
Verity® Locale
Configuration Guide
V 5.0 for PeopleSoft®

November 15, 2003
Original Part Number DM0619

Verity, Incorporated
894 Ross Drive
Sunnyvale, California 94089
(408) 541-1500

Verity Benelux BV
Coltbaan 31
3439 NG Nieuwegein
The Netherlands

Copyright 2003 Verity, Inc. All rights reserved. No part of this publication may be
reproduced, transmitted, stored in a retrieval system, nor translated into any human or
computer language, in any form or by any means, electronic, mechanical, magnetic, optical,
chemical, manual or otherwise, without the prior written permission of the copyright owner,
Verity, Inc., 894 Ross Drive, Sunnyvale, California 94089. The copyrighted software that
accompanies this manual is licensed to the End User for use only in strict accordance with the
End User License Agreement, which the Licensee should read carefully before commencing
use of the software.

Verity®, Ultraseek®, TOPIC®, KeyView®, and Knowledge Organizer® are registered
trademarks of Verity, Inc. in the United States and other countries. The Verity logo, Verity
Portal One™, and Verity® Profiler™ are trademarks of Verity, Inc.

Sun, Sun Microsystems, the Sun logo, Sun Workstation, Sun Operating Environment, and
Java are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States
and other countries.

Xerces XML Parser Copyright 1999-2000 The Apache Software Foundation. All rights
reserved.

Microsoft is a registered trademark, and MS-DOS, Windows, Windows 95, Windows NT,
and other Microsoft products referenced herein are trademarks of Microsoft Corporation.

IBM is a registered trademark of International Business Machines Corporation.

The American Heritage® Concise Dictionary, Third Edition Copyright 1994 by Houghton
Mifflin Company. Electronic version licensed from Lernout & Hauspie Speech Products N.V.
All rights reserved.

WordNet 1.7 Copyright © 2001 by Princeton University. All rights reserved

Includes Adobe® PDF. Adobe is a trademark of Adobe Systems Incorporated.

LinguistX from Inxight Software, Inc., a Xerox New Enterprise Company, 1996-1997.
Xerox, Inxight and LinguistX are trademarks of Xerox Corporation and Inxight
Software, Inc. LinguistX contains patented technology of Xerox Corporation. All rights
reserved.

All other trademarks are the property of their respective owners.

Notice to Government End Users

If this product is acquired under the terms of a DoD contract: Use, duplication, or disclosure
by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of 252.227-
7013. Civilian agency contract: Use, reproduction or disclosure is subject to 52.227-19 (a)
through (d) and restrictions set forth in the accompanying end user agreement. Unpublished-
rights reserved under the copyright laws of the United States. Verity, Inc., 894 Ross Drive
Sunnyvale, California 94089.

Table of Contents

Preface
Using This Manual.. Preface-2

Version... Preface-2
Organization of This Manual ... Preface-2
Stylistic Conventions... Preface-3

Command-Line Tool Syntax ..Preface-3

Chapter 1 Language Concepts
Language and Encoding in Documents.. 1-2
Language-Related Indexing Features ... 1-4

Sorting Order... 1-4
Tokenization and Word Delimiters.. 1-4
Stemming ... 1-5

Stemming for Single-Language Locales ..1-6
Normalization ... 1-6
Decomposition of Compound Words.. 1-7
Part-of-Speech Identification... 1-7
Number Handling .. 1-8

Language-Related Search Features ... 1-9
Case-Insensitive Search.. 1-9
Accent-Insensitive Search.. 1-9
Symbol Search ... 1-9
Synonym Search.. 1-10
Soundex Search ... 1-10
Typo Search ... 1-10
Stop Words .. 1-11

Limitations in Handling Source Documents.. 1-13

Table of Contents
Chapter 2 Verity Locales
Locale Basics... 2-2

Installed Location... 2-2
Locale Definition File... 2-2
Internal Character Set and Supported Character Sets .. 2-2
Default Locales and the Session Locale .. 2-3
Built-In Locales ... 2-3
Locale Categories ... 2-4

Western European Locales... 2-5
Eastern European/Middle-Eastern Locales .. 2-7
Asian Locales ... 2-9

Chapter 3 Using Locales
Configuring Verity Locales.. 3-2

Redefining the Default Session Locale.. 3-2
Customizing Tokenization Behavior... 3-2

Disabling and Enabling Simple Tokens.. 3-3
Refining the Set of Token Delimiters .. 3-4
Making Symbols Searchable... 3-5
Disabling and Enabling Stemming.. 3-7
Customizing Word Decomposition in Japanese ... 3-8

Changing Search Characteristics ... 3-10
Enabling Case-Sensitive Search ... 3-10
Enabling Auto-Case... 3-10
Disabling Accent-Insensitive Search ... 3-11

Changing Formatting .. 3-12
Changing Date Formatting... 3-12
Changing the Decimal Separator... 3-13

Setting Up Synonym Search ... 3-13
Creating a Stop-Word File .. 3-14
Configuring Language Identification.. 3-15

Adjusting the Set of Languages to Identify.. 3-16
Disabling Language Identification .. 3-17

Notes on Creating Non-English Indexes ... 3-18
Locale and Character Set for Collections .. 3-18

Using Verity Spider to Create a non-English Collection.. 3-18
Locale and Character Set for Command-Line Tools ... 3-20
Contents-ii Verity® Locale Configuration Guide

Table of Contents
Appendix A Locales, Character Sets and Languages
Verity Locales and Character Sets .. A-2
Supported Source-Document Character Sets.. A-4
Supported Language Codes .. A-8

Appendix B Tokenization Delimiters

Appendix C Creating a Custom Thesaurus
Creating a Thesaurus Control File.. C-2

Control-File Structure.. C-2
The control Directive... C-3
The synonyms Keyword... C-3
The list Keyword ... C-3
The qparser Keyword ... C-4

Creating a Control File from an Existing Thesaurus .. C-4
Compiling a Thesaurus with mksyd.. C-6
Integrating the Thesaurus with Verity... C-7

Naming and Installing the Thesaurus .. C-7
Using a Knowledge Base Map to Point to a Thesaurus File.. C-7

Appendix D Glossary

Index
Verity® Locale Configuration Guide Contents-iii

Table of Contents
Contents-iv Verity® Locale Configuration Guide

Preface

Welcome to the Verity Locale Configuration Guide. This book is for administrators and
developers of Verity K2 applications. It is intended for readers who need to know how to
administer or develop an application that supports indexing and search in multiple
languages.

Preface
Using This Manual
Using This Manual

This section describes the organization of the Verity Locale Configuration Guide and lists
the stylistic conventions used.

Version

The information in this manual is current as of K2 Enterprise version 5.0. The content of
the manual was last modified November 15, 2003.

Organization of This Manual

This manual contains the following chapters and appendixes:

• Chapter 1, “Language Concepts.” Gives an overview of the Verity internationalization
architecture, introduces language concepts related to text search, and illustrates how
locale and character set are involved in indexing and searching.

• Chapter 2, “Verity Locales.” Describes the language-handling characteristics of each
Verity locale.

• Chapter 3, “Using Locales.” Describes how install, configure, and use Verity locales.

• Chapter 4, “Creating Language-Aware Applications.” Gives suggestions for creating
effective language-aware K2 applications.

• Appendix A, “Locales, Character Sets and Languages.” Lists the locales, character
sets, and language codes supported by Verity.

• Appendix B, “Tokenization Delimiters.” Lists the characters that can be used as word
delimiters to control indexing.

• Appendix C, “Creating a Custom Thesaurus.” Describes how to customize or create a
thesaurus file, used to support synonym search for a given locale.
Preface-2 Verity® Locale Configuration Guide

Preface
Using This Manual
Stylistic Conventions

The following stylistic conventions are used in this manual.

Command-Line Tool Syntax

The following conventions are used in this manual to describe command-line tool syntax:

Convention Usage

Courier type Used to format file names, paths and required user input.
Examples:

The name.ext file is installed in:

 C:\Verity\Data\

In the User Interface text box, type user1.

Courier oblique type Used for user-replaceable strings. For example:

user username

Courier bold Used to format command-line tool names. For example:

The rck2 command-line tool allows you to search collections and
test the effects of your changes.

Palatino Used in narrative text.

Palatino bold Used in narrative text to format user interface elements. For
example:

Click Cancel to halt the operation.

italics Used for book titles and new terms that are defined.

A newterm, explanation of term.

Convention Usage

[optional] Brackets describe optional syntax, as in [-create] to specify a
non-required option.

| Bars indicate “either | or” choices, as in
[option1] | [option2]; in this example, you must choose
between option1 or option2.

{ required } Braces describe required syntax in which you have a choice and
that at least one choice is required, as in
{ [option1] [option2] }; in this example, you must
choose either option1, option2, or both options.
Verity® Locale Configuration Guide Preface-3

Preface
Using This Manual
Punctuation characters, such as single and double quotes, commas, and periods indicate
actual syntax; they are not part of the syntax definition.

required Absence of braces or brackets indicates required syntax in which
there is no choice; you must enter the required syntax without
modification, as in mkre.

variable Italics specify variables to be replaced by actual values, as in
C:\MyData for filename.

... Ellipses indicate repetition of the same pattern, as in
-merge filename1, filename2 [, filename3 ...]
where the ellipses specify , filename4, and so on.

Convention Usage
Preface-4 Verity® Locale Configuration Guide

1
Language Concepts

By its nature, textual information is language-specific. The words, sentences, paragraphs,
and documents that make up a body of knowledge are expressed only within the context
of one or more human languages. The fundamental building blocks for those
expressions—characters and symbols—are numerous and highly specific to individual
writing systems.

A useful information-retrieval technology must be able to process information in a large
variety of writing systems, and it must be able to extract meaningful units of information
(words, phrases, concepts, and so on) from many different languages.

This chapter gives an overview of Verity’s software architecture and summarizes the
language-related issues that it addresses. The chapter includes the following sections:

• Language and Encoding in Documents

• Language-Related Indexing Features

• Language-Related Search Features

• Limitations in Handling Source Documents

Language Concepts
Language and Encoding in Documents
Language and Encoding in Documents

Text information is stored on the world’s computer systems in a great variety of
languages and formats. The different languages, the different (and often proprietary)
storage formats, and the different computer platforms involved present challenges for
extracting searchable information.

Figure 1-1 shows examples of the kinds of document characteristics that Verity software
needs to work with in order to extract and analyze their content.

Figure 1-1: Document types, languages, character sets, and repositories

The figure shows four kinds of document characteristics:

• Repository type. This is the platform or protocol involved in storing and retrieving the
information. The examples shown here are file system (Windows or UNIX), Web
server (HTTP protocol), and database (ODBC protocol).

Verity software can access these and other types of repositories.

• File format. A given repository type can hold documents or information in many
different formats. The examples shown here are Microsoft Word, HTML, PDF, and an
example of the use of database tables to store information. (In a database, information
is not typically stored in documents, so Verity constructs documents—such as
individual purchase orders in this case— from that information.)

Verity software can read hundreds of different file formats.

• Character set. The character set of a document includes its encoding—the numeric
codes used to store the values of the individual text characters. Different languages
and different platforms often use different character sets. The characters of a single
language might be implementable in several character sets and, conversely, a single
character set can sometimes be used to store text in several languages.

Verity software can read document text stored in dozens of different character sets, and

MS Word docs

English

Windows 1252

Windows (NTFS)

HTML pages

Japanese

Shift-JIS

Web server

PDF docs

French

ISO-8859-1

UNIX

Purchase orders

Russian

KOI8-R

Database
1-2 Verity® Locale Configuration Guide

Language Concepts
Language and Encoding in Documents
it can convert text from one character set into any other character set supported for that
language.

• Language. Language here refers to the natural language (such as English, Japanese,
French, Russian) of the words in the text.

Verity provides basic (display and storage) support for 57 languages, and it provides
linguistically sophisticated support for 26 languages.

As an example of the importance of considering character set and character-set
conversion when displaying text, consider the following fragment of an HTML
document containing mixed Chinese and English text. This is the appearance of the text
when the HTML browser’s encoding is set to Windows 1252 (typical for English text):

The Chinese characters (top row) are indecipherable. If the browser encoding is now set
to Big5 (typical for traditional Chinese text), the Chinese characters display correctly:

A language-aware application can use Verity functionality to track character encoding
throughout the process of reading, analyzing, indexing, and displaying text in many
different languages. It can convert character encoding whenever necessary to make sure
users can read the information presented to them.
Verity® Locale Configuration Guide 1-3

Language Concepts
Language-Related Indexing Features
Language-Related Indexing Features

Verity locales exist to provide support for language-aware search. Each locale provides
rules, settings, tables of information, and functions that facilitate the construction of
collection indexes that take into account the word structure, spelling, and parts of speech
in that locale’s language.

Sorting Order

For faster case-insensitive and accent-insensitive search, and for efficient search of related
spellings, the word index in a collection needs to be sorted in an order that is specific to
the language’s set of characters. That sorting order can also be used to present search
results to the user.

Each locale maintains a table of characters and their variants, with entries placed in the
sorting order for that language. Typically, the sorting order groups all variants of a
character together, like this:

A a À à Á á Â â B b C c Ç ç D d ...

With this ordering, all accented or capitalized variants of a word are adjacent to each
other in the word index, making accent-insensitive and case-insensitive searching
efficient.

Tokenization and Word Delimiters

In general, Verity collections store all of a document’s individual words as the elements
of the word index it creates from the document. More specifically, the Verity engine
generates and stores all the document’s tokens, which are character strings that occur
between delimiters (white space or punctuation). This process of extracting tokens from a
document is called tokenization.

Tokens are thus more than just the natural-language words in the document; they are the
document’s searchable units. For example, this English sentence

The blue/green used truck costs $2000-$5000 more (plus taxes).

might be converted to

$2000
$5000
blue/green
costs
more
(plus
taxes)
The
1-4 Verity® Locale Configuration Guide

Language Concepts
Language-Related Indexing Features
truck
used

because, in this case, the blank space, period, and hyphen are considered tokenization
delimiters but the forward slash, dollar sign, and parentheses are not. This is the default
behavior for older versions of the Western European locales, such as englishx.

The set of delimiters that controls tokenization is highly locale-dependent and, for most
locales, is now customizable by the Verity administrator. For the example just given, if the
administrator chooses to enable simple tokens behavior, which redefines nearly all
symbols as delimiters, the following tokens would appear in the word index:

2000
5000
blue
costs
green
more
plus
taxes
The
truck
used

In this case, blue, green, plus, and taxes are now searchable words in the document.

The advantage of having more delimiters (and thus shorter tokens) is that more hits are
returned from searches. Simple tokens is the default behavior for the current Verity
Western European locales.

In some situations, however, longer, more specific tokens may be more useful—such as in
automatic classification, in which longer words (such as blue/green in this example)
might make better category names (than just blue or green). For that reason, the
simple-tokens behavior can be disabled.

See “Customizing Tokenization Behavior” in Chapter 3 for instructions on specifying
simple tokens and redefining tokenization delimiters.

Stemming

Stemming is a process by which Verity further breaks down a word by extracting its word
stem, or main part, stripped of prefixes or suffixes. Indexing the word stems in a
document allows for stemmed search—a search that finds all the words that share the
supplied stem.

For example, suppose a document in English contains the words houses, housed, and
housing. A regular search for the term house would find nothing. But a stemmed search
would find all three words, because house is the stem for all of them.
Verity® Locale Configuration Guide 1-5

Language Concepts
Language-Related Indexing Features
(Verity locales use inflectional stemming, meaning that only stems of the same part of
speech as the word being stemmed are extracted. In the above example, all are verbs.)

In the used truck example from the previous section, the stems use and tax would also be
indexed, so that users searching for those terms would find the information about the
used truck.

NOTE: Verity also uses word stems when it automatically constructs higher-level
indexing structures such as document summaries and clusters; see the Verity Collection
Reference Guide and the Verity K2 Enterprise Intelligent Classification Guide for more
information.

Stemming for Single-Language Locales

With single-language locales, stemming is performed as a separate process after
indexing, and the word stems reside in a separate stem index (stemdex) that Verity
creates inside the collection:

An entry in the stem index notes the locations of all words in the word index that share
that stem. The word index in turn has the locations of those words in the document.

Normalization

Some locales support normalization, an indexing feature in which a single version of a
character is used when alternate versions exist, and a single spelling is used for a word
that has alternate spellings. Users searching a normalized collection for a word will then
find all words with either the common spelling or any of the alternate spellings.

For example, in the Japanese language, both Katakana (phonetic) characters and ASCII
characters occur in half-width and full-width versions, with different character codes. In
the Verity Japanese locale (japanb), the half-width versions are normalized to their
full-width equivalents. A person searching for full-width Katakana word (,
for example) will find all occurrences of both the full-width and half-width ()
version. As another example of Japanese normalization, Okurigana (Voice-marked Kanji)
is indexed as non-marked Kanji.

Word index

....
child ...
children ...
chile ...
...

Stemdex

....
child ...
chile...
...
1-6 Verity® Locale Configuration Guide

Language Concepts
Language-Related Indexing Features
Normalization applies to the tokens in the collection index itself, not to the original
source documents. When viewing the documents through a Verity client, the user sees
the actual spellings and the actual versions of the characters that occur in the source.

Decomposition of Compound Words

Some languages (notably German) include the concept of compound words, words created
by the concatenation of several independent words in certain grammatical contexts.
Decomposition is the process by which Verity breaks compound words into their
constituent tokens.

For example, the German word for taxi driver is taxfahrer. During indexing, the word is
decomposed into the subwords taxi and fahrer, and each subword is indexed separately.

Japanese uses compound words that can be repeatedly decomposed. For example, the

word (Tokyo Mitsubishi Bank) can be decomposed into +
 (Tokyo + Mitsubishi Bank), or more completely decomposed into +

 + (Tokyo + Mitsubishi + Bank).

A locale that supports compound words creates independent tokens for each compound
word and for all subwords of the compound word. In the word index, the subwords are
marked as having the same positions in the document as the compound word. Therefore,
searching for either the compound word or any of its subwords will produce the same
matches.

Decomposition is somewhat similar to stemming, in that it extracts smaller units from
tokens. However, a compound word is considered a collection of words, whereas the
words that share a stem are considered variations of the same single root word.

For some Asian locales, Verity supports user customization of word decomposition. For
those locales, you can create a user dictionary that contains terms (such as proper names
or industry-specific terms) that should be decomposed in a non-default manner or not
decomposed at all. See “Customizing Word Decomposition in Japanese” in Chapter 3 for
details.

Part-of-Speech Identification

Some Verity locales support part-of-speech identification during indexing. When it is
used, each indexed token is analyzed to determine whether it is a noun, verb, adjective,
number, and so on.

An extension of part-of-speech detection is noun-phrase extraction. Automatic detection of
noun phrases is available for some locales, and high-level Verity tools use that capability
to automatically extract document features and construct document summaries or
clusters from a collection.
Verity® Locale Configuration Guide 1-7

Language Concepts
Language-Related Indexing Features
Part-of-speech information and noun-phrase extraction are used by Verity software to
better support high-level constructions such as feature extraction, document summaries,
document clusters, and automatic classification.

For some locales, noun-phrase extraction can be disabled for improved performance, if
desired.

Number Handling

Some languages use traditional script for numbers as well as the common Latin versions.
For example, Chinese, Japanese and Korean use Han script numbers as well as Latin
numbers. The number nineteen can be written in Han script in several different ways, or
as the Latin 19.

For those locales that support number handling, performing a stem search with either a
script number or its equivalent Latin number produces the same results.

In some languages, script numbers may also be used as non-numbers. For example, in
Japanese, the word Ichinomiya is a place name that (when written in Japanese script)
contains the Han number 1, but in this case the 1 does not represent a number value. A
Verity locale converts a script number to Latin only if all characters in the word represent
numbers (or day and month characters, in the case of date strings).
1-8 Verity® Locale Configuration Guide

Language Concepts
Language-Related Search Features
Language-Related Search Features

Verity locales provide several features to help users tailor their searches to provide more
specific or more complete results, based on the specific characteristics of the language of
the collection being searched.

Case-Insensitive Search

With case-insensitive search, a search term of a returns occurrences of both a and A. All
locales by default specify case-insensitive searches. The Verity administrator can later
reconfigure Verity to make searches case-sensitive, if desired. Also, use of the VQL
operator <CASE> on a search term forces the search to be case-sensitive, even if
case-insensitivity is enabled.

The Verity auto-case capability is a search convention in which search terms that are all
one case (such as next or NEXT) are searched for case-insensitively, whereas mixed-case
search terms (such as Next or neXT) are searched for case-sensitively. In this example, if
auto-case were enabled, an occurrence of NeXT would be found by either of the first two
search terms but not by either of the second two terms. By default, auto-case is disabled.

Accent-Insensitive Search

With accent-insensitive search, a search term of a might return a, à, á, and â. When
installed, most locales are pre-configured to specify accent-insensitive searches. The
Verity administrator can in some cases reconfigure those locales to make searches
accent-sensitive, if desired.

Symbol Search

Normally, punctuation, white space, and other non-alphanumeric characters are not
searchable. In Western European locales, however, you can configure the locale so that
nearly any of the defined token delimiters are searchable.

For example, without symbol search, the phrase ©Verity Inc. 2003 would be indexed as

2003
Inc
Verity

(assuming that both © and . are specified as word delimiters), and a search for ©Verity
would produce no results. If © is made searchable, however, the word index would have
these entries:

©
2003
Inc
Verity
Verity® Locale Configuration Guide 1-9

Language Concepts
Language-Related Search Features
and searches for ©, Verity, or ©Verity (as a phrase) would be successful.

Synonym Search

The Verity administrator can create a thesaurus, or dictionary of synonyms, to use with
the collections created for a given locale. When the user conducts a synonym search,
occurrences of the search word (for example, run) as well as any of its synonyms (such as
race, rush, hurry, bolt, dash, hasten) are returned.

In VQL, you specify a synonym search with the <THESAURUS> operator.

For instructions on how to create or modify a thesaurus, see Appendix C, “Creating a
Custom Thesaurus.”

Soundex Search

For those locales that support it, Verity allows the user to perform a Soundex search. In this
type of search, occurrences of the search word and also of any similar-sounding words
are returned. For example, searching for the name Jean would return occurrences of it
plus any similar-sounding but differently spelled names, such as Joan or Jane.

In VQL, you specify a Soundex search with the <SOUNDEX> operator.

Soundex was originally developed for indexing proper names for census purposes.
Currently, Verity supports Soundex search for the englishx locale only.

Typo Search

For single-byte locales, Verity supports typo search, a kind of “fuzzy search” that corrects
for minor misspellings in the search query. In a typo search, occurrences of the search
word and any words close to it in spelling are returned.

For example, if the user’s search term is juvinile, the typo search facility might return all
occurrences of juvenile. In addition, the client application might display a suggestion to
the user, such as

Did you mean to search for juvenile?

The client application can configure the precision of the typo search by specifying how
closely the spelling of the returned items must match the search term.

In VQL, you specify a typo search with the <TYPO> operator.

Typo search is not strictly related to language features, except that some locales support it
and others do not.
1-10 Verity® Locale Configuration Guide

Language Concepts
Language-Related Search Features
Stop Words

A stop-word list is a list of terms to ignore in searching or in indexing. Typically,
stop-word lists include very short and very common words (such as a, an, and the in
English), but they also might include longer words such as long number strings, or
possibly words that are too common to be useful as search targets (such as the term
Internet in an indexed collection consisting entirely of documents related to the Internet).

The primary reason for using a stop-word list is that it can increase search speed and
decrease the size (storage requirement) for an index. Verity provides support for four
different kinds of stop-word lists, each with a different purpose or scope:

• style.stp. This stop-word file lists words that should not be indexed. Words on this
list do not make it into a collection’s word index, and therefore are not searchable.

Putting common words in this list can impair searching for phrases. For example, if the
word the is on this list, searching for Attack of the Clones will return no results, even
for a collection devoted to recent science fiction movies—unless the is also in the
stop-word list that is applied to the search query itself (see qp_inet.stp and
vdk30.stp, below).

Instructions for using style.stp are in the index-tuning chapter of the Verity Collection
Reference Guide.

• style.fxs. This stop-word file is used by the feature-extraction process during
indexing. Feature extraction is the automatic process of generating keywords and
phrases that characterize a document, for the purpose of summarizing it or clustering
it with other similar documents.

Words listed in style.fxs might exist in the collection index, but they nevertheless are
not used in generating keywords and phrases that constitute the document features.
Those words might include proper names, single characters, and common short words.

Instructions for using style.fxs are in the chapter on index tuning in the Verity
Collection Reference Guide.

• qp_inet.stp. This stop-word file is used by the Verity Internet-style query parser. It
contains words that the query parser will strip from query terms before conducting a
search.

Words listed in qp_inet.stp might include short words—articles, prepositions, and so
on— to allow the parser to convert a natural-language question, such as

Where can I buy sourdough bread in San Francisco?

Into a search for its core terms:

buy sourdough bread San Francisco

The Internet-style query parser is described in the Verity Query Language Guide.
Verity® Locale Configuration Guide 1-11

Language Concepts
Language-Related Search Features
• vdk30.stp. This stop-word file is used, along with style.fxs, for feature extraction at
indexing time. It is also used by the Verity Query By Example (QBE) parser to convert
natural-language phrases into query terms, in a similar manner to the Internet-style
query parser.

Two of these stop-word files, style.stp and style.fxs, are collection-specific; you need
to set up different versions of them each time you create a collection in a different
language. The other two files, qp_inet.st and vdk30.stp, are locale-specific. Each locale
has its own default implementation of vdk30.stp, thus providing language-sensitive
stop words for QBE queries and feature extraction in any language.

Instructions for creating or customizing vdk30.stp are in Chapter 3 of this book. The
QBE parser is described in the Verity Query Language Guide.
1-12 Verity® Locale Configuration Guide

Language Concepts
Limitations in Handling Source Documents
Limitations in Handling Source Documents

Certain language-related issues in some types of source documents either cannot be
handled by Verity, or must be handled as special cases.

• HTML/XML documents. Some HTML and XML files include the
language-specification attribute lang in some tags. Verity, however, ignores that
specification, if it is present, and handles language assignment in this way:

• Single-language locales. The file is indexed according to the language rules of the
current locale.

• Archive documents. Verity can read and process compressed document archives, such
as Zip files. Documents within the archives can be extracted and indexed.

• Single-language locales. Documents in the archive are indexed according to the
language rules of the current locale, regardless of the document’s language.

• Database-based documents. Verity can assemble and then index virtual documents
that it constructs from database-table columns. In some cases, the language of one
column might be different from that of another.

• Single-language locales. The entire document is indexed according to the language
rules of the current locale, so one or more columns could contain meaningless data.

• PDF documents. PDF documents can exist in many different character encodings.
Verity includes two different document filters that convert PDF content differently,
depending on the current locale.

• Adobe PDF filter. The Verity PDF filter converts Latin 1-based PDF text to the
Windows 1252 character set. Locale-based tokenization is not used.

• KeyView filter. The Verity KeyView filter converts PDF text to the internal character
set of a locale. The filter can be used with any locale if locale-based tokenization is
desired.
Verity® Locale Configuration Guide 1-13

Language Concepts
Limitations in Handling Source Documents
1-14 Verity® Locale Configuration Guide

2
Verity Locales

This chapter describes the features of Verity locales, the software modules that give
applications based on Verity technology the ability to work in many languages.

This chapter includes the following sections:

• Locale Basics

• Western European Locales

• Eastern European/Middle-Eastern Locales

• Asian Locales

Verity Locales
Locale Basics
Locale Basics

All Verity locales share the characteristics described here.

Installed Location

An installed locale module is a set of data files and one or more executable library files.
The data files are in the locale directory, at

verity_product\common\locale_name

where

• verity_product is the path to the directory containing the component of Verity that
has been installed (for example, usr/verity/K2 for K2 Services on UNIX, or
C:\Verity\Intelligent Classifier for VIC on Windows).

• locale_name is the name of the locale (for example, germanx).

In a K2 Services installation, the library files are in the directory

verity_product\os_platform\bin

where os_platform is the name of the operating system-specific directory (for example,
_nti40 for Windows) that holds executable Verity files.

The locale driver has a name of the form loc_DriverName.so, loc_DriverName.sl, or
loc_DriverName.a on UNIX, loc_DriverName.dll on Windows. Third-party library
files required by the locale are also in the bin directory.

Locale Definition File

The file loc00.lng, in the directory verity_product\common\locale_name, controls
several aspects of locale behavior. The Verity administrator can edit that file to customize
certain aspects of the locale’s behavior. See “Configuring Verity Locales” in Chapter 3 for
details on editing loc00.lng.

NOTE: In previous Verity releases, the standard file for controlling tokenization behavior
was style.lex, which is not associated with any particular locale and cannot handle
tokenization of anything but 7-bit ASCII characters. In place of style.lex, you should
use each locale’s loc00.lng file to control tokenization and other language-related
features.

Internal Character Set and Supported Character Sets

Every locale module has a single internal character set. All collection indexes and all
associated files (such as BIFs and style files) processed by the locale are stored in that
character set. The internal character set for a locale is specified in the locale’s loc00.lng
file and cannot be changed.
2-2 Verity® Locale Configuration Guide

Verity Locales
Locale Basics
All locales support other character sets in addition to their internal character set. Support
for another character set means that collection data, query strings, and search results in
that locale can be displayed or printed using one of the character sets specified as
supported for that locale. Verity performs the necessary character conversion in such
cases.

The internal character sets and the additional supported character sets for all locales are
listed under “Verity Locales and Character Sets” in Appendix A of this book.

Default Locales and the Session Locale

Every K2 or VDK application or command-line tool must establish a VDK session at run
time, before accessing collection data or making API calls. Each VDK session includes a
defined internal session locale—the locale that Verity applications and tools assume to be
the locale of collections they access.

The session locale can be specified explicitly or it can be either of two default session
locales:

1. If the application or tool explicitly specifies a locale when it establishes the session, that
locale is the session locale.

2. If the application or tool does not specify a locale, Verity uses the default installation
locale, if it exists, as the session locale.

The default installation locale is specified in the Verity configuration file (verity.cfg).
Its initial value is englishx.

3. If the default installation locale is not defined, Verity uses the system default locale as the
session locale. The system default locale is also englishx.

When executing a command-line tool that uses the -locale option, or when making a
function call that takes a locale or internalLocaleDriver parameter, note that if you
do not explicitly pass a locale value, that is equivalent to specifying the default
installation locale.

NOTE: If your installation requires it, you can reset the default installation locale from
englishx to the older Verity locale (english). See “Redefining the Default Session
Locale” in Chapter 3 for instructions.

Built-In Locales

The following Verity locales are installed automatically when K2 Services is installed:

Verity locale name Language

englishx English

uni Multiple languages (UTF-8)

english English (basic)
Verity® Locale Configuration Guide 2-3

Verity Locales
Locale Basics
These three locales do not require a separate installation process. However, note these
licensing requirements:

• Use of the englishx locale is covered by K2 Services (or VIC or VDK) license. No
separate locale license is required.

• The english locale is a simple, built-in locale that requires no license and provides
only limited support for the English language.

Locale Categories

Verity locales can be grouped into the following categories, based on internal character
set, language characteristics, and supported indexing features:

• Western European locales

• Eastern European and Middle-Eastern locales

• Asian locales

The following sections describe the properties of the locales in each of the categories.
2-4 Verity® Locale Configuration Guide

Verity Locales
Western European Locales
Western European Locales

The locale modules in this category include the built-in englishx locale plus other
locales serving the languages native to Western Europe. These locales make use of
language-processing technology from inXight Software, Inc. (version 2.2), in combination
with Verity’s own language capabilities.

The following table lists the currently available Western European locales. Windows 1252
is the internal character set for all of these locales.

Verity Western European locales support the indexing and search features described in
the following table.

Verity locale Language Verity locale Language

bokmalx Norwegian germanx German

danishx Danish italianx Italian

dutchx Dutch nynorskx Norwegian

englishx English portugx Portuguese

finnishx Finnish spanishx Spanish

frenchx French swedishx Swedish

Western European locale features

Feature Support

Character-set detection Verity’s auto-detection technology identifies the character set of
source documents to be indexed. If a document with an unknown
character set is encountered during indexing, it is assigned the
locale’s internal character set.

Language identification Verity’s language-detection technology identifies the language of
source documents to be indexed.

(Indexing rules are based on the current locale, not the document
language.)

Sorting order All locales use case-insensitive and accent-insensitive sorting
behavior based on Windows 1252 character set.

Tokenization Performed by all locales. All locales support simple-tokens behavior,
in which nearly all non-alphanumeric characters can be word
delimiters. Individual delimiters can also be removed from the
delimiters list, if desired.
Verity® Locale Configuration Guide 2-5

Verity Locales
Western European Locales
Stemming All locales support stem indexing and search.

Normalization No normalization applied.

Compound words Decomposition into subwords supported by dutchx, finnishx, and
germanx.

Part-of-speech All locales support part-of-speech, including noun-phrase extraction.

Number handling No special number handling.

Language-specific search Search query always uses language rules of collection being searched.

Case-insensitive search Supported by all locales and enabled by default. Auto-case capability
also available for all locales.

Accent-insensitive
search

Accent-insensitive search is supported for all locales and is the
default.

Searchable symbols All locales support defining “searchable non-alphabet” characters.

Synonym search All locales support use of thesaurus for synonym search. Verity
provides a simple default thesaurus for englishx.

Soundex search Supported by englishx only.

Typo search Supported by all locales.

Wildcard search Supported by all locales.

Stop words All locales support use of a locale-specific stop-word list for use in
feature extraction and free-text queries. Verity provides a simple
default stop-word file for each locale.

Date formatting For date fields in a collection, all locales support dates with month
and day names in the locale’s language.

Western European locale features (continued)

Feature Support
2-6 Verity® Locale Configuration Guide

Verity Locales
Eastern European/Middle-Eastern Locales
Eastern European/Middle-Eastern Locales

The locale modules in this category serve the languages of Eastern Europe and Russia,
Southeastern Europe, and the Middle East. These locales make use of character-set-based
tables and Verity’s language capabilities.

The following table lists the currently available Eastern European and Middle-Eastern
locales and their internal character sets. For common names of the listed character sets,
see Appendix A, “Locales, Character Sets and Languages.”

Verity Eastern European and Middle-Eastern locales support the indexing and search
features noted in the following table:

Verity Locale Language Charset Verity Locale Language Charset

arabic Arabic 1256 hungarian Hungarian 1250

bulgaria Bulgarian 1251 russian Russian 1251

czech Czech 1250 russian2 Russian koi8-r

greek Greek 1253 polish Polish 1250

hebrew Hebrew 1255 turkish Turkish 1254

Eastern European/Middle-Eastern locale features

Feature Support

Character-set detection Verity’s internal auto-detection technology identifies the character set
of source documents to be indexed. If a document with an unknown
character set is encountered during indexing, it is assigned the locale’s
internal character set.

Language identification Verity’s language-detection technology identifies the language of
source documents to be indexed.

Sorting order All locales use case-insensitive and accent-insensitive sorting
behavior based on the locale internal character set.

(Indexing rules are based on the current locale, not the document
language.)

Tokenization Performed by all locales. Tokenization delimiters are editable.

Stemming Not supported.

Normalization No normalization is performed.

Compound words Decomposition into subwords not supported.
Verity® Locale Configuration Guide 2-7

Verity Locales
Eastern European/Middle-Eastern Locales
Part-of-speech Not supported.

Number handling No special number handling.

Language-specific search Search query always uses language rules of collection being searched.

Case-insensitive search Supported by all locales and enabled by default. Auto-case capability
also available for all locales.

Accent-insensitive
search

Accent-insensitive search is supported for all locales and is the
default.

Searchable symbols Not directly supported. However, symbols can be re-defined as either
punctuation or regular (alphabetic) characters.

Synonym search All locales support use of thesaurus for synonym search.

Soundex search Not supported.

Typo search Supported by all locales.

Wildcard search Supported by all locales.

Stop words All locales support use of a stop-word list for use in feature extraction
and by the free-text query parser. Verity provides a simple default
stop-word file for all locales.

Date formatting For date fields in a collection, all locales support dates with month
and day names in the locale’s language.

Eastern European/Middle-Eastern locale features (continued)

Feature Support
2-8 Verity® Locale Configuration Guide

Verity Locales
Asian Locales
Asian Locales

The locale modules in this category serve the multiple-byte languages of East Asia:
Chinese, Japanese, and Korean. These locales make use of language-processing
capabilities from Basis Technologies Corp (version 3.6.2).

The following table lists the currently available Asian locales and their internal character
sets. For common names of the listed character sets, see Appendix A, “Locales, Character
Sets and Languages.”.

Asian locales support the indexing and search features noted in the following table:

Verity Locale Language Charset

japanb Japanese sjis

koreab Korean ksc

simpcb Chinese (simplified) gb

tradcb Chinese (traditional) big5

Asian locale features

Feature Support

Character-set detection Verity’s internal auto-detection technology identifies the character set
of source documents to be indexed. If a document with an unknown
character set is encountered during indexing, it is skipped.

Language identification Verity’s language-detection technology identifies the language of
source documents to be indexed.

(Indexing rules are based on the current locale.)

Sorting order Controlled by internal character set. Not customizable.

Tokenization japanb: Word-level tokenization used.
simpcb, tradcb: Word-level tokenization used; single-character
tokenization available.
koreab: White-space separators control tokenization.
All locales: tokenization of ASCII uses simple-tokens behavior.

Stemming japanb, koreab: Supported.
simpcb, tradcb: Not applicable.
Verity® Locale Configuration Guide 2-9

Verity Locales
Asian Locales
Normalization japanb:
Half-width Kana equivalent to full-width Kana.
Katakana indexed as equivalent Hiragana.
Old Kanji equivalent to New Kanji.
ASCII indexed as equivalent double-byte Latin.
Mixed Kanji/Kana words indexed as Kanji only.
Hyphens removed from Kana.
Okurigana supported for cases where the Okurigana kanji stems are
the same.

NOTE: In a wildcard search, half-width–full-width Kana
equivalence is not supported if the query term contains a voice-
marked Kana—unless the voice-marked Kana is the leading
character of a wildcard query.)

simpcb, tradcb:
Simplified text in a traditional document is indexed as traditional;
traditional text in a simplified document is indexed as simplified.
ASCII indexed as equivalent double-byte Latin.

koreab:
ASCII indexed as equivalent double-byte Latin.

Compound words japanb: Deep decomposition of tokens, to recursively break down
compound words, is supported.

Part-of-speech Part-of-speech information is recorded at indexing. Limited noun-
phrase capability is available.

Number handling Han script numbers indexed as Latin numbers, unless they appear in
a non-numeric word.

Language-specific search Search query always uses language rules of collection being searched.

Case-insensitive search Supported for all locales.

Accent-insensitive
search

Not applicable.

Searchable symbols Supported for all locales.

Synonym search Supported for all locales.

Soundex search Not supported.

Typo search Not supported.

Wildcard search Supported for all locales.

Asian locale features (continued)

Feature Support
2-10 Verity® Locale Configuration Guide

Verity Locales
Asian Locales
Stop words Stop-word lists for use in feature extraction and by the free-text query
parser are provided for all locales.

Date formatting For date fields in a collection, only numeric or English date formats
are supported.

Asian locale features (continued)

Feature Support
Verity® Locale Configuration Guide 2-11

Verity Locales
Asian Locales
2-12 Verity® Locale Configuration Guide

3
Using Locales

This chapter describes how to use Verity locales to provide appropriate language-specific
indexing and searching capabilities. It also gives suggestions for creating Verity data
structures (such as collections) in locales other than the default (englishx).

This chapter includes the following sections:

• Configuring Verity Locales

• Notes on Creating Non-English Indexes

Using Locales
Configuring Verity Locales
Configuring Verity Locales

After installing one or more locales, you can use them immediately. However, you also
can reconfigure certain aspects of their behavior to customize the language handling and
search characteristics of your application.

Redefining the Default Session Locale

If your installation has special requirements, you can optionally redefine the default
session locale for Verity applications and tools (see “Default Locales and the Session
Locale” in Chapter 2.) You might want to do this as a convenience if all the collections at
your installation are in the older Verity locale english, rather than englishx, which is
the installed default.

NOTE: You can use this technique to switch the default session locale between
english and englishx only; use of any other locale as the session default is not
supported.

The default locale that you can change is the default installation locale, specified for K2
installations in the Verity configuration file (verity.cfg). Take these steps to change it:

1. Open the file verity.cfg, in the directory verity_product/common, where
verity_product is the path to the directory containing the component of Verity that
has been installed (for example, usr/verity/K2 for K2 Services on UNIX, or
C:\Verity\Intelligent Classifier for VIC on Windows).

2. In the [GENERAL] section of the file, locate the following entry:

locale=englishx

3. Change it to

locale=english

4. Save and close the file.

Customizing Tokenization Behavior

For Western European and Asian locales, you can change certain aspects of tokenization
behavior by making modifications to the simple-tokens behavior specified in the locale’s
loc00.lng file.

Customizing tokenization through loc00.lng is not available for other locales.

NOTE: After making the changes described in this section, you must re-index existing
collections if you want the changes to apply to those collections.
3-2 Verity® Locale Configuration Guide

Using Locales
Configuring Verity Locales
Disabling and Enabling Simple Tokens

For Western European and Asian locales, simple-tokens behavior is enabled by default. If
you disable simple tokens, a much smaller set of symbols—just the standard set of
punctuation marks—is used to control tokenization of Latin-based characters.

For Chinese in the uni locale, enabling simple tokens also enables single-character
tokenization, which means that each Chinese character becomes a separate token. (This is
in addition to word-level tokenization, which remains.)

Simple-tokens behavior is not supported for Eastern European and Middle-Eastern
locales.

Simple tokens is not necessarily the most desirable indexing behavior in all cases. For
example, for the purpose of extracting document features for summarization, longer
tokens are in general more desirable than shorter ones. In that case, disabling simple
tokens might yield better results.

To disable simple tokens, take these steps:

1. Open the locale’s definition file loc00.lng, in the directory
verity_product\common\locale_name.

2. In the locale block, locate the driver statement, which should look something like
this:

driver: "loc_xlt -simple_tokens..." "loc_xlt"

3. To disable simple tokens, remove the -simple_tokens option (plus any
-tokenized_as_alphabet and -searchable_non_alphabet options that
follow it), leaving something like this:

driver: "loc_xlt" "loc_xlt"

4. Save and close the file.

To re-enable simple tokens, restore the -simple_tokens option in the driver
statement.

NOTE: Specifying the default -simple_tokens option (without any following options) is
equivalent to this specification:

-simple_tokens
-tokenized_as_alphabet -_&
-searchable_non_alphabet #$%©®¢£¥™

See the next two sections, “Refining the Set of Token Delimiters” and “Making Symbols
Searchable,” for explanations of the -tokenized_as_alphabet and
-searchable_non_alphabet options.
Verity® Locale Configuration Guide 3-3

Using Locales
Configuring Verity Locales
Refining the Set of Token Delimiters

When it indexes a document, the Verity tokenizer breaks words at whitespace and
punctuation characters (see “Tokenization and Word Delimiters” in Chapter 1). If
simple-tokens behavior is enabled for a locale, you can modify the set of symbols that are
considered punctuation for tokenization.

This section shows the process for Western European locales. For Asian locales, changing
the set of delimiters is not supported.

NOTE: After making these changes, you must re-index existing collections if you want
the changes to apply to those collections.

Western European Locales

Western European locales by default have simple tokens enabled. To modify the set of
token delimiters used, take these steps:

1. Open the locale’s definition file loc00.lng, in the directory
verity_product\common\locale_name.

2. In the locale block, locate the driver statement, which should look something like
this:

driver: "loc_xlt -simple_tokens
-tokenized_as_alphabet -_& -searchable_non_alphabet..." "xlt"

(Note that the -tokenized_as_alphabet option in this locale already specifies three
characters—hyphen, underscore, ampersand—that are to be treated as alphabetical
characters instead of token delimiters.)

3. If the -tokenized_as_alphabet option is not present, add it after the
-simple_tokens option and follow it with the symbols that you want to remove
from the list of token delimiters.

4. If the -tokenized_as_alphabet option is already present, add or remove symbols
to change the list. Adding a symbol here means that it is not to be considered a
delimiter.

The full set of symbols available as token delimiters is listed in Appendix B,
“Tokenization Delimiters.”

5. Save and close the file.

NOTE: The symbol + is always treated as a delimiter, because it has special meaning in
the Verity Query Language. However when + appears at the end of a word—that is, if it
is followed by white space or another delimiter—it is not treated as a delimiter. This
keeps terms such as such as C++ from being split up.

See “Tokenization Example,” later in this chapter, for an illustration of how these settings
affect tokenization results.
3-4 Verity® Locale Configuration Guide

Using Locales
Configuring Verity Locales
Eastern European and Middle-Eastern Locales

Simple-tokens behavior is not available for these locales. To modify the set of token
delimiters for one of these locales, you can directly edit the CTYPE table in the locale’s
loc00.lng file.

Asian Locales

For Asian locales, tokenization of native script is word-based and not customizable, but
tokenization of ASCII text by default uses simple-tokens behavior. For example, the
driver statement in the japanb locale looks like this:

driver: "locbasis -simple_tokens &" "loc"

You can disable simple-tokens behavior by deleting the option, but you cannot alter the
set of delimiters used.

For the locales simpcb and tradcb, the same simple-tokens behavior applies, but you
can also force inclusion of every native-script character as a separate token (in addition to
the normal word-level tokenization that occurs) by using the -single_character
option. This single-character behavior is the default. The driver statement in these two
locales looks like this:

driver: "locbasis -simple_tokens & -single_character" "loc"

You can disable or enable simple-tokens and single-character behavior independently of
each other.

Making Symbols Searchable

By default, non-alphanumeric symbols are not searchable. However, if simple tokens is
enabled for a locale, you can make certain symbols searchable. (See examples in “Symbol
Search” in Chapter 1.)

This feature is fully supported only for Western European locales.

Western European Locales

To make symbols searchable, take these steps:

1. Open the locale’s definition file loc00.lng, in the directory
verity_product\common\locale_name.

2. In the locale block, locate the driver statement, which should look something like
this:

driver: "loc_xlt -simple_tokens...
-searchable_non_alphabet #$%¡§«°±»¿" "xlt"

(Note that the -searchable_non_alphabet option in this locale already specifies
ten characters—three ASCII and seven extended ASCII—that are to be treated as
searchable symbols.)
Verity® Locale Configuration Guide 3-5

Using Locales
Configuring Verity Locales
3. If the -searchable_non_alphabet option is not present, add it after the
-simple_tokens option (or after the -tokenized_as_alphabet option, if it is
present) and follow it with the symbols that you want to be searchable.

4. If the -searchable_non_alphabet option is already present, add or remove
symbols to change what can be searched.

The full set of symbols available as token delimiters is listed in Appendix B,
“Tokenization Delimiters.”

5. Save and close the file.

See “Tokenization Example,” later in this chapter, for an illustration of how these settings
affect tokenization results.

Eastern European and Middle-Eastern Locales

Searchable-symbols behavior is not provided for these locales, because simple-tokens
behavior is not available. However, you can redefine symbols as punctuation or as
alphabetic characters for one of these locales by directly editing the CTYPE table in the
locale’s loc00.lng file.

Tokenization Example

The table in this section shows two examples of tokenization in a Western European
locale, applied to the following (nonsensical) content:

#12:34-56 webmaster@verity.com verity©2003 hi|bye C++ R&D

The table lists the results of tokenization for two settings:

• Without the -simple_tokens option

• With these three options:
-simple_tokens
-tokenized_as_alphabet -_&
-searchable_non_alphabet #$%©®¢£¥™

(This is equivalent to the default simple-tokens behavior.)
3-6 Verity® Locale Configuration Guide

Using Locales
Configuring Verity Locales
The table also lists selected query strings that could be applied to the tokenized
document, specifying for each whether the query will yield a search hit with simple
tokens on or off.

Disabling and Enabling Stemming

In a stemmed search (see “Stemming” in Chapter 1), all variations of a search term’s root
word are returned. For stemmed search to function, the indexing process must extract
and index the stems of all words that it encounters.

Stem indexing is enabled by default in Western European locales and Asian locales
japanb and koreab. Stemming is not available in the Eastern European/
Middle-Eastern locales, and stemming is not applicable to the Chinese locales.

Tokenization example

Tokens generated Search hit?

(simple off) (simple on) Example queries (simple off) (simple on)

#12:34-56 12
34
56
#

12:34-56
12:34
34
:#a

a. By default, this symbol is searchable if simple tokens is on.

Yes
No
No
No

Yes
Yes
Yes
Yes

webmaster@verity.co
m

webmaster
verity
com

webmaster@verity.com
webmaster
verity.com
com
@b

b. By default, this symbol is not searchable if simple tokens is on.

Yes
No
No
No
No

Yes
Yes
Yes
Yes
No

verity©2003 verity
2003
©

verity©2003
verity
2003
©a

Yes
No
No
No

Yes
Yes
Yes
Yes

hi|bye hi
bye

hi|bye
bye
|b

Yes
No
No

Yes
Yes
No

C++ C++ C++c

c. + is not a delimiter if followed by another delimiter.

Yes Yes

R&D R&D R&D
R
D
&d

d. & is by default a delimiter, but for this example it has been excluded from the delimiter list.

Yes
No
No
No

Yes
No
No
No
Verity® Locale Configuration Guide 3-7

Using Locales
Configuring Verity Locales
For improved indexing speed, you might wish to disable stemming for a given locale. For
Japanese and Korean in particular, disabling stemming can speed indexing—at the
expense of supporting stemmed search, of course.

Asian Locales

To disable stemming in the japanb locale or the koreab locale, take these steps:

1. Open the locale’s definition file loc00.lng, in the directory
verity_product\common\locale_name.

2. In the locale block, locate the driver statement, which for the locale should look
something like this:

driver: "locbasis -simple_tokens" "locbasis"

3. Add the option -no_stems, so the statement looks something like this:

driver: "locbasis -no_stems -simple_tokens" "locbasis"

4. Save and close the file.

Other Locales

For locales other than uni, japanb, and koreab, there is no locale-specific control on
stemming. If you want to disable or enable stemming for a collection built in one of those
locales, use the Stemdex value in the $define directive in the collection’s style.prm
file:

1. Open the version of style.prm that you are using to create the collection. (The
original default version is in the directory verity_product\common\style.)

2. Locate the $define WORD-IDXOPTS directive. If it looks like this:

$define WORD-IDXOPTS "Stemdex Casedex"

change it to this:

$define WORD-IDXOPTS "Casedex"

3. Save and close the file.

For more information on style.prm, see the index-tuning chapter of the Verity Collection
Reference Guide.

Customizing Word Decomposition in Japanese

The Verity japanb locale allows you to create a custom file, called a user dictionary, into
which you can place words that you want decomposed in a non-standard manner. For
example, you might want to create a user dictionary to hold proper names,
industry-specific terms, or words of foreign origin. Or, you might want to prevent
trademarked terms or company names from being decomposed into subwords at all.

Your user dictionary must be a text file in the following format:
3-8 Verity® Locale Configuration Guide

Using Locales
Configuring Verity Locales
• File encoding must be UTF-8.

• Comment lines must begin with a pound sign (#).

• Each dictionary entry must be on a separate line. Each line must end with a carriage
return.

• Blank lines are permitted.

On each line, you specify how the term is to be decomposed by following it with a tab
(U+0009) followed by a decomposition pattern. The decomposition pattern consists of a
string of digits, each one representing the number of characters (up to a maximum of 9)
in the respective component. For example, the entry

22

specifies that the term should be decomposed into two two-character components:

Note that the sum of the digits in the pattern must match the total number of characters
in the term. For example,

23

is invalid because the term has 4 characters while the pattern is for a 5-character string.

You can also use the dictionary to prevent decomposition of a term that is normally
decomposed during indexing. To do so, follow the term’s entry in the dictionary with a
decomposition pattern that is either 0 (zero) or a single digit equal to the full length of the
entry. For example:

3

0

4

(The nonzero-digit alternative works only for terms with nine or fewer characters).

Installing the User Dictionary

When your user dictionary is complete, install it this way:

1. Give it any name.

2. Store it in the locale’s directory (verity_product\common\japanb).

3. Open the locale’s loc00.lng file and add a user_dictionary option to the
driver entry, like this:

driver: "locbasis -simple_tokens & -user_dictionary dictName" "loc"
Verity® Locale Configuration Guide 3-9

Using Locales
Configuring Verity Locales
where dictName is the filename of the dictionary.

If you have created multiple user dictionaries, add them to the locale by following the
-user_dictionary option with a comma-separated list of dictionary filenames:

-user_dictionary dictName1,dictName2,dictName3,...

There must be no spaces in the filenames or between them. You can add up to 128 user
dictionaries, as long as the entire driver: statement is not over 2048 characters long.

4. Save and close the file.

NOTE: Verity provides a sample user dictionary (sample_dict.utf8) with the japanb
locale.

Using Multiple User Dictionaries

If you have a large number of terms whose decomposition you need to customize, you
can create multiple user dictionaries and install them as just described. You might want
to divide the entries so that each dictionary holds an alphabetically sorted range, or an
industry-specific set of terms, or a certain set of proper names.

Changing Search Characteristics

For Western Europea andAsian locales, you can change certain aspects of search behavior
by making the modifications described in this section.

NOTE: After making the changes described in this section, you must re-index existing
collections if you want the changed behavior to apply to those collections.

Enabling Case-Sensitive Search

All locales have built-in support for case-sensitive searching. For multibyte locales whose
native languages do not have the concept of case, case-sensitive searching is still
supported for ASCII characters.

Enabling case-sensitivity is not strictly a locale issue. To disable or enable case-sensitive
searching when you build a collection, use the Casedex value in the $define directive
in the collection’s style.prm file. For more information, see the index-tuning chapter of
the Verity Collection Reference Guide.

Enabling Auto-Case

As described in “Case-Insensitive Search” in Chapter 1, auto-case is a Verity search
feature in which query terms that are single-case (all uppercase or all lowercase) are
matched case-insensitively, whereas mixed-case query terms are matched
case-sensitively.

For all single-byte locales, auto-case is disabled by default. (Auto-case does not apply to
multibyte locales.) If you want to enable auto-case, take these steps:
3-10 Verity® Locale Configuration Guide

Using Locales
Configuring Verity Locales
1. Open the locale’s definition file loc00.lng, in the directory
verity_product\common\locale_name.

2. In the locale-flags block, locate the AutoCase entry:

locale_flags:
{
...
NoAutoCase: yes
...

3. Change the value of NoAutoCase from yes to no.

4. Save and close the file.

Disabling Accent-Insensitive Search

Accent-insensitive search (see “Accent-Insensitive Search” in Chapter 1) treats all
accented variations of a single character as the same character. For all single-byte locales,
accent-insensitive search is enabled by default at installation. (Accented text does not
occur in multibyte locales.)

Accent-insensitive search is in most cases preferable to accent-sensitive search, in which
each accented variation is treated as a separate character for searching. However, note
these implications of using accent-insensitivity:

• Automatically extracted feature names (see “Part-of-Speech Identification” in
Chapter 1) will contain only unaccented versions of their characters.

• Collections created with an earlier, accent-sensitive, version of the locale my need to be
re-indexed to retain the same search behavior.

If for these or other reasons you wish to treat accented characters individually, you can
disable accent-insensitivity.

NOTE: This procedure is available for Western European locales only.

For most Western European locales, accent-insensitivity is enabled by default. For the
englishx locale, however, accent-insensitivity is disabled by default, to minimize the
need to re-index existing collections created with the older english locale.

To disable accent insensitivity in a Western European locale, take the following steps.

1. In the locale’s directory (verity_product\common\locale_name), locate the three files

loc00.lng
xlt.ia
xlt.is

and rename them—for example, to something like

loc00.lng.50
Verity® Locale Configuration Guide 3-11

Using Locales
Configuring Verity Locales
xlt.ia.50
xlt.is.50

This action saves off copies of the current, accent-insensitive versions of your locale
definition file and search-configuration files.

2. In the same directory, locate the three files

loc00.45
xlt.ia.45
xlt.is.45

and rename them to

loc00.lng
xlt.ia
xlt.is

This action replaces the accent-insensitive versions of your locale definition file and
search-configuration files with the accent-sensitive versions.

3. If you had previously edited loc00.lng to customize behavior (for example, to enable
auto-case), be sure to restore those edits in the replacement loc00.lng.

To enable accent-insensitivity in the englishx locale, or to reconfigure another locale
back to accent-insensitive searching, reverse the process:

1. Rename and save your accent-sensitive files as loc00.45, xlt.ia.45, xlt.is.45.

2. Restore your accent-insensitive files to their valid names (loc00.lng, xlt.ia,
xlt.is).

Changing Formatting

For all locales, you can make the text-formatting changes described here.

Changing Date Formatting

As installed, each locale includes a date-ordering convention. The convention specifies
the order in which the elements of a date (day, month, and year) must appear in date
fields in a collection.

You should not have to change the setting for this convention; the default ordering is the
most common one used for the locale. But if you do need to implement a non-default
ordering at your installation, take these steps:

1. Open the locale’s definition file loc00.lng, in the directory
verity_product\common\locale_name.

2. In the locale block, locate the dateInput entry:

locale:
3-12 Verity® Locale Configuration Guide

Using Locales
Configuring Verity Locales
{
...
dateInput: "DMY"
...

3. Change the value of dateInput to specify the date-ordering you want:

DMY (Day–Month–Year)
MDY (Month–Day–Year)
YMD (Year–Month–Day)
YDM (Year–Day–Month)

4. Save and close the file.

Changing the Decimal Separator

As installed, each locale provides a decimal separator—the symbol used to set off the
decimal portion of a number in collection fields. The symbol is either a period (.) or a
comma (,), whichever is most appropriate for the locale.

You should not have to change this value. But if you do need to use a non-default decimal
separator at your installation, take these steps:

1. Open the locale’s definition file loc00.lng, in the directory
verity_product\common\locale_name.

2. In the locale block, locate the decimal entry:

locale:
{
...
Decimal: "comma"
...

3. Change the value of Decimal from comma to dot, or from dot to comma, as appropriate.

4. Save and close the file.

Setting Up Synonym Search

All Verity locales support the use of a thesaurus, or synonym list, for searching. In a
synonym search, all occurrences of the search term plus any of its synonyms are returned
(see “Synonym Search” in Chapter 1).

To enable synonym search for a given locale, you need to implement a thesaurus
containing the lists of synonyms. For some locales, Verity provides a basic thesaurus that
you can use as-is or further customize; for other locales, you need to create your own
thesaurus.
Verity® Locale Configuration Guide 3-13

Using Locales
Configuring Verity Locales
Only one thesaurus file is allowed per locale. If you implement a properly constructed
thesaurus, give it the required name (vdk30.syd), and place it at the top level of your
locale’s directory, it will be used for synonym search.

For detailed instructions on creating and installing a custom thesaurus, see Appendix C,
“Creating a Custom Thesaurus.”

Creating a Stop-Word File

As noted in “Stop Words” in Chapter 1, a stop-word list is a list of words to ignore in
searching (or in indexing). Verity provides for several kinds of stop-word files, only one
of which is locale-specific.

The file vdk30.stp, in the directory verity_product\common\locale_name, contains
locale-specific stop words to be used by the VQL free-text query parser during searching,
and by the feature-extraction process during indexing (in conjunction with the file
style.fxs). Most Verity locales include a default stop-word list.

vdk30.stp does not prevent words from getting into the word index; that job is the
responsibility of the stop-word file style.stp. What vdk30.stp contains are words
that should not be considered when the indexer extracts document features for creating
automatic document summaries and clusters.

To implement a locale-specific stop-word file, take these steps:

1. Create a text file in the internal character set of the locale. The filename must be

vdk30.stp

2. Optionally add comment lines (each starting with #) at the top, naming the document
and specifying its locale and character set, like this:

Polish stoplist
charset iso-8859-2
#

3. Enter each word into the stop list. Note these requirements

• Enter only one word per line

• Words are case-insensitive. You do not need to list all case variants.

• The order of the words is not important.

• Enter only literal words. Regular expressions are not supported.

Words you might want to exclude from feature extraction (and therefore include in
vdk30.stp) are proper names plus any words that would not make good topic or
concept titles (single characters and common short words, for example).

4. Save and close the file

5. Move the file to your locale’s directory:
3-14 Verity® Locale Configuration Guide

Using Locales
Configuring Verity Locales
verity_product\common\locale_name

where verity_product is the installation directory of the Verity component (such as
C:\Verity\K2), and locale_name is the name of the directory (such as polish)
containing the locale for which you are creating the stop-word file.

NOTE: If you are creating a stop-list file for a locale (like polish) that has a default stop
list provided by Verity, move the default stop-list file from the locale_name directory, or
else rename it, before adding your new stop-list file. It is recommended that you do not
permanently remove the default stop-list file.

For more information on style.fxs and style.stp, see the chapter on index tuning
in the Verity Collection Reference Guide.

Configuring Language Identification

By default, language identification occurs as a part of indexing in all locales. The
language-identification filter processes each incoming document and assigns a language
code to it.

NOTE: You perform basic configuration of the language-identification filter by editing
the style.uni file for your collection. For instructions, see the discussion of the
universal filter in the document filters chapter of the Verity Collection Reference Guide.

Language identification can have a negative effect on indexing performance. The filter
compares each document to a set of defining information for every supported and
enabled language, then assigns the highest-scoring language to the document.

NOTE: The language-identification filter does not have to compare a document to any
language data if the document already contains unambiguous language-assignment
information. For example, if an HTML document contains the following meta tag

<meta http-equiv="Content-Type" content="text/html; charset=shift-jis">

the language-identification filter uses that information directly, instead of analyzing the
document content.

If you know that all documents you will analyze will be in a specific subset of the
Verity-supported languages, you may be able to improve indexing performance by
applying language identification to only those specific languages. Furthermore, if
detection is not required for any of your documents, you can disable language
identification altogether.

By default, the language-identification filter is enabled for a small subset of the available
languages. You can adjust that set of languages as described next.
Verity® Locale Configuration Guide 3-15

Using Locales
Configuring Verity Locales
Adjusting the Set of Languages to Identify

The languages that the language-identification filter compares with incoming documents
are listed in the file langlist.cfg, in the directory verity_product\common\langid.
That directory also contains the language-data files—the files containing the
language-defining information—of all Verity-supported languages.

This is the content of the default version of langlist.cfg:

da-1252.lm
de-1252.lm
en-1252.lm
es-1252.lm
fi-1252.lm
fr-1252.lm
it-1252.lm
ja-eucjp.lm
ja-sjis.lm
ko-ksc.lm
nl-1252.lm
nb-1252.lm
nn-1252.lm
pt-1252.lm
sv-1252.lm
zt-big5.lm
zh-gb.lm

Each entry in the list is the name of a language-data file in the langid directory. Each
filename typically specifies the language code (see “Supported Language Codes” in
Appendix A) and character set (see “Supported Source-Document Character Sets” in
Appendix A) to which it applies. The languages enabled here are German, English, and
French (in the Windows 1252 character set).

NOTE: Do not modify the contents of any of the language-data files referenced in
langlist.cfg.

To remove a language/character-set combination from consideration for language
identification, simply remove its line from langlist.cfg. To add another language,
add a line for it to langlist.cfg, like this:

1. In the same directory as langlist.cfg, open the file langlist.all.
(langlist.all is a version of langlist.cfg that lists all languages supported for
identification.)

2. From langlist.all, copy the line(s) for the languages you want identified and paste
those lines into langlist.cfg:

de-1252.lm
de-850.lm
en-1252.lm
ja-eucjp.lm
ja-sjis.lm
3-16 Verity® Locale Configuration Guide

Using Locales
Configuring Verity Locales
In this example, all but German, English, and Japanese have been removed, and
German (cp850 character set) has been added. Documents will now be compared
against only German, English, and Japanese language-data files in order to make a
language assignment.

3. Save and close langlist.cfg. (Do not make changes to langlist.all.)

NOTE: If you want to enable language-identification for all supported languages, you
can rename or save a copy of your original langlist.cfg, then save a copy of
langlist.all as langlist.cfg.

Disabling Language Identification

If you know that language-identification is unnecessary for indexing your collections,
there is no need to incur its potential negative performance impact. For example, if all
documents that you index will be in one language only, and the collections you create
will be in the locale for that language, you can disable language identification completely.

You can disable language identification by either of these two methods:

• Delete the entire langid directory from the verity_product\common directory.

If the langid directory is missing, the language-identification filter assumes that no
language identification is desired.

• Disable the language-identification filter itself:

a. Open the version of the universal-filter configuration file (style.uni) that you will
use to create the collection. (The original file is in the directory
verity_product\common\style.)

b. Verify that the following line exists:
postformat: "flt_lang "

c. If the line exists (and is uncommented), comment it out:
#postformat: "flt_lang "

If the line doesn’t exist, do nothing. If it is there but already commented, do nothing.

d. Save and close the file.
Verity® Locale Configuration Guide 3-17

Using Locales
Notes on Creating Non-English Indexes
Notes on Creating Non-English Indexes

This section contains suggestions and reminders for successfully creating and
maintaining non-English collections and other types of indexes. For detailed information
on any of these topics, see the books referenced in each section.

Locale and Character Set for Collections

When creating a non-English collection, note the following locale and character-set
issues.

Using Verity Spider to Create a non-English Collection

You can create a collection using the Verity Spider, executed as a command-line tool
(vspider). If you are creating a non-English collection, you need to specify the locale you
want for the collection and possibly also the character set you want to view it with.

NOTE: The locale (and internal character set) of a collection apply to the fields and data
in the collection itself, not necessarily to the languages and character sets of any of the
documents indexed by the collection. A collection in one locale can have index
information on documents in several languages and character sets.
3-18 Verity® Locale Configuration Guide

Using Locales
Notes on Creating Non-English Indexes
With vspider, specify either the -locale or -charmap options:

Option Description

-locale locale_name Create the collection in the locale specified by
locale_name. The value of locale_name must
be the name of a locale for which you are licensed.
Verity locale names are listed in “Verity Locales and
Character Sets” in Appendix A.

This option is not required if the collection is to be in
the default locale; see “Default Locales and the
Session Locale” in Chapter 2.

-charmap charset_name Specify that vspider is to use the character set
specified in charset_name to display collection
information to the screen. charset_name must be
the name of one of the supported character sets for
the locale specified in locale_name.

This option is not required if you want to display
collection information in its locale’s internal
character set.

“Verity Locales and Character Sets” in Appendix A
lists the supported character sets for each Verity
locale and indicates which one is the internal one.
Verity® Locale Configuration Guide 3-19

Using Locales
Notes on Creating Non-English Indexes
Locale and Character Set for Command-Line Tools

When using the command-line tools vspider and rcvdk on a collection, you might need
to include the -locale option, plus possibly the -charmap option, to access and
properly display the content of the collection or index.

NOTE: locale_name refers to the locale you use to access the collection, and
charset_name refers to the character set you use to display its content. Neither
necessarily corresponds to the language or character set of any of the documents
indexed by the collection.

Option Description

-locale locale_name The name of the locale in which the collection or
other index you are accessing was created.
locale_name must be the name of a locale for
which you are licensed, and must be one of the
Verity locales listed in “Verity Locales and Character
Sets” in Appendix A.

This option is not required if the collection or index
uses the default session locale; see “Default Locales
and the Session Locale” in Chapter 2.

-charmap charset_name Use the character set specified in charset_name to
display the contents of the collection or other index.
charset_name must be the name of one of the
supported character sets for the collection’s locale.

This option is not required if you want to display the
collection data using its locale’s internal character
set.

“Verity Locales and Character Sets” in Appendix A
lists the supported character sets for each
Verity locale and indicates which one is the
internal character set.
3-20 Verity® Locale Configuration Guide

A
Locales, Character Sets and Languages

This appendix lists the Verity-supported languages, Verity locales, and character sets that
can be used for indexing, searching, and viewing in a localized environment. For more
information on the features and usage of Verity locales, see Chapter 2, “Verity Locales.”
and Chapter 3, “Using Locales.”

This appendix includes the following sections:

• Verity Locales and Character Sets

• Supported Source-Document Character Sets

• Supported Language Codes

Locales, Character Sets and Languages
Verity Locales and Character Sets
Verity Locales and Character Sets

The table in this section lists the names of the Verity locale modules that you can install
and use for creating collections and other indexes. The table also lists, for each locale,

• Its internal character set (the character set it uses to process and store all its data)

• The additional character sets that can be used to display the locale’s information and
source documents.

Locale and character set are used as options, function parameters, and structure members
in many Verity tools and APIs. Note the following usage conventions:

• locale option. When specifying a locale in a Verity command option or function
parameter, use the Verity locale name (column 1 in the table).

For example, to specify German as the locale for a collection you are creating with the
rcvdk tool, use the option -locale germanx.

• charmap option. When specifying a character set in a Verity command option or
function parameter, use one of the Verity-defined character-set names (column 3 or 4
in the table). You can specify any of the supported character sets for the locale.

For example, when using the rcvdk tool to view contents of a collection in the germanx
locale, if you want the output to use the MS-DOS character set, use the option -
charmap 437.

NOTE: The character-set names listed here are the specific Verity names that you must
supply for the charmap option or parameter. For example, to indicate the UTF-8
character set, the value of charmap must be utf8, not UTF-8. See the next section,
“Supported Source-Document Character Sets,” for common aliases and re-spellings of
these and other character sets.

Verity locales and character sets

Verity locale Language
Internal
character set

Other supported
character sets

uni (All languages) utf8

arabic Arabic 1256 8859-6

bulgaria Bulgarian 1251

czech Czech 1250 8859-2

danishx Danish 1252 437, 850, 8859

dutchx Dutch 1252 437, 850, 8859
A-2 Verity® Locale Configuration Guide

Locales, Character Sets and Languages
Verity Locales and Character Sets
englishx English 1252 437, 850, 8859

finnishx Finnish 1252 437, 850, 8859

frenchx French 1252 437, 850, 8859

germanx German 1252 437, 850, 8859

greek Greek 1253 8859-7

hebrew Hebrew 1255 8859-8

hungarian Hungarian 1250 8859-2

italianx Italian 1252 437, 850, 8859

japanb Japanese sjis eucjp, iso2022_jp

koreab Korean ksc

bokmalx Norwegian 1252 437, 850, 8859

nynorskx Norwegian 1252 437, 850, 8859

polish Polish 1250, 8859-2

portugx Portuguese 1252 437, 850, 8859

russian Russian 1251 8859-5, koi8-r

russian2 Russian koi8-r 1251, 8859-5

simpcb Chinese (simplified) gb big5

spanishx Spanish 1252 437, 850, 8859

swedishx Swedish 1252 437, 850, 8859

tradcb Chinese (traditional) big5 gb

turkish Turkish 1254 8859-3, 8859-9

Verity locales and character sets (continued)

Verity locale Language
Internal
character set

Other supported
character sets
Verity® Locale Configuration Guide A-3

Locales, Character Sets and Languages
Supported Source-Document Character Sets
Supported Source-Document Character Sets

The table in this section lists the character encodings that Verity can read and convert
when indexing source documents from a document repository. Verity converts text in any
of these character sets into a locale’s internal character set for processing and storage in a
collection.

The character sets that Verity uses internally are listed in the previous section, “Verity
Locales and Character Sets.”

Supported source-document character sets

Encoding
Name

Typical aliases and alternate spellings Comment

1250 Cp1250, Windows-1250 Central and Eastern European
(Windows)

1251 Cp1251, Windows-1251 Cyrillic
(Windows)

1252 8859, Cp1252, Windows-1252 Western European
(Windows)

1253 Cp1253, Windows-1253 Greek
(Windows)

1254 Cp1254, Windows-1254 Turkish
(Windows)

1255 Cp1255, Windows-1255 Hebrew
(Windows)

1256 Cp1256, Windows-1256 Arabic
(Windows)

1257 Cp1257, Windows-1257 Baltic
(Windows)

1258 Cp1258, Windows-1258 Vietnamese
(Windows)

8859-1 latin1, Iso-8859-1, iso8859-1 Western European
(ISO)

8859-2 latin2, Iso-8859-2, Iso8859-2 Central-Eastern European
(ISO)

8859-3 latin3, Is-o8859-3, Iso8859-3 Turkish, Esperanto, Maltese
(ISO)
A-4 Verity® Locale Configuration Guide

Locales, Character Sets and Languages
Supported Source-Document Character Sets
8859-4 latin4, Iso-8859-4, Iso8859-4 Estonian, Latvian, Lithuanian
(ISO)

8859-5 cyrillic, Iso-8859-5, Iso8859-5 Russian, Cyrillic European
(ISO)

8859-6 arabic, Iso-8859-6, Iso8859-6 Arabic
(ISO)

8859-7 greek, Iso-8859-7, Iso8859-7 Greek
(ISO)

8859-8 iso-visual, iso-logical, hebrew, Iso-8859-8,
Iso8859-8

Hebrew
(ISO)

8859-9 Iso-8859-9, Iso8859-9 Turkish
(ISO)

8859_14 Iso-8859-14, Iso8859-14 Celtic
(ISO)

8859_15 Iso-8859-15, Iso8859-15 Revised Latin 1
(ISO)

big5 cp950, Big5, Windows 950, IBM 950 Chinese (traditional)

Cns11643 Cns11643 Chinese (national code for Taiwan)

cp037 Cp037
(EBCDIC code page 037)

cp10000 cp10000
(Microsoft Macintosh Roman)

cp1006 Cp1006 Urdu (Pakistan)
(IBM AIX)

cp1026 Cp1026
(EBCDIC code page 1026)

cp424 Cp424 Hebrew
(EBCDIC)

cp437 Cp437, MSDOS 437 Latin US
(DOS)

cp500 Cp500
(EBCDIC code page 500)

cp737 Cp737, IBM 737 Greek
(DOS)

Supported source-document character sets (continued)

Encoding
Name

Typical aliases and alternate spellings Comment
Verity® Locale Configuration Guide A-5

Locales, Character Sets and Languages
Supported Source-Document Character Sets
cp775 Cp775, IBM 775 Baltic
(DOS)

cp850 Cp850, IBM 850 Latin 1
(DOS)

cp851 Greek
(DOS)

cp852 Cp852, IBM 852 Eastern European/Latin 2
(DOS)

cp855 Cp855, IBM 855 Cyrillic
(DOS)

cp856 Cp856, IBM 856 Hebrew
(IBM PC–old)

cp857 Cp857, IBM 857 Turkish
(DOS)

cp860 Cp860, IBM 860 Portuguese
(DOS)

cp861 Cp861, IBM 861 Icelandic
(DOS)

cp862 Cp862, IBM 862 Hebrew
(DOS)

cp863 Cp863, IBM 863 Canadic
(DOS)

cp864 Cp864, IBM 864 Arabic
(DOS)

cp865 Cp865, IBM 865 Nordic
(DOS)

cp866 Cp866, IBM 866 Cyrillic 2
(DOS)

cp869 Cp869, IBM 869 Greek 2
(DOS)

cp874 tis620, Tis-620, Cp874, IBM 874 Thai

cp875 Cp875
(EBCDIC code page 875)

euc-tw Chinese (traditional)
(euc encoding of CNS 1643-1992)

Supported source-document character sets (continued)

Encoding
Name

Typical aliases and alternate spellings Comment
A-6 Verity® Locale Configuration Guide

Locales, Character Sets and Languages
Supported Source-Document Character Sets
euc-cn Chinese (simplified)
(euc encoding of GB 2312-80)

euc-jp Euc_jp Japanese

Euc-ksc euc-kr, Euc_kr, Windows-949 Korean

gb euc-gb, Gb, Gbk, Cp936,Windows-936,
GB2312, Gb2312-80

Chinese (simplified)

gb12345 Chinese (traditional)
(variant of GB2312)

iso-2022-
cn

Iso2022cn, Iso-2022-cn Chinese (7-bit)
(GB2312 pus CNS 11643)

iso-2022-jp Iso2022jp, Iso-2022-jp Japanese (7-bit)

iso-2022-kr Iso2022kr, Iso-2022-kr Korean (7-bit)

koi8r cp878, Koi8_r, Koi-8r Russian

ksc cp949, cp1363, IBM 1363 Korean

Shift-jis Sjis, cp932, shift-jis, sjis, Windows-932 Japanese

tis620 620 Thai

Unicode Unicode, UTF-16, iso-10646, Utf-16, utf-
16be, utf-16le, UnicodeBig,
UnicodeBigUnmarked, UnicodeLittle
/UnicodeLittleUnmarked /Utf-16

(All languages)

Utf8 Utf8, 65001, Utf-8, utf8 (All languages)

Supported source-document character sets (continued)

Encoding
Name

Typical aliases and alternate spellings Comment
Verity® Locale Configuration Guide A-7

Locales, Character Sets and Languages
Supported Language Codes
Supported Language Codes

The table in this section lists the ISO 639 and ISO 639-1 two-character and three-character
codes for the languages supported by the Verity language-identification command-line
tool.

• Input to, and output from, the Verity language-identification command-line tool
specifies language in terms of the language code.

For more information on the language-identification command-line tool, see
Appendix C, “The Language ID Command Tool.”
A-8 Verity® Locale Configuration Guide

Locales, Character Sets and Languages
Supported Language Codes
Verity-supported language codes

Language Code
OK for <lang/id>
and uni/id?

Afrikaans af

Albanian sq

Arabic ar

Armenian hy

Basque eu

Belarusian be

Bengali bn

Bulgarian bg

Catalan ca

Cherokee chr

Chinese (simplified) zh Yes

Chinese (traditional) zt Yes

Croatian hr

Czech cs Yes

Danish da Yes

Devanagari (Hindi) hi

Dutch nl Yes

English en Yes

Ethiopic gez

Estonian et

Finnish fi Yes

French fr Yes

Georgian ka

German de Yes

Greek el Yes

Gujarati gu

Gurmukhi (Panjabi) pa

Hebrew he
Verity® Locale Configuration Guide A-9

Locales, Character Sets and Languages
Supported Language Codes
Hungarian hu Yes

Icelandic is

Indonesian id

Italian it Yes

Japanese ja Yes

Kannada kn

Khmer km

Korean ko Yes

Lao lo

Latvian lv

Lithuanian lt

Macedonia mk

Malay ms

Malayalam ml

Mongolian mm

Myanmar bms

Norwegian (Bokmal) nb Yes

Norwegian (Nynorsk) nn Yes

Oriya or

Philippine (Tagalog, Hanunoo, Buhid, Tagbanwa) phi

Polish pl Yes

Portuguese pt Yes

Romanian ro Yes

Russian ru Yes

Serbian sr

Sinhala si

Slovak sk

Slovenian sl

Spanish es Yes

Verity-supported language codes (continued)

Language Code
OK for <lang/id>
and uni/id?
A-10 Verity® Locale Configuration Guide

Locales, Character Sets and Languages
Supported Language Codes
Swahili sw

Swedish sv Yes

Syriac syr

Tamil ta

Telugu te

Thai th

Thanna (Dhivehi) div

Tibetan bo

Turkish tr Yes

Ukranian uk

Vietnamese vi

(All others) un Yes

Verity-supported language codes (continued)

Language Code
OK for <lang/id>
and uni/id?
Verity® Locale Configuration Guide A-11

Locales, Character Sets and Languages
Supported Language Codes
A-12 Verity® Locale Configuration Guide

B
Tokenization Delimiters

This appendix lists the tokenization delimiters applied by default to Western European
locales when simple-tokens behavior is enabled. Individual symbols in this table can be
removed from the list of delimiters and/or made searchable. See “Refining the Set of
Token Delimiters” and “Making Symbols Searchable” in Chapter 3.

Available tokenization delimiters
Character Code

Description
1252 Unicode

21 U+0021 EXCLAMATION MARK

22 U+0022 QUOTATION MARK

23 U+0023 NUMBER SIGN

24 U+0024 DOLLAR SIGN

25 U+0025 PERCENT SIGN

26 U+0026 AMPERSAND

27 U+0027 APOSTROPHE

28 U+0028 LEFT PARENTHESIS

29 U+0029 RIGHT PARENTHESIS

2A U+002A ASTERISK

2B U+002B PLUS SIGN

2C U+002C COMMA

2D U+002D HYPHEN-MINUS

2E U+002E FULL STOP

2F U+002F SOLIDUS

Tokenization Delimiters
3A U+003A COLON

3B U+003B SEMICOLON

3C U+003C LESS-THAN SIGN

3D U+003D EQUALS SIGN

3E U+003E GREATER-THAN SIGN

3F U+003F QUESTION MARK

40 U+0040 COMMERCIAL AT

5B U+005B LEFT SQUARE BRACKET

5C U+005C REVERSE SOLIDUS

5D U+005D RIGHT SQUARE BRACKET

5E U+005E CIRCUMFLEX ACCENT

5F U+005F LOW LINE

60 U+0060 GRAVE ACCENT

7B U+007B LEFT CURLY BRACKET

7C U+007C VERTICAL LINE

7D U+007D RIGHT CURLY BRACKET

7E U+007E TILDE

80 U+20AC EURO SIGN

82 U+201A SINGLE LOW-9 QUOTATION MARK

84 U+201E DOUBLE LOW-9 QUOTATION MARK

85 U+2026 HORIZONTAL ELLIPSIS

86 U+2020 DAGGER

87 U+2021 DOUBLE DAGGER

88 U+02C6 MODIFIER LETTER CIRCUMFLEX ACCENT

89 U+2030 PER MILLE SIGN

8B U+2039 SINGLE LEFT-POINTING ANGLE QUOTATION MARK

91 U+2018 LEFT SINGLE QUOTATION MARK

92 U+2019 RIGHT SINGLE QUOTATION MARK

93 U+201C LEFT DOUBLE QUOTATION MARK

94 U+201D RIGHT DOUBLE QUOTATION MARK

Available tokenization delimiters (continued)
Character Code

Description
1252 Unicode
B-2 Verity® Locale Configuration Guide

Tokenization Delimiters
95 U+2022 BULLET

96 U+2013 EN DASH

97 U+2014 EM DASH

98 U+02DC SMALL TILDE

99 U+2122 TRADE MARK SIGN

9B U+203A SINGLE RIGHT-POINTING ANGLE QUOTATION MARK

A1 U+00A1 INVERTED EXCLAMATION MARK

A2 U+00A2 CENT SIGN

A3 U+00A3 POUND SIGN

A4 U+00A4 CURRENCY SIGN

A5 U+00A5 YEN SIGN

A6 U+00A6 BROKEN BAR

A7 U+00A7 SECTION SIGN

A8 U+00A8 DIAERESIS

A9 U+00A9 COPYRIGHT SIGN

AA U+00AA FEMININE ORDINAL INDICATOR

AB U+00AB LEFT-POINTING DOUBLE ANGLE QUOTATION MARK

AC U+00AC NOT SIGN

AD U+00AD SOFT HYPHEN

AE U+00AE REGISTERED SIGN

AF U+00AF MACRON

B0 U+00B0 DEGREE SIGN

B1 U+00B1 PLUS-MINUS SIGN

B2 U+00B2 SUPERSCRIPT TWO

B3 U+00B3 SUPERSCRIPT THREE

B4 U+00B4 ACUTE ACCENT

B5 U+00B5 MICRO SIGN

B6 U+00B6 PILCROW SIGN

B7 U+00B7 MIDDLE DOT

B8 U+00B8 CEDILLA

Available tokenization delimiters (continued)
Character Code

Description
1252 Unicode
Verity® Locale Configuration Guide B-3

Tokenization Delimiters
B9 U+00B9 SUPERSCRIPT ONE

BA U+00BA MASCULINE ORDINAL INDICATOR

BB U+00BB RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK

BC U+00BC VULGAR FRACTION ONE QUARTER

BD U+00BD VULGAR FRACTION ONE HALF

BE U+00BE VULGAR FRACTION THREE QUARTERS

BF U+00BF INVERTED QUESTION MARK

Available tokenization delimiters (continued)
Character Code

Description
1252 Unicode
B-4 Verity® Locale Configuration Guide

C
Creating a Custom Thesaurus

Synonym search is a type of search that locates occurrences of either the search term or any
of its synonyms. For example, a synonym search for brave might return documents that
contain brave or courageous or fearless. A search application specifies a synonym search
by adding the VQL operator <THESAURUS> to the user’s search term.

Synonym search requires the use of a thesaurus file, which lists groups of synonyms.
Verity K2 includes a default English thesaurus that may be adequate for most purposes in
the englishx locale. To construct a thesaurus for use in other locales, or to create a
custom English thesaurus, follow the instructions in this appendix.

The <THESAURUS> operator is described in the Verity Query Language Guide.

This appendix includes the following sections:

• Creating a Thesaurus Control File

• Compiling a Thesaurus with mksyd

• Integrating the Thesaurus with Verity

Creating a Custom Thesaurus
Creating a Thesaurus Control File
Creating a Thesaurus Control File

A Verity thesaurus is a compiled file with a .syd extension. To create or modify a
thesaurus, you need to first create or edit a text file called a thesaurus control file, which
has a .ctl extension. You then compile the control file into a locale-specific thesaurus file
with the mksyd command-line tool.

When creating a thesaurus, you can

• Create a complete control file using a text editor.

• Edit an existing control file to add or remove synonyms.

• Purchase a commercial thesaurus, then turn it into a thesaurus control file by adding
the statements described here.

NOTE: You can re-create a control file from a thesaurus; see “Creating a Control File from
an Existing Thesaurus,” later in this appendix.

Control-File Structure

A thesaurus control file contains synonym lists. Each list is defined by the list
keyword. The list contains synonyms and, optionally, keys. Keys are words that must
appear in the search term for the synonym list to be used. In other words, if a search term
consists of one of the non-key words in a synonym list, the term itself is searched for, but
none of its synonyms is. A list with specified key terms is an asymmetric list.

If a given list has no keys, every synonym in the list is considered a key, and the list is
circular.

The following is an example of a small thesaurus control file.

$control:1
synonyms:
{
list: "abort,miscarry,terminate,halt,end,fail"
list: "cease,stop,desist,terminate,end,discontinue"
list: "karma <or> fate <or> destiny"

/keys = "karma"
}
$$

The first two lists are circular; the third is asymmetric. A synonym search for any term in
the first list, for example, will locate that term plus any of its synonyms. Likewise, a
synonym search for karma will find all occurrences of karma, fate, or destiny. However,
a synonym search for fate will find only occurrences of fate.
C-2 Verity® Locale Configuration Guide

Creating a Custom Thesaurus
Creating a Thesaurus Control File
If a key word (explicit or implicit) appears in more than one list, all lists for which it is a
key are included in the synonym search. For example, note that the words terminate and
end are keys in two lists in this example. In this case, a thesaurus query for either
terminate or end results in an expanded query containing both lists:

 "(cease,stop,desist,terminate,end,discontinue) <or>
(abort,miscarry,terminate,halt,end,fail)"

A list can be more than a simple comma-separated set of terms. Note that the third list in
this example includes the query expression "karma <or> fate <or> destiny".
You can use query expressions in a thesaurus control file to apply sophisticated search
logic to synonyms or to override default the default query expansion of synonym lists.
See “The qparser Keyword,” later in this appendix, for more information.

The control Directive.

The $control:1 directive must be the first non-comment line in the control file.

The synonyms Keyword

The synonyms keyword is required in a thesaurus control file. It must appear directly
after the $control:1 directive.

The list Keyword

The list: keyword specifies the synonyms in a list, either in query form or in a list of
words or phrases separated by commas. The optional modifier /keys specifies the keys
list, which must be a list of words separated by commas. If /keys is absent, all synonyms
in the list become keys. The optional modifier /op-default defines the fallback operator
to use if there is no match for a thesaurus query.

The maximum length for a single list is 32,000 characters.

NOTE: If you separate your list into multiple lines (inserting new lines), you must
include a backslash (\) at the end of each line so that the lines are treated as one list.

The following is a sample list statement:

list:"happy, joyous, joyful, glad, blithe, merry,\
cheerful, contented, blissful, delighted, satisfied,\
pleased, favored, lucky, fortunate, propitious,\
appropriate, felicitous, befitting"
Verity® Locale Configuration Guide C-3

Creating a Custom Thesaurus
Creating a Thesaurus Control File
The qparser Keyword

The synonym lists in a thesaurus control file are parsed and expanded as queries when
the thesaurus is created.

The default expansion applied during thesaurus creation is different from the default
expansion applied to user queries by applications that use the simple query parser. For
example, the simple query parser expands a list of words separated by commas (the
default combination operator) by applying the <ACCRUE> operator to the list. In default
thesaurus query expansion, however, the comma-separated list is expanded by applying
the <ANY> operator to it.

The following table lists the default values for expansion operators during thesaurus
creation.

To make sure that the same expansion operators are used during thesaurus expansion as
are used during search, you can use the qparser keyword in your control file to specify a
query parser. For example:

qparser: simple

Creating a Control File from an Existing Thesaurus

The mksyd command-line tool is primarily used to compile a thesaurus from a control file
(see “Compiling a Thesaurus with mksyd,” later in this appendix), but you can also use it
to de-compile (export) a thesaurus, turning it back into a control file.

The easiest way to create a custom thesaurus in a locale for which you already have a
thesaurus is to export the thesaurus to a text file, modify it, and then recompile it as a .syd
file.

Existing thesaurus files are stored in the directory
verity_product/common/locale_name, where verity_product is the directory
containing the component of Verity that has been installed (for example, usr/verity/K2
for K2 Services), and locale_name is the name of the thesaurus’s locale (for example,
frenchx).

To use mksyd to create a control file from an existing thesaurus file, execute this
command from within the directory that holds the existing thesaurus file:

mksyd -locale locale_name -charmap charset -dump -syd vdk30.syd -f ctrl_file.ctl

Type of Expansion Operator in thesaurus creation Comment

leaf operator <STEM> Synonyms are stemmed for searching

combination operator <ANY> Synonym searches are not ranked

phrase operator <PHRASE> Phrases are searched as phrases
C-4 Verity® Locale Configuration Guide

Creating a Custom Thesaurus
Creating a Thesaurus Control File
where

• locale_name is the name of the locale whose thesaurus you are de-compiling.

(This option is not required if the thesaurus is in the default locale.)

• charset is the character set you want the control file to use. It must be one of the
character sets supported by locale_name, as listed in “Verity Locales and Character
Sets” in Appendix A.

(This option is not required if the control-file’s character set is to be the default
character set for locale_name.)

• vdk30.syd is the name of the thesaurus file that you want to de-compile.

• ctrl_file.ctl is the name you want to give to the control file (note the extension
.ctl).

The resulting file is in control-file format:

$control: 1
synonyms:
{
 list: "word1, synonym1-1, synonym1-2, synonym1-3"
 list: "word2, synonym2-1, synonym2-2, synonym2-3"
 list: "word3, synonym3-1, synonym3-2, synonym3-3"
...
}
$

You can then edit the control file as needed and re-compile it as explained next.
Verity® Locale Configuration Guide C-5

Creating a Custom Thesaurus
Compiling a Thesaurus with mksyd
Compiling a Thesaurus with mksyd

After you have created a thesaurus control file, you can use the mksyd command-line tool
to compile it into a thesaurus. The control file must have the file-name extension .ctl.

Execute the following command from within the directory that holds the thesaurus
control file:

mksyd -locale locale_name -charmap charset -f control_file.ctl -syd vdk30.syd

where

• locale_name is the locale of the thesaurus, which must be the locale of any collections
that the thesaurus is to be used with.

(This option is not required if the thesaurus is in the default locale.)

• charset is the character set of the control file. charset must be a character set
supported by the locale locale_name.

The charset option is optional; leave it off if the control file’s character set is the
internal character set of the thesaurus’s locale. For a list of the supported character sets
and internal character set for each locale, see “Verity Locales and Character Sets” in
Appendix A.

• control_file is the name (minus file extension) of the control file to compile.

• vdk30.syd is the name of the thesaurus file that you want to create.
C-6 Verity® Locale Configuration Guide

Creating a Custom Thesaurus
Integrating the Thesaurus with Verity
Integrating the Thesaurus with Verity

Once you have created a new thesaurus, it should be placed in the appropriate directory
for use.

Naming and Installing the Thesaurus

First, the thesaurus file must have the appropriate filename. Regardless of its locale,
every thesaurus file must be named vdk30.syd.

NOTE: Only one active thesaurus file is allowed per locale. Only one vdk30.syd file
can be present in a locale_name directory. If you are creating a thesaurus for a locale
(like englishx) that has a default thesaurus provided by Verity, move the default
thesaurus from the locale_name directory, or else rename it, before adding your new
thesaurus. It is recommended that you do not permanently remove the default
thesaurus.

To integrate your custom thesaurus into your search application, move the compiled
thesaurus file to the locale’s directory:

verity_product/common/locale_name

where verity_product is the installation directory (such as /usr/verity/k2) of your
Verity component, and locale_name is the name of the directory (such as dutchx)
containing the locale for which you are creating the thesaurus.

WARNING! All application processes, including user searches, must be terminated
before you remove or change the contents of the common directory or any of its
subdirectories. The new thesaurus will be available when the application is started or
restarted.

Using a Knowledge Base Map to Point to a Thesaurus File

You can also use a knowledge-base map to point to a .syd File. This is a sample map file:

$control
kbases:
{
kb: "Thesaurus"
/kb-path = "vdk30.syd"
}

In K2, point to this map file either through the client in a local context, or through the
server configuration file in a remote context.

Note that no thesaurus operator is necessary in queries using a knowledge-base map. The
query works like a topic, so any word in the thesaurus that you enter will automatically
map to its synonym list.
Verity® Locale Configuration Guide C-7

Creating a Custom Thesaurus
Integrating the Thesaurus with Verity
C-8 Verity® Locale Configuration Guide

D
Glossary

Term Definition

accent-insensitive search A type of search that includes all accented variations of a letter in
the search term. In accent-insensitive search, the search term si
would find all instances of both si or sí, for example. Conversely, in
accent-sensitive search, the search term si would find only
instances of the unaccented si.

Adobe PDF filter A document filter that processes PDF files for indexing. Compare
KeyView Filter.

asymmetric list In a thesaurus control file, a list of synonyms in which only some
entries are keys. Compare symmetric list.

auto-case A Verity search feature which, when enabled, conducts case-
insensitive search when the search term is single-case (such as cat
or CAT), and case-sensitive search when the search term is mixed-
case (such as Cat or caT). With auto-case, the word cAt would be
found by searching for cat or CAT, but not by searching for Cat or
caT.

auto-detection A Verity capability in which a document is analyzed to determine
its character set and/or its language. Verity’s auto-detection can
accurately determine both the character set and the native
language of many documents.

browse A command-line tool that displays the contents (field names and
values) of a collection’s document table.

case-insensitive search A type of search in which the case of the letters in the search term
does not matter. In case-insensitive search, the search term Cat
would find all instances of cat or CAT or Cat, for example.
Conversely, in case-sensitive search, the search term Cat would
find only instances of Cat.

Glossary
character set A numeric encoding of the characters of a language. Text in a given
language can be stored and manipulated using one or more
character sets. Examples include ASCII, Shift-JIS, and UTF-8.

circular list In a thesaurus control file, a list of synonyms in which all entries
are keys. Compare asymmetric list.

collection A set of files and folders that stores information needed to search
and classify documents in a repository. A collection stores the
locations of all the indexed documents, the locations of all the
indexed words in those documents, and metadata about the
documents. It does not store the documents themselves.

compound word A word created by the concatenation of several independent
words. Decomposition in indexing breaks up a compound word
into subwords and creates index entries for each one.

current locale The Verity locale within whose context an indexing or text-
manipulation process is occurring. Every VDK session has a
current locale.

decomposition The process of breaking a compound word into its constituent
subwords for indexing. Searches for a subword will then return all
occurrences of the compound word.

decomposition pattern In a user dictionary for the japanb locale, a numeric pattern that
specifies how a compound word is to be broken into subwords.

default installation locale The locale specified in the configuration file verity.cfg. If
defined, it is the default session locale.

default session language The language used as the default for queries during a VDK session.
Applies only when the session locale is the multilanguage (uni)
locale.

default session locale The locale assigned to a VDK session if no locale is specified when
the session is opened.

delimiter A character used by the tokenizer to split document text into
searchable units. For many locales, white space and punctuation
are the most common delimiters.

didump A command-line tool that generates a list of the words (tokens) in
a collection’s word index.

document cluster An automatically generated grouping of similar documents, based
on document features.

document feature A noun or noun phrase that characterizes a topic or concept in a
document. Document features are identified automatically during
the process of feature extraction.

Term Definition
D-2 Verity® Locale Configuration Guide

Glossary
document filter A driver-level plug-in software module that can read documents in
one or more specific formats (such as PDF, XML, Microsoft Word).
Document filters receive documents from gateways, extract text
data and field information from them, and pass that information
along for indexing and storage in a collection.

document key A unique identifier assigned to each document indexed in a
collection. In the document table of a collection, it is in the field
VdkVgwKey.

document summary A concise description of the contents of a document. An
automatically generated document summary can be based on
document features or the document’s initial text.

document table A table in a collection that specifies the location of each indexed
document. The document table also contains all metadata (fields)
associated with each document.

dynamic highlighting A method of highlighting the search term in a document summary
or in a retrieved document. In dynamic highlighting, the
application actually searches through the results or the document
to locate and highlight the term. Dynamic highlighting is slower
but more accurate than static highlighting.

feature See document feature.

feature extraction The process of identifying the important subjects and concepts in a
document by analyzing its nouns and noun phrases. Feature
extraction underlies the creation of document clusters and
document summaries.

full-width character In Japanese, a Katakana or romaji character that occupies the same
amount of horizontal space as a Kanji character. In Japanese
character sets, a full-width character has a different character code
from its half-width equivalent.

gateway A driver-level plug-in software module that can retrieve
documents from a specific type of platform or through a specific
protocol. For example, Verity gateways exist for UNIX and
Windows file systems, Web servers, and ODBC-accessible
databases. During indexing, gateways pass retrieved files to
document filters for processing.

half-width character In Japanese, a Katakana or romaji character that occupies half the
horizontal space of a Kanji character. In Japanese character sets, a
half-width character has a different character code from its full-
width equivalent.

inflectional stemming A style of stemming in which the words of a stem are all of the
same part of speech (such as noun or verb).

Term Definition
Verity® Locale Configuration Guide D-3

Glossary
internal character set The character set used internally by a locale. All collection data
written in that locale, and all BIFs and style files used by that
locale, must be in the locale’s internal character set.

Internet-style query parser A free-text query parser that lets users conduct familiar Web-style
searches.

key In a list of synonyms in a thesaurus control file, a word that must
appear in the search query for any of its synonyms to be
found.

KeyView filter A document filter, based on Verity KeyView technology, that is
used during indexing to process many types of files.

language-data file A file containing language-defining information. Used by the
language-identification filter and the language-identification
command-line tool.

language ID A two-character (ISO 639) code that specifies an individual
language. Examples are en for English and zh for simplified
Chinese. Verity uses language ID for specifying languages for the
language-identification command-line tool.

language-identification
command-line tool

A Verity tool that opens a document and returns a language
assignment.

locale 1. A geographic or political region whose residents share the same
language and customs. 2. Verity locale.

locale definition file A file (loc00.lng) in each locale’s directory that controls the
language-handling characteristics of the locale.

locale directory The directory that holds the files belonging to a particular locale.
The name of a locale’s directory is the name of the locale.

mksyd A command-line tool used to build a thesaurus from a thesaurus
control file.

normalization An indexing feature in which a single version of a character
is used when alternate versions exist (such as half-width
and full-width kana in Japanese), and a single spelling is
used for a word that has alternate spellings (such as color and
colour in English). Users searching a normalized collection for
a word find all words with either the common spelling or
any of the alternate spellings.

noun phrase A group of words (for example, due process or court of law) that
functions as a noun. Part-of-speech identification during indexing
can lead to the automatic extraction of noun phrases, which can be
used in the automatic creation of document features, summaries,
and clusters.

okurigana In Japanese, pronunciation marks added to Kanji words.

Term Definition
D-4 Verity® Locale Configuration Guide

Glossary
partition A subdivision of a collection. Partitioning collections improves
scalability and searching performance.

part-of-speech identification During indexing, the assignment of the appropriate part of speech
(noun, verb, adjective, and so on) to each token in the word index.

qp_inet.stp A locale-specific stop-word file used by the Verity Internet-style
query parser. It contains words that the query parser will strip
from query terms before conducting a search. See also vdk30.stp.

session character set The character set used for input to and output from VDK during a
VDK session. Must be a character set supported by the session
locale.

session locale The locale used for all operations during a VDK session.

simple tokens A behavior, available for some locales, in which nearly all symbols
(in addition to white space and punctuation) are defined as
delimiters. In simple-tokens behavior, words are broken down into
smaller searchable units, thus increasing the potential for search
hits.

single-language locale A Verity locale that supports only one language. Most locales are
single-language.

sorting order The order in which a locale sorts the characters of its language.
Verity locales sort characters in a manner that facilitates accent-
insensitive and case-insensitive search and display.

Soundex search A type of search in which occurrences of the search term plus any
words with similar pronunciation are returned. Verity supports
Soundex search for the English language only.

static highlighting A method of highlighting the search term in a document summary
or in a retrieved document. In static highlighting, the application
uses offsets in the collection’s word index to calculate the positions
of terms to highlight. Static highlighting is faster but less accurate
than dynamic highlighting.

stem See word stem.

stemmed search A type of search that locates all words that share the same word
stem. For example, a stemmed search for the term house would find
all occurrences of house, but also all occurrences of houses, housed,
and housing.

stemming The process of extracting a word’s root portion, or word stem,
during indexing. For example, house is the word stem for houses,
housed, and housing. Indexing of word stems makes stemmed
search possible.

Term Definition
Verity® Locale Configuration Guide D-5

Glossary
stop word A search term that should be ignored. Verity supports several
types of stop-word lists, some used at indexing time and others
used at search time.

style.dft A collection style file that controls the contents of the virtual
document created during indexing.

style.fxs A collection style file that contains feature-extraction stop words—
words that should not appear in document summaries and
clusters. See also vdk30.stp.

style.lex A collection style file that can control how tokenization occurs
during indexing. Use of style.lex is discouraged; tokenization
control is now available through the locale definition file
associated with each locale.

style.prm A collection style file containing parameters that control the
generation of specialized indexes.

style.stp A collection style file that contains indexing stop words—words
that should not be included in the collection’s word index.

style.ufl A collection style file that defines custom fields to be included in
the collection’s document table and optionally specifies the
generation of indexes for those fields.

style.uni A collection style file that controls the functioning of the universal
filter.

style.zon A filter style file that controls functioning of the zone filter.

subword A constituent element of a compound word.

summary See document summary.

synonym search A type of search that returns all occurrences of the search term and
also any of its synonyms, as defined in a thesaurus.

system default locale The locale englishx. It is the default session locale if the default
installation locale is not defined.

thesaurus A dictionary of synonyms. Each Verity locale support use of a
thesaurus for searching. In a synonym search, all occurrences of
the search term and any of its synonyms are returned.

thesaurus control file A text file containing lists of synonyms. You create a thesaurus
control file, then you use the mksyd command-line tool to compile
it into a thesaurus.

token A searchable unit in a document. Tokens are typically the
individual words in a document, but they can also be word stems,
subwords, or any string fragments that occur between delimiter
characters.

Term Definition
D-6 Verity® Locale Configuration Guide

Glossary
tokenization The process by which the tokenizer converts a document’s text into
searchable units (such as words and word stems). The tokens are
then stored in a collection’s word index.

typo search A type of search that corrects for minor misspellings in the search
terms. In a typo search, occurrences of the search term and any
words close to it in spelling are returned.

Unicode A standard for 16-bit character sets. Unicode provides character
encoding for all major modern languages. There are various
implementations of portions of the Unicode standard.

VDK 1. Verity Developer's Kit, the API that enables OEM developers to
build Verity functionality into their products. 2. The Verity search
engine and other core Verity technology.

vdk30.stp A locale-specific file that contains feature-extraction stop words—
words that should not appear in document summaries and
clusters. See also style.fxs.

Verity locale A driver-level plug-in software module that allows Verity
applications to operate on documents in a wide variety of
languages. Locales provide language-specific tokenization,
stemming, part-of-speech recognition, and thesaurus use. See also
single-language locale.

virtual document A pure text version of a document, constructed by a document
filter. The virtual document is converted by the tokenizer into
tokens to be stored in the word index.

wildcard search A type of search in which the search term contains special symbols
that represent multiple characters. For example, a wildcard search
with the term abc* returns occurrences of all words that start with
abc.

word index In a collection, a list of all words that appear in the documents,
plus the location of every instance of the word.

word stem The root portion of a word. For example, house is the word stem for
houses, housed, and housing. Indexing of word stems makes
stemmed search possible.

XML filter A document filter that processes XML documents.

zone A named, searchable region of a document. Examples are HTML
tags such as H1 or BODY, an the values of email and Usenet message
fields such as TO or SUBJECT.

zone filter A document filter that processes documents—such as HTML,
Usenet news, and email documents—that contain zones. See also
XML filter.

Term Definition
Verity® Locale Configuration Guide D-7

Glossary
D-8 Verity® Locale Configuration Guide

Index

A

accent-insensitive search 1-9, 3-11
per locale 2-6, 2-8, 2-10

accent-sensitive search 3-11
Adobe PDF filter 1-13
archive documents 1-13
Asian locales 2-9

accent-insensitive search 2-10
case-insensitive search 2-10
character-set detection 2-9
compound words 2-10
date formatting 2-11
delimiters, changing 3-5
language identification 2-9
language-specific search 2-10
normalization 2-10
noun-phrase extraction 2-10
number handling 2-10
part-of-speech identification 2-10
sorting order 2-9
Soundex search 2-10
stemming 2-9, 3-8
stop words 2-11
symbol search 2-10
synonym search 2-10
tokenization 2-9
typo search 2-10
wildcard search 2-10

auto-case 1-9, 3-10

B

bin directory 2-2

built-in locales 2-3

C

<CASE> operator 1-9
Casedex value 3-10
case-insensitive search 1-9

per locale 2-6, 2-8, 2-10
case-sensitive search 3-10
character sets 1-2

alternate names for A-4
internal, for locale 2-2, A-2
supported for source documents A-4
supported, by locale 2-2, A-2

character-set detection
per locale 2-5, 2-7, 2-9

-charmap option 3-19, 3-20
clusters 1-6, 1-8
compound words 1-7

defined 1-7
per locale 2-6, 2-7, 2-10
user dictionary for 3-8

D

database-based documents 1-13
date formatting 3-12

per locale 2-6, 2-8, 2-11
decimal separator 3-13
decomposition

See also compound words
defined 1-7
user dictionary for 1-7

default installation locale 2-3
default session locale 2-3, 3-2
delimiters 1-4

specifying 3-4
document clusters 1-6, 1-8
document summaries 1-6, 1-8

Index
E

East European/Mideast locales 2-7
accent-insensitive search 2-8
case-insensitive search 2-8
character-set detection 2-7
compound words 2-7
date formatting 2-8
delimiters, changing 3-5
language identification 2-7
language-specific search 2-8
normalization 2-7
noun-phrase extraction 2-8
number handling 2-8
part-of-speech identification 2-8
searchable symbols 3-6
sorting order 2-7
Soundex search 2-8
stemming 2-7, 3-8
stop words 2-8
symbol search 2-8
synonym search 2-8
tokenization 2-7
typo search 2-8
wildcard search 2-8

encoding 1-2, 1-3
englishx locale 2-3

F

feature extraction 1-8
formatting

dates 3-12
decimal separator 3-13

H

Han script numbers 1-8
HTML documents 1-13
Index-2
I

indexing 1-4
internal character set (of locale) 2-2

K

Katakana 1-6
KeyView filter 1-13
ktmgr command-line tool 3-20

L

<lang/id> operator A-9
langid directory 3-16
langlist.cfg 3-16
language 1-3
language codes 3-15, 3-16

list of A-8
language identification

configuring 3-15
disabling 3-17
per locale 2-5, 2-7, 2-9

language-specific search
per locale 2-6, 2-8, 2-10

limitations 1-13
locale definition file (loc00.lng) 2-2

character set defined in 2-2
locale directory 2-2
-locale option 3-19, 3-20
locale_name metavariable 2-2, C-4
Verity® Locale Configuration Guide

Index
locales 2-1
See also Western European locales, East

Europe/Mideast locales and Asian
locales

built-in 2-3
default installation 2-3
default session 2-3, 3-2
general features 2-2
installation location 2-2
internal character set of 2-2
list of A-2
session 2-3
supported character sets for 2-2
system default 2-3

M

mksyd command-line tool 3-20
control file from custom thesaurus C-4
create custom thesaurus C-6

mktopics command-line tool 3-20
mkvdk command-line tool 3-20
multilanguage locale

stemming 3-8

N

normalization 1-6
per locale 2-6, 2-7, 2-10

noun-phrase extraction 1-7
per locale 2-6, 2-8, 2-10

number handling 1-8
per locale 2-6, 2-8, 2-10

O

okurigana 1-6
os_platform metavariable 2-2
Verity® Locale Configuration Guide
P

part-of-speech identification 1-7
See also noun-phrase extraction
per locale 2-6, 2-8, 2-10

PDF documents 1-13

Q

qp_inet.stp 1-11

R

rck2 command-line tool 3-20
repositories 1-2

S

searching 1-9
accent-insensitive 1-9, 3-11
case-insensitive 1-9
case-sensitive 3-10
for symbols 1-9, 3-5
Soundex 1-10
synonym 1-10, 3-13
typo 1-10

session locale 2-3
simple tokens 1-5

enabling and disabling 3-3
single-character tokenization 3-5
sorting order 1-4

per locale 2-5, 2-7, 2-9
<SOUNDEX> operator 1-10
Soundex search 1-10

per locale 2-6, 2-8, 2-10
source documents 1-2

limitations in handling 1-13
stem index 1-6
Stemdex value 3-8
Index-3

Index
stemming 1-5
enabling and disabling 3-7
for single-language locales 1-6
inflectional 1-5
per locale 2-6, 2-7, 2-9

stop words 1-11, 3-14
per locale 2-6, 2-8, 2-11

style.fxs 1-11
style.lex 2-2
style.prm 3-8
style.stp 1-11
style.uni 3-17
summaries 1-6, 1-8
symbol search 1-9, 3-5

per locale 2-6, 2-8, 2-10
synonym search 1-10, 3-13

per locale 2-6, 2-8, 2-10
system default locale 2-3

T

<THESAURUS> operator 1-10, C-1
thesaurus

creating a control file from C-4
thesaurus file 3-13
thesaurus search 1-10
tokenization 1-4

customizing 3-2
delimiters, changing 3-4
example 3-6
per locale 2-5, 2-7, 2-9
simple tokens 3-3
single-character 3-5

tokens 1-4
<TYPO> operator 1-10
typo search 1-10

per locale 2-6, 2-8, 2-10

U

uni/id locale specifier A-9
user dictionaries 1-7, 3-8
Index-4
V

vdk30.stp 1-12, 3-14
vdk30.syd 3-14, C-7
Verity configuration file (verity.cfg) 2-3
Verity Spider 3-18
verity_product metavariable 2-2
vspider command-line tool 3-18, 3-20

W

Western European locales 2-5
accent-insensitive search 2-6
case-insensitive search 2-6
character-set detection 2-5
compound words 2-6
date formatting 2-6
delimiters, changing 3-4
features 2-5
language identification 2-5
language-specific search 2-6
list of 2-5
normalization 2-6
noun-phrase extraction 2-6
number handling 2-6
part-of-speech identification 2-6
searchable symbols 3-5
sorting order 2-5
Soundex search 2-6
stemming 2-6, 3-8
stop words 2-6
symbol search 2-6
synonym search 2-6
tokenization 2-5
typo search 2-6
wildcard search 2-6

wildcard search
per locale 2-6, 2-8, 2-10

word stems 1-5
Verity® Locale Configuration Guide

Index
X

XML documents 1-13
Verity® Locale Configuration Guide
 Index-5

Index
Index-6
 Verity® Locale Configuration Guide

	Verity® Locale Configuration Guide V 5.0 for PeopleSoft®
	Table of Contents
	Preface
	Using This Manual
	Version
	Organization of This Manual
	Stylistic Conventions

	Language Concepts
	Language and Encoding in Documents
	Language-Related Indexing Features
	Sorting Order
	Tokenization and Word Delimiters
	Stemming
	Normalization
	Decomposition of Compound Words
	Part-of-Speech Identification
	Number Handling

	Language-Related Search Features
	Case-Insensitive Search
	Accent-Insensitive Search
	Symbol Search
	Synonym Search
	Soundex Search
	Typo Search
	Stop Words

	Limitations in Handling Source Documents

	Verity Locales
	Locale Basics
	Installed Location
	Locale Definition File
	Internal Character Set and Supported Character Sets
	Default Locales and the Session Locale
	Built-In Locales
	Locale Categories

	Western European Locales
	Eastern European/Middle-Eastern Locales
	Asian Locales

	Using Locales
	Configuring Verity Locales
	Redefining the Default Session Locale
	Customizing Tokenization Behavior
	Changing Search Characteristics
	Changing Formatting
	Setting Up Synonym Search
	Creating a Stop-Word File
	Configuring Language Identification

	Notes on Creating Non-English Indexes
	Locale and Character Set for Collections
	Locale and Character Set for Command-Line Tools

	Locales, Character Sets and Languages
	Verity Locales and Character Sets
	Supported Source-Document Character Sets
	Supported Language Codes

	Tokenization Delimiters
	Creating a Custom Thesaurus
	Creating a Thesaurus Control File
	Control-File Structure
	Creating a Control File from an Existing Thesaurus

	Compiling a Thesaurus with mksyd
	Integrating the Thesaurus with Verity
	Naming and Installing the Thesaurus
	Using a Knowledge Base Map to Point to a Thesaurus File

	Glossary
	Index

