
Siebel eScript Language
Reference
Version 7.8, Rev. A
August 2005

Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404
Copyright © 2005 Siebel Systems, Inc.
All rights reserved.
Printed in the United States of America

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way,
including but not limited to photocopy, photographic, magnetic, or other record, without the prior
agreement and written permission of Siebel Systems, Inc.

Siebel, the Siebel logo, UAN, Universal Application Network, Siebel CRM OnDemand, TrickleSync,
Universal Agent, and other Siebel names referenced herein are trademarks of Siebel Systems, Inc., and
may be registered in certain jurisdictions.

Other product names, designations, logos, and symbols may be trademarks or registered trademarks of
their respective owners.

PRODUCT MODULES AND OPTIONS. This guide contains descriptions of modules that are optional and
for which you may not have purchased a license. Siebel’s Sample Database also includes data related to
these optional modules. As a result, your software implementation may differ from descriptions in this
guide. To find out more about the modules your organization has purchased, see your corporate
purchasing agent or your Siebel sales representative.

U.S. GOVERNMENT RESTRICTED RIGHTS. Programs, Ancillary Programs and Documentation, delivered
subject to the Department of Defense Federal Acquisition Regulation Supplement, are “commercial
computer software” as set forth in DFARS 227.7202, Commercial Computer Software and Commercial
Computer Software Documentation, and as such, any use, duplication and disclosure of the Programs,
Ancillary Programs and Documentation shall be subject to the restrictions contained in the applicable
Siebel license agreement. All other use, duplication and disclosure of the Programs, Ancillary Programs
and Documentation by the U.S. Government shall be subject to the applicable Siebel license agreement
and the restrictions contained in subsection (c) of FAR 52.227-19, Commercial Computer Software -
Restricted Rights (June 1987), or FAR 52.227-14, Rights in Data—General, including Alternate III (June
1987), as applicable. Contractor/licensor is Siebel Systems, Inc., 2207 Bridgepointe Parkway, San
Mateo, CA 94404.

Proprietary Information

Siebel Systems, Inc. considers information included in this
documentation and in Siebel Business Applications Online Help to be
Confidential Information. Your access to and use of this Confidential
Information are subject to the terms and conditions of: (1) the
applicable Siebel Systems software license agreement, which has
been executed and with which you agree to comply; and (2) the
proprietary and restricted rights notices included in this
documentation.

Contents
Siebel eScript Language Reference 1

Chapter 1: What’s New in This Release

Chapter 2: Siebel eScript Language Overview
Script Engine Alternatives for Siebel eScript 16

Siebel eScript Programming Guidelines 17

Siebel eScript Concepts 18
Case Sensitivity in Siebel eScript 19
White-Space Characters in Siebel eScript 19
Special Characters in Siebel eScript 20
Comments in Siebel eScript 20
Expressions, Statements, and Blocks in Siebel eScript 21
Identifiers in Siebel eScript 22
Variables in Siebel eScript 23

Data Types in Siebel eScript 24
Primitive Data Types in Siebel eScript 25
Object Data Types in Siebel eScript 26
Complex Objects in Siebel eScript 28
Numbers in Siebel eScript 29
Data Typing in Siebel eScript 31
Implicit Type Conversion in Siebel eScript 32
Properties and Methods of Common Data Types in Siebel eScript 34

Expressions in Siebel eScript 35

Operators in Siebel eScript 35
Mathematical Operators in Siebel eScript 35
Bit Operators in Siebel eScript 38
Logical Operators and Conditional Expressions in Siebel eScript 39
Typeof Operator in Siebel eScript 40
Conditional Operator in Siebel eScript 40
String Concatenation Operator in Siebel eScript 41

Functions in Siebel eScript 41
Function Scope in Siebel eScript 42
Passing Variables to Functions in Siebel eScript 43
The Function Arguments[] Property in Siebel eScript 43
Siebel eScript Language Reference Version 7.8, Rev. A 3

Contents ■
Function Recursion in Siebel eScript 43
Error Checking for Functions in Siebel eScript 44

Siebel eScript Statements 44
break Statement 45
continue Statement 46
do...while Statement 47
for Statement 48
for...in Statement 49
goto Statement 50
if Statement 51
switch Statement 52
throw Statement 54
try Statement 55
while Statement 56
with Statement 57

Chapter 3: Quick Reference: Methods and Properties in
Siebel eScript

Array Methods and Properties in Siebel eScript 59

Buffer Methods and Properties in Siebel eScript 60

Character Classification Methods in Siebel eScript 61

Conversion Methods in Siebel eScript 61

Data Handling Methods in Siebel eScript 62

Date and Time Methods in Siebel eScript 63

Disk and File Methods in Siebel eScript 64
Disk and Directory Methods in Siebel eScript 65
File-Control Methods in Siebel eScript 65
File-Manipulation Methods in Siebel eScript 66

Error Handling Methods in Siebel eScript 66

Mathematical Methods and Properties in Siebel eScript 67
Numeric Methods in Siebel eScript 67
Trigonometric Methods in Siebel eScript 68
Mathematical Properties in Siebel eScript 68

Memory Manipulation Methods in Siebel eScript 69

Operating System Interaction Methods in Siebel eScript 69

String and Byte-Array Methods in Siebel eScript 70

Uncategorized Methods in Siebel eScript 71
Siebel eScript Language Reference Version 7.8, Rev. A4

Contents ■
Chapter 4: Siebel eScript Commands
Applet Objects 73

The Application Object 75

Array Objects 77
The Array Constructor in Siebel eScript 78
Associative Arrays in Siebel eScript 79
Array join() Method 80
Array length Property 80
Array pop() Method 81
Array push() Method 82
Array reverse() Method 82
Array sort() Method 83
Array splice() Method 84

BLOB Objects 85
The blobDescriptor Object 86
Blob.get() Method 87
Blob.put() Method 89
Blob.size() Method 91

Buffer Objects in Siebel eScript 92
The Buffer Constructor in Siebel eScript 92

Buffer Object Methods 94
getString() Method 95
getValue() Method 95
offset[] Method 96
putString() Method 97
putValue() Method 98
subBuffer() Method 99
toString() Method 100

Buffer Object Properties 101
bigEndian Property 101
cursor Property 102
data Property 102
size Property 102
unicode Property 103

Business Component Objects 103

Business Object Objects 108

Business Service Objects 108

The Clib Object 109
Siebel eScript Language Reference Version 7.8, Rev. A 5

Contents ■
The Clib Object Buffer Methods in Siebel eScript 110
Clib.memchr() Method 110
Clib.memcmp() Method 111
Clib.memcpy() Method and Clib.memmove() Method 111
Clib.memset() Method 112

The Clib Object Character Classification in Siebel eScript 112
Clib.isalnum() Method 113
Clib.isalpha() Method 114
Clib.isascii() Method 115
Clib.iscntrl() Method 115
Clib.isdigit() Method 116
Clib.isgraph() Method 116
Clib.islower() Method 117
Clib.isprint() Method 118
Clib.ispunct() Method 118
Clib.isspace() Method 119
Clib.isupper() Method 120
Clib.isxdigit() Method 120
Clib.toascii() Method 121

The Clib Object Error Methods 121
Clib.errno Property 122
Clib.perror() Method 122
Clib.strerror() Method 122

File I/O Methods in eScript 123
Clib.chdir() Method 124
Clib.clearerr() Method 126
Clib.getcwd() Method 126
Clib.fclose() Method 127
Clib.feof() Method 128
Clib.ferror() Method 129
Clib.fflush() Method 129
Clib.fgetc() Method and Clib.getc() Method 130
Clib.fgetpos() Method 130
Clib.fgets() Method 131
Clib.flock() Method 132
Clib.fopen() Method 133
Clib.fprintf() Method 135
Clib.fputc() Method and Clib.putc() Method 137
Clib.fputs() Method 138
Clib.fread() Method 139
Clib.freopen() Method 140
Siebel eScript Language Reference Version 7.8, Rev. A6

Contents ■
Clib.fscanf() Method 141
Clib.fseek() Method 143
Clib.fsetpos() Method 144
Clib.ftell() Method 145
Clib.fwrite() Method 145
Clib.mkdir() Method 146
Clib.remove() Method 147
Clib.rename() Method 148
Clib.rewind() Method 148
Clib.rmdir() Method 149
Clib.sscanf() Method 149
Clib.tmpfile() Method 150
Clib.tmpnam() Method 151
Clib.ungetc()Method 151

Formatting Data in eScript 152

The Clib Object Math Methods 156
Clib.cosh() Method 157
Clib.div() Method and Clib.ldiv() Method 157
Clib.frexp() Method 158
Clib.ldexp() Method 159
Clib.modf() Method 159
Clib.rand() Method 160
Clib.sinh() Method 161
Clib.srand() Method 161
Clib.tanh() Method 162
quot Method 162
rem Method 163

Redundant Functions in the Clib Object 164

The Clib Object String Methods 165
Clib.rsprintf() Method 166
Clib.sprintf() Method 166
Clib.strchr() Method 168
Clib.strcspn() Method 169
Clib.stricmp() Method and Clib.strcmpi() Method 170
Clib.strlwr() Method 171
Clib.strncat() Method 171
Clib.strncmp() Method 172
Clib.strncmpi() Method and Clib.strnicmp() Method 173
Clib.strncpy() Method 173
Clib.strpbrk() Method 174
Clib.strrchr() Method 175
Siebel eScript Language Reference Version 7.8, Rev. A 7

Contents ■
Clib.strspn() Method 176
Clib.strstr() Method 177
Clib.strstri() Method 178

The Time Object 179

The Clib Object Time Methods 179
Clib.asctime() Method 180
Clib.clock() Method 181
Clib.ctime() Method 181
Clib.difftime() Method 182
Clib.gmtime() Method 183
Clib.localtime() Method 184
Clib.mktime() Method 185
Clib.strftime() Method 186
Clib.time() Method 188

The Clib Object Uncategorized Methods 189
Clib.bsearch() Method 189
Clib.getenv() Method 191
Clib.putenv() Method 191
Clib.qsort() Method 192
Clib.system() Method 193

The Date Object 194
The Date Constructor in Siebel eScript 195

Date and Time Methods 196
Date.fromSystem() Static Method 197
Date.parse() Static Method 198
Date.toSystem() Method 199
getDate() Method 199
getDay() Method 200
getFullYear() Method 201
getHours() Method 202
getMilliseconds() Method 203
getMinutes() Method 203
getMonth() Method 204
getSeconds() Method 205
getTime() Method 206
getTimezoneOffset() Method 206
getYear() Method 207
setDate() Method 208
setFullYear() Method 208
setHours() Method 209
Siebel eScript Language Reference Version 7.8, Rev. A8

Contents ■
setMilliseconds() Method 209
setMinutes() Method 211
setMonth() Method 211
setSeconds() Method 212
setTime() Method 213
setYear() Method 214
toGMTString() Method 214
toLocaleString() Method and toString() Method 215

Universal Time Methods 216
Date.UTC() Static Method 217
getUTCDate() Method 218
getUTCDay() Method 218
getUTCFullYear() Method 219
getUTCHours() Method 220
getUTCMilliseconds() Method 220
getUTCMinutes() Method 221
getUTCMonth() Method 221
getUTCSeconds() Method 222
setUTCDate() Method 223
setUTCFullYear() Method 223
setUTCHours() Method 224
setUTCMilliseconds() Method 225
setUTCMinutes() Method 226
setUTCMonth() Method 227
setUTCSeconds() Method 227
toUTCString() Method 228

The Exception Object 228

Function Objects 229

The Global Object 231
Global Functions Unique to Siebel eScript 231
COMCreateObject() Method 232
getArrayLength() Method 233
setArrayLength() Method 234
undefine() Method 235

Conversion Methods 235
escape() Method 236
eval() Method 237
parseFloat() Method 238
parseInt() Method 239
ToBoolean() Method 240
Siebel eScript Language Reference Version 7.8, Rev. A 9

Contents ■
ToBuffer() Method 241
ToBytes() Method 241
toExponential() Method 242
toFixed() Method 243
ToInt32() Method 244
ToInteger() Method 245
ToNumber() Method 246
ToObject() Method 247
toPrecision() Method 248
ToString() Method 249
ToUint16() Method 250
ToUint32() Method 251
unescape(string) Method 252

Data Handling Methods in Siebel eScript 253
defined() Method 253
isNaN() Method 254
isFinite() Method 255

The Math Object 255
Math.abs() Method 256
Math.acos() Method 257
Math.asin() Method 258
Math.atan() Method 258
Math.atan2() Method 259
Math.ceil() Method 261
Math.cos() Method 261
Math.exp() Method 262
Math.floor() Method 263
Math.log() Method 264
Math.max() Method 265
Math.min() Method 265
Math.pow() Method 266
Math.random() Method 267
Math.round() Method 268
Math.sin() Method 269
Math.sqrt() Method 270
Math.tan() Method 270
Math.E Property 271
Math.LN10 Property 272
Math.LN2 Property 272
Math.LOG10E Property 272
Math.LOG2E Property 273
Math.PI Property 273
Siebel eScript Language Reference Version 7.8, Rev. A10

Contents ■
Math.SQRT1_2 Property 274
Math.SQRT2 Property 274

User-Defined Objects in Siebel eScript 275
Predefining Objects with Constructor Functions in Siebel eScript 275
Assigning Functions to Objects in Siebel eScript 276
Object Prototypes in Siebel eScript 277

Property Set Objects 278

RegExp Objects 279

RegExp Object Methods 279

RegExp Object Properties 284

The SElib Object 287

The String Object 293
Escape Sequences for Characters in Siebel eScript 294
String Object Methods and Properties in Siebel eScript 295

Chapter 5: Compilation Error Messages in Siebel eScript
Syntax Error Messages in eScript 307

Semantic Error Messages in eScript 310

Semantic Warnings in eScript 314

Preprocessing Error Messages in eScript 316

Index
Siebel eScript Language Reference Version 7.8, Rev. A 11

Contents ■
Siebel eScript Language Reference Version 7.8, Rev. A12

1 What’s New in This Release
What’s New in Siebel eScript Language Reference, Version 7.8, Rev A
Table 1 lists changes in this version of the documentation to support release 7.8 of the software.

Table 1. What’s New in Siebel eScript Language Reference, Version 7.8, Rev A

Topic Description

CORBA interface Content about CORBA support is deleted. As of release 7.8,
CORBA is no longer supported.

Various Script examples are added to several sections, typically to
show usage of methods.

“Floating Point” on page 30 A caution about precision of floating point numbers is added.

“Memory Manipulation Methods in
Siebel eScript” on page 69.

This section is added to provide a list of methods with which
to manipulate data at specific memory locations.

“Array Methods and Properties in
Siebel eScript” on page 59

Clib.bsearch() and Clib.qsort() are moved to this table from
the table in “Uncategorized Methods in Siebel eScript.”

“Uncategorized Methods in Siebel
eScript” on page 71

SElib.dynamicLink method is added to the table in this
section.

“Array pop() Method” on page 81,
“Array push() Method” on page 82,
and “Array splice() Method” on
page 84

These array methods are added.

“RegExp Objects” on page 279 This section on the methods and properties of regular
expressions is added.

“SElib.peek() Method” on page 289,
“SElib.pointer() Method” on
page 291, and “SElib.poke()
Method” on page 292

These SElib methods are added.

“String match() Method” on
page 299

This string method is added.
Siebel eScript Language Reference Version 7.8, Rev. A 13

What’s New in This Release ■
What’s New in Siebel eScript Language Reference, Version 7.8
Table 2 lists changes in this version of the documentation to support release 7.8 of the software.

NOTE: There are two versions of the scripting engine available to you. The T eScript engine is the
traditional, previously available engine. The ST eScript engine provides enhancements, including
strong typing of variables and the Script Assist utility. Except for a few key differences, the ST eScript
engine is backward compatible with eScript created with the T eScript engine. In this document, the
engines are referred to by name only in contexts requiring differentiation.

For information on Script Assist and how to enable the eScript engine you want to use, see Using
Siebel Tools. For information about functional differences between the engines, see Siebel eScript
Language Reference (this document).

Table 2. What’s New in Siebel eScript Language Reference, Version 7.8

Topic Description

“Script Engine Alternatives for
Siebel eScript” on page 16

This topic describes basic functional differences between the
ST eScript engine and the T eScript engine.

“Data Types in Siebel eScript” on
page 24

This topic describes the classifications of Siebel eScript data
types.

“Data Typing in Siebel eScript” on
page 31.

This topic provides information about data typing alternatives
that are applicable to the ST eScript engine and to the T
eScript engine.

Global object.

See “setArrayLength() Method” on
page 234.

This topic provides restrictions on array indices set with the
setArrayLength() method.

CAUTION: If you use the ST eScript engine and you have
existing arrays with negative indices, then you must adjust
the index ranges in your script. Please read this topic.
Siebel eScript Language Reference Version 7.8, Rev. A14

2 Siebel eScript Language
Overview
Siebel eScript is a scripting or programming language that application developers use to write simple
scripts to extend Siebel applications. JavaScript, a popular scripting language used primarily on Web
sites, is its core language.

Siebel eScript is ECMAScript compliant. ECMAScript is the standard implementation of JavaScript as
defined by the ECMA-262 standard. Beginning with Siebel Business Applications version 7.8, the
script engine supports ECMAScript Edition 4. You can opt to use the updated functionality of this
engine, including the Siebel ScriptAssist tool, or you can opt to leave this updated functionality
inactive.

For important information about differences in script engine alternatives, see “Script Engine
Alternatives for Siebel eScript” on page 16.

Siebel eScript provides access to local system calls through two objects, Clib and SElib, so that you
can use C-style programming calls to certain parts of the local operating system. This capability
allows programmers to write files to the local hard disk and perform other tasks that standard
JavaScript cannot.

You should regard coding as a last resort. Siebel Tools provides many ways to configure your Siebel
application without coding, and these methods should be exhausted before you attempt to write your
own code, for the following reasons:

■ Using Siebel Tools is easier than writing code.

■ More important, your code may not survive an upgrade. Customizations created directly in Siebel
Tools are upgraded automatically when you upgrade your Siebel application, but code is not
touched, and it may need to be reviewed following an upgrade.

■ Finally, declarative configuration through Siebel Tools results in better performance than
implementing the same functionality through code.

For more information on Siebel eScript programming, see the following topics:

■ “Script Engine Alternatives for Siebel eScript” on page 16

■ “Siebel eScript Programming Guidelines” on page 17

■ “Siebel eScript Concepts” on page 18

■ “Data Types in Siebel eScript” on page 24

■ “Expressions in Siebel eScript” on page 35

■ “Operators in Siebel eScript” on page 35

■ “Functions in Siebel eScript” on page 41

■ “Siebel eScript Statements” on page 44

For more information on implementing the Siebel scripting engine, see Using Siebel Tools.
Siebel eScript Language Reference Version 7.8, Rev. A 15

Siebel eScript Language Overview ■ Script Engine Alternatives for Siebel eScript
Script Engine Alternatives for Siebel
eScript
Starting with Siebel Business Applications release 7.8, there are two versions of the scripting engine
available to you. The T eScript engine is the traditional, previously available engine. The ST eScript
engine provides enhancements, including strong typing of variables and the Script Assist utility that
allows easier script creation.

Except for a few key differences, the ST eScript engine is backward compatible with eScript created
with the T eScript engine. In this document, the engines are referred to by name only in contexts
requiring differentiation.

CAUTION: To revert back to the T eScript engine after compiling with the ST eScript engine, you
must turn off the ST eScript engine, back out any script you have typed prior to compiling with the
ST eScript engine, then recompile with the T eScript engine. You are strongly encouraged to make
your decision on an engine prior to allowing any scripting to occur and to clearly communicate the
choice and its implications to your entire development team.

For information on implementing either of the eScript engines, see Using Siebel Tools.

Before you make your choice of engines, you should understand how they differ in their treatment
of scripting elements.

■ Variable data typing. The ST eScript engine supports strong typing, or assigning a variable’s
data type when the variable is declared, so that the type-binding occurs at compile time. Both
engines support typeless variables, whose binding occurs at run time.

Typically, strongly typed variables provide improved performance, as compared with their
typeless counterparts.

For more information, see “Data Typing in Siebel eScript” on page 31.

■ Implicit variable type conversion. There are differences in how implicit type conversions are
performed with strongly typed variables versus how they are performed with typeless variables.
Implicit conversions happen in mixed type contexts, such as when a string variable is assigned
the value of a numerical variable.

For more information, see “Implicit Type Conversion in Siebel eScript” on page 32.

■ Methods. The engines restrict the parameters passed with the global.setArrayLength() method
differently.

For more information, see “setArrayLength() Method” on page 234.

NOTE: If a method (or group of methods) is supported by one engine, and not supported by the
other, then the restriction is stated in the documentation for the method (or at a level that covers
the group).

■ Properties. The ST eScript engine does not support the following static properties of the RegExp
object:

■ RegExp.$n (including '$_' and '$&')

■ RegExp.input

■ RegExp.lastMatch
Siebel eScript Language Reference Version 7.8, Rev. A16

Siebel eScript Language Overview ■ Siebel eScript Programming Guidelines
■ RegExp.lastParen

■ RegExp.leftContext

■ RegExp.rightContext

Instead, you must modify your script to use equivalent functions on the target object itself.

■ Commands. The ST eScript engine does not support #define or #if, preprocessor alternatives
that are used at compile time only. An alternative to using #define is to use a var declaration.

For example, change

#define MY_DEFINE "abc"

to

var MY_DEFINE = "abc";

For information on Script Assist and how to enable the eScript engine you want to use, see Using
Siebel Tools.

Siebel eScript Programming Guidelines
If you have never programmed in JavaScript before, you should start with a general-purpose
JavaScript reference manual. You need to understand how JavaScript handles objects before you can
program using the Siebel eScript.

Declare your variables. Standard ECMAScript does not require that you declare variables.
Variables are declared implicitly as soon as they are used. However, Siebel eScript requires you to
declare variables with the var keyword. Declare variables used in a module before you use them,
because this declaration makes it easier for others to understand your code and for you to debug the
code. The only exception to this standard is declaring a variable inside a loop controller, which
restricts the scope of that reference to the loop. Local declaration prevents the accumulation of
unwanted values.

Consider case sensitivity. Be aware that Siebel eScript is case sensitive. Therefore, if you
instantiate an object using the variable name SiebelApp, for example, eScript does not find that
object if the code references it as siebelapp or SIEBELAPP instead of SiebelApp. Case sensitivity also
applies to method names and other parts of Siebel eScript.

Use parentheses () with functions. Siebel eScript functions, like those in standard JavaScript,
require trailing parentheses () even when they have no parameters.

Use four-digit years in dates. Siebel applications and the ECMA-262 Standard handle two-digit
years differently. Siebel applications assume that a two-digit year refers to the appropriate year
between 1950 and 2049. The ECMA-262 Standard assumes that a two-digit year refers to a year
between 1900 and 1999, inclusive. If your scripts do not enforce four-digit date entry and use four-
digit dates, your users may unintentionally enter the wrong century when performing a query or
creating or updating a record.
Siebel eScript Language Reference Version 7.8, Rev. A 17

Siebel eScript Language Overview ■ Siebel eScript Concepts
(BusComp) methods GetFormattedFieldValue() and SetFormattedFieldValue() are examples of Y2K
sensitivities in Siebel eScript that use two-digit dates. If you use these methods in a script, users
requesting orders for the years from 03 to 05 may find that they have incorrectly retrieved orders
for the years 1903–1905 (probably an empty list), instead of for 2003–2005, as they had wanted.

If you use only four-digit dates in your programs, you will not have Y2K problems with your scripts.
With the preceding example, you could use GetFieldValue() and SetFieldValue(), which require dates
to be specified using the canonical Siebel format (MM/DD/YYYY), instead of
GetFormattedFieldValue() and SetFormattedFieldValue().

Use the this object reference. The special object reference this is eScript shorthand for “the
current object.” You should use this in place of references to active business objects and components.
For example, in a business component event handler, you should use this in place of ActiveBusComp,
as shown in the following example:

function BusComp_PreQuery ()
{

this.ActivateField("Account");
this.ActivateField("Account Location");
this.ClearToQuery();
this.SetSortSpec("Account(DESCENDING)," +

" Account Location(DESCENDING)");
this.ExecuteQuery();

return (ContinueOperation);
}

Make effective use of the switch construct. The switch construct directs the program to choose
among any number of alternatives you require, based on the value of a single variable. This
alternative is greatly preferable to a series of nested If statements because it simplifies code
maintenance. It also improves performance, because the variable must be evaluated only once.

Siebel eScript Concepts
Standard JavaScript, or ECMAScript, is usually part of Web browsers and is therefore used while
users are connected to the Internet. Most people are unaware that JavaScript is being executed on
their computers when they are connected to various Internet sites.

Siebel eScript is implemented as part of Siebel applications and is interpreted by the Siebel Object
Manager at run time. You do not need a Web browser to use it. It also contains a number of functions
that do not exist in ECMAScript. These functions give you access to the hard disk and other parts of
the Siebel client workstation or server. They include:

■ “Case Sensitivity in Siebel eScript” on page 19

■ “White-Space Characters in Siebel eScript” on page 19

■ “Comments in Siebel eScript” on page 20

■ “Expressions, Statements, and Blocks in Siebel eScript” on page 21

■ “Identifiers in Siebel eScript” on page 22

■ “Variables in Siebel eScript” on page 23
Siebel eScript Language Reference Version 7.8, Rev. A18

Siebel eScript Language Overview ■ Siebel eScript Concepts
Case Sensitivity in Siebel eScript
Siebel eScript is case sensitive. A variable named testvar is a different variable than one named
TestVar, and both of them can exist in a script at the same time. Thus, the following code fragment
defines two separate variables:

var testvar = 5;
var TestVar = "five";

Identifiers in Siebel eScript are case sensitive. For example, to raise an error from the server, the
TheApplication().RaiseErrorText() method could be used:

TheApplication().RaiseErrorText("an error has occurred");

If you change the capitalization to

TheApplication().raiseerrortext("an error has occurred");

the Siebel eScript interpreter generates an error message.

Control statements are also case sensitive. For example, the statement while is valid, but the
statement While is not.

White-Space Characters in Siebel eScript
White-space characters (space, tab, carriage-return, and newline) govern the spacing and placement
of text. White space makes code more readable for the users, but the Siebel eScript interpreter
ignores it.

Lines of script end with a carriage-return character, and each line is usually a separate statement.
(Technically, in many editors, lines end with a carriage-return and linefeed pair, "\r\n".) Because
the Siebel eScript interpreter usually sees one or more white-space characters between identifiers
as simply white space, the following Siebel eScript statements are equivalent to one another:

var x=a+b
var x = a + b
var x = a + b
var x = a+

b

White space separates identifiers into separate entities. For example, ab is one variable name, and
a b is two. Thus, the fragment

var ab = 2

is valid, but

var a b = 2

is not.
Siebel eScript Language Reference Version 7.8, Rev. A 19

Siebel eScript Language Overview ■ Siebel eScript Concepts
Many programmers use spaces and not tabs, because tab size settings vary from editor to editor and
programmer to programmer. If programmers use only spaces, the format of a script appears the
same on every editor.

CAUTION: Siebel eScript treats white space in string literals differently from other white space. In
particular, placing a line break within a string causes the Siebel eScript interpreter to treat the two
lines as separate statements, both of which contain errors because they are incomplete. To avoid
this problem, either keep string literals on a single line or create separate strings and associate them
with the string concatenation operator.

For example:

var Gettysburg = "Fourscore and seven years ago, " +
"our fathers brought forth on this continent a " +
"new nation.";

For more information about string concatenation, see “String Concatenation Operator in Siebel eScript”
on page 41.

Special Characters in Siebel eScript
Characters such as the double quote mark ("), the single quote mark ('), the hard return, the semi-
colon (;), and the ampersand (&) have special meanings within JavaScript and eScript. But
sometimes you want to use them for their traditional values, to have quotation marks appear around
a phrase on the screen, to add a hard return to your text file to make it more readable or to specify
a file system path. You can escape the character, that is, you can tell JavaScript to skip over it by
preceding the character with a backslash.

The backslash (\) character is JavaScript/eScript’s escape character. The backslashes in SVB and
JavaScript/eScript are used differently. Two backslashes are needed in JavaScript/eScript. The
reason for this is that the JavaScript/eScript interpreter sees a single backslash as indicating that
the very next character is a character to be “escaped” (to use it literal meaning). For more
information, see “Escape Sequences for Characters in Siebel eScript” on page 294.

Comments in Siebel eScript
A comment is text in a script to be read by users and not by the Siebel eScript interpreter, which
skips over comments. Comments that explain lines of code help users understand the purpose and
program flow of a program, making it easier to alter code.

There are two formats for comments, end-of-line comments and block comments. End-of-line
comments begin with two slash characters, “//”. Any text after two consecutive slash characters is
ignored to the end of the current line. The Siebel eScript interpreter begins interpreting text as code
on the next line.

Block comments are enclosed within a beginning block comment, “/*”, and an end of block comment,
“*/”. Any text between these markers is a comment, even if the comment extends over multiple lines.
Block comments may not be nested within block comments, but end-of-line comments can exist
within block comments.
Siebel eScript Language Reference Version 7.8, Rev. A20

Siebel eScript Language Overview ■ Siebel eScript Concepts
The following code fragments are examples of valid comments:

// this is an end of line comment

/* this is a block comment.
This is one big comment block.
// this comment is okay inside the block.
The interpreter ignores it.
*/

var FavoriteAnimal = "dog"; // except for poodles

//This line is a comment but
var TestStr = "This line is not a comment.";

Expressions, Statements, and Blocks in Siebel eScript
An expression or statement is any sequence of code that performs a computation or an action, such
as the code var TestSum = 4 + 3, which computes a sum and assigns it to a variable. Siebel eScript
code is executed one statement at a time in the order in which it is read.

Many programmers put semicolons at the end of statements, although they are not required. Each
statement is usually written on a separate line, with or without semicolons, to make scripts easier
to read and edit.

A statement block is a group of statements enclosed in curly braces, ({}), which indicate that the
enclosed individual statements are a group and are to be treated as one statement. A block can be
used anywhere that a single statement can.

A while statement causes the statement after it to be executed in a loop. If multiple statements are
enclosed within curly braces, they are treated as one statement and are executed in the while loop.
The following fragment illustrates:

while(ThereAreUncalledNamesOnTheList() == true)
{

var name = GetNameFromTheList();
CallthePerson(name);
LeaveTheMessage();

}

The three lines after the while statement are treated as a unit. If the braces were omitted, the while
loop would apply only to the first line. With the braces, the script goes through the lines until
everyone on the list has been called. Without the braces, the script goes through the names on the
list, but only the last one is called.

Statements within blocks are often indented for easier reading.
Siebel eScript Language Reference Version 7.8, Rev. A 21

Siebel eScript Language Overview ■ Siebel eScript Concepts
Identifiers in Siebel eScript
Identifiers are merely names for variables and functions. Programmers must know the names of
built-in variables and functions to use them in scripts and must know some rules about identifiers to
define their own variables and functions.

eScript Rules for Identifiers
Siebel eScript identifiers follow these rules:

■ Identifiers may use only uppercase or lowercase ASCII letters, digits, the underscore (_), and
the dollar sign ($). They may use only characters from the following sets:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789
_$

■ Identifiers may not use any of the following characters:

+<>&|=!*/%^~?:{};()[].‘"'#,

■ Identifiers must begin with a letter, underscore, or dollar sign, but they may have digits
anywhere else.

■ Identifiers may not have white space in them, because white space separates identifiers for the
Siebel eScript interpreter.

■ Identifiers have no built-in length restrictions, so you can make them as long as necessary.

The following identifiers, variables, and functions are valid:

George
Martha7436
annualReport
George_and_Martha_prepared_the_annualReport
$alice
CalculateTotal()
$SubtractLess()
_Divide$All()

The following identifiers, variables, and functions are not valid:

1george
2nancy
this&that
Martha and Nancy
What?
=Total()
(Minus)()
Add Both Figures()
Siebel eScript Language Reference Version 7.8, Rev. A22

Siebel eScript Language Overview ■ Siebel eScript Concepts
Prohibited Identifiers in Siebel eScript
The following words have special meaning for the Siebel eScript interpreter and cannot be used as
identifiers:

Variables in Siebel eScript
A variable is an identifier to which data may be assigned. Variables are used to store and represent
information in a script.

Variables may change their values, but literals may not. For example, if you want to display a name
literally, you must use something like the following fragment multiple times:

TheApplication().RaiseErrorText("Aloysius Gloucestershire Merkowitzky");

But you could use a variable to make this task easier, as in the following:

var Name = "Aloysius Gloucestershire Merkowitzy";
TheApplication().RaiseErrorText(Name);

The preceding method allows you to use shorter lines of code for display and to use the same lines
of code repeatedly by changing the contents of the variable Name.

Variable Scope
Variables in Siebel eScript may be either global or local. Global variables can be accessed and
modified from any function associated with the Siebel object for which the variables have been
declared. Local variables can be accessed only within the functions in which they are created,
because their scope is local to that function.

break export super

case extends switch

catch false this

class finally throw

const for true

continue function try

debugger if typeof

default import while

delete in with

do new var

else null void

enum return
Siebel eScript Language Reference Version 7.8, Rev. A 23

Siebel eScript Language Overview ■ Data Types in Siebel eScript
Variables can also be shared across modules. A variable declared outside a function has scope global
to the module. If you declare a local variable with the same name as a module variable, the module
variable is not accessible.

NOTE: Siebel eScript variables declared outside of a particular function are global only to their object
(the module in which they are declared), not across every object in the application.

There are no absolute rules that indicate when global or local variables should be used. It is generally
easier to understand how local variables are used in a single function than how global variables are
used throughout an entire module. Therefore, local variables facilitate modular code that is easier to
debug and to alter and develop over time. Local variables also require fewer resources.

Variable Declaration
To declare a variable, use the var keyword. To make it local, declare it in a function.

var perfectNumber;

A value may be assigned to a variable when it is declared:

var perfectNumber = 28;

In the following example, a is global to its object because it was declared outside of a function.
Typically you declare all global variables in a general declarations section. The variables b, c, and d
are local because they are defined within functions.

var a = 1;
function myFunction()
{

var b = 1;
var d = 3;
someFunction(d);

}

function someFunction(e)
{

var c = 2
...

}

The variable c may not be used in the myFunction() function, because it is has not been defined
within the scope of that function. The variable d is used in the myFunction() function and is explicitly
passed as a parameter to someFunction() as the parameter e.

The following lines show which variables are available to the two functions:

myfunction(): a, b, d
someFunction(): a, c, e

Data Types in Siebel eScript
Data types in Siebel eScript can be classified into primitive types and object types.
Siebel eScript Language Reference Version 7.8, Rev. A24

Siebel eScript Language Overview ■ Data Types in Siebel eScript
In a script, data can be represented by literals or variables. The following lines illustrate variables
and literals:

var TestVar = 14;
var aString = "test string";

The variable TestVar is assigned the literal 14, and the variable aString is assigned the literal test
string. After these assignments of literal values to variables, the variables can be used anywhere in
a script where the literal values can be used.

Data types need to be understood in terms of their literal representations in a script and of their
characteristics as variables.

Data, in literal or variable form, is assigned to a variable with an assignment operator, which is often
merely an equal sign, “=”, as the following lines illustrate:

var happyVariable: = 7;
var happyToo = happyVariable;

See the following topics for information on data types:

■ “Primitive Data Types in Siebel eScript” on page 25

■ “Object Data Types in Siebel eScript” on page 26

■ “Complex Objects in Siebel eScript” on page 28

■ “Numbers in Siebel eScript” on page 29

■ “Data Typing in Siebel eScript” on page 31

■ “Implicit Type Conversion in Siebel eScript” on page 32

■ “Properties and Methods of Common Data Types in Siebel eScript” on page 34

Primitive Data Types in Siebel eScript
A primitive data type is the set of all possible values of a primitive value. A variable that is of a
primitive data type is simply a value. Unlike an object data type, it can have no other properties or
functions that are part of its definition.

The primitive data types are:

■ chars. This primitive type is used for defining and manipulating strings. By convention, a chars
value is a sequence of alphanumeric characters. However, it is technically any sequence of 16-
bit unsigned integers.

■ float. This primitive type is used for defining and manipulating floating point numbers.

NOTE: Integer is not an eScript data type. You can use a variable of type float. Some routines
that expect integer arguments do an internal conversion of a float variable.

■ bool. This primitive type is used for defining and manipulating Boolean objects. A bool value is
either true or false.
Siebel eScript Language Reference Version 7.8, Rev. A 25

Siebel eScript Language Overview ■ Data Types in Siebel eScript
■ Undefined. If a variable is created or accessed with nothing assigned to it, it is of type
undefined. An undefined variable merely occupies space until a value is assigned to it. When a
variable is assigned a value, it is assigned a type according to the value assigned.

Following is code that will test whether variable is undefined:

var test;
if (typeof test == "undefined")
TheApplication().RaiseErrorText("test is undefined");

NOTE: When the chars, float, or bool primitive data types are used to declare variables, they must
be used as all lowercase.

Object Data Types in Siebel eScript
The ECMAScript standard defines an object as “a member of the type Object. It is an unordered
collection of properties, each of which contains a primitive value, object, or function. A function
stored in a property of an object is called a method.”

Siebel eScript does not implement a proper class hierarchy. Instead, objects are instantiated as type
Object or are instantiated from objects descended from objects of type Object. These instantiated
objects act as new object types themselves, from which other objects may be instantiated. Each
object has an implicit contructor function that is implemented through the new command.

Properties can be added dynamically to any object. An object inherits all the properties of the objects
in its ancestral chain.

The Object object type is the generic object type. By declaring a variable of type Object, the
variable’s structure is starting new, in a sense, in that it does not inherit properties from any objects
descended from the Object type.

Object types that are built into the scripting engine are:

■ String. A String object is created by using the String constructor in a new expression. The
string’s value, a chars value, becomes an implicit property of the String object.

A string is written using a pair of either double or single quotation marks, for example:

"I am a string"
'so am I'
"344"

The string "344" is different from the number 344. The first is an array of characters, and the
second is a value that may be used in numerical calculations.

Siebel eScript implicitly converts strings to numbers and numbers to strings, depending on the
context. For more information about implicit type conversions, see “Implicit Type Conversion in
Siebel eScript” on page 32.
Siebel eScript Language Reference Version 7.8, Rev. A26

Siebel eScript Language Overview ■ Data Types in Siebel eScript
■ Boolean. A Boolean object is created by using the Boolean constructor in a new expression. The
Boolean object’s value, a bool value (true or false), is an implicit property of the Boolean object.

Because Siebel eScript implicitly converts values when appropriate, when a Boolean variable is
used in a numeric context, its value is converted to 0 if it is false, or 1 if it is true. A script is
more precise when it uses the actual Siebel eScript values, false and true, but it works using the
concepts of zero and nonzero.

■ Number. A Number object is created by using the Number constructor in a new expression. The
number’s value, a value of primitive type float, becomes an implicit property of the Number
object.

For more information on numbers in eScript, see “Numbers in Siebel eScript” on page 29.

■ Array. An array is a series of data stored in a variable. Each datum is associated with an index
number or string. The following fragments illustrate the storage of the data in an array variable:

var Test = new Array;
Test[0] = "one";
Test[1] = "two";
Test[2] = "three";

The array variable Test contains three strings. The array variable can be used as one unit, and
the strings can also be accessed individually by appending the bracketed index of the element
after the array name.

Arrays and objects in general use grouping similarly. Arrays are objects in Siebel eScript, but
they have different notations for accessing properties than other objects. While arrays use
indexes, objects use property names or methods. In practice, arrays should be regarded as a
unique data type.

Arrays and their characteristics are discussed more fully in “Array Objects” on page 77.

■ Null. The null object is literally a null pointer. The null object type indicates that a variable is
empty, and this condition is different from undefined. A null variable holds no value, although it
might have previously held one.

The null type is represented literally by the identifier null. The keyword null enables comparisons
to the null object.

Because null has a literal representation, an assignment such as the following is valid:

var test = null;

Any variable that has been assigned a value of null can be compared to the null literal.

Table 3 lists the other prebuilt object types.

Table 3. Other Prebuilt Object Types in Siebel eScript

Object Comment

BLOB For more information, see “BLOB Objects” on page 85.

BlobDescriptor For more information, see “The blobDescriptor Object” on page 86.

Buffer For more information, see “Buffer Objects in Siebel eScript” on page 92.
Siebel eScript Language Reference Version 7.8, Rev. A 27

Siebel eScript Language Overview ■ Data Types in Siebel eScript
Complex Objects in Siebel eScript
Variables can be passed as parameters to subroutines and functions in two ways:

■ By value. A variable passed by value retains its value prior to being passed, even though the
passed value may change during processing within the subroutine or function. The following
fragment illustrates:

var a = 5;
var b = ReturnValue(a);

function ReturnValue(c)
{

c = 2 * c;
return c ;

}

After this script runs, a = 5 and b = 10. However, c has value only during the execution of the
function ReturnValue, but not after the function has finished execution. Although a was passed
as a parameter to the function, and that value is manipulated as local variable c, a retains the
value it had prior to being passed.

BusComp For more information, see “Business Component Objects” on page 103.

BusObject For more information, see “Business Object Objects” on page 108.

CfgItem This is a Siebel Product Configurator object.

Clib For more information, see “The Clib Object” on page 109.

CTIData For more information, see Siebel Communications Server
Administration Guide.

CTIService For more information, see Siebel Communications Server
Administration Guide.

Date For more information, see “The Date Object” on page 194.

Exception For more information, see “The Exception Object” on page 228.

File For more information, see “Clib.fopen() Method” on page 133.

Math For more information, see “The Math Object” on page 255.

PropertySet For more information, see Siebel Object Interfaces Reference.

RegExp For more information, see “RegExp Objects” on page 279 and
ECMAScript specifications.

SELib For more information, see “The SElib Object” on page 287.

Service For more information, see “Business Service Objects” on page 108.

WebApplet For more information, see “Applet Objects” on page 73.

Table 3. Other Prebuilt Object Types in Siebel eScript

Object Comment
Siebel eScript Language Reference Version 7.8, Rev. A28

Siebel eScript Language Overview ■ Data Types in Siebel eScript
■ By reference. Complex objects are objects that are passed by reference. When a variable is
passed by reference, a reference to the object’s data is passed. A variable’s value may be
changed by the subroutine or function to which it is passed, as illustrated by the following
fragment:

var AnObj = new Object;
AnObj.name = "Joe";
AnObj.old = ReturnName(AnObj)

function ReturnName(CurObj)
{

var c = CurObj.name;
CurObj.name = “Vijay”;
return c

}

When AnObj is passed to the function ReturnName(), it is passed by reference. CurObj receives
a reference to the object, but it does not receive a copy of the object.

With this reference, CurObj can access every property and method of AnObj, which was passed
to it. During the course of the function executing, CurObj.name is changed to “Vijay” within the
function, so AnObj.name also becomes “Vijay.”

Each method determines whether parameters are passed to it by value or by reference. For the large
majority of methods, parameters are passed by value.

Numbers in Siebel eScript
This topic describes the various notations for numeric literals.

NOTE: The notations provided in this section are not data types and should not be used as data types
in declarations for strongly typed variables.

NOTE: Numbers that contain characters other than a decimal point, except in hexadecimal and
scientific notation, are treated as string values in eScript. For example, eScript treats the number
100,000 (notice the comma) as a string.

Integer
Integers are positive and negative whole numbers and zero. Integer constants and literals can be
expressed in decimal, hexadecimal, or octal notation. Decimal constants and literals are expressed
by using the decimal representation. See the following two sections to learn how to express
hexadecimal and octal integers.

NOTE: A variable cannot be strongly typed as an integer. You can use the primitive type float, and
it's value can be used as an integer.
Siebel eScript Language Reference Version 7.8, Rev. A 29

Siebel eScript Language Overview ■ Data Types in Siebel eScript
Hexadecimal
Hexadecimal notation uses base-16 digits from the sets of 0–9 and A–F or a–f. These digits are
preceded by 0x. Case sensitivity does not apply to hexadecimal notation in Siebel eScript. Examples
are:

0x1, 0x01, 0x100, 0x1F, 0x1f, 0xABCD
var a = 0x1b2E;

The decimal equivalents are:

1, 1, 256, 31, 31, 43981
var a = 6958

Octal
Octal notation uses base-8 digits from the set of 0-7. These digits are preceded by a zero. Examples
are:

00, 05, 077
var a = 0143;

The decimal equivalents are:

0, 5, 63
var a = 99

Floating Point
Floating-point numbers are numbers with fractional parts that are indicated by decimal notation,
such as 10.33.

NOTE: Floating-point numbers are often referred to as floats. Do not confuse the familiar
connotation of float with the eScript float primitive data type.

CAUTION: The assignment of a floating-point number to a variable may cause a loss in precision
due to a limit in memory for decimal-to-binary conversion. Numbers that may be stored with a small
precision error are decimal numbers that do not convert to a finite binary representation. For
example, the statement var x = 142871.45 may result in x being stored as 142871.450000000001.
These small precision errors will likely have little effect on precision of subsequent calculations,
depending on their context. However, a number’s representation may be unexpectedly too large for
the field in which it displays, resulting in the error message “Value too long for field %1 (maximum
size %2)."

To prevent floating-point precision errors, use the toFixed() Method at appropriate points in
calculations or when assigning variable values. For example, use x.toFixed(2) in calculations instead
of using variable x as declared above.

Decimal
Decimal floats use the same digits as decimal integers but use a period to indicate a fractional part.
Examples are:
Siebel eScript Language Reference Version 7.8, Rev. A30

Siebel eScript Language Overview ■ Data Types in Siebel eScript
0.32, 1.44, 99.44
var a = 100.55 + .45;

Scientific
Scientific notation is useful in expressing very large and very small numbers. It uses the decimal
digits in conjunction with exponential notation, represented by e or E. Scientific notation is also
referred to as exponential notation. Examples are:

4.087e2, 4.087E2, 4.087e+2, 4.087E-2
var a = 5.321e31 + 9.333e-2;

The decimal equivalents are:

408.7, 408.7, 408.7, 0.04087
var a = 53210000000000000000000000000000 + 0.09333

NaN
NaN means “not a number,” and NaN is an abbreviation for the phrase. NaN is not a data type, but
is instead a value. However, NaN does not have a literal representation. To test for NaN, the function,
isNaN(), must be used, as illustrated in the following fragment:

var Test = "a string";
if (isNaN(parseInt(Test)))
TheApplication().RaiseErrorText("Test is Not a Number");

When the parseInt() function tries to parse the string "a string" into an integer, it returns NaN,
because "a string" does not represent a number as the string "22" does.

Number Constants in Siebel eScript
Several numeric constants, as shown in Table 4, can be accessed as properties of the Number object,
though they do not have a literal representation.

Data Typing in Siebel eScript
You can specify a variable’s data type in two ways:

Table 4. Numeric Constants in Siebel eScript

Constant Value Description

Number.MAX_VALUE 1.7976931348623157e+308 Largest number (positive)

Number.MIN_VALUE 2.2250738585072014e-308 Smallest positive nonzero value

Number.NaN NaN Not a number

Number.POSITIVE_INFINITY Infinity Number greater than MAX_VALUE

Number.NEGATIVE_INFINITY -Infinity Number less than MIN_VALUE
Siebel eScript Language Reference Version 7.8, Rev. A 31

Siebel eScript Language Overview ■ Data Types in Siebel eScript
■ Typed (or strongly typed) variables. You specify the data type in the variable’s declaration
by appending a colon “:” and the data type after the variable name. For example:

var a : Date = new Date ();
var BO:BusObject;
var BC:BusComp;

Binding and type checking of strongly typed variables occurs at compile time. Typically, a strongly
typed variable provides improved execution over its typeless counterpart. It also enables the
compilation warning for incorrect methods and properties.

NOTE: To strongly type variables, you must implement the ST eScript engine.

For information on implicit type conversions, see “Implicit Type Conversion in Siebel eScript” on
page 32.

For information on implementing the ST eScript engine, see Using Siebel Tools.

■ Typeless variables. You do not specify the data type in the variable’s declaration. For example:

var count = 0;
var a = new Date ();
var BO = new BusObject;

At run time, the type is determined by the Siebel eScript interpreter when the variable is first
used. The type remains until a later assignment changes the type implicitly. In the preceding
examples, the assigning of the value zero types variable count as integer. Similarly, variable a
is of type Date and BO is of type BusObject.

Implicit Type Conversion in Siebel eScript
Siebel eScript performs implicit data type conversion in many mixed-type contexts. However, to
make sure that your code performs conversions as you expect it to, you should use conversion
functions that are provided for that purpose, and you should test your code prior to putting it into
production.

For more information on conversion methods, see “Conversion Methods” on page 235.

The rules governing run-time conversion of data types vary and depend on:

■ Whether the type mismatch is in the context of a value assignment or the result of concatenation

■ Whether the variables involved are typeless or strongly typed

Implicit Type Conversion Resulting from Concatenation in eScript
Data type conversion of typeless variables occurs implicitly during concatenation involving both
strings and numbers and is subject to the following rules.

■ Subtracting a string from a number or a number from a string converts the string to a number
and performs subtraction on the two values.

■ Adding a string to a number or a number to a string converts the number to a string and
concatenates the two strings.
Siebel eScript Language Reference Version 7.8, Rev. A32

Siebel eScript Language Overview ■ Data Types in Siebel eScript
■ Strings always convert to a base 10 number and must not contain any characters other than
digits. The string "110n" does not convert to a number because the n character is meaningless
as part of a number in Siebel eScript.

The following examples illustrate these implicit conversions:

s = "dog" + "house" // s = "doghouse", two strings are concatenated.
t = "dog" + 4 // t= "dog4", a number is converted to a string
u = 4 + "4" // u = "44", a number is converted to a string
v = 4 + 4 // v = 8, two numbers are added
w = 23 - "17" // w = 6, a string is converted to a number

To make sure that type conversions are performed when doing addition, subtraction, and other
arithmetic, use conversion methods. The following example uses a conversion method to transform
string input to numeric to perform arithmetic:

var n = "55";
var d = "11";
var division = Clib.div(ToNumber(n), ToNumber(d));

To specify more stringent conversions, use the parseFloat() Method of the global object. Siebel
eScript has many global functions to convert data to specific types. Some of these are not part of
the ECMAScript standard.

NOTE: There are circumstances under which conversion is not performed implicitly. If you encounter
such a circumstance, you must use one of the conversion functions to get the desired result. For an
explanation of conversion functions, see “Conversion Methods” on page 235.

Implicit Type Conversion Resulting from Assignment in eScript
Implicit type conversion resulting from assignment differ for typeless and strongly typed variables.

■ Typeless variables. Conversion occurs implicitly during assignment involving typeless variables
only. For example, the following assignments result in variable a assuming the String type.

var a = 7.2;
var b = “seven point 2”
a = b;

■ Strongly Typed variables. Table 5 provides a mapping of types and the results of implicit type
conversion during assignment of mixed types. Interpret the table as follows:

■ For the assignment a = b, types for variable a are in the left column, and types for variable
b are in the top row. Thus, the assignment attempts to convert a’s data type to that of b.

■ For a given data type for each of a and b, the intersection cell in the table specifies whether
a’s type is implicitly converted to that of b.

❏ “Y” indicates that the implicit conversion occurs.

❏ “w” indicates that a message may display at compile time warning that the conversion
may not occur. Whether a conversion occurs and whether a warning displays depends on
the properties of the variables involved in the assignment.

❏ “err” indicates that a compilation error occurs.
Siebel eScript Language Reference Version 7.8, Rev. A 33

Siebel eScript Language Overview ■ Data Types in Siebel eScript
❏ “NA” indicates that there is no conversion needed. Typically, conversion is not required
when a variable of Object (a generic object) is converted to a specialized object type.

❏ “-” indicates that a and b are of the same type.

■ “value” denotes a typeless variable. Thus, the row and column with “value” headings specify
conversions when strongly typed variables are assigned to typeless variables, and vice-versa.

■ “*” denotes objects other than the eScript built-in objects Object, String, Number, and
Boolean. These other objects include prebuilt objects and user-defined objects.

Properties and Methods of Common Data Types in Siebel
eScript
Common data types, such as Number and String, have properties and methods that may be used
with any variable of that type. Any string variable may use any string method.

The properties and methods of these common data types are most often used internally by the Siebel
eScript interpreter, but you may use them if you choose. For example, if you have a numeric variable
called number and you want to convert it to a string, you can use the .toString() method, as illustrated
in the following fragment:

var number = 5;
var s = number.toString();

After this fragment executes, the variable number contains the number 5 and the variable s contains
the string "5".

The following two methods are common to variables.

Table 5. Implicit Type Conversion of Strongly Typed Variables that Are Assigned

a

= b

value chars bool float Object String Number Boolean *

value - Y Y Y Y Y Y Y Y

chars Y - Y Y Y Y Y Y Y, w1

1. toString

bool Y Y - Y Y Y Y Y Y

float Y Y, w Y - Y, w Y, w Y Y Y, w

Object Y err err err - NA NA NA NA

String Y Y err err err - err err err

Number Y err err Y err err - err err

Boolean Y err Y err err err err - err

* Y err err err err err err err -
Siebel eScript Language Reference Version 7.8, Rev. A34

Siebel eScript Language Overview ■ Expressions in Siebel eScript
toString()
This method returns the value of a variable expressed as a string. Value is an implicit propertyof
Number and Boolean objects.

valueOf()
This method returns the value of a variable. Value is an implicit property of objects, including
Number, String, and Boolean objects.

Expressions in Siebel eScript
An expression is a collection of two or more terms that perform a mathematical or logical operation.
The terms are usually either variables or functions that are combined with an operator to evaluate
to a string or numeric result. You use expressions to perform calculations, manipulate variables, or
concatenate strings.

Expressions are evaluated according to order of precedence. Use parentheses to override the default
order of precedence.

The order of precedence (from high to low) for the operators is:

■ Arithmetic operators

■ Comparison operators

■ Logical operators

Operators in Siebel eScript
Operators act on literal and variable values in expressions to generate calculated values. The
following topics provide information on various categories of operators.

■ “Mathematical Operators in Siebel eScript” on page 35

■ “Bit Operators in Siebel eScript” on page 38

■ “Logical Operators and Conditional Expressions in Siebel eScript” on page 39

■ “Typeof Operator in Siebel eScript” on page 40

■ “Conditional Operator in Siebel eScript” on page 40

■ “String Concatenation Operator in Siebel eScript” on page 41

Mathematical Operators in Siebel eScript
Mathematical operators are used to make calculations using mathematical data. The following
sections illustrate the mathematical operators in Siebel eScript.
Siebel eScript Language Reference Version 7.8, Rev. A 35

Siebel eScript Language Overview ■ Operators in Siebel eScript
Basic Arithmetic
The arithmetic operators in Siebel eScript are standard. They are described in Table 6.

The following examples use variables and arithmetic operators:

var i;
i = 2; //i is now 2
i = i + 3; //i is now 5, (2 + 3)
i = i - 3; //i is now 2, (5 - 3)
i = i * 5; //i is now 10, (2 * 5)
i = i / 3; //i is now 3.333..., (10 / 3)
i = 10; //i is now 10
i = i % 3; //i is now 1, (10 mod 3)

Expressions may be grouped to affect the sequence of processing. Multiplications and divisions are
calculated for an expression before additions and subtractions unless parentheses are used to
override the normal order. Expressions inside parentheses are processed before other calculations.

In the following examples, the information in the remarks represents intermediate forms of the
example calculations.

Notice that, because of the order of precedence,

4 * 7 - 5 * 3; //28 - 15 = 13

has the same meaning as

(4 * 7) - (5 * 3); //28 - 15 = 13/

but has a different meaning from

4 * (7 - 5) * 3; //4 * 2 * 3 = 24

which is also different from

4 * (7 - (5 * 3)); //4 * -8 = -32

The use of parentheses is recommended whenever there may be confusion about how the expression
is to be evaluated, even when parentheses are not required.

Table 6. Basic Arithmetic Operators in Siebel eScript

Operator Purpose Description

= Assignment Assigns a value to a variable

+ Addition Adds two numbers

- Subtraction Subtracts a number from another

* Multiplication Multiplies two numbers

/ Division Divides a number by another

% Modulo Returns a remainder after division
Siebel eScript Language Reference Version 7.8, Rev. A36

Siebel eScript Language Overview ■ Operators in Siebel eScript
Assignment Arithmetic
Each of the operators shown in the previous section can be combined with the assignment operator,
=, as a shortcut for performing operations. Such assignments use the value to the right of the
assignment operator to perform an operation on the value to the left. The result of the operation is
then assigned to the value on the left. Table 7 lists these operators, their purposes, and descriptions.

The following lines are examples using assignment arithmetic:

var i;
i = 2; //i is now 2
i += 3; //i is now 5 (2 + 3), same as i = i + 3
i -= 3; //i is now 2 (5 - 3), same as i = i _ 3
i *= 5; //i is now 10 (2 * 5), same as i = i * 5
i /= 3; //i is now 3.333...(10 / 3); same as i = i / 3
i = 10; //i is now 10
i %= 3; //i is now 1, (10 mod 3), same as i = i % 3

Auto-Increment (++) and Auto-Decrement (--)
To add 1 to a variable, use the auto-increment operator, ++. To subtract 1, use the auto-decrement,
operator, --. These operators add or subtract 1 from the value to which they are applied. Thus, i++
is shorthand for i += 1, which is shorthand for i = i + 1.

The auto-increment and auto-decrement operators can be used before their variables, as a prefix
operator, or after, as a suffix operator. If they are used before a variable, the variable is altered
before it is used in a statement, and, if they are used after, the variable is altered after it is used in
the statement.

The lines in Table 8 demonstrate prefix and postfix operations.

Table 7. Basic Arithmetic Operators in Siebel eScript

Operator Purpose Description

= Assignment Assigns a value to a variable

+= Assign addition Adds a value to a variable

-= Assign subtraction Subtracts a value from a variable

*= Assign multiplication Multiplies a variable by a value

/= Assign division Divides a variable by a value

%= Assign remainder Returns a remainder after division

Table 8. Auto-Increment and Auto-Decrement Operators in Siebel eScript

Example Results Description

i = 4; //i is 4

j = ++i; //j is 5, i is 5 (i was incremented before use)
Siebel eScript Language Reference Version 7.8, Rev. A 37

Siebel eScript Language Overview ■ Operators in Siebel eScript
Bit Operators in Siebel eScript
Siebel eScript contains many operators for operating directly on the bits in a byte or an integer. Bit
operations require knowledge of bits, bytes, integers, binary numbers, and hexadecimal numbers.
Not every programmer needs to use bit operators. Table 9 lists these bit operators, their descriptions,
and provides examples.

Bit operators available in Siebel eScript are:

j = i++; //j is 5, i is 6 (i was incremented after use)

j = --i; //j is 5, i is 5 (i was decremented before use)

j = i--; //j is 5, i is 4 (i was decremented after use)

i++; //i is 5 (i was incremented)

Table 9. Bit Operators in Siebel eScript

Operator Description Example

<< Shift left i = i << 2

<<= Assignment shift left i <<= 2

>> Signed shift right i = i >> 2

>>= Assignment signed shift right i >>= 2

>>> Unsigned shift right i = i >>> 2

>>>= Assignment unsigned shift right i >>>= 2

& Bitwise and i = i & 1

&= Assignment bitwise and i &= 1

| Bitwise or i = i | 1

|= Assignment bitwise or i |= 1

^ Bitwise xor, exclusive or i = i ^ 1

^= Assignment bitwise xor, exclusive or i ^= 1

~ Bitwise not, complement i = ~i

Table 8. Auto-Increment and Auto-Decrement Operators in Siebel eScript

Example Results Description
Siebel eScript Language Reference Version 7.8, Rev. A38

Siebel eScript Language Overview ■ Operators in Siebel eScript
Logical Operators and Conditional Expressions in Siebel
eScript
Logical operators compare two values and evaluate whether the resulting expression is false or true.
A variable or any other expression may be false or true. An expression that performs a comparison
is called a conditional expression.

Logical operators are used to make decisions about which statements in a script are executed, based
on how a conditional expression evaluates.

The logical operators available in Siebel eScript are described in Table 10

For example, if you were designing a simple guessing game, you might instruct the computer to
select a number between 1 and 100, and you would try to guess what it is. The computer tells you
whether you are right and whether your guess is higher or lower than the target number.

Table 10. Logical Operators in Siebel eScript

Operator Purpose Description

! Not Reverse of an expression. If (a+b) is true, then !(a+b)
is false.

&& And True if, and only if, both expressions are true. Because
both expressions must be true for the statement as a
whole to be true, if the first expression is false, there is
no need to evaluate the second expression, because the
whole expression is false.

|| Or True if either expression is true. Because only one of the
expressions in the or statement needs to be true for the
expression to evaluate as true, if the first expression
evaluates as true, the Siebel eScript interpreter returns
true and does not evaluate the second.

== Equality True if the values are equal; otherwise false. Do not
confuse the equality operator, ==, with the assignment
operator, =.

!= Inequality True if the values are not equal; otherwise false.

< Less than The expression a < b is true if a is less than b.

> Greater than The expression a > b is true if a is greater than b.

<= Less than or equal to The expression a <= b is true if a is less than or equal to
b.

>= Greater than or equal to The expression a >= b is true if a is greater than b.
Siebel eScript Language Reference Version 7.8, Rev. A 39

Siebel eScript Language Overview ■ Operators in Siebel eScript
This procedure uses the if statement, which is introduced in the next section. If the conditional
expression in the parenthesis following an if statement is true, the statement block following the if
statement is executed. If the conditional expression is false, the statement block is ignored, and the
computer continues executing the script at the next statement after the ignored block.

The script implementing this simple guessing game might have a structure similar to the one that
follows, in which GetTheGuess() is a function that obtains your guess.

var guess = GetTheGuess(); //get the user input, either 1, 2, or 3
target_number = 2;
if (guess > target_number)
{

TheApplication().RaiseErrorText(“Guess is too high.”);
}
if (guess < target_number)
{

TheApplication().RaiseErrorText(“Guess is too low.”);
}
if (guess == target_number);
{

TheApplication().RaiseErrorText(“You guessed the number!”);
}

This example is simple, but it illustrates how logical operators can be used to make decisions in Siebel
eScript.

CAUTION: Remember that the assignment operator, =, is different from the equality operator, ==.
If you use the assignment operator when you want to test for equality, your script fails because the
Siebel eScript interpreter cannot differentiate between operators by context. Using the assignment
operator incorrectly is a common mistake, even among experienced programmers.

Typeof Operator in Siebel eScript
The typeof operator provides a way to determine and to test the data type of a variable and may use
either of the following notations (with or without parentheses):

var result = typeof variable
var result = typeof(variable)

After either line, the variable result is set to a string that represents the variable's type:
"undefined", "boolean", "string", "object", "number", "function", or "buffer".

Conditional Operator in Siebel eScript
The conditional operator, a question mark, provides a shorthand method for writing else statements.
Statements using the conditional operator are more difficult to read than conventional if statements,
so they are used when the expressions in the if statements are brief.

The syntax is:

test_expression ? expression_if_true : expression_if_false
Siebel eScript Language Reference Version 7.8, Rev. A40

Siebel eScript Language Overview ■ Functions in Siebel eScript
First, test_expression is evaluated. If test_expression is true, then expression_if_true is evaluated,
and the value of the entire expression is replaced by the value of expression_if_true. If
test_expression is false, then expression_if_false is evaluated, and the value of the entire expression
is that of expression_if_false.

The following fragments illustrate the use of the conditional operator:

foo = (5 < 6) ? 100 : 200;

In the previous statement foo is set to 100, because the expression is true.

TheApplication().RaiseErrorText("Name is " + ((null==name) ? "unknown" : name));

In the previous statement, the message box displays "Name is unknown" if the name variable has a
null value. If it does not have a null value, the message box displays "Name is " plus the content of
the variable.

String Concatenation Operator in Siebel eScript
You can use the + operator to join strings together, or concatenate them. The following line:

var proverb = "A rolling stone " + "gathers no moss.";

creates the variable proverb and assigns it the string "A rolling stone gathers no moss." If you
concatenate a string with a number, the number is converted to a string:

var newstring = 4 + "get it";

This bit of code creates newstring as a string variable and assigns it the string "4get it".

Functions in Siebel eScript
A function is an independent section of code that receives information from a program and performs
some action with it. Functions are named using the same conventions as variables.

After a function has been written, you do not have to think again about how to perform the operations
in it. When you call the function, it handles the work for you. You only need to know what information

the function needs to receive—the parameters—and whether it returns a value to the statement
that called it.

TheApplication().RaiseErrorText() is an example of a function that provides a way to display
formatted text in the event of an error. It receives a string from the function that called it, displays
the string in an alert box on the screen, and terminates the script. TheApplication().RaiseErrorText()
is a void function, which means that it has no return value.

In Siebel eScript, functions are considered a data type. They evaluate the function’s return value.
You can use a function anywhere you can use a variable. You can use any valid variable name as a
function name. Use descriptive function names that help you keep track of what the functions do.
Siebel eScript Language Reference Version 7.8, Rev. A 41

Siebel eScript Language Overview ■ Functions in Siebel eScript
Two rules set functions apart from the other variable types. Instead of being declared with the var
keyword, functions are declared with the function keyword, and functions have the function
operator, a pair of parentheses, following their names. Data to be passed to a function is enclosed
within these parentheses.

Several sets of built-in functions are included as part of the Siebel eScript interpreter and are
described in this manual. These functions are internal to the interpreter and may be used at any
time:

■ “Function Scope in Siebel eScript” on page 42

■ “Passing Variables to Functions in Siebel eScript” on page 43

■ “The Function Arguments[] Property in Siebel eScript” on page 43

■ “Function Recursion in Siebel eScript” on page 43

■ “Error Checking for Functions in Siebel eScript” on page 44

Function Scope in Siebel eScript
Functions are global in scope and can be called from anywhere in a script within the object in which
it has been declared. Think of functions as methods of the global object. A function may not be
declared within another function so that its scope is merely within a certain function or section of a
script.

The following two code fragments perform the same function. The first calls a function, SumTwo(), as
a function, and the second calls SumTwo() as a method of the global object.

// fragment one
function SumTwo(a, b)
{

return (a + b)
}

TheApplication().RaiseErrorText(SumTwo(3, 4));

// fragment two
function SumTwo(a, b)
{

return (a + b)
}

TheApplication().RaiseErrorText(global.SumTwo(3, 4));

In the fragment that defines and uses the function SumTwo(), the literals, 3 and 4, are passed as
parameters to the function SumTwo() which has corresponding parameters, a and b. The parameters,
a and b, are variables for the function that hold the literal values that were passed to the function.
Siebel eScript Language Reference Version 7.8, Rev. A42

Siebel eScript Language Overview ■ Functions in Siebel eScript
Passing Variables to Functions in Siebel eScript
Siebel eScript uses different methods to pass variables to functions, depending on the type of
variable being passed. Such distinctions make sure that information gets to functions in the most
logical way.

Primitive types such as strings, numbers, and Booleans are passed by value. The values of these
variables are passed to a function. If a function changes one of these variables, the changes are not
visible outside of the function in which the change took place.

Composite types such as objects and arrays are passed by reference. Instead of passing the value
of the object or the values of each property, a reference to the object is passed. The reference
indicates where the values of an object's properties are stored in a computer's memory. If you make
a change in a property of an object passed by reference, that change is reflected throughout the
calling routine.

The return statement passes a value back to the function that called it. Any code in a function
following the execution of a return statement is not executed. For details, see “return Statement” on
page 230.

The Function Arguments[] Property in Siebel eScript
The arguments[] property is an array of the arguments passed to a function. The first variable passed
to a function is referred to as arguments[0], the second as arguments[1], and so forth.

This property allows you to have functions with an indefinite number of arguments. Here is an
example of a function that takes a variable number of arguments and returns the sum:

function SumAll()
{

var total = 0;
for (var ssk = 0; ssk < SumAll.arguments.length; ssk++)

{
total += SumAll.arguments[ssk];

}
return total;

}

NOTE: The arguments[] property for a particular function can be accessed only from within that
function.

Function Recursion in Siebel eScript
A recursive function is a function that calls itself or that calls another function that calls the first
function. Recursion is permitted in Siebel eScript. Each call to a function is independent of any other
call to that function. However, recursion has limits. If a function calls itself too many times, a script
runs out of memory and aborts.
Siebel eScript Language Reference Version 7.8, Rev. A 43

Siebel eScript Language Overview ■ Siebel eScript Statements
Remember that a function can call itself if necessary. For example, the following function, factor(),
factors a number. Factoring is a good candidate for recursion because it is a repetitive process where
the result of one factor is then itself factored according to the same rules.

function factor(i) //recursive function to print factors of i,
{// and return the number of factors in i

if (2 <= i)
{

for (var test = 2; test <= i; test++)
{

if (0 == (i % test))
{
// found a factor, so print this factor then call
// factor() recursively to find the next factor

return(1 + factor(i/test));
}
}
}
// if this point was reached, then factor not found

return(0);
}

Error Checking for Functions in Siebel eScript
Some functions return a special value if they fail to do what they are supposed to do. For example,
the Clib.fopen() method opens or creates a file for a script to read from or write to. If the Clib.fopen()
method is called and is unable to open a file, then the method returns null.

If you then try to read from or write to the file that is assumed to be open, you receive errors. To
prevent these errors, check whether Clib.fopen() returns null when it tries to open a file, instead of
calling Clib.fopen() as follows:

var fp = Clib.fopen("myfile.txt", "r");

check to make sure that null is not returned:

var fp = Clib.fopen("myfile.txt", "r");

if (null == fp)
{

TheApplication().RaiseErrorText("Error with fopen as returned null " +
"in the following object: " + this.Name() + " " + e.toString() + e.errText());

}

You may abort a script in such a case, and the error text indicates why the script failed. See “The
Clib Object” on page 109.

Siebel eScript Statements
This section describes statements your program uses to make decisions and to direct the flow based
on those decisions:
Siebel eScript Language Reference Version 7.8, Rev. A44

Siebel eScript Language Overview ■ Siebel eScript Statements
■ “break Statement” on page 45

■ “continue Statement” on page 46

■ “do...while Statement” on page 47

■ “for Statement” on page 48

■ “for...in Statement” on page 49

■ “goto Statement” on page 50

■ “if Statement” on page 51

■ “switch Statement” on page 52

■ “throw Statement” on page 54

■ “try Statement” on page 55

■ “while Statement” on page 56

■ “with Statement” on page 57

break Statement
The break statement terminates the innermost loop of for, while, or do statements. It is also used to
control the flow within switch statements.

Syntax A
break;

Syntax B
break label;

Usage
The break statement is legal only in loops or switch statements. In a loop, it is used to terminate the
loop prematurely when the flow of the program eliminates the need to continue the loop. In the
switch statement, it is used to prevent execution of cases following the selected case and to exit from
the switch block.

When used within nested loops, break terminates execution only of the innermost loop in which it
appears.

A label may be used to indicate the beginning of a specific loop when the break statement appears
within a nested loop to terminate execution of a loop other than the innermost loop. A label consists
of a legal identifier, followed by a colon, placed at the left margin of the work area.

Placeholder Description

label The name of the label indicating where execution is to resume
Siebel eScript Language Reference Version 7.8, Rev. A 45

Siebel eScript Language Overview ■ Siebel eScript Statements
Example
For an example, see “switch Statement” on page 52.

See Also
“do...while Statement” on page 47
“for Statement” on page 48
“if Statement” on page 51
“while Statement” on page 56

continue Statement
The continue statement starts a new iteration of a loop.

Syntax A
continue;

Syntax B
continue label;

Usage
The continue statement ends the current iteration of a loop and begins the next. Any conditional
expressions are reevaluated before the loop reiterates.

A label may be used to indicate the point at which execution should continue. A label consists of a
legal identifier, followed by a colon, placed at the left margin of the work area.

Example
The following example writes the numbers 1 through 6 and 8 through 10, followed by the string
“.Test”. The use of the continue statement after “if (i==7)” prevents the write statement for 7, but
keeps executing the loop.

var i = 0;
while (i < 10)
{

i++;
if (i==7)

continue;
document.write(i + ".Test");

}

Placeholder Description

label The name of the label indicating where execution is to resume
Siebel eScript Language Reference Version 7.8, Rev. A46

Siebel eScript Language Overview ■ Siebel eScript Statements
See Also
“do...while Statement” on page 47
“for Statement” on page 48
“goto Statement” on page 50
“while Statement” on page 56

do...while Statement
The do...while statement processes a block of statements until a specified condition is met.

Syntax
do
{

statement_block;
} while (condition)

Usage
The do statement processes the statement_block repeatedly until condition is met. Because
condition appears at the end of the loop, condition is tested for only after the loop executes. For this
reason, a do...while loop is always executed at least one time before condition is checked.

Example
This example increments a value and prints the new value to the screen until the value reaches 100.

var value = 0;
do
{

value++;
Clib.sprintf(value);

} while(value < 100);

See Also
“for Statement” on page 48
“while Statement” on page 56

Placeholder Description

statement_block One or more statements to be executed within the loop

condition An expression indicating the circumstances under which the loop should be
repeated
Siebel eScript Language Reference Version 7.8, Rev. A 47

Siebel eScript Language Overview ■ Siebel eScript Statements
for Statement
The for statement repeats a series of statements a fixed number of times.

Syntax
for ([var] counter = start; condition; increment)
{

statement_block;
}

Usage
The counter variable must be declared with var if it has not already been declared. Even though it is
declared in the for statement, its scope is local to the whole function that contains the for loop.

First, the expression counter = start is evaluated. Then condition is evaluated. If condition is true
or if there is no conditional expression, the statement is executed. Then the increment is executed
and condition is reevaluated, which begins the loop again. If the expression is false, the statement
is not executed, and the program continues with the next line of code after the statement.

Within the loop, the value of counter should not be changed in ways other than being incremented
on each pass through the loop. Changing the counter in other ways makes your script difficult to
maintain and debug.

A for statement can control multiple counters in a loop. The various counter variables and their
increments must be separated by commas. For example:

for (var i = 1, var j = 3; i < 10; i++, j++)
var result = i * j;

Example
For an example of the for statement, see “eval() Method” on page 237.

See Also
“do...while Statement” on page 47
“while Statement” on page 56

Placeholder Description

counter A numeric variable for the loop counter

start The initial value of the counter

condition The condition at which the loop should end

increment The amount by which the counter is changed each time the loop is run

statement_block The statements or methods to be executed
Siebel eScript Language Reference Version 7.8, Rev. A48

Siebel eScript Language Overview ■ Siebel eScript Statements
for...in Statement
The for...in statement loops through the properties of an associative array or object.

NOTE: The for...in statement can be used with associative arrays, which are arrays that use strings
as index elements. The for...in statement is not for use with nonassociative arrays. For more
information, see “Associative Arrays in Siebel eScript” on page 79.

Syntax
for (LoopVar in object)
{

statement_block;
}

Usage
An object must have at least one defined property or it cannot be used in a for...in statement.
Associative arrays must have at least one defined element.

The statement block executes one time for every element in the associative array or property of the
object. For each iteration of the loop, the variable LoopVar contains the name of one of the elements
of the array or the name of a property of the object and may be accessed with a statement of the
form array_name[LoopVar] or object[LoopVar].

NOTE: Properties that have been marked with the DONT_ENUM attribute are not accessible to a
for...in statement.

Example
This example creates an object called obj, and then uses the for...in statement to read the object’s
properties.

function PropBtn_Click ()
{

var obj = new Object;
var propName;
var msgtext = "";

obj.number = 32767;
obj.string = "Welcome to my world";
obj.date = "April 25, 1945";

for (propName in obj)
{

msgtext = msgtext + "The value of obj." + propName +

Placeholder Description

object A previously defined associative array or object

LoopVar A variable that iterates over every element in the associative array or property of
the object
Siebel eScript Language Reference Version 7.8, Rev. A 49

Siebel eScript Language Overview ■ Siebel eScript Statements
" is " + obj[propName] + ".\n";
}
TheApplication().RaiseErrorText(msgtext);

}

Running this code produces the following results:

The value of obj.number is 32767.
The value of obj.string is Welcome to my world.
The value of obj.date is April 25, 1945.

For an example of the for...in statement used with an associative array, see “Associative Arrays in
Siebel eScript” on page 79.

goto Statement
The goto statement redirects execution to a specific point in a function.

Syntax
goto label;

Usage
You can jump to any location within a function by using the goto statement. To do so, you must create
a label—an identifier followed by a colon—at the point at which execution should continue. As a rule,
goto statements should be used sparingly because they make it difficult to track program flow.

Example
The following example uses a label to loop continuously until a number greater than 0 is entered:

function clickme_Click ()
{
restart:

var number = 10;
if (number <= 0)

goto restart;
var factorial = 1;
for (var x = number; x >= 2; x--)

factorial = (factorial * x);
TheApplication().RaiseErrorText("The factorial of " +

number + " is " + factorial + ".");
}

Placeholder Description

label A marker, followed by a colon, for a line of code at which execution should
continue
Siebel eScript Language Reference Version 7.8, Rev. A50

Siebel eScript Language Overview ■ Siebel eScript Statements
if Statement
The if statement tests a condition and proceeds depending on the result.

Syntax A
if (condition)

statement;

Syntax B
if (condition)
{

statement_block;
}
[else if (condition)
{

statement_block;
}]
[else
{

statement_block;
}]

Usage
The if statement is the most commonly used mechanism for making decisions in a program. When
multiple statements are required, use the block version (Syntax B) of the if statement. When
expression is true, the statement or statement_block following it is executed. Otherwise, it is
skipped.

The following fragment is an example of an if statement:

if (i < 10)
{

TheApplication().RaiseErrorText("i is less than 10.");
}

The brackets are not required if only a single statement is to be executed if condition is true.
However, you may use them for clarity.

The else statement is an extension of the if statement. It allows you to tell your program to do
something else if the condition in the if statement was found to be false.

In Siebel eScript code, the else statement looks like the following example, if only one action is to
be taken in either circumstance:

Placeholder Description

condition An expression that evaluates to true or false

statement_block One or more statements or methods to be executed if expression is true
Siebel eScript Language Reference Version 7.8, Rev. A 51

Siebel eScript Language Overview ■ Siebel eScript Statements
if (i < 10)
TheApplication().RaiseErrorText("i is less than 10.");

else
TheApplication().RaiseErrorText("i is not less than 10.");

If you want more than one statement to be executed for any of the alternatives, you must group the
statements with brackets, like this:

if (i < 10)
{

i += 10;
TheApplication().RaiseErrorText ("Original i was less than 10, and has now been
incremented by 10.");

}
else
{

i -= 5;
TheApplication().RaiseErrorText ("Original i was at least 10, and has now been
decremented by 5.");

}

To make more complex decisions, an else clause can be combined with an if statement to match one
of a number of possible conditions.

Example
The following fragment illustrates using else with if. For another example, see “setTime() Method” on
page 213.

if (i < 10)
{

TheApplication().RaiseErrorText("i is less than 10.")
}

else if (i > 10)
{

TheApplication().RaiseErrorText("i is greater than 10.");
}
else
{

TheApplication().RaiseErrorText("i is 10.");
}

See Also
“switch Statement” on page 52

switch Statement
The switch statement makes a decision based on the value of a variable or expression.
Siebel eScript Language Reference Version 7.8, Rev. A52

Siebel eScript Language Overview ■ Siebel eScript Statements
Syntax
switch(switch_variable)
{

case value1:
statement_block
break;

case value2:
statement_block
break;

.

.

.
[default:

statement_block;]
}

Usage
The switch statement is a way of choosing among alternatives when each choice depends upon the
value of a single variable.

The variable switch_variable is evaluated, and then it is compared to the values in the case
statements (value1, value2, …, default) until a match is found. The statement block following the
matched case is executed until the end of the switch block is reached or until a break statement exits
the switch block.

If no match is found and a default statement exists, the default statement executes.

Make sure to use a break statement to end each case. In the following example, if the break
statement after the “I=I+2;” statement were omitted, the computer executes both “I=I+2;” and
“I=I+3;”, because the Siebel eScript interpreter executes commands in the switch block until it
encounters a break statement.

Example
Suppose that you had a series of account numbers, each beginning with a letter that indicates the
type of account. You could use a switch statement to carry out actions depending on the account
type, as in the following example:

switch (key[0])
{
case 'A':

I=I+1;
break;

case 'B':;

Placeholder Description

switch_variable The variable upon whose value the course of action depends

valuen Values of switch_variable, which are followed by a colon

statement_block One or more statements to be executed if the value of switch_variable is the
value listed in the case statement
Siebel eScript Language Reference Version 7.8, Rev. A 53

Siebel eScript Language Overview ■ Siebel eScript Statements
I=I+2
break;

case 'C':
I=I+3;
break;

default:
I=I+4;
break;

}

See Also
“if Statement” on page 51

throw Statement
The throw statement is used to make sure that script execution halts when an error occurs.

Syntax
throw exception

Usage
Throw can be used to make sure that a script stops executing when an error is encountered,
regardless of what other measures may be taken to handle the error. In the following code example,
the throw statement is used to stop the script after the error message is displayed.

try
{

do_something;
}
catch(e)
{

TheApplication().Trace (e.toString()));

throw e;
}

See Also
“try Statement” on page 55

Parameter Description

exception An object in a named error class
Siebel eScript Language Reference Version 7.8, Rev. A54

Siebel eScript Language Overview ■ Siebel eScript Statements
try Statement
The try statement is used to process exceptions that occur during script execution.

Syntax
try
{

statement_block
}
catch
{

exception_handling_block
[throw exception]

}
finally
{

statement_block_2
}

Usage
The try statement is used to handle functions that may raise exceptions, which are error conditions
that cause the script to branch to a different routine. A try statement generally includes a catch
clause or a finally clause, and may include both. The catch clause is used to handle the exception.
To raise an exception, use the throw statement (see “throw Statement” on page 54).

When you want to trap potential errors generated by a block of code, place that code in a try
statement, and follow the try statement with a catch statement. The catch statement is used to
process the exceptions that may occur in the manner you specify in the exception_handling_block.

The following example demonstrates the general form of the try statement with the catch clause. In
this example, the script continues executing after the error message is displayed:

try
{

do_something;
}
catch(e)
{

TheApplication().RaiseErrorText(Clib.rsprintf(
"Something bad happened: %s\n",e.toString()));

}

Placeholder Description

statement_block A block of code that may generate an error

exception_handling_block A block of code to process the error

exception An error of a named type

statement_block_2 A block of code that is always executed, unless that block transfers
control to elsewhere in the script
Siebel eScript Language Reference Version 7.8, Rev. A 55

Siebel eScript Language Overview ■ Siebel eScript Statements
The finally clause is used for code that should always be executed before exiting the try statement,
regardless of whether the catch clause halts the execution of the script. Statements in the finally
clause are skipped only if the finally clause redirects the flow of control to another part of the script.
The finally statement can be exited by a goto, throw, or return statement.

Here is an example:

try
{

return 10;
}
finally
{

goto no_way;
}

no_way: statement_block

Execution continues with the code after the label, so the return statement is ignored.

See Also
“throw Statement” on page 54

while Statement
The while statement executes a particular section of code repeatedly until an expression evaluates
to false.

Syntax
while (condition)
{

statement_block;
}

Usage
The condition must be enclosed in parentheses. If expression is true, the Siebel eScript interpreter
executes the statement_block following it. Then, the interpreter tests the expression again. A while
loop repeats until condition evaluates to false, and the program continues after the code associated
with the while statement.

Placeholder Description

condition The condition whose falsehood is used to determine when to stop executing
the loop

statement_block One or more statements to be executed while condition is true
Siebel eScript Language Reference Version 7.8, Rev. A56

Siebel eScript Language Overview ■ Siebel eScript Statements
Example
The following fragment illustrates a while statement with two lines of code in a statement block:

while(ThereAreUncalledNamesOnTheList() != false)
{

var name = GetNameFromTheList();
SendEmail(name);

}

with Statement
The with statement assigns a default object to a statement block, so you need to use the object name
with its properties and methods.

Syntax
with (object)
{

method1;
method2;
.
.
.
methodn;

}

Usage
The with statement is used to save time when working with objects. It prefixes the object name and
a period to each method used.

If you were to jump from within a with statement to another part of a script, the with statement
would no longer apply. The with statement only applies to the code within its own block, regardless
of how the Siebel eScript interpreter accesses or leaves the block.

You may not use a goto statement or label to jump into or out of the middle of a with statement block.

Example
The following fragment illustrates the use of the with statement:

var bcOppty;
var boBusObj;
boBusObj = TheApplication().GetBusObject("Opportunity");
bcOppty = boBusObj.GetBusComp("Opportunity");
var srowid = bcOppty.GetFieldValue("Id");

Placeholder Description

object An object with which you wish to use multiple methods

method1, method2, methodn Methods to be executed with the object
Siebel eScript Language Reference Version 7.8, Rev. A 57

Siebel eScript Language Overview ■ Siebel eScript Statements
try
{

with (bcOppty)
{

SetViewMode(SalesRepView);
ActivateField("Sales Stage");
SetSearchSpec("Id", srowid);
ExecuteQuery(ForwardOnly);

}
}
finally
{

boBusObj = null;
bcOppty = null;

}

The portion in the with block is equivalent to:

bcOppty.SetViewMode(SalesRepView);
bcOppty.ActivateField("Sales Stage");
bcOppty.SetSearchSpec("Id", srowid);
bcOppty.ExecuteQuery(ForwardOnly);
Siebel eScript Language Reference Version 7.8, Rev. A58

3 Quick Reference: Methods and
Properties in Siebel eScript
The links that follow provide access to a list of Siebel eScript functions, methods, and properties by
functional group, rather than by object. It includes the following topics:

■ “Array Methods and Properties in Siebel eScript” on page 59

■ “Buffer Methods and Properties in Siebel eScript” on page 60

■ “Character Classification Methods in Siebel eScript” on page 61

■ “Conversion Methods in Siebel eScript” on page 61

■ “Data Handling Methods in Siebel eScript” on page 62

■ “Date and Time Methods in Siebel eScript” on page 63

■ “Disk and File Methods in Siebel eScript” on page 64

■ “Error Handling Methods in Siebel eScript” on page 66

■ “Mathematical Methods and Properties in Siebel eScript” on page 67

■ “Memory Manipulation Methods in Siebel eScript” on page 69

■ “String and Byte-Array Methods in Siebel eScript” on page 70

■ “Uncategorized Methods in Siebel eScript” on page 71

NOTE: In this chapter, properties can be distinguished from methods by the fact that they do not
end with a pair of parentheses.

Array Methods and Properties in Siebel
eScript
Table 11 provides a list of array methods and properties.

Table 11. Array Methods in Siebel eScript

Method or Property Purpose

getArrayLength() Method Determines size of an array

Array join() Method Creates a string from array elements

Array length Property Returns the length of an array

Array pop() Method Returns the last element of an array, then removes
that element from the array

Array push() Method Appends new elements to the end of an array.
Siebel eScript Language Reference Version 7.8, Rev. A 59

Quick Reference: Methods and Properties in Siebel eScript ■ Buffer Methods and
Properties in Siebel eScript
Buffer Methods and Properties in Siebel
eScript
Table 12 provides a list of buffer methods.

Array reverse() Method Reverses the order of elements of an array

setArrayLength() Method Sets the size of an array

Array sort() Method Sorts array elements

Array splice() Method Splices new elements into an array

Clib.bsearch() Method Does a binary search for a member of a sorted
array

Clib.qsort() Method Sorts an array; may use comparison function

Table 12. Buffer Methods in Siebel eScript

Method or Property Purpose

bigEndian Property Stores a Boolean flag for bigEndian byte ordering

cursor Property Stores the current position of the buffer cursor

data Property Refers to the internal data of a buffer

getString() Method Returns a string starting from the current cursor position

getValue() Method Returns a value from a specified position

offset[] Method Provides array-style access to individual bytes in the buffer

putString() Method Puts a string into a buffer

putValue() Method Puts a specified value into a buffer

subBuffer() Method Returns a section of a buffer

SElib.pointer() Method Gets the address in memory of a Buffer variable

subBuffer() Method Stores the size of a Buffer object

toString() Method Returns a string equivalent of the current state of a buffer

unicode Property Stores a Boolean flag that specifies whether to use Unicode
strings when calling getString() and putString()

Table 11. Array Methods in Siebel eScript

Method or Property Purpose
Siebel eScript Language Reference Version 7.8, Rev. A60

Quick Reference: Methods and Properties in Siebel eScript ■ Character Classification
Methods in Siebel eScript
Character Classification Methods in
Siebel eScript
Table 13 provides a list of character classification methods.

Conversion Methods in Siebel eScript
Table 14 provides a list of conversion methods.

Table 13. Character Classification Methods in Siebel eScript

Method Purpose

Clib.isalnum() Method Tests for an alphanumeric character

Clib.isalpha() Method Tests for an alphabetic character

Clib.isascii() Method Tests for an ASCII-coded character

Clib.iscntrl() Method Tests for any control character

Clib.isdigit() Method Tests for any decimal-digit character

Clib.isgraph() Method Tests for any printing character except space

Clib.islower() Method Tests for a lowercase alphabetic letter

Clib.isprint() Method Tests for any printing character

Clib.ispunct() Method Tests for a punctuation character

Clib.isspace() Method Tests for a white-space character

Clib.isupper() Method Tests for an uppercase alphabetic character

Clib.isxdigit() Method Tests for a hexadecimal-digit character

Clib.toascii() Method Converts to ASCII

Table 14. Conversion Methods in Siebel eScript

Method Purpose

escape() Method Escapes special characters in a string

eval() Method Converts an expression to its value

parseFloat() Method Converts a string to a float

parseInt() Method Converts a string to an integer

ToBoolean() Method Converts a value to a Boolean

ToBuffer() Method Converts a value to a buffer

ToBytes() Method Converts a value to a buffer (raw transfer)

toExponential() Method Converts a number to exponential notation
Siebel eScript Language Reference Version 7.8, Rev. A 61

Quick Reference: Methods and Properties in Siebel eScript ■ Data Handling Methods
in Siebel eScript
Data Handling Methods in Siebel eScript
Table 15 provides a list of data handling methods.

toFixed() Method Converts a number to a specific number of decimal
places

ToInteger() Method Converts a value to an integer

ToNumber() Method Converts a value to a number

ToObject() Method Converts a value to an object

toPrecision() Method Converts a number to a specific number of
significant digits

ToString() Method Converts a value to a string

ToUint16() Method Converts a value to an unsigned integer

ToUint32() Method Converts a value to an unsigned large integer

unescape(string) Method Removes escape sequences in a string

Table 15. Data Handling Methods in Siebel eScript

Method Purpose

Blob.get() Method Reads data from a specified location in a BLOB

Blob.put() Method Writes data into a specified location in a BLOB

Blob.size() Method Determines the size of a BLOB

escape() Method Tests if a variable has been defined

isFinite() Method Determines whether a value is finite

isNaN() Method Determines whether a value is Not a Number (NaN)

ToString() Method Converts any variable to a string representation

undefine() Method Makes a variable undefined

Table 14. Conversion Methods in Siebel eScript

Method Purpose
Siebel eScript Language Reference Version 7.8, Rev. A62

Quick Reference: Methods and Properties in Siebel eScript ■ Date and Time Methods
in Siebel eScript
Date and Time Methods in Siebel eScript
Table 16 provides a list of date and time methods.

Table 16. Date and Time Methods in Siebel eScript

Method Purpose

Clib.asctime() Method Converts a date-time to an ASCII string

Clib.clock() Method Gets the processor time

Clib.ctime() Method Converts a date-time to an ASCII string

Clib.difftime() Method Computes the difference between two times

Clib.gmtime() Method Converts a date-time to GMT

Clib.localtime() Method Converts a date-time to a structure

Clib.mktime() Method Converts a time structure to calendar time

Clib.strftime() Method Writes a formatted date-time to a string

Clib.time() Method Gets the current time

Date.fromSystem() Static Method Converts system time to Date object time

Date.parse() Static Method Converts a Date string to a Date object

Date.toSystem() Method Converts a Date object to a system time

Date.UTC() Static Method Returns the date-time, in milliseconds, from January 1, 1970 of
its parameters

getDate() Method Returns the day of the month

getDay() Method Returns the day of the week

getFullYear() Method Returns the year as a four-digit number

getHours() Method Returns the hour

getMilliseconds() Method Returns the millisecond

getMinutes() Method Returns the minute

getMonth() Method Returns the month

getSeconds() Method Returns the second

getTime() Method Returns the date-time, in milliseconds, of a Date object

getTimezoneOffset() Method Returns the difference, in minutes, from GMT

getUTCDate() Method Returns the UTC day of the month

getUTCDay() Method Returns the UTC day of the week

getUTCFullYear() Method Returns the UTC year as a four-digit number

getUTCHours() Method Returns the UTC hour

getUTCMilliseconds() Method Returns the UTC millisecond
Siebel eScript Language Reference Version 7.8, Rev. A 63

Quick Reference: Methods and Properties in Siebel eScript ■ Disk and File Methods in
Siebel eScript
Disk and File Methods in Siebel eScript
Siebel eScript provides the following disk and file methods:

■ “Disk and Directory Methods in Siebel eScript” on page 65

■ “File-Control Methods in Siebel eScript” on page 65

■ “File-Manipulation Methods in Siebel eScript” on page 66

getUTCMinutes() Method Returns the UTC minute

getUTCMonth() Method Returns the UTC month

getUTCSeconds() Method Returns the UTC second

getYear() Method Returns the year as a two-digit number

setDate() Method Sets the day of the month

setFullYear() Method Sets the year as a four-digit number

setHours() Method Sets the hour

setMilliseconds() Method Sets the millisecond

setMinutes() Method Sets the minute

setMonth() Method Sets the month

setSeconds() Method Sets the second

setTime() Method Sets the date-time in a Date object, in milliseconds

setUTCDate() Method Sets the UTC day of the month

setUTCFullYear() Method Sets the UTC year as a four-digit number

setUTCHours() Method Sets the UTC hour

setUTCMilliseconds() Method Sets the UTC millisecond

setUTCMinutes() Method Sets the UTC minute

setUTCMonth() Method Sets the UTC month

setUTCSeconds() Method Sets the UTC second

setYear() Method Sets the year as a two-digit number

toGMTString() Method Converts a Date object to a string

toLocaleString() Method and
toString() Method

Returns a string representing the date and time of a Date
object based on the time zone of the computer running the
script

toUTCString() Method Returns a string that represents the UTC date

Table 16. Date and Time Methods in Siebel eScript

Method Purpose
Siebel eScript Language Reference Version 7.8, Rev. A64

Quick Reference: Methods and Properties in Siebel eScript ■ Disk and File Methods in
Siebel eScript
Disk and Directory Methods in Siebel eScript
Table 17 provides a list of disk and directory methods.

Backslashes (\) can be interpreted as escape characters. When forming Windows path names, double
each backslash to prevent this interpretation. For example, to change the working directory to
C:\Applications\Myfolder, use the following command:

Clib.chdir(“C:\\Applications\\Myfolder”);

Similarly, when using UNC paths to access a computer on your network, use four backslashes (\\\\)
before the computer name.

Clib.system("copy \\\\server01\\share\\SR.txt D:\\SR.txt ");

File-Control Methods in Siebel eScript
Table 18 provides a list of file-control methods.

Table 17. Disk and Directory Methods in Siebel eScript

Method Purpose

Clib.chdir() Method Changes directory

Clib.flock() Method Handles file locking and unlocking

Clib.getcwd() Method Gets the current working directory

Clib.mkdir() Method Creates a directory

Clib.rmdir() Method Removes a directory

Table 18. File-Control Methods in Siebel eScript

Method Purpose

Clib.fclose() Method Closes an open file

Clib.fopen() Method Opens a file

Clib.freopen() Method Assigns a new file spec to a file handle

Clib.remove() Method Deletes a file

Clib.rename() Method Renames a file

Clib.tmpfile() Method Creates a temporary binary file

Clib.tmpnam() Method Gets a temporary filename
Siebel eScript Language Reference Version 7.8, Rev. A 65

Quick Reference: Methods and Properties in Siebel eScript ■ Error Handling Methods
in Siebel eScript
File-Manipulation Methods in Siebel eScript
Table 19 provides a list of file-manipulation methods.

Error Handling Methods in Siebel eScript
Table 20 provides a list of error handling methods.

Table 19. File-Manipulation Methods in Siebel eScript

Method Purpose

Clib.feof() Method Tests whether at the end of a file stream

Clib.fflush() Method Flushes the stream of one or more open files

Clib.fgetc() Method and
Clib.getc() Method

Gets a character from a file stream

Clib.fgetpos() Method Gets the current file cursor position in a file stream

Clib.fgets() Method Gets a string from an input stream

Clib.fprintf() Method Writes formatted output to a file stream

Clib.fputc() Method and
Clib.putc() Method

Writes a character to a file stream

Clib.fputs() Method Writes a string to a file stream

Clib.fread() Method Reads data from a file

Clib.fscanf() Method Gets formatted input from a file stream

Clib.fseek() Method Sets the file cursor position in an open file stream

Clib.fsetpos() Method Sets the file cursor position in a file stream

Clib.ftell() Method Gets the current value of the file cursor

Clib.fwrite() Method Writes data to a file

Clib.rewind() Method Resets the file cursor to the beginning of a file

Clib.ungetc()Method Pushes a character back to the input stream

Table 20. Error Handling Methods in Siebel eScript

Method Purpose

Clib.clearerr() Method Clears end-of-file and error status of a file

Clib.errno Property Returns the value of an error condition

Clib.ferror() Method Tests for an error on a file stream

Clib.perror() Method Prints a message describing an error number
Siebel eScript Language Reference Version 7.8, Rev. A66

Quick Reference: Methods and Properties in Siebel eScript ■ Mathematical Methods
and Properties in Siebel eScript
Mathematical Methods and Properties in
Siebel eScript
The eScript language provides the following mathematical methods and properties:

■ “Numeric Methods in Siebel eScript” on page 67

■ “Trigonometric Methods in Siebel eScript” on page 68

■ “Mathematical Properties in Siebel eScript” on page 68

Numeric Methods in Siebel eScript
Table 21 provides a list of numeric methods.

Clib.strerror() Method Gets a string describing an error number

throw Statement Makes sure that script execution halts when an error
occurs

Table 21. Numeric Methods in Siebel eScript

Method Purpose

Clib.div() Method and
Clib.ldiv() Method

Performs integer division and returns an object with the
quotient and remainder

Clib.frexp() Method Breaks a real number into a mantissa and an exponent as a
power of 2

Clib.ldexp() Method Calculates mantissa * 2 ^ exponent

Clib.modf() Method Splits a value into integer and fractional parts

Clib.rand() Method Returns a random real number between 0 and 1

Clib.srand() Method Seeds the random number generator

Math.abs() Method Returns the absolute value of an integer

Math.ceil() Method Rounds a real number up to the next highest integer

Math.exp() Method Computes the exponential function

Math.floor() Method Rounds a real number down to the next lowest integer

Math.log() Method Calculates the natural logarithm

Math.max() Method Returns the largest of one or more values

Math.min() Method Returns the smallest of one or more values

Table 20. Error Handling Methods in Siebel eScript

Method Purpose
Siebel eScript Language Reference Version 7.8, Rev. A 67

Quick Reference: Methods and Properties in Siebel eScript ■ Mathematical Methods
and Properties in Siebel eScript
Trigonometric Methods in Siebel eScript
Table 22 provides a list of trigonometric methods.

Mathematical Properties in Siebel eScript
Table 23 provides a list of mathematical properties, each of which is a numeric constant.

Math.pow() Method Calculates x to the power of y

Math.random() Method Returns a random real number between 0 and 1

Math.round() Method Rounds a value up or down

Math.sqrt() Method Calculates the square root

Table 22. Trigonometric Methods in Siebel eScript

Method Purpose

Clib.cosh() Method Calculates the hyperbolic cosine

Clib.sinh() Method Calculates the hyperbolic sine

Clib.tanh() Method Calculates the hyperbolic tangent

Math.acos() Method Calculates the arc cosine

Math.asin() Method Calculates the arc sine

Math.atan() Method Calculates the arc tangent

Math.atan2() Method Calculates the arc tangent of a fraction

Math.cos() Method Calculates the cosine

Math.sin() Method Calculates the sine

Math.tan() Method Calculates the tangent

Table 23. Mathematical Properties in Siebel eScript

Property Value

Math.E Property Value of e, the base for natural logarithms

Math.LN10 Property Value of the natural logarithm of 10

Math.LN2 Property Value of the natural logarithm of 2

Math.LOG10E Property Value of the base 10 logarithm of e

Math.LOG2E Property Value of the base 2 logarithm of e

Table 21. Numeric Methods in Siebel eScript

Method Purpose
Siebel eScript Language Reference Version 7.8, Rev. A68

Quick Reference: Methods and Properties in Siebel eScript ■ Memory Manipulation
Methods in Siebel eScript
Memory Manipulation Methods in Siebel
eScript
Table 27 provides a list of methods with which to manipulate data at specific memory locations.

Operating System Interaction Methods
in Siebel eScript
Table 25 provides a list of operating system interaction methods.

Math.PI Property Value of pi

Math.SQRT1_2 Property Value of the square root of ½

Math.SQRT2 Property Value of the square root of 2

Table 24. Uncategorized Methods in Siebel eScript

Method Purpose

SElib.peek() Method Reads data from a specific position in memory

SElib.pointer() Method Gets the address in memory of a Buffer variable

SElib.poke() Method Writes data to a specific position in memory

Table 25. Operating System Interaction Methods in Siebel eScript

Method Purpose

Clib.getenv() Method Returns the value of an environment variable as a string

Clib.putenv() Method Assigns a value to a specified environment variable

Clib.system() Method Instructs the operating system to run the specified
Command

Table 23. Mathematical Properties in Siebel eScript

Property Value
Siebel eScript Language Reference Version 7.8, Rev. A 69

Quick Reference: Methods and Properties in Siebel eScript ■ String and Byte-Array
Methods in Siebel eScript
String and Byte-Array Methods in Siebel
eScript
Table 26 provides a list of string and byte-array methods.

Table 26. String and Byte-Array Methods in Siebel eScript

Method Purpose

Clib.memchr() Method Searches a byte array

Clib.memcmp() Method Compares two byte arrays

Clib.memcpy() Method and
Clib.memmove() Method

Copies or moves from one byte array to another

Clib.memset() Method Copies from one byte array to another

Clib.rsprintf() Method Returns a formatted string

Clib.sprintf() Method Writes formatted output to a string

Clib.sscanf() Method Reads and formats input from a string

Clib.strchr() Method Searches a string for a character

Clib.strcspn() Method Searches a string for the first character in a set of characters

Clib.stricmp() Method and
Clib.strcmpi() Method

Makes a case-sensitive comparison of two strings

Clib.strlwr() Method Converts a string to lowercase

Clib.strncat() Method Concatenates a portion of one string to another

Clib.strncmp() Method Makes a case-sensitive comparison of parts of two strings

Clib.strncmpi() Method and
Clib.strnicmp() Method

Makes a case-insensitive comparison of parts of two strings

Clib.strncpy() Method Copies a portion of one string to another

Clib.strpbrk() Method Searches string for a character from a set of characters

Clib.strrchr() Method Searches a string for the last occurrence of a character

Clib.strspn() Method Searches a string for a character not in a set of characters

Clib.strstr() Method Searches a string for a substring (case sensitive)

Clib.strstri() Method Searches a string for a substring (case insensitive)

String charAt() Method Returns the character at a specified location in a string

String indexOf() Method Returns the index of the first instance of a specified substring in
a string

String lastIndexOf()
Method

Returns the index of the last instance of a specified substring in
a string
Siebel eScript Language Reference Version 7.8, Rev. A70

Quick Reference: Methods and Properties in Siebel eScript ■ Uncategorized Methods
in Siebel eScript
Uncategorized Methods in Siebel eScript
Table 27 provides a list of uncategorized methods.

String match() Method Returns an array of strings that are matches within the string
against a target regular expression.

RegExp compile() Method Changes the pattern and attributes to use with the current
instance of a RegExp object.

RegExp exec() Method Returns an array of strings that are matches of the regular
expression on the target string.

RegExp test() Method Indicates whether a target string contains a regular expression
pattern.

String split() Method Parses a string and returns an array of strings based on a
specified separator

String.fromCharCode()
Static Method

Returns the character associated with a specified character code

substring() Method Retrieves a section of a string

toLowerCase() Method Converts a string to lowercase

toUpperCase() Method Converts a string to uppercase

Table 27. Uncategorized Methods in Siebel eScript

Method Purpose

SElib.dynamicLink() Method Calls a procedure from a dynamic link library (Windows)
or shared object (UNIX)

Table 26. String and Byte-Array Methods in Siebel eScript

Method Purpose
Siebel eScript Language Reference Version 7.8, Rev. A 71

Quick Reference: Methods and Properties in Siebel eScript ■ Uncategorized Methods
in Siebel eScript
Siebel eScript Language Reference Version 7.8, Rev. A72

4 Siebel eScript Commands
This chapter presents the eScript commands sorted alphabetically by object type and then by
command name. The following list shows the object types discussed:

■ “Applet Objects” on page 73

■ “The Application Object” on page 75

■ “Array Objects” on page 77

■ “BLOB Objects” on page 85

■ “Buffer Objects in Siebel eScript” on page 92

■ “Business Component Objects” on page 103

■ “Business Object Objects” on page 108

■ “Business Service Objects” on page 108

■ “The Clib Object” on page 109

■ “The Date Object” on page 194

■ “The Exception Object” on page 228

■ “Function Objects” on page 229

■ “The Global Object” on page 231

■ “The Math Object” on page 255

■ “User-Defined Objects in Siebel eScript” on page 275

■ “Property Set Objects” on page 278

■ “RegExp Objects” on page 279

■ “The SElib Object” on page 287

■ “The String Object” on page 293

Applet Objects
Within a Siebel application, an applet serves as a container for the collection of user interface objects
that together represent the visible representation of one business component (BusComp) object.
Applets are combined to form views. Views constitute the display portions of a Siebel application.
Applet objects are available in Browser Script. Methods of applet objects are documented in the
Siebel Object Interfaces Reference.
Siebel eScript Language Reference Version 7.8, Rev. A 73

Siebel eScript Commands ■ Applet Objects
A Web applet represents an applet that is rendered by the Siebel Web Engine. It exists only as a
scriptable object in Server Script and is accessed by using the Edit Server Script command on the
selected applet. Methods and events of the Web Applet object are listed in Table 28.

Table 28. Web Applet Object Methods and Events

Method or Event Description

ActiveMode() Method ActiveMode returns a string containing the name of the
current Web Template mode.

Applet_ChangeFieldValue() Event The ChangeFieldValue event is fired when the data in a field
changes.

Applet_ChangeRecord() Event The ChangeRecord event is called when the user moves to
a different row or view.

Applet_InvokeMethod() Event The InvokeMethod event is triggered by a call to
applet.InvokeMethod, a call to a specialized method, or by
a user-defined menu.

Applet_Load() Event The Load event is triggered after an applet has loaded and
after data is displayed.

Applet_PreInvokeMethod() Event The PreInvokeMethod event is called before a specialized
method is invoked by the system, by a user-defined applet
menu, or by calling InvokeMethod on an applet.

BusComp() Method BusComp() returns the business component that is
associated with the applet.

BusObject() Method BusObject() returns the business object for the business
component for the applet.

FindActiveXControl() Method FindActiveXControl returns a reference to a DOM element
based upon the name specified in the name parameter.

FindControl() Method FindControl returns the control whose name is specified in
the parameter. This applet must be part of the displayed
view.

InvokeMethod() Method The InvokeMethod() method calls a parameter-specified
specialized method.

Name() Method The Name() method returns the name of the applet.

WebApplet_InvokeMethod() Event The InvokeMethod() event is called after a specialized
method or a user-defined method on the Web applet has
been executed.

WebApplet_Load() Event The WebApplet_Load() event is triggered just after an
applet is loaded.

WebApplet_PreCanInvokeMethod()
Event

The PreCanInvokeMethod() event is called before the
PreInvokeMethod, allowing the developer to determine
whether or not the user has the authority to invoke a
specified WebApplet method.
Siebel eScript Language Reference Version 7.8, Rev. A74

Siebel eScript Commands ■ The Application Object
The Application Object
The Application object represents the Siebel application that is currently active and is an instance of
the Application object type. An application object is created when a Siebel software application is
started. This object contains the properties and events that interact with Siebel software as a whole.
An instance of a Siebel application always has exactly one application object. Methods of the
application object are documented in the Siebel Object Interfaces Reference. Table 29 provides a list
of Application object methods and events.

WebApplet_PreInvokeMethod()
Event

The PreInvokeMethod() event is called before a specialized
method for the Web applet is invoked by the system or a
user-defined method is invoked through
oWebAppVar.InvokeMethod.

WebApplet_ShowControl() Event This event allows scripts to modify the HTML generated by
the Siebel Web Engine to render a control on a Web page in
a customer or partner application.

WebApplet_ShowListColumn() Event This event allows scripts to modify the HTML generated by
the Siebel Web Engine to render a list column on a Web
page in a customer or partner application.

Table 29. Application Object Methods and Events

Method or Event Description

ActiveBusObject() Method ActiveBusObject() returns the business object for the business
component for the active applet.

ActiveViewName() Method ActiveViewName() returns the name of the active view.

Application_Close() Event The Close() event is called before the application exits. This
event allows Basic scripts to perform last-minute cleanup (such
as cleaning up a connection to a COM server). It is called when
the application is notified by Windows that it should close, but
not if the process is terminated directly.

Application_InvokeMethod()
Event

The Application_InvokeMethod() event is called after a
specialized method is invoked.

Application_Navigate() Event The Navigate() event is called after the client has navigated to
a view.

Application_PreInvokeMethod()
Event

The PreInvokeMethod() event is called before a specialized
method is invoked by a user-defined applet menu or by calling
InvokeMethod on the application.

Application_PreNavigate()
Event

The PreNavigate() event is called before the client has
navigated from one view to the next.

Table 28. Web Applet Object Methods and Events

Method or Event Description
Siebel eScript Language Reference Version 7.8, Rev. A 75

Siebel eScript Commands ■ The Application Object
Application_Start() Event The Start() event is called when the client starts and the user
interface is first displayed.

CurrencyCode() Method CurrencyCode() returns the operating currency code associated
with the division to which the user’s position has been assigned.

GetProfileAttr() Method GetProfileAttr() returns the value of an attribute in a user
profile.

GetService() Method The GetService() method returns a specified business service.
If the service is not already running, it is constructed.

GetSharedGlobal() Method The GetSharedGlobal() method gets the shared user-defined
global variables.

GotoView() Method GotoView() activates the named view and its BusObject. As a
side effect, this method activates the view’s primary applet, its
BusComp, and its first tab sequence control. Further, this
method deactivates any BusObject, BusComp, applet, or control
objects that were active prior to this method call.

InvokeMethod() Method InvokeMethod() calls a specialized or user-created method
specified by its parameter.

LoginId() Method The LoginId() method returns the login ID of the user who
started the Siebel application.

LoginName() Method The LoginName() method returns the login name of the user
who started the Siebel application (the name typed in the login
dialog box).

LookupMessage() Method The LookupMessage method returns the translated string for the
specified key, in the current language, from the specified
category.

NewPropertySet() Method The NewPropertySet() method constructs a new property set
object.

PositionId() Method The PositionId() method returns the position ID (ROW_ID from
S_POSTN) of the user’s current position. This position is set by
default when the Siebel application is started and may be
changed (using Edit > Change Position) if the user belongs to
more than one position.

PositionName() Method The PositionName() method returns the position name of the
user’s current position. This position name is set by default
when the Siebel application is started and may be changed
(using Edit > Change Position) if the user belongs to more than
one position.

RaiseError() Method The RaiseError method raises a scripting error message to the
browser. The error code is a canonical number.

Table 29. Application Object Methods and Events

Method or Event Description
Siebel eScript Language Reference Version 7.8, Rev. A76

Siebel eScript Commands ■ Array Objects
Array Objects
An array is a special class of object that holds several values rather than one. You refer to a single
value in an array by using an index number or string assigned to that value.

The values contained within an array object are called elements of the array. The index number used
to identify an element follows its array name in brackets. Array indices must be either numbers or
strings.

Array elements can be of any data type. The elements in an array do not need to be of the same
type, and there is no limit to the number of elements an array may have.

The following statements demonstrate how to assign values to an array:

var array = new Array;
array[0] = "fish";
array[1] = "fowl";
array["joe"] = new Rectangle(3,4);
array[foo] = "creeping things"
array[goo + 1] = "and so on."

The variables foo and goo must be either numbers or strings.

RaiseErrorText() Method The RaiseErrorText method raises a scripting error message to
the browser. The error text is the specified literal string.

SetPositionId() Method SetPositionId() changes the position of the current user to the
value specified in the input parameter. For SetPositionId() to
succeed, the user must be assigned to the position to which they
are changing.

SetPositionName() Method SetPositionName() changes the position of the current user to
the value specified in the input parameter. For
SetPositionName() to succeed, the user must be assigned to the
position to which they are changing.

SetProfileAttr() Method SetProfileAttr() is used in personalization to assign values to
attributes in a user profile.

SetSharedGlobal() Method The SetSharedGlobal() method sets a shared user-defined
global variable, which may be accessed using GetSharedGlobal.

Trace() Method The Trace() method appends a message to the trace file. Trace
is useful for debugging the SQL query execution.

TraceOff() Method TraceOff() turns off the tracing started by the TraceOn method.

TraceOn() Method TraceOn() turns on the tracking of allocations and deallocations
of Siebel objects, and SQL statements generated by the Siebel
application.

Table 29. Application Object Methods and Events

Method or Event Description
Siebel eScript Language Reference Version 7.8, Rev. A 77

Siebel eScript Commands ■ Array Objects
Because arrays can use numbers as indices, arrays provide an easy way to work with sequential data.
For example, to keep track of how many jelly beans you ate each day, you could graph your jelly
bean consumption at the end of the month. Arrays provide an ideal solution for storing such data.

var April = new Array;
April[1] = 233;
April[2] = 344;
April[3] = 155;
April[4] = 32;

Now you have your data stored in one variable. You can find out how many jelly beans you ate on
day x by checking the value of April[x]:

for(var x = 1; x < 32; x++)
TheApplication().Trace("On April " + x + " I ate " + April[x] +

" jellybeans.\n");

Arrays usually start at index [0], not index [1].

NOTE: Arrays do not have to be continuous. You can have an array with elements at indices 0 and
2 but none at 1.

See Also
“The Array Constructor in Siebel eScript” on page 78
“Array join() Method” on page 80
“Array length Property” on page 80
“Array reverse() Method” on page 82
“Array sort() Method” on page 83

The Array Constructor in Siebel eScript
Like other objects, arrays are created using the new operator and the Array constructor function.
There are three possible ways to use this function to create an array. The simplest is to call the
function with no parameters:

var a = new Array();

This line initializes variable a as an array with no elements. The parentheses are optional when
creating a new array if there are no parameters. If you wish to create an array of a predefined
number of elements, declare the array using the number of elements as a parameter of the Array()
function. The following line creates an array with 31 elements:

var b = new Array(31);

You can pass elements to the Array() function, which creates an array containing the parameters
passed. The following example creates an array with six elements. c[0] is set to 5, c[1] is set to 4,
and so on up to c[5], which is set to the string "blast off". Note that the first element of the array
is c[0], not c[1].

var c = new Array(5, 4, 3, 2, 1, "blast off");
Siebel eScript Language Reference Version 7.8, Rev. A78

Siebel eScript Commands ■ Array Objects
You can also create arrays dynamically. If you refer to a variable with an index in brackets, the
variable becomes an array. Arrays created in this manner cannot use the methods and properties
described in the next section, so use the Array() constructor function to create arrays.

Associative Arrays in Siebel eScript
Siebel eScript supports associative arrays, where the array index can be a string instead of a number.
This capability is useful when you want to associate values with specific names. For example you may
want to have a months array where the elements are the names of the months and the values are
the number of days in the month.

To access items in an associative array, you use a string as an index. For example:

array_name["color"] = "red";
array_name["size"] = 15;

An advantage of associative arrays is that they are the only arrays that can be used with the for...in
statement. This statement loops through every element in an associative array or object, regardless
of how many or how few elements it may contain. For more information, see “for...in Statement” on
page 49.

The following example creates an associative array of months and days, and totals the number of
days.

// open file
var fp = Clib.fopen("c:\\months.log", "at");

// populate associative array
var months = new Array();
months["November"] = 30;
months["December"] = 31;
months["January"] = 31;
months["February"] = 28;

// iterate through array items
var x;
var total = 0;
for (x in months)

{
// write array items name and value to file
Clib.fputs(x + " = " + months[x] + "\n",fp);
// Add this month’s value to the total
total = total + months[x];

}
Clib.fputs ("Total = " + total + "\n",fp);

//close file
Clib.fclose(fp);

The output of this example is:
Siebel eScript Language Reference Version 7.8, Rev. A 79

Siebel eScript Commands ■ Array Objects
November = 30
December = 31
January = 31
February = 28
Total = 120

Array join() Method
The join() method creates a string of array elements.

Syntax
arrayName.join([separatorString])

Returns
A string containing the elements of the specified array, separated either by commas or by instances
of separatorString.

Usage
By default, the array elements are separated by commas. The order in the array is the order used
for the join() method. The following fragment sets the value of string to "3,5,6,3". You can use
another string to separate the array elements by passing it as an optional parameter to the join
method.

var a = new Array(3, 5, 6, 3);
var string = a.join();

Example
This example creates the string "3*/*5*/*6*/*3":

var a = new Array(3, 5, 6, 3);
var string = a.join("*/*");

Array length Property
The length property returns a number representing the largest index of an array, plus 1.

Syntax
arrayName.length

Parameter Description

separatorString A string of characters to be placed between consecutive elements of the
array; if not specified, a comma is used
Siebel eScript Language Reference Version 7.8, Rev. A80

Siebel eScript Commands ■ Array Objects
Returns
The number of the largest index of the array, plus 1.

NOTE: This value does not necessarily represent the actual number of elements in an array, because
elements do not have to be contiguous.

Usage
For example, suppose you had two arrays, ant and bee, with the following elements:

var ant = new Array; var bee = new Array;
ant[0] = 3 bee[0] = 88
ant[1] = 4 bee[3] = 99
ant[2] = 5
ant[3] = 6

The length property of both ant and bee is equal to 4, even though ant has twice as many actual
elements as bee does.

By changing the value of the length property, you can remove array elements. For example, if you
change ant.length to 2, ant loses elements after the first two, and the values stored at the other
indices are lost. If you set bee.length to 2, then bee consists of two members: bee[0], with a value
of 88, and bee[1], with an undefined value.

Array pop() Method
This method returns the last element of the current Array object, then removes the element from
the array.

Syntax
arrayName.pop()

Returns
The last element of the current Array object.

Usage
This method first gets the length of the current Array object. If the length is undefined or 0, then
undefined is returned. Otherwise, the last element is returned. This element is then deleted, and the
length of current array object is decreased by one. The pop() method works on the end of an array,
whereas, the Array shift() method works on the beginning.
Siebel eScript Language Reference Version 7.8, Rev. A 81

Siebel eScript Commands ■ Array Objects
Example
var a = new Array("four");

TheApplication().RaiseErrorText("First pop: " + a.pop() + ", Second pop: " + a.pop());

// First displays the last (and only) element, the string "four".

// Then displays "undefined" because the array is empty after

// the first call removes the only element.

Array push() Method
This method appends new elements to the end of an array.

Syntax
arrayName.push([element1,element2, ..., elementn])

Returns
The length of the array after the new elements are appended

Usage
This method appends the elements provided as arguments to the end of the array, in the order that
they appear. The length of the current Array object is adjusted to reflect the change.

Example
var a = new Array(1,2);
TheApplication().RaiseErrorText(a.push(5,6) + " " + a);
// Displays 4 1,2,5,6, the length and the new array.

Array reverse() Method
The reverse() method switches the order of the elements of an array, so that the last element
becomes the first.

Syntax
arrayName.reverse()

Returns
arrayName with the elements in reverse order.

Parameter Description

element1, element2,
. . . elementn

A list of elements to append to the array in the
order given
Siebel eScript Language Reference Version 7.8, Rev. A82

Siebel eScript Commands ■ Array Objects
Usage
The reverse() method sorts the existing array, rather than returning a new array. In any references
to the array after the reverse() method is used, the new order is used.

Example
The following code:

var communalInsect = new Array;
communalInsect[0] = "ant";
communalInsect[1] = "bee";
communalInsect[2] = "wasp";
communalInsect.reverse();

produces the following array:

communalInsect[0] == "wasp"
communalInsect[1] == "bee"
communalInsect[2] == "ant"

Array sort() Method
The sort() method sorts the elements of an array into the order specified by the compareFunction.

Syntax
arrayName.sort([compareFunction])

Returns
arrayName with its elements sorted into the order specified.

Usage
If no compareFunction is supplied, then elements are converted to strings before sorting. When
numbers are sorted into ASCII order, they are compared left-to-right, so that, for example, 32 comes
before 4. This may not be the result you want. However, the compareFunction allows you to specify
a different way to sort the array elements. The name of the function you want to use to compare
values is passed as the only parameter to sort().

If a compare function is supplied, the array elements are sorted according to the return value of the
compare function.

Parameter Description

compareFunction A user-defined function that can affect the
sort order
Siebel eScript Language Reference Version 7.8, Rev. A 83

Siebel eScript Commands ■ Array Objects
Example
The following example demonstrates the use of the sort() method with and without a compare
function. It first displays the results of a sort without the function and then uses a user-defined
function, compareNumbers(a, b), to sort the numbers properly. In this function, if a and b are two
elements being compared, then:

■ If compareNumbers(a, b) is less than zero, b is given a lower index than a.

■ If compareNumbers(a, b) returns zero, the order of a and b is unchanged.

■ If compareNumbers(a, b) is greater than zero, b is given a higher index than a.

function compareNumbers(a, b)
{

return a - b;
}
var a = new Array(5, 3, 2, 512);
var fp = Clib.fopen("C:\\log\\Trace.log", "a");
Clib.fprintf(fp, "Before sort: " + a.join() + "\n");
a.sort(compareNumbers);
Clib.fprintf(fp, "After sort: " + a.join() + "\n");
Clib.fclose(fp);

Array splice() Method
This method removes a specified number of elements from the array, starting at a given index, and
returns an array of those removed elements. The method then rearranges the remaining elements
as necessary to insert a specified number of new elements at the start index of the removed
elements. The entire process effectively splices new elements into the array.
Siebel eScript Language Reference Version 7.8, Rev. A84

Siebel eScript Commands ■ BLOB Objects
Syntax
arrayName.splice(start, deleteCount[, element1, element2, . . . elementn])

Returns
An array consisting of the elements that are removed from the original array

Usage
This method splices in any supplied elements in place of any elements deleted. Beginning at index
start, deleteCount elements are first deleted from the array and inserted into the newly created
return array in the same order. The elements of the current array object are then adjusted to make
room for the all of the elements passed to this method. The remaining arguments are then inserted
sequentially in the space created in the current array object.

Example
var a = new Array(1, 2, 3, 4, 5);
TheApplication().RaiseErrorText(a.splice(1,3,6,7) + " " + a);
// Displays 2,3,4 1,6,7,5
// Beginning at element in position 1, three elements (a[1], a[2], a[3] = 2,3,4)
// are replaced with 6,7.

BLOB Objects
The following topics describe binary large objects (BLOBs).

Parameter Description

start The index at which to splice in the new
elements.

■ If start is negative, then (length+start) is
used instead; that is, start indicates to
splice at an index counting back from the
end of the array. For example, start = -1
indicates to splice from the last element in
the array.

■ If start is larger than the index of the last
element, then the length of the array is
used, effectively appending to the end of
the array.

deleteCount The number of elements to remove from the
array. All of the available elements to remove
are removed if deleteCount is larger than the
number of elements available to remove.

element1, element2,
. . . elementn

A list of elements to insert into the array in
place of the ones that were removed.
Siebel eScript Language Reference Version 7.8, Rev. A 85

Siebel eScript Commands ■ BLOB Objects
■ “The blobDescriptor Object” on page 86

■ “Blob.get() Method” on page 87

■ “Blob.put() Method” on page 89

■ “Blob.size() Method” on page 91

The blobDescriptor Object
The blobDescriptor Object describes the structure of the BLOB. When an object needs to be sent to
a process other than the Siebel eScript interpreter, such as to a Windows API function, a
blobDescriptor object must be created that describes the order and type of data in the object. This
description tells how the properties of the object are stored in memory and is used with functions
like Clib.fread() and SElib.dynamicLink().

A blobDescriptor has the same data properties as the object it describes. Each property must be
assigned a value that specifies how much memory is required for the data held by that property. The
keyword “this” is used to refer to the parameters passed to the constructor function and can be
conceptually thought of as “this object.” Consider the following object:

Rectangle(width, height)
{

this.width = width;
this.height = height;

}

The following code creates a blobDescriptor object that describes the Rectangle object:

var bd = new blobDescriptor();

bd.width = UWORD32;
bd.height = UWORD32;

You can now pass bd as a blobDescriptor parameter to functions that require one. The values
assigned to the properties depend on what the receiving function expects. In the preceding example,
the function that is called expects to receive an object that contains two 32-bit words or data values.
If you write a blobDescriptor for a function that expects to receive an object containing two 16-bit
words, assign the two properties a value of UWORD16.

One of the following values must be used with blobDescriptor object properties to indicate the
number of bytes needed to store the property:

Value Description

WCHAR Handled as a native Unicode string

UWORD8 Stored as an unsigned byte

SWORD8 Stored as an integer

UWORD16 Stored as an unsigned, 16-bit integer

SWORD16 Stored as a signed 16-bit integer
Siebel eScript Language Reference Version 7.8, Rev. A86

Siebel eScript Commands ■ BLOB Objects
If the blobDescriptor describes an object property that is a string, the corresponding property should
be assigned a numeric value that is larger than the length of the longest string the property may
hold. Object methods usually may be omitted from a blobDescriptor.

BlobDescriptors are used primarily for passing eScript’s JavaScript-like data structures to C or C++
programs and to the Clib methods, which expect a very rigid and precise description of the values
being passed.

Blob.get() Method
This method reads data from a binary large object.

Syntax A
Blob.get(blobVar, offset, dataType)

Syntax B
Blob.get(blobVar, offset, bufferLen)

Syntax C
Blob.get(blobVar, offset, blobDescriptor dataDefinition)

UWORD24 Stored as an unsigned 24-bit integer

SWORD24 Stored as a signed 24-bit integer

UWORD32 Stored as an unsigned 32-bit integer

SWORD32 Stored as a signed 32-bit integer

FLOAT32 Stored as a floating-point number

FLOAT64 Stored as a double-precision floating-point number

STRINGHOLDER Used to indicate a value that is assigned a string by the function to which
it is passed. (It allocates 10,000 bytes to contain the string, then truncates
this length to the appropriate size, removes any terminating null
characters, and initializes the properties of the string.)

Parameter Description

blobVar The name of the binary large object to use

offset The position in the BLOB from which to read the data

dataType An integer value indicating the format of the data in the BLOB

Value Description
Siebel eScript Language Reference Version 7.8, Rev. A 87

Siebel eScript Commands ■ BLOB Objects
Returns
The data read from the BLOB.

This method reads data from a specified location of a binary large object (BLOB), and is the
companion function to Blob.put().

Use Syntax A for byte, integer, and float data. Use Syntax B for byte[] data. Use Syntax C for object
data.

dataType must have one of the values listed for blobDescriptors in “The blobDescriptor Object” on
page 86.

Example
This example shows how to get values from a Blob object.

function GetBlobVal()
{

var a, b, c;
a = "";
b = 1234;
c = 12345678;
// Call a function to build the Blob
var blob = BuildBlob(a, b, c);
TheApplication().TraceOn("c:\\temp\\blob.txt","Allocation","All");
// Get the values from the blob object
// The first variable is string
var resultA = Blob.get(blob,0,1000);
// The second variable is an integer
var resultB = Blob.get(blob,1000,UWORD16);
// The third variable has a type of float
var resultC = Blob.get(blob,1002,FLOAT64);
TheApplication().Trace(resultA);
TheApplication().Trace(resultB);
TheApplication().Trace(resultC);

}

function BuildBlob(a, b, c)
{

var blob;
a = "Blob Test Value From Function";
var offset = Blob.put(blob, 0, a, 1000);
offset = Blob.put(blob, offset, b*2, UWORD16);

bufferLen An integer indicating the size of the buffer in bytes

blobDescriptor
dataDefinition

A blobDescriptor object indicating the form of the data in the BLOB

Parameter Description
Siebel eScript Language Reference Version 7.8, Rev. A88

Siebel eScript Commands ■ BLOB Objects
Blob.put(blob, offset, c*2, FLOAT64);
return blob;

}

See Also
“The blobDescriptor Object” on page 86
“Blob.put() Method” on page 89

Blob.put() Method
The Blob.put method puts data into a specified location within a binary large object.

Syntax A
Blob.put(blobVar[, offset], data, dataType)

Syntax B
Blob.put(blobVar[, offset], buffer, bufferLen)

Syntax C
Blob.put(blobVar[, offset], srcStruct, blobDescriptor dataDefinition)

Returns
An integer representing the byte offset for the byte after the end of the data just written. If the data
is put at the end of the BLOB, the size of the BLOB.

Parameter Description

blobVar The name of the binary large object to use

offset The position in the BLOB at which to write the data

data The data to be written

dataType The format of the data in the BLOB

buffer A variable containing a buffer

bufferLen An integer representing the length of buffer

srcStruct A BLOB containing the data to be written

blobDescriptor dataDefinition A blobDescriptor object indicating the form of the data in the
BLOB
Siebel eScript Language Reference Version 7.8, Rev. A 89

Siebel eScript Commands ■ BLOB Objects
Usage
This method puts data into a specified location of a binary large object (BLOB) and, along with
Blob.get(), allows for direct access to memory within a BLOB variable. Data can be placed at any
location within a BLOB. The contents of such a variable may be viewed as a packed structure, that
is, a structure that does not pad each member with enough nulls to make every member a uniform
length. (The exact length depends on the CPU, although 32 bytes is common.)

Syntax C is used to pass the contents of an existing BLOB (srcStruct) to the blobVar.

If a value for offset is not supplied, then the data is put at the end of the BLOB, or at offset 0 if the
BLOB is not yet defined.

The data is converted to the specified dataType and then copied into the bytes specified by offset.

If dataType is not the length of a byte buffer, then it must have one of the values listed for
blobDescriptors in “The blobDescriptor Object” on page 86.

Example
If you were sending a pointer to data in an external C library and knew that the library expected the
data in a packed C structure of the form:

struct foo
{

signed char a;
unsigned int b;
double c;

};

and if you were building this structure from three corresponding variables, then such a building
function might look like the following, which returns the offset of the next available byte:

function BuildFooBlob(a, b, c)
{

var offset = Blob.put(foo, 0, a, SWORD8);
offset = Blob.put(foo, offset, b, UWORD16);
Blob.put(foo, offset, c, FLOAT64);
return foo;

}

or, if an offset were not supplied:

functionBuildFooBlob(a, b, c)
{

Blob.put(foo, a, SWORD8);
Blob.put(foo, b, UWORD16);
Blob.put(foo, c, FLOAT64);
return foo;

}

See Also
“The blobDescriptor Object” on page 86
“Blob.get() Method” on page 87
Siebel eScript Language Reference Version 7.8, Rev. A90

Siebel eScript Commands ■ BLOB Objects
Blob.size() Method
This method determines the size of a binary large object (BLOB).

Syntax A
Blob.size(blobVar[, SetSize])

Syntax B
Blob.size(dataType)

Syntax C
Blob.size(bufferLen)

Syntax D
Blob.size(blobDescriptor dataDefinition)

Returns
The number of bytes in blobVar; if setSize is provided, returns setSize.

Usage
The parameter blobVar specifies the blob to use. If SetSize is provided, then the blob blobVar is
altered to this size or created with this size.

If dataType, bufferLen, or dataDefinition are used, these parameters specify the type to be used for
converting Siebel eScript data to and from a BLOB.

The dataType parameter must have one of the values listed for blobDescriptors in “The blobDescriptor
Object” on page 86.

See Also
“The blobDescriptor Object” on page 86

Parameter Description

blobVar The name of the binary large object to use

setSize An integer that determines the size of the BLOB

dataType An integer value indicating the format of the data in the BLOB

bufferLen An integer indicating the number of bytes in the buffer

blobDescriptor dataDefinition A blobDescriptor object indicating the form of the data in the
BLOB
Siebel eScript Language Reference Version 7.8, Rev. A 91

Siebel eScript Commands ■ Buffer Objects in Siebel eScript
Buffer Objects in Siebel eScript
Buffer objects provide a way to manipulate data at a very basic level. A Buffer object is needed
whenever the relative location of data in memory is important. Any type of data may be stored in a
Buffer object.

A new Buffer object may be created from scratch or from a string, buffer, or Buffer object, in which
case the contents of the string or buffer is copied into the newly created Buffer object.

In the examples that follow, bufferVar is a generic variable name to which a Buffer object is assigned.

For an understanding of the Buffer Objects, see the following topics:

■ “The Buffer Constructor in Siebel eScript” on page 92

■ “Buffer Object Methods” on page 94

■ “Buffer Object Properties” on page 101

The Buffer Constructor in Siebel eScript
To create a Buffer object, use one of the following syntax forms.

Syntax A
new Buffer([size] [, unicode] [, bigEndian]);

Usage
If size is specified, then the new buffer is created with the specified size and filled with null bytes. If
no size is specified, then the buffer is created with a size of 0, although it can be extended
dynamically later.

The unicode parameter is an optional Boolean flag describing the initial state of the unicode flag of
the object. Similarly, bigEndian describes the initial state of the bigEndian parameter of the buffer.

Syntax B
new Buffer(string [, unicode] [, bigEndian]);

Parameter Description

size The size of the new buffer to be created

unicode True if the buffer is to be created as a Unicode string, otherwise, false; default is
false

bigEndian True if the largest data values are stored in the most significant byte; false if the
largest data values are stored in the least significant byte; default is true
Siebel eScript Language Reference Version 7.8, Rev. A92

Siebel eScript Commands ■ Buffer Objects in Siebel eScript
Usage
This syntax creates a new Buffer object from the string provided. If the string parameter is a Unicode
string (if Unicode is enabled within the application), then the buffer is created as a Unicode string.

This behavior can be overridden by specifying true or false with the optional Boolean unicode
parameter. If this parameter is set to false, then the buffer is created as an ASCII string, regardless
of whether the original string was in Unicode or not.

Similarly, specifying true makes sure that the buffer is created as a Unicode string. The size of the
buffer is the length of the string (twice the length if it is Unicode). This constructor does not add a
terminating null byte at the end of the string.

Syntax C
new Buffer(buffer [, unicode] [, bigEndian]);

Usage
A line of code following this syntax creates a new Buffer object from the buffer provided. The
contents of the buffer are copied as-is into the new Buffer object. The unicode and bigEndian
parameters do not affect this conversion, although they do set the relevant flags for future use.

Syntax D
new Buffer(bufferobject);

Usage
A line of code following this syntax creates a new Buffer object from another Buffer object.
Everything is duplicated exactly from the other bufferObject, including the cursor location, size, and
data.

Example
The following example shows creation of new Buffer objects.

Parameter Description

buffer The Buffer object from which the new buffer is to be created

unicode True if the buffer is to be created as a Unicode string, otherwise, false; default is
the Unicode status of the underlying Siebel eScript engine

bigEndian True if the largest data values are stored in the most significant byte; false if the
largest data values are stored in the least significant byte; default is true

Parameter Description

bufferobject The Buffer object from which the new buffer is to be created
Siebel eScript Language Reference Version 7.8, Rev. A 93

Siebel eScript Commands ■ Buffer Object Methods
function BufferConstruct()
{

TheApplication().TraceOn("c:\\temp\\BufferTrace.doc","Allocation","All");
// Create empty buffer with size 100
var buff1 = new Buffer(100 , true , true);
// Create a buffer from string
var buff2 = new Buffer("This is a buffer String constructor example", true);
// Create buffer from buffer
var buff3 = new Buffer(buff2,false);
try
{

with(buff1)
{

// Add values from 0-99 to the buffer
for(var i=0;i<size;i++)
{

putValue(i);
}
var val = "";
cursor=0;
// Read the buffer values into variable
for(var i=0;i<size;i++)
{

val += getValue(1)+" ";
}
// Trace the buffer value
TheApplication().Trace("Buffer 1 value: "+val);

}
with(buff2)
{

// Trace buffer 2
TheApplication().Trace("Buffer 2 value: "+getString());

}
// Trace buffer 3
with(buff3)
{

TheApplication().Trace("Buffer 3 value: "+getString());
}

}
catch(e)
{

TheApplication().Trace(e.toString());
}

}

Buffer Object Methods
Siebel eScript supports the following Buffer object methods.

■ “getString() Method” on page 95

■ “getValue() Method” on page 95
Siebel eScript Language Reference Version 7.8, Rev. A94

Siebel eScript Commands ■ Buffer Object Methods
■ “offset[] Method” on page 96

■ “putString() Method” on page 97

■ “putValue() Method” on page 98

■ “subBuffer() Method” on page 99

■ “toString() Method” on page 100

getString() Method
This method returns a string of a specified length, starting from the current cursor location.

Syntax
bufferVar.getString([length])

Returns
A string of length characters, starting at the current cursor location in the buffer.

Usage
This method returns a string starting from the current cursor location and continuing for length
bytes.

If no length is specified, the method reads until a null byte is encountered or the end of the buffer
is reached. The string is read according to the value of the unicode flag of the buffer. A terminating
null byte is not added, even if a length parameter is not provided.

See Also
“getValue() Method” on page 95
“offset[] Method” on page 96
“subBuffer() Method” on page 99

getValue() Method
This method returns a value from the current cursor position in a Buffer object.

Parameter Description

length The length of the string to return, in bytes
Siebel eScript Language Reference Version 7.8, Rev. A 95

Siebel eScript Commands ■ Buffer Object Methods
Syntax
bufferVar.getValue([valueSize][, valueType])

Returns
The value at the current position in a Buffer object.

Usage
To determine where to read from the buffer, use the bufferVar.cursor() method.

Acceptable values for valueSize are 1, 2, 3, 4, 8, and 10, providing that valueSize does not conflict
with the optional valueType flag. The following list describes the acceptable combinations of
valueSize and valueType:

The combination of valueSize and valueType must match the data to be read.

See Also
“putValue() Method” on page 98

offset[] Method
This method provides array-style access to individual bytes in the buffer.

Parameter Description

valueSize A positive number indicating the number of bytes to be read; default is 1

valueType The type of data to be read, expressed as one of the following:

■ signed (the default)

■ unsigned

■ float

valueSize valueType

1 signed, unsigned

2 signed, unsigned

3 signed, unsigned

4 signed, unsigned, float

8 float
Siebel eScript Language Reference Version 7.8, Rev. A96

Siebel eScript Commands ■ Buffer Object Methods
Syntax
bufferVar[offset]

Usage
This is an array-like version of the getValue() and putValue() methods that works only with bytes.
You may either get or set these values. The following line assigns the byte at offset 5 in the buffer
to the variable goo:

goo = foo[5]

The following line places the value of goo (assuming that value is a single byte) to position 5 in the
buffer foo:

foo[5] = goo

Every get or put operation uses byte types, that is, eight-bit signed words (SWORD8). If offset is
less than 0, then 0 is used. If offset is greater than the length of the buffer, the size of the buffer is
extended with null bytes to accommodate it. If you need to work with character values, you have to
convert them to their ANSI or Unicode equivalents.

See Also
“getValue() Method” on page 95
“putValue() Method” on page 98

putString() Method
This method puts a string into a Buffer object at the current cursor position.

Syntax
bufferVar.putString(string)

Usage
If the unicode flag is set within the Buffer object, then the string is put into the Buffer object as a
Unicode string; otherwise, it is put into the Buffer object as an ASCII string. The cursor is
incremented by the length of the string, or twice the length if it is put as a Unicode string.

Parameter Description

offset A number indicating a position in bufferVar at which a byte is to be placed in,
or read from, a buffer

Parameter Description

string The string literal to be placed into the Buffer object, or the string variable whose
value is to be placed into the Buffer object
Siebel eScript Language Reference Version 7.8, Rev. A 97

Siebel eScript Commands ■ Buffer Object Methods
A terminating null byte is not added at end of the string.

To put a null terminated string into the Buffer object, add the following:

buf1.putString("Hello"); // Put the string into the buffer
buf1.putValue(0); // Add terminating null byte

Example
The following example places the string language in the buffer exclamation and displays the
modified contents of explanation, which is the string, "I enjoy coding with Siebel eScript."

function eScript_Click ()
{

var exclamation = new Buffer("I enjoy coding with . . .");
var language = "Siebel eScript.";
exclamation.cursor = 20;
exclamation.putString(language);
TheApplication().RaiseErrorText(exclamation);

}

See Also
“getString() Method” on page 95

putValue() Method
This method puts the specified value into a buffer at the current file cursor position.

Syntax
bufferVar.putValue(value[, valueSize][, valueType])

Usage
This method puts a specific value into a buffer. Acceptable values for valueSize are 1, 2, 3, 4, 8, and
10, providing that this value does not conflict with the optional valueType flag.

Parameter Description

value A number

valueSize A positive number indicating the number of bytes to be used; default is 1

valueType The type of data to be read, expressed as one of the following:

■ signed (the default)

■ unsigned

■ float
Siebel eScript Language Reference Version 7.8, Rev. A98

Siebel eScript Commands ■ Buffer Object Methods
Combined with valueSize, any type of data can be put into a buffer. The following list describes the
acceptable combinations of valueSize and valueType:

Any other combination causes an error. The value is put into the buffer at the current cursor position,
and the cursor value is automatically incremented by the size of the value to reflect this addition. To
explicitly put a value at a specific location while preserving the cursor location, add code similar to
the following:

var oldCursor = bufferItem.cursor; // Save the cursor location
bufferItem.cursor = 20; // Set to new location
bufferItem.putValue(foo); // Put bufferItem at offset 20
bufferItem.cursor = oldCursor // Restore cursor location

The value is put into the buffer with byte-ordering according to the current setting of the bigEndian
flag. Note that when putting float values as a smaller size, such as 4, some significant figures are
lost. A value such as 1.4 is converted to something like 1.39999974. This conversion is sufficiently
insignificant to ignore, but note that the following does not hold true:

bufferItem.putValue(1.4,8,"float");
bufferItem.cursor -= 4;
if(bufferItem.getValue(4,"float") != 1.4)
// This is not necessarily true due to significant digit loss.

This situation can be prevented by using 8 as a valueSize instead of 4. A valueSize of 4 may still be
used for floating-point values, but be aware that some loss of significant figures may occur, although
it may not be enough to affect most calculations.

See Also
“getValue() Method” on page 95

subBuffer() Method
This method returns a new Buffer object consisting of the data between two specified positions.

valueSize valueType

1 signed, unsigned

2 signed, unsigned

3 signed, unsigned

4 signed, unsigned, float

8 float
Siebel eScript Language Reference Version 7.8, Rev. A 99

Siebel eScript Commands ■ Buffer Object Methods
Syntax
bufferVar.subBuffer(beginning, end)

Returns
A new Buffer object consisting of the data in bufferVar between the beginning and end positions.

Usage
If beginning is less than 0, then it is treated as 0, the start of the buffer.

If end is beyond the end of the buffer, then the new subbuffer is extended with null bytes, but the
original buffer is not altered. The unicode and bigEndian flags are duplicated in the new buffer.

The length of the new buffer is set to end - beginning. If the cursor in the old buffer is between
beginning and end, then it is converted to a new relative position in the new buffer. If the cursor was
before beginning, it is set to 0 in the new buffer; if it was past end, it is set to the end of the new
buffer.

Example
This code fragment creates the new buffer language and displays its contents—the string "Siebel
eScript".

var loveIt= new Buffer("I love coding with Siebel eScript!");
var language = loveIt.subBuffer(19, (loveIt.size - 1))
TheApplication().RaiseErrorText(language);

See Also
“getString() Method” on page 95

toString() Method
This method returns a string containing the same data as the buffer.

Syntax
bufferVar.toString()

Returns
A string object that contains the same data as the Buffer object.

Parameter Description

beginning The cursor position at which the new Buffer object should begin

end The cursor position at which the new Buffer object should end
Siebel eScript Language Reference Version 7.8, Rev. A100

Siebel eScript Commands ■ Buffer Object Properties
Usage
This method returns a string whose contents are the same as that of bufferVar. Any conversion to or
from Unicode is done according to the unicode flag of the object.

Example
try
{

do_something;
}
catch(e)
{

TheApplication().RaiseErrorText(Clib.rsprintf(
"Something bad happened: %s\n",e.toString()));

}

Buffer Object Properties
Siebel eScript supports the following Buffer object properties.

■ “bigEndian Property” on page 101

■ “cursor Property” on page 102

■ “data Property” on page 102

■ “size Property” on page 102

■ “unicode Property” on page 103

bigEndian Property
This property is a Boolean flag specifying whether to use bigEndian byte ordering when calling
getValue() and putValue().

Syntax
bufferVar.bigEndian

Usage
When a data value consists of more than one byte, the byte containing the smallest units of the value
is called the least significant byte; the byte containing the biggest units of the value is called the
most significant byte. When the bigEndian property is true, the bytes are stored in descending order
of significance. When false, they are stored in ascending order of significance.

This value is set when a buffer is created, but may be changed at any time. This property defaults
to the state of the underlying operating system and processor.
Siebel eScript Language Reference Version 7.8, Rev. A 101

Siebel eScript Commands ■ Buffer Object Properties
cursor Property
The current position within a buffer.

Syntax
bufferVar.cursor

Usage
The value of cursor is always between 0 and the value set in the size property. A value can be
assigned to this property.

If the cursor is set beyond the end of a buffer, the buffer is extended to accommodate the new
position and filled with null bytes. Setting the cursor to a value less than 0 places the cursor at the
beginning of the buffer, position 0.

Example
For examples, see “getString() Method” on page 95 and “subBuffer() Method” on page 99.

See Also
“subBuffer() Method” on page 99

data Property
This property is a reference to the internal data of a buffer.

Syntax
bufferVar.data

Usage
This property is used as a temporary value to allow passing of buffer data to functions that do not
recognize Buffer objects.

size Property
The size of the Buffer object.

Syntax
bufferVar.size
Siebel eScript Language Reference Version 7.8, Rev. A102

Siebel eScript Commands ■ Business Component Objects
Usage
A value may be assigned to this property; for example,

inBuffer.size = 5

If a buffer is increased beyond its present size, the additional spaces are filled with null bytes. If the
buffer size is reduced such that the cursor is beyond the end of the buffer, the cursor is moved to
the end of the modified buffer.

See Also
“cursor Property” on page 102

unicode Property
This property is a Boolean flag specifying whether to use Unicode strings when calling getString()
and putString().

Syntax
bufferVar.unicode

Usage
This value is set when the buffer is created, but may be changed at any time. This property defaults
to false for Siebel eScript.

Example
The following lines of code set the unicode property of a new buffer to true:

var aBuffer = new Buffer();
aBuffer.unicode = true;

Business Component Objects
A business component defines the structure, the behavior, and the information displayed by a
particular subject, such as a product, contact, or account. Siebel business components are logical
abstractions of one or more database tables. The information stored in a business component is
usually specific to a particular subject and is typically not dependent on other business components.
Business components can be used in one or more business objects.

Business component objects have associated data structured as records, they have properties, and
they contain data units called fields. In Siebel eScript, fields are accessed through business
components. The business component object supports getting and setting field values, moving
backward and forward through data in a business component object, and filtering changes to data it
manages.

Methods of business component objects are documented in the Siebel Object Interfaces Reference.
Siebel eScript Language Reference Version 7.8, Rev. A 103

Siebel eScript Commands ■ Business Component Objects
Table 30 provides a list of Business Component object methods and events.

Table 30. Business Component Object Methods and Events

Method or Event Description

ActivateField() Method ActivateField() allows setting search specifications and
queries to retrieve data for the field specified in its
parameter.

ActivateMultipleFields() Method ActivateMultipleFields() allows the script to do
ActivateField() for many fields at one time. These fields are
listed in a property set.

Associate() Method The Associate() method creates a new many-to-many
relationship for the parent object through an association
business component (see “GetAssocBusComp() Method” on
page 106).

BusComp_Associate() Event The Associate() event is called after a record has been added
to a business component to create an association.

BusComp_ChangeRecord() Event The ChangeRecord() event is called when a business
component changes its current record from one record to
another, for example when a user changes the record focus
in an applet or when a script calls the NextRecord() method.

BusComp_CopyRecord() Event The CopyRecord() event is called after a row has been copied
in the business component and that row has been made
active.

BusComp_DeleteRecord() Event The DeleteRecord() event is called after a row is deleted. The
current context moves to a different row because the Fields
of the just-deleted row are no longer available.

BusComp_InvokeMethod() Event The InvokeMethod() event is called when the InvokeMethod
method is called on a business component.

BusComp_NewRecord() Event The NewRecord() event is called after a new row has been
created in the business component and that row has been
made active. The event may be used to set up default values
for Fields.

BusComp_PreAssociate() Event The PreAssociate() event is called before a record is added
to a business component to create an association. The
semantics are the same as BusComp_PreNewRecord.

BusComp_PreCopyRecord() Event The PreCopyRecord() event is called before a new row is
copied in the business component. The event may be used
to perform precopy validation.

BusComp_PreDeleteRecord() Event The PreDeleteRecord event is called before a row is deleted
in the business component. The event may be used to
prevent the deletion or to perform any actions in which you
need access to the record that is to be deleted.
Siebel eScript Language Reference Version 7.8, Rev. A104

Siebel eScript Commands ■ Business Component Objects
BusComp_PreGetFieldValue() Event The PreGetFieldValue() event is called when the value of a
business component field is accessed.

BusComp_PreInvokeMethod()
Event

The PreInvokeMethod() event is called before a specialized
method is invoked on the business component.

BusComp_PreNewRecord() Event The PreNewRecord event is called before a new row is
created in the business component. The event may be used
to perform preinsert validation.

BusComp_PreQuery() Event The PreQuery() event is called before query execution.

BusComp_PreSetFieldValue() Event The PreSetFieldValue() event is called before a value is
pushed down into the business component from the user
interface or through a call to SetFieldValue.

BusComp_PreWriteRecord() Event The PreWriteRecord() event is called before a row is written
out to the database. The event may perform any final
validation necessary before the actual save occurs.

BusComp_Query() Event The Query() event is called just after the query is completed
and the rows have been retrieved but before the rows are
actually displayed.

BusComp_SetFieldValue() Event The SetFieldValue() event is called when a value is pushed
down into the business component from the user interface or
through a call to SetFieldValue.

BusComp_WriteRecord() Event The WriteRecord event is called after a row is written out to
the database.

BusObject() Method The BusObject() method returns the business object that
contains the business component.

ClearToQuery() Method The ClearToQuery() method clears the current query and
sort specifications on the business component.

DeactivateFields() Method DeactivateFields deactivates the fields that are currently
active from a business component SQL query statement.

DeleteRecord() Method DeleteRecord() deletes the current business component
record from the database.

ExecuteQuery() Method ExecuteQuery() returns a set of business component records
using the criteria established with methods such as
SetSearchSpec.

ExecuteQuery2() Method ExecuteQuery2() returns a set of business component
records using the criteria established with methods such as
SetSearchSpec. ExecuteQuery2() is an SQL-Server specific
version of ExecuteQuery().

Table 30. Business Component Object Methods and Events

Method or Event Description
Siebel eScript Language Reference Version 7.8, Rev. A 105

Siebel eScript Commands ■ Business Component Objects
FirstRecord() Method FirstRecord() moves the record pointer to the first record in
a business component, making that record current and
invoking any associated script events.

GetAssocBusComp() Method GetAssocBusComp() returns the association business
component. The association business component can be
used to operate on the association using the normal business
component mechanisms.

GetFieldValue() Method GetFieldValue() returns the value for the field specified in its
parameter for the current record of the business component.
Use this method to access a field value.

GetFormattedFieldValue() Method GetFormattedFieldValue returns the value for the field
specified in its parameter in the current local format; that is,
it returns values in the format in which they appear in the
Siebel user interface.

GetMultipleFieldValues() Method GetMultipleFieldValues() is used in scripts and effectively
performs many GetFieldValue() calls using a list of fields
specified in a property set.

GetMVGBusComp() Method GetMVGBusComp() returns the MVG business component
associated with the business component field specified by
FieldName. This business component can be used to operate
on the Multi-Value Group using the normal business
component mechanisms.

GetNamedSearch() Method GetNamedSearch() returns the named search specification
specified by searchName.

GetPicklistBusComp() Method GetPicklistBusComp() returns the pick business component
associated with the specified field in the current business
component.

GetSearchExpr() Method GetSearchExpr() returns the current search expression for
the business component.

GetSearchSpec() Method GetSearchSpec() returns the search specification for the
field specified by the fieldName parameter.

GetUserProperty() Method GetUserProperty() returns the value of a named
UserProperty.

GetViewMode() Method GetViewMode() returns the current visibility mode for the
business component. This method affects which records are
returned by queries according to the visibility rules.

InvokeMethod() Method InvokeMethod calls the specialized method or user-created
method named in its parameter.

Table 30. Business Component Object Methods and Events

Method or Event Description
Siebel eScript Language Reference Version 7.8, Rev. A106

Siebel eScript Commands ■ Business Component Objects
LastRecord() Method LastRecord() moves to the last record in the business
component.

Name() Method The Name() method returns the name of the business
component.

NewRecord() Method NewRecord() adds a new record (row) to the business
component.

NextRecord() Method NextRecord() moves the record pointer to the next record in
the business component, making that the current record and
invoking any associated script events.

ParentBusComp() Method ParentBusComp() returns the parent (master) business
component when given the child (detail) business
component of a link.

Pick() Method The Pick() method places the currently selected record in a
picklist business component into the appropriate fields of the
parent business component. See also “GetPicklistBusComp()
Method” on page 106.

PreviousRecord() Method PreviousRecord() moves to the previous record in the
business component, invoking any associated script events.

RefineQuery() Method This method refines a query after the query has been
executed.

SetFieldValue() Method SetFieldValue() assigns the new value to the named field for
the current row of the business component.

SetFormattedFieldValue() Method SetFormattedFieldValue() assigns the new value to the
named field for the current row of the business component.
SetFormattedFieldValue accepts the field value in the current
local format.

SetMultipleFieldValues() Method SetMultipleFieldValues() is used in scripts and effectively
performs many SetFieldValue() calls using a list of fields
specified in a property set.

SetNamedSearch() Method SetNamedSearch() sets a named search specification on the
business component. A named search specification is
identified by the searchName parameter.

SetSearchExpr() Method SetSearchExpr() sets one search expression with many
fields for the whole business component, rather than setting
one search specification for each field.

SetSearchSpec() Method SetSearchSpec() sets the search specification for a
particular field. This method must be called before
ExecuteQuery.

SetSortSpec() Method SetSortSpec() sets the sorting specification for a query.

Table 30. Business Component Object Methods and Events

Method or Event Description
Siebel eScript Language Reference Version 7.8, Rev. A 107

Siebel eScript Commands ■ Business Object Objects
Business Object Objects
A Siebel business object groups one or more business components into a logical unit of information.
Business objects are highly customizable, object-oriented building blocks of Siebel applications.
Business objects define the relationships between different business component objects (BusComps)
and contain semantic information about, for example, sales, marketing, and service-related entities.
Methods of business object objects are documented in the Siebel Object Interfaces Reference.

Do not store Siebel objects such as business objects and business components as properties of
custom objects, such as shown in the following example:

var oParms = new Object;
oParms.bo = TheApplication().GetBusObject("List Of Values");

Business Service Objects
Business service objects are objects that can be used to implement reusable business logic within
the Object Manager. They include both built-in business services, which may be scripted but not
modified, and user-defined objects. Using business services, you can configure stand-alone objects
or modules with both properties and scripts. Business services may be used for generic code libraries
that can be called from any other scripts. The code attached to a menu item or a toolbar button may
be implemented as a business service. Methods of existing Siebel business service objects are
documented in the Siebel Object Interfaces Reference.

SetUserProperty() Method SetUserProperty() sets the value of a named business
component UserProperty. The User Properties are similar to
instance variables of a BusComp.

SetViewMode() Method SetViewMode() sets the visibility type for the business
component.

UndoRecord() Method UndoRecord() reverses any changes made to the record that
are not committed. This reversal includes reversing
uncommitted modifications to any fields, as well as deleting
an active record that has not yet been committed to the
database.

WriteRecord() Method WriteRecord() commits to the database any changes made
to the current record.

Method Description

GetBusComp() Method The GetBusComp() method returns the specified business component.

Name() Method The Name() method retrieves the name of the business object.

Table 30. Business Component Object Methods and Events

Method or Event Description
Siebel eScript Language Reference Version 7.8, Rev. A108

Siebel eScript Commands ■ The Clib Object
Table 31 provides a list of Business Component object methods and events.

The Clib Object
The Clib object contains functions that are a part of the standard C library. Methods to access files,
directories, strings, the environment, memory, and characters are part of the Clib object. The Clib
object also contains time functions, error functions, sorting functions, and math functions.

Some methods, shown in Table 36, may be considered redundant because their functionality already
exists in eScript. Where possible, you should use standard eScript methods instead of the equivalent
Clib functions. The Clib library is supported in Unix and Windows application servers. It is not
supported for client-side scripting (Browser script).

NOTE: The Clib object is essentially a wrapper for calling functions in the standard C library as
implemented for the specific operating system. Therefore these methods may behave differently on
different operating systems.

For an understanding of the Clib object, see the following topics:

Table 31. Business Service Object Methods and Events

Method or Event Description

GetFirstProperty() Method GetFirstProperty() retrieves the name of the first property of a
business service.

GetNextProperty() Method Once the name of the first property has been retrieved, the
GetNext Property() method retrieves the name of the next
property of a business service.

GetProperty() Method The GetProperty() method returns the value of the property
whose name is specified in its parameter.

InvokeMethod() Method The InvokeMethod() method calls a specialized method or a
user-created method.

Name() Method The Name() method returns the name of the service.

PropertyExists() Method PropertyExists() returns a Boolean value indicating whether a
specified property exists.

RemoveProperty() Method RemoveProperty() removes a property from a business service.

Service_InvokeMethod() Event The InvokeMethod() event is called after the InvokeMethod
method is called on a business service.

Service_PreCanInvokeMethod()
Event

The PreInvokeMethod() event is called before the
PreInvokeMethod, so the developer can determine whether or
not the user has the authority to invoke the business service
method.

Service_PreInvokeMethod()
Event

The PreInvokeMethod() event is called before a specialized
method is invoked on the business service.

SetProperty() Method This method assigns a value to a property of a business service.
Siebel eScript Language Reference Version 7.8, Rev. A 109

Siebel eScript Commands ■ The Clib Object Buffer Methods in Siebel eScript
■ “The Clib Object Buffer Methods in Siebel eScript” on page 110

■ “The Clib Object Character Classification in Siebel eScript” on page 112

■ “The Clib Object Error Methods” on page 121

■ “File I/O Methods in eScript” on page 123

■ “Formatting Data in eScript” on page 152

■ “The Clib Object Math Methods” on page 156

■ “Redundant Functions in the Clib Object” on page 164

■ “The Clib Object String Methods” on page 165

■ “The Time Object” on page 179

■ “The Clib Object Time Methods” on page 179

■ “The Clib Object Uncategorized Methods” on page 189

The Clib Object Buffer Methods in Siebel
eScript
The eScript language has the following commands for buffer manipulation:

■ “Clib.memchr() Method” on page 110

■ “Clib.memcmp() Method” on page 111

■ “Clib.memcpy() Method and Clib.memmove() Method” on page 111

■ “Clib.memset() Method” on page 112

Clib.memchr() Method
This method searches a buffer and returns the first occurrence of a specified character.

Syntax
Clib.memchr(bufferVar, char[, size])

Parameter Description

bufferVar A buffer, or a variable pointing to a buffer

char The character to find

size The amount of the buffer to search, in bytes
Siebel eScript Language Reference Version 7.8, Rev. A110

Siebel eScript Commands ■ The Clib Object Buffer Methods in Siebel eScript
Returns
Null if char is not found in bufferVar; otherwise, a buffer that begins at the first instance of char in
bufferVar.

Usage
This method searches bufferVar and returns the first occurrence of char. If size is not specified, the
method searches the entire buffer from element 0.

Clib.memcmp() Method
This method compares the contents of two buffers or the length of two buffers.

Syntax
Clib.memcmp(buf1, buf2[, length])

Returns
A negative number if buf1 is less than buf2, 0 if buf1 is the same as buf2 for length bytes, a positive
number if buf1 is greater than buf2.

Usage
If length is not specified, Clib.memcmp() compares the length of the two buffers. It then compares
the contents up to the length of the shorter buffer. If length is specified and one of the buffers is
shorter than length, comparison proceeds up to the length of the shorter buffer.

Clib.memcpy() Method and Clib.memmove() Method
These methods copy a specified number of bytes from one buffer to another.

Syntax
Clib.memcpy(destBuf, srcBuf[, length])

Parameter Description

buf1 A variable containing the name of the first buffer to be compared

buf2 A variable containing the name of the second buffer to be compared

length The number of bytes to compare
Siebel eScript Language Reference Version 7.8, Rev. A 111

Siebel eScript Commands ■ The Clib Object Character Classification in Siebel eScript
Clib.memmove(destBuf, srcBuf[, length])

Usage
These methods copy the number of bytes specified by length from srcBuf to destBuf. If destBuf has
not already been defined, it is created as a buffer. If the length is not supplied, the entire contents
of srcBuf are copied to destBuf.

Siebel eScript protects data from being overwritten; therefore, in Siebel eScript Clib.memcpy()
method is the same as Clib.memmove().

Clib.memset() Method
This method fills a specified number of bytes in a buffer with a specified character.

Syntax
Clib.memset(bufferVar, char[, length])

Usage
This method fills a buffer with length bytes of char. If the buffer has not already been defined, it is
created as a buffer of length bytes. If bufferVar is shorter than length, its size is increased to length.
If length is not supplied, it defaults to the size of bufferVar, starting at index 0.

The Clib Object Character Classification
in Siebel eScript
The eScript language does not have a true character type. For the character classification routines,
a char is actually a one-character string. Thus, actual programming usage is very much like C. For
example, in the following fragment, both .isalnum() statements work properly:

Parameter Description

destBuf The buffer to copy to

srcBuf The buffer to copy from

length The number of bytes to copy

Parameter Description

bufferVar A buffer or a variable containing a buffer

char The character to fill the buffer with

length The number of bytes in which char is to be written
Siebel eScript Language Reference Version 7.8, Rev. A112

Siebel eScript Commands ■ The Clib Object Character Classification in Siebel eScript
var t = Clib.isalnum('a');

var s = 'a';
var t = Clib.isalnum(s);

This fragment displays the following:

true
true

In the following fragment, both Clib.isalnum() statements cause errors because the parameters to
them are strings with more than one character:

var t = Clib.isalnum('ab');

var s = 'ab';
var t = Clib.isalnum(s);

The character classification methods return Booleans: true or false. The following character
classification methods are supported in the Clib object:

■ “Clib.isalnum() Method” on page 113

■ “Clib.isalpha() Method” on page 114

■ “Clib.isascii() Method” on page 115

■ “Clib.iscntrl() Method” on page 115

■ “Clib.isdigit() Method” on page 116

■ “Clib.isgraph() Method” on page 116

■ “Clib.islower() Method” on page 117

■ “Clib.isprint() Method” on page 118

■ “Clib.ispunct() Method” on page 118

■ “Clib.isspace() Method” on page 119

■ “Clib.isupper() Method” on page 120

■ “Clib.isxdigit() Method” on page 120

■ “Clib.toascii() Method” on page 121

Clib.isalnum() Method
This function returns true if a specified character is alphanumeric.
Siebel eScript Language Reference Version 7.8, Rev. A 113

Siebel eScript Commands ■ The Clib Object Character Classification in Siebel eScript
Syntax
Clib.isalnum(char)

Returns
True if char is an alphabetic character from A through Z or a through z, or is a digit from 0 through
9; otherwise, false.

Usage
This function returns true if char is alphanumeric. Otherwise, it returns false.

See Also
“Clib.isalpha() Method” on page 114
“Clib.isdigit() Method” on page 116
“Clib.islower() Method” on page 117
“Clib.isprint() Method” on page 118
“Clib.isupper() Method” on page 120

Clib.isalpha() Method
This function returns true if a specified character is alphabetic.

Syntax
Clib.isalpha(char)

Returns
True if char is an alphabetic character from A to Z or a to z; otherwise, false.

Usage
This function returns true if char is alphabetic; otherwise, it returns false.

Parameter Description

char Either a single character or a variable containing a single character

Parameter Description

char Either a single character or a variable containing a single
character
Siebel eScript Language Reference Version 7.8, Rev. A114

Siebel eScript Commands ■ The Clib Object Character Classification in Siebel eScript
See Also
“Clib.isalnum() Method” on page 113
“Clib.isdigit() Method” on page 116
“Clib.islower() Method” on page 117
“Clib.isprint() Method” on page 118
“Clib.isupper() Method” on page 120

Clib.isascii() Method
This function returns true if a specified character has an ASCII code from 0 to 127.

Syntax
Clib.isascii(char)

Returns
True if char is has an ASCII code from 0 through 127; otherwise, false.

Usage
This function returns true if char is a character in the standard ASCII character set, with codes from
0 through 127; otherwise, it returns false.

See Also
“Clib.iscntrl() Method” on page 115
“Clib.isprint() Method” on page 118

Clib.iscntrl() Method
This function returns true if a specified character is a control character.

Syntax
Clib.iscntrl(char)

Parameter Description

char Either a single character or a variable containing a single
character

Parameter Description

char Either a single character or a variable containing a single
character
Siebel eScript Language Reference Version 7.8, Rev. A 115

Siebel eScript Commands ■ The Clib Object Character Classification in Siebel eScript
Returns
True if char is a control character; otherwise, false.

Usage
This function returns true if char is a control character, that is, one having an ASCII code from 0
through 31; otherwise, it returns false.

See Also
“Clib.isascii() Method” on page 115

Clib.isdigit() Method
This function returns true if a specified character is a decimal digit.

Syntax
Clib.isdigit(char)

Returns
True if char is a decimal digit from 0 through 9; otherwise, false.

Usage
This function returns true if char is a decimal digit from 0 through 9; otherwise, it returns false.

See Also
“Clib.isalnum() Method” on page 113
“Clib.isalpha() Method” on page 114
“Clib.isupper() Method” on page 120

Clib.isgraph() Method
This function returns true if a specified character is a printable character other than a space.

Parameter Description

char Either a single character or a variable containing a single
character
Siebel eScript Language Reference Version 7.8, Rev. A116

Siebel eScript Commands ■ The Clib Object Character Classification in Siebel eScript
Syntax
Clib.isgraph(char)

Returns
True if char is a printable character other than the space character; otherwise, false.

Usage
This function returns true if char is a printable character other than the space character (ASCII code
32); otherwise, it returns false.

See Also
“Clib.isprint() Method” on page 118
“Clib.ispunct() Method” on page 118
“Clib.isspace() Method” on page 119

Clib.islower() Method
This function returns true if a specified character is a lowercase alphabetic character.

Syntax
Clib.islower(char)

Returns
True if char is a lowercase alphabetic character; otherwise, false.

Usage
This function returns true if char is a lowercase alphabetic character from a through z; otherwise, it
returns false.

Parameter Description

char Either a single character or a variable containing a single
character

Parameter Description

char Either a single character or a variable containing a single
character
Siebel eScript Language Reference Version 7.8, Rev. A 117

Siebel eScript Commands ■ The Clib Object Character Classification in Siebel eScript
See Also
“Clib.isalnum() Method” on page 113
“Clib.isalpha() Method” on page 114
“Clib.isupper() Method” on page 120

Clib.isprint() Method
This function returns true if a specified character is printable.

Syntax
Clib.isprint(char)

Returns
True if char is a printable character that can be typed from the keyboard; otherwise, false.

Usage
This function returns true if char is a printable character that can be typed from the keyboard (ASCII
codes 32 through 126); otherwise, it returns false.

See Also
“Clib.isalnum() Method” on page 113
“Clib.isascii() Method” on page 115
“Clib.isgraph() Method” on page 116
“Clib.ispunct() Method” on page 118
“Clib.isspace() Method” on page 119

Clib.ispunct() Method
This function returns true if a specified character is a punctuation mark that can be entered from the
keyboard.

Parameter Description

char Either a single character or a variable containing a single
character
Siebel eScript Language Reference Version 7.8, Rev. A118

Siebel eScript Commands ■ The Clib Object Character Classification in Siebel eScript
Syntax
Clib.ispunct(char)

Returns
True if char is a punctuation mark that can be entered from the keyboard (ASCII codes 33 through
47, 58 through 63, 91 through 96, or 123 through 126); otherwise, it returns false.

See Also
“Clib.isgraph() Method” on page 116
“Clib.isprint() Method” on page 118
“Clib.isspace() Method” on page 119

Clib.isspace() Method
This function returns true if a specified character is a white-space character.

Syntax
Clib.isspace(char)

Returns
True if char is a white-space character; otherwise, false.

Usage
This function returns true if char is a horizontal tab, newline, vertical tab, form feed, carriage return,
or space character (that is, one having an ASCII code of 9, 10, 11, 12, 13, or 32); otherwise, it
returns false.

See Also
“Clib.isascii() Method” on page 115
“Clib.isprint() Method” on page 118

Parameter Description

char Either a single character or a variable containing a single
character

Parameter Description

char Either a single character or a variable containing a single
character
Siebel eScript Language Reference Version 7.8, Rev. A 119

Siebel eScript Commands ■ The Clib Object Character Classification in Siebel eScript
Clib.isupper() Method
This function returns true if a specified character is an uppercase alphabetic character.

Syntax
Clib.isupper(char)

Returns
True if char is an uppercase alphabetic character; otherwise, false.

Usage
This function returns true if char is an uppercase alphabetic character from A through Z; otherwise,
it returns false.

See Also
“Clib.isalpha() Method” on page 114
“Clib.islower() Method” on page 117

Clib.isxdigit() Method
This function returns true if a specified character is a hexadecimal digit.

Syntax
Clib.isxdigit(char)

Returns
True if char is a hexadecimal digit; otherwise, false.

Usage
This function evaluates a single character, returning true if the character is a valid hexadecimal
character (that is, a number from 0 through 9 or an alphabetic character from a through f or A
through F). If the character is not in one of the legal ranges, it returns false.

Parameter Description

char Either a single character or a variable containing a single
character

Parameter Description

char Either a single character or a variable containing a single
character
Siebel eScript Language Reference Version 7.8, Rev. A120

Siebel eScript Commands ■ The Clib Object Error Methods
See Also
“Clib.isdigit() Method” on page 116

Clib.toascii() Method
This method translates a character into a seven-bit ASCII representation of the character.

Syntax
Clib.toascii(char)

Returns
A seven-bit ASCII representation of char.

Usage
This method translates a character into a seven-bit ASCII representation of char. The translation is
done by clearing every bit except for the lowest seven bits. If char is already a seven-bit ASCII
character, it returns the character.

Example
The following line of code returns the close-parenthesis character:

TheApplication().RaiseErrorText(Clib.toascii("©"));

See Also
“Clib.isascii() Method” on page 115

The Clib Object Error Methods
Siebel eScript has the following Clib methods for handling errors:

■ “Clib.clearerr() Method” on page 126

■ “Clib.errno Property” on page 122

■ “Clib.perror() Method” on page 122

■ “Clib.strerror() Method” on page 122

Parameter Description

char A character literal, or a variable containing a character, to be
translated
Siebel eScript Language Reference Version 7.8, Rev. A 121

Siebel eScript Commands ■ The Clib Object Error Methods
Clib.errno Property
The errno property stores diagnostic message information when a function fails to execute correctly.

Syntax
Clib.errno

Usage
Many functions in the Clib and SElib objects set errno to nonzero when an error occurs, to provide
more specific information about the error. Siebel eScript implements errno as a macro to the internal
function _errno(). This property can be accessed with Clib.strerror().

The errno property cannot be modified through eScript code. It is available only for read-only access.

Clib.perror() Method
This method prints and returns an error message that describes the error defined by Clib.errno.

Syntax
Clib.perror([errmsg])

Returns
A string containing an error message that describes the error indicated by Clib.errno.

Usage
This method is identical to calling Clib.strerror(Clib.errno). If a string variable is supplied, it is set to
the string returned.

Clib.strerror() Method
This method returns the error message associated with a Clib-defined error number.

Parameter Description

errmsg A message to describe an error condition
Siebel eScript Language Reference Version 7.8, Rev. A122

Siebel eScript Commands ■ File I/O Methods in eScript
Syntax
Clib.strerror(errno)

Returns
The descriptive error message associated with an error number returned by Clib.errno.

Usage
When some functions fail to execute properly, they store a number in the Clib.errno property. The
number corresponds to the type of error encountered. This method converts the error number to a
descriptive string and returns it.

See Also
“Clib.errno Property” on page 122

File I/O Methods in eScript
Siebel eScript handles file I/O in a manner similar to C and C++. In these languages, files are never
read from, or written to, directly. Rather, you must first open a file, most commonly by passing its
name to the Clib.fopen() method. You can also open a file using Clib.tmpfile().

These methods read the file into a buffer in memory and return a file pointer—a pointer to the
beginning of the buffer. The data in the buffer is often referred to as a file stream, or simply a stream.
Reading and writing occurs relative to the buffer, which is not written to disk unless you explicitly
flush the buffer with Clib.fflush() or close the file with Clib.fclose().

Clib supports the following file I/O functions:

■ “Clib.chdir() Method” on page 124

■ “Clib.clearerr() Method” on page 126

■ “Clib.getcwd() Method” on page 126

■ “Clib.fclose() Method” on page 127

■ “Clib.feof() Method” on page 128

■ “Clib.fflush() Method” on page 129

■ “Clib.fgetc() Method and Clib.getc() Method” on page 130

■ “Clib.fgetpos() Method” on page 130

■ “Clib.fgets() Method” on page 131

■ “Clib.fopen() Method” on page 133

■ “Clib.fprintf() Method” on page 135

Parameter Description

errno The error number returned by Clib.errno
Siebel eScript Language Reference Version 7.8, Rev. A 123

Siebel eScript Commands ■ File I/O Methods in eScript
■ “Clib.fputc() Method and Clib.putc() Method” on page 137

■ “Clib.fputs() Method” on page 138

■ “Clib.fread() Method” on page 139

■ “Clib.freopen() Method” on page 140

■ “Clib.fscanf() Method” on page 141

■ “Clib.fseek() Method” on page 143

■ “Clib.fsetpos() Method” on page 144

■ “Clib.ftell() Method” on page 145

■ “Clib.fwrite() Method” on page 145

■ “Clib.mkdir() Method” on page 146

■ “Clib.remove() Method” on page 147

■ “Clib.rename() Method” on page 148

■ “Clib.rewind() Method” on page 148

■ “Clib.rmdir() Method” on page 149

■ “Clib.sscanf() Method” on page 149

■ “Clib.tmpfile() Method” on page 150

■ “Clib.tmpnam() Method” on page 151

■ “Clib.ungetc()Method” on page 151

NOTE: Siebel applications use UTF-16 encoding when writing to a file in Unicode. The first two bytes
of the file are always the BOM (Byte Order Mark). When Clib.rewind is called on such a file, it is
pointing to the BOM (-257) and not the first valid character. To skip the BOM, call Clib.fgetc/getc
once.

Clib.chdir() Method
This method changes the current directory for the Siebel application.

Syntax
Clib.chdir(dirPath)

Returns
0 if successful; otherwise, -1.

Parameter Description

dirpath The path to the directory to make current. The path can be
absolute or relative.
Siebel eScript Language Reference Version 7.8, Rev. A124

Siebel eScript Commands ■ File I/O Methods in eScript
Usage
This method changes the current directory for the Siebel application. If the Siebel Server is restarted,
the current directory is automatically reset as one of the following:

■ The current directory recognized by the Windows operating system on the Siebel Server

■ The home directory of the administrator who restarts the Siebel Server on UNIX

Example
The following example shows the use of Clib.chdir() to change the current working directory of the
Siebel application. The default Siebel working directory is the Siebel Root\bin directory. For example,
if you installed the Siebel client in C:\sea752\client, then the default working directory is
C:\sea752\client\bin.

function Application_Start (CommandLine)
{

// Start Tracing
TheApplication().TraceOn("c:\\temp\\SiebTrace.txt","Allocation","All");

var currDir = Clib.getcwd();
TheApplication().Trace("Current directory is " + Clib.getcwd());

// Create a new directory
var msg = Clib.mkdir('C:\\Clib test');

// Display the error flag created by creating directory;
// Should be 0, indicating no error.

TheApplication().Trace(msg);

// Change the current directory to the new 'Clib test'
Clib.chdir("C:\\Clib test");
TheApplication().Trace("Current directory is " + Clib.getcwd());

// Delete 'Clib test'
Clib.chdir("C:\\");

// Attempting to make a removed directory current gives an
// error
Clib.rmdir("Clib test");
msg = Clib.chdir("C:\\Clib test");
TheApplication().Trace(msg);

}

Here are the trace results from the script:

Current directory is D:\sea752\client\BIN
0
Current directory is C:\Clib test
-1
Siebel eScript Language Reference Version 7.8, Rev. A 125

Siebel eScript Commands ■ File I/O Methods in eScript
See Also
“Clib.getenv() Method” on page 191
“Clib.mkdir() Method” on page 146
“Clib.rmdir() Method” on page 149

Clib.clearerr() Method
This method clears the error status and resets the end-of-file flag for a specified file.

Syntax
Clib.clearerr(filePointer)

Usage
This method clears the error status and resets the end-of-file (EOF) flag for the file indicated by
filePointer.

Clib.getcwd() Method
This method returns the entire path of the current working directory for a script.

Syntax
Clib.getcwd()

Returns
The entire path of the current working directory for a script.

Usage
In a Siebel application, the default current working directory is the directory in which the application
has been installed. If a script changes the current working directory (using Clib.chdir() or similar
command), the current working directory returns to its original value when the script finishes.

Example
In this example, the current directory is displayed in a message box. The script then makes the root
the current directory, creates a new directory, removes that directory, and then attempts to make
the removed directory current.

function Button_Click ()

Parameter Description

filePointer A pointer to the file to be cleared and reset
Siebel eScript Language Reference Version 7.8, Rev. A126

Siebel eScript Commands ■ File I/O Methods in eScript
{

var currDir = Clib.getcwd();
TheApplication().Trace("Current directory is " + Clib.getcwd());
var msg = Clib.mkdir('C:\\Clib test');
// Display the error flag created by creating directory;
// Should be 0, indicating no error.
TheApplication().Trace(msg);
// Change the current directory to the new 'Clib test'
Clib.chdir("C:\\Clib test");
TheApplication().Trace("Current directory is " + Clib.getcwd());
// Delete 'Clib test'
Clib.chdir("C:\\");
// Attempting to make a removed directory current yields error

 flag
Clib.rmdir("Clib test");
msg = Clib.chdir("C:\\Clib.test");
TheApplication().Trace(msg);

}

The output displayed in the message boxes is as follows:

Current directory is C:\SIEBEL\BIN
0
Current directory is C:\Clib test
-1

See Also
“Clib.clearerr() Method” on page 126
“Clib.mkdir() Method” on page 146
“Clib.rmdir() Method” on page 149

Clib.fclose() Method
This method writes a file’s data to disk and closes the file.

Syntax
Clib.fclose(filePointer)

Returns
Zero if successful; otherwise, returns EOF.

Parameter Description

filePointer A file pointer as returned by Clib.fopen()
Siebel eScript Language Reference Version 7.8, Rev. A 127

Siebel eScript Commands ■ File I/O Methods in eScript
Usage
This method flushes the file’s buffers (that is, writes its data to disk) and closes the file. The file
pointer ceases to be valid after this call.

Example
This example creates and writes to a text file and closes the file, testing for an error condition at the
same time. If an error occurs, a message is displayed and the buffer is flushed.

function Test_Click ()
{

var fp = Clib.fopen('c:\\temp000.txt', 'wt');
Clib.fputs('abcdefg\nABCDEFG\n', fp);
if (Clib.fclose(fp) != 0)
{

TheApplication().RaiseErrorText('Unable to close file.' +
'\nContents are lost.');

}
else

Clib.remove('c:\\temp000.txt');
}

See Also
“Clib.fflush() Method” on page 129

Clib.feof() Method
This function determines whether a file cursor is at the end of a file.

Syntax
Clib.feof(filePointer)

Returns
A nonzero integer if the file cursor is at the end of the file; 0 if it is not at the end of the file.

Usage
This method determines whether the file cursor is at the end of the file indicated by filePointer. It
returns a nonzero integer (usually 1) if true, 0 if not.

Parameter Description

filePointer A file pointer as returned by Clib.fopen()
Siebel eScript Language Reference Version 7.8, Rev. A128

Siebel eScript Commands ■ File I/O Methods in eScript
Clib.ferror() Method
This method tests and returns the error indicator for a file.

Syntax
Clib.ferror(filePointer)

Returns
0 if no error; otherwise, the error number.

Usage
This method checks whether an error has occurred for a buffer into which a file has been read. If an
error occurs, it returns the error number.

See Also
“Clib.errno Property” on page 122

Clib.fflush() Method
This function writes the data in a file buffer to disk.

Syntax
Clib.fflush(filePointer)

Returns
0 if successful; otherwise, EOF.

Usage
This method causes any unwritten buffered data to be written to the file indicated by filePointer. If
filePointer is null, this method flushes buffers in open files.

See Also
“Clib.getenv() Method” on page 191

Parameter Description

filePointer A file pointer as returned by Clib.fopen()

Parameter Description

filePointer A file pointer as returned by Clib.fopen()
Siebel eScript Language Reference Version 7.8, Rev. A 129

Siebel eScript Commands ■ File I/O Methods in eScript
Clib.fgetc() Method and Clib.getc() Method
These methods return the next character in a file stream.

Syntax
Clib.fgetc(filePointer)
Clib.getc(filePointer)

Returns
The next character in the file indicated by filePointer as a byte converted to an integer.

Usage
These methods return the next character in a file stream—a buffer into which a file has been read.
If there is a read error or the file cursor is at the end of the file, EOF is returned. If there is a read
error, Clib.ferror() indicates the error condition.

See Also
“Clib.fgets() Method” on page 131
“Clib.qsort() Method” on page 192

Clib.fgetpos() Method
This method stores the current position of the pointer in a file.

Syntax
Clib.fgetpos(filePointer, position)

Returns
0 if successful; otherwise, nonzero, in which case an error value is stored in the errno property.

Parameter Description

filePointer A file pointer as returned by Clib.fopen()

Parameter Description

filePointer A file pointer as returned by Clib.fopen()

position The current position of filePointer
Siebel eScript Language Reference Version 7.8, Rev. A130

Siebel eScript Commands ■ File I/O Methods in eScript
Usage
This method stores the current position of the file cursor in the file indicated by filePointer for future
restoration using fsetpos(). The file position is stored in the variable position; use it with fsetpos()
to restore the cursor to its position.

Example
This example writes two strings to a temporary text file, using Clib.fgetpos() to save the position
where the second string begins. The program then uses Clib.fsetpos() to set the file cursor to the
saved position so as to display the second string.

function Test_Click ()
{

var position;
var fp = Clib.tmpfile();
Clib.fputs("Melody\n”, fp);
Clib.fgetpos(fp, position)
Clib.fputs("Lingers\n", fp);
Clib.fsetpos(fp, position);
var msg = Clib.fgets(fp));
Clib.fclose(fp);
TheApplication().RaiseErrorText(msg);

}

See Also
“Clib.feof() Method” on page 128
“Clib.fsetpos() Method” on page 144
“Clib.ftell() Method” on page 145

Clib.fgets() Method
This method returns a string consisting of the characters in a file from the current file cursor to the
next newline character.

Syntax
Clib.fgets([maxLen,] filePointer)

Parameter Description

maxLen The maximum length of the string to be returned if no newline character is
encountered; if the File Mode is Unicode, the length parameter is the length in
Unicode characters. If you do not specify maxLen, then eScript uses the default
limit of 999 characters.

filePointer A file pointer as returned by Clib.fopen().
Siebel eScript Language Reference Version 7.8, Rev. A 131

Siebel eScript Commands ■ File I/O Methods in eScript
Returns
A string consisting of the characters in a file from the current file cursor to the next newline character.
If an error occurs, or if the end of the file is reached, null is returned.

Usage
This method returns a string consisting of the characters in a file from the current file cursor to the
next newline character. The newline is returned as part of the string.

Example
This example writes a string containing an embedded newline character to a temporary file. It then
reads from the file twice to retrieve the output and display it.

function Test_Click ()
{

var x = Clib.tmpfile();
Clib.fputs("abcdefg\nABCDEFG\n", x);
Clib.rewind(x);
var msg = Clib.fgets(x) + " " + Clib.fgets(x);
Clib.fclose(x);
TheApplication().RaiseErrorText(msg);

}

Running this code produces the following result.

abcdefg
ABCDEFG

See Also
“Clib.fputs() Method” on page 138

Clib.flock() Method
This method locks or unlocks a file for simultaneous use by multiple processes.

Syntax
Clib.flock(filePointer, mode)

Parameter Description

filePointer A file pointer as returned by Clib.fopen() or Clib.tmpfile()

mode One of the following:

■ LOCK_EX (lock for exclusive use)
LOCK_SH (lock for shared use)
LOCK_UN (unlock)
LOCK_NB (nonblocking)
Siebel eScript Language Reference Version 7.8, Rev. A132

Siebel eScript Commands ■ File I/O Methods in eScript
Returns
0 if successful; otherwise, a nonzero integer.

Usage
The flock() function applies or removes an advisory lock on the file identified by filePointer. Advisory
locks allow cooperating processes to perform consistent operations on files. However, other
processes may still access the files, which can cause inconsistencies.

The locking mechanism allows two types of locks: shared and exclusive. Multiple processes can have
shared locks on a file at the same time; however, there cannot be multiple exclusive locks, or shared
locks and an exclusive lock, on one file at the same time.

Read permission is required on a file to obtain a shared lock, and write permission is required to
obtain an exclusive lock. Locking a segment that is already locked by the calling process causes the
old lock type to be removed and the new lock type to take effect.

If a process requests a lock on an object that is already locked, the request is locked until the file is
freed, unless LOCK_NB is used. If LOCK_NB is used, the call fails and the error EWOULDBLOCK is
returned.

NOTE: Clib.flock() is not supported in Unicode builds. It always returns 0.

Clib.fopen() Method
This method opens a specified file in a specified mode.

Syntax
Clib.fopen(filename, mode)

Returns
This method returns a file pointer to the file opened or null, if the function fails. This return value is
on object of type File.

NOTE: Several Clib methods require an argument denoted as filePointer in this document. These
input arguments are of type File and are often the return value of a Clib.fopen() call.

Parameter Description

filename Any valid filename that does not include wildcard characters

mode One of the required characters specifying a file mode, followed by optional
characters, as described in Table 32
Siebel eScript Language Reference Version 7.8, Rev. A 133

Siebel eScript Commands ■ File I/O Methods in eScript
Usage
This function opens the file filename, in mode mode. The mode parameter is a string composed of
“r”, “w”, or “a” followed by other characters as shown in Table 32.

When a file is successfully opened, its error status is cleared and a buffer is initialized for automatic
buffering of reads and writes to the file.

Example
The following code fragment opens the text file ReadMe for text-mode reading and displays each line
in that file:

var fp:File = Clib.fopen("ReadMe","rt");
if (fp == null)

TheApplication().RaiseErrorText("\aError opening file for reading.\n")
else
{

while (null != (line=Clib.fgets(fp)))
{

Clib.fputs(line, stdout)
}

}
Clib.fclose(fp);

Here is an example that opens a file, writes a string to the file, then reads the string from the file,
using the default codepage:

var oFile = Clib.fopen("myfile","rw");
if (null != oFile)
{

var sHello = "Hello";

Table 32. Clib.fopen() Mode Parameters

Parameter Required? Mode

r Yes, one only
of these
parameters
is required.

Opens the file for reading; the file must already exist.

w Opens the file for writing. If the file does not exist, eScript creates
the file.

a Opens the file in append mode.

b No Opens the file in binary mode; if b is not specified, the file is opened
in text mode (end-of-line translation is performed)

t No Opens the file in text mode. Do not use for non-ASCII characters, use
“u” instead.

u No Opens the file in Unicode mode; for example,
Clib.fopen(“filename.txt”, “rwu”). Use this mode for both ASCII and
non-ASCII characters.

+ No Opens the file for update (reading and writing).
Siebel eScript Language Reference Version 7.8, Rev. A134

Siebel eScript Commands ■ File I/O Methods in eScript
var nLen = sHello.length;
Clib.fputs(sHello, oFile);
Clib.rewind(oFile);
Clib.fgets (nLen, sHello);

}

Here is an example that opens a file, writes a string to the file, then reads the string from the file,
in Unicode mode:

var oFile = Clib.fopen("myfile","rwu");
if (null != oFile)
{

var sHello = "Hello";
var nLen = sHello.length;
Clib.fputs(sHello, oFile);
Clib.rewind(oFile);
Clib.fgets (nLen, sHello);

}

The following example specifies a file path:

function WebApplet_ShowControl (ControlName, Property, Mode, &HTML)
{
if (ControlName == "GotoUrl")

{
var fp = Clib.fopen("c:\\test.txt","wt+");
Clib.fputs("property = " + Property + "\n", fp);
Clib.fputs("mode = " + Mode + "\n",fp);
Clib.fputs("ORG HTML = " + HTML + "\n",fp);
Clib.fclose(fp);
HTML = "<td>New HTML code</td>";

}
return(ContinueOperation);

See Also
“Clib.getenv() Method” on page 191
“Clib.tmpfile() Method” on page 150

Clib.fprintf() Method
This function writes a formatted string to a specified file.
Siebel eScript Language Reference Version 7.8, Rev. A 135

Siebel eScript Commands ■ File I/O Methods in eScript
Syntax
Clib.fprintf(filePointer, formatString)

Usage
This method writes a formatted string to the file indicated by filePointer. For information on format
strings used with Clib.fprintf(), see Table 33 on page 153.

Example
The following example shows uses of Clib.fprintf() with various format string parameters.

function Service_PreInvokeMethod (MethodName, Inputs, Outputs)
{

if (MethodName == "fprintfsamples")
{

var intgr = 123456789;
var flt = 12345.6789;
var hour = 1;
var min = 7;
var sec = 0;
var str = "Hello World";
var file = Clib.fopen("c:\\temp\\fprintf.txt", "w");

// Simple formatting:
Clib.fprintf(file, "(1) %s, it is now %i:%i:%i pm.\n", str, hour, min, sec);
Clib.fprintf(file, "(2) The number %i is the same as %x.\n", intgr, intgr);
Clib.fprintf(file, "(3) The result is %f.\n", flt);

// Flag values:
// "+" forces a + or - sign; "#" modifies the type flag "x"

// to prepend "0x" to the output. (Compare with the simple
// formatting example.)
Clib.fprintf(file, "(4) The number %+i is the same as %#x.\n", intgr, intgr);

// Width values:
// Note that the width is a minimal width, thus longer values
// are not truncated.
// "2" fills with spaces, "02" fills with zeros.
var myWidth = 2;
Clib.fprintf(file, "(5) %5s, it is now %2i:%02i:%02i pm.\n", str, hour, min,
sec);

// Precision values:
// ".2" restricts to 2 decimals after the decimal separator.

Parameter Description

filePointer A file pointer as returned by Clib.fopen()

formatString A string containing formatting instructions for each data item
to be written
Siebel eScript Language Reference Version 7.8, Rev. A136

Siebel eScript Commands ■ File I/O Methods in eScript
// Note that the number will be rounded appropriately.
Clib.fprintf(file, "(6) The result is %.2f.\n", flt);

// A combined example:
// <space> displays either space or minus;
// "+" displays either plus or minus;
// "020" uses a minimal width of 20, padded with zeros;
// ".2" displays 2 digits after the decimal separator;
// "*" uses the next argument in the list to specify the width.
Clib.fprintf(file, "(7) The values are:\n%+020.2f\n% 020.2f\n% *.2f", flt,
intgr, 20, intgr);

Clib.fclose(file);

return (CancelOperation);
}
return (ContinueOperation);

}

The script produces the following output:

(1) Hello World, it is now 1:7:0 pm.
(2) The number 123456789 is the same as 75bcd15.
(3) The result is 12345.678900.
(4) The number +123456789 is the same as 0x75bcd15.
(5) Hello World, it is now 1:07:00 pm.
(6) The result is 12345.68.
(7) The values are:
+0000000000012345.68
0000000123456789.00
123456789.00

See Also
“Clib.rsprintf() Method” on page 166
“Clib.sprintf() Method” on page 166

Clib.fputc() Method and Clib.putc() Method
These methods write a character, converted to a byte, to the specified file.

Syntax
Clib.fputc(char, filePointer)
Clib.putc(char, filePointer)

Parameter Description

char A one-character string or a variable holding a single character

filePointer A file pointer as returned by Clib.fopen()
Siebel eScript Language Reference Version 7.8, Rev. A 137

Siebel eScript Commands ■ File I/O Methods in eScript
Returns
If successful, char; otherwise, EOF.

Usage
These methods write a single character to the file indicated by filePointer. If char is a string, the first
character of the string is written to the file indicated by filePointer. If char is a number, the character
corresponding to its Unicode value is written to the file.

See Also
“Clib.fgetc() Method and Clib.getc() Method” on page 130
“Clib.fputs() Method” on page 138

Clib.fputs() Method
This method writes a string to a specified file.

Syntax
Clib.fputs(string, filePointer)

Returns
EOF if a write error occurs; otherwise, a non-negative value.

Usage
This method writes the value of string to the file indicated by filePointer.

Example
For an example, see “Clib.fgets() Method” on page 131.

See Also
“Clib.fgets() Method” on page 131
“Clib.fputc() Method and Clib.putc() Method” on page 137

Parameter Description

string A string literal or a variable containing a string

filePointer A file pointer as returned by Clib.fopen()
Siebel eScript Language Reference Version 7.8, Rev. A138

Siebel eScript Commands ■ File I/O Methods in eScript
Clib.fread() Method
This method reads data from an open file and stores it in a variable.

Syntax A
Clib.fread(destBuffer, bytelength, filePointer)

Syntax B
Clib.fread(destVar, varDescription, filePointer)

Syntax C
Clib.fread(blobVar, blobDescriptor, filePointer)

Returns
The number of elements read. For destBuffer, the number of bytes read, up to bytelength. For
varDescription, 1 if the data is read, or 0 if there is a read error or EOF is encountered.

Usage
This method reads data from the open file filePointer and stores it in the specified variable. If it does
not yet exist, the variable, buffer, or BLOB is created. The varDescription value is a variable that
describes how and how much data is to be read: if destVar is to hold a single datum, then
varDescription must be one shown in the following table.

Parameter Description

destBuffer A variable indicating the buffer to contain the data read from the file

bytelength The number of bytes to read

filePointer A file pointer as returned by Clib.fopen()

destVar A variable to contain the data read from the file

varDescription A variable that describes how much data is to be read; must be one of the
values in the list in the “Usage” section

blobVar A variable indicating the BLOB to contain the data read from the file

blobDescriptor The blobDescriptor for blobVar

Value Description

UWORD8 Stored as an unsigned byte

SWORD8 Stored as a signed byte

UWORD16 Stored as an unsigned 16-bit integer

SWORD16 Stored as a signed 16-bit integer
Siebel eScript Language Reference Version 7.8, Rev. A 139

Siebel eScript Commands ■ File I/O Methods in eScript
For example, the definition of a structure might be:

ClientDef = new blobDescriptor();
ClientDef.Sex = UWORD8;
ClientDef.MaritalStatus = UWORD8;
ClientDef._Unused1 = UWORD16;
ClientDef.FirstName = 30; ClientDef.LastName = 40;
ClientDef.Initial = UWORD8;

The Siebel eScript version of fread() differs from the standard C version in that the standard C library
is set up for reading arrays of numeric values or structures into consecutive bytes in memory. In
JavaScript, this is not necessarily the case.

Data types are read from the file in a byte-order described by the current value of the BigEndianMode
global variable.

Example
To read the 16-bit integer i, the 32-bit float f, and then the 10-byte buffer buf from the open file
fp, use code like this:

if (!Clib.fread(i, SWORD16, fp) || !Clib.fread(f, FLOAT32, fp)
|| 10 != Clib.fread(buf, 10, fp))

TheApplication().RaiseErrorText("Error reading from file.\n");
}

See Also
“Clib.fwrite() Method” on page 145

Clib.freopen() Method
This method closes the file associated with a file pointer and then opens a file and associates it with
the file pointer of the file that has been closed.

UWORD24 Stored as an unsigned 24-bit integer

SWORD24 Stored as a signed 24-bit integer

UWORD32 Stored as an unsigned 32-bit integer

SWORD32 Stored as a signed 32-bit integer

FLOAT32 Stored as a floating-point number

FLOAT64 Stored as a double-precision floating-point number

Value Description
Siebel eScript Language Reference Version 7.8, Rev. A140

Siebel eScript Commands ■ File I/O Methods in eScript
Syntax
Clib.freopen(filename, mode, oldFilePointer)

Returns
A copy of the old file pointer after reassignment, or null if the function fails.

Usage
This method closes the file associated with oldFilePointer (ignoring any close errors) and then opens
filename according to mode (as in Clib.fopen()) and reassociates oldFilePointer to this new file
specification. It is commonly used to redirect one of the predefined file handles (stdout, stderr, stdin)
to or from a file.

Example
The following sample script writes to two different files using the same filepointer.

var oFile = Clib.fopen("c:\\temp\\firstfile","w");
if (oFile == null)
{

TheApplication().RaiseErrorText("File not found.");
}
Clib.fprintf(oFile, "Writing to first file\n");
Clib.freopen("c:\\temp\\secondfile", "w", oFile);
if (oFile == null)
{

TheApplication().RaiseErrorText("File not found.");
}
Clib.fprintf(oFile, "Writing to second file\n");
Clib.fclose(oFile);

See Also
“Clib.getenv() Method” on page 191
“Clib.fopen() Method” on page 133

Clib.fscanf() Method
This function reads data from a specified file and stores the data items in a series of parameters.

Parameter Description

filename The name of a file to be opened

mode One of the file modes specified in the Clib.fopen() function; for Unicode, the
same “u” flag as in Clib.fopen can be used

oldFilePointer The file pointer to a file to be closed and to which filename is to be associated
Siebel eScript Language Reference Version 7.8, Rev. A 141

Siebel eScript Commands ■ File I/O Methods in eScript
Syntax
Clib.fscanf(filePointer, formatString, var1, var2, ..., varn)

Returns
The number of input items assigned. This number may be fewer than the number of parameters
requested if there was a matching failure. If there is an input failure (before the conversion occurs),
this function returns EOF.

Usage
This function reads input from the file indicated by filePointer and stores that input in the var1, var2,
..., varn parameters following the formatString value according to the character combinations in the
format string, which indicate how the file data is to be read and stored. The file must be open, with
read access.

Characters from input are matched against the formatting instruction characters of formatString until
a percent character (%) is reached. The % character indicates that a value is to be read and stored
to subsequent parameters following formatString. Each subsequent parameter after formatString
gets the next parsed value taken from the next parameter in the list following formatString.

A parameter specification takes this form:

%[*][width]type

For values for these items, see “Formatting Input in eScript” on page 155.

Example
The following example shows uses of Clib.fscanf() with various options on the parameters.

var int1;
var int2;
var hour;
var min;
var sec;
var str;

var file = Clib.fopen("c:\\temp\\fscanf.txt", "r");
TheApplication().TraceOn("c:\\temp\\testoutput.txt", "allocation", "all");

// Simple scanf:
// input line e.g.: "Monday 10:18:00"
Clib.fscanf(file, "%s %i:%i:%i\n", str, hour, min, sec);
TheApplication().Trace(str + ", " + hour + ", " + min + ", " + sec);

Parameter Description

filePointer A file pointer as returned by Clib.fopen()

formatString A string containing formatting instructions for each data item to be read

var1, var2, ..., varn Variables holding the values to be formatted
Siebel eScript Language Reference Version 7.8, Rev. A142

Siebel eScript Commands ■ File I/O Methods in eScript
// Using width specifier:
// input line e.g.: "1234567890"
Clib.fscanf(file, "%5i%5i\n", int1, int2);
TheApplication().Trace(int1 + ", " + int2);

// Reading hexadecimal integers and suppressing assignment to a variable:
// input line e.g.: "AB3F 456A 7B44"
Clib.fscanf(file, "%x %*x %x\n", int1, int2);
TheApplication().Trace(int1 + ", " + int2);

// Using character ranges:
// input line e.g.: "helloHELLO"
Clib.fscanf(file, "%[a-z]\n", str);
TheApplication().Trace(str);

Clib.fclose(file);

The script produces the following trace output:

COMMENT,"Monday, 10, 18, 0"
COMMENT,"12345, 67890"
COMMENT,"43839, 31556"
COMMENT,hello

See Also
“Clib.sinh() Method” on page 161
“Clib.sscanf() Method” on page 149

Clib.fseek() Method
This method sets the position of the file cursor of an open file.

Syntax
Clib.fseek(filePointer, offset[, mode])

Parameter Description

filePointer A file pointer as returned by Clib.fopen()

offset The number of bytes to move the file cursor beyond mode

mode One of the following values:

SEEK_CUR: seek is relative to the current position of the file cursor

SEEK_END: seek is relative to the end of the file

SEEK_SET: seek is relative to the beginning of the file
Siebel eScript Language Reference Version 7.8, Rev. A 143

Siebel eScript Commands ■ File I/O Methods in eScript
Returns
0 if successful, or nonzero if it cannot set the file cursor to the indicated position.

Usage
This method sets the position of the file cursor in the file indicated by filePointer. If mode is not
supplied, then the absolute offset from the beginning of the file (SEEK_SET) is assumed. For text
files (that is, files not opened in binary mode), the file position may not correspond exactly to the
byte offset in the file.

See Also
“Clib.fgetpos() Method” on page 130
“Clib.ftell() Method” on page 145
“Clib.rewind() Method” on page 148

Clib.fsetpos() Method
This method sets the current file cursor to a specified position.

Syntax
Clib.fsetpos(filePointer, position)

Returns
0 if successful; otherwise, nonzero, in which case an error value is stored in errno.

Usage
This method sets the current file cursor to a specified position in the file indicated by filePointer. It
is used to restore the file cursor to a position that has previously been retrieved by Clib.fgetpos()
and stored in the position variable used by that method.

Example
For an example, see “Clib.fgetpos() Method” on page 130.

See Also
“Clib.fgetpos() Method” on page 130
“Clib.ftell() Method” on page 145

Parameter Description

filePointer A file pointer as returned by Clib.fopen()

position The value returned by Clib.fgetpos(filePointer, position)
Siebel eScript Language Reference Version 7.8, Rev. A144

Siebel eScript Commands ■ File I/O Methods in eScript
Clib.ftell() Method
This method gets the position offset of the file cursor of an open file relative to the beginning of the
file.

Syntax
Clib.ftell(filePointer)

Returns
The current location of the file cursor, or -1 if there is an error, in which case an error value is stored
in Clib.errno.

Usage
This method gets the position offset of the file cursor of the open file indicated by filePointer relative
to the beginning of the file. For text files (that is, files not opened in binary mode), the file position
may not correspond exactly to the byte offset in the file.

See Also
“Clib.fseek() Method” on page 143
“Clib.fsetpos() Method” on page 144

Clib.fwrite() Method
This method writes the data in a specified variable to a specified file and returns the number of
elements written.

Syntax A
Clib.fwrite(sourceVar, varDescription, filePointer)

Syntax B
Clib.fwrite(sourceVar, bytelength, filePointer)

Parameter Description

filePointer A file pointer as returned by Clib.fopen()

Parameter Description

bytelength Number of bytes to write

sourceVar A variable indicating the source from which data is to be
written
Siebel eScript Language Reference Version 7.8, Rev. A 145

Siebel eScript Commands ■ File I/O Methods in eScript
Returns
0 if a write error occurs; use Clib.ferror() to get more information about the error.

Usage
This method writes the data in sourceVar to the file indicated by filePointer and returns the number
of elements written.

The varDescription variable describes how much data is to be read from the object indicated by
sourceVar:

The Siebel eScript version of fwrite() differs from the standard C version in that the standard C library
is set up for writing arrays of numeric values or structures from consecutive bytes in memory. This
is not necessarily the case in eScript.

Example
To write the 16-bit integer i, the 32-bit float f, and the 10-byte buffer buf into open file fp, use the
following code:

if (!Clib.fwrite(i, SWORD16, fp) || !Clib.fwrite(f, FLOAT32, fp)
|| 10 != fwrite(buf, 10, fp))

{
TheApplication().RaiseErrorText("Error writing to file.\n");

}

See Also
“Clib.fread() Method” on page 139

Clib.mkdir() Method
This method creates a directory.

varDescription A value depending on the type of object indicated by
sourceVar

filePointer A file pointer as returned by Clib.fopen()

If sourceVar Is... Then, the Value of varDescription Is...

Buffer Length of the buffer

Object Object descriptor

A single datum One of the values listed in “Clib.fread() Method” on
page 139

Parameter Description
Siebel eScript Language Reference Version 7.8, Rev. A146

Siebel eScript Commands ■ File I/O Methods in eScript
Syntax
Clib.mkdir(dirpath)

Returns
0 if successful; otherwise, -1.

Usage
This method creates a directory. If no path is specified, the directory is created in C:\siebel\bin.
The specified directory may be an absolute or relative path specification.

See Also
“Clib.clearerr() Method” on page 126
“Clib.getenv() Method” on page 191
“Clib.rmdir() Method” on page 149

Clib.remove() Method
This method deletes a specified file.

Syntax
Clib.remove(filename)

Returns
0 if successful; otherwise, -1.

Usage
The filename parameter may be either an absolute or a relative filename.

See Also
“Clib.fopen() Method” on page 133

Parameter Description

dirpath A string containing a valid directory path

Parameter Description

filename A string or string variable containing the name of the file to be deleted
Siebel eScript Language Reference Version 7.8, Rev. A 147

Siebel eScript Commands ■ File I/O Methods in eScript
Clib.rename() Method
This method renames a file.

Syntax
Clib.rename(oldName, newName)

Returns
0 if successful; otherwise, -1.

Usage
This method renames a file. The oldName parameter may be either an absolute or a relative
filename.

Clib.rewind() Method
This method sets the file cursor to the beginning of a file.

Syntax
Clib.rewind(filePointer)

Usage
This call is identical to Clib.fseek(filePointer, 0, SEEK_SET) except that it also clears the error
indicator for the file indicated by filePointer.

NOTE: Siebel applications use UTF-16 encoding when writing to a file in Unicode. The first two bytes
of the file are always the BOM (Byte Order Mark). When Clib.rewind is called on such a file, it is
pointing to the BOM (-257) and not the first valid character. The user can call Clib.fgetc/getc once to
skip the BOM.

Example
For an example, see “Clib.fgets() Method” on page 131.

Parameter Description

oldName A string representing the name of the file to be renamed

newName A string representing the new name to give the file

Parameter Description

filePointer A file pointer as returned by Clib.fopen()
Siebel eScript Language Reference Version 7.8, Rev. A148

Siebel eScript Commands ■ File I/O Methods in eScript
See Also
“Clib.fseek() Method” on page 143

Clib.rmdir() Method
This method removes a specified directory.

Syntax
Clib.rmdir(dirpath)

Returns
0 if successful; otherwise, -1.

Usage
The dirpath parameter may be an absolute or relative path specification.

See Also
“Clib.clearerr() Method” on page 126
“Clib.getenv() Method” on page 191
“Clib.mkdir() Method” on page 146

Clib.sscanf() Method
This method reads input from the standard input device and stores the data in variables provided as
parameters.

Syntax
Clib.sscanf([formatString] [,var1, var2, ..., varn])

Parameter Description

dirpath The directory to be removed

Parameter Description

formatString A string indicating how variable or literal parameters are to be treated

var1, var2, ..., varn Variables in which to store the input
Siebel eScript Language Reference Version 7.8, Rev. A 149

Siebel eScript Commands ■ File I/O Methods in eScript
Returns
EOF if input failure occurs before any conversion occurs; otherwise, the number of variables assigned
data.

Usage
This method reads input from the standard input stream (the keyboard unless some other file has
been redirected as stdin by the Clib.freopen() function) and stores the data read in the variables
provided as parameters following formatString. The data is stored according to the character
combinations in formatString which indicate how the input data is to be read and stored.

This method is identical to calling fscanf() with stdin as the first parameter. It returns the number
of input items assigned; this number may be fewer than the number of parameters requested if there
is a matching failure. If there is a conversion failure, EOF is returned.

The formatString value specifies the admissible input sequences and how the input is to be converted
to be assigned to the variable number of parameters passed to this function. The input is not read
until the ENTER key is pressed.

Characters from input are matched against the characters of the formatString until a percent
character (%) is reached. The percent character indicates that a value is to be read and stored to
subsequent parameters following formatString. Each subsequent parameter after formatString gets
the next parsed value taken from the next parameter in the list following formatString.

A parameter specification takes this form:

%[*][width]type

For values for these items, see “Formatting Input in eScript” on page 155.

See Also
“Clib.fscanf() Method” on page 141
“Clib.sinh() Method” on page 161
“Clib.asctime() Method” on page 180

Clib.tmpfile() Method
This method creates a temporary binary file and returns its file pointer.

Syntax
Clib.tmpfile()

Returns
The file pointer of the file created; null if the function fails.
Siebel eScript Language Reference Version 7.8, Rev. A150

Siebel eScript Commands ■ File I/O Methods in eScript
Usage
Clib.tmpfile() creates and opens a temporary binary file and returns its file pointer. The file pointer,
and the temporary file, are automatically removed when the file is closed or when the program exits.
The location of the temporary file depends on the implementation of Clib on the operating system in
use.

Example
For an example, see “Clib.fgets() Method” on page 131.

See Also
“Clib.fopen() Method” on page 133

Clib.tmpnam() Method
This method creates a string that has a valid file name and is unique among existing files and among
filenames returned by this function.

Syntax
Clib.tmpnam([str])

Returns
String - a valid and unique filename

Usage
This method creates a string that has a valid file name. This string is not the same as the name of
any existing file, nor the same as any filename returned by this function during execution of this
program. If str is supplied, it is set to the string returned by this function.

Clib.ungetc()Method
This method pushes a character back into a file.

Parameter Description

str A variable to hold the name of a temporary file
Siebel eScript Language Reference Version 7.8, Rev. A 151

Siebel eScript Commands ■ Formatting Data in eScript
Syntax
Clib.ungetc(char, filePointer)

Returns
The value of char if successful, EOF if unsuccessful.

Usage
When char is put back, it is converted to a byte and is again in the file for subsequent retrieval. Only
one character is pushed back. You might want to use this function to read up to, but not including,
a newline character. You would then use Clib.ungetc to push the newline character back into the file
buffer.

See Also
“Clib.fgetc() Method and Clib.getc() Method” on page 130
“Clib.fputc() Method and Clib.putc() Method” on page 137
“Clib.putenv() Method” on page 191

Formatting Data in eScript
The print functions and scan functions both use format strings to format the data written and read,
respectively.

Formatting Output in eScript
Table 33 lists the format strings for use with the print functions: fprintf() (see “Clib.fprintf() Method”
on page 135), rsprintf(), and sprintf() (see “Clib.rsprintf() Method” on page 166). In these functions,
characters are printed as read to standard output until a percent character (%) is reached. The
percent symbol (%) indicates that a value is to be printed from the parameters following the format
string. The form of the format string is as follows:

%[flags][width][.precision]type

Parameter Description

char The character to push back

filePointer A file pointer as returned by Clb.fopen()
Siebel eScript Language Reference Version 7.8, Rev. A152

Siebel eScript Commands ■ Formatting Data in eScript
To include the % character as a character in the format string, use two percent characters together
(%%).

Table 33. Format Strings for the Print Functions

Formatting
Character Effect Example statement and output

Flag Values

- Left justification in the field with space
padding or right justification with zero or
space padding

fprintf(file, "[%-8i]", 26);
[26]

+ Force numbers to begin with a plus (+) or
minus (-)

fprintf(file, "%+i", 26);
+26

space Negative values begin with a minus (-);
positive values begin with a space

fprintf(file, "[% i]", 26);
[26]

Append one of the following symbols to
the # character to display the output in
the indicated form:

■ o to prefix a zero to nonzero octal
output

■ x or X to prefix 0x or 0X to the output,
signifying hexadecimal

■ f to include a decimal point even if no
digits follow the decimal point

■ e or E to include a decimal point even
if no digits follow the decimal point,
and display the output in scientific
notation

■ g or G to include a decimal point even
if no digits follow the decimal point,
display the output in scientific
notation (depending on precision),
and leave trailing zeros in place

fprintf(file, "%#o", 26);
032

fprintf(file, "%#x", 26);
0x1A

fprintf(file, "%#.f", 26);
26.

fprintf(file, "%#e", 26);
2.600000e+001

fprintf(file, "%#g", 26);
26.0000
Siebel eScript Language Reference Version 7.8, Rev. A 153

Siebel eScript Commands ■ Formatting Data in eScript
Width
Values

n At least n characters are output; if the
value is fewer than n characters, the
output is padded on the left with spaces.

fprintf(file, "[%8s]", "Test");
[Test]

0n At least n characters are output, padded
on the left with zeros.

fprintf(file, "%08i", 26);
00000026

* The next value in the parameter list is an
integer specifying the output width.

fprintf(file, "[%*s]", 8, "Test");
[Test]

Precision
Values

If precision is specified, then it must begin with a period
(.) and must take one of the following forms:

.0 For floating-point type, no decimal point
is output.

fprintf(file, "%.0f", 26.735);
26

.n Output is n characters, or n decimal
places if the value is a floating-point
number.

fprintf(file, "%.2f", 26.735);
26.73

.* The next value in the parameter list is an
integer specifying the precision width.

fprintf(file, "%.*f", 1, 26.735);
26.7

Type
Values

d,i Signed integer fprintf(file, "%i", 26);
26

u Unsigned integer fprintf(file, "%u", -1);
4294967295

o Octal integer fprintf(file, "%o", 26);
32

x Hexadecimal integer using 0 through 9
and a, b, c, d, e, f

fprintf(file, "%x", 26);
1a

X Hexadecimal integer using 0 through 9
and A, B, C, D, E, F

fprintf(file, "%X", 26);
1A

f Floating-point of the form [-]dddd.dddd fprintf(file, "%f", 26.735);
26.735000

e Floating-point of the form [-]d.ddde+dd
or [-]d.ddde-dd

fprintf(file, "%e", 26.735);
2.673500e+001

Table 33. Format Strings for the Print Functions

Formatting
Character Effect Example statement and output
Siebel eScript Language Reference Version 7.8, Rev. A154

Siebel eScript Commands ■ Formatting Data in eScript
Formatting Input in eScript
Format strings are also used with the scan functions: fscanf() (see “Clib.fscanf() Method” on
page 141), sscanf() (see “Clib.sscanf() Method” on page 149), and vfscanf(). The format string
contains character combinations that specify the type of data expected. The format string specifies
the admissible input sequences and how the input is to be converted to be assigned to the variable
number of parameters passed to the function. Characters are matched against the input as read and
as it matches a portion of the format string until a percent character (%) is reached. The percent
character indicates that a value is to be read and stored to subsequent parameters following the
format string.

Each subsequent parameter after the format string gets the next parsed value taken from the next
parameter in the list following the format string. A parameter specification takes this form:

%[*][width]type

The * and width values may be as shown on Table 34.

If width is specified, the input is an array of characters of the specified length.

E Floating-point of the form [-]d.dddE+dd
or [-]d.dddE-dd

fprintf(file, "%E", 26.735);
2.673500E+001

g Floating-point number of f or e type,
depending on precision

fprintf(file, "%g", 26.735);
26.735

G Floating-point number of F or E type,
depending on precision

fprintf(file, "%G", 26.735);
26.735

c Character; for example, 'a', 'b', '8' fprintf(file, "%c", 'a');
a

s String fprintf(file, "%s", "Test");
Test

Table 34. Scan Functions Formatting Parameters * and width

Parameter Description

* Suppresses assigning this value to any parameter.

width Sets the maximum number of characters to read. Fewer are read if a white-space
or nonconvertible character is encountered.

Table 33. Format Strings for the Print Functions

Formatting
Character Effect Example statement and output
Siebel eScript Language Reference Version 7.8, Rev. A 155

Siebel eScript Commands ■ The Clib Object Math Methods
Table 35 lists the characters that define the type.

Example
This sample script creates a file called myfile.txt and stores a float number and a string. Then the
stream is rewound and both values are read with fscanf.

function WebApplet_Load()
{

var f;
var str;
var pFile = Clib.fopen ("c:\\myfile.txt","w+");
Clib.fprintf (pFile, "%f %s", 3.1416, "PI");
Clib.rewind (pFile);
Clib.fscanf (pFile, "%f", f);
Clib.fscanf (pFile, "%s", str);
Clib.fclose (pFile);
Clib.printf ("I have read: %f and %s \n",f,str);

}

Here are the trace results from the script:

I have read: 3.141600 and PI

The Clib Object Math Methods
Siebel eScript has the following Clib math methods.

■ “Clib.cosh() Method” on page 157

■ “Clib.div() Method and Clib.ldiv() Method” on page 157

■ “Clib.frexp() Method” on page 158

■ “Clib.ldexp() Method” on page 159

Table 35. Type Values for the Scan Functions

Type Value Effect

d,D,i,I Signed integer

u,U Unsigned integer

o,O Octal integer

x,X Hexadecimal integer

f,e,E,g,G Floating-point number

s String

[abc] String consisting of the characters within brackets, where A–Z represents the
range A to Z

[^abc] String consisting of the character not within brackets
Siebel eScript Language Reference Version 7.8, Rev. A156

Siebel eScript Commands ■ The Clib Object Math Methods
■ “Clib.modf() Method” on page 159

■ “Clib.rand() Method” on page 160

■ “Clib.sinh() Method” on page 161

■ “Clib.srand() Method” on page 161

■ “Clib.tanh() Method” on page 162

■ “quot Method” on page 162

■ “rem Method” on page 163

Clib.cosh() Method
This method returns the hyperbolic cosine of x.

Syntax
Clib.cosh(number)

Returns
The hyperbolic cosine of x.

See Also
“Clib.sinh() Method” on page 161
“Clib.tanh() Method” on page 162
“Math.cos() Method” on page 261

Clib.div() Method and Clib.ldiv() Method
These methods perform integer division and return a quotient and remainder in a structure.

Syntax
Clib.div(numerator, denominator)
Clib.ldiv(numerator, denominator)

Parameter Description

number The number whose hyperbolic cosine is to be found

Parameter Description

numerator The number to be divided

denominator The number by which numerator is to be divided
Siebel eScript Language Reference Version 7.8, Rev. A 157

Siebel eScript Commands ■ The Clib Object Math Methods
Returns
A structure with the elements shown in the following table, which are the result of dividing numerator
by denominator.

Usage
Because Siebel eScript does not distinguish between integers and long integers, the Clib.div() and
Clib.ldiv() methods are identical.

Example
The following example accepts two numbers as input from the user, divides the first by the second,
and displays the result:

var division = Clib.div(ToNumber(n), ToNumber(d));
TheApplication().RaiseErrorText("The quotient is " + division.quot + ".\n\n" +

"The remainder is " + division.rem + ".");

When run with the values of n=9 and d=4, this example produces this result.

The quotient is 2.

The remainder is 1.

Clib.frexp() Method
This method breaks a number into a normalized mantissa between 0.5 and 1.0 and calculates an
integer exponent of 2 so that the number is equivalent to the mantissa * 2 ^ exponent.

Syntax
Clib.frexp(number, exponent)

Returns
A normalized mantissa between 0.5 and 1.0; otherwise, 0.

Return
Element Description

.quot quotient

.rem remainder

Parameter Description

number The number to be operated on

exponent The exponent to use
Siebel eScript Language Reference Version 7.8, Rev. A158

Siebel eScript Commands ■ The Clib Object Math Methods
Usage
This method breaks number into a normalized mantissa between 0.5 and 1.0 and calculates an
integer exponent of 2 such that number == mantissa * 2 ^ exponent. A mantissa is the decimal part
of a natural logarithm.

Clib.ldexp() Method
This method calculates a floating-point number given a mantissa and exponent.

Syntax
Clib.ldexp(mantissa, exponent)

Returns
The result of the calculation.

Usage
This method is the inverse of .frexp() and calculates a floating-point number from the following
equation:

mantissa * 2 ^ exponent

A mantissa is the decimal part of a natural logarithm.

See Also
“Clib.frexp() Method” on page 158

Clib.modf() Method
This method returns the integer part of a decimal number.

Parameter Description

mantissa The number to be operated on

exponent The exponent to use
Siebel eScript Language Reference Version 7.8, Rev. A 159

Siebel eScript Commands ■ The Clib Object Math Methods
Syntax
Clib.modf(number, var intVar)

Returns
The integer part of number, stored in intVar.

Usage
This method returns the integer part of a decimal number. Its effect is identical to that of
ToInteger(number).

Example
This example passes the same value to Clib.modf() and ToInteger(). The result is the same for both.

function eScript_Click ()
{

Clib.modf(32.154, var x);
var y = ToInteger(32.154);
TheApplication().RaiseErrorText("modf yields " + x +

".\nToInteger yields " + y + ".");
}

When run, this example produces the following result:

modf yields 32
ToInteger yields 32.

See Also
“ToInteger() Method” on page 245

Clib.rand() Method
This method generates a random number between 0 and RAND_MAX, inclusive.

Syntax
Clib.rand()

Returns
A pseudo-random number between 0 and RAND_MAX, inclusive. The value of RAND_MAX depends
upon the operating system, but is typically 32,768.

Parameter Description

number The floating-point number to be split

intVar A variable to hold the integer part of number
Siebel eScript Language Reference Version 7.8, Rev. A160

Siebel eScript Commands ■ The Clib Object Math Methods
Usage
The sequence of pseudo-random numbers is affected by the initial generator seed and by earlier calls
to Clib.rand(). If the seed is not supplied, then a random seed is generated in a manner that is
specific to the operating system in use.

See Also
“Clib.srand() Method” on page 161
“Math.random() Method” on page 267

Clib.sinh() Method
This method returns the hyperbolic sine of a floating-point number.

Syntax
Clib.sinh(floatNum)

Returns
The hyperbolic sine of floatNum.

See Also
“Clib.cosh() Method” on page 157
“Clib.tanh() Method” on page 162

Clib.srand() Method
This method initializes a random number generator.

Syntax
Clib.srand(seed)

Parameter Description

floatNum A floating-point number, or a variable containing a floating-point number, whose
hyperbolic sine is to be found

Parameter Description

seed A number for the random number generator to start with
Siebel eScript Language Reference Version 7.8, Rev. A 161

Siebel eScript Commands ■ The Clib Object Math Methods
Usage
If seed is not supplied, then a random seed is generated in a manner that is specific to the operating
system in use.

See Also
“Clib.rand() Method” on page 160
“Math.random() Method” on page 267

Clib.tanh() Method
This method calculates and returns the hyperbolic tangent of a floating-point number.

Syntax
Clib.tanh(floatNum)

Returns
The hyperbolic tangent of floatNum.

See Also
“Clib.cosh() Method” on page 157
“Clib.sinh() Method” on page 161

quot Method
This method is used to find the quotient after a division operation.

Syntax
intVar.quot

Returns
The quotient part of a division operation performed by Clib.div() or Clib.ldiv().

Parameter Description

floatNum A floating-point number, or a variable containing a floating-point number, whose
hyperbolic tangent is to be found

Placeholder Description

intVar Any variable containing an integer
Siebel eScript Language Reference Version 7.8, Rev. A162

Siebel eScript Commands ■ The Clib Object Math Methods
Usage
This method is used in conjunction with the Clib.div() or Clib.ldiv() functions. For details, see
“Clib.div() Method and Clib.ldiv() Method” on page 157.

Example
For an example, see “Clib.div() Method and Clib.ldiv() Method” on page 157.

See Also
“Clib.div() Method and Clib.ldiv() Method” on page 157
“rem Method” on page 163

rem Method
This method is used to find the remainder after a division operation.

Syntax
intVar.rem

Returns
The remainder part of the result of a division operation performed by Clib.div() or Clib.ldiv().

Usage
This method is used in conjunction with the Clib.div() or Clib.ldiv() function. For details, see
“Clib.div() Method and Clib.ldiv() Method” on page 157.

Example
For an example, see “Clib.div() Method and Clib.ldiv() Method” on page 157.

See Also
“Clib.div() Method and Clib.ldiv() Method” on page 157
“quot Method” on page 162

Placeholder Description

intVar Any variable containing an integer
Siebel eScript Language Reference Version 7.8, Rev. A 163

Siebel eScript Commands ■ Redundant Functions in the Clib Object
Redundant Functions in the Clib Object
The Clib object includes the functions from the C standard library. As a result, some of the methods
in the Clib object overlap methods in eScript. In most cases, the newer eScript methods should be
preferred over the older C functions. However, there are times, such as when working with string
routines that expect null terminated strings, that the Clib methods make more sense and are more
consistent in a section of a script.

Each Clib method listed in Table 36 is paired with the equivalent methods in eScript. Because Siebel
eScript and the ECMAScript standard are developing and growing, the eScript methods are always
to be preferred over equivalent methods in the Clib object.

Table 36. Correspondence Between Clib and ECMAScript Methods

Clib
Method Description eScript Method

abs() Calculates absolute value Math.abs()

acos() Calculates the arc cosine Math.acos()

asin() Calculates the arc sine Math.asin()

atan() Calculates the arc tangent Math.atan()

atan2() Calculates the arc tangent of a fraction Math.atan2()

atof() Converts a string to a floating-point number Automatic conversion

atoi() Converts a string to an integer Automatic conversion

atol() Converts a string to a long integer Automatic conversion

ceil() Rounds a number up to the nearest integer Math.ceil()

cos() Calculates the cosine Math.cos()

exp() Computes the exponential function Math.exp()

fabs() Computes the absolute value of a floating-point
number

Math.abs()

floor() Rounds a number down to the nearest integer Math.floor()

fmod() Calculates the remainder % operator, modulo

labs() Returns the absolute value of a long Math.abs()

log() Calculates the natural logarithm Math.log()

max() Returns the largest of one or more values Math.max()

min() Returns the smallest of one or more values Math.min()

pow() Calculates x to the power of y Math.pow()

sin() Calculates the sine Math.sin()

sqrt() Calculates the square root Math.sqrt()
Siebel eScript Language Reference Version 7.8, Rev. A164

Siebel eScript Commands ■ The Clib Object String Methods
The Clib Object String Methods
Siebel eScript has the following string methods for the Clib object.

■ “Clib.rsprintf() Method” on page 166

■ “Clib.sprintf() Method” on page 166

■ “Clib.strchr() Method” on page 168

■ “Clib.strcspn() Method” on page 169

■ “Clib.stricmp() Method and Clib.strcmpi() Method” on page 170

■ “Clib.strlwr() Method” on page 171

■ “Clib.strncat() Method” on page 171

■ “Clib.strncmp() Method” on page 172

■ “Clib.strncmpi() Method and Clib.strnicmp() Method” on page 173

■ “Clib.strncpy() Method” on page 173

■ “Clib.strpbrk() Method” on page 174

■ “Clib.strrchr() Method” on page 175

■ “Clib.strspn() Method” on page 176

■ “Clib.strstr() Method” on page 177

■ “Clib.strstri() Method” on page 178

strcat() Appends one string to another + operator

strcmp() Compares two strings == operator

strcpy() Copies a string = operator

strlen() Gets the length of a string string.length

strlwr() Converts a string to lowercase string.toLowerCase

strtod() Converts a string to decimal Automatic conversion

strtol() Converts a string to long Automatic conversion

strupr() Converts a string to uppercase string.toUpperCase

tan() Calculates the tangent Math.tan()

tolower() Converts a character to lowercase string.toLowerCase

toupper() Converts a character to uppercase string.toUpperCase

Table 36. Correspondence Between Clib and ECMAScript Methods

Clib
Method Description eScript Method
Siebel eScript Language Reference Version 7.8, Rev. A 165

Siebel eScript Commands ■ The Clib Object String Methods
Clib.rsprintf() Method
This method returns a formatted string.

Syntax
Clib.rsprintf([formatString] [,var1, var2, ..., varn])

Returns
A string formatted according to formatString.

Usage
Clib.rsprintf() can return string or numeric literals that appear as parameters.

The format string contains character combinations indicating how following parameters are to be
treated. For information on format strings used with Clib.rsprintf(), see Table 33 on page 153 in the
section “Clib.asctime() Method” on page 180. If there are variable parameters, the number of
formatting sequences must match the number of variables.

Characters are returned as read until a percent character (%) is reached. The percent character
indicates that a value is to be printed from the parameters following the format string.

Example
Each of the following lines shows an rsprintf example followed by the resulting string:

var TempStr = Clib.rsprintf("I count: %d %d %d.",1,2,3) //"I count: 1 2 3"
var a = 1;
var b = 2;
TempStr = Clib.rsprintf("%d %d %d",a, b, a+b) //"1 2 3"

See Also
“Clib.sprintf() Method” on page 166

Clib.sprintf() Method
This method writes output to a string variable according to a prescribed format.

Parameter Description

formatString A string indicating how variable or literal parameters are to be treated

var1, var2, ..., varn Variables to be printed using the formatString
Siebel eScript Language Reference Version 7.8, Rev. A166

Siebel eScript Commands ■ The Clib Object String Methods
Syntax
Clib.sprintf(stringVar, formatString, var1, var2, ..., varn)

Returns
The number of characters written into buffer if successful; otherwise, EOF.

Usage
This method formats the values in the variables according to formatString and assigns the result to
stringVar. The formatString contains character combinations indicating how following parameters are
to be treated. For information on format strings used with Clib.sprintf(), see Table 33 on page 153 in
the section “Clib.asctime() Method” on page 180. The string value need not be previously defined; it
is created large enough to hold the result. Characters are printed as read to standard output until a
percent character (%) is reached. The percent character indicates that a value is to be printed from
the parameters following the format string.

Example
The following examples show Clib.sprintf() used with various format string parameters. Trace file
output follows after the script.

TheApplication().TraceOn("c:\\eScript_trace.txt","allocation","all");

var a, b, c;
a = 5;
b = 2;

Clib.sprintf(c, "First # %d + Second # %d is equal to %03d",a,b, a+b);
TheApplication().Trace("Output : " + c);

Clib.sprintf(c, "\n First # %d \n Second # %d \n => %d",12,16, 12+16)
TheApplication().Trace("Output : " + c);

var x, y, z, n;
var x = "Ali is 25 years old";
var y = "he lives in Ireland.";
var n = Clib.sprintf(z, "\n %s and %s",x,y) ;

TheApplication().Trace("Output : " + z);
TheApplication().Trace("Total characters: " + n);

var a = 16.51;
var b = 5.79;
var c;

Parameter Description

stringVar The string variable to which the output is assigned

formatString A string indicating how variable or literal parameters are to be treated

 var1, var2, ..., varn Variables to be formatted using the formatString
Siebel eScript Language Reference Version 7.8, Rev. A 167

Siebel eScript Commands ■ The Clib Object String Methods
Clib.sprintf(c, "%.3f / %.3f is equal to %0.3f",a,b, parseFloat(a/b));
TheApplication().Trace("Output : " + c);

TheApplication().TraceOff();

The script produces the following trace output.

02/18/04,18:37:35,START,7.5.3 [16157] LANG_INDEPENDENT,SADMIN,3964,3836
02/18/04,18:37:35,COMMENT,Output : First # 5 + Second # 2 is equal to 007
02/18/04,18:37:35,COMMENT,"Output :
 First # 12
 Second # 16
 => 28"
02/18/04,18:37:35,COMMENT,"Output :
 Ali is 25 years old and he lives in Ireland."
02/18/04,18:37:35,COMMENT,Total characters: 46
02/18/04,18:37:35,COMMENT,Output : 16.510 + 5.790 is equal to 2.851
02/18/04,18:37:35,STOP

See Also
“Clib.rsprintf() Method” on page 166

Clib.strchr() Method
This method searches a string for a specified character.

Syntax
Clib.strchr(string, char)

Returns
The offset from the beginning of string of the first occurrence of char in string; otherwise, null if char
is not found in string. The return value is zero-based. The first character is zero, the second is 1, and
so on.

Usage
This method searches the parameter string for the character char. When possible, you should use
the standard JavaScript method substring(). For more information see “String replace() Method” on
page 302.

Parameter Description

string A string literal, or string variable, containing the character which is to be searched

char The character to be searched
Siebel eScript Language Reference Version 7.8, Rev. A168

Siebel eScript Commands ■ The Clib Object String Methods
Example
The following code fragment:

var str = "I can't stand soggy cereal."
var substr = Clib.strchr(str, 's');
TheApplication().RaiseErrorText("str = " + str + "\nsubstr = " + substr);

results in the following output.

I can't stand soggy cereal.
stand soggy cereal.

See Also
“Clib.strcspn() Method” on page 169
“Clib.strpbrk() Method” on page 174
“Clib.strrchr() Method” on page 175
“String replace() Method” on page 302

Clib.strcspn() Method
This method searches a string for any of a group of specified characters.

Syntax
Clib.strcspn(string, charSet)

Returns
If no matching characters are found, the length of the string; otherwise, the offset of the first
matching character from the beginning of string. The return value is zero-based. The first character
is zero, the second is 1, and so on.

Usage
This method searches the parameter string for any of the characters in the string charSet, and
returns the offset of that character. This method is similar to Clib.strpbrk(), except that Clib.strpbrk()
returns the string beginning at the first character found, while Clib.strcspn() returns the offset
number for that character.

When possible, you should use the standard JavaScript method substring() (see “String replace()
Method” on page 302).

Parameter Description

string A literal string, or a variable containing a string, to be searched

charSet A literal string, or a variable containing a string, which contains the set of
characters to be searched
Siebel eScript Language Reference Version 7.8, Rev. A 169

Siebel eScript Commands ■ The Clib Object String Methods
Example
The following fragment demonstrates the difference between Clib.strcspn() and Clib.strpbrk():

var string = "There's more than one way to climb a mountain.";
var rStrpbrk = Clib.strpbrk(string, "dxb8w9k!");
var rStrcspn = Clib.strcspn(string, "dxb8w9k!");
TheApplication().RaiseErrorText("The string is: " + string +

"\nstrpbrk returns a string: " + rStrpbrk +
"\nstrcspn returns an integer: " + rStrcspn);

This code results in the following output:

The string is: There’s more than one way to climb a mountain.
strpbrk returns a string: way to climb a mountain.
strcspn returns an integer: 22

See Also
“Clib.strchr() Method” on page 168
“Clib.strpbrk() Method” on page 174
“String replace() Method” on page 302

Clib.stricmp() Method and Clib.strcmpi() Method
These methods make a case-insensitive comparison of two strings.

Syntax
Clib.stricmp(string1, string2)
Clib.strcmpi(string1, string2)

Returns
The result of the comparison, which is 0 if the strings are identical, a negative number if the ASCII
code of the first unmatched character in string1 is less than that of the first unmatched character in
string2, or a positive number if the ASCII code of the first unmatched character in string1 is greater
than that of the first unmatched character in string2.

Usage
These methods continue to make a case-insensitive comparison, one byte at a time, of string1 and
string2 until there is a mismatch or the terminating null byte is reached.

Parameter Description

string1 A string, or a variable containing a string, to be compared with string2

string2 A string, or a variable containing a string, to be compared with string1
Siebel eScript Language Reference Version 7.8, Rev. A170

Siebel eScript Commands ■ The Clib Object String Methods
See Also
“Clib.strncmp() Method” on page 172
“Clib.strncmpi() Method and Clib.strnicmp() Method” on page 173

Clib.strlwr() Method
This method converts a string to lowercase.

Syntax
Clib.strlwr(str)

Returns
String - the value of str after conversion of case.

Usage
This method converts uppercase letters in str to lowercase, starting at str[0] and ending before the
terminating null byte. The return is the value of str, which is a variable pointing to the start of str at
str[0].

Clib.strncat() Method
This method appends a specified number of characters from one string to another string.

Syntax
Clib.strncat(destString, sourceString, maxLen)

Returns
The string in destString after the characters have been appended.

Parameter Description

str The string in which to change case of characters to lowercase.

Parameter Description

destString The string to which characters are to be added

sourceString The string from which characters are to be added

maxLen The maximum number of characters to add
Siebel eScript Language Reference Version 7.8, Rev. A 171

Siebel eScript Commands ■ The Clib Object String Methods
Usage
This method appends up to maxLen characters of sourceString onto the end of destString. Characters
following a null byte in sourceString are not copied. The length of destString is the lesser of maxLen
and the length of sourceString.

Example
This example returns the string "I love to ride hang-gliders":

var string1 = "I love to ";
var string2 = "ride hang-gliders and motor scooters.";
Clib.strncat(string1, string2, 17);
TheApplication().RaiseErrorText(string1);

See Also
“Clib.strncpy() Method” on page 173

Clib.strncmp() Method
This method makes a case-sensitive comparison of two strings up to a specified number of bytes
until there is a mismatch or it reaches the end of a string.

Syntax
Clib.strncmp(string1, string2, maxLen)

Returns
The result of the comparison, which is 0 if the strings are identical, a negative number if the ASCII
code of the first unmatched character in string1 is less than that of the first unmatched character in
string2, or a positive number if the ASCII code of the first unmatched character in string1 is greater
than that of the first unmatched character in string2.

Usage
This method compares up to maxLen bytes of string1 against string2 until there is a mismatch or it
reaches the end of a string. The comparison is case sensitive. The comparison ends when maxLen
bytes have been compared or when a terminating null byte has been reached, whichever comes first.

Parameter Description

string1 A string, or a variable containing a string, to be compared with string2

string2 A string, or a variable containing a string, to be compared with string1

maxLen The number of bytes to compare
Siebel eScript Language Reference Version 7.8, Rev. A172

Siebel eScript Commands ■ The Clib Object String Methods
See Also
“Clib.stricmp() Method and Clib.strcmpi() Method” on page 170
“Clib.strncmpi() Method and Clib.strnicmp() Method” on page 173

Clib.strncmpi() Method and Clib.strnicmp() Method
These methods make a case-insensitive comparison between two strings, up to a specified number
of bytes.

Syntax
Clib.strncmpi(string1, string2, maxLen)
Clib.strncmpi(string1, string2, maxLen)

Returns
The result of the comparison, which is 0 if the strings are identical, a negative number if the ASCII
code of the first unmatched character in string1 is less than that of the first unmatched character in
string2, or a positive number if the ASCII code of the first unmatched character in string1 is greater
than that of the first unmatched character in string2.

Usage
This method compares up to maxLen bytes of string1 against string2 until there is a mismatch or it
reaches the end of a string. This method does a case-insensitive comparison, so that A and a are
considered to be the same. The comparison ends when maxLen bytes have been compared or when
an end of string has been reached, whichever comes first.

See Also
“Clib.stricmp() Method and Clib.strcmpi() Method” on page 170
“Clib.strncmp() Method” on page 172

Clib.strncpy() Method
This method copies a specified number of characters from one string to another.

Parameter Description

string1 A string, or a variable containing a string, to be compared with string2

string2 A string, or a variable containing a string, to be compared with string1

maxLen The number of bytes to compare
Siebel eScript Language Reference Version 7.8, Rev. A 173

Siebel eScript Commands ■ The Clib Object String Methods
Syntax
Clib.strncpy(destString, sourceString, maxLen)

Returns
The ASCII code of the first character of destString.

Usage
This method copies characters from sourceString to destString. The number of characters copied is
the lesser of maxLen and the length of sourceString. If MaxLen is greater than the length of
sourceString, the remainder of destString is filled with null bytes. A null byte is appended to
destString if MaxLen bytes are copied. If destString is not already defined, the function defines it. It
is safe to copy from one part of a string to another part of the same string.

See Also
“Clib.strncat() Method” on page 171

Clib.strpbrk() Method
This method searches a string for any of several specified characters and returns the string beginning
at the first instance of one of the specified characters.

Syntax
Clib.strpbrk(string, charSet)

Returns
The string beginning at the first instance of one of the specified characters in the charSet parameter;
otherwise, null, if none is found.

Parameter Description

destString The string to which characters are to be added

sourceString The string from which characters are to be read

maxLen The maximum number of characters to add

Parameter Description

string A string variable or literal containing the string from which the substring is to be
extracted

charSet A string variable or literal containing a group of characters, any one of which may
be the starting character for the substring
Siebel eScript Language Reference Version 7.8, Rev. A174

Siebel eScript Commands ■ The Clib Object String Methods
Usage
This method searches string for any of the characters specified in charSet.

When possible, you should use the standard JavaScript method substring(). For more information,
see “String replace() Method” on page 302.

Example
For an example using this function, see “Clib.strcspn() Method” on page 169. To accomplish the same
result using standard JavaScript methods, see “String replace() Method” on page 302.

See Also
“Clib.strchr() Method” on page 168
“Clib.strcspn() Method” on page 169
“String replace() Method” on page 302

Clib.strrchr() Method
This method searches a string for the last occurrence of a character in a given string.

Syntax
Clib.strrchr(string, char)

Returns
This function returns the substring of string beginning at the rightmost occurence of char and ending
with the rightmost character in string. If char is not found in string, the function returns null.

Usage
This method searches the parameter string for the character char. The search is in the reverse
direction, from the right, for char in string.

When possible, you should use the standard JavaScript method substring() (see “String replace()
Method” on page 302).

Example
The following code fragment:

Parameter Description

string A string literal, or string variable, containing the character to be searched for

char The character to search for
Siebel eScript Language Reference Version 7.8, Rev. A 175

Siebel eScript Commands ■ The Clib Object String Methods
var str = "I don’t like soggy cereal."
var substr = Clib.strrchr(str, 'o');
TheApplication().RaiseErrorText("str = " + str + "\nsubstr = " + substr);

results in the following output:

str = I don’t like soggy cereal.
substr = oggy cereal.

See Also
“Clib.strchr() Method” on page 168
“Clib.strcspn() Method” on page 169|
“Clib.strpbrk() Method” on page 174
“String replace() Method” on page 302

Clib.strspn() Method
This method searches a string for characters that are not among a group of specified characters.

Syntax
Clib.strspn(string, charSet)

Returns
If all matching characters are found, the length of the string; otherwise, the offset of the first
character in string that is not a member of charSet.

Usage
This method searches the characters from the beginning of string, then returns the offset of the first
character that is not a member of charSet. The search is case sensitive, so you may have to include
both uppercase and lowercase instances of characters in charSet.

This method is similar to Clib.strpbrk(), except that Clib.strpbrk() returns the string beginning at the
first character found, while Clib.strspn() returns the offset number for that character.

When possible, you should use the standard JavaScript method substring() (see “String replace()
Method” on page 302).

Parameter Description

string A literal string, or a variable containing a string, to be searched

charSet A literal string, or a variable containing a string, which contains the set of
characters to search for
Siebel eScript Language Reference Version 7.8, Rev. A176

Siebel eScript Commands ■ The Clib Object String Methods
Example
The following fragment demonstrates Clib.strspn(). When searching string, it returns the position
of the w, counting from 0.

var string = "There is more than one way to swim.";
var rStrspn = Clib.strspn(string, " aeiouTthrsmn");
TheApplication().RaiseErrorText("strspn returns an integer: " + rStrspn);

This results in the following output:

strspn returns an integer: 23

See Also
“Clib.strchr() Method” on page 168
“Clib.strcspn() Method” on page 169
“Clib.strpbrk() Method” on page 174
“String replace() Method” on page 302

Clib.strstr() Method
This method searches a string for the first occurrence of a second string.

Syntax
Clib.strstr(sourceString, findString)

Returns
The string beginning at the first occurrence of findString in sourceString, continuing to the end of
sourceString; otherwise, null, if findString is not found.

Usage
This method searches sourceString, from its beginning, for the first occurrence of findString. The
search is case sensitive. If the desired result can be accomplished with the standard JavaScript
substring() method, that method is preferred.

Example
The following code:

function Test1_Click ()
{

var str = "We have to go to Haverford."

Parameter Description

sourceString The string within which to search

findString The string to find
Siebel eScript Language Reference Version 7.8, Rev. A 177

Siebel eScript Commands ■ The Clib Object String Methods
var substr = Clib.strstr(str, 'H');
TheApplication().RaiseErrorText("str = " + str + "\nsubstr = " +substr);

}

results in the following output:

str = We have to go to Haverford
substr = Haverford

See Also
“Clib.strstri() Method” on page 178
“String replace() Method” on page 302

Clib.strstri() Method
This method performs a case-insensitive search in a string for the first occurrence of a specified
substring.

Syntax
Clib.strstri(sourceString, findString)

Returns
The string beginning at the first occurrence of findString in sourceString, continuing to the end of
sourceString; otherwise, null if findString is not found.

Usage
This is a case-insensitive version of the substring() method. Compare the result with that shown in
the “Clib.strstr() Method” on page 177.

Example
The following code:

function Test_Click ()
{

var str = "We have to go to Haverford."
var substr = Clib.strstri(str, 'H');
TheApplication().RaiseErrorText("str = " + str + "\nsubstr = " +substr);

}

results in the following output:

Parameter Description

sourceString The string within which to search

findString The string to find
Siebel eScript Language Reference Version 7.8, Rev. A178

Siebel eScript Commands ■ The Time Object
str = We have to go to Haverford.
substr = have to go to Haverford.

See Also
“Clib.strstr() Method” on page 177
“String replace() Method” on page 302

The Time Object
The Clib object (like the Date object) represents time in two distinct ways: as an integral value (the
number of seconds passed since January 1, 1970) and as a Time object with properties for the day,
month, year, and so on. This Time object is distinct from the standard JavaScript Date object. You
cannot use Date object properties with a Time object or vice versa.

Note that the Time object differs from the Date object, although they contain similar data. The Time
object is for use with the other date and time functions in the Clib object. It has the integer properties
listed in Table 37.

The Clib Object Time Methods
In the methods listed in Table 38, Time represents a variable in the Time object format, while timeInt
represents an integer time value.

Table 37. Integer Properties of the Time Object

Value for timeInt Integer Property

tm_sec Second after the minute (from 0)

tm_min Minutes after the hour (from 0)

tm_hour Hour of the day (from 0)

tm_mday Day of the month (from 1)

tm_mon Month of the year (from 0)

tm_year Years since 1900 (from 0)

tm_wday Days since Sunday (from 0)

tm_yday Day of the year (from 0)

tm_isdst Daylight Savings Time flag
Siebel eScript Language Reference Version 7.8, Rev. A 179

Siebel eScript Commands ■ The Clib Object Time Methods
The Clib object supports the following time methods.

Clib.asctime() Method
This method returns a string representing the date and time extracted from a Time object.

Syntax
Clib.asctime(Time)

Returns
A string representing the date and time extracted from a Time object.

Usage
For details on the Time object, see “The Time Object” on page 179. The returned string has the format
Day Mon dd hh:mm:ss yyyy; for example, Wed Aug 10 13:21:56 2005.

Example
This script shows the difference between asctime() and mkdir() formats for time.

TheApplication().TraceOn("c:\\eScript_trace.txt","allocation","all");

var tm = Clib.localtime(Clib.time());
var tmStr = Clib.asctime(tm);

Table 38. Time Methods and the Objects They Return

Method Object Returned

Clib.asctime() Method Time

Clib.clock() Method CPU tick count

Clib.div() Method and Clib.ldiv() Method timeInt

Clib.difftime() Method timeInt

Clib.gmtime() Method timeInt

Clib.localtime() Method timeInt

Clib.mktime() Method Time

Clib.strftime() Method Time

Clib.tmpnam() Method timeInt

Parameter Description

Time A Time object
Siebel eScript Language Reference Version 7.8, Rev. A180

Siebel eScript Commands ■ The Clib Object Time Methods
var tmVal = Clib.mktime(tm);

TheApplication().Trace("Time String : " + tmStr);
TheApplication().Trace("Time Value : " + tmVal);

TheApplication().TraceOff();

The script produces trace output similar to the following.

03/05/04,12:26:30,START,7.5.3 [16157] LANG_INDEPENDENT,SADMIN,6532,6584
03/05/04,12:26:30,COMMENT,"Time String : Fri Mar 05 12:26:30 2004"
03/05/04,12:26:30,COMMENT,Time Value : 1078489590
03/05/04,12:26:30,STOP

See Also
“Clib.div() Method and Clib.ldiv() Method” on page 157
“Clib.gmtime() Method” on page 183
“Clib.localtime() Method” on page 184
“Clib.mktime() Method” on page 185
“getDate() Method” on page 199
“getTime() Method” on page 206
“getUTCDate() Method” on page 218

Clib.clock() Method
This method returns the current processor tick count.

Syntax
Clib.clock()

Returns
The current processor tick count.

Usage
The count starts at 0 when the Siebel application starts running and is incremented the number of
times per second determined by the operating system.

Clib.ctime() Method
This method returns a date-time value.
Siebel eScript Language Reference Version 7.8, Rev. A 181

Siebel eScript Commands ■ The Clib Object Time Methods
Syntax
Clib.ctime(timeInt)

Returns
A string representing date-time value, adjusted for the local time zone.

Usage
This method returns a string representing a date-time value, adjusted for the local time zone. It is
equivalent to:

Clib.asctime(Clib.localtime(timeInt));

where timeInt is a date-time value as returned by the Clib.time() function.

Example
The following line of code returns the current date and time as a string of the form Day Mon dd
hh:mm:ss yyyy:

TheApplication().RaiseErrorText(Clib.ctime(Clib.time()));

See Also
“Clib.asctime() Method” on page 180
“Clib.gmtime() Method” on page 183
“Clib.localtime() Method” on page 184
“Clib.tmpnam() Method” on page 151
“toLocaleString() Method and toString() Method” on page 215

Clib.difftime() Method
This method returns the difference in seconds between two times.

Syntax
Clib.difftime(timeInt1, timeInt0)

Parameter Description

timeInt A date-time value as returned by the Clib.time() function

Parameter Description

timeInt0 An integer time value as returned by the Clib.time() function

timeInt1 An integer time value as returned by the Clib.time() function
Siebel eScript Language Reference Version 7.8, Rev. A182

Siebel eScript Commands ■ The Clib Object Time Methods
Returns
The difference in seconds between timeInt0 and timeInt1.

Example
This example displays the difference in time, in seconds, between two times:

function difftime_Click ()
{

var first = Clib.time();
var second = Clib.time();

TheApplication().RaiseErrorText("Elapsed time is " +
Clib.difftime(second, first) + " seconds.");

}

See Also
“Clib.tmpnam() Method” on page 151
“Date.toSystem() Method” on page 199

Clib.gmtime() Method
This method converts an integer as returned by the Clib.time() function to a Time object representing
the current date and time expressed as Greenwich mean time (GMT).

Syntax
Clib.gmtime(timeInt)

Returns
A Time object representing the current date and time expressed as Greenwich mean time.

Usage
This method converts an integer as returned by the Clib.time() function to a Time object representing
the current date and time expressed as Greenwich mean time (GMT). For details on the Time object,
see “The Time Object” on page 179.

NOTE: The line of code
var now = Clib.asctime(Clib.gmtime(Clib.time())) + "GMT";

is exactly equivalent to the standard JavaScript construction
var aDate = new Date;

var now = aDate.toGMTString()

Wherever possible, the second form should be used.

Parameter Description

timeInt A date-time value as returned by the Clib.time() function
Siebel eScript Language Reference Version 7.8, Rev. A 183

Siebel eScript Commands ■ The Clib Object Time Methods
Example
The following line of code returns the current GMT date and time as a string in the form Day Mon dd
hh:mm:ss yyyy.

TheApplication().RaiseErrorText(Clib.asctime(Clib.gmtime(Clib.time())));

See Also
“Clib.asctime() Method” on page 180
“Clib.div() Method and Clib.ldiv() Method” on page 157
“Clib.localtime() Method” on page 184
“Clib.mktime() Method” on page 185
“getDate() Method” on page 199
“getTime() Method” on page 206
“getUTCDate() Method” on page 218
“toGMTString() Method” on page 214

Clib.localtime() Method
This method returns a value as a Time object.

Syntax
Clib.localtime(timeInt)

Returns
The value of timeInt as a Time object, as returned by the time() function.

Usage
This method returns the value timeInt (as returned by the time() function) as a Time object. For
details on the Time object, see “The Time Object” on page 179.

The line of code

var now = Clib.asctime(Clib.localtime(Clib.time()));

is exactly equivalent to the standard JavaScript construction

var aDate = new Date;
var now = aDate.toLocaleString()

Wherever possible, use the second form.

Parameter Description

timeInt A date-time value as returned by the Clib.time() function
Siebel eScript Language Reference Version 7.8, Rev. A184

Siebel eScript Commands ■ The Clib Object Time Methods
See Also
“Clib.asctime() Method” on page 180
“Clib.div() Method and Clib.ldiv() Method” on page 157
“Clib.gmtime() Method” on page 183
“Clib.mktime() Method” on page 185
“getDate() Method” on page 199
“getTime() Method” on page 206
“getUTCDate() Method” on page 218
“toLocaleString() Method and toString() Method” on page 215

Clib.mktime() Method
This method converts a Time object to the time format returned by Clib.time().

Syntax
Clib.mktime(Time)

Returns
An integer representation of the value stored in Time, or -1 if Time cannot be converted or
represented.

Usage
Undefined elements of Time are set to 0 before the conversion. This function is the inverse of
Clib.localtime(), which converts from a time integer to a Time object. For details on the Time object,
see “The Time Object” on page 179.

Example
This example shows a use of Clib.mktime in order to format a time so that it can be used with
Clib.difftime.

// create time object and set time to midnight:
var midnightObject = Clib.localtime(Clib.time());
midnightObject.tm_hour = 0;
midnightObject.tm_min = 0;
midnightObject.tm_sec = 0;

// use mktime to convert Time object to integer:
var midnight = Clib.mktime(midnightObject);

Parameter Description

Time A Time object
Siebel eScript Language Reference Version 7.8, Rev. A 185

Siebel eScript Commands ■ The Clib Object Time Methods
// difftime can now use this value:
var diff = Clib.difftime(Clib.time(), midnight);
TheApplication().Trace("Seconds since midnight: " + diff);

The script produces a trace output similar to this:

COMMENT,Seconds since midnight: 59627

See “Clib.asctime() Method” on page 180 for an example that shows the difference between asctime()
and mktime() formatting.

See Also
“Clib.asctime() Method” on page 180
“Clib.div() Method and Clib.ldiv() Method” on page 157
“Clib.gmtime() Method” on page 183
“Clib.localtime() Method” on page 184
“getDate() Method” on page 199
“getTime() Method” on page 206
“getUTCDate() Method” on page 218

Clib.strftime() Method
This method creates a string that describes the date, the time, or both, and stores it in a variable.

Syntax
Clib.strftime(stringVar, formatString, Time)

Returns
A formatted string as described by formatString.

Parameter Description

stringVar A variable to hold the string representation of the time

formatString A string that describes how the value stored in stringVar is formatted, using
the conversion characters listed in the Usage topic

Time A time object as returned by Clib.localtime()
Siebel eScript Language Reference Version 7.8, Rev. A186

Siebel eScript Commands ■ The Clib Object Time Methods
Usage
For details on the Time object, see “The Time Object” on page 179. The conversion characters in the
following table are used with Clib.strftime() to indicate time and date output.

Example
The following example displays the full day name and month name of the current day:

var TimeBuf;
Clib.strftime(TimeBuf,"Today is %A, and the month is %B",

Clib.localtime(Clib.time()));
TheApplication().RaiseErrorText(TimeBuf);

Character Description Example

%a Abbreviated weekday name Sun

%A Full weekday name Sunday

%b Abbreviated month name Dec

%B Full month name December

%c Date and time Dec 2 06:55:15 1979

%d Two-digit day of the month 02

%H Two-digit hour of the 24-hour day 06

%I Two-digit hour of the 12-hour day 06

%j Three-digit day of the year from 001 335

%m Two-digit month of the year from 01 12

%M Two-digit minute of the hour 55

%p AM or PM AM

%S Two-digit seconds of the minute 15

%U Two-digit week of the year where Sunday is the first
day of the week

48

%w Day of the week where Sunday is 0 0

%W Two-digit week of the year where Monday is the first
day of the week

47

%x The date Dec 2 1979

%X The time 06:55:15

%y Two-digit year of the century 79

%Y The year 1979

%Z The name of the time zone, if known EST

%% The percent character %
Siebel eScript Language Reference Version 7.8, Rev. A 187

Siebel eScript Commands ■ The Clib Object Time Methods
The display would be similar to:

Today is Friday, and the month is July

The following example shows the use of different conversion characters to format the value returned
by Clib.strftime.

TheApplication().TraceOn("c:\\eScript_trace.txt","allocation","all");

var tm, tmStrFmt;
tm = Clib.localtime(Clib.time());

Clib.strftime(tmStrFmt, "%m/%d/%Y",tm);
TheApplication().Trace("Time String Format: " + tmStrFmt);

Clib.strftime(tmStrFmt, "%A %B %d, %Y",tm);
TheApplication().Trace("Time String Format: " + tmStrFmt);

TheApplication().TraceOff();

The script produces trace output similar to the following.

03/05/04,12:44:01,START,7.5.3 [16157] LANG_INDEPENDENT,SADMIN,6848,6708
03/05/04,12:44:01,COMMENT,Time String Format: 03/05/2004
03/05/04,12:44:01,COMMENT,"Time String Format: Friday March 05, 2004"
03/05/04,12:44:01,STOP

See Also
“Clib.asctime() Method” on page 180
“Clib.localtime() Method” on page 184

Clib.time() Method
This method returns an integer representation of the current time.

Syntax
Clib.time([[var] timeInt])

Returns
An integer representation of the current time.

Parameter Description

timeInt A variable to hold the returned value, which must be declared if it has not
already been declared
Siebel eScript Language Reference Version 7.8, Rev. A188

Siebel eScript Commands ■ The Clib Object Uncategorized Methods
Usage
The format of the time is not specifically defined except that it represents the current time, to the
operating system's best approximation, and can be used in many other time-related functions. If
timeInt is supplied, it is set to equal the returned value.

Clib.time(timeInt) and timeInt = Clib.time() assign the current local time to timeInt.

Example
For examples, see “Clib.div() Method and Clib.ldiv() Method” on page 157, “Clib.difftime() Method” on
page 182, “Clib.gmtime() Method” on page 183, “Clib.localtime() Method” on page 184, and
“Clib.strftime() Method” on page 186.

See Also
“getDay() Method” on page 200
“Date.toSystem() Method” on page 199
“getDate() Method” on page 199

The Clib Object Uncategorized Methods
The following methods are uncategorized:

■ “Clib.bsearch() Method” on page 189

■ “Clib.getenv() Method” on page 191

■ “Clib.putenv() Method” on page 191

■ “Clib.qsort() Method” on page 192

■ “Clib.system() Method” on page 193

Clib.bsearch() Method
This method looks for an array variable that matches a specified item.

Syntax
Clib.bsearch(key, arrayToSort, [elementCount,] compareFunction)

Parameter Description

key The value to be searched

arrayToSort The name of the array to search

elementCount The number of array elements to search; if omitted, the entire array is
searched

compareFunction A user-defined function that can affect the sort order
Siebel eScript Language Reference Version 7.8, Rev. A 189

Siebel eScript Commands ■ The Clib Object Uncategorized Methods
Returns
An array variable that matches key, returning the variable if found, null if not.

Usage
Clib.bsearch() searches only through array elements with a positive index; array elements with
negative indices are ignored.

The compareFunction value must receive the key variable as its first parameter and a variable from
the array as its second parameter. If elementCount is not supplied, then the function searches the
entire array.

Example
The following example demonstrates the use of Clib.qsort() and Clib.bsearch() to locate a name and
related item in a list:

(general) (ListCompareFunction)
function ListCompareFunction(Item1, Item2)
{

return Clib.strcmpi(Item1[0], Item2[0]);
}

(general) (DoListSearch)
function DoListSearch()

// create array of names and favorite food
var list =
{

{“Brent”, “salad”},
{"Laura", "cheese" },
{ "Alby", "sugar" },
{ "Jonathan","pad thai" },
{ "Zaza", "grapefruit" },
{ "Jordan", "pizza" }

};

// sort the list
Clib.qsort(list, ListCompareFunction);
var Key = "brent";
// search for the name Brent in the list
var Found = Clib.bsearch(Key, list, ListCompareFunction);
// display name, or not found
if (Found != null)

TheApplication().RaiseErrorText(Clib.rsprintf
("%s's favorite food is %s\n", Found[0][0],Found[0][1]));

else
TheApplication().RaiseErrorText("Could not find name in list.");

}

See Also
“Clib.qsort() Method” on page 192
Siebel eScript Language Reference Version 7.8, Rev. A190

Siebel eScript Commands ■ The Clib Object Uncategorized Methods
Clib.getenv() Method
This method returns a specified environment variable string.

Syntax
Clib.getenv(varName)

Returns
The value of the named environment variable.

Usage
This method returns the value of an environment variable when given its name.

Example
TheApplication().RaiseErrorText("PATH= " + Clib.getenv("PATH"));

See Also
“Clib.putenv() Method” on page 191

Clib.putenv() Method
This method creates an environment variable, sets the value of an existing environment variable, or
removes an environment variable.

Syntax
Clib.putenv(varName, stringValue)

Returns
0 if successful; otherwise, -1.

Parameter Description

varName The name of an environment variable,
enclosed in quotes

Parameter Description

varName The name of an environment variable, enclosed in quotes

stringValue The value to be assigned to the environment variable,
enclosed in quotes
Siebel eScript Language Reference Version 7.8, Rev. A 191

Siebel eScript Commands ■ The Clib Object Uncategorized Methods
Usage
This method sets the environment variable varName to the value of stringValue. If stringValue is null,
then varName is removed from the environment.

The environment variable change persists only while the Siebel eScript code and its child processes
are executing. After execution, a previously existing variable reverts to its pre-script value. A
variable created by Clib.putenv() is destroyed automatically.

Example
The following script creates an environment variable and assigns it a value. It then traces the return
value to confirm that the variable was created.

TheApplication().TraceOn("c:\\eScript_trace.txt","allocation","all");
var a = Clib.putenv("TEST","test value");
TheApplication().Trace("TEST : " + a);
TheApplication().Trace("TEST= " + Clib.getenv("TEST");
TheApplication().TraceOff();

The script produces the following trace output.

03/05/04,16:56:28,START,7.5.3 [16157] LANG_INDEPENDENT,SADMIN,3388,7448
03/05/04,16:56:28,COMMENT,TEST : 0
03/05/04,16:56:28,COMMENT,TEST= test value
03/05/04,16:56:28,STOP

See Also
“Clib.getenv() Method” on page 191

Clib.qsort() Method
This method sorts elements in an array.

Syntax
Clib.qsort(array, [elementCount,]compareFunction)

Parameter Description

array An array to sort

elementCount The number of elements in the array, up to 65,536

compareFunction A user-defined function that can affect the sort order
Siebel eScript Language Reference Version 7.8, Rev. A192

Siebel eScript Commands ■ The Clib Object Uncategorized Methods
Usage
This method sorts elements in an array, starting from index 0 to elementCount-1. If elementCount
is not supplied, the method sorts the entire array. This method differs from the Array.sort() method
in that it can sort dynamically created arrays, whereas Array.sort() works only with arrays explicitly
created with a new Array statement.

Example
The following example prints a list of colors sorted in reverse alphabetical order, ignoring case:

// initialize an array of colors
var colors = { "yellow", "Blue", "GREEN", "purple", "RED",
"BLACK", "white", "orange" };
// sort the list using qsort and our ColorSorter routine
Clib.qsort(colors,"ReverseColorSorter");
// display the sorted colors
for (var i = 0; i <= getArrayLength(colors); i++)

Clib.puts(colors[i]);

function ReverseColorSorter(color1, color2)
// do a simple case insensitive string
// comparison, and reverse the results too
{

var CompareResult = Clib.stricmp(color1,color2)
return(_CompareResult);

}

The output of the preceding code would be:

yellow
white
RED
purple
orange
GREEN
Blue
BLACK

See Also
“Array sort() Method” on page 83

Clib.system() Method
This method passes a command to the command processor.
Siebel eScript Language Reference Version 7.8, Rev. A 193

Siebel eScript Commands ■ The Date Object
Syntax
Clib.system(commandString)

Returns
The value returned by the command processor.

Usage
This command passes a command to the operating system command processor and opens an
operating system window in which it executes. Upon completion of the command, the window closes.
An alternative that does not open a window is “SElib.dynamicLink() Method” on page 287.

The commandString value may be a formatted string followed by variables according to the rules
defined in Table 33 on page 153.

Example
The following code displays a directory in a DOS window.

Clib.system("dir /p C:\\Backup");

The Date Object
Siebel eScript provides two different systems for working with dates. One is the standard Date object
of JavaScript; the other is part of the Clib object, which implements powerful routines from C. Two
methods, Date.fromSystem() and Date.toSystem(), convert dates in the format of one system to the
format of the other. The standard JavaScript Date object is described in this section.

CAUTION: To prevent Y2K problems, avoid using two-digit dates in your eScript code. Siebel eScript
follows the ECMAScript standard for two-digit dates, which may be different from the conventions
used by other programs, including Siebel applications.

A specific instance of a variable followed by a period should precede the method name to call a
method. For example, if you had created the Date object aDate, the call to the .getDate() method
would be aDate.getDate(). Static methods have “Date.” at their beginnings because these methods
are called with a literal call, such as Date.parse(). These methods are part of the Date object itself
instead of instances of the Date object.

In this topic, dateVar stands for the name of a variable that you create to hold a date value.

See Also
“The Date Constructor in Siebel eScript” on page 195
“Universal Time Methods” on page 216

Parameter Description

commandString A valid operating system command
Siebel eScript Language Reference Version 7.8, Rev. A194

Siebel eScript Commands ■ The Date Object
The Date Constructor in Siebel eScript
The Date constructor instantiates a new Date object.

To create a Date object that is set to the current date and time, use the new operator, as you would
with any object.

Syntax A
var dateVar = new Date;

There are several ways to create a Date object that is set to a date and time. The following lines each
demonstrate ways to get and set dates and times.

Syntax B
var dateVar = new Date(milliseconds);

Syntax C
var dateVar = new Date(dateString);

Syntax D
var dateVar = new Date(year, month, day);

Syntax E
var dateVar = new Date(year, month, day, hours, minutes, seconds);

Parameter Description

milliseconds The number of milliseconds since January 1, 1970.

dateString A string representing a date and optional time.

year A year. If the year is between 1950 and 2050, you may supply only the final two
digits. Otherwise, four digits must be supplied. However, it is safest to always use
four digits to minimize the risk of Y2K problems.

month A month, specified as a number from 0 to 11. January is 0, and December is 11.

day A day of the month, specified as a number from 1 to 31. The first day of a month
is 1; the last is 28, 29, 30, or 31.

hours An hour, specified as a number from 0 to 23. Midnight is 0; 11 PM is 23.

minutes A minute, specified as a number from 0 to 59. The first minute of an hour is 0;
the last is 59.

seconds A second, specified as a number from 0 to 59. The first second of a minute is 0;
the last is 59.
Siebel eScript Language Reference Version 7.8, Rev. A 195

Siebel eScript Commands ■ Date and Time Methods
Returns
If a parameter is specified, a Date object representing the date specified by the parameter.

Usage
Syntax B returns a date and time represented by the number of milliseconds since midnight, January
1, 1970. This representation by milliseconds is a standard way of representing dates and times that
makes it simple to calculate the amount of time between one date and another. However, the
recommended technique is to convert dates to milliseconds format before doing calculations.

Syntax C accepts a string representing a date and optional time. The format of such a string contains
one or more of the following fields, in any order:

month day, year hours:minutes:seconds

For example, the following string:

"October 13, 1995 13:13:15"

specifies the date, October 13, 1995, and the time, one thirteen and 15 seconds PM, which,
expressed in 24-hour time, is 13:13 hours and 15 seconds. The time specification is optional; if it is
included, the seconds specification is optional.

Syntax forms D and E are self-explanatory. Parameters passed to them are integers.

Example
The following line of code:

var aDate = new Date(1802, 6, 23)

creates a Date object containing the date July 23, 1802.

Date and Time Methods
Siebel eScript provides the following date and time methods. In addition, there are special date and
time methods for working with Universal Time (UTC). For more information, see “Universal Time
Methods” on page 216.

■ “Date.fromSystem() Static Method” on page 197

■ “Date.parse() Static Method” on page 198

■ “Date.toSystem() Method” on page 199

■ “getDate() Method” on page 199

■ “getDay() Method” on page 200

■ “getFullYear() Method” on page 201

■ “getHours() Method” on page 202

■ “getMilliseconds() Method” on page 203

■ “getMinutes() Method” on page 203
Siebel eScript Language Reference Version 7.8, Rev. A196

Siebel eScript Commands ■ Date and Time Methods
■ “getMonth() Method” on page 204

■ “getSeconds() Method” on page 205

■ “getTime() Method” on page 206

■ “getTimezoneOffset() Method” on page 206

■ “getYear() Method” on page 207

■ “setDate() Method” on page 208

■ “setFullYear() Method” on page 208

■ “setHours() Method” on page 209

■ “setMilliseconds() Method” on page 209

■ “setMinutes() Method” on page 211

■ “setMonth() Method” on page 211

■ “setSeconds() Method” on page 212

■ “setTime() Method” on page 213

■ “setYear() Method” on page 214

■ “toGMTString() Method” on page 214

■ “toLocaleString() Method and toString() Method” on page 215

Date.fromSystem() Static Method
This method converts a time in the format returned by the Clib.time() method to a standard
JavaScript Date object.

Syntax
Date.fromSystem(time)

Usage
Date.fromSystem() is a static method, invoked using the Date constructor rather than a variable.

Example
To create a Date object from date information obtained using Clib, use code similar to:

var SysDate = Clib.time();
var ObjDate = Date.fromSystem(SysDate);

Parameter Description

time A variable holding a system date
Siebel eScript Language Reference Version 7.8, Rev. A 197

Siebel eScript Commands ■ Date and Time Methods
See Also
“Clib.tmpnam() Method” on page 151
“The Date Constructor in Siebel eScript” on page 195
“Date.toSystem() Method” on page 199
“The Time Object” on page 179

Date.parse() Static Method
This method converts a date string to a Date object.

Syntax
Date.parse(dateString)

Returns
A Date object representing the date in dateString.

Usage
Date.parse() is a static method, invoked using the Date constructor rather than a variable. The string
must be in the following format:

Friday, October 31, 1998 15:30:00 -0800

where the last number is the offset from Greenwich mean time. This format is used by the
dateVar.toGMTString() method and by email and Internet applications. The day of the week, time
zone, time specification, or seconds field may be omitted. The statement:

var aDate = Date.parse(dateString);

is equivalent to:

var aDate = new Date(dateString);

Example
The following code fragment yields the result 9098766000:

var aDate = Date.parse("Friday, October 31, 1998 15:30:00 -0220");
TheApplication().RaiseErrorText(aDate);

See Also
“The Date Constructor in Siebel eScript” on page 195

Parameter Description

dateString A string of the form weekday, Month dd, yyyy hh:mm:ss
Siebel eScript Language Reference Version 7.8, Rev. A198

Siebel eScript Commands ■ Date and Time Methods
Date.toSystem() Method
This method converts a Date object to a system time format that is the same as that returned by the
Clib.time() method.

Syntax
Date.toSystem()

Returns
A date value in the time format returned by the Clib.time() method.

Usage
To create a Date object from a variable in system time format, see “getDay() Method” on page 200.

Example
To convert a Date object to a system format that can be used by the methods of the Clib object, use
code similar to:

var SysDate = objDate.toSystem();

See Also
“getDay() Method” on page 200

getDate() Method
This method returns the day of the month of a Date object.

Syntax
dateVar.getDate()

Returns
The day of the month of dateVar as an integer from 1 to 31.

Usage
This method returns the day of the month of the Date object specified by dateVar, as an integer from
1 to 31. The first day of a month is 1; the last is 28, 29, 30, or 31.

Example
This example returns 7, the day part of the constructed Date object:
Siebel eScript Language Reference Version 7.8, Rev. A 199

Siebel eScript Commands ■ Date and Time Methods
function Button2_Click ()
{

var MyBirthdayDay = new Date("1958", "11", "7");
TheApplication().RaiseErrorText("My birthday is on day " +

MyBirthdayDay.getDate() + ".");
}

See Also
“getDay() Method” on page 200
“getFullYear() Method” on page 201
“getHours() Method” on page 202
“getMinutes() Method” on page 203
“getMonth() Method” on page 204
“getSeconds() Method” on page 205
“getTime() Method” on page 206
“getYear() Method” on page 207
“setDate() Method” on page 208

getDay() Method
This method returns the day of the week of a Date object.

Syntax
dateVar.getDay()

Returns
The day of the week of dateVar as a number from 0 to 6.

Usage
This method returns the day of the week of dateVar. Sunday is 0, and Saturday is 6. To get the name
of the corresponding weekday, create an array holding the names of the days of the week and
compare the return value to the array index, as shown in the following example.

Example
This example gets the day of the week on which New Year’s Day occurs and displays the result in a
message box.

function Button1_Click ()
{

var weekDay = new Array("Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday", "Saturday");

var NewYearsDay = new Date("2004", "1", "1");
var theYear = NewYearsDay.getFullYear()
var i = 0;
while (i < NewYearsDay.getDay())
Siebel eScript Language Reference Version 7.8, Rev. A200

Siebel eScript Commands ■ Date and Time Methods
{
i++;
var result = weekDay[i];

}
TheApplication().RaiseErrorText("New Year’s Day falls on " + result + " in " +

theYear + ".");
}

The result displayed in the message box is:

New Year’s Day falls on Thursday in 2004.

See Also
“getDate() Method” on page 199
“getFullYear() Method” on page 201
“getHours() Method” on page 202
“getMinutes() Method” on page 203
“getMonth() Method” on page 204
“getSeconds() Method” on page 205
“getTime() Method” on page 206
“getYear() Method” on page 207

getFullYear() Method
This method returns the year of a Date object as a number with four digits.

Syntax
dateVar.getFullYear()

Returns
The year as a four-digit number, of the Date object specified by dateVar.

Example
For examples, see “getDay() Method” on page 200, “setMilliseconds() Method” on page 209, and
“setTime() Method” on page 213.
Siebel eScript Language Reference Version 7.8, Rev. A 201

Siebel eScript Commands ■ Date and Time Methods
See Also
“getDate() Method” on page 199
“getDay() Method” on page 200
“getHours() Method” on page 202
“getMinutes() Method” on page 203
“getMonth() Method” on page 204
“getSeconds() Method” on page 205
“getTime() Method” on page 206
“getYear() Method” on page 207
“setFullYear() Method” on page 208

getHours() Method
This method returns the hour of a Date object.

Syntax
dateVar.getHours()

Returns
The hour portion of dateVar, as a number from 0 to 23.

Usage
This method returns the hour portion of dateVar as a number from 0 to 23. Midnight is 0, and 11 PM
is 23.

Example
This code fragment returns the number 12, the hours portion of the specified time.

var aDate = new Date("October 31, 1986 12:13:14");
TheApplication().RaiseErrorText(aDate.getHours());

See Also
“getDate() Method” on page 199
“getDay() Method” on page 200
“getFullYear() Method” on page 201
“getMinutes() Method” on page 203
“getMonth() Method” on page 204
“getSeconds() Method” on page 205
“getTime() Method” on page 206
“getYear() Method” on page 207
Siebel eScript Language Reference Version 7.8, Rev. A202

Siebel eScript Commands ■ Date and Time Methods
getMilliseconds() Method
This method returns the milliseconds part of a Date object.

Syntax
dateVar.getMilliseconds()

Returns
The millisecond of dateVar as a number from 0 to 999.

Usage
This method sets the millisecond of dateVar to millisecond. When given a date in millisecond form,
this method returns the last three digits of the millisecond date; or, if negative, the result of the last
three digits subtracted from 1000.

Example
This code fragment displays the time on the system clock. The number of milliseconds past the
beginning of the second appears at the end of the message.

var aDate = new Date;
TheApplication().RaiseErrorText(aDate.toString() + " " +

aDate.getMilliseconds());

See Also
“getDate() Method” on page 199
“getDay() Method” on page 200
“getFullYear() Method” on page 201
“getHours() Method” on page 202
“getMinutes() Method” on page 203
“getMonth() Method” on page 204
“getSeconds() Method” on page 205
“getTime() Method” on page 206
“getYear() Method” on page 207

getMinutes() Method
This method returns the minutes portion of a Date object.

Syntax
dateVar.getMinutes()
Siebel eScript Language Reference Version 7.8, Rev. A 203

Siebel eScript Commands ■ Date and Time Methods
Returns
The minutes portion of dateVar as a number from 0 to 59.

Usage
This method returns the minutes portion of dateVar as a number from 0 to 59. The first minute of
an hour is 0, and the last is 59.

Example
This code fragment returns the number 13, the minutes portion of the specified time.

var aDate = new Date("October 31, 1986 12:13:14");
TheApplication().RaiseErrorText(aDate.getMinutes());

See Also
“getDate() Method” on page 199
“getDay() Method” on page 200
“getFullYear() Method” on page 201
“getHours() Method” on page 202
“getMonth() Method” on page 204
“getSeconds() Method” on page 205
“getTime() Method” on page 206
“getYear() Method” on page 207

getMonth() Method
This method returns the month of a Date object.

Syntax
dateVar.getMonth()

Returns
The month portion of dateVar as a number from 0 to 11.

Usage
This method returns the month, as a number from 0 to 11, of dateVar. January is 0, and December
is 11.

Example
This code fragment returns the number 10, the result of adding 1 to the month portion of the
specified date.

var aDate = new Date("October 31, 1986 12:13:14");
TheApplication().RaiseErrorText(aDate.getMonth() + 1);
Siebel eScript Language Reference Version 7.8, Rev. A204

Siebel eScript Commands ■ Date and Time Methods
See Also
“getDate() Method” on page 199
“getDay() Method” on page 200
“getFullYear() Method” on page 201
“getHours() Method” on page 202
“getMinutes() Method” on page 203
“getSeconds() Method” on page 205
“getTime() Method” on page 206
“getYear() Method” on page 207

getSeconds() Method
This method returns the seconds portion of a Date object.

Syntax
dateVar.getSeconds()

Returns
The seconds portion of dateVar as a number from 0 to 59.

Usage
This method returns the seconds portion of dateVar. The first second of a minute is 0, and the last
is 59.

Example
This code fragment returns the number 14, the seconds portion of the specified date.

var aDate = new Date("October 31, 1986 12:13:14");
TheApplication().RaiseErrorText(aDate.getSeconds());

See Also
“getDate() Method” on page 199
“getDay() Method” on page 200
“getFullYear() Method” on page 201
“getHours() Method” on page 202
“getMinutes() Method” on page 203
“getMonth() Method” on page 204
“getTime() Method” on page 206
“getYear() Method” on page 207
Siebel eScript Language Reference Version 7.8, Rev. A 205

Siebel eScript Commands ■ Date and Time Methods
getTime() Method
This method returns the milliseconds representation of a Date object, in the form of an integer
representing the number of seconds between midnight on January 1, 1970, GMT, and the date and
time specified by a Date object.

Syntax
dateVar.getTime()

Returns
The milliseconds representation of dateVar.

Usage
This method returns the milliseconds representation of a Date object, in the form of an integer
representing the number of seconds between midnight on January 1, 1970, GMT, and the date and
time specified by dateVar.

Example
This code fragment returns the value 245594000. To convert this value to something more readily
interpreted, use the toLocaleString() method or the toGMTString() method.

var aDate = new Date("January 3, 1970 12:13:14");
TheApplication().RaiseErrorText(aDate.getTime());

See Also
“Clib.asctime() Method” on page 180
“Clib.gmtime() Method” on page 183
“Clib.localtime() Method” on page 184
“Clib.mktime() Method” on page 185
“getDate() Method” on page 199
“getDay() Method” on page 200
“getFullYear() Method” on page 201
“getHours() Method” on page 202
“getMinutes() Method” on page 203
“getMonth() Method” on page 204
“getSeconds() Method” on page 205
“getYear() Method” on page 207

getTimezoneOffset() Method
This method returns the difference, in minutes, between Greenwich mean time and local time.
Siebel eScript Language Reference Version 7.8, Rev. A206

Siebel eScript Commands ■ Date and Time Methods
Syntax
dateVar.getTimezoneOffset()

Returns
The difference, in minutes, between Greenwich mean time (GMT) and local time.

Example
This example calculates the difference from Greenwich mean time in hours, of your location, based
on the setting in the Windows Control Panel.

var aDate = new Date();
var hourDifference = Math.round(aDate.getTimezoneOffset() / 60);
TheApplication().RaiseErrorText("Your time zone is " +

hourDifference + " hours from GMT.");

See Also
“getDate() Method” on page 199
“getDay() Method” on page 200
“getFullYear() Method” on page 201
“getHours() Method” on page 202
“getMinutes() Method” on page 203
“getMonth() Method” on page 204
“getSeconds() Method” on page 205
“getTime() Method” on page 206
“getYear() Method” on page 207

getYear() Method
This method returns the year portion of a Date object as the offset from the base year 1900.

Syntax
dateVar.getYear()

Returns
This method returns the year portion of dateVar as the offset from the base year 1900. The offset is
positive for years after 1900 and is negative for years before 1900.

Usage
This method returns the year portion of dateVar as the offset from the base year 1900. For example,
if the value of dateVar is a date in the year 2004, then dateVar.getYear() = 104.
Siebel eScript Language Reference Version 7.8, Rev. A 207

Siebel eScript Commands ■ Date and Time Methods
See Also
“getFullYear() Method” on page 201
“getUTCFullYear() Method” on page 219
“setYear() Method” on page 214

setDate() Method
This method sets the day of a Date object to a specified day of the month.

Syntax
dateVar.setDate(dayOfMonth)

Usage
This method sets the day of dateVar to dayOfMonth as a number from 1 to 31. The first day of a
month is 1; the last is 28, 29, 30, or 31.

See Also
“getDate() Method” on page 199
“setUTCDate() Method” on page 223

setFullYear() Method
This method sets the year of a Date object to a specified four-digit year.

Syntax
dateVar.setFullYear(year[, month[, date]])

Usage
This method sets the year of dateVar to year. Optionally, it can set the month of year to month, and
the date of month to date. The year must be expressed in four digits.

Parameter Description

dayOfMonth The day of the month to which to set dateVar as an integer from 1 through 31

Parameter Description

year The year to which to set dateVar as a four-digit integer

month The month to which to set year as an integer from 0 to 11

date The date of month to which to set dateVar as an integer from 1 to 31
Siebel eScript Language Reference Version 7.8, Rev. A208

Siebel eScript Commands ■ Date and Time Methods
See Also
“getFullYear() Method” on page 201
“setDate() Method” on page 208
“setMonth() Method” on page 211
“setUTCFullYear() Method” on page 223
“setYear() Method” on page 214

setHours() Method
This method sets the hour of a Date object to a specific hour of a 24-hour clock.

Syntax
dateVar.setHours(hour[, minute[, second[, millisecond]]])

Usage
This method sets the hour of dateVar to hour, expressed as a number from 0 to 23. It can optionally
also set the UTC minute, second, and millisecond. Midnight is expressed as 0, and 11 PM as 23.

See Also
“getHours() Method” on page 202
“setMilliseconds() Method” on page 209
“setMinutes() Method” on page 211
“setSeconds() Method” on page 212
“setUTCHours() Method” on page 224

setMilliseconds() Method
This method sets the millisecond of a Date object to a date expressed in milliseconds relative to the
system time.

Parameter Description

hour The hour to which to set dateVar as an integer from 0 through 23

minute The minute of hour to which to set dateVar as an integer from 0 through 59

second The second of minute to which to set dateVar as an integer from 0 through 59

millisecond The millisecond of second to which to set dateVar as an integer from 0 through 999
Siebel eScript Language Reference Version 7.8, Rev. A 209

Siebel eScript Commands ■ Date and Time Methods
Syntax
dateVar.setMilliseconds(millisecond)

Returns
A date

Usage
This method sets the millisecond of dateVar to millisecond. The value of dateVar becomes equivalent
to the number of milliseconds from the time on the system clock. Use a positive number for later
times, a negative number for earlier times.

Example
This example accepts a number of milliseconds as input and converts it to the date relative to the
date and time in the computer’s clock.

function test2_Click ()
{

var aDate = new Date;
var milli = 7200000;
aDate.setMilliseconds(milli);
var aYear = aDate.getFullYear();
var aMonth = aDate.getMonth() + 1;
var aDay = aDate.getDate();
var anHour = aDate.getHours();

switch(anHour)
{

case 0:
anHour = " 12 midnight.";
break;

case 12:
anHour = " 12 noon.";
break;

default:
if (anHour > 11)

anHour = (anHour - 12) + " P.M.";
else

anHour = anHour + " A.M.";
}

TheApplication().RaiseErrorText("The specified date is " + aMonth + "/" + aDay +
"/" + aYear + " at " + anHour);
}

7200000 milliseconds is two hours, so if you run this routine on November 22, 2005 sometime
between 3 and 4 P.M., you get the following result:

Parameter Description

millisecond The millisecond to which dateVar should be set as a positive or negative integer
Siebel eScript Language Reference Version 7.8, Rev. A210

Siebel eScript Commands ■ Date and Time Methods
The specified date is 11/22/2005 at 5 P.M.

See Also
“getMilliseconds() Method” on page 203
“setTime() Method” on page 213
“setUTCMilliseconds() Method” on page 225

setMinutes() Method
This method sets the minute of a Date object to a specified minute.

Syntax
dateVar.setMinutes(minute[, second[, millisecond]])

Usage
This method sets the minute of dateVar to minute and optionally sets minute to a specific second
and millisecond. The first minute of an hour is 0, and the last is 59.

See Also
“getMinutes() Method” on page 203
“setMilliseconds() Method” on page 209
“setSeconds() Method” on page 212
“setUTCMinutes() Method” on page 226

setMonth() Method
This method sets the month of a Date object to a specific month.

Parameter Description

minute The minute to which to set dateVar as an integer from 0 through 59

second The second to which to set minute as an integer from 0 through 59

millisecond The millisecond to which to set second as an integer from 0 through 999
Siebel eScript Language Reference Version 7.8, Rev. A 211

Siebel eScript Commands ■ Date and Time Methods
Syntax
dateVar.setMonth(month[, date])

Usage
This method sets the month of dateVar to month as a number from 0 to 11 and optionally sets the
day of month to date. January is represented by 0, and December by 11.

See Also
“getMonth() Method” on page 204
“setDate() Method” on page 208
“setUTCMonth() Method” on page 227

setSeconds() Method
This method sets the second in a Date object.

Syntax
dateVar.setSeconds(second[, millisecond])

Usage
This method sets the second of dateVar to second and optionally sets second to a specific
millisecond. The first second of a minute is 0, and the last is 59.

See Also
“getSeconds() Method” on page 205
“setMilliseconds() Method” on page 209
“setUTCSeconds() Method” on page 227

Parameter Description

month The month to which to set dateVar as an integer from 0 to 11

date The date of month to which to set dateVar as an integer from 1 to 31

Parameter Description

second The minute to which to set dateVar as an integer from 0 through 59

millisecond The millisecond to which to set second as an integer from 0 through 999
Siebel eScript Language Reference Version 7.8, Rev. A212

Siebel eScript Commands ■ Date and Time Methods
setTime() Method
This method sets a Date object to a date and time specified by the number of milliseconds before or
after January 1, 1970.

Syntax
dateVar.setTime(milliseconds)

Usage
This method sets dateVar to a date that is milliseconds milliseconds from January 1, 1970, GMT. To
set a date earlier than that date, use a negative number.

Example
This example accepts a number of milliseconds as input and converts it to a date and hour.

function dateBtn_Click ()
{

var aDate = new Date;
var milli = -4000;
aDate.setTime(milli);
var aYear = aDate.getFullYear();
var aMonth = aDate.getMonth() + 1;
var aDay = aDate.getDate();
var anHour = aDate.getHours();

switch(anHour)
{

case 0:
anHour = " 12 midnight.";
break;

case 12:
anHour = " 12 noon.";
break;

default:
if (anHour > 11)

anHour = (anHour - 12) + " P.M.";
else

anHour = anHour + " A.M.";
}

TheApplication().RaiseErrorText("The specified date is " +
aMonth + "/" + aDay + "/" + aYear + " at " + anHour);

}

Example, if you enter a value of -345650, the result is:

Parameter Description

milliseconds The number of milliseconds from midnight on January 1, 1970, GMT
Siebel eScript Language Reference Version 7.8, Rev. A 213

Siebel eScript Commands ■ Date and Time Methods
The specified date is 12/31/1969 at 3 P.M.

See Also
“getTime() Method” on page 206

setYear() Method
This method sets the year of a Date object as a specified two-digit or four-digit year.

Syntax
dateVar.setYear(year)

Usage
The parameter year may be expressed with two digits for a year in the twentieth century, the 1900s.
Four digits are necessary for any other century.

See Also
“getFullYear() Method” on page 201
“getYear() Method” on page 207
“setFullYear() Method” on page 208
“setUTCFullYear() Method” on page 223

toGMTString() Method
This method converts a Date object to a string, based on Greenwich mean time.

Syntax
dateVar.toGMTString()

Returns
The date to which dateVar is set as a string of the form Day Mon dd hh:mm:ss yyyy GMT.

Example
This example accepts a number of milliseconds as input and converts it to the GMT time represented
by the number of milliseconds before or after the time on the computer’s clock.

Parameter Description

year The year to which to set dateVar as a two-digit integer for twentieth-century
years, otherwise as a four-digit integer
Siebel eScript Language Reference Version 7.8, Rev. A214

Siebel eScript Commands ■ Date and Time Methods
function clickme_Click ()
{

var aDate = new Date;
var milli = 200000;
aDate.setUTCMilliseconds(milli);
TheApplication().RaiseErrorText(aDate.toGMTString());

}

See Also
“Clib.asctime() Method” on page 180
“toLocaleString() Method and toString() Method” on page 215
“toUTCString() Method” on page 228

toLocaleString() Method and toString() Method
These methods return a string representing the date and time of a Date object based on the time
zone of the computer running the script.

Syntax
dateVar.toLocaleString()
dateVar.toString()

Returns
A string representing the date and time of dateVar based on the time zone of the computer running
the script, in the form Day Mon dd hh:mm:ss yyyy.

Usage
These methods return a string representing the date and time of a Date object based on the local
time zone of the computer running the script. If the code is implemented in eScript, then the code
runs on a server. The server may or may not be in the same time zone as the user. If the code is
implemented in JavaScript, then the code runs on the user’s computer and uses that computer’s time
zone.

Example
This example displays the local time from the computer’s clock, the Universal time (UTC), and the
Greenwich mean time (GMT).

var aDate = new Date();
var local = aDate.toLocaleString();
var universal = aDate.toUTCString();
var greenwich = aDate.toGMTString();
TheApplication().RaiseErrorText("Local date is " + local +

"\nUTC date is " + universal +
"\nGMT date is " + greenwich);
Siebel eScript Language Reference Version 7.8, Rev. A 215

Siebel eScript Commands ■ Universal Time Methods
The result appears in a message box similar to the following:

Local date is Fri Aug 12 15:45:52 2005
UTC date is Fri Aug 12 23:45:52 2005 GMT
GMT date is Fri Aug 12 23:45:52 2005 GMT

See Also
“Clib.asctime() Method” on page 180
“Clib.gmtime() Method” on page 183
“Clib.localtime() Method” on page 184
“toGMTString() Method” on page 214
“toUTCString() Method” on page 228

Universal Time Methods
Siebel eScript has methods for both Greenwich mean time (abbreviated GMT) date and time, and for
Universal Coordinated Time (abbreviated as UTC). GMT dates and times observe daylight savings
time, whereas UTC dates and times do not. UTC nominally reflects the mean solar time along the
Earth's prime meridian (0 degrees longitude, which runs through the Greenwich Observatory outside
of London). UTC is also known as World Time and Universal Time. It is a time standard used
everywhere in the world.

Siebel eScript includes the following Date and time functions for working with UTC values.

■ “Date.UTC() Static Method” on page 217

■ “getUTCDate() Method” on page 218

■ “getUTCDay() Method” on page 218

■ “getUTCFullYear() Method” on page 219

■ “getUTCHours() Method” on page 220

■ “getUTCMilliseconds() Method” on page 220

■ “getUTCMinutes() Method” on page 221

■ “getUTCMonth() Method” on page 221

■ “getUTCSeconds() Method” on page 222

■ “setUTCDate() Method” on page 223

■ “setUTCFullYear() Method” on page 223

■ “setUTCHours() Method” on page 224

■ “setUTCMilliseconds() Method” on page 225

■ “setUTCMinutes() Method” on page 226

■ “setUTCMonth() Method” on page 227

■ “setUTCSeconds() Method” on page 227

■ “toUTCString() Method” on page 228
Siebel eScript Language Reference Version 7.8, Rev. A216

Siebel eScript Commands ■ Universal Time Methods
Date.UTC() Static Method
This method interprets its parameters as a date and returns the number of milliseconds between
midnight, January 1, 1970, and the date and time specified.

Syntax
Date.UTC(year, month, day, [, hours[, minutes[, seconds]]])

Returns
An integer representing the number of milliseconds before or after midnight January 1, 1970, of the
specified date and time.

Usage
Date.UTC is a static method, invoked using the Date constructor rather than a variable. The
parameters are interpreted as referring to Greenwich mean time (GMT).

Example
This example shows the proper construction of a Date.UTC declaration and demonstrates that the
function behaves as specified.

function clickme_Click ()
{

var aDate = new Date(Date.UTC(2005, 1, 22, 10, 11, 12));
TheApplication().RaiseErrorText("The specified date is " +

aDate.toUTCString());
}

A sample run of this code produced the following result.

The specified date is Sat Jan 22 10:11:12 2005 GMT

See Also
“The Date Constructor in Siebel eScript” on page 195

Parameter Description

year An integer representing the year (two digits may be used to represent years in
the twentieth century; however, use four digits to avoid Y2K problems)

month An integer from 0 through 11 representing the month

day An integer from 1 through 31 representing the day of the month

hours An integer from 0 through 23 representing the hour on a 24-hour clock

minutes An integer from 0 through 59 representing the minute of hours

seconds An integer from 0 through 59 representing the second of minutes
Siebel eScript Language Reference Version 7.8, Rev. A 217

Siebel eScript Commands ■ Universal Time Methods
getUTCDate() Method
This method returns the UTC day of the month of a Date object.

Syntax
dateVar.getUTCDate()

Returns
The UTC day of the month of dateVar.

Usage
This method returns the UTC day of the month of dateVar as a number from 1 to 31. The first day
of a month is 1; the last is 28, 29, 30, or 31.

Example
This code fragment displays 1, the hour portion of the date, followed by the GMT equivalent, which
may be the same.

var aDate = new Date("May 1, 2005 13:24:35");
TheApplication().RaiseErrorText("Local day of the month is " +

aDate.getHours() +"\nGMT day of the month is " +
aDate.getUTCHours());

See Also
“getDate() Method” on page 199
“setUTCDate() Method” on page 223

getUTCDay() Method
This method returns the UTC day of the week of a Date object.

Syntax
dateVar.getUTCDay()

Returns
The UTC day of the week of dateVar as a number from 0 to 6.

Usage
This method returns the UTC day of the week of dateVar as a number from 0 to 6. Sunday is 0, and
Saturday is 6.
Siebel eScript Language Reference Version 7.8, Rev. A218

Siebel eScript Commands ■ Universal Time Methods
Example
This function displays the day of the week of May 1, 2005, both locally and in universal time.

function Button2_Click ()
{

var localDay;
var UTCDay;
var MayDay = new Date("May 1, 2005 13:30:35");
var weekDay = new Array("Sunday", "Monday", "Tuesday",

"Wednesday", "Thursday", "Friday", "Saturday");

for (var i = 0; i <= MayDay.getDay();i++)
localDay = weekDay[i];

var msgtext = "May 1, 2005, 1:30 PM falls on " + localDay;

for (var j = 0; j <= MayDay.getUTCDay(); j++)
UTCDay = weekDay[j];

msgtext = msgtext + " locally, \nand on " + UTCDay + " GMT.";

TheApplication().RaiseErrorText(msgtext);
}

See Also
“getDay() Method” on page 200

getUTCFullYear() Method
This method returns the UTC year of a Date object.

Syntax
dateVar.getUTCFullYear()

Returns
The UTC year of dateVar as a four-digit number.

Example
This code fragment displays 2005, the year portion of the date, followed by the GMT equivalent,
which may be the same.

var aDate = new Date("January 1, 2005 13:24:35");
TheApplication().RaiseErrorText("Local year is " + aDate.getYear() +

"\nGMT year is " + aDate.getUTCFullYear());
Siebel eScript Language Reference Version 7.8, Rev. A 219

Siebel eScript Commands ■ Universal Time Methods
See Also
“getFullYear() Method”
“setFullYear() Method” on page 208
“setUTCFullYear() Method” on page 223

getUTCHours() Method
This method returns the UTC hour of a Date object.

Syntax
dateVar.getUTCHours()

Returns
The UTC hour of dateVar as a number from 0 to 23.

Usage
This method returns the UTC hour of dateVar as a number from 0 through 23. Midnight is 0, and 11
PM is 23.

Example
This code fragment displays 13, the hour portion of the date, followed by the GMT equivalent.

var aDate = new Date("May 1, 2005 13:24:35");
TheApplication().RaiseErrorText("Local hour is “ + aDate.getHours() +

"\nGMT hour is " + aDate.getUTCHours());

See Also
“getHours() Method” on page 202
“setUTCHours() Method” on page 224

getUTCMilliseconds() Method
This method returns the UTC millisecond of a Date object.

Syntax
dateVar.getUTCMilliseconds()

Returns
The UTC millisecond of dateVar as a number from 0 to 999.
Siebel eScript Language Reference Version 7.8, Rev. A220

Siebel eScript Commands ■ Universal Time Methods
Usage
This method returns the UTC millisecond of dateVar as a number from 0 through 999. The first
millisecond in a second is 0; the last is 999.

See Also
“getMilliseconds() Method” on page 203
“setUTCMilliseconds() Method” on page 225

getUTCMinutes() Method
This method returns the UTC minute of a Date object.

Syntax
dateVar.getUTCMinutes()

Returns
The UTC minute of dateVar as a number from 0 to 59.

Usage
This method returns the UTC minute of dateVar as a number from 0 through 59. The first minute of
an hour is 0; the last is 59.

Example
This code fragment displays 24, the minutes portion of the date, followed by the GMT equivalent,
which is probably the same.

var aDate = new Date("May 1, 2005 13:24:35");
TheApplication().RaiseErrorText("Local minutes: " + aDate.getMinutes() +

"\nGMT minutes: " + aDate.getUTCMinutes());

See Also
“getMinutes() Method” on page 203
“setUTCMinutes() Method” on page 226

getUTCMonth() Method
This method returns the UTC month of a Date object.

Syntax
dateVar.getUTCMonth()
Siebel eScript Language Reference Version 7.8, Rev. A 221

Siebel eScript Commands ■ Universal Time Methods
Returns
The UTC month of dateVar as a number from 0 to 11.

Usage
This method returns the UTC month of dateVar as a number from 0 through 11. January is 0, and
December is 11.

Example
This code fragment displays 5, the month portion of the date (determined by adding 1 to the value
returned by getMonth), followed by the GMT equivalent (determined by adding 1 to the value
returned by getUTCMonth), which is probably the same.

var aDate = new Date("May 1, 2005 13:24:35");
var locMo = aDate.getMonth() + 1;
var GMTMo = aDate.getUTCMonth() + 1
TheApplication().RaiseErrorText("Local month: " + locMo +"\nGMT month: "

+ GMTMo);

See Also
“getMonth() Method” on page 204
“setUTCMonth() Method” on page 227

getUTCSeconds() Method
This method returns the UTC second of a Date object.

Syntax
dateVar.getUTCSeconds()

Returns
The UTC second of dateVar as number from 0 to 59.

Usage
This method returns the UTC second of dateVar as a number from 0 through 59. The first second of
a minute is 0, and the last is 59.

See Also
“getSeconds() Method” on page 205
“setUTCSeconds() Method” on page 227
Siebel eScript Language Reference Version 7.8, Rev. A222

Siebel eScript Commands ■ Universal Time Methods
setUTCDate() Method
This method sets the UTC day of a Date object to the specified day of a UTC month.

Syntax
dateVar.setUTCDate(dayOfMonth)

Usage
This method sets the UTC day of dateVar to dayOfMonth as a number from 1 to 31. The first day of
a month is 1; the last is 28, 29, 30, or 31.

See Also
“getUTCDate() Method” on page 218
“setDate() Method” on page 208
“Universal Time Methods” on page 216

setUTCFullYear() Method
This method sets the UTC year of a Date object to a specified four-digit year.

Syntax
dateVar.setUTCFullYear(year[, month[, date]])

Usage
This method sets the UTC year of dateVar to year. Optionally, it can set the UTC month of year to
month, and the UTC date of month to date. The year must be expressed in four digits.

Parameter Description

dayOfMonth The day of the UTC month to which to set dateVar as an integer from 1 through
31

Parameter Description

year The UTC year to which to set dateVar as a four-digit integer

month The UTC month to which to set year as an integer from 0 to 11

date The UTC date of month to which to set dateVar as an integer from 1 to 31
Siebel eScript Language Reference Version 7.8, Rev. A 223

Siebel eScript Commands ■ Universal Time Methods
Example
The following example uses the setUTCFullYear method to assign the date of the 2000 summer
solstice and the setUTCHours method to assign its time to a Date object. Then it determines the local
date and displays it.

function dateBtn_Click ()
{

var Mstring = " A.M., Standard Time.";
var solstice2K = new Date;
solstice2K.setUTCFullYear(2000, 5, 21);
solstice2K.setUTCHours(01, 48);
var localDate = solstice2K.toLocaleString();
var pos = localDate.indexOf("2000")
var localDay = localDate.substring(0, pos - 10);

var localHr = solstice2K.getHours();
if (localHr > 11)
{

localHr = (localHr - 12);
Mstring = " P.M., Standard Time.";

}
var localMin = solstice2K.getMinutes();

var msg = "In your location, the solstice is on " + localDay +
", at " + localHr + ":" + localMin + Mstring;

TheApplication().RaiseErrorText(msg);
}

A sample run of this code produced the following result:

In your location, the solstice is on Tue Jun 20, at 6:48 P.M., Standard Time.

See Also
“getUTCFullYear() Method” on page 219
“setFullYear() Method” on page 208
“setYear() Method” on page 214
“Universal Time Methods” on page 216

setUTCHours() Method
This method sets the UTC hour of a Date object to a specific hour of a 24-hour clock.

Syntax
dateVar.setUTCHours(hour[, minute[, second[, millisecond]]])

Parameter Description

hour The UTC hour to which to set dateVar as an integer from 0 through 23

minute The UTC minute of hour to which to set dateVar as an integer from 0 through 59
Siebel eScript Language Reference Version 7.8, Rev. A224

Siebel eScript Commands ■ Universal Time Methods
Usage
This method sets the UTC hour of dateVar to hour as a number from 0 to 23. Midnight is expressed
as 0, and 11 PM as 23. It can optionally also set the UTC minute, second, and millisecond.

Example
For an example, see “setUTCFullYear() Method” on page 223.

See Also
“getUTCHours() Method” on page 220
“setHours() Method” on page 209
“Universal Time Methods” on page 216

setUTCMilliseconds() Method
This method sets the UTC millisecond of a Date object to a date expressed in milliseconds relative
to the UTC equivalent of the system time.

Syntax
dateVar.setUTCMilliseconds(millisecond)

Usage
This method sets the UTC millisecond of dateVar to millisecond. The value of dateVar becomes
equivalent to the number of milliseconds from the UTC equivalent of time on the system clock. Use
a positive number for later times and a negative number for earlier times.

Example
The following example gets a number of milliseconds as input and converts it to a UTC date and time:

function dateBtn_Click ()
{

var aDate = new Date;
var milli = 20000;

second The UTC second of minute to which to set dateVar as an integer from 0 through 59

millisecond The UTC millisecond of second to which to set dateVar as an integer from 0 through
999

Parameter Description

millisecond The UTC millisecond to which dateVar should be set as a positive or negative
integer

Parameter Description
Siebel eScript Language Reference Version 7.8, Rev. A 225

Siebel eScript Commands ■ Universal Time Methods
aDate.setUTCMilliseconds(milli);
var aYear = aDate.getUTCFullYear();
var aMonth = aDate.getMonth() + 1;
var aDay = aDate.getUTCDate();
var anHour = aDate.getUTCHours();
var aMinute = aDate.getUTCMinutes();
TheApplication().RaiseErrorText("The specified date is " +

aMonth +
"/" + aDay + "/" + aYear + " at " + anHour + ":" +
aMinute + ", UTC time.");

}

When run at 5:36 P.M., Pacific time, on August 22, 2005, it produced the following result:

The specified date is 8/23/2005 at 1:36 UTC time.

See Also
“getUTCMilliseconds() Method” on page 220
“setMilliseconds() Method” on page 209
“Universal Time Methods” on page 216

setUTCMinutes() Method
This method sets the UTC minute of a Date object to a specified minute.

Syntax
dateVar.setUTCMinutes(minute[, second[, millisecond]])

Usage
This method sets the UTC minute of dateVar to minute and optionally sets minute to a specific UTC
second and UTC millisecond. The first minute of an hour is 0, and the last is 59.

See Also
“getUTCMinutes() Method” on page 221
“setMinutes() Method” on page 211
“Universal Time Methods” on page 216

Parameter Description

minute The UTC minute to which to set dateVar as an integer from 0 through 59

second The UTC second to which to set minute as an integer from 0 through 59

millisecond The UTC millisecond to which to set second as an integer from 0 through 999
Siebel eScript Language Reference Version 7.8, Rev. A226

Siebel eScript Commands ■ Universal Time Methods
setUTCMonth() Method
This method sets the UTC month of a Date object to a specific month.

Syntax
dateVar.setUTCMonth(month[, date])

Usage
This method sets the UTC month of dateVar to month as a number from 0 to 11 and optionally sets
the UTC day of month to date. January is represented by 0, and December by 11.

See Also
“getUTCMonth() Method” on page 221
“setMonth() Method” on page 211
“Universal Time Methods” on page 216

setUTCSeconds() Method
This method sets the UTC second of the minute of a Date object to a specified second and optionally
sets the millisecond within the second.

Syntax
dateVar.setUTCSeconds(second[, millisecond])

Usage
This method sets the UTC second of dateVar to second and optionally sets second to a specific UTC
millisecond. The first second of a minute is 0, and the last is 59. The first millisecond is 0, and the
last is 999.

Parameter Description

month The UTC month to which to set dateVar as an integer from 0 to 11

date The UTC date of month to which to set dateVar as an integer from 1 to 31

Parameter Description

second The UTC minute to which to set dateVar as an integer from 0 through 59

millisecond The UTC millisecond to which to set second as an integer from 0 through 999
Siebel eScript Language Reference Version 7.8, Rev. A 227

Siebel eScript Commands ■ The Exception Object
See Also
“getUTCSeconds() Method” on page 222
“setSeconds() Method” on page 212
“Universal Time Methods” on page 216

toUTCString() Method
This method returns a string that represents the UTC date in a convenient and human-readable form.

Syntax
dateVar.toUTCString()

Returns
A string that represents the UTC date of dateVar.

Usage
This method returns a string that represents the UTC date in a convenient and human-readable form.
The string takes the form Day Mon dd hh:mm:ss yyyy.

Example
For an example, see “toLocaleString() Method and toString() Method” on page 215.

See Also
“Clib.asctime() Method” on page 180
“toGMTString() Method” on page 214
“toLocaleString() Method and toString() Method” on page 215

The Exception Object
The Exception object contains exceptions being thrown in the case of a failed operation.

Properties
errCode (This property contains the error number.)

errText (This property contains a textual description of the error.)

The following example shows the Exception object:

try
}

var oBO = TheApplication().GetService(“Incorrect name”);
}
catch (e)
Siebel eScript Language Reference Version 7.8, Rev. A228

Siebel eScript Commands ■ Function Objects
}
var sText = e.errText;
var nCode = e.errCode;

}

Function Objects
A Function object holds the definition of a function defined in eScript. In eScript, procedures are
functions.

Syntax A
function funcName([arg1 [, ..., argn]])
{

body
}

Syntax B
var funcName = new Function([arg1 [, ..., argn,]] body);

Returns
Whatever its code is set up to return. For more information, see “return Statement” on page 230.

Usage
Syntax A is the standard method for defining a function. Syntax B is an alternative way to create a
function and is used to create Function objects explicitly.

Note the difference in case of the keyword Function between Syntax A and Syntax B. Function
objects created with Syntax B (that is, the Function constructor) are evaluated each time they are

used. This is less efficient than Syntax A—declaring a function and calling it within your code—
because declared functions are compiled instead of interpreted.

Example
The following fragment of code illustrates creating a function AddTwoNumbers using a declaration:

function AddTwoNumbers (a, b)
{

return (a + b);
}

Parameter Description

funcName The name of the function to be created

arg1 [, …, argn] An optional list of parameters that the function accepts

body The lines of code that the function executes
Siebel eScript Language Reference Version 7.8, Rev. A 229

Siebel eScript Commands ■ Function Objects
The following fragment illustrates creating the same function using the Function constructor:

AddTwoNumbers = new Function ("a", "b", "return (a + b)");

The difference between the two is that when AddTwoNumbers is created using a declaration,
AddTwoNumbers is the name of a function, whereas when AddTwoNumbers is created using the
Function constructor, AddTwoNumbers is the name of a variable whose current value is a reference
to the function created using the Function constructor.

length Property
The length property returns the number of parameters expected by the function.

Syntax
funcName.length

Returns
The number of parameters expected by funcName.

return Statement
The return statement passes a value back to the function that called it.

Syntax
return value

Usage
The return statement passes a value back to the function that called it. Any code in a function
following the execution of a return statement is not executed.

Example
This function returns a value equal to the number passed to it multiplied by 2 and divided by 5.

function DoubleAndDivideBy5(a)
{

return (a*2)/5
}

Parameter Description

funcName The function whose length property is to be found

Parameter Description

value The result produced by the function
Siebel eScript Language Reference Version 7.8, Rev. A230

Siebel eScript Commands ■ The Global Object
The following code fragment show an example of a script using the preceding function. This script
calculates the mathematical expression n = (10 * 2) / 5 + (20 * 2) / 5. It then displays the
value for n, which is 12.

function myFunction()
{

var a = DoubleAndDivideBy5(10);
var b = DoubleAndDivideBy5(20);
TheApplication().RaiseErrorText(a + b);

}

The Global Object
Global variables are members of the global object. To access global properties, you do not need to
use an object name. For example, to access the isNaN() method, which tests to see whether a value
is equal to the special value NaN, you can use either of the following syntax forms.

Syntax A
globalMethod(value);

Syntax B
global.globalMethod(value);

Usage
Syntax A treats globalMethod as a function; Syntax B treats it as a method of the global object. You
may not use Syntax A in a function that has a local variable with the same name as a global variable.
In such a case, you must use the global keyword to reference the global variable.

See Also
“Conversion Methods” on page 235
“Global Functions Unique to Siebel eScript” on page 231

Global Functions Unique to Siebel eScript
The global functions described in this section are unique to the Siebel eScript implementation of
JavaScript. In other words, they are not part of the ECMAScript standard, but they are useful. Avoid
using these functions in a script that may be used with a JavaScript interpreter that does not support
these unique functions.

Placeholder Description

globalMethod The method to be applied

value The value to which the method is to be applied
Siebel eScript Language Reference Version 7.8, Rev. A 231

Siebel eScript Commands ■ The Global Object
Like other global items, the following functions are actually methods of the global object and can be
called with either function or method syntax.

■ “COMCreateObject() Method” on page 232

■ “getArrayLength() Method” on page 233

■ “setArrayLength() Method” on page 234

■ “undefine() Method” on page 235

COMCreateObject() Method
COMCreateObject instantiates a COM object.

Syntax
COMCreateObject(objectName)

Returns
A COM object if successful; otherwise, undefined.

Usage
You should be able to pass any type of variable to the COM object being called; however, you must
ascertain that the variable is of a valid type for the COM object. Valid types are strings, numbers,
and object pointers. This method can be executed in server script only; it does not apply to browser
script.

NOTE: DLLs instantiated by this method must be thread-safe.

Example
This example instantiates Microsoft Excel as a COM object and makes it visible:

var ExcelApp = COMCreateObject("Excel.Application");

// Make Excel visible through the Application object.
ExcelApp.Visible = true;
ExcelApp.WorkBooks.Add();

// Place some text in the first cell of the sheet
ExcelApp.ActiveSheet.Cells(1,1).Value = "Column A, Row 1";

// Save the sheet
var fileName = "C:\\demo.xls";
ExcelApp.ActiveWorkbook.SaveAs (fileName);

Parameter Description

objectName The name of the object to be created
Siebel eScript Language Reference Version 7.8, Rev. A232

Siebel eScript Commands ■ The Global Object
// Close Excel with the Quit method on the Application object
ExcelApp.Application.Quit();

// Clear the object from memory
ExcelApp = null;
return (CancelOperation);

NOTE: Applications, such as Excel, may change from version to version, requiring you to change
your code to match. This example code was tested on Excel 2002.

getArrayLength() Method
This function returns the length of a dynamically created array.

Syntax
getArrayLength(array[, minIndex])

Returns
The length of a dynamic array, which is one more than the highest index of an array.

Usage
Most commonly, the first element of an array is at index 0. If minIndex is supplied, then it is used
to set to the minimum index, which is zero or less.

This function should be used with dynamically created arrays, that is, with arrays that were not
created using the Array() constructor and the new operator. The length property is not available for
dynamically created arrays. Dynamically created arrays must use the getArrayLength() and
setArrayLength() functions when working with array lengths.

When working with arrays created using the Array() constructor and the new operator, use the length
property of the arrays.

CAUTION: The ST eScript engine does not support negative array indices. If you defined arrays with
negative indices using the T eScript engine in Siebel Business Applications releases prior to 7.8, then
you must redefine their index ranges and any references based on index values.

CAUTION: The getArrayLength() function is unique to Siebel eScript. Before using it, confirm that
the JavaScript interpreter that will run the script supports Siebel eScript functions. Avoid using this
function in a script that may be used with a JavaScript interpreter that does not support it.

Parameter Description

array The name of the array whose length you wish to find

minIndex The index of the lowest element at which to start counting
Siebel eScript Language Reference Version 7.8, Rev. A 233

Siebel eScript Commands ■ The Global Object
See Also
“The Array Constructor in Siebel eScript” on page 78
“Array length Property” on page 80
“setArrayLength() Method” on page 234

setArrayLength() Method
This function sets the first index and length of an array.

Syntax
setArrayLength(array[, minIndex], length])

Usage
This function sets the length of array to a range bounded by minIndex and length. If three
parameters are supplied, minIndex is the minimum index of the newly sized array, and length is the
length. Any elements outside the bounds set by minIndex and length become undefined. If only two
parameters are passed to setArrayLength(), the second parameter is length and the minimum index
of the newly sized array is 0 by default.

CAUTION: The ST eScript engine does not support negative array indices. If you defined arrays with
negative indices using the T eScript engine in Siebel Business Applications releases prior to 7.8, then
you must redefine their index ranges and any references based on index values. An alternative to
using setArrayLength is to set array lengths with the length property of the Array object.

CAUTION: The setArrayLength() function is unique to Siebel eScript. Before using it, confirm that
the JavaScript interpreter that will run the script supports Siebel eScript functions. Avoid using this
function in a script that may be used with a JavaScript interpreter that does not support it.

For more information on implementing the Siebel scripting engine, see Using Siebel Tools.

See Also
“getArrayLength() Method” on page 233
“Array length Property” on page 80

Parameter Description

array The name of the array whose length you wish to find

minIndex The index of the lowest element at which to start counting; must be 0 or less.

NOTE: This parameter can be used, but is not meaningful, if you use the ST
eScript engine. When using this engine, the minimum index is restricted to zero
only, and is assigned by default.

length The length of the array
Siebel eScript Language Reference Version 7.8, Rev. A234

Siebel eScript Commands ■ Conversion Methods
undefine() Method
This function undefines a variable, Object property, or value.

Syntax
undefine(value)

Usage
If a value was previously defined so that its use with the defined() method returns true, then after
using undefine() with the value, defined() returns false. Undefining a value is not the same as setting
a value to null. In the following fragment, the variable n is defined with the number value of 2, and
then undefined.

var n = 2;
undefine(n);

CAUTION: The undefine() function is unique to Siebel eScript. Before using it, confirm that the
JavaScript interpreter that will run the script supports Siebel eScript functions. Avoid using this
function in a script that may be used with a JavaScript interpreter that does not support it.

Example
In the following fragment an object o is created, and a property o.one is defined. The property is
then undefined, but the object o remains defined.

var o = new Object;
o.one = 1;
undefine(o.one);

Conversion Methods
There are times when the types of variables or data should be specified and controlled. Several of
the following conversion methods have one parameter, which is a variable or data item, to be
converted to the data type specified in the name of the method. For example, the following fragment
creates two variables:

var aString = ToString(123);
var aNumber = ToNumber("123");

The first variable, aString, is created by converting the number 123 to a string. The second variable,
aNumber, is created by converting the string value "123" to a number. Because aString had already
been created with the value "123", the second line could also have been:

var aNumber = ToNumber(aString);

Parameter Description

value The variable or object property to be undefined
Siebel eScript Language Reference Version 7.8, Rev. A 235

Siebel eScript Commands ■ Conversion Methods
The remainder of the following methods are used to convert numerical values to various forms or to
interpret characters of strings in different ways.

■ “escape() Method” on page 236

■ “eval() Method” on page 237

■ “parseFloat() Method” on page 238

■ “parseInt() Method” on page 239

■ “ToBoolean() Method” on page 240

■ “ToBuffer() Method” on page 241

■ “ToBytes() Method” on page 241

■ “toExponential() Method” on page 242

■ “toFixed() Method” on page 243

■ “ToInteger() Method” on page 245

■ “ToNumber() Method” on page 246

■ “ToObject() Method” on page 247

■ “toPrecision() Method” on page 248

■ “ToString() Method” on page 249

■ “ToUint16() Method” on page 250

■ “ToUint32() Method” on page 251

■ “unescape(string) Method” on page 252

escape() Method
The escape() method receives a string and replaces special characters with escape sequences.

Syntax
escape(string)

Returns
A string with special characters replaced by Unicode sequences.

Parameter Description

string The string containing characters to be replaced
Siebel eScript Language Reference Version 7.8, Rev. A236

Siebel eScript Commands ■ Conversion Methods
Usage
The escape() method receives a string and replaces special characters with escape sequences, so
that the string may be used with a URL. The escape sequences are Unicode values. For characters in
the standard ASCII set (values 0 through 127 decimal), these are the hexadecimal ASCII codes of
the characters preceded by percent signs.

Uppercase and lowercase letters, numbers, and the special symbols @ * + _ . / remain in the string.
Other characters are replaced by their respective Unicode sequences.

Example
The following code provides an example of what occurs when a string is encoded. Note that the @
and * characters have not been replaced.

var str = escape("@#$*96!");

Results in the following string: "@%23%24*96%21"

var encodeStr = escape("@#$*%!");

Results in the following string: "@%23%24*%25%21"

See Also
“unescape(string) Method” on page 252

eval() Method
This method returns the value of its parameter, which is an expression.

Syntax
eval(expression)

Returns
The value of expression.

Usage
This method evaluates whatever is represented by expression. If expression is a string, the
interpreter tries to interpret the string as if it were JavaScript code. If successful, the method returns
the value of expression. If not successful, it returns the special value undefined.

If the expression is not a string, expression is returned. For example, calling eval(5) returns the
value 5.

Parameter Description

expression The expression to be evaluated
Siebel eScript Language Reference Version 7.8, Rev. A 237

Siebel eScript Commands ■ Conversion Methods
Example
This example shows the result of using the eval() method on several types of expressions. The string
expression in the test[0] variable is evaluated because it can be interpreted as a JavaScript
statement, but the string expressions in test[1] and test[3] are undefined.

function clickme_Click ()
{

var msgtext = "";
var a = 7;
var b = 9;
var test = new Array(4);
var test[0] = "a * b";
var test[1] = toString(a * b);
var test[2] = a + b;
var test[3] = "Strings are undefined.";
var test[4] = test[1] + test[2];

for (var i = 0; i < 5; i++)
msgtext = msgtext + i + ": " + eval(test[i]) + "\n";

TheApplication().RaiseErrorText(msgtext);

Running this code produces the following result:

0: 63
1: undefined
2: 16
3: undefined
4: undefined

parseFloat() Method
This method converts an alphanumeric string to a floating-point decimal number.

Syntax
parseFloat(string)

Returns
A floating-point decimal number; if string cannot be converted to a number, the special value NaN is
returned.

Parameter Description

string The string to be converted
Siebel eScript Language Reference Version 7.8, Rev. A238

Siebel eScript Commands ■ Conversion Methods
Usage
Whitespace characters at the beginning of the string are ignored. The first nonwhite-space character
must be either a digit or a minus sign (-). Numeric characters in string are read. The first period (.)
in string is treated as a decimal point and any following digits as the fractional part of the number.
Reading stops at the first non-numeric character after the decimal point. The result is converted into
a number. Characters including and following the first non-numeric character are ignored.

Example
The following code fragment returns the result -234.37:

var num = parseFloat(" -234.37 profit");

parseInt() Method
This method converts an alphanumeric string to an integer number.

Syntax
parseInt(string [,radix])

Returns
An integer number; if string cannot be converted to a number, the special value NaN is returned. If
radix is not provided or is zero, then radix is assumed to be 10, with the following exceptions:

■ If string begins with the character pairs 0x or 0X, a radix of 16 is assumed.

■ If string begins with zero and a valid octal digit (0-7), a radix of 8 is assumed.

Usage
White-space characters at the beginning of the string are ignored. The first nonwhite-space character
must be either a digit or a minus sign (-). Numeric characters in string are read. Reading stops at
the first non-numeric character. The result is converted into an integer number. Characters including
and following the first non-numeric character are ignored.

CAUTION: When the passed string contains a leading zero, such as in “05,” the number is
interpreted as on octal, as it is in other eScript contexts. Parameters that are interpreted as invalid
octals, such as “08” and “09,” will generate a return value of zero.

Parameter Description

string The string to be converted

radix The radix, or base of the number system, in which the
integer return value is expressed; for example, if radix is
8, then the return value is expressed as an octal number.
Siebel eScript Language Reference Version 7.8, Rev. A 239

Siebel eScript Commands ■ Conversion Methods
Example
The following code fragment returns the result -234:

var num = parseInt(" -234.37 profit");

ToBoolean() Method
This method converts a value to the Boolean data type.

Syntax
ToBoolean(value)

Returns
A value that depends on value’s original data type, according to the following table.

Usage
This method converts value to the Boolean data type. The result depends on the original data type
of value.

CAUTION: The ToBoolean() function is unique to Siebel eScript. Before using it, confirm that the
JavaScript interpreter that will run the script supports Siebel eScript functions. Avoid using this
function in a script that may be used with a JavaScript interpreter that does not support it.

See Also
“ToBuffer() Method” on page 241
“ToObject() Method” on page 247
“ToString() Method” on page 249

Parameter Description

value The value to be converted to a Boolean value

Data Type Returns

Boolean value

buffer False if an empty buffer; otherwise, true

null False

number False if value is 0, +0, -0, or NaN; otherwise, true

object True

string False if an empty string, ""; otherwise, true

undefined False
Siebel eScript Language Reference Version 7.8, Rev. A240

Siebel eScript Commands ■ Conversion Methods
ToBuffer() Method
This function converts its parameter to a buffer.

Syntax
ToBuffer(value)

Returns
A sequence of ASCII bytes that depends on value’s original data type, according to the following
table.

Usage
This function converts value to a buffer; what is placed in the buffer is a character array of ASCII
bytes.

CAUTION: The ToBuffer() function is unique to Siebel eScript. Before using it, confirm that the
JavaScript interpreter that will run the script supports Siebel eScript functions. Avoid using this
function in a script that may be used with a JavaScript interpreter that does not support it.

See Also
“ToBytes() Method” on page 241
“ToString() Method” on page 249

ToBytes() Method
This function places its parameter in a buffer.

Parameter Description

value The value to be converted to a buffer

Data Type Returns

Boolean The string "false" if value is false; otherwise, "true"

null The string "null"

number If value is NaN, "NaN". If value is +0 or -0, "0"; if value is POSITIVE_INFINITY or
NEGATIVE_INFINITY, "Infinity"; if value is a number, a string representing the
number

object The string "[object Object]"

string The text of the string

undefined The string "undefined"
Siebel eScript Language Reference Version 7.8, Rev. A 241

Siebel eScript Commands ■ Conversion Methods
Syntax
ToBytes(value)

Usage
This function transfers the raw data represented by value to a buffer. The raw transfer does not
convert Unicode values to corresponding ASCII values. Thus, for example, the Unicode string Hit
would be stored as \OH\Oi\Ot, that is, as the hexadecimal sequence 00 48 00 69 00 74.

CAUTION: The ToBytes() function is unique to Siebel eScript. Before using it, confirm that the
JavaScript interpreter that will run the script supports Siebel eScript functions. Avoid using this
function in a script that may be used with a JavaScript interpreter that does not support it.

See Also
“ToBuffer() Method” on page 241
“ToString() Method” on page 249

toExponential() Method
This function returns a number converted to exponential notation with a specified number of decimal
places in its mantissa.

Syntax
numberVar.toExponential(len)

Returns
This function returns the number contained in variable numberVar, expressed in exponential notation
to len decimal places. If len is less than the number of significant decimal places of numberVar, then
the function applies standard rounding (round up for 5 or greater, else round down). If len is greater
than the number of significant decimal places of numberVar, then the function pads the extra places
with zeroes. If len is negative, an error is thrown.

Parameter Description

value The value to be placed in a buffer

Parameter Description

len The number of decimal places in the
mantissa of the exponential notation to
which the number contained in variable
numberVar is to be converted
Siebel eScript Language Reference Version 7.8, Rev. A242

Siebel eScript Commands ■ Conversion Methods
Usage
This function allows you to express numbers in exponential notation with a desired number of
decimal places. Exponential notation is generally used to express very large or very small numbers.
Because the mantissa of a number expressed in exponential notation is always exactly one digit,
controlling the number of decimal places is also a means of controlling the number of significant
digits in the number. The justified accuracy of the number may limit the number of signficant digits.

Example
The following uses of toExponential() yield the results shown.

var num = 1234.567
var num3 = num.toExponential(3) //returns 1.235e+3
var num2 = num.toExponential(0) //returns 1e+3
var num9 = num.toExponential(9) //returns 1.234567000e+3

var smallnum = 0.0001234
var smallnum2 = smallnum.toExponential(2) //returns 1.2e-4
var smallnumerr = smallnum.toExponential(-1) //throws error

See Also
“toFixed() Method” on page 243
“toPrecision() Method” on page 248

toFixed() Method
This function returns a number converted to a specified number of decimal places.

Syntax
numberVar.toFixed(len)

Returns
This function returns the number contained in variable numberVar, expressed to len decimal places.
If len is less than the number of significant decimal places of numberVar, then the function applies
standard rounding (round up for 5 or greater, else round down). If len is greater than the number of
significant decimal places of numberVar, then the function pads the extra places with zeroes. If len
is negative, an error is thrown.

Parameter Description

len The number of decimal places to which the
number contained in variable numberVar is
to be converted
Siebel eScript Language Reference Version 7.8, Rev. A 243

Siebel eScript Commands ■ Conversion Methods
Usage
This function allows you to express numbers with a desired number of decimal places; for example,
to express results of currency calculations with exactly two decimal places.

Example
The following uses of toFixed() yield the results shown.

var profits=2487.8235
var profits3 = profits.toFixed(3) //returns 2487.824
var profits2 = profits.toFixed(2) //returns 2487.82
var profits7 = profits.toFixed(7) //returns 2487.8235000
var profits0 = profits.toFixed(0) //returns 2488
var profitserr = profits.toFixed(-1) //throws error

See Also
“toExponential() Method” on page 242
“toPrecision() Method” on page 248

ToInt32() Method
This function converts its parameter to an integer in the range of -231 through 231 - 1.

Syntax
ToInt32(value)

Returns
If the result is NaN, +0. If the result is +0 or -0, 0. If the result is POSITIVE_INFINITY, or
NEGATIVE_INFINITY, Infinity. Otherwise, the integer part of the number, rounded toward 0.

Usage

This function converts value to an integer in the range of -231 through 231 - 1 (that is, -
2,147,483,648 to 2,147,483,647). To use it without error, first pass value to isNaN() or to
ToNumber().

To use isNan(), use a statement in the following form:

if (isNaN(value))
.
. [error-handling statements];

Parameter Description

value The value to be converted to an integer
Siebel eScript Language Reference Version 7.8, Rev. A244

Siebel eScript Commands ■ Conversion Methods
.
else

ToInt32(value);

Because ToInt32() truncates rather than rounds the value it is given, numbers are rounded toward
0. That is, -12.88 becomes -12; 12.88 becomes 12.

CAUTION: The ToInt32() function is unique to Siebel eScript. Before using it, confirm that the
JavaScript interpreter that will run the script supports Siebel eScript functions. Avoid using this
function in a script that may be used with a JavaScript interpreter that does not support it.

See Also
“ToInteger() Method” on page 245
“ToNumber() Method” on page 246
“ToUint16() Method” on page 250
“ToUint32() Method” on page 251

ToInteger() Method
This function converts its parameter to an integer in the range of -215 to 215 - 1.

Syntax
ToInteger(value)

Returns
If the result is NaN, +0. If the result is +0, -0, POSITIVE_INFINITY, or NEGATIVE_INFINITY, the
result. Otherwise, the integer part of the number, rounded toward 0.

Usage

This function converts value to an integer in the range of -215 to 215 - 1 (that is, -32,768 to 32,767).
To use it without error, first pass value to isNaN() or to ToNumber().

To use toNumber(), use a statement of the form:

var x;
x = toNumber(value);
(if x == 'NaN')
.
. [error -handling statements];
.
else

ToInteger(value);

Parameter Description

value The value to be converted to an integer
Siebel eScript Language Reference Version 7.8, Rev. A 245

Siebel eScript Commands ■ Conversion Methods
Because ToInteger() truncates rather than rounds the value it is given, numbers are rounded toward
0. That is, -12.88 becomes -12; 12.88 becomes 12.

CAUTION: The ToInteger() function is unique to Siebel eScript. Before using it, confirm that the
JavaScript interpreter that will run the script supports Siebel eScript functions. Avoid using this
function in a script that may be used with a JavaScript interpreter that does not support it.

See Also
“Math.round() Method” on page 268
“toFixed() Method” on page 243
“ToNumber() Method” on page 246
“ToString() Method” on page 249
“ToUint16() Method” on page 250
“ToUint32() Method” on page 251

ToNumber() Method
This function converts its parameter to a number.

Syntax
ToNumber(value)

Returns
A value that depends on value’s original data type, according to the following table.

Parameter Description

value The value to be converted to a number

Data Type Returns

Boolean +0 if value is false, 1 if value is true

buffer value if successful; otherwise, NaN

null 0

number value

object NaN

string value if successful; otherwise, NaN

undefined NaN
Siebel eScript Language Reference Version 7.8, Rev. A246

Siebel eScript Commands ■ Conversion Methods
Usage
This function converts its parameter to a number.

CAUTION: The ToNumber() function is unique to Siebel eScript. Before using it, confirm that the
JavaScript interpreter that will run the script supports Siebel eScript functions. Avoid using this
function in a script that may be used with a JavaScript interpreter that does not support it.

See Also
“Math.round() Method” on page 268
“toFixed() Method” on page 243
“ToInteger() Method” on page 245
“ToString() Method” on page 249
“ToUint16() Method” on page 250
“ToUint32() Method” on page 251

ToObject() Method
This function converts its parameter to an object.

Syntax
ToObject(value)

Returns
A value that depends on value’s original data type, according to the following table.

Parameter Description

value The value to be converted to an object

Data Type Returns

Boolean A new Boolean object having the value value

null Generates a run-time error

number A new Number object having the value value

object value

string A new string object having the value value

undefined Generates a run-time error
Siebel eScript Language Reference Version 7.8, Rev. A 247

Siebel eScript Commands ■ Conversion Methods
Usage
This function converts its parameter to an object.

CAUTION: The ToObject() function is unique to Siebel eScript. Before using it, confirm that the
JavaScript interpreter that will run the script supports Siebel eScript functions. Avoid using this
function in a script that may be used with a JavaScript interpreter that does not support it.

See Also
“ToString() Method” on page 249

toPrecision() Method
This function returns a number converted to a specified number of significant digits.

Syntax
numberVar.toPrecision(len)

Returns
This function returns the number contained in variable numberVar, expressed to len significant digits.
If len is less than the number of significant digits of numberVar, then the function applies standard
rounding (round up for 5 or greater, else round down) and expression in scientific notation, if
necessary. If len is greater than the number of significant decimal places of numberVar, then the
function pads the extra digits with zeroes and adds a decimal point, if necessary.

Usage
This function allows you to express numbers at a desired length; for example, the result of a scientific
calculation may only justify accuracy to a specific number of significant digits.

Example
The following uses of toPrecision() yield the results shown.

var anumber = 123.45
var a6 = anumber.toPrecision(6) //returns 123.450
var a4 = anumber.toPrecision(4) //returns 123.5
var a2 = anumber.toPrecision(2) //returns 1.2e+2

Parameter Description

len The number of significant digits to which the
number contained in variable numberVar is
to be converted
Siebel eScript Language Reference Version 7.8, Rev. A248

Siebel eScript Commands ■ Conversion Methods
See Also
“toExponential() Method” on page 242
“toFixed() Method” on page 243

ToString() Method
This method converts its parameter to a string.

Syntax
ToString(value)

Returns
A value in the form of a Unicode string, the contents of which depends on value’s original data type,
according to the following table.

Usage
This method converts its parameter to a Unicode string, the contents of which depend on value’s
original data type.

CAUTION: The ToString() function is unique to Siebel eScript. Before using it, confirm that the
JavaScript interpreter that will run the script supports Siebel eScript functions. Avoid using this
function in a script that may be used with a JavaScript interpreter that does not support it.

Example
For an example, see “eval() Method” on page 237.

Parameter Description

value The value to be converted to a string

Data Type Returns

Boolean "false" if value is false; otherwise, "true"

null The string "null"

number If value is NaN, "NaN". If value is +0 or -0, "0"; if Infinity, "Infinity"; if a
number, a string representing the number

object The string "[object Object]"

string value

undefined The string "undefined"
Siebel eScript Language Reference Version 7.8, Rev. A 249

Siebel eScript Commands ■ Conversion Methods
See Also
“ToBuffer() Method” on page 241
“ToBytes() Method” on page 241

ToUint16() Method
This function converts its parameter to an integer in the range of 0 through 216 -1.

Syntax
ToUint16(value)

Returns
If the result is NaN, +0. If the result is +0 , 0. If the result is POSITIVE_INFINITY, it returns Infinity.
Otherwise, it returns the unsigned (that is, absolute value of) integer part of the number, rounded
toward 0.

Usage

This function converts value to an integer in the range of 0 to 216 - 1 (65,535). To use it without
error, first pass value to isNaN() or to ToNumber().

To use toNumber(), use a statement in the following form:

var x;i
x = toNumber(value);
(if x == 'NaN')
.
. [error -handling statements];
.
else

ToUint16(value);

Because ToUint16() truncates rather than rounds the value it is given, numbers are rounded toward
0. Therefore, 12.88 becomes 12.

CAUTION: The ToUint16() function is unique to Siebel eScript. Before using it, confirm that the
JavaScript interpreter that will run the script supports Siebel eScript functions. Avoid using this
function in a script that may be used with a JavaScript interpreter that does not support it.

Parameter Description

value The value to be converted
Siebel eScript Language Reference Version 7.8, Rev. A250

Siebel eScript Commands ■ Conversion Methods
See Also
“Math.round() Method” on page 268
“toFixed() Method” on page 243
“ToInteger() Method” on page 245
“ToNumber() Method” on page 246
“ToUint32() Method” on page 251

ToUint32() Method
This function converts its parameter to an integer in the range of 0 to 232 -1.

Syntax
ToUint32(value)

Returns
If the result is NaN, +0. If the result is +0 , 0. If the result is POSITIVE_INFINITY, it returns Infinity.
Otherwise, it returns the unsigned (that is, absolute value of) integer part of the number, rounded
toward 0.

Usage

This function converts value to an unsigned integer part of value in the range of 0 through 232 - 1
(4,294,967,296). To use it without error, first pass value to isNaN() or to ToNumber().

To use isNan() without error, use a statement in the following form:

if (isNaN(value))
.
. [error-handling statements];
.
else

ToUint32(value);

Because ToUint32() truncates rather than rounds the value it is given, numbers are rounded toward
0. Therefore, 12.88 becomes 12.

CAUTION: The ToUint32() function is unique to Siebel eScript. Before using it, confirm that the
JavaScript interpreter that will run the script supports Siebel eScript functions. Avoid using this
function in a script that may be used with a JavaScript interpreter that does not support it.

Parameter Description

value The value to be converted
Siebel eScript Language Reference Version 7.8, Rev. A 251

Siebel eScript Commands ■ Conversion Methods
See Also
“Math.round() Method” on page 268
“toFixed() Method” on page 243
“ToInteger() Method” on page 245
“ToNumber() Method” on page 246
“ToUint16() Method” on page 250

unescape(string) Method
The unescape() method removes escape sequences from a string and replaces them with the
relevant characters.

Syntax
unescape(string)

Returns
A string with Unicode sequences replaced by the equivalent ASCII characters.

Usage
The unescape() method is the reverse of the escape() method; it removes escape sequences from a
string and replaces them with the relevant characters.

Example
The following line of code displays the string in its parameter with the escape sequence replaced by
printable characters. Note that %20 is the Unicode representation of the space character. Note also
that this example would normally appear on a single line, as strings cannot be broken by a newline.

TheApplication().RaiseErrorText(unescape("http://obscushop.com/texis/
%20%20showcat.html?catid=%232029
rg=r133"));

The code produces the following result.

http://obscushop.com/texis/ showcat.html?catid=#2029
rg=r133

See Also
“escape() Method” on page 236

Parameter Description

string A string literal or string variable from which escape sequences are to be removed
Siebel eScript Language Reference Version 7.8, Rev. A252

Siebel eScript Commands ■ Data Handling Methods in Siebel eScript
Data Handling Methods in Siebel eScript
Use the following eScript methods for various data handling:

■ “Blob.get() Method” on page 87

■ “Blob.put() Method” on page 89

■ “Blob.size() Method” on page 91

■ “Blob.get() Method” on page 87

■ “escape() Method” on page 236

■ “isFinite() Method” on page 255

■ “isNaN() Method” on page 254

■ “ToString() Method” on page 249

■ “undefine() Method” on page 235

defined() Method
This function tests whether a variable or object property has been defined.

Syntax
defined(var)

Returns
True if the item has been defined; otherwise, false.

Usage
This function tests whether a variable or object property has been defined, returning true if it has or
false if it has not.

CAUTION: The defined() function is unique to Siebel eScript. Before using it, confirm that the
JavaScript interpreter that will run the script supports Siebel eScript functions. Avoid using this
function in a script that may be used with a JavaScript interpreter that does not support it.

Example
The following fragment illustrates two uses of the defined() method. The first use checks a variable,
t. The second use checks an object t.t.

Parameter Description

var The variable or object property you wish to query
Siebel eScript Language Reference Version 7.8, Rev. A 253

Siebel eScript Commands ■ Data Handling Methods in Siebel eScript
var t = 1;
if (defined(t))

TheApplication().Trace("t is defined");
else

TheApplication().Trace("t is not defined");

if (!defined(t.t))
TheApplication().Trace("t.t is not defined"):

else
TheApplication().Trace("t.t is defined");

See Also
“undefine() Method” on page 235

isNaN() Method
The isNaN() method determines whether its parameter is or is not a number.

Syntax
isNaN(value)

Returns
True if value is not a number; otherwise, false.

Usage
The isNaN() method determines whether value is or is not a number, returning true if it is not or false
if it is. Value must be in italics.

If value is an object reference, IsNan() always returns true, because object references are not
numbers.

Example
IsNaN("123abc") returns true.

IsNaN("123") returns false.

IsNaN("999888777123") returns false.

IsNaN("The answer is 42") returns true.

Parameter Description

value The variable or expression to be evaluated
Siebel eScript Language Reference Version 7.8, Rev. A254

Siebel eScript Commands ■ The Math Object
See Also
“isFinite() Method” on page 255

isFinite() Method
This method determines whether its parameter is a finite number.

Syntax
isFinite(value)

Returns
True if value is or can be converted to a number; false if value evaluates to NaN, POSITIVE_INFINITY,
or NEGATIVE_INFINITY.

Usage
The isFinite() method returns true if number is or can be converted to a number. If the parameter
evaluates to NaN, number.POSITIVE_INFINITY, or number.NEGATIVE_INFINITY, the method returns
false. For details on the number object, see “NaN” on page 31.

See Also
“isNaN() Method” on page 254

The Math Object
The Math object in Siebel eScript has a full and powerful set of methods and properties for
mathematical operations. A programmer has a set of mathematical tools for the task of doing
mathematical calculations in a script.

Methods Supported by the Math Object
The Math Object supports the following methods:

■ “Math.abs() Method” on page 256

■ “Math.acos() Method” on page 257

■ “Math.asin() Method” on page 258

■ “Math.atan() Method” on page 258

Parameter Description

value The variable or expression to be evaluated
Siebel eScript Language Reference Version 7.8, Rev. A 255

Siebel eScript Commands ■ The Math Object
■ “Math.atan2() Method” on page 259

■ “Math.ceil() Method” on page 261

■ “Math.cos() Method” on page 261

■ “Math.exp() Method” on page 262

■ “Math.floor() Method” on page 263

■ “Math.log() Method” on page 264

■ “Math.max() Method” on page 265

■ “Math.min() Method” on page 265

■ “Math.pow() Method” on page 266

■ “Math.random() Method” on page 267

■ “Math.round() Method” on page 268

■ “Math.sin() Method” on page 269

■ “Math.sqrt() Method” on page 270

■ “Math.tan() Method” on page 270

Properties of the Math Object
The Math Object has the following properties:

■ “Math.E Property” on page 271

■ “Math.LN10 Property” on page 272

■ “Math.LN2 Property” on page 272

■ “Math.LOG10E Property” on page 272

■ “Math.LOG2E Property” on page 273

■ “Math.PI Property” on page 273

■ “Math.SQRT1_2 Property” on page 274

■ “Math.SQRT2 Property” on page 274

Math.abs() Method
This method returns the absolute value of its parameter; it returns NaN if the parameter cannot be
converted to a number.
Siebel eScript Language Reference Version 7.8, Rev. A256

Siebel eScript Commands ■ The Math Object
Syntax
Math.abs(number)

Returns
The absolute value of number; or NaN if number cannot be converted to a number.

Usage
This method returns the absolute value of number. If number cannot be converted to a number, it
returns NaN.

Math.acos() Method
This method returns the arc cosine of its parameter, expressed in radians.

Syntax
Math.acos(number)

Returns
The arc cosine of number, expressed in radians from 0 to pi, or NaN if number cannot be converted
to a number or is greater than 1 or less than -1.

Usage
This method returns the arc cosine of number. The return value is expressed in radians and ranges
from 0 to pi. It returns NaN if x cannot be converted to a number, is greater than 1, or is less than -1.

To convert radians to degrees, multiply by 180/Math.PI.

See Also
“Math.asin() Method” on page 258
“Math.atan() Method” on page 258
“Math.cos() Method” on page 261
“Math.sin() Method” on page 269

Parameter Description

number A numeric literal or numeric variable

Parameter Description

number A numeric literal or numeric variable
Siebel eScript Language Reference Version 7.8, Rev. A 257

Siebel eScript Commands ■ The Math Object
Math.asin() Method
This method returns an implementation-dependent approximation of the arcsine of its parameter.

Syntax
Math.asin(number)

Returns
An implementation-dependent approximation of the arcsine of number, expressed in radians and
ranging from - pi/2 to +pi/2.

Usage
This method returns an implementation-dependent approximation of the arcsine of number. The
return value is expressed in radians and ranges from -pi/2 to +pi/2. It returns NaN if number cannot
be converted to a number, is greater than 1, or is less than -1.

To convert radians to degrees, multiply by 180/Math.PI.

See Also
“Math.acos() Method” on page 257
“Math.atan() Method” on page 258
“Math.atan2() Method” on page 259
“Math.cos() Method” on page 261
“Math.sin() Method” on page 269
“Math.tan() Method” on page 270

Math.atan() Method
This method returns an implementation-dependent approximation of the arctangent of the
parameter.

Syntax
Math.atan(number)

Parameter Description

number A numeric literal or numeric variable

Parameter Description

number A numeric literal or numeric variable
Siebel eScript Language Reference Version 7.8, Rev. A258

Siebel eScript Commands ■ The Math Object
Returns
An implementation-dependent approximation of the arctangent of number, expressed in radians.

Usage
The Math.atan() function returns an implementation-dependent approximation of the arctangent of
the parameter. The return value is expressed in radians and ranges from -pi/2 to +pi/2.

The function assumes number is the ratio of two sides of a right triangle: the side opposite the angle
to find and the side adjacent to the angle. The function returns a value for the ratio.

To convert radians to degrees, multiply by 180/Math.PI.

Example
This example finds the roof angle necessary for a house with an attic ceiling of 8 feet (at the roof
peak) and a 16-foot span from the outside wall to the center of the house. The Math.atan() function
returns the angle in radians; it is multiplied by 180/PI to convert it to degrees. Compare the example
in the discussion of “Math.atan2() Method” on page 259 to understand how the two arctangent
functions differ. Both examples return the same value.

function RoofBtn_Click ()
{

var height = 8;
var span = 16;
var angle = Math.atan(height/span)*(180/Math.PI);

TheApplication().RaiseErrorText("The angle is " +
Clib.rsprintf("%5.2f", angle) + " degrees.")

}

See Also
“Math.acos() Method” on page 257
“Math.asin() Method” on page 258
“Math.atan2() Method” on page 259
“Math.cos() Method” on page 261
“Math.sin() Method” on page 269
“Math.tan() Method” on page 270

Math.atan2() Method
This function returns an implementation-dependent approximation to the arctangent of the quotient
of its parameters.
Siebel eScript Language Reference Version 7.8, Rev. A 259

Siebel eScript Commands ■ The Math Object
Syntax
Math.atan2(y, x)

Returns
An implementation-dependent approximation of the arctangent of y/x, in radians.

Usage
This function returns an implementation-dependent approximation to the arctangent of the quotient,
y/x, of the parameters y and x, where the signs of the parameters are used to determine the
quadrant of the result. It is intentional and traditional for the two-parameter arctangent function that
the parameter named y be first and the parameter named x be second. The return value is expressed
in radians and ranges from -pi to +pi.

Example
This example finds the roof angle necessary for a house with an attic ceiling of 8 feet (at the roof
peak) and a 16-foot span from the outside wall to the center of the house. The Math.atan2() function
returns the angle in radians; it is multiplied by 180/PI to convert it to degrees. Compare the example
in the discussion of “Math.atan() Method” on page 258 to understand how the two arctangent
functions differ. Both examples return the same value.

function RoofBtn2_Click ()
{

var height = 8;
var span = 16;
var angle = Math.atan2(span, height)*(180/Math.PI);

TheApplication().RaiseErrorText("The angle is " +
Clib.rsprintf("%5.2f", angle) + " degrees.")

}

See Also
“Math.acos() Method” on page 257
“Math.asin() Method” on page 258
“Math.atan() Method” on page 258
“Math.cos() Method” on page 261
“Math.sin() Method” on page 269
“Math.tan() Method” on page 270

Parameter Description

y The value on the y axis

x The value on the x axis
Siebel eScript Language Reference Version 7.8, Rev. A260

Siebel eScript Commands ■ The Math Object
Math.ceil() Method
This method returns the smallest integer that is not less than its parameter.

Syntax
Math.ceil(number)

Returns
The smallest integer that is not less than number; if number is an integer, number.

Usage
This method returns the smallest integer that is not less than number. If the parameter is already
an integer, the result is the parameter itself. It returns NaN if number cannot be converted to a
number.

Example
The following code fragment generates a random number between 0 and 100 and displays the integer
range in which the number falls. Each run of this code produces a different result.

var x = Math.random() * 100;
TheApplication().RaiseErrorText("The number is between " +

Math.floor(x) + " and " + Math.ceil(x) + ".");

See Also
“Math.floor() Method” on page 263

Math.cos() Method
This method returns an implementation-dependent approximation of the cosine of the parameter.
The parameter is expressed in radians.

Syntax
Math.cos(number)

Parameter Description

number A numeric literal or numeric variable

Parameter Description

number A numeric literal or numeric variable representing an angle in radians
Siebel eScript Language Reference Version 7.8, Rev. A 261

Siebel eScript Commands ■ The Math Object
Returns
An implementation-dependent approximation of the cosine of number.

Usage
The return value is between -1 and 1. NaN is returned if number cannot be converted to a number.

The angle can be either positive or negative. To convert degrees to radians, multiply by Math.PI/180.

Example
This example finds the length of a roof, given its pitch and the distance of the house from its center
to the outside wall.

function RoofBtn3_Click ()
{

var pitch;
var width;
var roof;

pitch = 35;
pitch = Math.cos(pitch*(Math.PI/180));
width = 75;
width = width / 2;
roof = width/pitch;

TheApplication().RaiseErrorText("The length of the roof is " +
Clib.rsprintf("%5.2f", roof) + " feet.");

}

See Also
“Math.acos() Method” on page 257
“Math.asin() Method” on page 258
“Math.atan() Method” on page 258
“Math.atan2() Method” on page 259
“Math.sin() Method” on page 269
“Math.tan() Method” on page 270

Math.exp() Method
This method returns an implementation-dependent approximation of the exponential function of its
parameter.
Siebel eScript Language Reference Version 7.8, Rev. A262

Siebel eScript Commands ■ The Math Object
Syntax
Math.exp(number)

Returns
The value of e raised to the power number.

Usage
This method returns an implementation-dependent approximation of the exponential function of its
parameter. The parameter, that is, returns e raised to the power of the x, where e is the base of the
natural logarithms. NaN is returned if number cannot be converted to a number. The value of e is
represented internally as approximately 2.7182818284590452354.

See Also
“Math.E Property” on page 271
“Math.LN10 Property” on page 272
“Math.LN2 Property” on page 272
“Math.log() Method” on page 264
“Math.LOG2E Property” on page 273
“Math.LOG10E Property” on page 272

Math.floor() Method
This method returns the greatest integer that is not greater than its parameter.

Syntax
Math.floor(number)

Returns
The greatest integer that is not greater than number; if number is an integer, number.

Usage
This method returns the greatest integer that is not greater than number. If the parameter is already
an integer, the result is the parameter itself. It returns NaN if number cannot be converted to a
number.

Parameter Description

number The exponent value of e

Parameter Description

number A numeric literal or numeric variable
Siebel eScript Language Reference Version 7.8, Rev. A 263

Siebel eScript Commands ■ The Math Object
Example
For an example, see “Math.ceil() Method” on page 261.

See Also
“Math.ceil() Method” on page 261

Math.log() Method
This function returns an implementation-dependent approximation of the natural logarithm of its
parameter.

Syntax
Math.log(number)

Returns
An implementation-dependent approximation of the natural logarithm of number.

Example
This example uses the Math.log() function to determine which number is larger: 999^1000 (999 to
the 1000th power) or 1000^999 (1000 to the 999th power). Note that if you attempt to use the
Math.pow() function instead of the Math.log() function with numbers this large, the result returned
would be Infinity.

function Test_Click ()
{

var x = 999;
var y = 1000;
var a = y*(Math.log(x));
var b = x*(Math.log(y))
if (a > b)

TheApplication().
RaiseErrorText("999^1000 is greater than 1000^999.");

else
TheApplication().

RaiseErrorText("999^1000 is not greater than 1000^999.");
}

Parameter Description

number A numeric literal or numeric variable
Siebel eScript Language Reference Version 7.8, Rev. A264

Siebel eScript Commands ■ The Math Object
See Also
“Math.E Property” on page 271
“Math.exp() Method” on page 262
“Math.LN10 Property” on page 272
“Math.LN2 Property” on page 272
“Math.LOG2E Property” on page 273
“Math.LOG10E Property” on page 272
“Math.pow() Method” on page 266

Math.max() Method
This function returns the larger of its parameters.

Syntax
Math.max(x, y)

Returns
The larger of x and y.

Usage
This function returns the larger of x and y, or NaN if either parameter cannot be converted to a
number.

See Also
“Math.min() Method” on page 265

Math.min() Method
This function returns the smaller of its parameters.

Parameter Description

x A numeric literal or numeric variable

y A numeric literal or numeric variable
Siebel eScript Language Reference Version 7.8, Rev. A 265

Siebel eScript Commands ■ The Math Object
Syntax
Math.min(x, y)

Returns
The smaller of x and y.

Usage
This function returns the smaller of x and y, or NaN if either parameter cannot be converted to a
number.

See Also
“Math.max() Method” on page 265

Math.pow() Method
This function returns the value of its first parameter raised to the power of its second parameter.

Syntax
Math.pow(x, y)

Returns
The value of x to the power of y.

Usage
This function returns the value of x raised to the power of y.

Parameter Description

x A numeric literal or numeric variable

y A numeric literal or numeric variable

Parameter Description

x The number to be raised to a power

y The power to which to raise x
Siebel eScript Language Reference Version 7.8, Rev. A266

Siebel eScript Commands ■ The Math Object
Example
This example uses the Math.pow() function to determine which number is larger: 99^100 (99 to the
100th power) or 100^99 (100 to the 99th power). Note that if you attempt to use the Math.pow()
method with numbers as large as those used in the example in “Math.log() Method” on page 264, the
result returned is Infinity.

function Test_Click ()
{

var a = Math.pow(99, 100);
var b = Math.pow(100, 99);
if (a > b)

TheApplication().RaiseErrorText("99^100 is greater than 100^99.");
else

TheApplication().RaiseErrorText("99^100 is not greater than 100^99.");
}

See Also
“Math.exp() Method” on page 262
“Math.log() Method” on page 264
“Math.sqrt() Method” on page 270

Math.random() Method
This function returns a pseudo-random number between 0 and 1.

Syntax
Math.random()

Returns
A pseudo-random number between 0 and 1.

Usage
This function generates a pseudo-random number between 0 and 1. It takes no parameters. Where
possible, it should be used in place of the Clib.rand() method. The Clib.rand() method is to be
preferred only when it is necessary to use Clib.srand() to seed the Clib random number generator
with a specific value.

Example
This example generates a random string of characters within a range. The Math.random() function
is used to set the range between lowercase a and z.

function Test_Click ()
{

var str1 = "";
var letter;
Siebel eScript Language Reference Version 7.8, Rev. A 267

Siebel eScript Commands ■ The Math Object
var randomvalue;
var upper = "z";
var lower = "a";

upper = upper.charCodeAt(0);
lower = lower.charCodeAt(0);

for (var x = 1; x < 26; x++)
{

randomvalue = Math.round(((upper - (lower + 1)) *
Math.random()) + lower);

letter = String.fromCharCode(randomvalue);
str1 = str1 + letter;

}

TheApplication().RaiseErrorText(str1);
}

See Also
“Clib.rand() Method” on page 160
“Clib.srand() Method” on page 161

Math.round() Method
This method rounds a number to its nearest integer.

Syntax
Math.round(number)

Returns
The integer closest in value to number.

Usage
The number parameter is rounded up if its fractional part is equal to or greater than 0.5 and is
rounded down if less than 0.5. Both positive and negative numbers are rounded to the nearest
integer.

Example
This code fragment yields the values 124 and -124.

Parameter Description

number A numeric literal or numeric variable
Siebel eScript Language Reference Version 7.8, Rev. A268

Siebel eScript Commands ■ The Math Object
var a = Math.round(123.6);
var b = Math.round(-123.6)
TheApplication().RaiseErrorText(a + "\n" + b)

NOTE: Rounding may not be precise if you multiply or divide a value and then round it. Multiplication
and division lead to precision loss.

Example
This code fragment illustrates precision loss due to multiplication.

var n = 34.855;
n = n* 100;
var r = Math.round(n)

The value of n is 3485.499999999999995 instead of 3485.5. When rounded this results in 3485
instead of 3486.

Example
This code fragment provides a workaround for the loss of precision due to multiplication.

var n = parseFloat(34.855);
n = parseFloat(n1b*100.0);
var r = Math.round(n);

See Also
“Clib.modf() Method” on page 159
“toFixed() Method” on page 243
“ToInteger() Method” on page 245
“ToUint16() Method” on page 250
“ToUint32() Method” on page 251

Math.sin() Method
This method returns the sine of an angle expressed in radians.

Syntax
Math.sin(number)

Returns
The sine of number, or NaN if number cannot be converted to a number.

Parameter Description

number A numeric expression containing a number representing the size of an angle in
radians
Siebel eScript Language Reference Version 7.8, Rev. A 269

Siebel eScript Commands ■ The Math Object
Usage
The return value is between -1 and 1. The angle is specified in radians and can be either positive or
negative.

To convert degrees to radians, multiply by Math.PI/180.

See Also
“Math.acos() Method” on page 257
“Math.asin() Method” on page 258
“Math.atan() Method” on page 258
“Math.atan2() Method” on page 259
“Math.cos() Method” on page 261
“Math.tan() Method” on page 270

Math.sqrt() Method
This method returns the square root of its parameter; it returns NaN if x is a negative number or is
a value that cannot be converted to a number.

Syntax
Math.sqrt()

Returns
The square root of number, or NaN if number is negative or is a value that cannot be converted to a
number.

Usage
This method returns the square root of number, or Nan if number is negative or is a value that cannot
be converted to a number.

See Also
“Math.exp() Method” on page 262
“Math.log() Method” on page 264
“Math.pow() Method” on page 266

Math.tan() Method
This method returns the tangent of its parameter.

Parameter Description

number A numeric literal or numeric variable
Siebel eScript Language Reference Version 7.8, Rev. A270

Siebel eScript Commands ■ The Math Object
Syntax
Math.tan(number)

Returns
The tangent of number, or NaN if number is a value that cannot be converted to a number.

Usage
This method returns the tangent of number, expressed in radians, or NaN if number cannot be
converted to a number. To convert degrees to radians, multiply by Math.PI/180.

See Also
“Math.acos() Method” on page 257
“Math.asin() Method” on page 258
“Math.atan() Method” on page 258
“Math.atan2() Method” on page 259
“Math.cos() Method” on page 261
“Math.sin() Method” on page 269

Math.E Property
This property stores the number value for e, the base of natural logarithms.

Syntax
Math.E

Usage
The value of e is represented internally as approximately 2.7182818284590452354.

See Also
“Math.exp() Method” on page 262
“Math.LN10 Property” on page 272
“Math.LN2 Property” on page 272
“Math.log() Method” on page 264
“Math.LOG2E Property” on page 273
“Math.LOG10E Property” on page 272

Parameter Description

number A numeric expression containing the number of radians in the angle whose
tangent is to be returned
Siebel eScript Language Reference Version 7.8, Rev. A 271

Siebel eScript Commands ■ The Math Object
Math.LN10 Property
This property stores the number value for the natural logarithm of 10.

Syntax
Math.LN10

Usage
The value of the natural logarithm of 10 is represented internally as approximately
2.302585092994046.

See Also
“Math.exp() Method” on page 262
“Math.LN2 Property” on page 272
“Math.log() Method” on page 264
“Math.LOG2E Property” on page 273
“Math.LOG10E Property” on page 272

Math.LN2 Property
This property stores the number value for the natural logarithm of 2.

Syntax
Math.LN2

Usage
The value of the natural logarithm of 2 is represented internally as approximately
0.6931471805599453.

See Also
“Math.E Property” on page 271
“Math.exp() Method” on page 262
“Math.LN10 Property” on page 272
“Math.log() Method” on page 264
“Math.LOG2E Property” on page 273
“Math.LOG10E Property” on page 272

Math.LOG10E Property
The number value for the base 10 logarithm of e, the base of the natural logarithms.
Siebel eScript Language Reference Version 7.8, Rev. A272

Siebel eScript Commands ■ The Math Object
Syntax
Math.LOG10E

Usage
The value of the base 10 logarithm of e is represented internally as approximately
0.4342944819032518. The value of Math.LOG10E is approximately the reciprocal of the value of
Math.LN10.

See Also
“Math.E Property” on page 271
“Math.exp() Method” on page 262
“Math.LN10 Property” on page 272
“Math.LN2 Property” on page 272
“Math.log() Method” on page 264
“Math.LOG2E Property” on page 273

Math.LOG2E Property
This property stores the number value for the base 2 logarithm of e, the base of the natural
logarithms.

Syntax
Math.LOG2E

Usage
The value of the base 2 logarithm of e is represented internally as approximately
1.4426950408889634. The value of Math.LOG2E is approximately the reciprocal of the value of
Math.LN2.

See Also
“Math.E Property” on page 271
“Math.exp() Method” on page 262
“Math.LN10 Property” on page 272
“Math.LN2 Property” on page 272
“Math.log() Method” on page 264
“Math.LOG10E Property” on page 272

Math.PI Property
This property holds the number value for pi.
Siebel eScript Language Reference Version 7.8, Rev. A 273

Siebel eScript Commands ■ The Math Object
Syntax
Math.PI

Usage
This property holds the value of pi, which is the ratio of the circumference of a circle to its diameter.
This value is represented internally as approximately 3.14159265358979323846.

Example
For examples, see “Math.atan() Method” on page 258, “Math.atan2() Method” on page 259, and
“Math.cos() Method” on page 261.

Math.SQRT1_2 Property
This property stores the number value for the square root of ½.

Syntax
Math.SQRT1_2

Usage
This property stores the number value for the square root of ½, which is represented internally as
approximately 0.7071067811865476. The value of Math.SQRT1_2 is approximately the reciprocal of
the value of Math.SQRT2.

See Also
“Math.sqrt() Method” on page 270
“Math.SQRT2 Property” on page 274

Math.SQRT2 Property
This property stores the number value for the square root of 2.

Syntax
Math.SQRT2

Usage
This property stores the number value for the square root of 2, which is represented internally as
approximately 1.4142135623730951.
Siebel eScript Language Reference Version 7.8, Rev. A274

Siebel eScript Commands ■ User-Defined Objects in Siebel eScript
See Also
“Math.sqrt() Method” on page 270
“Math.tan() Method” on page 270

User-Defined Objects in Siebel eScript
Variables and functions may be grouped together in one variable and referenced as a group. A
compound variable of this sort is called an object in which each individual item of the object is called
a property.

In general, it is adequate to think of object properties, which are variables or constants, and of object
methods, which are functions.

To refer to a property of an object, use both the name of the object and the name of the property,
separated by a period. Any valid variable name may be used as a property name. For example, the
code fragment that follows assigns values to the width and height properties of a rectangle object,
calculates the area of a rectangle, and displays the result:

var Rectangle;

Rectangle.height = 4;
Rectangle.width = 6;

TheApplication().RaiseErrorText(Rectangle.height * Rectangle.width);

The main advantage of objects occurs with data that naturally occurs in groups. An object forms a
template that can be used to work with data groups in a consistent way. Instead of having a single
object called Rectangle, you can have a number of Rectangle objects, each with its own values for
width and height.

See Also
“Assigning Functions to Objects in Siebel eScript” on page 276
“Object Prototypes in Siebel eScript” on page 277
“Predefining Objects with Constructor Functions in Siebel eScript” on page 275

Predefining Objects with Constructor Functions in
Siebel eScript
A constructor function creates an object template. For example, a constructor function to create
Rectangle objects might be defined like the following:

function Rectangle(width, height)
{

this.width = width;
this.height = height;

}

Siebel eScript Language Reference Version 7.8, Rev. A 275

Siebel eScript Commands ■ User-Defined Objects in Siebel eScript
The keyword this is used to refer to the parameters passed to the constructor function and can be
conceptually thought of as "this object." To create a Rectangle object, call the constructor function
with the "new" operator:

var joe = new Rectangle(3,4)
var sally = new Rectangle(5,3);

This code fragment creates two rectangle objects: one named joe, with a width of 3 and a height of
4, and another named sally, with a width of 5 and a height of 3.

Constructor functions create objects belonging to the same class. Every object created by a
constructor function is called an instance of that class. The preceding example creates a Rectangle
class and two instances of it. Instances of a class share the same properties, although a particular
instance of the class may have additional properties unique to it. For example, if you add the
following line:

joe.motto = "Be prepared!";

you add a motto property to the rectangle joe. However, the rectangle sally has no motto property.

Assigning Functions to Objects in Siebel eScript
Objects may contain functions as well as variables. A function assigned to an object is called a
method of that object.

Like a constructor function, a method refers to its variables with the this operator. The following
fragment is an example of a method that computes the area of a rectangle:

function rectangle_area()
{

return this.width * this.height;
}

Because there are no parameters passed to it, this function is meaningless unless it is called from
an object. It needs to have an object to provide values for this.width and this.height:

A method is assigned to an object as the following line illustrates:

joe.area = rectangle_area;

The function now uses the values for height and width that were defined when you created the
rectangle object joe.

Methods may also be assigned in a constructor function, again using the this keyword. For example,
the following code:

function rectangle_area()
{

return this.width * this.height;
}

function Rectangle(width, height)
{

this.width = width;
Siebel eScript Language Reference Version 7.8, Rev. A276

Siebel eScript Commands ■ User-Defined Objects in Siebel eScript
this.height = height;
this.area = rectangle_area;

}

creates an object class Rectangle with the rectangle_area method included as one of its properties.
The method is available to any instance of the class:

var joe = Rectangle(3,4);
var sally = Rectangle(5,3);

var area1 = joe.area();
var area2 = sally.area();

This code sets the value of area1 to 12 and the value of area2 to 15.

Object Prototypes in Siebel eScript
An object prototype lets you specify a set of default values for an object. When an object property
that has not been assigned a value is accessed, the prototype is consulted. If such a property exists
in the prototype, its value is used for the object property.

Object prototypes are useful to be sure that every instance of an object use the same default values
and that these instances conserve the amount of memory needed to run a script. When the two
rectangles, joe and sally, were created in the previous section, they were each assigned an area
method. Memory was allocated for this function twice, even though the method is exactly the same
in each instance. This redundant memory can be avoided by putting the shared function or property
in an object's prototype. Then every instance of the object use the same function instead of each
using its own copy of it.

The following fragment shows how to create a Rectangle object with an area method in a prototype:

function rectangle_area()
{

return this.width * this.height;
}

function Rectangle(width, height)
{

this.width = width;
this.height = height;

}

Rectangle.prototype.area = rectangle_area;

The rectangle_area method can now be accessed as a method of any Rectangle object, as shown in
the following:

var area1 = joe.area();
var area2 = sally.area();
Siebel eScript Language Reference Version 7.8, Rev. A 277

Siebel eScript Commands ■ Property Set Objects
You can add methods and data to an object prototype at any time. The object class must be defined,
but you do not have to create an instance of the object before assigning it prototype values. If you
assign a method or data to an object prototype, every instance of that object is updated to include
the prototype.

If you try to write to a property that was assigned through a prototype, a new variable is created for
the newly assigned value. This value is used for the value of this instance of the object's property.
Other instances of the object still refer to the prototype for their values. If you assume that joe is a
special rectangle, whose area is equal to three times its width plus half its height, you can modify
joe as follows:

function joe_area()
{

return (this.width * 3) + (this.height/2);
}
joe.area = joe_area;

This fragment creates a value, which in this case is a function, for joe.area that supersedes the
prototype value. The property sally.area is still the default value defined by the prototype. The
instance joe uses the new definition for its area method.

NOTE: Prototypes cannot be declared inside a function scope.

Property Set Objects
Property set objects are collections of properties that can be used for storing data. They may have
child property sets assigned to them. Property sets are used primarily for inputs and outputs to
business services. You can assign child property sets to a property set to form a hierarchical data
structure. Methods of property set objects are documented in the Siebel Object Interfaces Reference.

Table 39. Property Set Objects

Method Description

AddChild() Method The AddChild() method is used to add subsidiary property sets to
a property set, in order to form tree-structured data structures.

Copy() Method Copy() returns a copy of a property set.

GetChild() Method GetChild() returns a specified child property set of a property set.

GetChildCount() Method GetChildCount() returns the number of child property sets
attached to a parent property set.

GetFirstProperty() Method GetFirstProperty() returns the name of the first property in a
property set.

GetNextProperty() Method GetNextProperty() returns the name of the next property in a
property set.

GetProperty() Method GetProperty() returns the value of a property, when given the
property name.
Siebel eScript Language Reference Version 7.8, Rev. A278

Siebel eScript Commands ■ RegExp Objects
RegExp Objects
RegExp, or regular expression, object instances are definitions of character patterns and associated
attributes that are used to perform character pattern searches of target strings.

RegExp Object Methods
The Siebel ST eScript engine does not support the following static methods of the RegExp object:
RegExp.$n (including '$_' and '$&'), RegExp.input, RegExp.lastMatch, RegExp.lastParen,
RegExp.leftContext, and RegExp.rightContext. The Siebel T engine does support these methods.

Both the Siebel ST and T eScript engines support the following methods that are documented in this
section:

■ “RegExp compile() Method” on page 280

■ “RegExp exec() Method” on page 281

■ “RegExp test() Method” on page 283

GetPropertyCount() Method GetPropertyCount() returns the number of properties associated
with a property set.

GetType() Method GetType() retrieves the data value stored in the type attribute of
a property set.

GetValue() Method GetValue() retrieves the data value stored in the value attribute
of a property set.

InsertChildAt() Method InsertChildAt() inserts a child property set into a parent property
set at a specific location.

PropertyExists() Method PropertyExists() returns a Boolean value indicating whether a
specified property exists in a property set.

RemoveChild() Method RemoveChild() removes a child property set from a parent
property set.

RemoveProperty() Method RemoveProperty() removes a property from a property set.

Reset() Method This method removes every property and child property set from
a property set.

SetProperty() Method SetProperty() assigns a data value to a property in a property set.

SetType() Method SetType() assigns a data value to a type member of a property
set.

SetValue() Method SetValue() assigns a data value to a value member of a property
set.

Table 39. Property Set Objects

Method Description
Siebel eScript Language Reference Version 7.8, Rev. A 279

Siebel eScript Commands ■ RegExp Object Methods
Throughout this section, regexp is used to represent a RegExp object instance.

RegExp compile() Method
This method changes the pattern and attributes to use with the current instance of a RegExp object.

Syntax
regexp.compile(pattern[, attributes])

Usage
This method allows use of a RegExp instance multiple times with changes to its characteristics.

Use the compile() method with a regular expression that is created with the constructor function,
not the literal notation.

Example
var regobj = new RegExp("now");
// use this RegExp object
regobj.compile("r*t");
// use it some more
regobj.compile("t.+o", "ig");
// use it some more

See also
“RegExp global Property” on page 284

“RegExp ignoreCase Property” on page 285

“RegExp multiline Property” on page 285

“RegExp source Property” on page 286

Parameter Description

pattern A string with a new regular expression pattern to use with this RegExp
object

attributes A string with the new attributes for this RegExp object. If included,
this string must contain one or more of the following characters or be
an empty string "":

i - sets the ignoreCase property to true

g - sets the global property to true

m - sets the multiline property to true
Siebel eScript Language Reference Version 7.8, Rev. A280

Siebel eScript Commands ■ RegExp Object Methods
RegExp exec() Method
This method returns an array of strings that are matches of the regular expression on the target
string.

Syntax
regexp.exec(str)

Returns
This method returns an array with various elements (the matched strings that are found), and their
property sets. The elements returned depend on the attributes of the regular expression. The method
returns null if no match is found.

Usage
Of all the RegExp and String methods, RegExp exec() is one of the most powerful because it includes
all information about each match in its returned array.

When exec() is executed without the global attribute, "g", being set on the RegExp instance, and a
match is found, then:

■ Element 0 of the returned array is the first text in the string that matches the primary RegExp
pattern.

■ Element 1 is the text matched by the first subpattern (in parentheses) of the RegExp instance.

■ Element 2 is the text matched by the second subpattern of the RegExp instance, and so forth.

These elements and their numbers correspond to groups in regular expression patterns and
replacement expressions.

The returned array includes the following properties:

■ The length property is the number of text matches in the returned array.

■ The index property is the start position of the first text that matches the primary RegExp pattern.

■ The input property is the target string that was searched.

The return values, and the index and input properties are the same as those of the returned array
from the String match() Method when match() is used on a regular expression whose global attribute
is not set.

When exec() is executed with the global attribute, "g", set on the RegExp instance, and a match is
found, then:

Parameter Description

str A string on which to perform a regular expression match
Siebel eScript Language Reference Version 7.8, Rev. A 281

Siebel eScript Commands ■ RegExp Object Methods
■ The same results are returned as when the global attribute is not set, but the behavior is more
complex, which allows further operations.

NOTE: Although exec() and the String match() method provide the same return arrays when the
global attribute is not set on the regular expression, exec() and match() return different arrays
when the global attribute is set on the regular expression.

■ Searching begins at the position in the target string specified by this.lastIndex. After a match is
found, this.lastIndex is set to the position after the last character in the text matched. The
property this.lastIndex is read/write and may be set at anytime, so you can loop through a string
and find all matches of a pattern by setting this.lastIndex to the start position of the previous
match found + 1. When no match is found, this.lastIndex is reset to 0.

If you use the T eScript engine and any matches are found, appropriate RegExp object static
properties, such as RegExp.leftContext, RegExp.rightContext, RegExp.$n, and so forth are set,
providing more information about the matches.

NOTE: The ST eScript engine does not support the following static properties of the RegExp object:
RegExp.$n (including '$_' and '$&'), RegExp.input, RegExp.lastMatch, RegExp.lastParen,
RegExp.leftContext, RegExp.rightContext.

Examples
The following example calls exec() from a regular expression whose global attribute is not set. The
output is commented.

function fn ()
{

var myString = new String("Better internet");
var myRE = new RegExp(/(.).(.er)/i);
var results = myRE.exec(myString);
var resultmsg = "";
for(var i =0; i < results.length; i++)
{

resultmsg = resultmsg + "return[" + i + "] = " + results[i] + "\n";
}
TheApplication().RaiseErrorText(resultmsg);

}
fn ();

Output is:

return[0] = etter \\First text containing primary pattern ...er (any three
\\characters followed by "er")

return[1] = e \\First text matching the first subpattern (.) (any single
\\character) within the first text matching the primary pattern

return[2] = ter \\First text matching the second subpattern (.er) (any single
\\character followed by "er") within the first text matching
\\the primary pattern

The following example calls exec() from a regular expression whose global attribute is set. The
method returns all matches of the regular expression’s primary pattern in a string, including matches
that overlap.
Siebel eScript Language Reference Version 7.8, Rev. A282

Siebel eScript Commands ■ RegExp Object Methods
function fn ()
{

var str = "ttttot tto";
var pat = new RegExp("t.t", "g");
var resultmsg = "";
while ((rtn = pat.exec(str)) != null)
{

resultmsg = resultmsg + "Text = " + rtn[0] + " Pos = " + rtn.index
+ " End = " + (pat.lastIndex - 1) + "\n";
pat.lastIndex = rtn.index + 1;

}
TheApplication().RaiseErrorText(resultmsg)

}
fn ();

Output is:

Text = ttt Pos = 0 End = 2
Text = ttt Pos = 1 End = 3
Text = tot Pos = 3 End = 5
Text = t t Pos = 5 End = 7

See also
“RegExp test() Method” on page 283

“String match() Method” on page 299

RegExp test() Method
This method indicates whether a target string contains a regular expression pattern.

Syntax
regexp.test(str)

Returns
This method returns true if the target string contains the regular expression pattern, else it returns
false.

Usage
This method is equivalent to regexp.exec(str)!=null.

Parameter Description

str A string on which to perform a regular expression match
Siebel eScript Language Reference Version 7.8, Rev. A 283

Siebel eScript Commands ■ RegExp Object Properties
If you use the T eScript engine and there is a match, then appropriate RegExp object static
properties, such as RegExp.leftContext, RegExp.rightContext, RegExp.$n, and so forth are set,
providing more information about the matches.

NOTE: The ST eScript engine does not support the following static properties of the RegExp object:
RegExp.$n (including '$_' and '$&'), RegExp.input, RegExp.lastMatch, RegExp.lastParen,
RegExp.leftContext, RegExp.rightContext.

Although not common, test() may be used in a special way when the global attribute, "g", is set on
the RegExp instance. As with RegExp exec(), when a match is found, the lastIndex property of the
RegExp instance is set to the character position after the found text match. Thus, test() may be used
repeatedly on a string, for instance, to determine whether a string has more than one match or to
count the number of matches.

For information about using the RegExp lastIndex property repeatedly on a string, see “RegExp exec()
Method” on page 281.

Example
var str = "one two three tio one";
var pat = /t.o/;
rtn = pat.test(str);
// Then rtn == true.

See also
“RegExp exec() Method” on page 281

“String match() Method” on page 299

RegExp Object Properties
The Siebel ST and Siebel T eScript engines support the following RegExp Object properties.

Throughout this section, regexp is used to represent a RegExp object instance.

■ “RegExp global Property” on page 284

■ “RegExp ignoreCase Property” on page 285

■ “RegExp multiline Property” on page 285

■ “RegExp source Property” on page 286

RegExp global Property
This read-only property indicates the value of the global attribute of an instance of the RegExp
object.

Syntax
regexp.global
Siebel eScript Language Reference Version 7.8, Rev. A284

Siebel eScript Commands ■ RegExp Object Properties
Usage
This property has a value of true if "g" is an attribute of the regular expression pattern being used,
else its value is false.

NOTE: The global attribute of a RegExp instance can be changed with the RegExp compile() method.

Example
// Create RegExp instance with global attribute.
var pat = /^Begin/g;
//or
var pat = new RegExp("^Begin", "g");
//Then pat.global == true.

See also
“RegExp compile() Method” on page 280

RegExp ignoreCase Property
This read-only property indicates the value of the ignoreCase attribute of an instance of the RegExp
object.

Syntax
regexp.ignoreCase

Usage
This property has a value of true if "i" is an attribute of the regular expression pattern being used,
else its value is false.

NOTE: The ignoreCase attribute of a RegExp instance can be changed with the RegExp compile()
method.

Example
// Create RegExp instance with ignoreCase attribute.
var pat = /^Begin/i;
//or
var pat = new RegExp("^Begin", "i");
//Then pat.ignoreCase == true.

See also
“RegExp compile() Method” on page 280

RegExp multiline Property
This read-only property indicates the value of the multiline attribute of an instance of the RegExp
object.
Siebel eScript Language Reference Version 7.8, Rev. A 285

Siebel eScript Commands ■ RegExp Object Properties
Syntax
regexp.multiline

Usage
This property has a value of true if "m" is an attribute of the regular expression pattern being used,
else its value is false. The multiline property determines whether a pattern search is done in a
multiline mode.

NOTE: The multiline attribute of a RegExp instance can be changed with the RegExp compile()
method.

Example
// Create RegExp instance with multiline attribute.
var pat = /^Begin/m;
//or
var pat = new RegExp("^Begin", "i");
//Then pat.multiline == true.

See also
“RegExp compile() Method” on page 280

RegExp source Property
This read-only property stores the regular expression pattern being used to find matches in a string,
not including the attributes.

Syntax
regexp.source

Usage
This read-only property stores the regular expression pattern being used to find matches in a string,
not including the attributes.

NOTE: The source attribute of a RegExp instance can be changed with the RegExp compile() method.

Example
var pat = /t.o/g;
// Then pat.source == "t.o"

See also
“RegExp compile() Method” on page 280
Siebel eScript Language Reference Version 7.8, Rev. A286

Siebel eScript Commands ■ The SElib Object
The SElib Object
In Siebel eScript, the SElib object allows calling out to external libraries and applications.

SElib.dynamicLink() Method
This method calls a procedure from a dynamic link library (Windows) or shared object (UNIX).

Windows Syntax
SElib.dynamicLink(Library, Procedure, Convention[, [desc,] arg1, arg2, arg3, ..., argn])

UNIX Syntax
SElib.dynamicLink(Library, Procedure[, arg1, arg2, arg3, ...argn])

NOTE: On UNIX, the total number of parameters passed with SElib.dynamicLink() must not exceed
22. These 22 parameters include the shared library name and the procedure name, so you can pass
up to 20 additional parameters.

Usage
The calling convention must be one of the following:

Values are passed as 32-bit values. If a parameter is undefined when SElib.dynamicLink() is called,
then it is assumed that the parameter is a 32-bit value to be filled in; that is, the address of a 32-
bit data element is passed to the function and that function sets the value.

Parameter Description

Library Under Windows, the name of the DLL containing the procedure; under
UNIX, the name of a shared object; can be specified by fully qualified
path name

Procedure The name or ordinal number of the procedure in the Library dynamic
link library

Convention The calling convention

desc Used to pass a Unicode string; for example, WCHAR

arg1, arg2, arg3, ..., argn Parameters to the procedure

Value Description

CDECL Push right parameter first; the caller pops parameters

STDCALL Push right parameter first; the caller pops parameters (this value is almost always
the option used in Win32)

PASCAL Push left parameter first; the callee pops parameters
Siebel eScript Language Reference Version 7.8, Rev. A 287

Siebel eScript Commands ■ The SElib Object
If any parameter is a structure, then it must be a structure that defines the binary data types in
memory to represent the following variable. Before calling the function, the structure is copied to a
binary buffer as described in “Blob.put() Method” on page 89 and “Clib.fwrite() Method” on page 145.

After calling the function, the binary data are converted back into the data structure according to the
rules defined in Blob.get() and Clib.fread(). Data conversion is performed according to the current
BigEndianMode setting. The function returns an integer.

Example
The following code example shows a proxy DLL that takes denormalized input values, creates the
structure, and invokes a method in the destination DLL. The defined method score is called by SElib
dynamicLink in the subsequent example code.

#include <windows.h>
_declspec(dllexport) int __cdecl
score (

double AGE,
double AVGCHECKBALANCE,
double AVGSAVINGSBALANCE,
double CHURN_SCORE,
double CONTACT_LENGTH,
double HOMEOWNER,
double *P_CHURN_SCORE,
double *R_CHURN_SCORE,
char _WARN_[5])

{
*P_CHURN_SCORE = AGE + AVGCHECKBALANCE + AVGSAVINGSBALANCE;
*R_CHURN_SCORE = CHURN_SCORE + CONTACT_LENGTH + HOMEOWNER;
strcpy(_WARN_, "SFD");
return(1);

}

The following example shows the eScript code required to invoke a DLL. In this code, the Buffer is
used for pointers and characters:

function TestDLLCall3()
{

var AGE = 10;
var AVGCHECKBALANCE = 20;
var AVGSAVINGSBALANCE = 30;
var CHURN_SCORE = 40;
var CONTACT_LENGTH = 50;
var HOMEOWNER = 60;
var P_CHURN_SCORE = Buffer(8);
var R_CHURN_SCORE = Buffer(8);
var _WARN_ = Buffer(5);

SElib.dynamicLink("jddll.dll", "score", CDECL,
FLOAT64, AGE,
FLOAT64, AVGCHECKBALANCE,
FLOAT64, AVGSAVINGSBALANCE,
FLOAT64, CHURN_SCORE,
FLOAT64, CONTACT_LENGTH,
Siebel eScript Language Reference Version 7.8, Rev. A288

Siebel eScript Commands ■ The SElib Object
FLOAT64, HOMEOWNER,
P_CHURN_SCORE,
R_CHURN_SCORE,
WARN);

var r_churn_score = R_CHURN_SCORE.getValue(8, "float");
var p_churn_score = P_CHURN_SCORE.getValue(8, "float");
var nReturns = r_churn_score + p_churn_score;
return(nReturns);
}

The following code calls a DLL function in the default codepage:

var sHello = "Hello";
Selib.dynamicLink("MyLib.dll", "MyFunc", CDECL, sHello);

The following code calls a DLL function that passes Unicode strings.

var sHello = "Hello";
Selib.dynamicLink("MyLib.dll", "MyFunc", CDECL, WCHAR, sHello);

The following code calls a DLL function that passes both Unicode and non-Unicode strings.

var sHello = "Hello";
var sWorld = "world";
Selib.dynamicLink("MyLib.dll", "MyFunc", CDECL, WCHAR, sHello, sWorld);

The following example shows how to call an external application and pass it arguments (0, 0, and 5):

SElib.dynamicLink("shell32", "ShellExecuteA", STDCALL, 0, "open",
"c:\\Grabdata.exe", 0, 0, 5).

See also
“Clib.system() Method” on page 193

SElib.peek() Method
This method reads data from a specific position in memory.
Siebel eScript Language Reference Version 7.8, Rev. A 289

Siebel eScript Commands ■ The SElib Object
Syntax
SElib.peek(address[, dataType])

Returns
This method returns the data specified by dataType.

Usage
This method reads (or gets) data from the position in memory to which the address argument points.
The dataType parameter specifies how many bytes to read and how to interpret the data.

CAUTION: Routines that work with memory directly should be used with caution. To avoid
destroying or moving data unexpectedly , you should clearly understand memory and the operations
of these methods before using them.

Example
TheApplication().TraceOn("c:\\eScript_trace.txt","allocation","all");
var v = new Buffer("Now");
// Collect "Now", the original value, for display.
TheApplication().Trace(v);
// Get the address of the first byte of v, "N"
var vPtr = SElib.pointer(v);
// Get the "N"
var p = SElib.peek(vPtr);
// Convert "N" to "P"
SElib.poke(vPtr,p+2);
// Display "Pow"
TheApplication().Trace(v);
TheApplication().TraceOff();

The script produces the following trace output:

COMMENT,Now
COMMENT,Pow

See also

Parameter Description

address The address in memory from which to get data, that is, a pointer to
the data in memory.

dataType The type of data to get, from among the following types: UWORD8,
SWORD8, UWORD16, SWORD16, UWORD24, SWORD24, UWORD32,
SWORD32, FLOAT32, FLOAT64, FLOAT80 (not available in Win32)

For each type, the numerical suffix, for example 8 or 16, specifies the
number of bytes to get. The “S” or “U” prefix on some types
designates “signed” or “unsigned,” respectively.

The default value is UWORD8.
Siebel eScript Language Reference Version 7.8, Rev. A290

Siebel eScript Commands ■ The SElib Object
“SElib.poke() Method” on page 292

“Blob.get() Method” on page 87

“Clib.memchr() Method” on page 110

“Clib.fread() Method” on page 139

SElib.pointer() Method
This method gets the address in memory of a Buffer variable.

Syntax
SElib.pointer(bufferVar])

Returns
This method returns the address of (a pointer to) the Buffer variable identified by varName.

Usage
This method gets the address in memory of the first byte of data in a Buffer variable. For information
on the Buffer object, see “Buffer Objects in Siebel eScript” on page 92.

CAUTION: A pointer is valid only until a script modifies the variable identified by bufferVar or until
the variable goes out of scope in a script. Putting data in the memory occupied by bufferVar after
such a change is dangerous. When data is put into the memory occupied by bufferVar, be careful not
to put more data than will fit in the memory that the variable actually occupies.

Example
TheApplication().TraceOn("c:\\eScript_trace.txt","allocation","all");
var v = new Buffer("Now");
// Collect "Now", the original value, for display.
TheApplication().Trace(v);
// Get the address of the first byte of v, "N"
var vPtr = SElib.pointer(v);
// Get the "N"
var p = SElib.peek(vPtr);
// Convert "N" to "P"
SElib.poke(vPtr,p+2);
// Display "Pow"
TheApplication().Trace(v);
TheApplication().TraceOff();

The script produces the following trace output:

Parameter Description

bufferVar The name or identifier of a Buffer variable
Siebel eScript Language Reference Version 7.8, Rev. A 291

Siebel eScript Commands ■ The SElib Object
COMMENT,Now
COMMENT,Pow

See also
“SElib.peek() Method” on page 289
“SElib.poke() Method” on page 292
“BLOB Objects” on page 85
“Clib.memchr() Method” on page 110

SElib.poke() Method
This method writes data to a specific position in memory.

Syntax
SElib.poke(address, data[, dataType])

Returns
This method returns the address of the byte that follows the data that is written to memory.

Usage
This method writes data to the position in memory to which the address argument points. The data
to be written must match the type given by the dataType argument , or its default value if not
provided. The dataType argument specifies how many bytes to write and how to interpret the data.

CAUTION: Routines that work with memory directly should be used with caution. To avoid
destroying or moving data unexpectedly , you should clearly understand memory and the operations
of these methods before using them.

Parameter Description

address The address in memory to which to write data, that is, a pointer to the
position in memory in which to start writing the data.

data The data to write directly to memory. The data should match the type
given by dataType.

dataType The type of data to write, from among the following types: UWORD8,
SWORD8, UWORD16, SWORD16, UWORD24, SWORD24, UWORD32,
SWORD32, FLOAT32, FLOAT64, FLOAT80 (not available in Win32)

For each type, the numerical suffix, for example 8 or 16, specifies the
number of bytes to write. The “S” or “U” prefix on some types
designates “signed” or “unsigned,” respectively.

The default value is UWORD8.
Siebel eScript Language Reference Version 7.8, Rev. A292

Siebel eScript Commands ■ The String Object
Example
TheApplication().TraceOn("c:\\eScript_trace.txt","allocation","all");
var v = new Buffer("Now");
// Collect "Now", the original value, for display.
TheApplication().Trace(v);
// Get the address of the first byte of v, "N"
var vPtr = SElib.pointer(v);
// Get the "N"
var p = SElib.peek(vPtr);
// Convert "N" to "P"
SElib.poke(vPtr,p+2);
// Display "Pow"
TheApplication().Trace(v);
TheApplication().TraceOff();

The script produces the following trace output:

COMMENT,Now
COMMENT,Pow

See also
“SElib.peek() Method” on page 289
“Blob.put() Method” on page 89
“Clib.memchr() Method” on page 110
“Clib.fread() Method” on page 139

The String Object
One of the properties of the String object is its value, a sequence of text characters. Like other
objects, the String object has other properties and methods.

Throughout this section, “string” is used to represent the value of an instance of the String object,
that is, a sequence of characters. Typically, other properties of the String object are attributes that
describe the string value, and methods of the String object manipulate the string value.

To indicate that a text literal is a string, it is enclosed in quotation marks. In the following example,
the first statement puts the string "hello" into the variable word. The second sets the variable word
to have the same value as the variable hello.

var word = "hello";
word = hello;

You can declare a string with single quotes instead of double quotes. There is no difference between
the two in eScript.

See Also
“Escape Sequences for Characters in Siebel eScript” on page 294
“String Object Methods and Properties in Siebel eScript” on page 295
Siebel eScript Language Reference Version 7.8, Rev. A 293

Siebel eScript Commands ■ The String Object
Escape Sequences for Characters in Siebel eScript
Some characters, such as a quotation mark, have special meaning to the Siebel eScript interpreter
and must be indicated with special character combinations when used in strings. This indication
allows the Siebel eScript interpreter to distinguish between, for example, a quotation mark that is
part of a string and a quotation mark that indicates the end of the string. The following table lists
the characters indicated by escape sequences.

These escape sequences cannot be used within strings enclosed by back quotes, which are explained
in “Back-Quote Strings in Siebel eScript” on page 294.

Back-Quote Strings in Siebel eScript
Siebel eScript provides the back quote "`", (also known as the back-tick or grave accent), as an
alternative quote character to indicate that escape sequences are not to be translated; that is, the
escape characters are part of a string. Special characters represented by a backslash followed by a
letter, such as \n, cannot be used in back-quote strings.

For example, the following lines show different ways to describe a single file name:

"c:\\autoexec.bat" // traditional C method
'c:\\autoexec.bat' // traditional C method
`c:\autoexec.bat' // alternative Siebel eScript method

Back-quote strings are not supported in most versions of JavaScript. Therefore, if you plan to port
your script to some other JavaScript interpreter, do not use them.

Escape Sequence Description

\a Audible bell

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Tab

\v Vertical tab

\’ Single quote

\” Double quote

\\ Backslash character

\0### Octal number (example: '\033' is the escape character)

\x## Hex number (example: '\x1B' is the escape character)

\0 Null character (example: '\0' is the null character)

\u#### Unicode number (example: '\u001B' is the escape character)
Siebel eScript Language Reference Version 7.8, Rev. A294

Siebel eScript Commands ■ The String Object
String Object Methods and Properties in Siebel eScript
The following conventions are used in the methods and properties in this topic:

■ stringVar indicates any string variable. A specific instance of a variable should precede the period
to use a property or call a method.

■ The identifier String indicates a static method of the String object. It does not apply to a specific
instance of the String object.

String charAt() Method
This method returns a character at a certain place in a string.

Syntax
stringVar.charAt(position)

Returns
A string of length 1 representing the character at position.

Usage
To get the first character in a string, use index 0, as follows:

var string1 = "a string";
var firstchar = string1.charAt(0);

To get the last character in a string, use:

var lastchar = string1.charAt(string1.length - 1);

If position does not fall between 0 and stringVar.length - 1, stringVar.charAt() returns an empty
string.

See Also
“String indexOf() Method” on page 296
“String lastIndexOf() Method” on page 297
“String length Property” on page 298
“String.fromCharCode() Static Method” on page 295

String.fromCharCode() Static Method
This method returns a string created from the character codes that are passed to it as parameters.

Parameter Description

position An integer indicating the position in the string of the character to be returned,
where the position of the first character in the string is 0.
Siebel eScript Language Reference Version 7.8, Rev. A 295

Siebel eScript Commands ■ The String Object
Syntax
String.fromCharCode(code1, code2, ... coden)

Returns
A new string containing the characters specified by the codes.

Usage
This static method allows you to create a string by specifying the individual Unicode values of the
characters in it. The identifier String is used with this static method, instead of a variable name as
with instance methods because it is a property of the String constructor. The parameters passed to
this method are assumed to be Unicode values. The following line:

var string1 = String.fromCharCode(0x0041,0x0042);

sets the variable string1 to "AB".

Example
The following example uses the decimal Unicode values of the characters to create the string
"Siebel". For another example, see “offset[] Method” on page 96.

var seblStr = String.fromCharCode(83, 105, 101, 98, 101, 108);

See Also
“Clib.toascii() Method” on page 121

String indexOf() Method
This method returns the position of the first occurrence of a substring in a string.

stringVar.indexOf(substring [, offset])

Returns
The position of the first occurrence of a substring in a string variable.

Parameter Description

code1, code2, ... coden Integers representing Unicode character codes

Parameter Description

substring One or more characters to be searched

offset The position in the string at which to start searching, where 0 represents the first
character
Siebel eScript Language Reference Version 7.8, Rev. A296

Siebel eScript Commands ■ The String Object
Usage
stringVar.indexOf() searches for the entire substring in a string variable. The substring parameter
may be a single character. If offset is not given, searching starts at position 0. If it is given, searching
starts at the specified position.

For example:

var string = "what a string";
var firsta = string.indexOf("a")

returns the position of the first a appearing in the string, which in this example is 2. Similarly,

var magicWord = "abracadabra";
var secondA = magicWord.indexOf("a", 1);

returns 3, the index of the first a to be found in the string when starting from the second character
of the string.

NOTE: The indexOf() method is case sensitive.

See Also
“String charAt() Method” on page 295
“Clib.strchr() Method” on page 168
“Clib.strpbrk() Method” on page 174
“String lastIndexOf() Method” on page 297
“String replace() Method” on page 302

String lastIndexOf() Method
This method finds the position of the last occurrence of a substring in a string.

Syntax
stringVar.lastIndexOf(substring [, offset])

Returns
If offset is provided, the function returns the rightmost position, not greater than offset, at which
substring begins in the string contained in the variable stringVar. If offset is not provided, the
function returns the rightmost position in the entire string at which substring begins.

If substring is not found, or if offset is outside the range of valid positions in the string, then the
function returns -1.

Parameter Description

substring One or more characters to search for

offset The rightmost position in the string at which to start searching. If offset is not
provided, the entire string is searched.
Siebel eScript Language Reference Version 7.8, Rev. A 297

Siebel eScript Commands ■ The String Object
Usage
The stringVar.lastIndexOf() function is used to determine the last position within a string that a
substring occurs. By setting the offset parameter, the search can be limited to a substring of leftmost
characters of the string.

Substring is not required to occur entirely within the substring of the string bounded by offset. Its
first character is required to occur at a position no greater than offset.

For example:

var string = "what a string";
string.lastIndexOf("a")

returns the position of the last a appearing in the string, which in this example is 5. Similarly,

var magicWord = "abracadabra";
var lastabr = magicWord.lastIndexOf("abr", 8);

returns 7, the position of the last “abr” beginning at a position no greater than 8.

See Also
“String charAt() Method” on page 295
“Clib.strchr() Method” on page 168
“Clib.strpbrk() Method” on page 174
“String indexOf() Method” on page 296
“String replace() Method” on page 302

String length Property
The length property stores an integer indicating the length of the string.

Syntax
stringVar.length

Usage
The length of a string can be obtained by using the length property. For example:

var string1 = "No, thank you.";
TheApplication().RaiseErrorText(string1.length);

displays the number 14, the number of characters in the string. Note that the index of the last
character in the string is equivalent to stringVar.length -1, because the index begins at 0, not at 1.

Example
This code fragment returns the length of a name entered by the user (including spaces).

var userName = "Christopher J. Smith";
TheApplication().RaiseErrorText("Your name has " +

userName.length + " characters.");
Siebel eScript Language Reference Version 7.8, Rev. A298

Siebel eScript Commands ■ The String Object
String match() Method
This method returns an array of strings that are matches within the string against a target regular
expression.

Syntax
stringVar.match(regexp)

Returns
This method returns an array with various elements (the matched strings that are found), and their
property sets. The elements returned depend on the attributes of the regular expression. The method
returns null if no match is found.

Usage
When match() is executed with the global attribute, "g", not set on the regular expression, then the
return array and its properties are equivalent to those returned under the same circumstances using
the RegExp exec() method. If a match is found, then:

■ Element 0 of the returned array is the first text in the string that matches the primary RegExp
pattern.

■ Element 1 is the text matched by the first subpattern (in parentheses) of the RegExp instance.

■ Element 2 is the text matched by the second subpattern of the RegExp instance, and so forth.

These elements and their numbers correspond to groups in regular expression patterns and
replacement expressions.

The returned array includes the following properties:

■ The length property is the number of text matches in the returned array.

■ The index property is the start position of the first text that matches the primary RegExp pattern.

■ The input property is the target string that was searched.

The return values, and the index and input properties are the same as those of the returned array
from the RegExp exec() method when exec() is used with a regular expression whose global attribute
is not set.

When match() is executed with the global attribute, "g", set on the regular expression, and a match
is found, then:

■ Element 0 of the return array is the first text in the string that matches the primary pattern of
the regular expression.

Parameter Description

regexp A regular expression, provided as a literal or as a variable
Siebel eScript Language Reference Version 7.8, Rev. A 299

Siebel eScript Commands ■ The String Object
■ Each subsequent element of the return array is the next text in the string that matches the
primary pattern of the regular expression, and that starts after the last character of the previous
match. Thus matches that overlap other matches are not returned. For example, if the regular
expression’s primary pattern is a.. (“a” followed by any two characters) and the string is
“abacadda”, then the return array includes “aba” and “add”, but not “aca”.

NOTE: Although match() resembles the RegExp exec() method when the global attribute is not
set on the regular expression, match() and exec() are very different when the global attribute is
set on the regular expression.

Examples
The following example calls match() against a regular expression whose global attribute is not set.
The output is commented.

function fn ()
{

var myString = new String("Better internet");
var myRE = new RegExp(/(.).(.er)/i);
var results = myString.match(myRE);
var resultmsg = "";
for(var i =0; i < results.length; i++)
{

resultmsg = resultmsg + "return[" + i + "] = " + results[i] + "\n";
}
TheApplication().RaiseErrorText(resultmsg);

}
fn ();

Output is:

return[0] = etter \\First text containing primary pattern ...er (any three
\\characters followed by "er")

return[1] = e \\First text matching the first subpattern (.) (any single
\\character) within the first text matching the primary pattern

return[2] = ter \\First text matching the second subpattern (.er) (any single
\\character followed by "er") within the first text matching
\\the primary pattern

The following example calls match() against a regular expression whose global attribute is set. The
method returns matches of the regular expression’s primary pattern that do not overlap.

function fn ()
{

var str = "ttttot tto";
var pat = new RegExp("t.t", "g");
var rtn = str.match(pat);
var resultmsg = "";
for(var i =0; i < rtn.length; i++)
{

resultmsg = resultmsg + "match [" + i + "] = " + rtn[i] + "\n";
TheApplication().RaiseErrorText(resultmsg);
}

Siebel eScript Language Reference Version 7.8, Rev. A300

Siebel eScript Commands ■ The String Object
}
fn ();

Output is:

match [0] = ttt
match [1] = tot

The output does not include the “ttt” instance that starts at position 1 or “t t” because these
instances start within other strings that are returned.

See also
“RegExp exec() Method” on page 281

String split() Method
This method splits a string into an array of strings based on the delimiters in the parameter
substring.

Syntax
stringVar.split([delimiter])

Returns
An array of strings, creating by splitting stringVar into substrings, each of which begins at an
instance of the delimiter character.

Usage
This method splits a string into an array of substrings such that each substring begins at an instance
of delimiter. The delimiter is not included in any of the strings. If delimiter is omitted or is an empty
string (""), the method returns an array of one element, which contains the original string.

This method is the inverse of arrayVar.join().

Example
The following example splits a typical Siebel command line into its elements by creating a separate
array element at each space character. The string has to be modified with escape characters to be
comprehensible to Siebel eScript. Also, the cmdLine variable must appear on a single line, which
space does not permit in this volume.

function Button3_Click ()
{

var msgText = "The following items appear in the array:\n\n";

Parameter Description

delimiter The character at which the value stored in stringVar is to be split
Siebel eScript Language Reference Version 7.8, Rev. A 301

Siebel eScript Commands ■ The String Object
var cmdLine = "C:\\Siebel\\bin\\siebel.exe /c
\'c:\\siebel\\bin\\siebel.cfg\' /u SADMIN /p SADMIN /d Sample"

var cmdArray = cmdLine.split(" ");
for (var i = 0; i < cmdArray.length; i++)

msgText = msgText + cmdArray[i] + "\n";
TheApplication().RaiseErrorText(msgText);

}

Running this code produces the following result.

The following items appear in the array:
C:\Siebel\bin\siebel.exe
/c
'C:\siebel\bin\siebel.cfg'
/u
SADMIN
/p
SADMIN
/d
Sample

See Also
“Array join() Method” on page 80

String replace() Method
This method searches a string using the regular expression pattern defined by pattern. If a match is
found, it is replaced by the substring defined by replexp.

Syntax
stringVar.replace(pattern, replexp)

Returns
The original string with replacements according to pattern and replexp.

Usage
The string is searched using the regular expression pattern defined by pattern. If a match is found,
it is replaced by the substring defined by replexp. The parameter replexp may be:

■ A simple string

■ A string containing special regular expression replacement elements

Parameter Description

pattern Regular expression pattern to find or match in string.

replexp Replacement expression which may be a string, a string with regular expression
elements, or a function
Siebel eScript Language Reference Version 7.8, Rev. A302

Siebel eScript Commands ■ The String Object
■ A function that returns a value that may be converted into a string

If you are using the T eScript engine and any replacements are made, appropriate RegExp object
static properties such as RegExp.leftContext, RegExp.rightContext, and RegExp.$n are set. These
properties provide more information about the replacements.

NOTE: The ST eScript engine does not support the following static properties of the RegExp object:
RegExp.$n (including '$_' and '$&'), RegExp.input, RegExp.lastMatch, RegExp.lastParen,
RegExp.leftContext, RegExp.rightContext.

The following table shows the special characters that may occur in a replacement expression.

Example
var rtn;
var str = "one two three two one";
var pat = /(two)/g;

// rtn == "one zzz three zzz one"
rtn = str.replace(pat, "zzz");

// rtn == "one twozzz three twozzz one";
rtn = str.replace(pat, "$1zzz");

// rtn == "one 5 three 5 one"
rtn = str.replace(pat, five());

// rtn == "one twotwo three twotwo one";
rtn = str.replace(pat, "$&$&”);

function five() {
return 5;

}

substring() Method
This method retrieves a section of a string.

Character Description

$1, $2 … $9 The text matched by regular expression patterns inside of parentheses. For example,
$1 puts the text matched in the first parenthesized group in a regular expression
pattern.

$+ The text matched by the last regular expression pattern inside of the last
parentheses, that is, the last group.

$& The text matched by a regular expression pattern.

$` The text to the left of the text matched by a regular expression pattern.

$' The text to the right of the text matched by a regular expression pattern.

\$ The dollar sign character.
Siebel eScript Language Reference Version 7.8, Rev. A 303

Siebel eScript Commands ■ The String Object
Syntax
stringVar.substring(start[, end])

Returns
A new string, of length end - start, containing the characters that appeared in the positions from
start to end - 1 of stringVar.

Usage
This method returns a portion of stringVar, comprising the characters in stringVar at the positions
start through end - 1. The character at the end position is not included in the returned string. If the
end parameter is not used, stringVar.substring() returns the characters from start to the end of
stringVar.

Example
For an example, see “String indexOf() Method” on page 296.

See Also
“String charAt() Method” on page 295
“String indexOf() Method” on page 296
“String lastIndexOf() Method” on page 297

toLowerCase() Method
This method returns a copy of a string with the letters changed to lowercase.

Syntax
stringVar.toLowerCase()

Returns
A copy of stringVar in lowercase characters.

Usage
This method returns a copy of stringVar with uppercase letters replaced by their lowercase
equivalents.

Parameter Description

start An integer specifying the location of the beginning of the substring to be returned

end An integer one greater than the location of the last character of the substring to
be returned
Siebel eScript Language Reference Version 7.8, Rev. A304

Siebel eScript Commands ■ The String Object
Example
The following code fragment assigns the value "e. e. cummings" to the variable poet:

var poet = "E. E. Cummings";
poet = poet.toLowerCase();

See Also
“toUpperCase() Method” on page 305

toUpperCase() Method
This method returns a copy of a string with the letters changed to uppercase.

Syntax
stringVar.toUpperCase()

Returns
A copy of stringVar in uppercase characters.

Usage
This method returns a copy of stringVar, with lowercase letters replaced by their uppercase
equivalents.

Example
The following fragment accepts a filename as input and displays it in uppercase:

var filename = "c:\\temp\\trace.txt";;
TheApplication().RaiseErrorText("The filename in uppercase is "

+filename.toUpperCase());

See Also
“toLowerCase() Method” on page 304
Siebel eScript Language Reference Version 7.8, Rev. A 305

Siebel eScript Commands ■ The String Object
Siebel eScript Language Reference Version 7.8, Rev. A306

A Compilation Error Messages in
Siebel eScript
This appendix provides explanations and examples of error messages generated by Siebel eScript
when a script is compiled with the ST eScript engine.

The following conventions are used in this appendix:

■ The error prefix is the text that appears for all of a group of errors; for example, “Syntax error
at Line line# position character#:”.

■ The message is the unique part of an error message that applies only to a single error. The
message may be text appended after an error prefix, or it may be the entire error message.

■ In each example, comment text explains the flawed script that it follows. Not all errors have
associated examples.

■ A cause is provided for some, but not all, errors. Typically, the example suffices to explain causes
of an error.

Syntax Error Messages in eScript
Table 40 contains error messages that can result from incorrect script syntax when the script is
compiled with the ST eScript engine.
Siebel eScript Language Reference Version 7.8, Rev. A 307

Compilation Error Messages in Siebel eScript ■ Syntax Error Messages in eScript
Syntax error messages start with the error prefix “Syntax error at line line# position character#:”.

Table 40. Syntax Error Messages in Siebel eScript

Message Examples Cause

Expected ':' 1.
function main ()
{
var a = false;
var b = a ? 1, 2;
//expect : after 1

}

2.
function main ()
{
var a = {prop1:1, prop2};
//expect : after prop2

}

3.
function main ()
{
var a = 1;
var b;
switch (a)
{
case 1
//expect : after 1
b =a;
default
//expect : after default
b = 0;

}
}

Expected ';' function main ()
{
for (i=1; i<10)
//miss ; after i<10
{
...
}

}

Expected '(' function main <>
//expect (after main
{
...

}

Siebel eScript Language Reference Version 7.8, Rev. A308

Compilation Error Messages in Siebel eScript ■ Syntax Error Messages in eScript
Expected ')'. (and) do not pair up.

Expected ']'. function main ()
{
var a = new Array (10);
a[10 = 1;
//expect] after a[10 = 1

}

Expected '{'. function main ()
var a = new Array (1);
//expect { before var

Expected '}'. { and } do not pair up.

Expected identifier. function ()
// expect an identifier after
// function */
{
...

}

function main ()
{
var;

//expect an identifier after var
}

Invalid token. function main ()
{
var a = "\u000G";
// '\u000G' is an invalid
// unicode escape sequence

}

function main ()
{
var a = "\u0G";
// '\u0G' is an invalid hex
// escape sequence

}

There is an invalid unicode
escape sequence or an invalid
hex escape sequence.

Expected while. function main ()
{
do
{
...
}
//expect while on this line

}

Table 40. Syntax Error Messages in Siebel eScript

Message Examples Cause
Siebel eScript Language Reference Version 7.8, Rev. A 309

Compilation Error Messages in Siebel eScript ■ Semantic Error Messages in eScript
Semantic Error Messages in eScript
Table 41 contains error messages that can result from semantic errors when the script is compiled
with the ST eScript engine.

See also “Semantic Warnings in eScript” on page 314.

Throw must be followed
by an expression on the
same line.

Invalid continue
statement.

function main ()
{
continue;
// continue is not within a loop

}

The continue statement is not
within the body of:

■ do...while

■ while

■ for

■ for...in

Invalid break statement. 1.
function BreakError()
{
break;

// break is not within a valid
// loop
}

The break statement is outside
of the body of:

■ do...while

■ while

■ for

■ for...in

Invalid return statement.
Return statement can't
be used outside the
function body.

function fn ()
{
….

}
return;
//Return is outside the function
//body.

Invalid left-hand side
value.

function main ()
{
new Object () = 1;
// new Object () is not a valid
// left value

}

Invalid regular
expression.

var oRegExp:RegExp;
oRegExp = /[a-c*/;
// The regular expression is
// missing the closing]. It
// should be [a-c]*.

Table 40. Syntax Error Messages in Siebel eScript

Message Examples Cause
Siebel eScript Language Reference Version 7.8, Rev. A310

Compilation Error Messages in Siebel eScript ■ Semantic Error Messages in eScript
Semantic error messages start with the error prefix “Semantic Error around line line#:”.

Table 41. Semantic Error Messages in Siebel eScript

Message Examples Cause

Argument
argument_label either
type doesn't correct or is
not defined.

function main ()
{
fn (new Date(), new Date());
// type of the second parameter
// mismatches with function
// definition and cannot be
// implicitly converted to
// 'Number' type
}

function fn (arg1: chars, arg2:
Number)
{
TheApplication().RaiseErrorText
("fn");

}
main ();

No such predefined
property property_label
in class object_type.

function main ()
{
delete "123".prop1;
// prop1 is not a property of
// String object. Also, because
// the String object is
// constructed here by implicitly
// converting "123", prop1
// cannot be created dynamically.

}

[] operator can only
apply to Object, Buffer or
Array class.

The script is trying to use []
accessor to the types other
than Object, Buffer or Array
Siebel eScript Language Reference Version 7.8, Rev. A 311

Compilation Error Messages in Siebel eScript ■ Semantic Error Messages in eScript
Type mismatch: L:
left_type; R: right_type.

1.
function TypeMismatch()
{
var BC:BusComp;
var MyDate:Date = new Date();
BC =MyDate;

// MyDate is not the same data type
// as strongly typed variable BC
}

2.
function fn ()
{
var a: String;
a = new Date ();
//Type mismatch: strongly typed
//String is assigned a Date.

}

A value which belongs to one
data type is assigned to a
strongly typed variable of
another data type.

Return type is wrong.
Defined return type is
return_type.

function fn (): Array
{
return new Date ();

}

fn ();

The actual return type is
different form the defined
return type, and the actual
return type cannot be
implicitly converted to the
defined type.

No such label label
defined.

function fn ()
{
break labl;
// where labl is not a valid label

}

fn ();

Continue out of loop. function ContinueOut()
{
var i =0
while (i<3)
{
i++;
continue Mylabel;
// Mylabel label is defined
//outside of the while loop.
}
Mylabel:
var a=1;

}

A continue command
attempts to branch to a label
that is outside of a loop.

Table 41. Semantic Error Messages in Siebel eScript

Message Examples Cause
Siebel eScript Language Reference Version 7.8, Rev. A312

Compilation Error Messages in Siebel eScript ■ Semantic Error Messages in eScript
Label redefined. function LabelError()
{
Outer:
for (var i = 0; i < 5; i++)
{
var j = 0;
Inner:
while (j!=5)
{
j++;
continue Inner;
Inner: //Label Inner is

//redefined.
var b=1;

}
}

}

There is already an existing
label with the same name.

function function_label is
double defined.

function fn ()
{
TheApplication().RaiseErrorText
("fn");

}
function fn ()
// second declaration of function
// fn is not allowed
{
TheApplication().RaiseErrorText
("fn again");

}

Calling function
function_label with
insufficient number of
arguments.

function main ()
{
fn ();
// does not provide enough
//parameters

}

function fn (arg1: chars, arg2:
chars)
{
...

}

Table 41. Semantic Error Messages in Siebel eScript

Message Examples Cause
Siebel eScript Language Reference Version 7.8, Rev. A 313

Compilation Error Messages in Siebel eScript ■ Semantic Warnings in eScript
Semantic Warnings in eScript
Typically, semantic warnings make you aware of script that will run, but may produce unexpected
results or may be inefficient. Semantic warnings do not display during compilation. Instead, view
them in Siebel Tools by choosing Debug > Check Syntax.

Table 42 contains semantic warnings in eScript when the script is compiled with the ST eScript
engine.

See also “Semantic Error Messages in eScript” on page 310.

Semantic warnings start with the prefix “Semantic Warning around line line#:”.

Can't access property
property_name on native
type.

function main ()
{
var a:chars = "123";
a.m_prop = "123";
// chars is a primitive type, so it
// has no properties

}
main ();

Object_name is an
invalid object type.

function main ()
{
var a: Obj1 = "123";
// where Obj1 is an invalid object
// type

}
main ();

Indiscriminate usage of
goto.

function main ()
{
var obj = new Object();
with (obj)
{
labl:
TheApplication().RaiseErrorText
("in with");
}

goto labl;
}
main ();

Script uses goto to attempt
a branch into a with block
from outside of the with
block.

Table 41. Semantic Error Messages in Siebel eScript

Message Examples Cause
Siebel eScript Language Reference Version 7.8, Rev. A314

Compilation Error Messages in Siebel eScript ■ Semantic Warnings in eScript
Table 42. Semantic Warnings in Siebel eScript

Message Example Cause

Undefined identifier
identifier. Global object
will be used to locate the
identifier.

function main ()
{
obj = new Object();
// obj is created without being
// declared with var.

}
main ();

An undeclared variable
created within a function is not
locally defined. Instead, it is
created as a property of the
Global object.

Variable variable might
not be initialized.

function main ()
{
var a;
TheApplication().RaiseErrorText
(a);

}
main ();

Label 'label' is unused
and can be removed.

function main ()
{
var a = 1;
labl:
// labl is unused
TheApplication().RaiseErrorText
(a);

}
main ();

Calling function
function_label with
insufficient number of
arguments.

function main ()
{
// It is a warning condition
// instead of an error if the
// missing argument is not
// strongly typed.*/
var c = fn ();

}

function fn (a, b)
{
return a+b;

}
main ();

Type conversion from
data_type1 to
data_type2 may not
succeed.

function main ()
{
var n: float = "123";
}

Siebel eScript Language Reference Version 7.8, Rev. A 315

Compilation Error Messages in Siebel eScript ■ Preprocessing Error Messages in eScript
Preprocessing Error Messages in eScript
Preprocessing error messages typically indicate compatibility issues when script created with the T
eScript engine is compiled with the ST eScript engine.

Table 43 contains preprocessing error messages when the script is compiled with the ST eScript
engine.

No such method
method_name.

function main ()
{
fn ();
}
main ();

variable variable is
double declared.

1.
function fn ()
{
for (var n = 0 ; n < 3 ; n++)
{
...;
}
for (var n = 0 ; n < 3 ; n++)
// n is double declared within /

/ the scope of fn.
{
...;

}
fn ();

2.
function main ()
{
var string1 = "a string";
var string1 = “another string”;
// string1 should not be

redeclared.
}
main ();

A local variable is declared
more than once.

To avoid this warning for the
common case in Example 1,
declare the counter variable
outside of the for definition
and use the counter variable
without var in the for
definition. For example:

function fn ()
{
var n;
for (n = 0 ; n < 3 ; n++)
{
...
}
for (n = 0 ; n < 3 ; n++)
{
...

The multiple declarations like
that in Example 2 have the net
effect of all declarations after
the first declaration being
interpreted as simple
assignments, but with the
unnecessary overhead of
variable declarations. Instead,
use simple assignments after
the first declaration; for
example:

string1 = “another string”.

Table 42. Semantic Warnings in Siebel eScript

Message Example Cause
Siebel eScript Language Reference Version 7.8, Rev. A316

Compilation Error Messages in Siebel eScript ■ Preprocessing Error Messages in eScript
Prepocessing error messages start with the error prefix “PreProcess Error:”.

Table 43. Preprocessing Error Codes in Siebel eScript

Message Example Cause

Can't open include file
file_path.

#include "mystuff.js"
//where mystuff.js doesn't exist

The path to the file in an include
statement is not valid.
Siebel eScript Language Reference Version 7.8, Rev. A 317

Compilation Error Messages in Siebel eScript ■ Preprocessing Error Messages in eScript
Siebel eScript Language Reference Version 7.8, Rev. A318

Index
Symbols
" (double quote) 20
& (ampersand) 20
; (semicolon) 21
? (question mark) 40
’ (single quote) 20

A
absolute value 256
ampersand 20
applet object methods 73
arc cosine 257
arcsine 258
arctangent 258, 259
arguments[] property 43
array

associative 79
constructor 78
element order 82
elements, sorting 192
first index and length 234
join() method 80
length 233
length property 80
methods, list 59
objects, described 77
reverse() method 82
sort() method 83
sorting into ASCII order 83

array data type 27
Array pop() method 81
Array push() method 82
Array splice() method 84
ASCII, seven bit representation of a

character 121
assignment operator 37
associative arrays 79

B
back quotes 294
backslash 20
bigEndian byte, using 101
binary large object

data to a specified location 89
data, reading 87

BLOB

Blob.get() method 87
Blob.put method 89
Blob.size() method 91
blobDescriptor 86
described 85

block comments 20
blocks 21
Boolean data type 43
Boolean variables

converting from a value 240
break statement 45
buffer

bigEndian property 101
buffer constructor 92
comparing lengths and contents of two 111
copying bytes from one to another 111
cursor property 102
data property 102
file, writing to disk 129
filling bytes with a character 112
getString() method 95
getValue() method 95
internal data 102
methods 94
methods, list 60
offset[] method 96
properties 101
putString() method 97
putValue() method 98
size property 102
subBuffer() method 99
toString() method 100
unicode property 103

business component object methods 103
business object object methods 108
business service object methods 108
byte-array methods, list 70

C
case-insensitivity

comparing strings 170, 173
searching strings for substrings 178

case-sensitivity
comparing two strings 172
described 19
programming guidelines 17

casting methods
Siebel eScript Language Reference Version 7.8, Rev. A 319

Index ■ C
list 61
when to use 33

character
alphabetic 114
alphanumeric 113
ASCII 115
characters from current file cursor 131
classification methods, list 61
control 115
decimal digit 116
escape 20
first occurrence in a buffer 110
hexadecimal digit 120
last occurrence 175
lowercase alphabetic 117
next in a file stream 130
printable 116, 118
punctuation mark 118
pushing back into a file 151
seven-bit ASCII representation 121
special 20
uppercase alphabetic 120
white-space 119
writing to a specified file 137

charAt() method 295
Clib object

Clib compared to ECMAScript methods 164
data, formatting 152
file I/O functions 123
format strings 153
formatting data 152
redundant functions 164
time functions 179
Time object 179

Clib.asctime() method 180
Clib.bsearch() method 189
Clib.chdir() method 124
Clib.clearerr() method 126
Clib.clock() method 181
Clib.cosh() method 157
Clib.ctime() method 181
Clib.difftime() method 182
Clib.div() method 157
Clib.errno property 122
Clib.fclose() method 127
Clib.feof() method 128
Clib.ferror() method 129
Clib.fflush() method 129
Clib.fgetc() method 130
Clib.fgetpos() method 130
Clib.fgets() method 131
Clib.flock() method 132
Clib.fopen() method 133
Clib.fprintf() method 135

Clib.fputc() method 137
Clib.fputs() method 138
Clib.fread() method 139
Clib.freopen() method 140
Clib.frexp() method 158
Clib.fscanf() method 141
Clib.fseek() method 143
Clib.fsetpos() method 144
Clib.ftell() method 145
Clib.fwrite() method 145
Clib.getc() method 130
Clib.getcwd() method 126
Clib.getenv() method 191
Clib.gmtime() method 183
Clib.Idexp() method 159
Clib.Idiv() method 157
Clib.isalnum() method 113
Clib.isalpha() method 114
Clib.isascii() method 115
Clib.iscntrl() method 115
Clib.isdigit() method 116
Clib.isgraph() method 116
Clib.islower() method 117
Clib.isprint() method 118
Clib.ispunct() method 118
Clib.isspace() method 119
Clib.isupper() method 120
Clib.isxdigit() method 120
Clib.localtime() method 184
Clib.memchr() method 110
Clib.memcmp() method 111
Clib.memcpy() method 111
Clib.memmove() method 111
Clib.memset() method 112
Clib.mkdir() method 146
Clib.mktime() method 185
Clib.modf() method 122, 159
Clib.putc() method 137
Clib.putenv() method 191
Clib.qsort() method 192
Clib.rand() method 160
Clib.remove() method 147
Clib.rename() method 148
Clib.rewind() method 148
Clib.rmdir() method 149
Clib.rsprintf() method 166
Clib.sinh() method 161
Clib.sprintf() method 166
Clib.srand() method 161
Clib.sscanf() method 149
Clib.strchr() method 168
Clib.strcmpi() method 170
Clib.strcspn() method 169
Clib.strerror() method 122
Siebel eScript Language Reference Version 7.8, Rev. A320

Index ■ D
Clib.strftime() method 186
Clib.stricmp() method 170
Clib.strncat() method 171
Clib.strncmp() method 172
Clib.strncmpi() method 173
Clib.strncpy() method 173
Clib.strnicmp() method 173
Clib.strpbrk() method 174
Clib.strrchr() method 175
Clib.strspn() method 176
Clib.strstr() method 171, 177
Clib.strstri() method 178
Clib.system() method 193
Clib.tanh() method 162
Clib.time() method 188
Clib.tmpfile() method 150, 151
Clib.toascii() method 121
Clib.ungetc() method 151
coding, caution, about and using Siebel

Tools 15
COMCreateObject() method 232
commands, passing to the command

processor 193
comments 20
comparing values 39
conditional expressions 39
constants, numeric 31
continue statement 46
control character 115
conversion methods

alphanumeric string to a floating-point
decimal number 238, 239

list 61
parameter to a buffer 241
parameter to a number 246
parameter to an integer 244, 245, 250,

251
parameter to an object 247
parameters to a string 249
value to the Boolean data type 240

copying characters between strings 173
cosine 261
cursor. See file cursor

D
data

file, writing to disk 127
handling methods, list 62, 253
storing in a series of parameters 141
storing in variables 139
writing data in a specified variable to a

specified file 145
data types

array 27
Boolean, converting value to 240
decimal floats 30
described 24
floating-point numbers 30
hexadecimal notation 30
octal notation 30
properties and methods 34
undefined 26

date
extracted from a Time object 180
functions, list 63
stored in variables 186

Date object
about 194
Date constructor 195
universal time methods 216

Date.fromSystem() 194
Date.fromSystem() static method 197
Date.pars() static method 198
Date.toSystem() 194
Date.toSystem() method 199
Date.UTC() static method 217
date-time value 181
decimal digit 116
decimal floats 30
decimal number, integer part 159
defined() method 253
diagnostic messages 122
directory

changing current 124
creating 146
current working, path of 126
functions, list 65
removing 149

disk functions, list 65
division 162, 163
do...while statement 47
double quote mark 20

E
e

base 10 logarithm 272
base 2 logarithm 273
number value of 271

ECMAScript 18
end-of line comments 20
end-of-file flag, resetting 126
environment variable

creating 191
strings 191

error indicator 129
error messages
Siebel eScript Language Reference Version 7.8, Rev. A 321

Index ■ F
associated with an error number 122
error status 126
error-handling methods, list 66
escape character 20
escape sequences

back quotes and 294
list 294
removing from a string 252
replacing special characters with 236

escape() method 236
eval() method 237
exponential function 262
expressions 21, 35

F
file

deleting a specified 147
functions, list 64
input/output functions, list 66
opening in a specified mode 133
renaming 148
temporary binary 150

file buffer, data 129
file cursor

current, setting to a position 144
locating 128
position offset, setting 145
position, current 102
position, setting 143
setting to the beginning 148

file pointers, associating with other
files 140

file-control functions, list 65
floating-point numbers

converting from alphanumeric 238
described 30
hyperbolic sine 161
hyperbolic tangent 162
mantissa and exponent as givens 159

for statement 48
for...in statement 49, 79
formatting data 152
Function objects

creating 229
length property 230
return statement 230

functions
arguments[] property 43
described 41
error checking 44
passing variables to 43
recursive 43
scope 42

specific location within 50

G
get method, BLOB object 87
getArrayLength() method 233
getDate() method 199
getDay() method 200
getFullYear() method 201
getHours() method 202
getMilliseconds() method 203
getMinutes() method 203
getMonth() method 203, 204
getSeconds() method 205
getTIme() method 206
getTimezoneOffset() method 206
getUTCDate() method 218
getUTCDay() method 218
getUTCFullYear() method 219
getUTCHours() method 220
getUTCMilliseconds() method 220
getUTCMinutes() method 221
getUTCMonth() method 221
getUTCSeconds() method 222
getYear() method 207
Global object

functions 231
global variables 23
goto statement 50
Greenwich mean time (GMT) 216

H
hard return 20
hexadecimal digit 120
hexadecimal notation 30
hyperbolic cosine of x 157
hyperbolic sine 161
hyperbolic tangent 162

I
identifiers

prohibited 23
rules 22
See also variables 23

if statement 51
indexOf() method 296
instantiating 276
integer

converting to a Time object 183
described 29
division 157
greatest 263
smallest 261

integer numbers
Siebel eScript Language Reference Version 7.8, Rev. A322

Index ■ J
converting from alphanumeric 239
isFinite() method 255
isNaN() method 254

J
JavaScript

common usage 18
and eScript 15

L
lastIndexOf() method 297
length property

Array object 80
Function object 230
String object 298

line breaks in strings 20
local variables 23
locking files for multiple processes 132
logarithm

base 10 of e 272
base 2 of e 273
natural 264
number value for e 271
of 10 272
of 2 272

loops
continue statement 46
do...while statement 47
for...in statement 49
new iteration, starting 46
repeating 56
terminating 45

M
Math object 255
math properties, list 68
Math.abs() method 256
Math.acos() method 257
Math.asin() method 258
Math.atan() method 258
Math.atan2() method 259
Math.ceil() method 261
Math.cos() method 261
Math.E property 271
Math.exp() method 262
Math.floor() method 263
Math.LN10 property 272
Math.LN2 property 272
Math.log() method 264
Math.LOG10E property 272
Math.LOG2E property 273
Math.max() method 265
Math.min() method 265

Math.PI property 273
Math.pow() method 266
Math.random() method 267
Math.round() method 268
Math.sin() method 269
Math.sqrt() method 270
Math.SQRT1_2 property 274
Math.SQRT2 property 274
Math.tan() method 270
MAX_VALUE constant 31
memory manipulation methods, list 69
MIN_VALUE constant 31

N
NaN constant 31
NEGATIVE_INFINITY constant 31
number constants 31
numbers

calculating integer exponent of 2 158
pseudo-random 267
random 160
random, generating 161
rounding 268

numeric functions, list 67

O
Object object 275
object property

testing 253
undefining 235

object prototypes 277
objects

assigning functions 276
looping through properties 49
templates, creating 275

octal notation 30
operating system interaction methods,

list 69
operators

assignment arithmetic 37
auto-decrement 37
auto-increment 37
basic arithmetic 36
bit 38
conditional 40
conditional expressions 39
logical 39
mathematical 35
order of precedence 35
string concatenation 41
typeof 40

output
writing to a string variable 166
Siebel eScript Language Reference Version 7.8, Rev. A 323

Index ■ P
P
parameter

convert to an object 247
converting to a buffer 241
converting to a number 246
converting to a string 249
converting to an integer 244, 245, 250,

251
determining if it is a finite number 255
determining if it is a number 254
placing in a buffer 241
raising to a power 266, 274
value, returning 237

parameters
number expected by the function 230

parseFloat() method 238, 239
pi, number value 273
point 161
pointer, current position 130
POSITIVE_INFINITY constant 31
printing format strings 153
processor tick count, current 181
program flow, directing 51, 52
properties, described 275
property set object methods 278
punctuation marks 118
put method, BLOB object 89

Q
question mark (?) 40
quot method 162
quote mark

double 20
single 20

quotient, finding 162

R
random number generator 161
random numbers 160
recursive functions 44
RegExp compile() method 280
RegExp exec() method 281
RegExp global property 284
RegExp ignoreCase property 285
RegExp multiline property 285
RegExp object methods 279
RegExp object properties 284
RegExp source property 286
RegExp test() method 283
rem method 163
return statement 230

S
scientific notation 31
searching in arrays 189
searching in strings

characters not among a group 176
first occurrence of a second string 177
first occurrence of a specified substring 178
group of specified characters 169
several characters 174
specified character 168

SEEK_CUR 143
SEEK_END 143
SEEK_SET 143
SElib object 287
SElib.dynamicLink() method 287
SElib.peek() method 289
SElib.pointer() method 291
SElib.poke() method 292
semicolon (;) 20, 21
sequential data 78
setArrayLength() method 234
setDate() method 208
setFullYear() method 208
setHours() method 209
setMilliseconds() method 209
setMinutes() method 211
setMonth() method 211
setSeconds() method 212
setTime() method 213
setUTCDate() method 223
setUTCFullYear() method 223
setUTCHours() method 224
setUTCMilliseconds() method 225
setUTCMinutes() method 226
setUTCMonth() method 227
setUTCSeconds() method 227
setYear() method 214
Siebel eScript

concepts 18
and JavaScript 18
programming guidelines 17
this object reference 18

sine 269
single quote mark 20
size method, BLOB object 91
special characters 20, 294
split() method 301, 302
square root

of 1/2 274
of 2 274
parameter 270

statement blocks
assigning a default object 57
Siebel eScript Language Reference Version 7.8, Rev. A324

Index ■ T
described 21
statements

described 21
repeating a series 48

string concatenation 41
String match() Method 299
String match() method 299
String.fromcharCode() static method 295
strings

appending a specified number of
characters 171

back-quote 294
from character codes 295
converting alphanumeric to a floating-point

decimal number 238, 239
copying characters between 173
copying to lowercase 304
copying to uppercase 305
creating strings of array elements 80
declaring 293
escape sequences 294
formatted 166
formatted, writing to a file 135
length stored as an integer 298
methods, list 70
as objects 295
searching for a group of characters 169
searching for characters 168, 174, 176
searching for first occurrence of a second

string 177
searching for last occurrence of a

character 175
section, retrieving 303
special characters 294
specific place in 295
splitting into arrays 301
substring, first occurrence 296
substring, last occurrence 297
substrings, searching for 178
writing to a specified file 138

substring() method 303
switch statement

controlling the flow 45
described 52

T
tangent 270
this object reference 276
this object reference in Siebel eScript 18
time

difference between two times 182
extracted from a Time object 180
functions, list 63

integer representation 188
stored in variables 186

Time object
converting 185
described 179

ToBoolean() method 240
ToBuffer() method 241
ToBytes() method 241
toGMTString() method 214
ToInt32() method 244
ToInteger() method 242, 243, 245, 248
toLocaleString() method 215
toLowerCase() method 304
ToNumber() method 246
ToObject() method 247
ToString() method 249
toString() method 35, 215
ToUnit16() method 250
ToUnit32() method 251
toUTCString() method 228
trailing parentheses () 17
trigonometric functions, list 68
try statement 55
type conversion, automatic 32, 33

U
uncategorized methods, list 71
undefine() method 235
unescape() method 252
Universal Coordinated Time (UTC) 216
unlocking files for multiple processes 132

V
value

passing back to the function 230
specifying with object prototypes 277
undefining 235

valueOf() method 35
variables

about 23
array, matching 189
compound 275
data in, writing to a specified file 145
declaring 17, 24
passing by reference 29
passing by value 43
passing to the COM object 232
scope 23
Siebel eScript 24
storing data in 149
testing 253
undefining 235
Siebel eScript Language Reference Version 7.8, Rev. A 325

Index ■ W
W
Web applet object methods 74
while statement 21, 56
white-space character 19, 119

with statement 57

Y
Y2K sensitivities 18, 194
Siebel eScript Language Reference Version 7.8, Rev. A326

	Contents
	1 What’s New in This Release
	What’s New in Siebel eScript Language Reference, Version 7.8, Rev A
	What’s New in Siebel eScript Language Reference, Version 7.8

	2 Siebel eScript Language Overview
	Script Engine Alternatives for Siebel eScript
	Siebel eScript Programming Guidelines
	Siebel eScript Concepts
	Case Sensitivity in Siebel eScript
	White-Space Characters in Siebel eScript
	Special Characters in Siebel eScript
	Comments in Siebel eScript
	Expressions, Statements, and Blocks in Siebel eScript
	Identifiers in Siebel eScript
	eScript Rules for Identifiers
	Prohibited Identifiers in Siebel eScript

	Variables in Siebel eScript
	Variable Scope
	Variable Declaration

	Data Types in Siebel eScript
	Primitive Data Types in Siebel eScript
	Object Data Types in Siebel eScript
	Complex Objects in Siebel eScript
	Numbers in Siebel eScript
	Integer
	Hexadecimal
	Octal
	Floating Point
	Decimal
	Scientific
	NaN
	Number Constants in Siebel eScript

	Data Typing in Siebel eScript
	Implicit Type Conversion in Siebel eScript
	Implicit Type Conversion Resulting from Concatenation in eScript
	Implicit Type Conversion Resulting from Assignment in eScript

	Properties and Methods of Common Data Types in Siebel eScript
	toString()
	valueOf()

	Expressions in Siebel eScript
	Operators in Siebel eScript
	Mathematical Operators in Siebel eScript
	Basic Arithmetic
	Assignment Arithmetic
	Auto-Increment (++) and Auto-Decrement (--)

	Bit Operators in Siebel eScript
	Logical Operators and Conditional Expressions in Siebel eScript
	Typeof Operator in Siebel eScript
	Conditional Operator in Siebel eScript
	String Concatenation Operator in Siebel eScript

	Functions in Siebel eScript
	Function Scope in Siebel eScript
	Passing Variables to Functions in Siebel eScript
	The Function Arguments[] Property in Siebel eScript
	Function Recursion in Siebel eScript
	Error Checking for Functions in Siebel eScript

	Siebel eScript Statements
	break Statement
	continue Statement
	do...while Statement
	for Statement
	for...in Statement
	goto Statement
	if Statement
	switch Statement
	throw Statement
	try Statement
	while Statement
	with Statement

	3 Quick Reference: Methods and Properties in Siebel eScript
	Array Methods and Properties in Siebel eScript
	Buffer Methods and Properties in Siebel eScript
	Character Classification Methods in Siebel eScript
	Conversion Methods in Siebel eScript
	Data Handling Methods in Siebel eScript
	Date and Time Methods in Siebel eScript
	Disk and File Methods in Siebel eScript
	Disk and Directory Methods in Siebel eScript
	File-Control Methods in Siebel eScript
	File-Manipulation Methods in Siebel eScript

	Error Handling Methods in Siebel eScript
	Mathematical Methods and Properties in Siebel eScript
	Numeric Methods in Siebel eScript
	Trigonometric Methods in Siebel eScript
	Mathematical Properties in Siebel eScript

	Memory Manipulation Methods in Siebel eScript
	Operating System Interaction Methods in Siebel eScript
	String and Byte-Array Methods in Siebel eScript
	Uncategorized Methods in Siebel eScript

	4 Siebel eScript Commands
	Applet Objects
	The Application Object
	Array Objects
	The Array Constructor in Siebel eScript
	Associative Arrays in Siebel eScript
	Array join() Method
	Array length Property
	Array pop() Method
	Array push() Method
	Array reverse() Method
	Array sort() Method
	Array splice() Method

	BLOB Objects
	The blobDescriptor Object
	Blob.get() Method
	Blob.put() Method
	Blob.size() Method

	Buffer Objects in Siebel eScript
	The Buffer Constructor in Siebel eScript

	Buffer Object Methods
	getString() Method
	getValue() Method
	offset[] Method
	putString() Method
	putValue() Method
	subBuffer() Method
	toString() Method

	Buffer Object Properties
	bigEndian Property
	cursor Property
	data Property
	size Property
	unicode Property

	Business Component Objects
	Business Object Objects
	Business Service Objects
	The Clib Object
	The Clib Object Buffer Methods in Siebel eScript
	Clib.memchr() Method
	Clib.memcmp() Method
	Clib.memcpy() Method and Clib.memmove() Method
	Clib.memset() Method

	The Clib Object Character Classification in Siebel eScript
	Clib.isalnum() Method
	Clib.isalpha() Method
	Clib.isascii() Method
	Clib.iscntrl() Method
	Clib.isdigit() Method
	Clib.isgraph() Method
	Clib.islower() Method
	Clib.isprint() Method
	Clib.ispunct() Method
	Clib.isspace() Method
	Clib.isupper() Method
	Clib.isxdigit() Method
	Clib.toascii() Method

	The Clib Object Error Methods
	Clib.errno Property
	Clib.perror() Method
	Clib.strerror() Method

	File I/O Methods in eScript
	Clib.chdir() Method
	Clib.clearerr() Method
	Clib.getcwd() Method
	Clib.fclose() Method
	Clib.feof() Method
	Clib.ferror() Method
	Clib.fflush() Method
	Clib.fgetc() Method and Clib.getc() Method
	Clib.fgetpos() Method
	Clib.fgets() Method
	Clib.flock() Method
	Clib.fopen() Method
	Clib.fprintf() Method
	Clib.fputc() Method and Clib.putc() Method
	Clib.fputs() Method
	Clib.fread() Method
	Clib.freopen() Method
	Clib.fscanf() Method
	Clib.fseek() Method
	Clib.fsetpos() Method
	Clib.ftell() Method
	Clib.fwrite() Method
	Clib.mkdir() Method
	Clib.remove() Method
	Clib.rename() Method
	Clib.rewind() Method
	Clib.rmdir() Method
	Clib.sscanf() Method
	Clib.tmpfile() Method
	Clib.tmpnam() Method
	Clib.ungetc()Method

	Formatting Data in eScript
	Formatting Output in eScript
	Formatting Input in eScript

	The Clib Object Math Methods
	Clib.cosh() Method
	Clib.div() Method and Clib.ldiv() Method
	Clib.frexp() Method
	Clib.ldexp() Method
	Clib.modf() Method
	Clib.rand() Method
	Clib.sinh() Method
	Clib.srand() Method
	Clib.tanh() Method
	quot Method
	rem Method

	Redundant Functions in the Clib Object
	The Clib Object String Methods
	Clib.rsprintf() Method
	Clib.sprintf() Method
	Clib.strchr() Method
	Clib.strcspn() Method
	Clib.stricmp() Method and Clib.strcmpi() Method
	Clib.strlwr() Method
	Clib.strncat() Method
	Clib.strncmp() Method
	Clib.strncmpi() Method and Clib.strnicmp() Method
	Clib.strncpy() Method
	Clib.strpbrk() Method
	Clib.strrchr() Method
	Clib.strspn() Method
	Clib.strstr() Method
	Clib.strstri() Method

	The Time Object
	The Clib Object Time Methods
	Clib.asctime() Method
	Clib.clock() Method
	Clib.ctime() Method
	Clib.difftime() Method
	Clib.gmtime() Method
	Clib.localtime() Method
	Clib.mktime() Method
	Clib.strftime() Method
	Clib.time() Method

	The Clib Object Uncategorized Methods
	Clib.bsearch() Method
	Clib.getenv() Method
	Clib.putenv() Method
	Clib.qsort() Method
	Clib.system() Method

	The Date Object
	The Date Constructor in Siebel eScript

	Date and Time Methods
	Date.fromSystem() Static Method
	Date.parse() Static Method
	Date.toSystem() Method
	getDate() Method
	getDay() Method
	getFullYear() Method
	getHours() Method
	getMilliseconds() Method
	getMinutes() Method
	getMonth() Method
	getSeconds() Method
	getTime() Method
	getTimezoneOffset() Method
	getYear() Method
	setDate() Method
	setFullYear() Method
	setHours() Method
	setMilliseconds() Method
	setMinutes() Method
	setMonth() Method
	setSeconds() Method
	setTime() Method
	setYear() Method
	toGMTString() Method
	toLocaleString() Method and toString() Method

	Universal Time Methods
	Date.UTC() Static Method
	getUTCDate() Method
	getUTCDay() Method
	getUTCFullYear() Method
	getUTCHours() Method
	getUTCMilliseconds() Method
	getUTCMinutes() Method
	getUTCMonth() Method
	getUTCSeconds() Method
	setUTCDate() Method
	setUTCFullYear() Method
	setUTCHours() Method
	setUTCMilliseconds() Method
	setUTCMinutes() Method
	setUTCMonth() Method
	setUTCSeconds() Method
	toUTCString() Method

	The Exception Object
	Function Objects
	length Property
	return Statement

	The Global Object
	Global Functions Unique to Siebel eScript
	COMCreateObject() Method
	getArrayLength() Method
	setArrayLength() Method
	undefine() Method

	Conversion Methods
	escape() Method
	eval() Method
	parseFloat() Method
	parseInt() Method
	ToBoolean() Method
	ToBuffer() Method
	ToBytes() Method
	toExponential() Method
	toFixed() Method
	ToInt32() Method
	ToInteger() Method
	ToNumber() Method
	ToObject() Method
	toPrecision() Method
	ToString() Method
	ToUint16() Method
	ToUint32() Method
	unescape(string) Method

	Data Handling Methods in Siebel eScript
	defined() Method
	isNaN() Method
	isFinite() Method

	The Math Object
	Methods Supported by the Math Object
	Properties of the Math Object
	Math.abs() Method
	Math.acos() Method
	Math.asin() Method
	Math.atan() Method
	Math.atan2() Method
	Math.ceil() Method
	Math.cos() Method
	Math.exp() Method
	Math.floor() Method
	Math.log() Method
	Math.max() Method
	Math.min() Method
	Math.pow() Method
	Math.random() Method
	Math.round() Method
	Math.sin() Method
	Math.sqrt() Method
	Math.tan() Method
	Math.E Property
	Math.LN10 Property
	Math.LN2 Property
	Math.LOG10E Property
	Math.LOG2E Property
	Math.PI Property
	Math.SQRT1_2 Property
	Math.SQRT2 Property

	User-Defined Objects in Siebel eScript
	Predefining Objects with Constructor Functions in Siebel eScript
	Assigning Functions to Objects in Siebel eScript
	Object Prototypes in Siebel eScript

	Property Set Objects
	RegExp Objects
	RegExp Object Methods
	RegExp compile() Method
	RegExp exec() Method
	RegExp test() Method

	RegExp Object Properties
	RegExp global Property
	RegExp ignoreCase Property
	RegExp multiline Property
	RegExp source Property

	The SElib Object
	SElib.dynamicLink() Method
	SElib.peek() Method
	SElib.pointer() Method
	SElib.poke() Method

	The String Object
	Escape Sequences for Characters in Siebel eScript
	Back-Quote Strings in Siebel eScript

	String Object Methods and Properties in Siebel eScript
	String charAt() Method
	String.fromCharCode() Static Method
	String indexOf() Method
	String lastIndexOf() Method
	String length Property
	String match() Method
	String split() Method
	String replace() Method
	substring() Method
	toLowerCase() Method
	toUpperCase() Method

	A Compilation Error Messages in Siebel eScript
	Syntax Error Messages in eScript
	Semantic Error Messages in eScript
	Semantic Warnings in eScript
	Preprocessing Error Messages in eScript

	Index

