
Oracle® XML Publisher
Core Components Guide
Release 5.6.3
Part No. E05078-01

April 2007

Oracle XML Publisher Core Components Guide, Release 5.6.3

Part No. E05078-01

Copyright © 2006, 2007, Oracle. All rights reserved.

Primary Author: Leslie Studdard

Contributing Author: Tim Dexter, Klaus Fabian, Hiro Inami, Edward Jiang, Incheol Kang, Kazuko
Kawahara, Kei Saito, Elise Tung-Loo, Jackie Yeung

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or
decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall
be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted
Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third parties.
Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all
risks associated with the use of such content. If you choose to purchase any products or services from a third
party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality
of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party,
including delivery of products or services and warranty obligations related to purchased products or services.
Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third
party.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

 iii

Contents

Send Us Your Comments

Preface

1 Introduction
XML Publisher Overview... 1-1

2 Creating an RTF Template
Introduction... 2-1

Supported Modes...2-1
Prerequisites.. 2-2

Overview... 2-2
Using the Business Intelligence Publisher Template Builder for Microsoft Word Add-in
... 2-2
Associating the XML Data to the Template Layout... 2-3

Designing the Template Layout..2-7
Adding Markup to the Template Layout.. 2-7

Creating Placeholders.. 2-8
Defining Groups.. 2-12

Defining Headers and Footers.. 2-15
Native Support...2-15

Images and Charts... 2-17
Images.. 2-17
Chart Support.. 2-19

Drawing, Shape and Clip Art Support... 2-30
Supported Native Formatting Features...2-41

General Features.. 2-41

iv

Alignment.. 2-42
Tables... 2-42
Date Fields... 2-45
Multicolumn Page Support.. 2-45
Background and Watermark Support.. 2-47

Template Features... 2-49
Page Breaks.. 2-49
Initial Page Number... 2-50
Last Page Only Content .. 2-51
End on Even or End on Odd Page... 2-54
Hyperlinks... 2-54
Table of Contents... 2-57
Generating Bookmarks in PDF Output.. 2-57
Check Boxes... 2-58
Drop Down Lists.. 2-59

Conditional Formatting... 2-62
If Statements.. 2-63

If Statements in Boilerplate Text.. 2-63
If-then-Else Statements.. 2-64
Choose Statements... 2-65
Column Formatting... 2-66
Row Formatting... 2-69
Cell Highlighting... 2-71

Page-Level Calculations.. 2-73
Displaying Page Totals.. 2-73
Brought Forward/Carried Forward Totals... 2-75
Running Totals... 2-79

Data Handling... 2-81
Sorting..2-81
Checking for Nulls... 2-81
Regrouping the XML Data... 2-82

Using Variables... 2-88
Defining Parameters..2-89
Setting Properties.. 2-91
Advanced Report Layouts... 2-93

Batch Reports... 2-93
Cross-Tab Support... 2-95
Dynamic Data Columns... 2-98

Number and Date Formatting... 2-102
Calendar and Time Zone Support.. 2-116
Using External Fonts... 2-117

 v

Advanced Barcode Formatting.. 2-118
Advanced Design Options.. 2-119

XPath Overview... 2-119
Namespace Support... 2-122
Using the Context Commands... 2-123
Using XSL Elements... 2-125
Using FO Elements.. 2-128

3 Creating a PDF Template
PDF Template Overview... 3-1

Supported Modes...3-1
Designing the Layout ... 3-2
Adding Markup to the Template Layout.. 3-3

Creating a Placeholder... 3-4
Defining Groups of Repeating Fields... 3-7

Adding Page Numbers and Page Breaks.. 3-9
Performing Calculations... 3-13
Completed PDF Template... 3-13
Runtime Behavior..3-14
Creating a Template from a Third-Party PDF.. 3-16

4 Creating an eText Template
Introduction... 4-1
Outbound eText Templates.. 4-2

Structure of eText Templates... 4-2
Constructing the Data Tables... 4-6

Command Rows.. 4-6
Structure of the Data Rows.. 4-12

Setup Command Tables... 4-16
Expressions, Control Structures, and Functions.. 4-27
Identifiers, Operators, and Literals.. 4-30

5 XSL, SQL, and XSL-FO Support for RTF Templates
Extended SQL and XSL Functions.. 5-1
XSL Equivalents.. 5-6
Using FO Elements.. 5-7

6 Adding Template Translations
Translatable Templates... 6-1

vi

7 Setting Runtime Properties
Setting Properties in a Configuration File.. 7-1
Structure.. 7-3
Properties... 7-3
List of Properties... 7-4
Font Definitions.. 7-14
Locales... 7-16
Font Fallback Logic... 7-17
Predefined Fonts..7-18

8 Using the XML Publisher APIs
Introduction... 8-1
XML Publisher Core APIs... 8-1
PDF Form Processing Engine.. 8-2
RTF Processor Engine.. 8-8
FO Processor Engine.. 8-9
PDF Document Merger... 8-20
PDF Book Binder Processor.. 8-27
Document Processor Engine... 8-30
Bursting Engine... 8-43
XML Publisher Properties... 8-54
Advanced Barcode Font Formatting Implementation.. 8-58

A Supported XSL-FO Elements
Supported XSL-FO Elements.. A-1

Index

 vii

Send Us Your Comments

Oracle XML Publisher Core Components Guide, Release 5.6.3
Part No. E05078-01

Oracle welcomes customers' comments and suggestions on the quality and usefulness of this document.
Your feedback is important, and helps us to best meet your needs as a user of our products. For example:

• Are the implementation steps correct and complete?
• Did you understand the context of the procedures?
• Did you find any errors in the information?
• Does the structure of the information help you with your tasks?
• Do you need different information or graphics? If so, where, and in what format?
• Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us your name, the
name of the company who has licensed our products, the title and part number of the documentation and
the chapter, section, and page number (if available).

Note: Before sending us your comments, you might like to check that you have the latest version of the
document and if any concerns are already addressed. To do this, access the new Applications Release
Online Documentation CD available on Oracle MetaLink and www.oracle.com. It contains the most
current Documentation Library plus all documents revised or released recently.

Send your comments to us using the electronic mail address: appsdoc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number (optional).

If you need assistance with Oracle software, then please contact your support representative or Oracle
Support Services.

If you require training or instruction in using Oracle software, then please contact your Oracle local office
and inquire about our Oracle University offerings. A list of Oracle offices is available on our Web site at
www.oracle.com.

 ix

Preface

Intended Audience
Welcome to Release 5.6.3 of the Oracle XML Publisher Core Components Guide.

This book is intended to be a reference for use with the JD Edwards EnterpriseOne and
PeopleSoft Enterprise implementations of Oracle XML Publisher. This guide contains
information both for the business user on creating templates and for the implementor
on setting configuration properties.

XML Publisher is based on the XSL-FO standard. Although it is not necessary, it may be
helpful to have an XSL guide to use as companion to this book.

See Related Information Sources on page x for more Oracle product information.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading technology
vendors to address technical obstacles so that our documentation can be accessible to all
of our customers. For more information, visit the Oracle Accessibility Program Web site
at http://www.oracle.com/accessibility/ .

x

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an otherwise
empty line; however, some screen readers may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

Structure
1 Introduction
2 Creating an RTF Template
3 Creating a PDF Template
4 Creating an eText Template
5 XSL, SQL, and XSL-FO Support for RTF Templates
6 Adding Template Translations
7 Setting Runtime Properties
8 Using the XML Publisher APIs
A Supported XSL-FO Elements

Related Information Sources

Oracle XML Publisher for PeopleSoft Enterprise
This guide describes the features and procedures specific to the PeopleSoft Enterprise
implementation of XML Publisher.

Oracle XML Publisher for JD Edwards EnterpriseOne
This guide describes the features and procedures specific to the JD Edwards
EnterpriseOne implementation of XML Publisher.

Introduction 1-1

1
Introduction

XML Publisher Overview
Oracle XML Publisher is a template-based publishing solution delivered with the Oracle
E-Business Suite, Peoplesoft Enterprise, and JD Edwards EnterpriseOne. It provides a
flexible and robust approach to report design and publishing by integrating familiar
desktop word processing tools with existing data reporting. XML Publisher leverages
standard, well-known technologies and tools, so you can rapidly develop and maintain
custom report formats.

The flexibility is a result of the separation of the presentation of the report from its data
structure. The collection of the data can still be handled by existing report tools, but
with XML Publisher you can design and control how the report outputs will be
presented in separate template files. At runtime, your designed template files are
merged with the report data to create a variety of outputs to meet a variety of business
needs, including:

• Customer-ready PDF documents, such as financial statements, marketing materials,
contracts, invoices, and purchase orders utilizing colors, images, font styles, headers
and footers, and many other formatting and design options.

• HTML output for optimum online viewing.

• Excel output to create a spreadsheet of your report data.

• "Filled-out" third-party provided PDF documents. You can download a PDF
document, such as a government form, to use as a template for your report. At
runtime, the data and template produce a "filled-out" form.

• Flat text files to exchange with business partners for EDI and EFT transmission.

The following graphic displays a few sample documents generated by XML Publisher:

1-2 Oracle XML Publisher Core Components Guide

The flexibility is increased further by XML Publisher's ability to extract translatable
strings from the report templates, allowing you to add translations to a report,
independent of the layout and independent of the data generation.

With the approach of separating the data from the layout from the translation, it is
possible to make changes in one of these layers without impacting the entire report
package.

Introduction 1-3

Moreover, because XML Publisher's design tools are integrated with well-known
desktop applications, the report layouts can be created and modified by your business
users, rather than having to rely on your technical staff.

Template and Output Types
XML Publishers supports two basic template types: rich text format (RTF) and portable
document file format (PDF).

Note: At runtime, XML Publisher converts RTF templates to XSL-FO.
Therefore XSL-FO is also supported as a template type.

RTF Templates
RTF templates can be created in Microsoft Word. Using a combination of native
Microsoft Word features and XML Publisher command syntax you can create a report
template that is ready to accept XML data from your system.

RTF templates can generate the following output types:

• PDF

• HTML

• RTF

• Excel

• XML

RTF Design Tool
XML Publisher provides a plug-in for Microsoft Word to facilitate the design of RTF
templates. The Business Intelligence Publisher Template Builder for Microsoft Word
Add-in (formerly the XML Publisher Template Builder for Word) automates many tasks
and provides preview capabilities. The desktop installation also includes samples and
tutorials to get you started. The following figure shows the Template Builder for Word.

1-4 Oracle XML Publisher Core Components Guide

Template Builder for Word

Creating an RTF Template, page 2-1 provides complete instructions for designing RTF
templates.

eText Templates
An eText template is a specialized type of RTF template used expressly for the
generation of text output for Electronic Funds Transfer (EFT) and Electronic Data
Interchange (EDI) transactions. To achieve the specialized layout, XML Publisher uses
tables to define the position, length, and value of fields, as well as data manipulation
commands.

At runtime XML Publisher constructs the output file according to the setup commands
and layout specifications in the tables of the RTF template file.

Creating an eText Template, page 4-1 gives complete instructions for designing these
table-based templates.

PDF Templates
PDF templates are designed using Adobe Acrobat. You can use a PDF file from any
source, including downloaded predefined forms (such as government forms). Using
Acrobat's form fields, map your data source element names to the PDF fields where you
want the data to appear.

Introduction 1-5

PDF templates are less flexible than RTF templates, but are more appropriate for
creating form-like reports, such as invoices or purchase orders.

See Creating a PDF Template, page 3-1 for detailed instructions.

Translation Support
For RTF templates that you want available in different languages, XML Publisher
provides the capability to extract the translatable strings from the template and export
them to an industry-standard XLIFF file. The XLIFF file can then be translated in-house
or shipped to a localization provider. You create one XLIFF file for each language and
territory combination (locale) desired. The translated XLIFF files can then be loaded
back to your system and associated with the original template file. At runtime, XML
Publisher applies the template and translation appropriate for the user's selected locale.

See Adding Template Translations, page 6-1 for more information on translation
support and working with XLIFF files.

Configuring the Behavior of XML Publisher
XML Publisher's configuration file is a powerful tool for customizing the processing
and output options for your system. Use this file to:

• Define a temporary directory to enable processing of large files and to enhance
performance (setting this directory is highly recommended).

• Set security options for output PDFs, such as password protection and printing,
copying, and modification permissions.

• Set options for each output type, such as change tracking for RTF output and
viewing properties for HTML output.

• Define font mapping.

• Set options for XLIFF extraction, such as translation expansion percentage and
minimum and maximum translation lengths.

See Setting Runtime Properties, page 7-1 for information on setting up the
configuration file and the full list of properties.

Using XML Publisher's Application Programming Interface
Developers who wish to create programs or applications that interact with XML
Publisher can do so through its application programming interface. For more
information see Using the XML Publisher APIs, page 8-1.

1-6 Oracle XML Publisher Core Components Guide

Support for SQL, XSL, and XSL-FO
XML Publisher supports all native XSL commands in RTF templates and has extended a
set of SQL functions for use with RTF templates. For information on using these
commands in your templates, see SQL, XSL, and XSL-FO Support, page 5-1.

XML Publisher has not yet implemented the entire XSL-FO specification. For a complete
list of the supported elements and attributes, see Supported XSL-FO Elements, page A-
1.

Creating an RTF Template 2-1

2
Creating an RTF Template

Introduction
Rich Text Format (RTF) is a specification used by common word processing
applications, such as Microsoft Word. When you save a document, RTF is a file type
option that you select.

XML Publisher's RTF Template Parser converts documents saved as the RTF file type to
XSL-FO. You can therefore create report designs using many of your standard word
processing application's design features and XML Publisher will recognize and
maintain the design.

During design time, you add data fields and other markup to your template using XML
Publisher's simplified tags for XSL expressions. These tags associate the XML report
data to your report layout. If you are familiar with XSL and prefer not to use the
simplified tags, XML Publisher also supports the use of pure XSL elements in the
template.

In addition to your word processing application's formatting features, XML Publisher
supports other advanced reporting features such as conditional formatting, dynamic
data columns, running totals, and charts.

If you wish to include code directly in your template, you can include any XSL element,
many FO elements, and a set of SQL expressions extended by XML Publisher.

Supported Modes
XML Publisher supports two methods for creating RTF templates:

• Basic RTF Method

Use any word processing application that supports RTF version 1.6 writer (or later)
to design a template using XML Publisher's simplified syntax.

• Form Field Method

2-2 Oracle XML Publisher Core Components Guide

Using Microsoft Word's form field feature allows you to place the syntax in hidden
form fields, rather than directly into the design of your template. XML Publisher
supports Microsoft Word 2000 (or later) with Microsoft Windows version 2000 (or
later).

Note: If you use XSL or XSL:FO code rather than the simplified
syntax, you must use the form field method.

This guide describes how to create RTF templates using both methods.

Prerequisites
Before you design your template, you must:

• Know the business rules that apply to the data from your source report.

• Generate a sample of your source report in XML.

• Be familiar with the formatting features of your word processing application.

Overview
Creating an RTF template file for use with XML Publisher consists of the following
steps:

1. Generate sample data from your report.

You must have sample data either to reference while designing the report
manually, or to load to the BI Publisher Template Builder for Word Add-in..

2. Load the data to the Template Builder for Word Add-in and use its features to add
data fields, tables, charts, and other report items to your template.

Alternatively, insert the XML Publisher tags manually into your template, using the
guidelines in this chapter.

3. Upload the template to the appropriate repository to make it available to XML
Publisher at runtime.

When you design your template layout, you must understand how to associate the
XML input file to the layout. This chapter presents a sample template layout with its
input XML file to illustrate how to make the proper associations to add the markup tags
to the template.

Using the Business Intelligence Publisher Template Builder for Microsoft Word Add-in
The Template Builder is an extension to Microsoft Word that simplifies the

Creating an RTF Template 2-3

development of RTF templates. It automates many of the manual steps that are covered
in this chapter. Use it in conjunction with this manual to increase your productivity.

Note: The BI Publisher Template Builder for Word Add-in includes
features to log in to and interact with Oracle Business Intelligence
Publisher Enterprise. These features only work with the Oracle BI
Publisher Enterprise or Oracle BI Enterprise Edition implementations.
See the Template Builder help for more information.

The Template Builder is tightly integrated with Microsoft Word and allows you to
perform the following functions:

• Insert data fields

• Indsert data-driven tables

• Insert data-driven forms

• Insert data-driven charts

• Preview your template with sample XML data

• Browse and update the content of form fields

• Extract boilerplate text into an XLIFF translation file and test translations

Manual steps for performing these functions are covered in this chapter. Instructions
and tutorials for using the Template Builder are available from the readme and help
files delivered with the tool.

Associating the XML Data to the Template Layout
The following is a sample layout for a Payables Invoice Register:

2-4 Oracle XML Publisher Core Components Guide

Sample Template Layout

Note the following:

• The data fields that are defined on the template

For example: Supplier, Invoice Number, and Invoice Date

• The elements of the template that will repeat when the report is run.

For example, all the fields on the template will repeat for each Supplier that is
reported. Each row of the invoice table will repeat for each invoice that is reported.

XML Input File
Following is the XML file that will be used as input to the Payables Invoice Register
report template:

Note: To simplify the example, the XML output shown below has been
modified from the actual output from the Payables report.

Creating an RTF Template 2-5

<?xml version="1.0" encoding="WINDOWS-1252" ?>
 - <VENDOR_REPORT>
 - <LIST_G_VENDOR_NAME>
 - <G_VENDOR_NAME>
 <VENDOR_NAME>COMPANY A</VENDOR_NAME>
 - <LIST_G_INVOICE_NUM>
 - <G_INVOICE_NUM>
 <SET_OF_BOOKS_ID>124</SET_OF_BOOKS_ID>
 <GL_DATE>10-NOV-03</GL_DATE>
 <INV_TYPE>Standard</INV_TYPE>
 <INVOICE_NUM>031110</INVOICE_NUM>
 <INVOICE_DATE>10-NOV-03</INVOICE_DATE>
 <INVOICE_CURRENCY_CODE>EUR</INVOICE_CURRENCY_CODE>
 <ENT_AMT>122</ENT_AMT>
 <ACCTD_AMT>122</ACCTD_AMT>
 <VAT_CODE>VAT22%</VAT_CODE>
 </G_INVOICE_NUM>
 </LIST_G_INVOICE_NUM>
 <ENT_SUM_VENDOR>1000.00</ENT_SUM_VENDOR>
 <ACCTD_SUM_VENDOR>1000.00</ACCTD_SUM_VENDOR>
 </G_VENDOR_NAME>
 </LIST_G_VENDOR_NAME>
 <ACCTD_SUM_REP>108763.68</ACCTD_SUM_REP>
 <ENT_SUM_REP>122039</ENT_SUM_REP>
 </VENDOR_REPORT>

XML files are composed of elements. Each tag set is an element. For example
<INVOICE_DATE></INVOICE_DATE> is the invoice date element. "INVOICE_DATE"
is the tag name. The data between the tags is the value of the element. For example, the
value of INVOICE_DATE is "10-NOV-03".

The elements of the XML file have a hierarchical structure. Another way of saying this
is that the elements have parent-child relationships. In the XML sample, some elements
are contained within the tags of another element. The containing element is the parent
and the included elements are its children.

Every XML file has only one root element that contains all the other elements. In this
example, VENDOR_REPORT is the root element. The elements
LIST_G_VENDOR_NAME, ACCTD_SUM_REP, and ENT_SUM_REP are contained
between the VENDOR_REPORT tags and are children of VENDOR_REPORT. Each
child element can have child elements of its own.

Identifying Placeholders and Groups
Your template content and layout must correspond to the content and hierarchy of the
input XML file. Each data field in your template must map to an element in the XML
file. Each group of repeating elements in your template must correspond to a
parent-child relationship in the XML file.

To map the data fields you define placeholders. To designate the repeating elements, you
define groups.

Note: XML Publisher supports regrouping of data if your report
requires grouping that does not follow the hierarchy of your incoming

2-6 Oracle XML Publisher Core Components Guide

XML data. For information on using this feature, see Regrouping the
XML Data, page 2-82.

Placeholders
Each data field in your report template must correspond to an element in the XML file.
When you mark up your template design, you define placeholders for the XML
elements. The placeholder maps the template report field to the XML element. At
runtime the placeholder is replaced by the value of the element of the same name in the
XML data file.

For example, the "Supplier" field from the sample report layout corresponds to the XML
element VENDOR_NAME. When you mark up your template, you create a placeholder
for VENDOR_NAME in the position of the Supplier field. At runtime, this placeholder
will be replaced by the value of the element from the XML file (the value in the sample
file is COMPANY A).

Identifying the Groups of Repeating Elements
The sample report lists suppliers and their invoices. There are fields that repeat for each
supplier. One of these fields is the supplier's invoices. There are fields that repeat for
each invoice. The report therefore consists of two groups of repeating fields:

• Fields that repeat for each supplier

• Fields that repeat for each invoice

The invoices group is nested inside the suppliers group. This can be represented as
follows:

Suppliers

• Supplier Name

• Invoices

• Invoice Num

• Invoice Date

• GL Date

• Currency

• Entered Amount

• Accounted Amount

Creating an RTF Template 2-7

• Total Entered Amount

• Total Accounted Amount

Compare this structure to the hierarchy of the XML input file. The fields that belong to
the Suppliers group shown above are children of the element G_VENDOR_NAME. The
fields that belong to the Invoices group are children of the element G_INVOICE_NUM.

By defining a group, you are notifying XML Publisher that for each occurrence of an
element (parent), you want the included fields (children) displayed. At runtime, XML
Publisher will loop through the occurrences of the element and display the fields each
time.

Designing the Template Layout
Use your word processing application's formatting features to create the design.

For example:

• Select the size, font, and alignment of text

• Insert bullets and numbering

• Draw borders around paragraphs

• Include a watermark

• Include images (jpg, gif, or png)

• Use table autoformatting features

• Insert a header and footer

For additional information on inserting headers and footers, see Defining Headers
and Footers, page 2-15.

For a detailed list of supported formatting features in Microsoft Word, see Supported
Native Formatting Features, page 2-41. Additional formatting and reporting features
are described at the end of this section.

Adding Markup to the Template Layout
XML Publisher converts the formatting that you apply in your word processing
application to XSL-FO. You add markup to create the mapping between your layout
and the XML file and to include features that cannot be represented directly in your
format.

The most basic markup elements are placeholders, to define the XML data elements;
and groups, to define the repeating elements.

2-8 Oracle XML Publisher Core Components Guide

XML Publisher provides tags to add markup to your template.

Note: For the XSL equivalents of the XML Publisher tags, see XSL
Equivalent Syntax, page 5-6.

Creating Placeholders
The placeholder maps the template field to the XML element data field. At runtime the
placeholder is replaced by the value of the element of the same name in the XML data
file.

Enter placeholders in your document using the following syntax:

<?XML element tag name?>

Note: The placeholder must match the XML element tag name exactly.
It is case sensitive.

There are two ways to insert placeholders in your document:

1. Basic RTF Method: Insert the placeholder syntax directly into your template
document.

2. Form Field Method: (Requires Microsoft Word) Insert the placeholder syntax in
Microsoft Word's Text Form Field Options window. This method allows you to
maintain the appearance of your template.

Basic RTF Method
Enter the placeholder syntax in your document where you want the XML data value to
appear.

Enter the element's XML tag name using the syntax:

<?XML element tag name?>

In the example, the template field "Supplier" maps to the XML element
VENDOR_NAME. In your document, enter:

<?VENDOR_NAME?>

The entry in the template is shown in the following figure:

Creating an RTF Template 2-9

Form Field Method
Use Microsoft Word's Text Form Field Options window to insert the placeholder tags:

1. Enable the Forms toolbar in your Microsoft Word application.

2. Position your cursor in the place you want to create a placeholder.

3. Select the Text Form Field toolbar icon. This action inserts a form field area in your
document.

4. Double-click the form field area to invoke the Text Form Field Options dialog box.

5. (Optional) Enter a description of the field in the Default text field. The entry in this
field will populate the placeholder's position on the template.

For the example, enter "Supplier 1".

6. Select the Add Help Text button.

7. In the help text entry field, enter the XML element's tag name using the syntax:

<?XML element tag name?>

You can enter multiple element tag names in the text entry field.

In the example, the report field "Supplier" maps to the XML element
VENDOR_NAME. In the Form Field Help Text field enter:

<?VENDOR_NAME?>

The following figure shows the Text Form Field Options dialog box and the Form
Field Help Text dialog box with the appropriate entries for the Supplier field.

Tip: For longer strings of XML Publisher syntax, use the Help Key
(F1) tab instead of the Status Bar tab. The text entry field on the
Help Key (F1) tab allows more characters.

2-10 Oracle XML Publisher Core Components Guide

8. Select OK to apply.

The Default text is displayed in the form field on your template.

The figure below shows the Supplier field from the template with the added form
field markup.

Complete the Example
The following table shows the entries made to complete the example. The Template

Creating an RTF Template 2-11

Field Name is the display name from the template. The Default Text Entry is the value
entered in the Default Text field of the Text Form Field Options dialog box (form field
method only). The Placeholder Entry is the XML element tag name entered either in the
Form Field Help Text field (form field method) or directly on the template.

Template Field Name Default Text Entry (Form
Field Method)

Placeholder Entry (XML Tag
Name)

Invoice Num 1234566 <?INVOICE_NUM?>

Invoice Date 1-Jan-2004 <?INVOICE_DATE?>

GL Date 1-Jan-2004 <?GL_DATE?>

Curr USD <?INVOICE_CURRENCY_CO
DE?>

Entered Amt 1000.00 <?ENT_AMT?>

Accounted Amt 1000.00 <?ACCTD_AMT?>

(Total of Entered Amt
column)

1000.00 <?ENT_SUM_VENDOR?>

(Total of Accounted Amt
column)

1000.00 <?ACCTD_SUM_VENDOR?>

The following figure shows the Payables Invoice Register with the completed form field
placeholder markup.

See the Payables Invoice Register with Completed Basic RTF Markup, page 2-13 for the
completed basic RTF markup.

2-12 Oracle XML Publisher Core Components Guide

Defining Groups
By defining a group, you are notifying XML Publisher that for each occurrence of an
element, you want the included fields displayed. At runtime, XML Publisher will loop
through the occurrences of the element and display the fields each time.

In the example, for each occurrence of G_VENDOR_NAME in the XML file, we want
the template to display its child elements VENDOR_NAME (Supplier Name),
G_INVOICE_NUM (the Invoices group), Total Entered Amount, and Total Accounted
Amount. And, for each occurrence of G_INVOICE_NUM (Invoices group), we want the
template to display Invoice Number, Invoice Date, GL Date, Currency, Entered
Amount, and Accounted Amount.

To designate a group of repeating fields, insert the grouping tags around the elements
to repeat.

Insert the following tag before the first element:

<?for-each:XML group element tag name?>

Insert the following tag after the final element:

<?end for-each?>

Grouping scenarios
Note that the group element must be a parent of the repeating elements in the XML
input file.

• If you insert the grouping tags around text or formatting elements, the text and
formatting elements between the group tags will be repeated.

Creating an RTF Template 2-13

• If you insert the tags around a table, the table will be repeated.

• If you insert the tags around text in a table cell, the text in the table cell between the
tags will be repeated.

• If you insert the tags around two different table cells, but in the same table row, the
single row will be repeated.

• If you insert the tags around two different table rows, the rows between the tags
will be repeated (this does not include the row that contains the "end group" tag).

Basic RTF Method
Enter the tags in your document to define the beginning and end of the repeating
element group.

To create the Suppliers group in the example, insert the tag

<?for-each:G_VENDOR_NAME?>

before the Supplier field that you previously created.

Insert <?end for-each?> in the document after the summary row.

The following figure shows the Payables Invoice Register with the basic RTF grouping
and placeholder markup:

Form Field Method
1. Insert a form field to designate the beginning of the group.

In the help text field enter:

2-14 Oracle XML Publisher Core Components Guide

<?for-each:group element tag name?>

To create the Suppliers group in the example, insert a form field before the
Suppliers field that you previously created. In the help text field enter:

<?for-each:G_VENDOR_NAME?>

For the example, enter the Default text "Group: Suppliers" to designate the
beginning of the group on the template. The Default text is not required, but can
make the template easier to read.

2. Insert a form field after the final placeholder element in the group. In the help text
field enter <?end for-each?>.

For the example, enter the Default text "End: Suppliers" after the summary row to
designate the end of the group on the template.

The following figure shows the template after the markup to designate the
Suppliers group was added.

Complete the Example
The second group in the example is the invoices group. The repeating elements in this
group are displayed in the table. For each invoice, the table row should repeat. Create a
group within the table to contain these elements.

Note: For each invoice, only the table row should repeat, not the entire
table. Placing the grouping tags at the beginning and end of the table
row will repeat only the row. If you place the tags around the table,
then for each new invoice the entire table with headings will be

Creating an RTF Template 2-15

repeated.

To mark up the example, insert the grouping tag <?for-each:G_INVOICE_NUM?> in
the table cell before the Invoice Num placeholder. Enter the Default text
"Group:Invoices" to designate the beginning of the group.

Insert the end tag inside the final table cell of the row after the Accounted Amt
placeholder. Enter the Default text "End:Invoices" to designate the end of the group.

The following figure shows the completed example using the form field method:

Defining Headers and Footers

Native Support
XML Publisher supports the use of the native RTF header and footer feature. To create a
header or footer, use the your word processing application's header and footer insertion
tools. As an alternative, or if you have multiple headers and footers, you can use
start:body and end body tags to distinguish the header and footer regions from the
body of your report.

Inserting Placeholders in the Header and Footer
At the time of this writing, Microsoft Word does not support form fields in the header
and footer. You must therefore insert the placeholder syntax directly into the template
(basic RTF method), or use the start body/end body syntax described in the next section.

2-16 Oracle XML Publisher Core Components Guide

Multiple or Complex Headers and Footers
If your template requires multiple headers and footers, create them by using XML
Publisher tags to define the body area of your report. You may also want to use this
method if your header and footer contain complex objects that you wish to place in
form fields. When you define the body area, the elements occurring before the
beginning of the body area will compose the header. The elements occurring after the
body area will compose the footer.

Use the following tags to enclose the body area of your report:

<?start:body?>

<?end body?>

Use the tags either directly in the template, or in form fields.

The Payables Invoice Register contains a simple header and footer and therefore does
not require the start body/end body tags. However, if you wanted to add another
header to the template, define the body area as follows:

1. Insert <?start:body?> before the Suppliers group tag:
<?for-each:G_VENDOR_NAME?>

2. Insert <?end body?> after the Suppliers group closing tag: <?end for-each?>

The following figure shows the Payables Invoice Register with the start body/end body
tags inserted:

Different First Page and Different Odd and Even Page Support
If your report requires a different header and footer on the first page of your report; or,
if your report requires different headers and footers for odd and even pages, you can
define this behavior using Microsoft Word's Page Setup dialog.

1. Select Page Setup from the File menu.

Creating an RTF Template 2-17

2. In the Page Setup dialog, select the Layout tab.

3. In the Headers and footers region of the dialog, select the appropriate check box:

Different odd and even

Different first page

4. Insert your headers and footers into your template as desired.

At runtime your generated report will exhibit the defined header and footer behavior.

Images and Charts

Images
XML Publisher supports several methods for including images in your published
document:

Direct Insertion
Insert the jpg, gif, bmp, or png image directly in your template.

URL Reference
URL Reference

1. Insert a dummy image in your template.

2. In Microsoft Word's Format Picture dialog box select the Web tab. Enter the
following syntax in the Alternative text region to reference the image URL:

url:{'http://image location'}

For example, enter:
url:{'http://www.oracle.com/images/ora_log.gif'}

OA Media Directory Reference
Note: This method only applies to Oracle E-Business Suite installations.

1. Insert a dummy image in your template.

2. In Microsoft Word's Format Picture dialog box select the Web tab. Enter the
following syntax in the Alternative text region to reference the OA_MEDIA
directory:

url:{'${OA_MEDIA}/image name'}

For example, enter:

2-18 Oracle XML Publisher Core Components Guide

url:{'${OA_MEDIA}/ORACLE_LOGO.gif'}

Element Reference from XML File
1. Insert a dummy image in your template.

2. In Microsoft Word's Format Picture dialog box select the Web tab. Enter the
following syntax in the Alternative text region to reference the image URL:

url:{IMAGE_LOCATION}

where IMAGE_LOCATION is an element from your XML file that holds the full
URL to the image.

You can also build a URL based on multiple elements at runtime. Just use the
concat function to build the URL string. For example:

url:{concat(SERVER,'/',IMAGE_DIR,'/',IMAGE_FILE)}

where SERVER, IMAGE_DIR, and IMAGE_FILE are element names from your XML
file that hold the values to construct the URL.

This method can also be used with the OA_MEDIA reference as follows:

url:{concat('${OA_MEDIA}','/',IMAGE_FILE)}

Rendering an Image Retrieved from BLOB Data
Important: This section applies to Oracle E-Business Suite and Oracle
Business Intelligence implementations only.

If your data source is a Data Template and your results XML contains image data that
had been stored as a BLOB in the database, use the following syntax in a form field
inserted in your template where you want the image to render at runtime:
<fo:instream-foreign-object content type="image/jpg">
<xsl:value-of select="IMAGE_ELEMENT"/>
</fo:instream-foreign-object>

where

image/jpg is the MIME type of the image (other options might be: image/gif and
image/png)

and

IMAGE_ELEMENT is the element name of the BLOB in your XML data.

Note that you can specify height and width attributes for the image to set its size in
the published report. XML Publisher will scale the image to fit the box size that you
define. For example, to set the size of the example above to three inches by four inches,
enter the following:

Creating an RTF Template 2-19

<fo:instream-foreign-object content type="image/jpg" height="3 in"
width="4 in">
<xsl:value-of select="IMAGE_ELEMENT"/>
</fo:instream-foreign-object>

Specify in pixels as follows:
<fo:instream-foreign-object content type="image/jpg" height="300 px"
width="4 px">
...

or in centimeters:
<fo:instream-foreign-object content type="image/jpg" height="3 cm"
width="4 cm">
...

or as a percentage of the original dimensions:
<fo:instream-foreign-object content type="image/jpg" height="300%"
width="300%">
...

Chart Support
XML Publisher leverages the graph capabilities of Oracle Business Intelligence Beans
(BI Beans) to enable you to define charts and graphs in your RTF templates that will be
populated with data at runtime. XML Publisher supports all the graph types and
component attributes available from the BI Beans graph DTD.

The BI Beans graph DTD is fully documented in the following technical note available
from the Oracle Technology Network [http://www.oracle.com/technology/index.html]
(OTN): "DTD for Customizing Graphs in Oracle Reports
[http://www.oracle.com/technology/products/reports/htdocs/getstart/whitepapers/grap
hdtd/graph_dtd_technote_2.html]."

The following summarizes the steps to add a chart to your template. These steps will be
discussed in detail in the example that follows:

1. Insert a dummy image in your template to define the size and position of your
chart.

2. Add the definition for the chart to the Alternative text box of the dummy image.
The chart definition requires XSL commands.

3. At runtime XML Publisher calls the BI Beans applications to render the image that
is then inserted into the final output document.

Adding a Sample Chart
Following is a piece of XML data showing total sales by company division.

http://www.oracle.com/technology/index.html
http://www.oracle.com/technology/products/reports/htdocs/getstart/whitepapers/graphdtd/graph_dtd_technote_2.html

2-20 Oracle XML Publisher Core Components Guide

<sales year=2004>
 <division>
 <name>Groceries</name>
 <totalsales>3810</totalsales>
 <costofsales>2100</costofsales>
 </division>
 <division>
 <name>Toys</name>
 <totalsales>2432</totalsales>
 <costofsales>1200</costofsales>
 </division>
 <division>
 <name>Cars</name>
 <totalsales>6753</totalsales>
 <costofsales>4100</costofsales>
 </division>
 <division>
 <name>Hardware</name>
 <totalsales>2543</totalsales>
 <costofsales>1400</costofsales>
 </division>
 <division>
 <name>Electronics</name>
 <totalsales>5965</totalsales>
 <costofsales>3560</costofsales>
 </division>
</sales>

This example will show how to insert a chart into your template to display it as a
vertical bar chart as shown in the following figure:

Creating an RTF Template 2-21

Note the following attributes of this chart:

• The style is a vertical bar chart.

• The chart displays a background grid.

• The components are colored.

• Sales totals are shown as Y-axis labels.

• Divisions are shown as X-axis labels.

• The chart is titled.

• The chart displays a legend.

Each of these properties can be customized to suit individual report requirements.

Inserting the Dummy Image
The first step is to add a dummy image to the template in the position you want the
chart to appear. The image size will define how big the chart image will be in the final
document.

2-22 Oracle XML Publisher Core Components Guide

Important: You must insert the dummy image as a "Picture" and not
any other kind of object.

The following figure shows an example of a dummy image:

The image can be embedded inside a for-each loop like any other form field if you want
the chart to be repeated in the output based on the repeating data. In this example, the
chart is defined within the sales year group so that a chart will be generated for each
year of data present in the XML file.

Right-click the image to open the Format Picture palette and select the Web tab. Use the
Alternative text entry box to enter the code to define the chart characteristics and data
definition for the chart.

Adding Code to the Alternative Text Box
The following graphic shows an example of the XML Publisher code in the Format
Picture Alternative text box:

Creating an RTF Template 2-23

The content of the Alternative text represents the chart that will be rendered in the final
document. For this chart, the text is as follows:
chart:
<Graph graphType = "BAR_VERT_CLUST">
 <Title text="Company Sales 2004" visible="true"
horizontalAlignment="CENTER"/>
 <Y1Title text="Sales in Thousands" visible="true"/>
 <O1Title text="Division" visible="true"/>
 <LocalGridData colCount="{count(//division)}" rowCount="1">
 <RowLabels>
 <Label>Total Sales $1000s</Label>
 </RowLabels>
 <ColLabels>
 <xsl:for-each select="//division">
 <Label>
 <xsl:value-of select="name"/>
 </Label>
 </xsl:for-each>
 </ColLabels>
 <DataValues>
 <RowData>
 <xsl:for-each select="//division">
 <Cell>
 <xsl:value-of select="totalsales"/>
 </Cell>
 </xsl:for-each>
 </RowData>
 </DataValues>
 </LocalGridData>
</Graph>

2-24 Oracle XML Publisher Core Components Guide

The first element of your chart text must be the chart: element to inform the RTF
parser that the following code describes a chart object.

Next is the opening <Graph> tag. Note that the whole of the code resides within the
tags of the <Graph> element. This element has an attribute to define the chart type:
graphType. If this attribute is not declared, the default chart is a vertical bar chart. BI
Beans supports many different chart types. Several more types are presented in this
section. For a complete listing, see the BI Beans graph DTD documentation.

The following code section defines the chart type and attributes:
<Title text="Company Sales 2004" visible="true"
horizontalAlignment="CENTER"/>
 <Y1Title text="Sales in Thousands" visible="true"/>
 <O1Title text="Division" visible="true"/>

All of these values can be declared or you can substitute values from the XML data at
runtime. For example, you can retrieve the chart title from an XML tag by using the
following syntax:
<Title text="{CHARTTITLE}" visible="true" horizontalAlighment="CENTER"/>

where "CHARTTITLE" is the XML tag name that contains the chart title. Note that the
tag name is enclosed in curly braces.

The next section defines the column and row labels:
<LocalGridData colCount="{count(//division)}" rowCount="1">
 <RowLabels>
 <Label>Total Sales $1000s</Label>
 </RowLabels>
 <ColLabels>
 <xsl:for-each select="//division">
 <Label>
 <xsl:value-of select="name"/>
 </Label>
 </xsl:for-each>
 </ColLabels>

The LocalGridData element has two attributes: colCount and rowCount. These
define the number of columns and rows that will be shown at runtime. In this example,
a count function calculates the number of columns to render:
colCount="{count(//division)}"

The rowCount has been hard-coded to 1. This value defines the number of sets of data
to be charted. In this case it is 1.

Next the code defines the row and column labels. These can be declared, or a value
from the XML data can be substituted at runtime. The row label will be used in the
chart legend (that is, "Total Sales $1000s").

The column labels for this example are derived from the data: Groceries, Toys, Cars,
and so on. This is done using a for-each loop:

Creating an RTF Template 2-25

<ColLabels>
 <xsl:for-each select="//division">
 <Label>
 <xsl:value-of select="name"/>
 </Label>
 </xsl:for-each>
 </ColLabels>

This code loops through the <division> group and inserts the value of the <name>
element into the <Label> tag. At runtime, this will generate the following XML:
<ColLabels>
 <Label>Groceries</Label>
 <Label>Toys</Label>
 <Label>Cars</Label>
 <Label>Hardware</Label>
 <Label>Electronics</Label>
</ColLabels>

The next section defines the actual data values to chart:
<DataValues>
 <RowData>
 <xsl:for-each select="//division">
 <Cell>
 <xsl:value-of select="totalsales"/>
 </Cell>
 </xsl:for-each>
 </RowData>
 </DataValues>

Similar to the labels section, the code loops through the data to build the XML that is
passed to the BI Beans rendering engine. This will generate the following XML:
<DataValues>
 <RowData>
 <Cell>3810</Cell>
 <Cell>2432</Cell>
 <Cell>6753</Cell>
 <Cell>2543</Cell>
 <Cell>5965</Cell>
 </RowData>
</DataValues>

Additional Chart Samples
You can also display this data in a pie chart as shown in the following figure:

2-26 Oracle XML Publisher Core Components Guide

The following is the code added to the template to render this chart at runtime:
chart:
<Graph graphType="PIE">
 <Title text="Company Sales 2004" visible="true"
 horizontalAlignment="CENTER"/>
 <LocalGridData rowCount="{count(//division)}" colCount="1">
 <RowLabels>
 <xsl:for-each select="//division">
 <Label>
 <xsl:value-of select="name"/>
 </Label>
 </xsl:for-each>
 </RowLabels>
 <DataValues>
 <xsl:for-each select="//division">
 <RowData>
 <Cell>
 <xsl:value-of select="totalsales"/>
 </Cell>
 </RowData>
 </xsl:for-each>
 </DataValues>
 </LocalGridData>
</Graph>

Horizontal Bar Chart Sample
The following example shows total sales and cost of sales charted in a horizontal bar
format. This example also adds the data from the cost of sales element (
<costofsales>) to the chart:

Creating an RTF Template 2-27

The following code defines this chart in the template:
chart:
<Graph graphType = "BAR_HORIZ_CLUST">
 <Title text="Company Sales 2004" visible="true"
horizontalAlignment="CENTER"/>
 <LocalGridData colCount="{count(//division)}" rowCount="2">
 <RowLabels>
 <Label>Total Sales ('000s)</Label>
 <Label>Cost of Sales ('000s)</Label>
 </RowLabels>
 <ColLabels>
 <xsl:for-each select="//division">
 <Label><xsl:value-of select="name"/></Label>
 </xsl:for-each>
 </ColLabels>
 <DataValues>
 <RowData>
 <xsl:for-each select="//division">
 <Cell><xsl:value-of select="totalsales"/></Cell>
 </xsl:for-each>
 </RowData>
 <RowData>
 <xsl:for-each select="//division">
 <Cell><xsl:value-of select="costofsales"/></Cell>
 </xsl:for-each>
 </RowData>
 </DataValues>
 </LocalGridData>
</Graph>

To accommodate the second set of data, the rowCount attribute for the

2-28 Oracle XML Publisher Core Components Guide

LocalGridData element is set to 2. Also note the DataValues section defines two
sets of data: one for Total Sales and one for Cost of Sales.

Changing the Appearance of Your Chart
There are many attributes available from the BI Beans graph DTD that you can
manipulate to change the look and feel of your chart. For example, the previous chart
can be changed to remove the grid, place a graduated background, and change the bar
colors and fonts as shown in the following figure:

The code to support this is as follows:

Creating an RTF Template 2-29

chart:
<Graph graphType = "BAR_HORIZ_CLUST">
<SeriesItems>
 <Series id="0" color="#ffcc00"/>
 <Series id="1" color="#ff6600"/>
</SeriesItems>
<O1MajorTick visible="false"/>
<X1MajorTick visible="false"/>
<Y1MajorTick visible="false"/>
<Y2MajorTick visible="false"/>
<MarkerText visible="true" markerTextPlace="MTP_CENTER"/>
<PlotArea borderTransparent="true">
 <SFX fillType="FT_GRADIENT" gradientDirection="GD_LEFT"
 gradientNumPins="300">
 <GradientPinStyle pinIndex="1" position="1"
 gradientPinLeftColor="#999999"
 gradientPinRightColor="#cc6600"/>
 </SFX>
</PlotArea>
<Title text="Company Sales 2004" visible="true">
 <GraphFont name="Tahoma" bold="false"/>
</Title>
. . .
</Graph>

The colors for the bars are defined in the SeriesItems section. The colors are defined
in hexadecimal format as follows:
<SeriesItems>
 <Series id="0" color="#ffcc00"/>
 <Series id="1" color="#ff6600"/>
</SeriesItems>

The following code hides the chart grid:
<O1MajorTick visible="false"/>
 <X1MajorTick visible="false"/>
 <Y1MajorTick visible="false"/>
 <Y2MajorTick visible="false"/>

The MarkerText tag places the data values on the chart bars:
<MarkerText visible="true" markerTextPlace="MTP_CENTER"/>

The PlotArea section defines the background. The SFX element establishes the
gradient and the borderTransparent attribute hides the plot border:
<PlotArea borderTransparent="true">
 <SFX fillType="FT_GRADIENT" gradientDirection="GD_LEFT"
 gradientNumPins="300">
 <GradientPinStyle pinIndex="1" position="1"
 gradientPinLeftColor="#999999"
 gradientPinRightColor="#cc6600"/>
 </SFX>
</PlotArea>

The Title text tag has also been updated to specify a new font type and size:
<Title text="Company Sales 2004" visible="true">
 <GraphFont name="Tahoma" bold="false"/>
</Title>

2-30 Oracle XML Publisher Core Components Guide

Drawing, Shape and Clip Art Support
XML Publisher supports Microsoft Word drawing, shape, and clip art features. You can
add these objects to your template and they will be rendered in your final PDF output.

The following AutoShape categories are supported:

• Lines - straight, arrowed, connectors, curve, free form, and scribble

• Connectors - straight connectors only are supported. Curved connectors can be
achieved by using a curved line and specifying the end styles to the line.

• Basic Shapes - all shapes are supported.

• Block arrows - all arrows are supported.

• Flowchart - all flowchart objects are supported.

• Stars and Banners - all objects are supported.

• Callouts - the "line" callouts are not supported.

• Clip Art - add images to your templates using the Microsoft Clip Art libraries

Freehand Drawing
Use the freehand drawing tool in Microsoft Word to create drawings in your template
to be rendered in the final PDF output.

Hyperlinks
You can add hyperlinks to your shapes. See Hyperlinks, page 2-54.

Layering
You can layer shapes on top of each other and use the transparency setting in Microsoft
Word to allows shapes on lower layers to show through. The following graphic shows
an example of layered shapes:

Creating an RTF Template 2-31

3-D Effects
XML Publisher does not currently support the 3-D option for shapes.

Microsoft Equation
Use the equation editor to generate equations in your output. The following figure
shows an example of an equation:

Organization Chart
Use the organization chart functionality in your templates and the chart will be
rendered in the output. The following image shows an example of an organization
chart:

WordArt
You can use Microsoft Word's WordArt functionality in your templates. The following
graphic shows a WordArt example:

2-32 Oracle XML Publisher Core Components Guide

Note: Some Microsoft WordArt uses a bitmap operation that currently
cannot be converted to SVG. To use the unsupported WordArt in your
template, you can take a screenshot of the WordArt then save it as an
image (gif, jpeg, or png) and replace the WordArt with the image.

Data Driven Shape Support
In addition to supporting the static shapes and features in your templates, XML
Publisher supports the manipulation of shapes based on incoming data or parameters,
as well. The following manipulations are supported:

• Replicate

• Move

• Change size

• Add text

• Skew

• Rotate

These manipulations not only apply to single shapes, but you can use the group feature
in Microsoft Word to combine shapes together and manipulate them as a group.

Placement of Commands
Enter manipulation commands for a shape in the Web tab of the shape's properties
dialog as shown in the following example figure:

Creating an RTF Template 2-33

Replicate a Shape
You can replicate a shape based on incoming XML data in the same way you replicate
data elements in a for-each loop. To do this, use a for-each@shape command in
conjunction with a shape-offset declaration. For example, to replicate a shape down the
page, use the following syntax:
<?for-each@shape:SHAPE_GROUP?>
 <?shape-offset-y:(position()-1)*100?>
<?end for-each?>

where

for-each@shape opens the for-each loop for the shape context

SHAPE_GROUP is the name of the repeating element from the XML file. For each
occurrence of the element SHAPE_GROUP a new shape will be created.

shape-offset-y: - is the command to offset the shape along the y-axis.

(position()-1)*100) - sets the offset in pixels per occurrence. The XSL position
command returns the record counter in the group (that is 1,2,3,4); one is subtracted
from that number and the result is multiplied by 100. Therefore for the first occurrence
the offset would be 0: (1-1) * 100. The offset for the second occurrence would be 100
pixels: (2-1) *100. And for each subsequent occurrence the offset would be another 100
pixels down the page.

2-34 Oracle XML Publisher Core Components Guide

Add Text to a Shape
You can add text to a shape dynamically either from the incoming XML data or from a
parameter value. In the property dialog enter the following syntax:
<?shape-text:SHAPETEXT?>

where SHAPETEXT is the element name in the XML data. At runtime the text will be
inserted into the shape.

Add Text Along a Path
You can add text along a line or curve from incoming XML data or a parameter. After
drawing the line, in the property dialog enter:
<?shape-text-along-path:SHAPETEXT?>

where SHAPETEXT is the element from the XML data. At runtime the value of the
element SHAPETEXT will be inserted above and along the line.

Moving a Shape
You can move a shape or transpose it along both the x and y-axes based on the XML
data. For example to move a shape 200 pixels along the y-axis and 300 along the x-axis,
enter the following commands in the property dialog of the shape:
<?shape-offset-x:300?>
<?shape-offset-y:200?>

Rotating a Shape
To rotate a shape about a specified axis based on the incoming data, use the following
command:
<?shape-rotate:ANGLE;'POSITION'?>

where

ANGLE is the number of degrees to rotate the shape. If the angle is positive, the
rotation is clockwise; if negative, the rotation is counterclockwise.

POSITION is the point about which to carry out the rotation, for example, 'left/top'
. Valid values are combinations of left, right, or center with center, top, or bottom. The
default is left/top. The following figure shows these valid values:

Creating an RTF Template 2-35

To rotate this rectangle shape about the bottom right corner, enter the following syntax:
<?shape-rotate:60,'right/bottom'?>

You can also specify an x,y coordinate within the shape itself about which to rotate.

Skewing a Shape
You can skew a shape along its x or y axis using the following commands:
<?shape-skew-x:ANGLE;'POSITION'?>
<?shape-skew-y:ANGLE;'POSITION'?>

where

ANGLE is the number of degrees to skew the shape. If the angle is positive, the skew is
to the right.

POSITION is the point about which to carry out the rotation, for example, 'left/top'
. Valid values are combinations of left, right, or center with center, top, or bottom. See
the figure under Rotating a Shape, page 2-34. The default is 'left/top'.

For example, to skew a shape by 30 degrees about the bottom right hand corner, enter
the following:
<?shape-skew-x:number(.)*30;'right/bottom'?>

Changing the Size of a Shape
You can change the size of a shape using the appropriate commands either along a
single axis or both axes. To change a shape's size along both axes, use:
<?shape-size:RATIO?>

where RATIO is the numeric ratio to increase or decrease the size of the shape.
Therefore a value of 2 would generate a shape twice the height and width of the

2-36 Oracle XML Publisher Core Components Guide

original. A value of 0.5 would generate a shape half the size of the original.

To change a shape's size along the x or y axis, use:
<?shape-size-x:RATIO?>
<?shape-size-y:RATIO?>

Changing only the x or y value has the effect of stretching or shrinking the shape along
an axis. This can be data driven.

Combining Commands
You can also combine these commands to carry out multiple transformations on a shape
at one time. For example, you can replicate a shape and for each replication, rotate it by
some angle and change the size at the same time.

The following example shows how to replicate a shape, move it 50 pixels down the
page, rotate it by five degrees about the center, stretch it along the x-axis and add the
number of the shape as text:
<for-each@shape:SHAPE_GROUP?>
 <?shape-text:position()?>
 <?shape-offset-y:position()*50?>
 <?shape-rotate:5;'center/center'?>
 <?shape-size-x:position()+1?>
<end for-each?>

This would generate the output shown in the following figure:

CD Ratings Example
This example demonstrates how to set up a template that will generate a star-rating
based on data from an incoming XML file.

Assume the following incoming XML data:

Creating an RTF Template 2-37

<CATALOG>
 <CD>
 <TITLE>Empire Burlesque</TITLE>
 <ARTIST>Bob Dylan</ARTIST>
 <COUNTRY>USA</COUNTRY>
 <COMPANY>Columbia</COMPANY>
 <PRICE>10.90</PRICE>
 <YEAR>1985</YEAR>
 <USER_RATING>4</USER_RATING>
 </CD>
 <CD>
 <TITLE>Hide Your Heart</TITLE>
 <ARTIST>Bonnie Tylor</ARTIST>
 <COUNTRY>UK</COUNTRY>
 <COMPANY>CBS Records</COMPANY>
 <PRICE>9.90</PRICE>
 <YEAR>1988</YEAR>
 <USER_RATING>3</USER_RATING>
 </CD>
 <CD>
 <TITLE>Still got the blues</TITLE>
 <ARTIST>Gary More</ARTIST>
 <COUNTRY>UK</COUNTRY>
 <COMPANY>Virgin Records</COMPANY>
 <PRICE>10.20</PRICE>
 <YEAR>1990</YEAR>
 <USER_RATING>5</USER_RATING>
 </CD>
 <CD>
 <TITLE>This is US</TITLE>
 <ARTIST>Gary Lee</ARTIST>
 <COUNTRY>UK</COUNTRY>
 <COMPANY>Virgin Records</COMPANY>
 <PRICE>12.20</PRICE>
 <YEAR>1990</YEAR>
 <USER_RATING>2</USER_RATING>
 </CD>
<CATALOG>

Notice there is a USER_RATING element for each CD. Using this data element and the
shape manipulation commands, we can create a visual representation of the ratings so
that the reader can compare them at a glance.

A template to achieve this is shown in the following figure:

The values for the fields are shown in the following table:

2-38 Oracle XML Publisher Core Components Guide

Field Form Field Entry

F <?for-each:CD?>

TITLE <?TITLE?>

ARTIST <?ARTIST?>

E <?end for-each?>

(star shape) Web Tab Entry:

<?for-each@shape:xdoxslt:foreach_number($_XDOCTX,0
,USER_RATING,1)?>

<?shape-offset-x:(position()-1)*25?>

<?end for-each?>

The form fields hold the simple element values. The only difference with this template
is the value for the star shape. The replication command is placed in the Web tab of the
Format AutoShape dialog.

In the for-each@shape command we are using a command to create a "for...next loop"
construct. We specify 1 as the starting number; the value of USER_RATING as the final
number; and 1 as the step value. As the template loops through the CDs, we create an
inner loop to repeat a star shape for every USER_RATING value (that is, a value of 4
will generate 4 stars). The output from this template and the XML sample is shown in
the following graphic:

Grouped Shape Example
This example shows how to combine shapes into a group and have them react to the
incoming data both individually and as a group. Assume the following XML data:

Creating an RTF Template 2-39

<SALES>
 <SALE>
 <REGION>Americas</REGION>
 <SOFTWARE>1200</SOFTWARE>
 <HARDWARE>850</HARDWARE>
 <SERVICES>2000</SERVICES>
 </SALE>
 <SALE>
 <REGION>EMEA</REGION>
 <SOFTWARE>1000</SOFTWARE>
 <HARDWARE>800</HARDWARE>
 <SERVICES>1100</SERVICES>
 </SALE>
 <SALE>
 <REGION>APAC</REGION>
 <SOFTWARE>900</SOFTWARE>
 <HARDWARE>1200</HARDWARE>
 <SERVICES>1500</SERVICES>
 </SALE>
</SALES>

You can create a visual representation of this data so that users can very quickly
understand the sales data across all regions. Do this by first creating the composite
shape in Microsoft Word that you wish to manipulate. The following figure shows a
composite shape made up of four components:

The shape consists of three cylinders: red, yellow, and blue. These will represent the
data elements software, hardware, and services. The combined object also contains a
rectangle that is enabled to receive text from the incoming data.

The following commands are entered into the Web tab:

Red cylinder: <?shape-size-y:SOFTWARE div 1000;'left/bottom'?>

Yellow cylinder: <?shape-size-y:HARDWARE div 1000;'left/bottom'?>

Blue cylinder: <?shape-size-y:SERVICES div 1000;'left/bottom'?>

The shape-size command is used to stretch or shrink the cylinder based on the values of
the elements SOFTWARE, HARDWARE, and SERVICES. The value is divided by 1000
to set the stretch or shrink factor. For example, if the value is 2000, divide that by 1000
to get a factor of 2. The shape will generate as twice its current height.

The text-enabled rectangle contains the following command in its Web tab:
<?shape-text:REGION?>

2-40 Oracle XML Publisher Core Components Guide

At runtime the value of the REGION element will appear in the rectangle.

All of these shapes were then grouped together and in the Web tab for the grouped
object, the following syntax is added:
<?for-each@shape:SALE?>
<?shape-offset-x:(position()-1)*110?>
<?end for-each?>

In this set of commands, the for-each@shape loops over the SALE group. The
shape-offset command moves the next shape in the loop to the right by a specific
number of pixels. The expression (position()-1) sets the position of the object. The
position() function returns a record counter while in the loop, so for the first shape, the
offset would be 1-1*100, or 0, which would place the first rendering of the object in the
position defined in the template. Subsequent occurrences would be rendered at a 100
pixel offset along the x-axis (to the right).

At runtime three sets of shapes will be rendered across the page as shown in the
following figure:

To make an even more visually representative report, these shapes can be
superimposed onto a world map. Just use the "Order" dialog in Microsoft Word to layer
the map behind the grouped shapes.

Microsoft Word 2000 Users: After you add the background map and overlay the shape
group, use the Grouping dialog to make the entire composition one group.

Microsoft Word 2002/3 Users: These versions of Word have an option under Tools >
Options, General tab to "Automatically generate drawing canvas when inserting
autoshapes". Using this option removes the need to do the final grouping of the map
and shapes. We can now generate a visually appealing output for our report as seen in
the following figure:

Creating an RTF Template 2-41

Supported Native Formatting Features
In addition to the features already listed, XML Publisher supports the following
features of Microsoft Word.

General Features
• Large blocks of text

• Page breaks

To insert a page break, insert a Ctrl-Enter keystroke just before the closing tag of a
group. For example if you want the template to start a new page for every Supplier
in the Payables Invoice Register:

1. Place the cursor just before the Supplier group's closing <?end for-each?> tag.

2. Press Ctrl-Enter to insert a page break.

At runtime each Supplier will start on a new page.

Using this Microsoft Word native feature will cause a single blank page to print at
the end of your report output. To avoid this single blank page, use XML Publisher's
page break alias. See Special Features: Page Breaks, page 2-49.

2-42 Oracle XML Publisher Core Components Guide

• Page numbering

Insert page numbers into your final report by using the page numbering methods of
your word processing application. For example, if you are using Microsoft Word:

1. From the Insert menu, select Page Numbers...

2. Select the Position, Alignment, and Format as desired.

At runtime the page numbers will be displayed as selected.

• Hidden text

You can format text as "hidden" in Microsoft Word and the hidden text will be
maintained in RTF output reports.

Alignment
Use your word processor's alignment features to align text, graphics, objects, and tables.

Note: Bidirectional languages are handled automatically using your
word processing application's left/right alignment controls.

Tables
Supported table features include:

• Nested Tables

• Cell Alignment

You can align any object in your template using your word processing application's
alignment tools. This alignment will be reflected in the final report output.

• Row spanning and column spanning

You can span both columns and rows in your template as follows:

1. Select the cells you wish to merge.

2. From the Table menu, select Merge Cells.

3. Align the data within the merged cell as you would normally.

At runtime the cells will appear merged.

• Table Autoformatting

XML Publisher recognizes the table autoformats available in Microsoft Word.

Creating an RTF Template 2-43

1. Select the table you wish to format.

2. From the Table menu, select Autoformat.

3. Select the desired table format.

At runtime, the table will be formatted using your selection.

• Cell patterns and colors

You can highlight cells or rows of a table with a pattern or color.

1. Select the cell(s) or table.

2. From the Table menu, select Table Properties.

3. From the Table tab, select the Borders and Shading... button.

4. Add borders and shading as desired.

• Repeating table headers

If your data is displayed in a table, and you expect the table to extend across
multiple pages, you can define the header rows that you want to repeat at the start
of each page.

1. Select the row(s) you wish to repeat on each page.

2. From the Table menu, select Heading Rows Repeat.

• Prevent rows from breaking across pages.

If you want to ensure that data within a row of a table is kept together on a page,
you can set this as an option using Microsoft Word's Table Properties.

1. Select the row(s) that you want to ensure do not break across a page.

2. From the Table menu, select Table Properties.

3. From the Row tab, deselect the check box "Allow row to break across pages".

• Fixed-width columns

To set the widths of your table columns:

1. Select a column and then select Table >Table Properties.

2. In the Table Properties dialog, select the Column tab.

3. Enable the Preferred width checkbox and then enter the width as a Percent or

2-44 Oracle XML Publisher Core Components Guide

in Inches.

4. Select the Next Column button to set the width of the next column.

Note that the total width of the columns must add up to the total width of the table.

The following figure shows the Table Properties dialog:

• Text truncation

By default, if the text within a table cell will not fit within the cell, the text will be
wrapped. To truncate the text instead, use the table properties dialog.

1. Place your cursor in the cell in which you want the text truncated.

2. Right-click your mouse and select Table Properties... from the menu, or
navigate to Table >Table Properties...

3. From the Table Properties dialog, select the Cell tab, then select Options...

4. Deselect the Wrap Text check box.

The following figure shows the Cell Options dialog.

Creating an RTF Template 2-45

An example of truncation is shown in the following graphic:

Date Fields
Insert dates using the date feature of your word processing application. Note that this
date will correspond to the publishing date, not the request run date.

Multicolumn Page Support
XML Publisher supports Microsoft Word's Columns function to enable you to publish
your output in multiple columns on a page.

Select Format >Columns to display the Columns dialog box to define the number of

2-46 Oracle XML Publisher Core Components Guide

columns for your template. The following graphic shows the Columns dialog:

Multicolumn Page Example: Labels
To generate address labels in a two-column format:

1. Divide your page into two columns using the Columns command.

2. Define the repeatable group in the first column. Note that you define the repeatable
group only in the first column, as shown in the following figure:

Tip: To prevent the address block from breaking across pages or
columns, embed the label block inside a single-celled table. Then
specify in the Table Properties that the row should not break across
pages. See Prevent rows from breaking across pages, page 2-43.

Creating an RTF Template 2-47

This template will produce the following multicolumn output:

Background and Watermark Support
XML Publisher supports the "Background" feature in Microsoft Word. You can specify a
single, graduated color or an image background for your template to be displayed in
the PDF output. Note that this feature is supported for PDF output only.

To add a background to your template, use the Format > Background menu option.

Add a Background Using Microsoft Word 2000
From the Background pop up menu, you can:

• Select a single color background from the color palette

• Select Fill Effects to open the Fill Effects dialog. The Fill Effects dialog is shown in
the following figure:

2-48 Oracle XML Publisher Core Components Guide

From this dialog select one of the following supported options:

• Gradient - this can be either one or two colors

• Texture - choose one of the textures provided, or load your own

• Pattern - select a pattern and background/foreground colors

• Picture - load a picture to use as a background image

Add a Text or Image Watermark Using Microsoft Word 2002 or later
These versions of Microsoft Word allow you to add either a text or image watermark.

Use the Format > Background > Printed Watermark dialog to select either:

• Picture Watermark - load an image and define how it should be scaled on the
document

• Text Watermark - use the predefined text options or enter your own, then specify
the font, size and how the text should be rendered.

The following figure shows the Printed Watermark dialog completed to display a
text watermark:

Creating an RTF Template 2-49

Template Features

Page Breaks
To create a page break after the occurrence of a specific element use the
"split-by-page-break" alias. This will cause the report output to insert a hard page break
between every instance of a specific element.

To insert a page break between each occurrence of a group, insert the
"split-by-page-break" form field within the group immediately before the <?end
for-each?> tag that closes the group. In the Help Text of this form field enter the
syntax:

<?split-by-page-break:?>

Example
For the following XML, assume you want to create a page break for each new supplier:

2-50 Oracle XML Publisher Core Components Guide

<SUPPLIER>
 <NAME>My Supplier</NAME>
 <INVOICES>
 <INVOICE>
 <INVNUM>10001-1</INVNUM>
 <INVDATE>1-Jan-2005</INVDATE>
 <INVAMT>100</INVOICEAMT>
 </INVOICE>
 <INVOICE>
 <INVNUM>10001-2</INVNUM>
 <INVDATE>10-Jan-2005</INVDATE>
 <INVAMT>200</INVOICEAMT>
 </INVOICE>
 </INVOICES>
</SUPPLIER>
<SUPPLIER>
 <NAME>My Second Supplier</NAME>
 <INVOICES>
 <INVOICE>
 <INVNUM>10001-1</INVNUM>
 <INVDATE>11-Jan-2005</INVDATE>
 <INVAMT>150</INVOICEAMT>
 </INVOICE>
…

In the template sample shown in the following figure, the field called PageBreak
contains the split-by-page-break syntax:

Place the PageBreak field with the <?split-by-page-break:?> syntax
immediately before the <?end for-each?> field. The PageBreak field sits inside the
end of the SUPPLIER loop. This will ensure a page break is inserted before the
occurrence of each new supplier. This method avoids the ejection of an extra page at the
end of the group when using the native Microsoft Word page break after the group.

Initial Page Number
Some reports require that the initial page number be set at a specified number. For
example, monthly reports may be required to continue numbering from month to
month. XML Publisher allows you to set the page number in the template to support
this requirement.

Use the following syntax in your template to set the initial page number:
<?initial-page-number:pagenumber?>

where pagenumber is the XML element or parameter that holds the numeric value.

Example 1 - Set page number from XML data element
If your XML data contains an element to carry the initial page number, for example:

Creating an RTF Template 2-51

<REPORT>
 <PAGESTART>200<\PAGESTART>

</REPORT>

Enter the following in your template:
<?initial-page-number:PAGESTART?>

Your initial page number will be the value of the PAGESTART element, which in this
case is 200.

Example 2 - Set page number by passing a parameter value
If you define a parameter called PAGESTART, you can pass the initial value by calling
the parameter.

Enter the following in your template:
<?initial-page-number:$PAGESTART?>

Note: You must first declare the parameter in your template. See
Defining Parameters in Your Template, page 2-89.

Last Page Only Content
XML Publisher supports the Microsoft Word functionality to specify a different page
layout for the first page, odd pages, and even pages. To implement these options,
simply select Page Setup from the File menu, then select the Layout tab. XML Publisher
will recognize the settings you make in this dialog.

However, Microsoft Word does not provide settings for a different last page only. This
is useful for documents such as checks, invoices, or purchase orders on which you may
want the content such as the check or the summary in a specific place only on the last
page.

XML Publisher provides this ability. To utilize this feature, you must:

1. Create a section break in your template to ensure the content of the final page is
separated from the rest of the report.

2. Insert the following syntax on the final page:

<?start@last-page:body?>

<?end body?>

Any content on the page that occurs above or below these two tags will appear only on
the last page of the report. Also, note that because this command explicitly specifies the
content of the final page, any desired headers or footers previously defined for the
report must be reinserted on the last page.

Example
This example uses the last page only feature for a report that generates an invoice
listing with a summary to appear at the bottom of the last page.

2-52 Oracle XML Publisher Core Components Guide

Assume the following XML:
<?xml version="1.0" encoding="WINDOWS-1252"?>
<INVOICELIST>
 <VENDOR>
 <VENDOR_NAME>Nuts and Bolts Limited</VENDOR_NAME>
 <ADDRESS>1 El Camino Real, Redwood City, CA 94065</ADDRESS>
 <INVOICE>
 <INV_TYPE>Standard</INV_TYPE>
 <INVOICE_NUM>981110</INVOICE_NUM>
 <INVOICE_DATE>10-NOV-04</INVOICE_DATE>
 <INVOICE_CURRENCY_CODE>EUR</INVOICE_CURRENCY_CODE>
 <ENT_AMT>122</ENT_AMT>
 <ACCTD_AMT>122</ACCTD_AMT>
 <VAT_CODE>VAT22%</VAT_CODE>
 </INVOICE>
 <INVOICE>
 <INV_TYPE>Standard</INV_TYPE>
 <INVOICE_NUM>100000</INVOICE_NUM>
 <INVOICE_DATE>28-MAY-04</INVOICE_DATE>
 <INVOICE_CURRENCY_CODE>FIM</INVOICE_CURRENCY_CODE>
 <ENT_AMT>122</ENT_AMT>
 <ACCTD_AMT>20.33</ACCTD_AMT>
 <VAT_CODE>VAT22%</VAT_CODE>
 </INVOICE>
 </VENDOR>
 <VENDOR>
 ...
<INVOICE>
 ...
 </INVOICE>
 </VENDOR>
 <SUMMARY>
 <SUM_ENT_AMT>61435</SUM_ENT_AMT>
 <SUM_ACCTD_AMT>58264.68</SUM_ACCTD_AMT>
 <TAX_CODE>EU22%</TAX_CODE>
 </SUMMARY>
</INVOICELIST>

The report should show each VENDOR and their INVOICE data with a SUMMARY
section that appears only on the last page, placed at the bottom of the page. The
template for this is shown in the following figure:

Creating an RTF Template 2-53

Template Page One

Insert a Microsoft Word section break (type: next page) on the first page of the template.
For the final page, insert new line characters to position the summary table at the
bottom of the page. The summary table is shown in the following figure:

Last Page Only Layout

In this example:

• The F and E components contain the for-each grouping statements.

• The grayed report fields are placeholders for the XML elements.

• The "Last Page Placeholder" field contains the syntax:

<?start@last-page:body?><?end body?>

to declare the last page layout. Any content above or below this statement will
appear on the last page only. The content above the statement is regarded as the
header and the content below the statement is regarded as the footer.

2-54 Oracle XML Publisher Core Components Guide

If your reports contains headers and footers that you want to carry over onto the last
page, you must reinsert them on the last page. For more information about headers and
footers see Defining Headers and Footers, page 2-15.

You must insert a section break (type: next page) into the document to specify the last
page layout. This example is available in the samples folder of the Oracle BI Publisher
Template Builder for Word installation.

It is important to note that if the report is only one page in length, the first page layout
will be used. If your report requires that a single page report should default to the last
page layout (such as in a check printing implementation) then you can use the
following alternate syntax for the "Last Page Placeholder" on the last page:

<?start@last-page-first:body?><?end body?>

Substituting this syntax will result in the last page layout for reports that are only one
page long.

End on Even or End on Odd Page
If your report has different odd and even page layouts, you may want to force your
report to end specifically on an odd or even page. For example, you may include the
terms and conditions of a purchase order in the footer of your report using the different
odd/even footer functionality (see Different First Page and Different Odd and Even
Page Support, page 2-16) and you want to ensure that the terms and conditions are
printed on the final page.

Or, you may have binding requirements to have your report end on an even page,
without specific layout.

To end on an even page with layout:

Insert the following syntax in a form field in your template:
<?section:force-page-count;'end-on-even-layout'?>

To end on an odd page layout:
<?section:force-page-count;'end-on-odd-layout'?>

If you do not have layout requirements for the final page, but would like a blank page
ejected to force the page count to the preferred odd or even, use the following syntax:
<?section:force-page-count;'end-on-even'?>

or
<?section:force-page-count;'end-on-odd'?>

Hyperlinks
XML Publisher supports several different types of hyperlinks. The hyperlinks can be
fixed or dynamic and can link to either internal or external destinations. Hyperlinks can
also be added to shapes.

Creating an RTF Template 2-55

• To insert static hyperlinks to either text or a shape, use your word processing
application's insert hyperlink feature:

1. Select the text or shape.

2. Use the right-mouse menu to select Hyperlink; or, select Hyperlink from the
Insert menu.

3. Enter the URL using any of the methods provided on the Insert Hyperlink
dialog box.

The following screenshot shows the insertion of a static hyperlink using Microsoft
Word's Insert Hyperlink dialog box.

• If your input XML data includes an element that contains a hyperlink or part of one,
you can create dynamic hyperlinks at runtime. In the Type the file or Web page
name field of the Insert Hyperlink dialog box, enter the following syntax:

{URL_LINK}

where URL_LINK is the incoming data element name.

If you have a fixed URL that you want to add elements from your XML data file to
construct the URL, enter the following syntax:

http://www.oracle.com?product={PRODUCT_NAME}

where PRODUCT_NAME is the incoming data element name.

In both these cases, at runtime the dynamic URL will be constructed.

2-56 Oracle XML Publisher Core Components Guide

The following figure shows the insertion of a dynamic hyperlink using Microsoft
Word's Insert Hyperlink dialog box. The data element SUPPLIER_URL from the
incoming XML file will contain the hyperlink that will be inserted into the report at
runtime.

• You can also pass parameters at runtime to construct a dynamic URL.

Enter the parameter and element names surrounded by braces to build up the URL
as follows:
{$SERVER_URL}{REPORT}/cstid={CUSTOMER_ID}

where SERVER_URL and REPORT are parameters passed to the template at runtime
(note the $ sign) and CUSTOMER_ID is an XML data element. This link may render
as:

http://myserver.domain:8888/CustomerReport/cstid=1234

Inserting Internal Links
Insert internal links into your template using Microsoft Word's Bookmark feature.

1. Position your cursor in the desired destination in your document.

2. Select Insert >Bookmark...

3. In the Bookmark dialog, enter a name for this bookmark, and select Add.

4. Select the text or shape in your document that you want to link back to the

Creating an RTF Template 2-57

Bookmark target.

5. Use the right-mouse menu to select Hyperlink; or select Hyperlink from the Insert
menu.

6. On the Insert Hyperlink dialog, select Bookmark.

7. Choose the bookmark you created from the list.

At runtime, the link will be maintained in your generated report.

Table of Contents
XML Publisher supports the table of contents generation feature of the RTF
specification. Follow your word processing application's procedures for inserting a
table of contents.

XML Publisher also provides the ability to create dynamic section headings in your
document from the XML data. You can then incorporate these into a table of contents.

To create dynamic headings:

1. Enter a placeholder for the heading in the body of the document, and format it as a
"Heading", using your word processing application's style feature. You cannot use
form fields for this functionality.

For example, you want your report to display a heading for each company
reported. The XML data element tag name is <COMPANY_NAME>. In your
template, enter <?COMPANY_NAME?> where you want the heading to appear. Now
format the text as a Heading.

2. Create a table of contents using your word processing application's table of contents
feature.

At runtime the TOC placeholders and heading text will be substituted.

Generating Bookmarks in PDF Output
If you have defined a table of contents in your RTF template, you can use your table of
contents definition to generate links in the Bookmarks tab in the navigation pane of
your output PDF. The bookmarks can be either static or dynamically generated.

For information on creating the table of contents, see Table of Contents, page 2-57.

• To create links for a static table of contents:

Enter the syntax:

<?copy-to-bookmark:?>

directly above your table of contents and

2-58 Oracle XML Publisher Core Components Guide

<?end copy-to-bookmark:?>

directly below the table of contents.

• To create links for a dynamic table of contents:

Enter the syntax:

<?convert-to-bookmark:?>

directly above the table of contents and

<?end convert-to-bookmark:?>

directly below the table of contents.

Check Boxes
You can include a check box in your template that you can define to display as checked
or unchecked based on a value from the incoming data.

To define a check box in your template:

1. Position the cursor in your template where you want the check box to display, and
select the Check Box Form Field from the Forms tool bar (shown in the following
figure).

2. Right-click the field to open the Check Box Form Field Options dialog.

3. Specify the Default value as either Checked or Not Checked.

4. In the Form Field Help Text dialog, enter the criteria for how the box should
behave. This must be a boolean expression (that is, one that returns a true or false
result).

For example, suppose your XML data contains an element called <population>. You
want the check box to appear checked if the value of <population> is greater than
10,000. Enter the following in the help text field:
<?population>10000?>

This is displayed in the following figure:

Creating an RTF Template 2-59

Note that you do not have to construct an "if" statement. The expression is treated
as an "if" statement.

See the next section for a sample template using a check box.

Drop Down Lists
XML Publisher allows you to use the drop-down form field to create a cross-reference
in your template from your XML data to some other value that you define in the
drop-down form field.

For example, suppose you have the following XML:

2-60 Oracle XML Publisher Core Components Guide

<countries>
 <country>
 <name>Chad</name>
 <population>7360000</population>
 <continentIndex>5</continentIndex>
 </country>
 <country>
 <name>China</name>
 <population>1265530000</population>
 <continentIndex>1</continentIndex>
 </country>
 <country>
 <name>Chile</name>
 <population>14677000</population>
 <continentIndex>3</continentIndex>
 </country>
. . .
</countries>

Notice that each <country> entry has a <continentindex> entry, which is a
numeric value to represent the continent. Using the drop-down form field, you can
create an index in your template that will cross-reference the <continentindex>
value to the actual continent name. You can then display the name in your published
report.

To create the index for the continent example:

1. Position the cursor in your template where you want the value from the drop-down
list to display, and select the Drop-Down Form Field from the Forms tool bar
(shown in the following figure).

2. Right-click the field to display the Drop-Down Form Field Options dialog.

3. Add each value to the Drop-down item field and the click Add to add it to the
Items in drop-down list group. The values will be indexed starting from one for the
first, and so on. For example, the list of continents will be stored as follows:

Index Value

1 Asia

2 North America

Creating an RTF Template 2-61

Index Value

3 South America

4 Europe

5 Africa

6 Australia

4. Now use the Help Text box to enter the XML element name that will hold the index
for the drop-down field values.

For this example, enter
<?continentIndex?>

The following figure shows the Drop-Down Form Field Options dialogs for this
example:

Using the check box and drop-down list features, you can create a report to display
population data with check boxes to demonstrate figures that reach a certain limit. An
example is shown in the following figure:

2-62 Oracle XML Publisher Core Components Guide

The template to create this report is shown in the next figure:

where the fields have the following values:

Field Form Field Entry Description

FE <?for-each:country?> Begins the country repeating group.

China <?name?> Placeholder for the name element.

1,000,000 <?population?> Placeholder for the population element.

(check box) <?population>1000000?> Establishes the condition for the check box. If the
value for the population element is greater than
1,000,000, the check box will display as checked.

Asia <?contintentIndex?> The drop-down form field for the
continentIndex element. See the preceding
description for its contents. At runtime, the value of
the XML element is replaced with the value it is
cross-referenced to in the drop-down form field.

EFE <?end for-each?> Ends the country group.

Conditional Formatting
Conditional formatting occurs when a formatting element appears only when a certain
condition is met. XML Publisher supports the usage of simple "if" statements, as well as
more complex "choose" expressions.

The conditional formatting that you specify can be XSL or XSL:FO code, or you can
specify actual RTF objects such as a table or data. For example, you can specify that if
reported numbers reach a certain threshold, they will display shaded in red. Or, you

Creating an RTF Template 2-63

can use this feature to hide table columns or rows depending on the incoming XML
data.

If Statements
Use an if statement to define a simple condition; for example, if a data field is a specific
value.

1. Insert the following syntax to designate the beginning of the conditional area.

<?if:condition?>

2. Insert the following syntax at the end of the conditional area: <?end if?>.

For example, to set up the Payables Invoice Register to display invoices only when the
Supplier name is "Company A", insert the syntax <?if:VENDOR_NAME='COMPANY
A'?> before the Supplier field on the template.

Enter the <?end if?> tag after the invoices table.

This example is displayed in the figure below. Note that you can insert the syntax in
form fields, or directly into the template.

If Statements in Boilerplate Text
Assume you want to incorporate an "if" statement into the following free-form text:

The program was (not) successful.

You only want the "not" to display if the value of an XML tag called <SUCCESS> equals
"N".

To achieve this requirement, you must use the XML Publisher context command to

2-64 Oracle XML Publisher Core Components Guide

place the if statement into the inline sequence rather than into the block (the default
placement).

Note: For more information on context commands, see Using Context
Commands, page 2-123.

For example, if you construct the code as follows:
The program was <?if:SUCCESS='N'?>not<?end if?> successful.

The following undesirable result will occur:
The program was
not
successful.

because XML Publisher applies the instructions to the block by default. To specify that
the if statement should be inserted into the inline sequence, enter the following:
The program was <?if@inlines:SUCCESS='N'?>not<?end if?>
successful.

This construction will result in the following display:
The program was successful.

If SUCCESS does not equal 'N';

or
The program was not successful.

If SUCCESS equals 'N'.

If-then-Else Statements
XML Publisher supports the common programming construct "if-then-else". This is
extremely useful when you need to test a condition and conditionally show a result. For
example:
IF X=0 THEN
 Y=2
ELSE
 Y=3
END IF

You can also nest these statements as follows:
IF X=0 THEN
 Y=2
ELSE
 IF X=1 THEN
 Y=10
 ELSE Y=100
END IF

Use the following syntax to construct an if-then-else statement in your RTF template:
<?xdofx:if element_condition then result1 else result2 end if?>

Creating an RTF Template 2-65

For example, the following statement tests the AMOUNT element value. If the value is
greater than 1000, show the word "Higher"; if it is less than 1000, show the word
"Lower"; if it is equal to 1000, show "Equal":
<?xdofx:if AMOUNT > 1000 then 'Higher'
 else
 if AMOUNT < 1000 then 'Lower'
 else
 'Equal'
end if?>

Choose Statements
Use the choose, when, and otherwise elements to express multiple conditional tests.
If certain conditions are met in the incoming XML data then specific sections of the
template will be rendered. This is a very powerful feature of the RTF template. In
regular XSL programming, if a condition is met in the choose command then further
XSL code is executed. In the template, however, you can actually use visual widgets in
the conditional flow (in the following example, a table).

Use the following syntax for these elements:

<?choose:?>

<?when:expression?>

<?otherwise?>

"Choose" Conditional Formatting Example
This example shows a choose expression in which the display of a row of data
depends on the value of the fields EXEMPT_FLAG and POSTED_FLAG. When the
EXEMPT_FLAG equals "^", the row of data will render light gray. When
POSTED_FLAG equals "*" the row of data will render shaded dark gray. Otherwise, the
row of data will render with no shading.

In the following figure, the form field default text is displayed. The form field help text
entries are shown in the table following the example.

2-66 Oracle XML Publisher Core Components Guide

Default Text Entry in Example Form Field Help Text Entry in Form Field

<Grp:VAT <?for-each:VAT?>

<Choose <?choose?>

<When EXEMPT_FLAG='^' <?When EXEMPT_FLAG='^'?>

End When> <?end When?>

<When EXEMPT_FLAG='^' <?When EXEMPT_FLAG='^'?>

End When> <?end When?>

Column Formatting
You can conditionally show and hide columns of data in your document output. The
following example demonstrates how to set up a table so that a column is only
displayed based on the value of an element attribute.

This example will show a report of a price list, represented by the following XML:

Creating an RTF Template 2-67

<items type="PUBLIC"> <! - can be marked 'PRIVATE' - >
 <item>
 <name>Plasma TV</name>
 <quantity>10</quantity>
 <price>4000</price>
 </item>
 <item>
 <name>DVD Player</name>
 <quantity>3</quantity>
 <price>300</price>
 </item>
 <item>
 <name>VCR</name>
 <quantity>20</quantity>
 <price>200</price>
 </item>
 <item>
 <name>Receiver</name>
 <quantity>22</quantity>
 <price>350</price>
 </item>
</items>

Notice the type attribute associated with the items element. In this XML it is marked
as "PUBLIC" meaning the list is a public list rather than a "PRIVATE" list. For the
"public" version of the list we do not want to show the quantity column in the output,
but we want to develop only one template for both versions based on the list type.

The following figure is a simple template that will conditionally show or hide the
quantity column:

The following table shows the entries made in the template for the example:

Default Text Form Field Entry Description

grp:Item <?for-each:item?> Holds the opening for-each loop for
the item element.

Plasma TV <?name?> The placeholder for the name
element from the XML file.

2-68 Oracle XML Publisher Core Components Guide

Default Text Form Field Entry Description

IF <?if@column:/items/@type="P
RIVATE"?>

The opening of the if statement to
test for the attribute value
"PRIVATE". Note that this syntax
uses an XPath expression to
navigate back to the "items" level of
the XML to test the attribute. For
more information about using XPath
in your templates, see XPath
Overview, page 2-119.

Quantity N/A Boilerplate heading

end-if <?end if?> Ends the if statement.

20 <?if@column:/items/@type="P
RIVATE"?><?quantity?><?end
if?>

The placeholder for the quantity
element surrounded by the "if"
statement.

1,000.00 <?price?> The placeholder for the price
element.

end grp <?end for-each?> Closing tag of the for-each loop.

The conditional column syntax is the "if" statement syntax with the addition of the
@column clause. It is the @column clause that instructs XML Publisher to hide or show
the column based on the outcome of the if statement.

If you did not include the @column the data would not display in your report as a
result of the if statement, but the column still would because you had drawn it in your
template.

Note: The @column clause is an example of a context command. For
more information, see Using Context Commands, page 2-123.

The example will render the output shown in the following figure:

Creating an RTF Template 2-69

If the same XML data contained the type attribute set to "PRIVATE" the following
output would be rendered from the same template:

Row Formatting
XML Publisher allows you to specify formatting conditions as the row-level of a table.
Examples of row-level formatting are:

• Highlighting a row when the data meets a certain threshold.

• Alternating background colors of rows to ease readability of reports.

• Showing only rows that meet a specific condition.

Conditionally Displaying a Row
To display only rows that meet a certain condition, insert the <?if:condition?> <?end if?>
tags at the beginning and end of the row, within the for-each tags for the group. This is
demonstrated in the following sample template.

Note the following fields from the sample figure:

Default Text Entry Form Field Help Text Description

for-each SALE <?for-each:SALE?> Opens the for-each loop to repeat
the data belonging to the SALE
group.

if big <?if:SALES>5000?> If statement to display the row only
if the element SALES has a value
greater than 5000.

INDUSTRY <?INDUSTRY?> Data field

YEAR <?YEAR?> Data field

2-70 Oracle XML Publisher Core Components Guide

Default Text Entry Form Field Help Text Description

MONTH <?MONTH?> Data field

SALES end if <?end if?> Closes the if statement.

end SALE <?end for-each?> Closes the SALE loop.

Conditionally Highlighting a Row
This example demonstrates how to set a background color on every other row. The
template to create this effect is shown in the following figure:

The following table shows values of the form fields in the template:

Default Text Entry Form Field Help Text Description

for-each SALE <?for-each:SALE?> Defines the opening of the for-each loop
for the SALE group.

format; <?if@row:position() mod 2=0?>
<xsl:attribute
name="background-color"
xdofo:ctx="incontext">lightgray</xsl:att
ribute><?end if?>

For each alternate row, the background
color attribute is set to gray for the row.

INDUSTRY <?INDUSTRY?> Data field

YEAR <?YEAR?> Data field

MONTH <?MONTH?> Data field

SALES <?SALES?> Data field

end SALE <?end for-each?> Closes the SALE for-each loop.

In the preceding example, note the "format;" field. It contains an if statement with a
"row" context (@row). This sets the context of the if statement to apply to the current
row. If the condition is true, then the <xsl:attribute> for the background color of the row
will be set to light gray. This will result in the following output:

Creating an RTF Template 2-71

Note: For more information about context commands, see Using
Context Commands, page 2-123.

Cell Highlighting
The following example demonstrates how to conditionally highlight a cell based on a
value in the XML file.

For this example we will use the following XML:
<accounts>
 <account>
 <number>1-100-3333</number>
 <debit>100</debit>
 <credit>300</credit>
 </account>
 <account>
 <number>1-101-3533</number>
 <debit>220</debit>
 <credit>30</credit>
 </account>
 <account>
 <number>1-130-3343</number>
 <debit>240</debit>
 <credit>1100</credit>
 </account>
 <account>
 <number>1-153-3033</number>
 <debit>3000</debit>
 <credit>300</credit>
 </account>
</accounts>

The template lists the accounts and their credit and debit values. In the final report we
want to highlight in red any cell whose value is greater than 1000. The template for this
is shown in the following figure:

The field definitions for the template are shown in the following table:

2-72 Oracle XML Publisher Core Components Guide

Default Text Entry Form Field Entry Description

FE:Account <?for-each:account?> Opens the for each-loop for the
element account.

1-232-4444 <?number?> The placeholder for the number
element from the XML file.

CH1 <?if:debit>1000?><xsl:attri
bute xdofo:ctx="block"
name="background-color">red
</xsl:attribute><?end if?>

This field holds the code to highlight
the cell red if the debit amount is
greater than 1000.

100.00 <?debit?> The placeholder for the debit
element.

CH2 <?if:credit>1000?><xsl:attr
ibute xdofo:ctx="block"
name="background-color">red
</xsl:attribute><?end if?>

This field holds the code to highlight
the cell red if the credit amount is
greater than 1000.

100.00 <?credit?> The placeholder for the credit
element.

EFE <?end for-each?> Closes the for-each loop.

The code to highlight the debit column as shown in the table is:
<?if:debit>1000?>
 <xsl:attribute
 xdofo:ctx="block" name="background-color">red
 </xsl:attribute>
<?end if?>

The "if" statement is testing if the debit value is greater than 1000. If it is, then the next
lines are invoked. Notice that the example embeds native XSL code inside the "if"
statement.

The "attribute" element allows you to modify properties in the XSL.

The xdofo:ctx component is an XML Publisher feature that allows you to adjust XSL
attributes at any level in the template. In this case, the background color attribute is
changed to red.

To change the color attribute, you can use either the standard HTML names (for
example, red, white, green) or you can use the hexadecimal color definition (for
example, #FFFFF).

The output from this template is displayed in the following figure:

Creating an RTF Template 2-73

Page-Level Calculations

Displaying Page Totals
XML Publisher allows you to display calculated page totals in your report. Because the
page is not created until publishing time, the totaling function must be executed by the
formatting engine.

Note: Page totaling is performed in the PDF-formatting layer. Therefore
this feature is not available for other outputs types: HTML, RTF, Excel.

Note: Note that this page totaling function will only work if your
source XML has raw numeric values. The numbers must not be
preformatted.

Because the page total field does not exist in the XML input data, you must define a
variable to hold the value. When you define the variable, you associate it with the
element from the XML file that is to be totaled for the page. Once you define total fields,
you can also perform additional functions on the data in those fields.

To declare the variable that is to hold your page total, insert the following syntax
immediately following the placeholder for the element that is to be totaled:
<?add-page-total:TotalFieldName;'element'?>

where

TotalFieldName is the name you assign to your total (to reference later) and

'element' is the XML element field to be totaled.

You can add this syntax to as many fields as you want to total.

Then when you want to display the total field, enter the following syntax:
<?show-page-total:TotalFieldName;'Oracle-number-format'?>

where

TotalFieldName is the name you assigned to give the page total field above and

Oracle-number-format is the format you wish to use to for the display, using the
Oracle format mask (for example: C9G999D00). For the list of Oracle format mask

2-74 Oracle XML Publisher Core Components Guide

symbols, see Using the Oracle Format Mask, page 2-111.

The following example shows how to set up page total fields in a template to display
total credits and debits that have displayed on the page, and then calculate the net of
the two fields.

This example uses the following XML:
<balance_sheet>
 <transaction>
 <debit>100</debit>
 <credit>90</credit>
 </transaction>
 <transaction>
 <debit>110</debit>
 <credit>80</credit>
 </transaction>
…
<\balance_sheet>

The following figure shows the table to insert in the template to hold the values:

The following table shows the form field entries made in the template for the example
table:

Default Text Entry Form Field Help Text Entry Description

FE <?for-each:transaction?> This field defines the opening
"for-each" loop for the transaction
group.

100.00 <?debit?><?add-page-total:dt;'debit
'?>

This field is the placeholder for the
debit element from the XML file.
Because we want to total this field by
page, the page total declaration syntax
is added. The field defined to hold the
total for the debit element is dt.

90.00 <?credit?>
<?add-page-total:ct;'credit'?>

This field is the placeholder for the
credit element from the XML file.
Because we want to total this field by
page, the page total declaration syntax
is added. The field defined to hold the
total for the credit element is ct.

Creating an RTF Template 2-75

Default Text Entry Form Field Help Text Entry Description

Net <add-page-total:net;'debit -
credit'?>

Creates a net page total by subtracting
the credit values from the debit values.

EFE <?end for-each?> Closes the for-each loop.

Note that on the field defined as "net" we are actually carrying out a calculation on the
values of the credit and debit elements.

Now that you have declared the page total fields, you can insert a field in your template
where you want the page totals to appear. Reference the calculated fields using the
names you supplied (in the example, ct and dt). The syntax to display the page totals
is as follows:

For example, to display the debit page total, enter the following:

<?show-page-total:dt;'C9G990D00';'(C9G990D00)'?>

Therefore to complete the example, place the following at the bottom of the template
page, or in the footer:

Page Total Debit: <?show-page-total:dt;'C9G990D00';'(C9G990D00)'?>

Page Total Credit: <?show-page-total:ct;'C9G990D00';'(C9G990D00)'?>

Page Total Balance: <?show-page-total:net;'C9G990D00';'(C9G990D00)'?>

The output for this report is shown in the following graphic:

Brought Forward/Carried Forward Totals
Many reports require that a page total be maintained throughout the report output and
be displayed at the beginning and end of each page. These totals are known as "brought

2-76 Oracle XML Publisher Core Components Guide

forward/carried forward" totals.

Note: The totaling for the brought forward and carried forward fields is
performed in the PDF-formatting layer. Therefore this feature is not
available for other outputs types: HTML, RTF, Excel.

An example is displayed in the following figure:

At the end of the first page, the page total for the Amount element is displayed as the
Carried Forward total. At the top of the second page, this value is displayed as the
Brought Forward total from the previous page. At the bottom of the second page, the
brought forward value plus the total for that page is calculated and displayed as the
new Carried Forward value, and this continues throughout the report.

This functionality is an extension of the Page Totals, page 2-73 feature. The following
example walks through the syntax and setup required to display the brought forward
and carried forward totals in your published report.

Assume you have the following XML:
<?xml version="1.0" encoding="WINDOWS-1252"?>
<INVOICES>
 <INVOICE>
 <INVNUM>10001-1</INVNUM>
 <INVDATE>1-Jan-2005</INVDATE>
 <INVAMT>100</INVOICEAMT>
 </INVOICE>
 <INVOICE>
 <INVNUM>10001-2</INVNUM>
 <INVDATE>10-Jan-2005</INVDATE>
 <INVAMT>200</INVOICEAMT>
 </INVOICE>
 <INVOICE>
 <INVNUM>10001-1</INVNUM>
 <INVDATE>11-Jan-2005</INVDATE>
 <INVAMT>150</INVOICEAMT>
 </INVOICE>
. . .
</INVOICES>

The following sample template creates the invoice table and declares a placeholder that
will hold your page total:

Creating an RTF Template 2-77

The fields in the template have the following values:

Field Form Field Help Text Entry Description

Init PTs <?init-page-total: InvAmt?> Declares "InvAmt" as the placeholder that
will hold the page total.

FE <?for-each:INVOICE?> Begins the INVOICE group.

10001-1 <?INVNUM?> Placeholder for the Invoice Number tag.

1-Jan-2005 <?INVDATE?> Placeholder for the Invoice Date tag.

100.00 <?INVAMT?> Placeholder for the Invoice Amount tag.

InvAmt <?add-page-total:InvAmt;INVAMT?> Assigns the "InvAmt" page total object to
the INVAMT element in the data.

EFE <?end for-each?> Closes the INVOICE group.

End PTs <?end-page-total:InvAmt?> Closes the "InvAmt" page total.

To display the brought forward total at the top of each page (except the first), use the
following syntax:
<xdofo:inline-total
 display-condition="exceptfirst"
 name="InvAmt">
 Brought Forward:
<xdofo:show-brought-forward
 name="InvAmt"
 format="99G999G999D00"/>
</xdofo:inline-total>

The following table describes the elements comprising the brought forward syntax:

2-78 Oracle XML Publisher Core Components Guide

Code Element Description and Usage

inline-total This element has two properties:

• name - name of the variable you declared for the field.

• display-condition - sets the display condition. This is an
optional property that takes one of the following values:

• first - the contents appear only on the first page

• last - the contents appear only on the last page

• exceptfirst - contents appear on all pages except first

• exceptlast - contents appear on all pages except last

• everytime - (default) contents appear on every page

In this example, display-condition is set to "exceptfirst" to
prevent the value from appearing on the first page where the
value would be zero.

Brought Forward: This string is optional and will display as the field name on the
report.

show-brought-forward Shows the value on the page. It has the following two properties:

• name - the name of the field to show. In this case, "InvAmt".
This property is mandatory.

• format - the Oracle number format to apply to the value at
runtime. This property is optional, but if you want to supply a
format mask, you must use the Oracle format mask. For more
information, see Using the Oracle Format Mask, page 2-111 .

Insert the brought forward object at the top of the template where you want the brought
forward total to display. If you place it in the body of the template, you can insert the
syntax in a form field.

If you want the brought forward total to display in the header, you must insert the full
code string into the header because Microsoft Word does not support form fields in the
header or footer regions. However, you can alternatively use the start body/end body
syntax which allows you to define what the body area of the report will be. XML
Publisher will recognize any content above the defined body area as header content,
and any content below as the footer. This allows you to use form fields. See Multiple or

Creating an RTF Template 2-79

Complex Headers and Footers, page 2-16 for details.

Place the carried forward object at the bottom of your template where you want the
total to display. The carried forward object for our example is as follows:
<xdofo:inline-total
 display-condition="exceptlast"
 name="InvAmt">
 Carried Forward:
<xdofo:show-carry-forward
 name="InvAmt"
 format="99G999G999D00"/>
</xdofo:inline-total>

Note the following differences with the brought-forward object:

• The display-condition is set to exceptlast so that the carried forward total
will display on every page except the last page.

• The display string is "Carried Forward".

• The show-carry-forward element is used to show the carried forward value. It
has the same properties as brought-carried-forward, described above.

You are not limited to a single value in your template, you can create multiple brought
forward/carried forward objects in your template pointing to various numeric elements
in your data.

Running Totals
Example
The variable functionality (see Using Variables, page 2-88) can be used to add a
running total to your invoice listing report. This example assumes the following XML
structure:
<?xml version="1.0" encoding="WINDOWS-1252"?>
<INVOICES>
 <INVOICE>
 <INVNUM>10001-1</INVNUM>
 <INVDATE>1-Jan-2005</INVDATE>
 <INVAMT>100</INVOICEAMT>
 </INVOICE>
 <INVOICE>
 <INVNUM>10001-2</INVNUM>
 <INVDATE>10-Jan-2005</INVDATE>
 <INVAMT>200</INVOICEAMT>
 </INVOICE>
 <INVOICE>
 <INVNUM>10001-1</INVNUM>
 <INVDATE>11-Jan-2005</INVDATE>
 <INVAMT>150</INVOICEAMT>
 </INVOICE>
</INVOICES>

Using this XML, we want to create the report that contains running totals as shown in
the following figure:

2-80 Oracle XML Publisher Core Components Guide

To create the Running Total field, define a variable to track the total and initialize it to 0.
The template is shown in the following figure:

The values for the form fields in the template are shown in the following table:

Form Field Syntax Description

RtotalVar <?xdoxslt:set_variable($_XDO
CTX, 'RTotalVar', 0)?>

Declares the "RTotalVar"
variable and initializes it to 0.

FE <?for-each:INVOICE?> Starts the Invoice group.

10001-1 <?INVNUM?> Invoice Number tag

1-Jan-2005 <?INVDATE?> Invoice Date tag

100.00 <?xdoxslt:set_variable($_XDO
CTX, 'RTotalVar',
xdoxslt:get_variable($_XDOC
TX, 'RTotalVar') +
INVAMT)?>

xdoxslt:get_variable($_XDOC
TX, 'RTotalVar')?>

Sets the value of RTotalVar to
the current value plus the
new Invoice Amount.

Retrieves the RTotalVar value
for display.

EFE <?end for-each?> Ends the INVOICE group.

Creating an RTF Template 2-81

Data Handling

Sorting
You can sort a group by any element within the group. Insert the following syntax
within the group tags:

<?sort:element name?>

For example, to sort the Payables Invoice Register (shown at the beginning of this
chapter) by Supplier (VENDOR_NAME), enter the following after the
<?for-each:G_VENDOR_NAME?> tag:

<?sort:VENDOR_NAME?>

To sort a group by multiple fields, just insert the sort syntax after the primary sort field.
To sort by Supplier and then by Invoice Number, enter the following

<?sort:VENDOR_NAME?> <?sort:INVOICE_NUM?>

Checking for Nulls
Within your XML data there are three possible scenarios for the value of an element:

• The element is present in the XML data, and it has a value

• The element is present in the XML data, but it does not have a value

• The element is not present in the XML data, and therefore there is no value

In your report layout, you may want to specify a different behavior depending on the
presence of the element and its value. The following examples show how to check for
each of these conditions using an "if" statement. The syntax can also be used in other
conditional formatting constructs.

• To define behavior when the element is present and the value is not null, use the
following:

<?if:element_name!=?>desired behavior <?end if?>

• To define behavior when the element is present, but is null, use the following:

<?if:element_name and element_name="?>desired behavior <?end
if?>

• To define behavior when the element is not present, use the following:

<?if:not(element_name)?>desired behavior <?end if?>

2-82 Oracle XML Publisher Core Components Guide

Regrouping the XML Data
The RTF template supports the XSL 2.0 for-each-group standard that allows you to
regroup XML data into hierarchies that are not present in the original data. With this
feature, your template does not have to follow the hierarchy of the source XML file. You
are therefore no longer limited by the structure of your data source.

XML Sample
To demonstrate the for-each-group standard, the following XML data sample of a CD
catalog listing will be regrouped in a template:
<CATALOG>
 <CD>
 <TITLE>Empire Burlesque</TITLE>
 <ARTIST>Bob Dylan</ARTIST>
 <COUNTRY>USA</COUNTRY>
 <COMPANY>Columbia</COMPANY>
 <PRICE>10.90</PRICE>
 <YEAR>1985</YEAR>
 </CD>
 <CD>
 <TITLE>Hide Your Heart</TITLE>
 <ARTIST>Bonnie Tylor</ARTIST>
 <COUNTRY>UK</COUNTRY>
 <COMPANY>CBS Records</COMPANY>
 <PRICE>9.90</PRICE>
 <YEAR>1988</YEAR>
 </CD>
 <CD>
 <TITLE>Still got the blues</TITLE>
 <ARTIST>Gary More</ARTIST>
 <COUNTRY>UK</COUNTRY>
 <COMPANY>Virgin Records</COMPANY>
 <PRICE>10.20</PRICE>
 <YEAR>1990</YEAR>
 </CD>
 <CD>
 <TITLE>This is US</TITLE>
 <ARTIST>Gary Lee</ARTIST>
 <COUNTRY>UK</COUNTRY>
 <COMPANY>Virgin Records</COMPANY>
 <PRICE>12.20</PRICE>
 <YEAR>1990</YEAR>
 </CD>

Using the regrouping syntax, you can create a report of this data that groups the CDs by
country and then by year. You are not limited by the data structure presented.

Regrouping Syntax
To regroup the data, use the following syntax:
<?for-each-group: BASE-GROUP;GROUPING-ELEMENT?>

For example, to regroup the CD listing by COUNTRY, enter the following in your
template:

Creating an RTF Template 2-83

<?for-each-group:CD;COUNTRY?>

The elements that were at the same hierarchy level as COUNTRY are now children of
COUNTRY. You can then refer to the elements of the group to display the values
desired.

To establish nested groupings within the already defined group, use the following
syntax:
<?for-each:current-group(); GROUPING-ELEMENT?>

For example, after declaring the CD grouping by COUNTRY, you can then further
group by YEAR within COUNTRY as follows:
<?for-each:current-group();YEAR?>

At runtime, XML Publisher will loop through the occurrences of the new groupings,
displaying the fields that you defined in your template.

Note: This syntax is a simplification of the XSL for-each-group syntax.
If you choose not to use the simplified syntax above, you can use the
XSL syntax as shown below. The XSL syntax can only be used within a
form field of the template.
<xsl:for-each-group
 select=expression
 group-by="string expression"
 group-adjacent="string expression"
 group-starting-with=pattern>
 <!--Content: (xsl:sort*, content-constructor) -->
</xsl:for-each-group>

Template Example
The following figure shows a template that displays the CDs by Country, then Year,
and lists the details for each CD:

The following table shows the XML Publisher syntax entries made in the form fields of
the preceding template:

2-84 Oracle XML Publisher Core Components Guide

Default Text Entry Form Field Help Text Entry Description

Group by Country <?for-each-group:CD;CO
UNTRY?>

The
<?for-each-group:CD;CO
UNTRY?> tag declares the
new group. It regroups the
existing CD group by the
COUNTRY element.

USA <?COUNTRY?> Placeholder to display the
data value of the COUNTRY
tag.

Group by Year <?for-each-group:curre
nt-group();YEAR?>

The
<?for-each-group:curre
nt-group();YEAR?> tag
regroups the current group
(that is, COUNTRY), by the
YEAR element.

2000 <?YEAR?> Placeholder to display the
data value of the YEAR tag.

Group: Details <?for-each:current-gro
up()?>

Once the data is grouped by
COUNTRY and then by
YEAR, the
<?for-each:current-gro
up()?>command is used to
loop through the elements of
the current group (that is,
YEAR) and render the data
values (TITLE, ARTIST, and
PRICE) in the table.

My CD <?TITLE?> Placeholder to display the
data value of the TITLE tag.

John Doe <?ARTIST?> Placeholder to display the
data value of the ARTIST tag.

1.00 <?PRICE?> Placeholder to display the
data value of the PRICE tag.

End Group <?end for-each?> Closes out the
<?for-each:current-gro
up()?> tag.

Creating an RTF Template 2-85

Default Text Entry Form Field Help Text Entry Description

End Group by Year <?end for-each-group?> Closes out the
<?for-each-group:curre
nt-group();YEAR?> tag.

End Group by Country <?end for-each-group?> Closes out the

<?for-each-group:CD;CO
UNTRY?> tag.

This template produces the following output when merged with the XML file:

Regrouping by an Expression
Regrouping by an expression allows you to apply a function or command to a data
element, and then group the data by the returned result.

To use this feature, state the expression within the regrouping syntax as follows:
<?for-each:BASE-GROUP;GROUPING-EXPRESSION?>

Example
To demonstrate this feature, an XML data sample that simply contains average

2-86 Oracle XML Publisher Core Components Guide

temperatures per month will be used as input to a template that calculates the number
of months having an average temperature within a certain range.

The following XML sample is composed of <temp> groups. Each <temp> group
contains a <month> element and a <degree> element, which contains the average
temperature for that month:
<temps>
 <temp>
 <month>Jan</month>
 <degree>11</degree>
 </temp>
 <temp>
 <month>Feb</month>
 <degree>14</degree>
 </temp>
 <temp>
 <month>Mar</month>
 <degree>16</degree>
 </temp>
 <temp>
 <month>Apr</month>
 <degree>20</degree>
 </temp>
 <temp>
 <month>May</month>
 <degree>31</degree>
 </temp>
 <temp>
 <month>Jun</month>
 <degree>34</degree>
 </temp>
 <temp>
 <month>Jul</month>
 <degree>39</degree>
 </temp>
 <temp>
 <month>Aug</month>
 <degree>38</degree>
 </temp>
 <temp>
 <month>Sep</month>
 <degree>24</degree>
 </temp>
 <temp>
 <month>Oct</month>
 <degree>28</degree>
 </temp>
 <temp>
 <month>Nov</month>
 <degree>18</degree>
 </temp>
 <temp>
 <month>Dec</month>
 <degree>8</degree>
 </temp>
</temps>

You want to display this data in a format showing temperature ranges and a count of
the months that have an average temperature to satisfy those ranges, as follows:

Creating an RTF Template 2-87

Using the for-each-group command you can apply an expression to the <degree>
element that will enable you to group the temperatures by increments of 10 degrees.
You can then display a count of the members of each grouping, which will be the
number of months having an average temperature that falls within each range.

The template to create the above report is shown in the following figure:

The following table shows the form field entries made in the template:

Default Text Entry Form Field Help Text Entry

Group by TmpRng <?for-each-group:temp;floor(degree div 10?>

<?sort:floor(degree div 10)?>

Range <?concat(floor(degree div 10)*10,' F to ',floor(degree
div 10)*10+10, F')?>

Months <?count(current-group())?>

End TmpRng <?end for-each-group?>

Note the following about the form field tags:

• The <?for-each-group:temp;floor(degree div 10)?> is the regrouping
tag. It specifies that for the existing <temp> group, the elements are to be
regrouped by the expression, floor(degree div 10). The floor function is an
XSL function that returns the highest integer that is not greater than the argument

2-88 Oracle XML Publisher Core Components Guide

(for example, 1.2 returns 1, 0.8 returns 0).

In this case, it returns the value of the <degree> element, which is then divided by
10. This will generate the following values from the XML data: 1, 1, 1, 2, 3, 3, 3, 3, 2,
2, 1, and 0.

These are sorted, so that when processed, the following four groups will be created:
0, 1, 2, and 3.

• The <?concat(floor(degree div 10)*10,'F to ', floor(degree div
10)*10+10,'F'?> displays the temperature ranges in the row header in
increments of 10. The expression concatenates the value of the current group times
10 with the value of the current group times 10 plus 10.

Therefore, for the first group, 0, the row heading displays 0 to (0 +10), or "0 F to 10
F".

• The <?count(current-group())?> uses the count function to count the
members of the current group (the number of temperatures that satisfy the range).

• The <?end for-each-group?> tag closes out the grouping.

Using Variables
Updateable variables differ from standard XSL variables <xsl:variable> in that they are
updateable during the template application to the XML data. This allows you to create
many new features in your templates that require updateable variables.

The variables use a "set and get" approach for assigning, updating, and retrieving
values.

Use the following syntax to declare/set a variable value:
<?xdoxslt:set_variable($_XDOCTX, 'variable name', value)?>

Use the following syntax to retrieve a variable value:
<?xdoxslt:get_variable($_XDOCTX, 'variable name')?>

You can use this method to perform calculations. For example:
<?xdoxslt:set_variable($_XDOCTX, 'x', xdoxslt:get_variable($_XDOCTX,
'x') + 1)?>

This sets the value of variable 'x' to its original value plus 1, much like using "x = x +
1".

The $_XDOCTX specifies the global document context for the variables. In a
multi-threaded environment there may be many transformations occurring at the same
time, therefore the variable must be assigned to a single transformation.

See the section on Running Totals, page 2-79 for an example of the usage of updateable
variables.

Creating an RTF Template 2-89

Defining Parameters
You can pass runtime parameter values into your template. These can then be
referenced throughout the template to support many functions. For example, you can
filter data in the template, use a value in a conditional formatting block, or pass
property values (such as security settings) into the final document.

Using a parameter in a template
1. Declare the parameter in the template.

Use the following syntax to declare the parameter:
<?param@begin:parameter_name;parameter_value?>

where

parameter_name is the name of the parameter

parameter_value is the default value for the parameter (the parameter_value is
optional)

param@begin: is a required string to push the parameter declaration to the top of
the template at runtime so that it can be referred to globally in the template.

The syntax must be declared in the Help Text field of a form field. The form field
can be placed anywhere in the template.

2. Refer to the parameter in the template by prefixing the name with a "$" character.
For example, if you declare the parameter name to be "InvThresh", then reference
the value using "$InvThresh".

3. At runtime, pass the parameter to the XML Publisher engine programmatically.

Prior to calling the FOProcessor API create a Properties class and assign a property
to it for the parameter value as follows:
Properties prop = new Properties();
prop.put("xslt.InvThresh", "1000");

Example: Passing an invoice threshold parameter
This example illustrates how to declare a parameter in your template that will filter
your data based on the value of the parameter.

The following XML sample lists invoice data:

2-90 Oracle XML Publisher Core Components Guide

<INVOICES>
 <INVOICE>
 <INVOICE_NUM>981110</INVOICE_NUM>
 <AMOUNT>1100</AMOUNT>
 </INVOICE>
 <INVOICE>
 <INVOICE_NUM>981111</INVOICE_NUM>
 <AMOUNT>250</AMOUNT>
 </INVOICE>
 <INVOICE>
 <INVOICE_NUM>981112</INVOICE_NUM>
 <AMOUNT>8343</AMOUNT>
 </INVOICE>
. . .
</INVOICES>

The following figure displays a template that accepts a parameter value to limit the
invoices displayed in the final document based on the parameter value.

Field Form Field Help Text Entry Description

InvThreshDeclaration <?param@begin:InvThresh?> Declares the parameter InvThresh.

FE <?for-each:INVOICE?> Begins the repeating group for the INVOICE
element.

IF <?if:AMOUNT>$InvThresh?> Tests the value of the AMOUNT element to
determine if it is greater than the value of
InvThresh.

13222-2 <?INVOICE_NUM?> Placeholder for the INVOICE_NUM
element.

$100.00 <?AMOUNT?> Placeholder for the AMOUNT element.

EI <?end if?> Closing tag for the if statement.

EFE <?end for-each?> Closing tag for the for-each loop.

In this template, only INVOICE elements with an AMOUNT greater than the InvThresh

Creating an RTF Template 2-91

parameter value will be displayed. If we pass in a parameter value of 1,000, the
following output shown in the following figure will result:

Notice the second invoice does not display because its amount was less than the
parameter value.

Setting Properties
XML Publisher properties that are available in the XML Publisher Configuration file can
alternatively be embedded into the RTF template. The properties set in the template are
resolved at runtime by the XML Publisher engine. You can either hard code the values
in the template or embed the values in the incoming XML data. Embedding the
properties in the template avoids the use of the configuration file.

Note: See XML Publisher Configuration File, page 7-1 for more
information about the XML Publisher Configuration file and the
available properties.

For example, if you use a nonstandard font in your template, rather than specify the
font location in the configuration file, you can embed the font property inside the
template. If you need to secure the generated PDF output, you can use the XML
Publisher PDF security properties and obtain the password value from the incoming
XML data.

To add an XML Publisher property to a template, use the Microsoft Word Properties
dialog (available from the File menu), and enter the following information:

Name - enter the XML Publisher property name prefixed with "xdo-"

Type - select "Text"

Value - enter the property value. To reference an element from the incoming XML data,
enter the path to the XML element enclosed by curly braces. For example:
{/root/password}

The following figure shows the Properties dialog:

2-92 Oracle XML Publisher Core Components Guide

Embedding a Font Reference
For this example, suppose you want to use a font in the template called "XMLPScript".
This font is not available as a regular font on your server, therefore you must tell XML
Publisher where to find the font at runtime. You tell XML Publisher where to find the
font by setting the "font" property. Assume the font is located in "/tmp/fonts", then you
would enter the following in the Properties dialog:

Name: xdo-font.XMLPScript.normal.normal

Type: Text

Value: truetype./tmp/fonts/XMLPScript.ttf

When the template is applied to the XML data on the server, XML Publisher will look
for the font in the /tmp/fonts directory. Note that if the template is deployed in multiple
locations, you must ensure that the path is valid for each location.

For more information about setting font properties, see Font Definitions, page 7-14.

Securing a PDF Output
For this example, suppose you want to use a password from the XML data to secure the
PDF output document. The XML data is as follows:

Creating an RTF Template 2-93

<PO>
 <security>true</security>
 <password>welcome</password>
 <PO_DETAILS>
 ..
</PO>

In the Properties dialog set two properties: pdf-security to set the security feature as
enabled or not, and pdf-open-password to set the password. Enter the following in
the Properties dialog:

Name: xdo-pdf-security

Type: Text

Value: {/PO/security}

Name: xdo-pdf-open-password

Type: Text

Value: {/PO/password}

Storing the password in the XML data is not recommended if the XML will persist in
the system for any length of time. To avoid this potential security risk, you can use a
template parameter value that is generated and passed into the template at runtime.

For example, you could set up the following parameters:

• PDFSec - to pass the value for the xdo-pdf-security property

• PDFPWD - to pass the value for the password

You would then enter the following in the Properties dialog:

Name: xdo-pdf-security

Type: Text

Value: {$PDFSec}

Name: xdo-pdf-open-password

Type: Text

Value: {$PDFPWD}

For more information about template parameters, see Defining Parameters in Your
Template, page 2-89.

Advanced Report Layouts

Batch Reports
It is a common requirement to print a batch of documents, such as invoices or purchase
orders in a single PDF file. Because these documents are intended for different

2-94 Oracle XML Publisher Core Components Guide

customers, each document will require that the page numbering be reset and that page
totals are specific to the document. If the header and footer display fields from the data
(such as customer name) these will have to be reset as well.

XML Publisher supports this requirement through the use of a context command. This
command allows you to define elements of your report to a specific section. When the
section changes, these elements are reset.

The following example demonstrates how to reset the header and footer and page
numbering within an output file:

The following XML sample is a report that contains multiple invoices:
...
<LIST_G_INVOICE>
 <G_INVOICE>
 <BILL_CUST_NAME>Vision, Inc. </BILL_CUST_NAME>
 <TRX_NUMBER>2345678</TRX_NUMBER>
 ...
 </G_INVOICE>
 <G_INVOICE>
 <BILL_CUST_NAME>Oracle, Inc. </BILL_CUST_NAME>
 <TRX_NUMBER>2345685</TRX_NUMBER>
 ...
 </G_INVOICE>
 ...
</LIST_G_INVOICE>
...

Each G_INVOICE element contains an invoice for a potentially different customer. To
instruct XML Publisher to start a new section for each occurrence of the G_INVOICE
element, add the @section command to the opening for-each statement for the group,
using the following syntax:

<?for-each@section:group name?>

where group_name is the name of the element for which you want to begin a new
section.

For example, the for-each grouping statement for this example will be as follows:

<?for-each@section:G_INVOICE?>

The closing <?end for-each?> tag is not changed.

The following figure shows a sample template. Note that the G_INVOICE group
for-each declaration is still within the body of the report, even though the headers will
be reset by the command.

Creating an RTF Template 2-95

The following table shows the values of the form fields from the example:

Default Text Entry Form Field Help Text Description

for-each G_INVOICE <?for-each@section:G_INVOI
CE?>

Begins the G_INVOICE
group, and defines the
element as a Section. For each
occurrence of G_INVOICE, a
new section will be started.

<?TRX_NUMBER?> N/A Microsoft Word does not
support form fields in the
header, therefore the
placeholder syntax for the
TRX_NUMBER element is
placed directly in the
template.

end G_INVOICE <?end for-each?> Closes the G_INVOICE
group.

Now for each new occurrence of the G_INVOICE element, a new section will begin. The
page numbers will restart, and if header or footer information is derived from the data,
it will be reset as well.

Cross-Tab Support
The columns of a cross-tab report are data dependent. At design-time you do not know
how many columns will be reported, or what the appropriate column headings will be.
Moreover, if the columns should break onto a second page, you need to be able to
define the row label columns to repeat onto subsequent pages. The following example

2-96 Oracle XML Publisher Core Components Guide

shows how to design a simple cross-tab report that supports these features.

This example uses the following XML sample:
<ROWSET>
 <RESULTS>
 <INDUSTRY>Motor Vehicle Dealers</INDUSTRY>
 <YEAR>2005</YEAR>
 <QUARTER>Q1</QUARTER>
 <SALES>1000</SALES>
 </RESULTS>
 <RESULTS>
 <INDUSTRY>Motor Vehicle Dealers</INDUSTRY>
 <YEAR>2005</YEAR>
 <QUARTER>Q2</QUARTER>
 <SALES>2000</SALES>
 </RESULTS>
 <RESULTS>
 <INDUSTRY>Motor Vehicle Dealers</INDUSTRY>
 <YEAR>2004</YEAR>
 <QUARTER>Q1</QUARTER>
 <SALES>3000</SALES>
 </RESULTS>
 <RESULTS>
 <INDUSTRY>Motor Vehicle Dealers</INDUSTRY>
 <YEAR>2004</YEAR>
 <QUARTER>Q2</QUARTER>
 <SALES>3000</SALES>
 </RESULTS>
 <RESULTS>
 <INDUSTRY>Motor Vehicle Dealers</INDUSTRY>
 <YEAR>2003</YEAR>
 ...
 </RRESULTS>
 <RESULTS>
 <INDUSTRY>Home Furnishings</INDUSTRY>
 ...
 </RESULTS>
 <RESULTS>
 <INDUSTRY>Electronics</INDUSTRY>
 ...
 </RESULTS>
 <RESULTS>
 <INDUSTRY>Food and Beverage</INDUSTRY>
 ...
 </RESULTS>

</ROWSET>

From this XML we will generate a report that shows each industry and totals the sales
by year as shown in the following figure:

Creating an RTF Template 2-97

The template to generate this report is shown in the following figure. The form field
entries are shown in the subsequent table.

The form fields in the template have the following values:

Default Text Entry Form Field Help Text Description

header column <?horizontal-break-table:1?> Defines the first column as a header that should repeat
if the table breaks across pages. For more information
about this syntax, see Defining Columns to Repeat
Across Pages, page 2-99.

for: <?for-each-group@column:RES
ULTS;YEAR?>

Uses the regrouping syntax (see Regrouping the XML
Data, page 2-82) to group the data by YEAR; and the
@column context command to create a table column
for each group (YEAR). For more information about
context commands, see Using the Context Commands,
page 2-123.

YEAR <?YEAR?> Placeholder for the YEAR element.

end <?end for-each-group?> Closes the for-each-group loop.

for: <?for-each-group:RESULTS;IN
DUSTRY?>

Begins the group to create a table row for each
INDUSTRY.

INDUSTRY <?INDUSTRY?> Placeholder for the INDUSTRY element.

2-98 Oracle XML Publisher Core Components Guide

Default Text Entry Form Field Help Text Description

for: <?for-each-group@cell:current-
group();YEAR?>

Uses the regrouping syntax (see Regrouping the XML
Data, page 2-82) to group the data by YEAR; and the
@cell context command to create a table cell for each
group (YEAR).

sum(Sales) <?sum(current-group()//SALE
S)?>

Sums the sales for the current group (YEAR).

end <?end for-each-group?> Closes the for-each-group statement.

end <?end for-each-group?> Closes the for-each-group statement.

Note that only the first row uses the @column context to determine the number of
columns for the table. All remaining rows need to use the @cell context to create the
table cells for the column. (For more information about context commands, see Using
the Context Commands, page 2-123.)

Dynamic Data Columns
The ability to construct dynamic data columns is a very powerful feature of the RTF
template. Using this feature you can design a template that will correctly render a table
when the number of columns required by the data is variable.

For example, you are designing a template to display columns of test scores within
specific ranges. However, you do not how many ranges will have data to report. You
can define a dynamic data column to split into the correct number of columns at
runtime.

Use the following tags to accommodate the dynamic formatting required to render the
data correctly:

• Dynamic Column Header

<?split-column-header:group element name?>

Use this tag to define which group to split for the column headers of a table.

• Dynamic Column <?split-column-data:group element name?>

Use this tag to define which group to split for the column data of a table.

• Dynamic Column Width

<?split-column-width:name?> or

<?split-column-width:@width?>

Creating an RTF Template 2-99

Use one of these tags to define the width of the column when the width is described
in the XML data. The width can be described in two ways:

• An XML element stores the value of the width. In this case, use the syntax
<?split-column-width:name?>, where name is the XML element tag name
that contains the value for the width.

• If the element defined in the split-column-header tag, contains a width
attribute, use the syntax <?split-column-width:@width?> to use the
value of that attribute.

• Dynamic Column Width's unit value (in points) <?split-column-width-unit:
value?>

Use this tag to define a multiplier for the column width. If your column widths are
defined in character cells, then you will need a multiplier value of ~6 to render the
columns to the correct width in points. If the multiplier is not defined, the widths of
the columns are calculated as a percentage of the total width of the table. This is
illustrated in the following table:

Width Definition Column 1

(Width = 10)

Column 2

(Width = 12)

Column 3

(Width = 14)

Multiplier not
present -% width

10/10+12+14*100 28% %Width = 33% %Width =39%

Multiplier = 6 -
width

60 pts 72 pts 84 pts

Defining Columns to Repeat Across Pages
If your table columns expand horizontally across more than one page, you can define
how many row heading columns you want to repeat on every page. Use the following
syntax to specify the number of columns to repeat:

<?horizontal-break-table:number?>

where number is the number of columns (starting from the left) to repeat.

Note that this functionality is supported for PDF output only..

Example of Dynamic Data Columns
A template is required to display test score ranges for school exams. Logically, you
want the report to be arranged as shown in the following table:

2-100 Oracle XML Publisher Core Components Guide

Test Score Test Score
Range 1

Test Score
Range 2

Test Score
Range 3

...Test Score
Range n

Test Category # students in
Range 1

students in
Range 2

students in
Range 3

of students in
Range n

but you do not know how many Test Score Ranges will be reported. The number of Test
Score Range columns is dynamic, depending on the data.

The following XML data describes these test scores. The number of occurrences of the
element <TestScoreRange> will determine how many columns are required. In this
case there are five columns: 0-20, 21-40, 41-60, 61-80, and 81-100. For each column there
is an amount element (<NumOfStudents>) and a column width attribute (
<TestScore width="15">).
<?xml version="1.0" encoding="utf-8"?>
 <TestScoreTable>
 <TestScores>
 <TestCategory>Mathematics</TestCategory>
 <TestScore width ="15">
 <TestScoreRange>0-20</TestScoreRange>
 <NumofStudents>30</NumofStudents>
 </TestScore>
 <TestScore width ="20">
 <TestScoreRange>21-40</TestScoreRange>
 <NumofStudents>45</NumofStudents>
 </TestScore>
 <TestScore width ="15">
 <TestScoreRange>41-60</TestScoreRange>
 <NumofStudents>50</NumofStudents>
 </TestScore>
 <TestScore width ="20">
 <TestScoreRange>61-80</TestScoreRange>
 <NumofStudents>102</NumofStudents>
 </TestScore>
 <TestScore width ="15">
 <TestScoreRange>81-100</TestScoreRange>
 <NumofStudents>22</NumofStudents>
 </TestScore>
 </TestScores>
 <TestScoreTable>

Using the dynamic column tags in form fields, set up the table in two columns as shown
in the following figure. The first column, "Test Score" is static. The second column,
"Column Header and Splitting" is the dynamic column. At runtime this column will
split according to the data, and the header for each column will be appropriately
populated. The Default Text entry and Form Field Help entry for each field are listed in
the table following the figure. (See Form Field Method, page 2-9 for more information
on using form fields).

Creating an RTF Template 2-101

Default Text Entry Form Field Help Text Entry

Group:TestScores <?for-each:TestScores?>

Test Category <?TestCategory?>

Column Header and Splitting <?split-column-header:TestScore?>
<?split-column-width:@width?>
<?TestScoreRange?>%

Content and Splitting <?split-column-data:TestScore?>
<?NumofStudents?>

end:TestScores <?end for-each?>

• Test Score is the boilerplate column heading.

• Test Category is the placeholder for the<TestCategory> data element, that is,
"Mathematics," which will also be the row heading.

• The second column is the one to be split dynamically. The width you specify will be
divided by the number of columns of data. In this case, there are 5 data columns.

• The second column will contain the dynamic "range" data. The width of the column
will be divided according to the split column width. Because this example does not
contain the unit value tag (<?split-column-width-unit:value?>), the
column will be split on a percentage basis. Wrapping of the data will occur if
required.

Note: If the tag (<?split-column-width-unit:value?>) were
present, then the columns would have a specific width in points. If
the total column widths were wider than the allotted space on the
page, then the table would break onto another page.

The "horizontal-break-table" tag could then be used to specify how
many columns to repeat on the subsequent page. For example, a
value of "1" would repeat the column "Test Score" on the
subsequent page, with the continuation of the columns that did not
fit on the first page.

2-102 Oracle XML Publisher Core Components Guide

The template will render the output shown in the following figure:

Number and Date Formatting

Number Formatting
XML Publisher supports two methods for specifying the number format:

• Microsoft Word's Native number format mask

• Oracle's format-number function

Note: You can also use the native XSL format-number function to
format numbers. See: Native XSL Number Formatting, page 2-127.

Use only one of these methods. If the number format mask is specified using both
methods, the data will be formatted twice, causing unexpected behavior.

The group separator and the number separator will be set at runtime based on the
template locale. This is applicable for both the Oracle format mask and the MS format
mask.

Data Source Requirements
To use the Oracle format mask or the Microsoft format mask, the numbers in your data
source must be in a raw format, with no formatting applied (for example: 1000.00). If
the number has been formatted for European countries (for example: 1.000,00) the
format will not work.

Note: The XML Publisher parser requires the Java BigDecimal string
representation. This consists of an optional sign ("-") followed by a
sequence of zero or more decimal digits (the integer), optionally
followed by a fraction, and optionally followed by an exponent. For
example: -123456.3455e-3.

Translation Considerations
If you are designing a template to be translatable, using currency in the Microsoft
format mask is not recommended unless you want the data reported in the same
currency for all translations. Using the MS format mask sets the currency in the
template so that it cannot be updated at runtime.

Instead, use the Oracle format mask. For example, L999G999G999D99, where "L" will be

Creating an RTF Template 2-103

replaced by the currency symbol based on the locale at runtime.

Do not include "%" in the format mask because this will fix the location of the percent
sign in the number display, while the desired position could be at the beginning or the
end of a number, depending on the locale.

Using the Microsoft Number Format Mask
To format numeric values, use Microsoft Word's field formatting features available
from the Text Form Field Options dialog box. The following graphic displays an
example:

To apply a number format to a form field:

1. Open the Form Field Options dialog box for the placeholder field.

2. Set the Type to Number.

3. Select the appropriate Number format from the list of options.

Supported Microsoft Format Mask Definitions
The following table lists the supported Microsoft format mask definitions:

2-104 Oracle XML Publisher Core Components Guide

Symbol Location Meaning

0 Number Digit. Each explicitly set 0 will appear, if no other number
occupies the position.

Example:

Format mask: 00.0000

Data: 1.234

Display: 01.2340

Number Digit. When set to #, only the incoming data is displayed.

Example:

Format mask: ##.####

Data: 1.234

Display: 1.234

. Number Determines the position of the decimal separator. The decimal
separator symbol used will be determined at runtime based on
template locale.

For example:

Format mask: #,##0.00

Data: 1234.56

Display for English locale: 1,234.56

Display for German locale: 1.234,56

- Number Determines placement of minus sign for negative numbers.

, Number Determines the placement of the grouping separator. The
grouping separator symbol used will be determined at runtime
based on template locale.

For example:

Format mask: #,##0.00

Data: 1234.56

Display for English locale: 1,234.56

Display for German locale: 1.234,56

Creating an RTF Template 2-105

Symbol Location Meaning

E Number Separates mantissa and exponent in a scientific notation.

Example:

0.###E+0 plus sign always shown for positive numbers

0.###E-0 plus sign not shown for positive numbers

; Subpattern boundary Separates positive and negative subpatterns. See Note below.

% Prefix or Suffix Multiply by 100 and show as percentage

' Prefix or Suffix Used to quote special characters in a prefix or suffix.

Note: Subpattern boundary: A pattern contains a positive and negative
subpattern, for example, "#,##0.00;(#,##0.00)". Each subpattern has a
prefix, numeric part, and suffix. The negative subpattern is optional. If
absent, the positive subpattern prefixed with the localized minus sign
("-" in most locales) is used as the negative subpattern. That is, "0.00"
alone is equivalent to "0.00;-0.00". If there is an explicit negative
subpattern, it serves only to specify the negative prefix and suffix. The
number of digits, minimal digits, and other characteristics are all the
same as the positive pattern. That means that "#,##0.0#;(#)" produces
precisely the same behavior as "#,##0.0#;(#,##0.0#)".

Using the Oracle Format Mask
To apply the Oracle format mask to a form field:

1. Open the Form Field Options dialog box for the placeholder field.

2. Set the Type to "Regular text".

3. In the Form Field Help Text field, enter the mask definition according to the
following example:

<?format-number:fieldname;'999G999D99'?>

where

fieldname is the XML tag name of the data element you are formatting and

999G999D99 is the mask definition.

The following graphic shows an example Form Field Help Text dialog entry for the data
element "empno":

2-106 Oracle XML Publisher Core Components Guide

The following table lists the supported Oracle number format mask symbols and their
definitions:

Symbol Meaning

0 Digit. Each explicitly set 0 will appear, if no other number occupies the position.

Example:

Format mask: 00.0000

Data: 1.234

Display: 01.2340

9 Digit. Returns value with the specified number of digits with a leading space if positive or
a leading minus if negative. Leading zeros are blank, except for a zero value, which returns
a zero for the integer part of the fixed-point number.

Example:

Format mask: 99.9999

Data: 1.234

Display: 1.234

C Returns the ISO currency symbol in the specified position.

Creating an RTF Template 2-107

Symbol Meaning

D Determines the placement of the decimal separator. The decimal separator symbol used
will be determined at runtime based on template locale.

For example:

Format mask: 9G999D99

Data: 1234.56

Display for English locale: 1,234.56

Display for German locale: 1.234,56

EEEE Returns a value in scientific notation.

G Determines the placement of the grouping (thousands) separator. The grouping separator
symbol used will be determined at runtime based on template locale.

For example:

Format mask: 9G999D99

Data: 1234.56

Display for English locale: 1,234.56

Display for German locale: 1.234,56

L Returns the local currency symbol in the specified position.

MI Displays negative value with a trailing "-".

PR Displays negative value enclosed by <>

PT Displays negative value enclosed by ()

S (before number) Displays positive value with a leading "+" and negative values with a leading "-"

S (after number) Displays positive value with a trailing "+" and negative value with a trailing "-"

Date Formatting
XML Publisher supports three methods for specifying the date format:

• Specify an explicit date format mask using Microsoft Word's native date format
mask.

2-108 Oracle XML Publisher Core Components Guide

• Specify an explicit date format mask using Oracle's format-date function.

• Specify an abstract date format mask using Oracle's abstract date format masks.
(Recommended for multilingual templates.)

Only one method should be used. If both the Oracle and MS format masks are specified,
the data will be formatted twice causing unexpected behavior.

Data Source Requirements
To use the Microsoft format mask or the Oracle format mask, the date from the XML
data source must be in canonical format. This format is:

YYYY-MM-DDThh:mm:ss+HH:MM

where

• YYYY is the year

• MM is the month

• DD is the day

• T is the separator between the date and time component

• hh is the hour in 24-hour format

• mm is the minutes

• ss is the seconds

• +HH:MM is the time zone offset from Universal Time (UTC), or Greenwich Mean
Time

An example of this construction is:

2005-01-01T09:30:10-07:00

The data after the "T" is optional, therefore the following date: 2005-01-01 can be
formatted using either date formatting option. Note that if you do not include the time
zone offset, the time will be formatted to the UTC time.

Translation Considerations
If you are designing a template to be translatable, explicitly setting a date format mask
is not recommended. This is because the date format mask is part of the template, and
all published reports based on this template will have the same date format regardless
of locale.

For translatable templates, it is recommended that you use the Oracle abstract date
format.

If it is necessary to explicitly specify a format mask, the Oracle format mask is

Creating an RTF Template 2-109

recommended over the MS format mask to ensure future compatibility.

Using the Microsoft Date Format Mask
To apply a date format to a form field:

1. Open the Form Field Options dialog box for the placeholder field.

2. Set the Type to Date, Current Date, or Current Time.

3. Select the appropriate Date format from the list of options.

If you do not specify the mask in the Date format field, the abstract format mask
"MEDIUM" will be used as default. See Oracle Abstract Format Masks, page 2-115 for
the description.

The following figure shows the Text Form Field Options dialog box with a date format
applied:

The following table lists the supported Microsoft date format mask components:

Symbol Meaning

d The day of the month. Single-digit days will not have a leading zero.

dd The day of the month. Single-digit days will have a leading zero.

ddd The abbreviated name of the day of the week, as defined in AbbreviatedDayNames.

dddd The full name of the day of the week, as defined in DayNames.

2-110 Oracle XML Publisher Core Components Guide

Symbol Meaning

M The numeric month. Single-digit months will not have a leading zero.

MM The numeric month. Single-digit months will have a leading zero.

MMM The abbreviated name of the month, as defined in AbbreviatedMonthNames.

MMMM The full name of the month, as defined in MonthNames.

yy The year without the century. If the year without the century is less than 10, the year
is displayed with a leading zero.

yyyy The year in four digits.

gg The period or era. This pattern is ignored if the date to be formatted does not have
an associated period or era string.

h The hour in a 12-hour clock. Single-digit hours will not have a leading zero.

hh The hour in a 12-hour clock. Single-digit hours will have a leading zero.

H The hour in a 24-hour clock. Single-digit hours will not have a leading zero.

HH The hour in a 24-hour clock. Single-digit hours will have a leading zero.

m The minute. Single-digit minutes will not have a leading zero.

mm The minute. Single-digit minutes will have a leading zero.

s The second. Single-digit seconds will not have a leading zero.

ss The second. Single-digit seconds will have a leading zero.

f Displays seconds fractions represented in one digit.

ff Displays seconds fractions represented in two digits.

fff Displays seconds fractions represented in three digits.

ffff Displays seconds fractions represented in four digits.

Creating an RTF Template 2-111

Symbol Meaning

fffff Displays seconds fractions represented in five digits.

ffffff Displays seconds fractions represented in six digits.

fffffff Displays seconds fractions represented in seven digits.

tt The AM/PM designator defined in AMDesignator or PMDesignator, if any.

z Displays the time zone offset for the system's current time zone in whole hours only.
(This element can be used for formatting only)

zz Displays the time zone offset for the system's current time zone in whole hours only.
(This element can be used for formatting only)

zzz Displays the time zone offset for the system's current time zone in hours and
minutes.

: The default time separator defined in TimeSeparator.

/ The default date separator defined in DateSeparator.

' Quoted string. Displays the literal value of any string between two ' characters.

" Quoted string. Displays the literal value of any string between two " characters.

Using the Oracle Format Mask
To apply the Oracle format mask to a date field:

1. Open the Form Field Options dialog box for the placeholder field.

2. Set the Type to Regular Text.

3. Select the Add Help Text... button to open the Form Field Help Text dialog.

4. Insert the following syntax to specify the date format mask:

<?format-date:date_string;
'ABSTRACT_FORMAT_MASK';'TIMEZONE'?>

or

<?format-date-and-calendar:date_string;
'ABSTRACT_FORMAT_MASK';'CALENDAR_NAME';'TIMEZONE'?>

2-112 Oracle XML Publisher Core Components Guide

where time zone is optional. The detailed usage of format mask, calendar and time
zone is described below.

If no format mask is specified, the abstract format mask "MEDIUM" will be used as
default.

Example form field help text entry:

<?format-date:hiredate;'YYYY-MM-DD'?>

The following table lists the supported Oracle format mask components:

Symbol Meaning

-

/

,

.

;

:

"text"

Punctuation and quoted text are reproduced in the result.

AD

A.D.

AD indicator with or without periods.

AM

A.M.

Meridian indicator with or without periods.

BC

B.C.

BC indicator with or without periods.

CC Century. For example, 2002 returns 21; 2000 returns 20.

DAY Name of day, padded with blanks to length of 9 characters.

D Day of week (1-7).

DD Day of month (1-31).

DDD Day of year (1-366).

Creating an RTF Template 2-113

Symbol Meaning

DL Returns a value in the long date format.

DS Returns a value in the short date format.

DY Abbreviated name of day.

E Abbreviated era name.

EE Full era name.

FF[1..9] Fractional seconds. Use the numbers 1 to 9 after FF to specify the number of digits in the
fractional second portion of the datetime value returned.

Example:

'HH:MI:SS.FF3'

HH Hour of day (1-12).

HH12 Hour of day (1-12).

HH24 Hour of day (0-23).

MI Minute (0-59).

MM Month (01-12; JAN = 01).

MON Abbreviated name of month.

MONTH Name of month, padded with blanks to length of 9 characters.

PM

P.M.

Meridian indicator with or without periods.

RR Lets you store 20th century dates in the 21st century using only two digits.

RRRR Round year. Accepts either 4-digit or 2-digit input. If 2-digit, provides the same return as
RR. If you don't want this functionality, then simply enter the 4-digit year.

SS Seconds (0-59).

2-114 Oracle XML Publisher Core Components Guide

Symbol Meaning

TZD Daylight savings information. The TZD value is an abbreviated time zone string with
daylight savings information. It must correspond to the region specified in TZR.

Example:

PST (for Pacific Standard Time)

PDT (for Pacific Daylight Time)

TZH Time zone hour. (See TZM format element.)

TZM Time zone minute. (See TZH format element.)

Example:

'HH:MI:SS.FFTZH:TZM'

TZR Time zone region information. The value must be one of the time zone regions supported in
the database. Example: PST (Pacific Standard Time)

WW Week of year (1-53) where week 1 starts on the first day of the year and continues to the
seventh day of the year.

W Week of month (1-5) where week 1 starts on the first day of the month and ends on the
seventh.

X Local radix character.

YYYY 4-digit year.

YY

Y

Last 2, or 1 digit(s) of year.

Default Format Mask
If you do not want to specify a format mask with either the MS method or the Oracle
method, you can omit the mask definition and use the default format mask. The default
format mask is the MEDIUM abstract format mask from Oracle. (See Oracle Abstract
Format Masks, page 2-115 for the definition.)

To use the default option using the Microsoft method, set the Type to Date, but leave
the Date format field blank in the Text Form Field Options dialog.

To use the default option using the Oracle method, do not supply a mask definition to
the "format-date" function call, for example:

Creating an RTF Template 2-115

<?format-date:hiredate?>

Oracle Abstract Format Masks
The abstract date format masks reflect the default implementations of date/time
formatting in the I18N library. When you use one of these masks, the output generated
will depend on the locale associated with the report.

Specify the abstract mask using the following syntax:
<?format-date:fieldname;'MASK'?>

where fieldname is the XML element tag and

MASK is the Oracle abstract format mask name

For example:
<?format-date:hiredate;'SHORT'?>
<?format-date:hiredate;'LONG_TIME_TZ'?>

The following table lists the abstract format masks and the sample output that would be
generated for US locale:

Mask Output for US Locale

SHORT 2/31/99

MEDIUM Dec 31, 1999

LONG Friday, December 31, 1999

SHORT_TIME 12/31/99 6:15 PM

MEDIUM_TIME Dec 31, 1999 6:15 PM

LONG_TIME Friday, December 31, 1999 6:15 PM

SHORT_TIME_TZ 12/31/99 6:15 PM GMT

MEDIUM_TIME_TZ Dec 31, 1999 6:15 PM GMT

LONG_TIME_TZ Friday, December 31, 1999 6:15 PM GMT

2-116 Oracle XML Publisher Core Components Guide

Calendar and Time Zone Support

Calendar Specification
The term "calendar" refers to the calendar date displayed in the published report. The
following types are supported:

• GREGORIAN

• ARABIC_HIJRAH

• ENGLISH_HIJRAH

• JAPANESE_IMPERIAL

• THAI_BUDDHA

• ROC_OFFICIAL (Taiwan)

Use one of the following methods to set the calendar type:

• Call the format-date-and-calendar function and declare the calendar type.

For example:
<?format-date-and-calendar:hiredate;'LONG_TIME_TZ';'ROC_OFFIC
IAL';?>

The following graphic shows the output generated using this definition with locale
set to zh-TW and time zone set to Asia/Taipei:

• Set the calendar type using the profile option XDO: Calendar Type
(XDO_CALENDAR_TYPE).

Note: The calendar type specified in the template will override the
calendar type set in the profile option.

Time Zone Specification
There are two ways to specify time zone information:

• Call the format-date or format-date-and-calendar function with the Oracle format.

• Set the user profile option Client Timezone (CLIENT_TIMEZONE_ID) in Oracle

Creating an RTF Template 2-117

Applications.

If no time zone is specified, UTC is used.

In the template, the time zone must be specified as a Java time zone string, for example,
America/Los Angeles. The following example shows the syntax to enter in the help text
field of your template:

<?format-date:hiredate;'LONG_TIME_TZ';'Asia/Shanghai'?>

Using External Fonts
XML Publisher enables you to use fonts in your output that are not normally available
on the server. To set up a new font for your report output, use the font to design your
template on your client machine, then make it available on the server, and configure
XML Publisher to access the font at runtime.

1. Use the font in your template.

1. Copy the font to your <WINDOWS_HOME>/fonts directory.

2. Open Microsoft Word and build your template.

3. Insert the font in your template: Select the text or form field and then select the
desired font from the font dialog box (Format > Font) or font drop down list.

The following graphic shows an example of the form field method and the text
method:

2. Place the font on the server.

Place the font in a directory accessible to the formatting engine at runtime.

3. Set the XML Publisher "font" property.

You can set the font property either in the XML Publisher Configuration file or
directly in the template.

To set the property in the configuration file:

Update the XML Publisher configuration file "fonts" section with the font name and
its location on the server. For example, the new entry for a TrueType font is:

2-118 Oracle XML Publisher Core Components Guide

 <truetype path="\user\fonts\MyFontName.ttf"/>

See Setting Runtime Properties, page 7-1 for more information.

To set the property in the template:

See Setting Properties, page 2-91.

Now you can run your report and XML Publisher will use the font in the output as
designed. For PDF output, the advanced font handling features of XML Publisher
embed the external font glyphs directly into the final document. The embedded font
only contains the glyphs required for the document and not the complete font
definition. Therefore the document is completely self-contained, eliminating the need to
have external fonts installed on the printer.

Advanced Barcode Formatting
XML Publisher offers the ability to execute preprocessing on your data prior to
applying a barcode font to the data in the output document. For example, you may
need to calculate checksum values or start and end bits for the data before formatting
them.

The solution requires that you register a barcode encoding class with XML Publisher
that can then be instantiated at runtime to carry out the formatting in the template. This
is covered in Advanced Barcode Font Formatting Class Implementation, page 8-58.

To enable the formatting feature in your template, you must use two commands in your
template. The first command registers the barcode encoding class with XML Publisher.
This must be declared somewhere in the template prior to the encoding command. The
second is the encoding command to identify the data to be formatted.

Register the Barcode Encoding Class
Use the following syntax in a form field in your template to register the barcode
encoding class:
<?register-barcode-vendor:java_class_name;barcode_vendor_id?>

This command requires a Java class name (this will carry out the encoding) and a
barcode vendor ID as defined by the class. This command must be placed in the
template before the commands to encode the data in the template. For example:
<?register-barcode-vendor:'oracle.apps.xdo.template.rtf.util.barcoder.Ba
rcodeUtil';'XMLPBarVendor'?>

where

oracle.apps.xdo.template.rtf.util.barcoder.BarcodeUtil is the Java
class and

XMLPBarVendor is the vendor ID that is defined by the class.

Creating an RTF Template 2-119

Encode the Data
To format the data, use the following syntax in a form field in your template:
<?format-barcode:data;'barcode_type';'barcode_vendor_id'?>

where

data is the element from your XML data source to be encoded. For example:
LABEL_ID

barcode_type is the method in the encoding Java class used to format the data (for
example: Code128a).

barcode_vendor_id is the ID defined in the register-barcode-vendor field of
the first command you used to register the encoding class.

For example:
<?format-barcode:LABEL_ID;'Code128a';'XMLPBarVendor'?>

At runtime, the barcode_type method is called to format the data value and the
barcode font will then be applied to the data in the final output.

Advanced Design Options
If you have more complex design requirements, XML Publisher supports the use of XSL
and XSL:FO elements, and has also extended a set of SQL functions.

RTF templates offer extremely powerful layout options using XML Publisher's syntax.
However, because the underlying technology is based on open W3C standards, such as
XSL and XPATH, you are not limited by the functionality described in this guide. You
can fully utilize the layout and data manipulation features available in these
technologies.

XPath Overview
XPath is an industry standard developed by the World Wide Web Consortium (W3C). It
is the method used to navigate through an XML document. XPath is a set of syntax
rules for addressing the individual pieces of an XML document. You may not know it,
but you have already used XPath; RTF templates use XPath to navigate through the
XML data at runtime.

This section contains a brief introduction to XPath principles. For more information, see
the W3C Web site: http://www.w3.org/TR/xpath

XPath follows the Document Object Model (DOM), which interprets an XML document
as a tree of nodes. A node can be one of seven types:

• root

• element

http://www.w3.org/TR/xpath

2-120 Oracle XML Publisher Core Components Guide

• attribute

• text

• namespace

• processing instruction

• comment

Many of these elements are shown in the following sample XML, which contains a
catalog of CDs:
<?xml version="1.0" encoding="UTF-8"?>
<! - My CD Listing - >
<CATALOG>
 <CD cattype=Folk>
 <TITLE>Empire Burlesque</TITLE>
 <ARTIST>Bob Dylan</ARTIST>
 <COUNTRY>USA</COUNTRY>
 <PRICE>10.90</PRICE>
 <YEAR>1985</YEAR>
 </CD>
 <CD cattype=Rock>
 <TITLE>Hide Your Heart</TITLE>
 <ARTIST>Bonnie Tylor</ARTIST>
 <COUNTRY>UK</COUNTRY>
 <PRICE>9.90</PRICE>
 <YEAR>1988</YEAR>
 </CD>
</CATALOG>

The root node in this example is CATALOG. CD is an element, and it has an attribute
cattype. The sample contains the comment My CD Listing. Text is contained within
the XML document elements.

Locating Data
Locate information in an XML document using location-path expressions.

A node is the most common search element you will encounter. Nodes in the example
CATALOG XML include CD, TITLE, and ARTIST. Use a path expression to locate nodes
within an XML document. For example, the following path returns all CD elements:
//CATALOG/CD

where

the double slash (//) indicates that all elements in the XML document that match the
search criteria are to be returned, regardless of the level within the document.

the slash (/) separates the child nodes. All elements matching the pattern will be
returned.

To retrieve the individual TITLE elements, use the following command:
/CATALOG/CD/TITLE

Creating an RTF Template 2-121

This example will return the following XML:
<CATALOG>
 <CD cattype=Folk>
 <TITLE>Empire Burlesque</TITLE>
 </CD>
 <CD cattype=Rock>
 <TITLE>Hide Your Heart</TITLE>
 </CD>
</CATALOG>

Further limit your search by using square brackets. The brackets locate elements with
certain child nodes or specified values. For example, the following expression locates all
CDs recorded by Bob Dylan:
/CATALOG/CD[ARTIST="Bob Dylan"]

Or, if each CD element did not have an PRICE element, you could use the following
expression to return only those CD elements that include a PRICE element:
/CATALOG/CD[PRICE]

Use the bracket notation to leverage the attribute value in your search. Use the @
symbol to indicate an attribute. For example, the following expression locates all Rock
CDs (all CDs with the cattype attribute value Rock):
//CD[@cattype="Rock"]

This returns the following data from the sample XML document:
<CD cattype=Rock>
 <TITLE>Hide Your Heart</TITLE>
 <ARTIST>Bonnie Tylor</ARTIST>
 <COUNTRY>UK</COUNTRY>
 <PRICE>9.90</PRICE>
 <YEAR>1988</YEAR>
 </CD>

You can also use brackets to specify the item number to retrieve. For example, the first
CD element is read from the XML document using the following XPath expression:
/CATALOG/CD[1]

The sample returns the first CD element:
<CD cattype=Folk>
 <TITLE>Empire Burlesque</TITLE>
 <ARTIST>Bob Dylan</ARTIST>
 <COUNTRY>USA</COUNTRY>
 <PRICE>10.90</PRICE>
 <YEAR>1985</YEAR>
 </CD>

XPath also supports wildcards to retrieve every element contained within the specified
node. For example, to retrieve all the CDs from the sample XML, use the following
expression:
/CATALOG/*

You can combine statements with Boolean operators for more complex searches. The
following expression retrieves all Folk and Rock CDs, thus all the elements from the
sample:

2-122 Oracle XML Publisher Core Components Guide

//CD[@cattype="Folk"]|//CD[@cattype="Rock"]

The pipe (|) is equal to the logical OR operator. In addition, XPath recognizes the logical
OR and AND, as well as the equality operators: <=, <, >, >=, ==, and !=. For example, we
can find all CDs released in 1985 or later using the following expression:
/CATALOG/CD[YEAR >=1985]

Starting Reference
The first character in an XPath expression determines the point at which it should start
in the XML tree. Statements beginning with a forward slash (/) are considered absolute.
No slash indicates a relative reference. An example of a relative reference is:
CD/*

This statement begins the search at the current reference point. That means if the
example occurred within a group of statements the reference point left by the previous
statement would be utilized.

A noted earlier, double forward slashes (//) retrieve every matching element regardless
of location in the document.

Context and Parent
To select current and parent elements, XPath recognizes the dot notation commonly
used to navigate directories. Use a single period (.) to select the current node and use
double periods (..) to return the parent of the current node. For example, to retrieve all
child nodes of the parent of the current node, use:
../*

Therefore, to access all CDs from the sample XML, use the following expression:
/CATALOG/CD/..

You could also access all the CD tittles released in 1988 using the following:
/CATALOG/CD/TITLE[../YEAR=1988]

The .. is used to navigate up the tree of elements to find the YEAR element at the same
level as the TITLE, where it is then tested for a match against "1988". You could also use
// in this case, but if the element YEAR is used elsewhere in the XML document, you
may get erroneous results.

XPath is an extremely powerful standard when combined with RTF templates allowing
you to use conditional formatting and filtering in your template.

Namespace Support
If your XML data contains namespaces, you must declare them in the template prior to
referencing the namespace in a placeholder. Declare the namespace in the template
using either the basic RTF method or in a form field. Enter the following syntax:

<?namespace:namespace name= namespace url?>

For example:

Creating an RTF Template 2-123

<?namespace:fsg=http://www.oracle.com/fsg/2002-30-20/?>

Once declared, you can use the namespace in the placeholder markup, for example:
<?fsg:ReportName?>

Using the Context Commands
The XML Publisher syntax is simplified XSL instructions. This syntax, along with any
native XSL commands you may use in your template, is converted to XSL-FO when you
upload the template to the Template Manager. The placement of these instructions
within the converted stylesheet determines the behavior of your template.

XML Publisher's RTF processor places these instructions within the XSL-FO stylesheet
according to the most common context. However, sometimes you need to define the
context of the instructions differently to create a specific behavior. To support this
requirement, XML Publisher provides a set of context commands that allow you to
define the context (or placement) of the processing instructions. For example, using
context commands, you can:

• Specify an if statement in a table to refer to a cell, a row, a column or the whole
table.

• Specify a for-each loop to repeat either the current data or the complete section (to
create new headers and footers and restart the page numbering)

• Define a variable in the current loop or at the beginning of the document.

You can specify a context for both processing commands using the XML Publisher
syntax and those using native XSL.

• To specify a context for a processing command using the simplified XML Publisher
syntax, simply add @context to the syntax instruction. For example:

• <?for-each@section:INVOICE?> - specifies that the group INVOICE
should begin a new section for each occurrence. By adding the section context,
you can reset the header and footer and page numbering.

• <?if@column:VAT?> - specifies that the if statement should apply to the VAT
column only.

• To specify a context for an XSL command, add the xdofo:ctx="context"
attribute to your tags to specify the context for the insertion of the instructions. The
value of the context determines where your code is placed.

For example:

<xsl:for-each xdofo:ctx="section" select ="INVOICE">

<xsl:attribute xdofo:ctx="inblock"
name="background-color">red</xsl:attribute>

XML Publisher supports the following context types:

2-124 Oracle XML Publisher Core Components Guide

Context Description

section The statement affects the whole section including the header and footer. For
example, a for-each@section context command creates a new section for each
occurrence - with restarted page numbering and header and footer.

See Batch Reports, page 2-93 for an example of this usage.

column The statement will affect the whole column of a table. This context is typically used
to show and hide table columns depending on the data.

See Column Formatting, page 2-66 for an example.

cell The statement will affect the cell of a table. This is often used together with
@column in cross-tab tables to create a dynamic number of columns.

See Cross-Tab Support, page 2-95 for an example.

block The statement will affect multiple complete fo:blocks (RTF paragraphs). This
context is typically used for if and for-each statements. It can also be used to apply
formatting to a paragraph or a table cell.

See Cell Highlighting, page 2-71 for an example.

inline The context will become the single statement inside an fo:inline block. This context
is used for variables.

incontext The statement is inserted immediately after the surrounding statement. This is the
default for <?sort?> statements that need to follow the surrounding for-each
as the first element.

inblock The statement becomes a single statement inside an fo:block (RTF paragraph). This
is typically not useful for control statements (such as if and for-each) but is
useful for statements that generate text, such as call-template.

inlines The statement will affect multiple complete inline sections. An inline section is text
that uses the same formatting, such as a group of words rendered as bold.

See If Statements in Boilerplate Text, page 2-63.

begin The statement will be placed at the beginning of the XSL stylesheet. This is
required for global variables. See Defining Parameters, page 2-89.

end The statement will be placed at the end of the XSL stylesheet.

The following table shows the default context for the XML Publisher commands:

Creating an RTF Template 2-125

Command Context

apply-template inline

attribute inline

call-template inblock

choose block

for-each block

if block

import begin

param begin

sort incontext

template end

value-of inline

variable end

Using XSL Elements
You can use any XSL element in your template by inserting the XSL syntax into a form
field.

If you are using the basic RTF method, you cannot insert XSL syntax directly into your
template. XML Publisher has extended the following XSL elements for use in RTF
templates.

To use these in a basic-method RTF template, you must use the XML Publisher Tag
form of the XSL element. If you are using form fields, use either option.

Apply a Template Rule
Use this element to apply a template rule to the current element's child nodes.

XSL Syntax: <xsl:apply-templates select="name">

XML Publisher Tag: <?apply:name?>

2-126 Oracle XML Publisher Core Components Guide

This function applies to <xsl:template-match="n"> where n is the element name.

Copy the Current Node
Use this element to create a copy of the current node.

XSL Syntax: <xsl:copy-of select="name">

XML Publisher Tag: <?copy-of:name?>

Call Template
Use this element to call a named template to be inserted into or applied to the current
template. For example, use this feature to render a table multiple times.

XSL Syntax: <xsl:call-template name="name">

XML Publisher Tag: <?call-template:name?>

Template Declaration
Use this element to apply a set of rules when a specified node is matched.

XSL Syntax: <xsl:template name="name">

XML Publisher Tag: <?template:name?>

Variable Declaration
Use this element to declare a local or global variable.

XSL Syntax: <xsl:variable name="name">

XML Publisher Tag: <?variable:name?>

Example:
<xsl:variable name="color" select="'red'"/>

Assigns the value "red" to the "color" variable. The variable can then be referenced in
the template.

Import Stylesheet
Use this element to import the contents of one style sheet into another.

Note: An imported style sheet has lower precedence than the importing
style sheet.

XSL Syntax: <xsl:import href="url">

XML Publisher Tag: <?import:url?>

Creating an RTF Template 2-127

Define the Root Element of the Stylesheet
This and the <xsl:stylesheet> element are completely synonymous elements. Both
are used to define the root element of the style sheet.

Note: An included style sheet has the same precedence as the including
style sheet.

XSL Syntax: <xsl:stylesheet xmlns:x="url">

XML Publisher Tag: <?namespace:x=url?>

Note: The namespace must be declared in the template. See Namespace
Support, page 2-122.

Native XSL Number Formatting
The native XSL format-number function takes the basic format:
format-number(number,format,[decimalformat])

Parameter Description

number Required. Specifies the number to be formatted.

format Required. Specifies the format pattern. Use the following
characters to specify the pattern:

• # (Denotes a digit. Example: ####)

• 0 (Denotes leading and following zeros. Example: 0000.00)

• . (The position of the decimal point Example: ###.##)

• , (The group separator for thousands. Example: ###,###.##)

• % (Displays the number as a percentage. Example: ##%)

• ; (Pattern separator. The first pattern will be used for
positive numbers and the second for negative numbers)

decimalformat Optional. For more information on the decimal format please
consult any basic XSLT manual.

2-128 Oracle XML Publisher Core Components Guide

Using FO Elements
You can use the native FO syntax inside the Microsoft Word form fields.

For more information on XSL-FO see the W3C Website at
http://www.w3.org/2002/08/XSLFOsummary.html

The full list of FO elements supported by XML Publisher can be found in the Appendix:
Supported XSL-FO Elements, page A-1.

http://www.w3.org/2002/08/XSLFOsummary.html

Creating a PDF Template 3-1

3
Creating a PDF Template

PDF Template Overview
To create a PDF template, take any existing PDF document and apply the XML
Publisher markup. Because the source of the PDF document does not matter, you have
multiple design options. For example:

• Design the layout of your template using any application that generates documents
that can be converted to PDF

• Scan a paper document to use as a template

• Use a PDF document from a third-party source, such as a Web site

Note: The steps required to create a template from a third-party PDF
depend on whether form fields have been added to the document. For
more information, see Creating a Template from a Third-Party PDF
Form, page 3-16.

If you are designing the layout, note that once you have converted to PDF, your layout
is treated like a set background. When you mark up the template, you draw fields on
top of this background. To edit the layout, you must edit your original document and
then convert back to PDF.

For this reason, the PDF template is not recommended for documents that will require
frequent updates to the layout. However, it is appropriate for forms that will have a
fixed layout, such as invoices or purchase orders.

Supported Modes
XML Publisher supports Adobe Acrobat 5.0 (PDF specification version 1.4). If you are
using Adobe Acrobat Professional 6.0 (or later), use the Reduce File Size Option (from
the File menu) to save your file as Adobe Acrobat 5.0 compatible.

3-2 Oracle XML Publisher Core Components Guide

For PDF conversion, XML Publisher supports any PDF conversion utility, such as
Adobe Acrobat Distiller.

Designing the Layout
To design the layout of your template you can use any desktop application that
generates documents that can be converted to PDF. Or, scan in an original paper
document to use as the background for the template.

The following is the layout for a sample purchase order. It was designed using
Microsoft Word and converted to PDF using Adobe Acrobat Distiller.

Creating a PDF Template 3-3

The following is the XML data that will be used as input to this template:
<?xml version="1.0"?>
<POXPRPOP2>
 <G_HEADERS>
 <POH_PO_NUM>1190-1</POH_PO_NUM>
 <POH_REVISION_NUM>0</POH_REVISION_NUM>
 <POH_SHIP_ADDRESS_LINE1>3455 108th Avenue</POH_SHIP_ADDRESS_LINE1>
<POH_SHIP_ADDRESS_LINE2></POH_SHIP_ADDRESS_LINE2>
<POH_SHIP_ADDRESS_LINE3></POH_SHIP_ADDRESS_LINE3>
<POH_SHIP_ADR_INFO>Seattle, WA 98101</POH_SHIP_ADR_INFO>
<POH_SHIP_COUNTRY>United States</POH_SHIP_COUNTRY>
<POH_VENDOR_NAME>Allied Manufacturing</POH_VENDOR_NAME>
<POH_VENDOR_ADDRESS_LINE1>1145 Brokaw Road</POH_VENDOR_ADDRESS_LINE1>
<POH_VENDOR_ADR_INFO>San Jose, CA 95034</POH_VENDOR_ADR_INFO>
<POH_VENDOR_COUNTRY>United States</POH_VENDOR_COUNTRY>
<POH_BILL_ADDRESS_LINE1>90 Fifth Avenue</POH_BILL_ADDRESS_LINE1>
<POH_BILL_ADR_INFO>New York, NY 10022-3422</POH_BILL_ADR_INFO>
<POH_BILL_COUNTRY>United States</POH_BILL_COUNTRY>
<POH_BUYER>Smith, J</POH_BUYER>
<POH_PAYMENT_TERMS>45 Net (terms date + 45)</POH_PAYMENT_TERMS>
<POH_SHIP_VIA>UPS</POH_SHIP_VIA>
<POH_FREIGHT_TERMS>Due</POH_FREIGHT_TERMS>
<POH_CURRENCY_CODE>USD</POH_CURRENCY_CODE>
<POH_CURRENCY_CONVERSION_RATE></POH_CURRENCY_CONVERSION_RATE>
<LIST_G_LINES>
<G_LINES>
<POL_LINE_NUM>1</POL_LINE_NUM>
<POL_VENDOR_PRODUCT_NUM></POL_VENDOR_PRODUCT_NUM>
<POL_ITEM_DESCRIPTION>PCMCIA II Card Holder</POL_ITEM_DESCRIPTION>
<POL_QUANTITY_TO_PRINT></POL_QUANTITY_TO_PRINT>
<POL_UNIT_OF_MEASURE>Each</POL_UNIT_OF_MEASURE>
<POL_PRICE_TO_PRINT>15</POL_PRICE_TO_PRINT>
<C_FLEX_ITEM>CM16374</C_FLEX_ITEM>
<C_FLEX_ITEM_DISP>CM16374</C_FLEX_ITEM_DISP>
<PLL_QUANTITY_ORDERED>7500</PLL_QUANTITY_ORDERED>
<C_AMOUNT_PLL>112500</C_AMOUNT_PLL>
<C_AMOUNT_PLL_DISP>112,500.00 </C_AMOUNT_PLL_DISP>
</G_LINES>
</LIST_G_LINES>
<C_AMT_POL_RELEASE_TOTAL_ROUND>312420/<C_AMT_POL_RELEASE_TOTAL_ROUND>
</G_HEADERS>
</POXPRPOP2>

Adding Markup to the Template Layout
After you have converted your document to PDF, you define form fields that will
display the data from the XML input file. These form fields are placeholders for the
data.

The process of associating the XML data to the PDF template is the same as the process
for the RTF template. See: Associating the XML Data to the Template Layout:
Associating the XML data to the template layout, page 2-3.

When you draw the form fields in Adobe Acrobat, you are drawing them on top of the
layout that you designed. There is not a relationship between the design elements on
your template and the form fields. You therefore must place the fields exactly where

3-4 Oracle XML Publisher Core Components Guide

you want the data to display on the template

Creating a Placeholder
You can define a placeholder as text, a check box, or a radio button, depending on how
you want the data presented.

Note: If you are using Adobe Acrobat 5.0, the Form Tool is available
from the standard toolbar. If you are using Adobe Acrobat 6.0 or later,
display the Forms Toolbar from the Tools menu by selecting Tools >
Advanced Editing > Forms > Show Forms Toolbar.

Naming the Placeholder
The name of the placeholder must match the XML source field name.

Creating a Text Placeholder
To create a text placeholder in your PDF document:

Acrobat 5.0 Users:
1. Select the Form Tool from the Acrobat toolbar.

2. Draw a form field box in the position on the template where you want the field to
display. Drawing the field opens the Field Properties dialog box.

3. In the Name field of the Field Properties dialog box, enter a name for the field.

4. Select Text from the Type drop down menu.

You can use the Field Properties dialog box to set other attributes for the
placeholder. For example, enforce maximum character size, set field data type, data
type validation, visibility, and formatting.

5. If the field is not placed exactly where desired, drag the field for exact placement.

Acrobat 6.0 (and later) Users:
1. Select the Text Field Tool from the Forms Toolbar.

2. Draw a form field box in the position on the template where you want the field to
display. Drawing the field opens the Text Field Properties dialog box.

3. On the General tab, enter a name for the placeholder in the Name field.

You can use the Text Field Properties dialog box to set other attributes for the
placeholder. For example, enforce maximum character size, set field data type, data

Creating a PDF Template 3-5

type validation, visibility, and formatting.

4. If the field is not placed exactly where desired, drag the field for exact placement.

Supported Field Properties Options
XML Publisher supports the following options available from the Field Properties
dialog box. For more information about these options, see the Adobe Acrobat
documentation.

• General

• Read Only

The setting of this check box in combination with a set of configuration
properties control the read-only/updateable state of the field in the output PDF.
See Setting Fields as Updateable or Read Only, page 3-15.

• Appearance

• Border Settings: color, background, width, and style

• Text Settings: color, font, size

• Common Properties: read only, required, visible/hidden, orientation (in
degrees)

(In Acrobat 6.0, these are available from the General tab)

• Border Style

• Options tab

• Multi-line

• Scrolling Text

• Format tab - Number category options only

• Calculate tab - all calculation functions

Creating a Check Box
A check box is used to present options from which more than one can be selected. Each
check box represents a different data element. You define the value that will cause the
check box to display as "checked."

For example, a form contains a check box listing of automobile options such as Power
Steering, Power Windows, Sunroof, and Alloy Wheels. Each of these represents a
different element from the XML file. If the XML file contains a value of "Y" for any of

3-6 Oracle XML Publisher Core Components Guide

these fields, you want the check box to display as checked. All or none of these options
may be selected.

To create a check box field:

Acrobat 5.0 Users:
1. Draw the form field.

2. In the Field Properties dialog box, enter a Name for the field.

3. Select Check Box from the Type drop down list.

4. Select the Options tab.

5. In the Export Value field enter the value that the XML data field should match to
enable the "checked" state.

For the example, enter "Y" for each check box field.

Acrobat 6.0 (and later) Users:
1. Select the Check Box Tool from the Forms Toolbar.

2. Draw the check box field in the desired position.

3. On the General tab of the Check Box Properties dialog box, enter a Name for the
field.

4. Select the Options tab.

5. In the Export Value field enter the value that the XML data field should match to
enable the "checked" state.

For the example, enter "Y" for each check box field.

Creating a Radio Button Group
A radio button group is used to display options from which only one can be selected.

For example, your XML data file contains a field called <SHIPMENT_METHOD>. The
possible values for this field are "Standard" or "Overnight". You represent this field in
your form with two radio buttons, one labeled "Standard" and one labeled "Overnight".
Define both radio button fields as placeholders for the <SHIPMENT_METHOD> data
field. For one field, define the "on" state when the value is "Standard". For the other,
define the "on" state when the value is "Overnight".

To create a radio button group:

Creating a PDF Template 3-7

Acrobat 5.0 Users:
1. Draw the form field.

2. On the Field Properties dialog box, enter a Name for the field. Each radio button
you define to represent this value can be named differently, but must be mapped to
the same XML data field.

3. Select Radio Button from the Type drop down list.

4. Select the Options tab.

5. In the Export Value field enter the value that the XML data field should match to
enable the "on" state.

For the example, enter "Standard" for the field labeled "Standard". Enter
"Overnight" for the field labeled "Overnight".

Acrobat 6.0 (and later) Users:
1. Select the Radio Button Tool from the Forms Toolbar.

2. Draw the form field in the position desired on the template.

3. On the General tab of the Radio Button Properties dialog, enter a Name for the
field. Each radio button you define to represent this value can be named differently,
but must be mapped to the same XML data field.

4. Select the Options tab.

5. In the Export Value field enter the value that the XML data field should match to
enable the "on" state.

For the example, enter "Standard" for the field labeled "Standard". Enter
"Overnight" for the field labeled "Overnight".

Defining Groups of Repeating Fields
In the PDF template, you explicitly define the area on the page that will contain the
repeating fields. For example, on the purchase order template, the repeating fields
should display in the block of space between the Item header row and the Total field.

To define the area to contain the group of repeating fields:

1. Insert a form field at the beginning of the area that is to contain the group. (Acrobat
6.0 users select the Text Field Tool, then draw the form field.)

2. In the Name field of the Field Properties window, enter any unique name you

3-8 Oracle XML Publisher Core Components Guide

choose. This field is not mapped.

3. Acrobat 5.0 users: Select Text from the Type drop down list.

4. In the Short Description field (Acrobat 5.0) or the Tooltip field (Acrobat 6.0) of the
Field Properties window, enter the following syntax:

<?rep_field="BODY_START"?>

5. Define the end of the group area by inserting a form field at the end of the area the
that is to contain the group.

6. In the Name field of the Field Properties window, enter any unique name you
choose. This field is not mapped. Note that the name you assign to this field must
be different from the name you assigned to the "body start" field.

7. Acrobat 5.0 users: Select Text from the Type drop down list.

8. In the Short Description field (Acrobat 5.0) or the Tooltip field (Acrobat 6.0) of the
Field Properties window, enter the following syntax:

<?rep_field="BODY_END"?>

To define a group of repeating fields:

1. Insert a placeholder for the first element of the group.

Note: The placement of this field in relationship to the
BODY_START tag defines the distance between the repeating rows
for each occurrence. See Placement of Repeating Fields, page 3-14.

2. For each element in the group, enter the following syntax in the Short Description
field (Acrobat 5.0) or the Tooltip field (Acrobat 6.0):

<?rep_field="T1_Gn"?>

where n is the row number of the item on the template.

For example, the group in the sample report is laid out in three rows.

• For the fields belonging to the row that begins with "PO_LINE_NUM" enter

<?rep_field="T1_G1"?>

• For the fields belonging to the row that begins with "C_FLEX_ITEM_DISP"
enter

<?rep_field="T1_G2"?>

• For the fields belonging to the row that begins with "C_SHIP_TO_ADDRESS"
enter

Creating a PDF Template 3-9

<?rep_field="T1_G3"?>

The following graphic shows the entries for the Short Description/Tooltip field:

3. (Optional) Align your fields. To ensure proper alignment of a row of fields, it is
recommended that you use Adobe Acrobat's alignment feature.

Adding Page Numbers and Page Breaks
This section describes how to add the following page-features to your PDF template:

• Page Numbers

• Page Breaks

Adding Page Numbers
To add page numbers, define a field in the template where you want the page number
to appear and enter an initial value in that field as follows:

1. Decide the position on the template where you want the page number to be
displayed.

2. Create a placeholder field called @pagenum@ (see Creating a Text Placeholder, page
3-4).

3. Enter a starting value for the page number in the Default field. If the XML data
includes a value for this field, the start value assigned in the template will be
overridden. If no start value is assigned, it will default to 1.

The figure below shows the Field Properties dialog for a page number field:

3-10 Oracle XML Publisher Core Components Guide

Adding Page Breaks
You can define a page break in your template to occur after a repeatable field. To insert
a page break after the occurrence of a specific field, add the following to the syntax in
the Short Description field of the Field Properties dialog box (use the Tooltip field for
Acrobat 6.0):

page_break="yes"

For example:

<?rep_field="T1_G3", page_break="yes"?>

The following example demonstrates inserting a page break in a template. The XML
sample contains salaries of employees by department:

Creating a PDF Template 3-11

<?xml version="1.0"?>
<! - Generated by Oracle Reports version 6.0.8.22.0 - >
<ROOT>
 <LIST_G_DEPTNO>
 <G_DEPTNO>
 <DEPTNO>10</DEPTNO>
 <LIST_G_EMPNO>
 <G_EMPNO>
 <EMPNO>7782</EMPNO>
 <ENAME>CLARK</ENAME>
 <JOB>MANAGER</JOB>
 <SAL>2450</SAL>
 </G_EMPNO>
 <G_EMPNO>
 <EMPNO>7839</EMPNO>
 <ENAME>KING</ENAME>
 <JOB>PRESIDENT</JOB>
 <SAL>5000</SAL>
 </G_EMPNO>
 <G_EMPNO>
 <EMPNO>125</EMPNO>
 <ENAME>KANG</ENAME>
 <JOB>CLERK</JOB>
 <SAL>2000</SAL>
 </G_EMPNO>
 <G_EMPNO>
 <EMPNO>7934</EMPNO>
 <ENAME>MILLER</ENAME>
 <JOB>CLERK</JOB>
 <SAL>1300</SAL>
 </G_EMPNO>
 <G_EMPNO>
 <EMPNO>123</EMPNO>
 <ENAME>MARY</ENAME>
 <JOB>CLERK</JOB>
 <SAL>400</SAL>
 </G_EMPNO>
 <G_EMPNO>
 <EMPNO>124</EMPNO>
 <ENAME>TOM</ENAME>
 <JOB>CLERK</JOB>
 <SAL>3000</SAL>
 </G_EMPNO>
 </LIST_G_EMPNO>
 <SUMSALPERDEPTNO>9150</SUMSALPERDEPTNO>
 </G_DEPTNO>

 <G_DEPTNO>
 <DEPTNO>30</DEPTNO>
 <LIST_G_EMPNO>
 .
 .
 .

 </LIST_G_EMPNO>
 <SUMSALPERDEPTNO>9400</SUMSALPERDEPTNO>
 </G_DEPTNO>
 </LIST_G_DEPTNO>
 <SUMSALPERREPORT>29425</SUMSALPERREPORT>
</ROOT>

3-12 Oracle XML Publisher Core Components Guide

We want to report the salary information for each employee by department as shown in
the following template:

To insert a page break after each department, insert the page break syntax in the Short
Description (or Tooltip field) for the SUMSALPERDEPTNO field as follows:
<?rep_field="T1_G3", page_break="yes"?>

The Field Properties dialog box for the field is shown in the following figure:

Note that in order for the break to occur, the field must be populated with data from the
XML file.

The sample report with data is shown in the following figure:

Creating a PDF Template 3-13

Performing Calculations
Adobe Acrobat provides a calculation function in the Field Properties dialog box. To
create a field to display a calculated total on your report:

1. Create a text field to display the calculated total. Give the field any Name you
choose.

2. In the Field Properties dialog box, select the Format tab.

3. Select Number from the Category list.

4. Select the Calculate tab.

5. Select the radio button next to "Value is the operation of the following fields:"

6. Select sum from the drop down list.

7. Select the Pick... button and select the fields that you want totaled.

Completed PDF Template
The following figure shows the completed PDF template:

3-14 Oracle XML Publisher Core Components Guide

Runtime Behavior

Placement of Repeating Fields
As already noted, the placement, spacing, and alignment of fields that you create on the
template are independent of the underlying form layout. At runtime, XML Publisher
places each repeating row of data according to calculations performed on the placement
of the rows of fields that you created, as follows:

First occurrence:

Creating a PDF Template 3-15

The first row of repeating fields will display exactly where you have placed them on the
template.

Second occurrence, single row:

To place the second occurrence of the group, XML Publisher calculates the distance
between the BODY_START tag and the first field of the first occurrence. The first field
of the second occurrence of the group will be placed this calculated distance below the
first occurrence.

Second occurrence, multiple rows:

If the first group contains multiple rows, the second occurrence of the group will be
placed the calculated distance below the last row of the first occurrence.

The distance between the rows within the group will be maintained as defined in the
first occurrence.

Setting Fields as Updateable or Read Only
When you define a field in the template you have the option of selecting "Read Only"
for the field, as shown in the following sample Text Field Properties dialog:

Regardless of what you choose at design time for the Read Only check box, the default
behavior of the PDF processing engine is to set all fields to read-only for the output
PDF. You can change this behavior using the following configuration properties in the
XML Publisher Configuration File, page 7-1:

• all-field-readonly

3-16 Oracle XML Publisher Core Components Guide

• all-fields-readonly-asis

• remove-pdf-fields

Note that in the first two options, you are setting a state for the field in the PDF output.
The setting of individual fields can still be changed in the output using Adobe Acrobat
Professional. Also note that because the fields are maintained, the data is still separate
and can be extracted. In the third option, "remove-pdf-fields" the structure is flattened
and no field/data separation is maintained.

To make all fields updateable:

Set the "all-field-readonly" property to "false". This sets the Read Only state to "false" for
all fields regardless of the individual field settings at design time.

To make all fields read only:

This is the default behavior. No settings are required.

To maintain the Read Only check box selection for each field:

To maintain the setting of the Read Only check box on a field-by-field basis in the
output PDF, set the property "all-fields-readonly-asis" to "true". This property will
override the settings of "all-field-readonly".

To remove all fields from the output PDF:

Set the property "remove-pdf-fields" to "true".

Overflow Data
When multiple pages are required to accommodate the occurrences of repeating rows of
data, each page will display identically except for the defined repeating area, which will
display the continuation of the repeating data. For example, if the item rows of the
purchase order extend past the area defined on the template, succeeding pages will
display all data from the purchase order form with the continuation of the item rows.

Creating a Template from a Third-Party PDF
There are many PDF forms available online that you may want to use as templates for
your report data. For example, government forms that your company is required to
submit. You can use these downloaded PDF files as your report templates, supplying
the XML data at runtime to fill the report out.

Some of these forms already have form fields defined, some do not. If the form fields
are not already defined in the downloaded PDF, you must create them. See Adding
Markup to the Template Layout, page 3-3 for instructions on inserting the form field
placeholders.

Creating a PDF Template 3-17

To Use a Third-Party PDF Form as a Template
1. Copy the PDF file to your local system.

2. Open the file in Adobe Acrobat.

3. Select the Text Field Tool (Acrobat 6.0 users) or the Form Tool (Acrobat 5.0 users).
This will highlight text fields that have already been defined.

The following figure shows a sample W-4 PDF form after selecting the Text Field
Tool to highlight the text fields (in Acrobat 6.0).

To map the existing form fields to the data from your incoming XML file, you must
rename the fields to match the element names in your XML file.

4. Open the text form field Properties dialog by either double-clicking the field, or by
selecting the field then selecting Properties from the right-mouse menu.

5. In the Name field, enter the element name from your input XML file.

6. Repeat for all fields that you want populated by your data file.

Creating an eText Template 4-1

4
Creating an eText Template

This chapter covers the following topics:

• Introduction

• Outbound eText Templates

Introduction
An eText template is an RTF-based template that is used to generate text output for
Electronic Funds Transfer (EFT) and Electronic Data Interchange (EDI). At runtime,
XML Publisher applies this template to an input XML data file to create an output text
file that can be transmitted to a bank or other customer. Because the output is intended
for electronic communication, the eText templates must follow very specific format
instructions for exact placement of data.

Note: An EFT is an electronic transmission of financial data and
payments to banks in a specific fixed-position format flat file (text).

EDI is similar to EFT except it is not only limited to the transmission of
payment information to banks. It is often used as a method of
exchanging business documents, such as purchase orders and invoices,
between companies. EDI data is delimiter-based, and also transmitted
as a flat file (text).

Files in these formats are transmitted as flat files, rather than printed on paper. The
length of a record is often several hundred characters and therefore difficult to layout
on standard size paper.

To accommodate the record length, the EFT and EDI templates are designed using
tables. Each record is represented by a table. Each row in a table corresponds to a field
in a record. The columns of the table specify the position, length, and value of the field.

These formats can also require special handling of the data from the input XML file.
This special handling can be on a global level (for example, character replacement and

4-2 Oracle XML Publisher Core Components Guide

sequencing) or on a record level (for example, sorting). Commands to perform these
functions are declared in command rows. Global level commands are declared in setup
tables.

At runtime, XML Publisher constructs the output file according to the setup commands
and layout specifications in the tables.

Prerequisites
This section is intended for users who are familiar with EDI and EFT transactions
audience for this section preparers of eText templates will require both functional and
technical knowledge. That is, functional expertise to understand bank and country
specific payment format requirements and sufficient technical expertise to understand
XML data structure and eText specific coding syntax commands, functions, and
operations.

Outbound eText Templates

Structure of eText Templates
There are two types of eText templates: fixed-position based (EFT templates) and
delimiter-based (EDI templates). The templates are composed of a series of tables. The
tables define layout and setup commands and data field definitions. The required data
description columns for the two types of templates vary, but the commands and
functions available are the same. A table can contain just commands, or it can contain
commands and data fields.

The following graphic shows a sample from an EFT template to display the general
structure of command and data rows:

Creating an eText Template 4-3

Commands that apply globally, or commands that define program elements for the
template, are "setup" commands. These must be specified in the initial table(s) of the
template. Examples of setup commands are Template Type and Character Set.

In the data tables you provide the source XML data element name (or static data) and
the specific placement and formatting definitions required by the receiving bank or
entity. You can also define functions to be performed on the data and conditional
statements.

The data tables must always start with a command row that defines the "Level." The
Level associates the table to an element from the XML data file, and establishes the
hierarchy. The data fields that are then defined in the table for the Level correspond to
the child elements of the XML element.

The graphic below illustrates the relationship between the XML data hierarchy and the
template Level. The XML element "RequestHeader" is defined as the Level. The data
elements defined in the table ("FileID" and "Encryption") are children of the
RequestHeader element.

4-4 Oracle XML Publisher Core Components Guide

The order of the tables in the template determines the print order of the records. At
runtime the system loops through all the instances of the XML element corresponding
to a table (Level) and prints the records belonging to the table. The system then moves
on to the next table in the template. If tables are nested, the system will generate the
nested records of the child tables before moving on to the next parent instance.

Command Rows, Data Rows, and Data Column Header Rows
The following figure shows the placement of Command Rows, Data Rows, and Data
Column Header Rows:

Creating an eText Template 4-5

Command rows are used to specify commands in the template. Command rows always
have two columns: command name and command parameter. Command rows do not
have column headings. The commands control the overall setup and record structures
of the template.

Blank rows can be inserted anywhere in a table to improve readability. Most often they
are used in the setup table, between commands. Blank rows are ignored by XML
Publisher when the template is parsed.

Data Column Header Rows
Data column headers specify the column headings for the data fields (such as Position,
Length, Format, Padding, and Comments). A column header row usually follows the
Level command in a table (or the sorting command, if one is used). The column header
row must come before any data rows in the table. Additional empty column header
rows can be inserted at any position in a table to improve readability. The empty rows
will be ignored at runtime.

The required data column header rows vary depending on the template type. See
Structure of the Data Row, page 4-12.

Data Rows
Data rows contain the data fields to correspond to the column header rows.

The content of the data rows varies depending on the template type. See Structure of
the Data Row, page 4-12.

4-6 Oracle XML Publisher Core Components Guide

Constructing the Data Tables
The data tables contain a combination of command rows and data field rows. Each data
table must begin with a Level command row that specifies its XML element. Each
record must begin with a New Record command that specifies the start of a new record,
and the end of a previous record (if any).

The required columns for the data fields vary depending on the Template Type.

Command Rows
The command rows always have two columns: command name and command
parameter. The supported commands are:

• Level

• New record

• Sort ascending

• Sort descending

• Display condition

The usage for each of these commands is described in the following sections.

Level Command
The level command associates a table with an XML element. The parameter for the level
command is an XML element. The level will be printed once for each instance the XML
element appears in the data input file.

The level commands define the hierarchy of the template. For example, Payment XML
data extracts are hierarchical. A batch can have multiple child payments, and a payment
can have multiple child invoices. This hierarchy is represented in XML as nested child
elements within a parent element. By associating the tables with XML elements through
the level command, the tables will also have the same hierarchical structure.

Similar to the closing tag of an XML element, the level command has a companion
end-level command. The child tables must be defined between the level and end-level
commands of the table defined for the parent element.

An XML element can be associated with only one level. All the records belonging to a
level must reside in the table of that level or within a nested table belonging to that
level. The end-level command will be specified at the end of the final table.

Following is a sample structure of an EFT file record layout:

• FileHeaderRecordA

• BatchHeaderRecordA

Creating an eText Template 4-7

• BatchHeaderRecordB

PaymentRecordA

PaymentRecordB

• InvoiceRecordA

• Batch FooterRecordC

• BatchFooterRecordD

• FileFooterRecordB

Following would be its table layout:

<LEVEL> RequestHeader

<NEW RECORD> FileHeaderRecordA

Data rows for the FileHeaderRecordA

<LEVEL> Batch

<NEW RECORD> BatchHeaderRecordA

Data rows for the BatchHeaderRecordA

<NEW RECORD> BatchHeaderRecordB

Data rows for the BatchHeaderRecordB

<LEVEL> Payment

<NEW RECORD> PaymentRecordA

Data rows for the PaymentRecordA

<NEW RECORD> PaymentRecordB

4-8 Oracle XML Publisher Core Components Guide

Data rows for the PaymentRecordB

<LEVEL> Invoice

<NEW RECORD> InvoiceRecordA

Data rows for the InvoiceRecordA

<END LEVEL> Invoice

<END LEVEL> Payment

<LEVEL> Batch

<NEW RECORD> BatchFooterRecordC

Data rows for the BatchFooterRecordC

<NEW RECORD> BatchFooterRecordD

Data rows for the BatchFooterRecordD

<END LEVEL> Batch

<LEVEL> RequestHeader

<NEW RECORD> FileFooterRecordB

Data rows for the FileFooterRecordB

<END LEVEL> RequestHeader

Multiple records for the same level can exist in the same table. However, each table can
only have one level defined. In the example above, the BatchHeaderRecordA and
BatchHeaderRecordB are both defined in the same table. However, note that the END

Creating an eText Template 4-9

LEVEL for the Payment must be defined in its own separate table after the child
element Invoice. The Payment END LEVEL cannot reside in the same table as the
Invoice Level.

Note that you do not have to use all the levels from the data extract in your template.
For example, if an extract contains the levels: RequestHeader > Batch > Payment >
Invoice, you can use just the batch and invoice levels. However, the hierarchy of the
levels must be maintained.

The table hierarchy determines the order that the records are printed. For each parent
XML element, the records of the corresponding parent table are printed in the order
they appear in the table. The system loops through the instances of the child XML
elements corresponding to the child tables and prints the child records according to
their specified order. The system then prints the records of the enclosing (end-level)
parent table, if any.

For example, given the EFT template structure above, assume the input data file
contains the following:

• Batch1

• Payment1

• Invoice1

• Invoice2

• Payment2

• Invoice1

• Batch2

• Payment1

• Invoice1

• Invoice2

• Invoice3

This will generate the following printed records:

Record Order Record Type Description

1 FileHeaderRecordA One header record for the
EFT file

4-10 Oracle XML Publisher Core Components Guide

Record Order Record Type Description

2 BatchHeaderRecordA For Batch1

3 BatchHeaderRecordB For Batch1

4 PaymentRecordA For Batch1, Payment1

5 PaymentRecordB For Batch1, Payment1

6 InvoiceRecordA For Batch1, Payment1,
Invoice1

7 InvoiceRecordA For Batch1, Payment1,
Invoice2

8 PaymentRecordA For Batch1, Payment2

9 PaymentrecordB For Batch1, Payment2

10 InvoiceRecordA For Batch1, Payment2,
Invoice1

11 BatchFooterRecordC For Batch1

12 BatchFooterRecordD For Batch1

13 BatchHeaderRecordA For Batch2

14 BatchHeaderRecordB For Batch2

15 PaymentRecordA For Batch2, Payment1

16 PaymentRecordB For Batch2, Payment1

17 InvoiceRecordA For Batch2, Payment1,
Invoice1

18 InvoiceRecordA For Batch2, Payment1,
Invoice2

19 InvoiceRecordA For Batch2, Payment1,
Invoice3

Creating an eText Template 4-11

Record Order Record Type Description

20 BatchFooterRecordC For Batch2

21 BatchFooterRecordD For Batch2

22 FileFooterRecordB One footer record for the EFT
file

New Record Command
The new record command signifies the start of a record and the end of the previous one,
if any. Every record in a template must start with the new record command. The record
continues until the next new record command, or until the end of the table or the end of
the level command.

A record is a construct for the organization of the elements belonging to a level. The
record name is not associated with the XML input file.

A table can contain multiple records, and therefore multiple new record commands. All
the records in a table are at the same hierarchy level. They will be printed in the order in
which they are specified in the table.

The new record command can have a name as its parameter. This name becomes the
name for the record. The record name is also referred to as the record type. The name
can be used in the COUNT function for counting the generated instances of the record.
See COUNT, page 4-28 function, for more information.

Consecutive new record commands (or empty records) are not allowed.

Sort Ascending and Sort Descending Commands
Use the sort ascending and sort descending commands to sort the instances of a level.
Enter the elements you wish to sort by in a comma-separated list. This is an optional
command. When used, it must come right after the (first) level command and it applies
to all records of the level, even if the records are specified in multiple tables.

Display Condition Command
The display condition command specifies when the enclosed record or data field group
should be displayed. The command parameter is a boolean expression. When it
evaluates to true, the record or data field group is displayed. Otherwise the record or
data field group is skipped.

The display condition command can be used with either a record or a group of data
fields. When used with a record, the display condition command must follow the new
record command. When used with a group of data fields, the display condition
command must follow a data field row. In this case, the display condition will apply to
the rest of the fields through the end of the record.

Consecutive display condition commands are merged as AND conditions. The merged
display conditions apply to the same enclosed record or data field group.

4-12 Oracle XML Publisher Core Components Guide

Structure of the Data Rows
The output record data fields are represented in the template by table rows. In
FIXED_POSITION_BASED templates, each row has the following attributes (or
columns):

• Position

• Length

• Format

• Pad

• Data

• Comments

The first five columns are required and must appear in the order listed.

For DELIMITER_BASED templates, each data row has the following attributes
(columns):

• Maximum Length

• Format

• Data

• Tag

• Comments

The first three columns are required and must be declared in the order stated.

In both template types, the Comments column is optional and ignored by the system.
You can insert additional information columns if you wish, as all columns after the
required ones are ignored.

The usage rules for these columns are as follows:

Position
This column is only used with FIXED_POSITION_BASED templates. The Position
column is a "Comments" column that can be used to indicate the starting position of the
field in the record. Use your entries in this column to track the length of your template.
The actual positions of fields in the output eText file are determined by the lengths
specified in the Length field. See Length/Maximum Length below.

Note that although the information in the column is not required, the column is
required; furthermore it is a good design practice to note the starting positions.

Creating an eText Template 4-13

Length/Maximum Length
Specifies the length of the field. The unit is in number of characters. For
FIXED_POSITION_BASED templates, all the fields are fixed length. If the data is less
than the specified length, it is padded. If the data is longer, it is truncated. The
truncation always occurs on the right.

For DELIMITER_BASED templates, the maximum length of the field is specified. If the
data exceeds the maximum length, it will be truncated. Data is not padded if it is less
than the maximum length.

Format Column
Specifies the data type and format setting. There are three accepted data types:

• Alpha

• Number

• Date

Refer to Field Level Key Words, page 4-33 for their usage.

Number Data Type
Numeric data has three optional format settings: Integer, Decimal, or you can define a
format mask. Specify the optional settings with the Number data type as follows:

• Number, Integer

• Number, Decimal

• Number, <format mask>

For example:

Number, ###,###.00

The Integer format uses only the whole number portion of a numeric value and
discards the decimal. The Decimal format uses only the decimal portion of the numeric
value and discards the integer portion.

The following table shows examples of how to set a format mask. When specifying the
mask, # represents that a digit is to be displayed when present in the data; 0 represents
that the digit placeholder is to be displayed whether data is present or not.

When specifying the format mask, the group separator must always be "," and the
decimal separator must always be "." To alter these in the actual output, you must use
the Setup Commands NUMBER THOUSANDS SEPARATOR and NUMBER DECIMAL
SEPARATOR. See Setup Command Tables, page 4-16 for details on these commands.

The following table shows sample Data, Format Specifier, and Output. The Output
assumes the default group and decimal separators.

4-14 Oracle XML Publisher Core Components Guide

Data Format Specifier Output

123456789 ###,###.00 123,456,789.00

123456789.2 ###.00 123456789.20

1234.56789 ###.000 1234.568

123456789.2 # 123456789

123456789.2 #.## 123456789.2

123456789 #.## 123456789

Date Data Type
The Date data type format setting must always be explicitly stated. The format setting
follows the SQL date styles, such as MMDDYY.

Mapping EDI Delimiter-Based Data Types to eText Data Types
Some EDI (DELIMITER_BASED) formats use more descriptive data types. These are
mapped to the three template data types in the following table:

ASC X12 Data Type Format Template Data Type

A - Alphabetic Alpha

AN -Alphanumeric Alpha

B - Binary Number

CD - Composite data element N/A

CH - Character Alpha

DT - Date Date

FS - Fixed-length string Alpha

ID - Identifier Alpha

IV - Incrementing Value Number

Creating an eText Template 4-15

ASC X12 Data Type Format Template Data Type

Nn - Numeric Number

PW - Password Alpha

R - Decimal number Numer

TM - Time Date

Now assume you have specified the following setup commands:

NUMBER THOUSANDS SEPARATOR .

NUMBER DECIMAL SEPARATOR ,

The following table shows the Data, Format Specifier, and Output for this case. Note
that the Format Specifier requires the use of the default separators, regardless of the
setup command entries.

Data Format Specifier Output

123456789 ###,###.00 123.456.789,00

123456789.2 ###.00 123456789,20

1234.56789 ###.000 1234,568

123456789.2 # 123456789

123456789.2 #.## 123456789,2

123456789 #.## 123456789

Pad
This applies to FIXED_POSITION_BASED templates only. Specify the padding side (L =
left or R = right) and the character. Both numeric and alphanumeric fields can be
padded. If this field is not specified, Numeric fields are left-padded with "0"; Alpha
fields are right-padded with spaces.

Example usage:

4-16 Oracle XML Publisher Core Components Guide

• To pad a field on the left with a "0", enter the following in the Pad column field:

L, '0'

• To pad a field on the right with a space, enter the following the Pad column field:

R, ' '

Data
Specifies the XML element from the data extract that is to populate the field. The data
column can simply contain the XML tag name, or it can contain expressions and
functions. For more information, see Expressions, Control Structure, and Functions,
page 4-27.

Tag
Acts as a comment column for DELIMITER_BASED templates. It specifies the reference
tag in EDIFACT formats, and the reference IDs in ASC X12.

Comments
Use this column to note any free form comments to the template. Usually this column is
used to note the business requirement and usage of the data field.

Setup Command Tables

Setup Command Table
A template always begins with a table that specifies the setup commands. The setup
commands define global attributes, such as template type and output character set and
program elements, such as sequencing and concatenation.

The setup commands are:

• Template Type

• Output Character Set

• New Record Character

• Invalid Characters

• Replace Characters

• Number Thousands Separator

• Number Decimal Separator

• Define Level

• Define Sequence

• Define Concatenation

Creating an eText Template 4-17

Some example setup tables are shown in the following figures:

4-18 Oracle XML Publisher Core Components Guide

Template Type Command
This command specifies the type of template. There are two types:
FIXED_POSITION_BASED and DELIMITER_BASED.

Use the FIXED_POSITION_BASED templates for fixed-length record formats, such as
EFTs. In these formats, all fields in a record are a fixed length. If data is shorter than the
specified length, it will be padded. If longer, it will be truncated. The system specifies
the default behavior for data padding and truncation. Examples of fixed position based
formats are EFTs in Europe, and NACHA ACH file in the U.S.

In a DELIMITER_BASED template, data is never padded and only truncated when it
has reached a maximum field length. Empty fields are allowed (when the data is null).
Designated delimiters are used to separate the data fields. If a field is empty, two
delimiters will appear next to each other. Examples of delimited-based templates are
EDI formats such as ASC X12 820 and UN EDIFACT formats - PAYMUL, DIRDEB, and
CREMUL.

In EDI formats, a record is sometimes referred to as a segment. An EDI segment is
treated the same as a record. Start each segment with a new record command and give

Creating an eText Template 4-19

it a record name. You should have a data field specifying the segment name as part of
the output data immediately following the new record command.

For DELIMITER_BASED templates, you insert the appropriate data field delimiters in
separate rows between the data fields. After every data field row, you insert a delimiter
row. You can insert a placeholder for an empty field by defining two consecutive
delimiter rows.

Empty fields are often used for syntax reasons: you must insert placeholders for empty
fields so that the fields that follow can be properly identified.

There are different delimiters to signify data fields, composite data fields, and end of
record. Some formats allow you to choose the delimiter characters. In all cases you
should use the same delimiter consistently for the same purpose to avoid syntax errors.

In DELIMITER_BASED templates, the <POSITION> and <PAD> columns do not apply.
They are omitted from the data tables.

Some DELIMITER_BASED templates have minimum and maximum length
specifications. In those cases Oracle Payments validates the length.

Define Level Command
Some formats require specific additional data levels that are not in the data extract. For
example, some formats require that payments be grouped by payment date. Using the
Define Level command, a payment date group can be defined and referenced as a level
in the template, even though it is not in the input extract file.

When you use the Define Level command you declare a base level that exists in the
extract. The Define Level command inserts a new level one level higher than the base
level of the extract. The new level functions as a grouping of the instances of the base
level.

The Define Level command is a setup command, therefore it must be defined in the
setup table. It has three subcommands:

• Base Level Command - defines the level (XML element) from the extract that the
new level is based on. The Define Level command must always have one and only
one base level subcommand.

• Grouping Criteria - defines the XML extract elements that are used to group the
instances of the base level to form the instances of the new level. The parameter of
the grouping criteria command is a comma-separated list of elements that specify
the grouping conditions.

The order of the elements determines the hierarchy of the grouping. The instances
of the base level are first divided into groups according to the values of the first
criterion, then each of these groups is subdivided into groups according to the
second criterion, and so on. Each of the final subgroups will be considered as an
instance of the new level.

• Group Sort Ascending or Group Sort Descending - defines the sorting of the group.
Insert the <GROUP SORT ASCENDING> or <GROUP SORT DESCENDING>

4-20 Oracle XML Publisher Core Components Guide

command row anywhere between the <DEFINE LEVEL> and <END DEFINE
LEVEL> commands. The parameter of the sort command is a comma-separated list
of elements by which to sort the group.

For example, the following table shows five payments under a batch:

Payment Instance PaymentDate (grouping
criterion 1)

PayeeName (grouping
criterion 2)

Payment1 PaymentDate1 PayeeName1

Payment2 PaymentDate2 PayeeName1

Payment3 PaymentDate1 PayeeName2

Payment4 PaymentDate1 PayeeName1

Payment5 PaymentDate1 PayeeName3

In the template, construct the setup table as follows to create a level called
"PaymentsByPayDatePayee" from the base level "Payment" grouped according to
PaymentDate and Payee Name. Add the Group Sort Ascending command to sort ea:

<DEFINE LEVEL> PaymentsByPayDatePayee

<BASE LEVEL> Payment

<GROUPING CRITERIA> PaymentDate, PayeeName

<GROUP SORT ASCENDING> PaymentDate, PayeeName

<END DEFINE LEVEL> PaymentsByPayDatePayee

The five payments will generate the following four groups (instances) for the new level:

Payment Group Instance Group Criteria Payments in Group

Group1 PaymentDate1, PayeeName1 Payment1, Payment4

Group2 PaymentDate1, PayeeName2 Payment3

Creating an eText Template 4-21

Payment Group Instance Group Criteria Payments in Group

Group3 PaymentDate1, PayeeName3 Payment5

Group4 PaymentDate2, PayeeName1 Payment2

The order of the new instances is the order that the records will print. When evaluating
the multiple grouping criteria to form the instances of the new level, the criteria can be
thought of as forming a hierarchy. The first criterion is at the top of the hierarchy, the
last criterion is at the bottom of the hierarchy.

Generally there are two kinds of format-specific data grouping scenarios in EFT
formats. Some formats print the group records only; others print the groups with the
individual element records nested inside groups. Following are two examples for these
scenarios based on the five payments and grouping conditions previously illustrated.

Example
First Scenario: Group Records Only

EFT File Structure:

• BatchRec

• PaymentGroupHeaderRec

• PaymentGroupFooterRec

Record Sequence Record Type Description

1 BatchRec

2 PaymentGroupHeaderRec For group 1 (PaymentDate1, PayeeName1)

3 PaymentGroupFooterRec For group 1 (PaymentDate1, PayeeName1)

4 PaymentGroupHeaderRec For group 2 (PaymentDate1, PayeeName2)

5 PaymentGroupFooterRec For group 2 (PaymentDate1, PayeeName2)

6 PaymentGroupHeaderRec For group 3 (PaymentDate1, PayeeName3)

7 PaymentGroupFooterRec For group 3 (PaymentDate1, PayeeName3)

8 PaymentGroupHeaderRec For group 4 (PaymentDate2, PayeeName1)

4-22 Oracle XML Publisher Core Components Guide

Record Sequence Record Type Description

9 PaymentGroupFooterRec For group 4 (PaymentDate2, PayeeName1)

Example
Scenario 2: Group Records and Individual Records

EFT File Structure:

BatchRec

• PaymentGroupHeaderRec

• PaymentRec

• PaymentGroupFooterRec

Generated output:

Record Sequence Record Type Description

1 BatchRec

2 PaymentGroupHeaderRec For group 1 (PaymentDate1, PayeeName1)

3 PaymentRec For Payment1

4 PaymentRec For Payment4

5 PaymentGroupFooterRec For group 1 (PaymentDate1, PayeeName1)

6 PaymentGroupHeaderRec For group 2 (PaymentDate1, PayeeName2)

7 PaymentRec For Payment3

8 PaymentGroupFooterRec For group 2 (PaymentDate1, PayeeName2)

9 PaymentGroupHeaderRec For group 3 (PaymentDate1, PayeeName3)

10 PaymentRec For Payment5

11 PaymentGroupFooterRec For group 3 (PaymentDate1, PayeeName3)

Creating an eText Template 4-23

Record Sequence Record Type Description

12 PaymentGroupHeaderRec For group 4 (PaymentDate2, PayeeName1)

13 PaymentRec For Payment2

14 PaymentGroupFooterRec For group 4 (PaymentDate2, PayeeName1)

Once defined with the Define Level command, the new level can be used in the
template in the same manner as a level occurring in the extract. However, the records of
the new level can only reference the base level fields that are defined in its grouping
criteria. They cannot reference other base level fields other than in summary functions.

For example, the PaymentGroupHeaderRec can reference the PaymentDate and
PayeeName in its fields. It can also reference thePaymentAmount (a payment level
field) in a SUM function. However, it cannot reference other payment level fields, such
as PaymentDocName or PaymentDocNum.

The Define Level command must always have one and only one grouping criteria
subcommand. The Define Level command has a companion end-define level command.
The subcommands must be specified between the define level and end-define level
commands. They can be declared in any order.

Define Sequence Command
The define sequence command define a sequence that can be used in conjunction with
the SEQUENCE_NUMBER function to index either the generated EFT records or the
extract instances (the database records). The EFT records are the physical records
defined in the template. The database records are the records from the extract. To avoid
confusion, the term "record" will always refer to the EFT record. The database record
will be referred to as an extract element instance or level.

The define sequence command has four subcommands: reset at level, increment basis,
start at, and maximum:

Reset at Level
The reset at level subcommand defines where the sequence resets its starting number. It
is a mandatory subcommand. For example, to number the payments in a batch, define
the reset at level as Batch. To continue numbering across batches, define the reset level
as RequestHeader.

In some cases the sequence is reset outside the template. For example, a periodic
sequence may be defined to reset by date. In these cases, the PERIODIC_SEQUENCE
keyword is used for the reset at level. The system saves the last sequence number used
for a payment file to the database. Outside events control resetting the sequence in the
database. For the next payment file run, the sequence number is extracted from the
database for the start at number (see start at subcommand).

4-24 Oracle XML Publisher Core Components Guide

Increment Basis
The increment basis subcommand specifies if the sequence should be incremented
based on record or extract instances. The allowed parameters for this subcommand are
RECORD and LEVEL.

Enter RECORD to increment the sequence for every record.

Enter LEVEL to increment the sequence for every new instance of a level.

Note that for levels with multiple records, if you use the level-based increment all the
records in the level will have the same sequence number. The record-based increment
will assign each record in the level a new sequence number.

For level-based increments, the sequence number can be used in the fields of one level
only. For example, suppose an extract has a hierarchy of batch > payment > invoice and
you define the increment basis by level sequence, with reset at the batch level. You can
use the sequence in either the payment or invoice level fields, but not both. You cannot
have sequential numbering across hierarchical levels.

However, this rule does not apply to increment basis by record sequences. Records can
be sequenced across levels.

For both increment basis by level and by record sequences, the level of the sequence is
implicit based on where the sequence is defined.

Define Concatenation Command
Use the define concatenation command to concatenate child-level extract elements for
use in parent-level fields. For example, use this command to concatenate invoice
number and due date for all the invoices belonging to a payment for use in a
payment-level field.

The define concatenation command has three subcommands: base level, element, and
delimiter.

Base Level Subcommand
The base level subcommand specifies the child level for the operation. For each
parent-level instance, the concatenation operation loops through the child-level
instances to generate the concatenated string.

Item Subcommand
The item subcommand specifies the operation used to generate each item. An item is a
child-level expression that will be concatenated together to generate the concatenation
string.

Delimiter Subcommand
The delimiter subcommand specifies the delimiter to separate the concatenated items in
the string.

Using the SUBSTR Function
Use the SUBSTR function to break down concatenated strings into smaller strings that
can be placed into different fields. For example, the following table shows five invoices
in a payment:

Creating an eText Template 4-25

Invoice InvoiceNum

1 car_parts_inv0001

2 car_parts_inv0002

3 car_parts_inv0003

4 car_parts_inv0004

5 car_parts_inv0005

Using the following concatenation definition:

<DEFINE CONCATENATION> ConcatenatedInvoiceInfo

<BASE LEVEL> Invoice

<ELEMENT> InvoiceNum

<DELIMITER> ','

<END DEFINE CONCATENATION> ConcatenatedInvoiceInfo

You can reference ConcatenatedInvoiceInfo in a payment level field. The string will be:

car_parts_inv0001,car_parts_inv0002,car_parts_inv0003,car_parts_
inv0004,car_parts_inv0005

If you want to use only the first forty characters of the concatenated invoice info, use
either TRUNCATE function or the SUBSTR function as follows:

TRUNCATE(ConcatenatedInvoiceInfo, 40)

SUBSTR(ConctenatedInvoiceInfo, 1, 40)

Either of these statements will result in:

car_parts_inv0001,car_parts_inv0002,car_

To isolate the next forty characters, use the SUBSTR function:

SUBSTR(ConcatenatedInvoiceInfo, 41, 40)

to get the following string:

parts_inv0003,car_parts_inv0004,car_par

4-26 Oracle XML Publisher Core Components Guide

Invalid Characters and Replacement Characters Commands
Some formats require a different character set than the one that was used to enter the
data in Oracle Applications. For example, some German formats require the output file
in ASCII, but the data was entered in German. If there is a mismatch between the
original and target character sets you can define an ASCII equivalent to replace the
original. For example, you would replace the German umlauted "a" with "ao".

Some formats will not allow certain characters. To ensure that known invalid characters
will not be transmitted in your output file, use the invalid characters command to flag
occurrences of specific characters.

To use the replacement characters command, specify the source characters in the left
column and the replacement characters in the right column. You must enter the source
characters in the original character set. This is the only case in a format template in
which you use a character set not intended for output. Enter the replacement characters
in the required output character set.

For DELIMITER_BASED formats, if there are delimiters in the data, you can use the
escape character "?" to retain their meaning. For example,

First name?+Last name equates to Fist name+Last name

Which source?? equates to Which source?

Note that the escape character itself must be escaped if it is used in data.

The replacement characters command can be used to support the escape character
requirement. Specify the delimiter as the source and the escape character plus the
delimiter as the target. For example, the command entry for the preceding examples
would be:

<REPLACEMENT CHARACTERS>

+ ?+

? ??

<END REPLACEMENT CHARACTERS>

The invalid character command has a single parameter that is a string of invalid
characters that will cause the system to error out.

The replacement character process is performed before or during the character set
conversion. The character set conversion is performed on the XML extract directly,
before the formatting. After the character set conversion, the invalid characters will be
checked in terms of the output character set. If no invalid characters are found, the
system will proceed to formatting.

Output Character Set and New Record Character Commands
Use the new record character command to specify the character(s) to delimit the explicit

Creating an eText Template 4-27

and implicit record breaks at runtime. Each new record command represents an explicit
record break. Each end of table represents an implicit record break. The parameter is a
list of constant character names separated by commas.

Some formats contain no record breaks. The generated output is a single line of data. In
this case, leave the new record character command parameter field empty.

Number Thousands Separator and Number Decimal Separator
The default thousands (or group) separator is a comma (",") and the default decimal
separator is ".". Use the Number Thousands Separator command and the Number
Decimal Separator command to specify separators other than the defaults. For example,
to define "." as the group separator and "," as the decimal separator, enter the following:

NUMBER THOUSANDS SEPARATOR .

NUMBER DECIMAL SEPARATOR ,

For more information on formatting numbers, see Format Column, page 4-13.

Expressions, Control Structures, and Functions
This section describes the rules and usage for expressions in the template. It also
describes supported control structures and functions.

Expressions
Expressions can be used in the data column for data fields and some command
parameters. An expression is a group of XML extract fields, literals, functions, and
operators. Expressions can be nested. An expression can also include the "IF" control
structure. When an expression is evaluated it will always generate a result. Side effects
are not allowed for the evaluation. Based on the evaluation result, expressions are
classified into the following three categories:

• Boolean Expression - an expression that returns a boolean value, either true or false.
This kind expression can be used only in the "IF-THEN-ELSE" control structure and
the parameter of the display condition command.

• Numeric Expression - an expression that returns a number. This kind of expression
can be used in numeric data fields. It can also be used in functions and commands
that require numeric parameters.

• Character Expression - an expression that returns an alphanumeric string. This kind
of expression can be used in string data fields (format type Alpha). They can also be
used in functions and command that require string parameters.

4-28 Oracle XML Publisher Core Components Guide

Control Structures
The only supported control structure is "IF-THEN-ELSE". It can be used in an
expression. The syntax is:
IF <boolean_expressionA> THEN
 <numeric or character expression1>
[ELSIF <boolean_expressionB THEN
 <numeric or character expression2>]
...
[ELSE
 <numeric or character expression3]
END IF

Generally the control structure must evaluate to a number or an alphanumeric string.
The control structure is considered to a numeric or character expression. The ELSIF and
ELSE clauses are optional, and there can be as many ELSIF clauses as necessary. The
control structure can be nested.

The IN predicate is supported in the IF-THEN-ELSE control structure. For example:
IF PaymentAmount/Currency/Code IN ('USD', 'EUR', 'AON', 'AZM') THEN

 PayeeAccount/FundsCaptureOrder/OrderAmount/Value * 100
ELSIF PaymentAmount/Currency/Code IN ('BHD', 'IQD', 'KWD') THEN
 PayeeAccount/FundsCaptureOrder/OrderAmount/Value * 1000
ELSE
 PayeeAccount/FundsCaptureOrder/OrderAmount/Value
END IF;

Functions
Following is the list of supported functions:

• SEQUENCE_NUMBER - is a record element index. It is used in conjunction with
the Define Sequence command. It has one parameter, which is the sequence defined
by the Define Sequence command. At runtime it will increase its sequence value by
one each time it is referenced in a record.

• COUNT - counts the child level extract instances or child level records of a specific
type. Declare the COUNT function on a level above the entity to be counted. The
function has one argument. If the argument is a level, the function will count all the
instances of the (child) level belonging to the current (parent) level instance.

For example, if the level to be counted is Payment and the current level is Batch,
then the COUNT will return the total number of payments in the batch. However, if
the current level is RequestHeader, the COUNT will return the total number of
payments in the file across all batches. If the argument is a record type, the count
function will count all the generated records of the (child level) record type
belonging to the current level instance.

• INTEGER_PART, DECIMAL_PART - returns the integer or decimal portion of a
numeric value. This is used in nested expressions and in commands (display
condition and group by). For the final formatting of a numeric field in the data

Creating an eText Template 4-29

column, use the Integer/Decimal format.

• IS_NUMERIC - boolean test whether the argument is numeric. Used only with the
"IF" control structure.

• TRUNCATE - truncate the first argument - a string to the length of the second
argument. If the first argument is shorter than the length specified by the second
argument, the first argument is returned unchanged. This is a user-friendly version
for a subset of the SQL substr() functionality.

• SUM - sums all the child instance of the XML extract field argument. The field must
be a numeric value. The field to be summed must always be at a lower level than
the level on which the SUM function was declared.

• MIN, MAX - find the minimum or maximum of all the child instances of the XML
extract field argument. The field must be a numeric value. The field to be operated
on must always be at a lower level than the level on which the function was
declared.

• FORMAT_DATE - Formats a date string to any desirable date format. For example:

FORMAT_DATE("1900-01-01T18:19:20", "YYYY/MM/DD HH24:MI:SS")

will produce the following output:

1900/01/01 18:19:20

• FORMAT_NUMBER – Formats a number to display in desired format. For
example:

FORMAT_NUMBER("1234567890.0987654321", "999,999.99")

produces the following output:

1,234,567,890.10

• MESSAGE_LENGTH - returns the length of the message in the EFT message.

• RECORD_LENGTH - returns the length of the record in the EFT message.

• INSTR – returns the numeric position of a named character within a text field.

• SYSDATE, DATE – gets Current Date and Time.

• POSITION – returns the position of a node in the XML document tree structure.

• REPLACE – replaces a string with another string.

• CONVERT_CASE – converts a string or a character to UPPER or LOWER case.

• CHR – gets the character representation of an argument, which is an ASCII value.

4-30 Oracle XML Publisher Core Components Guide

• LPAD, RPAD – generates left or right padding for string values.

• AND, OR, NOT – operator functions on elements.

• Other SQL functions include the following. Use the syntax corresponding to the
SQL function.

• TO_DATE

• LOWER

• UPPER

• LENGTH

• GREATEST

• LEAST

• DECODE

• CEIL

• ABS

• FLOOR

• ROUND

• CHR

• TO_CHAR

• SUBSTR

• LTRIM

• RTRIM

• TRIM

• IN

• TRANSLATE

Identifiers, Operators, and Literals
This section lists the reserved key word and phrases and their usage. The supported

Creating an eText Template 4-31

operators are defined and the rules for referencing XML extract fields and using literals.

Key Words
There are four categories of key words and key word phrases:

• Command and column header key words

• Command parameter and function parameter key words

• Field-level key words

• Expression key words

Command and Column Header Key Words
The following key words must be used as shown: enclosed in <>s and in all capital
letters with a bold font.

• <LEVEL>- the first entry of a data table. Associates the table with an XML element
and specifies the hierarchy of the table.

• <END LEVEL> - declares the end of the current level. Can be used at the end of a
table or in a standalone table.

• <POSITION> - column header for the first column of data field rows, which
specifies the starting position of the data field in a record.

• <LENGTH> - column header for the second column of data field rows, which
specifies the length of the data field.

• <FORMAT> - column header for the third column of data field rows, which
specifies the data type and format setting.

• <PAD> - column header for the fourth column of data field rows, which specifies
the padding style and padding character.

• <DATA> - column header for the fifth column of data field rows, which specifies
the data source.

• <COMMENT> - column header for the sixth column of data field rows, which
allows for free form comments.

• <NEW RECORD> - specifies a new record.

• <DISPLAY CONDITION> - specifies the condition when a record should be
printed.

• <TEMPLATE TYPE> - specifies the type of the template, either
FIXED_POSITION_BASED or DELIMITER_BASED.

4-32 Oracle XML Publisher Core Components Guide

• <OUTPUT CHARACTER SET> - specifies the character set to be used when
generating the output.

• <NEW RECORD CHARACTER> - specifies the character(s) to use to signify the
explicit and implicit new records at runtime.

• <DEFINE LEVEL> - defines a format-specific level in the template.

• <BASE LEVEL> - subcommand for the define level and define concatenation
commands.

• <GROUPING CRITERIA> - subcommand for the define level command.

• <END DEFINE LEVEL> - signifies the end of a level.

• <DEFINE SEQUENCE> - defines a record or extract element based sequence for use
in the template fields.

• <RESET AT LEVEL> - subcommand for the define sequence command.

• <INCREMENT BASIS> - subcommand for the define sequence command.

• <START AT> - subcommand for the define sequence command.

• <MAXIMUM> - subcommand for the define sequence command.

• <MAXIMUM LENGTH> - column header for the first column of data field rows,
which specifies the maximum length of the data field. For DELIMITER_BASED
templates only.

• <END DEFINE SEQUENCE> - signifies the end of the sequence command.

• <DEFINE CONCATENATION> - defines a concatenation of child level item that
can be referenced as a string the parent level fields.

• <ELEMENT> - subcommand for the define concatenation command.

• <DELIMITER> - subcommand for the define concatenation command.

• <END DEFINE CONCATENATION> - signifies the end of the define
concatenation command.

• <SORT ASCENDING> - format-specific sorting for the instances of a level.

• <SORT DESCENDING> - format-specific sorting for the instances of a level.

Command Parameter and Function Parameter Key Words
These key words must be entered in all capital letters, nonbold fonts.

Creating an eText Template 4-33

• PERIODIC_SEQUENCE - used in the reset at level subcommand of the define
sequence command. It denotes that the sequence number is to be reset outside the
template.

• FIXED_POSITION_BASED, DELIMITER_BASED - used in the template type
command, specifies the type of template.

• RECORD, LEVEL - used in the increment basis subcommand of the define sequence
command. RECORD increments the sequence each time it is used in a new record.
LEVEL increments the sequence only for a new instance of the level.

Field-Level Key Words
• Alpha - in the <FORMAT> column, specifies the data type is alphanumeric.

• Number - in the <FORMAT> column, specifies the data type is numeric.

• Integer - in the <FORMAT> column, used with the Number key word. Takes the
integer part of the number. This has the same functionality as the INTEGER
function, except the INTEGER function is used in expressions, while the Integer key
word is used in the <FORMAT> column only.

• Decimal - in the <FORMAT> column, used with the Number key word. Takes the
decimal part of the number. This has the same functionality as the DECIMAL
function, except the DECIMAL function is used in expressions, while the Decimal
key word is used in the <FORMAT> column only.

• Date - in the <FORMAT> column, specifies the data type is date.

• L, R- in the <PAD> column, specifies the side of the padding (Left or Right).

Expression Key Words
Key words and phrases used in expressions must be in capital letters and bold fonts.

• IF THEN ELSE IF THEN ELSE END IF - these key words are always used as a
group. They specify the "IF" control structure expressions.

• IS NULL, IS NOT NULL - these phrases are used in the IF control structure. They
form part of boolean predicates to test if an expression is NULL or not NULL.

Operators
There are two groups of operators: the boolean test operators and the expression
operators. The boolean test operators include: "=", "<>", "<", ">", ">=", and "<=". They can
be used only with the IF control structure. The expression operators include: "()", "||",
"+", "-", and "*". They can be used in any expression.

4-34 Oracle XML Publisher Core Components Guide

Symbol Usage

= Equal to test. Used in the IF control structure
only.

<> Not equal to test. Used in the IF control
structure only.

> Greater than test. Used in the IF control
structure only.

< Less than test. Used in the IF control structure
only.

>= Greater than or equal to test. Used in the IF
control structure only.

<= Less than or equal to test. Used in the IF
control structure only.

() Function argument and expression group
delimiter. The expression group inside "()"
will always be evaluated first. "()" can be
nested.

|| String concatenation operator.

+ Addition operator. Implicit type conversion
may be performed if any of the operands are
not numbers.

- Subtraction operator. Implicit type conversion
may be performed if any of the operands are
not numbers.

* Multiplication operator. Implicit type
conversion may be performed if any of the
operands are not numbers.

DIV Division operand. Implicit type conversion
may be performed if any of the operands are
not numbers. Note that "/" is not used because
it is part of the XPATH syntax.

Creating an eText Template 4-35

Symbol Usage

IN Equal-to-any-member-of test.

NOT IN Negates the IN operator.
Not-Equal-to-any-member-of test.

Reference to XML Extract Fields and XPATH Syntax
XML elements can be used in any expression. At runtime they will be replaced with the
corresponding field values. The field names are case-sensitive.

When the XML extract fields are used in the template, they must follow the XPATH
syntax. This is required so that the XML Publisher engine can correctly interpret the
XML elements.

There is always an extract element considered as the context element during the XML
Publisher formatting process. When XML Publisher processes the data rows in a table,
the level element of the table is the context element. For example, when XML Publisher
processes the data rows in the Payment table, Payment is the context element. The
relative XPATH you use to reference the extract elements are specified in terms of the
context element.

For example if you need to refer to the PayeeName element in a Payment data table,
you will specify the following relative path:

Payee/PayeeInfo/PayeeName

Each layer of the XML element hierarchy is separated by a backslash "/". You use this
notation for any nested elements. The relative path for the immediate child element of
the level is just the element name itself. For example, you can use TransactionID
element name as is in the Payment table.

To reference a parent level element in a child level table, you can use the "../" notation.
For example, in the Payment table if you need to reference the BatchName element, you
can specify ../BatchName. The "../" will give you Batch as the context; in that context you
can use the BatchName element name directly as BatchName is an immediate child of
Batch. This notation goes up to any level for the parent elements. For example if you
need to reference the RequesterParty element (in the RequestHeader) in a Payment data
table, you can specify the following:

../../TrxnParties/RequesterParty

You can always use the absolute path to reference any extract element anywhere in the
template. The absolute path starts with a backslash "/". For the PayeeName in the
Payment table example above, you will have the following absolute path:
/BatchRequest/Batch/Payment/Payee/PayeeInfo/PayeeName

The absolute path syntax provides better performance.

The identifiers defined by the setup commands such as define level, define sequence

4-36 Oracle XML Publisher Core Components Guide

and define concatenation are considered to be global. They can be used anywhere in the
template. No absolute or relative path is required. The base level and reset at level for
the setup commands can also be specified. XML Publisher will be able to find the
correct context for them.

If you use relative path syntax, you should specify it relative to the base levels in the
following commands:

• The element subcommand of the define concatenation command

• The grouping criteria subcommand of the define level command

The extract field reference in the start at subcommand of the define sequence command
should be specified with an absolute path.

The rule to reference an extract element for the level command is the same as the rule
for data fields. For example, if you have a Batch level table and a nested Payment level
table, you can specify the Payment element name as-is for the Payment table. Because
the context for evaluating the Level command of the Payment table is the Batch.

However, if you skip the Payment level and you have an Invoice level table directly
under the Batch table, you will need to specify Payment/Invoice as the level element for
the Invoice table.

The XPATH syntax required by the template is very similar to UNIX/LINUX directory
syntax. The context element is equivalent to the current directory. You can specify a file
relative to the current directory or you can use the absolute path which starts with a "/".

Finally, the extract field reference as the result of the grouping criteria sub-command of
the define level command must be specified in single quotes. This tells the XML
Publisher engine to use the extract fields as the grouping criteria, not their values.

XSL, SQL, and XSL-FO Support for RTF Templates 5-1

5
XSL, SQL, and XSL-FO Support for RTF

Templates

Extended SQL and XSL Functions
XML Publisher has extended a set of SQL and XSL functions for use in RTF templates.
The syntax for these extended functions is

<?xdofx:expression?>

for extended SQL functions or

<?xdoxslt:expression?>

for extended XSL functions.

Note: You cannot mix xdofx statements with XSL expressions in the
same context. For example, assume you had two elements,
FIRST_NAME and LAST_NAME that you wanted to concatenate into a
30-character field and right pad the field with the character "x", you
could NOT use the following:

INCORRECT:
<?xdofx:rpad(concat(FIRST_NAME,LAST_NAME),30, 'x')?>

because concat is an XSL expression. Instead, you could use the
following:

CORRECT:
<?xdofx:rpad(FIRST_NAME||LAST_NAME),30,'x')?>

The supported functions are shown in the following table:

5-2 Oracle XML Publisher Core Components Guide

SQL Statement or XSL
Expression

Usage Description

2+3 <?xdofx:2+3?> Addition

2-3 <?xdofx:2-3?> Subtraction

2*3 <?xdofx:2*3?> Multiplication

2/3 <?xdofx:2/3?> Division

2**3 <?xdofx:2**3?> Exponential

3||2 <?xdofx:3||2?> Concatenation

lpad('aaa',10,'.') <?xdofx:lpad('aaa',10,'.')?> The lpad function pads the left side of a string
with a specific set of characters. The syntax for
the lpad function is:

lpad(
string1,padded_length,[pad_string]
)

string1 is the string to pad characters to (the
left-hand side).

padded_length is the number of characters to
return.

pad_string is the string that will be padded to
the left-hand side of string1 .

rpad('aaa',10,'.') <?xdofx:rpad('aaa',10,'.')?> The rpad function pads the right side of a
string with a specific set of characters.

The syntax for the rpad function is:

rpad(
string1,padded_length,[pad_string]
).

string1 is the string to pad characters to (the
right-hand side).

padded_length is the number of characters to
return.

pad_string is the string that will be padded to
the right-hand side of string1

XSL, SQL, and XSL-FO Support for RTF Templates 5-3

SQL Statement or XSL
Expression

Usage Description

decode('xxx','bbb','ccc','xxx'
,'ddd')

<?xdofx:decode('xxx','bbb','ccc','xxx','
ddd')?>

The decode function has the functionality of
an IF-THEN-ELSE statement. The syntax for
the decode function is:

decode(expression, search, result
[,search, result]...[, default])

expression is the value to compare.

search is the value that is compared against
expression.

result is the value returned, if expression is
equal to search.

default is returned if no matches are found.

Instr('abcabcabc','a',2) <?xdofx:Instr('abcabcabc','a',2)?> The instr function returns the location of a
substring in a string. The syntax for the instr
function is:

instr(string1,string2,[start_posit
ion],[nth_appearance])

string1 is the string to search.

string2 is the substring to search for in string1.

start_position is the position in string1 where
the search will start. The first position in the
string is 1. If the start_position is negative, the
function counts back start_position number of
characters from the end of string1 and then
searches towards the beginning of string1.

nth appearance is the nth appearance of string2.

substr('abcdefg',2,3) <?xdofx:substr('abcdefg',2,3)?> The substr function allows you to extract a
substring from a string. The syntax for the
substr function is:

substr(string, start_position,
[length])

string is the source string.

start_position is the position for extraction. The
first position in the string is always 1.

length is the number of characters to extract.

5-4 Oracle XML Publisher Core Components Guide

SQL Statement or XSL
Expression

Usage Description

replace(name,'John','Jon') <?xdofx:replace(name,'John','Jon')?> The replace function replaces a sequence of
characters in a string with another set of
characters. The syntax for the replace function
is:

replace(string1,string_to_replace,[replacement
_string])

string1 is the string to replace a sequence of
characters with another set of characters.

string_to_replace is the string that will be
searched for in string1.

replacement_string is optional. All occurrences
of string_to_replace will be replaced with
replacement_string in string1.

to_number('12345') <?xdofx:to_number('12345')?> Function to_number converts char, a value of
CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 datatype containing a number
in the format specified by the optional format
model fmt, to a value of NUMBER datatype.

to_char(12345) <?xdofx:to_char('12345')?> Use the TO_CHAR function to translate a
value of NUMBER datatype to VARCHAR2
datatype.

to_date <?xdofx:to_date (char [, fmt [,
'nlsparam']])

TO_DATE converts char of CHAR,
VARCHAR2, NCHAR, or NVARCHAR2
datatype to a value of DATE datatype. The fmt
is a date format specifying the format of char.
If you omit fmt, then char must be in the
default date format. If fmt is 'J', for Julian, then
char must be an integer.

sysdate() <?xdofx:sysdate()?> SYSDATE returns the current date and time.
The datatype of the returned value is DATE.
The function requires no arguments.

minimum <?xdoxslt:minimum(ELEMENT_NA
ME)?>

Returns the minimum value of the element in
the set.

maximum <?xdoxslt:maximum(ELEMENT_NA
ME)?>

Returns the maximum value of the element in
the set.

XSL, SQL, and XSL-FO Support for RTF Templates 5-5

SQL Statement or XSL
Expression

Usage Description

chr <?xdofx:chr(n)?> CHR returns the character having the binary
equivalent to n in either the database
character set or the national character set.

ceil <?xdofx:ceil(n)?> CEIL returns smallest integer greater than or
equal to n.

floor <?xdofx:floor(n)?> FLOOR returns largest integer equal to or less
than n.

round <?xdofx:round (number [, integer]
)?>

ROUND returns number rounded to integer
places right of the decimal point. If integer is
omitted, then number is rounded to 0 places.
integer can be negative to round off digits left
of the decimal point. integer must be an
integer.

lower <?xdofx:lower (char)?> LOWER returns char, with all letters
lowercase. char can be any of the datatypes
CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. The return
value is the same datatype as char.

upper <?xdofx:upper(char)?> UPPER returns char, with all letters uppercase.
char can be any of the datatypes CHAR,
VARCHAR2, NCHAR, NVARCHAR2, CLOB,
or NCLOB. The return value is the same
datatype as char.

length <?xdofx:length(char)?> The "length" function returns the length of
char. LENGTH calculates length using
characters as defined by the input character
set.

greatest <?xdofx:greatest (expr [, expr]...)?> GREATEST returns the greatest of the list of
exprs. All exprs after the first are implicitly
converted to the datatype of the first expr
before the comparison.

least <?xdofx:least (expr [, expr]...)?> LEAST returns the least of the list of exprs. All
exprs after the first are implicitly converted to
the datatype of the first expr before the
comparison.

5-6 Oracle XML Publisher Core Components Guide

The following table shows supported combination functions:

SQL Statement Usage

(2+3/4-6*7)/8 <?xdofx:(2+3/4-6*7)/8?>

lpad(substr('1234567890',5,3),10,'^') <?xdofx:lpad(substr('1234567890',5,3),10,'^')?>

decode('a','b','c','d','e','1')||instr('321',1,1) <?xdofx:decode('a','b','c','d','e','1')||instr('321',1,
1)?>

XSL Equivalents
The following table lists the XML Publisher simplified syntax with the XSL equivalents.

Supported XSL Elements Description XML Publisher Syntax

<xsl:value-of select=
"name">

Placeholder syntax <?name?>

<xsl:apply-templates
select="name">

Applies a template rule to the
current element's child nodes.

<?apply:name?>

<xsl:copy-of select="name"> Creates a copy of the current node. <?copy-of:name?>

<xsl:call-template
name="name">

Calls a named template to be
inserted into/applied to the current
template.

<?call:name?>

<xsl:sort select="name"> Sorts a group of data based on an
element in the dataset.

<?sort:name?>

<xsl:for-each select="name"
>

Loops through the rows of data of a
group, used to generate tabular
output.

<?for-each:name?>

<xsl:choose> Used in conjunction with when and
otherwise to express multiple
conditional tests.

<?choose?>

XSL, SQL, and XSL-FO Support for RTF Templates 5-7

Supported XSL Elements Description XML Publisher Syntax

<xsl:when test="exp"> Used in conjunction with choose
and otherwise to express multiple
conditional tests

<?when:expression?>

<xsl:otherwise> Used in conjunction with choose
and when to express multiple
conditional tests

<?otherwise?>

<xsl:if test="exp"> Used for conditional formatting. <?if:expression?>

<xsl:template name="name"> Template declaration <?template:name?>

<xsl:variable name="name"> Local or global variable declaration <?variable:name?>

<xsl:import href="url"> Import the contents of one stylesheet
into another

<?import:url?>

<xsl:include href="url"> Include one stylesheet in another <?include:url?>

<xsl:stylesheet
xmlns:x="url">

Define the root element of a
stylesheet

<?namespace:x=url?>

Using FO Elements
You can use most FO elements in an RTF template inside the Microsoft Word form
fields. The following FO elements have been extended for use with XML Publisher RTF
templates. The XML Publisher syntax can be used with either RTF template method.

The full list of FO elements supported by XML Publisher can be found in the Appendix:
Supported XSL-FO Elements, page A-1.

FO Element XML Publisher Syntax

<fo:page-number-citation
ref-id="id">

<?fo:page-number-citation:id?>

<fo:page-number> <?fo:page-number?>

<fo:ANY NAME WITHOUT ATTRIBUTE> <?fo:ANY NAME WITHOUT ATTRIBUTE?>

Adding Template Translations 6-1

6
Adding Template Translations

Translatable Templates
XML Publisher supports the addition of translation files for RTF templates. Depending
on your implementation (JD Edwards EnterpriseOne or PeopleSoft Enterprise) the
method for defining a template as translatable may differ. Please see your product
documentation.

When you define a template as translatable, XML Publisher extracts the translatable
strings and exports them to an XLIFF (.xlf) file. This XLIFF file can then be sent to a
translation provider, or using a text editor, you can enter the translation for each string.

Note: XLIFF is the XML Localization Interchange File Format. It is the
standard format used by localization providers. For more information
about the XLIFF specification, see
http://www.oasis-open.org/committees/xliff/documents/xliff-specificati
on.htm

A "translatable string" is any text in the template that is intended for display in the
published report, such as table headers and field labels. Text supplied at runtime from
the data is not translatable, nor is any text that you supply in the Microsoft Word form
fields.

You can translate the template XLIFF file into as many languages as desired and then
associate these translations to the original template.

Working with XLIFF Files
This section describes the structure of the XLIFF file and how to update the file with the
desired translation.

Structure of the XLIFF File
The XLIFF file generated by BI Publisher has the following structure:

http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm

6-2 Oracle XML Publisher Core Components Guide

<xliff>
 <file>
 <header>
 <body>
 <trans-unit>
 <source>
 <target>
 <note>

The following figure shows an excerpt from an untranslated XLIFF file:

source-language and target-language attributes
The <file> element includes the attributes source-language and
target-language. The valid value for source-language and target-language is a
combination of the language code and country code as follows:

• the two-letter ISO 639 language code

• the two-letter ISO 3166 country code

Note: For more information on the International Organization for
Standardization (ISO) and the code lists, see International Organization
for Standardization [http://www.iso.org/iso/en/ISOOnline.frontpage].

For example, the value for English-United States is "en-US". This combination is also
referred to as a locale.

When you edit the exported XLIFF file you must change the target-language
attribute to the appropriate locale value of your target language. The following table

http://www.iso.org/iso/en/ISOOnline.frontpage
http://www.iso.org/iso/en/ISOOnline.frontpage

Adding Template Translations 6-3

shows examples of source-language and target-language attribute values appropriate
for the given translations:

Translation
(Language/Territory)

source-language value target-language value

From English/US

To English/Canada

en-US en-CA

From English/US

To Chinese/China

en-US zh-CN

From Japanese/Japan

To French/France

ja-JP fr-FR

Embedded Data Fields
Some templates contain placeholders for data fields embedded in the text display
strings of the report. For example, the title of the sample report is

Italian Purchase VAT Register - (year)

where (year) is a placeholder in the RTF template that will be populated at runtime by
data from an XML element. These fields are not translatable, because the value comes
from the data at runtime.

To identify embedded data fields, the following token is used in the XLIFF file:

[&n]

where n represents the numbered occurrence of a data field in the template.

For example, in the preceding XLIFF sample, the first translatable string is
<source>Italian Purchase VAT Register - [&1]<source>

Warning: Do not edit or delete the embedded data field tokens or you
will affect the merging of the XML data with the template.

<source> and <target> Elements
Each <source> element contains a translatable string from the template in the source
language of the template. For example,
<source>Total</source>

When you initially export the XLIFF file for translation, the source and target elements
are all identical. To create the translation for this template, enter the appropriate
translation for each source element string in its corresponding <target> element.

6-4 Oracle XML Publisher Core Components Guide

Therefore if you were translating the sample template into German, you would enter
the following for the Total string:
<source>Total</source>
<target>Gesamtbetrag</target>

The following figure shows the sample XLIFF file from the previous figure updated
with the Chinese translation:

Uploading the Translated XLIFF Files
Ensure that the file is saved in UTF-8 (the xml encoding attribute must equal 'utf-8'
).

See your product-specific documentation for procedures on uploading and associating
the translated XLIFF files with the base template.

Setting Runtime Properties 7-1

7
Setting Runtime Properties

Setting Properties in a Configuration File
You can customize the behavior of XML Publisher by setting properties in a
configuration file. The configuration file is optional. No default configuration file is
provided.

The file is primarily used for:

• Setting a temporary directory

• Setting properties for PDF, RTF, and HTML output files

• Setting PDF security properties

• Setting font locations and substitutions

• Setting translation properties

Important: It is strongly recommended that you set up this
configuration file to create a temporary directory for processing large
files. If you do not, you will encounter "Out of Memory" errors when
processing large files. Create a temporary directory by setting the
system-temp-dir property.

It is also recommended that you secure the configuration file if you use
it to set the PDF security passwords.

File Name and Location
The configuration file is named xdo.cfg.

The file is located under the <JRE_TOP>/jre/lib, for example: jdk/jre/lib.

7-2 Oracle XML Publisher Core Components Guide

Namespace
The namespace for this configuration file is:

http://xmlns.oracle.com/oxp/config/

Configuration File Example
Following is a sample configuration file:
<config version="1.0.0"
 xmlns="http://xmlns.oracle.com/oxp/config/"><!-- Properties -->
<properties>
 <!-- System level properties -->
 <property name="system-temp-dir">/tmp</property>

 <!-- PDF compression -->
 <property name="pdf-compression">true</property>

 <!-- PDF Security -->
 <property name="pdf-security">true</property>
 <property name="pdf-open-password">user</property>
 <property name="pdf-permissions-password">owner</property>
 <property name="pdf-no-printing">true</property>
 <property name="pdf-no-changing-the-document">true</property>
 </properties>

 <!-- Font setting -->
 <fonts>
 <!-- Font setting (for FO to PDF etc...) -->

 <truetype path="/fonts/Arial.ttf" />

 <truetype path="/fonts/ALBANWTJ.ttf" />

 <!--Font substitute setting (for PDFForm filling etc...) -->
 <font-substitute name="MSGothic">
 <truetype path="/fonts/msgothic.ttc" ttcno="0" />
 </font-substitute>
 </fonts>
</config>

How to Read the Element Specifications
The following is an example of an element specification:
<Element Name Attribute1="value"
 Attribute2="value"
 AttributeN="value"
 <Subelement Name1/>[occurrence-spec]
 <Subelement Name2>...</Subelement Name2>
 <Subelement NameN>...</Subelement NameN>
</Element Name>

The [occurrence-spec] describes the cardinality of the element, and corresponds
to the following set of patterns:

Setting Runtime Properties 7-3

• [0..1] - indicates the element is optional, and may occur only once.

• [0..n] - indicates the element is optional, and may occur multiple times.

Structure
The <config> element is the root element. It has the following structure:
<config version="cdata" xmlns="http://xmlns.oracle.com/oxp/config/">
 <fonts> ... </fonts> [0..n]
 <properties> ... </properties> [0..n]
</config>

Attributes
version The version number of the configuration file format.

Specify 1.0.0.

xmlns The namespace for XML Publisher's configuration file.
Must be http://xmlns.oracle.com/oxp/config/

Description
The root element of the configuration file. The configuration file consists of two parts:

• Properties (<properties> elements)

• Font definitions (<fonts> elements)

The <fonts> and <properties> elements can appear multiple times. If conflicting
definitions are set up, the last occurrence prevails.

Properties
This section describes the <properties> element and the <property> element.

The <properties> element
The properties element is structured as follows:
<properties locales="cdata">
 <property>...
 </property> [0..n]
</properties>

Description
The <properties> element defines a set of properties. You can specify the locales
attribute to define locale-specific properties. Following is an example:

7-4 Oracle XML Publisher Core Components Guide

Example
<!-- Properties for all locales -->
<properties>...Property definitions here...
</properties>

<!--Korean specific properties-->
<properties locales="ko-KR">
 ...Korean-specific property definitions here...
</properties>

The <property> element
The <property> element has the following structure:
<property name="cdata"> ...pcdata...
</property>

Attributes
name Specify the property name.

Description
Property is a name-value pair. Specify the internal property name (key) to the name
attribute and the value to the element value. See List of Properties, page 7-4 for the list
of the internal property names.

Example
<properties>
 <property name="system-temp-dir">d:\tmp</property>
 <property name="system-cache-page-size">50</property>
 <property name="pdf-replace-smart-quotes">false</property>
</properties>

List of Properties
The following tables list the available properties. They are organized into the following
groups:

• General Properties

• PDF Output Properties

• PDF Security

• RTF Output

• HTML Output

• FO Processing Properties

• PDF Template Properties

Setting Runtime Properties 7-5

• RTF Template Properties

• PDF Document Merger Property

• XLIFF Extraction Properties

General Properties
General properties are shown in the following table:

Property Name Default Value Description

system-temp-dir N/A Enter the directory path for the temporary directory
to be used by the FO Processor when processing
large files. It is strongly recommended that you set a
temporary directory to avoid "Out of Memory"
errors.

PDF Output Properties
The following table shows properties supported for PDF output:

Property Name Default Value Description

pdf-compression True Specify "True" or "False" to control compression of the output
PDF file.

pdf-hide-menubar False Specify "True" to hide the viewer application's menu bar
when the document is active.

pdf-hide-toolbar False Specify "True" to hide the viewer application's toolbar when
the document is active.

pdf-replace-smart
quotes

True Set to "False" if you do not want curly quotes replaced with
straight quotes in your PDF output.

PDF Security
Use the following properties to control the security settings for your output PDF
documents:

7-6 Oracle XML Publisher Core Components Guide

Property Name Default Value Description

pdf-security False If you specify "True," the output PDF file will be
encrypted. You must also specify the following
properties:

• pdf-open-password

• pdf-permissions-password

• pdf-encryption-level

pdf-open-password N/A This password will be required for opening the
document. It will enable users to open the document
only. This property is enabled only when
pdf-security is set to "True".

pdf-permissions-pas
sword

N/A This password enables users to override the security
setting. This property is effective only when
pdf-security is set to "True".

Setting Runtime Properties 7-7

Property Name Default Value Description

pdf-encryption-leve
l

0 - low Specify the encryption level for the output PDF file. The
possible values are:

• 0: Low (40-bit RC4, Acrobat 3.0 or later)

• 1: High (128-bit RC4, Acrobat 5.0 or later)

This property is effective only when pdf-security is
set to "True". When pdf-encryption-level is set to
0, you can also set the following properties:

• pdf-no-printing

• pdf-no-changing-the-document

• pdf-no-cceda

• pdf-no-accff

When pdf-encryption-level is set to 1, the
following properties are available:

• pdf-enable-accessibility

• pdf-enable-copying

• pdf-changes-allowed

• pdf-printing-allowed

pdf-no-printing False Permission available when pdf-encryption-level
is set to 0. When set to "True", printing is disabled for
the PDF file.

pdf-no-changing-the
-document

False Permission available when pdf-encryption-level
is set to 0. When set to "True", the PDF file cannot be
edited.

pdf-no-cceda False Permission available when pdf-encryption-level
is set to 0. When set to "True", the context copying,
extraction, and accessibility features are disabled.

pdf-no-accff False Permission available when pdf-encryption-level
is set to 0. When set to "True", the ability to add or
change comments and form fields is disabled.

7-8 Oracle XML Publisher Core Components Guide

Property Name Default Value Description

pdf-enable-accessib
ility

True Permission available when pdf-encryption-level
is set to 1. When set to "True", text access for screen
reader devices is enabled.

pdf-enable-copying False Permission available when pdf-encryption-level
is set to 1. When set to "True", copying of text, images,
and other content is enabled.

pdf-changes-allowed 0 Permission available when pdf-encryption-level
is set to 1. Valid Values are:

• 0: none

• 1: Allows inserting, deleting, and rotating pages

• 2: Allows filling in form fields and signing

• 3: Allows commenting, filling in form fields, and
signing

• 4: Allows all changes except extracting pages

pdf-printing-allowe
d

0 Permission available when pdf-encryption-level
is set to 1. Valid values are:

• 0: None

• 1: Low resolution (150 dpi)

• 2: High resolution

RTF Output
The following properties can be set to govern RTF output files:

Property Name Default Value Description

rtf-track-changes False Set to "True" to enable change tracking in the output
RTF document.

Setting Runtime Properties 7-9

Property Name Default Value Description

rtf-protect-documen
t-for-tracked-chang
es

False Set to "True" to protect the document for tracked
changes.

rtf-output-default-
font

Times New Roman:8 When generating an RTF output file, there may be
empty table cells or empty lines where the RTF
generator cannot set the font name and size information.
When the document is opened in MS Word, these areas
are assigned a default font and font size. To change the
default setting for these occurrences, set this property as
follows: "font name:font size", for example: "Arial:12".

HTML Output
The following properties can be set to govern HTML output files:

Property Name Default Value Description

html-image-base-uri N/A Base URI which is inserted into the src attribute of the
image tag before the image file name. This works only
when the image is embedded in the template.

html-image-dir N/A Enter the directory for XML Publisher to store the image
files that are embedded in the template.

html-css-base-uri N/A Base URI which is inserted into the HTML header to
specify where the cascading stylesheets (CSS) for your
output HTML documents will reside. You must set this
property when make-accessible is true.

html-css-dir N/A The CSS directory where XML Publisher stores the css
file. You must set this property when
make-accessible is true.

html-show-header True Set to "False" to suppress the template header in HTML
output.

html-show-footer True Set to "False" to suppress the template footer in HTML
output.

7-10 Oracle XML Publisher Core Components Guide

Property Name Default Value Description

html-replace-smartq
uotes

True Set to "False" if you do not want curly quotes replaced
with straight quotes in your HTML output.

html-output-charset UTF-8 Specify the output HTML character set.

make-accessible False Specify true if you want to make the HTML output
accessible.

FO Processing Properties
The following properties can be set to govern FO processing:

Property Name Default Value Description

digit-substitution None Valid values are "None" and "National". When set to
"None", Eastern European numbers will be used.
When set to "National", Hindi format (Arabic-Indic
digits) will be used. This setting is effective only when
the locale is Arabic, otherwise it is ignored.

system-cache-page-si
ze

50 This property is enabled only when you have specified
a Temporary Directory (under General properties).
During table of contents generation, the FO Processor
caches the pages until the number of pages exceeds the
value specified for this property. It then writes the
pages to a file in the Temporary Directory.

fo-prevent-variable-
header

False If "True", prevents variable header support. Variable
header support automatically extends the size of the
header to accommodate the contents.

fo-merge-conflict-re
solution

False When merging multiple XSL-FO inputs, the FO
Processor automatically adds random prefixes to
resolve conflicting IDs. Setting this property to "True"
disables this feature.

xslt-xdoparser True Controls XML Publisher's parser usage. If set to False,
XSLT will not be parsed.

Setting Runtime Properties 7-11

Property Name Default Value Description

xslt-scalable False Controls the scalable feature of the XDO parser. The
property xslt-xdoparser must be set to "True" for
this property to be effective.

rtf-adj-table-border
-overlap

False Sets the behavior of the top/bottom borders of adjacent
tables. If you want the top and bottom borders of
adjacent tables to overlap (for example, if you want to
repeat a table multiple times and make the whole
repeating area appear to be a single table), set this
property to "true."

RTF Template Properties
The following properties can be set to govern RTF templates:

Property Name Default Value Description

rtf-extract-attribute
-sets

Auto The RTF processor will automatically extract
attribute sets within the generated XSL-FO. The
extracted sets are placed in an extra FO block, which
can be referenced. This improves processing
performance and reduces file size.

Valid values are:

• Enable - extract attribute sets for all templates
and subtemplates

• Auto - extract attribute sets for templates, but
not subtemplates

• Disable - do not extract attribute sets

rtf-rewrite-path True When converting an RTF template to XSL-FO, the
RTF processor will automatically rewrite the XML
tag names to represent the full XPath notations. Set
this property to "False" to disable this feature.

7-12 Oracle XML Publisher Core Components Guide

Property Name Default Value Description

rtf-checkbox-glyph Default value: Albany WT
J;9746;9747/A

The XML Publisher default PDF output font does not
include a glyph to represent a checkbox. If your
template contains a checkbox, use this property to
define a Unicode font for the representation of
checkboxes in your PDF output. You must define the
Unicode font number for the "checked" state and the
Unicode font number for the "unchecked" state using
the following syntax: fontname;<unicode font
number for true value's glyph >;<
unicode font number for false value's
glyph>

Example: Albany WT J;9746;9747/A

Note that the font that you specify must be made
available to XML Publisher at runtime.

PDF Template Properties
The following properties can be set to configure form field behavior in PDF output files
generated from PDF templates:

Property Name Default Value Description

remove-pdf-fields false Specify "true" to remove PDF fields from
the output. When PDF fields are removed,
data entered in the fields cannot be
extracted. For more information, see
Setting Fields as Updateable or Read Only,
page 3-15.

all-field-readonl
y

true By default, XML Publisher sets all fields in
the output PDF of a PDF template to be
read only. If you want to set all fields to be
updateable, set this property to "false". For
more information, see Setting Fields as
Updateable or Read Only, page 3-15.

Setting Runtime Properties 7-13

Property Name Default Value Description

all-fields-readon
ly-asis

false Set this property to "true" if you want to
maintain the "Read Only" setting of each
field as defined in the PDF template. This
property overrides the settings of
all-field-readonly. For more
information, see Setting Fields as
Updateable or Read Only, page 3-15.

PDF Document Merger Property

Property Name Default Value Description

pdf-tempfile-max-
size

unlimited This property sets the maximum size for
the temporary file used during batch
processing by the PDF Document Merger.
Enter the maximum size in bytes. For more
information, see PDF Document Merger,
page 8-30.

XLIFF Extraction
The following properties can be set to govern XLIFF extraction:

Property Name Default Value Description

xliff-trans-expansion 150 (percentage) This property determines the maximum percent
expansion of an extracted translation unit. For
example, if set to 200, the XLIFF extractor will allow
expansion by 200% - that is, a 10-character element
will have a maximum width of 30 characters.

xliff-trans-min-lengt
h

15 (characters) Sets a minimum length in characters for the
extracted translation unit. For example, the default
expansion of a 4-character field is 10 characters
(based on the default setting of Translation
expansion percentage of 150). If the Minimum
translation length is 15, this field will be reset to 15
characters.

7-14 Oracle XML Publisher Core Components Guide

Property Name Default Value Description

xliff-trans-max-lengt
h

4000 (characters) Sets a limit to the calculated expansion of the
translation unit (in characters). For example, the
default maximum expansion of 100 characters is 250
characters. Setting Maximum translation length to
200 would limit this expansion to 200 characters.

xliff-trans-null False Instructs the XLIFF extractor to create a translation
unit for a record that contains only spaces (is null).
Set to "True" to generate the translation unit.

xliff-trans-symbol False Instructs the XLIFF extractor whether to extract
symbol characters. If set to "False" only A-Z and a-z
will be extracted.

xliff-trans-keyword True If set to "False", words with underscores will not be
extracted.

Font Definitions
Font definitions include the following elements:

• <fonts>

•

• <font-substitute>

• <truetype>

• <type1>

For the list of Truetype and Type1 fonts, see Predefined Fonts, page 7-18.

<fonts> element
The <fonts> element is structured as follows:
<fonts locales="cdata">
 ... [0..n]
 <font-substitute> ... </font-substitute> [0..n]
</fonts>

Attributes
locales Specify the locales for this font definition. This attribute is

Setting Runtime Properties 7-15

optional.

Description
The <fonts> element defines a set of fonts. Specify the locales attribute to define
locale-specific fonts.

Example
<!-- Font definitions for all locales -->
<fonts>
 ..Font definitions here...
</fonts>

<!-- Korean-specific font definitions -->
<fonts locales="ko-KR">
... Korean Font definitions here...
</fonts>

 element
Following is the structure of the element:
<font family="cdata" style="normalitalic"
weight="normalbold">
 <truetype>...</truetype>
or <type1> ... <type1>

Attributes
family Specify any family name for the font. If you specify

"Default" for this attribute, you can define a default fallback
font. The family attribute is case-insensitive.

style Specify "normal" or "italic" for the font style.

weight Specify "normal" or "bold" for the font weight.

Description
Defines a XML Publisher font. This element is primarily used to define fonts for
FO-to-PDF processing (RTF to PDF). The PDF Form Processor (used for PDF templates)
does not refer to this element.

Example
<!-- Define "Arial" font -->

 <truetype path="/fonts/Arial.ttf"/>

<font-substitute> element
Following is the structure of the font-substitute element:

7-16 Oracle XML Publisher Core Components Guide

<font-substitute name="cdata">
 <truetype>...</truetype>
or <type1>...</type1>
</font-substitute>

Attributes
name Specify the name of the font to be substituted.

Description
Defines a font substitution. This element is used to define fonts for the PDF Form
Processor.

Example
<font-substitute name="MSGothic">
 <truetype path="/fonts/msgothic.ttc" ttccno=0"/>
</font-substitute>

<type1> element>
The form of the <type1> element is as follows:
<type1 name="cdata"/>

Attributes
name Specify one of the Adobe standard Latin1 fonts, such as

"Courier".

Description
<type1> element defines an Adobe Type1 font.

Example
<!--Define "Helvetica" font as "Serif" -->

 <type1 name="Helvetica"/>

Locales
A locale is a combination of an ISO language and an ISO country. ISO languages are
defined in ISO 639 and ISO countries are defined in ISO 3166.

The structure of the locale statement is

ISO Language-ISO country

Locales are not case-sensitive and the ISO country can be omitted.

Example locales:

• en

Setting Runtime Properties 7-17

• en-US

• EN-US

• ja

• ko

• zh-CN

Font Fallback Logic
XML Publisher uses a font mapping fallback logic so that the result font mappings used
for a template are a composite of the font mappings from the template up to the site
level. If a mapping is found for a font on more than one level, the most specific level's
value overrides the others.

The resulting font mapping to use in any particular instance is the sum of all the
applicable font mappings. The applicable mappings in order of preference, are:
Language + Territory match, territory null > Language + Territory null
(global value)

For example:

Suppose for a particular template, there are different font mapping sets assigned at the
site and template levels, with the mappings shown in the following table:

Level Font
Family

Style Weight Language Territory Target
Font

Site Times New
Roman

normal normal (none) (none) Times

Site Arial normal normal Japanese Japan Times

Template Arial normal normal Japanese (none) Courier

Template Trebuchet
MS

normal normal (none) (none) Helvetica

At runtime if the locale of the template file is Japanese/Japan, the following font
mappings will be used:

7-18 Oracle XML Publisher Core Components Guide

Font Family Style Weight Target Font

Times New Roman normal normal Times

Arial normal normal Times

Trebuchet MS normal normal Helvetica

Note that even though there is a mapping for Arial at the template level, the site level
value is used because it has a better match for the locale.

Predefined Fonts
XML Publisher provides a set of Type1 fonts and a set of TrueType fonts. You can select
any of these fonts as a target font with no additional setup required.

The Type1 fonts are listed in the following table:

Type 1 Fonts

Number Font Family Style Weight Font Name

1 serif normal normal Time-Roman

1 serif normal bold Times-Bold

1 serif italic normal Times-Italic

1 serif italic bold Times-BoldItalic

2 sans-serif normal normal Helvetica

2 sans-serif normal bold Helvetica-Bold

2 sans-serif italic normal Helvetica-Oblique

2 sans-serif italic bold Helvetica-BoldObliq
ue

3 monospace normal normal Courier

Setting Runtime Properties 7-19

Number Font Family Style Weight Font Name

3 monospace normal bold Courier-Bold

3 monospace italic normal Courier-Oblique

3 monospace italic bold Courier-BoldOblique

4 Courier normal normal Courier

4 Courier normal bold Courier-Bold

4 Courier italic normal Courier-Oblique

4 Courier italic bold Courier-BoldOblique

5 Helvetica normal normal Helvetica

5 Helvetica normal bold Helvetica-Bold

5 Helvetica italic normal Helvetica-Oblique

5 Helvetica italic bold Helvetica-BoldObliq
ue

6 Times normal normal Times

6 Times normal bold Times-Bold

6 Times italic normal Times-Italic

6 Times italic bold Times-BoldItalic

7 Symbol normal normal Symbol

8 ZapfDingbats normal normal ZapfDingbats

The TrueType fonts are listed in the following table. All TrueType fonts will be
subsetted and embedded into PDF.

7-20 Oracle XML Publisher Core Components Guide

Number Font Family
Name

Style Weight Actual Font Actual Font
Type

1 Albany WT normal normal ALBANYWT.ttf TrueType
(Latin1 only)

2 Albany WT J normal normal ALBANWTJ.ttf TrueType
(Japanese flavor)

3 Albany WT K normal normal ALBANWTK.ttf TrueType
(Korean flavor)

4 Albany WT SC normal normal ALBANWTS.ttf TrueType
(Simplified
Chinese flavor)

5 Albany WT TC normal normal ALBANWTT.ttf TrueType
(Traditional
Chinese flavor)

6 Andale
Duospace WT

normal normal ADUO.ttf TrueType
(Latin1 only,
Fixed width)

6 Andale
Duospace WT

bold bold ADUOB.ttf TrueType
(Latin1 only,
Fixed width)

7 Andale
Duospace WT J

normal normal ADUOJ.ttf TrueType
(Japanese flavor,
Fixed width)

7 Andale
Duospace WT J

bold bold ADUOJB.ttf TrueType
(Japanese flavor,
Fixed width)

8 Andale
Duospace WT K

normal normal ADUOK.ttf TrueType
(Korean flavor,
Fixed width)

8 Andale
Duospace WT K

bold bold ADUOKB.ttf TrueType
(Korean flavor,
Fixed width)

Setting Runtime Properties 7-21

Number Font Family
Name

Style Weight Actual Font Actual Font
Type

9 Andale
Duospace WT
SC

normal normal ADUOSC.ttf TrueType
(Simplified
Chinese flavor,
Fixed width)

9 Andale
Duospace WT
SC

bold bold ADUOSCB.ttf TrueType
(Simplified
Chinese flavor,
Fixed width)

10 Andale
Duospace WT
TC

normal normal ADUOTC.ttf TrueType
(Traditional
Chinese flavor,
Fixed width)

10 Andale
Duospace WT
TC

bold bold ADUOTCB.ttf TrueType
(Traditional
Chinese flavor,
Fixed width)

Using the XML Publisher APIs 8-1

8
Using the XML Publisher APIs

Introduction
This chapter is aimed at developers who wish to create programs or applications that
interact with XML Publisher through its application programming interface. This
information is meant to be used in conjunction with the Javadocs available from the
Oracle Technology Network
[http://www.oracle.com/technology/products/applications/publishing/index.html].

This section assumes the reader is familiar with Java programming, XML, and XSL
technologies.

XML Publisher Core APIs
XML Publisher is made up of the following core API components:

• PDF Form Processing Engine

Merges a PDF template with XML data (and optional metadata) to produce PDF
document output.

• RTF Processor

Converts an RTF template to XSL in preparation for input to the FO Engine.

• FO Engine

Merges XSL and XML to produce any of the following output formats: Excel
(HTML), PDF, RTF, or HTML.

• PDF Document Merger

Provides optional postprocessing of PDF files to merge documents, add page
numbering, and set watermarks.

http://www.oracle.com/technology/products/applications/publishing/index.html

8-2 Oracle XML Publisher Core Components Guide

• eText Processor

Converts RTF eText templates to XSL and merges the XSL with XML to produce
text output for EDI and EFT transmissions.

• Document Processor (XML APIs)

Provides batch processing functionality to access a single API or multiple APIs by
passing a single XML file to specify template names, data sources, languages,
output type, output names, and destinations.

The following diagram illustrates the template type and output type options for each
core processing engine:

PDF Form Processing Engine
The PDF Form Processing Engine creates a PDF document by merging a PDF template
with an XML data file. This can be done using file names, streams, or an XML data
string.

As input to the PDF Processing Engine you can optionally include an XML-based
Template MetaInfo (.xtm) file. This is a supplemental template to define the placement
of overflow data.

Using the XML Publisher APIs 8-3

The FO Processing Engine also includes utilities to provide information about your PDF
template. You can:

• Retrieve a list of field names from a PDF template

• Generate the XFDF data from the PDF template

• Convert XML data into XFDF using XSLT

Merging a PDF Template with XML Data
XML data can be merged with a PDF template to produce a PDF output document in
three ways:

• Using input/output file names

• Using input/output streams

• Using an input XML data string

You can optionally include a metadata XML file to describe the placement of overflow
data in your template.

Merging XML Data with a PDF Template Using Input/Output File Names
Input:

• Template file name (String)

• XML file name (String)

• Metadata XML file name (String)

Output:

• PDF file name (String)

Example
import oracle.apps.xdo.template.FormProcessor;
.
.
 FormProcessor fProcessor = new FormProcessor();

 fProcessor.setTemplate(args[0]); // Input File (PDF) name
 fProcessor.setData(args[1]); // Input XML data file name
 fProcessor.setOutput(args[2]); // Output File (PDF) name
 fProcessor.setMetaInfo(args[3]); // Metadata XML File name You
can omit this setting when you do not use Metadata.

 fProcessor.process();

8-4 Oracle XML Publisher Core Components Guide

Merging XML Data with a PDF Template Using Input/Output Streams
Input:

• PDF Template (Input Stream)

• XML Data (Input Stream)

• Metadata XML Data (Input Stream)

Output:

• PDF (Output Stream)

Example
import java.io.*;
import oracle.apps.xdo.template.FormProcessor;
.
.
.
 FormProcessor fProcessor = new FormProcessor();

 FileInputStream fIs = new FileInputStream(originalFilePath); // Input
File
 FileInputStream fIs2 = new FileInputStream(dataFilePath); // Input
Data
 FileInputStream fIs3 = new FileInputStream(metaData); // Metadata XML
Data
 FileOutputStream fOs = new FileOutputStream(newFilePath); // Output
File

 fProcessor.setTemplate(fIs);
 fProcessor.setData(fIs2); // Input Data
 fProcessor.setOutput(fOs);
 fProcessor.setMetaInfo(fIs3);
 fProcessor.process();

 fIs.close();
 fOs.close();

Merging an XML Data String with a PDF Template
Input:

• Template file name (String)

• XML data (String)

• Metadata XML file name (String)

Output:

• PDF file name (String)

Using the XML Publisher APIs 8-5

Example
import oracle.apps.xdo.template.FormProcessor;
.
.
.
FormProcessor fProcessor = new FormProcessor();

fProcessor.setTemplate(originalFilePath); // Input File (PDF) name
fProcessor.setDataString(xmlContents); // Input XML string
fProcessor.setOutput(newFilePath); // Output File (PDF) name
fProcessor.setMetaInfo(metaXml); // Metadata XML File name You
can omit this setting when you do not use Metadata.
fProcessor.process();

Retrieving a List of Field Names
Use the FormProcessor.getFieldNames() API to retrieve the field names from a PDF
template. The API returns the field names into an Enumeration object.

Input:

• PDF Template

Output:

• Enumeration Object

Example
import java.util.Enumeration;
import oracle.apps.xdo.template.FormProcessor;
.
.
.
FormProcessor fProcessor = new FormProcessor();
fProcessor.setTemplate(filePath); // Input File (PDF) name
Enumeration enum = fProcessor.getFieldNames();
while(enum.hasMoreElements()) {
 String formName = (String)enum.nextElement();
 System.out.println("name : " + formName + " , value : " +
fProcessor.getFieldValue(formName));
}

Generating XFDF Data
XML Forms Data Format (XFDF) is a format for representing forms data and
annotations in a PDF document. XFDF is the XML version of Forms Data Format (FDF),
a simplified version of PDF for representing forms data and annotations. Form fields in
a PDF document include edit boxes, buttons, and radio buttons.

Use this class to generate XFDF data. When you create an instance of this class, an
internal XFDF tree is initialized. Use append() methods to append a FIELD element to
the XFDF tree by passing a String name-value pair. You can append data as many times
as you want.

8-6 Oracle XML Publisher Core Components Guide

This class also allows you to append XML data by calling appendXML() methods. Note
that you must set the appropriate XSL stylesheet by calling setStyleSheet() method
before calling appendXML() methods. You can append XML data as many times as you
want.

You can retrieve the internal XFDF document at any time by calling one of the
following methods: toString(), toReader(), toInputStream(), or toXMLDocument().

The following is a sample of XFDF data:

Example
<?xml version="1.0" encoding="UTF-8"?>
<xfdf xmlns="http://ns.adobe.com/xfdf/" xml:space="preserve">
<fields>
 <field name="TITLE">
 <value>Purchase Order</value>
 </field>
 <field name="SUPPLIER_TITLE">
 <value>Supplie</value>
 </field>
 ...
 </fields>

The following code example shows how the API can be used:

Example
import oracle.apps.xdo.template.FormProcessor;
import oracle.apps.xdo.template.pdf.xfdf.XFDFObject;
.
.
.
FormProcessor fProcessor = new FormProcessor();
fProcessor.setTemplate(filePath); // Input File (PDF) name
XFDFObject xfdfObject = new XFDFObject(fProcessor.getFieldInfo());
System.out.println(xfdfObject.toString());

Converting XML Data into XFDF Format Using XSLT
Use an XSL stylesheet to convert standard XML to the XFDF format. Following is an
example of the conversion of sample XML data to XFDF:

Assume your starting XML has a ROWSET/ROW format as follows:
<ROWSET>
 <ROW num="0">
 <SUPPLIER>Supplier</SUPPLIER>
 <SUPPLIERNUMBER>Supplier Number</SUPPLIERNUMBER>
 <CURRCODE>Currency</CURRCODE>
 </ROW>
...
</ROWSET>

From this XML you want to generate the following XFDF format:

Using the XML Publisher APIs 8-7

<fields>
 <field name="SUPPLIER1">
 <value>Supplier</value>
 </field>
 <field name="SUPPLIERNUMBER1">
 <value>Supplier Number</value>
 </field>
 <field name="CURRCODE1">
 <value>Currency</value>
 </field>
...
</fields>

The following XSLT will carry out the transformation:
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
<fields>
<xsl:apply-templates/>
</fields>
</xsl:template>
 <!-- Count how many ROWs(rows) are in the source XML file. -->
 <xsl:variable name="cnt" select="count(//row|//ROW)" />
 <!-- Try to match ROW (or row) element.
 <xsl:template match="ROW/*|row/*">
 <field>
 <!-- Set "name" attribute in "field" element. -->
 <xsl:attribute name="name">
 <!-- Set the name of the current element (column name)as a
value of the current name attribute. -->
 <xsl:value-of select="name(.)" />
 <!-- Add the number at the end of the name attribute value
if more than 1 rows found in the source XML file.-->
 <xsl:if test="$cnt > 1">
 <xsl:number count="ROW|row" level="single" format="1"/>
 </xsl:if>
 </xsl:attribute>
 <value>
 <!--Set the text data set in the current column data as a
text of the "value" element. -->
 <xsl:value-of select="." />
 </value>
 </field>
 </xsl:template>
</xsl:stylesheet>

You can then use the XFDFObject to convert XML to the XFDF format using an XSLT as
follows:

8-8 Oracle XML Publisher Core Components Guide

Example
import java.io.*;
import oracle.apps.xdo.template.pdf.xfdf.XFDFObject;
.
.
.
XFDFObject xfdfObject = new XFDFObject();

xfdfObject .setStylesheet(new BufferedInputStream(new
FileInputStream(xslPath))); // XSL file name
xfdfObject .appendXML(new File(xmlPath1)); // XML data file name
xfdfObject .appendXML(new File(xmlPath2)); // XML data file name

System.out.print(xfdfObject .toString());

RTF Processor Engine

Generating XSL
The RTF processor engine takes an RTF template as input. The processor parses the
template and creates an XSL-FO template. This can then be passed along with a data
source (XML file) to the FO Engine to produce PDF, HTML, RTF, or Excel (HTML)
output.

Use either input/output file names or input/output streams as shown in the following
examples:

Generating XSL with Input/Output File Names
Input:

• RTF file name (String)

Output:

• XSL file name (String)

Example
import oracle.apps.xdo.template.FOProcessor;
.
.
.
 public static void main(String[] args)
 {
RTFProcessor rtfProcessor = new RTFProcessor(args[0]); //input template
rtfProcessor.setOutput(args[1]); // output file
rtfProcessor.process();
 System.exit(0);
 }

Generating XSL with Input/Output Stream
Input:

Using the XML Publisher APIs 8-9

• RTF (InputStream)

Output:

• XSL (OutputStream)

Example
import oracle.apps.xdo.template.FOProcessor;
.
.
.
 public static void main(String[] args)
 {
 FileInputStream fIs = new FileInputStream(args[0]); //input
template
 FileOutputStream fOs = new FileOutputStream(args[1]); // output

 RTFProcessor rtfProcessor = new RTFProcessor(fIs);
 rtfProcessor.setOutput(fOs);
 rtfProcessor.process();
 // Closes inputStreams outputStream
 System.exit(0);
 }

FO Processor Engine

Generating Output from an XML File and an XSL File
The FO Processor Engine is XML Publisher's implementation of the W3C XSL-FO
standard. It does not represent a complete implementation of every XSL-FO component.
For a list of supported XSL-FO elements, see Supported XSL-FO Elements, page A-1.

The FO Processor can generate output in PDF, RTF, HTML, or Excel (HTML) from
either of the following two inputs:

• Template (XSL) and Data (XML) combination

• FO object

Both input types can be passed as file names, streams, or in an array. Set the output
format by setting the setOutputFormat method to one of the following:

• FORMAT_EXCEL

• FORMAT_HTML

• FORMAT_PDF

• FORMAT_RTF

An XSL-FO utility is also provided that creates XSL-FO from the following inputs:

8-10 Oracle XML Publisher Core Components Guide

• XSL file and XML file

• Two XML files and two XSL files

• Two XSL-FO files (merge)

The FO object output from the XSL-FO utility can then be used as input to the FO
processor.

Major Features of the FO Processor
Bidirectional Text
XML Publisher utilizes the Unicode BiDi algorithm for BiDi layout. Based on specific
values for the properties writing-mode, direction, and unicode bidi, the FO Processor
supports the BiDi layout.

The writing-mode property defines how word order is supported in lines and order of
lines in text. That is: right-to-left, top-to-bottom or left-to-right, top-to-bottom. The
direction property determines how a string of text will be written: that is, in a specific
direction, such as right-to-left or left-to-right. The unicode bidi controls and manages
override behavior.

Font Fallback Mechanism
The FO Processor supports a two-level font fallback mechanism. This mechanism
provides control over what default fonts to use when a specified font or glyph is not
found. XML Publisher provides appropriate default fallback fonts automatically
without requiring any configuration. XML Publisher also supports user-defined
configuration files that specify the default fonts to use. For glyph fallback, the default
mechanism will only replace the glyph and not the entire string.

Variable Header and Footer
For headers and footers that require more space than what is defined in the template,
the FO Processor extends the regions and reduces the body region by the difference
between the value of the page header and footer and the value of the body region
margin.

Horizontal Table Break
This feature supports a "Z style" of horizontal table break. The horizontal table break is
not sensitive to column span, so that if the column-spanned cells exceed the page (or
area width), the FO Processor splits it and does not apply any intelligent formatting to
the split cell.

The following figure shows a table that is too wide to display on one page:

Using the XML Publisher APIs 8-11

The following figure shows one option of how the horizontal table break will handle the
wide table. In this example, a horizontal table break is inserted after the third column.

The following figure shows another option. The table breaks after the third column, but
includes the first column with each new page.

8-12 Oracle XML Publisher Core Components Guide

Generating Output Using File Names
The following example shows how to use the FO Processor to create an output file
using file names.

Input:

• XML file name (String)

• XSL file name (String)

Output:

• Output file name (String)

Example
import oracle.apps.xdo.template.FOProcessor;
.
.
.
 public static void main(String[] args)
 {

 FOProcessor processor = new FOProcessor();
 processor.setData(args[0]); // set XML input file
 processor.setTemplate(args[1]); // set XSL input file
 processor.setOutput(args[2]); //set output file
 processor.setOutputFormat(FOProcessor.FORMAT_PDF);
 // Start processing
 try
 {
 processor.generate();
 }
 catch (XDOException e)
 {
 e.printStackTrace();
 System.exit(1);
 }

 System.exit(0);
 }

Using the XML Publisher APIs 8-13

Generating Output Using Streams
The processor can also be used with input/output streams as shown in the following
example:

Input:

• XML data (InputStream)

• XSL data (InputStream)

Output:

• Output stream (OutputStream)

Example
import java.io.InputStream;
import java.io.OutputStream;
import oracle.apps.xdo.template.FOProcessor;
.
.
.
 public void runFOProcessor(InputStream xmlInputStream,
 InputStream xslInputStream,
 OutputStream pdfOutputStream)
 {

 FOProcessor processor = new FOProcessor();
 processor.setData(xmlInputStream);
 processor.setTemplate(xslInputStream);
 processor.setOutput(pdfOutputStream);
 // Set output format (for PDF generation)
 processor.setOutputFormat(FOProcessor.FORMAT_PDF);
 // Start processing
 try
 {
 processor.generate();
 }
 catch (XDOException e)
 {
 e.printStackTrace();
 System.exit(1);
 }

 System.exit(0);

 }

Generating Output from an Array of XSL Templates and XML Data
An array of data and template combinations can be processed to generate a single
output file from the multiple inputs. The number of input data sources must match the
number of templates that are to be applied to the data. For example, an input of
File1.xml, File2.xml, File3.xml and File1.xsl, File2.xsl, and File3.xsl will produce a single
File1_File2_File3.pdf.

8-14 Oracle XML Publisher Core Components Guide

Input:

• XML data (Array)

• XSL data (template) (Array)

Output:

• File Name (String)

Example
import java.io.InputStream;
import java.io.OutputStream;
import oracle.apps.xdo.template.FOProcessor;
.
.
.
 public static void main(String[] args)
 {

 String[] xmlInput = {"first.xml", "second.xml", "third.xml"};
 String[] xslInput = {"first.xsl", "second.xsl", "third.xsl"};

 FOProcessor processor = new FOProcessor();
 processor.setData(xmlInput);
 processor.setTemplate(xslInput);

 processor.setOutput("/tmp/output.pdf); //set (PDF) output
file
 processor.setOutputFormat(FOProcessor.FORMAT_PDF);
processor.process();
 // Start processing
 try
 {
 processor.generate();
 }
 catch (XDOException e)
 {
 e.printStackTrace();
 System.exit(1);
 }

 }

Using the XSL-FO Utility
Use the XSL-FO Utility to create an XSL-FO output file from input XML and XSL files,
or to merge two XSL-FO files. Output from this utility can be used to generate your
final output. See Generating Output from an XSL-FO file, page 8-17.

Creating XSL-FO from an XML File and an XSL File
Input:

• XML file

Using the XML Publisher APIs 8-15

• XSL file

Output:

• XSL-FO (InputStream)

Example
import oracle.apps.xdo.template.fo.util.FOUtility;
.
.
.
 public static void main(String[] args)
 {
 InputStream foStream;

 // creates XSL-FO InputStream from XML(arg[0])
 // and XSL(arg[1]) filepath String
 foStream = FOUtility.createFO(args[0], args[1]);
 if (mergedFOStream == null)
 {
 System.out.println("Merge failed.");
 System.exit(1);
 }

 System.exit(0);
 }

Creating XSL-FO from Two XML Files and Two XSL files
Input:

• XML File 1

• XML File 2

• XSL File 1

• XSL File 2

Output:

• XSL-FO (InputStream)

8-16 Oracle XML Publisher Core Components Guide

Example
import oracle.apps.xdo.template.fo.util.FOUtility;
.
.
.
 public static void main(String[] args)
 {
 InputStream firstFOStream, secondFOStream, mergedFOStream;
 InputStream[] input = InputStream[2];

 // creates XSL-FO from arguments
 firstFOStream = FOUtility.createFO(args[0], args[1]);

 // creates another XSL-FO from arguments
 secondFOStream = FOUtility.createFO(args[2], args[3]);

 // set each InputStream into the InputStream Array
 Array.set(input, 0, firstFOStream);
 Array.set(input, 1, secondFOStream);

 // merges two XSL-FOs
 mergedFOStream = FOUtility.mergeFOs(input);

 if (mergedFOStream == null)
 {
 System.out.println("Merge failed.");
 System.exit(1);
 }
 System.exit(0);
 }

Merging Two XSL-FO Files
Input:

• Two XSL-FO file names (Array)

Output:

• One XSL-FO (InputStream)

Using the XML Publisher APIs 8-17

Example
import oracle.apps.xdo.template.fo.util.FOUtility;
.
.
.
 public static void main(String[] args)
 {
 InputStream mergedFOStream;

 // creates Array
 String[] input = {args[0], args[1]};

 // merges two FO files
 mergedFOStream = FOUtility.mergeFOs(input);
 if (mergedFOStream == null)
 {
 System.out.println("Merge failed.");
 System.exit(1);
 }
 System.exit(0);
 }

Generating Output from an FO file
The FO Processor can also be used to process an FO object to generate your final output.
An FO object is the result of the application of an XSL-FO stylesheet to XML data. These
objects can be generated from a third party application and fed as input to the FO
Processor.

The processor is called using a similar method to those already described, but a
template is not required as the formatting instructions are contained in the FO.

Generating Output Using File Names
Input:

• FO file name (String)

Output:

• PDF file name (String)

8-18 Oracle XML Publisher Core Components Guide

Example
import oracle.apps.xdo.template.FOProcessor;
.
.
.
 public static void main(String[] args) {

 FOProcessor processor = new FOProcessor();
 processor.setData(args[0]); // set XSL-FO input file
 processor.setTemplate((String)null);
 processor.setOutput(args[2]); //set (PDF) output file
 processor.setOutputFormat(FOProcessor.FORMAT_PDF);
 // Start processing
 try
 {
 processor.generate();
 }
 catch (XDOException e)
 {
 e.printStackTrace();
 System.exit(1);
 }

 System.exit(0);
 }

Generating Output Using Streams
Input:

• FO data (InputStream)

Output:

• Output (OutputStream)

Using the XML Publisher APIs 8-19

Example
import java.io.InputStream;
import java.io.OutputStream;
import oracle.apps.xdo.template.FOProcessor;
.
.
.
 public void runFOProcessor(InputStream xmlfoInputStream,
 OutputStream pdfOutputStream)
 {

 FOProcessor processor = new FOProcessor();
 processor.setData(xmlfoInputStream);
 processor.setTemplate((String)null);

 processor.setOutput(pdfOutputStream);
 // Set output format (for PDF generation)
 processor.setOutputFormat(FOProcessor.FORMAT_PDF);
 // Start processing
 try
 {
 processor.generate();
 }
 catch (XDOException e)
 {
 e.printStackTrace();
 System.exit(1);
 }
 }

Generating Output with an Array of FO Data
Pass multiple FO inputs as an array to generate a single output file. A template is not
required, therefore set the members of the template array to null, as shown in the
example.

Input:

• FO data (Array)

Output:

• Output File Name (String)

8-20 Oracle XML Publisher Core Components Guide

Example
import java.lang.reflect.Array;
import oracle.apps.xdo.template.FOProcessor;
.
.
.
 public static void main(String[] args)
 {

 String[] xmlInput = {"first.fo", "second.fo", "third.fo"};
 String[] xslInput = {null, null, null}; // null needs for xsl-fo
input

 FOProcessor processor = new FOProcessor();
 processor.setData(xmlInput);
 processor.setTemplate(xslInput);

 processor.setOutput("/tmp/output.pdf); //set (PDF) output
file
 processor.setOutputFormat(FOProcessor.FORMAT_PDF);
processor.process();
 // Start processing
 try
 {
 processor.generate();
 }
 catch (XDOException e)
 {
 e.printStackTrace();
 System.exit(1);
 }

 }

PDF Document Merger
The PDF Document Merger class provides a set of utilities to manipulate PDF
documents. Using these utilities, you can merge documents, add page numbering, set
backgrounds, and add watermarks.

Merging PDF Documents
Many business documents are composed of several individual documents that need to
be merged into a single final document. The PDFDocMerger class supports the merging
of multiple documents to create a single PDF document. This can then be manipulated
further to add page numbering, watermarks, or other background images.

Merging with Input/Output File Names
The following code demonstrates how to merge (concatenate) two PDF documents
using physical files to generate a single output document.

Input:

Using the XML Publisher APIs 8-21

• PDF_1 file name (String)

• PDF_2 file name (String)

Output:

• PDF file name (String)

Example
import java.io.*;
import oracle.apps.xdo.common.pdf.util.PDFDocMerger;
.
.
.
 public static void main(String[] args)
 {
 try
 {
 // Last argument is PDF file name for output
 int inputNumbers = args.length - 1;

 // Initialize inputStreams
 FileInputStream[] inputStreams = new
FileInputStream[inputNumbers];
 inputStreams[0] = new FileInputStream(args[0]);
 inputStreams[1] = new FileInputStream(args[1]);

 // Initialize outputStream
 FileOutputStream outputStream = new FileOutputStream(args[2]);

 // Initialize PDFDocMerger
 PDFDocMerger docMerger = new PDFDocMerger(inputStreams,
outputStream);

 // Merge PDF Documents and generates new PDF Document
 docMerger.mergePDFDocs();
 docMerger = null;

 // Closes inputStreams and outputStream
 }
 catch(Exception exc)
 {
 exc.printStackTrace();
 }
 }

Merging with Input/Output Streams
Input:

• PDF Documents (InputStream Array)

Output:

• PDF Document (OutputStream)

8-22 Oracle XML Publisher Core Components Guide

Example
import java.io.*;
import oracle.apps.xdo.common.pdf.util.PDFDocMerger;
.
.
.
 public boolean mergeDocs(InputStream[] inputStreams, OutputStream
outputStream)
 {
 try
 {
 // Initialize PDFDocMerger
 PDFDocMerger docMerger = new PDFDocMerger(inputStreams,
outputStream);

 // Merge PDF Documents and generates new PDF Document
 docMerger.mergePDFDocs();
 docMerger = null;

 return true;
 }
 catch(Exception exc)
 {
 exc.printStackTrace();
 return false;
 }
 }

Merging with Background to Place Page Numbering
The following code demonstrates how to merge two PDF documents using input
streams to generate a single merged output stream.

To add page numbers:

1. Create a background PDF template document that includes a PDF form field in the
position that you would like the page number to appear on the final output PDF
document.

2. Name the form field @pagenum@.

3. Enter the number in the field from which to start the page numbering. If you do not
enter a value in the field, the start page number defaults to 1.

Input:

• PDF Documents (InputStream Array)

• Background PDF Document (InputStream)

Output:

• PDF Document (OutputStream)

Using the XML Publisher APIs 8-23

Example
import java.io.*;
import oracle.apps.xdo.common.pdf.util.PDFDocMerger;
.
.
.
 public static boolean mergeDocs(InputStream[] inputStreams, InputStream
backgroundStream, OutputStream outputStream)

 {
 try
 {
 // Initialize PDFDocMerger
 PDFDocMerger docMerger = new PDFDocMerger(inputStreams,
outputStream);

 // Set Background
 docMerger.setBackground(backgroundStream);

 // Merge PDF Documents and generates new PDF Document
 docMerger.mergePDFDocs();
 docMerger = null;

 return true;
 }
 catch(Exception exc)
 {
 exc.printStackTrace();
 return false;
 }
 }

Adding Page Numbers to Merged Documents
The FO Processor supports page numbering natively through the XSL-FO templates,
but if you are merging multiple documents you must use this class to number the
complete document from beginning to end.

The following code example places page numbers in a specific point on the page,
formats the numbers, and sets the start value using the following methods:

• setPageNumberCoordinates (x, y) - sets the x and y coordinates for the page
number position. The following example sets the coordinates to 300, 20.

• setPageNumberFontInfo (font name, size) - sets the font and size for the page
number. If you do not call this method, the default "Helvetica", size 8 is used. The
following example sets the font to "Courier", size 8.

• setPageNumberValue (n, n) - sets the start number and the page on which to begin
numbering. If you do not call this method, the default values 1, 1 are used.

Input:

• PDF Documents (InputStream Arrary)

Output:

8-24 Oracle XML Publisher Core Components Guide

• PDF Document (OutputStream)

Example
import java.io.*;
import oracle.apps.xdo.common.pdf.util.PDFDocMerger;
.
.
.
 public boolean mergeDocs(InputStream[] inputStreams, OutputStream
outputStream)
 {
 try
 {
 // Initialize PDFDocMerger
 PDFDocMerger docMerger = new PDFDocMerger(inputStreams,
outputStream);

 // Calls several methods to specify Page Number

 // Calling setPageNumberCoordinates() method is necessary to set
Page Numbering
 // Please refer to javadoc for more information
 docMerger.setPageNumberCoordinates(300, 20);

 // If this method is not called, then the default font"(Helvetica,
8)" is used.
 docMerger.setPageNumberFontInfo("Courier", 8);

 // If this method is not called, then the default initial value
"(1, 1)" is used.
 docMerger.setPageNumberValue(1, 1);

 // Merge PDF Documents and generates new PDF Document
 docMerger.mergePDFDocs();
 docMerger = null;

 return true;
 }
 catch(Exception exc)
 {
 exc.printStackTrace();
 return false;
 }
 }

Setting a Text or Image Watermark
Some documents that are in a draft phase require that a watermark indicating "DRAFT"
be displayed throughout the document. Other documents might require a background
image on the document. The following code sample shows how to use the
PDFDocMerger class to set a watermark.

Setting a Text Watermark
Use the SetTextDefaultWatermark() method to set a text watermark with the following
attributes:

Using the XML Publisher APIs 8-25

• Text angle (in degrees): 55

• Color: light gray (0.9, 0.9, 0.9)

• Font: Helvetica

• Font Size: 100

• The start position is calculated based on the length of the text

Alternatively, use the SetTextWatermark() method to set each attribute separately. Use
the SetTextWatermark() method as follows:

• SetTextWatermark ("Watermark Text", x, y) - declare the watermark text, and set
the x and y coordinates of the start position. In the following example, the
watermark text is "Draft" and the coordinates are 200f, 200f.

• setTextWatermarkAngle (n) - sets the angle of the watermark text. If this method is
not called, 0 will be used.

• setTextWatermarkColor (R, G, B) - sets the RGB color. If this method is not called,
light gray (0.9, 0.9, 0.9) will be used.

• setTextWatermarkFont ("font name", font size) - sets the font and size. If you do not
call this method, Helvetica, 100 will be used.

The following example shows how to set these properties and then call the
PDFDocMerger.

Input:

• PDF Documents (InputStream)

Output:

• PDF Document (OutputStream)

8-26 Oracle XML Publisher Core Components Guide

Example
import java.io.*;
import oracle.apps.xdo.common.pdf.util.PDFDocMerger;
.
.
.
 public boolean mergeDocs(InputStream inputStreams, OutputStream
outputStream)
 {
 try
 {
 // Initialize PDFDocMerger
 PDFDocMerger docMerger = new PDFDocMerger(inputStreams,
outputStream);

 // You can use setTextDefaultWatermark() without these detailed
setting
 docMerger.setTextWatermark("DRAFT", 200f, 200f); //set text and
place
 docMerger.setTextWatermarkAngle(80); //set angle
 docMerger.setTextWatermarkColor(1.0f, 0.3f, 0.5f); // set RGB
Color

 // Merge PDF Documents and generates new PDF Document
 docMerger.mergePDFDocs();
 docMerger = null;

 return true;
 }
 catch(Exception exc)
 {
 exc.printStackTrace();
 return false;
 }
 }

Setting Image Watermark
An image watermark can be set to cover the entire background of a document, or just to
cover a specific area (for example, to display a logo). Specify the placement and size of
the image using rectangular coordinates as follows:

float[] rct = {LowerLeft X, LowerLeft Y, UpperRight X,
UpperRight Y}

For example:

float[] rct = {100f, 100f, 200f, 200f}

The image will be sized to fit the rectangular area defined.

To use the actual image size, without sizing it, define the LowerLeft X and LowerLeft Y
positions to define the placement and specify the UpperRight X and UpperRight Y
coordinates as -1f. For example:

float[] rct = {100f, 100f, -1f, -1f}

Input:

Using the XML Publisher APIs 8-27

• PDF Documents (InputStream)

• Image File (InputStream)

Output:

• PDF Document (OutputStream)

Example
import java.io.*;
import oracle.apps.xdo.common.pdf.util.PDFDocMerger;
.
.
.
 public boolean mergeDocs(InputStream inputStreams, OutputStream
outputStream, String imageFilePath)
 {
 try
 {
 // Initialize PDFDocMerger
 PDFDocMerger docMerger = new PDFDocMerger(inputStreams,
outputStream);

 FileInputStream wmStream = new FileInputStream(imageFilePath);
 float[] rct = {100f, 100f, -1f, -1f};
 pdfMerger.setImageWatermark(wmStream, rct);

 // Merge PDF Documents and generates new PDF Document
 docMerger.mergePDFDocs();
 docMerger = null;

 // Closes inputStreams
 return true;
 }
 catch(Exception exc)
 {
 exc.printStackTrace();
 return false;
 }
 }

PDF Book Binder Processor
The PDFBookBinder processor is useful for the merging of multiple PDF documents
into a single document consisting of a hierarchy of chapters, sections, and subsections
and a table of contents for the document. The processor also generates PDF style "
bookmarks"; the outline structure is determined by the chapter and section hierarchy.
The processor is extremely powerful allowing you complete control over the combined
document.

Usage
The table of contents formatting and style is created through the use of an RTF template
created in Microsoft Word. The chapters are passed into the program as separate PDF

8-28 Oracle XML Publisher Core Components Guide

files (one chapter, section, or subsection corresponds to one PDF file). Templates may
also be specified at the chapter level for insertion of dynamic or static content, page
numbering, and placement of hyperlinks within the document.

The templates can be in RTF or PDF format. RTF templates are more flexible by
allowing you to leverage XML Publisher's support for dynamic content. PDF templates
are much less flexible, making it difficult to achieve desirable effects such as the reflow
of text areas when inserting page numbers and other types of dynamic content.

The templates can be rotated (at right angles) or be made transparent. A PDF template
can also be specified at the book level, enabling the ability to specify global page
numbering, or other content such as backgrounds and watermarks. A title page can also
be passed in as a parameter, as well as cover and closing pages for each chapter or
section.

XML Control File
The structure of the book's chapters, sections, and subsections is represented as XML
and passed in as a command line parameter; or it can also be passed in at the API level.
All of the chapter and section files, as well as all the templates files and their respective
parameters, are specified inside this XML structure. Therefore, the only two required
parameters are an XML file and a PDF output file.

You can also specify volume breaks inside the book structure. Specifying volume breaks
will split the content up into separate output files for easier file and printer
management.

The structure of the XML control file is represented in the following diagram:

Using the XML Publisher APIs 8-29

To specify template and content file locations in your XML structure, you can specify a
path relative to your local file system or you can specify a URL referring to the template
or content location. Secure HTTP protocol is supported, as well as the following XML
Publisher protocol:

• "blob://" - used for specifying data in any user-defined BLOB table.

The format for the "blob://" protocol is:
blob://[table_name].[blob_column_name]/[pk_datatype]:[pk_name]=[pk_v
alue]/../../..

Command Line Options
Following is an example of the command line usage:
java oracle.apps.template.pdf.book.PDFBookBinder [-debug <true or
false>] [-tmp <temp dir>] -xml <input xml> -pdf <output pdf>

where

8-30 Oracle XML Publisher Core Components Guide

-xml <file> is the file name of the input XML file containing the table of contents
XML structure.

-pdf <file> is the final generated PDF output file.

-tmp <directory> is the temporary directory for better memory management. (This
is optional, if not specified, the system environment variable "java.io.tmpdir" will
be used.)

-log <file> sets the output log file (optional, default is System.out).

-debug <true or false> turns debugging off or on.

API Method Call
The following is an example of an API method call:
String xmlInputPath = "c:\\tmp\\toc.xml";
String pdfOutputPath = "c:\\tmp\\final_book.pdf";
PDFBookBinder bookBinder = new PDFBookBinder(xmlInputPath,
 pdfOutputPath);

bookBinder.setConfig(new Properties());
bookBinder.process();

Document Processor Engine
The Document Processor Engine provides batch processing functionality to access a
single API or multiple APIs by passing a single XML instance document to specify
template names, data sources, languages, output type, output names, and destinations.

This solution enables batch printing with XML Publisher, in which a single XML
document can be used to define a set of invoices for customers, including the preferred
output format and delivery channel for those customers. The XML format is very
flexible allowing multiple documents to be created or a single master document.

This section:

• Describes the hierarchy and elements of the Document Processor XML file

• Provides sample XML files to demonstrate specific processing options

• Provides example code to invoke the processors

Hierarchy and Elements of the Document Processor XML File
The Document Processor XML file has the following element hierarchy:

Using the XML Publisher APIs 8-31

Requestset
 request
 delivery
 filesystem
 print
 fax
 number
 email
 message
 document
 background
 text
 pagenumber
 template
 data

This hierarchy is displayed in the following illustration:

The following table describes each of the elements:

Element Attributes Description

requestset xmlns

version

Root element must contain [
xmlns:xapi="http://xml
ns.oracle.com/oxp/xapi
/"] block

The version is not required,
but defaults to "1.0".

request N/A Element that contains the data
and template processing
definitions.

8-32 Oracle XML Publisher Core Components Guide

Element Attributes Description

delivery N/A Defines where the generated
output is sent.

document output-type Specify one output that can
have several template
elements. The output-type
attribute is optional. Valid
values are:

pdf (Default)

rtf

html

excel

text

filesystem output Specify this element to save
the output to the file system.
Define the directory path in
the output attribute.

print • printer

• server-alias

The print element can occur
multiple times under
delivery to print one
document to several printers.
Specify the printer
attribute as a URI, such as:
"ipp://myprintserver:6
31/printers/printernam
e"

fax • server

• server-alias

Specify a URI in the server
attribute, for example:
"ipp://myfaxserver1:63
1/printers/myfaxmachin
e"

number The number element can
occur multiple times to list
multiple fax numbers. Each
element occurrence must
contain only one number.

Using the XML Publisher APIs 8-33

Element Attributes Description

email • server

• port

• from

• reply-to

• server-alias

Specify the outgoing mail
server (SMTP) in the server
attribute.

Specify the mail server port in
the port attribute.

message • to

• cc

• bcc

• attachment

• subject

The message element can be
placed several times under
the email element. You can
specify character data in the
message element.

You can specify multiple
e-mail addresses in the to,
cc and bcc attributes
separated by a comma.

The attachment value is
either true or false (default). If
attachment is true, then a
generated document will be
attached when the e-mail is
sent.

The subject attribute is
optional.

background where If the background text is
required on a specific page,
then set the where value to
the page numbers required.
The page index starts at 1. The
default value is 0, which
places the background on all
pages.

8-34 Oracle XML Publisher Core Components Guide

Element Attributes Description

text • title

• default

Specify the watermark text in
the title value.

A default value of "yes"
automatically draws the
watermark with forward
slash type. The default value
is yes.

pagenumber • initial-page-index

• initial-value

• x-pos

• y-pos

The initial-page-index
default value is 0.

The initial-value default
value is 1.

"Helvetica" is used for the
page number font.

The x-pos provides lower
left x position.

The y-pos provides lower
left y position.

template • locale

• location

• type

Contains template
information.

Valid values for the type
attribute are

pdf

rtf

xsl-fo

etext

The default value is "pdf".

Using the XML Publisher APIs 8-35

Element Attributes Description

data location Define the location
attribute to specify the
location of the data, or attach
the actual XML data with
subelements. The default
value of location is
"inline". It the location
points to either an XML file or
a URL, then the data should
contain an XML declaration
with the proper encoding.

If the location attribute is
not specified, the data
element should contain the
subelements for the actual
data. This must not include an
XML declaration.

XML File Samples
Following are sample XML files that show:

• Simple XML shape

• Defining two data sets

• Defining multiple templates and data

• Retrieving templates over HTTP

• Retrieving data over HTTP

• Generating more than one output

• Defining page numbers

Simple XML sample
The following sample is a simple example that shows the definition of one template (
template1.pdf) and one data source (data1) to produce one output file (
outfile.pdf) delivered to the file system:

8-36 Oracle XML Publisher Core Components Guide

Example
<?xml version="1.0" encoding="UTF-8" ?>
 <xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi">
 <xapi:request>
 <xapi:delivery>
 <xapi:filesystem output="d:\tmp\outfile.pdf" />
 </xapi:delivery>
 <xapi:document output-type="pdf">
 <xapi:template type="pdf" location="d:\mywork\template1.pdf">
 <xapi:data>
 <field1>data1</field1>
 </xapi:data>
 </xapi:template>
 </xapi:document>
 </xapi:request>
 </xapi:requestset>

Defining two data sets
The following example shows how to define two data sources to merge with one
template to produce one output file delivered to the file system:

Example
<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi">
 <xapi:request>
 <xapi:delivery>
 <xapi:filesystem output="d:\tmp\outfile.pdf"/>
 </xapi:delivery>

 <xapi:document output-type="pdf">
 <xapi:template type="pdf"
 location="d:\mywork\template1.pdf">
 <xapi:data>
 <field1>The first set of data</field1>
 </xapi:data>
 <xapi:data>
 <field1>The second set of data</field1>
 </xapi:data>
 </xapi:template>
 </xapi:document>
 </xapi:request>
</xapi:requestset>

Defining multiple templates and data
The following example builds on the previous examples by applying two data sources
to one template and two data sources to a second template, and then merging the two
into a single output file. Note that when merging documents, the output-type must
be "pdf".

Using the XML Publisher APIs 8-37

Example
<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi">
 <xapi:request>
 <xapi:delivery>
 <xapi:filesystem output="d:\tmp\outfile3.pdf"/>
 </xapi:delivery>

 <xapi:document output-type="pdf">
 <xapi:template type="pdf"
 location="d:\mywork\template1.pdf">
 <xapi:data>
 <field1>The first set of data</field1>
 </xapi:data>
 <xapi:data>
 <field1>The second set of data</field1>
 </xapi:data>
 </xapi:template>

 <xapi:template type="pdf"
 location="d:\mywork\template2.pdf">
 <xapi:data>
 <field1>The third set of data</field1>
 </xapi:data>
 <xapi:data>
 <field1>The fourth set of data</field1>
 </xapi:data>
 </xapi:template>
 </xapi:document>
 </xapi:request>
</xapi:requestset>

Retrieving templates over HTTP
This sample is identical to the previous example, except in this case the two templates
are retrieved over HTTP:

8-38 Oracle XML Publisher Core Components Guide

<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi">
 <xapi:request>
 <xapi:delivery>
 <xapi:filesystem output="d:\temp\out4.pdf"/>
 </xapi:delivery>

 <xapi:document output-type="pdf">
 <xapi:template type="pdf"
 location="http://your.server:9999/templates/template1.pdf">
 <xapi:data>
 <field1>The first page data</field1>
 </xapi:data>
 <xapi:data>
 <field1>The second page data</field1>
 </xapi:data>
 </xapi:template>
 <xapi:template type="pdf"
 location="http://your.server:9999/templates/template2.pdf">
 <xapi:data>
 <field1>The third page data</field1>
 </xapi:data>
 <xapi:data>
 <field1>The fourth page data</field1>
 </xapi:data>
 </xapi:template>
 </xapi:document>
 </xapi:request>
</xapi:requestset>

Retrieving data over HTTP
This sample builds on the previous example and shows one template with two data
sources, all retrieved via HTTP; and a second template retrieved via HTTP with its two
data sources embedded in the XML:

Using the XML Publisher APIs 8-39

Example
<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi">
 <xapi:request>
 <xapi:delivery>
 <xapi:filesystem output="d:\temp\out5.pdf"/>
 </xapi:delivery>

 <xapi:document output-type="pdf">
 <xapi:template type="pdf"
 location="http://your.server:9999/templates/template1.pdf">
 <xapi:data location="http://your.server:9999/data/data_1.xml"/>
 <xapi:data location="http://your.server:9999/data/data_2.xml"/>
 </xapi:template>

 <xapi:template type="pdf"
 location="http://your.server:9999/templates/template2.pdf">
 <xapi:data>
 <field1>The third page data</field1>
 </xapi:data>
 <xapi:data>
 <field1>The fourth page data</field1>
 </xapi:data>
 </xapi:template>
 </xapi:document>
 </xapi:request>
</xapi:requestset>

Generating more than one output
The following sample shows the generation of two outputs: out_1.pdf and
out_2.pdf. Note that a request element is defined for each output.

8-40 Oracle XML Publisher Core Components Guide

Example
<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi">
 <xapi:request>
 <xapi:delivery>
 <xapi:filesystem output="d:\temp\out_1.pdf"/>
 </xapi:delivery>
 <xapi:document output-type="pdf">
 <xapi:template type="pdf"
 location="d:\mywork\template1.pdf">
 <xapi:data>
 <field1>The first set of data</field1>
 </xapi:data>
 <xapi:data>
 <field1>The second set of data</field1>
 </xapi:data>
 </xapi:template>
 </xapi:document>
 </xapi:request>

 <xapi:request>
 <xapi:delivery>
 <xapi:filesystem output="d:\temp\out_2.pdf"/>
 </xapi:delivery>
 <xapi:document output-type="pdf">
 <xapi:template type="pdf"
 location="d:mywork\template2.pdf">
 <xapi:data>
 <field1>The third set of data</field1>
 </xapi:data>
 <xapi:data>
 <field1>The fourth set of data</field1>
 </xapi:data>
 </xapi:template>
 </xapi:document>
 </xapi:request>

</xapi:requestset>

Defining page numbers
The following sample shows the use of the pagenumber element to define page
numbers on a PDF output document. The first document that is generated will begin
with an initial page number value of 1. The second output document will begin with an
initial page number value of 3. The pagenumber element can reside anywhere within
the document element tags.

Note that page numbering that is applied using the pagenumber element will not
replace page numbers that are defined in the template.

Using the XML Publisher APIs 8-41

<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi">
 <xapi:request>
 <xapi:delivery>
 <xapi:filesystem output="d:\temp\out7-1.pdf"/>
 </xapi:delivery>
 <xapi:document output-type="pdf">
 <xapi:pagenumber initial-value="1" initial-page-index="1"
 x-pos="300" y-pos="20" />
 <xapi:template type="pdf"
 location="d:\mywork\template1.pdf">
 <xapi:data>
 <field1>The first page data</field1>
 </xapi:data>
 <xapi:data>
 <field1>The second page data</field1>
 </xapi:data>
 </xapi:template>
 </xapi:document>
 </xapi:request>

 <xapi:request>
 <xapi:delivery>
 <xapi:filesystem output="d:\temp\out7-2.pdf"/>
 </xapi:delivery>
 <xapi:document output-type="pdf">
 <xapi:template type="pdf"
 location="d:\mywork\template2.pdf">
 <xapi:data>
 <field1>The third page data</field1>
 </xapi:data>
 <xapi:data>
 <field1>The fourth page data</field1>
 </xapi:data>
 </xapi:template>
 <xapi:pagenumber initial-value="3" initial-page-index="1"
 x-pos="300" y-pos="20" />
 </xapi:document>
 </xapi:request>

</xapi:requestset>

Invoke Processors
The following code samples show how to invoke the document processor engine using
an input file name and an input stream.

Invoke Processors with Input File Name
Input:

• Data file name (String)

• Directory for Temporary Files (String)

8-42 Oracle XML Publisher Core Components Guide

Example
import oracle.apps.xdo.batch.DocumentProcessor;
.
.
.
 public static void main(String[] args)
 {
.
.
.
 try
 {
 // dataFile --- File path of the Document Processor XML
 // tempDir --- Temporary Directory path
 DocumentProcessor docProcessor = new DocumentProcessor(dataFile,
tempDir);
 docProcessor.process();
 }
 catch(Exception e)
 {
 e.printStackTrace();
 System.exit(1);
 }
 System.exit(0);
 }

Invoke Processors with InputStream
Input:

• Data file (InputStream)

• Directory for Temporary Files (String)

Using the XML Publisher APIs 8-43

Example
import oracle.apps.xdo.batch.DocumentProcessor;
import java.io.InputStream;
.
.
.
 public static void main(String[] args)
 {
.
.
.
 try
 {
 // dataFile --- File path of the Document Processor XML
 // tempDir --- Temporary Directory path
 FileInputStream fIs = new FileInputStream(dataFile);

 DocumentProcessor docProcessor = new DocumentProcessor(fIs,
tempDir);
 docProcessor.process();
 fIs.close();
 }
 catch(Exception e)
 {
 e.printStackTrace();
 System.exit(1);
 }
 System.exit(0);
 }

Bursting Engine
XML Publisher's bursting engine accepts a data stream and splits it based on multiple
criteria, generates output based on a template, then delivers the individual documents
through the delivery channel of choice. The engine provides a flexible range of
possibilities for document generation and delivery. Example implementations include:

• Invoice generation and delivery based on customer-specific layouts and delivery
preference

• Financial reporting to generate a master report of all cost centers, bursting out
individual cost center reports to the appropriate manager

• Generation of payslips to all employees based on one extract and delivered via
e-mail

Usage
The bursting engine is an extension of the Document Processor Engine, page 8-30 and
has its own method called to invoke it. The Document Processor XML structure has
been extended to handle the new components required by the bursting engine. It

8-44 Oracle XML Publisher Core Components Guide

supports all of the delivery functionality that the Document Processor supports using
the same format. It accepts the XML data to be burst and a control file that takes the
Document Processor XML format (see Hierarchy and Elements of the Document
Processor XML File, page 8-30).

Control File
The control file takes the same format as the Document Processor XML, page 8-30 with
a few extensions:

• Use the attribute select under the request element to specify the element in the
XML data that you wish to burst on.

Example
<xapi:request select="/EMPLOYEES/EMPLOYEE">

• Use the attribute id under the lowest level of the delivery structure (for example,
for the delivery element email, the id attribute belongs to the message element.
This assigns an ID to the delivery method to be referenced later in the XML file.

Example
<xapi:message id="123" to="jo.smith@company.com"

• Use the delivery attribute under the document element. This assigns the
delivery method for the generated document as defined in the id attribute for the
delivery element. You can specify multiple delivery channels separated by a
comma.

Example
<xapi:document output-type="pdf" delivery="123">

• Use the filter attribute on the template element. Use this to apply a layout
template based on a filter on your XML data.

Example
<xapi:template type="rtf" location="/usr/tmp/empGeneric.rtf">
<xapi:template type="rtf" location="usr\tmp\empDet.rtf"
filter=".//EMPLOYEE[ENAME='SMITH']"/>

This will apply the empDet template only to those employees with the name
"SMITH". All other employees will have the empGeneric template applied. This
filter can use any XPATH expression to determine the rules for the template
application.

Dynamic Delivery Destination
You can reference elements in the data to derive certain delivery attributes, such as an
e-mail address or fax number. Enter the value for the attribute using the following form:

${ELEMENT}

where ELEMENT is the element name from the XML data that holds the value for the
attribute.

Using the XML Publisher APIs 8-45

For example:
<xapi:message id="123" to="${EMAIL}"/>

At runtime the value of the to attribute will be set to the value of the EMAIL element
from the input XML file.

You can also set the value of an attribute by passing a parameter to API in a Properties
object.

Dynamic Delivery Content
You can reference information in the XML data to be put into the delivery content. This
takes the same format described above (that is, ${ELEMENT}).

For example, suppose you wanted to burst a document to employees via e-mail and
personalize the e-mail by using the employee's name in the subject line. Assuming the
employee's name is held in an element called ENAME, you could use ${ENAME} to
reference the employee's name in the control file as follows:
subject="Employee Details for ${ENAME}"

Sample Control File
The following sample control file shows an example control file to split data based on
an EMPLOYEE element and send an e-mail to each employee with their own data. The
sample file is annotated.
<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi">
<xapi:request select="/EMPLOYEES/EMPLOYEE"><! - This sets the bursting
element i.e., EMPLOYEE - >
 <xapi:delivery>
 <xapi:email server="rgmamersmtp.oraclecorp.com" port="25"
 from="xmlpadmin1@oracle.com" reply-to ="reply@oracle.com">
 <xapi:message id="123" to="${EMAIL}" cc="${EMAIL_ALL}"
 attachment="true" subject="Employee Details
 for ${ENAME}"> Mr. ${ENAME}, Please review the
 attached document</xapi:message><! - This assigns a delivery id
of '123'. It also sets the e-mail
 address of the employee and a cc copy to a parameter value
 EMAIL_ALL; this might be a manager's e-mail. The employee's
 name (ENAME) can also be used in the subject/body
 of the email. - ></xapi:email>
 </xapi:delivery>
 <xapi:document output-type="pdf" delivery="123">
 <xapi:template type="rtf" location="/usr/tmp/empGeneric.rtf">
 <xapi:template type="rtf" location="/usr/tmp/empDet.rtf"
 filter=".//EMPLOYEE[ENAME='SMITH']" ><! - Employees with the name
SMITH will have
 the empDet template applied - >
 </xapi:template>
 </xapi:document>
 </xapi:request>
</xapi:requestset>

8-46 Oracle XML Publisher Core Components Guide

Multiple Bursting Options
The bursting engine can support multiple bursting criteria and delivery options.
Assume you have a report that generates data for all employees with their manager's
information. You can construct a control file that will:

• Burst the employee data to each employee

• Burst a report to each manager that contains the data about his employees

You can provide a different template for each bursting level. You can therefore generate
the employee report based on one template and the summary manager's report based
on a different template, but still use the same data set.

To achieve this multibursting result, you must add a second request element to the
control file structure.

Multibursting Example
The following sample shows how to construct a control file that will burst on the
EMPLOYEE level and the MANAGER level:

Using the XML Publisher APIs 8-47

?xml version="1.0" encoding="UTF-8" ?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi"><! -
First request to burst on employee - >
 <xapi:request select="/EMPLOYEES/EMPLOYEE">
 <xapi:delivery>
 <xapi:email <<server details removed>> />
 <xapi:message id="123" <<message details removed>>
 </xapi:message>
 </xapi:email>
 <xapi:fax server="ipp://mycupsserver:631/printers/fax2">
 <xapi:number id="FAX1">916505069560</xapi:number>
 </xapi:fax>
 <xapi:print id="printer1"
 printer="ipp://mycupsserver:631/printers/printer1"
 copies="2" />
 </xapi:delivery>
 <xapi:document output-type="pdf" delivery="123">
 <xapi:template type="rtf" location="usr\tmp\empDet.rtf" />
 </xapi:document>
 </xapi:request><!Second request to burst on department - >
<xapi:request select="/DATA/DEPT/MANAGER">
 <xapi:delivery>
 <xapi:email server="gmsmtp.oraclecorp.com" port=""
 from="XDOburstingTest@oracle.com" reply-to="reply@oracle.com">
 <xapi:message id="123" to="${MANAGER_EMAIL}"
 cc="${MANAGER_EMAIL}" attachment="true"
 subject="Department Summary for ${DEPTNO}">Please review
 the attached Department Summary for
 department ${DEPTNO}</xapi:message>
 </xapi:email>
 </xapi:delivery>
<xapi:document output-type="rtf" delivery="123">
 <xapi:template type="rtf"
 location="d:\burst_test\deptSummary.rtf" />
 </xapi:document>
 </xapi:request>
 </xapi:requestset>

Bursting Listeners
The bursting engine provides a listening interface that allows you to listen to the
various stages of the bursting process. Following are the supported modes that you can
subscribe to:

• beforeProcess() - before the bursting process starts.

• afterProcess() - after the bursting process completes.

• beforeProcessRequest(int requestIndex) - before the bursting request
starts. This interface provides an assigned request ID for the current request.

• afterProcessRequest(int requestIndex)- after the bursting request has
completed; provides the request ID for the current request.

• beforeProcessDocument(int requestIndex,int
documentIndex,String deliveryId) - before the document generation starts;

8-48 Oracle XML Publisher Core Components Guide

provides the request ID and a document ID.

• afterProcessDocument(int requestIndex,int
documentIndex,Vector documentOutputs) - after the document generation
completes; provides the request ID and document ID, plus a Vector list of the
document objects generated in the request.

• beforeDocumentDelivery(int requestIndex,int
documentIndex,String deliveryId) - before the documents in the request
are delivered; provides the request ID, the document ID, and a delivery ID.

• afterDocumentDelivery(int requestIndex,int
documentIndex,String deliveryId,Object deliveryObject,Vector
attachments) - after the document delivery completes; provides a request ID,
document ID, and delivery ID, plus a Vector list of the documents delivered in the
request.

You can subscribe to any of these interfaces in your calling Java class. The listeners are
useful to determine if the processing of individual documents is proceeding
successfully or to start another process based on the successful completion of a request.

Calling the Bursting API
To call the bursting API, instantiate an instance of DocumentProcessor class using on of
the following formats:
DocumentProcessor(xmlCtrlInput, xmlDataInput, tmpDir)

where

xmlCtrlInput - is the control file for the bursting process. This can be a string
reference to a file, an inputStream object, or a Reader object.

xmlDataInput - is the XML data to be burst. This can a string reference to a file, an
inputStream object, or a Reader object.

tmpDir - is a temporary working directory. This takes the format of a String object. This
is optional as long as the main XML Publisher temporary directory has been set.

Simple Example Java Class
The following is a sample Java class:

Using the XML Publisher APIs 8-49

public class BurstingTest
{
 public BurstingTest()
 {
 try
 {
 DocumentProcessor dp = new DocumentProcessor
 ("\burst\burstCtrl.xml", "\\burst\\empData.xml","\\burst");
 dp.process();
 }
 }
 catch (Exception e)
 { System.out.println(e);

 public static void main(String[] args)
 {
 BurstingTest burst1 = new BurstingTest();
 }

}

Example Java Class with Listeners
To take advantage of the bursting listeners, add the interface to the class declaration
and use the registerListener method. Then code for the listeners you want to
subscribe to as follows:

8-50 Oracle XML Publisher Core Components Guide

public class BurstingTest implements BurstingListener
{
 public BurstingTest()
 {
 try
 {
 DocumentProcessor dp = new DocumentProcessor
 ("\burst\burstCtrl.xml", "\\burst\\empData.xml","\\burst");
 dp.registerListener(this);
 dp.process();
 }
 }
 catch (Exception e)
 { System.out.println(e);

 public static void main(String[] args)
 {
 BurstingTest burst1 = new BurstingTest();
}

public void beforeProcess(){
 System.out.println("Start of Bursting Process");
 }
public void afterProcess()
 {
 System.out.println("End of Bursting Process");
 }

public void beforeProcessRequest(int requestIndex)
 {
 System.out.println("Start of Process Request ID"+requestIndex);
 }
 public void afterProcessRequest(int requestIndex)
 {
 System.out.println("End of Process Request ID"+requestIndex ");

 }
 public void beforeProcessDocument(int requestIndex,int
 documentIndex)
 {
 System.out.println("Start of Process Document");
 System.out.println(" Request Index "+requestIndex);
 System.out.println(" Document Index " +documentIndex);

 }
 public void afterProcessDocument(int requestIndex,int
 documentIndex,
 Vector documentOutputs)
 {
 System.out.println(" ========End of Process Document");
 System.out.println(" Outputs :"+documentOutputs);
 }
 public void beforeDocumentDelivery(int requestIndex,int
 documentIndex,
 String deliveryId)
 {
 System.out.println(" ========Start of Delivery");
 System.out.println(" Request Index "+requestIndex);
 System.out.println(" Document Index " +documentIndex);
 System.out.println(" DeliveryId " +deliveryId);
 }

Using the XML Publisher APIs 8-51

public void afterDocumentDelivery(int requestIndex,int documentIndex,
 String deliveryId,Object deliveryObject,Vector attachments)
 {
 System.out.println(" ========End of Delivery");
 System.out.println(" Attachments : "+attachments);

 }

}

Passing a Parameter
To pass a parameter holding a value to be used in the control file for delivery, add the
following code:
…
Properties prop= new Properties();
prop.put("user-variable:ADMIN_EMAIL","jo.smith@company.com");
dp.setConfig(prop);
dp.process();
…

Bursting Control File Examples
All of the examples in this section use the following XML data source:

8-52 Oracle XML Publisher Core Components Guide

<?xml version="1.0" encoding="UTF-8"?>
<DATA>
<DEPTS>
 <DEPT>
 <DEPTNO>20</DEPTNO>
 <NAME>Accounting</NAME>
 <MANAGER_EMAIL>tdexter@mycomp.com</MANAGER_EMAIL>
 <EMPLOYEES>
 <EMPLOYEE>
 <EMPNO>7369</EMPNO>
 <ENAME>SMITH</ENAME>
 <JOB>CLERK</JOB>
 <MGR>7902</MGR>
 <HIREDATE>1980-12-17T00:00:00.000-08:00</HIREDATE>
 <SAL>800</SAL>
 <DEPTNO>20</DEPTNO>
 <EMAIL>jsmith@mycomp.com</EMAIL>
 </EMPLOYEE>
 <EMPLOYEE>
 <EMPNO>7566</EMPNO>
 <ENAME>JONES</ENAME>
 <JOB>MANAGER</JOB>
 <MGR>7839</MGR>
 <HIREDATE>1981-04-02T00:00:00.000-08:00</HIREDATE>
 <SAL>2975</SAL>
 <DEPTNO>20</DEPTNO>
 <EMAIL>jjones@mycomp.com</EMAIL>
 </EMPLOYEE>
 </EMPLOYEES>
 </DEPT>
 <DEPT>
 <DEPTNO>30</DEPTNO>
 <NAME>Sales</NAME>
 <MANAGER_EMAIL>dsmith@mycomp.com</MANAGER_EMAIL>
 <EMPLOYEES>
 <EMPLOYEE>
 <EMPNO>7788</EMPNO>
 <ENAME>SCOTT</ENAME>
 <JOB>ANALYST</JOB>
 <MGR>7566</MGR>
 <HIREDATE>1982-12-09T00:00:00.000-08:00</HIREDATE>
 <SAL>3000</SAL>
 <DEPTNO>20</DEPTNO>
 <EMAIL>jscott@mycomp.com</EMAIL>
 </EMPLOYEE>
 <EMPLOYEE>
 <EMPNO>7876</EMPNO>
 <ENAME>ADAMS</ENAME>
 <JOB>CLERK</JOB>
 <MGR>7788</MGR>
 <HIREDATE>1983-01-12T00:00:00.000-08:00</HIREDATE>
 <SAL>1100</SAL>
 <EMAIL>jadams@mycomp.com</EMAIL>
 </EMPLOYEE>
 </EMPLOYEES>
 </DEPT>
</DEPTS>
</DATA>

Example 1 - Bursting Employee Data to Employees via E-mail
The following sample shows how to apply a template (empDet.rtf) to every employee's

Using the XML Publisher APIs 8-53

data, generate a PDF document, and deliver the document to each employee via e-mail.
<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi">
<xapi:request select="/DATA/DEPTS/DEPT/EMPLOYEES/EMPLOYEE"> <! - Burst
on employee element - >
 <xapi:delivery>
 <xapi:email server="my.smtp.server" port="25"
 from="xmlpadmin@mycomp.com" reply-to ="">
 <xapi:message id="123" to="${EMAIL}"
<! - Set the id for the delivery method - ><! - Use the employees
EMAIL element to email the document to
 the employee - >cc="${ADMIN_EMAIL}"
<! - Use the ADMIN_EMAIL parameter to CC the document
 to the administrator - > attachment="true" subject="Employee
Details for ${ENAME}">
 Mr. ${ENAME}, Please review the attached document</xapi:message><! -
Embed the employees name into the email message - >
</xapi:email>
 </xapi:delivery>
 <xapi:document output-type="pdf" delivery="123"><!Specify the
delivery method id to be used - >
 <xapi:template type="rtf"
 location="\usr\empDet.rtf"></xapi:template>
 </xapi:document>
 </xapi:request>
</xapi:requestset>

Example 2 - Bursting Employee Data to Employees via Multiple Delivery Channels
and Conditionally Using Layout Templates
This sample shows how to burst, check the employee name, and generate a PDF using
the appropriate template. The documents will then be e-mailed and printed.
<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi" >
 <xapi:globalData location="stream">
 </xapi:globalData >
 <xapi:request select="/DATA/DEPTS/DEPT/EMPLOYEES/EMPLOYEE">
 <xapi:delivery>
 <xapi:email server="my.smtp.server" port=""
 from="xmlpserver@oracle.com"
 reply-to ="reply@oracle.com">
 <xapi:message id="123" to="${EMAIL}" cc="" attachment="true"
 subject="Employee Details for ${ENAME}"> Mr. ${ENAME},
 Please review the attached document</xapi:message>
</xapi:email>
<xapi:print id="printer1"
 printer="ipp://ipgpc1:631/printers/printer1" copies="2" /><! - Add an
id for this delivery method i.e. printer1 - > </xapi:delivery>
 <xapi:document output-type="pdf" delivery="printer1,123"><! -
Deliver to printer and email - > <xapi:template type="rtf"
location="/usr/empDetSmith.rtf"
 filter=".//EMPLOYEE[ENAME='SMITH']"><!- Specify template to be
used for employees called SMITH - >
 </xapi:template>
 <xapi:template type="rtf" location="/usr/empSummary.rtf"><! -
Default template to be used - >
 </xapi:template>
 </xapi:document>
 </xapi:request>
</xapi:requestset>

8-54 Oracle XML Publisher Core Components Guide

Example 3 - Bursting Employee Data to Employees and Their Manager
This sample shows how to burst an e-mail with a PDF attachment to all employees
using the empDet template. It will also burst an employee summary PDF to the
manager of each department via e-mail.
<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi">
 <xapi:request select="/DATA/DEPTS/DEPT/EMPLOYEES/EMPLOYEE">
 <xapi:delivery>
 <xapi:email server="my.smtp.server" port=""
 from="xmlpserver@oracle.com" reply-to ="">
 <xapi:message id="123" to="${EMAIL}" cc="${EMAIL}"
 attachment="true"
 subject="Employee Details for ${ENAME}"> Mr. ${ENAME},
 Please review the attached document</xapi:message>
</xapi:email>
 </xapi:delivery>
 <xapi:document output-type="pdf" delivery="123">
 <xapi:template type="rtf"
 location="/usr/empDet.rtf"</xapi:template>
 </xapi:document>
 </xapi:request>
<xapi:request select="/DATA/DEPTS/DEPT"><! - Second request created to
burst the same dataset to the
 manager based on the DEPT element - >
 <xapi:delivery>
 <xapi:email server="my.smtp.server" port=""
 from="xmlpserver@oracle.com" reply-to ="">
<xapi:message id="456" to="${MANAGER_EMAIL}"
 cc="${MANAGER_EMAIL}" attachment="true" subject="Department
 Summary for ${DEPTNO}"> Please review the attached
 Department Summary for department ${DEPTNO}</xapi:message>
</xapi:email>
 </xapi:delivery>
 <xapi:document output-type="rtf" delivery="456">
 <xapi:template type="rtf"
 location="\usr\deptSumm.rtf"></xapi:template>
 </xapi:document>
 </xapi:request>
</xapi:requestset>

XML Publisher Properties
The FO Processor supports PDF security and other properties that can be applied to
your final documents. Security properties include making a document unprintable and
applying password security to an encrypted document.

Other properties allow you to define font subsetting and embedding. If your template
uses a font that would not normally be available to XML Publisher at runtime, you can
use the font properties to specify the location of the font. At runtime XML Publisher will
retrieve and use the font in the final document. For example, this property might be
used for check printing for which a MICR font is used to generate the account and
routing numbers on the checks.

See XML Publisher Properties, page 7-4 for the full list of properties.

Using the XML Publisher APIs 8-55

Setting Properties
The properties can be set in two ways:

• At runtime, specify the property as a Java Property object to pass to the FO
Processor.

• Set the property in a configuration file.

• Set the property in the template (RTF templates only). See Setting Properties, page
2-91 in the RTF template for this method.

Passing Properties to the FO Engine
To pass a property as a Property object, set the name/value pair for the property prior to
calling the FO Processor, as shown in the following example:

Input:

• XML file name (String)

• XSL file name (String)

Output:

• PDF file name (String)

8-56 Oracle XML Publisher Core Components Guide

Example
import oracle.apps.xdo.template.FOProcessor;
.
.
.
 public static void main(String[] args)
 {

 FOProcessor processor = new FOProcessor();
 processor.setData(args[0]); // set XML input file
 processor.setTemplate(args[1]); // set XSL input file
 processor.setOutput(args[2]); //set (PDF) output file
 processor.setOutputFormat(FOProcessor.FORMAT_PDF);
 Properties prop = new Properties();
 /* PDF Security control: */
 prop.put("pdf-security", "true");
 /* Permissions password: */
 prop.put("pdf-permissions-password", "abc");
 /* Encryption level: */
 prop.put("pdf-encription-level", "0");
 processor.setConfig(prop);
 // Start processing
 try
 {
 processor.generate();
 }
 catch (XDOException e)
 {
 e.printStackTrace();
 System.exit(1);
 }

 System.exit(0);
 }

Passing a Configuration File to the FO Processor
The following code shows an example of passing the location of a configuration file.

Input:

• XML file name (String)

• XSL file name (String)

Output:

• PDF file name (String)

Using the XML Publisher APIs 8-57

import oracle.apps.xdo.template.FOProcessor;
.
.
.
 public static void main(String[] args)
 {
 FOProcessor processor = new FOProcessor();
 processor.setData(args[0]); // set XML input file
 processor.setTemplate(args[1]); // set XSL input file
 processor.setOutput(args[2]); //set (PDF) output file
 processor.setOutputFormat(FOProcessor.FORMAT_PDF);
 processor.setConfig("/tmp/xmlpconfig.xml");
 // Start processing
 try
 {
 processor.generate();
 } catch (XDOException e)
 { e.printStackTrace();
 System.exit(1);
 }
 System.exit(0);
 }

Passing Properties to the Document Processor
Input:

• Data file name (String)

• Directory for Temporary Files (String)

Output:

• PDF FIle

8-58 Oracle XML Publisher Core Components Guide

Example
import oracle.apps.xdo.batch.DocumentProcessor;
.
.
.
 public static void main(String[] args)
 {
.
.
.
 try
 {
 // dataFile --- File path of the Document Processor XML
 // tempDir --- Temporary Directory path
 DocumentProcessor docProcessor = new DocumentProcessor(dataFile,
tempDir);
 Properties prop = new Properties();
 /* PDF Security control: */
 prop.put("pdf-security", "true");
 /* Permissions password: */
 prop.put("pdf-permissions-password", "abc");
 /* encryption level: */
 prop.put("pdf-encription-level", "0");
 processor.setConfig(prop);
 docProcessor.process();
 }
 catch(Exception e)
 {
 e.printStackTrace();
 System.exit(1);
 }
 System.exit(0);
 }

Advanced Barcode Font Formatting Implementation
For the advanced formatting to work in the template, you must provide a Java class
with the appropriate methods to format the data at runtime. Many font vendors offer
the code with their fonts to carry out the formatting; these must be incorporated as
methods into a class that is available to the XML Publisher formatting libraries at
runtime. There are some specific interfaces that you must provide in the class for the
library to call the correct method for encoding.

Note: See Advanced Barcode Formatting, page 2-118 for the setup
required in the RTF template.

You must implement the following three methods in this class:

Using the XML Publisher APIs 8-59

/**
 * Return a unique ID for this bacode encoder
 * @return the id as a string
 */
 public String getVendorID();

/**
 * Return true if this encoder support a specific type of barcode
 * @param type the type of the barcode
 * @return true if supported
 */
 public boolean isSupported(String type);

/**
 * Encode a barcode string by given a specific type
 * @param data the original data for the barcode
 * @param type the type of the barcode
 * @return the formatted data
 */
 public String encode(String data, String type);

Place this class in the classpath for the middle tier JVM in which XML Publisher is
running.

Note: For E-Business Suite users, the class must be placed in the
classpath for the middle tier and any concurrent nodes that are present.

If in the register-barcode-vendor command the barcode_vendor_id is not provided,
XML Publisher will call the getVendorID() and use the result of the method as the ID
for the vendor.

The following is an example class that supports the code128 a, b and c encodings:

Important: The following code sample can be copied and pasted for use
in your system. Note that due to publishing constraints you will need
to correct line breaks and ensure that you delete quotes that display as
"smart quotes" and replace them with simple quotes.

8-60 Oracle XML Publisher Core Components Guide

Example
package oracle.apps.xdo.template.rtf.util.barcoder;

import java.util.Hashtable;
import java.lang.reflect.Method;
import oracle.apps.xdo.template.rtf.util.XDOBarcodeEncoder;
import oracle.apps.xdo.common.log.Logger;
// This class name will be used in the register vendor
// field in the template.

public class BarcodeUtil implements XDOBarcodeEncoder
// The class implements the XDOBarcodeEncoder interface
{
// This is the barcode vendor id that is used in the
// register vendor field and format-barcode fields
 public static final String BARCODE_VENDOR_ID = "XMLPBarVendor";
// The hashtable is used to store references to
// the encoding methods
 public static final Hashtable ENCODERS = new Hashtable(10);
// The BarcodeUtil class needs to be instantiated
 public static final BarcodeUtil mUtility = new BarcodeUtil();
// This is the main code that is executed in the class,
// it is loading the methods for the encoding into the hashtable.
// In this case we are loading the three code128 encoding
// methods we have created.
 static {
 try {
 Class[] clazz = new Class[] { "".getClass() };

 ENCODERS.put("code128a",mUtility.getClass().getMethod("code128a",
clazz));
 ENCODERS.put("code128b",mUtility.getClass().getMethod("code128b",
clazz));
 ENCODERS.put("code128c",mUtility.getClass().getMethod("code128c",
clazz));
 } catch (Exception e) {
// This is using the XML Publisher logging class to push
// errors to the XMLP log file.
 Logger.log(e,5);
 }
 }

Using the XML Publisher APIs 8-61

// The getVendorID method is called from the template layer
// at runtime to ensure the correct encoding method are used
 public final String getVendorID()
 {
 return BARCODE_VENDOR_ID;
 }
//The isSupported method is called to ensure that the
// encoding method called from the template is actually
// present in this class.
// If not then XMLP will report this in the log.
 public final boolean isSupported(String s)
 {
 if(s != null)
 return ENCODERS.containsKey(s.trim().toLowerCase());
 else
 return false;
 }

// The encode method is called to then call the appropriate
// encoding method, in this example the code128a/b/c methods.

 public final String encode(String s, String s1)
 {
 if(s != null && s1 != null)
 {
 try
 {
 Method method =
(Method)ENCODERS.get(s1.trim().toLowerCase());
 if(method != null)
 return (String)method.invoke(this, new Object[] {
 s
 });
 else
 return s;
 }
 catch(Exception exception)
 {
 Logger.log(exception,5);
 }
 return s;
 } else
 {
 return s;
 }
 }

 /** This is the complete method for Code128a */

 public static final String code128a(String DataToEncode)
 {
 char C128_Start = (char)203;
 char C128_Stop = (char)206;
 String Printable_string = "";
 char CurrentChar;
 int CurrentValue=0;
 int weightedTotal=0;
 int CheckDigitValue=0;
 char C128_CheckDigit='w';

 DataToEncode = DataToEncode.trim();

8-62 Oracle XML Publisher Core Components Guide

weightedTotal = ((int)C128_Start) - 100;
 for(int i = 1; i <= DataToEncode.length(); i++)
 {
 //get the value of each character
 CurrentChar = DataToEncode.charAt(i-1);
 if(((int)CurrentChar) < 135)
 CurrentValue = ((int)CurrentChar) - 32;
 if(((int)CurrentChar) > 134)
 CurrentValue = ((int)CurrentChar) - 100;

 CurrentValue = CurrentValue * i;
 weightedTotal = weightedTotal + CurrentValue;
 }
 //divide the WeightedTotal by 103 and get the remainder,//this is
the CheckDigitValue
 CheckDigitValue = weightedTotal % 103;
 if((CheckDigitValue < 95) && (CheckDigitValue > 0))
 C128_CheckDigit = (char)(CheckDigitValue + 32);
 if(CheckDigitValue > 94)
 C128_CheckDigit = (char)(CheckDigitValue + 100);
 if(CheckDigitValue == 0){
 C128_CheckDigit = (char)194;
 }

 Printable_string = C128_Start + DataToEncode + C128_CheckDigit +
C128_Stop + " ";
 return Printable_string;
 }

Using the XML Publisher APIs 8-63

/** This is the complete method for Code128b ***/

 public static final String code128b(String DataToEncode)
 {
 char C128_Start = (char)204;
 char C128_Stop = (char)206;
 String Printable_string = "";
 char CurrentChar;
 int CurrentValue=0;
 int weightedTotal=0;
 int CheckDigitValue=0;
 char C128_CheckDigit='w';

 DataToEncode = DataToEncode.trim();
 weightedTotal = ((int)C128_Start) - 100;
 for(int i = 1; i <= DataToEncode.length(); i++)
 {
 //get the value of each character
 CurrentChar = DataToEncode.charAt(i-1);
 if(((int)CurrentChar) < 135)
 CurrentValue = ((int)CurrentChar) - 32;
 if(((int)CurrentChar) > 134)
 CurrentValue = ((int)CurrentChar) - 100;

 CurrentValue = CurrentValue * i;
 weightedTotal = weightedTotal + CurrentValue;
 }
 //divide the WeightedTotal by 103 and get the remainder,//this is
the CheckDigitValue
 CheckDigitValue = weightedTotal % 103;
 if((CheckDigitValue < 95) && (CheckDigitValue > 0))
 C128_CheckDigit = (char)(CheckDigitValue + 32);
 if(CheckDigitValue > 94)
 C128_CheckDigit = (char)(CheckDigitValue + 100);
 if(CheckDigitValue == 0){
 C128_CheckDigit = (char)194;
 }

 Printable_string = C128_Start + DataToEncode + C128_CheckDigit +
C128_Stop + " ";
 return Printable_string;
 }

 /** This is the complete method for Code128c **/

 public static final String code128c(String s)
 {
 char C128_Start = (char)205;
 char C128_Stop = (char)206;
 String Printable_string = "";
 String DataToPrint = "";
 String OnlyCorrectData = "";
 int i=1;
 int CurrentChar=0;
 int CurrentValue=0;
 int weightedTotal=0;
 int CheckDigitValue=0;
 char C128_CheckDigit='w';
 DataToPrint = "";
 s = s.trim();

8-64 Oracle XML Publisher Core Components Guide

for(i = 1; i <= s.length(); i++)
 {
 //Add only numbers to OnlyCorrectData string
 CurrentChar = (int)s.charAt(i-1);
 if((CurrentChar < 58) && (CurrentChar > 47))
 {
 OnlyCorrectData = OnlyCorrectData + (char)s.charAt(i-1);
 }
 }
 s = OnlyCorrectData;
 //Check for an even number of digits, add 0 if not even
 if((s.length() % 2) == 1)
 {
 s = "0" + s;
 }
 //<<<< Calculate Modulo 103 Check Digit and generate
 // DataToPrint >>>>//Set WeightedTotal to the Code 128 value of
// the start character
 weightedTotal = ((int)C128_Start) - 100;
 int WeightValue = 1;
 for(i = 1; i <= s.length(); i += 2)
 {
 //Get the value of each number pair (ex: 5 and 6 = 5*10+6 =56) //And
assign the ASCII values to DataToPrint
 CurrentChar = ((((int)s.charAt(i-1))-48)*10) + (((int)s.charAt(i))-48);
 if((CurrentChar < 95) && (CurrentChar > 0))
 DataToPrint = DataToPrint + (char)(CurrentChar + 32);
 if(CurrentChar > 94)
 DataToPrint = DataToPrint + (char)(CurrentChar + 100);
 if(CurrentChar == 0)
 DataToPrint = DataToPrint + (char)194;
 //multiply by the weighting character
 //add the values together to get the weighted total
 weightedTotal = weightedTotal + (CurrentChar * WeightValue);
 WeightValue = WeightValue + 1;
 }
 //divide the WeightedTotal by 103 and get the remainder,//this is
the CheckDigitValue
 CheckDigitValue = weightedTotal % 103;
 if((CheckDigitValue < 95) && (CheckDigitValue > 0))
 C128_CheckDigit = (char)(CheckDigitValue + 32);
 if(CheckDigitValue > 94)
 C128_CheckDigit = (char)(CheckDigitValue + 100);
 if(CheckDigitValue == 0){
 C128_CheckDigit = (char)194;
 }
 Printable_string = C128_Start + DataToPrint + C128_CheckDigit +
C128_Stop + " ";
 Logger.log(Printable_string,5);
 return Printable_string;
 }
}

Once you create the class and place it in the correct classpath, your template creators
can start using it to format the data for barcodes. You must give them the following
information to include in the template commands:

• The class name and path.

In this example:

Using the XML Publisher APIs 8-65

oracle.apps.xdo.template.rtf.util.barcoder.BarcodeUtil

• The barcode vendor ID you created.

In this example: XMLPBarVendor

• The available encoding methods.

In this example, code128a, code128b and code128c They can then use this
information to sucessfully encode their data for barcode output.

They can then use this information to successfully encode their data for barcode output.

Supported XSL-FO Elements A-1

A
Supported XSL-FO Elements

Supported XSL-FO Elements
The following table lists the XSL-FO elements supported in this release of BI Publisher.
For each element the supported content elements and attributes are listed. If elements
have shared supported attributes, these are noted as a group and are listed in the
subsequent table, Property Groups. For example, several elements share the content
element inline. Rather than list the inline properties each time, each entry notes
that "inline-properties" are supported. The list of inline-properties can then be found in
the Property Groups table.

Element Supported Content Elements Supported Attributes

basic-link external-graphic

inline

leader

page-number

page-number-citation

basic-link

block

block-container

table

list-block

wrapper

inline-properties

external-destination

internal-destination

A-2 Oracle XML Publisher Core Components Guide

Element Supported Content Elements Supported Attributes

bidi-override bidi-override

external-graphic

instream-foreign-object

inline

leader

page-number

page-number-citation

basic-link

inline-properties

block external-graphic

inline

page-number

page-number-citation

basic-link

block

block-container

table

list-block

wrapper

block-properties

block-container block

block-container

table

list-block

wrapper

block-properties

bookmark-tree bookmark N/A

Supported XSL-FO Elements A-3

Element Supported Content Elements Supported Attributes

bookmark bookmark

bookmark-title

external-destination

internal-destination

starting-state

bookmark-title N/A color

font-style

font-weight

conditional-page-master-
reference

N/A master-reference

page-position

• first

• last

• rest

• any

• inherit

odd-or-even

• odd

• even

• any

• inherit

blank-or-not-blank

• blank

• not-blank

• any

• inherit

A-4 Oracle XML Publisher Core Components Guide

Element Supported Content Elements Supported Attributes

external-graphic N/A graphic-properties

src

flow block

block-container

table

list-block

wrapper

flow-properties

inline external-graphic

inline

leader

page-number

page-number-citation

basic-link

block

block-container

table

wrapper

inline-properties

instream-foreign-object N/A graphic-properties

layout-master-set page-sequence-master

simple-page-master

simple-page-master

page-sequence-master

N/A

leader N/A inline-properties

list-block list-item block-properties

Supported XSL-FO Elements A-5

Element Supported Content Elements Supported Attributes

list-item list-item-label

list-item-body

block-properties

list-item-body block

block-container

table

list-block

wrapper

block-properties

list-item-label block

block-container

table

list-block

wrapper

block-properties

page-number N/A empty-inline-properties

page-number-citation N/A empty-inline-properties

ref-id

A-6 Oracle XML Publisher Core Components Guide

Element Supported Content Elements Supported Attributes

page-sequence static-content

flow

inheritable-properties

id

master-reference

initial-page-number

force-page-count

• auto

• end-on-even

• end-on-odd

• end-on-even-layout

• end-on-odd-layout

• no-force

• inherit

format

page-sequence-master single-page-master-reference

repeatable-page-master-referenc
e

repeatable-page-master-alternati
ves

master-name

region-after N/A side-region-properties

region-before N/A side-region-properties

region-body N/A region-properties

margin-properties-CSS

column-count

region-end N/A side-region-properties

Supported XSL-FO Elements A-7

Element Supported Content Elements Supported Attributes

region-start N/A side-region-properties

repeatable-page-master-a
lternatives

conditional-page-master-referen
ce

maximum-repeats

repeatable-page-master-r
eference

N/A master-reference
maximum-repeats

root bookmark-tree

layout-master-set

page-sequence

inheritable-properties

A-8 Oracle XML Publisher Core Components Guide

Element Supported Content Elements Supported Attributes

simple-page-master region-body

region-before

region-after

region-start

region-end

margin-properties-CSS

master-name

page-height

page-width

reference-orientation

• 0

• 90

• 180

• 270

• -90

• -180

• -270

• 0deg

• 90deg

• 180deg

• 270deg

• -90deg

• -180deg

• -270deg

• inherit

writing-mode

• lr-tb

Supported XSL-FO Elements A-9

Element Supported Content Elements Supported Attributes

single-page-master-refere
nce

N/A master-reference

static-content block

block-container

table

wrapper

flow-properties

table table-column

table-header

table-footer

table-body

block-properties

table-body table-row inheritable-properties

id

table-cell block

block-container

table

list-block

wrapper

block-properties

number-columns-spanned

number-rows-spanned

table-column N/A inheritable-properties

column-number

column-width

number-columns-repeated

table-footer table-row inheritable-properties

id

table-header table-row inheritable-properties

id

A-10 Oracle XML Publisher Core Components Guide

Element Supported Content Elements Supported Attributes

table-row table-cell inheritable-properties

id

wrapper inline

page-number

page-number-citation

basic-link

block

block-container

table

wrapper

inheritable-properties

id

Property Groups Table
The following table lists the supported properties belonging to the attribute groups
defined in the preceding table.

Supported XSL-FO Elements A-11

Property Group Properties

area-properties overflow (visible, hidden)

reference-orientation

• 0

• 90

• 180

• 270

• -90

• -180

• -270

• 0deg

• 90deg

• 180deg

• 270deg

• -90deg

• -180deg

• -270deg

• inherit

writing-mode (lr-tb, rl-tb, lr, rl)

baseline-shift (baseline, sub, super)

vertical-align

block-properties inheritable-properties

id

A-12 Oracle XML Publisher Core Components Guide

Property Group Properties

border-padding-background-properties background-color

background-image

background-position-vertical

background-position-horizontal

border

border-after-color

border-after-style (none, dotted, dashed, solid, double)

border-after-width

border-before-color

border-before-style (none, solid)

border-before-width

border-bottom

border-bottom-color

border-bottom-style (none, dotted, dashed, solid, double)

border-bottom-width

border-color

border-end-color

border-end-style (none, dotted, dashed, solid, double)

border-end-width

border-left

border-left-color

border-left-style (none, dotted, dashed, solid, double)

border-left-width

border-right

border-right-color

border-right-style (none, dotted, dashed, solid, double)

border-right-width

border-start-color

Supported XSL-FO Elements A-13

Property Group Properties

border-start-style (none, dotted, dashed, solid, double)

border-start-width

border-top

border-top-color

border-top-style (none, dotted, dashed, solid, double)

border-top-width

border-width

padding

padding-after

padding-before

padding-bottom

padding-end

padding-left

padding-right

padding-start

padding-top

box-size-properties height

width

character-properties font-properties

text-decoration

empty-inline-properties character-properties

border-padding-background-properties

id

color

A-14 Oracle XML Publisher Core Components Guide

Property Group Properties

flow-properties inheritable-properties

id

flow-name

font-properties font-family

font-size

font-style (normal, italic, oblique)

font-weight (normal, bold)

table-omit-header-at-break (TRUE, FALSE, inherit)

table-omit-footer-at-break (TRUE, FALSE, inherit)

graphic-properties border-padding-background-properties

margin-properties-inline

box-size-properties

font-properties

keeps-and-breaks-properties-atomic

id

Supported XSL-FO Elements A-15

Property Group Properties

inheritable-properties border-padding-background-properties

box-size-properties

margin-properties-inline

area-properties

character-properties

line-related-properties

leader-properties

keeps-and-breaks-properties-block

color

absolute-position

• auto

• absolute

• fixed

• inherit

inline-properties inheritable-properties

id

keeps-and-breaks-properties-atomic break-after (auto, column, page)

break-before (auto,column)

keep-with-next

keep-with-next.within-page

keeps-and-breaks-properties-block keeps-and-breaks-properties-inline

A-16 Oracle XML Publisher Core Components Guide

Property Group Properties

keeps-and-breaks-properties-inline keeps-and-breaks-properties-atomic

keep-together

keep-together.within-line

keep-together.within-column

keep-together.within-page

leader-properties leader-pattern (rule, dots)

leader-length

leader-length.optimum (dotted, dashed, solid, double)

rule-thickness

line-related-properties text-align (start, center, end, justify, left, right, inherit)

text-align-last (start, center, end, justify, left, right, inherit)

text-indent

linefeed-treatment (ignore, preserve, treat-as-space,
treat-as-zero-width-space, inherit)

white-space-treatment (ignore, preserve,
ignore-if-before-linefeed, ignore-if-after-linefeed,
ignore-if-surrounding-linefeed, inherit)

white-space-collapse (FALSE, TRUE, inherit)

wrap-option (no-wrap, wrap, inherit)

direction (ltr)

margin-properties-block margin-properties-CSS

space-after

space-after.optimum

space-before

space-before.optimum

start-indent

end-indent

Supported XSL-FO Elements A-17

Property Group Properties

margin-properties-CSS margin

margin-bottom

margin-left

margin-right

margin-top

margin-properties-inline margin-properties-block

space-start

space-start.optimum

space-end

space-end.optimum

position

• static

• relative

• absolute

• fixed

• inherit

top

left

region-properties border-padding-background-properties

area-properties

region-name

side-region-properties region-properties

extent

Index-1

Index

A
alignment

RTF template, 2-42

B
background support

RTF templates, 2-47
barcode formatting, 2-118

APIs, 8-58
bidirectional language alignment

RTF template, 2-42
body tags

PDF template, 3-8
RTF template, 2-16

bookmarks
generating PDF bookmarks from an RTF
template, 2-57
inserting in RTF templates, 2-54

brought forward/carried forward page totals, 2-
75
bursting engine, 8-43

C
calculations in PDF template, 3-13
calendar profile option, 2-116
calendar specification, 2-116
cell highlighting

conditional in RTF templates, 2-71
charts

building in RTF templates, 2-19
check box placeholder

creating in PDF template, 3-5
check box support

RTF templates, 2-58
choose statements, 2-65
clip art support, 2-30
columns

fixed width in tables, 2-43
conditional columns

rtf template, 2-66
conditional formatting, 2-62

table rows, 2-69
conditional formatting features, 2-62
configuration file

<properties> element, 7-3
<root> element, 7-3
structure, 7-3

context command, 2-123
cross-tab reports, 2-95

D
date fields in RTF templates, 2-45
drawing support, 2-30
drop-down form field support

RTF templates, 2-59
dynamic data columns, 2-98

example, 2-99
dynamic table of contents in RTF template, 2-57

E
end on even page, 2-54
etext data tables, 4-6
etext template command rows, 4-6

Index-2

etext template setup command table, 4-16
even page

force report to end on, 2-54

F
fixed-width columns

RTF templates, 2-43
FO

supported elements, A-1
FO elements

using in RTF templates, 2-128, 5-7
font definitions

configuration file, 7-14
font fallback mechanism, 7-17
fonts

external, 2-117
setting up, 2-117

footers
RTF template, 2-15

for-each-group XSL 2.0 standard, 2-82
formatting options in PDF templates, 3-5
form field method

inserting placeholders, 2-9
form field properties options in PDF template, 3-
5
form fields in the PDF template, 3-3

G
groups

basic RTF method, 2-13
defining in PDF template, 3-7
defining in RTF template, 2-12

syntax, 2-12
defining in RTF templates, 2-6
form field method, 2-13
grouping scenarios in RTF template, 2-12
in RTF templates, 2-5

H
headers and footers

different first page , 2-16
different odd and even pages, 2-16
inserting placeholders, 2-15
multiple, 2-16
resetting within one output file, 2-93

RTF template, 2-15
hidden text

support in RTF templates, 2-42
horizontal table break, 2-99
hyperlinks

bookmarks, 2-54
dynamic, 2-54
inserting in RTF template, 2-54
internal, 2-54
static, 2-54

I
if statements, 2-63, 2-63
IF statements

in free-form text, 2-63
if-then-else statements, 2-64
images

including in RTF template, 2-17
IN predicate

If-Then-Else control structure
e-text templates, 4-28

L
last page

support for special content, 2-51
locales

configuration file, 7-16

M
markup

adding to the PDF template, 3-3
adding to the RTF template, 2-7

merging PDF files, 8-27
multicolumn page support, 2-45
multiple headers and footers

RTF template, 2-16

N
Namespace support in RTF template, 2-122
native page breaks and page numbering, 2-41
nulls

how to test for in XML data, 2-81

O
Out of memory error

Index-3

avoiding, 7-5
overflow data in PDF templates, 3-16
overview, 1-1

P
page breaks

PDF templates, 3-9
RTF template, 2-41, 2-49

page breaks and page numbering
native support, 2-41

page number
setting initial

RTF templates, 2-50
page numbers

PDF templates, 3-9
restarting within one output file, 2-93
RTF template, 2-42

page totals
brought forward/carried forward, 2-75
inserting in RTF template, 2-73

PDF files
merging, 8-27

PDF template
adding markup, 3-3
placeholders

types of, 3-4
PDF templates

completed example, 3-13
creating from downloaded file, 3-16
defining groups, 3-7
definition of, 3-1
overflow data, 3-16
page breaks, 3-9
page numbering, 3-9
placeholders

check box, 3-5
radio button group, 3-6
text, 3-4

placement of repeating fields at runtime, 3-14
runtime behaviors, 3-14
sample purchase order template, 3-2
saving as Adobe Acrobat 5.0 compatible, 3-1
sources for document templates, 3-2
supported modes, 3-1
when to use, 3-1

placeholders

basic RTF method, 2-8, 2-8
form field RTF method, 2-8, 2-9
in PDF templates, 3-3
in RTF templates, 2-5

defining, 2-6, 2-8
inserting in the header and footer of RTF
template, 2-15
PDF templates

check box, 3-5
radio button group, 3-6
text, 3-4
types of, 3-4

predefined fonts, 7-18
properties

setting at template level, 2-91
properties element

configuration file, 7-3

R
radio button group

creating in PDF templates, 3-6
regrouping, 2-82
repeating elements

See groups
Rich Text Format (RTF)

definition, 2-1
row breaking

preventing in RTF templates, 2-43
row formatting

conditional, 2-69
RTF placeholders

syntax, 2-8
RTF template

adding markup, 2-7
applying design elements, 2-7
definition, 2-1
designing, 2-2
groups, 2-5
including images, 2-17
native formatting features, 2-41
placeholders, 2-5
prerequisites, 2-2
sample template design, 2-3
supported modes, 2-1

basic method, 2-1
form field method, 2-1

Index-4

using XSL or XSL:FO, 2-2
RTF template design

headers and footers, 2-15
RTF template placeholders, 2-8
running totals

RTF templates, 2-79

S
sample RTF template

completed markup, 2-11
section context command, 2-93
setting the initial page number

RTF templates, 2-50
shape support, 2-30
sorting

RTF template, 2-81
SQL functions

using in RTF templates, 2-119
XML Publisher syntax for, 5-1

SQL functions extended for XML Publisher, 5-1
syntax

RTF template placeholder, 2-8

T
table borders

configure overlapping borders, 7-11
table features

fixed-width columns, 2-43
preventing rows breaking across pages

RTF template, 2-43
text truncation, 2-44

table features
repeating table headers

RTF template, 2-43
RTF template, 2-42

table of contents support
RTF template, 2-57

dynamic TOC, 2-57
tables

horizontal table break, 2-99
Template Builder, 2-2
text placeholder

creating in PDF template, 3-4
text truncation in tables, 2-44
totals

brought forward/carried forward, 2-75

inserting page totals in RTF template, 2-73
running

RTF templates, 2-79
translatable templates, 6-1

U
updateable variables

RTF templates, 2-88

V
variables

RTF templates, 2-88

W
watermarks

RTF templates, 2-47

X
XML data file

example, 2-4
XML file

how to read, 2-5
XPath Support in RTF Templates, 2-119
XSL:FO elements

using in RTF templates, 2-119
XSL elements

apply a template rule, 2-125
call template, 2-126
copy the current node, 2-126
define the root element of the stylesheet, 2-127
import stylesheet, 2-126
template declaration, 2-126
using in RTF templates, 2-125
variable declaration, 2-126
XML Publisher syntax for , 5-6

	Oracle XML Publisher Core Components Guide
	Preface
	Introduction
	XML Publisher Overview

	Creating an RTF Template
	Introduction
	Supported Modes
	Prerequisites

	Overview
	Using the Business Intelligence Publisher Template Builder for Microsoft Word Add-in
	Associating the XML Data to the Template Layout

	Designing the Template Layout
	Adding Markup to the Template Layout
	Creating Placeholders
	Defining Groups

	Defining Headers and Footers
	Native Support

	Images and Charts
	Images
	Chart Support

	Drawing, Shape and Clip Art Support
	Supported Native Formatting Features
	General Features
	Alignment
	Tables
	Date Fields
	Multicolumn Page Support
	Background and Watermark Support

	Template Features
	Page Breaks
	Initial Page Number
	Last Page Only Content
	End on Even or End on Odd Page
	Hyperlinks
	Table of Contents
	Generating Bookmarks in PDF Output
	Check Boxes
	Drop Down Lists

	Conditional Formatting
	If Statements
	If Statements in Boilerplate Text

	If-then-Else Statements
	Choose Statements
	Column Formatting
	Row Formatting
	Cell Highlighting

	Page-Level Calculations
	Displaying Page Totals
	Brought Forward/Carried Forward Totals
	Running Totals

	Data Handling
	Sorting
	Checking for Nulls
	Regrouping the XML Data

	Using Variables
	Defining Parameters
	Setting Properties
	Advanced Report Layouts
	Batch Reports
	Cross-Tab Support
	Dynamic Data Columns

	Number and Date Formatting
	Calendar and Time Zone Support
	Using External Fonts
	Advanced Barcode Formatting

	Advanced Design Options
	XPath Overview
	Namespace Support
	Using the Context Commands
	Using XSL Elements
	Using FO Elements

	Creating a PDF Template
	PDF Template Overview
	Supported Modes

	Designing the Layout
	Adding Markup to the Template Layout
	Creating a Placeholder
	Defining Groups of Repeating Fields

	Adding Page Numbers and Page Breaks
	Performing Calculations
	Completed PDF Template
	Runtime Behavior
	Creating a Template from a Third-Party PDF

	Creating an eText Template
	Introduction
	Outbound eText Templates
	Structure of eText Templates
	Constructing the Data Tables
	Command Rows
	Structure of the Data Rows

	Setup Command Tables
	Expressions, Control Structures, and Functions
	Identifiers, Operators, and Literals

	XSL, SQL, and XSL-FO Support for RTF Templates
	Extended SQL and XSL Functions
	XSL Equivalents
	Using FO Elements

	Adding Template Translations
	Translatable Templates

	Setting Runtime Properties
	Setting Properties in a Configuration File
	Structure
	Properties
	List of Properties
	Font Definitions
	Locales
	Font Fallback Logic
	Predefined Fonts

	Using the XML Publisher APIs
	Introduction
	XML Publisher Core APIs
	PDF Form Processing Engine
	RTF Processor Engine
	FO Processor Engine
	PDF Document Merger
	PDF Book Binder Processor
	Document Processor Engine
	Bursting Engine
	XML Publisher Properties
	Advanced Barcode Font Formatting Implementation

	Supported XSL-FO Elements
	Supported XSL-FO Elements

	Index

