'sample.dat'
4 BADFILE 'sample.bad'
5 DISCARDFILE 'sample.dsc'
6 APPEND
7 INTO TABLE emp
8 WHEN (57) = '.'
9 TRAILING NULLCOLS
10 (hiredate SYSDATE,
 deptno POSITION(1:2) INTEGER EXTERNAL(2)
 NULLIF deptno=BLANKS,
 job POSITION(7:14) CHAR TERMINATED BY WHITESPACE
 NULLIF job=BLANKS "UPPER(:job)",
 mgr POSITION(28:31) INTEGER EXTERNAL
 TERMINATED BY WHITESPACE, NULLIF mgr=BLANKS,
 ename POSITION(34:41) CHAR
 TERMINATED BY WHITESPACE "UPPER(:ename)",
 empno POSITION(45) INTEGER EXTERNAL
 TERMINATED BY WHITESPACE,
 sal POSITION(51) CHAR TERMINATED BY WHITESPACE
 "TO_NUMBER(:sal,'$99,999.99')",
 comm INTEGER EXTERNAL ENCLOSED BY '(' AND '%'
 ":comm * 100"
)

In this sample control file, the numbers that appear to the left would not appear in a real control file. They are keyed in this sample to the explanatory notes in the following list:

	
This is how comments are entered in a control file. See Comments in the Control File.

	
The LOAD DATA statement tells SQL*Loader that this is the beginning of a new data load. See Appendix A for syntax information.

	
The INFILE clause specifies the name of a datafile containing data that you want to load. See Specifying Datafiles.

	
The BADFILE clause specifies the name of a file into which rejected records are placed. See Specifying the Bad File.

	
The DISCARDFILE clause specifies the name of a file into which discarded records are placed. See Specifying the Discard File.

	
The APPEND clause is one of the options you can use when loading data into a table that is not empty. See Loading Data into Nonempty Tables.

To load data into a table that is empty, you would use the INSERT clause. See Loading Data into Empty Tables.

	
The INTO TABLE clause enables you to identify tables, fields, and datatypes. It defines the relationship between records in the datafile and tables in the database. See Specifying Table Names.

	
The WHEN clause specifies one or more field conditions. SQL*Loader decides whether or not to load the data based on these field conditions. See Loading Records Based on a Condition.

	
The TRAILING NULLCOLS clause tells SQL*Loader to treat any relatively positioned columns that are not present in the record as null columns. See Handling Short Records with Missing Data.

	
The remainder of the control file contains the field list, which provides information about column formats in the table being loaded. See Chapter 9 for information about that section of the control file.

Comments in the Control File

Comments can appear anywhere in the command section of the file, but they should not appear within the data. Precede any comment with two hyphens, for example:

--This is a comment

All text to the right of the double hyphen is ignored, until the end of the line.

Specifying Command-Line Parameters in the Control File

You can specify command-line parameters in the SQL*Loader control file using the OPTIONS clause. This can be useful when you typically invoke a control file with the same set of options. The OPTIONS clause precedes the LOAD DATA statement.

OPTIONS Clause

The following command-line parameters can be specified using the OPTIONS clause. These parameters are described in greater detail in Chapter 7.

BINDSIZE = n
COLUMNARRAYROWS = n
DATE_CACHE = n
DIRECT = {TRUE | FALSE}
ERRORS = n
EXTERNAL_TABEL = {NOT_USED | GENERATE_ONLY | EXECUTE}
FILE
LOAD = n
MULTITHREADING = {TRUE | FALSE}
PARALLEL = {TRUE | FALSE}
READSIZE = n
RESUMABLE = {TRUE | FALSE}
RESUMABLE_NAME = 'text string'
RESUMABLE_TIMEOUT = n
ROWS = n
SILENT = {HEADER | FEEDBACK | ERRORS | DISCARDS | PARTITIONS | ALL}
SKIP = n
SKIP_INDEX_MAINTENANCE = {TRUE | FALSE}
SKIP_UNUSABLE_INDEXES = {TRUE | FALSE}
STREAMSIZE = n

The following is an example use of the OPTIONS clause that you could use in a SQL*Loader control file:

OPTIONS (BINDSIZE=100000, SILENT=(ERRORS, FEEDBACK))

	
Note:

Parameter values specified on the command line override parameter values specified in the control file OPTIONS clause.

Specifying Filenames and Object Names

In general, SQL*Loader follows the SQL standard for specifying object names (for example, table and column names). The information in this section discusses the following topics:

	
Filenames That Conflict with SQL and SQL*Loader Reserved Words

	
Specifying SQL Strings

	
Operating System Considerations

Filenames That Conflict with SQL and SQL*Loader Reserved Words

SQL and SQL*Loader reserved words must be specified within double quotation marks. The only SQL*Loader reserved word is CONSTANT.

You must use double quotation marks if the object name contains special characters other than those recognized by SQL ($, #, _), or if the name is case sensitive.

	
See Also:

Oracle Database SQL Language Reference

Specifying SQL Strings

You must specify SQL strings within double quotation marks. The SQL string applies SQL operators to data fields.

	
See Also:

Applying SQL Operators to Fields

Operating System Considerations

The following sections discuss situations in which your course of action may depend on the operating system you are using.

Specifying a Complete Path

If you encounter problems when trying to specify a complete path name, it may be due to an operating system-specific incompatibility caused by special characters in the specification. In many cases, specifying the path name within single quotation marks prevents errors.

Backslash Escape Character

In DDL syntax, you can place a double quotation mark inside a string delimited by double quotation marks by preceding it with the escape character, "\" (if the escape character is allowed on your operating system). The same rule applies when single quotation marks are required in a string delimited by single quotation marks.

For example, homedir\data"norm\mydata contains a double quotation mark. Preceding the double quotation mark with a backslash indicates that the double quotation mark is to be taken literally:

INFILE 'homedir\data\"norm\mydata'

You can also put the escape character itself into a string by entering it twice.

For example:

"so'\"far" or 'so\'"far' is parsed as so'"far
"'so\\far'" or '\'so\\far\'' is parsed as 'so\far'
"so\\\\far" or 'so\\\\far' is parsed as so\\far

	
Note:

A double quotation mark in the initial position cannot be preceded by an escape character. Therefore, you should avoid creating strings with an initial quotation mark.

Nonportable Strings

There are two kinds of character strings in a SQL*Loader control file that are not portable between operating systems: filename and file processing option strings. When you convert to a different operating system, you will probably need to modify these strings. All other strings in a SQL*Loader control file should be portable between operating systems.

Using the Backslash as an Escape Character

If your operating system uses the backslash character to separate directories in a path name, and if the version of the Oracle database running on your operating system implements the backslash escape character for filenames and other nonportable strings, then you must specify double backslashes in your path names and use single quotation marks.

Escape Character Is Sometimes Disallowed

The version of the Oracle database running on your operating system may not implement the escape character for nonportable strings. When the escape character is disallowed, a backslash is treated as a normal character, rather than as an escape character (although it is still usable in all other strings). Then path names such as the following can be specified normally:

INFILE 'topdir\mydir\myfile'

Double backslashes are not needed.

Because the backslash is not recognized as an escape character, strings within single quotation marks cannot be embedded inside another string delimited by single quotation marks. This rule also holds for double quotation marks. A string within double quotation marks cannot be embedded inside another string delimited by double quotation marks.

Identifying XMLType Tables

As of Oracle Database 10g, the XMLTYPE clause is available for use in a SQL*Loader control file. This clause is of the format XMLTYPE(field name). It is used to identify XMLType tables so that the correct SQL statement can be constructed. Example 8-2 shows how the XMLTYPE clause can be used in a SQL*Loader control file to load data into a schema-based XMLType table.

Example 8-2 Identifying XMLType Tables in the SQL*Loader Control File

The XML schema definition is as follows. It registers the XML schema, xdb_user.xsd, in the Oracle XML DB, and then creates the table, xdb_tab5.

begin dbms_xmlschema.registerSchema('xdb_user.xsd',
'<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xdb="http://xmlns.oracle.com/xdb">
 <xs:element name = "Employee"
 xdb:defaultTable="EMP31B_TAB">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "EmployeeId" type = "xs:positiveInteger"/>
 <xs:element name = "Name" type = "xs:string"/>
 <xs:element name = "Salary" type = "xs:positiveInteger"/>
 <xs:element name = "DeptId" type = "xs:positiveInteger"
 xdb:SQLName="DEPTID"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>',
TRUE, TRUE, FALSE); end;
/

The table is defined as follows:

CREATE TABLE xdb_tab5 OF XMLTYPE XMLSCHEMA "xdb_user.xsd" ELEMENT "Employee";

The control file used to load data into the table, xdb_tab5, looks as follows. It loads XMLType data using the registered XML schema, xdb_user.xsd. The XMLTYPE clause is used to identify this table as an XMLType table. Either direct path or conventional mode can be used to load the data into the table.

LOAD DATA
INFILE *
INTO TABLE xdb_tab5 TRUNCATE
xmltype(xmldata)
(
 xmldata char(4000)
)
BEGINDATA
<Employee> <EmployeeId>111</EmployeeId> <Name>Ravi</Name> <Salary>100000</Sal
ary> <DeptId>12</DeptId></Employee>
<Employee> <EmployeeId>112</EmployeeId> <Name>John</Name> <Salary>150000</Sal
ary> <DeptId>12</DeptId></Employee>
<Employee> <EmployeeId>113</EmployeeId> <Name>Michael</Name> <Salary>75000</S
alary> <DeptId>12</DeptId></Employee>
<Employee> <EmployeeId>114</EmployeeId> <Name>Mark</Name> <Salary>125000</Sal
ary> <DeptId>16</DeptId></Employee>
<Employee> <EmployeeId>115</EmployeeId> <Name>Aaron</Name> <Salary>600000</Sa
lary> <DeptId>16</DeptId></Employee>

Specifying Datafiles

To specify a datafile that contains the data to be loaded, use the INFILE keyword, followed by the filename and optional file processing options string. You can specify multiple files by using multiple INFILE keywords.

	
Note:

You can also specify the datafile from the command line, using the DATA parameter described in Command-Line Parameters. A filename specified on the command line overrides the first INFILE clause in the control file.

If no filename is specified, the filename defaults to the control filename with an extension or file type of .dat.

If the control file itself contains the data to be loaded, specify an asterisk (*). This specification is described in Identifying Data in the Control File with BEGINDATA .

	
Note:

The information in this section applies only to primary datafiles. It does not apply to LOBFILEs or SDFs.
For information about LOBFILES, see Loading LOB Data from LOBFILEs.

For information about SDFs, see Secondary Datafiles (SDFs).

The syntax for INFILE is as follows:

[image: Description of infile.gif follows]

Table 8-1 describes the parameters for the INFILE keyword.

Table 8-1 Parameters for the INFILE Keyword

	Parameter	Description
	
INFILE

	
Specifies that a datafile specification follows.

	
input_filename

	
Name of the file containing the data.

Any spaces or punctuation marks in the filename must be enclosed in single quotation marks. See Specifying Filenames and Object Names.

	
*

	
If your data is in the control file itself, use an asterisk instead of the filename. If you have data in the control file as well as datafiles, you must specify the asterisk first in order for the data to be read.

	
os_file_proc_clause

	
This is the file-processing options string. It specifies the datafile format. It also optimizes datafile reads. The syntax used for this string is specific to your operating system. See Specifying Datafile Format and Buffering.

Examples of INFILE Syntax

The following list shows different ways you can specify INFILE syntax:

	
Data contained in the control file itself:

INFILE *

	
Data contained in a file named sample with a default extension of .dat:

INFILE sample

	
Data contained in a file named datafile.dat with a full path specified:

INFILE 'c:/topdir/subdir/datafile.dat'

	
Note:

Filenames that include spaces or punctuation marks must be enclosed in single quotation marks.

Specifying Multiple Datafiles

To load data from multiple datafiles in one SQL*Loader run, use an INFILE clause for each datafile. Datafiles need not have the same file processing options, although the layout of the records must be identical. For example, two files could be specified with completely different file processing options strings, and a third could consist of data in the control file.

You can also specify a separate discard file and bad file for each datafile. In such a case, the separate bad files and discard files must be declared immediately after each datafile name. For example, the following excerpt from a control file specifies four datafiles with separate bad and discard files:

INFILE mydat1.dat BADFILE mydat1.bad DISCARDFILE mydat1.dis
INFILE mydat2.dat
INFILE mydat3.dat DISCARDFILE mydat3.dis
INFILE mydat4.dat DISCARDMAX 10 0

	
For mydat1.dat, both a bad file and discard file are explicitly specified. Therefore both files are created, as needed.

	
For mydat2.dat, neither a bad file nor a discard file is specified. Therefore, only the bad file is created, as needed. If created, the bad file has the default filename and extension mydat2.bad. The discard file is not created, even if rows are discarded.

	
For mydat3.dat, the default bad file is created, if needed. A discard file with the specified name (mydat3.dis) is created, as needed.

	
For mydat4.dat, the default bad file is created, if needed. Because the DISCARDMAX option is used, SQL*Loader assumes that a discard file is required and creates it with the default name mydat4.dsc.

Identifying Data in the Control File with BEGINDATA

If the data is included in the control file itself, then the INFILE clause is followed by an asterisk rather than a filename. The actual data is placed in the control file after the load configuration specifications.

Specify the BEGINDATA statement before the first data record. The syntax is:

BEGINDATA
data

Keep the following points in mind when using the BEGINDATA statement:

	
If you omit the BEGINDATA statement but include data in the control file, SQL*Loader tries to interpret your data as control information and issues an error message. If your data is in a separate file, do not use the BEGINDATA statement.

	
Do not use spaces or other characters on the same line as the BEGINDATA statement, or the line containing BEGINDATA will be interpreted as the first line of data.

	
Do not put comments after BEGINDATA, or they will also be interpreted as data.

	
See Also:

	
Specifying Datafiles for an explanation of using INFILE

	
Case study 1, Loading Variable-Length Data (see SQL*Loader Case Studies for information on how to access case studies)

Specifying Datafile Format and Buffering

When configuring SQL*Loader, you can specify an operating system-dependent file processing options string (os_file_proc_clause) in the control file to specify file format and buffering.

For example, suppose that your operating system has the following option-string syntax:

[image: Description of recsize_spec.gif follows]

In this syntax, RECSIZE is the size of a fixed-length record, and BUFFERS is the number of buffers to use for asynchronous I/O.

To declare a file named mydata.dat as a file that contains 80-byte records and instruct SQL*Loader to use 8 I/O buffers, you would use the following control file entry:

INFILE 'mydata.dat' "RECSIZE 80 BUFFERS 8"

	
Note:

This example uses the recommended convention of single quotation marks for filenames and double quotation marks for everything else.

	
See Also:

Oracle Database Platform Guide for Microsoft Windows for information about using the os_file_proc_clause on Windows systems.

Specifying the Bad File

When SQL*Loader executes, it can create a file called a bad file or reject file in which it places records that were rejected because of formatting errors or because they caused Oracle errors. If you have specified that a bad file is to be created, the following applies:

	
If one or more records are rejected, the bad file is created and the rejected records are logged.

	
If no records are rejected, then the bad file is not created.

	
If the bad file is created, it overwrites any existing file with the same name; ensure that you do not overwrite a file you wish to retain.

	
Note:

On some systems, a new version of the file may be created if a file with the same name already exists.

To specify the name of the bad file, use the BADFILE clause, followed by a filename. If you do not specify a name for the bad file, the name defaults to the name of the datafile with an extension or file type of .bad. You can also specify the bad file from the command line with the BAD parameter described in Command-Line Parameters.

A filename specified on the command line is associated with the first INFILE clause in the control file, overriding any bad file that may have been specified as part of that clause.

The bad file is created in the same record and file format as the datafile so that you can reload the data after you correct it. For datafiles in stream record format, the record terminator that is found in the datafile is also used in the bad file.

The syntax for the bad file is as follows:

[image: Description of badfile.gif follows]

The BADFILE clause specifies that a filename for the bad file follows.

The filename parameter specifies a valid filename specification for your platform. Any spaces or punctuation marks in the filename must be enclosed in single quotation marks.

Examples of Specifying a Bad File Name

To specify a bad file with filename sample and default file extension or file type of .bad, enter:

BADFILE sample

To specify a bad file with filename bad0001 and file extension or file type of .rej, enter either of the following lines:

BADFILE bad0001.rej
BADFILE '/REJECT_DIR/bad0001.rej'

How Bad Files Are Handled with LOBFILEs and SDFs

Data from LOBFILEs and SDFs is not written to a bad file when there are rejected rows. If there is an error loading a LOB, the row is not rejected. Rather, the LOB column is left empty (not null with a length of zero (0) bytes). However, when the LOBFILE is being used to load an XML column and there is an error loading this LOB data, then the XML column is left as null.

Criteria for Rejected Records

A record can be rejected for the following reasons:

	
Upon insertion, the record causes an Oracle error (such as invalid data for a given datatype).

	
The record is formatted incorrectly so that SQL*Loader cannot find field boundaries.

	
The record violates a constraint or tries to make a unique index non-unique.

If the data can be evaluated according to the WHEN clause criteria (even with unbalanced delimiters), then it is either inserted or rejected.

Neither a conventional path nor a direct path load will write a row to any table if it is rejected because of reason number 2 in the previous list.

A conventional path load will not write a row to any tables if reason number 1 or 3 in the previous list is violated for any one table. The row is rejected for that table and written to the reject file.

In a conventional path load, if the data file has a record that is being loaded into multiple tables and that record is rejected from at least one of the tables, then that record is not loaded into any of the tables.

The log file indicates the Oracle error for each rejected record. Case study 4 demonstrates rejected records. (See SQL*Loader Case Studies for information on how to access case studies.)

Specifying the Discard File

During execution, SQL*Loader can create a discard file for records that do not meet any of the loading criteria. The records contained in this file are called discarded records. Discarded records do not satisfy any of the WHEN clauses specified in the control file. These records differ from rejected records. Discarded records do not necessarily have any bad data. No insert is attempted on a discarded record.

A discard file is created according to the following rules:

	
You have specified a discard filename and one or more records fail to satisfy all of the WHEN clauses specified in the control file. (If the discard file is created, it overwrites any existing file with the same name, so be sure that you do not overwrite any files you wish to retain.)

	
If no records are discarded, then a discard file is not created.

To create a discard file from within a control file, specify any of the following: DISCARDFILE filename, DISCARDS, or DISCARDMAX.

To create a discard file from the command line, specify either DISCARD or DISCARDMAX.

You can specify the discard file directly by specifying its name, or indirectly by specifying the maximum number of discards.

The discard file is created in the same record and file format as the datafile. For datafiles in stream record format, the same record terminator that is found in the datafile is also used in the discard file.

Specifying the Discard File in the Control File

To specify the name of the file, use the DISCARDFILE clause, followed by the filename.

[image: Description of discard.gif follows]

The DISCARDFILE clause specifies that a discard filename follows.

The filename parameter specifies a valid filename specification for your platform. Any spaces or punctuation marks in the filename must be enclosed in single quotation marks.

The default filename is the name of the datafile, and the default file extension or file type is .dsc. A discard filename specified on the command line overrides one specified in the control file. If a discard file with that name already exists, it is either overwritten or a new version is created, depending on your operating system.

Specifying the Discard File from the Command Line

See DISCARD (filename) for information about how to specify a discard file from the command line.

A filename specified on the command line overrides any discard file that you may have specified in the control file.

Examples of Specifying a Discard File Name

The following list shows different ways you can specify a name for the discard file from within the control file:

	
To specify a discard file with filename circular and default file extension or file type of .dsc:

DISCARDFILE circular

	
To specify a discard file named notappl with the file extension or file type of .may:

DISCARDFILE notappl.may

	
To specify a full path to the discard file forget.me:

DISCARDFILE '/discard_dir/forget.me'

Criteria for Discarded Records

If there is no INTO TABLE clause specified for a record, the record is discarded. This situation occurs when every INTO TABLE clause in the SQL*Loader control file has a WHEN clause and, either the record fails to match any of them, or all fields are null.

No records are discarded if an INTO TABLE clause is specified without a WHEN clause. An attempt is made to insert every record into such a table. Therefore, records may be rejected, but none are discarded.

Case study 7, Extracting Data from a Formatted Report, provides an example of using a discard file. (See SQL*Loader Case Studies for information on how to access case studies.)

How Discard Files Are Handled with LOBFILEs and SDFs

Data from LOBFILEs and SDFs is not written to a discard file when there are discarded rows.

Limiting the Number of Discarded Records

You can limit the number of records to be discarded for each datafile by specifying an integer for either the DISCARDS or DISCARDMAX keyword.

When the discard limit is reached, processing of the datafile terminates and continues with the next datafile, if one exists.

You can specify a different number of discards for each datafile. Or, if you specify the number of discards only once, then the maximum number of discards specified applies to all files.

If you specify a maximum number of discards, but no discard filename, SQL*Loader creates a discard file with the default filename and file extension or file type.

Handling Different Character Encoding Schemes

SQL*Loader supports different character encoding schemes (called character sets, or code pages). SQL*Loader uses features of Oracle's globalization support technology to handle the various single-byte and multibyte character encoding schemes available today.

	
See Also:

Oracle Database Globalization Support Guide

The following sections provide a brief introduction to some of the supported character encoding schemes.

Multibyte (Asian) Character Sets

Multibyte character sets support Asian languages. Data can be loaded in multibyte format, and database object names (fields, tables, and so on) can be specified with multibyte characters. In the control file, comments and object names can also use multibyte characters.

Unicode Character Sets

SQL*Loader supports loading data that is in a Unicode character set.

Unicode is a universal encoded character set that supports storage of information from most languages in a single character set. Unicode provides a unique code value for every character, regardless of the platform, program, or language. There are two different encodings for Unicode, UTF-16 and UTF-8.

	
Note:

In this manual, you will see the terms UTF-16 and UTF16 both used. The term UTF-16 is a general reference to UTF-16 encoding for Unicode. The term UTF16 (no hyphen) is the specific name of the character set and is what you should specify for the CHARACTERSET parameter when you want to use UTF-16 encoding. This also applies to UTF-8 and UTF8.

The UTF-16 Unicode encoding is a fixed-width multibyte encoding in which the character codes 0x0000 through 0x007F have the same meaning as the single-byte ASCII codes 0x00 through 0x7F.

The UTF-8 Unicode encoding is a variable-width multibyte encoding in which the character codes 0x00 through 0x7F have the same meaning as ASCII. A character in UTF-8 can be 1 byte, 2 bytes, or 3 bytes long.

	
See Also:

	
Case study 11, Loading Data in the Unicode Character Set (see SQL*Loader Case Studies for information on how to access case studies)

	
Oracle Database Globalization Support Guide for more information about Unicode encoding

Database Character Sets

The Oracle database uses the database character set for data stored in SQL CHAR datatypes (CHAR, VARCHAR2, CLOB, and LONG), for identifiers such as table names, and for SQL statements and PL/SQL source code. Only single-byte character sets and varying-width character sets that include either ASCII or EBCDIC characters are supported as database character sets. Multibyte fixed-width character sets (for example, AL16UTF16) are not supported as the database character set.

An alternative character set can be used in the database for data stored in SQL NCHAR datatypes (NCHAR, NVARCHAR, and NCLOB). This alternative character set is called the database national character set. Only Unicode character sets are supported as the database national character set.

Datafile Character Sets

By default, the datafile is in the character set defined by the NLS_LANG parameter. The datafile character sets supported with NLS_LANG are the same as those supported as database character sets. SQL*Loader supports all Oracle-supported character sets in the datafile (even those not supported as database character sets).

For example, SQL*Loader supports multibyte fixed-width character sets (such as AL16UTF16 and JA16EUCFIXED) in the datafile. SQL*Loader also supports UTF-16 encoding with little-endian byte ordering. However, the Oracle database supports only UTF-16 encoding with big-endian byte ordering (AL16UTF16) and only as a database national character set, not as a database character set.

The character set of the datafile can be set up by using the NLS_LANG parameter or by specifying a SQL*Loader CHARACTERSET parameter.

Input Character Conversion

The default character set for all datafiles, if the CHARACTERSET parameter is not specified, is the session character set defined by the NLS_LANG parameter. The character set used in input datafiles can be specified with the CHARACTERSET parameter.

SQL*Loader has the capacity to automatically convert data from the datafile character set to the database character set or the database national character set, when they differ.

When data character set conversion is required, the target character set should be a superset of the source datafile character set. Otherwise, characters that have no equivalent in the target character set are converted to replacement characters, often a default character such as a question mark (?). This causes loss of data.

The sizes of the database character types CHAR and VARCHAR2 can be specified in bytes (byte-length semantics) or in characters (character-length semantics). If they are specified in bytes, and data character set conversion is required, the converted values may take more bytes than the source values if the target character set uses more bytes than the source character set for any character that is converted. This will result in the following error message being reported if the larger target value exceeds the size of the database column:

ORA-01401: inserted value too large for column

You can avoid this problem by specifying the database column size in characters and also by using character sizes in the control file to describe the data. Another way to avoid this problem is to ensure that the maximum column size is large enough, in bytes, to hold the converted value.

	
See Also:

	
Oracle Database Concepts for more information about character-length semantics in the database

	
Character-Length Semantics

	
Oracle Database Globalization Support Guide

Considerations When Loading Data into VARRAYs or Primary-Key-Based REFs

If you use SQL*Loader conventional path or the Oracle Call Interface (OCI) to load data into VARRAYs or into primary-key-based REFs, and the data being loaded is in a different character set than the database character set, problems such as the following might occur:

	
Rows might be rejected for the reason that a field is too large for the database column, but in reality the field is not too large.

	
A load might be abnormally terminated without any rows being loaded, when only the field that really was too large should have been rejected.

	
Rows might be reported as loaded correctly, but the primary-key-based REF columns are returned as blank when they are selected with SQL*Plus.

To avoid these problems, set the client character set (using the NLS_LANG environment variable) to the database character set before you load the data.

CHARACTERSET Parameter

Specifying the CHARACTERSET parameter tells SQL*Loader the character set of the input datafile. The default character set for all datafiles, if the CHARACTERSET parameter is not specified, is the session character set defined by the NLS_LANG parameter. Only character data (fields in the SQL*Loader datatypes CHAR, VARCHAR, VARCHARC, numeric EXTERNAL, and the datetime and interval datatypes) is affected by the character set of the datafile.

The CHARACTERSET syntax is as follows:

CHARACTERSET char_set_name

The char_set_name variable specifies the character set name. Normally, the specified name must be the name of an Oracle-supported character set.

For UTF-16 Unicode encoding, use the name UTF16 rather than AL16UTF16. AL16UTF16, which is the supported Oracle character set name for UTF-16 encoded data, is only for UTF-16 data that is in big-endian byte order. However, because you are allowed to set up data using the byte order of the system where you create the datafile, the data in the datafile can be either big endian or little endian. Therefore, a different character set name (UTF16) is used. The character set name AL16UTF16 is also supported. But if you specify AL16UTF16 for a datafile that has little-endian byte order, SQL*Loader issues a warning message and processes the datafile as big endian.

The CHARACTERSET parameter can be specified for primary datafiles as well as LOBFILEs and SDFs. All primary datafiles are assumed to be in the same character set. A CHARACTERSET parameter specified before the INFILE parameter applies to the entire list of primary datafiles. If the CHARACTERSET parameter is specified for primary datafiles, the specified value will also be used as the default for LOBFILEs and SDFs. This default setting can be overridden by specifying the CHARACTERSET parameter with the LOBFILE or SDF specification.

The character set specified with the CHARACTERSET parameter does not apply to data in the control file (specified with INFILE). To load data in a character set other than the one specified for your session by the NLS_LANG parameter, you must place the data in a separate datafile.

	
See Also:

	
Byte Ordering

	
Oracle Database Globalization Support Guide for more information about the names of the supported character sets

	
Control File Character Set

	
Case study 11, Loading Data in the Unicode Character Set, for an example of loading a datafile that contains little-endian UTF-16 encoded data. (See SQL*Loader Case Studies for information on how to access case studies.)

Control File Character Set

The SQL*Loader control file itself is assumed to be in the character set specified for your session by the NLS_LANG parameter. If the control file character set is different from the datafile character set, keep the following issue in mind. Delimiters and comparison clause values specified in the SQL*Loader control file as character strings are converted from the control file character set to the datafile character set before any comparisons are made. To ensure that the specifications are correct, you may prefer to specify hexadecimal strings, rather than character string values.

If hexadecimal strings are used with a datafile in the UTF-16 Unicode encoding, the byte order is different on a big-endian versus a little-endian system. For example, "," (comma) in UTF-16 on a big-endian system is X'002c'. On a little-endian system it is X'2c00'. SQL*Loader requires that you always specify hexadecimal strings in big-endian format. If necessary, SQL*Loader swaps the bytes before making comparisons. This allows the same syntax to be used in the control file on both a big-endian and a little-endian system.

Record terminators for datafiles that are in stream format in the UTF-16 Unicode encoding default to "\n" in UTF-16 (that is, 0x000A on a big-endian system and 0x0A00 on a little-endian system). You can override these default settings by using the "STR 'char_str'" or the "STR x'hex_str'" specification on the INFILE line. For example, you could use either of the following to specify that 'ab' is to be used as the record terminator, instead of '\n'.

INFILE myfile.dat "STR 'ab'"

INFILE myfile.dat "STR x'00410042'"

Any data included after the BEGINDATA statement is also assumed to be in the character set specified for your session by the NLS_LANG parameter.

For the SQL*Loader datatypes (CHAR, VARCHAR, VARCHARC, DATE, and EXTERNAL numerics), SQL*Loader supports lengths of character fields that are specified in either bytes (byte-length semantics) or characters (character-length semantics). For example, the specification CHAR(10) in the control file can mean 10 bytes or 10 characters. These are equivalent if the datafile uses a single-byte character set. However, they are often different if the datafile uses a multibyte character set.

To avoid insertion errors caused by expansion of character strings during character set conversion, use character-length semantics in both the datafile and the target database columns.

Character-Length Semantics

Byte-length semantics are the default for all datafiles except those that use the UTF16 character set (which uses character-length semantics by default). To override the default you can specify CHAR or CHARACTER, as shown in the following syntax:

[image: Description of char_length.gif follows]

The LENGTH parameter is placed after the CHARACTERSET parameter in the SQL*Loader control file. The LENGTH parameter applies to the syntax specification for primary datafiles as well as to LOBFILEs and secondary datafiles (SDFs). A LENGTH specification before the INFILE parameters applies to the entire list of primary datafiles. The LENGTH specification specified for the primary datafile is used as the default for LOBFILEs and SDFs. You can override that default by specifying LENGTH with the LOBFILE or SDF specification. Unlike the CHARACTERSET parameter, the LENGTH parameter can also apply to data contained within the control file itself (that is, INFILE * syntax).

You can specify CHARACTER instead of CHAR for the LENGTH parameter.

If character-length semantics are being used for a SQL*Loader datafile, then the following SQL*Loader datatypes will use character-length semantics:

	
CHAR

	
VARCHAR

	
VARCHARC

	
DATE

	
EXTERNAL numerics (INTEGER, FLOAT, DECIMAL, and ZONED)

For the VARCHAR datatype, the length subfield is still a binary SMALLINT length subfield, but its value indicates the length of the character string in characters.

The following datatypes use byte-length semantics even if character-length semantics are being used for the datafile, because the data is binary, or is in a special binary-encoded form in the case of ZONED and DECIMAL:

	
INTEGER

	
SMALLINT

	
FLOAT

	
DOUBLE

	
BYTEINT

	
ZONED

	
DECIMAL

	
RAW

	
VARRAW

	
VARRAWC

	
GRAPHIC

	
GRAPHIC EXTERNAL

	
VARGRAPHIC

The start and end arguments to the POSITION parameter are interpreted in bytes, even if character-length semantics are in use in a datafile. This is necessary to handle datafiles that have a mix of data of different datatypes, some of which use character-length semantics, and some of which use byte-length semantics. It is also needed to handle position with the VARCHAR datatype, which has a SMALLINT length field and then the character data. The SMALLINT length field takes up a certain number of bytes depending on the system (usually 2 bytes), but its value indicates the length of the character string in characters.

Character-length semantics in the datafile can be used independent of whether or not character-length semantics are used for the database columns. Therefore, the datafile and the database columns can use either the same or different length semantics.

Shift-sensitive Character Data

In general, loading shift-sensitive character data can be much slower than loading simple ASCII or EBCDIC data. The fastest way to load shift-sensitive character data is to use fixed-position fields without delimiters. To improve performance, remember the following points:

	
The field data must have an equal number of shift-out/shift-in bytes.

	
The field must start and end in single-byte mode.

	
It is acceptable for the first byte to be shift-out and the last byte to be shift-in.

	
The first and last characters cannot be multibyte.

	
If blanks are not preserved and multibyte-blank-checking is required, a slower path is used. This can happen when the shift-in byte is the last byte of a field after single-byte blank stripping is performed.

Interrupted Loads

Loads are interrupted and discontinued for a number of reasons. A primary reason is space errors, in which SQL*Loader runs out of space for data rows or index entries. A load might also be discontinued because the maximum number of errors was exceeded, an unexpected error was returned to SQL*Loader from the server, a record was too long in the datafile, or a Ctrl+C was executed.

The behavior of SQL*Loader when a load is discontinued varies depending on whether it is a conventional path load or a direct path load, and on the reason the load was interrupted. Additionally, when an interrupted load is continued, the use and value of the SKIP parameter can vary depending on the particular case. The following sections explain the possible scenarios.

	
See Also:

SKIP (records to skip)

Discontinued Conventional Path Loads

In a conventional path load, data is committed after all data in the bind array is loaded into all tables. If the load is discontinued, only the rows that were processed up to the time of the last commit operation are loaded. There is no partial commit of data.

Discontinued Direct Path Loads

In a direct path load, the behavior of a discontinued load varies depending on the reason the load was discontinued:

	
Load Discontinued Because of Space Errors

	
Load Discontinued Because Maximum Number of Errors Exceeded

	
Load Discontinued Because of Fatal Errors

	
Load Discontinued Because a Ctrl+C Was Issued

Load Discontinued Because of Space Errors

If a load is discontinued because of space errors, the behavior of SQL*Loader depends on whether or not you are loading data into multiple subpartitions.

	
Space errors when loading data into multiple subpartitions (that is, loading into a partitioned table, a composite partitioned table, or one partition of a composite partitioned table):

If space errors occur when loading into multiple subpartitions, the load is discontinued and no data is saved unless ROWS has been specified (in which case, all data that was previously committed will be saved). The reason for this behavior is that it is possible rows might be loaded out of order. This is because each row is assigned (not necessarily in order) to a partition and each partition is loaded separately. If the load discontinues before all rows assigned to partitions are loaded, the row for record "n" may have been loaded, but not the row for record "n-1". Therefore, the load cannot be continued by simply using SKIP=N .

	
Space errors when loading data into an unpartitioned table, one partition of a partitioned table, or one subpartition of a composite partitioned table:

If there is one INTO TABLE statement in the control file, SQL*Loader commits as many rows as were loaded before the error occurred.

If there are multiple INTO TABLE statements in the control file, SQL*Loader loads data already read from the datafile into other tables and then commits the data.

In either case, this behavior is independent of whether or not the ROWS parameter was specified. When you continue the load, you can use the SKIP parameter to skip rows that have already been loaded. In the case of multiple INTO TABLE statements, a different number of rows could have been loaded into each table, so to continue the load you would need to specify a different value for the SKIP parameter for every table. SQL*Loader only reports the value for the SKIP parameter if it is the same for all tables.

Load Discontinued Because Maximum Number of Errors Exceeded

If the maximum number of errors is exceeded, SQL*Loader stops loading records into any table and the work done to that point is committed. This means that when you continue the load, the value you specify for the SKIP parameter may be different for different tables. SQL*Loader reports the value for the SKIP parameter only if it is the same for all tables.

Load Discontinued Because of Fatal Errors

If a fatal error is encountered, the load is stopped and no data is saved unless ROWS was specified at the beginning of the load. In that case, all data that was previously committed is saved. SQL*Loader reports the value for the SKIP parameter only if it is the same for all tables.

Load Discontinued Because a Ctrl+C Was Issued

If SQL*Loader is in the middle of saving data when a Ctrl+C is issued, it continues to do the save and then stops the load after the save completes. Otherwise, SQL*Loader stops the load without committing any work that was not committed already. This means that the value of the SKIP parameter will be the same for all tables.

Status of Tables and Indexes After an Interrupted Load

When a load is discontinued, any data already loaded remains in the tables, and the tables are left in a valid state. If the conventional path is used, all indexes are left in a valid state.

If the direct path load method is used, any indexes on the table are left in an unusable state. You can either rebuild or re-create the indexes before continuing, or after the load is restarted and completes.

Other indexes are valid if no other errors occurred. See Indexes Left in an Unusable State for other reasons why an index might be left in an unusable state.

Using the Log File to Determine Load Status

The SQL*Loader log file tells you the state of the tables and indexes and the number of logical records already read from the input datafile. Use this information to resume the load where it left off.

Continuing Single-Table Loads

When SQL*Loader must discontinue a direct path or conventional path load before it is finished, some rows have probably already been committed or marked with savepoints. To continue the discontinued load, use the SKIP parameter to specify the number of logical records that have already been processed by the previous load. At the time the load is discontinued, the value for SKIP is written to the log file in a message similar to the following:

Specify SKIP=1001 when continuing the load.

This message specifying the value of the SKIP parameter is preceded by a message indicating why the load was discontinued.

Note that for multiple-table loads, the value of the SKIP parameter is displayed only if it is the same for all tables.

	
See Also:

SKIP (records to skip)

Assembling Logical Records from Physical Records

As of Oracle9i, user-defined record sizes larger than 64 KB are supported (see READSIZE (read buffer size)). This reduces the need to break up logical records into multiple physical records. However, there may still be situations in which you may want to do so. At some point, when you want to combine those multiple physical records back into one logical record, you can use one of the following clauses, depending on your data:

	
CONCATENATE

	
CONTINUEIF

Using CONCATENATE to Assemble Logical Records

Use CONCATENATE when you want SQL*Loader to always combine the same number of physical records to form one logical record. In the following example, integer specifies the number of physical records to combine.

CONCATENATE integer

The integer value specified for CONCATENATE determines the number of physical record structures that SQL*Loader allocates for each row in the column array. In direct path loads, the default value for COLUMNARRAYROWS is large, so if you also specify a large value for CONCATENATE, then excessive memory allocation can occur. If this happens, you can improve performance by reducing the value of the COLUMNARRAYROWS parameter to lower the number of rows in a column array.

	
See Also:

	
COLUMNARRAYROWS

	
Specifying the Number of Column Array Rows and Size of Stream Buffers

Using CONTINUEIF to Assemble Logical Records

Use CONTINUEIF if the number of physical records to be combined varies. The CONTINUEIF clause is followed by a condition that is evaluated for each physical record, as it is read. For example, two records might be combined if a pound sign (#) were in byte position 80 of the first record. If any other character were there, the second record would not be added to the first.

The full syntax for CONTINUEIF adds even more flexibility:

[image: Description of continueif.gif follows]

Table 8-2 describes the parameters for the CONTINUEIF clause.

Table 8-2 Parameters for the CONTINUEIF Clause

	Parameter	Description
	
THIS

	
If the condition is true in the current record, then the next physical record is read and concatenated to the current physical record, continuing until the condition is false. If the condition is false, then the current physical record becomes the last physical record of the current logical record. THIS is the default.

	
NEXT

	
If the condition is true in the next record, then the current physical record is concatenated to the current logical record, continuing until the condition is false.

	
operator

	
The supported operators are equal (=) and not equal (!= or <>).

For the equal operator, the field and comparison string must match exactly for the condition to be true. For the not equal operator, they may differ in any character.

	
LAST

	
This test is similar to THIS, but the test is always against the last nonblank character. If the last nonblank character in the current physical record meets the test, then the next physical record is read and concatenated to the current physical record, continuing until the condition is false. If the condition is false in the current record, then the current physical record is the last physical record of the current logical record.

LAST allows only a single character-continuation field (as opposed to THIS and NEXT, which allow multiple character-continuation fields).

	
pos_spec

	
Specifies the starting and ending column numbers in the physical record.

Column numbers start with 1. Either a hyphen or a colon is acceptable (start-end or start:end).

If you omit end, the length of the continuation field is the length of the byte string or character string. If you use end, and the length of the resulting continuation field is not the same as that of the byte string or the character string, the shorter one is padded. Character strings are padded with blanks, hexadecimal strings with zeros.

	
str

	
A string of characters to be compared to the continuation field defined by start and end, according to the operator. The string must be enclosed in double or single quotation marks. The comparison is made character by character, blank padding on the right if necessary.

	
X'hex-str'

	
A string of bytes in hexadecimal format used in the same way as str.X'1FB033' would represent the three bytes with values 1F, B0, and 33 (hexadecimal).

	
PRESERVE

	
Includes 'char_string' or X'hex_string' in the logical record. The default is to exclude them.

The positions in the CONTINUEIF clause refer to positions in each physical record. This is the only time you refer to positions in physical records. All other references are to logical records.

For CONTINUEIF THIS and CONTINUEIF LAST, if the PRESERVE parameter is not specified, the continuation field is removed from all physical records when the logical record is assembled. That is, data values are allowed to span the records with no extra characters (continuation characters) in the middle. For example, if CONTINUEIF THIS(3:5)='***' is specified, then positions 3 through 5 are removed from all records. This means that the continuation characters are removed if they are in positions 3 through 5 of the record. It also means that the characters in positions 3 through 5 are removed from the record even if the continuation characters are not in positions 3 through 5.

For CONTINUEIF THIS and CONTINUEIF LAST, if the PRESERVE parameter is used, the continuation field is kept in all physical records when the logical record is assembled.

CONTINUEIF LAST differs from CONTINUEIF THIS and CONTINUEIF NEXT. For CONTINUEIF LAST, where the positions of the continuation field vary from record to record, the continuation field is never removed, even if PRESERVE is not specified.

Example 8-3 through Example 8-6 show the use of CONTINUEIF THIS and CONTINUEIF NEXT, with and without the PRESERVE parameter.

Example 8-3 CONTINUEIF THIS Without the PRESERVE Parameter

Assume that you have physical records 14 bytes long and that a period represents a space:

 %%aaaaaaaa....
 %%bbbbbbbb....
 ..cccccccc....
 %%dddddddddd..
 %%eeeeeeeeee..
 ..ffffffffff..

In this example, the CONTINUEIF THIS clause does not use the PRESERVE parameter:

CONTINUEIF THIS (1:2) = '%%'

Therefore, the logical records are assembled as follows:

 aaaaaaaa....bbbbbbbb....cccccccc....
 dddddddddd..eeeeeeeeee..ffffffffff..

Note that columns 1 and 2 (for example, %% in physical record 1) are removed from the physical records when the logical records are assembled.

Example 8-4 CONTINUEIF THIS with the PRESERVE Parameter

Assume that you have the same physical records as in Example 8-3.

In this example, the CONTINUEIF THIS clause uses the PRESERVE parameter:

CONTINUEIF THIS PRESERVE (1:2) = '%%'

Therefore, the logical records are assembled as follows:

 %%aaaaaaaa....%%bbbbbbbb......cccccccc....
 %%dddddddddd..%%eeeeeeeeee....ffffffffff..

Note that columns 1 and 2 are not removed from the physical records when the logical records are assembled.

Example 8-5 CONTINUEIF NEXT Without the PRESERVE Parameter

Assume that you have physical records 14 bytes long and that a period represents a space:

 ..aaaaaaaa....
 %%bbbbbbbb....
 %%cccccccc....
 ..dddddddddd..
 %%eeeeeeeeee..
 %%ffffffffff..

In this example, the CONTINUEIF NEXT clause does not use the PRESERVE parameter:

CONTINUEIF NEXT (1:2) = '%%'

Therefore, the logical records are assembled as follows (the same results as for Example 8-3).

 aaaaaaaa....bbbbbbbb....cccccccc....
 dddddddddd..eeeeeeeeee..ffffffffff..

Example 8-6 CONTINUEIF NEXT with the PRESERVE Parameter

Assume that you have the same physical records as in Example 8-5.

In this example, the CONTINUEIF NEXT clause uses the PRESERVE parameter:

CONTINUEIF NEXT PRESERVE (1:2) = '%%'

Therefore, the logical records are assembled as follows:

 ..aaaaaaaa....%%bbbbbbbb....%%cccccccc....
 ..dddddddddd..%%eeeeeeeeee..%%ffffffffff..

	
See Also:

Case study 4, Loading Combined Physical Records, for an example of the CONTINUEIF clause. (See SQL*Loader Case Studies for information on how to access case studies.)

Loading Logical Records into Tables

This section describes the way in which you specify:

	
Which tables you want to load

	
Which records you want to load into them

	
Default data delimiters for those records

	
How to handle short records with missing data

Specifying Table Names

The INTO TABLE clause of the LOAD DATA statement enables you to identify tables, fields, and datatypes. It defines the relationship between records in the datafile and tables in the database. The specification of fields and datatypes is described in later sections.

INTO TABLE Clause

Among its many functions, the INTO TABLE clause enables you to specify the table into which you load data. To load multiple tables, you include one INTO TABLE clause for each table you wish to load.

To begin an INTO TABLE clause, use the keywords INTO TABLE, followed by the name of the Oracle table that is to receive the data.

The syntax is as follows:

[image: Description of into_table1.gif follows]

The table must already exist. The table name should be enclosed in double quotation marks if it is the same as any SQL or SQL*Loader reserved keyword, if it contains any special characters, or if it is case sensitive.

INTO TABLE scott."CONSTANT"
INTO TABLE scott."Constant"
INTO TABLE scott."-CONSTANT"

The user must have INSERT privileges for the table being loaded. If the table is not in the user's schema, then the user must either use a synonym to reference the table or include the schema name as part of the table name (for example, scott.emp refers to the table emp in the scott schema).

	
Note:

SQL*Loader considers the default schema to be whatever schema is current after your connect to the database finishes executing. This means that the default schema will not necessarily be the one you specified in the connect string, if there are logon triggers present that get executed during connection to a database.
If you have a logon trigger that changes your current schema to a different one when you connect to a certain database, then SQL*Loader uses that new schema as the default.

Table-Specific Loading Method

When you are loading a table, you can use the INTO TABLE clause to specify a table-specific loading method (INSERT, APPEND, REPLACE, or TRUNCATE) that applies only to that table. That method overrides the global table-loading method. The global table-loading method is INSERT, by default, unless a different method was specified before any INTO TABLE clauses. The following sections discuss using these options to load data into empty and nonempty tables.

Loading Data into Empty Tables

If the tables you are loading into are empty, use the INSERT option.

INSERT

This is SQL*Loader's default method. It requires the table to be empty before loading. SQL*Loader terminates with an error if the table contains rows. Case study 1, Loading Variable-Length Data, provides an example. (See SQL*Loader Case Studies for information on how to access case studies.)

Loading Data into Nonempty Tables

If the tables you are loading into already contain data, you have three options:

	
APPEND

	
REPLACE

	
TRUNCATE

	
Caution:

When REPLACE or TRUNCATE is specified, the entire table is replaced, not just individual rows. After the rows are successfully deleted, a COMMIT statement is issued. You cannot recover the data that was in the table before the load, unless it was saved with Export or a comparable utility.

APPEND

If data already exists in the table, SQL*Loader appends the new rows to it. If data does not already exist, the new rows are simply loaded. You must have SELECT privilege to use the APPEND option. Case study 3, Loading a Delimited Free-Format File, provides an example. (See SQL*Loader Case Studies for information on how to access case studies.)

REPLACE

The REPLACE option executes a SQL DELETE FROM TABLE statement. All rows in the table are deleted and the new data is loaded. The table must be in your schema, or you must have DELETE privilege on the table. Case study 4, Loading Combined Physical Records, provides an example. (See SQL*Loader Case Studies for information on how to access case studies.)

The row deletes cause any delete triggers defined on the table to fire. If DELETE CASCADE has been specified for the table, then the cascaded deletes are carried out. For more information about cascaded deletes, see the information about data integrity in Oracle Database Concepts.

	
Note:

SQL*Loader REPLACE reuses a table's extents, as opposed to the SQL TRUNCATE statement which does not reuse them.

Updating Existing Rows

The REPLACE method is a table replacement, not a replacement of individual rows. SQL*Loader does not update existing records, even if they have null columns. To update existing rows, use the following procedure:

	
Load your data into a work table.

	
Use the SQL UPDATE statement with correlated subqueries.

	
Drop the work table.

TRUNCATE

The TRUNCATE option executes a SQL TRUNCATE TABLE statement. This quickly and efficiently deletes all rows from a table or cluster, to achieve the best possible performance. For the TRUNCATE statement to operate, the table's referential integrity constraints must first be disabled. If they have not been disabled, SQL*Loader returns an error.

Once the integrity constraints have been disabled, DELETE CASCADE is no longer defined for the table. If the DELETE CASCADE functionality is needed, then the contents of the table must be manually deleted before the load begins.

The table must be in your schema, or you must have the DROP ANY TABLE privilege.

	
See Also:

Oracle Database SQL Language Reference for more information about the SQL statements discussed in this section

Table-Specific OPTIONS Parameter

The OPTIONS parameter can be specified for individual tables in a parallel load. (It is valid only for a parallel load.)

The syntax for the OPTIONS parameter is as follows:

[image: Description of into_table3.gif follows]

	
See Also:

Parameters for Parallel Direct Path Loads

Loading Records Based on a Condition

You can choose to load or discard a logical record by using the WHEN clause to test a condition in the record.

The WHEN clause appears after the table name and is followed by one or more field conditions. The syntax for field_condition is as follows:

[image: Description of fld_cond.gif follows]

For example, the following clause indicates that any record with the value "q" in the fifth column position should be loaded:

WHEN (5) = 'q'

A WHEN clause can contain several comparisons, provided each is preceded by AND. Parentheses are optional, but should be used for clarity with multiple comparisons joined by AND. For example:

WHEN (deptno = '10') AND (job = 'SALES')

	
See Also:

	
Using the WHEN, NULLIF, and DEFAULTIF Clauses for information about how SQL*Loader evaluates WHEN clauses, as opposed to NULLIF and DEFAULTIF clauses

	
Case study 5, Loading Data into Multiple Tables, for an example of using the WHEN clause (see SQL*Loader Case Studies for information on how to access case studies)

Using the WHEN Clause with LOBFILEs and SDFs

If a record with a LOBFILE or SDF is discarded, SQL*Loader skips the corresponding data in that LOBFILE or SDF.

Specifying Default Data Delimiters

If all data fields are terminated similarly in the datafile, you can use the FIELDS clause to indicate the default delimiters. The syntax for the fields_spec, termination_spec, and enclosure_spec clauses is as follows:

fields_spec

[image: Description of fields_spec.gif follows]

termination_spec

[image: Description of terminat.gif follows]

	
Note:

Terminator strings can contain one or more characters. Also, TERMINATED BY EOF applies only to loading LOBs from a LOBFILE.

enclosure_spec

[image: Description of enclose.gif follows]

	
Note:

Enclosure strings can contain one or more characters.

You can override the delimiter for any given column by specifying it after the column name. Case study 3, Loading a Delimited Free-Format File, provides an example. (See SQL*Loader Case Studies for information on how to access case studies.)

	
See Also:

	
Specifying Delimiters for a complete description of the syntax

	
Loading LOB Data from LOBFILEs

Handling Short Records with Missing Data

When the control file definition specifies more fields for a record than are present in the record, SQL*Loader must determine whether the remaining (specified) columns should be considered null or whether an error should be generated.

If the control file definition explicitly states that a field's starting position is beyond the end of the logical record, then SQL*Loader always defines the field as null. If a field is defined with a relative position (such as dname and loc in the following example), and the record ends before the field is found, then SQL*Loader could either treat the field as null or generate an error. SQL*Loader uses the presence or absence of the TRAILING NULLCOLS clause (shown in the following syntax diagram) to determine the course of action.

[image: Description of into_table6.gif follows]

[image: Description of into_table7.gif follows]

TRAILING NULLCOLS Clause

The TRAILING NULLCOLS clause tells SQL*Loader to treat any relatively positioned columns that are not present in the record as null columns.

For example, consider the following data:

10 Accounting

Assume that the preceding data is read with the following control file and the record ends after dname:

INTO TABLE dept
 TRAILING NULLCOLS
(deptno CHAR TERMINATED BY " ",
 dname CHAR TERMINATED BY WHITESPACE,
 loc CHAR TERMINATED BY WHITESPACE
)

In this case, the remaining loc field is set to null. Without the TRAILING NULLCOLS clause, an error would be generated due to missing data.

	
See Also:

Case study 7, Extracting Data from a Formatted Report, for an example of using TRAILING NULLCOLS (see SQL*Loader Case Studies for information on how to access case studies)

Index Options

This section describes the following SQL*Loader options that control how index entries are created:

	
SORTED INDEXES

	
SINGLEROW

SORTED INDEXES Clause

The SORTED INDEXES clause applies to direct path loads. It tells SQL*Loader that the incoming data has already been sorted on the specified indexes, allowing SQL*Loader to optimize performance.

	
See Also:

SORTED INDEXES Clause

SINGLEROW Option

The SINGLEROW option is intended for use during a direct path load with APPEND on systems with limited memory, or when loading a small number of records into a large table. This option inserts each index entry directly into the index, one record at a time.

By default, SQL*Loader does not use SINGLEROW to append records to a table. Instead, index entries are put into a separate, temporary storage area and merged with the original index at the end of the load. This method achieves better performance and produces an optimal index, but it requires extra storage space. During the merge operation, the original index, the new index, and the space for new entries all simultaneously occupy storage space.

With the SINGLEROW option, storage space is not required for new index entries or for a new index. The resulting index may not be as optimal as a freshly sorted one, but it takes less space to produce. It also takes more time because additional UNDO information is generated for each index insert. This option is suggested for use when either of the following situations exists:

	
Available storage is limited.

	
The number of records to be loaded is small compared to the size of the table (a ratio of 1:20 or less is recommended).

Benefits of Using Multiple INTO TABLE Clauses

Multiple INTO TABLE clauses enable you to:

	
Load data into different tables

	
Extract multiple logical records from a single input record

	
Distinguish different input record formats

	
Distinguish different input row object subtypes

In the first case, it is common for the INTO TABLE clauses to refer to the same table. This section illustrates the different ways to use multiple INTO TABLE clauses and shows you how to use the POSITION parameter.

	
Note:

A key point when using multiple INTO TABLE clauses is that field scanning continues from where it left off when a new INTO TABLE clause is processed. The remainder of this section details important ways to make use of that behavior. It also describes alternative ways of using fixed field locations or the POSITION parameter.

Extracting Multiple Logical Records

Some data storage and transfer media have fixed-length physical records. When the data records are short, more than one can be stored in a single, physical record to use the storage space efficiently.

In this example, SQL*Loader treats a single physical record in the input file as two logical records and uses two INTO TABLE clauses to load the data into the emp table. For example, assume the data is as follows:

1119 Smith 1120 Yvonne
1121 Albert 1130 Thomas

The following control file extracts the logical records:

INTO TABLE emp
 (empno POSITION(1:4) INTEGER EXTERNAL,
 ename POSITION(6:15) CHAR)
INTO TABLE emp
 (empno POSITION(17:20) INTEGER EXTERNAL,
 ename POSITION(21:30) CHAR)

Relative Positioning Based on Delimiters

The same record could be loaded with a different specification. The following control file uses relative positioning instead of fixed positioning. It specifies that each field is delimited by a single blank (" ") or with an undetermined number of blanks and tabs (WHITESPACE):

INTO TABLE emp
 (empno INTEGER EXTERNAL TERMINATED BY " ",
 ename CHAR TERMINATED BY WHITESPACE)
INTO TABLE emp
 (empno INTEGER EXTERNAL TERMINATED BY " ",
 ename CHAR) TERMINATED BY WHITESPACE)

The important point in this example is that the second empno field is found immediately after the first ename, although it is in a separate INTO TABLE clause. Field scanning does not start over from the beginning of the record for a new INTO TABLE clause. Instead, scanning continues where it left off.

To force record scanning to start in a specific location, you use the POSITION parameter. That mechanism is described in Distinguishing Different Input Record Formats and in Loading Data into Multiple Tables.

Distinguishing Different Input Record Formats

A single datafile might contain records in a variety of formats. Consider the following data, in which emp and dept records are intermixed:

1 50 Manufacturing — DEPT record
2 1119 Smith 50 — EMP record
2 1120 Snyder 50
1 60 Shipping
2 1121 Stevens 60

A record ID field distinguishes between the two formats. Department records have a 1 in the first column, while employee records have a 2. The following control file uses exact positioning to load this data:

INTO TABLE dept
 WHEN recid = 1
 (recid FILLER POSITION(1:1) INTEGER EXTERNAL,
 deptno POSITION(3:4) INTEGER EXTERNAL,
 dname POSITION(8:21) CHAR)
INTO TABLE emp
 WHEN recid <> 1
 (recid FILLER POSITION(1:1) INTEGER EXTERNAL,
 empno POSITION(3:6) INTEGER EXTERNAL,
 ename POSITION(8:17) CHAR,
 deptno POSITION(19:20) INTEGER EXTERNAL)

Relative Positioning Based on the POSITION Parameter

The records in the previous example could also be loaded as delimited data. In this case, however, it is necessary to use the POSITION parameter. The following control file could be used:

INTO TABLE dept
 WHEN recid = 1
 (recid FILLER INTEGER EXTERNAL TERMINATED BY WHITESPACE,
 deptno INTEGER EXTERNAL TERMINATED BY WHITESPACE,
 dname CHAR TERMINATED BY WHITESPACE)
INTO TABLE emp
 WHEN recid <> 1
 (recid FILLER POSITION(1) INTEGER EXTERNAL TERMINATED BY ' ',
 empno INTEGER EXTERNAL TERMINATED BY ' '
 ename CHAR TERMINATED BY WHITESPACE,
 deptno INTEGER EXTERNAL TERMINATED BY ' ')

The POSITION parameter in the second INTO TABLE clause is necessary to load this data correctly. It causes field scanning to start over at column 1 when checking for data that matches the second format. Without it, SQL*Loader would look for the recid field after dname.

Distinguishing Different Input Row Object Subtypes

A single datafile may contain records made up of row objects inherited from the same base row object type. For example, consider the following simple object type and object table definitions, in which a nonfinal base object type is defined along with two object subtypes that inherit their row objects from the base type:

CREATE TYPE person_t AS OBJECT
 (name VARCHAR2(30),
 age NUMBER(3)) not final;

CREATE TYPE employee_t UNDER person_t
 (empid NUMBER(5),
 deptno NUMBER(4),
 dept VARCHAR2(30)) not final;

CREATE TYPE student_t UNDER person_t
 (stdid NUMBER(5),
 major VARCHAR2(20)) not final;

CREATE TABLE persons OF person_t;

The following input datafile contains a mixture of these row objects subtypes. A type ID field distinguishes between the three subtypes. person_t objects have a P in the first column, employee_t objects have an E, and student_t objects have an S.

P,James,31,
P,Thomas,22,
E,Pat,38,93645,1122,Engineering,
P,Bill,19,
P,Scott,55,
S,Judy,45,27316,English,
S,Karen,34,80356,History,
E,Karen,61,90056,1323,Manufacturing,
S,Pat,29,98625,Spanish,
S,Cody,22,99743,Math,
P,Ted,43,
E,Judy,44,87616,1544,Accounting,
E,Bob,50,63421,1314,Shipping,
S,Bob,32,67420,Psychology,
E,Cody,33,25143,1002,Human Resources,

The following control file uses relative positioning based on the POSITION parameter to load this data. Note the use of the TREAT AS clause with a specific object type name. This informs SQL*Loader that all input row objects for the object table will conform to the definition of the named object type.

	
Note:

Multiple subtypes cannot be loaded with the same INTO TABLE statement. Instead, you must use multiple INTO TABLE statements and have each one load a different subtype.

INTO TABLE persons
REPLACE
WHEN typid = 'P' TREAT AS person_t
FIELDS TERMINATED BY ","
 (typid FILLER POSITION(1) CHAR,
 name CHAR,
 age CHAR)

INTO TABLE persons
REPLACE
WHEN typid = 'E' TREAT AS employee_t
FIELDS TERMINATED BY ","
 (typid FILLER POSITION(1) CHAR,
 name CHAR,
 age CHAR,
 empid CHAR,
 deptno CHAR,
 dept CHAR)

INTO TABLE persons
REPLACE
WHEN typid = 'S' TREAT AS student_t
FIELDS TERMINATED BY ","
 (typid FILLER POSITION(1) CHAR,
 name CHAR,
 age CHAR,
 stdid CHAR,
 major CHAR)

	
See Also:

Loading Column Objects for more information about loading object types

Loading Data into Multiple Tables

By using the POSITION parameter with multiple INTO TABLE clauses, data from a single record can be loaded into multiple normalized tables. See case study 5, Loading Data into Multiple Tables, for an example. (See SQL*Loader Case Studies for information about how to access case studies.).

Summary

Multiple INTO TABLE clauses allow you to extract multiple logical records from a single input record and recognize different record formats in the same file.

For delimited data, proper use of the POSITION parameter is essential for achieving the expected results.

When the POSITION parameter is not used, multiple INTO TABLE clauses process different parts of the same (delimited data) input record, allowing multiple tables to be loaded from one record. When the POSITION parameter is used, multiple INTO TABLE clauses can process the same record in different ways, allowing multiple formats to be recognized in one input file.

Bind Arrays and Conventional Path Loads

SQL*Loader uses the SQL array-interface option to transfer data to the database. Multiple rows are read at one time and stored in the bind array. When SQL*Loader sends the Oracle database an INSERT command, the entire array is inserted at one time. After the rows in the bind array are inserted, a COMMIT statement is issued.

The determination of bind array size pertains to SQL*Loader's conventional path option. It does not apply to the direct path load method because a direct path load uses the direct path API, rather than Oracle's SQL interface.

	
See Also:

Oracle Call Interface Programmer's Guide for more information about the concepts of direct path loading

Size Requirements for Bind Arrays

The bind array must be large enough to contain a single row. If the maximum row length exceeds the size of the bind array, as specified by the BINDSIZE parameter, SQL*Loader generates an error. Otherwise, the bind array contains as many rows as can fit within it, up to the limit set by the value of the ROWS parameter.

The BINDSIZE and ROWS parameters are described in Command-Line Parameters.

Although the entire bind array need not be in contiguous memory, the buffer for each field in the bind array must occupy contiguous memory. If the operating system cannot supply enough contiguous memory to store a field, SQL*Loader generates an error.

Performance Implications of Bind Arrays

Large bind arrays minimize the number of calls to the Oracle database and maximize performance. In general, you gain large improvements in performance with each increase in the bind array size up to 100 rows. Increasing the bind array size to be greater than 100 rows generally delivers more modest improvements in performance. The size (in bytes) of 100 rows is typically a good value to use.

In general, any reasonably large size permits SQL*Loader to operate effectively. It is not usually necessary to perform the detailed calculations described in this section. Read this section when you need maximum performance or an explanation of memory usage.

Specifying Number of Rows Versus Size of Bind Array

When you specify a bind array size using the command-line parameter BINDSIZE (see BINDSIZE (maximum size)) or the OPTIONS clause in the control file (see OPTIONS Clause), you impose an upper limit on the bind array. The bind array never exceeds that maximum.

As part of its initialization, SQL*Loader determines the size in bytes required to load a single row. If that size is too large to fit within the specified maximum, the load terminates with an error.

SQL*Loader then multiplies that size by the number of rows for the load, whether that value was specified with the command-line parameter ROWS (see ROWS (rows per commit)) or the OPTIONS clause in the control file (see OPTIONS Clause).

If that size fits within the bind array maximum, the load continues—SQL*Loader does not try to expand the number of rows to reach the maximum bind array size. If the number of rows and the maximum bind array size are both specified, SQL*Loader always uses the smaller value for the bind array.

If the maximum bind array size is too small to accommodate the initial number of rows, SQL*Loader uses a smaller number of rows that fits within the maximum.

Calculations to Determine Bind Array Size

The bind array's size is equivalent to the number of rows it contains times the maximum length of each row. The maximum length of a row is equal to the sum of the maximum field lengths, plus overhead, as follows:

bind array size =
 (number of rows) * (SUM(fixed field lengths)
 + SUM(maximum varying field lengths)
 + ((number of varying length fields)
 * (size of length indicator))
)

Many fields do not vary in size. These fixed-length fields are the same for each loaded row. For these fields, the maximum length of the field is the field size, in bytes, as described in SQL*Loader Datatypes. There is no overhead for these fields.

The fields that can vary in size from row to row are:

	
CHAR

	
DATE

	
INTERVAL DAY TO SECOND

	
INTERVAL DAY TO YEAR

	
LONG VARRAW

	
numeric EXTERNAL

	
TIME

	
TIMESTAMP

	
TIME WITH TIME ZONE

	
TIMESTAMP WITH TIME ZONE

	
VARCHAR

	
VARCHARC

	
VARGRAPHIC

	
VARRAW

	
VARRAWC

The maximum length of these datatypes is described in SQL*Loader Datatypes. The maximum lengths describe the number of bytes that the fields can occupy in the input data record. That length also describes the amount of storage that each field occupies in the bind array, but the bind array includes additional overhead for fields that can vary in size.

When the character datatypes (CHAR, DATE, and numeric EXTERNAL) are specified with delimiters, any lengths specified for these fields are maximum lengths. When specified without delimiters, the size in the record is fixed, but the size of the inserted field may still vary, due to whitespace trimming. So internally, these datatypes are always treated as varying-length fields—even when they are fixed-length fields.

A length indicator is included for each of these fields in the bind array. The space reserved for the field in the bind array is large enough to hold the longest possible value of the field. The length indicator gives the actual length of the field for each row.

	
Note:

In conventional path loads, LOBFILEs are not included when allocating the size of a bind array.

Determining the Size of the Length Indicator

On most systems, the size of the length indicator is 2 bytes. On a few systems, it is 3 bytes. To determine its size, use the following control file:

OPTIONS (ROWS=1)
LOAD DATA
INFILE *
APPEND
INTO TABLE DEPT
(deptno POSITION(1:1) CHAR(1))
BEGINDATA
a

This control file loads a 1-byte CHAR using a 1-row bind array. In this example, no data is actually loaded because a conversion error occurs when the character a is loaded into a numeric column (deptno). The bind array size shown in the log file, minus one (the length of the character field) is the value of the length indicator.

	
Note:

A similar technique can determine bind array size without doing any calculations. Run your control file without any data and with ROWS=1 to determine the memory requirements for a single row of data. Multiply by the number of rows you want in the bind array to determine the bind array size.

Calculating the Size of Field Buffers

Table 8-3 through Table 8-6 summarize the memory requirements for each datatype. "L" is the length specified in the control file. "P" is precision. "S" is the size of the length indicator. For more information about these values, see SQL*Loader Datatypes.

Table 8-3 Fixed-Length Fields

	Datatype	Size in Bytes (Operating System-Dependent)
	
INTEGER

	
The size of the INT datatype, in C

	
INTEGER(N)

	
N bytes

	
SMALLINT

	
The size of SHORT INT datatype, in C

	
FLOAT

	
The size of the FLOAT datatype, in C

	
DOUBLE

	
The size of the DOUBLE datatype, in C

	
BYTEINT

	
The size of UNSIGNED CHAR, in C

	
VARRAW

	
The size of UNSIGNED SHORT, plus 4096 bytes or whatever is specified as max_length

	
LONG VARRAW

	
The size of UNSIGNED INT, plus 4096 bytes or whatever is specified as max_length

	
VARCHARC

	
Composed of 2 numbers. The first specifies length, and the second (which is optional) specifies max_length (default is 4096 bytes).

	
VARRAWC

	
This datatype is for RAW data. It is composed of 2 numbers. The first specifies length, and the second (which is optional) specifies max_length (default is 4096 bytes).

Table 8-4 Nongraphic Fields

	Datatype	Default Size	Specified Size
	
(packed) DECIMAL

	
None

	
(N+1)/2, rounded up

	
ZONED

	
None

	
P

	
RAW

	
None

	
L

	
CHAR (no delimiters)

	
1

	
L + S

	
datetime and interval (no delimiters)

	
None

	
L + S

	
numeric EXTERNAL (no delimiters)

	
None

	
L + S

Table 8-5 Graphic Fields

	Datatype	Default Size	Length Specified with POSITION	Length Specified with DATATYPE
	
GRAPHIC

	
None

	
L

	
2*L

	
GRAPHIC EXTERNAL

	
None

	
L - 2

	
2*(L-2)

	
VARGRAPHIC

	
4KB*2

	
L+S

	
(2*L)+S

Table 8-6 Variable-Length Fields

	Datatype	Default Size	Maximum Length Specified (L)
	
VARCHAR

	
4KB

	
L+S

	
CHAR (delimited)

	
255

	
L+S

	
datetime and interval (delimited)

	
255

	
L+S

	
numeric EXTERNAL (delimited)

	
255

	
L+S

Minimizing Memory Requirements for Bind Arrays

Pay particular attention to the default sizes allocated for VARCHAR, VARGRAPHIC, and the delimited forms of CHAR, DATE, and numeric EXTERNAL fields. They can consume enormous amounts of memory—especially when multiplied by the number of rows in the bind array. It is best to specify the smallest possible maximum length for these fields. Consider the following example:

CHAR(10) TERMINATED BY ","

With byte-length semantics, this example uses (10 + 2) * 64 = 768 bytes in the bind array, assuming that the length indicator is 2 bytes long and that 64 rows are loaded at a time.

With character-length semantics, the same example uses ((10 * s) + 2) * 64 bytes in the bind array, where "s" is the maximum size in bytes of a character in the datafile character set.

Now consider the following example:

CHAR TERMINATED BY ","

Regardless of whether byte-length semantics or character-length semantics are used, this example uses (255 + 2) * 64 = 16,448 bytes, because the default maximum size for a delimited field is 255 bytes. This can make a considerable difference in the number of rows that fit into the bind array.

Calculating Bind Array Size for Multiple INTO TABLE Clauses

When calculating a bind array size for a control file that has multiple INTO TABLE clauses, calculate as if the INTO TABLE clauses were not present. Imagine all of the fields listed in the control file as one, long data structure—that is, the format of a single row in the bind array.

If the same field in the data record is mentioned in multiple INTO TABLE clauses, additional space in the bind array is required each time it is mentioned. It is especially important to minimize the buffer allocations for such fields.

	
Note:

Generated data is produced by the SQL*Loader functions CONSTANT, EXPRESSION, RECNUM, SYSDATE, and SEQUENCE. Such generated data does not require any space in the bind array.

[image: Oracle Corporation]

What's New in Database Utilities?

This section describes new features of the Oracle Database 11g utilities, and provides pointers to additional information. For information about features that were introduced in earlier releases of Oracle Database, refer to the documentation for those releases.

New Features in Oracle Database 11g Release 1

This section lists the major new features that have been added for Oracle Database 11g Release 1 (11.1).

Data Pump Export and Data Pump Import

For the Data Pump Export and Data Pump Import products, new features have been added that allow you to do the following:

	
Compress both data and metadata, only data, only metadata, or no data during an export. See COMPRESSION.

	
Specify additional encryption options in the following areas:

	
You can choose to encrypt both data and metadata, only data, only metadata, no data, or only encrypted columns during an export. See ENCRYPTION.

	
You can specify a specific encryption algorithm to use during an export. See ENCRYPTION_ALGORITHM.

	
You can specify the type of security to use for performing encryption and decryption during an export. For example, perhaps the dump file set will be imported into a different or remote database and it must remain secure in transit. Or perhaps the dump file set will be imported onsite using the Oracle Encryption Wallet but it may also need to be imported offsite where the Oracle Encryption Wallet is not available. See ENCRYPTION_MODE.

	
Perform table mode exports and imports using the transportable method. For information on using this feature during export, see the export TRANSPORTABLE parameter. For information on using this feature during import, see the import TRANSPORTABLE parameter.

	
Specify how partitioned tables should be handled during import operations. See PARTITION_OPTIONS for a description of using this parameter during an import.

	
Overwrite existing dump files during an export operation. See REUSE_DUMPFILES.

	
Rename tables during an import operation. See REMAP_TABLE.

	
Specify that a data load should proceed even if non-deferred constraint violations are encountered. This is valid only for import operations that use the external tables access method. See the import DATA_OPTIONS parameter.

	
Specify that XMLType columns are to be exported in uncompressed CLOB format regardless of the XMLType storage format that was defined for them. See the export DATA_OPTIONS parameter.

	
During an export, specify a remap function that takes as a source the original value of the designated column and returns a remapped value that will replace the original value in the dump file. See the export REMAP_DATA parameter.

	
During an import, remap data as it is being loaded into a new database. See the import REMAP_DATA parameter.

	
Automatic restart of workers on the same instance.

Additionally, Data Pump will now perform a one-time automatic restart of workers (on the same instance) that have stopped due to certain errors. For example, if someone manually stops a process, the worker is automatically restarted one time, on the same instance. If the process stops a second time, it must be manually restarted.

External Tables

For the External Tables functionality, the following new features have been added:

	
Ability to compress data before it is written to the dump file set. See COMPRESSION.

	
Ability to encrypt data before it is written to the dump file set. See ENCRYPTION.

LogMiner Utility

LogMiner now provides the following additional support:

	
The LogMiner utility now supports XMLType data when it is stored in CLOB format.

See Supported Datatypes and Table Storage Attributes.

Automatic Diagnostic Repository Command Interpreter (ADRCI)

The Automatic Diagnostic Repository Command Interpreter (ADRCI) provides a way for you to work with the diagnostic data contained in the Automatic Diagnostic Repository (ADR). The ADR is a file-based repository for database diagnostic data, such as traces, dumps, the alert log, health monitor reports, and more. It has a unified directory structure across multiple instances and multiple products.

See Chapter 15, "ADRCI: ADR Command Interpreter" for more information.

Enterprise Manager Configuration Assistant (EMCA)

The Enterprise Manager Configuration Assistant (EMCA) is now documented in this book. Prior to Oracle Database 11g Release 1, it was documented in Oracle Enterprise Manager Advanced Configuration. The EMCA provides a command-line interface for configuring Database Control.

See Chapter 21, "Enterprise Manager Configuration Assistant (EMCA)" for more information.

5 The Data Pump API

The Data Pump API, DBMS_DATAPUMP, provides a high-speed mechanism to move all or part of the data and metadata for a site from one database to another. The Data Pump Export and Data Pump Import utilities are based on the Data Pump API.

You should read this chapter if you want more details about how the Data Pump API works. The following topics are covered:

	
How Does the Client Interface to the Data Pump API Work?

	
What Are the Basic Steps in Using the Data Pump API?

	
Examples of Using the Data Pump API

	
See Also:

	
Oracle Database PL/SQL Packages and Types Reference for a detailed description of the procedures available in the DBMS_DATAPUMP package

	
Chapter 1, "Overview of Oracle Data Pump" for additional explanation of Data Pump concepts

How Does the Client Interface to the Data Pump API Work?

The main structure used in the client interface is a job handle, which appears to the caller as an integer. Handles are created using the DBMS_DATAPUMP.OPEN or DBMS_DATAPUMP.ATTACH function. Other sessions can attach to a job to monitor and control its progress. This allows a DBA to start up a job before departing from work and then watch the progress of the job from home. Handles are session specific. The same job can create different handles in different sessions.

Job States

There is a state associated with each phase of a job, as follows:

	
Undefined - before a handle is created

	
Defining - when the handle is first created

	
Executing - when the DBMS_DATAPUMP.START_JOB procedure is executed

	
Completing - when the job has finished its work and the Data Pump processes are ending

	
Completed - when the job is completed

	
Stop Pending - when an orderly job shutdown has been requested

	
Stopping - when the job is stopping

	
Idling - the period between the time that a DBMS_DATAPUMP.ATTACH is executed to attach to a stopped job and the time that a DBMS_DATAPUMP.START_JOB is executed to restart that job

	
Not Running - when a master table exists for a job that is not running (has no Data Pump processes associated with it)

Performing DBMS_DATAPUMP.START_JOB on a job in an Idling state will return it to an Executing state.

If all users execute DBMS_DATAPUMP.DETACH to detach from a job in the Defining state, the job will be totally removed from the database.

When a job abnormally terminates or when an instance running the job is shut down, the job is placed in the Not Running state if it was previously executing or idling. It can then be restarted by the user.

The master control process is active in the Defining, Idling, Executing, Stopping, Stop Pending, and Completing states. It is also active briefly in the Stopped and Completed states. The master table for the job exists in all states except the Undefined state. Worker processes are only active in the Executing and Stop Pending states, and briefly in the Defining state for import jobs.

Detaching while a job is in the Executing state will not halt the job, and you can re-attach to an executing job at any time to resume obtaining status information about the job.

A Detach can occur explicitly, when the DBMS_DATAPUMP.DETACH procedure is executed, or it can occur implicitly when a Data Pump API session is run down, when the Data Pump API is unable to communicate with a Data Pump job, or when the DBMS_DATAPUMP.STOP_JOB procedure is executed.

The Not Running state indicates that a master table exists outside the context of an executing job. This will occur if a job has been stopped (probably to be restarted later) or if a job has abnormally terminated. This state can also be seen momentarily during job state transitions at the beginning of a job, and at the end of a job before the master table is dropped. Note that the Not Running state is shown only in the DBA_DATAPUMP_JOBS view and the USER_DATAPUMP_JOBS view. It is never returned by the GET_STATUS procedure.

Table 5-1 shows the valid job states in which DBMS_DATAPUMP procedures can be executed. The states listed are valid for both export and import jobs, unless otherwise noted.

Table 5-1 Valid Job States in Which DBMS_DATAPUMP Procedures Can Be Executed

	Procedure Name	Valid States	Description
	

ADD_FILE

	
Defining (valid for both export and import jobs)

Executing and Idling (valid only for specifying dump files for export jobs)

	
Specifies a file for the dump file set, the log file, or the SQL_FILE output.

	

ATTACH

	
Defining, Executing, Idling, Stopped, Completed, Completing, Not Running

	
Allows a user session to monitor a job or to restart a stopped job. The attach will fail if the dump file set or master table for the job have been deleted or altered in any way.

	

DATA_FILTER

	
Defining

	
Restricts data processed by a job.

	

DETACH

	
All

	
Disconnects a user session from a job.

	

GET_DUMPFILE_INFO

	
All

	
Retrieves dump file header information

	

GET_STATUS

	
All, except Completed, Not Running, Stopped, and Undefined

	
Obtains the status of a job.

	

LOG_ENTRY

	
Defining, Executing, Idling, Stop Pending, Completing

	
Adds an entry to the log file.

	

METADATA_FILTER

	
Defining

	
Restricts metadata processed by a job.

	

METADATA_REMAP

	
Defining

	
Remaps metadata processed by a job.

	

METADATA_TRANSFORM

	
Defining

	
Alters metadata processed by a job.

	

OPEN

	
Undefined

	
Creates a new job.

	

SET_PARALLEL

	
Defining, Executing, Idling

	
Specifies parallelism for a job.

	

SET_PARAMETER

	
DefiningFoot 1

	
Alters default processing by a job.

	

START_JOB

	
Defining, Idling

	
Begins or resumes execution of a job.

	

STOP_JOB

	
Defining, Executing, Idling, Stop Pending

	
Initiates shutdown of a job.

	

WAIT_FOR_JOB

	
All, except Completed, Not Running, Stopped, and Undefined

	
Waits for a job to end.

Footnote 1 The ENCRYPTION_PASSWORD parameter can be entered during the Idling state, as well as during the Defining state.

What Are the Basic Steps in Using the Data Pump API?

To use the Data Pump API, you use the procedures provided in the DBMS_DATAPUMP package. The following steps list the basic activities involved in using the Data Pump API. The steps are presented in the order in which the activities would generally be performed:

	
Execute the DBMS_DATAPUMP.OPEN procedure to create a Data Pump job and its infrastructure.

	
Define any parameters for the job.

	
Start the job.

	
Optionally, monitor the job until it completes.

	
Optionally, detach from the job and reattach at a later time.

	
Optionally, stop the job.

	
Optionally, restart the job, if desired.

These concepts are illustrated in the examples provided in the next section.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for a complete description of the DBMS_DATAPUMP package

Examples of Using the Data Pump API

This section provides the following examples to help you get started using the Data Pump API:

	
Example 5-1, "Performing a Simple Schema Export"

	
Example 5-2, "Importing a Dump File and Remapping All Schema Objects"

	
Example 5-3, "Using Exception Handling During a Simple Schema Export"

The examples are in the form of PL/SQL scripts. If you choose to copy these scripts and run them, you must first do the following, using SQL*Plus:

	
Create a directory object and grant READ and WRITE access to it. For example, to create a directory object named dmpdir to which you have access, do the following. Replace user with your username.

SQL> CREATE DIRECTORY dmpdir AS '/rdbms/work';
SQL> GRANT READ, WRITE ON DIRECTORY dmpdir TO user

	
Ensure that you have the EXP_FULL_DATABASE and IMP_FULL_DATABASE roles. To see a list of all roles assigned to you within your security domain, do the following:

SQL> SELECT * FROM SESSION_ROLES;

If you do not have the necessary roles assigned to you, contact your system administrator for help.

	
Turn on server output if it is not already on. This is done as follows:

SQL> SET SERVEROUTPUT ON

If you do not do this, you will not see any output to your screen. You must do this in the same session in which you invoke the example. If you exit SQL*Plus, this setting is lost and must be reset when you begin a new session. (It must also be reset if you connect to a different user name.)

Example 5-1 Performing a Simple Schema Export

The PL/SQL script in this example shows how to use the Data Pump API to perform a simple schema export of the HR schema. It shows how to create a job, start it, and monitor it. Additional information about the example is contained in the comments within the script. To keep the example simple, exceptions from any of the API calls will not be trapped. However, in a production environment, Oracle recommends that you define exception handlers and call GET_STATUS to retrieve more detailed error information when a failure occurs.

Connect as user SYSTEM to use this script.

DECLARE
 ind NUMBER; -- Loop index
 h1 NUMBER; -- Data Pump job handle
 percent_done NUMBER; -- Percentage of job complete
 job_state VARCHAR2(30); -- To keep track of job state
 le ku$_LogEntry; -- For WIP and error messages
 js ku$_JobStatus; -- The job status from get_status
 jd ku$_JobDesc; -- The job description from get_status
 sts ku$_Status; -- The status object returned by get_status
BEGIN

-- Create a (user-named) Data Pump job to do a schema export.

 h1 := DBMS_DATAPUMP.OPEN('EXPORT','SCHEMA',NULL,'EXAMPLE1','LATEST');

-- Specify a single dump file for the job (using the handle just returned)
-- and a directory object, which must already be defined and accessible
-- to the user running this procedure.

 DBMS_DATAPUMP.ADD_FILE(h1,'example1.dmp','DMPDIR');

-- A metadata filter is used to specify the schema that will be exported.

 DBMS_DATAPUMP.METADATA_FILTER(h1,'SCHEMA_EXPR','IN (''HR'')');

-- Start the job. An exception will be generated if something is not set up
-- properly.

 DBMS_DATAPUMP.START_JOB(h1);

-- The export job should now be running. In the following loop, the job
-- is monitored until it completes. In the meantime, progress information is
-- displayed.

 percent_done := 0;
 job_state := 'UNDEFINED';
 while (job_state != 'COMPLETED') and (job_state != 'STOPPED') loop
 dbms_datapump.get_status(h1,
 dbms_datapump.ku$_status_job_error +
 dbms_datapump.ku$_status_job_status +
 dbms_datapump.ku$_status_wip,-1,job_state,sts);
 js := sts.job_status;

-- If the percentage done changed, display the new value.

 if js.percent_done != percent_done
 then
 dbms_output.put_line('*** Job percent done = ' ||
 to_char(js.percent_done));
 percent_done := js.percent_done;
 end if;

-- If any work-in-progress (WIP) or error messages were received for the job,
-- display them.

 if (bitand(sts.mask,dbms_datapump.ku$_status_wip) != 0)
 then
 le := sts.wip;
 else
 if (bitand(sts.mask,dbms_datapump.ku$_status_job_error) != 0)
 then
 le := sts.error;
 else
 le := null;
 end if;
 end if;
 if le is not null
 then
 ind := le.FIRST;
 while ind is not null loop
 dbms_output.put_line(le(ind).LogText);
 ind := le.NEXT(ind);
 end loop;
 end if;
 end loop;

-- Indicate that the job finished and detach from it.

 dbms_output.put_line('Job has completed');
 dbms_output.put_line('Final job state = ' || job_state);
 dbms_datapump.detach(h1);
END;
/

Example 5-2 Importing a Dump File and Remapping All Schema Objects

The script in this example imports the dump file created in Example 5-1 (an export of the hr schema). All schema objects are remapped from the hr schema to the blake schema. To keep the example simple, exceptions from any of the API calls will not be trapped. However, in a production environment, Oracle recommends that you define exception handlers and call GET_STATUS to retrieve more detailed error information when a failure occurs.

Connect as user SYSTEM to use this script.

DECLARE
 ind NUMBER; -- Loop index
 h1 NUMBER; -- Data Pump job handle
 percent_done NUMBER; -- Percentage of job complete
 job_state VARCHAR2(30); -- To keep track of job state
 le ku$_LogEntry; -- For WIP and error messages
 js ku$_JobStatus; -- The job status from get_status
 jd ku$_JobDesc; -- The job description from get_status
 sts ku$_Status; -- The status object returned by get_status
BEGIN

-- Create a (user-named) Data Pump job to do a "full" import (everything
-- in the dump file without filtering).

 h1 := DBMS_DATAPUMP.OPEN('IMPORT','FULL',NULL,'EXAMPLE2');

-- Specify the single dump file for the job (using the handle just returned)
-- and directory object, which must already be defined and accessible
-- to the user running this procedure. This is the dump file created by
-- the export operation in the first example.

 DBMS_DATAPUMP.ADD_FILE(h1,'example1.dmp','DMPDIR');

-- A metadata remap will map all schema objects from HR to BLAKE.

 DBMS_DATAPUMP.METADATA_REMAP(h1,'REMAP_SCHEMA','HR','BLAKE');

-- If a table already exists in the destination schema, skip it (leave
-- the preexisting table alone). This is the default, but it does not hurt
-- to specify it explicitly.

 DBMS_DATAPUMP.SET_PARAMETER(h1,'TABLE_EXISTS_ACTION','SKIP');

-- Start the job. An exception is returned if something is not set up properly.

 DBMS_DATAPUMP.START_JOB(h1);

-- The import job should now be running. In the following loop, the job is
-- monitored until it completes. In the meantime, progress information is
-- displayed. Note: this is identical to the export example.

 percent_done := 0;
 job_state := 'UNDEFINED';
 while (job_state != 'COMPLETED') and (job_state != 'STOPPED') loop
 dbms_datapump.get_status(h1,
 dbms_datapump.ku$_status_job_error +
 dbms_datapump.ku$_status_job_status +
 dbms_datapump.ku$_status_wip,-1,job_state,sts);
 js := sts.job_status;

-- If the percentage done changed, display the new value.

 if js.percent_done != percent_done
 then
 dbms_output.put_line('*** Job percent done = ' ||
 to_char(js.percent_done));
 percent_done := js.percent_done;
 end if;

-- If any work-in-progress (WIP) or Error messages were received for the job,
-- display them.

 if (bitand(sts.mask,dbms_datapump.ku$_status_wip) != 0)
 then
 le := sts.wip;
 else
 if (bitand(sts.mask,dbms_datapump.ku$_status_job_error) != 0)
 then
 le := sts.error;
 else
 le := null;
 end if;
 end if;
 if le is not null
 then
 ind := le.FIRST;
 while ind is not null loop
 dbms_output.put_line(le(ind).LogText);
 ind := le.NEXT(ind);
 end loop;
 end if;
 end loop;

-- Indicate that the job finished and gracefully detach from it.

 dbms_output.put_line('Job has completed');
 dbms_output.put_line('Final job state = ' || job_state);
 dbms_datapump.detach(h1);
END;
/

Example 5-3 Using Exception Handling During a Simple Schema Export

The script in this example shows a simple schema export using the Data Pump API. It extends Example 5-1 to show how to use exception handling to catch the SUCCESS_WITH_INFO case, and how to use the GET_STATUS procedure to retrieve additional information about errors. If you want to get exception information about a DBMS_DATAPUMP.OPEN or DBMS_DATAPUMP.ATTACH failure, you can call DBMS_DATAPUMP.GET_STATUS with a DBMS_DATAPUMP.KU$_STATUS_JOB_ERROR information mask and a NULL job handle to retrieve the error details.

Connect as user SYSTEM to use this example.

DECLARE
 ind NUMBER; -- Loop index
 spos NUMBER; -- String starting position
 slen NUMBER; -- String length for output
 h1 NUMBER; -- Data Pump job handle
 percent_done NUMBER; -- Percentage of job complete
 job_state VARCHAR2(30); -- To keep track of job state
 le ku$_LogEntry; -- For WIP and error messages
 js ku$_JobStatus; -- The job status from get_status
 jd ku$_JobDesc; -- The job description from get_status
 sts ku$_Status; -- The status object returned by get_status
BEGIN

-- Create a (user-named) Data Pump job to do a schema export.

 h1 := dbms_datapump.open('EXPORT','SCHEMA',NULL,'EXAMPLE3','LATEST');

-- Specify a single dump file for the job (using the handle just returned)
-- and a directory object, which must already be defined and accessible
-- to the user running this procedure.

 dbms_datapump.add_file(h1,'example3.dmp','DMPDIR');

-- A metadata filter is used to specify the schema that will be exported.

 dbms_datapump.metadata_filter(h1,'SCHEMA_EXPR','IN (''HR'')');

-- Start the job. An exception will be returned if something is not set up
-- properly.One possible exception that will be handled differently is the
-- success_with_info exception. success_with_info means the job started
-- successfully, but more information is available through get_status about
-- conditions around the start_job that the user might want to be aware of.

 begin
 dbms_datapump.start_job(h1);
 dbms_output.put_line('Data Pump job started successfully');
 exception
 when others then
 if sqlcode = dbms_datapump.success_with_info_num
 then
 dbms_output.put_line('Data Pump job started with info available:');
 dbms_datapump.get_status(h1,
 dbms_datapump.ku$_status_job_error,0,
 job_state,sts);
 if (bitand(sts.mask,dbms_datapump.ku$_status_job_error) != 0)
 then
 le := sts.error;
 if le is not null
 then
 ind := le.FIRST;
 while ind is not null loop
 dbms_output.put_line(le(ind).LogText);
 ind := le.NEXT(ind);
 end loop;
 end if;
 end if;
 else
 raise;
 end if;
 end;

-- The export job should now be running. In the following loop, we will monitor
-- the job until it completes. In the meantime, progress information is
-- displayed.

 percent_done := 0;
 job_state := 'UNDEFINED';
 while (job_state != 'COMPLETED') and (job_state != 'STOPPED') loop
 dbms_datapump.get_status(h1,
 dbms_datapump.ku$_status_job_error +
 dbms_datapump.ku$_status_job_status +
 dbms_datapump.ku$_status_wip,-1,job_state,sts);
 js := sts.job_status;

-- If the percentage done changed, display the new value.

 if js.percent_done != percent_done
 then
 dbms_output.put_line('*** Job percent done = ' ||
 to_char(js.percent_done));
 percent_done := js.percent_done;
 end if;

-- Display any work-in-progress (WIP) or error messages that were received for
-- the job.

 if (bitand(sts.mask,dbms_datapump.ku$_status_wip) != 0)
 then
 le := sts.wip;
 else
 if (bitand(sts.mask,dbms_datapump.ku$_status_job_error) != 0)
 then
 le := sts.error;
 else
 le := null;
 end if;
 end if;
 if le is not null
 then
 ind := le.FIRST;
 while ind is not null loop
 dbms_output.put_line(le(ind).LogText);
 ind := le.NEXT(ind);
 end loop;
 end if;
 end loop;

-- Indicate that the job finished and detach from it.

 dbms_output.put_line('Job has completed');
 dbms_output.put_line('Final job state = ' || job_state);
 dbms_datapump.detach(h1);

-- Any exceptions that propagated to this point will be captured. The
-- details will be retrieved from get_status and displayed.

 exception
 when others then
 dbms_output.put_line('Exception in Data Pump job');
 dbms_datapump.get_status(h1,dbms_datapump.ku$_status_job_error,0,
 job_state,sts);
 if (bitand(sts.mask,dbms_datapump.ku$_status_job_error) != 0)
 then
 le := sts.error;
 if le is not null
 then
 ind := le.FIRST;
 while ind is not null loop
 spos := 1;
 slen := length(le(ind).LogText);
 if slen > 255
 then
 slen := 255;
 end if;
 while slen > 0 loop
 dbms_output.put_line(substr(le(ind).LogText,spos,slen));
 spos := spos + 255;
 slen := length(le(ind).LogText) + 1 - spos;
 end loop;
 ind := le.NEXT(ind);
 end loop;
 end if;
 end if;
END;
/

6 SQL*Loader Concepts

This chapter explains the basic concepts of loading data into an Oracle database with SQL*Loader. This chapter covers the following topics:

	
SQL*Loader Features

	
SQL*Loader Parameters

	
SQL*Loader Control File

	
Input Data and Datafiles

	
LOBFILEs and Secondary Datafiles (SDFs)

	
Data Conversion and Datatype Specification

	
Discarded and Rejected Records

	
Log File and Logging Information

	
Conventional Path Loads, Direct Path Loads, and External Table Loads

	
Loading Objects, Collections, and LOBs

	
Partitioned Object Support

	
Application Development: Direct Path Load API

	
SQL*Loader Case Studies

SQL*Loader Features

SQL*Loader loads data from external files into tables of an Oracle database. It has a powerful data parsing engine that puts little limitation on the format of the data in the datafile. You can use SQL*Loader to do the following:

	
Load data across a network if your data files are on a different system than the database.

	
Load data from multiple datafiles during the same load session.

	
Load data into multiple tables during the same load session.

	
Specify the character set of the data.

	
Selectively load data (you can load records based on the records' values).

	
Manipulate the data before loading it, using SQL functions.

	
Generate unique sequential key values in specified columns.

	
Use the operating system's file system to access the datafiles.

	
Load data from disk, tape, or named pipe.

	
Generate sophisticated error reports, which greatly aid troubleshooting.

	
Load arbitrarily complex object-relational data.

	
Use secondary datafiles for loading LOBs and collections.

	
Use either conventional or direct path loading. While conventional path loading is very flexible, direct path loading provides superior loading performance. See Chapter 11.

A typical SQL*Loader session takes as input a control file, which controls the behavior of SQL*Loader, and one or more datafiles. The output of SQL*Loader is an Oracle database (where the data is loaded), a log file, a bad file, and potentially, a discard file. An example of the flow of a SQL*Loader session is shown in Figure 6-1.

Figure 6-1 SQL*Loader Overview

[image: Description of Figure 6-1 follows]

SQL*Loader Parameters

SQL*Loader is invoked when you specify the sqlldr command and, optionally, parameters that establish session characteristics.

In situations where you always use the same parameters for which the values seldom change, it can be more efficient to specify parameters using the following methods, rather than on the command line:

	
Parameters can be grouped together in a parameter file. You could then specify the name of the parameter file on the command line using the PARFILE parameter.

	
Certain parameters can also be specified within the SQL*Loader control file by using the OPTIONS clause.

Parameters specified on the command line override any parameter values specified in a parameter file or OPTIONS clause.

	
See Also:

	
Chapter 7 for descriptions of the SQL*Loader parameters

	
PARFILE (parameter file)

	
OPTIONS Clause

SQL*Loader Control File

The control file is a text file written in a language that SQL*Loader understands. The control file tells SQL*Loader where to find the data, how to parse and interpret the data, where to insert the data, and more.

Although not precisely defined, a control file can be said to have three sections.

The first section contains session-wide information, for example:

	
Global options such as bindsize, rows, records to skip, and so on

	
INFILE clauses to specify where the input data is located

	
Data to be loaded

The second section consists of one or more INTO TABLE blocks. Each of these blocks contains information about the table into which the data is to be loaded, such as the table name and the columns of the table.

The third section is optional and, if present, contains input data.

Some control file syntax considerations to keep in mind are:

	
The syntax is free-format (statements can extend over multiple lines).

	
It is case insensitive; however, strings enclosed in single or double quotation marks are taken literally, including case.

	
In control file syntax, comments extend from the two hyphens (--) that mark the beginning of the comment to the end of the line. The optional third section of the control file is interpreted as data rather than as control file syntax; consequently, comments in this section are not supported.

	
The keywords CONSTANT and ZONE have special meaning to SQL*Loader and are therefore reserved. To avoid potential conflicts, Oracle recommends that you do not use either CONSTANT or ZONE as a name for any tables or columns.

	
See Also:

Chapter 8 for details about control file syntax and semantics

Input Data and Datafiles

SQL*Loader reads data from one or more files (or operating system equivalents of files) specified in the control file. From SQL*Loader's perspective, the data in the datafile is organized as records. A particular datafile can be in fixed record format, variable record format, or stream record format. The record format can be specified in the control file with the INFILE parameter. If no record format is specified, the default is stream record format.

	
Note:

If data is specified inside the control file (that is, INFILE * was specified in the control file), then the data is interpreted in the stream record format with the default record terminator.

Fixed Record Format

A file is in fixed record format when all records in a datafile are the same byte length. Although this format is the least flexible, it results in better performance than variable or stream format. Fixed format is also simple to specify. For example:

INFILE datafile_name "fix n"

This example specifies that SQL*Loader should interpret the particular datafile as being in fixed record format where every record is n bytes long.

Example 6-1 shows a control file that specifies a datafile that should be interpreted in the fixed record format. The datafile in the example contains five physical records. Assuming that a period (.) indicates a space, the first physical record is [001,...cd,.] which is exactly eleven bytes (assuming a single-byte character set). The second record is [0002,fghi,\n] followed by the newline character (which is the eleventh byte), and so on. Note that newline characters are not required with the fixed record format.

Note that the length is always interpreted in bytes, even if character-length semantics are in effect for the file. This is necessary because the file could contain a mix of fields, some of which are processed with character-length semantics and others which are processed with byte-length semantics. See Character-Length Semantics.

Example 6-1 Loading Data in Fixed Record Format

load data
infile 'example.dat' "fix 11"
into table example
fields terminated by ',' optionally enclosed by '"'
(col1, col2)

example.dat:
001, cd, 0002,fghi,
00003,lmn,
1, "pqrs",
0005,uvwx,

Variable Record Format

A file is in variable record format when the length of each record in a character field is included at the beginning of each record in the datafile. This format provides some added flexibility over the fixed record format and a performance advantage over the stream record format. For example, you can specify a datafile that is to be interpreted as being in variable record format as follows:

INFILE "datafile_name" "var n"

In this example, n specifies the number of bytes in the record length field. If n is not specified, SQL*Loader assumes a length of 5 bytes. Specifying n larger than 40 will result in an error.

Example 6-2 shows a control file specification that tells SQL*Loader to look for data in the datafile example.dat and to expect variable record format where the record length fields are 3 bytes long. The example.dat datafile consists of three physical records. The first is specified to be 009 (that is, 9) bytes long, the second is 010 bytes long (that is, 10, including a 1-byte newline), and the third is 012 bytes long (also including a 1-byte newline). Note that newline characters are not required with the variable record format. This example also assumes a single-byte character set for the datafile.

The lengths are always interpreted in bytes, even if character-length semantics are in effect for the file. This is necessary because the file could contain a mix of fields, some processed with character-length semantics and others processed with byte-length semantics. See Character-Length Semantics.

Example 6-2 Loading Data in Variable Record Format

load data
infile 'example.dat' "var 3"
into table example
fields terminated by ',' optionally enclosed by '"'
(col1 char(5),
 col2 char(7))

example.dat:
009hello,cd,010world,im,
012my,name is,

Stream Record Format

A file is in stream record format when the records are not specified by size; instead SQL*Loader forms records by scanning for the record terminator. Stream record format is the most flexible format, but there can be a negative effect on performance. The specification of a datafile to be interpreted as being in stream record format looks similar to the following:

INFILE datafile_name ["str terminator_string"]

The terminator_string is specified as either 'char_string' or X'hex_string' where:

	
'char_string' is a string of characters enclosed in single or double quotation marks

	
X'hex_string' is a byte string in hexadecimal format

When the terminator_string contains special (nonprintable) characters, it should be specified as an X'hex_string'. However, some nonprintable characters can be specified as ('char_string') by using a backslash. For example:

	
\n indicates a line feed

	
\t indicates a horizontal tab

	
\f indicates a form feed

	
\v indicates a vertical tab

	
\r indicates a carriage return

If the character set specified with the NLS_LANG parameter for your session is different from the character set of the datafile, character strings are converted to the character set of the datafile. This is done before SQL*Loader checks for the default record terminator.

Hexadecimal strings are assumed to be in the character set of the datafile, so no conversion is performed.

On UNIX-based platforms, if no terminator_string is specified, SQL*Loader defaults to the line feed character, \n.

On Windows NT, if no terminator_string is specified, then SQL*Loader uses either \n or \r\n as the record terminator, depending on which one it finds first in the datafile. This means that if you know that one or more records in your datafile has \n embedded in a field, but you want \r\n to be used as the record terminator, you must specify it.

Example 6-3 illustrates loading data in stream record format where the terminator string is specified using a character string, '|\n'. The use of the backslash character allows the character string to specify the nonprintable line feed character.

Example 6-3 Loading Data in Stream Record Format

load data
infile 'example.dat' "str '|\n'"
into table example
fields terminated by ',' optionally enclosed by '"'
(col1 char(5),
 col2 char(7))

example.dat:
hello,world,|
james,bond,|

Logical Records

SQL*Loader organizes the input data into physical records, according to the specified record format. By default a physical record is a logical record, but for added flexibility, SQL*Loader can be instructed to combine a number of physical records into a logical record.

SQL*Loader can be instructed to follow one of the following logical record-forming strategies:

	
Combine a fixed number of physical records to form each logical record.

	
Combine physical records into logical records while a certain condition is true.

	
See Also:

	
Assembling Logical Records from Physical Records

	
Case study 4, Loading Combined Physical Records (see SQL*Loader Case Studies for information on how to access case studies)

Data Fields

Once a logical record is formed, field setting on the logical record is done. Field setting is a process in which SQL*Loader uses control-file field specifications to determine which parts of logical record data correspond to which control-file fields. It is possible for two or more field specifications to claim the same data. Also, it is possible for a logical record to contain data that is not claimed by any control-file field specification.

Most control-file field specifications claim a particular part of the logical record. This mapping takes the following forms:

	
The byte position of the data field's beginning, end, or both, can be specified. This specification form is not the most flexible, but it provides high field-setting performance.

	
The strings delimiting (enclosing and/or terminating) a particular data field can be specified. A delimited data field is assumed to start where the last data field ended, unless the byte position of the start of the data field is specified.

	
The byte offset and/or the length of the data field can be specified. This way each field starts a specified number of bytes from where the last one ended and continues for a specified length.

	
Length-value datatypes can be used. In this case, the first n number of bytes of the data field contain information about how long the rest of the data field is.

	
See Also:

	
Specifying the Position of a Data Field

	
Specifying Delimiters

LOBFILEs and Secondary Datafiles (SDFs)

LOB data can be lengthy enough that it makes sense to load it from a LOBFILE. In LOBFILEs, LOB data instances are still considered to be in fields (predetermined size, delimited, length-value), but these fields are not organized into records (the concept of a record does not exist within LOBFILEs). Therefore, the processing overhead of dealing with records is avoided. This type of organization of data is ideal for LOB loading.

For example, you might use LOBFILEs to load employee names, employee IDs, and employee resumes. You could read the employee names and IDs from the main datafiles and you could read the resumes, which can be quite lengthy, from LOBFILEs.

You might also use LOBFILEs to facilitate the loading of XML data. You can use XML columns to hold data that models structured and semistructured data. Such data can be quite lengthy.

Secondary datafiles (SDFs) are similar in concept to primary datafiles. Like primary datafiles, SDFs are a collection of records, and each record is made up of fields. The SDFs are specified on a per control-file-field basis. Only a collection_fld_spec can name an SDF as its data source.

SDFs are specified using the SDF parameter. The SDF parameter can be followed by either the file specification string, or a FILLER field that is mapped to a data field containing one or more file specification strings.

	
See Also:

	
Loading LOB Data from LOBFILEs

	
Secondary Datafiles (SDFs)

Data Conversion and Datatype Specification

During a conventional path load, data fields in the datafile are converted into columns in the database (direct path loads are conceptually similar, but the implementation is different). There are two conversion steps:

	
SQL*Loader uses the field specifications in the control file to interpret the format of the datafile, parse the input data, and populate the bind arrays that correspond to a SQL INSERT statement using that data.

	
The Oracle database accepts the data and executes the INSERT statement to store the data in the database.

The Oracle database uses the datatype of the column to convert the data into its final, stored form. Keep in mind the distinction between a field in a datafile and a column in the database. Remember also that the field datatypes defined in a SQL*Loader control file are not the same as the column datatypes.

Discarded and Rejected Records

Records read from the input file might not be inserted into the database. Such records are placed in either a bad file or a discard file.

The Bad File

The bad file contains records that were rejected, either by SQL*Loader or by the Oracle database. If you do not specify a bad file and there are rejected records, then SQL*Loader automatically creates one. It will have the same name as the data file, with a.bad extension. Some of the possible reasons for rejection are discussed in the next sections.

SQL*Loader Rejects

Datafile records are rejected by SQL*Loader when the input format is invalid. For example, if the second enclosure delimiter is missing, or if a delimited field exceeds its maximum length, SQL*Loader rejects the record. Rejected records are placed in the bad file.

Oracle Database Rejects

After a datafile record is accepted for processing by SQL*Loader, it is sent to the Oracle database for insertion into a table as a row. If the Oracle database determines that the row is valid, then the row is inserted into the table. If the row is determined to be invalid, then the record is rejected and SQL*Loader puts it in the bad file. The row may be invalid, for example, because a key is not unique, because a required field is null, or because the field contains invalid data for the Oracle datatype.

	
See Also:

	
Specifying the Bad File

	
Case study 4, Loading Combined Physical Records (see SQL*Loader Case Studies for information on how to access case studies)

The Discard File

As SQL*Loader executes, it may create a file called the discard file. This file is created only when it is needed, and only if you have specified that a discard file should be enabled. The discard file contains records that were filtered out of the load because they did not match any record-selection criteria specified in the control file.

The discard file therefore contains records that were not inserted into any table in the database. You can specify the maximum number of such records that the discard file can accept. Data written to any database table is not written to the discard file.

	
See Also:

	
Case study 4, Loading Combined Physical Records (see SQL*Loader Case Studies for information on how to access case studies)

	
Specifying the Discard File

Log File and Logging Information

When SQL*Loader begins execution, it creates a log file. If it cannot create a log file, execution terminates. The log file contains a detailed summary of the load, including a description of any errors that occurred during the load.

Conventional Path Loads, Direct Path Loads, and External Table Loads

SQL*Loader provides the following methods to load data:

	
Conventional Path Loads

	
Direct Path Loads

	
External Table Loads

Conventional Path Loads

During conventional path loads, the input records are parsed according to the field specifications, and each data field is copied to its corresponding bind array. When the bind array is full (or no more data is left to read), an array insert is executed.

	
See Also:

	
Data Loading Methods

	
Bind Arrays and Conventional Path Loads

SQL*Loader stores LOB fields after a bind array insert is done. Thus, if there are any errors in processing the LOB field (for example, the LOBFILE could not be found), the LOB field is left empty. Note also that because LOB data is loaded after the array insert has been performed, BEFORE and AFTER row triggers may not work as expected for LOB columns. This is because the triggers fire before SQL*Loader has a chance to load the LOB contents into the column. For instance, suppose you are loading a LOB column, C1, with data and that you want a BEFORE row trigger to examine the contents of this LOB column and derive a value to be loaded for some other column, C2, based on its examination. This is not possible because the LOB contents will not have been loaded at the time the trigger fires.

Direct Path Loads

A direct path load parses the input records according to the field specifications, converts the input field data to the column datatype, and builds a column array. The column array is passed to a block formatter, which creates data blocks in Oracle database block format. The newly formatted database blocks are written directly to the database, bypassing much of the data processing that normally takes place. Direct path load is much faster than conventional path load, but entails several restrictions.

	
See Also:

Direct Path Load

Parallel Direct Path

A parallel direct path load allows multiple direct path load sessions to concurrently load the same data segments (allows intrasegment parallelism). Parallel direct path is more restrictive than direct path.

	
See Also:

Parallel Data Loading Models

External Table Loads

An external table load creates an external table for data that is contained in a datafile. The load executes INSERT statements to insert the data from the datafile into the target table.

The advantages of using external table loads over conventional path and direct path loads are as follows:

	
An external table load attempts to load datafiles in parallel. If a datafile is big enough, it will attempt to load that file in parallel.

	
An external table load allows modification of the data being loaded by using SQL functions and PL/SQL functions as part of the INSERT statement that is used to create the external table.

	
Note:

An external table load is not supported using a named pipe on Windows NT.

	
See Also:

	
Chapter 12, "External Tables Concepts"

	
Chapter 13, "The ORACLE_LOADER Access Driver"

Choosing External Tables Versus SQL*Loader

The record parsing of external tables and SQL*Loader is very similar, so normally there is not a major performance difference for the same record format. However, due to the different architecture of external tables and SQL*Loader, there are situations in which one method is more appropriate than the other.

In the following situations, use external tables for the best load performance:

	
You want to transform the data as it is being loaded into the database

	
You want to use transparent parallel processing without having to split the external data first

However, in the following situations, use SQL*Loader for the best load performance:

	
You want to load data remotely

	
Transformations are not required on the data, and the data does not need to be loaded in parallel

Loading Objects, Collections, and LOBs

You can use SQL*Loader to bulk load objects, collections, and LOBs. It is assumed that you are familiar with the concept of objects and with Oracle's implementation of object support as described in Oracle Database Concepts and in the Oracle Database Administrator's Guide.

Supported Object Types

SQL*Loader supports loading of the following two object types:

column objects

When a column of a table is of some object type, the objects in that column are referred to as column objects. Conceptually such objects are stored in their entirety in a single column position in a row. These objects do not have object identifiers and cannot be referenced.

If the object type of the column object is declared to be nonfinal, then SQL*Loader allows a derived type (or subtype) to be loaded into the column object.

row objects

These objects are stored in tables, known as object tables, that have columns corresponding to the attributes of the object. The object tables have an additional system-generated column, called SYS_NC_OID$, that stores system-generated unique identifiers (OIDs) for each of the objects in the table. Columns in other tables can refer to these objects by using the OIDs.

If the object type of the object table is declared to be nonfinal, then SQL*Loader allows a derived type (or subtype) to be loaded into the row object.

	
See Also:

	
Loading Column Objects

	
Loading Object Tables

Supported Collection Types

SQL*Loader supports loading of the following two collection types:

Nested Tables

A nested table is a table that appears as a column in another table. All operations that can be performed on other tables can also be performed on nested tables.

VARRAYs

VARRAYs are variable sized arrays. An array is an ordered set of built-in types or objects, called elements. Each array element is of the same type and has an index, which is a number corresponding to the element's position in the VARRAY.

When creating a VARRAY type, you must specify the maximum size. Once you have declared a VARRAY type, it can be used as the datatype of a column of a relational table, as an object type attribute, or as a PL/SQL variable.

	
See Also:

Loading Collections (Nested Tables and VARRAYs) for details on using SQL*Loader control file data definition language to load these collection types

Supported LOB Types

A LOB is a large object type. This release of SQL*Loader supports loading of four LOB types:

	
BLOB: a LOB containing unstructured binary data

	
CLOB: a LOB containing character data

	
NCLOB: a LOB containing characters in a database national character set

	
BFILE: a BLOB stored outside of the database tablespaces in a server-side operating system file

LOBs can be column datatypes, and with the exception of the NCLOB, they can be an object's attribute datatypes. LOBs can have an actual value, they can be null, or they can be "empty."

	
See Also:

Loading LOBs for details on using SQL*Loader control file data definition language to load these LOB types

Partitioned Object Support

SQL*Loader supports loading partitioned objects in the database. A partitioned object in an Oracle database is a table or index consisting of partitions (pieces) that have been grouped, typically by common logical attributes. For example, sales data for the year 2000 might be partitioned by month. The data for each month is stored in a separate partition of the sales table. Each partition is stored in a separate segment of the database and can have different physical attributes.

SQL*Loader partitioned object support enables SQL*Loader to load the following:

	
A single partition of a partitioned table

	
All partitions of a partitioned table

	
A nonpartitioned table

Application Development: Direct Path Load API

Oracle provides a direct path load API for application developers. See the Oracle Call Interface Programmer's Guide for more information.

SQL*Loader Case Studies

SQL*Loader features are illustrated in a variety of case studies. The case studies are based upon the Oracle demonstration database tables, emp and dept, owned by the user scott. (In some case studies, additional columns have been added.)The case studies are numbered 1 through 11, starting with the simplest scenario and progressing in complexity.

The following is a summary of the case studies:

	
Case Study 1: Loading Variable-Length Data - Loads stream format records in which the fields are terminated by commas and may be enclosed by quotation marks. The data is found at the end of the control file.

	
Case Study 2: Loading Fixed-Format Fields - Loads data from a separate datafile.

	
Case Study 3: Loading a Delimited, Free-Format File - Loads data from stream format records with delimited fields and sequence numbers. The data is found at the end of the control file.

	
Case Study 4: Loading Combined Physical Records - Combines multiple physical records into one logical record corresponding to one database row.

	
Case Study 5: Loading Data into Multiple Tables - Loads data into multiple tables in one run.

	
Case Study 6: Loading Data Using the Direct Path Load Method - Loads data using the direct path load method.

	
Case Study 7: Extracting Data from a Formatted Report - Extracts data from a formatted report.

	
Case Study 8: Loading Partitioned Tables - Loads partitioned tables.

	
Case Study 9: Loading LOBFILEs (CLOBs) - Adds a CLOB column called resume to the table emp, uses a FILLER field (res_file), and loads multiple LOBFILEs into the emp table.

	
Case Study 10: REF Fields and VARRAYs - Loads a customer table that has a primary key as its OID and stores order items in a VARRAY. Loads an order table that has a reference to the customer table and the order items in a VARRAY.

	
Case Study 11: Loading Data in the Unicode Character Set - Loads data in the Unicode character set, UTF16, in little-endian byte order. This case study uses character-length semantics.

Case Study Files

Generally, each case study is comprised of the following types of files:

	
Control files (for example, ulcase5.ctl)

	
Datafiles (for example, ulcase5.dat)

	
Setup files (for example, ulcase5.sql)

These files are installed when you install Oracle Database. They are located in the $ORACLE_HOME/rdbms/demo directory.

If the sample data for the case study is contained within the control file, then there will be no .dat file for that case.

Case study 2 does not require any special set up, so there is no .sql script for that case. Case study 7 requires that you run both a starting (setup) script and an ending (cleanup) script.

Table 6-1 lists the files associated with each case.

Table 6-1 Case Studies and Their Related Files

	Case	.ctl	.dat	.sql
	
1

	
ulcase1.ctl

	
N/A

	
ulcase1.sql

	
2

	
ulcase2.ctl

	
ulcase2.dat

	
N/A

	
3

	
ulcase3.ctl

	
N/A

	
ulcase3.sql

	
4

	
ulcase4.ctl

	
ulcase4.dat

	
ulcase4.sql

	
5

	
ulcase5.ctl

	
ulcase5.dat

	
ulcase5.sql

	
6

	
ulcase6.ctl

	
ulcase6.dat

	
ulcase6.sql

	
7

	
ulcase7.ctl

	
ulcase7.dat

	
ulcase7s.sql

ulcase7e.sql

	
8

	
ulcase8.ctl

	
ulcase8.dat

	
ulcase8.sql

	
9

	
ulcase9.ctl

	
ulcase9.dat

	
ulcase9.sql

	
10

	
ulcase10.ctl

	
N/A

	
ulcase10.sql

	
11

	
ulcase11.ctl

	
ulcase11.dat

	
ulcase11.sql

Running the Case Studies

In general, you use the following steps to run the case studies (be sure you are in the $ORACLE_HOME/rdbms/demo directory, which is where the case study files are located):

	
At the system prompt, type sqlplus and press Enter to start SQL*Plus. At the user-name prompt, enter scott. At the password prompt, enter tiger.

The SQL prompt is displayed.

	
At the SQL prompt, execute the SQL script for the case study. For example, to execute the SQL script for case study 1, enter the following:

SQL> @ulcase1

This prepares and populates tables for the case study and then returns you to the system prompt.

	
At the system prompt, invoke SQL*Loader and run the case study, as follows:

sqlldr USERID=scott CONTROL=ulcase1.ctl LOG=ulcase1.log

Substitute the appropriate control file name and log file name for the CONTROL and LOG parameters and press Enter. When you are prompted for a password, type tiger and then press Enter.

Be sure to read the control file for any notes that are specific to the particular case study you are executing. For example, case study 6 requires that you add DIRECT=TRUE to the SQL*Loader command line.

Case Study Log Files

Log files for the case studies are not provided in the $ORACLE_HOME/rdbms/demo directory. This is because the log file for each case study is produced when you execute the case study, provided that you use the LOG parameter. If you do not wish to produce a log file, omit the LOG parameter from the command line.

Checking the Results of a Case Study

To check the results of running a case study, start SQL*Plus and perform a select operation from the table that was loaded in the case study. This is done, as follows:

	
At the system prompt, type sqlplus and press Enter to start SQL*Plus. At the user-name prompt, enter scott. At the password prompt, enter tiger.

The SQL prompt is displayed.

	
At the SQL prompt, use the SELECT statement to select all rows from the table that the case study loaded. For example, if the table emp was loaded, enter:

SQL> SELECT * FROM emp;

The contents of each row in the emp table will be displayed.

10 Loading Objects, LOBs, and Collections

This chapter discusses the following topics:

	
Loading Column Objects

	
Loading Object Tables

	
Loading REF Columns

	
Loading LOBs

	
Loading BFILE Columns

	
Loading Collections (Nested Tables and VARRAYs)

	
Dynamic Versus Static SDF Specifications

	
Loading a Parent Table Separately from Its Child Table

Loading Column Objects

Column objects in the control file are described in terms of their attributes. If the object type on which the column object is based is declared to be nonfinal, then the column object in the control file may be described in terms of the attributes, both derived and declared, of any subtype derived from the base object type. In the datafile, the data corresponding to each of the attributes of a column object is in a data field similar to that corresponding to a simple relational column.

	
Note:

With SQL*Loader support for complex datatypes like column objects, the possibility arises that two identical field names could exist in the control file, one corresponding to a column, the other corresponding to a column object's attribute. Certain clauses can refer to fields (for example, WHEN, NULLIF, DEFAULTIF, SID, OID, REF, BFILE, and so on), causing a naming conflict if identically named fields exist in the control file.
Therefore, if you use clauses that refer to fields, you must specify the full name. For example, if field fld1 is specified to be a COLUMN OBJECT and it contains field fld2, when you specify fld2 in a clause such as NULLIF, you must use the full field name fld1.fld2.

The following sections show examples of loading column objects:

	
Loading Column Objects in Stream Record Format

	
Loading Column Objects in Variable Record Format

	
Loading Nested Column Objects

	
Loading Column Objects with a Derived Subtype

	
Specifying Null Values for Objects

	
Loading Column Objects with User-Defined Constructors

Loading Column Objects in Stream Record Format

Example 10-1 shows a case in which the data is in predetermined size fields. The newline character marks the end of a physical record. You can also mark the end of a physical record by using a custom record separator in the operating system file-processing clause (os_file_proc_clause).

Example 10-1 Loading Column Objects in Stream Record Format

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE departments
 (dept_no POSITION(01:03) CHAR,
 dept_name POSITION(05:15) CHAR,
1 dept_mgr COLUMN OBJECT
 (name POSITION(17:33) CHAR,
 age POSITION(35:37) INTEGER EXTERNAL,
 emp_id POSITION(40:46) INTEGER EXTERNAL))

Datafile (sample.dat)

101 Mathematics Johny Quest 30 1024
237 Physics Albert Einstein 65 0000

Notes

	
This type of column object specification can be applied recursively to describe nested column objects.

Loading Column Objects in Variable Record Format

Example 10-2 shows a case in which the data is in delimited fields.

Example 10-2 Loading Column Objects in Variable Record Format

Control File Contents

LOAD DATA
1 INFILE 'sample.dat' "var 6"
INTO TABLE departments
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
2 (dept_no
 dept_name,
 dept_mgr COLUMN OBJECT
 (name CHAR(30),
 age INTEGER EXTERNAL(5),
 emp_id INTEGER EXTERNAL(5)))

Datafile (sample.dat)

3 000034101,Mathematics,Johny Q.,30,1024,
 000039237,Physics,"Albert Einstein",65,0000,

Notes

	
The "var" string includes the number of bytes in the length field at the beginning of each record (in this example, the number is 6). If no value is specified, the default is 5 bytes. The maximum size of a variable record is 2^32-1. Specifying larger values will result in an error.

	
Although no positional specifications are given, the general syntax remains the same (the column object's name followed by the list of its attributes enclosed in parentheses). Also note that an omitted type specification defaults to CHAR of length 255.

	
The first 6 bytes (italicized) specify the length of the forthcoming record. These length specifications include the newline characters, which are ignored thanks to the terminators after the emp_id field.

Loading Nested Column Objects

Example 10-3 shows a control file describing nested column objects (one column object nested in another column object).

Example 10-3 Loading Nested Column Objects

Control File Contents

LOAD DATA
INFILE `sample.dat'
INTO TABLE departments_v2
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (dept_no CHAR(5),
 dept_name CHAR(30),
 dept_mgr COLUMN OBJECT
 (name CHAR(30),
 age INTEGER EXTERNAL(3),
 emp_id INTEGER EXTERNAL(7),
1 em_contact COLUMN OBJECT
 (name CHAR(30),
 phone_num CHAR(20))))

Datafile (sample.dat)

101,Mathematics,Johny Q.,30,1024,"Barbie",650-251-0010,
237,Physics,"Albert Einstein",65,0000,Wife Einstein,654-3210,

Notes

	
This entry specifies a column object nested within a column object.

Loading Column Objects with a Derived Subtype

Example 10-4 shows a case in which a nonfinal base object type has been extended to create a new derived subtype. Although the column object in the table definition is declared to be of the base object type, SQL*Loader allows any subtype to be loaded into the column object, provided that the subtype is derived from the base object type.

Example 10-4 Loading Column Objects with a Subtype

Object Type Definitions

CREATE TYPE person_type AS OBJECT
 (name VARCHAR(30),
 ssn NUMBER(9)) not final;

CREATE TYPE employee_type UNDER person_type
 (empid NUMBER(5));

CREATE TABLE personnel
 (deptno NUMBER(3),
 deptname VARCHAR(30),
 person person_type);

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE personnel
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (deptno INTEGER EXTERNAL(3),
 deptname CHAR,
1 person COLUMN OBJECT TREAT AS employee_type
 (name CHAR,
 ssn INTEGER EXTERNAL(9),
2 empid INTEGER EXTERNAL(5)))

Datafile (sample.dat)

101,Mathematics,Johny Q.,301189453,10249,
237,Physics,"Albert Einstein",128606590,10030,

Notes

	
The TREAT AS clause indicates that SQL*Loader should treat the column object person as if it were declared to be of the derived type employee_type, instead of its actual declared type, person_type.

	
The empid attribute is allowed here because it is an attribute of the employee_type. If the TREAT AS clause had not been specified, this attribute would have resulted in an error, because it is not an attribute of the column's declared type.

Specifying Null Values for Objects

Specifying null values for nonscalar datatypes is somewhat more complex than for scalar datatypes. An object can have a subset of its attributes be null, it can have all of its attributes be null (an attributively null object), or it can be null itself (an atomically null object).

Specifying Attribute Nulls

In fields corresponding to column objects, you can use the NULLIF clause to specify the field conditions under which a particular attribute should be initialized to NULL. Example 10-5 demonstrates this.

Example 10-5 Specifying Attribute Nulls Using the NULLIF Clause

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE departments
 (dept_no POSITION(01:03) CHAR,
 dept_name POSITION(05:15) CHAR NULLIF dept_name=BLANKS,
 dept_mgr COLUMN OBJECT
1 (name POSITION(17:33) CHAR NULLIF dept_mgr.name=BLANKS,
1 age POSITION(35:37) INTEGER EXTERNAL NULLIF dept_mgr.age=BLANKS,
1 emp_id POSITION(40:46) INTEGER EXTERNAL NULLIF dept_mgr.empid=BLANKS))

Datafile (sample.dat)

2 101 Johny Quest 1024
 237 Physics Albert Einstein 65 0000

Notes

	
The NULLIF clause corresponding to each attribute states the condition under which the attribute value should be NULL.

	
The age attribute of the dept_mgr value is null. The dept_name value is also null.

Specifying Atomic Nulls

To specify in the control file the condition under which a particular object should take a null value (atomic null), you must follow that object's name with a NULLIF clause based on a logical combination of any of the mapped fields (for example, in Example 10-5, the named mapped fields would be dept_no, dept_name, name, age, emp_id, but dept_mgr would not be a named mapped field because it does not correspond (is not mapped) to any field in the datafile).

Although the preceding is workable, it is not ideal when the condition under which an object should take the value of null is independent of any of the mapped fields. In such situations, you can use filler fields.

You can map a filler field to the field in the datafile (indicating if a particular object is atomically null or not) and use the filler field in the field condition of the NULLIF clause of the particular object. This is shown in Example 10-6.

Example 10-6 Loading Data Using Filler Fields

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE departments_v2
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (dept_no CHAR(5),
 dept_name CHAR(30),
1 is_null FILLER CHAR,
2 dept_mgr COLUMN OBJECT NULLIF is_null=BLANKS
 (name CHAR(30) NULLIF dept_mgr.name=BLANKS,
 age INTEGER EXTERNAL(3) NULLIF dept_mgr.age=BLANKS,
 emp_id INTEGER EXTERNAL(7)
 NULLIF dept_mgr.emp_id=BLANKS,
 em_contact COLUMN OBJECT NULLIF is_null2=BLANKS
 (name CHAR(30)
 NULLIF dept_mgr.em_contact.name=BLANKS,
 phone_num CHAR(20)
 NULLIF dept_mgr.em_contact.phone_num=BLANKS)),
1 is_null2 FILLER CHAR)

Datafile (sample.dat)

101,Mathematics,n,Johny Q.,,1024,"Barbie",608-251-0010,,
237,Physics,,"Albert Einstein",65,0000,,650-654-3210,n,

Notes

	
The filler field (datafile mapped; no corresponding column) is of type CHAR (because it is a delimited field, the CHAR defaults to CHAR(255)). Note that the NULLIF clause is not applicable to the filler field itself.

	
Gets the value of null (atomic null) if the is_null field is blank.

	
See Also:

Specifying Filler Fields

Loading Column Objects with User-Defined Constructors

The Oracle database automatically supplies a default constructor for every object type. This constructor requires that all attributes of the type be specified as arguments in a call to the constructor. When a new instance of the object is created, its attributes take on the corresponding values in the argument list. This constructor is known as the attribute-value constructor. SQL*Loader uses the attribute-value constructor by default when loading column objects.

It is possible to override the attribute-value constructor by creating one or more user-defined constructors. When you create a user-defined constructor, you must supply a type body that performs the user-defined logic whenever a new instance of the object is created. A user-defined constructor may have the same argument list as the attribute-value constructor but differ in the logic that its type body implements.

When the argument list of a user-defined constructor function matches the argument list of the attribute-value constructor, there is a difference in behavior between conventional and direct path SQL*Loader. Conventional path mode results in a call to the user-defined constructor. Direct path mode results in a call to the attribute-value constructor. Example 10-7 illustrates this difference.

Example 10-7 Loading a Column Object with Constructors That Match

Object Type Definitions

CREATE TYPE person_type AS OBJECT
 (name VARCHAR(30),
 ssn NUMBER(9)) not final;

 CREATE TYPE employee_type UNDER person_type
 (empid NUMBER(5),
 -- User-defined constructor that looks like an attribute-value constructor
 CONSTRUCTOR FUNCTION
 employee_type (name VARCHAR2, ssn NUMBER, empid NUMBER)
 RETURN SELF AS RESULT);

 CREATE TYPE BODY employee_type AS
 CONSTRUCTOR FUNCTION
 employee_type (name VARCHAR2, ssn NUMBER, empid NUMBER)
 RETURN SELF AS RESULT AS
 --User-defined constructor makes sure that the name attribute is uppercase.
 BEGIN
 SELF.name := UPPER(name);
 SELF.ssn := ssn;
 SELF.empid := empid;
 RETURN;
 END;

 CREATE TABLE personnel
 (deptno NUMBER(3),
 deptname VARCHAR(30),
 employee employee_type);

Control File Contents

LOAD DATA
 INFILE *
 REPLACE
 INTO TABLE personnel
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (deptno INTEGER EXTERNAL(3),
 deptname CHAR,
 employee COLUMN OBJECT
 (name CHAR,
 ssn INTEGER EXTERNAL(9),
 empid INTEGER EXTERNAL(5)))

 BEGINDATA
1 101,Mathematics,Johny Q.,301189453,10249,
 237,Physics,"Albert Einstein",128606590,10030,

Notes

	
When this control file is run in conventional path mode, the name fields, Johny Q. and Albert Einstein, are both loaded in uppercase. This is because the user-defined constructor is called in this mode. In contrast, when this control file is run in direct path mode, the name fields are loaded exactly as they appear in the input data. This is because the attribute-value constructor is called in this mode.

It is possible to create a user-defined constructor whose argument list does not match that of the attribute-value constructor. In this case, both conventional and direct path modes will result in a call to the attribute-value constructor. Consider the definitions in Example 10-8.

Example 10-8 Loading a Column Object with Constructors That Do Not Match

Object Type Definitions

CREATE SEQUENCE employee_ids
 START WITH 1000
 INCREMENT BY 1;

 CREATE TYPE person_type AS OBJECT
 (name VARCHAR(30),
 ssn NUMBER(9)) not final;

 CREATE TYPE employee_type UNDER person_type
 (empid NUMBER(5),
 -- User-defined constructor that does not look like an attribute-value
 -- constructor
 CONSTRUCTOR FUNCTION
 employee_type (name VARCHAR2, ssn NUMBER)
 RETURN SELF AS RESULT);

 CREATE TYPE BODY employee_type AS
 CONSTRUCTOR FUNCTION
 employee_type (name VARCHAR2, ssn NUMBER)
 RETURN SELF AS RESULT AS
 -- This user-defined constructor makes sure that the name attribute is in
 -- lowercase and assigns the employee identifier based on a sequence.
 nextid NUMBER;
 stmt VARCHAR2(64);
 BEGIN

 stmt := 'SELECT employee_ids.nextval FROM DUAL';
 EXECUTE IMMEDIATE stmt INTO nextid;

 SELF.name := LOWER(name);
 SELF.ssn := ssn;
 SELF.empid := nextid;
 RETURN;
 END;

 CREATE TABLE personnel
 (deptno NUMBER(3),
 deptname VARCHAR(30),
 employee employee_type);

If the control file described in Example 10-7 is used with these definitions, then the name fields are loaded exactly as they appear in the input data (that is, in mixed case). This is because the attribute-value constructor is called in both conventional and direct path modes.

It is still possible to load this table using conventional path mode by explicitly making reference to the user-defined constructor in a SQL expression. Example 10-9 shows how this can be done.

Example 10-9 Using SQL to Load Column Objects When Constructors Do Not Match

Control File Contents

LOAD DATA
 INFILE *
 REPLACE
 INTO TABLE personnel
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (deptno INTEGER EXTERNAL(3),
 deptname CHAR,
 name BOUNDFILLER CHAR,
 ssn BOUNDFILLER INTEGER EXTERNAL(9),
1 employee EXPRESSION "employee_type(:NAME, :SSN)")

 BEGINDATA
1 101,Mathematics,Johny Q.,301189453,
 237,Physics,"Albert Einstein",128606590,

Notes

	
The employee column object is now loaded using a SQL expression. This expression invokes the user-defined constructor with the correct number of arguments. The name fields, Johny Q. and Albert Einstein, will both be loaded in lowercase. In addition, the employee identifiers for each row's employee column object will have taken their values from the employee_ids sequence.

If the control file in Example 10-9 is used in direct path mode, the following error is reported:

SQL*Loader-951: Error calling once/load initialization
ORA-26052: Unsupported type 121 for SQL expression on column EMPLOYEE.

Loading Object Tables

The control file syntax required to load an object table is nearly identical to that used to load a typical relational table. Example 10-10 demonstrates loading an object table with primary-key-based object identifiers (OIDs).

Example 10-10 Loading an Object Table with Primary Key OIDs

Control File Contents

LOAD DATA
INFILE 'sample.dat'
DISCARDFILE 'sample.dsc'
BADFILE 'sample.bad'
REPLACE
INTO TABLE employees
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (name CHAR(30) NULLIF name=BLANKS,
 age INTEGER EXTERNAL(3) NULLIF age=BLANKS,
 emp_id INTEGER EXTERNAL(5))

Datafile (sample.dat)

Johny Quest, 18, 007,
Speed Racer, 16, 000,

By looking only at the preceding control file you might not be able to determine if the table being loaded was an object table with system-generated OIDs, an object table with primary-key-based OIDs, or a relational table.

You may want to load data that already contains system-generated OIDs and to specify that instead of generating new OIDs, the existing OIDs in the datafile should be used. To do this, you would follow the INTO TABLE clause with the OID clause:

OID (fieldname)

In this clause, fieldname is the name of one of the fields (typically a filler field) from the field specification list that is mapped to a data field that contains the system-generated OIDs. SQL*Loader assumes that the OIDs provided are in the correct format and that they preserve OID global uniqueness. Therefore, to ensure uniqueness, you should use the Oracle OID generator to generate the OIDs to be loaded.

The OID clause can only be used for system-generated OIDs, not primary-key-based OIDs.

Example 10-11 demonstrates loading system-generated OIDs with the row objects.

Example 10-11 Loading OIDs

Control File Contents

 LOAD DATA
 INFILE 'sample.dat'
 INTO TABLE employees_v2
1 OID (s_oid)
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (name CHAR(30) NULLIF name=BLANKS,
 age INTEGER EXTERNAL(3) NULLIF age=BLANKS,
 emp_id INTEGER EXTERNAL(5),
2 s_oid FILLER CHAR(32))

Datafile (sample.dat)

3 Johny Quest, 18, 007, 21E978406D3E41FCE03400400B403BC3,
 Speed Racer, 16, 000, 21E978406D4441FCE03400400B403BC3,

Notes

	
The OID clause specifies that the s_oid loader field contains the OID. The parentheses are required.

	
If s_oid does not contain a valid hexadecimal number, the particular record is rejected.

	
The OID in the datafile is a character string and is interpreted as a 32-digit hexadecimal number. The 32-digit hexadecimal number is later converted into a 16-byte RAW and stored in the object table.

Loading Object Tables with a Subtype

If an object table's row object is based on a nonfinal type, SQL*Loader allows for any derived subtype to be loaded into the object table. As previously mentioned, the syntax required to load an object table with a derived subtype is almost identical to that used for a typical relational table. However, in this case, the actual subtype to be used must be named, so that SQL*Loader can determine if it is a valid subtype for the object table. This concept is illustrated in Example 10-12.

Example 10-12 Loading an Object Table with a Subtype

Object Type Definitions

CREATE TYPE employees_type AS OBJECT
 (name VARCHAR2(30),
 age NUMBER(3),
 emp_id NUMBER(5)) not final;

CREATE TYPE hourly_emps_type UNDER employees_type
 (hours NUMBER(3));

CREATE TABLE employees_v3 of employees_type;

Control File Contents

 LOAD DATA

 INFILE 'sample.dat'
 INTO TABLE employees_v3
1 TREAT AS hourly_emps_type
 FIELDS TERMINATED BY ','
 (name CHAR(30),
 age INTEGER EXTERNAL(3),
 emp_id INTEGER EXTERNAL(5),
2 hours INTEGER EXTERNAL(2))

Datafile (sample.dat)

 Johny Quest, 18, 007, 32,
 Speed Racer, 16, 000, 20,

Notes

	
The TREAT AS clause indicates that SQL*Loader should treat the object table as if it were declared to be of type hourly_emps_type, instead of its actual declared type, employee_type.

	
The hours attribute is allowed here because it is an attribute of the hourly_emps_type. If the TREAT AS clause had not been specified, this attribute would have resulted in an error, because it is not an attribute of the object table's declared type.

Loading REF Columns

SQL*Loader can load system-generated OID REF columns, primary-key-based REF columns, and unscoped REF columns that allow primary keys. For each of these, the way in which table names are specified is important, as described in the following section.

Specifying Table Names in a REF Clause

	
Note:

The information in this section applies only to environments in which the version of both SQL*Loader and Oracle Database are 11g release 1 (11.1). It does not apply to environments in which either SQL*Loader, Oracle Database, or both are at an earlier version.

In the SQL*Loader control file, the description of the field corresponding to a REF column consists of the column name followed by a REF clause. The REF clause takes as arguments the table name and any attributes applicable to the type of REF column being loaded. The table names can either be specified dynamically (using filler fields) or as constants. The table name can also be specified with or without the schema name.

Whether the table name specified in the REF clause is specified as a constant or by using a filler field, it is interpreted as case-sensitive. This could result in the following situations:

	
If user SCOTT creates a table named table2 in lower case without quotation marks around the table name, then it can be used in a REF clause in any of the following ways:

	
REF(constant 'TABLE2', ...)

	
REF(constant '"TABLE2"', ...)

	
REF(constant 'SCOTT.TABLE2', ...)

	
If user SCOTT creates a table named "Table2" using quotation marks around a mixed-case name, then it can be used in a REF clause in any of the following ways:

	
REF(constant 'Table2', ...)

	
REF(constant '"Table2"', ...)

	
REF(constant 'SCOTT.Table2', ...)

In both of those situations, if constant is replaced with a filler field, the same values as shown in the examples will also work if they are placed in the data section.

System-Generated OID REF Columns

SQL*Loader assumes, when loading system-generated REF columns, that the actual OIDs from which the REF columns are to be constructed are in the datafile with the rest of the data. The description of the field corresponding to a REF column consists of the column name followed by the REF clause.

The REF clause takes as arguments the table name and an OID. Note that the arguments can be specified either as constants or dynamically (using filler fields). See ref_spec for the appropriate syntax. Example 10-13 demonstrates loading system-generated OID REF columns.

Example 10-13 Loading System-Generated REF Columns

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE departments_alt_v2
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (dept_no CHAR(5),
 dept_name CHAR(30),
1 dept_mgr REF(t_name, s_oid),
 s_oid FILLER CHAR(32),
 t_name FILLER CHAR(30))

Datafile (sample.dat)

22345, QuestWorld, 21E978406D3E41FCE03400400B403BC3, EMPLOYEES_V2,
23423, Geography, 21E978406D4441FCE03400400B403BC3, EMPLOYEES_V2,

Notes

	
If the specified table does not exist, the record is rejected. The dept_mgr field itself does not map to any field in the datafile.

Primary Key REF Columns

To load a primary key REF column, the SQL*Loader control-file field description must provide the column name followed by a REF clause. The REF clause takes for arguments a comma-delimited list of field names and constant values. The first argument is the table name, followed by arguments that specify the primary key OID on which the REF column to be loaded is based. See ref_spec for the appropriate syntax.

SQL*Loader assumes that the ordering of the arguments matches the relative ordering of the columns making up the primary key OID in the referenced table. Example 10-14 demonstrates loading primary key REF columns.

Example 10-14 Loading Primary Key REF Columns

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE departments_alt
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (dept_no CHAR(5),
 dept_name CHAR(30),
 dept_mgr REF(CONSTANT 'EMPLOYEES', emp_id),
 emp_id FILLER CHAR(32))

Datafile (sample.dat)

22345, QuestWorld, 007,
23423, Geography, 000,

Unscoped REF Columns That Allow Primary Keys

An unscoped REF column that allows primary keys can reference both system-generated and primary key REFs. The syntax for loading into such a REF column is the same as if you were loading into a system-generated OID REF column or into a primary-key-based REF column. See Example 10-13, "Loading System-Generated REF Columns" and Example 10-14, "Loading Primary Key REF Columns".

The following restrictions apply when loading into an unscoped REF column that allows primary keys:

	
Only one type of REF can be referenced by this column during a single-table load, either system-generated or primary key, but not both. If you try to reference both types, the data row will be rejected with an error message indicating that the referenced table name is invalid.

	
If you are loading unscoped primary key REFs to this column, only one object table can be referenced during a single-table load. That is, if you want to load unscoped primary key REFs, some pointing to object table X and some pointing to object table Y, you would have to do one of the following:

	
Perform two single-table loads.

	
Perform a single load using multiple INTO TABLE clauses for which the WHEN clause keys off some aspect of the data, such as the object table name for the unscoped primary key REF. For example:

LOAD DATA
INFILE 'data.dat'

INTO TABLE orders_apk
APPEND
when CUST_TBL = "CUSTOMERS_PK"
fields terminated by ","
(
 order_no position(1) char,
 cust_tbl FILLER char,
 cust_no FILLER char,
 cust REF (cust_tbl, cust_no) NULLIF order_no='0'
)

INTO TABLE orders_apk
APPEND
when CUST_TBL = "CUSTOMERS_PK2"
fields terminated by ","
(
 order_no position(1) char,
 cust_tbl FILLER char,
 cust_no FILLER char,
 cust REF (cust_tbl, cust_no) NULLIF order_no='0'
)

If you do not use either of these methods, the data row will be rejected with an error message indicating that the referenced table name is invalid.

	
Unscoped primary key REFs in collections are not supported by SQL*Loader.

	
If you are loading system-generated REFs into this REF column, any limitations described in System-Generated OID REF Columns also apply here.

	
If you are loading primary key REFs into this REF column, any limitations described in Primary Key REF Columns also apply here.

	
Note:

For an unscoped REF column that allows primary keys, SQL*Loader takes the first valid object table parsed (either from the REF directive or from the data rows) and uses that object table's OID type to determine the REF type that can be referenced in that single-table load.

Loading LOBs

A LOB is a large object type. SQL*Loader supports the following types of LOBs:

	
BLOB: an internal LOB containing unstructured binary data

	
CLOB: an internal LOB containing character data

	
NCLOB: an internal LOB containing characters from a national character set

	
BFILE: a BLOB stored outside of the database tablespaces in a server-side operating system file

LOBs can be column datatypes, and with the exception of the NCLOB, they can be an object's attribute datatypes. LOBs can have actual values, they can be null, or they can be empty. SQL*Loader creates an empty LOB when there is a 0-length field to store in the LOB. (Note that this is different than other datatypes where SQL*Loader sets the column to NULL for any 0-length string.) This means that the only way to load NULL values into a LOB column is to use the NULLIF clause.

XML columns are columns declared to be of type SYS.XMLTYPE. SQL*Loader treats XML columns as if they were CLOBs. All of the methods described in the following sections for loading LOB data from the primary datafile or from LOBFILEs are applicable to loading XML columns.

	
Note:

You cannot specify a SQL string for LOB fields. This is true even if you specify LOBFILE_spec.

Because LOBs can be quite large, SQL*Loader is able to load LOB data from either a primary datafile (in line with the rest of the data) or from LOBFILEs. This section addresses the following topics:

	
Loading LOB Data from a Primary Datafile

	
Loading LOB Data from LOBFILEs

Loading LOB Data from a Primary Datafile

To load internal LOBs (BLOBs, CLOBs, and NCLOBs) or XML columns from a primary datafile, you can use the following standard SQL*Loader formats:

	
Predetermined size fields

	
Delimited fields

	
Length-value pair fields

Each of these formats is described in the following sections.

LOB Data in Predetermined Size Fields

This is a very fast and conceptually simple format in which to load LOBs, as shown in Example 10-15.

	
Note:

Because the LOBs you are loading may not be of equal size, you can use whitespace to pad the LOB data to make the LOBs all of equal length within a particular data field.

To load LOBs using this format, you should use either CHAR or RAW as the loading datatype.

Example 10-15 Loading LOB Data in Predetermined Size Fields

Control File Contents

LOAD DATA
INFILE 'sample.dat' "fix 501"
INTO TABLE person_table
 (name POSITION(01:21) CHAR,
1 "RESUME" POSITION(23:500) CHAR DEFAULTIF "RESUME"=BLANKS)

Datafile (sample.dat)

Johny Quest Johny Quest
 500 Oracle Parkway
 jquest@us.oracle.com ...

Notes

	
Because the DEFAULTIF clause is used, if the data field containing the resume is empty, the result is an empty LOB rather than a null LOB. However, if a NULLIF clause had been used instead of DEFAULTIF, the empty data field would be null.

You can use SQL*Loader datatypes other than CHAR to load LOBs. For example, when loading BLOBs, you would probably want to use the RAW datatype.

LOB Data in Delimited Fields

This format handles LOBs of different sizes within the same column (datafile field) without a problem. However, this added flexibility can affect performance because SQL*Loader must scan through the data, looking for the delimiter string.

As with single-character delimiters, when you specify string delimiters, you should consider the character set of the datafile. When the character set of the datafile is different than that of the control file, you can specify the delimiters in hexadecimal notation (that is, X'hexadecimal string'). If the delimiters are specified in hexadecimal notation, the specification must consist of characters that are valid in the character set of the input datafile. In contrast, if hexadecimal notation is not used, the delimiter specification is considered to be in the client's (that is, the control file's) character set. In this case, the delimiter is converted into the datafile's character set before SQL*Loader searches for the delimiter in the datafile.

Note the following:

	
Stutter syntax is supported with string delimiters (that is, the closing enclosure delimiter can be stuttered).

	
Leading whitespaces in the initial multicharacter enclosure delimiter are not allowed.

	
If a field is terminated by WHITESPACE, the leading whitespaces are trimmed.

	
Note:

SQL*Loader defaults to 255 bytes when moving CLOB data, but a value of up to 2 gigabytes can be specified. For a delimited field, if a length is specified, that length is used as a maximum. If no maximum is specified, it defaults to 255 bytes. For a CHAR field that is delimited and is also greater than 255 bytes, you must specify a maximum length. See CHAR for more information about the CHAR datatype.

Example 10-16 shows an example of loading LOB data in delimited fields.

Example 10-16 Loading LOB Data in Delimited Fields

Control File Contents

LOAD DATA
INFILE 'sample.dat' "str '|'"
INTO TABLE person_table
FIELDS TERMINATED BY ','
 (name CHAR(25),
1 "RESUME" CHAR(507) ENCLOSED BY '<startlob>' AND '<endlob>')

Datafile (sample.dat)

Johny Quest,<startlob> Johny Quest
 500 Oracle Parkway
 jquest@us.oracle.com ... <endlob>
2 |Speed Racer,

Notes

	
<startlob> and <endlob> are the enclosure strings. With the default byte-length semantics, the maximum length for a LOB that can be read using CHAR(507) is 507 bytes. If character-length semantics were used, the maximum would be 507 characters. See Character-Length Semantics.

	
If the record separator '|' had been placed right after <endlob> and followed with the newline character, the newline would have been interpreted as part of the next record. An alternative would be to make the newline part of the record separator (for example, '|\n' or, in hexadecimal notation, X'7C0A').

LOB Data in Length-Value Pair Fields

You can use VARCHAR, VARCHARC, or VARRAW datatypes to load LOB data organized in length-value pair fields. This method of loading provides better performance than using delimited fields, but can reduce flexibility (for example, you must know the LOB length for each LOB before loading). Example 10-17 demonstrates loading LOB data in length-value pair fields.

Example 10-17 Loading LOB Data in Length-Value Pair Fields

Control File Contents

 LOAD DATA
1 INFILE 'sample.dat' "str '<endrec>\n'"
 INTO TABLE person_table
 FIELDS TERMINATED BY ','
 (name CHAR(25),
2 "RESUME" VARCHARC(3,500))

Datafile (sample.dat)

 Johny Quest,479 Johny Quest
 500 Oracle Parkway
 jquest@us.oracle.com
 ... <endrec>
3 Speed Racer,000<endrec>

Notes

	
If the backslash escape character is not supported, the string used as a record separator in the example could be expressed in hexadecimal notation.

	
"RESUME" is a field that corresponds to a CLOB column. In the control file, it is a VARCHARC, whose length field is 3 bytes long and whose maximum size is 500 bytes (with byte-length semantics). If character-length semantics were used, the length would be 3 characters and the maximum size would be 500 characters. See Character-Length Semantics.

	
The length subfield of the VARCHARC is 0 (the value subfield is empty). Consequently, the LOB instance is initialized to empty.

Loading LOB Data from LOBFILEs

LOB data can be lengthy enough so that it makes sense to load it from a LOBFILE instead of from a primary datafile. In LOBFILEs, LOB data instances are still considered to be in fields (predetermined size, delimited, length-value), but these fields are not organized into records (the concept of a record does not exist within LOBFILEs). Therefore, the processing overhead of dealing with records is avoided. This type of organization of data is ideal for LOB loading.

There is no requirement that a LOB from a LOBFILE fit in memory. SQL*Loader reads LOBFILEs in 64 KB chunks.

In LOBFILEs the data can be in any of the following types of fields:

	
A single LOB field into which the entire contents of a file can be read

	
Predetermined size fields (fixed-length fields)

	
Delimited fields (that is, TERMINATED BY or ENCLOSED BY)

The clause PRESERVE BLANKS is not applicable to fields read from a LOBFILE.

	
Length-value pair fields (variable-length fields)

To load data from this type of field, use the VARRAW, VARCHAR, or VARCHARC SQL*Loader datatypes.

See Examples of Loading LOB Data from LOBFILEs for examples of using each of these field types. All of the previously mentioned field types can be used to load XML columns.

See lobfile_spec for LOBFILE syntax.

Dynamic Versus Static LOBFILE Specifications

You can specify LOBFILEs either statically (the name of the file is specified in the control file) or dynamically (a FILLER field is used as the source of the filename). In either case, if the LOBFILE is not terminated by EOF, then when the end of the LOBFILE is reached, the file is closed and further attempts to read data from that file produce results equivalent to reading data from an empty field.

However, if you have a LOBFILE that is terminated by EOF, then the entire file is always returned on each attempt to read data from that file.

You should not specify the same LOBFILE as the source of two different fields. If you do so, typically, the two fields will read the data independently.

Examples of Loading LOB Data from LOBFILEs

This section contains examples of loading data from different types of fields in LOBFILEs.

One LOB per File

In Example 10-18, each LOBFILE is the source of a single LOB. To load LOB data that is organized in this way, the column or field name is followed by the LOBFILE datatype specifications.

Example 10-18 Loading LOB DATA with One LOB per LOBFILE

Control File Contents

LOAD DATA
INFILE 'sample.dat'
 INTO TABLE person_table
 FIELDS TERMINATED BY ','
 (name CHAR(20),
1 ext_fname FILLER CHAR(40),
2 "RESUME" LOBFILE(ext_fname) TERMINATED BY EOF)

Datafile (sample.dat)

Johny Quest,jqresume.txt,
Speed Racer,'/private/sracer/srresume.txt',

Secondary Datafile (jqresume.txt)

 Johny Quest
 500 Oracle Parkway
 ...

Secondary Datafile (srresume.txt)

 Speed Racer
 400 Oracle Parkway
 ...

Notes

	
The filler field is mapped to the 40-byte data field, which is read using the SQL*Loader CHAR datatype. This assumes the use of default byte-length semantics. If character-length semantics were used, the field would be mapped to a 40-character data field.

	
SQL*Loader gets the LOBFILE name from the ext_fname filler field. It then loads the data from the LOBFILE (using the CHAR datatype) from the first byte to the EOF character. If no existing LOBFILE is specified, the "RESUME" field is initialized to empty.

Predetermined Size LOBs

In Example 10-19, you specify the size of the LOBs to be loaded into a particular column in the control file. During the load, SQL*Loader assumes that any LOB data loaded into that particular column is of the specified size. The predetermined size of the fields allows the data-parser to perform optimally. However, it is often difficult to guarantee that all LOBs are the same size.

Example 10-19 Loading LOB Data Using Predetermined Size LOBs

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE person_table
FIELDS TERMINATED BY ','
 (name CHAR(20),
1 "RESUME" LOBFILE(CONSTANT '/usr/private/jquest/jqresume.txt')
 CHAR(2000))

Datafile (sample.dat)

Johny Quest,
Speed Racer,

Secondary Datafile (jqresume.txt)

 Johny Quest
 500 Oracle Parkway
 ...
 Speed Racer
 400 Oracle Parkway
 ...

Notes

	
This entry specifies that SQL*Loader load 2000 bytes of data from the jqresume.txt LOBFILE, using the CHAR datatype, starting with the byte following the byte loaded last during the current loading session. This assumes the use of the default byte-length semantics. If character-length semantics were used, SQL*Loader would load 2000 characters of data, starting from the first character after the last-loaded character. See Character-Length Semantics.

Delimited LOBs

In Example 10-20, the LOB data instances in the LOBFILE are delimited. In this format, loading different size LOBs into the same column is not a problem. However, this added flexibility can affect performance, because SQL*Loader must scan through the data, looking for the delimiter string.

Example 10-20 Loading LOB Data Using Delimited LOBs

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE person_table
FIELDS TERMINATED BY ','
 (name CHAR(20),
1 "RESUME" LOBFILE(CONSTANT 'jqresume') CHAR(2000)
 TERMINATED BY "<endlob>\n")

Datafile (sample.dat)

Johny Quest,
Speed Racer,

Secondary Datafile (jqresume.txt)

 Johny Quest
 500 Oracle Parkway
 ... <endlob>
 Speed Racer
 400 Oracle Parkway
 ... <endlob>

Notes

	
Because a maximum length of 2000 is specified for CHAR, SQL*Loader knows what to expect as the maximum length of the field, which can result in memory usage optimization. If you choose to specify a maximum length, you should be sure not to underestimate its value. The TERMINATED BY clause specifies the string that terminates the LOBs. Alternatively, you could use the ENCLOSED BY clause. The ENCLOSED BY clause allows a bit more flexibility as to the relative positioning of the LOBs in the LOBFILE (the LOBs in the LOBFILE need not be sequential).

Length-Value Pair Specified LOBs

In Example 10-21 each LOB in the LOBFILE is preceded by its length. You could use VARCHAR, VARCHARC, or VARRAW datatypes to load LOB data organized in this way.

This method of loading can provide better performance over delimited LOBs, but at the expense of some flexibility (for example, you must know the LOB length for each LOB before loading).

Example 10-21 Loading LOB Data Using Length-Value Pair Specified LOBs

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE person_table
FIELDS TERMINATED BY ','
 (name CHAR(20),
1 "RESUME" LOBFILE(CONSTANT 'jqresume') VARCHARC(4,2000))

Datafile (sample.dat)

Johny Quest,
Speed Racer,

Secondary Datafile (jqresume.txt)

2 0501Johny Quest
 500 Oracle Parkway
 ...
3 0000

Notes

	
The entry VARCHARC(4,2000) tells SQL*Loader that the LOBs in the LOBFILE are in length-value pair format and that the first 4 bytes should be interpreted as the length. The value of 2000 tells SQL*Loader that the maximum size of the field is 2000 bytes. This assumes the use of the default byte-length semantics. If character-length semantics were used, the first 4 characters would be interpreted as the length in characters. The maximum size of the field would be 2000 characters. See Character-Length Semantics.

	
The entry 0501 preceding Johny Quest tells SQL*Loader that the LOB consists of the next 501 characters.

	
This entry specifies an empty (not null) LOB.

Considerations When Loading LOBs from LOBFILEs

Keep in mind the following when you load data using LOBFILEs:

	
Only LOBs and XML columns can be loaded from LOBFILEs.

	
The failure to load a particular LOB does not result in the rejection of the record containing that LOB. Instead, you will have a record that contains an empty LOB. In the case of an XML column, a null value will be inserted if there is a failure loading the LOB.

	
It is not necessary to specify the maximum length of a field corresponding to a LOB column; nevertheless, if a maximum length is specified, SQL*Loader uses it as a hint to optimize memory usage. Therefore, it is important that the maximum length specification does not understate the true maximum length.

	
You cannot supply a position specification (pos_spec) when loading data from a LOBFILE.

	
NULLIF or DEFAULTIF field conditions cannot be based on fields read from LOBFILEs.

	
If a nonexistent LOBFILE is specified as a data source for a particular field, that field is initialized to empty. If the concept of empty does not apply to the particular field type, the field is initialized to null.

	
Table-level delimiters are not inherited by fields that are read from a LOBFILE.

	
When loading an XML column or referencing a LOB column in a SQL expression in conventional path mode, SQL*Loader must process the LOB data as a temporary LOB. To ensure the best load performance possible in these cases, refer to the guidelines concerning temporary LOB performance in Oracle Database SecureFiles and Large Objects Developer's Guide.

Loading BFILE Columns

The BFILE datatype stores unstructured binary data in operating system files outside the database. A BFILE column or attribute stores a file locator that points to the external file containing the data. The file to be loaded as a BFILE does not have to exist at the time of loading; it can be created later. SQL*Loader assumes that the necessary directory objects have already been created (a logical alias name for a physical directory on the server's file system). For more information, see the Oracle Database SecureFiles and Large Objects Developer's Guide.

A control file field corresponding to a BFILE column consists of a column name followed by the BFILE clause. The BFILE clause takes as arguments a directory object (the server_directory alias) name followed by a BFILE name. Both arguments can be provided as string constants, or they can be dynamically loaded through some other field. See the Oracle Database SQL Language Reference for more information.

In the next two examples of loading BFILEs, Example 10-22 has only the filename specified dynamically, while Example 10-23 demonstrates specifying both the BFILE and the directory object dynamically.

Example 10-22 Loading Data Using BFILEs: Only Filename Specified Dynamically

Control File Contents

LOAD DATA
INFILE sample.dat
INTO TABLE planets
FIELDS TERMINATED BY ','
 (pl_id CHAR(3),
 pl_name CHAR(20),
 fname FILLER CHAR(30),
1 pl_pict BFILE(CONSTANT "scott_dir1", fname))

Datafile (sample.dat)

1,Mercury,mercury.jpeg,
2,Venus,venus.jpeg,
3,Earth,earth.jpeg,

Notes

	
The directory name is in quotation marks; therefore, the string is used as is and is not capitalized.

Example 10-23 Loading Data Using BFILEs: Filename and Directory Specified Dynamically

Control File Contents

LOAD DATA
INFILE sample.dat
INTO TABLE planets
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (pl_id NUMBER(4),
 pl_name CHAR(20),
 fname FILLER CHAR(30),
1 dname FILLER CHAR(20),
 pl_pict BFILE(dname, fname))

Datafile (sample.dat)

1, Mercury, mercury.jpeg, scott_dir1,
2, Venus, venus.jpeg, scott_dir1,
3, Earth, earth.jpeg, scott_dir2,

Notes

	
dname is mapped to the datafile field containing the directory name corresponding to the file being loaded.

Loading Collections (Nested Tables and VARRAYs)

Like LOBs, collections can be loaded either from a primary datafile (data inline) or from secondary datafiles (data out of line). See Secondary Datafiles (SDFs) for details about SDFs.

When you load collection data, a mechanism must exist by which SQL*Loader can tell when the data belonging to a particular collection instance has ended. You can achieve this in two ways:

	
To specify the number of rows or elements that are to be loaded into each nested table or VARRAY instance, use the DDL COUNT function. The value specified for COUNT must either be a number or a character string containing a number, and it must be previously described in the control file before the COUNT clause itself. This positional dependency is specific to the COUNT clause. COUNT(0) or COUNT(cnt_field), where cnt_field is 0 for the current row, results in a empty collection (not null), unless overridden by a NULLIF clause. See count_spec.

If the COUNT clause specifies a field in a control file and if that field is set to null for the current row, then the collection that uses that count will be set to empty for the current row as well.

	
Use the TERMINATED BY and ENCLOSED BY clauses to specify a unique collection delimiter. This method cannot be used if an SDF clause is used.

In the control file, collections are described similarly to column objects. See Loading Column Objects. There are some differences:

	
Collection descriptions employ the two mechanisms discussed in the preceding list.

	
Collection descriptions can include a secondary datafile (SDF) specification.

	
A NULLIF or DEFAULTIF clause cannot refer to a field in an SDF unless the clause is on a field in the same SDF.

	
Clauses that take field names as arguments cannot use a field name that is in a collection unless the DDL specification is for a field in the same collection.

	
The field list must contain only one nonfiller field and any number of filler fields. If the VARRAY is a VARRAY of column objects, then the attributes of each column object will be in a nested field list.

Restrictions in Nested Tables and VARRAYs

The following restrictions exist for nested tables and VARRAYs:

	
A field_list cannot contain a collection_fld_spec.

	
A col_obj_spec nested within a VARRAY cannot contain a collection_fld_spec.

	
The column_name specified as part of the field_list must be the same as the column_name preceding the VARRAY parameter.

Also, be aware that if you are loading into a table containing nested tables, SQL*Loader will not automatically split the load into multiple loads and generate a set ID.

Example 10-24 demonstrates loading a VARRAY and a nested table.

Example 10-24 Loading a VARRAY and a Nested Table

Control File Contents

 LOAD DATA
 INFILE 'sample.dat' "str '\n' "
 INTO TABLE dept
 REPLACE
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (
 dept_no CHAR(3),
 dname CHAR(25) NULLIF dname=BLANKS,
1 emps VARRAY TERMINATED BY ':'
 (
 emps COLUMN OBJECT
 (
 name CHAR(30),
 age INTEGER EXTERNAL(3),
2 emp_id CHAR(7) NULLIF emps.emps.emp_id=BLANKS
)
),
3 proj_cnt FILLER CHAR(3),
4 projects NESTED TABLE SDF (CONSTANT "pr.txt" "fix 57") COUNT (proj_cnt)
 (
 projects COLUMN OBJECT
 (
 project_id POSITION (1:5) INTEGER EXTERNAL(5),
 project_name POSITION (7:30) CHAR
 NULLIF projects.projects.project_name = BLANKS
)
)
)

Datafile (sample.dat)

 101,MATH,"Napier",28,2828,"Euclid", 123,9999:0
 210,"Topological Transforms",:2

Secondary Datafile (SDF) (pr.txt)

21034 Topological Transforms
77777 Impossible Proof

Notes

	
The TERMINATED BY clause specifies the VARRAY instance terminator (note that no COUNT clause is used).

	
Full name field references (using dot notation) resolve the field name conflict created by the presence of this filler field.

	
proj_cnt is a filler field used as an argument to the COUNT clause.

	
This entry specifies the following:

	
An SDF called pr.txt as the source of data. It also specifies a fixed-record format within the SDF.

	
If COUNT is 0, then the collection is initialized to empty. Another way to initialize a collection to empty is to use a DEFAULTIF clause. The main field name corresponding to the nested table field description is the same as the field name of its nested nonfiller-field, specifically, the name of the column object field description.

Secondary Datafiles (SDFs)

Secondary datafiles (SDFs) are similar in concept to primary datafiles. Like primary datafiles, SDFs are a collection of records, and each record is made up of fields. The SDFs are specified on a per control-file-field basis. They are useful when you load large nested tables and VARRAYs.

	
Note:

Only a collection_fld_spec can name an SDF as its data source.

SDFs are specified using the SDF parameter. The SDF parameter can be followed by either the file specification string, or a FILLER field that is mapped to a data field containing one or more file specification strings.

As for a primary datafile, the following can be specified for each SDF:

	
The record format (fixed, stream, or variable). Also, if stream record format is used, you can specify the record separator.

	
The record size.

	
The character set for an SDF can be specified using the CHARACTERSET clause (see Handling Different Character Encoding Schemes).

	
A default delimiter (using the delimiter specification) for the fields that inherit a particular SDF specification (all member fields or attributes of the collection that contain the SDF specification, with exception of the fields containing their own LOBFILE specification).

Also note the following with regard to SDFs:

	
If a nonexistent SDF is specified as a data source for a particular field, that field is initialized to empty. If the concept of empty does not apply to the particular field type, the field is initialized to null.

	
Table-level delimiters are not inherited by fields that are read from an SDF.

	
To load SDFs larger than 64 KB, you must use the READSIZE parameter to specify a larger physical record size. You can specify the READSIZE parameter either from the command line or as part of an OPTIONS clause.

	
See Also:

	
READSIZE (read buffer size)

	
OPTIONS Clause

	
sdf_spec

Dynamic Versus Static SDF Specifications

You can specify SDFs either statically (you specify the actual name of the file) or dynamically (you use a FILLER field as the source of the filename). In either case, when the EOF of an SDF is reached, the file is closed and further attempts at reading data from that particular file produce results equivalent to reading data from an empty field.

In a dynamic secondary file specification, this behavior is slightly different. Whenever the specification changes to reference a new file, the old file is closed, and the data is read from the beginning of the newly referenced file.

The dynamic switching of the data source files has a resetting effect. For example, when SQL*Loader switches from the current file to a previously opened file, the previously opened file is reopened, and the data is read from the beginning of the file.

You should not specify the same SDF as the source of two different fields. If you do so, typically, the two fields will read the data independently.

Loading a Parent Table Separately from Its Child Table

When you load a table that contains a nested table column, it may be possible to load the parent table separately from the child table. You can load the parent and child tables independently if the SIDs (system-generated or user-defined) are already known at the time of the load (that is, the SIDs are in the datafile with the data).

Example 10-25 illustrates how to load a parent table with user-provided SIDs.

Example 10-25 Loading a Parent Table with User-Provided SIDs

Control File Contents

 LOAD DATA
 INFILE 'sample.dat' "str '|\n' "
 INTO TABLE dept
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 TRAILING NULLCOLS
 (dept_no CHAR(3),
 dname CHAR(20) NULLIF dname=BLANKS ,
 mysid FILLER CHAR(32),
1 projects SID(mysid))

Datafile (sample.dat)

101,Math,21E978407D4441FCE03400400B403BC3,|
210,"Topology",21E978408D4441FCE03400400B403BC3,|

Notes

	
mysid is a filler field that is mapped to a datafile field containing the actual set IDs and is supplied as an argument to the SID clause.

Example 10-26 illustrates how to load a child table (the nested table storage table) with user-provided SIDs.

Example 10-26 Loading a Child Table with User-Provided SIDs

Control File Contents

 LOAD DATA
 INFILE 'sample.dat'
 INTO TABLE dept
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 TRAILING NULLCOLS
1 SID(sidsrc)
 (project_id INTEGER EXTERNAL(5),
 project_name CHAR(20) NULLIF project_name=BLANKS,
 sidsrc FILLER CHAR(32))

Datafile (sample.dat)

21034, "Topological Transforms", 21E978407D4441FCE03400400B403BC3,
77777, "Impossible Proof", 21E978408D4441FCE03400400B403BC3,

Notes

	
The table-level SID clause tells SQL*Loader that it is loading the storage table for nested tables. sidsrc is the filler field name that is the source of the real set IDs.

Memory Issues When Loading VARRAY Columns

The following list describes some issues to keep in mind when you load VARRAY columns:

	
VARRAYs are created in the client's memory before they are loaded into the database. Each element of a VARRAY requires 4 bytes of client memory before it can be loaded into the database. Therefore, when you load a VARRAY with a thousand elements, you will require at least 4000 bytes of client memory for each VARRAY instance before you can load the VARRAYs into the database. In many cases, SQL*Loader requires two to three times that amount of memory to successfully construct and load a VARRAY.

	
The BINDSIZE parameter specifies the amount of memory allocated by SQL*Loader for loading records. Given the value specified for BINDSIZE, SQL*Loader takes into consideration the size of each field being loaded, and determines the number of rows it can load in one transaction. The larger the number of rows, the fewer transactions, resulting in better performance. But if the amount of memory on your system is limited, then at the expense of performance, you can specify a lower value for ROWS than SQL*Loader calculated.

	
Loading very large VARRAYs or a large number of smaller VARRAYs could cause you to run out of memory during the load. If this happens, specify a smaller value for BINDSIZE or ROWS and retry the load.

17 DBNEWID Utility

DBNEWID is a database utility that can change the internal database identifier (DBID) and the database name (DBNAME) for an operational database.

This chapter contains the following sections:

	
What Is the DBNEWID Utility?

	
Ramifications of Changing the DBID and DBNAME

	
Changing the DBID and DBNAME of a Database

	
DBNEWID Syntax

What Is the DBNEWID Utility?

Prior to the introduction of the DBNEWID utility, you could manually create a copy of a database and give it a new database name (DBNAME) by re-creating the control file. However, you could not give the database a new identifier (DBID). The DBID is an internal, unique identifier for a database. Because Recovery Manager (RMAN) distinguishes databases by DBID, you could not register a seed database and a manually copied database together in the same RMAN repository. The DBNEWID utility solves this problem by allowing you to change any of the following:

	
Only the DBID of a database

	
Only the DBNAME of a database

	
Both the DBNAME and DBID of a database

Ramifications of Changing the DBID and DBNAME

Changing the DBID of a database is a serious procedure. When the DBID of a database is changed, all previous backups and archived logs of the database become unusable. This is similar to creating a database except that the data is already in the datafiles. After you change the DBID, backups and archive logs that were created prior to the change can no longer be used because they still have the original DBID, which does not match the current DBID. You must open the database with the RESETLOGS option, which re-creates the online redo logs and resets their sequence to 1 (see Oracle Database Administrator's Guide). Consequently, you should make a backup of the whole database immediately after changing the DBID.

Changing the DBNAME without changing the DBID does not require you to open with the RESETLOGS option, so database backups and archived logs are not invalidated. However, changing the DBNAME does have consequences. You must change the DB_NAME initialization parameter after a database name change to reflect the new name. Also, you may have to re-create the Oracle password file. If you restore an old backup of the control file (before the name change), then you should use the initialization parameter file and password file from before the database name change.

	
Note:

Do not change the DBID or DBNAME of a database if you are using a capture process to capture changes to the database. See Oracle Streams Concepts and Administration for more information about capture processes.

Considerations for Global Database Names

If you are dealing with a database in a distributed database system, then each database should have a unique global database name. The DBNEWID utility does not change global database names. This can only be done with the SQL ALTER DATABASE statement, for which the syntax is as follows:

ALTER DATABASE RENAME GLOBAL_NAME TO newname.domain;

The global database name is made up of a database name and a domain, which are determined by the DB_NAME and DB_DOMAIN initialization parameters when the database is first created.

The following example changes the database name to sales in the domain us.oracle.com:

ALTER DATABASE RENAME GLOBAL_NAME TO sales.us.oracle.com

You would do this after you finished using DBNEWID to change the database name.

	
See Also:

Oracle Database Administrator's Guide for more information about global database names

Changing the DBID and DBNAME of a Database

This section contains these topics:

	
Changing the DBID and Database Name

	
Changing Only the Database ID

	
Changing Only the Database Name

	
Troubleshooting DBNEWID

Changing the DBID and Database Name

The following steps describe how to change the DBID of a database. Optionally, you can change the database name as well.

	
Ensure that you have a recoverable whole database backup.

	
Ensure that the target database is mounted but not open, and that it was shut down consistently prior to mounting. For example:

SHUTDOWN IMMEDIATE
STARTUP MOUNT

	
Invoke the DBNEWID utility on the command line, specifying a valid user with the SYSDBA privilege. You will be prompted for a password. For example:

% nid TARGET=SYS

DBNEWID: Release 11.1.0.6.0 - Production on Tue Aug 21 05:25:22 2007

Copyright (c) 1982, 2007, Oracle. All rights reserved.

Password: password

To change the database name in addition to the DBID, also specify the DBNAME parameter on the command line. You will be prompted for a password. This example changes the database name to test_db:

% nid TARGET=SYS DBNAME=test_db

DBNEWID: Release 11.1.0.6.0 - Production on Tue Aug 21 05:35:18 2007

Copyright (c) 1982, 2007, Oracle. All rights reserved.

Password: password

The DBNEWID utility performs validations in the headers of the datafiles and control files before attempting I/O to the files. If validation is successful, then DBNEWID prompts you to confirm the operation (unless you specify a log file, in which case it does not prompt), changes the DBID (and the DBNAME, if specified, as in this example) for each datafile, including offline normal and read-only datafiles, shuts down the database, and then exits. The following is an example of what the output for this would look like:

.
.
.
Connected to database PROD (DBID=86997811)
.
.
.
Control Files in database:
 /oracle/TEST_DB/data/cf1.f
 /oracle/TEST_DB/data/cf2.f

The following datafiles are offline clean:
 /oracle/TEST_DB/data/tbs_61.f (23)
 /oracle/TEST_DB/data/tbs_62.f (24)
 /oracle/TEST_DB/data/temp3.f (3)
These files must be writable by this utility.

The following datafiles are read-only:
 /oracle/TEST_DB/data/tbs_51.f (15)
 /oracle/TEST_DB/data/tbs_52.f (16)
 /oracle/TEST_DB/data/tbs_53.f (22)
These files must be writable by this utility.

Changing database ID from 86997811 to 1250654267
Changing database name from PROD to TEST_DB
 Control File /oracle/TEST_DB/data/cf1.f - modified
 Control File /oracle/TEST_DB/data/cf2.f - modified
 Datafile /oracle/TEST_DB/data/tbs_01.f - dbid changed, wrote new name
 Datafile /oracle/TEST_DB/data/tbs_ax1.f - dbid changed, wrote new name
 Datafile /oracle/TEST_DB/data/tbs_02.f - dbid changed, wrote new name
 Datafile /oracle/TEST_DB/data/tbs_11.f - dbid changed, wrote new name
 Datafile /oracle/TEST_DB/data/tbs_12.f - dbid changed, wrote new name
 Datafile /oracle/TEST_DB/data/temp1.f - dbid changed, wrote new name
 Control File /oracle/TEST_DB/data/cf1.f - dbid changed, wrote new name
 Control File /oracle/TEST_DB/data/cf2.f - dbid changed, wrote new name
 Instance shut down

Database name changed to TEST_DB.
Modify parameter file and generate a new password file before restarting.
Database ID for database TEST_DB changed to 1250654267.
All previous backups and archived redo logs for this database are unusable.
Database has been shutdown, open database with RESETLOGS option.
Successfully changed database name and ID.
DBNEWID - Completed successfully.

If validation is not successful, then DBNEWID terminates and leaves the target database intact, as shown in the following sample output. You can open the database, fix the error, and then either resume the DBNEWID operation or continue using the database without changing its DBID.

.
.
.
Connected to database PROD (DBID=86997811)
.
.
.
Control Files in database:
 /oracle/TEST_DB/data/cf1.f
 /oracle/TEST_DB/data/cf2.f

The following datafiles are offline clean:
 /oracle/TEST_DB/data/tbs_61.f (23)
 /oracle/TEST_DB/data/tbs_62.f (24)
 /oracle/TEST_DB/data/temp3.f (3)
These files must be writable by this utility.

The following datafiles are read-only:
 /oracle/TEST_DB/data/tbs_51.f (15)
 /oracle/TEST_DB/data/tbs_52.f (16)
 /oracle/TEST_DB/data/tbs_53.f (22)
These files must be writable by this utility.

The following datafiles are offline immediate:
 /oracle/TEST_DB/data/tbs_71.f (25)
 /oracle/TEST_DB/data/tbs_72.f (26)

NID-00122: Database should have no offline immediate datafiles

Change of database name failed during validation - database is intact.
DBNEWID - Completed with validation errors.

	
Mount the database. For example:

STARTUP MOUNT

	
Open the database in RESETLOGS mode and resume normal use. For example:

ALTER DATABASE OPEN RESETLOGS;

Make a new database backup. Because you reset the online redo logs, the old backups and archived logs are no longer usable in the current incarnation of the database.

Changing Only the Database ID

To change the database ID without changing the database name, follow the steps in Changing the DBID and Database Name, but in Step 3 do not specify the optional database name (DBNAME). The following is an example of the type of output that is generated when only the database ID is changed.

.
.
.
Connected to database PROD (DBID=86997811)
.
.
.
Control Files in database:
 /oracle/TEST_DB/data/cf1.f
 /oracle/TEST_DB/data/cf2.f

The following datafiles are offline clean:
 /oracle/TEST_DB/data/tbs_61.f (23)
 /oracle/TEST_DB/data/tbs_62.f (24)
 /oracle/TEST_DB/data/temp3.f (3)
These files must be writable by this utility.

The following datafiles are read-only:
 /oracle/TEST_DB/data/tbs_51.f (15)
 /oracle/TEST_DB/data/tbs_52.f (16)
 /oracle/TEST_DB/data/tbs_53.f (22)
These files must be writable by this utility.

Changing database ID from 86997811 to 4004383693
 Control File /oracle/TEST_DB/data/cf1.f - modified
 Control File /oracle/TEST_DB/data/cf2.f - modified
 Datafile /oracle/TEST_DB/data/tbs_01.f - dbid changed
 Datafile /oracle/TEST_DB/data/tbs_ax1.f - dbid changed
 Datafile /oracle/TEST_DB/data/tbs_02.f - dbid changed
 Datafile /oracle/TEST_DB/data/tbs_11.f - dbid changed
 Datafile /oracle/TEST_DB/data/tbs_12.f - dbid changed
 Datafile /oracle/TEST_DB/data/temp1.f - dbid changed
 Control File /oracle/TEST_DB/data/cf1.f - dbid changed
 Control File /oracle/TEST_DB/data/cf2.f - dbid changed
 Instance shut down

Database ID for database TEST_DB changed to 4004383693.
All previous backups and archived redo logs for this database are unusable.
Database has been shutdown, open database with RESETLOGS option.
Succesfully changed database ID.
DBNEWID - Completed succesfully.

Changing Only the Database Name

The following steps describe how to change the database name without changing the DBID.

	
Ensure that you have a recoverable whole database backup.

	
Ensure that the target database is mounted but not open, and that it was shut down consistently prior to mounting. For example:

SHUTDOWN IMMEDIATE
STARTUP MOUNT

	
Invoke the utility on the command line, specifying a valid user with the SYSDBA privilege (you will be prompted for a password). You must specify both the DBNAME and SETNAME parameters. This example changes the name to test_db:

% nid TARGET=SYS DBNAME=test_db SETNAME=YES

DBNEWID: Release 11.1.0.6.0 - Production on Tue Aug 21 05:40:21 2007

Copyright (c) 1982, 2007, Oracle. All rights reserved.

Password: password

DBNEWID performs validations in the headers of the control files (not the datafiles) before attempting I/O to the files. If validation is successful, then DBNEWID prompts for confirmation, changes the database name in the control files, shuts down the database and exits. The following is an example of what the output for this would look like:

.
.
.
Control Files in database:
 /oracle/TEST_DB/data/cf1.f
 /oracle/TEST_DB/data/cf2.f

The following datafiles are offline clean:
 /oracle/TEST_DB/data/tbs_61.f (23)
 /oracle/TEST_DB/data/tbs_62.f (24)
 /oracle/TEST_DB/data/temp3.f (3)
These files must be writable by this utility.

The following datafiles are read-only:
 /oracle/TEST_DB/data/tbs_51.f (15)
 /oracle/TEST_DB/data/tbs_52.f (16)
 /oracle/TEST_DB/data/tbs_53.f (22)
These files must be writable by this utility.

Changing database name from PROD to TEST_DB
 Control File /oracle/TEST_DB/data/cf1.f - modified
 Control File /oracle/TEST_DB/data/cf2.f - modified
 Datafile /oracle/TEST_DB/data/tbs_01.f - wrote new name
 Datafile /oracle/TEST_DB/data/tbs_ax1.f - wrote new name
 Datafile /oracle/TEST_DB/data/tbs_02.f - wrote new name
 Datafile /oracle/TEST_DB/data/tbs_11.f - wrote new name
 Datafile /oracle/TEST_DB/data/tbs_12.f - wrote new name
 Datafile /oracle/TEST_DB/data/temp1.f - wrote new name
 Control File /oracle/TEST_DB/data/cf1.f - wrote new name
 Control File /oracle/TEST_DB/data/cf2.f - wrote new name
 Instance shut down

Database name changed to TEST_DB.
Modify parameter file and generate a new password file before restarting.
Successfully changed database name.
DBNEWID - Completed successfully.

If validation is not successful, then DBNEWID terminates and leaves the target database intact. You can open the database, fix the error, and then either resume the DBNEWID operation or continue using the database without changing the database name. (For an example of what the output looks like for an unsuccessful validation, see Step 3 in Changing the DBID and Database Name.)

	
Set the DB_NAME initialization parameter in the initialization parameter file (PFILE) to the new database name.

	
Note:

The DBNEWID utility does not change the server parameter file (SPFILE). Therefore, if you use SPFILE to start your Oracle database, you must re-create the initialization parameter file from the server parameter file, remove the server parameter file, change the DB_NAME in the initialization parameter file, and then re-create the server parameter file.

	
Create a new password file.

	
Start up the database and resume normal use. For example:

STARTUP

Because you have changed only the database name, and not the database ID, it is not necessary to use the RESETLOGS option when you open the database. This means that all previous backups are still usable.

Troubleshooting DBNEWID

If the DBNEWID utility succeeds in its validation stage but detects an error while performing the requested change, then the utility stops and leaves the database in the middle of the change. In this case, you cannot open the database until the DBNEWID operation is either completed or reverted. DBNEWID displays messages indicating the status of the operation.

Before continuing or reverting, fix the underlying cause of the error. Sometimes the only solution is to restore the whole database from a recent backup and perform recovery to the point in time before DBNEWID was started. This underscores the importance of having a recent backup available before running DBNEWID.

If you choose to continue with the change, then re-execute your original command. The DBNEWID utility resumes and attempts to continue the change until all datafiles and control files have the new value or values. At this point, the database is shut down. You should mount it prior to opening it with the RESETLOGS option.

If you choose to revert a DBNEWID operation, and if the reversion succeeds, then DBNEWID reverts all performed changes and leaves the database in a mounted state.

If DBNEWID is run against a release 10.1 or later Oracle database, a summary of the operation is written to the alert file. For example, for a change of database name and database ID, you might see something similar to the following:

*** DBNEWID utility started ***
DBID will be changed from 86997811 to new DBID of 1250452230 for
database PROD
DBNAME will be changed from PROD to new DBNAME of TEST_DB
Starting datafile conversion
Setting recovery target incarnation to 1
Datafile conversion complete
Database name changed to TEST_DB.
Modify parameter file and generate a new password file before restarting.
Database ID for database TEST_DB changed to 1250452230.
All previous backups and archived redo logs for this database are unusable.
Database has been shutdown, open with RESETLOGS option.
Successfully changed database name and ID.
*** DBNEWID utility finished successfully ***

For a change of just the database name, the alert file might show something similar to the following:

*** DBNEWID utility started ***
DBNAME will be changed from PROD to new DBNAME of TEST_DB
Starting datafile conversion
Datafile conversion complete
Database name changed to TEST_DB.
Modify parameter file and generate a new password file before restarting.
Successfully changed database name.
*** DBNEWID utility finished successfully ***

In case of failure during DBNEWID the alert will also log the failure:
*** DBNEWID utility started ***
DBID will be changed from 86997811 to new DBID of 86966847 for database
AV3
Change of database ID failed.
Must finish change or REVERT changes before attempting any database
operation.
*** DBNEWID utility finished with errors ***

DBNEWID Syntax

The following diagrams show the syntax for the DBNEWID utility.

[image: Description of nid.gif follows]

Parameters

Table 17-1 describes the parameters in the DBNEWID syntax.

Table 17-1 Parameters for the DBNEWID Utility

	Parameter	Description
	
TARGET

	
Specifies the username and password used to connect to the database. The user must have the SYSDBA privilege. If you are using operating system authentication, then you can connect with the slash (/). If the $ORACLE_HOME and $ORACLE_SID variables are not set correctly in the environment, then you can specify a secure (IPC or BEQ) service to connect to the target database. A target database must be specified in all invocations of the DBNEWID utility.

	
REVERT

	
Specify YES to indicate that a failed change of DBID should be reverted (default is NO). The utility signals an error if no change DBID operation is in progress on the target database. A successfully completed change of DBID cannot be reverted. REVERT=YES is valid only when a DBID change failed.

	
DBNAME=new_db_name

	
Changes the database name of the database. You can change the DBID and the DBNAME of a database at the same time. To change only the DBNAME, also specify the SETNAME parameter.

	
SETNAME

	
Specify YES to indicate that DBNEWID should change the database name of the database but should not change the DBID (default is NO). When you specify SETNAME=YES, the utility writes only to the target database control files.

	
LOGFILE=logfile

	
Specifies that DBNEWID should write its messages to the specified file. By default the utility overwrites the previous log. If you specify a log file, then DBNEWID does not prompt for confirmation.

	
APPEND

	
Specify YES to append log output to the existing log file (default is NO).

	
HELP

	
Specify YES to print a list of the DBNEWID syntax options (default is NO).

Restrictions and Usage Notes

The DBNEWID utility has the following restrictions:

	
To change the DBID of a database, the database must be mounted and must have been shut down consistently prior to mounting. In the case of an Oracle Real Application Clusters database, the database must be mounted in NOPARALLEL mode.

	
You must open the database with the RESETLOGS option after changing the DBID. However, you do not have to open with the RESETLOGS option after changing only the database name.

	
No other process should be running against the database when DBNEWID is executing. If another session shuts down and starts the database, then DBNEWID terminates unsuccessfully.

	
All online datafiles should be consistent without needing recovery.

	
Normal offline datafiles should be accessible and writable. If this is not the case, you must drop these files before invoking the DBNEWID utility.

	
All read-only tablespaces must be accessible and made writable at the operating system level prior to invoking DBNEWID. If these tablespaces cannot be made writable (for example, they are on a CD-ROM), then you must unplug the tablespaces using the transportable tablespace feature and then plug them back in the database before invoking the DBNEWID utility (see the Oracle Database Administrator's Guide).

	
The DBNEWID utility does not change global database names. See Considerations for Global Database Names.

Additional Restrictions for Releases Prior to Oracle Database 10g

The following additional restrictions apply if the DBNEWID utility is run against an Oracle Database release prior to 10.1:

	
The nid executable file should be owned and run by the Oracle owner because it needs direct access to the datafiles and control files. If another user runs the utility, then set the user ID to the owner of the datafiles and control files.

	
The DBNEWID utility must access the datafiles of the database directly through a local connection. Although DBNEWID can accept a net service name, it cannot change the DBID of a nonlocal database.

Oracle® Database

Utilities

11g Release 1 (11.1)

B28319-02

September 2007

Oracle Database Utilities, 11g Release 1 (11.1)

B28319-02

Copyright © 1996, 2007, Oracle. All rights reserved.

Primary Author: Kathy Rich

Contributors: Lee Barton, Ellen Batbouta, Janet Blowney, George Claborn, Jay Davison, Steve DiPirro, Marcus Fallen, Bill Fisher, Steve Fogel, Dean Gagne, John Galanes, John Kalogeropoulos, Jonathan Klein, Cindy Lim, Eric Magrath, Brian McCarthy, Rod Payne, Ray Pfau, Rich Phillips, Paul Reilly, Mike Sakayeda, Francisco Sanchez, Marilyn Saunders, Jim Stenoish, Carol Tagliaferri, Hailing Yu

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third party.

Part I

Oracle Data Pump

This part contains the following chapters:

	
Chapter 1, "Overview of Oracle Data Pump"

This chapter provides an overview of Oracle Data Pump technology, which enables very high-speed movement of data and metadata from one database to another.

	
Chapter 2, "Data Pump Export"

This chapter describes the Oracle Data Pump Export utility, which is used to unload data and metadata into a set of operating system files called a dump file set.

	
Chapter 3, "Data Pump Import"

This chapter describes the Oracle Data Pump Import utility, which is used to load an export dump file set into a target system. It also describes how to perform a network import to load a target database directly from a source database with no intervening files.

	
Chapter 4, "Data Pump Performance"

This chapter discusses why the performance of Data Pump Export and Import is better than that of original Export and Import. It also suggests specific steps you can take to enhance performance of export and import operations.

	
Chapter 5, "The Data Pump API"

This chapter describes how the Data Pump API, DBMS_DATAPUMP, works.

List of Examples

	2-1 Performing a Table-Mode Export
	2-2 Data-Only Unload of Selected Tables and Rows
	2-3 Estimating Disk Space Needed in a Table-Mode Export
	2-4 Performing a Schema Mode Export
	2-5 Parallel Full Export
	2-6 Stopping and Reattaching to a Job
	3-1 Performing a Data-Only Table-Mode Import
	3-2 Performing a Schema-Mode Import
	3-3 Network-Mode Import of Schemas
	5-1 Performing a Simple Schema Export
	5-2 Importing a Dump File and Remapping All Schema Objects
	5-3 Using Exception Handling During a Simple Schema Export
	6-1 Loading Data in Fixed Record Format
	6-2 Loading Data in Variable Record Format
	6-3 Loading Data in Stream Record Format
	8-1 Sample Control File
	8-2 Identifying XMLType Tables in the SQL*Loader Control File
	8-3 CONTINUEIF THIS Without the PRESERVE Parameter
	8-4 CONTINUEIF THIS with the PRESERVE Parameter
	8-5 CONTINUEIF NEXT Without the PRESERVE Parameter
	8-6 CONTINUEIF NEXT with the PRESERVE Parameter
	9-1 Field List Section of Sample Control File
	9-2 DEFAULTIF Clause Is Not Evaluated
	9-3 DEFAULTIF Clause Is Evaluated
	9-4 DEFAULTIF Clause Specifies a Position
	9-5 DEFAULTIF Clause Specifies a Field Name
	10-1 Loading Column Objects in Stream Record Format
	10-2 Loading Column Objects in Variable Record Format
	10-3 Loading Nested Column Objects
	10-4 Loading Column Objects with a Subtype
	10-5 Specifying Attribute Nulls Using the NULLIF Clause
	10-6 Loading Data Using Filler Fields
	10-7 Loading a Column Object with Constructors That Match
	10-8 Loading a Column Object with Constructors That Do Not Match
	10-9 Using SQL to Load Column Objects When Constructors Do Not Match
	10-10 Loading an Object Table with Primary Key OIDs
	10-11 Loading OIDs
	10-12 Loading an Object Table with a Subtype
	10-13 Loading System-Generated REF Columns
	10-14 Loading Primary Key REF Columns
	10-15 Loading LOB Data in Predetermined Size Fields
	10-16 Loading LOB Data in Delimited Fields
	10-17 Loading LOB Data in Length-Value Pair Fields
	10-18 Loading LOB DATA with One LOB per LOBFILE
	10-19 Loading LOB Data Using Predetermined Size LOBs
	10-20 Loading LOB Data Using Delimited LOBs
	10-21 Loading LOB Data Using Length-Value Pair Specified LOBs
	10-22 Loading Data Using BFILEs: Only Filename Specified Dynamically
	10-23 Loading Data Using BFILEs: Filename and Directory Specified Dynamically
	10-24 Loading a VARRAY and a Nested Table
	10-25 Loading a Parent Table with User-Provided SIDs
	10-26 Loading a Child Table with User-Provided SIDs
	11-1 Setting the Date Format in the SQL*Loader Control File
	11-2 Setting an NLS_DATE_FORMAT Environment Variable
	19-1 Using the DBMS_METADATA Programmatic Interface to Retrieve Data
	19-2 Using the DBMS_METADATA Browsing Interface to Retrieve Data
	19-3 Retrieving Multiple Objects
	19-4 Placing Conditions on Transforms
	19-5 Modifying an XML Document
	19-6 Using Parse Items to Access Specific Metadata Attributes
	19-7 Using the Submit Interface to Re-Create a Retrieved Object
	19-8 Retrieving Heterogeneous Object Types
	19-9 Filtering the Return of Heterogeneous Object Types
	21-1 Sample EMCA Input File

11 Conventional and Direct Path Loads

This chapter describes SQL*Loader's conventional and direct path load methods. The following topics are covered:

	
Data Loading Methods

	
Conventional Path Load

	
Direct Path Load

	
Using Direct Path Load

	
Optimizing Performance of Direct Path Loads

	
Optimizing Direct Path Loads on Multiple-CPU Systems

	
Avoiding Index Maintenance

	
Direct Loads, Integrity Constraints, and Triggers

	
Parallel Data Loading Models

	
General Performance Improvement Hints

For an example of using the direct path load method, see case study 6, Loading Data Using the Direct Path Load Method. The other cases use the conventional path load method. (See SQL*Loader Case Studies for information on how to access case studies.)

Data Loading Methods

SQL*Loader provides two methods for loading data:

	
Conventional Path Load

	
Direct Path Load

A conventional path load executes SQL INSERT statements to populate tables in an Oracle database. A direct path load eliminates much of the Oracle database overhead by formatting Oracle data blocks and writing the data blocks directly to the database files. A direct load does not compete with other users for database resources, so it can usually load data at near disk speed. Considerations inherent to direct path loads, such as restrictions, security, and backup implications, are discussed in this chapter.

The tables to be loaded must already exist in the database. SQL*Loader never creates tables. It loads existing tables that either already contain data or are empty.

The following privileges are required for a load:

	
You must have INSERT privileges on the table to be loaded.

	
You must have DELETE privileges on the table to be loaded, when using the REPLACE or TRUNCATE option to empty old data from the table before loading the new data in its place.

Figure 11-1 shows how conventional and direct path loads perform database writes.

Figure 11-1 Database Writes on SQL*Loader Direct Path and Conventional Path

[image: Description of Figure 11-1 follows]

Loading ROWID Columns

In both conventional path and direct path, you can specify a text value for a ROWID column. (This is the same text you get when you perform a SELECT ROWID FROM table_name operation.) The character string interpretation of the ROWID is converted into the ROWID type for a column in a table.

Conventional Path Load

Conventional path load (the default) uses the SQL INSERT statement and a bind array buffer to load data into database tables. This method is used by all Oracle tools and applications.

When SQL*Loader performs a conventional path load, it competes equally with all other processes for buffer resources. This can slow the load significantly. Extra overhead is added as SQL statements are generated, passed to Oracle, and executed.

The Oracle database looks for partially filled blocks and attempts to fill them on each insert. Although appropriate during normal use, this can slow bulk loads dramatically.

	
See Also:

Discontinued Conventional Path Loads

Conventional Path Load of a Single Partition

By definition, a conventional path load uses SQL INSERT statements. During a conventional path load of a single partition, SQL*Loader uses the partition-extended syntax of the INSERT statement, which has the following form:

INSERT INTO TABLE T PARTITION (P) VALUES ...

The SQL layer of the Oracle kernel determines if the row being inserted maps to the specified partition. If the row does not map to the partition, the row is rejected, and the SQL*Loader log file records an appropriate error message.

When to Use a Conventional Path Load

If load speed is most important to you, you should use direct path load because it is faster than conventional path load. However, certain restrictions on direct path loads may require you to use a conventional path load. You should use a conventional path load in the following situations:

	
When accessing an indexed table concurrently with the load, or when applying inserts or updates to a nonindexed table concurrently with the load

To use a direct path load (with the exception of parallel loads), SQL*Loader must have exclusive write access to the table and exclusive read/write access to any indexes.

	
When loading data into a clustered table

A direct path load does not support loading of clustered tables.

	
When loading a relatively small number of rows into a large indexed table

During a direct path load, the existing index is copied when it is merged with the new index keys. If the existing index is very large and the number of new keys is very small, then the index copy time can offset the time saved by a direct path load.

	
When loading a relatively small number of rows into a large table with referential and column-check integrity constraints

Because these constraints cannot be applied to rows loaded on the direct path, they are disabled for the duration of the load. Then they are applied to the whole table when the load completes. The costs could outweigh the savings for a very large table and a small number of new rows.

	
When loading records and you want to ensure that a record is rejected under any of the following circumstances:

	
If the record, upon insertion, causes an Oracle error

	
If the record is formatted incorrectly, so that SQL*Loader cannot find field boundaries

	
If the record violates a constraint or tries to make a unique index non-unique

Direct Path Load

Instead of filling a bind array buffer and passing it to the Oracle database with a SQL INSERT statement, a direct path load uses the direct path API to pass the data to be loaded to the load engine in the server. The load engine builds a column array structure from the data passed to it.

The direct path load engine uses the column array structure to format Oracle data blocks and build index keys. The newly formatted database blocks are written directly to the database (multiple blocks per I/O request using asynchronous writes if the host platform supports asynchronous I/O).

Internally, multiple buffers are used for the formatted blocks. While one buffer is being filled, one or more buffers are being written if asynchronous I/O is available on the host platform. Overlapping computation with I/O increases load performance.

	
See Also:

Discontinued Direct Path Loads

Data Conversion During Direct Path Loads

During a direct path load, data conversion occurs on the client side rather than on the server side. This means that NLS parameters in the initialization parameter file (server-side language handle) will not be used. To override this behavior, you can specify a format mask in the SQL*Loader control file that is equivalent to the setting of the NLS parameter in the initialization parameter file, or set the appropriate environment variable. For example, to specify a date format for a field, you can either set the date format in the SQL*Loader control file as shown in Example 11-1 or set an NLS_DATE_FORMAT environment variable as shown in Example 11-2.

Example 11-1 Setting the Date Format in the SQL*Loader Control File

LOAD DATA
INFILE 'data.dat'
INSERT INTO TABLE emp
FIELDS TERMINATED BY "|"
(
EMPNO NUMBER(4) NOT NULL,
ENAME CHAR(10),
JOB CHAR(9),
MGR NUMBER(4),
HIREDATE DATE 'YYYYMMDD',
SAL NUMBER(7,2),
COMM NUMBER(7,2),
DEPTNO NUMBER(2)
)

Example 11-2 Setting an NLS_DATE_FORMAT Environment Variable

On UNIX Bourne or Korn shell:

% NLS_DATE_FORMAT='YYYYMMDD'
% export NLS_DATE_FORMAT

On UNIX csh:

%setenv NLS_DATE_FORMAT='YYYYMMDD'

Direct Path Load of a Partitioned or Subpartitioned Table

When loading a partitioned or subpartitioned table, SQL*Loader partitions the rows and maintains indexes (which can also be partitioned). Note that a direct path load of a partitioned or subpartitioned table can be quite resource-intensive for tables with many partitions or subpartitions.

	
Note:

If you are performing a direct path load into multiple partitions and a space error occurs, the load is rolled back to the last commit point. If there was no commit point, then the entire load is rolled back. This ensures that no data encountered after the space error is written out to a different partition.
You can use the ROWS parameter to specify the frequency of the commit points. If the ROWS parameter is not specified, the entire load is rolled back.

Direct Path Load of a Single Partition or Subpartition

When loading a single partition of a partitioned or subpartitioned table, SQL*Loader partitions the rows and rejects any rows that do not map to the partition or subpartition specified in the SQL*Loader control file. Local index partitions that correspond to the data partition or subpartition being loaded are maintained by SQL*Loader. Global indexes are not maintained on single partition or subpartition direct path loads. During a direct path load of a single partition, SQL*Loader uses the partition-extended syntax of the LOAD statement, which has either of the following forms:

LOAD INTO TABLE T PARTITION (P) VALUES ...

LOAD INTO TABLE T SUBPARTITION (P) VALUES ...

While you are loading a partition of a partitioned or subpartitioned table, you are also allowed to perform DML operations on, and direct path loads of, other partitions in the table.

Although a direct path load minimizes database processing, several calls to the Oracle database are required at the beginning and end of the load to initialize and finish the load, respectively. Also, certain DML locks are required during load initialization and are released when the load completes. The following operations occur during the load: index keys are built and put into a sort, and space management routines are used to get new extents when needed and to adjust the upper boundary (high-water mark) for a data savepoint. See Using Data Saves to Protect Against Data Loss for information about adjusting the upper boundary.

Advantages of a Direct Path Load

A direct path load is faster than the conventional path for the following reasons:

	
Partial blocks are not used, so no reads are needed to find them, and fewer writes are performed.

	
SQL*Loader need not execute any SQL INSERT statements; therefore, the processing load on the Oracle database is reduced.

	
A direct path load calls on Oracle to lock tables and indexes at the start of the load and releases them when the load is finished. A conventional path load calls Oracle once for each array of rows to process a SQL INSERT statement.

	
A direct path load uses multiblock asynchronous I/O for writes to the database files.

	
During a direct path load, processes perform their own write I/O, instead of using Oracle's buffer cache. This minimizes contention with other Oracle users.

	
The sorted indexes option available during direct path loads enables you to presort data using high-performance sort routines that are native to your system or installation.

	
When a table to be loaded is empty, the presorting option eliminates the sort and merge phases of index-building. The index is filled in as data arrives.

	
Protection against instance failure does not require redo log file entries during direct path loads. Therefore, no time is required to log the load when:

	
The Oracle database has the SQL NOARCHIVELOG parameter enabled

	
The SQL*Loader UNRECOVERABLE clause is enabled

	
The object being loaded has the SQL NOLOGGING parameter set

See Instance Recovery and Direct Path Loads.

Restrictions on Using Direct Path Loads

The following conditions must be satisfied for you to use the direct path load method:

	
Tables are not clustered.

	
Tables to be loaded do not have any active transactions pending.

To check for this condition, use the Oracle Enterprise Manager command MONITOR TABLE to find the object ID for the tables you want to load. Then use the command MONITOR LOCK to see if there are any locks on the tables.

	
For versions of the database prior to Oracle9i, you can perform a SQL*Loader direct path load only when the client and server are the same version. This also means that you cannot perform a direct path load of Oracle9i data into a database of an earlier version. For example, you cannot use direct path load to load data from a release 9.0.1 database into a release 8.1.7 database.

Beginning with Oracle9i, you can perform a SQL*Loader direct path load when the client and server are different versions. However, both versions must be at least release 9.0.1 and the client version must be the same as or lower than the server version. For example, you can perform a direct path load from a release 9.0.1 database into a release 9.2 database. However, you cannot use direct path load to load data from a release 10.0.0 database into a release 9.2 database.

	
Tables to be loaded in direct path mode do not have VPD policies active on INSERT.

The following features are not available with direct path load:

	
Loading a parent table together with a child table

	
Loading BFILE columns

	
Use of CREATE SEQUENCE during the load. This is because in direct path loads there is no SQL being generated to fetch the next value since direct path does not generate INSERT statements.

Restrictions on a Direct Path Load of a Single Partition

In addition to the previously listed restrictions, loading a single partition has the following restrictions:

	
The table that the partition is a member of cannot have any global indexes defined on it.

	
Enabled referential and check constraints on the table that the partition is a member of are not allowed.

	
Enabled triggers are not allowed.

When to Use a Direct Path Load

If none of the previous restrictions apply, you should use a direct path load when:

	
You have a large amount of data to load quickly. A direct path load can quickly load and index large amounts of data. It can also load data into either an empty or nonempty table.

	
You want to load data in parallel for maximum performance. See Parallel Data Loading Models.

Integrity Constraints

All integrity constraints are enforced during direct path loads, although not necessarily at the same time. NOT NULL constraints are enforced during the load. Records that fail these constraints are rejected.

UNIQUE constraints are enforced both during and after the load. A record that violates a UNIQUE constraint is not rejected (the record is not available in memory when the constraint violation is detected).

Integrity constraints that depend on other rows or tables, such as referential constraints, are disabled before the direct path load and must be reenabled afterwards. If REENABLE is specified, SQL*Loader can reenable them automatically at the end of the load. When the constraints are reenabled, the entire table is checked. Any rows that fail this check are reported in the specified error log. See Direct Loads, Integrity Constraints, and Triggers.

Field Defaults on the Direct Path

Default column specifications defined in the database are not available when you use direct path loading. Fields for which default values are desired must be specified with the DEFAULTIF clause. If a DEFAULTIF clause is not specified and the field is NULL, then a null value is inserted into the database.

Loading into Synonyms

You can load data into a synonym for a table during a direct path load, but the synonym must point directly to a table. It cannot be a synonym for a view, or a synonym for another synonym.

Using Direct Path Load

This section explains how to use the SQL*Loader direct path load method.

Setting Up for Direct Path Loads

To prepare the database for direct path loads, you must run the setup script, catldr.sql, to create the necessary views. You need only run this script once for each database you plan to do direct loads to. You can run this script during database installation if you know then that you will be doing direct loads.

Specifying a Direct Path Load

To start SQL*Loader in direct path load mode, set the DIRECT parameter to true on the command line or in the parameter file, if used, in the format:

DIRECT=true

	
See Also:

	
Optimizing Performance of Direct Path Loads for information about parameters you can use to optimize performance of direct path loads

	
Optimizing Direct Path Loads on Multiple-CPU Systems if you are doing a direct path load on a multiple-CPU system or across systems

Building Indexes

You can improve performance of direct path loads by using temporary storage. After each block is formatted, the new index keys are put in a sort (temporary) segment. The old index and the new keys are merged at load finish time to create the new index. The old index, sort (temporary) segment, and new index segment all require storage until the merge is complete. Then the old index and temporary segment are removed.

During a conventional path load, every time a row is inserted the index is updated. This method does not require temporary storage space, but it does add processing time.

Improving Performance

To improve performance on systems with limited memory, use the SINGLEROW parameter. For more information, see SINGLEROW Option.

	
Note:

If, during a direct load, you have specified that the data is to be presorted and the existing index is empty, a temporary segment is not required, and no merge occurs—the keys are put directly into the index. See Optimizing Performance of Direct Path Loads for more information.

When multiple indexes are built, the temporary segments corresponding to each index exist simultaneously, in addition to the old indexes. The new keys are then merged with the old indexes, one index at a time. As each new index is created, the old index and the corresponding temporary segment are removed.

	
See Also:

Oracle Database Administrator's Guide for information about how to estimate index size and set storage parameters

Temporary Segment Storage Requirements

To estimate the amount of temporary segment space needed for storing the new index keys (in bytes), use the following formula:

1.3 * key_storage

In this formula, key storage is defined as follows:

key_storage = (number_of_rows) *
 (10 + sum_of_column_sizes + number_of_columns)

The columns included in this formula are the columns in the index. There is one length byte per column, and 10 bytes per row are used for a ROWID and additional overhead.

The constant 1.3 reflects the average amount of extra space needed for sorting. This value is appropriate for most randomly ordered data. If the data arrives in exactly opposite order, twice the key-storage space is required for sorting, and the value of this constant would be 2.0. That is the worst case.

If the data is fully sorted, only enough space to store the index entries is required, and the value of this constant would be 1.0. See Presorting Data for Faster Indexing for more information.

Indexes Left in an Unusable State

SQL*Loader leaves indexes in an Index Unusable state when the data segment being loaded becomes more up-to-date than the index segments that index it.

Any SQL statement that tries to use an index that is in an Index Unusable state returns an error. The following conditions cause a direct path load to leave an index or a partition of a partitioned index in an Index Unusable state:

	
SQL*Loader runs out of space for the index and cannot update the index.

	
The data is not in the order specified by the SORTED INDEXES clause.

	
There is an instance failure, or the Oracle shadow process fails while building the index.

	
There are duplicate keys in a unique index.

	
Data savepoints are being used, and the load fails or is terminated by a keyboard interrupt after a data savepoint occurred.

To determine if an index is in an Index Unusable state, you can execute a simple query:

SELECT INDEX_NAME, STATUS
 FROM USER_INDEXES
 WHERE TABLE_NAME = 'tablename';

If you are not the owner of the table, then search ALL_INDEXES or DBA_INDEXES instead of USER_INDEXES.

To determine if an index partition is in an unusable state, you can execute the following query:

SELECT INDEX_NAME,
 PARTITION_NAME,
 STATUS FROM USER_IND_PARTITIONS
 WHERE STATUS != 'VALID';

If you are not the owner of the table, then search ALL_IND_PARTITIONS and DBA_IND_PARTITIONS instead of USER_IND_PARTITIONS.

Using Data Saves to Protect Against Data Loss

You can use data saves to protect against loss of data due to instance failure. All data loaded up to the last savepoint is protected against instance failure. To continue the load after an instance failure, determine how many rows from the input file were processed before the failure, then use the SKIP parameter to skip those processed rows.

If there are any indexes on the table, drop them before continuing the load, then re-create them after the load. See Data Recovery During Direct Path Loads for more information about media and instance recovery.

	
Note:

Indexes are not protected by a data save, because SQL*Loader does not build indexes until after data loading completes. (The only time indexes are built during the load is when presorted data is loaded into an empty table, but these indexes are also unprotected.)

Using the ROWS Parameter

The ROWS parameter determines when data saves occur during a direct path load. The value you specify for ROWS is the number of rows you want SQL*Loader to read from the input file before saving inserts in the database.

A data save is an expensive operation. The value for ROWS should be set high enough so that a data save occurs once every 15 minutes or longer. The intent is to provide an upper boundary (high-water mark) on the amount of work that is lost when an instance failure occurs during a long-running direct path load. Setting the value of ROWS to a small number adversely affects performance and data block space utilization.

Data Save Versus Commit

In a conventional load, ROWS is the number of rows to read before a commit operation. A direct load data save is similar to a conventional load commit, but it is not identical.

The similarities are as follows:

	
A data save will make the rows visible to other users.

	
Rows cannot be rolled back after a data save.

The major difference is that in a direct path load data save, the indexes will be unusable (in Index Unusable state) until the load completes.

Data Recovery During Direct Path Loads

SQL*Loader provides full support for data recovery when using the direct path load method. There are two main types of recovery:

	
Media - recovery from the loss of a database file. You must be operating in ARCHIVELOG mode to recover after you lose a database file.

	
Instance - recovery from a system failure in which in-memory data was changed but lost due to the failure before it was written to disk. The Oracle database can always recover from instance failures, even when redo logs are not archived.

	
See Also:

Oracle Database Administrator's Guide for more information about recovery

Media Recovery and Direct Path Loads

If redo log file archiving is enabled (you are operating in ARCHIVELOG mode), SQL*Loader logs loaded data when using the direct path, making media recovery possible. If redo log archiving is not enabled (you are operating in NOARCHIVELOG mode), then media recovery is not possible.

To recover a database file that was lost while it was being loaded, use the same method that you use to recover data loaded with the conventional path:

	
Restore the most recent backup of the affected database file.

	
Recover the tablespace using the RECOVER command.

	
See Also:

Oracle Database Backup and Recovery User's Guide for more information about the RMAN RECOVER command

Instance Recovery and Direct Path Loads

Because SQL*Loader writes directly to the database files, all rows inserted up to the last data save will automatically be present in the database files if the instance is restarted. Changes do not need to be recorded in the redo log file to make instance recovery possible.

If an instance failure occurs, the indexes being built may be left in an Index Unusable state. Indexes that are Unusable must be rebuilt before you can use the table or partition. See Indexes Left in an Unusable State for information about how to determine if an index has been left in Index Unusable state.

Loading Long Data Fields

Data that is longer than SQL*Loader's maximum buffer size can be loaded on the direct path by using LOBs. You can improve performance when doing this by using a large STREAMSIZE value.

	
See Also:

	
Loading LOBs

	
Specifying the Number of Column Array Rows and Size of Stream Buffers

You could also load data that is longer than the maximum buffer size by using the PIECED parameter, as described in the next section, but Oracle highly recommends that you use LOBs instead.

Loading Data As PIECED

The PIECED parameter can be used to load data in sections, if the data is in the last column of the logical record.

Declaring a column as PIECED informs the direct path loader that a LONG field might be split across multiple physical records (pieces). In such cases, SQL*Loader processes each piece of the LONG field as it is found in the physical record. All the pieces are read before the record is processed. SQL*Loader makes no attempt to materialize the LONG field before storing it; however, all the pieces are read before the record is processed.

The following restrictions apply when you declare a column as PIECED:

	
This option is only valid on the direct path.

	
Only one field per table may be PIECED.

	
The PIECED field must be the last field in the logical record.

	
The PIECED field may not be used in any WHEN, NULLIF, or DEFAULTIF clauses.

	
The PIECED field's region in the logical record must not overlap with any other field's region.

	
The PIECED corresponding database column may not be part of the index.

	
It may not be possible to load a rejected record from the bad file if it contains a PIECED field.

For example, a PIECED field could span three records. SQL*Loader loads the piece from the first record and then reuses the buffer for the second buffer. After loading the second piece, the buffer is reused for the third record. If an error is then discovered, only the third record is placed in the bad file because the first two records no longer exist in the buffer. As a result, the record in the bad file would not be valid.

Optimizing Performance of Direct Path Loads

You can control the time and temporary storage used during direct path loads.

To minimize time:

	
Preallocate storage space

	
Presort the data

	
Perform infrequent data saves

	
Minimize use of the redo log

	
Specify the number of column array rows and the size of the stream buffer

	
Specify a date cache value

To minimize space:

	
When sorting data before the load, sort data on the index that requires the most temporary storage space

	
Avoid index maintenance during the load

Preallocating Storage for Faster Loading

SQL*Loader automatically adds extents to the table if necessary, but this process takes time. For faster loads into a new table, allocate the required extents when the table is created.

To calculate the space required by a table, see the information about managing database files in the Oracle Database Administrator's Guide. Then use the INITIAL or MINEXTENTS clause in the SQL CREATE TABLE statement to allocate the required space.

Another approach is to size extents large enough so that extent allocation is infrequent.

Presorting Data for Faster Indexing

You can improve the performance of direct path loads by presorting your data on indexed columns. Presorting minimizes temporary storage requirements during the load. Presorting also enables you to take advantage of high-performance sorting routines that are optimized for your operating system or application.

If the data is presorted and the existing index is not empty, then presorting minimizes the amount of temporary segment space needed for the new keys. The sort routine appends each new key to the key list.

Instead of requiring extra space for sorting, only space for the keys is needed. To calculate the amount of storage needed, use a sort factor of 1.0 instead of 1.3. For more information about estimating storage requirements, see Temporary Segment Storage Requirements.

If presorting is specified and the existing index is empty, then maximum efficiency is achieved. The new keys are simply inserted into the index. Instead of having a temporary segment and new index existing simultaneously with the empty, old index, only the new index exists. So, temporary storage is not required, and time is saved.

SORTED INDEXES Clause

The SORTED INDEXES clause identifies the indexes on which the data is presorted. This clause is allowed only for direct path loads. See case study 6, Loading Data Using the Direct Path Load Method, for an example. (See SQL*Loader Case Studies for information on how to access case studies.)

Generally, you specify only one index in the SORTED INDEXES clause, because data that is sorted for one index is not usually in the right order for another index. When the data is in the same order for multiple indexes, however, all indexes can be specified at once.

All indexes listed in the SORTED INDEXES clause must be created before you start the direct path load.

Unsorted Data

If you specify an index in the SORTED INDEXES clause, and the data is not sorted for that index, then the index is left in an Index Unusable state at the end of the load. The data is present, but any attempt to use the index results in an error. Any index that is left in an Index Unusable state must be rebuilt after the load.

Multiple-Column Indexes

If you specify a multiple-column index in the SORTED INDEXES clause, the data should be sorted so that it is ordered first on the first column in the index, next on the second column in the index, and so on.

For example, if the first column of the index is city, and the second column is last name; then the data should be ordered by name within each city, as in the following list:

Albuquerque Adams
Albuquerque Hartstein
Albuquerque Klein
... ...
Boston Andrews
Boston Bobrowski
Boston Heigham
... ...

Choosing the Best Sort Order

For the best overall performance of direct path loads, you should presort the data based on the index that requires the most temporary segment space. For example, if the primary key is one numeric column, and the secondary key consists of three text columns, then you can minimize both sort time and storage requirements by presorting on the secondary key.

To determine the index that requires the most storage space, use the following procedure:

	
For each index, add up the widths of all columns in that index.

	
For a single-table load, pick the index with the largest overall width.

	
For each table in a multiple-table load, identify the index with the largest overall width. If the same number of rows are to be loaded into each table, then again pick the index with the largest overall width. Usually, the same number of rows are loaded into each table.

	
If a different number of rows are to be loaded into the indexed tables in a multiple-table load, then multiply the width of each index identified in Step 3 by the number of rows that are to be loaded into that index, and pick the index with the largest result.

Infrequent Data Saves

Frequent data saves resulting from a small ROWS value adversely affect the performance of a direct path load. A small ROWS value can also result in wasted data block space because the last data block is not written to after a save, even if the data block is not full.

Because direct path loads can be many times faster than conventional loads, the value of ROWS should be considerably higher for a direct load than it would be for a conventional load.

During a data save, loading stops until all of SQL*Loader's buffers are successfully written. You should select the largest value for ROWS that is consistent with safety. It is a good idea to determine the average time to load a row by loading a few thousand rows. Then you can use that value to select a good value for ROWS.

For example, if you can load 20,000 rows per minute, and you do not want to repeat more than 10 minutes of work after an interruption, then set ROWS to be 200,000 (20,000 rows/minute * 10 minutes).

Minimizing Use of the Redo Log

One way to speed a direct load dramatically is to minimize use of the redo log. There are three ways to do this. You can disable archiving, you can specify that the load is unrecoverable, or you can set the SQL NOLOGGING parameter for the objects being loaded. This section discusses all methods.

Disabling Archiving

If archiving is disabled, direct path loads do not generate full image redo. Use the SQL ARCHIVELOG and NOARCHIVELOG parameters to set the archiving mode. See the Oracle Database Administrator's Guide for more information about archiving.

Specifying the SQL*Loader UNRECOVERABLE Clause

To save time and space in the redo log file, use the SQL*Loader UNRECOVERABLE clause in the control file when you load data. An unrecoverable load does not record loaded data in the redo log file; instead, it generates invalidation redo.

The UNRECOVERABLE clause applies to all objects loaded during the load session (both data and index segments). Therefore, media recovery is disabled for the loaded table, although database changes by other users may continue to be logged.

	
Note:

Because the data load is not logged, you may want to make a backup of the data after loading.

If media recovery becomes necessary on data that was loaded with the UNRECOVERABLE clause, the data blocks that were loaded are marked as logically corrupted.

To recover the data, drop and re-create the data. It is a good idea to do backups immediately after the load to preserve the otherwise unrecoverable data.

By default, a direct path load is RECOVERABLE.

The following is an example of specifying the UNRECOVERABLE clause in the control file:

UNRECOVERABLE
LOAD DATA
INFILE 'sample.dat'
INTO TABLE emp
(ename VARCHAR2(10), empno NUMBER(4));

Setting the SQL NOLOGGING Parameter

If a data or index segment has the SQL NOLOGGING parameter set, then full image redo logging is disabled for that segment (invalidation redo is generated). Use of the NOLOGGING parameter allows a finer degree of control over the objects that are not logged.

Specifying the Number of Column Array Rows and Size of Stream Buffers

The number of column array rows determines the number of rows loaded before the stream buffer is built. The STREAMSIZE parameter specifies the size (in bytes) of the data stream sent from the client to the server.

Use the COLUMNARRAYROWS parameter to specify a value for the number of column array rows. Note that when VARRAYs are loaded using direct path, the COLUMNARRAYROWS parameter defaults to 100 to avoid client object cache thrashing.

Use the STREAMSIZE parameter to specify the size for direct path stream buffers.

The optimal values for these parameters vary, depending on the system, input datatypes, and Oracle column datatypes used. When you are using optimal values for your particular configuration, the elapsed time in the SQL*Loader log file should go down.

To see a list of default values for these and other parameters, invoke SQL*Loader without any parameters, as described in Invoking SQL*Loader.

	
Note:

You should monitor process paging activity, because if paging becomes excessive, performance can be significantly degraded. You may need to lower the values for READSIZE, STREAMSIZE, and COLUMNARRAYROWS to avoid excessive paging.

It can be particularly useful to specify the number of column array rows and size of the steam buffer when you perform direct path loads on multiple-CPU systems. See Optimizing Direct Path Loads on Multiple-CPU Systems for more information.

Specifying a Value for the Date Cache

If you are performing a direct path load in which the same date or timestamp values are loaded many times, a large percentage of total load time can end up being used for converting date and timestamp data. This is especially true if multiple date columns are being loaded. In such a case, it may be possible to improve performance by using the SQL*Loader date cache.

The date cache reduces the number of date conversions done when many duplicate values are present in the input data. It enables you to specify the number of unique dates anticipated during the load.

The date cache is enabled by default. To completely disable the date cache, set it to 0.

The default date cache size is 1000 elements. If the default is used and the number of unique input values loaded exceeds 1000, then the date cache is automatically disabled for that table. This prevents excessive and unnecessary lookup times that could affect performance. However, if instead of using the default, you specify a nonzero value for the date cache and it is exceeded, the date cache is not disabled. Instead, any input data that exceeded the maximum is explicitly converted using the appropriate conversion routines.

The date cache can be associated with only one table. No date cache sharing can take place across tables. A date cache is created for a table only if all of the following conditions are true:

	
The DATE_CACHE parameter is not set to 0

	
One or more date values, timestamp values, or both are being loaded that require datatype conversion in order to be stored in the table

	
The load is a direct path load

Date cache statistics are written to the log file. You can use those statistics to improve direct path load performance as follows:

	
If the number of cache entries is less than the cache size and there are no cache misses, then the cache size could safely be set to a smaller value.

	
If the number of cache hits (entries for which there are duplicate values) is small and the number of cache misses is large, then the cache size should be increased. Be aware that if the cache size is increased too much, it may cause other problems, such as excessive paging or too much memory usage.

	
If most of the input date values are unique, the date cache will not enhance performance and therefore should not be used.

	
Note:

Date cache statistics are not written to the SQL*Loader log file if the cache was active by default and disabled because the maximum was exceeded.

If increasing the cache size does not improve performance, revert to the default behavior or set the cache size to 0. The overall performance improvement also depends on the datatypes of the other columns being loaded. Improvement will be greater for cases in which the total number of date columns loaded is large compared to other types of data loaded.

	
See Also:

DATE_CACHE

Optimizing Direct Path Loads on Multiple-CPU Systems

If you are performing direct path loads on a multiple-CPU system, SQL*Loader uses multithreading by default. A multiple-CPU system in this case is defined as a single system that has two or more CPUs.

Multithreaded loading means that, when possible, conversion of the column arrays to stream buffers and stream buffer loading are performed in parallel. This optimization works best when:

	
Column arrays are large enough to generate multiple direct path stream buffers for loads

	
Data conversions are required from input field datatypes to Oracle column datatypes

The conversions are performed in parallel with stream buffer loading.

The status of this process is recorded in the SQL*Loader log file, as shown in the following sample portion of a log:

Total stream buffers loaded by SQL*Loader main thread: 47
Total stream buffers loaded by SQL*Loader load thread: 180
Column array rows: 1000
Stream buffer bytes: 256000

In this example, the SQL*Loader load thread has offloaded the SQL*Loader main thread, allowing the main thread to build the next stream buffer while the load thread loads the current stream on the server.

The goal is to have the load thread perform as many stream buffer loads as possible. This can be accomplished by increasing the number of column array rows, decreasing the stream buffer size, or both. You can monitor the elapsed time in the SQL*Loader log file to determine whether your changes are having the desired effect. See Specifying the Number of Column Array Rows and Size of Stream Buffers for more information.

On single-CPU systems, optimization is turned off by default. When the server is on another system, performance may improve if you manually turn on multithreading.

To turn the multithreading option on or off, use the MULTITHREADING parameter at the SQL*Loader command line or specify it in your SQL*Loader control file.

	
See Also:

Oracle Call Interface Programmer's Guide for more information about the concepts of direct path loading

Avoiding Index Maintenance

For both the conventional path and the direct path, SQL*Loader maintains all existing indexes for a table.

To avoid index maintenance, use one of the following methods:

	
Drop the indexes prior to the beginning of the load.

	
Mark selected indexes or index partitions as Index Unusable prior to the beginning of the load and use the SKIP_UNUSABLE_INDEXES parameter.

	
Use the SKIP_INDEX_MAINTENANCE parameter (direct path only, use with caution).

By avoiding index maintenance, you minimize the amount of space required during a direct path load, in the following ways:

	
You can build indexes one at a time, reducing the amount of sort (temporary) segment space that would otherwise be needed for each index.

	
Only one index segment exists when an index is built, instead of the three segments that temporarily exist when the new keys are merged into the old index to make the new index.

Avoiding index maintenance is quite reasonable when the number of rows to be loaded is large compared to the size of the table. But if relatively few rows are added to a large table, then the time required to resort the indexes may be excessive. In such cases, it is usually better to use the conventional path load method, or to use the SINGLEROW parameter of SQL*Loader. For more information, see SINGLEROW Option.

Direct Loads, Integrity Constraints, and Triggers

With the conventional path load method, arrays of rows are inserted with standard SQL INSERT statements—integrity constraints and insert triggers are automatically applied. But when you load data with the direct path, SQL*Loader disables some integrity constraints and all database triggers. This section discusses the implications of using direct path loads with respect to these features.

Integrity Constraints

During a direct path load, some integrity constraints are automatically disabled. Others are not. For a description of the constraints, see the information about maintaining data integrity in the Oracle Database Advanced Application Developer's Guide.

Enabled Constraints

During a direct path load, the constraints that remain enabled are as follows:

	
NOT NULL

	
UNIQUE

	
PRIMARY KEY (unique-constraints on not-null columns)

NOT NULL constraints are checked at column array build time. Any row that violates the NOT NULL constraint is rejected.

Even though UNIQUE constraints remain enabled during direct path loads, any rows that violate those constraints are loaded anyway (this is different than in conventional path in which such rows would be rejected). When indexes are rebuilt at the end of the direct path load, UNIQUE constraints are verified and if a violation is detected, the index will be left in an Index Unusable state. See Indexes Left in an Unusable State.

Disabled Constraints

During a direct path load, the following constraints are automatically disabled by default:

	
CHECK constraints

	
Referential constraints (FOREIGN KEY)

You can override the automatic disabling of CHECK constraints by specifying the EVALUATE CHECK_CONSTRAINTS clause. SQL*Loader will then evaluate CHECK constraints during a direct path load. Any row that violates the CHECK constraint is rejected. The following example shows the use of the EVALUATE CHECK_CONSTRAINTS clause in a SQL*Loader control file:

LOAD DATA
INFILE *
APPEND
INTO TABLE emp
EVALUATE CHECK_CONSTRAINTS
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
(c1 CHAR(10) ,c2)
BEGINDATA
Jones,10
Smith,20
Brown,30
Taylor,40

Reenable Constraints

When the load completes, the integrity constraints will be reenabled automatically if the REENABLE clause is specified. The syntax for the REENABLE clause is as follows:

[image: Description of into_table4.gif follows]

[image: Description of into_table5.gif follows]

The optional parameter DISABLED_CONSTRAINTS is provided for readability. If the EXCEPTIONS clause is included, the table must already exist, and you must be able to insert into it. This table contains the ROWIDs of all rows that violated one of the integrity constraints. It also contains the name of the constraint that was violated. See Oracle Database SQL Language Reference for instructions on how to create an exceptions table.

The SQL*Loader log file describes the constraints that were disabled, the ones that were reenabled, and what error, if any, prevented reenabling or validating of each constraint. It also contains the name of the exceptions table specified for each loaded table.

If the REENABLE clause is not used, then the constraints must be reenabled manually, at which time all rows in the table are verified. If the Oracle database finds any errors in the new data, error messages are produced. The names of violated constraints and the ROWIDs of the bad data are placed in an exceptions table, if one is specified.

If the REENABLE clause is used, SQL*Loader automatically reenables the constraint and then verifies all new rows. If no errors are found in the new data, SQL*Loader automatically marks the constraint as validated. If any errors are found in the new data, error messages are written to the log file and SQL*Loader marks the status of the constraint as ENABLE NOVALIDATE. The names of violated constraints and the ROWIDs of the bad data are placed in an exceptions table, if one is specified.

	
Note:

Normally, when a table constraint is left in an ENABLE NOVALIDATE state, new data can be inserted into the table but no new invalid data may be inserted. However, SQL*Loader direct path load does not enforce this rule. Thus, if subsequent direct path loads are performed with invalid data, the invalid data will be inserted but the same error reporting and exception table processing as described previously will take place. In this scenario the exception table may contain duplicate entries if it is not cleared out before each load. Duplicate entries can easily be filtered out by performing a query such as the following:

SELECT UNIQUE * FROM exceptions_table;

	
Note:

Because referential integrity must be reverified for the entire table, performance may be improved by using the conventional path, instead of the direct path, when a small number of rows are to be loaded into a very large table.

Database Insert Triggers

Table insert triggers are also disabled when a direct path load begins. After the rows are loaded and indexes rebuilt, any triggers that were disabled are automatically reenabled. The log file lists all triggers that were disabled for the load. There should not be any errors reenabling triggers.

Unlike integrity constraints, insert triggers are not reapplied to the whole table when they are enabled. As a result, insert triggers do not fire for any rows loaded on the direct path. When using the direct path, the application must ensure that any behavior associated with insert triggers is carried out for the new rows.

Replacing Insert Triggers with Integrity Constraints

Applications commonly use insert triggers to implement integrity constraints. Most of the triggers that these application insert are simple enough that they can be replaced with Oracle's automatic integrity constraints.

When Automatic Constraints Cannot Be Used

Sometimes an insert trigger cannot be replaced with Oracle's automatic integrity constraints. For example, if an integrity check is implemented with a table lookup in an insert trigger, then automatic check constraints cannot be used, because the automatic constraints can only reference constants and columns in the current row. This section describes two methods for duplicating the effects of such a trigger.

Preparation

Before either method can be used, the table must be prepared. Use the following general guidelines to prepare the table:

	
Before the load, add a 1-byte or 1-character column to the table that marks rows as "old data" or "new data."

	
Let the value of null for this column signify "old data" because null columns do not take up space.

	
When loading, flag all loaded rows as "new data" with SQL*Loader's CONSTANT parameter.

After following this procedure, all newly loaded rows are identified, making it possible to operate on the new data without affecting the old rows.

Using an Update Trigger

Generally, you can use a database update trigger to duplicate the effects of an insert trigger. This method is the simplest. It can be used whenever the insert trigger does not raise any exceptions.

	
Create an update trigger that duplicates the effects of the insert trigger.

Copy the trigger. Change all occurrences of "new.column_name" to "old.column_name".

	
Replace the current update trigger, if it exists, with the new one.

	
Update the table, changing the "new data" flag to null, thereby firing the update trigger.

	
Restore the original update trigger, if there was one.

Depending on the behavior of the trigger, it may be necessary to have exclusive update access to the table during this operation, so that other users do not inadvertently apply the trigger to rows they modify.

Duplicating the Effects of Exception Conditions

If the insert trigger can raise an exception, then more work is required to duplicate its effects. Raising an exception would prevent the row from being inserted into the table. To duplicate that effect with an update trigger, it is necessary to mark the loaded row for deletion.

The "new data" column cannot be used as a delete flag, because an update trigger cannot modify the columns that caused it to fire. So another column must be added to the table. This column marks the row for deletion. A null value means the row is valid. Whenever the insert trigger would raise an exception, the update trigger can mark the row as invalid by setting a flag in the additional column.

In summary, when an insert trigger can raise an exception condition, its effects can be duplicated by an update trigger, provided:

	
Two columns (which are usually null) are added to the table

	
The table can be updated exclusively (if necessary)

Using a Stored Procedure

The following procedure always works, but it is more complex to implement. It can be used when the insert trigger raises exceptions. It does not require a second additional column; and, because it does not replace the update trigger, it can be used without exclusive access to the table.

	
Do the following to create a stored procedure that duplicates the effects of the insert trigger:

	
Declare a cursor for the table, selecting all new rows.

	
Open the cursor and fetch rows, one at a time, in a processing loop.

	
Perform the operations contained in the insert trigger.

	
If the operations succeed, change the "new data" flag to null.

	
If the operations fail, change the "new data" flag to "bad data."

	
Execute the stored procedure using an administration tool such as SQL*Plus.

	
After running the procedure, check the table for any rows marked "bad data."

	
Update or remove the bad rows.

	
Reenable the insert trigger.

Permanently Disabled Triggers and Constraints

SQL*Loader needs to acquire several locks on the table to be loaded to disable triggers and constraints. If a competing process is enabling triggers or constraints at the same time that SQL*Loader is trying to disable them for that table, then SQL*Loader may not be able to acquire exclusive access to the table.

SQL*Loader attempts to handle this situation as gracefully as possible. It attempts to reenable disabled triggers and constraints before exiting. However, the same table-locking problem that made it impossible for SQL*Loader to continue may also have made it impossible for SQL*Loader to finish enabling triggers and constraints. In such cases, triggers and constraints will remain disabled until they are manually enabled.

Although such a situation is unlikely, it is possible. The best way to prevent it is to make sure that no applications are running that could enable triggers or constraints for the table while the direct load is in progress.

If a direct load is terminated due to failure to acquire the proper locks, carefully check the log. It will show every trigger and constraint that was disabled, and each attempt to reenable them. Any triggers or constraints that were not reenabled by SQL*Loader should be manually enabled with the ENABLE clause of the ALTER TABLE statement described in Oracle Database SQL Language Reference.

Increasing Performance with Concurrent Conventional Path Loads

If triggers or integrity constraints pose a problem, but you want faster loading, you should consider using concurrent conventional path loads. That is, use multiple load sessions executing concurrently on a multiple-CPU system. Split the input datafiles into separate files on logical record boundaries, and then load each such input datafile with a conventional path load session. The resulting load has the following attributes:

	
It is faster than a single conventional load on a multiple-CPU system, but probably not as fast as a direct load.

	
Triggers fire, integrity constraints are applied to the loaded rows, and indexes are maintained using the standard DML execution logic.

Parallel Data Loading Models

This section discusses three basic models of concurrency that you can use to minimize the elapsed time required for data loading:

	
Concurrent conventional path loads

	
Intersegment concurrency with the direct path load method

	
Intrasegment concurrency with the direct path load method

Concurrent Conventional Path Loads

Using multiple conventional path load sessions executing concurrently is discussed in Increasing Performance with Concurrent Conventional Path Loads. You can use this technique to load the same or different objects concurrently with no restrictions.

Intersegment Concurrency with Direct Path

Intersegment concurrency can be used for concurrent loading of different objects. You can apply this technique to concurrent direct path loading of different tables, or to concurrent direct path loading of different partitions of the same table.

When you direct path load a single partition, consider the following items:

	
Local indexes can be maintained by the load.

	
Global indexes cannot be maintained by the load.

	
Referential integrity and CHECK constraints must be disabled.

	
Triggers must be disabled.

	
The input data should be partitioned (otherwise many records will be rejected, which adversely affects performance).

Intrasegment Concurrency with Direct Path

SQL*Loader permits multiple, concurrent sessions to perform a direct path load into the same table, or into the same partition of a partitioned table. Multiple SQL*Loader sessions improve the performance of a direct path load given the available resources on your system.

This method of data loading is enabled by setting both the DIRECT and the PARALLEL parameters to true, and is often referred to as a parallel direct path load.

It is important to realize that parallelism is user managed. Setting the PARALLEL parameter to true only allows multiple concurrent direct path load sessions.

Restrictions on Parallel Direct Path Loads

The following restrictions are enforced on parallel direct path loads:

	
Neither local nor global indexes can be maintained by the load.

	
Referential integrity and CHECK constraints must be disabled.

	
Triggers must be disabled.

	
Rows can only be appended. REPLACE, TRUNCATE, and INSERT cannot be used (this is due to the individual loads not being coordinated). If you must truncate a table before a parallel load, you must do it manually.

	
The table being loaded cannot have any LOB columns or columns stored as LOBs (such as VARRAYs).

If a parallel direct path load is being applied to a single partition, you should partition the data first (otherwise, the overhead of record rejection due to a partition mismatch slows down the load).

Initiating Multiple SQL*Loader Sessions

Each SQL*Loader session takes a different datafile as input. In all sessions executing a direct load on the same table, you must set PARALLEL to true. The syntax is:

[image: Description of parallel.gif follows]

PARALLEL can be specified on the command line or in a parameter file. It can also be specified in the control file with the OPTIONS clause.

For example, to invoke three SQL*Loader direct path load sessions on the same table, you would execute each of the following commands at the operating system prompt. After entering each command, you will be prompted for a password.

sqlldr USERID=scott CONTROL=load1.ctl DIRECT=TRUE PARALLEL=true
sqlldr USERID=scott CONTROL=load2.ctl DIRECT=TRUE PARALLEL=true
sqlldr USERID=scott CONTROL=load3.ctl DIRECT=TRUE PARALLEL=true

The previous commands must be executed in separate sessions, or if permitted on your operating system, as separate background jobs. Note the use of multiple control files. This enables you to be flexible in specifying the files to use for the direct path load.

	
Note:

Indexes are not maintained during a parallel load. Any indexes must be created or re-created manually after the load completes. You can use the parallel index creation or parallel index rebuild feature to speed the building of large indexes after a parallel load.

When you perform a parallel load, SQL*Loader creates temporary segments for each concurrent session and then merges the segments upon completion. The segment created from the merge is then added to the existing segment in the database above the segment's high-water mark. The last extent used of each segment for each loader session is trimmed of any free space before being combined with the other extents of the SQL*Loader session.

Parameters for Parallel Direct Path Loads

When you perform parallel direct path loads, there are options available for specifying attributes of the temporary segment to be allocated by the loader. These options are specified with the FILE and STORAGE parameters. These parameters are valid only for parallel loads.

Using the FILE Parameter to Specify Temporary Segments

To allow for maximum I/O throughput, Oracle recommends that each concurrent direct path load session use files located on different disks. In the SQL*Loader control file, use the FILE parameter of the OPTIONS clause to specify the filename of any valid datafile in the tablespace of the object (table or partition) being loaded.

For example:

LOAD DATA
INFILE 'load1.dat'
INSERT INTO TABLE emp
OPTIONS(FILE='/dat/data1.dat')
(empno POSITION(01:04) INTEGER EXTERNAL NULLIF empno=BLANKS
...

You could also specify the FILE parameter on the command line of each concurrent SQL*Loader session, but then it would apply globally to all objects being loaded with that session.

Using the FILE Parameter

The FILE parameter in the Oracle database has the following restrictions for parallel direct path loads:

	
For nonpartitioned tables: The specified file must be in the tablespace of the table being loaded.

	
For partitioned tables, single-partition load: The specified file must be in the tablespace of the partition being loaded.

	
For partitioned tables, full-table load: The specified file must be in the tablespace of all partitions being loaded; that is, all partitions must be in the same tablespace.

Using the STORAGE Parameter

You can use the STORAGE parameter to specify the storage attributes of the temporary segments allocated for a parallel direct path load. If the STORAGE parameter is not used, the storage attributes of the segment containing the object (table, partition) being loaded are used. Also, when the STORAGE parameter is not specified, SQL*Loader uses a default of 2 KB for EXTENTS.

For example, the following OPTIONS clause could be used to specify STORAGE parameters:

OPTIONS (STORAGE=(INITIAL 100M NEXT 100M PCTINCREASE 0))

You can use the STORAGE parameter only in the SQL*Loader control file, and not on the command line. Use of the STORAGE parameter to specify anything other than PCTINCREASE of 0, and INITIAL or NEXT values is strongly discouraged and may be silently ignored.

Enabling Constraints After a Parallel Direct Path Load

Constraints and triggers must be enabled manually after all data loading is complete.

Because each SQL*Loader session can attempt to reenable constraints on a table after a direct path load, there is a danger that one session may attempt to reenable a constraint before another session is finished loading data. In this case, the first session to complete the load will be unable to enable the constraint because the remaining sessions possess share locks on the table.

Because there is a danger that some constraints might not be reenabled after a direct path load, you should check the status of the constraint after completing the load to ensure that it was enabled properly.

PRIMARY KEY and UNIQUE KEY Constraints

PRIMARY KEY and UNIQUE KEY constraints create indexes on a table when they are enabled, and subsequently can take a significantly long time to enable after a direct path loading session if the table is very large. You should consider enabling these constraints manually after a load (and not specifying the automatic enable feature). This enables you to manually create the required indexes in parallel to save time before enabling the constraint.

	
See Also:

Oracle Database Performance Tuning Guide

General Performance Improvement Hints

If you have control over the format of the data to be loaded, you can use the following hints to improve load performance:

	
Make logical record processing efficient.

	
Use one-to-one mapping of physical records to logical records (avoid using CONTINUEIF and CONCATENATE).

	
Make it easy for the software to identify physical record boundaries. Use the file processing option string "FIX nnn" or "VAR". If you use the default (stream mode) on most platforms (for example, UNIX and NT) the loader must scan each physical record for the record terminator (newline character).

	
Make field setting efficient. Field setting is the process of mapping fields in the datafile to their corresponding columns in the table being loaded. The mapping function is controlled by the description of the fields in the control file. Field setting (along with data conversion) is the biggest consumer of CPU cycles for most loads.

	
Avoid delimited fields; use positional fields. If you use delimited fields, the loader must scan the input data to find the delimiters. If you use positional fields, field setting becomes simple pointer arithmetic (very fast).

	
Do not trim whitespace if you do not need to (use PRESERVE BLANKS).

	
Make conversions efficient. SQL*Loader performs character set conversion and datatype conversion for you. Of course, the quickest conversion is no conversion.

	
Use single-byte character sets if you can.

	
Avoid character set conversions if you can. SQL*Loader supports four character sets:

	
Client character set (NLS_LANG of the client sqlldr process)

	
Datafile character set (usually the same as the client character set)

	
Database character set

	
Database national character set

Performance is optimized if all character sets are the same. For direct path loads, it is best if the datafile character set and the database character set are the same. If the character sets are the same, character set conversion buffers are not allocated.

	
Use direct path loads.

	
Use the SORTED INDEXES clause.

	
Avoid unnecessary NULLIF and DEFAULTIF clauses. Each clause must be evaluated on each column that has a clause associated with it for every row loaded.

	
Use parallel direct path loads and parallel index creation when you can.

	
Be aware of the effect on performance when you have large values for both the CONCATENATE clause and the COLUMNARRAYROWS clause. See Using CONCATENATE to Assemble Logical Records.

Additionally, the performance tips provided in Performance Hints When Using External Tables also apply to SQL*Loader.

7 SQL*Loader Command-Line Reference

This chapter describes the command-line parameters used to invoke SQL*Loader. The following topics are discussed:

	
Invoking SQL*Loader

	
Command-Line Parameters

	
Exit Codes for Inspection and Display

Invoking SQL*Loader

When you invoke SQL*Loader, you specify parameters to establish session characteristics. If you wish, you can separate the parameters by commas.

Parameters can be specified either by keyword or by position. Specifying by keyword means that you provide the name of the parameter and a value. In the following example, the name of the control file, ulcase1.ctl, is supplied for the CONTROL parameter. You are prompted for the username and password.

> sqlldr CONTROL=ulcase1.ctl
Username: scott
Password: password

Specifying by position means that you enter a value, but not the parameter name. In the following example, the username scott is provided and then the name of the control file, ulcase1.ctl. You are prompted for the password:

> sqlldr scott ulcase1.ctl
Password: password

Once a keyword specification is used, no positional specification is allowed after that. For example, the following command line would result in an error even though the position of ulcase1.log is correct:

> sqlldr scott CONTROL=ulcase1.ctl ulcase1.log

If you invoke SQL*Loader without specifying any parameters, SQL*Loader displays a help screen that lists the available parameters and their default values.

	
See Also:

Command-Line Parameters for descriptions of all the command-line parameters

Alternative Ways to Specify Parameters

If the length of the command line exceeds the size of the maximum command line on your system, you can put certain command-line parameters in the control file by using the OPTIONS clause.

You can also group parameters together in a parameter file. You specify the name of this file on the command line using the PARFILE parameter when you invoke SQL*Loader.

These alternative ways of specifying parameters are useful when you often use the same parameters with the same values.

Parameter values specified on the command line override parameter values specified in either a parameter file or in the OPTIONS clause.

	
See Also:

	
OPTIONS Clause

	
PARFILE (parameter file)

Command-Line Parameters

This section describes each SQL*Loader command-line parameter. The defaults and maximum values listed for these parameters are for UNIX-based systems. They may be different on your operating system. Refer to your Oracle operating system-specific documentation for more information.

BAD (bad file)

Default: The name of the datafile, with an extension of .bad.

BAD specifies the name of the bad file created by SQL*Loader to store records that cause errors during insert or that are improperly formatted. If you do not specify a filename, the default is used. A bad file is not automatically created if there are no rejected records.

A bad file filename specified on the command line becomes the bad file associated with the first INFILE statement in the control file. If the bad file filename was also specified in the control file, the command-line value overrides it.

	
See Also:

Specifying the Bad File for information about the format of bad files

BINDSIZE (maximum size)

Default: To see the default value for this parameter, invoke SQL*Loader without any parameters, as described in Invoking SQL*Loader.

BINDSIZE specifies the maximum size (bytes) of the bind array. The size of the bind array given by BINDSIZE overrides the default size (which is system dependent) and any size determined by ROWS.

	
See Also:

	
Bind Arrays and Conventional Path Loads

	
READSIZE (read buffer size)

COLUMNARRAYROWS

Default: To see the default value for this parameter, invoke SQL*Loader without any parameters, as described in Invoking SQL*Loader.

Specifies the number of rows to allocate for direct path column arrays. The value for this parameter is not calculated by SQL*Loader. You must either specify it or accept the default.

	
See Also:

	
Using CONCATENATE to Assemble Logical Records

	
Specifying the Number of Column Array Rows and Size of Stream Buffers

CONTROL (control file)

Default: none

CONTROL specifies the name of the SQL*Loader control file that describes how to load the data. If a file extension or file type is not specified, it defaults to .ctl. If the filename is omitted, SQL*Loader prompts you for it.

If the name of your SQL*Loader control file contains special characters, your operating system may require that they be preceded by an escape character. Also, if your operating system uses backslashes in its file system paths, you may need to use multiple escape characters or to enclose the path in quotation marks. See your Oracle operating system-specific documentation for more information.

	
See Also:

Chapter 8 for a detailed description of the SQL*Loader control file

DATA (datafile)

Default: The name of the control file, with an extension of .dat.

DATA specifies the name of the datafile containing the data to be loaded. If you do not specify a file extension or file type, the default is .dat.

If you specify a datafile on the command line and also specify datafiles in the control file with INFILE, the data specified on the command line is processed first. The first datafile specified in the control file is ignored. All other datafiles specified in the control file are processed.

If you specify a file processing option when loading data from the control file, a warning message will be issued.

DATE_CACHE

Default: Enabled (for 1000 elements). To completely disable the date cache feature, set it to 0.

The date cache is used to store the results of conversions from text strings to internal date format. The cache is useful because the cost of looking up dates is much less than converting from text format to date format. If the same dates occur repeatedly in the data file, then using the date cache can improve the speed of a direct path load.

DATE_CACHE specifies the date cache size (in entries). For example, DATE_CACHE=5000 specifies that each date cache created can contain a maximum of 5000 unique date entries. Every table has its own date cache, if one is needed. A date cache is created only if at least one date or timestamp value is loaded that requires datatype conversion in order to be stored in the table.

The date cache feature is only available for direct path loads. It is enabled by default. The default date cache size is 1000 elements. If the default size is used and the number of unique input values loaded exceeds 1000, then the date cache feature is automatically disabled for that table. However, if you override the default and specify a nonzero date cache size and that size is exceeded, then the cache is not disabled.

You can use the date cache statistics (entries, hits, and misses) contained in the log file to tune the size of the cache for future similar loads.

	
See Also:

Specifying a Value for the Date Cache

DIRECT (data path)

Default: false

DIRECT specifies the data path, that is, the load method to use, either conventional path or direct path. A value of true specifies a direct path load. A value of false specifies a conventional path load.

	
See Also:

Chapter 11, "Conventional and Direct Path Loads"

DISCARD (filename)

Default: The name of the datafile, with an extension of .dsc.

DISCARD specifies a discard file (optional) to be created by SQL*Loader to store records that are neither inserted into a table nor rejected.

A discard file filename specified on the command line becomes the discard file associated with the first INFILE statement in the control file. If the discard file filename is specified also in the control file, the command-line value overrides it.

	
See Also:

Discarded and Rejected Records for information about the format of discard files

DISCARDMAX (integer)

Default: ALL

DISCARDMAX specifies the number of discard records to allow before data loading is terminated. To stop on the first discarded record, specify one (1).

ERRORS (errors to allow)

Default: To see the default value for this parameter, invoke SQL*Loader without any parameters, as described in Invoking SQL*Loader.

ERRORS specifies the maximum number of insert errors to allow. If the number of errors exceeds the value specified for ERRORS, then SQL*Loader terminates the load. To permit no errors at all, set ERRORS=0. To specify that all errors be allowed, use a very high number.

On a single-table load, SQL*Loader terminates the load when errors exceed this error limit. Any data inserted up that point, however, is committed.

SQL*Loader maintains the consistency of records across all tables. Therefore, multitable loads do not terminate immediately if errors exceed the error limit. When SQL*Loader encounters the maximum number of errors for a multitable load, it continues to load rows to ensure that valid rows previously loaded into tables are loaded into all tables and rejected rows are filtered out of all tables.

In all cases, SQL*Loader writes erroneous records to the bad file.

EXTERNAL_TABLE

Default: NOT_USED

EXTERNAL_TABLE instructs SQL*Loader whether or not to load data using the external tables option. There are three possible values:

	
NOT_USED - the default value. It means the load is performed using either conventional or direct path mode.

	
GENERATE_ONLY - places all the SQL statements needed to do the load using external tables, as described in the control file, in the SQL*Loader log file. These SQL statements can be edited and customized. The actual load can be done later without the use of SQL*Loader by executing these statements in SQL*Plus.

	
EXECUTE - attempts to execute the SQL statements that are needed to do the load using external tables. However, if any of the SQL statements returns an error, then the attempt to load stops. Statements are placed in the log file as they are executed. This means that if a SQL statement returns an error, then the remaining SQL statements required for the load will not be placed in the log file.

If you use EXTERNAL_TABLE=EXECUTE and also use the SEQUENCE parameter in your SQL*Loader control file, then SQL*Loader creates a database sequence, loads the table using that sequence, and then deletes the sequence. The results of doing the load this way will be different than if the load were done with conventional or direct path. (For more information about creating sequences, see CREATE SEQUENCE in Oracle Database SQL Language Reference.)

Note that the external tables option uses directory objects in the database to indicate where all datafiles are stored and to indicate where output files, such as bad files and discard files, are created. You must have READ access to the directory objects containing the datafiles, and you must have WRITE access to the directory objects where the output files are created. If there are no existing directory objects for the location of a datafile or output file, SQL*Loader will generate the SQL statement to create one. Therefore, when the EXECUTE option is specified, you must have the CREATE ANY DIRECTORY privilege. If you want the directory object to be deleted at the end of the load, you must also have the DELETE ANY DIRECTORY privilege.

	
Note:

The EXTERNAL_TABLE=EXECUTE qualifier tells SQL*Loader to create an external table that can be used to load data and then execute the INSERT statement to load the data. All files in the external table must be identified as being in a directory object. SQL*Loader attempts to use directory objects that already exist and that you have privileges to access. However, if SQL*Loader does not find the matching directory object, it attempts to create a temporary directory object. If you do not have privileges to create new directory objects, then the operation fails.
To work around this, use EXTERNAL_TABLE=GENERATE_ONLY to create the SQL statements that SQL*Loader would try to execute. Extract those SQL statements and change references to directory objects to be the directory object that you have privileges to access. Then, execute those SQL statements.

When using a multitable load, SQL*Loader does the following:

	
Creates a table in the database that describes all fields in the datafile that will be loaded into any table.

	
Creates an INSERT statement to load this table from an external table description of the data.

	
Executes one INSERT statement for every table in the control file.

To see an example of this, run case study 5, but add the EXTERNAL_TABLE=GENERATE_ONLY parameter. To guarantee unique names in the external table, SQL*Loader uses generated names for all fields. This is because the field names may not be unique across the different tables in the control file.

	
See Also:

	
SQL*Loader Case Studies for information on how to access case studies

	
Chapter 12, "External Tables Concepts"

	
Chapter 13, "The ORACLE_LOADER Access Driver"

Restrictions When Using EXTERNAL_TABLE

The following restrictions apply when you use the EXTERNAL_TABLE qualifier:

	
Julian dates cannot be used when you insert data into a database table from an external table through SQL*Loader. To work around this, use TO_DATE and TO_CHAR to convert the Julian date format, as shown in the following example:

TO_CHAR(TO_DATE(:COL1, 'MM-DD-YYYY'), 'J')

	
Built-in functions and SQL strings cannot be used for object elements when you insert data into a database table from an external table.

FILE (tablespace file to load into)

Default: none

FILE specifies the database file to allocate extents from. It is used only for direct path parallel loads. By varying the value of the FILE parameter for different SQL*Loader processes, data can be loaded onto a system with minimal disk contention.

	
See Also:

Parallel Data Loading Models

LOAD (number of records to load)

Default: All records are loaded.

LOAD specifies the maximum number of logical records to load (after skipping the specified number of records). No error occurs if fewer than the maximum number of records are found.

LOG (log file)

Default: The name of the control file, with an extension of .log.

LOG specifies the log file that SQL*Loader will create to store logging information about the loading process.

MULTITHREADING

Default: true on multiple-CPU systems, false on single-CPU systems

This parameter is available only for direct path loads.

By default, the multithreading option is always enabled (set to true) on multiple-CPU systems. In this case, the definition of a multiple-CPU system is a single system that has more than one CPU.

On single-CPU systems, multithreading is set to false by default. To use multithreading between two single-CPU systems, you must enable multithreading; it will not be on by default. This will allow stream building on the client system to be done in parallel with stream loading on the server system.

Multithreading functionality is operating system-dependent. Not all operating systems support multithreading.

	
See Also:

Optimizing Direct Path Loads on Multiple-CPU Systems

PARALLEL (parallel load)

Default: false

PARALLEL specifies whether direct loads can operate in multiple concurrent sessions to load data into the same table.

	
See Also:

Parallel Data Loading Models

PARFILE (parameter file)

Default: none

PARFILE specifies the name of a file that contains commonly used command-line parameters. For example, a parameter file named daily_report.par might have the following contents:

USERID=scott
CONTROL=daily_report.ctl
ERRORS=9999
LOG=daily_report.log

For security reasons, you should not include your USERID password in a parameter file. SQL*Loader will prompt you for the password after you specify the parameter file at the command line, for example:

sqlldr PARFILE=daily_report.par
Password: password

	
Note:

Although it is not usually important, on some systems it may be necessary to have no spaces around the equal sign (=) in the parameter specifications.

READSIZE (read buffer size)

Default: To see the default value for this parameter, invoke SQL*Loader without any parameters, as described in Invoking SQL*Loader.

The READSIZE parameter is used only when reading data from datafiles. When reading records from a control file, a value of 64 kilobytes (KB) is always used as the READSIZE.

The READSIZE parameter lets you specify (in bytes) the size of the read buffer, if you choose not to use the default. The maximum size allowed is platform dependent.

In the conventional path method, the bind array is limited by the size of the read buffer. Therefore, the advantage of a larger read buffer is that more data can be read before a commit operation is required.

For example, setting READSIZE to 1000000 enables SQL*Loader to perform reads from the external datafile in chunks of 1,000,000 bytes before a commit is required.

	
Note:

If the READSIZE value specified is smaller than the BINDSIZE value, the READSIZE value will be increased.

The READSIZE parameter has no effect on LOBs. The size of the LOB read buffer is fixed at 64 kilobytes (KB).

See BINDSIZE (maximum size).

RESUMABLE

Default: false

The RESUMABLE parameter is used to enable and disable resumable space allocation. Because this parameter is disabled by default, you must set RESUMABLE=true in order to use its associated parameters, RESUMABLE_NAME and RESUMABLE_TIMEOUT.

	
See Also:

	
Oracle Database Concepts

	
Oracle Database Administrator's Guide

RESUMABLE_NAME

Default: 'User USERNAME (USERID), Session SESSIONID, Instance INSTANCEID'

The value for this parameter identifies the statement that is resumable. This value is a user-defined text string that is inserted in either the USER_RESUMABLE or DBA_RESUMABLE view to help you identify a specific resumable statement that has been suspended.

This parameter is ignored unless the RESUMABLE parameter is set to true to enable resumable space allocation.

RESUMABLE_TIMEOUT

Default: 7200 seconds (2 hours)

The value of the parameter specifies the time period during which an error must be fixed. If the error is not fixed within the timeout period, execution of the statement is terminated, without finishing.

This parameter is ignored unless the RESUMABLE parameter is set to true to enable resumable space allocation.

ROWS (rows per commit)

Default: To see the default value for this parameter, invoke SQL*Loader without any parameters, as described in Invoking SQL*Loader.

Keep in mind that if you specify a low value for ROWS and then attempt to compress data using table compression, your compression ratio will probably be degraded. Oracle recommends that you either specify a high value or accept the default value when compressing data.

Conventional path loads only: ROWS specifies the number of rows in the bind array. See Bind Arrays and Conventional Path Loads.

Direct path loads only: ROWS identifies the number of rows you want to read from the datafile before a data save. The default is to read all rows and save data once at the end of the load. See Using Data Saves to Protect Against Data Loss. The actual number of rows loaded into a table on a save is approximately the value of ROWS minus the number of discarded and rejected records since the last save.

	
Note:

The ROWS parameter is ignored for direct path loads when data is loaded into an Index Organized Table (IOT) or into a table containing VARRAYs, XML columns, or LOBs. This means that the load will still take place, but no save points will be done.

SILENT (feedback mode)

When SQL*Loader begins, information about the SQL*Loader version being used appears on the screen and is placed in the log file. As SQL*Loader executes, you also see feedback messages on the screen, for example:

Commit point reached - logical record count 20

SQL*Loader may also display data error messages similar to the following:

Record 4: Rejected - Error on table EMP
ORA-00001: unique constraint <name> violated

You can suppress these messages by specifying SILENT with one or more values.

For example, you can suppress the header and feedback messages that normally appear on the screen with the following command-line argument:

SILENT=(HEADER, FEEDBACK)

Use the appropriate values to suppress one or more of the following:

	
HEADER - Suppresses the SQL*Loader header messages that normally appear on the screen. Header messages still appear in the log file.

	
FEEDBACK - Suppresses the "commit point reached" feedback messages that normally appear on the screen.

	
ERRORS - Suppresses the data error messages in the log file that occur when a record generates an Oracle error that causes it to be written to the bad file. A count of rejected records still appears.

	
DISCARDS - Suppresses the messages in the log file for each record written to the discard file.

	
PARTITIONS - Disables writing the per-partition statistics to the log file during a direct load of a partitioned table.

	
ALL - Implements all of the suppression values: HEADER, FEEDBACK, ERRORS, DISCARDS, and PARTITIONS.

SKIP (records to skip)

Default: No records are skipped.

SKIP specifies the number of logical records from the beginning of the file that should not be loaded.

This parameter continues loads that have been interrupted for some reason. It is used for all conventional loads, for single-table direct loads, and for multiple-table direct loads when the same number of records was loaded into each table. It is not used for multiple-table direct loads when a different number of records was loaded into each table.

If a WHEN clause is also present and the load involves secondary data, the secondary data is skipped only if the WHEN clause succeeds for the record in the primary data file.

	
See Also:

Interrupted Loads

SKIP_INDEX_MAINTENANCE

Default: false

The SKIP_INDEX_MAINTENANCE parameter stops index maintenance for direct path loads but does not apply to conventional path loads. It causes the index partitions that would have had index keys added to them to be marked Index Unusable instead, because the index segment is inconsistent with respect to the data it indexes. Index segments that are not affected by the load retain the Index Unusable state they had prior to the load.

The SKIP_INDEX_MAINTENANCE parameter:

	
Applies to both local and global indexes

	
Can be used (with the PARALLEL parameter) to do parallel loads on an object that has indexes

	
Can be used (with the PARTITION parameter on the INTO TABLE clause) to do a single partition load to a table that has global indexes

	
Puts a list (in the SQL*Loader log file) of the indexes and index partitions that the load set into Index Unusable state

SKIP_UNUSABLE_INDEXES

Default: The value of the Oracle database configuration parameter, SKIP_UNUSABLE_INDEXES, as specified in the initialization parameter file. The default database setting is TRUE.

Both SQL*Loader and the Oracle database provide a SKIP_UNUSABLE_INDEXES parameter. The SQL*Loader SKIP_UNUSABLE_INDEXES parameter is specified at the SQL*Loader command line. The Oracle database SKIP_UNUSABLE_INDEXES parameter is specified as a configuration parameter in the initialization parameter file. It is important to understand how they affect each other.

If you specify a value for SKIP_UNUSABLE_INDEXES at the SQL*Loader command line, it overrides the value of the SKIP_UNUSABLE_INDEXES configuration parameter in the initialization parameter file.

If you do not specify a value for SKIP_UNUSABLE_INDEXES at the SQL*Loader command line, then SQL*Loader uses the database setting for the SKIP_UNUSABLE_INDEXES configuration parameter, as specified in the initialization parameter file. If the initialization parameter file does not specify a database setting for SKIP_UNUSABLE_INDEXES, then the default database setting is TRUE.

A value of TRUE for SKIP_UNUSABLE_INDEXES means that if an index in an Index Unusable state is encountered, it is skipped and the load operation continues. This allows SQL*Loader to load a table with indexes that are in an Unusable state prior to the beginning of the load. Indexes that are not in an Unusable state at load time will be maintained by SQL*Loader. Indexes that are in an Unusable state at load time will not be maintained but will remain in an Unusable state at load completion.

	
Note:

Indexes that are unique and marked Unusable are not allowed to skip index maintenance. This rule is enforced by DML operations, and enforced by the direct path load to be consistent with DML.

The SKIP_UNUSABLE_INDEXES parameter applies to both conventional and direct path loads.

STREAMSIZE

Default: To see the default value for this parameter, invoke SQL*Loader without any parameters, as described in Invoking SQL*Loader.

Specifies the size, in bytes, for direct path streams.

	
See Also:

Specifying the Number of Column Array Rows and Size of Stream Buffers

USERID (username/password)

Default: none

USERID is used to provide your Oracle username and password. If it is omitted, you are prompted for it. If only a slash is used, USERID defaults to your operating system login.

If you connect as user SYS, you must also specify AS SYSDBA in the connect string.

	
Note:

Because the string, AS SYSDBA, contains a blank, some operating systems may require that the entire connect string be placed in quotation marks or marked as a literal by some method. Some operating systems also require that quotation marks on the command line be preceded by an escape character, such as backslashes.
See your Oracle operating system-specific documentation for information about special and reserved characters on your system.

Exit Codes for Inspection and Display

Oracle SQL*Loader provides the results of a SQL*Loader run immediately upon completion. Depending on the platform, SQL*Loader may report the outcome in a process exit code as well as recording the results in the log file. This Oracle SQL*Loader functionality allows for checking the outcome of a SQL*Loader invocation from the command line or a script. Table 7-1 shows the exit codes for various results.

Table 7-1 Exit Codes for SQL*Loader

	Result	Exit Code
	
All rows loaded successfully

	
EX_SUCC

	
All or some rows rejected

	
EX_WARN

	
All or some rows discarded

	
EX_WARN

	
Discontinued load

	
EX_WARN

	
Command-line or syntax errors

	
EX_FAIL

	
Oracle errors nonrecoverable for SQL*Loader

	
EX_FAIL

	
Operating system errors (such as file open/close and malloc)

	
EX_FAIL

For UNIX, the exit codes are as follows:

EX_SUCC 0
EX_FAIL 1
EX_WARN 2
EX_FTL 3

For Windows NT, the exit codes are as follows:

EX_SUCC 0
EX_FAIL 1
EX_WARN 2
EX_FTL 4

If SQL*Loader returns any exit code other than zero, you should consult your system log files and SQL*Loader log files for more detailed diagnostic information.

In UNIX, you can check the exit code from the shell to determine the outcome of a load.

14 The ORACLE_DATAPUMP Access Driver

This chapter describes the ORACLE_DATAPUMP access driver. The following topics are discussed:

	
access_parameters Clause

	
Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver

	
Supported Datatypes

	
Unsupported Datatypes

	
Reserved Words for the ORACLE_DATAPUMP Access Driver

To use the information in this chapter, you must know enough about SQL to be able to create an external table and perform queries against it.

	
Notes:

	
It is sometimes difficult to describe syntax without using other syntax that is not documented until later in the chapter. If it is not clear what some syntax is supposed to do, you might want to skip ahead and read about that particular element.

	
When identifiers (for example, column or table names) are specified in the external table access parameters, certain values are considered to be reserved words by the access parameter parser. If a reserved word is used as an identifier, it must be enclosed in double quotation marks. See Reserved Words for the ORACLE_DATAPUMP Access Driver.

access_parameters Clause

When you create the external table, you can specify certain parameters in an access_parameters clause. This clause is optional, as are its individual parameters. For example, you could specify LOGFILE, but not VERSION, or vice versa. The syntax for the access_parameters clause is as follows.

[image: Description of et_oracle_datapump.gif follows]

comments

Comments are lines that begin with two hyphens followed by text. Comments must be placed before any access parameters, for example:

--This is a comment.
--This is another comment.
NOLOG

All text to the right of the double hyphen is ignored, until the end of the line.

COMPRESSION

Default: DISABLED

Purpose

Specifies whether or not to compress data before it is written to the dump file set.

Syntax and Description

COMPRESSION=[ENABLED | DISABLED]

If ENABLED is specified, then all data is compressed for the entire upload operation.

If DISABLED is specified, then no data is compressed for the upload operation.

Example

In the following example, the COMPRESSION parameter is set to ENABLED. Therefore, all data written to the dept.dmp dump file will be in compressed format.

CREATE TABLE table deptXTec3
 ORGANIZATION EXTERNAL (TYPE ORACLE_DATAPUMP DEFAULT DIRECTORY def_dir1
 ACCESS PARAMETERS (COMPRESSION ENABLED) LOCATION ('dept.dmp'));

ENCRYPTION

Default: DISABLED

Purpose

Specifies whether or not to encrypt data before it is written to the dump file set.

Syntax and Description

ENCRYPTION=[ENABLED | DISABLED]

If ENABLED is specified, then all data is written to the dump file set in encrypted format.

If DISABLED is specified, then no data is written to the dump file set in encrypted format.

Restrictions

This parameter is used only for export operations.

Example

In the following example, the ENCRYPTION parameter is set to ENABLED. Therefore, all data written to the dept.dmp file will be in encrypted format.

CREATE TABLE deptXTec3
 ORGANIZATION EXTERNAL (TYPE ORACLE_DATAPUMP DEFAULT DIRECTORY def_dir1
 ACCESS PARAMETERS (ENCRYPTION ENABLED) LOCATION ('dept.dmp'));

LOGFILE | NOLOGFILE

Default: If LOGFILE is not specified, a log file is created in the default directory and the name of the log file is generated from the table name and the process ID with an extension of .log. If a log file already exists by the same name, the access driver reopens that log file and appends the new log information to the end.

Purpose

LOGFILE specifies the name of the log file that contains any messages generated while the dump file was being accessed. NOLOGFILE prevents the creation of a log file.

Syntax and Description

NOLOGFILE

or

LOGFILE=[directory_object:]logfile_name

If a directory object is not specified as part of the log file name, then the directory object specified by the DEFAULT DIRECTORY attribute is used. If a directory object is not specified and no default directory was specified, an error is returned. See Filenames for LOGFILE for information about using wildcards to create unique filenames during parallel loads or unloads

Example

In the following example, the dump file, dept_dmp, is in the directory identified by the directory object, load_dir, but the log file, deptxt.log, is in the directory identified by the directory object, log_dir.

CREATE TABLE dept_xt (dept_no INT, dept_name CHAR(20), location CHAR(20))
ORGANIZATION EXTERNAL (TYPE ORACLE_DATAPUMP DEFAULT DIRECTORY load_dir
ACCESS PARAMETERS (LOGFILE log_dir:deptxt) LOCATION ('dept_dmp'));

Filenames for LOGFILE

The access driver does some symbol substitution to help make filenames unique in the case of parallel loads. The symbol substitutions supported are as follows:

	
%p is replaced by the process ID of the current process. For example, if the process ID of the access driver is 12345, then exttab_%p.log becomes exttab_12345.log.

	
%a is replaced by the agent number of the current process. The agent number is the unique number assigned to each parallel process accessing the external table. This number is padded to the left with zeros to fill three characters. For example, if the third parallel agent is creating a file and exttab_%a.log was specified as the filename, then the agent would create a file named exttab_003.log.

	
%% is replaced by '%'. If there is a need to have a percent sign in the filename, then this symbol substitution must be used.

If the '%' character is followed by anything other than one of the characters in the preceding list, then an error is returned.

If %p or %a is not used to create unique filenames for output files and an external table is being accessed in parallel, output files may be corrupted or agents may be unable to write to the files.

If no extension is supplied for the file, a default extension of .log will be used. If the name generated is not a valid filename, an error is returned and no data is loaded or unloaded.

VERSION Clause

The VERSION clause is used to specify the minimum version of Oracle Database that will be reading the dump file. If you specify a version of 10.2, then both 10.2 and 11.1 databases can read the dump file. If you specify a version of 11.1, then only 11.1 databases can read the dump file.

The default value is COMPATIBLE.

Effects of Using the SQL ENCRYPT Clause

If you specify the SQL ENCRYPT clause when you create an external table, keep the following in mind:

	
The columns for which you specify the ENCRYPT clause will be encrypted before being written into the dump file.

	
If you move the dump file to another database, then the same encryption password must be used for both the encrypted columns in the dump file and for the external table used to read the dump file.

	
If you do not specify a password for the correct encrypted columns in the external table on the second database, you will get an error. If you do not specify the correct password, you will get garbage data in the dump file.

	
The dump file that is produced must be at version 10.2 or higher. Otherwise, an error is returned.

	
See Also:

Oracle Database SQL Language Reference for more information about using the ENCRYPT clause on a CREATE TABLE statement

Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver

The ORACLE_DATAPUMP access driver can be used to populate a file with data. The data in the file is written in a binary format that can only be read by the ORACLE_DATAPUMP access driver. Once the file has been populated with data, that file can be used as the dump file for another external table in the same database or in a different database.

The following steps use the sample schema, oe, to show an extended example of how you can use the ORACLE_DATAPUMP access driver to unload and load data. (The example assumes that the directory object def_dir1 already exists, and that user oe has read and write access to it.)

	
An external table will populate a file with data only as part of creating the external table with the AS SELECT clause. The following example creates an external table named inventories_xt and populates the dump file for the external table with the data from table inventories in the oe schema.

SQL> CREATE TABLE inventories_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_xt.dmp')
 7)
 8 AS SELECT * FROM inventories;

Table created.

	
Describe both inventories and the new external table, as follows. They should both match.

SQL> DESCRIBE inventories
 Name Null? Type
 -- --------- ----------------
 PRODUCT_ID NOT NULL NUMBER(6)
 WAREHOUSE_ID NOT NULL NUMBER(3)
 QUANTITY_ON_HAND NOT NULL NUMBER(8)

SQL> DESCRIBE inventories_xt
 Name Null? Type
 --- -------- -----------------
 PRODUCT_ID NOT NULL NUMBER(6)
 WAREHOUSE_ID NOT NULL NUMBER(3)
 QUANTITY_ON_HAND NOT NULL NUMBER(8)

	
Now that the external table is created, it can be queried just like any other table. For example, select the count of records in the external table, as follows:

SQL> SELECT COUNT(*) FROM inventories_xt;

 COUNT(*)

 1112

	
Compare the data in the external table against the data in inventories. There should be no differences.

SQL> SELECT * FROM inventories MINUS SELECT * FROM inventories_xt;

no rows selected

	
After an external table has been created and the dump file populated by the CREATE TABLE AS SELECT statement, no rows may be added, updated, or deleted from the external table. Any attempt to modify the data in the external table will fail with an error.

The following example shows an attempt to use data manipulation language (DML) on an existing external table. This will return an error, as shown.

SQL> DELETE FROM inventories_xt WHERE warehouse_id = 5;
DELETE FROM inventories_xt WHERE warehouse_id = 5
 *
ERROR at line 1:
ORA-30657: operation not supported on external organized table

	
The dump file created for the external table can now be moved and used as the dump file for another external table in the same database or different database. Note that when you create an external table that uses an existing file, there is no AS SELECT clause for the CREATE TABLE statement.

SQL> CREATE TABLE inventories_xt2
 2 (
 3 product_id NUMBER(6),
 4 warehouse_id NUMBER(3),
 5 quantity_on_hand NUMBER(8)
 6)
 7 ORGANIZATION EXTERNAL
 8 (
 9 TYPE ORACLE_DATAPUMP
 10 DEFAULT DIRECTORY def_dir1
 11 LOCATION ('inv_xt.dmp')
 12);

Table created.

	
Compare the data for the new external table against the data in the inventories table. The product_id field will be converted to a compatible datatype before the comparison is done. There should be no differences.

SQL> SELECT * FROM inventories MINUS SELECT * FROM inventories_xt2;

no rows selected

	
Create an external table with three dump files and with a degree of parallelism of three.

SQL> CREATE TABLE inventories_xt3
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_xt1.dmp', 'inv_xt2.dmp', 'inv_xt3.dmp')
 7)
 8 PARALLEL 3
 9 AS SELECT * FROM inventories;

Table created.

	
Compare the data unload against inventories. There should be no differences.

SQL> SELECT * FROM inventories MINUS SELECT * FROM inventories_xt3;

no rows selected

	
Create an external table containing some rows from table inventories.

SQL> CREATE TABLE inv_part_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_p1_xt.dmp')
 7)
 8 AS SELECT * FROM inventories WHERE warehouse_id < 5;

Table created.

	
Create another external table containing the rest of the rows from inventories.

SQL> drop table inv_part_xt;

Table dropped.

SQL>
SQL> CREATE TABLE inv_part_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_p2_xt.dmp')
 7)
 8 AS SELECT * FROM inventories WHERE warehouse_id >= 5;

Table created.

	
Create an external table that uses the two dump files created in Steps 10 and 11.

SQL> CREATE TABLE inv_part_all_xt
 2 (
 3 product_id NUMBER(6),
 4 warehouse_id NUMBER(3),
 5 quantity_on_hand NUMBER(8)
 6)
 7 ORGANIZATION EXTERNAL
 8 (
 9 TYPE ORACLE_DATAPUMP
 10 DEFAULT DIRECTORY def_dir1
 11 LOCATION ('inv_p1_xt.dmp','inv_p2_xt.dmp')
 12);

Table created.

	
Compare the new external table to the inventories table. There should be no differences. This is because the two dump files used to create the external table have the same metadata (for example, the same table name inv_part_xt and the same column information)

SQL> SELECT * FROM inventories MINUS SELECT * FROM inv_part_all_xt;

no rows selected

Parallel Loading and Unloading

The dump file must be on a disk big enough to hold all the data being written. If there is insufficient space for all of the data, then an error will be returned for the CREATE TABLE AS SELECT statement. One way to alleviate the problem is to create multiple files in multiple directory objects (assuming those directories are on different disks) when executing the CREATE TABLE AS SELECT statement. Multiple files can be created by specifying multiple locations in the form directory:file in the LOCATION clause and by specifying the PARALLEL clause. Each parallel I/O server process that is created to populate the external table writes to its own file. The number of files in the LOCATION clause should match the degree of parallelization because each I/O server process requires its own files. Any extra files that are specified will be ignored. If there are not enough files for the degree of parallelization specified, then the degree of parallelization will be lowered to match the number of files in the LOCATION clause.

Here is an example of unloading the inventories table into three files.

SQL> CREATE TABLE inventories_XT_3
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_xt1.dmp', 'inv_xt2.dmp', 'inv_xt3.dmp')
 7)
 8 PARALLEL 3
 9 AS SELECT * FROM oe.inventories;

Table created.

The degree of parallelization is not tied to the number of files in the LOCATION clause when reading from ORACLE_DATAPUMP external tables. There is information in the dump files so that multiple parallel I/O server processes can read different portions of the same file. So, even if there is only one dump file, the degree of parallelization can be increased to speed the time required to read the file.

Combining Dump Files

Dump files populated by different external tables can all be specified in the LOCATION clause of another external table. For example, data from different production databases can be unloaded into separate files, and then those files can all be included in an external table defined in a data warehouse. This provides an easy way of aggregating data from multiple sources. The only restriction is that the metadata for all of the external tables be exactly the same. This means that the character set, time zone, schema name, table name, and column names must all match. Also, the columns must be defined in the same order, and their datatypes must be exactly alike. This means that after you create the first external table you must drop it so that you can use the same table name for the second external table. This ensures that the metadata listed in the two dump files is the same and they can be used together to create the same external table.

SQL> CREATE TABLE inv_part_1_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_p1_xt.dmp')
 7)
 8 AS SELECT * FROM oe.inventories WHERE warehouse_id < 5;

Table created.

SQL> DROP TABLE inv_part_1_xt;

SQL> CREATE TABLE inv_part_1_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT directory def_dir1
 6 LOCATION ('inv_p2_xt.dmp')
 7)
 8 AS SELECT * FROM oe.inventories WHERE warehouse_id >= 5;

Table created.

SQL> CREATE TABLE inv_part_all_xt
 2 (
 3 PRODUCT_ID NUMBER(6),
 4 WAREHOUSE_ID NUMBER(3),
 5 QUANTITY_ON_HAND NUMBER(8)
 6)
 7 ORGANIZATION EXTERNAL
 8 (
 9 TYPE ORACLE_DATAPUMP
 10 DEFAULT DIRECTORY def_dir1
 11 LOCATION ('inv_p1_xt.dmp','inv_p2_xt.dmp')
 12);

Table created.

SQL> SELECT * FROM inv_part_all_xt MINUS SELECT * FROM oe.inventories;

no rows selected

Supported Datatypes

You may encounter the following situations when you use external tables to move data between databases:

	
The database character set and the database national character set may be different between the two platforms.

	
The endianness of the platforms for the two databases may be different.

The ORACLE_DATAPUMP access driver automatically resolves some of these situations.

The following datatypes are automatically converted during loads and unloads:

	
Character (CHAR, NCHAR, VARCHAR2, NVARCHAR2)

	
RAW

	
NUMBER

	
Date/Time

	
BLOB

	
CLOB and NCLOB

	
ROWID and UROWID

If you attempt to use a datatype that is not supported for external tables, you will receive an error. This is demonstrated in the following example, in which the unsupported datatype, LONG, is used:

SQL> CREATE TABLE bad_datatype_xt
 2 (
 3 product_id NUMBER(6),
 4 language_id VARCHAR2(3),
 5 translated_name NVARCHAR2(50),
 6 translated_description LONG
 7)
 8 ORGANIZATION EXTERNAL
 9 (
 10 TYPE ORACLE_DATAPUMP
 11 DEFAULT DIRECTORY def_dir1
 12 LOCATION ('proddesc.dmp')
 13);
 translated_description LONG
 *
ERROR at line 6:
ORA-30656: column type not supported on external organized table

	
See Also:

Unsupported Datatypes

Unsupported Datatypes

An external table supports a subset of all possible datatypes for columns. In particular, it supports character datatypes (except LONG), the RAW datatype, all numeric datatypes, and all date, timestamp, and interval datatypes.

This section describes how you can use the ORACLE_DATAPUMP access driver to unload and reload data for some of the unsupported datatypes, specifically:

	
BFILE

	
LONG and LONG RAW

	
Final object types

	
Tables of final object types

Unloading and Loading BFILE Datatypes

The BFILE datatype has two pieces of information stored in it: the directory object for the file and the name of the file within that directory object.

You can unload BFILE columns using the ORACLE_DATAPUMP access driver by storing the directory object name and the filename in two columns in the external table. The procedure DBMS_LOB.FILEGETNAME will return both parts of the name. However, because this is a procedure, it cannot be used in a SELECT statement. Instead, two functions are needed. The first will return the name of the directory object, and the second will return the name of the file.

The steps in the following extended example demonstrate the unloading and loading of BFILE datatypes.

	
Create a function to extract the directory object for a BFILE column. Note that if the column is NULL, then NULL is returned.

SQL> CREATE FUNCTION get_dir_name (bf BFILE) RETURN VARCHAR2 IS
 2 DIR_ALIAS VARCHAR2(255);
 3 FILE_NAME VARCHAR2(255);
 4 BEGIN
 5 IF bf is NULL
 6 THEN
 7 RETURN NULL;
 8 ELSE
 9 DBMS_LOB.FILEGETNAME (bf, dir_alias, file_name);
 10 RETURN dir_alias;
 11 END IF;
 12 END;
 13 /

Function created.

	
Create a function to extract the filename for a BFILE column.

SQL> CREATE FUNCTION get_file_name (bf BFILE) RETURN VARCHAR2 is
 2 dir_alias VARCHAR2(255);
 3 file_name VARCHAR2(255);
 4 BEGIN
 5 IF bf is NULL
 6 THEN
 7 RETURN NULL;
 8 ELSE
 9 DBMS_LOB.FILEGETNAME (bf, dir_alias, file_name);
 10 RETURN file_name;
 11 END IF;
 12 END;
 13 /

Function created.

	
You can then add a row with a NULL value for the BFILE column, as follows:

SQL> INSERT INTO PRINT_MEDIA (product_id, ad_id, ad_graphic)
 2 VALUES (3515, 12001, NULL);

1 row created.

You can use the newly created functions to populate an external table. Note that the functions should set columns ad_graphic_dir and ad_graphic_file to NULL if the BFILE column is NULL.

	
Create an external table to contain the data from the print_media table. Use the get_dir_name and get_file_name functions to get the components of the BFILE column.

SQL> CREATE TABLE print_media_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE oracle_datapump
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('pm_xt.dmp')
 7) AS
 8 SELECT product_id, ad_id,
 9 get_dir_name (ad_graphic) ad_graphic_dir,
 10 get_file_name(ad_graphic) ad_graphic_file
 11 FROM print_media;

Table created.

	
Create a function to load a BFILE column from the data that is in the external table. This function will return NULL if the ad_graphic_dir column in the external table is NULL.

SQL> CREATE FUNCTION get_bfile (dir VARCHAR2, file VARCHAR2) RETURN
BFILE is
 2 bf BFILE;
 3 BEGIN
 4 IF dir IS NULL
 5 THEN
 6 RETURN NULL;
 7 ELSE
 8 RETURN BFILENAME(dir,file);
 9 END IF;
 10 END;
 11 /

Function created.

	
The get_bfile function can be used to populate a new table containing a BFILE column.

SQL> CREATE TABLE print_media_int AS
 2 SELECT product_id, ad_id,
 3 get_bfile (ad_graphic_dir, ad_graphic_file) ad_graphic
 4 FROM print_media_xt;

Table created.

	
The data in the columns of the newly loaded table should match the data in the columns of the print_media table.

SQL> SELECT product_id, ad_id,
 2 get_dir_name(ad_graphic),
 3 get_file_name(ad_graphic)
 4 FROM print_media_int
 5 MINUS
 6 SELECT product_id, ad_id,
 7 get_dir_name(ad_graphic),
 8 get_file_name(ad_graphic)
 9 FROM print_media;

no rows selected

Unloading LONG and LONG RAW Datatypes

The ORACLE_DATAPUMP access driver can be used to unload LONG and LONG RAW columns, but that data can only be loaded back into LOB fields. The steps in the following extended example demonstrate the unloading of LONG and LONG RAW datatypes.

	
If a table to be unloaded contains a LONG or LONG RAW column, then define the corresponding columns in the external table as CLOB for LONG columns or BLOB for LONG RAW columns.

SQL> CREATE TABLE long_tab
 2 (
 3 key SMALLINT,
 4 description LONG
 5);

Table created.

SQL> INSERT INTO long_tab VALUES (1, 'Description Text');

1 row created.

	
Now, an external table can be created that contains a CLOB column to contain the data from the LONG column. Note that when loading the external table, the TO_LOB operator is used to convert the LONG column into a CLOB.

SQL> CREATE TABLE long_tab_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('long_tab_xt.dmp')
 7)
 8 AS SELECT key, TO_LOB(description) description FROM long_tab;

Table created.

	
The data in the external table can be used to create another table exactly like the one that was unloaded except the new table will contain a LOB column instead of a LONG column.

SQL> CREATE TABLE lob_tab
 2 AS SELECT * from long_tab_xt;

Table created.

	
Verify that the table was created correctly.

SQL> SELECT * FROM lob_tab;

 KEY DESCRIPTION
--
 1 Description Text

Unloading and Loading Columns Containing Final Object Types

Final column objects are populated into an external table by moving each attribute in the object type into a column in the external table. In addition, the external table needs a new column to track whether the column object is atomically null. The following steps demonstrate the unloading and loading of columns containing final object types.

	
In the following example, the warehouse column in the external table is used to track whether the warehouse column in the source table is atomically NULL.

SQL> CREATE TABLE inventories_obj_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_obj_xt.dmp')
 7)
 8 AS
 9 SELECT oi.product_id,
 10 DECODE (oi.warehouse, NULL, 0, 1) warehouse,
 11 oi.warehouse.location_id location_id,
 12 oi.warehouse.warehouse_id warehouse_id,
 13 oi.warehouse.warehouse_name warehouse_name,
 14 oi.quantity_on_hand
 15 FROM oc_inventories oi;

Table created.

The columns in the external table containing the attributes of the object type can now be used as arguments to the type constructor function when loading a column of that type. Note that the warehouse column in the external table is used to determine whether to call the constructor function for the object or set the column to NULL.

	
Load a new internal table that looks exactly like the oc_inventories view. (The use of the WHERE 1=0 clause creates a new table that looks exactly like the old table but does not copy any data from the old table into the new table.)

SQL> CREATE TABLE oc_inventories_2 AS SELECT * FROM oc_inventories
WHERE 1 = 0;

Table created.

SQL> INSERT INTO oc_inventories_2
 2 SELECT product_id,
 3 DECODE (warehouse, 0, NULL,
 4 warehouse_typ(warehouse_id, warehouse_name,
 5 location_id)), quantity_on_hand
 6 FROM inventories_obj_xt;

1112 rows created.

Tables of Final Object Types

Object tables have an object identifier that uniquely identifies every row in the table. The following situations can occur:

	
If there is no need to unload and reload the object identifier, then the external table only needs to contain fields for the attributes of the type for the object table.

	
If the object identifier (OID) needs to be unloaded and reloaded and the OID for the table is one or more fields in the table, (also known as primary-key-based OIDs), then the external table has one column for every attribute of the type for the table.

	
If the OID needs to be unloaded and the OID for the table is system-generated, then the procedure is more complicated. In addition to the attributes of the type, another column needs to be created to hold the system-generated OID.

The steps in the following example demonstrate this last situation.

	
Create a table of a type with system-generated OIDs:

SQL> CREATE TYPE person AS OBJECT (name varchar2(20)) NOT FINAL
 2 /

Type created.

SQL> CREATE TABLE people OF person;

Table created.

SQL> INSERT INTO people VALUES ('Euclid');

1 row created.

	
Create an external table in which the column OID is used to hold the column containing the system-generated OID.

SQL> CREATE TABLE people_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('people.dmp')
 7)
 8 AS SELECT SYS_NC_OID$ oid, name FROM people;

Table created.

	
Create another table of the same type with system-generated OIDs. Then, execute an INSERT statement to load the new table with data unloaded from the old table.

SQL> CREATE TABLE people2 OF person;

Table created.

SQL>
SQL> INSERT INTO people2 (SYS_NC_OID$, SYS_NC_ROWINFO$)
 2 SELECT oid, person(name) FROM people_xt;

1 row created.

SQL>
SQL> SELECT SYS_NC_OID$, name FROM people
 2 MINUS
 3 SELECT SYS_NC_OID$, name FROM people2;

no rows selected

Reserved Words for the ORACLE_DATAPUMP Access Driver

When identifiers (for example, column or table names) are specified in the external table access parameters, certain values are considered to be reserved words by the access parameter parser. If a reserved word is used as an identifier, it must be enclosed in double quotation marks. The following are the reserved words for the ORACLE_DATAPUMP access driver:

	
BADFILE

	
COMPATIBLE

	
COMPRESSION

	
DATAPUMP

	
DEBUG

	
ENCRYPTION

	
INTERNAL

	
JOB

	
LATEST

	
LOGFILE

	
NOBADFILE

	
NOLOGFILE

	
PARALLEL

	
TABLE

	
VERSION

	
WORKERID

19 Using the Metadata API

This chapter describes the Metadata application programming interface (API), which provides a means for you to do the following:

	
Retrieve an object's metadata as XML

	
Transform the XML in a variety of ways, including transforming it into SQL DDL

	
Submit the XML to re-create the object extracted by the retrieval

The following topics are discussed in this chapter:

	
Why Use the Metadata API?

	
Overview of the Metadata API

	
Using the Metadata API to Retrieve an Object's Metadata

	
Using the Metadata API to Re-Create a Retrieved Object

	
Retrieving Collections of Different Object Types

	
Performance Tips for the Programmatic Interface of the Metadata API

	
Example Usage of the Metadata API

	
Summary of DBMS_METADATA Procedures

Why Use the Metadata API?

Over time, as you have used the Oracle database, you may have developed your own code for extracting metadata from the dictionary, manipulating the metadata (adding columns, changing column datatypes, and so on) and then converting the metadata to DDL so that you could re-create the object on the same or another database. Keeping that code updated to support new dictionary features has probably proven to be challenging.

The Metadata API eliminates the need for you to write and maintain your own code for metadata extraction. It provides a centralized facility for the extraction, manipulation, and resubmission of dictionary metadata. And it supports all dictionary objects at their most current level.

Although the Metadata API can dramatically decrease the amount of custom code you are writing and maintaining, it does not involve any changes to your normal database procedures. The Metadata API is installed in the same way as data dictionary views, by running catproc.sql to invoke a SQL script at database installation time. Once it is installed, it is available whenever the instance is operational, even in restricted mode.

The Metadata API does not require you to make any source code changes when you change database versions because it is upwardly compatible across different Oracle versions. XML documents retrieved by one version can be processed by the submit interface on the same or later version. For example, XML documents retrieved by an Oracle9i database can be submitted to Oracle Database 10g.

Overview of the Metadata API

For the purposes of the Metadata API, every entity in the database is modeled as an object that belongs to an object type. For example, the table scott.emp is an object and its object type is TABLE. When you fetch an object's metadata you must specify the object type.

In order to fetch a particular object or set of objects within an object type, you specify a filter. Different filters are defined for each object type. For example, two of the filters defined for the TABLE object type are SCHEMA and NAME. They allow you to say, for example, that you want the table whose schema is scott and whose name is emp.

The Metadata API makes use of XML (Extensible Markup Language) and XSLT (Extensible Stylesheet Language Transformation). The Metadata API represents object metadata as XML because it is a universal format that can be easily parsed and transformed. The Metadata API uses XSLT to transform XML documents into either other XML documents or into SQL DDL.

You can use the Metadata API to specify one or more transforms (XSLT scripts) to be applied to the XML when the metadata is fetched (or when it is resubmitted). The API provides some predefined transforms, including one named DDL that transforms the XML document into SQL creation DDL.

You can then specify conditions on the transform by using transform parameters. You can also specify optional parse items to access specific attributes of an object's metadata. For more details about all of these options, as well as examples of their implementation, see the following sections:

	
Using the Metadata API to Retrieve an Object's Metadata

	
Using the Metadata API to Re-Create a Retrieved Object

	
Retrieving Collections of Different Object Types

Using the Metadata API to Retrieve an Object's Metadata

The Metadata API's retrieval interface lets you specify the kind of object to be retrieved. This can be either a particular object type (such as a table, index, or procedure) or a heterogeneous collection of object types that form a logical unit (such as a database export or schema export). By default, metadata that you fetch is returned in an XML document.

	
Note:

To access objects that are not in your own schema you must have the SELECT_CATALOG_ROLE role. However, roles are disabled within many PL/SQL objects (stored procedures, functions, definer's rights packages). Therefore, if you are writing a PL/SQL program that will access objects in another schema (or, in general, any objects for which you need the SELECT_CATALOG_ROLE role), you must put the code in an invoker's rights package.

You can use the programmatic interface for casual browsing, or you can use it to develop applications. You would use the browsing interface if you simply wanted to make ad hoc queries of the system metadata. You would use the programmatic interface when you want to extract dictionary metadata as part of an application. In such cases, the procedures provided by the Metadata API can be used in place of SQL scripts and customized code that you may be currently using to do the same thing.

Typical Steps Used for Basic Metadata Retrieval

When you retrieve metadata, you use the DBMS_METADATA PL/SQL package, which contains procedures for the Metadata API. The following examples illustrate the programmatic and browsing interfaces.

	
See Also:

	
Table 19-1 for descriptions of DBMS_METADATA procedures used in the programmatic interface

	
Table 19-2 for descriptions of DBMS_METADATA procedures used in the browsing interface

	
Oracle Database PL/SQL Packages and Types Reference for a complete description of the DBMS_METADATA package.

Example 19-1 provides a basic demonstration of how you might use the Metadata API programmatic interface to retrieve metadata for one table. It creates a Metadata API program that creates a function named get_table_md. This function returns metadata for one table.

Example 19-1 Using the DBMS_METADATA Programmatic Interface to Retrieve Data

	
Create a Metadata API program that creates a function named get_table_md, which will return the metadata for one table, timecards, in the hr schema. The content of such a program looks as follows. (For this example, we will name the program metadata_program.sql.)

CREATE OR REPLACE FUNCTION get_table_md RETURN CLOB IS
-- Define local variables.
h NUMBER; --handle returned by OPEN
th NUMBER; -- handle returned by ADD_TRANSFORM
doc CLOB;
BEGIN

-- Specify the object type.
h := DBMS_METADATA.OPEN('TABLE');

-- Use filters to specify the particular object desired.
DBMS_METADATA.SET_FILTER(h,'SCHEMA','HR');
DBMS_METADATA.SET_FILTER(h,'NAME','TIMECARDS');

 -- Request that the metadata be transformed into creation DDL.
th := DBMS_METADATA.ADD_TRANSFORM(h,'DDL');

 -- Fetch the object.
doc := DBMS_METADATA.FETCH_CLOB(h);

 -- Release resources.
DBMS_METADATA.CLOSE(h);
RETURN doc;
END;
/

	
Connect as user hr.

	
Run the program to create the get_table_md function:

SQL> @metadata_program

	
Use the newly created get_table_md function in a select operation. To generate complete, uninterrupted output, set the PAGESIZE to 0 and set LONG to some large number, as shown, before executing your query:

SQL> SET PAGESIZE 0
SQL> SET LONG 1000000
SQL> SELECT get_table_md FROM dual;

	
The output, which shows the metadata for the timecards table in the hr schema, looks similar to the following:

 CREATE TABLE "HR"."TIMECARDS"
 ("EMPLOYEE_ID" NUMBER(6,0),
 "WEEK" NUMBER(2,0),
 "JOB_ID" VARCHAR2(10),
 "HOURS_WORKED" NUMBER(4,2),
 FOREIGN KEY ("EMPLOYEE_ID")
 REFERENCES "HR"."EMPLOYEES" ("EMPLOYEE_ID") ENABLE
) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
 TABLESPACE "EXAMPLE"

You can use the browsing interface and get the same results, as shown in Example 19-2.

Example 19-2 Using the DBMS_METADATA Browsing Interface to Retrieve Data

SQL> SET PAGESIZE 0
SQL> SET LONG 1000000
SQL> SELECT DBMS_METADATA.GET_DDL('TABLE','TIMECARDS','HR') FROM dual;

The results will be the same as shown in step 5 for Example 19-1.

Retrieving Multiple Objects

In Example 19-1, the FETCH_CLOB procedure was called only once, because it was known that there was only one object. However, you can also retrieve multiple objects, for example, all the tables in schema scott. To do this, you need to use the following construct:

 LOOP
 doc := DBMS_METADATA.FETCH_CLOB(h);
 --
 -- When there are no more objects to be retrieved, FETCH_CLOB returns NULL.
 --
 EXIT WHEN doc IS NULL;
 END LOOP;

Example 19-3 demonstrates use of this construct and retrieving multiple objects. Connect as user scott for this example. The password is tiger.

Example 19-3 Retrieving Multiple Objects

-- Because not all objects can be returned, they are stored in a table and queried at the end.

DROP TABLE my_metadata;
CREATE TABLE my_metadata (md clob);
CREATE OR REPLACE PROCEDURE get_tables_md IS
-- Define local variables
h NUMBER; -- handle returned by 'OPEN'
th NUMBER; -- handle returned by 'ADD_TRANSFORM'
doc CLOB; -- metadata is returned in a CLOB
BEGIN
 -- Specify the object type.
 h := DBMS_METADATA.OPEN('TABLE');

 -- Use filters to specify the schema.
 DBMS_METADATA.SET_FILTER(h,'SCHEMA','SCOTT');

 -- Request that the metadata be transformed into creation DDL.
 th := DBMS_METADATA.ADD_TRANSFORM(h,'DDL');

 -- Fetch the objects.
 LOOP
 doc := DBMS_METADATA.FETCH_CLOB(h);

 -- When there are no more objects to be retrieved, FETCH_CLOB returns NULL.
 EXIT WHEN doc IS NULL;

 -- Store the metadata in a table.
 INSERT INTO my_metadata(md) VALUES (doc);
 COMMIT;
 END LOOP;

 -- Release resources.
 DBMS_METADATA.CLOSE(h);
END;
/
-- Execute the procedure.

EXECUTE get_tables_md;

-- See what was retrieved.

SET LONG 9000000
SET PAGES 0
SELECT * FROM my_metadata;

Placing Conditions on Transforms

You can use transform parameters to specify conditions on the transforms you add. To do this, you use the SET_TRANSFORM_PARAM procedure. For example, if you have added the DDL transform for a TABLE object, you can specify the SEGMENT_ATTRIBUTES transform parameter to indicate that you do not want segment attributes (physical, storage, logging, and so on) to appear in the DDL. The default is that segment attributes do appear in the DDL.

Example 19-4 shows use of the SET_TRANSFORM_PARAM procedure.

Example 19-4 Placing Conditions on Transforms

CREATE OR REPLACE FUNCTION get_table_md RETURN CLOB IS
 -- Define local variables.
 h NUMBER; -- handle returned by 'OPEN'
 th NUMBER; -- handle returned by 'ADD_TRANSFORM'
 doc CLOB;
BEGIN
 -- Specify the object type.
 h := DBMS_METADATA.OPEN('TABLE');

 -- Use filters to specify the particular object desired.
 DBMS_METADATA.SET_FILTER(h,'SCHEMA','HR');
 DBMS_METADATA.SET_FILTER(h,'NAME','TIMECARDS');

 -- Request that the metadata be transformed into creation DDL.
 th := dbms_metadata.add_transform(h,'DDL');

 -- Specify that segment attributes are not to be returned.
 -- Note that this call uses the TRANSFORM handle, not the OPEN handle.
DBMS_METADATA.SET_TRANSFORM_PARAM(th,'SEGMENT_ATTRIBUTES',false);

 -- Fetch the object.
 doc := DBMS_METADATA.FETCH_CLOB(h);

 -- Release resources.
 DBMS_METADATA.CLOSE(h);

 RETURN doc;
END;
/

When you execute the SQL statement (SELECT get_table_md FROM DUAL;), the output looks similar to the following:

 CREATE TABLE "HR"."TIMECARDS"
 ("EMPLOYEE_ID" NUMBER(6,0),
 "WEEK" NUMBER(2,0),
 "JOB_ID" VARCHAR2(10),
 "HOURS_WORKED" NUMBER(4,2),
 FOREIGN KEY ("EMPLOYEE_ID")
 REFERENCES "HR"."EMPLOYEES" ("EMPLOYEE_ID") ENABLE
)

The examples shown up to this point have used a single transform, the DDL transform. The Metadata API also enables you to specify multiple transforms, with the output of the first being the input to the next and so on.

Oracle supplies a transform called MODIFY that modifies an XML document. You can do things like change schema names or tablespace names. To do this, you use remap parameters and the SET_REMAP_PARAM procedure.

Example 19-5 shows a sample use of the SET_REMAP_PARAM procedure. It first adds the MODIFY transform and specifies remap parameters to change the schema name from hr to scott. It then adds the DDL transform. The output of the MODIFY transform is an XML document that becomes the input to the DDL transform. The end result is the creation DDL for the timecards table with all instances of schema hr changed to scott.

Example 19-5 Modifying an XML Document

CREATE OR REPLACE FUNCTION remap_schema RETURN CLOB IS
-- Define local variables.
h NUMBER; --handle returned by OPEN
th NUMBER; -- handle returned by ADD_TRANSFORM
doc CLOB;
BEGIN

-- Specify the object type.
h := DBMS_METADATA.OPEN('TABLE');

-- Use filters to specify the particular object desired.
DBMS_METADATA.SET_FILTER(h,'SCHEMA','HR');
DBMS_METADATA.SET_FILTER(h,'NAME','TIMECARDS');

-- Request that the schema name be modified.
th := DBMS_METADATA.ADD_TRANSFORM(h,'MODIFY');
DBMS_METADATA.SET_REMAP_PARAM(th,'REMAP_SCHEMA','HR','SCOTT');

-- Request that the metadata be transformed into creation DDL.
th := DBMS_METADATA.ADD_TRANSFORM(h,'DDL');

-- Specify that segment attributes are not to be returned.

DBMS_METADATA.SET_TRANSFORM_PARAM(th,'SEGMENT_ATTRIBUTES',false);

-- Fetch the object.
doc := DBMS_METADATA.FETCH_CLOB(h);

-- Release resources.
DBMS_METADATA.CLOSE(h);
RETURN doc;
END;
/

When you execute the SQL statement (SELECT remap_schema FROM DUAL;), the output looks similar to the following:

 CREATE TABLE "SCOTT"."TIMECARDS"
 ("EMPLOYEE_ID" NUMBER(6,0),
 "WEEK" NUMBER(2,0),
 "JOB_ID" VARCHAR2(10),
 "HOURS_WORKED" NUMBER(4,2),
 FOREIGN KEY ("EMPLOYEE_ID")
 REFERENCES "SCOTT"."EMPLOYEES" ("EMPLOYEE_ID") ENABLE
)

If you are familiar with XSLT, you can add your own user-written transforms to process the XML.

Accessing Specific Metadata Attributes

It is often desirable to access specific attributes of an object's metadata, for example, its name or schema. You could get this information by parsing the returned metadata, but the Metadata API provides another mechanism; you can specify parse items, specific attributes that will be parsed out of the metadata and returned in a separate data structure. To do this, you use the SET_PARSE_ITEM procedure.

Example 19-6 fetches all tables in a schema. For each table, a parse item is used to get its name. The name is then used to get all indexes on the table. The example illustrates the use of the FETCH_DDL function, which returns metadata in a sys.ku$_ddls object.

This example assumes you are connected to a schema that contains some tables and indexes. It also creates a table named my_metadata.

Example 19-6 Using Parse Items to Access Specific Metadata Attributes

DROP TABLE my_metadata;
CREATE TABLE my_metadata (
 object_type VARCHAR2(30),
 name VARCHAR2(30),
 md CLOB);
CREATE OR REPLACE PROCEDURE get_tables_and_indexes IS
-- Define local variables.
h1 NUMBER; -- handle returned by OPEN for tables
h2 NUMBER; -- handle returned by OPEN for indexes
th1 NUMBER; -- handle returned by ADD_TRANSFORM for tables
th2 NUMBER; -- handle returned by ADD_TRANSFORM for indexes
doc sys.ku$_ddls; -- metadata is returned in sys.ku$_ddls,
 -- a nested table of sys.ku$_ddl objects
ddl CLOB; -- creation DDL for an object
pi sys.ku$_parsed_items; -- parse items are returned in this object
 -- which is contained in sys.ku$_ddl
objname VARCHAR2(30); -- the parsed object name
BEGIN
 -- This procedure has an outer loop that fetches tables,
 -- and an inner loop that fetches indexes.

 -- Specify the object type: TABLE.
 h1 := DBMS_METADATA.OPEN('TABLE');

 -- Request that the table name be returned as a parse item.
 DBMS_METADATA.SET_PARSE_ITEM(h1,'NAME');

 -- Request that the metadata be transformed into creation DDL.
 th1 := DBMS_METADATA.ADD_TRANSFORM(h1,'DDL');

 -- Specify that segment attributes are not to be returned.
 DBMS_METADATA.SET_TRANSFORM_PARAM(th1,'SEGMENT_ATTRIBUTES',false);

 -- Set up the outer loop: fetch the TABLE objects.
 LOOP
 doc := dbms_metadata.fetch_ddl(h1);

-- When there are no more objects to be retrieved, FETCH_DDL returns NULL.
 EXIT WHEN doc IS NULL;

-- Loop through the rows of the ku$_ddls nested table.
 FOR i IN doc.FIRST..doc.LAST LOOP
 ddl := doc(i).ddlText;
 pi := doc(i).parsedItems;
 -- Loop through the returned parse items.
 IF pi IS NOT NULL AND pi.COUNT > 0 THEN
 FOR j IN pi.FIRST..pi.LAST LOOP
 IF pi(j).item='NAME' THEN
 objname := pi(j).value;
 END IF;
 END LOOP;
 END IF;
 -- Insert information about this object into our table.
 INSERT INTO my_metadata(object_type, name, md)
 VALUES ('TABLE',objname,ddl);
 COMMIT;
 END LOOP;

 -- Now fetch indexes using the parsed table name as
 -- a BASE_OBJECT_NAME filter.

 -- Specify the object type.
 h2 := DBMS_METADATA.OPEN('INDEX');

 -- The base object is the table retrieved in the outer loop.
 DBMS_METADATA.SET_FILTER(h2,'BASE_OBJECT_NAME',objname);

 -- Exclude system-generated indexes.
 DBMS_METADATA.SET_FILTER(h2,'SYSTEM_GENERATED',false);

 -- Request that the metadata be transformed into creation DDL.
 th2 := DBMS_METADATA.ADD_TRANSFORM(h2,'DDL');

 -- Specify that segment attributes are not to be returned.
 DBMS_METADATA.SET_TRANSFORM_PARAM(th2,'SEGMENT_ATTRIBUTES',false);

 -- Set up the inner loop: fetch the INDEX objects.
 LOOP
 DDL := DBMS_METADATA.FETCH_CLOB(h2);

 -- When there are no more objects to be retrieved, FETCH_CLOB returns NULL.
 EXIT WHEN ddl IS NULL;

 -- Store the metadata in our table.
 INSERT INTO my_metadata(object_type, name, md)
 VALUES ('INDEX',NULL,ddl);
 COMMIT;
 END LOOP;
 DBMS_METADATA.CLOSE(h2);
 END LOOP;
 DBMS_METADATA.CLOSE(h1);
END;
/

-- Execute the procedure.

EXECUTE get_tables_and_indexes;

-- Perform a query to check what was retrieved.

SET LONG 9000000
SET PAGES 0
SELECT * FROM my_metadata;

Using the Metadata API to Re-Create a Retrieved Object

When you fetch metadata for an object, you may want to use it to re-create the object in a different database or schema.

You may not be ready to make remapping decisions when you fetch the metadata. You may want to defer these decisions until later. To accomplish this, you fetch the metadata as XML and store it in a file or table. Later you can use the submit interface to re-create the object.

The submit interface is similar in form to the retrieval interface. It has an OPENW procedure in which you specify the object type of the object to be created. You can specify transforms, transform parameters, and parse items. You can call the CONVERT function to convert the XML to DDL, or you can call the PUT function to both convert XML to DDL and submit the DDL to create the object.

	
See Also:

Table 19-3 for descriptions of DBMS_METADATA procedures and functions used in the submit interface

Example 19-7 fetches the XML for a table in one schema, and then uses the submit interface to re-create the table in another schema.

Example 19-7 Using the Submit Interface to Re-Create a Retrieved Object

-- Connect as a privileged user.

CONNECT system
Enter password: password

-- Create an invoker's rights package to hold the procedure
-- because access to objects in another schema requires the
-- SELECT_CATALOG_ROLE role. In a definer's rights PL/SQL object
-- (such as a procedure or function), roles are disabled.

CREATE OR REPLACE PACKAGE example_pkg AUTHID current_user IS
 PROCEDURE move_table(
 table_name in VARCHAR2,
 from_schema in VARCHAR2,
 to_schema in VARCHAR2);
END example_pkg;
/
CREATE OR REPLACE PACKAGE BODY example_pkg IS
PROCEDURE move_table(
 table_name in VARCHAR2,
 from_schema in VARCHAR2,
 to_schema in VARCHAR2) IS

-- Define local variables.
h1 NUMBER; -- handle returned by OPEN
h2 NUMBER; -- handle returned by OPENW
th1 NUMBER; -- handle returned by ADD_TRANSFORM for MODIFY
th2 NUMBER; -- handle returned by ADD_TRANSFORM for DDL
xml CLOB; -- XML document
errs sys.ku$_SubmitResults := sys.ku$_SubmitResults();
err sys.ku$_SubmitResult;
result BOOLEAN;
BEGIN

-- Specify the object type.
h1 := DBMS_METADATA.OPEN('TABLE');

-- Use filters to specify the name and schema of the table.
DBMS_METADATA.SET_FILTER(h1,'NAME',table_name);
DBMS_METADATA.SET_FILTER(h1,'SCHEMA',from_schema);

-- Fetch the XML.
xml := DBMS_METADATA.FETCH_CLOB(h1);
IF xml IS NULL THEN
 DBMS_OUTPUT.PUT_LINE('Table ' || from_schema || '.' || table_name
|| ' not found');
 RETURN;
 END IF;

-- Release resources.
DBMS_METADATA.CLOSE(h1);

-- Use the submit interface to re-create the object in another schema.

-- Specify the object type using OPENW (instead of OPEN).
h2 := DBMS_METADATA.OPENW('TABLE');

-- First, add the MODIFY transform.
th1 := DBMS_METADATA.ADD_TRANSFORM(h2,'MODIFY');

-- Specify the desired modification: remap the schema name.
DBMS_METADATA.SET_REMAP_PARAM(th1,'REMAP_SCHEMA',from_schema,to_schema);

-- Now add the DDL transform so that the modified XML can be
-- transformed into creation DDL.
th2 := DBMS_METADATA.ADD_TRANSFORM(h2,'DDL');

-- Call PUT to re-create the object.
result := DBMS_METADATA.PUT(h2,xml,0,errs);

DBMS_METADATA.CLOSE(h2);
 IF NOT result THEN
 -- Process the error information.
 FOR i IN errs.FIRST..errs.LAST LOOP
 err := errs(i);
 FOR j IN err.errorLines.FIRST..err.errorLines.LAST LOOP
 dbms_output.put_line(err.errorLines(j).errorText);
 END LOOP;
 END LOOP;
 END IF;
END;
END example_pkg;
/

-- Now try it: create a table in SCOTT...

CONNECT scott
Enter password:
-- The password is tiger.

DROP TABLE my_example;
CREATE TABLE my_example (a NUMBER, b VARCHAR2(30));

CONNECT system
Enter password: password

SET LONG 9000000
SET PAGESIZE 0
SET SERVEROUTPUT ON SIZE 100000

-- ...and copy it to SYSTEM.

DROP TABLE my_example;
EXECUTE example_pkg.move_table('MY_EXAMPLE','SCOTT','SYSTEM');

-- Verify that it worked.

SELECT DBMS_METADATA.GET_DDL('TABLE','MY_EXAMPLE') FROM dual;

Retrieving Collections of Different Object Types

There may be times when you need to retrieve collections of objects in which the objects are of different types, but comprise a logical unit. For example, you might need to retrieve all the objects in a database or a schema, or a table and all its dependent indexes, constraints, grants, audits, and so on. To make such a retrieval possible, the Metadata API provides a number of heterogeneous object types. A heterogeneous object type is an ordered set of object types.

Oracle supplies a number of heterogeneous object types:

	
TABLE_EXPORT - a table and its dependent objects

	
SCHEMA_EXPORT - a schema and its contents

	
DATABASE_EXPORT - the objects in the database

These object types were developed for use by the Data Pump Export utility, but you can use them in your own applications.

You can use only the programmatic retrieval interface (OPEN, FETCH, CLOSE) with these types, not the browsing interface or the submit interface.

You can specify filters for heterogeneous object types, just as you do for the homogeneous types. For example, you can specify the SCHEMA and NAME filters for TABLE_EXPORT, or the SCHEMA filter for SCHEMA_EXPORT.

Example 19-8 shows how to retrieve the object types in the scott schema. Connect as user scott. The password is tiger.

Example 19-8 Retrieving Heterogeneous Object Types

-- Create a table to store the retrieved objects.
DROP TABLE my_metadata;
CREATE TABLE my_metadata (md CLOB);
CREATE OR REPLACE PROCEDURE get_schema_md IS

-- Define local variables.
h NUMBER; -- handle returned by OPEN
th NUMBER; -- handle returned by ADD_TRANSFORM
doc CLOB; -- metadata is returned in a CLOB
BEGIN

-- Specify the object type.
 h := DBMS_METADATA.OPEN('SCHEMA_EXPORT');

 -- Use filters to specify the schema.
 DBMS_METADATA.SET_FILTER(h,'SCHEMA','SCOTT');

 -- Request that the metadata be transformed into creation DDL.
 th := DBMS_METADATA.ADD_TRANSFORM(h,'DDL');

 -- Fetch the objects.
 LOOP
 doc := DBMS_METADATA.FETCH_CLOB(h);

 -- When there are no more objects to be retrieved, FETCH_CLOB returns NULL.
 EXIT WHEN doc IS NULL;

 -- Store the metadata in the table.
 INSERT INTO my_metadata(md) VALUES (doc);
 COMMIT;
 END LOOP;

 -- Release resources.
 DBMS_METADATA.CLOSE(h);
END;
/
-- Execute the procedure.

EXECUTE get_schema_md;

-- See what was retrieved.

SET LONG 9000000
SET PAGESIZE 0
SELECT * FROM my_metadata;

Note the following about this example:

The objects are returned ordered by object type; for example, all tables are returned, then all grants on tables, then all indexes on tables, and so on. The order is, generally speaking, a valid creation order. Thus, if you take the objects in the order in which they were returned and use the submit interface to re-create them in the same order in another schema or database, there will usually be no errors. (The exceptions usually involve circular references; for example, if package A contains a call to package B, and package B contains a call to package A, then one of the packages will need to be recompiled a second time.)

Filtering the Return of Heterogeneous Object Types

If you want finer control of the objects returned, you can use the SET_FILTER procedure and specify that the filter apply only to a specific member type. You do this by specifying the path name of the member type as the fourth parameter to SET_FILTER. In addition, you can use the EXCLUDE_PATH_EXPR filter to exclude all objects of an object type. For a list of valid path names, see the TABLE_EXPORT_OBJECTS catalog view.

Example 19-9 shows how you can use SET_FILTER to specify finer control on the objects returned. Connect as user scott. The password is tiger.

Example 19-9 Filtering the Return of Heterogeneous Object Types

-- Create a table to store the retrieved objects.
DROP TABLE my_metadata;
CREATE TABLE my_metadata (md CLOB);
CREATE OR REPLACE PROCEDURE get_schema_md2 IS

-- Define local variables.
h NUMBER; -- handle returned by 'OPEN'
th NUMBER; -- handle returned by 'ADD_TRANSFORM'
doc CLOB; -- metadata is returned in a CLOB
BEGIN

 -- Specify the object type.
 h := DBMS_METADATA.OPEN('SCHEMA_EXPORT');

 -- Use filters to specify the schema.
 DBMS_METADATA.SET_FILTER(h,'SCHEMA','SCOTT');

 -- Use the fourth parameter to SET_FILTER to specify a filter
 -- that applies to a specific member object type.
 DBMS_METADATA.SET_FILTER(h,'NAME_EXPR','!=''MY_METADATA''','TABLE');

 -- Use the EXCLUDE_PATH_EXPR filter to exclude procedures.
 DBMS_METADATA.SET_FILTER(h,'EXCLUDE_PATH_EXPR','=''PROCEDURE''');

 -- Request that the metadata be transformed into creation DDL.
 th := DBMS_METADATA.ADD_TRANSFORM(h,'DDL');

 -- Use the fourth parameter to SET_TRANSFORM_PARAM to specify a parameter
 -- that applies to a specific member object type.
DBMS_METADATA.SET_TRANSFORM_PARAM(th,'SEGMENT_ATTRIBUTES',false,'TABLE');

 -- Fetch the objects.
 LOOP
 doc := dbms_metadata.fetch_clob(h);

 -- When there are no more objects to be retrieved, FETCH_CLOB returns NULL.
 EXIT WHEN doc IS NULL;

 -- Store the metadata in the table.
 INSERT INTO my_metadata(md) VALUES (doc);
 COMMIT;
 END LOOP;

 -- Release resources.
 DBMS_METADATA.CLOSE(h);
END;
/
-- Execute the procedure.

EXECUTE get_schema_md2;

-- See what was retrieved.

SET LONG 9000000
SET PAGESIZE 0
SELECT * FROM my_metadata;

Performance Tips for the Programmatic Interface of the Metadata API

This section describes how to enhance performance when using the programmatic interface of the Metadata API.

	
Fetch all of one type of object before fetching the next. For example, if you are retrieving the definitions of all objects in your schema, first fetch all tables, then all indexes, then all triggers, and so on. This will be much faster than nesting OPEN contexts; that is, fetch one table then all of its indexes, grants, and triggers, then the next table and all of its indexes, grants, and triggers, and so on. Example Usage of the Metadata API reflects this second, less efficient means, but its purpose is to demonstrate most of the programmatic calls, which are best shown by this method.

	
Use the SET_COUNT procedure to retrieve more than one object at a time. This minimizes server round trips and eliminates many redundant function calls.

	
When writing a PL/SQL package that calls the Metadata API, declare LOB variables and objects that contain LOBs (such as SYS.KU$_DDLS) at package scope rather than within individual functions. This eliminates the creation and deletion of LOB duration structures upon function entrance and exit, which are very expensive operations.

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide

Example Usage of the Metadata API

This section provides an example of how the Metadata API could be used. A script is provided that automatically runs the demo for you by performing the following actions:

	
Establishes a schema (MDDEMO) and some payroll users.

	
Creates three payroll-like tables within the schema, as well as any associated indexes, triggers, and grants.

	
Creates a package, PAYROLL_DEMO, that uses the Metadata API. The PAYROLL_DEMO package contains a procedure, GET_PAYROLL_TABLES, that retrieves the DDL for the two tables in the MDDEMO schema that start with PAYROLL. For each table, it retrieves the DDL for the table's associated dependent objects; indexes, grants, and triggers. All the DDL is written to a table named MDDEMO.DDL.

To execute the example, do the following:

	
Start SQL*Plus as user system. You will be prompted for a password.

sqlplus system

	
Install the demo, which is located in the file mddemo.sql in rdbms/demo:

SQL> @mddemo

For an explanation of what happens during this step, see What Does the Metadata API Example Do?.

	
Connect as user mddemo. You will be prompted for a password, which is also mddemo.

SQL> CONNECT mddemo
Enter password:

	
Set the following parameters so that query output will be complete and readable:

SQL> SET PAGESIZE 0
SQL> SET LONG 1000000

	
Execute the GET_PAYROLL_TABLES procedure, as follows:

SQL> CALL payroll_demo.get_payroll_tables();

	
Execute the following SQL query:

SQL> SELECT ddl FROM DDL ORDER BY SEQNO;

The output generated is the result of the execution of the GET_PAYROLL_TABLES procedure. It shows all the DDL that was performed in Step 2 when the demo was installed. See Output Generated from the GET_PAYROLL_TABLES Procedure for a listing of the actual output.

What Does the Metadata API Example Do?

When the mddemo script is run, the following steps take place. You can adapt these steps to your own situation.

	
Drops users as follows, if they exist. This will ensure that you are starting out with fresh data. If the users do not exist, a message to that effect is displayed, no harm is done, and the demo continues to execute.

CONNECT system
Enter password: password
SQL> DROP USER mddemo CASCADE;
SQL> DROP USER mddemo_clerk CASCADE;
SQL> DROP USER mddemo_mgr CASCADE;

	
Creates user mddemo, identified by mddemo:

SQL> CREATE USER mddemo IDENTIFIED BY mddemo;
SQL> GRANT resource, connect, create session,
 1 create table,
 2 create procedure,
 3 create sequence,
 4 create trigger,
 5 create view,
 6 create synonym,
 7 alter session,
 8 TO mddemo;

	
Creates user mddemo_clerk, identified by clerk:

CREATE USER mddemo_clerk IDENTIFIED BY clerk;

	
Creates user mddemo_mgr, identified by mgr:

CREATE USER mddemo_mgr IDENTIFIED BY mgr;

	
Connect to SQL*Plus as mddemo (the password is also mddemo):

CONNECT mddemo
Enter password:

	
Creates some payroll-type tables:

SQL> CREATE TABLE payroll_emps
 2 (lastname VARCHAR2(60) NOT NULL,
 3 firstname VARCHAR2(20) NOT NULL,
 4 mi VARCHAR2(2),
 5 suffix VARCHAR2(10),
 6 dob DATE NOT NULL,
 7 badge_no NUMBER(6) PRIMARY KEY,
 8 exempt VARCHAR(1) NOT NULL,
 9 salary NUMBER (9,2),
 10 hourly_rate NUMBER (7,2))
 11 /

SQL> CREATE TABLE payroll_timecards
 2 (badge_no NUMBER(6) REFERENCES payroll_emps (badge_no),
 3 week NUMBER(2),
 4 job_id NUMBER(5),
 5 hours_worked NUMBER(4,2))
 6 /

	
Creates a dummy table, audit_trail. This table is used to show that tables that do not start with "PAYROLL" are not retrieved by the GET_PAYROLL_TABLES procedure.

SQL> CREATE TABLE audit_trail
 2 (action_time DATE,
 3 lastname VARCHAR2(60),
 4 action LONG)
 5 /

	
Creates some grants on the tables just created:

SQL> GRANT UPDATE (salary,hourly_rate) ON payroll_emps TO mddemo_clerk;
SQL> GRANT ALL ON payroll_emps TO mddemo_mgr WITH GRANT OPTION;

SQL> GRANT INSERT,UPDATE ON payroll_timecards TO mddemo_clerk;
SQL> GRANT ALL ON payroll_timecards TO mddemo_mgr WITH GRANT OPTION;

	
Creates some indexes on the tables just created:

SQL> CREATE INDEX i_payroll_emps_name ON payroll_emps(lastname);
SQL> CREATE INDEX i_payroll_emps_dob ON payroll_emps(dob);
SQL> CREATE INDEX i_payroll_timecards_badge ON payroll_timecards(badge_no);

	
Creates some triggers on the tables just created:

SQL> CREATE OR REPLACE PROCEDURE check_sal(salary in number) AS BEGIN
 2 RETURN;
 3 END;
 4 /

Note that the security is kept fairly loose to keep the example simple.

SQL> CREATE OR REPLACE TRIGGER salary_trigger BEFORE INSERT OR UPDATE OF salary
ON payroll_emps
FOR EACH ROW WHEN (new.salary > 150000)
CALL check_sal(:new.salary)
/

SQL> CREATE OR REPLACE TRIGGER hourly_trigger BEFORE UPDATE OF hourly_rate ON payroll_emps
FOR EACH ROW
BEGIN :new.hourly_rate:=:old.hourly_rate;END;
/

	
Sets up a table to hold the generated DDL:

CREATE TABLE ddl (ddl CLOB, seqno NUMBER);

	
Creates the PAYROLL_DEMO package, which provides examples of how DBMS_METADATA procedures can be used.

SQL> CREATE OR REPLACE PACKAGE payroll_demo AS PROCEDURE get_payroll_tables;
END;
/

	
Note:

To see the entire script for this example, including the contents of the PAYROLL_DEMO package, see the file mddemo.sql located in your $ORACLE_HOME/rdbms/demo directory.

Output Generated from the GET_PAYROLL_TABLES Procedure

After you execute the mddemo.payroll_demo.get_payroll_tables procedure, you can execute the following query:

SQL> SELECT ddl FROM ddl ORDER BY seqno;

The results are as follows, which reflect all the DDL executed by the script as described in the previous section.

CREATE TABLE "MDDEMO"."PAYROLL_EMPS"
 ("LASTNAME" VARCHAR2(60) NOT NULL ENABLE,
 "FIRSTNAME" VARCHAR2(20) NOT NULL ENABLE,
 "MI" VARCHAR2(2),
 "SUFFIX" VARCHAR2(10),
 "DOB" DATE NOT NULL ENABLE,
 "BADGE_NO" NUMBER(6,0),
 "EXEMPT" VARCHAR2(1) NOT NULL ENABLE,
 "SALARY" NUMBER(9,2),
 "HOURLY_RATE" NUMBER(7,2),
 PRIMARY KEY ("BADGE_NO") ENABLE
) ;

 GRANT UPDATE ("SALARY") ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_CLERK";
 GRANT UPDATE ("HOURLY_RATE") ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_CLERK";
 GRANT ALTER ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT DELETE ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT INDEX ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT INSERT ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT SELECT ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT UPDATE ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT REFERENCES ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT ON COMMIT REFRESH ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT QUERY REWRITE ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;

 CREATE INDEX "MDDEMO"."I_PAYROLL_EMPS_DOB" ON "MDDEMO"."PAYROLL_EMPS" ("DOB")
 PCTFREE 10 INITRANS 2 MAXTRANS 255
 STORAGE(INITIAL 10240 NEXT 10240 MINEXTENTS 1 MAXEXTENTS 121 PCTINCREASE 50
 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE "SYSTEM" ;

 CREATE INDEX "MDDEMO"."I_PAYROLL_EMPS_NAME" ON "MDDEMO"."PAYROLL_EMPS" ("LASTNAME")
 PCTFREE 10 INITRANS 2 MAXTRANS 255
 STORAGE(INITIAL 10240 NEXT 10240 MINEXTENTS 1 MAXEXTENTS 121 PCTINCREASE 50
 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE "SYSTEM" ;

 CREATE OR REPLACE TRIGGER hourly_trigger before update of hourly_rate on payroll_emps
for each row
begin :new.hourly_rate:=:old.hourly_rate;end;
/
ALTER TRIGGER "MDDEMO"."HOURLY_TRIGGER" ENABLE;

 CREATE OR REPLACE TRIGGER salary_trigger before insert or update of salary on payroll_emps
for each row
WHEN (new.salary > 150000) CALL check_sal(:new.salary)
/
ALTER TRIGGER "MDDEMO"."SALARY_TRIGGER" ENABLE;

CREATE TABLE "MDDEMO"."PAYROLL_TIMECARDS"
 ("BADGE_NO" NUMBER(6,0),
 "WEEK" NUMBER(2,0),
 "JOB_ID" NUMBER(5,0),
 "HOURS_WORKED" NUMBER(4,2),
 FOREIGN KEY ("BADGE_NO")
 REFERENCES "MDDEMO"."PAYROLL_EMPS" ("BADGE_NO") ENABLE
) ;

 GRANT INSERT ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_CLERK";
 GRANT UPDATE ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_CLERK";
 GRANT ALTER ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT DELETE ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT INDEX ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT INSERT ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT SELECT ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT UPDATE ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT REFERENCES ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT ON COMMIT REFRESH ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT QUERY REWRITE ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;

 CREATE INDEX "MDDEMO"."I_PAYROLL_TIMECARDS_BADGE" ON "MDDEMO"."PAYROLL_TIMECARDS" ("BADGE_NO")
 PCTFREE 10 INITRANS 2 MAXTRANS 255
 STORAGE(INITIAL 10240 NEXT 10240 MINEXTENTS 1 MAXEXTENTS 121 PCTINCREASE 50
 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE "SYSTEM" ;

Summary of DBMS_METADATA Procedures

This section provides brief descriptions of the procedures provided by the Metadata API. For detailed descriptions of these procedures, see Oracle Database PL/SQL Packages and Types Reference.

Table 19-1 provides a brief description of the procedures provided by the DBMS_METADATA programmatic interface for retrieving multiple objects.

Table 19-1 DBMS_METADATA Procedures Used for Retrieving Multiple Objects

	PL/SQL Procedure Name	Description
	

DBMS_METADATA.OPEN()

	
Specifies the type of object to be retrieved, the version of its metadata, and the object model.

	

DBMS_METADATA.SET_FILTER()

	
Specifies restrictions on the objects to be retrieved, for example, the object name or schema.

	

DBMS_METADATA.SET_COUNT()

	
Specifies the maximum number of objects to be retrieved in a single FETCH_xxx call.

	

DBMS_METADATA.GET_QUERY()

	
Returns the text of the queries that are used by FETCH_xxx. You can use this as a debugging aid.

	

DBMS_METADATA.SET_PARSE_ITEM()

	
Enables output parsing by specifying an object attribute to be parsed and returned.

	

DBMS_METADATA.ADD_TRANSFORM()

	
Specifies a transform that FETCH_xxx applies to the XML representation of the retrieved objects.

	

DBMS_METADATA.SET_TRANSFORM_PARAM()

	
Specifies parameters to the XSLT stylesheet identified by transform_handle.

	

DBMS_METADATA.SET_REMAP_PARAM()

	
Specifies parameters to the XSLT stylesheet identified by transform_handle.

	

DBMS_METADATA.FETCH_xxx()

	
Returns metadata for objects meeting the criteria established by OPEN, SET_FILTER, SET_COUNT, ADD_TRANSFORM, and so on.

	

DBMS_METADATA.CLOSE()

	
Invalidates the handle returned by OPEN and cleans up the associated state.

Table 19-2 lists the procedures provided by the DBMS_METADATA browsing interface and provides a brief description of each one. These functions return metadata for one or more dependent or granted objects. These procedures do not support heterogeneous object types.

Table 19-2 DBMS_METADATA Procedures Used for the Browsing Interface

	PL/SQL Procedure Name	Description
	

DBMS_METADATA.GET_xxx()

	
Provides a way to return metadata for a single object. Each GET_xxx call consists of an OPEN procedure, one or two SET_FILTER calls, optionally an ADD_TRANSFORM procedure, a FETCH_xxx call, and a CLOSE procedure.

The object_type parameter has the same semantics as in the OPEN procedure. schema and name are used for filtering.

If a transform is specified, session-level transform flags are inherited.

	

DBMS_METADATA.GET_DEPENDENT_xxx()

	
Returns the metadata for one or more dependent objects, specified as XML or DDL.

	

DBMS_METADATA.GET_GRANTED_xxx()

	
Returns the metadata for one or more granted objects, specified as XML or DDL.

Table 19-3 provides a brief description of the DBMS_METADATA procedures and functions used for XML submission.

Table 19-3 DBMS_METADATA Procedures and Functions for Submitting XML Data

	PL/SQL Name	Description
	

DBMS_METADATA.OPENW()

	
Opens a write context.

	

DBMS_METADATA.ADD_TRANSFORM()

	
Specifies a transform for the XML documents

	

DBMS_METADATA.SET_TRANSFORM_PARAM() and
DBMS_METADATA.SET_REMAP_PARAM()

	
SET_TRANSFORM_PARAM specifies a parameter to a transform.

SET_REMAP_PARAM specifies a remapping for a transform.

	

DBMS_METADATA.SET_PARSE_ITEM()

	
Specifies an object attribute to be parsed.

	

DBMS_METADATA.CONVERT()

	
Converts an XML document to DDL.

	

DBMS_METADATA.PUT()

	
Submits an XML document to the database.

	

DBMS_METADATA.CLOSE()

	
Closes the context opened with OPENW.

Preface

This document describes how to use the Oracle Database utilities for data transfer, data maintenance, and database administration. The preface contains these topics:

	
Audience

	
Documentation Accessibility

	
Related Documentation

	
Conventions

Audience

The utilities described in this book are intended for database administrators (DBAs), application programmers, security administrators, system operators, and other Oracle users who perform the following tasks:

	
Archive data, back up an Oracle database, or move data between Oracle databases using the Export and Import utilities (both the original versions and the Data Pump versions)

	
Load data into Oracle tables from operating system files using SQL*Loader, or from external sources using the external tables feature

	
Perform a physical data structure integrity check on an offline database, using the DBVERIFY utility

	
Maintain the internal database identifier (DBID) and the database name (DBNAME) for an operational database, using the DBNEWID utility

	
Extract and manipulate complete representations of the metadata for database objects, using the Metadata API

	
Query and analyze redo log files (through a SQL interface), using the LogMiner utility

To use this manual, you need a working knowledge of SQL and of Oracle fundamentals. You can find such information in Oracle Database Concepts. In addition, to use SQL*Loader, you must know how to use the file management facilities of your operating system.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible, with good usability, to the disabled community. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the United States of America 24 hours a day, 7 days a week. For TTY support, call 800.446.2398. Outside the United States, call +1.407.458.2479.

Related Documentation

For more information, see these Oracle resources:

The Oracle Database documentation set, especially:

	
Oracle Database Concepts

	
Oracle Database SQL Language Reference

	
Oracle Database Administrator's Guide

	
Oracle Database PL/SQL Packages and Types Reference

Some of the examples in this book use the sample schemas of the seed database, which is installed by default when you install Oracle Database. Refer to Oracle Database Sample Schemas for information about how these schemas were created and how you can use them yourself.

Oracle error message documentation is only available in HTML. If you only have access to the Oracle Database Documentation CD, you can browse the error messages by range. Once you find the specific range, use your browser's "find in page" feature to locate the specific message. When connected to the Internet, you can search for a specific error message using the error message search feature of the Oracle online documentation.

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other collateral, please visit the Oracle Technology Network (OTN). You must register online before using OTN; registration is free and can be done at

http://www.oracle.com/technology

If you already have a username and password for OTN, then you can go directly to the documentation section of the OTN Web site at

http://www.oracle.com/technology

Syntax Diagrams

Syntax descriptions are provided in this book for various SQL, PL/SQL, or other command-line constructs in graphic form or Backus Naur Form (BNF). See Oracle Database SQL Language Reference for information about how to interpret these descriptions.

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

Index

A B C D E F G H I J K L M N O P Q R S T U V W X Z

A

	access privileges
	
	Export and Import, 20.2.3

	ADD_FILE parameter
	
	Data Pump Export utility
	
	interactive-command mode, 2.6.1

	ADR
	
	See automatic diagnostic repository

	ADR base
	
	in ADRCI utility, 15.2

	ADR home
	
	in ADRCI utility, 15.2

	ADRCI
	
	troubleshooting, 15.10

	ADRCI utility
	
	ADR base, 15.2
	ADR home, 15.2
	batch mode, 15.3.3
	getting help, 15.3
	homepath, 15.2
	interactive mode, 15.3.1
	starting, 15.3

	Advanced Queuing
	
	exporting advanced queue tables, 20.27.4.10
	importing advanced queue tables, 20.28.5.10

	aliases
	
	directory
	
	exporting, 20.27.4.5
	importing, 20.28.5.5

	analyzer statistics, 20.28.3
	analyzing redo log files, 18
	ANYDATA type
	
	effect on table-mode Import, 20.8
	using SQL strings to load, 9.12.6

	APPEND parameter
	
	SQL*Loader utility, 8.14.2

	append to table
	
	SQL*Loader, 8.13.2.2.1

	archiving
	
	disabling
	
	effect on direct path loads, 11.5.4.1

	arrays
	
	committing after insert, 20.10.2

	atomic null, 10.1.5.2
	ATTACH parameter
	
	Data Pump Export utility, 2.4.1
	Data Pump Import utility, 3.4.1

	attaching to an existing job
	
	Data Pump Export utility, 2.4.1

	attributes
	
	null, 10.1.5.1

	attribute-value constructors
	
	overriding, 10.1.6

	automatic diagnostic repository, 15.2
	Automatic Storage Management (ASM)
	
	Data Pump and, 1.5.2.1

B

	backslash escape character, 8.3.3.2
	backups
	
	restoring dropped snapshots
	
	Import, 20.18.2.1

	bad files
	
	specifying for SQL*Loader, 8.8

	BAD parameter
	
	SQL*Loader command line, 7.2.1

	BADFILE parameter
	
	SQL*Loader utility, 8.8

	BEGINDATA parameter
	
	SQL*Loader control file, 8.6

	BFILE columns
	
	exporting, 20.27.4.6
	importing, 20.28.5.5

	BFILE datatype, 10.5
	big-endian data
	
	external tables, 13.2.7

	bind arrays
	
	determining size of for SQL*Loader, 8.16.4
	minimizing SQL*Loader memory requirements, 8.16.5
	minimum requirements, 8.16.1
	size with multiple SQL*Loader INTO TABLE statements, 8.16.6
	specifying maximum size, 7.2.2
	specifying number of rows, 7.2.22
	SQL*Loader performance implications, 8.16.2

	BINDSIZE parameter
	
	SQL*Loader command line, 7.2.2, 8.16.3

	blanks
	
	loading fields consisting of blanks, 9.9
	SQL*Loader BLANKS parameter for field comparison, 9.5.1
	trailing, 9.4.5.6
	trimming, 9.10
	
	external tables, 13.3.2

	whitespace, 9.10

	BLANKS parameter
	
	SQL*Loader utility, 9.5.1

	bound fillers, 9.3.1
	buffer cache size
	
	and Data Pump operations involving Streams, 4.3.1

	BUFFER parameter
	
	Export utility, 20.9.1
	Import utility, 20.10.1

	buffers
	
	calculating for export, 20.9.1
	space required by
	
	VARCHAR data in SQL*Loader, 9.4.1.9

	specifying with SQL*Loader BINDSIZE parameter, 8.16.4

	byte order, 9.8
	
	big-endian, 9.8
	little-endian, 9.8
	specifying in SQL*Loader control file, 9.8.1

	byte order marks, 9.8.2
	
	precedence
	
	for first primary datafile, 9.8.2
	for LOBFILEs and SDFs, 9.8.2

	suppressing checks for, 9.8.2.1

	BYTEINT datatype, 9.4.1.5
	BYTEORDER parameter
	
	SQL*Loader utility, 9.8.1

	BYTEORDERMARK parameter
	
	SQL*Loader utility, 9.8.2.1

C

	cached sequence numbers
	
	Export, 20.27.4.1

	catalog.sql script
	
	preparing database for Export and Import, 20.2.1

	catexp.sql script
	
	preparing database for Export and Import, 20.2.1

	catldr.sql script
	
	preparing for direct path loads, 11.4.1

	changing a database ID, 17.3.1
	changing a database name, 17.3.3
	CHAR datatype
	
	delimited form and SQL*Loader, 9.4.5
	reference
	
	SQL*Loader, 9.4.2.1

	character fields
	
	delimiters and SQL*Loader, 9.4.2, 9.4.5
	determining length for SQL*Loader, 9.4.6
	SQL*Loader datatypes, 9.4.2

	character sets
	
	conversion
	
	during Export and Import, 20.17.1

	eight-bit to seven-bit conversions
	
	Export/Import, 20.17.3

	identifying for external tables, 13.2.4
	multibyte
	
	Export/Import, 20.17.4
	SQL*Loader, 8.10.1

	single-byte
	
	Export/Import, 20.17.3

	SQL*Loader control file, 8.10.5.3
	SQL*Loader conversion between, 8.10
	Unicode, 8.10.2

	character strings
	
	external tables
	
	specifying bytes or characters, 13.2.9

	SQL*Loader, 9.5.2

	character-length semantics, 8.10.5.4
	CHARACTERSET parameter
	
	SQL*Loader utility, 8.10.5.2

	check constraints
	
	overriding disabling of, 11.8.1.2

	collections, 6.10
	
	loading, 10.6

	column array rows
	
	specifying number of, 11.5.5

	column objects
	
	loading, 10.1
	
	with user-defined constructors, 10.1.6

	COLUMNARRAYROWS parameter
	
	SQL*Loader command line, 7.2.3

	columns
	
	exporting LONG datatypes, 20.27.4.2
	loading REF columns, 10.3
	naming
	
	SQL*Loader, 9.3

	objects
	
	loading nested column objects, 10.1.3
	stream record format, 10.1.1
	variable record format, 10.1.2, 10.1.2

	reordering before Import, 20.6.1
	setting to a constant value with SQL*Loader, 9.13.2
	setting to a unique sequence number with SQL*Loader, 9.13.6
	setting to an expression value with SQL*Loader, 9.13.3
	setting to null with SQL*Loader, 9.13.2.1
	setting to the current date with SQL*Loader, 9.13.5
	setting to the datafile record number with SQL*Loader, 9.13.4
	specifying
	
	SQL*Loader, 9.3

	specifying as PIECED
	
	SQL*Loader, 11.4.7.1

	using SQL*Loader, 9.13.3

	comments
	
	in Export and Import parameter files, 20.3.3
	with external tables, 13.1, 14.1.1

	COMMIT parameter
	
	Import utility, 20.10.2

	COMPILE parameter
	
	Import utility, 20.10.3

	completion messages
	
	Export, 20.14.4
	Import, 20.14.4

	COMPRESS parameter
	
	Export utility, 20.9.2

	COMPRESSION parameter
	
	Data Pump Export utility, 2.4.2

	CONCATENATE parameter
	
	SQL*Loader utility, 8.12

	concurrent conventional path loads, 11.8.4
	configuration
	
	of LogMiner utility, 18.2.1

	CONSISTENT parameter
	
	Export utility, 20.9.3
	
	nested tables and, 20.9.3
	partitioned table and, 20.9.3

	consolidating
	
	extents, 20.9.2

	CONSTANT parameter
	
	SQL*Loader, 9.13.2

	constraints
	
	automatic integrity and SQL*Loader, 11.8.2.2
	direct path load, 11.8
	disabling referential constraints, 20.6.2
	enabling
	
	after a parallel direct path load, 11.9.7

	enforced on a direct load, 11.8.1.1
	failed
	
	Import, 20.28.1.1.1

	load method, 11.3.8

	CONSTRAINTS parameter
	
	Export utility, 20.9.4
	Import utility, 20.10.4

	constructors
	
	attribute-value, 10.1.6
	
	overriding, 10.1.6

	user-defined, 10.1.6
	
	loading column objects with, 10.1.6

	CONTENT parameter
	
	Data Pump Export utility, 2.4.3
	Data Pump Import utility, 3.4.1

	CONTINUE_CLIENT parameter
	
	Data Pump Export utility
	
	interactive-command mode, 2.6.2

	Data Pump Import utility
	
	interactive-command mode, 3.6.1

	CONTINUEIF parameter
	
	SQL*Loader utility, 8.12

	control files
	
	character sets, 8.10.5.3
	creating
	
	guidelines, 6.3

	data definition language syntax, 8.1
	specifying data, 8.6
	specifying SQL*Loader discard file, 8.9

	CONTROL parameter
	
	SQL*Loader command line, 7.2.4

	conventional path Export
	
	compared to direct path, 20.27.1

	conventional path loads
	
	behavior when discontinued, 8.11.1
	compared to direct path loads, 11.3.7
	concurrent, 11.9.1
	of a single partition, 11.2
	SQL*Loader bind array, 8.16.2
	when to use, 11.2.2

	conversion of character sets
	
	during Export/Import, 20.17.1
	effect of character set sorting on, 20.17.1.1

	conversion of data
	
	during direct path loads, 11.3.1

	conversion of input characters, 8.10.5
	CREATE SESSION privilege
	
	Export, 20.2.3
	Import, 20.2.3

	creating
	
	incident package, 15.8.2
	tables
	
	manually, before import, 20.6.1

D

	data
	
	conversion
	
	direct path load, 11.3.1

	delimiter marks in data and SQL*Loader, 9.4.5.4
	distinguishing different input formats for SQL*Loader, 8.15
	distinguishing different input row object subtypes, 8.15, 8.15.3
	exporting, 20.9.24
	generating unique values with SQL*Loader, 9.13.6
	including in control files, 8.6
	loading data contained in the SQL*Loader control file, 9.13.1
	loading in sections
	
	SQL*Loader, 11.4.7.1

	loading into more than one table
	
	SQL*Loader, 8.15

	maximum length of delimited data for SQL*Loader, 9.4.5.5
	moving between operating systems using SQL*Loader, 9.7
	recovery
	
	SQL*Loader direct path load, 11.4.6

	saving in a direct path load, 11.4.5
	saving rows
	
	SQL*Loader, 11.5.3

	unsorted
	
	SQL*Loader, 11.5.2.2

	values optimized for SQL*Loader performance, 9.13.1

	data fields
	
	specifying the SQL*Loader datatype, 9.3.2

	data movement
	
	in Data Pump Export and Import, 1.2

	DATA parameter
	
	SQL*Loader command line, 7.2.5

	Data Pump Export utility
	
	and transparent data encryption, 2.4.10
	ATTACH parameter, 2.4.1
	command-line mode, 2.4, 3.4
	compared to original Export utility, 2.5
	COMPRESSION parameter, 2.4.2
	CONTENT parameter, 2.4.3, 2.4.3
	controlling resource consumption, 4.2.1
	data movement methods, 1.2
	DATA_OPTIONS parameter, 2.4.4
	dump file set, 2.1
	DUMPFILE parameter, 2.4.6
	encryption of SecureFiles, 2.4.7
	ENCRYPTION parameter, 2.4.7
	ENCRYPTION_ALGORITHM parameter, 2.4.8
	ENCRYPTION_MODE parameter, 2.4.9
	ENCRYPTION_PASSWORD parameter, 2.4.10
	ESTIMATE parameter, 2.4.11
	ESTIMATE_ONLY parameter, 2.4.12
	EXCLUDE parameter, 2.4.13
	excluding objects, 2.4.13
	export modes, 2.2.2
	FILESIZE command
	
	interactive-command mode, 2.6.4

	FILESIZE parameter, 2.4.14
	filtering data that is exported
	
	using EXCLUDE parameter, 2.4.13
	using INCLUDE parameter, 2.4.19

	FLASHBACK_SCN parameter, 2.4.15
	FLASHBACK_TIME parameter, 2.4.16
	FULL parameter, 2.4.17
	HELP parameter
	
	interactive-command mode, 2.6.5

	INCLUDE parameter, 2.4.19
	interactive-command mode, 2.6
	
	ADD_FILE parameter, 2.6.1
	CONTINUE_CLIENT parameter, 2.6.2
	EXIT_CLIENT parameter, 2.6.3
	FILESIZE, 2.6.4
	HELP parameter, 2.6.5
	KILL_JOB parameter, 2.6.6
	PARALLEL parameter, 2.6.7
	START_JOB parameter, 2.6.8
	STATUS parameter, 2.6.9
	STOP_JOB parameter, 2.6.10, 3.6.8

	interfaces, 2.2.1
	invoking
	
	as SYSDBA, 2.2, 3.2

	job names
	
	specifying, 2.4.20

	JOB_NAME parameter, 2.4.20
	LOGFILE parameter, 2.4.21
	NETWORK_LINK parameter, 2.4.22
	NOLOGFILE parameter, 2.4.23
	PARALLEL parameter
	
	command-line mode, 2.4.24
	interactive-command mode, 2.6.7

	PARFILE parameter, 2.4.25
	QUERY parameter, 2.4.26
	REMAP_DATA parameter, 2.4.27
	REUSE_DUMPFILES parameter, 2.4.28
	SAMPLE parameter, 2.4.29
	SCHEMAS parameter, 2.4.30
	specifying a job name, 2.4.20
	syntax diagrams, 2.8
	TABLES parameter, 2.4.32
	TABLESPACES parameter, 2.4.33
	TRANSPORT_FULL_CHECK parameter, 2.4.34
	TRANSPORT_TABLESPACES parameter, 2.4.35
	TRANSPORTABLE parameter, 2.4.36
	VERSION parameter, 2.4.37
	versioning, 1.6

	Data Pump Import utility
	
	and transparent data encryption, 3.4.6
	ATTACH parameter, 3.4.1
	attaching to an existing job, 3.4.1
	changing name of source datafile, 3.4.23
	command-line mode
	
	NOLOGFILE parameter, 3.4.17
	STATUS parameter, 3.4.31

	compared to original Import utility, 3.5
	CONTENT parameter, 3.4.2
	controlling resource consumption, 4.2.1
	data movement methods, 1.2
	DATA_OPTIONS parameter, 3.4.3
	DIRECTORY parameter, 3.4.4
	DUMPFILE parameter, 3.4.5
	ENCRYPTION_PASSWORD parameter, 3.4.6
	ESTIMATE parameter, 3.4.7
	estimating size of job, 3.4.7
	EXCLUDE parameter, 3.4.8
	filtering data that is imported
	
	using EXCLUDE parameter, 3.4.8
	using INCLUDE parameter, 3.4.13

	FLASHBACK_SCN parameter, 3.4.9
	FLASHBACK_TIME parameter, 3.4.10
	full import mode, 3.2.2.1
	FULL parameter, 3.4.11
	HELP parameter
	
	command-line mode, 3.4.12
	interactive-command mode, 3.6.3

	INCLUDE parameter, 3.4.13
	interactive-command mode, 3.6
	
	CONTINUE_CLIENT parameter, 3.6.1
	EXIT_CLIENT parameter, 3.6.2
	HELP parameter, 3.6.3
	KILL_JOB parameter, 3.6.4
	START_JOB parameter, 3.6.6
	STATUS parameter, 3.6.7
	STOP_JOB parameter, 3.6.8

	interfaces, 3.2.1
	JOB_NAME parameter, 3.4.14
	LOGFILE parameter, 3.4.15
	PARALLEL parameter
	
	command-line mode, 3.4.18
	interactive-command mode, 3.6.5

	PARFILE parameter, 3.4.19
	PARTITION_OPTIONS parameter, 3.4.20
	QUERY parameter, 3.4.21
	REMAP_DATA parameter, 3.4.22
	REMAP_DATAFILE parameter, 3.4.23
	REMAP_SCHEMA parameter, 3.4.24
	REMAP_TABLE parameter, 3.4.25
	REMAP_TABLESPACE parameter, 3.4.26
	REUSE_DATAFILES parameter, 3.4.27
	schema mode, 3.2.2.2
	SCHEMAS parameter, 3.4.28
	SKIP_UNUSABLE_INDEXES parameter, 3.4.29
	specifying a job name, 3.4.14
	specifying dump file set to import, 3.4.5
	SQLFILE parameter, 3.4.30
	STREAMS_CONFIGURATION parameter, 3.4.32
	syntax diagrams, 3.8
	table mode, 3.2.2.3
	TABLE_EXISTS_ACTION parameter, 3.4.33
	TABLES parameter, 3.4.34
	tablespace mode, 3.2.2.4
	TABLESPACES parameter, 3.4.35
	TRANSFORM parameter, 3.4.36
	TRANSPORT_DATAFILES parameter, 3.4.37
	TRANSPORT_FULL_CHECK parameter, 3.4.38
	TRANSPORT_TABLESPACES parameter, 3.4.39
	TRANSPORTABLE parameter, 3.4.40
	transportable tablespace mode, 3.2.2.5
	VERSION parameter, 3.4.41
	versioning, 1.6

	DATA_OPTIONS parameter
	
	Data Pump Export utility, 2.4.4
	Data Pump Import utility, 3.4.3

	database ID (DBID)
	
	changing, 17.3.1

	database identifier
	
	changing, 17.3.1

	database migration
	
	partitioning of, 20.29

	database name (DBNAME)
	
	changing, 17.3.3

	database objects
	
	exporting LONG columns, 20.27.4.2

	databases
	
	changing the database ID, 17.3.1
	changing the name, 17.3.3
	exporting entire, 20.9.11
	full import, 20.10.11
	moving between platforms, 20.13
	privileges for exporting and importing, 20.2.3
	reducing fragmentation, 20.25
	reusing existing datafiles
	
	Import, 20.10.6

	datafiles
	
	preventing overwrite during import, 20.10.6
	reusing during import, 20.10.6
	specifying, 7.2.5
	specifying buffering for SQL*Loader, 8.7
	specifying for SQL*Loader, 8.5
	specifying format for SQL*Loader, 8.7

	DATAFILES parameter
	
	Import utility, 20.10.5

	datatypes
	
	BFILE
	
	Export, 20.27.4.6
	Import, 20.28.5.5

	BYTEINT, 9.4.1.5
	CHAR, 9.4.2.1
	converting SQL*Loader, 9.4.3
	DATE, 9.4.2.2.1
	datetime, 9.4.2.2
	DECIMAL, 9.4.1.7
	default in SQL*Loader, 9.3.2
	describing for external table fields, 13.3.6
	determining character field lengths for SQL*Loader, 9.4.6
	determining DATE length, 9.4.6.3
	DOUBLE, 9.4.1.4
	FLOAT, 9.4.1.3
	GRAPHIC, 9.4.2.3
	GRAPHIC EXTERNAL, 9.4.2.4
	identifying for external tables, 13.3.4
	INTEGER (n), 9.4.1.1
	interval, 9.4.2.2
	length-value, 9.4, 9.4
	LONG
	
	Export, 20.27.4.2
	Import, 20.28.5.11, 20.28.5.11

	LONG VARRAW, 9.4.1.11
	native
	
	conflicting length specifications in SQL*Loader, 9.4.2.9

	nonportable, 9.4.1
	nonscalar, 10.1.5
	NUMBER
	
	SQL*Loader, 9.4.3, 9.4.4

	numeric EXTERNAL, 9.4.2.5
	portable, 9.4.2
	RAW, 9.4.2.6
	SMALLINT, 9.4.1.2
	specifying the SQL*Loader datatype of a data field, 9.3.2
	supported by the LogMiner utility, 18.13.1
	unsupported by LogMiner utility, 18.13.2
	value, 9.4, 9.4
	VARCHAR, 9.4.1.9
	VARCHAR2
	
	SQL*Loader, 9.4.3

	VARCHARC, 9.4.2.7
	VARGRAPHIC, 9.4.1.8
	VARRAW, 9.4.1.10
	VARRAWC, 9.4.2.8
	ZONED, 9.4.1.6

	date cache feature
	
	DATE_CACHE parameter, 7.2.6
	external tables, 12.5.1
	SQL*Loader, 11.5.6

	DATE datatype
	
	delimited form and SQL*Loader, 9.4.5
	determining length, 9.4.6.3
	mask
	
	SQL*Loader, 9.4.6.3

	SQL*Loader, 9.4.2.2.1

	DATE_CACHE parameter
	
	SQL*Loader utility, 7.2.6

	datetime datatypes, 9.4.2.2
	DBID (database identifier)
	
	changing, 17.3.1

	DBMS_DATAPUMP PL/SQL package, 5
	DBMS_LOGMNR PL/SQL procedure
	
	LogMiner utility and, 18.2.2

	DBMS_LOGMNR_D PL/SQL procedure
	
	LogMiner utility and, 18.2.2

	DBMS_LOGMNR_D.ADD_LOGFILES PL/SQL procedure
	
	LogMiner utility and, 18.2.2

	DBMS_LOGMNR_D.BUILD PL/SQL procedure
	
	LogMiner utility and, 18.2.2

	DBMS_LOGMNR_D.END_LOGMNR PL/SQL procedure
	
	LogMiner utility and, 18.2.2

	DBMS_LOGMNR.ADD_LOGFILE PL/SQL procedure
	
	ADDFILE option, 18.3.2
	NEW option, 18.3.2

	DBMS_LOGMNR.COLUMN_PRESENT function, 18.5.2
	DBMS_LOGMNR.MINE_VALUE function, 18.5.2
	
	null values and, 18.5.2.1

	DBMS_LOGMNR.START_LOGMNR PL/SQL procedure, 18.4
	
	calling multiple times, 18.8
	COMMITTED_DATA_ONLY option, 18.6.1
	CONTINUOUS_MINE option, 18.3.2
	ENDTIME parameter, 18.6.3, 18.6.4
	LogMiner utility and, 18.2.2
	options for, 18.4
	PRINT_PRETTY_SQL option, 18.6.6
	SKIP_CORRUPTION option, 18.6.2
	STARTTIME parameter, 18.6.3, 18.6.4

	DBMS_METADATA PL/SQL package, 19.3.1
	DBNAME
	
	changing, 17.3.3

	DBNEWID utility, 17
	
	changing a database ID, 17.3.1
	changing a database name, 17.3.3
	effect on global database names, 17.2.1
	restrictions, 17.4.2
	syntax, 17.4
	troubleshooting a database ID change, 17.3.4

	DBVERIFY utility
	
	output, 16.1.3
	restrictions, 16
	syntax, 16.1.1
	validating a segment, 16.2
	validating disk blocks, 16.1

	DECIMAL datatype, 9.4.1.7
	
	EXTERNAL format
	
	SQL*Loader, 9.4.2.5

	default schema
	
	as determined by SQL*Loader, 8.13.1.1

	DEFAULTIF parameter
	
	SQL*Loader, 9.5

	DELETE ANY TABLE privilege
	
	SQL*Loader, 8.13.2.2.4

	DELETE CASCADE
	
	effect on loading nonempty tables, 8.13.2.2.2
	SQL*Loader, 8.13.2.2.4

	DELETE privilege
	
	SQL*Loader, 8.13.2.2.2

	delimited data
	
	maximum length for SQL*Loader, 9.4.5.5

	delimited fields
	
	field length, 9.4.6.2

	delimited LOBs, 10.4.2.2.3
	delimiters
	
	in external tables, 13.2.3
	loading trailing blanks, 9.4.5.6
	marks in data and SQL*Loader, 9.4.5.4
	specifying for external tables, 13.3.1
	specifying for SQL*Loader, 8.13.5, 9.4.5
	SQL*Loader enclosure, 9.10.2.2
	SQL*Loader field specifications, 9.10.2.2
	termination, 9.10.2.2

	DESTROY parameter
	
	Import utility, 20.10.6

	dictionary
	
	requirements for LogMiner utility, 18.2.1.2

	dictionary version mismatch, 18.9.4
	DIRECT parameter
	
	Export utility, 20.9.5

	direct path Export, 20.27.1, 20.27.2
	
	compared to conventional path, 20.27.1
	effect of EXEMPT ACCESS POLICY privilege, 20.27.2.1
	performance issues, 20.27.2.2
	restrictions, 20.27.2.3
	security considerations, 20.27.2.1

	direct path load
	
	advantages, 11.3.4
	behavior when discontinued, 8.11.2
	choosing sort order
	
	SQL*Loader, 11.5.2.4

	compared to conventional path load, 11.3.7
	concurrent, 11.9.3, 11.9.3
	conditions for use, 11.3.5
	data saves, 11.4.5, 11.5.3
	DIRECT command-line parameter
	
	SQL*Loader, 11.4.2

	dropping indexes, 11.7
	effect of disabling archiving, 11.5.4
	effect of PRIMARY KEY constraints, 11.9.8
	effect of UNIQUE KEY constraints, 11.9.8
	field defaults, 11.3.9
	improper sorting
	
	SQL*Loader, 11.5.2.2

	indexes, 11.4.3
	instance recovery, 11.4.6
	intersegment concurrency, 11.9.3
	intrasegment concurrency, 11.9.3
	loading into synonyms, 11.3.10
	location of data conversion, 11.3.1
	media recovery, 11.4.6.1, 11.4.6.1
	optimizing on multiple-CPU systems, 11.6
	partitioned load
	
	SQL*Loader, 11.8.4

	performance, 11.4.3, 11.5
	preallocating storage, 11.5.1
	presorting data, 11.5.2
	recovery, 11.4.6
	ROWS command-line parameter, 11.4.5.1
	setting up, 11.4.1
	specifying, 11.4.2
	specifying number of rows to be read, 7.2.22
	SQL*Loader data loading method, 6.9.2
	table insert triggers, 11.8.2
	temporary segment storage requirements, 11.4.3.2
	triggers, 11.8
	using, 11.3.7, 11.4
	version requirements, 11.3.5

	directory aliases
	
	exporting, 20.27.4.5
	importing, 20.28.5.5

	directory objects
	
	Data Pump
	
	effect of automatic storage management, 1.5.2.1

	using with Data Pump, 1.5.2.1

	DIRECTORY parameter
	
	Data Pump Export utility, 2.4.5
	Data Pump Import utility, 3.4.4

	discard files
	
	SQL*Loader, 8.9
	
	specifying a maximum, 8.9.2

	DISCARD parameter
	
	SQL*Loader command-line, 7.2.8

	discarded SQL*Loader records, 6.7
	
	causes, 8.9.4
	discard file, 8.9
	limiting, 8.9.6

	DISCARDMAX parameter
	
	SQL*Loader command-line, 7.2.9

	discontinued loads, 8.11
	
	continuing, 8.11.5
	conventional path behavior, 8.11.1
	direct path behavior, 8.11.2

	DOUBLE datatype, 9.4.1.4
	dropped snapshots
	
	Import, 20.18.2.1

	dump files
	
	maximum size, 20.9.8

	DUMPFILE parameter
	
	Data Pump Export utility, 2.4.6
	Data Pump Import utility, 3.4.5

E

	EBCDIC character set
	
	Import, 20.17.3

	eight-bit character set support, 20.17.3
	EMCA
	
	command-line arguments, 21.1
	sample EMCA input file, 21.3

	enclosed fields
	
	specified with enclosure delimiters and SQL*Loader, 9.4.5.2
	whitespace, 9.10.6

	enclosure delimiters, 9.4.5
	
	SQL*Loader, 9.4.5.2, 9.10.2.2

	encrypted columns
	
	in external tables, 14.1.6

	ENCRYPTION parameter
	
	Data Pump Export utility, 2.4.7

	ENCRYPTION_ALGORITHM parameter
	
	Data Pump Export utility, 2.4.8

	ENCRYPTION_MODE parameter
	
	Data Pump Export utility, 2.4.9

	ENCRYPTION_PASSWORD parameter
	
	Data Pump Export utility, 2.4.10
	Data Pump Import utility, 3.4.6

	errors
	
	caused by tab characters in SQL*Loader data, 9.2.1
	LONG data, 20.28.1.1.2
	object creation, 20.28.1.2.1
	
	Import parameter IGNORE, 20.10.14

	resource errors on import, 20.28.1.2.3
	row errors during import, 20.28.1.1
	writing to export log file, 20.9.15

	ERRORS parameter
	
	SQL*Loader command line, 7.2.10

	escape character
	
	quoted strings and, 8.3.3.2
	usage in Data Pump Export, 2.4
	usage in Data Pump Import, 3.4
	usage in Export, 20.9.26.1
	usage in Import, 20.10.29

	ESTIMATE parameter
	
	Data Pump Export utility, 2.4.11
	Data Pump Import utility, 3.4.7

	ESTIMATE_ONLY parameter
	
	Data Pump Export utility, 2.4.12

	estimating size of job
	
	Data Pump Export utility, 2.4.11

	EVALUATE CHECK_CONSTRAINTS clause, 11.8.1.2
	EXCLUDE parameter
	
	Data Pump Export utility, 2.4.13
	Data Pump Import utility, 3.4.8

	exit codes
	
	Export and Import, 20.15
	SQL*Loader, 7.3

	EXIT_CLIENT parameter
	
	Data Pump Export utility
	
	interactive-command mode, 2.6.3

	Data Pump Import utility
	
	interactive-command mode, 3.6.2

	EXP_FULL_DATABASE role
	
	assigning in Export, 20.2.1

	expdat.dmp
	
	Export output file, 20.9.7

	Export
	
	BUFFER parameter, 20.9.1
	character set conversion, 20.17.1
	COMPRESS parameter, 20.9.2
	CONSISTENT parameter, 20.9.3
	CONSTRAINTS parameter, 20.9.4
	conventional path, 20.27.1
	creating
	
	necessary privileges, 20.2.1
	necessary views, 20.2.1

	database optimizer statistics, 20.9.25
	DIRECT parameter, 20.9.5
	direct path, 20.27.1
	displaying online help, 20.9.13
	example sessions, 20.11
	
	full database mode, 20.11.1
	partition-level, 20.11.4
	table mode, 20.11.3
	user mode, 20.9.17, 20.11.2

	exit codes, 20.15
	exporting an entire database, 20.9.11
	exporting indexes, 20.9.14
	exporting sequence numbers, 20.27.4.1
	exporting synonyms, 20.27.4.11
	exporting to another operating system, 20.9.20, 20.10.19
	FEEDBACK parameter, 20.9.6
	FILE parameter, 20.9.7
	FILESIZE parameter, 20.9.8
	FLASHBACK_SCN parameter, 20.9.9
	FLASHBACK_TIME parameter, 20.9.10
	full database mode
	
	example, 20.11.1

	FULL parameter, 20.9.11
	GRANTS parameter, 20.9.12
	HELP parameter, 20.9.13
	INDEXES parameter, 20.9.14
	invoking, 20.3
	log files
	
	specifying, 20.9.15

	LOG parameter, 20.9.15
	logging error messages, 20.9.15
	LONG columns, 20.27.4.2
	OBJECT_CONSISTENT parameter, 20.9.16
	online help, 20.3.5
	OWNER parameter, 20.9.17
	parameter file, 20.9.18
	
	maximum size, 20.3.3

	parameter syntax, 20.9
	PARFILE parameter, 20.9.18
	partitioning a database migration, 20.29
	QUERY parameter, 20.9.19
	RECORDLENGTH parameter, 20.9.20
	redirecting output to a log file, 20.14.1
	remote operation, 20.16.2
	restrictions based on privileges, 20.2.3
	RESUMABLE parameter, 20.9.21
	RESUMABLE_NAME parameter, 20.9.22
	RESUMABLE_TIMEOUT parameter, 20.9.23
	ROWS parameter, 20.9.24
	sequence numbers, 20.27.4.1
	STATISTICS parameter, 20.9.25
	storage requirements, 20.2.2
	table mode
	
	example session, 20.11.3

	table name restrictions, 20.9.26.1
	TABLES parameter, 20.9.26
	TABLESPACES parameter, 20.9.27
	TRANSPORT_TABLESPACE parameter, 20.9.28
	TRIGGERS parameter, 20.9.29
	TTS_FULL_CHECK parameter, 20.9.30
	user access privileges, 20.2.3
	user mode
	
	example session, 20.9.17, 20.11.2
	specifying, 20.9.17

	USERID parameter, 20.9.31
	VOLSIZE parameter, 20.9.32

	export dump file
	
	importing the entire file, 20.10.11

	export file
	
	listing contents before importing, 20.10.24
	specifying, 20.9.7

	EXPRESSION parameter
	
	SQL*Loader, 9.13.3, 9.13.3.1

	extents
	
	consolidating, 20.9.2
	importing consolidated, 20.26.4

	external files
	
	exporting, 20.27.4.6

	EXTERNAL parameter
	
	SQL*Loader, 9.4.2.5

	EXTERNAL SQL*Loader datatypes, 9.4.2.5
	
	DECIMAL, 9.4.2.5
	FLOAT, 9.4.2.5
	GRAPHIC, 9.4.2.4
	numeric, 9.4.2.5
	
	determining len, 9.4.6

	ZONED, 9.4.2.5

	external tables
	
	access parameters, 12.1.1
	and encrypted columns, 14.1.6
	big-endian data, 13.2.7
	column_transforms clause, 13.1
	datatypes, 13.3.6
	date cache feature, 12.5.1
	delimiters, 13.2.3
	describing datatype of a field, 13.3.6
	differences in load behavior from SQL*Loader, 12.7
	field_definitions clause, 13.1, 13.3
	fixed-length records, 13.2.1
	identifying character sets, 13.2.4
	identifying datatypes, 13.3.4
	improving performance when using, 12.5
	
	date cache feature, 12.5.1

	little-endian data, 13.2.7
	opaque_format_spec, 12.1.1
	record_format_info clause, 13.1, 13.2
	reserved words, 12.6
	restrictions, 12.6
	setting a field to a default value, 13.3.7
	setting a field to null, 13.3.7
	skipping records when loading data, 13.2.14
	specifying delimiters, 13.3.1
	specifying load conditions, 13.2.10
	trimming blanks, 13.3.2
	use of SQL strings, 12.6
	using comments, 13.1, 14.1.1
	using constructor functions with, 12.2.3
	using to load data, 12.2
	variable-length records, 13.2.2

	EXTERNAL_TABLE parameter
	
	SQL*Loader, 7.2.11

F

	fatal errors
	
	See nonrecoverable error messages

	FEEDBACK parameter
	
	Export utility, 20.9.6
	Import utility, 20.10.7

	field conditions
	
	specifying for SQL*Loader, 9.5

	field length
	
	SQL*Loader specifications, 9.10.2

	field location
	
	SQL*Loader, 9.2

	fields
	
	character data length and SQL*Loader, 9.4.6
	comparing to literals with SQL*Loader, 9.5.2
	delimited
	
	determining length, 9.4.6.2
	SQL*Loader, 9.4.5

	enclosed and SQL*Loader, 9.4.5.2
	loading all blanks, 9.9
	predetermined size
	
	length, 9.4.6.1
	SQL*Loader, 9.10.2.1

	relative positioning and SQL*Loader, 9.10.3
	specified with a termination delimiter and SQL*Loader, 9.4.5.1
	specified with enclosure delimiters and SQL*Loader, 9.4.5.2
	specifying default delimiters for SQL*Loader, 8.13.5
	specifying for SQL*Loader, 9.3
	SQL*Loader delimited
	
	specifications, 9.10.2.2

	terminated and SQL*Loader, 9.4.5.1

	FIELDS clause
	
	SQL*Loader, 8.13.5
	terminated by whitespace, 9.10.4.1

	FILE parameter
	
	Export utility, 20.9.7
	Import utility, 20.10.8
	SQL*Loader utility, 11.9.6.1

	filenames
	
	quotation marks and, 8.3.3.1
	specifying multiple SQL*Loader, 8.5.2
	SQL*Loader, 8.3
	SQL*Loader bad file, 8.8

	FILESIZE parameter
	
	Data Pump Export utility, 2.4.14
	Export utility, 20.9.8
	Import utility, 20.10.9

	FILLER field
	
	using as argument to init_spec, 9.3.1

	filtering data
	
	using Data Pump Export utility, 2.1
	using Data Pump Import utility, 3.1

	filtering metadata that is imported
	
	Data Pump Import utility, 3.4.8

	finalizing
	
	in ADRCI utility, 15.2

	fine-grained access support
	
	Export and Import, 20.23

	fixed-format records, 6.4.1
	fixed-length records
	
	external tables, 13.2.1

	FLASHBACK_SCN parameter
	
	Data Pump Export utility, 2.4.15
	Data Pump Import utility, 3.4.9
	Export utility, 20.9.9

	FLASHBACK_TIME parameter
	
	Data Pump Export utility, 2.4.16
	Data Pump Import utility, 3.4.10
	Export utility, 20.9.10

	FLOAT datatype, 9.4.1.3
	
	EXTERNAL format
	
	SQL*Loader, 9.4.2.5

	FLOAT EXTERNAL data values
	
	SQL*Loader, 9.4.2.5

	foreign function libraries
	
	exporting, 20.27.4.3
	importing, 20.28.5.6, 20.28.5.9

	formats
	
	SQL*Loader input records and, 8.15.2

	formatting errors
	
	SQL*Loader, 8.8

	fragmentation
	
	reducing, 20.25

	FROMUSER parameter
	
	Import utility, 20.10.10

	full database mode
	
	Import, 20.10.11
	specifying with FULL, 20.9.11

	full export mode
	
	Data Pump Export utility, 2.2.2.1

	FULL parameter
	
	Data Pump Export utility, 2.4.17
	Data Pump Import utility, 3.4.11
	Export utility, 20.9.11
	Import utility, 20.10.11

G

	globalization
	
	SQL*Loader, 8.10

	grants
	
	exporting, 20.9.12
	importing, 20.4.1, 20.10.12

	GRANTS parameter
	
	Export utility, 20.9.12
	Import utility, 20.10.12

	GRAPHIC datatype
	
	EXTERNAL format in SQL*Loader, 9.4.2.4

H

	HELP parameter
	
	Data Pump Export utility
	
	command-line mode, 2.4.18
	interactive-command mode, 2.6.5

	Data Pump Import utility
	
	command-line mode, 3.4.12
	interactive-command mode, 3.6.3

	Export utility, 20.9.13
	Import utility, 20.10.13

	hexadecimal strings
	
	SQL*Loader, 9.5.2

	homepath
	
	in ADRCI utility, 15.2

I

	IGNORE parameter
	
	Import utility, 20.10.14

	IMP_FULL_DATABASE role
	
	assigning in Import, 20.2.1

	Import
	
	BUFFER parameter, 20.10.1
	character set conversion, 20.17.1, 20.17.3
	COMMIT parameter, 20.10.2
	committing after array insert, 20.10.2
	COMPILE parameter, 20.10.3
	consolidated extents, 20.26.4
	CONSTRAINTS parameter, 20.10.4
	creating
	
	necessary privileges, 20.2.1
	necessary views, 20.2.1

	creating an index-creation SQL script, 20.10.16
	database optimizer statistics, 20.10.26
	DATAFILES parameter, 20.10.5
	DESTROY parameter, 20.10.6
	disabling referential constraints, 20.6.2, 20.6.2
	displaying online help, 20.10.13
	dropping a tablespace, 20.21
	errors importing database objects, 20.28.1.2
	example sessions, 20.12
	
	all tables from one user to another, 20.12.3
	selected tables for specific user, 20.12.1
	tables exported by another user, 20.12.2
	using partition-level Import, 20.12.4

	exit codes, 20.15
	export file
	
	importing the entire file, 20.10.11
	listing contents before import, 20.10.24

	failed integrity constraints, 20.28.1.1.1
	FEEDBACK parameter, 20.10.7
	FILE parameter, 20.10.8
	FILESIZE parameter, 20.10.9
	FROMUSER parameter, 20.10.10
	FULL parameter, 20.10.11
	grants
	
	specifying for import, 20.10.12

	GRANTS parameter, 20.10.12
	HELP parameter, 20.10.13
	IGNORE parameter, 20.10.14
	importing grants, 20.10.12
	importing objects into other schemas, 20.4.2
	importing rows, 20.10.23
	importing tables, 20.10.29
	INDEXES parameter, 20.10.15
	INDEXFILE parameter, 20.10.16
	INSERT errors, 20.28.1.1.2
	invalid data, 20.28.1.1.2
	invoking, 20.3
	LOG parameter, 20.10.17
	LONG columns, 20.28.5.11, 20.28.5.11
	manually creating tables before import, 20.6.1
	manually ordering tables, 20.6.3
	NLS_LANG environment variable, 20.17.3
	object creation errors, 20.10.14
	online help, 20.3.5
	parameter file, 20.10.18
	
	maximum size, 20.3.3

	parameter syntax, 20.10
	PARFILE parameter, 20.10.18
	partition-level, 20.8.2
	pattern matching of table names, 20.10.29
	preserving size of initial extent, 20.26.4
	read-only tablespaces, 20.20
	RECORDLENGTH parameter, 20.10.19
	records
	
	specifying length, 20.10.19

	redirecting output to a log file, 20.14.1
	reducing database fragmentation, 20.25
	refresh error, 20.18.1
	remote operation, 20.16.2
	reorganizing tablespace during, 20.22
	resource errors, 20.28.1.2.3
	restrictions
	
	importing into own schema, 20.4

	RESUMABLE parameter, 20.10.20
	RESUMABLE_NAME parameter, 20.10.21
	RESUMABLE_TIMEOUT parameter, 20.10.22
	reusing existing datafiles, 20.10.6
	rows
	
	specifying for import, 20.10.23

	ROWS parameter, 20.10.23
	schema objects, 20.4.2
	sequences, 20.28.1.2.2
	SHOW parameter, 20.10.24
	single-byte character sets, 20.17.3
	SKIP_UNUSABLE_INDEXES parameter, 20.10.25
	snapshot master table, 20.18.1
	snapshots, 20.18
	
	restoring dropped, 20.18.2.1

	specifying by user, 20.10.10
	specifying index creation commands, 20.10.16
	specifying the export file, 20.10.8
	STATISTICS parameter, 20.10.26
	storage parameters
	
	overriding, 20.26.3

	stored functions, 20.28.5.7
	stored procedures, 20.28.5.7
	STREAMS_CONFIGURATION parameter, 20.10.27
	STREAMS_INSTANTIATION parameter, 20.10.28
	system objects, 20.4.3
	table name restrictions, 20.10.29.1
	table objects
	
	import order, 20.5

	table-level, 20.8.2
	TABLES parameter, 20.10.29
	TABLESPACES parameter, 20.10.30
	TOID_NOVALIDATE parameter, 20.10.31
	TOUSER parameter, 20.10.32
	TRANSPORT_TABLESPACE parameter, 20.10.33
	TTS_OWNER parameter, 20.10.34
	tuning considerations, 20.28.4
	types of errors during, 20.28.1
	user access privileges, 20.2.3
	USERID parameter, 20.10.35
	VOLSIZE parameter, 20.10.36

	incident
	
	fault diagnosability infrastructure, 15.2
	packaging, 15.8

	incident package
	
	fault diagnosability infrastructure, 15.2

	INCLUDE parameter
	
	Data Pump Export utility, 2.4.19
	Data Pump Import utility, 3.4.13

	index options
	
	SORTED INDEXES with SQL*Loader, 8.14.1
	SQL*Loader SINGLEROW parameter, 8.14.2

	Index Unusable state
	
	indexes left in Index Unusable state, 8.11.3, 11.4.4

	indexes
	
	creating manually, 20.10.16
	direct path load
	
	left in direct load state, 11.4.4

	dropping
	
	SQL*Loader, 11.7

	estimating storage requirements, 11.4.3.1
	exporting, 20.9.14
	importing, 20.10.15
	index-creation commands
	
	Import, 20.10.16

	left in unusable state, 8.11.3, 11.5.2.2
	multiple-column
	
	SQL*Loader, 11.5.2.3

	presorting data
	
	SQL*Loader, 11.5.2

	skipping maintenance, 7.2.25, 11.7
	skipping unusable, 7.2.26, 11.7
	SQL*Loader, 8.14
	state after discontinued load, 8.11.3
	unique, 20.10.15

	INDEXES parameter
	
	Export utility, 20.9.14
	Import utility, 20.10.15

	INDEXFILE parameter
	
	Import utility, 20.10.16

	INFILE parameter
	
	SQL*Loader utility, 8.5

	insert errors
	
	Import, 20.28.1.1.2
	specifying, 7.2.10

	INSERT into table
	
	SQL*Loader, 8.13.2.1.1

	instance affinity
	
	Export and Import, 20.24

	instance recovery, 11.4.6.2
	INTEGER datatype, 9.4.1.1
	
	EXTERNAL format, 9.4.2.5

	integrity constraints
	
	disabled during direct path load, 11.8.1.2
	enabled during direct path load, 11.8.1.1
	failed on Import, 20.28.1.1.1
	load method, 11.3.8

	interactive method
	
	Data Pump Export utility, 2.2.1

	internal LOBs
	
	loading, 10.4.1

	interrupted loads, 8.11
	interval datatypes, 9.4.2.2
	INTO TABLE statement
	
	effect on bind array size, 8.16.6
	multiple statements with SQL*Loader, 8.15
	SQL*Loader, 8.13
	
	column names, 9.3
	discards, 8.9.4

	invalid data
	
	Import, 20.28.1.1.2

	invoking
	
	Export, 20.3
	
	at the command line, 20.3.2
	direct path, 20.27.2
	interactively, 20.3.4
	with a parameter file, 20.3.3

	Import, 20.3
	
	as SYSDBA, 20.3.1
	at the command line, 20.3.2
	interactively, 20.3.4
	with a parameter file, 20.3.3

J

	Java Message Service (JMS), 21.5
	JOB_NAME parameter
	
	Data Pump Export utility, 2.4.20
	Data Pump Import utility, 3.4.14

K

	key values
	
	generating with SQL*Loader, 9.13.6

	KILL_JOB parameter
	
	Data Pump Export utility
	
	interactive-command mode, 2.6.6

	Data Pump Import utility, 3.6.4

L

	leading whitespace
	
	definition, 9.10.1
	trimming and SQL*Loader, 9.10.4

	length indicator
	
	determining size, 8.16.4.1

	length subfield
	
	VARCHAR DATA
	
	SQL*Loader, 9.4.1.9

	length-value datatypes, 9.4, 9.4
	length-value pair specified LOBs, 10.4.2.2.4
	libraries
	
	foreign function
	
	exporting, 20.27.4.3
	importing, 20.28.5.6, 20.28.5.9

	little-endian data
	
	external tables, 13.2.7

	LOAD parameter
	
	SQL*Loader command line, 7.2.13

	loading
	
	collections, 10.6
	column objects, 10.1
	
	in variable record format, 10.1.2
	with a derived subtype, 10.1.4
	with user-defined constructors, 10.1.6

	datafiles containing tabs
	
	SQL*Loader, 9.2.1

	external table data
	
	skipping records, 13.2.14
	specifying conditions, 13.2.7, 13.2.19

	into LONG RAW columns, 9.4.3
	LOBs, 10.4
	nested column objects, 10.1.3
	object tables, 10.2
	object tables with a subtype, 10.2.1
	REF columns, 10.3
	subpartitioned tables, 11.3.2
	tables, 11.3.2
	XML columns, 10.4

	LOB data, 6.5
	
	compression during export, 20.9.2
	Export, 20.27.4.2
	in delimited fields, 10.4.1.2
	in length-value pair fields, 10.4.1.3
	in predetermined size fields, 10.4.1.1

	LOB read buffer
	
	size of, 7.2.18

	LOBFILEs, 6.5, 10.4, 10.4.2
	LOBs
	
	loading, 10.4

	log files
	
	after a discontinued load, 8.11.4
	Export, 20.9.15, 20.14.1
	Import, 20.10.17, 20.14.1
	specifying for SQL*Loader, 7.2.14
	SQL*Loader, 6.8

	LOG parameter
	
	Export utility, 20.9.15
	Import utility, 20.10.17
	SQL*Loader command line, 7.2.14

	LOGFILE parameter
	
	Data Pump Export utility, 2.4.21
	Data Pump Import utility, 3.4.15

	logical records
	
	consolidating multiple physical records using SQL*Loader, 8.12

	LogMiner utility
	
	accessing redo data of interest, 18.5
	adjusting redo log file list, 18.8
	analyzing output, 18.5.1
	configuration, 18.2.1
	considerations for reapplying DDL statements, 18.7
	current log file list
	
	stored information about, 18.10.1

	DBMS_LOGMNR PL/SQL procedure and, 18.2.2
	DBMS_LOGMNR_D PL/SQL procedure and, 18.2.2
	DBMS_LOGMNR_D.ADD_LOGFILES PL/SQL procedure and, 18.2.2
	DBMS_LOGMNR_D.BUILD PL/SQL procedure and, 18.2.2
	DBMS_LOGMNR_D.END_LOGMNR PL/SQL procedure and, 18.2.2
	DBMS_LOGMNR.START_LOGMNR PL/SQL procedure and, 18.2.2
	DDL tracking
	
	time or SCN ranges, 18.9.6

	determining redo log files being analyzed, 18.3.2
	dictionary
	
	purpose of, 18.2.1

	dictionary extracted to flat file
	
	stored information about, 18.10

	dictionary options, 18.3.1
	
	flat file and, 18.3.1
	online catalog and, 18.3.1
	redo log files and, 18.3.1

	ending a session, 18.11.6
	executing reconstructed SQL, 18.6.5
	extracting data values from redo logs, 18.5.2
	filtering data by SCN, 18.6.4
	filtering data by time, 18.6.3
	formatting returned data, 18.6.6
	graphical user interface, 18
	levels of supplemental logging, 18.9
	LogMiner dictionary defined, 18.2.1
	mining a subset of data in redo log files, 18.8
	mining database definition for, 18.2.1
	operations overview, 18.2.2
	parameters
	
	stored information about, 18.10

	redo log files
	
	on a remote database, 18.8
	stored information about, 18.10

	requirements for dictionary, 18.2.1.2
	requirements for redo log files, 18.2.1.2
	requirements for source and mining databases, 18.2.1.2
	restrictions with XMLType data, 18.5.3.1
	sample configuration, 18.2.1.1
	showing committed transactions only, 18.6.1
	skipping corruptions, 18.6.2
	source database definition for, 18.2.1
	specifying redo log files to mine, 18.3.2
	
	automatically, 18.3.2
	manually, 18.3.2

	specifying redo logs for analysis, 18.11.3
	starting, 18.4, 18.11.4
	starting multiple times within a session, 18.8
	steps for extracting dictionary to a flat file, 18.3.1.3
	steps for extracting dictionary to redo log files, 18.3.1.2
	steps for using dictionary in online catalog, 18.3.1.1
	steps in a typical session, 18.11
	supplemental log groups, 18.9
	
	conditional, 18.9
	unconditional, 18.9

	supplemental logging, 18.9
	
	database level, 18.9.1
	database-level identification keys, 18.9.1.2
	disabling database-level, 18.9.2
	interactions with DDL tracking, 18.9.5
	log groups, 18.9
	minimal, 18.9.1.1
	stored information about, 18.10
	table-level identification keys, 18.9.3.1
	table-level log groups, 18.9.3.2
	user-defined log groups, 18.9.3.3

	support for transparent data encryption, 18.5
	supported database versions, 18.13.3
	supported datatypes, 18.13.1
	supported redo log file versions, 18.13.3
	suppressing delimiters in SQL_REDO and SQL_UNDO, 18.6.5
	table-level supplemental logging, 18.9.3
	tracking DDL statements, 18.9.4
	
	requirements, 18.9.4

	unsupported datatypes, 18.13.2
	using the online catalog, 18.3.1.1
	using to analyze redo log files, 18
	V$DATABASE view, 18.10
	V$LOGMNR_CONTENTS view, 18.2.2, 18.5.1, 18.6
	V$LOGMNR_DICTIONARY view, 18.10
	V$LOGMNR_LOGS view, 18.10
	
	querying, 18.10.1

	V$LOGMNR_PARAMETERS view, 18.9.6, 18.10
	views, 18.10

	LogMiner Viewer, 18
	LONG data
	
	C language datatype LONG FLOAT, 9.4.1.4
	exporting, 20.27.4.2
	importing, 20.28.5.11

	LONG VARRAW datatype, 9.4.1.11

M

	master tables
	
	Oracle Data Pump API, 1.3.2
	snapshots
	
	original Import, 20.18.1

	materialized views, 20.18
	media recovery
	
	direct path load, 11.4.6.1

	Metadata API, 19
	
	enhancing performance, 19.6
	retrieving collections, 19.5
	using to retrieve object metadata, 19.3

	missing data columns
	
	SQL*Loader, 8.13.6

	moving databases between platforms, 20.13
	multibyte character sets
	
	blanks with SQL*Loader, 9.5.1
	SQL*Loader, 8.10.1

	multiple-column indexes
	
	SQL*Loader, 11.5.2.3

	multiple-CPU systems
	
	optimizing direct path loads, 11.6

	multiple-table load
	
	generating unique sequence numbers using SQL*Loader, 9.13.7
	SQL*Loader control file specification, 8.15

	multithreading
	
	on multiple-CPU systems, 11.6

	MULTITHREADING parameter
	
	SQL*Loader command line, 7.2.15

N

	named pipes
	
	external table loads, 6.9.3

	native datatypes
	
	conflicting length specifications
	
	SQL*Loader, 9.4.2.9

	nested column objects
	
	loading, 10.1.3

	nested tables
	
	exporting, 20.27.4.9
	
	consistency and, 20.9.3

	importing, 20.28.5.3

	NETWORK_LINK parameter
	
	Data Pump Export utility, 2.4.22
	Data Pump Import utility, 3.4.16

	networks
	
	Export and Import, 20.16

	NLS_LANG environment variable, 20.17.2
	
	with Export and Import, 20.17.3

	NOLOGFILE parameter
	
	Data Pump Export utility, 2.4.23
	Data Pump Import utility, 3.4.17

	nonrecoverable error messages
	
	Export, 20.14.3
	Import, 20.14.3

	nonscalar datatypes, 10.1.5
	NOT NULL constraint
	
	load method, 11.3.8

	null data
	
	missing columns at end of record during load, 8.13.6
	unspecified columns and SQL*Loader, 9.3

	NULL values
	
	objects, 10.1.5

	NULLIF clause
	
	SQL*Loader, 9.5, 9.9

	NULLIF...BLANKS clause
	
	SQL*Loader, 9.5.1

	nulls
	
	atomic, 10.1.5.2
	attribute, 10.1.5.1

	NUMBER datatype
	
	SQL*Loader, 9.4.3, 9.4.4

	numeric EXTERNAL datatypes
	
	delimited form and SQL*Loader, 9.4.5
	determining length, 9.4.6
	SQL*Loader, 9.4.2.5

O

	object identifiers, 10.2
	
	importing, 20.28.5.1

	object names
	
	SQL*Loader, 8.3

	object support, 6.11
	object tables
	
	loading, 10.2, 10.2
	with a subtype
	
	loading, 10.2.1

	object type definitions
	
	exporting, 20.27.4.8

	OBJECT_CONSISTENT parameter
	
	Export utility, 20.9.16

	objects, 6.10
	
	considerations for importing, 20.28.5
	creation errors, 20.28.1.2.1
	ignoring existing objects during import, 20.10.14
	import creation errors, 20.10.14
	loading nested column objects, 10.1.3
	NULL values, 10.1.5
	stream record format, 10.1.1
	variable record format, 10.1.2

	offline locally managed tablespaces
	
	exporting, 20.27.4.4

	OID
	
	See object identifiers

	online help
	
	Export and Import, 20.3.5

	opaque_format_spec, 12.1.1
	operating systems
	
	moving data to different systems using SQL*Loader, 9.7

	OPTIMAL storage parameter
	
	used with Export/Import, 20.26.1

	optimizer statistics, 20.28.3
	optimizing
	
	direct path loads, 11.5
	SQL*Loader input file processing, 8.7

	OPTIONALLY ENCLOSED BY clause
	
	SQL*Loader, 9.10.2.2

	OPTIONS parameter
	
	for parallel loads, 8.13.3
	SQL*Loader utility, 8.2.1

	Oracle Advanced Queuing
	
	See Advanced Queuing

	Oracle Data Pump
	
	direct path loads
	
	restrictions, 1.2.2

	master table, 1.3.2
	tuning performance, 4.2

	Oracle Data Pump API, 5
	
	client interface, 5.1
	job states, 5.1.1
	monitoring job progress, 1.4.1

	ORACLE_DATAPUMP access driver
	
	effect of SQL ENCRYPT clause on, 14.1.6
	reserved words, 14, 14.5

	ORACLE_LOADER access driver
	
	reserved words, 13, 13.5

	OWNER parameter
	
	Export utility, 20.9.17

P

	packages
	
	creating, 15.8.2

	padding of literal strings
	
	SQL*Loader, 9.5.2

	parallel loads, 11.9
	
	restrictions on direct path, 11.9.4

	PARALLEL parameter
	
	Data Pump Export utility
	
	command-line interface, 2.4.24
	interactive-command mode, 2.6.7

	Data Pump Import utility
	
	command-line mode, 3.4.18
	interactive-command mode, 3.6.5

	SQL*Loader command line, 7.2.16

	parameter files
	
	Export, 20.9.18
	Export and Import
	
	comments in, 20.3.3
	maximum size, 20.3.3

	Import, 20.10.18
	SQL*Loader, 7.2.17

	PARFILE parameter
	
	Data Pump Export utility, 2.4.25
	Data Pump Import utility, 3.4.19
	Export command line, 20.9.18
	Import command line, 20.10.18
	SQL*Loader command line, 7.2.17

	PARTITION_OPTIONS parameter
	
	Data Pump Import utility, 3.4.20

	partitioned loads
	
	concurrent conventional path loads, 11.8.4
	SQL*Loader, 11.8.4

	partitioned tables
	
	export consistency and, 20.9.3
	exporting, 20.8.1
	importing, 20.8.2.1, 20.12.1
	loading, 11.3.2

	partitioning a database migration, 20.29
	
	advantages of, 20.29
	disadvantages of, 20.29
	procedure during export, 20.29.3

	partition-level Export, 20.8.1
	
	example session, 20.11.4

	partition-level Import, 20.8.2
	
	specifying, 20.9.26

	pattern matching
	
	table names during import, 20.10.29

	performance
	
	improving when using integrity constraints, 11.8.4
	issues when using external tables, 12.5
	optimizing for direct path loads, 11.5
	optimizing reading of SQL*Loader datafiles, 8.7
	tuning original Import, 20.28.4

	performance tuning
	
	Oracle Data Pump, 4.2

	PIECED parameter
	
	SQL*Loader, 11.4.7.1

	POSITION parameter
	
	using with data containing tabs, 9.2.1
	with multiple SQL*Loader INTO TABLE clauses, 8.15.2.1, 9.2, 9.2.2

	predetermined size fields
	
	SQL*Loader, 9.10.2.1

	predetermined size LOBs, 10.4.2.2.2
	prerequisites
	
	SQL*Loader, 11.1

	PRESERVE parameter, 8.12.2
	preserving
	
	whitespace, 9.11

	PRIMARY KEY constraints
	
	effect on direct path load, 11.9.8

	primary key OIDs
	
	example, 10.2

	primary key REF columns, 10.3.3, 10.3.3
	privileges
	
	EXEMPT ACCESS POLICY
	
	effect on direct path export, 20.27.2.1

	required for Export and Import, 20.2.1
	required for SQL*Loader, 11.1

	problem
	
	fault diagnosability infrastructure, 15.2

	problem key
	
	fault diagnosability infrastructure, 15.2

Q

	QUERY parameter
	
	Data Pump Export utility, 2.4.26
	Data Pump Import utility, 3.4.21
	Export utility, 20.9.19
	
	restrictions, 20.9.19.1

	quotation marks
	
	escape characters and, 8.3.3.2
	filenames and, 8.3.3.1
	SQL strings and, 8.3.2
	table names and, 20.9.26.1, 20.10.29.1
	usage in Data Pump Export, 2.4
	usage in Data Pump Import, 3.4
	use with database object names, 8.3.1

R

	RAW datatype
	
	SQL*Loader, 9.4.2.6

	read-consistent export, 20.9.3
	read-only tablespaces
	
	Import, 20.20

	READSIZE parameter
	
	SQL*Loader command line, 7.2.18
	
	effect on LOBs, 7.2.18
	maximum size, 7.2.18

	RECNUM parameter
	
	use with SQL*Loader SKIP parameter, 9.13.4

	RECORDLENGTH parameter
	
	Export utility, 20.9.20
	Import utility, 20.10.19

	records
	
	consolidating into a single logical record
	
	SQL*Loader, 8.12

	discarded by SQL*Loader, 6.7, 8.9
	DISCARDMAX command-line parameter, 7.2.9
	distinguishing different formats for SQL*Loader, 8.15.2
	extracting multiple logical records using SQL*Loader, 8.15
	fixed format, 6.4.1
	missing data columns during load, 8.13.6
	rejected by SQL*Loader, 6.7, 6.7.1.1, 6.7.1.2, 8.8
	setting column to record number with SQL*Loader, 9.13.4
	specifying how to load, 7.2.13
	specifying length for export, 20.9.20
	specifying length for import, 20.10.19
	stream record format, 6.4.3

	recovery
	
	direct path load
	
	SQL*Loader, 11.4.6

	replacing rows, 8.13.2.2

	redo log file
	
	LogMiner utility
	
	versions supported, 18.13.3

	redo log files
	
	analyzing, 18
	requirements for LogMiner utility, 18.2.1.2
	specifying for the LogMiner utility, 18.3.2

	redo logs
	
	direct path load, 11.4.6.1
	instance and media recovery
	
	SQL*Loader, 11.4.6.1

	minimizing use during direct path loads, 11.5.4
	saving space
	
	direct path load, 11.5.4.2

	REF columns, 10.3
	
	loading, 10.3
	primary key, 10.3.3
	system-generated, 10.3.2

	REF data
	
	importing, 20.28.5.4

	referential integrity constraints
	
	disabling for import, 20.6.2
	SQL*Loader, 11.8

	refresh error
	
	snapshots
	
	Import, 20.18.1

	reject files
	
	specifying for SQL*Loader, 8.8

	rejected records
	
	SQL*Loader, 6.7, 8.8

	relative field positioning
	
	where a field starts and SQL*Loader, 9.10.3
	with multiple SQL*Loader INTO TABLE clauses, 8.15.1.1

	REMAP_DATA parameter
	
	Data Pump Export utility, 2.4.27
	Data Pump Import utility, 3.4.22

	REMAP_DATAFILE parameter
	
	Data Pump Import utility, 3.4.23

	REMAP_SCHEMA parameter
	
	Data Pump Import utility, 3.4.24

	REMAP_TABLE parameter
	
	Data Pump Import utility, 3.4.25

	REMAP_TABLESPACE parameter
	
	Data Pump Import utility, 3.4.26

	Remote Method Invocation (RMI), 21.5
	remote operation
	
	Export/Import, 20.16.2

	REPLACE table
	
	replacing a table using SQL*Loader, 8.13.2.2.2

	reserved words
	
	external tables, 12.6
	ORACLE_DATAPUMP access driver, 14, 14.5
	ORACLE_LOADER access driver, 13, 13.5
	SQL*Loader, 6.3

	resource consumption
	
	controlling in Data Pump Export utility, 4.2.1
	controlling in Data Pump Import utility, 4.2.1

	resource errors
	
	Import, 20.28.1.2.3

	RESOURCE role, 20.4
	restrictions
	
	importing into another user's schema, 20.4.2
	table names in Export parameter file, 20.9.26.1
	table names in Import parameter file, 20.10.29.1

	RESUMABLE parameter
	
	Export utility, 20.9.21
	Import utility, 20.10.20
	SQL*Loader utility, 7.2.19

	resumable space allocation
	
	enabling and disabling, 7.2.19, 20.9.21, 20.10.20

	RESUMABLE_NAME parameter
	
	Export utility, 20.9.22
	Import utility, 20.10.21
	SQL*Loader utility, 7.2.20

	RESUMABLE_TIMEOUT parameter
	
	Export utility, 20.9.23
	Import utility, 20.10.22
	SQL*Loader utility, 7.2.21

	retrieving object metadata
	
	using Metadata API, 19.3

	REUSE_DATAFILES parameter
	
	Data Pump Import utility, 3.4.27

	REUSE_DUMPFILES parameter
	
	Data Pump Export utility, 2.4.28

	roles
	
	EXP_FULL_DATABASE, 20.2.3
	RESOURCE, 20.4

	rollback segments
	
	effects of CONSISTENT Export parameter, 20.9.3

	row errors
	
	Import, 20.28.1.1.1

	ROWID columns
	
	loading with SQL*Loader, 11.1.1

	rows
	
	choosing which to load using SQL*Loader, 8.13.4
	exporting, 20.9.24
	specifying for import, 20.10.23
	specifying number to insert before save
	
	SQL*Loader, 11.4.5.1

	updates to existing rows with SQL*Loader, 8.13.2.2.3

	ROWS parameter
	
	Export utility, 20.9.24
	Import utility, 20.10.23
	performance issues
	
	SQL*Loader, 11.5.3

	SQL*Loader command line, 7.2.22
	using to specify when data saves occur, 11.4.5.1

S

	SAMPLE parameter
	
	Data Pump Export utility, 2.4.29

	schema mode export
	
	Data Pump Export utility, 2.2.2.2

	schemas
	
	specifying for Export, 20.9.26

	SCHEMAS parameter
	
	Data Pump Export utility, 2.4.30
	Data Pump Import utility, 3.4.28

	scientific notation for FLOAT EXTERNAL, 9.4.2.5
	script files
	
	running before Export and Import, 20.2.1

	SDFs
	
	See secondary datafiles

	secondary datafiles, 6.5, 10.6.2
	SecureFiles
	
	encryption during Data Pump export, 2.4.7

	security considerations
	
	direct path export, 20.27.2.1

	segments
	
	temporary
	
	FILE parameter in SQL*Loader, 11.9.6.1

	sequence numb, 9.13.6
	sequence numbers
	
	cached, 20.27.4.1
	exporting, 20.27.4.1
	for multiple tables and SQL*Loader, 9.13.7
	generated by SQL*Loader SEQUENCE clause, 9.13.6
	generated, not read and SQL*Loader, 9.3

	short records with missing data
	
	SQL*Loader, 8.13.6

	SHORTINT datatype
	
	C language, 9.4.1.2

	SHOW parameter
	
	Import utility, 20.10.24

	SILENT parameter
	
	SQL*Loader command line, 7.2.23

	single-byte character sets
	
	Export and Import, 20.17.3

	SINGLEROW parameter, 8.14.2, 11.7
	single-table loads
	
	continuing, 8.11.5

	SKIP parameter
	
	effect on SQL*Loader RECNUM specification, 9.13.4
	SQL*Loader command line, 7.2.24, 7.2.24

	SKIP_INDEX_MAINTENANCE parameter
	
	SQL*Loader command line, 7.2.25, 11.7

	SKIP_UNUSABLE_INDEXES parameter
	
	Import utility, 20.10.25
	SQL*Loader command line, 7.2.26, 11.7

	SKIP_USABLE_INDEXES parameter
	
	Data Pump Import utility, 3.4.29

	skipping index maintenance, 7.2.25, 11.7
	skipping unusable indexes, 7.2.26, 11.7
	SMALLINT datatype, 9.4.1.2
	snapshot log
	
	Import, 20.18.1

	snapshots, 20.18.2
	
	importing, 20.18
	master table
	
	Import, 20.18.1

	restoring dropped
	
	Import, 20.18.2.1

	SORTED INDEXES clause
	
	direct path loads, 8.14.1
	SQL*Loader, 11.5.2.1

	sorting
	
	multiple-column indexes
	
	SQL*Loader, 11.5.2.3

	optimum sort order
	
	SQL*Loader, 11.5.2.4

	presorting in direct path load, 11.5.2
	SORTED INDEXES clause
	
	SQL*Loader, 11.5.2.1

	SQL operators
	
	applying to fields, 9.12

	SQL strings
	
	applying SQL operators to fields, 9.12
	quotation marks and, 8.3.2

	SQL*Loader
	
	appending rows to tables, 8.13.2.2.1
	BAD command-line parameter, 7.2.1
	bad file, 7.2.1
	BADFILE parameter, 8.8
	bind arrays and performance, 8.16.2
	BINDSIZE command-line parameter, 7.2.2, 8.16.3
	choosing which rows to load, 8.13.4
	COLUMNARRAYROWS command-line parameter, 7.2.3
	command-line parameters, 7.1
	continuing single-table loads, 8.11.5
	CONTROL command-line parameter, 7.2.4
	conventional path loads, 6.9.1, 11.2
	DATA command-line parameter, 7.2.5
	data conversion, 6.6
	data definition language
	
	syntax diagrams, A

	datatype specifications, 6.6
	DATE_CACHE command-line parameter, 7.2.6
	determining default schema, 8.13.1.1
	DIRECT command-line parameter, 11.4.2
	direct path method, 6.9.2
	
	using date cache feature to improve performance, 11.5.6

	DISCARD command-line parameter, 7.2.8
	discarded records, 6.7
	DISCARDFILE parameter, 8.9.1
	DISCARDMAX command-line parameter, 7.2.9
	DISCARDMAX parameter, 8.9.6
	DISCARDS parameter, 8.9.6
	errors caused by tabs, 9.2.1
	ERRORS command-line parameter, 7.2.10
	exclusive access, 11.8.3
	external table loads, 6.9.3
	EXTERNAL_TABLE parameter, 7.2.11
	FILE command-line parameter, 7.2.12
	filenames, 8.3
	globalization technology, 8.10
	index options, 8.14
	inserting rows into tables, 8.13.2.1.1
	INTO TABLE statement, 8.13
	LOAD command-line parameter, 7.2.13
	load methods, 11.1
	loading column objects, 10.1
	loading data across different platforms, 9.7
	loading data contained in the control file, 9.13.1
	loading object tables, 10.2
	LOG command-line parameter, 7.2.14
	log files, 6.8
	methods of loading data, 6.9
	multiple INTO TABLE statements, 8.15
	MULTITHREADING command-line parameter, 7.2.15
	object names, 8.3
	parallel data loading, 11.9, 11.9.3, 11.10
	PARFILE command-line parameter, 7.2.17
	READSIZE command-line parameter, 7.2.18
	
	maximum size, 7.2.18

	rejected records, 6.7
	replacing rows in tables, 8.13.2.2.2
	required privileges, 11.1
	RESUMABLE parameter, 7.2.19
	RESUMABLE_NAME parameter, 7.2.20
	RESUMABLE_TIMEOUT parameter, 7.2.21
	ROWS command-line parameter, 7.2.22
	SILENT command-line parameter, 7.2.23
	SINGLEROW parameter, 8.14.2
	SKIP_INDEX_MAINTENANCE command-line parameter, 7.2.25
	SKIP_UNUSABLE_INDEXES command-line parameter, 7.2.26
	SORTED INDEXES during direct path loads, 8.14.1
	specifying columns, 9.3
	specifying datafiles, 8.5
	specifying field conditions, 9.5
	specifying fields, 9.3
	specifying more than one datafile, 8.5.2
	STREAMSIZE command-line parameter, 7.2.27
	suppressing messages, 7.2.23
	USERID command-line parameter, 7.2.28

	SQLFILE parameter
	
	Data Pump Import utility, 3.4.30

	START_JOB parameter
	
	Data Pump Export utility
	
	interactive-command mode, 2.6.8

	Data Pump Import utility
	
	interactive-command mode, 3.6.6

	starting
	
	LogMiner utility, 18.4

	statistics
	
	analyzer, 20.28.3
	database optimizer
	
	specifying for Export, 20.9.25

	optimizer, 20.28.3
	specifying for Import, 20.10.26

	STATISTICS parameter
	
	Export utility, 20.9.25
	Import utility, 20.10.26

	STATUS parameter
	
	Data Pump Export utility, 2.4.31
	
	interactive-command mode, 2.6.9

	Data Pump Import utility, 3.4.31
	
	interactive-command mode, 3.6.7

	STOP_JOB parameter
	
	Data Pump Export utility
	
	interactive-command mode, 2.6.10

	Data Pump Import utility
	
	interactive-command mode, 3.6.8

	STORAGE parameter, 11.9.6.1.2
	storage parameters
	
	estimating export requirements, 20.2.2
	OPTIMAL parameter, 20.26.1
	overriding
	
	Import, 20.26.3

	preallocating
	
	direct path load, 11.5.1

	temporary for a direct path load, 11.4.3.2
	using with Export/Import, 20.26

	stored functions
	
	importing, 20.28.5.7
	
	effect of COMPILE parameter, 20.28.5.7

	stored package, 20.28.5.7
	stored packages
	
	importing, 20.28.5.7

	stored procedures
	
	direct path load, 11.8.2.6
	importing, 20.28.5.7
	
	effect of COMPILE parameter, 20.28.5.7

	stream buffer
	
	specifying size f