
Enterprise PeopleTools 8.49
PeopleBook: SQR for PeopleSoft
Developers

March 2007

Enterprise PeopleTools 8.49 PeopleBook: SQR for PeopleSoft Developers
SKU PT849SQR-B 0307
Copyright © 1988-2007, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are
provided under a license agreement containing restrictions on use and disclosure and are also protected by copyright,
patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or decompilation of the
Programs, except to the extent required to obtain interoperability with other independently created software or as
specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. This document is not warranted to be error-free. Except as may
be expressly permitted in your license agreement for these Programs, no part of these Programsmay be reproduced or
transmitted in any form or by anymeans, electronic or mechanical, for any purpose.
If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of
the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are “commercial computer software” or “commercial technical data” pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure,
modification, and adaptation of the Programs, including documentation and technical data, shall be subject to
the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987).
Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.
The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous
applications. It shall be the licensee’s responsibility to take all appropriate fail-safe, backup, redundancy and other
measures to ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim
liability for any damages caused by such use of the Programs.
The Programsmay provide links toWeb sites and access to content, products, and services from third parties.
Oracle is not responsible for the availability of, or any content provided on, third-partyWeb sites. You bear all risks
associated with the use of such content. If you choose to purchase any products or services from a third party, the
relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of third-party
products or services; or (b) fulfilling any of the terms of the agreement with the third party, including delivery of
products or services and warranty obligations related to purchased products or services. Oracle is not responsible for
any loss or damage of any sort that youmay incur from dealing with any third party.
Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates.
Other namesmay be trademarks of their respective owners.
Open Source Disclosure
Oracle takes no responsibility for its use or distribution of any open source or shareware software or documentation
and disclaims any and all liability or damages resulting from use of said software or documentation. The following
open source software may be used in Oracle’s PeopleSoft products and the following disclaimers are provided.
Apache Software Foundation
This product includes software developed by the Apache Software Foundation (http://www.apache.org/). Copyright
© 2000-2003. The Apache Software Foundation. All rights reserved. Licensed under the Apache License, Version
2.0 (the “License”); youmay not use this file except in compliance with the License. Youmay obtain a copy of the
License at http://www.apache.org/licenses/LICENSE-2.0.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS,WITHOUTWARRANTIESORCONDITIONSOFANYKIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.
OpenSSL
Copyright © 1998-2005 The OpenSSL Project. All rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).
THIS SOFTWARE IS PROVIDEDBYTHEOpenSSL PROJECT “AS IS” ANDANYEXPRESSEDOR
IMPLIEDWARRANTIES, INCLUDING, BUTNOTLIMITEDTO, THE IMPLIEDWARRANTIESOF
MERCHANTABILITYANDFITNESS FORAPARTICULAR PURPOSEAREDISCLAIMED. INNOEVENT
SHALLTHEOpenSSL PROJECTOR ITSCONTRIBUTORSBELIABLE FORANYDIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, ORCONSEQUENTIALDAMAGES (INCLUDING, BUTNOT
LIMITEDTO, PROCUREMENTOF SUBSTITUTEGOODSORSERVICES; LOSSOFUSE, DATA, OR
PROFITS; ORBUSINESS INTERRUPTION)HOWEVERCAUSEDANDONANYTHEORYOFLIABILITY,
WHETHER INCONTRACT, STRICT LIABILITY, OR TORT (INCLUDINGNEGLIGENCEOROTHERWISE)
ARISING INANYWAYOUTOFTHEUSEOFTHIS SOFTWARE, EVEN IFADVISEDOFTHE POSSIBILITY
OF SUCHDAMAGE.
Loki Library
Copyright © 2001 byAndrei Alexandrescu. This code accompanies the book: Alexandrescu, Andrei. “Modern C++
Design: Generic Programming and Design Patterns Applied”. Copyright © 2001Addison-Wesley. Permission to
use, copy, modify, distribute and sell this software for any purpose is hereby granted without fee, provided that the
above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in
supporting documentation.
Helma Project
Copyright © 1999-2004 Helma Project. All rights reserved. THIS SOFTWARE IS PROVIDED “AS IS”
ANDANYEXPRESSEDOR IMPLIEDWARRANTIES, INCLUDING, BUTNOTLIMITEDTO, THE
IMPLIEDWARRANTIESOFMERCHANTABILITYANDFITNESS FORAPARTICULARPURPOSEARE
DISCLAIMED. INNOEVENT SHALL THEHELMAPROJECTOR ITSCONTRIBUTORSBE LIABLE FOR
ANYDIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, ORCONSEQUENTIALDAMAGES
(INCLUDING, BUTNOTLIMITEDTO, PROCUREMENTOF SUBSTITUTEGOODSOR SERVICES;
LOSSOFUSE, DATA, OR PROFITS; ORBUSINESS INTERRUPTION) HOWEVERCAUSEDANDON
ANYTHEORYOFLIABILITY,WHETHER INCONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCEOROTHERWISE) ARISING INANYWAYOUTOF THEUSEOF THIS SOFTWARE, EVEN IF
ADVISEDOFTHE POSSIBILITYOF SUCHDAMAGE.
Helma includes third party software released under different specific license terms. See the licenses directory in the
Helma distribution for a list of these license.
Sarissa
Copyright © 2004Manos Batsis.
This library is free software; you can redistribute it and/or modify it under the terms of the GNULesser General
Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option)
any later version.
This library is distributed in the hope that it will be useful, butWITHOUTANYWARRANTY; without even the
implied warranty ofMERCHANTABILITY or FITNESS FORAPARTICULARPURPOSE. See the GNULesser
General Public License for more details.
You should have received a copy of the GNULesser General Public License along with this library; if not, write to
the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,MA 02111-1307 USA.
ICU
ICU License - ICU 1.8.1 and later COPYRIGHTANDPERMISSIONNOTICECopyright © 1995-2003
International BusinessMachines Corporation and others. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, provided that the above copyright notice(s) and this permission
notice appear in all copies of the Software and that both the above copyright notice(s) and this permission notice
appear in supporting documentation. THE SOFTWARE IS PROVIDED “AS IS,”WITHOUTWARRANTY
OFANYKIND, EXPRESSOR IMPLIED, INCLUDINGBUTNOTLIMITEDTOTHEWARRANTIESOF
MERCHANTABILITY, FITNESS FORAPARTICULAR PURPOSEANDNONINFRINGEMENTOFTHIRD
PARTYRIGHTS. INNOEVENT SHALL THECOPYRIGHTHOLDERORHOLDERS INCLUDED IN THIS
NOTICEBELIABLE FORANYCLAIM, ORANYSPECIAL INDIRECTORCONSEQUENTIALDAMAGES,
ORANYDAMAGESWHATSOEVERRESULTING FROMLOSSOFUSE, DATAORPROFITS,WHETHER IN
ANACTIONOFCONTRACT, NEGLIGENCEOROTHERTORTIOUSACTION, ARISINGOUTOFOR IN
CONNECTIONWITHTHEUSEOR PERFORMANCEOF THIS SOFTWARE. Except as contained in this notice,
the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization of the copyright holder.
All trademarks and registered trademarks mentioned herein are the property of their respective owners.
Sun’s JAXB Implementation – JDSDK 1.5 relaxngDatatype.jar 1.0 License
Copyright © 2001, Thai Open Source Software Center Ltd, SunMicrosystems. All rights reserved.
THIS SOFTWARE IS PROVIDEDBYTHECOPYRIGHTHOLDERSANDCONTRIBUTORS “AS
IS” ANDANYEXPRESSOR IMPLIEDWARRANTIES, INCLUDING, BUTNOTLIMITEDTO, THE
IMPLIEDWARRANTIESOFMERCHANTABILITYANDFITNESS FORAPARTICULARPURPOSE
AREDISCLAIMED. INNOEVENT SHALLTHEREGENTSORCONTRIBUTORSBELIABLE FOR
ANYDIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, ORCONSEQUENTIALDAMAGES
(INCLUDING, BUTNOTLIMITEDTO, PROCUREMENTOF SUBSTITUTEGOODSOR SERVICES;
LOSSOFUSE, DATA, OR PROFITS; ORBUSINESS INTERRUPTION) HOWEVERCAUSEDANDON
ANYTHEORYOF LIABILITY,WHETHER INCONTRACT, STRICT LIABILITY, ORTORT (INCLUDING
NEGLIGENCEOROTHERWISE) ARISING INANYWAYOUTOF THEUSEOF THIS SOFTWARE, EVEN IF
ADVISEDOFTHE POSSIBILITYOF SUCHDAMAGE.
W3C IPR SOFTWARENOTICE
Copyright © 2000WorldWideWeb Consortium, (Massachusetts Institute of Technology, Institut National de
Recherche en Informatique et en Automatique, Keio University). All Rights Reserved.
Note: The original version of theW3C Software Copyright Notice and License could be found at
http://www.w3.org/Consortium/Legal/copyright-software-19980720.
THIS SOFTWAREANDDOCUMENTATION IS PROVIDED “AS IS,” ANDCOPYRIGHTHOLDERSMAKE
NOREPRESENTATIONSORWARRANTIES, EXPRESSOR IMPLIED, INCLUDINGBUTNOTLIMITEDTO,
WARRANTIESOFMERCHANTABILITYOR FITNESS FORANYPARTICULAR PURPOSEORTHATTHE
USEOFTHE SOFTWAREORDOCUMENTATIONWILLNOT INFRINGEANYTHIRD PARTYPATENTS,
COPYRIGHTS, TRADEMARKSOROTHERRIGHTS. COPYRIGHTHOLDERSWILLNOTBELIABLE FOR
ANYDIRECT, INDIRECT, SPECIALORCONSEQUENTIALDAMAGESARISINGOUTOFANYUSEOF
THE SOFTWAREORDOCUMENTATION.

Contents

General Preface
About This PeopleBookxv
PeopleSoft Enterprise Application Prerequisites.. .xv
Application Fundamentals.. .xv
Documentation Updates and Printed Documentation.. .xvi

Obtaining Documentation Updates..xvi
Downloading and Ordering Printed Documentation..xvi

Additional Resources.. .xvii
Typographical Conventions and Visual Cues.. .xviii

Typographical Conventions..xviii
Visual Cues..xix
Country, Region, and Industry Identifiers..xix
Currency Codes..xx

Comments and Suggestions.. .xx
Common Elements Used in PeopleBooks.. .xx

Preface
SQR for PeopleSoft Developers Preface... .xxiii
SQR for PeopleSoft Developers.. .xxiii

Chapter 1
Getting Started with SQR for PeopleSoft...1
SQR for PeopleSoft Overview.. .1
SQR for PeopleSoft Implementation.. .1
Other Sources of Information.. .2

Chapter 2
Introducing the Sample SQR Program....3
Working with This Guide.. .3
Setting Up the Sample Database.. .5
Understanding the Sample Program for Printing a Text String.. .6
Creating and Running a Sample SQR Program... .6

Copyright © 1988-2007, Oracle. All rights reserved. v

Contents

Creating an SQR Program...6
Running an SQR Program...6

Viewing SQR Output. .7

Chapter 3
Creating Headings and Footings....9
Understanding SQR Pages.. .9
Creating Page Headings and Footings.. .9

Understanding the Heading and Footing Code Example...9
Adding Page Headings..10
Adding Page Footings..10

Chapter 4
Selecting Data from the Database..... .13
Understanding the Sample Program for Listing and Printing Data.. .13
Creating SQR Select Paragraphs.. .14

Chapter 5
Using Column Variables....17
Using a Column Variable in a Condition.. .17
Changing the Column Variable Name... .18

Chapter 6
Using Break Logic...19
Understanding Break Logic. .19
Using ON-BREAK... .20
Skipping Lines Between Groups.. .21
Arranging Multiple Break Columns.. .22
Using Break Processing Enhancements. .23

Controlling Page Breaks and Calculating Subtotals and Totals.24
Handling Page Breaks..26
Printing the Date...26
Obtaining Totals..27
Using Hyphens and Underscores..27

Setting Break Procedures with BEFORE and AFTER... .27
Understanding the Order of Events.28

vi Copyright © 1988-2007, Oracle. All rights reserved.

Contents

Controlling Page Breaks with Multiple ON-BREAK Columns.. .31
Saving a Value When a Break Occurs... .32
Using ON-BREAK on a Hidden Column... .32
Performing Break Processing on Numeric Values.. .34

Chapter 7
Adding Declarations Using the SETUP Section.. .. .35
Understanding the SETUP Section.. .35
Creating the SETUP Section.. .35
Using the DECLARE-LAYOUT Command... .36

Sample SETUP Program...36
Defining the SQR Page Layout.37

Overriding the Default Settings.. .37
Declaring the Page Orientation.. .37

Chapter 8
Creating Master and Detail Reports... .39
Understanding Master and Detail Reports.. .39
Understanding the Sample Program for Master and Detail Reports.. .39
Correlating Subqueries.. .41

Sample Program Output.41

Chapter 9
Creating Cross-Tabular Reports....43
Understanding Cross-Tabular Reports.. .43
Using an Array.. .44
Creating an Array.. .46
Grouping by Category.. .47
Using Multiple Arrays.. .49

Chapter 10
Printing Mailing Labels... .. .53
Understanding Mailing Label Printing.. .53
Understanding the Sample Program for Printing Mailing Labels.. .53
Defining Columns and Rows... .54
Running the Print Mailing Labels Program... .55

Copyright © 1988-2007, Oracle. All rights reserved. vii

Contents

Chapter 11
Creating Form Letters..... .57
Understanding the DOCUMENT Paragraph.. .57
Understanding the Sample Program for Form Letters.. .57

Chapter 12
Exporting Data to Other Applications....61
Understanding the Sample Program for Exporting Data.. .61
Creating an Export File.. .62

Chapter 13
Using Graphics....63
Understanding the Sample Program for Simple Tabular Reports.. .63
Adding Graphics.. .64
Sharing Images Among Reports.. .66
Printing Bar Codes.. .69

Chapter 14
Using Business Charts...71
Understanding Business Charts.. .71
Creating a Chart. .71
Defining a Chart. .75
Printing a Chart. .75
Running the Program to Create a Graphical Report. .76
Passing Data to the Chart. .76

Chapter 15
Changing Fonts... .77
Setting Fonts.. .77
Positioning Text. .77
Using the WRAP Option.. .79

Chapter 16
Writing Printer-Independent Reports....81
Understanding Printer-Independent Reports.. .81

viii Copyright © 1988-2007, Oracle. All rights reserved.

Contents

Reviewing the Sample Program for Selecting the Printer Type at Runtime.. .82

Chapter 17
Using Dynamic SQL and Error Checking..... .85
Using Variables in SQL... .85
Using Dynamic SQL.... .86
Using SQL Error Checking.. .88
Using SQL and Substitution Variables.. .89

Chapter 18
Using Procedures and Local Variables and Passing Arguments... .91
Using Procedures.. .91
Using Local Variables.. .91
Passing Arguments.. .92

Chapter 19
Creating Multiple Reports from One Program.... .. .97
Understanding How to Create Multiple Reports.. .97
Understanding the Sample Program for Multiple Reports. .97
Defining Heading and Footing Sections.. .100
Defining Program Output. .100

Chapter 20
Using Additional SQL Statements with SQR.... .103
Using SQL Statements in SQR... .103
Using BEGIN-SQL... .103

Chapter 21
Working with Dates....107
Understanding Dates and Date Arithmetic. .107
Using Literal Date Formats.. .109
Using String-to-Date Conversions.. .110
Using Date-to-String Conversions.. .110
Using Dates with the INPUT Command... .110
Using Date Edit Masks... .111

Copyright © 1988-2007, Oracle. All rights reserved. ix

Contents

Declaring Date Variables.. .113

Chapter 22
Using National Language Support...115
Understanding Locales.. .115
Selecting Locales.. .115
Defining a Default Locale.. .116
Switching Locales. .116
Modifying Locale Preferences.. .117
Specifying NUMBER, MONEY, and DATE Keywords.. .117

Chapter 23
Using Interoperability Features....119
Calling SQR from Another Application.. .119
Invoking an SQR Program by Using the SQR API.. .119
Invoking an External Application API by Using the UFUNC.C Interface.. .122
Adding a User Function.. .122

Understanding the UFUNC.C File..122
Adding a Function Prototype..123
Adding an Entry to the USERFUNCS Table.123
Adding an Implementation Code...124
Relinking SQR...125

Using UFUNC in Microsoft Windows... .125
Implementing New User Functions in Microsoft Windows... .126

Chapter 24
Testing and Debugging...127
Using the Test Feature.. .127
Using the #DEBUG Command.. .127
Using Compiler Directives for Debugging.. .128
Avoiding Common Programming Errors.. .129

Chapter 25
Increasing Performance and Tuning... .131
Understanding SQR Performance and SQL Statements.. .131
Simplifying a Complex Select Paragraph.. .131

x Copyright © 1988-2007, Oracle. All rights reserved.

Contents

Using LOAD-LOOKUP to Simplify Joins.. .132
Improving SQL Performance with Dynamic SQL... .133
Examining SQL Cursor Status.. .134
Avoiding Temporary Database Tables.. .135

Understanding Temporary Database Tables.135
Using and Sorting Arrays..135
Using and Sorting Flat Files..139

Creating Multiple Reports in One Pass.. .141
Tuning SQR Numerics.. .141
Compiling SQR Programs and Using SQR Execute.. .142
Setting Processing Limits... .142
Buffering Fetched Rows... .143
Running Programs on the Database Server.. .143

Chapter 26
Compiling Programs and Using SQR Execute... .145
Understanding Compile Features. .145
Compiling and Running an SQR Program.. .146

Chapter 27
Printing with SQR....147
Specifying Output File Types by Using SQR Command-Line Flags.. .147
Using the DECLARE-PRINTER Command... .148

Chapter 28
Using the SQR Command Line... .151
Understanding the SQR Command Line.. .151
Specifying Command-Line Arguments.. .152

Understanding Command-Line Arguments..152
Retrieving the Arguments..153
Specifying Arguments and Argument Files..153
Using an Argument File...153
Using Other Approaches to Pass Command-Line Arguments...154
Using Reserved Characters..154
Creating an Argument File from a Report.154

Using Batch Mode.... .155

Copyright © 1988-2007, Oracle. All rights reserved. xi

Contents

Chapter 29
Generating and Publishing HTML from an SQR Program.... .157
Understanding SQR Capabilities That Are Available with HTML.. .157
Generating HTML Output. .158

Understanding HTML Output.158
Producing HTML Output.158
Using -PRINTER:EH...159
Setting HTML Attributes Under -PRINTER:EH..160
Using -PRINTER:HT...161
Bursting Reports..162
Setting Attributes with HTML Procedures..163
Using Additional HTML Procedures..163
Setting Output File Types..163
Testing HTML Output.163

Using HTML Procedures in an SQR Program... .164
Understanding HTML Procedures..164
Using HTML Procedures..164
Positioning Objects..165
Displaying Records in Tables.166
Creating Headings..167
Highlighting Text.167
Creating Links...168
Including Images..169
Displaying Text in Lists..169
Formatting Paragraphs..170
Incorporating Your Own HTML Tags..171

Modifying an Existing SQR Program for HTML... .171
Publishing a Report. .172

Publishing a Report.173
Supporting Older Browsers..173
Viewing a Published Report.173
Publishing by Using an Automated Process..173
Publishing by Using a CGI Script.174

Chapter 30
Creating a Table of Contents...179
Using the DECLARE-TOC Command... .179
Using the TOC-ENTRY Command... .180
Adding a Table of Contents to the CUST.SQR Program.. .181

xii Copyright © 1988-2007, Oracle. All rights reserved.

Contents

Glossary of PeopleSoft Enterprise Terms.... .185

Index211

Copyright © 1988-2007, Oracle. All rights reserved. xiii

Contents

xiv Copyright © 1988-2007, Oracle. All rights reserved.

About This PeopleBook

PeopleSoft Enterprise PeopleBooks provide you with the information that you need to implement and use PeopleSoft
Enterprise applications from Oracle.

This preface discusses:

• PeopleSoft Enterprise application prerequisites.
• Application fundamentals.
• Documentation updates and printed documentation.
• Additional resources.
• Typographical conventions and visual cues.
• Comments and suggestions.
• Common elements in PeopleBooks.

Note. PeopleBooks document only elements, such as fields and check boxes, that require additional explanation. If an
element is not documented with the process or task in which it is used, then either it requires no additional explanation
or it is documented with common elements for the section, chapter, PeopleBook, or product line. Elements that are
common to all PeopleSoft Enterprise applications are defined in this preface.

PeopleSoft Enterprise Application Prerequisites
To benefit fully from the information that is covered in these books, you should have a basic understanding
of how to use PeopleSoft Enterprise applications.

You might also want to complete at least one introductory training course, if applicable.

You should be familiar with navigating the system and adding, updating, and deleting information by using
PeopleSoft Enterprise menus, pages, or windows. You should also be comfortable using the World Wide Web
and the Microsoft Windows or Windows NT graphical user interface.

These books do not review navigation and other basics. They present the information that you need to use the
system and implement your PeopleSoft Enterprise applications most effectively.

Application Fundamentals
Each application PeopleBook provides implementation and processing information for your PeopleSoft
Enterprise applications.

For some applications, additional, essential information describing the setup and design of your system appears
in a companion volume of documentation called the application fundamentals PeopleBook. Most product lines
have a version of the application fundamentals PeopleBook. The preface of each PeopleBook identifies the
application fundamentals PeopleBooks that are associated with that PeopleBook.

Copyright © 1988-2007, Oracle. All rights reserved. xv

General Preface

The application fundamentals PeopleBook consists of important topics that apply to many or all PeopleSoft
Enterprise applications. Whether you are implementing a single application, some combination of applications
within the product line, or the entire product line, you should be familiar with the contents of the appropriate
application fundamentals PeopleBooks. They provide the starting points for fundamental implementation tasks.

Documentation Updates and Printed Documentation
This section discusses how to:

• Obtain documentation updates.

• Download and order printed documentation.

Obtaining Documentation Updates
You can find updates and additional documentation for this release, as well as previous releases, on Oracle’s
PeopleSoft Customer Connection website. Through the Documentation section of Oracle’s PeopleSoft
Customer Connection, you can download files to add to your PeopleBooks Library. You’ll find a variety of
useful and timely materials, including updates to the full line of PeopleSoft Enterprise documentation that is
delivered on your PeopleBooks CD-ROM.

Important! Before you upgrade, you must check Oracle’s PeopleSoft Customer Connection for updates to the
upgrade instructions. Oracle continually posts updates as the upgrade process is refined.

See Also
Oracle’s PeopleSoft Customer Connection, http://www.oracle.com/support/support_peoplesoft.html

Downloading and Ordering Printed Documentation
In addition to the complete line of documentation that is delivered on your PeopleBook CD-ROM, Oracle
makes PeopleSoft Enterprise documentation available to you via Oracle’s website. You can:

• Download PDF files.
• Order printed, bound volumes.

Downloading PDF Files
You can download PDF versions of PeopleSoft Enterprise documentation online via the Oracle Technology
Network. Oracle makes these PDF files available online for each major release shortly after the software
is shipped.

See Oracle Technology Network, http://www.oracle.com/technology/documentation/psftent.html.

Ordering Printed, Bound Volumes
You can order printed, bound volumes of selected documentation via the Oracle Store.

See Oracle Store, http://oraclestore.oracle.com/OA_HTML/ibeCCtpSctDspRte.jsp?section=14021

xvi Copyright © 1988-2007, Oracle. All rights reserved.

http://www.oracle.com/technology/documentation/psftent.html

General Preface

Additional Resources
The following resources are located on Oracle’s PeopleSoft Customer Connection website:

Resource Navigation

Application maintenance information Updates + Fixes

Business process diagrams Support, Documentation, Business Process Maps

Interactive Services Repository Support, Documentation, Interactive Services Repository

Hardware and software requirements Implement, Optimize + Upgrade; Implementation Guide;
Implementation Documentation and Software; Hardware
and Software Requirements

Installation guides Implement, Optimize + Upgrade; Implementation Guide;
Implementation Documentation and Software; Installation
Guides and Notes

Integration information Implement, Optimize + Upgrade; Implementation Guide;
Implementation Documentation and Software; Pre-Built
Integrations for PeopleSoft Enterprise and JD Edwards
EnterpriseOne Applications

Minimum technical requirements (MTRs) Implement, Optimize + Upgrade; Implementation Guide;
Supported Platforms

Documentation updates Support, Documentation, Documentation Updates

PeopleBooks support policy Support, Support Policy

Prerelease notes Support, Documentation, Documentation Updates,
Category, Release Notes

Product release roadmap Support, Roadmaps + Schedules

Release notes Support, Documentation, Documentation Updates,
Category, Release Notes

Release value proposition Support, Documentation, Documentation Updates,
Category, Release Value Proposition

Statement of direction Support, Documentation, Documentation Updates,
Category, Statement of Direction

Troubleshooting information Support, Troubleshooting

Upgrade documentation Support, Documentation, Upgrade Documentation and
Scripts

Copyright © 1988-2007, Oracle. All rights reserved. xvii

General Preface

Typographical Conventions and Visual Cues
This section discusses:

• Typographical conventions.

• Visual cues.
• Country, region, and industry identifiers.

• Currency codes.

Typographical Conventions
This table contains the typographical conventions that are used in PeopleBooks:

Typographical Convention or Visual Cue Description

Bold Indicates PeopleCode function names, business function
names, event names, system function names, method
names, language constructs, and PeopleCode reserved
words that must be included literally in the function call.

Italics Indicates field values, emphasis, and PeopleSoft
Enterprise or other book-length publication titles. In
PeopleCode syntax, italic items are placeholders for
arguments that your program must supply.

We also use italics when we refer to words as words or
letters as letters, as in the following: Enter the letterO.

KEY+KEY Indicates a key combination action. For example, a plus
sign (+) between keys means that you must hold down
the first key while you press the second key. For ALT+W,
hold down the ALT key while you press the W key.

Monospace font Indicates a PeopleCode program or other code example.

“ ” (quotation marks) Indicate chapter titles in cross-references and words that
are used differently from their intended meanings.

. . . (ellipses) Indicate that the preceding item or series can be repeated
any number of times in PeopleCode syntax.

{ } (curly braces) Indicate a choice between two options in PeopleCode
syntax. Options are separated by a pipe (|).

xviii Copyright © 1988-2007, Oracle. All rights reserved.

General Preface

Typographical Convention or Visual Cue Description

[] (square brackets) Indicate optional items in PeopleCode syntax.

& (ampersand) When placed before a parameter in PeopleCode syntax,
an ampersand indicates that the parameter is an already
instantiated object.

Ampersands also precede all PeopleCode variables.

Visual Cues
PeopleBooks contain the following visual cues.

Notes
Notes indicate information that you should pay particular attention to as you work with the PeopleSoft
Enterprise system.

Note. Example of a note.

If the note is preceded by Important!, the note is crucial and includes information that concerns what you must
do for the system to function properly.

Important! Example of an important note.

Warnings
Warnings indicate crucial configuration considerations. Pay close attention to warning messages.

Warning! Example of a warning.

Cross-References
PeopleBooks provide cross-references either under the heading “See Also” or on a separate line preceded by
the word See. Cross-references lead to other documentation that is pertinent to the immediately preceding
documentation.

Country, Region, and Industry Identifiers
Information that applies only to a specific country, region, or industry is preceded by a standard identifier in
parentheses. This identifier typically appears at the beginning of a section heading, but it may also appear
at the beginning of a note or other text.

Example of a country-specific heading: “(FRA) Hiring an Employee”

Example of a region-specific heading: “(Latin America) Setting Up Depreciation”

Country Identifiers
Countries are identified with the International Organization for Standardization (ISO) country code.

Copyright © 1988-2007, Oracle. All rights reserved. xix

General Preface

Region Identifiers
Regions are identified by the region name. The following region identifiers may appear in PeopleBooks:

• Asia Pacific
• Europe
• Latin America
• North America

Industry Identifiers
Industries are identified by the industry name or by an abbreviation for that industry. The following industry
identifiers may appear in PeopleBooks:

• USF (U.S. Federal)
• E&G (Education and Government)

Currency Codes
Monetary amounts are identified by the ISO currency code.

Comments and Suggestions
Your comments are important to us. We encourage you to tell us what you like, or what you would like to see
changed about PeopleBooks and other Oracle reference and training materials. Please send your suggestions to
your product line documentation manager at Oracle Corporation, 500 Oracle Parkway, Redwood Shores, CA
94065, U.S.A. Or email us at appsdoc@us.oracle.com.

While we cannot guarantee to answer every email message, we will pay careful attention to your comments
and suggestions.

Common Elements Used in PeopleBooks
As of Date The last date for which a report or process includes data.

Business Unit An ID that represents a high-level organization of business information. You
can use a business unit to define regional or departmental units within a
larger organization.

Description Enter up to 30 characters of text.

Effective Date The date on which a table row becomes effective; the date that an action
begins. For example, to close out a ledger on June 30, the effective date for the
ledger closing would be July 1. This date also determines when you can view
and change the information. Pages or panels and batch processes that use the
information use the current row.

xx Copyright © 1988-2007, Oracle. All rights reserved.

General Preface

Once, Always, and Don’t
Run

Select Once to run the request the next time the batch process runs. After the
batch process runs, the process frequency is automatically set to Don’t Run.
Select Always to run the request every time the batch process runs.
Select Don’t Run to ignore the request when the batch process runs.

Process Monitor Click to access the Process List page, where you can view the status of
submitted process requests.

Report Manager Click to access the Report List page, where you can view report content, check
the status of a report, and see content detail messages (which show you a
description of the report and the distribution list).

Request ID An ID that represents a set of selection criteria for a report or process.

Run Click to access the Process Scheduler request page, where you can specify the
location where a process or job runs and the process output format.

SetID An ID that represents a set of control table information, or TableSets.
TableSets enable you to share control table information and processing options
among business units. The goal is to minimize redundant data and system
maintenance tasks. When you assign a setID to a record group in a business
unit, you indicate that all of the tables in the record group are shared between
that business unit and any other business unit that also assigns that setID to
that record group. For example, you can define a group of common job codes
that are shared between several business units. Each business unit that shares
the job codes is assigned the same setID for that record group.

Short Description Enter up to 15 characters of text.

User ID An ID that represents the person who generates a transaction.

Copyright © 1988-2007, Oracle. All rights reserved. xxi

General Preface

xxii Copyright © 1988-2007, Oracle. All rights reserved.

SQR for PeopleSoft Developers Preface

This book discusses Structured Query Reports (SQR) for PeopleSoft.

SQR for PeopleSoft Developers
SQR is a specialized language for database processing and reporting. By working through the code examples
in this developer’s guide, you will learn how to write SQR programs that select data from a database and
present it in a report.

This guide contains code examples and sample programs that you can copy to create SQR programs that are
relevant to your organization.

See Also
Enterprise PeopleTools 8.49 PeopleBook: SQR Language Reference for PeopleSoft, “Understanding SQR
for PeopleSoft”

Copyright © 1988-2007, Oracle. All rights reserved. xxiii

Preface

xxiv Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 1

Getting Started with SQR for PeopleSoft

This chapter discusses:

• SQR for PeopleSoft overview.
• SQR for PeopleSoft implementation.

SQR for PeopleSoft Overview
SQR for PeopleSoft is both a language and a set of tools that enable you to create professional reports:

• SQR is a programming language for accessing and manipulating data to create custom reports. SQR has
many advantages, including that it is portable across multiple platforms and relational database management
systems, and it supports SQL’s data manipulation capabilities. It is also a fourth-generation language; it is
closer to human languages and therefore more intuitive than first-, second-, or third-generation languages.
SQR for PeopleSoft enables you to design report layouts, generate a variety of output types —including
complex tabular reports, multiple page reports, form letters, mailing labels, and more—and create HTML,
PDF, or configured output for laser printers and phototypesetters.

• SQR Execute enables you to run previously compiled SQR programs.
• SQR Print enables you to configure reports for most printers.
• SQR also provides a library of sample programs and output that you can use both as a learning tool
and as a basis for creating your own reports. These samples live in the SQR for PeopleSoft directory
<PS_HOME>\bin\sqr\<database_platform>\SAMPLE (or SAMPLEW, for Windows).

See Enterprise PeopleTools 8.49 PeopleBook: SQR Language Reference for PeopleSoft, “Understanding
SQR for PeopleSoft”.

SQR for PeopleSoft Implementation
This section describes the steps that you should carry out before you can begin to implement SQR for
PeopleSoft.

• You need a sound understanding of SQL and structured programming languages to use the SQR language.
• You do not need to carry out a separate installation procedure because SQR for PeopleSoft is installed
automatically when you install PeopleTools.

See PeopleTools 8.49 Installation Guides for your database platform.

Copyright © 1988-2007, Oracle. All rights reserved. 1

Getting Started with SQR for PeopleSoft Chapter 1

• Typically, you should use Application Engine to run background SQL processing programs. You may want
to explore whether Application Engine can meet your needs before delving into SQR.

See Enterprise PeopleTools 8.49 PeopleBook: PeopleSoft Application Engine, “Getting Started With
PeopleSoft Application Engine”.

• You can run SQR programs locally by using the SQR executable (for Windows it’s SQRW) and through the
PeopleSoft Process Scheduler. For the details on installing Process Scheduler:

See The PeopleTools 8.49 Installation guide for your database platform.
For the details on running SQRs using the Process Scheduler:

See Enterprise PeopleTools 8.49 PeopleBook: PeopleSoft Process Scheduler, “Submitting and Scheduling
Process Requests”.

Other Sources of Information
This section provides information to consider before you begin to use SQR for PeopleSoft.

In addition to implementation considerations presented in this section, take advantage of all PeopleSoft sources
of information, including the installation guides, release notes, PeopleBooks, red papers, the Updates + Fixes
area of Customer Connection, and PeopleSoft’s curriculum courses.

See Also
“SQR for PeopleSoft Developers Preface,” page xxiii

Enterprise PeopleTools 8.49 PeopleBook: Using PeopleSoft Applications, “Working With Browser-Based
Applications”

2 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 2

Introducing the Sample SQR Program

This chapter discusses how to:

• Work with this guide.
• Set up the sample database.
• Understand the sample program for printing a text string.
• Create and run a sample SQR program.
• View SQR output.

Working with This Guide
Initial sections of this guide teach the basic uses of SQR. You learn how to:

• Create a variety of reports, such as tabular, cross-tabular, and master and detail reports.
• Produce mailing labels, form letters, and envelopes.
• Enhance your reports with typeset-quality fonts and graphics.
• Produce graphs and charts that help you present data and trends visually.

Subsequent sections describe the advanced features and uses of SQR. You learn how to:

• Create HTML output and publish reports on the internet, an intranet, or an extranet.
• Create reports that can be easily ported between different systems and databases and that support different
printer and display types.

• Create reports that format dates, numbers, and money according to local preferences.
• Integrate SQR with other software packages, such as front-end user interface tools and spreadsheets.
• Extend SQR with procedures and functions that are written in C.
• Test and debug programs.
• Tune programs for optimum performance.

The code examples demonstrate standard SQR programming style. Use this standard style to make your code
easier for other SQR programmers to understand.

You can run the program examples in this guide without modification against the Oracle, Sybase, and Informix
databases and run against other databases with minor modifications.

Copyright © 1988-2007, Oracle. All rights reserved. 3

Introducing the Sample SQR Program Chapter 2

Audience
This guide was written for programmers who develop reports for relational databases. To use this guide
effectively, you need a working knowledge of SQL and experience in writing software programs. You also
must be familiar with your particular database and operating system.

How to Use SQR for PeopleSoft Developers
You can just read this book and study the sample programs. However, we encourage you to try these programs
for yourself and to experiment with them. Make some changes to the sample programs and see how they run.

To use the sample programs, you must first install SQR for PeopleSoft. SQR for PeopleSoft is installed
automatically when you install PeopleTools.

If you installed all of the program components, the sample programs are located in the TUTORIAL directory
underneath <PS_HOME>\bin\sqr\<database_platform>.

You can run the sample programs on any hardware platform, but you may find it somewhat easier to review
SQR program results from the Microsoft Windows platform by using the SQR Viewer or a web browser
to verify your results.

Note. You can set up the sample database, as described in a moment, and run the sample programs with any
username and password, although you may want to use an account that does not hold important data.

Related Documents
In addition to this developer’s guide, SQR for PeopleSoft includes SQR for PeopleSoft Language Reference, a
complete reference to SQR commands, arguments, and command-line flags.

For information about supported database platforms, please see Supported Platforms on Customer Connection.
You can also consult the PeopleTools Hardware and Software Requirements guide for a snapshot of current
requirements.

Syntax Conventions
Syntax and code examples use the following conventions:

Convention Description

{ } Braces enclose required items.

[] Square brackets enclose optional items.

... Ellipses indicate that the preceding parameter can be repeated.

| A vertical bar separates alternatives within brackets, braces, or parentheses.

’ A single quote starts and ends a literal text constant or any argument that has more than
one word.

Important! If you are copying code directly from the examples in the PDF file, make
sure that you change the slanted quotes to regular quotes; otherwise, you will receive an
error message.

4 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 2 Introducing the Sample SQR Program

Convention Description

, A comma separates multiple arguments.

() Parentheses must enclose an argument or element.

UPPERCASE SQR commands and arguments are uppercase within the text, but lowercase in the code
examples. (Note that these commands are case insensitive.)

Variable Information and values that you must supply appear in variable style.

hyphen versus
underscore

Many SQR commands, such as BEGIN-PROGRAM, use a hyphen, whereas procedure
and variable names use an underscore. Procedure and variable names can contain either a
hyphen or underscores, but it’s best to use underscores in procedure and variable names
to distinguish them from SQR commands.

It also prevents confusion when you mix variable names and numbers in an expression,
where hyphens could be mistaken for minus signs.

Setting Up the Sample Database
To run the sample programs in this guide, you must create a sample database. To do so, run the loadall.sqr
program.

1. Change to the SAMPLE (or SAMPLEW, for Windows) directory under <PS_HOME>\bin\sqr
\<database_platform>.

2. At the command line, enter:

sqr loadall username/password

If SQR is installed on Windows, you can run loadall.sqr by double-clicking the Loadall icon. If your system
does not display this icon, run loadall.sqr from the SAMPLEW directory of SQR for PeopleSoft.

If an individual table already exists, you are prompted to enter:

• A: Abort the load.

• S: Skip the specified table.

• R: Reload the specified table.

• C: Reload all tables.

You can also run this as a batch program by entering the preferred option (A, S, R, or C) at the command-line.
For example:

sqr loadall username/password a

Copyright © 1988-2007, Oracle. All rights reserved. 5

Introducing the Sample SQR Program Chapter 2

Understanding the Sample Program for Printing a Text String
The first sample program is the simplest SQR program. It prints a text string.

Program ex1a.sqr

begin-program

print ’Hello, World.’ (1,1)

end-program

Note. For your convenience, all of the program examples and their output files are included
with the installation. As mentioned, these samples are in the SQR for PeopleSoft directory
<PS_HOME>\bin\sqr\<database_platform>\SAMPLE (or SAMPLEW, for Windows).

Take another look at the sample program. This program contains three lines of code, starting with
BEGIN-PROGRAM and ending with END-PROGRAM. These two commands and the code between them
make up the PROGRAM section, which is used to control the order of processing. The PROGRAM section is
required, and you can have only one. It typically goes at or near the top of the program.

The PROGRAM section contains a PRINT command, which in this case prints the text Hello, World. This
text is enclosed in single quotation marks (’), which are used in SQR to distinguish literal text from other
program elements.

The last element of the PRINT command indicates the position on the output page. An output page can be
thought of as a grid of lines and columns. The (1,1) indicates line 1, column 1, which is the top left corner
of the page.

Note. In SQR, you must place each command on a new line. You can indent SQR commands.

Creating and Running a Sample SQR Program
This section discusses how to:

• Create an SQR program.
• Run an SQR program.

Creating an SQR Program
To create an SQR program:

1. Open a text editor and enter the code in the sample program exactly as shown, or open the ex1a.sqr
file from the TUTORIAL directory.

2. If you are writing the sample program, save your code with the name ex1a.sqr.

SQR programs usually have a file extension of .sqr.

Running an SQR Program
To run the sample program:

1. Change to the directory in which you saved the program using the command that is appropriate
to your operating system.

6 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 2 Introducing the Sample SQR Program

2. Enter the appropriate SQR program command at the system command prompt (UNIX/Linux or
Windows) or from within the SQR application’s graphical user interface (GUI), where available
(Microsoft Windows only).
If you are using the command line, use SQR (UNIX/Linux) or SQRW (Windows) to invoke SQR. Enter
sqr or sqrw, the SQR program name, and the connectivity string, all on one line, by using this syntax:

[sqr or sqrw] [program] [connectivity] [flags ...] [args ...] [@file ...]

In a common configuration, you may be running SQR on Microsoft Windows against an Oracle database that
is located on another machine in the network. Use this command format:

sqrw ex1a username/password@servername -KEEP

If you correctly replace username, password and servername with the appropriate information, you should
have a command line like this:

sqrw ex1a sammy/baker@rome -KEEP

To produce the output file for this exercise, the example uses the -KEEP flag, which is defined later in this
guide.

See Enterprise PeopleTools 8.49 PeopleBook: SQR Language Reference for PeopleSoft.

See Chapter 27, “Printing with SQR,” Specifying Output File Types by Using SQR Command-Line Flags,
page 147.

Viewing SQR Output
SQR normally places the SQR program output files in the directory from which you run the program. The
output file has the same file name as the SQR file that created it, but the file extension is different.

The output files should appear as soon as your program has finished running. If you specified the -KEEP
argument, one output file is in SQR Portable Format (recognizable by its .spf extension). SQR Portable
Format is discussed later in this guide, but for now, you can view the sample program’s .spf file output,
<filename>.spf, on Microsoft Windows platforms with the SQR Viewer GUI (sometimes referred to as an SPF
Viewer). Invoke the SQR Viewer by entering sqrw at the command line.

On Microsoft Windows and UNIX/Linux systems, the program also produces an output file with an .lis
extension. You can view this output file type from the command line with such commands as TYPE on
Windows systems or CAT, MORE, and VI on UNIX/Linux systems. Use the command that is appropriate to
your system to view or print the .lis file.

The output for the example program looks like this for all platforms:

Hello, World.

You may also see a character such as ^L or <FF> at the end of this output file. It is the form-feed character that
ejects the last page. This guide does not show the form-feed characters.

Copyright © 1988-2007, Oracle. All rights reserved. 7

Introducing the Sample SQR Program Chapter 2

8 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 3

Creating Headings and Footings

This chapter provides an overview of SQR pages and discusses how to create page headings and footings.

Understanding SQR Pages
Typically, every page of a report has some information about the report itself, such as the title , the date , and
the page number. In SQR, the page can be subdivided into three logical areas:

• The top area of the page is the heading, which is where the report title and the date normally print.
• The middle part of the page is the body, which is where the report data prints.
• The bottom area of the page is the footing, which is where the page number normally prints.

The heading, body, and footing of the page each have independent line numbers. You can print in each of
these page areas by using line numbers that are relative to the top corner of that area without being concerned
about the size of the other areas. In other words, you can print to the first line of the body by using line
number 1, independent of the size of the heading.

Note. Any space that is reserved for the heading and footing is taken from the body area of the page. With one
line each in the heading and footing, the maximum possible size of the body of the report is reduced by two
lines. Note also that line 1 of the body is actually the first line after the heading.

Creating Page Headings and Footings
This section provides an overview of the heading and footing code example and discusses how to:

• Add page headings.
• Add page footings.

Understanding the Heading and Footing Code Example
Here is an example of the code that is required to add a page heading and footing to a program:

Program ex2a.sqr

begin-program

print ’Hello, World.’ (1,1)

end-program

begin-heading 1

print ’Tutorial Report’ (1) center

end-heading

Copyright © 1988-2007, Oracle. All rights reserved. 9

Creating Headings and Footings Chapter 3

begin-footing 1

! print "Page n of m" in the footing

page-number (1,1) ’Page ’

last-page () ’ of ’

end-footing

The output for the ex2a.sqr program is:
Tutorial Report

Hello, World.

Page 1 of 1

Note. The PRINT command places text in memory, not on paper. SQR for PeopleSoft always prepares a page
in memory before printing it to paper, creating the body first, then the HEADING and FOOTING sections. In
this example, Hello, World is run first, then Tutorial Report and Page 1 of 1.

Adding Page Headings
Define the page heading in the HEADING section. Begin the section with BEGIN-HEADING and end it with
END-HEADING. Follow the BEGIN-HEADING command with a number that represents the number of lines
that are reserved for the heading. (In this example, the 1 indicates a heading of one line.)

In the heading and footing sample program, the heading uses exactly one line and contains the text Tutorial
Report. The CENTER argument ensures that the text is centered on the line.

Adding Page Footings
Define the page footing in the FOOTING section. Begin the section with BEGIN-FOOTING. and end it
with END-FOOTING. Follow the BEGIN-FOOTING command with a number that represents the number
of lines that are reserved for the footing. (In this example, the 1 indicates a footing of one line.) This line
consists of the text Page 1 of 1.

Adding Comments
Precede comments with an exclamation mark. The comment extends from the exclamation mark to the end
of the line.

In the heading and footing sample program, the first line in the FOOTING section is a comment.

To print an exclamation mark , you must enter it twice to indicate that it is not the beginning of a comment.
For example:

print ’Hello, World!!’ (1,1)

Adding Page Numbers
Use the PAGE-NUMBER command to print the text Page and the current page number. Use the LAST-PAGE
command to print the number of the last page, preceded by the word of, which is bracketed by spaces.

In the headings and footings code example, Page 1 of 1 appears because there is only one page.

Indicating the Print Position
Include numbers in parentheses following the PRINT, PAGE-NUMBER, and LAST-PAGE commands to
indicate the position for printing. Express a position in SQR language with three numbers in parentheses:
line number, column number (character position), and width of the text.

10 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 3 Creating Headings and Footings

In many cases, a position contains only the line and column numbers. The width is normally omitted because it
is set by default to the width of the text that is being printed. If you also omit the line and column numbers, the
print position is set by default to the current position, which is the position following the last printed item.

In the heading and footing sample program, the LAST-PAGE command has the position (), so the current
position is the position following the page number.

The print position is a point within the area of the page, or more precisely, within the heading, body, or
footing. The position (1,1) in the heading is not the same as the position (1,1) in the body. Line 1 of the body
is the first line following the heading. In the program, the heading has only one line, so line 1 of the body
is actually the second line of the page. Similarly, line 1 of the footing is at the bottom of the page. It is the
first line following the body.

Copyright © 1988-2007, Oracle. All rights reserved. 11

Creating Headings and Footings Chapter 3

12 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 4

Selecting Data from the Database

This chapter provides an overview of the sample program for listing and printing data and describes how to create SQR
select paragraphs.

Understanding the Sample Program for Listing
and Printing Data

Here is a sample program that selects data from the database and prints it in columns:

Program ex3a.sqr

begin-program

do list_customers

end-program

begin-heading 4

print ’Customer Listing’ (1) center

print ’Name’ (3,1)

print ’City’ (,32)

print ’State’ (,49)

print ’Phone’ (,55)

end-heading

begin-footing 1

! Print "Page n of m" in the footing

page-number (1,1) ’Page ’

last-page () ’ of ’

end-footing

begin-procedure list_customers

begin-select

name (,1)

city (,32)

state (,49)

phone (,55)

position (+1) ! Advance to the next line

from customers

end-select

end-procedure ! list_customers

The output for the ex3a.sqr program is:
Customer Listing

Copyright © 1988-2007, Oracle. All rights reserved. 13

Selecting Data from the Database Chapter 4

Name City State Phone

Gregory Stonehaven Everretsville OH 2165553109

John Conway New York NY 2125552311

Eliot Richards Queens NY 2125554285

Isaiah J Schwartz and Company Zanesville OH 5185559813

Harold Alexander Fink Davenport IN 3015553645

Harriet Bailey Mamaroneck NY 9145550144

Clair Butterfield Teaneck NJ 2015559901

Quentin Fields Cleveland OH 2165553341

Jerry’s Junkyard Specialties Frogline NH 6125552877

Kate’s Out of Date Dress Shop New York NY 2125559000

Sam Johnson Bell Harbor MI 3135556732

Joe Smith and Company Big Falls NM 8085552124

Corks and Bottles, Inc. New York NY 2125550021

Harry’s Landmark Diner Miningville IN 3175550948

Page 1 of 1

The PROGRAM section contains a single DO command, which invokes the list_customers procedure.

In SQR language, a procedure is a group of commands that are performed one after the other, like a procedure
(or subroutine) in other programming languages. A DO command invokes a procedure.

Break your program logic into procedures and keep the PROGRAM section small. It should normally contain
a few DO commands for the main components of your report.

The HEADING section creates headings for the report columns. In this example, four lines are reserved
for the heading:

begin-heading 4

print ’Customer Listing’ (1) center

print ’Name’ (3,1)

print ’City’ (,32)

print ’State’ (,49)

print ’Phone’ (,55)

end-heading

The Customer Listing title is printed on line 1. Line 2 is left blank. The first column heading, Name, is
positioned at line 3 of the heading, in character position 1. The rest of the column heading commands omit the
line numbers in their positions and are set by default to the current line. Line 4 of the heading is left blank.

In this sample program, the footing is the same as the one in the previous sample program.

Creating SQR Select Paragraphs
The BEGIN-SELECT command is the principal method of retrieving data from the database and printing
it in a report. Look again at the sample program for listing and printing data, in which the list_customers
procedure starts with BEGIN-PROCEDURE and ends with END-PROCEDURE.

Note the comment following the END-PROCEDURE command. It indicates that the procedure is being ended,
which is helpful when you have a program with many procedures. (You can also omit the exclamation point,
for example, END-PROCEDURE main.)

14 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 4 Selecting Data from the Database

The procedure itself contains a select paragraph, which starts with BEGIN-SELECT and ends with
END-SELECT.

The select paragraph is unique. It combines an SQL SELECT statement with SQR processing in a seamless
way. The actual SQL statement is:

SELECT NAME, CITY, STATE, PHONE

FROM CUSTOMERS

Syntax of the Select Paragraph
In an SQR select paragraph, the SQL statement SELECT is omitted, and there are no commas between the
column names. Instead, each column is on its own line. You can also place SQR commands between the
column names, and these commands are run for every record that the select fetches.

Note. You must name each individual column in a table—the SQL SELECT * FROM statement is not
allowed in SQR.

SQR distinguishes column names from SQR commands in a select paragraph by their indentation. Column
names must be placed at the beginning of a line. SQR commands must be indented at least one space. In the
following example, the POSITION command is indented to prevent it from being taken as a column name.
The word From must be the first word in a line. The rest of the SQR select paragraph is then written freely,
after SQL syntax.

Think of the select paragraph as a loop. The SQR commands, including printing of columns, are run in a loop,
once for each record that Select returns. The loop ends after the last record is returned.

Positioning Data
In a select paragraph, you see positioning after each column name. This positioning implies a PRINT command
for that column. Omitting the line number in the position causes it to be set by default to the current line.

begin-select

name (,1)

city (,32)

state (,49)

phone (,55)

position (+1) ! Advance to the next line

from customers

end-select

The implied PRINT command is a special SQR feature that is designed to save you coding time. It works
only inside a select paragraph.

After the last column, there is a POSITION command: POSITION(+1). The plus sign (or minus sign) indicates
relative positioning in SQR. A plus sign moves the print position forward from the current position, and a
minus sign moves it back. The +1 in the sample program specifies one line down from the current line. This
command advances the current print position to the next line.

Note. When you indicate print positions by using plus or minus signs, be sure that your numbers do not
specify a position outside of the page boundaries.

Copyright © 1988-2007, Oracle. All rights reserved. 15

Selecting Data from the Database Chapter 4

16 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 5

Using Column Variables

This chapter discusses how to:

• Use a column variable in a condition.
• Change the column variable name.

Using a Column Variable in a Condition
You can name database columns with variables and use their values in conditions and commands.

When you select columns from the database in a select paragraph, you can immediately print them by using a
position. For example:

begin-select

phone (,1)

position (+1)

from customers

end-select

This example shows how to use the value of phone for another purpose, for example, in a condition:
begin-program

do list_customers

end-program

begin-procedure list_customers

begin-select

phone

if &phone = ’’

print ’No phone’ (,1)

else

print &phone (,1)

end-if

position (+1)

from customers

end-select

end-procedure ! list_customers

The phone column is a SQR column variable. Precede column variables with an ampersand (&).

Unlike other program variables, column variables are read-only. You can use their existing value, but you
cannot assign a new value to a column variable.

Copyright © 1988-2007, Oracle. All rights reserved. 17

Using Column Variables Chapter 5

In the sample program, &phone is a column variable that you can use in SQR commands as if it were a string,
date, or numeric variable, depending on its contents. In the condition, &phone is compared to ’ ’, which is an
empty string. If &phone is an empty string, the program prints No phone instead.

Changing the Column Variable Name
Note that the &phone column variable illustrated in the previous section inherited its name from the phone
column. This is the default, but you can change it, as the following example demonstrates:

begin-select

phone &cust_phone

if &cust_phone = ’’

print ’No phone’ (,1)

else

print &cust_phone (,1)

end-if

position (+1)

from customers

end-select

One reason for changing the name of the column variable is to use a selected column in an expression that has
no name. For example:

begin-select

count(name) &cust_cnt (,1)

if &cust_cnt < 100

print ’Less than 100 customers’

end-if

position (+1)

from customers

group by city, state

end-select

In this example, the expression COUNT (name) is selected. In the program, you store this expression in the
&cust_cnt column variable and refer to it afterwards by that name.

18 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 6

Using Break Logic

This chapter provides an overview of break logic and discusses how to:

• Use ON-BREAK.
• Skip lines between groups.
• Arrange multiple break columns.
• Use break processing enhancements.
• Set break procedures with BEFORE and AFTER.
• Control page breaks with multiple ON-BREAK columns.
• Save a value when a break occurs.
• Use ON-BREAK on a hidden column.
• Perform break processing on numeric values.

Understanding Break Logic
A break is a change in the value of a column or variable. Records with the same value—for example, records
with the same value for state—logically belong to a group. When a break occurs, a new group begins.

Use break logic in a report to:

• Add white space to reports.
• Avoid printing redundant data.
• Perform conditional processing on variables that change.
• Print subtotals.

For example, you can use break logic to prepare a sales report with records that are grouped by product, region,
or salesperson (or all three). Break logic also enables you to print column headings, count records, subtotal a
column, and perform additional processing on the count or subtotal.

Here is the sample program without break logic:

Program ex5a.sqr

begin-program

do list_customers

end-program

begin-heading 2

print ’State’ (1,1)

print ’City’ (1,7)

Copyright © 1988-2007, Oracle. All rights reserved. 19

Using Break Logic Chapter 6

print ’Name’ (1,24)

print ’Phone’ (1,55)

end-heading

begin-procedure list_customers

begin-select

state (,1)

city (,7)

name (,24)

phone (,55)

position (+1) ! Advance to the next line

from customers

order by state, city, name

end-select

end-procedure ! list_customers

The output for the ex4a.sqr program is:
State City Name Phone

IN Davenport Harold Alexander Fink 3015553645

IN Miningville Harry’s Landmark Diner 3175550948

MI Bell Harbor Sam Johnson 3135556732

NH Frogline Jerry’s Junkyard Specialties 6125552877

NJ Teaneck Clair Butterfield 2015559901

NM Big Falls Joe Smith and Company 8085552124

NY Mamaroneck Harriet Bailey 9145550144

NY New York John Conway 2125552311

NY New York Corks and Bottles, Inc. 2125550021

NY New York Kate’s Out of Date Dress Shop 2125559000

NY Queens Eliot Richards 2125554285

OH Cleveland Quentin Fields 2165553341

OH Everretsville Gregory Stonehaven 2165553109

OH Zanesville Isaiah J Schwartz and Company 5185559813

When you sort the output by state, city, and name (note the ORDER BY clause in the BEGIN-SELECT), the
records are grouped by state. To make the grouping more apparent, you can add a break.

Using ON-BREAK
In the following program, the ON-BREAK option of the PRINT command accomplishes two related tasks: it
starts a new group each time the value of state changes, and it prints state only when its value changes.
Note that ON-BREAK works as well for implicit as for explicit PRINT commands, such as in the following
example, where state, city, name, and phone are implicitly printed as part of the select paragraph.

The sample program here is identical to ex5a.sqr except for the line that prints the state column, which
appears like this:

Program ex5b.sqr

20 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 6 Using Break Logic

begin-program

do list_customers

end-program

begin-heading 2

print ’State’ (1,1)

print ’City’ (1,7)

print ’Name’ (1,24)

print ’Phone’ (1,55)

end-heading

begin-procedure list_customers

begin-select

state (,1) on-break

city (,7)

name (,24)

phone (,55)

position (+1) ! Advance to the next line

from customers

order by state, city, name

end-select

end-procedure ! list_customers

The output for the ex5b.sqr program is:
State City Name Phone

IN Davenport Harold Alexander Fink 3015553645

Miningville Harry’s Landmark Diner 3175550948

MI Bell Harbor Sam Johnson 3135556732

NH Frogline Jerry’s Junkyard Specialties 6125552877

NJ Teaneck Clair Butterfield 2015559901

NM Big Falls Joe Smith and Company 8085552124

NY Mamaroneck Harriet Bailey 9145550144

New York John Conway 2125552311

New York Corks and Bottles, Inc. 2125550021

New York Kate’s Out of Date Dress Shop 2125559000

Queens Eliot Richards 2125554285

OH Cleveland Quentin Fields 2165553341

Everretsville Gregory Stonehaven 2165553109

Zanesville Isaiah J Schwartz and Company 5185559813

With break processing, the state abbreviation is printed only once for each group.

Skipping Lines Between Groups
You can further enhance the visual effect of break processing by inserting one or more lines between groups.
To do so, use the SKIPLINES qualifier with ON-BREAK. Here is the list_customers procedure from ex5b.sqr,
with the modified line shown like this:

Copyright © 1988-2007, Oracle. All rights reserved. 21

Using Break Logic Chapter 6

begin-select

state (,1) on-break skiplines=1

city (,7)

name (,24)

phone (,55)

position (+1) ! Advance to the next line

from customers

order by state, city, name

end-select

The output for the modified ex5b.sqr program is:
State City Name Phone

IN Davenport Harold Alexander Fink 3015553645

Miningville Harry’s Landmark Diner 3175550948

MI Bell Harbor Sam Johnson 3135556732

NH Frogline Jerry’s Junkyard Specialties 6125552877

.....

Arranging Multiple Break Columns
As you can see in the previous example, you can also have multiple customers within a city. You can apply
the same break concept to the city column to make this grouping of customers more apparent. Add another
ON-BREAK to the program so that city is also printed only when its value changes.

When you have multiple breaks, you must arrange them in a hierarchy. In the sample program, the breaks
are for geographical units, so it is logical to arrange them according to size: first state, then city. This sort of
arrangement is called nesting, and the breaks are considered nested.

To ensure that the breaks are properly nested, use the LEVEL keyword. This argument numbers breaks by
level and specifies that the columns are printed in order of increasing break levels, from left to right. Number
breaks in the same order in which they are sorted in the ORDER BY clause.

See Chapter 6, “Using Break Logic,” Understanding the Order of Events, page 28.

The LEVEL argument enables you to control the order in which you call break procedures. The next sample
program is identical to ex5a.sqr except for the two lines that print the state and city columns, which are
shown like this:

Program ex5c.sqr

begin-program

do list_customers

end-program

begin-heading 2

print ’State’ (1,1)

print ’City’ (1,7)

22 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 6 Using Break Logic

print ’Name’ (1,24)

print ’Phone’ (1,55)

end-heading

begin-procedure list_customers

begin-select

state (,1) on-break level=1

city (,7) on-break level=2

name (,24)

phone (,55)

position (+1) ! Advance to the next line

from customers

order by state, city, name

end-select

end-procedure ! list_customers

The output for the ex5c.sqr program is:
State City Name Phone

IN Davenport Harold Alexander Fink 3015553645

Miningville Harry’s Landmark Diner 3175550948

MI Bell Harbor Sam Johnson 3135556732

NH Frogline Jerry’s Junkyard Specialties 6125552877

NJ Teaneck Clair Butterfield 2015559901

NM Big Falls Joe Smith and Company 8085552124

NY Mamaroneck Harriet Bailey 9145550144

New York John Conway 2125552311

Corks and Bottles, Inc. 2125550021

Kate’s Out of Date Dress Shop 2125559000

Queens Eliot Richards 2125554285

OH Cleveland Quentin Fields 2165553341

Everretsville Gregory Stonehaven 2165553109

Zanesville Isaiah J Schwartz and Company 5185559813

As you can see, there are three customers in New York, so the city name for the second and third customers is
left blank.

Using Break Processing Enhancements
This section discusses how to:

• Control page breaks and calculate subtotals and totals.
• Handle page breaks.
• Print the date.
• Obtain totals.
• Use hyphens and underscores.

Copyright © 1988-2007, Oracle. All rights reserved. 23

Using Break Logic Chapter 6

Controlling Page Breaks and Calculating Subtotals and Totals
When you use break logic, you may want to enhance your report by controlling page breaks or calculating
subtotals and totals for the ON-BREAK column. The following example illustrates these techniques.

The sample program selects the customer’s name, address, and telephone number from the database. The
break processing is performed on the state column:

Program ex5d.sqr

begin-program

do list_customers

end-program

begin-heading 4

print ’Customers Listed by State’ (1) center

print $current-date (1,1) Edit ’DD-Mon-YYYY’

print ’State’ (3,1)

print ’Customer Name, Address and Phone Number’ (,11)

print ’-’ (4,1,9) fill

print ’-’ (4,11,40) fill

end-heading

begin-footing 2

! print "Page n of m"

page-number (1,1) ’Page ’

last-page () ’ of ’

end-footing

begin-procedure state_tot

print ’ Total Customers for State: ’ (+1,1)

print #state_total () edit 999,999

position (+3,1) ! Leave 2 blank lines.

let #cust_total = #cust_total + #state_total

let #state_total = 0

end-procedure ! state_tot

begin-procedure list_customers

let #state_total = 0

let #cust_total = 0

begin-select

! The ’state’ field will only be printed when it

! changes. The procedure ’state_tot’ will also be

! executed only when the value of ’state’ changes.

state (,1) on-break print=change/top-page after=state_tot

name (,11)

addr1 (+1,11) ! continue on second line

addr2 (+1,11) ! continue on third line

city (+1,11) ! continue on fourth line

phone (,+2) edit (xxx)bxxx-xxxx ! Edit for easy reading.

! Skip 1 line between listings.

! Since each listing takes 4 lines, we specify ’need=4’ to

! prevent a customer’s data from being broken across two pages.

next-listing skiplines=1 need=4

let #state_total = #state_total + 1

from customers

24 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 6 Using Break Logic

order by state, name

end-select

if #cust_total > 0

print ’ Total Customers: ’ (+3,1)

print #cust_total () edit 999,999 ! Total customers printed.

else

print ’No customers.’ (1,1)

end-if

end-procedure ! list_customers

The output for the ex5d.sqr program is:
29-Apr-2004

Customers Listed by State

State Customer Name, Address and Phone Number

--------- --

IN Harold Alexander Fink

32077 Cedar Street

West End

Davenport (301) 555-3645

Harry’s Landmark Diner

17043 Silverfish Road

South Park

Miningville (317) 555-0948

Total Customers for State: 2

MI Sam Johnson

37 Cleaver Street

Sandy Acres

Bell Harbor (313) 555-6732

Total Customers for State: 1

NH Jerry’s Junkyard Specialties

Crazy Lakes Cottages

Rural Delivery #27

Frogline (612) 555-2877

Copyright © 1988-2007, Oracle. All rights reserved. 25

Using Break Logic Chapter 6

Total Customers for State: 1

...

Take a close look at the code. The data is printed by using a select paragraph in the list_customer procedure.
The state and the customer name are printed on the first line. The customer’s address and phone number are
printed on the next three lines.

The program also uses the argument AFTER=STATE_TOT. This argument calls the state_tot procedure
after each change in the value of state.

See Chapter 6, “Using Break Logic,” Setting Break Procedures with BEFORE and AFTER, page 27.

Handling Page Breaks
If a page break occurs within a group, you may want to reprint headings and the value of the break column at
the top of the new page.

To control the printing of the value, use PRINT=CHANGE/TOP-PAGE. With this qualifier, the value of the
ON-BREAK column is printed when it changes and after every page break. In this example, the value of state
is printed not only when it changes, but whenever the report starts a new page.

To format records, use the NEXT-LISTING command. This command serves two purposes. The
SKIPLINES=1 argument skips one line between records, then renumbers the current line as line 1. The
NEED=4 argument prevents a listing from being split over two pages by specifying the minimum number
of lines that are needed to write a new listing on the current page. In this case, if fewer than four lines are
left on a page, SQR starts a new page.

Printing the Date
In the HEADING section, the reserved variable $current-date prints the date and the time. This variable
is initialized with the date and time of the client machine when the program starts to run. SQR provides
predefined, or reserved, variables for a variety of uses.

In this example, the complete command is PRINT $current-date (1,1) EDIT ’DD/Mon/YYYY’.
It prints the date and time at position 1,1 of the heading. The EDIT argument specifies an edit mask, or format,
for printing the date. SQR provides a variety of edit masks for use in formatting numbers, dates, and strings.

See Enterprise PeopleTools 8.49 PeopleBook: SQR Language Reference for PeopleSoft, “SQR Command
Reference,” PRINT.

Note that the PRINT command for the report title precedes the command for the $current-date reserved
variable, even though the date is on the left and the title is on the right. SQR always assembles a page in
memory before printing, so the order of these commands does not matter if you use the correct print position
qualifiers.

The last two commands in the HEADING section print a string of hyphens under the column headings. Note
the use of the FILL option with the PRINT command. This tells SQR to fill the specified width with this
pattern, which is a useful method to print a line.

The FOOTING section prints the Page n of m as in earlier examples.

See Also
Enterprise PeopleTools 8.49 PeopleBook: SQR Language Reference for PeopleSoft

26 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 6 Using Break Logic

Obtaining Totals
The ex5d.sqr program also prints two totals: a subtotal of customers in each state and a grand total of all
customers. These calculations are performed with two numeric variables, one for the subtotals and one for
the grand totals. These variables are:

• #state_total
• #cust_total

SQR for PeopleSoft has a small set of variable types. The most common types are numeric variables and string
variables. All numeric variables in SQR are preceded by a pound sign (#) and all string variables are preceded
by a dollar sign ($). An additional SQR variable type is the date variable.

In SQR for PeopleSoft, numeric and string variables are not explicitly declared. Instead, they are implicitly
defined by their first use. All numeric variables start out as zero and all string variables start out as null, so
there is normally no need to initialize them. The string variables are of varying length and can hold long strings
of characters and short ones. Assigning a new value to a string variable automatically adjusts its length.

In the list_customers procedure, #state_total and #cust_total are set to zero at the beginning of the procedure.
This initialization is optional and is done for clarity only. The #state_total variable is incremented by 1
for every row that is selected.

When the value of state changes, the program calls the state_tot procedure and prints the value of #state_total.
Note the use of the EDIT 999,999 edit mask, which formats the number.

This procedure also employs the LET command. LET is the assignment command in SQR, for building
complex expressions. Here, LET adds the value of #state_total to #cust_total. At the end of the procedure,
#state_total is reset to zero.

The list_customers procedure contains an example of the SQR if-then-else logic. The condition starts with IF
followed by an expression. If the expression evaluates to true or to a number other than zero, the subsequent
commands are run. Otherwise, if there is an ELSE part to the IF, those commands are run. IF commands
always end with an END-IF.

In ex5d.sqr, the value of #cust_total is examined. If it is greater than zero, the query has returned rows of data,
and the program prints the string Total Customers: and the value of #cust_total.

If #cust_total is zero, the query has not returned any data. In that case, the program prints the string No
customers.

Using Hyphens and Underscores
Many SQR commands, such as BEGIN-PROGRAM and BEGIN-SELECT, use a hyphen, whereas procedure
and variable names use an underscore.

Procedure and variable names can contain either a hyphen or underscore, but it’s best to use underscores in
procedure and variable names to distinguish them from SQR commands. It also prevents confusion when you
mix variable names and numbers in an expression, where hyphens could be mistaken for minus signs.

Setting Break Procedures with BEFORE and AFTER
When you print variables with ON-BREAK, you can automatically call procedures before and after each break
in a column. The BEFORE and AFTER qualifiers provide this capability. For example:

Copyright © 1988-2007, Oracle. All rights reserved. 27

Using Break Logic Chapter 6

begin-select

state (,1) on-break before=state_heading after=state_tot

The BEFORE qualifier automatically calls the state_heading procedure to print headings before each group
of records of the same state. Similarly, the AFTER qualifier automatically calls the state_tot procedure to
print totals after each group of records.

All BEFORE procedures are automatically invoked before each break, including the first: in other words,
before the select paragraph is even processed. Similarly, all AFTER procedures are invoked after each break,
including the last group: in other words, upon completion of the select paragraph.

Understanding the Order of Events
You can define a hierarchy of break columns by using the LEVEL qualifier of ON-BREAK. In the ex5c.sqr
sample program, for example, state was defined as LEVEL=1 and city as LEVEL=2.

When a break occurs at one level, it also forces breaks on variables with higher LEVEL qualifiers. In the
sample program, a break on state also means a break on city.

A break on a variable can initiate many other events. The value can be printed, lines can be skipped,
procedures can be automatically called, and the old value can be saved. It is important to know the order of
events, particularly where there are multiple ON-BREAK columns.

The following select paragraph has breaks on three levels:

begin-select

state (,1) on-break level=1 after=state_tot skiplines=2

city (,7) on-break level=2 after=city_tot skiplines=1

zip (,45) on-break level=3 after=zip_tot

from customers

order by state, city, zip

end-select

The breaks are processed as follows:

1. When zip breaks, the city_tot procedure is run.
2. When city breaks, first the zip_tot procedure is run, then the city_tot procedure is run, and one line is
skipped (SKIPLINES=1).
Both city and zip are printed in the next record.

3. When state breaks, the zip_tot, city_tot, and state_tot procedures are processed in that order.
One line is skipped after the city_tot procedure is run, and two lines are skipped after the state_tot
procedure is run. All three columns, state, city, and zip, are printed in the next record.

The following program (ex5e.sqr) demonstrates the order of events in break processing. It has three
ON-BREAK columns, each with a LEVEL argument and a BEFORE and AFTER procedure. The BEFORE
and AFTER procedures print strings to indicate the order of processing.

Program ex5e.sqr

begin-setup

declare-Layout

default

end-declare

end-setup

begin-program

28 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 6 Using Break Logic

do main

end-program

begin-procedure a

print ’AFTER Procedure for state LEVEL 1’ (+1,40)

end-procedure

begin-procedure b

print ’AFTER Procedure city LEVEL 2’ (+1,40)

end-procedure

begin-procedure c

print ’AFTER Procedure zip LEVEL 3’ (+1,40)

end-procedure

begin-procedure aa

print ’BEFORE Procedure state LEVEL 1’ (+1,40)

end-procedure

begin-procedure bb

print ’BEFORE Procedure city LEVEL 2’ (+1,40)

end-procedure

begin-procedure cc

print ’BEFORE Procedure zip LEVEL 3’ (+1,40)

end-procedure

begin-procedure main local

begin-select

add 1 to #count

print ’Retrieved row #’ (+1,40)

print #count (,+10)Edit 9999

position (+1)

state (3,1) On-Break Level=1 after=a before=aa

city (3,10) On-Break Level=2 after=b before=bb

zip (3,25) On-Break Level=3 after=c before=cc Edit xxxxx

next-listing Need=10

from customers

order by state,city,zip

end-select

end-procedure

begin-heading 3

print $current-date (1,1) edit ’DD-MM-YYYY’

page-number (1,60) ’Page ’

last-page () ’ of ’

print ’STATE’ (3,1)

print ’CITY’ (3,10)

print ’ZIP’ (3,25)

print ’Break Processing sequence’ (3,40)

end-heading

The output for the ex5e.sqr program is:
02-05-2004 Page 1 of 3

STATE CITY ZIP Break Processing sequence

Copyright © 1988-2007, Oracle. All rights reserved. 29

Using Break Logic Chapter 6

BEFORE Procedure state LEVEL 1

IN Davenport 62130 BEFORE Procedure city LEVEL 2

BEFORE Procedure zip LEVEL 3

Retrieved row #1

Retrieved row #2

Miningville 40622

AFTER Procedure zip LEVEL 3

AFTER Procedure city LEVEL 2

BEFORE Procedure city LEVEL 2

BEFORE Procedure zip LEVEL 3

Retrieved row #3

MI Bell Harbor 40674

AFTER Procedure zip LEVEL 3

AFTER Procedure city LEVEL 2

AFTER Procedure for state LEVEL 1

BEFORE Procedure state LEVEL 1

BEFORE Procedure city LEVEL 2

BEFORE Procedure zip LEVEL 3

Retrieved row #4

NH Frogline 04821

AFTER Procedure zip LEVEL 3

AFTER Procedure city LEVEL 2

AFTER Procedure for state LEVEL 1

BEFORE Procedure state LEVEL 1

BEFORE Procedure city LEVEL 2

BEFORE Procedure zip LEVEL 3

Retrieved row #5

NJ Teaneck 00355

AFTER Procedure zip LEVEL 3

AFTER Procedure city LEVEL 2

AFTER Procedure for state LEVEL 1

BEFORE Procedure state LEVEL 1

BEFORE Procedure city LEVEL 2

BEFORE Procedure zip LEVEL 3

Retrieved row #6

NM Big Falls 87893

AFTER Procedure zip LEVEL 3

AFTER Procedure city LEVEL 2

AFTER Procedure for state LEVEL 1

BEFORE Procedure state LEVEL 1

BEFORE Procedure city LEVEL 2

BEFORE Procedure zip LEVEL 3

02-05-2004 Page 2 of 3

30 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 6 Using Break Logic

STATE CITY ZIP Break Processing sequence

Retrieved row #7

NY Mamaroneck 10833

AFTER Procedure zip LEVEL 3

AFTER Procedure city LEVEL 2

AFTER Procedure for state LEVEL 1

BEFORE Procedure state LEVEL 1

BEFORE Procedure city LEVEL 2

BEFORE Procedure zip LEVEL 3

...

The following steps explain the order of processing in detail:

1. Process BEFORE procedures.

BEFORE procedures are processed in ascending order by LEVEL before the first row of the query is
retrieved. If no data is selected, BEFORE procedures are not run.

2. Select the first row of data.

3. Select subsequent rows of data.

Processing of the select paragraph continues. When a break occurs on any column, it also initiates
breaks on columns at the same or higher levels. Events occur in the following order:

a. AFTER procedures are processed in descending order from the highest level to the level of the current
ON-BREAK column.

b. SAVE variables are set with the value of the previous ON-BREAK column.
c. BEFORE procedures are processed in ascending order from the current level to the highest level.
d. If SKIPLINES was specified, the current line position is advanced.
e. The value of the new group is printed (unless PRINT=NEVER is specified).

4. Process AFTER procedures.

After the select paragraph is complete, if any rows were selected, AFTER procedures are processed in
descending order by LEVEL.

See Chapter 6, “Using Break Logic,” Saving a Value When a Break Occurs, page 32.

Controlling Page Breaks with Multiple ON-BREAK Columns
Where multiple columns have ON-BREAK, page breaks need careful planning. While it may be acceptable to
have a page break within a group, you probably would not want to have one within a record.

You can prevent page breaks within a record by following four simple rules:

• Place ON-BREAK columns ahead of other columns in the select paragraph.

• Place the lower-level ON-BREAK columns ahead of the higher-level ON-BREAK columns in the select
paragraph.

Copyright © 1988-2007, Oracle. All rights reserved. 31

Using Break Logic Chapter 6

• Use the same line positions for all ON-BREAK columns.
• Avoid using WRAP and ON-BREAK together on one column.

Saving a Value When a Break Occurs
In ex5d.sqr, the state_tot procedure prints the total number of customers per state. Because it is called with the
AFTER argument, this procedure is run only after the value of the ON-BREAK column, state, has changed.

Sometimes, however, you may want to print the previous value of the ON-BREAK column in the AFTER
procedure. For example, you may want to print the state name and the totals for each state. Printing the value
of state will not work because its value will have changed by the time the AFTER procedure is called.

The solution is to save the previous break value in a string variable. To do this, use the SAVE qualifier
of ON-BREAK. For example:

begin-select

state (,1) on-break after=state_tot save=$old_state

You can then print the value of $old_state in the state_tot procedure.

Using ON-BREAK on a Hidden Column
In some reports, you may want to use the features of break processing without printing the ON-BREAK option.
For example, you may want to incorporate the ON-BREAK option into a subheading. This format might make
your report more readable. It is also useful when you want to leave room on the page for additional columns.

To create such a report, you can hide the break option using the PRINT=NEVER qualifier and print it in a
heading procedure that is called by BEFORE.

The following code is based on the ex5b.sqr program, with the key lines shown like this:

Program ex5f.sqr

begin-program

do list_customers

end-program

begin-procedure list_customers

begin-select

state () on-break before=state_heading print=never level=1

city (,1) on-break level=2

name (,18)

phone (,49)

position (+1) ! Advance to the next line

from customers

order by state, city, name

end-select

end-procedure ! list_customers

begin-procedure state_heading

32 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 6 Using Break Logic

print ’State: ’ (+1,1) bold ! Advance a line and print ’State:’

print &state (,8) bold ! Print the state column here

print ’City’ (+1,1) bold ! Advance a line and print ’City’

print ’Name’ (,18) bold

print ’Phone’ (,49) bold

print ’-’ (+1,1,58) fill

position (+1) ! Advance to the next line

end-procedure ! state_heading

Note. This program has no HEADING section. Instead, a procedure prints column headings for each state
rather than at the top of each page. The &state variable can be referenced throughout the program, even though
the state column was not printed as part of the break.

Examine the following line in the program from the select paragraph:
state () on-break before=state_heading print=never level=1

This line defines the break processing for state. The BEFORE qualifier specifies that the state_heading
procedure is automatically called when the state changes. In this program, the break is set to LEVEL=1.

The PRINT=NEVER qualifier hides the state column and specifies that it is not printed as part of the select
paragraph. Instead, it is printed in the state_heading procedure. In this procedure, the state column is referred
to as the &state column variable.

The city column is assigned a LEVEL=2 break.

The output for the ex5f.sqr program is:
State: IN

City Name Phone

--

Davenport Harold Alexander Fink 3015553645

Miningville Harry’s Landmark Diner 3175550948

State: MI

City Name Phone

--

Bell Harbor Sam Johnson 3135556732

State: NH

City Name Phone

--

Frogline Jerry’s Junkyard Specialties 6125552877

State: NJ

City Name Phone

--

Teaneck Clair Butterfield 2015559901

State: NM

Copyright © 1988-2007, Oracle. All rights reserved. 33

Using Break Logic Chapter 6

City Name Phone

--

Big Falls Joe Smith and Company 8085552124

State: NY

City Name Phone

--

Mamaroneck Harriet Bailey 9145550144

New York John Conway 2125552311

Corks and Bottles, Inc. 2125550021

Kate’s Out of Date Dress Shop 2125559000

Queens Eliot Richards 2125554285

State: OH

City Name Phone

--

Cleveland Quentin Fields 2165553341

Everretsville Gregory Stonehaven 2165553109

Zanesville Isaiah J Schwartz and Company 5185559813

Performing Break Processing on Numeric Values
You cannot use ON-BREAK with SQR numeric variables. To perform break processing on a numeric variable,
you must first move its value to a string variable and then set ON-BREAK on that. For example:

begin-select

amount_received &amount

move &amount to $amount $$9,999.99

print $amount (+1,1) on-break

from cash_receipts

order by amount_received

end-select

The maximum number of ON-BREAK levels is determined by the ON-BREAK setting in the
[Processing-Limits] section of the PSSQR.INI file. The default is 30, but you can increase this setting.
Its maximum value is 64K-1 (65,535).

See Also
Enterprise PeopleTools 8.49 PeopleBook: SQR Language Reference for PeopleSoft

34 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 7

Adding Declarations Using the SETUP Section

This chapter provides an overview of the SETUP section and discusses how to:

• Create the SETUP section.
• Use the DECLARE-LAYOUT command.
• Override the default settings.
• Declare the page orientation.

Understanding the SETUP Section
The SETUP section of the program is where you place all of the declarations. Declarations define certain
report characteristics and the source and attributes of various report components, such as charts and images.
The SETUP section is evaluated when you compile the program, before you run the program. A program
doesn’t have to have a SETUP section, but it can be useful.

Creating the SETUP Section
Place the SETUP section, if present, at the beginning of the program before the PROGRAM section. Begin
with BEGIN-SETUP and end with END-SETUP.

Use the following commands in the SETUP section:

Command Comments

ALTER-LOCALE Can also appear in a procedure.

ASK Allowed only in a SETUP section.

BEGIN-SQL Can also appear in a procedure. Processed when a
runtime file (with .SQT extension) is loaded.

CREATE-ARRAY Can also appear in a procedure.

DECLARE-CHART n/a

Copyright © 1988-2007, Oracle. All rights reserved. 35

Adding Declarations Using the SETUP Section Chapter 7

Command Comments

DECLARE-IMAGE n/a

DECLARE-LAYOUT n/a

DECLARE-PRINTER n/a

DECLARE-PROCEDURE n/a

DECLARE-REPORT n/a

DECLARE-TOC n/a

DECLARE-VARIABLE Can also appear in a local procedure.

LOAD-LOOKUP Can also appear in a procedure.

USE Sybase only.

See Also
Enterprise PeopleTools 8.49 PeopleBook: SQR Language Reference for PeopleSoft

Using the DECLARE-LAYOUT Command
Use the DECLARE-LAYOUT command to set the page layout and include important options, such as the
paper size and margins.

Sample SETUP Program
Here is a typical SETUP section:

begin-setup

! Declare the default layout for this report

declare-layout default

paper-size=(8.5,11)

left-margin=1 right-margin=1

top-margin=1 bottom-margin=1

end-declare

end-setup

In the preceding example, the DECLARE-LAYOUT command sets the paper size to 8 1/2 by 11 inches,
with all margins at 1 inch.

36 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 7 Adding Declarations Using the SETUP Section

In SQR for PeopleSoft, data is positioned on the page using line and character position coordinates. Think of
the page as a grid where each cell holds one character. With such a grid, in a position qualifier consisting of
(line, column, width), column and width are numbers that denote characters and spaces.

Defining the SQR Page Layout
The main attributes of the DECLARE-LAYOUT command affect the structure of the page.

The PAPER-SIZE argument defines the dimensions of the entire page, including the margins. The
TOP-MARGIN, LEFT-MARGIN, BOTTOM-MARGIN, and RIGHT-MARGIN arguments define the
margins. In SQR, you cannot print in the margins.

In the preceding sample program, the left margin uses 10 spaces and the top margin uses six lines. The page
width accommodates 65 characters (without the margins) and 54 lines.

The default mapping of characters and lines to inches is 10 characters per inch (CPI) and six lines per inch
(LPI). This means that each character cell is 1/10 inch wide and 1/6 inch high. These settings are used when a
program does not contain a DECLARE-LAYOUT command.

Overriding the Default Settings
Override the default settings by using the LINE-HEIGHT and CHAR-WIDTH arguments in the
DECLARE-LAYOUT command. These arguments adjust the dimensions of the grid, which implies a change
in the meaning of column and line. If the DECLARE-LAYOUT paragraph includes the LINE-HEIGHT=1 and
CHAR-WIDTH=1 arguments, the cells in the grid measure one point by one point (one point is 1/72 inch
or approximately 0.35 millimeters). In that case, column is a dimension given in points. The length of a
string, however, is still given in characters.

Alternatively, you can use the MAX-LINES and MAX-COLUMNS arguments of the DECLARE-LAYOUT
command to specify the number of lines on the page and the number of characters to fit across the page. SQR
calculates the line height and character width based on these settings and the size of the page and margins.

Specify coordinates in terms of lines and character positions. The first line from the top is 1 and the first
column (from the left) is 1. There is no coordinate 0.

Declaring the Page Orientation
Use the DECLARE-LAYOUT command to declare the page orientation. Note that this declaration does
not affect how SQR uses position coordinates. Line and character positions are not transposed when page
orientation is switched. The only effect of the ORIENTATION option of the DECLARE-LAYOUT command
is that SQR switches the printer to the specified orientation: portrait or landscape. The default mode is portrait.

Copyright © 1988-2007, Oracle. All rights reserved. 37

Adding Declarations Using the SETUP Section Chapter 7

38 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 8

Creating Master and Detail Reports

This chapter provides overviews of master and detail reports and the sample program for master and detail reports
and discusses how to correlate subqueries:

Understanding Master and Detail Reports
Master and detail reports show hierarchical information. The information is normally retrieved from multiple
tables that have a one-to-many relationship, such as customers and orders. The customer information is
the master and the orders are the detail.

Often, you can obtain such information with a single SQR select paragraph. In such a program, the data from
the master table is joined with data from the detail table. You can implement break logic to group the detail
records for each master record. This type of report has one major disadvantage: if a master record has no
associated detail records, it is not displayed. If you need to show all master records, whether they have detail
records or not, this type of report will not meet your needs.

See Chapter 6, “Using Break Logic,” page 19.

To show all master records, whether or not they have detail records, create a master and detail report with one
SELECT statement that retrieves records from the master table, followed by separate SELECT statements that
retrieve the detail records that are associated with each master record.

The sample program in this chapter produces just such a report. In the example, one BEGIN-SELECT returns
the names of customers. For each customer, two additional BEGIN-SELECT commands are run—one to
retrieve order information and another to retrieve payment information.

When one query returns master information and another query returns detail information, the detail query is
nested within the master query.

Understanding the Sample Program for Master
and Detail Reports

In the sample program, the nested queries are invoked once for each customer, each one retrieving records that
correspond to the current customer. A bind variable correlates the subqueries in the WHERE clause. This
variable correlates the customer number (cust_num) with the current customer record.

Program ex7a.sqr

begin-program

do main

end-program

Copyright © 1988-2007, Oracle. All rights reserved. 39

Creating Master and Detail Reports Chapter 8

begin-procedure main

begin-select

Print ’Customer Information’ (,1)

Print ’-’ (+1,1,45) Fill

name (+1,1,25)

city (,+1,16)

state (,+1,2)

cust_num

do cash_receipts(&cust_num)

do orders(&cust_num)

position (+2,1)

from customers

end-select

end-procedure ! main

begin-procedure cash_receipts (#cust_num)

let #any = 0

begin-select

if not #any

print ’Cash Received’ (+2,10)

print ’-------------’ (+1,10)

let #any = 1

end-if

date_received (+1,10,20) edit ’DD-MON-YY’

amount_received (,+1,13) Edit $$$$,$$0.99

from cash_receipts a

where a.cust_num = #cust_num

end-select

end-procedure ! cash_receipts

begin-procedure orders (#cust_num)

let #any = 0

begin-select

if not #any

print ’Orders Booked’ (+2,10)

print ’-------------’ (+1,10)

let #any = 1

end-if

a.order_num

order_date (+1,10,20) Edit ’DD-MON-YY’

description (,+1,20)

c.price * b.quantity (,+1,13) Edit $$$$,$$0.99

from orders a, ordlines b, products c

where a.order_num = b.order_num

and b.product_code = c.product_code

and a.cust_num = #cust_num

end-select

end-procedure ! orders

begin-heading 3

print $current-date (1,1) Edit ’DD-MON-YYYY’

page-number (1,69) ’Page ’

end-heading

40 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 8 Creating Master and Detail Reports

Correlating Subqueries
The ex7a.sqr sample program contains three procedures—main, cash_receipts, and orders—which correspond
to the three queries. The main procedure is the master. It retrieves the customer names. For each customer, we
invoke the cash_receipts procedure to list the cash receipts, if any, and orders to list the customer’s orders,
if any.

The procedures take the cust_num variable as an argument. As you can see, cash_receipts and orders are called
many times, once for each customer. Each time, the procedures perform the same query with a different value
for the cust_num variable in the WHERE clause.

Note the use of the IF command and the #any numeric variable in these procedures. When the BEGIN-SELECT
command returns no records, SQR does not process the following PRINT commands. Thus, the headings for
these procedures are displayed only for those customers who have records in the detail tables.

The orders procedure demonstrates the use of an expression in the BEGIN-SELECT. The expression is
c.price * b.quantity.

Note. Examine the format of the dollar amount with the argument EDIT $$$$,$$0.99. This format uses a
“floating-to-the-right” money symbol. If there are fewer digits than the six that we specified here, the dollar
sign floats to the right and remains close to the number.

See Chapter 18, “Using Procedures and Local Variables and Passing Arguments,” page 91.

Sample Program Output
The following is the output for program ex7a.sqr.

6-APR-2004 Page 1

Customer Information

Gregory Stonehaven Everretsville OH

Cash Received

01-FEB-03 $130.00

Customer Information

John Conway New York NY

Cash Received

01-MAR-03 $140.00

Customer Information

Eliot Richards Queens NY

Cash Received

Copyright © 1988-2007, Oracle. All rights reserved. 41

Creating Master and Detail Reports Chapter 8

16-JAN-03 $220.12

17-JAN-03 $260.00

Orders Booked

02-MAY-03 Whirlybobs $239.19

02-MAY-03 Canisters $3,980.25

Customer Information

Isaiah J Schwartz and Com Zanesville OH

Cash Received

18-JAN-03 $190.00

02-JAN-03 $1,100.00

Orders Booked

02-MAY-03 Hop scotch kits $6,902.00

02-MAY-03 Wire rings $19,872.90

Customer Information

Harold Alexander Fink Davenport IN

Cash Received

01-FEB-03 $1,200.00

01-MAR-03 $1,300.00

Orders Booked

19-MAY-03 Ginger snaps $44.28

19-MAY-03 Modeling clay $517.05

42 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 9

Creating Cross-Tabular Reports

This chapter provides an overview of cross-tabular reports and discusses how to:

• Use an array.
• Create an array.
• Group by category.
• Use multiple arrays.

Understanding Cross-Tabular Reports
Cross-tabular reports are matrix- or spreadsheet-like reports. These reports are useful for presenting summary
numeric data. Cross-tabular reports vary in format. The following example shows sales revenue summarized
by product by sales channel:

Revenue by product by sales channel

Product Direct Sales Resellers Mail Order Total

---------- ------------ --------- ----------- -------

A 2,100 1,209 0 3,309

B 120 311 519 950

C 2 0 924 926

---------- ------------ --------- ----------- -------

Total 2,222 1,520 1,443 5,185

This report is based on many sales records. The three middle columns correspond to sales channel categories.
Each row corresponds to a product. The records fall into nine groups: three products sold through three sales
channels. Some groups have no sales (such as mail order for product A).

Each category can be a discrete value of some database column or a set of values. For example, Resellers can
be domestic resellers plus international distributors.

A category can also represent a range, as demonstrated in this example:
Orders by Product by Order Size

Product

Category Less than 10 10 to 100 More than 100 Total

----------- ------------ --------- ------------- -------

Durable 200 120 0 320

Nondurable 122 311 924 1876

----------- ------------ --------- ------------- -------

Total 322 431 1443 2196

Copyright © 1988-2007, Oracle. All rights reserved. 43

Creating Cross-Tabular Reports Chapter 9

In this example, the rows correspond to the categories durable or nondurable. The columns represent ranges of
order size.

For each record that is selected, the program must determine the range to which it belongs and add 1 to
the count for that category. The numbers in the cells are counts, but they could be sums, averages, or any
other expression.

Of course, there are other types of cross-tabular reports. These reports become more complex when the number
of columns is not predefined and when there are more columns than can fit across the page.

Using an Array
Often, the program must process all of the records before it can begin to print the data. During processing, the
program must keep the data in a buffer where it can accumulate the numbers. This can be done in an SQR array.

An array is a unit of storage that contains rows and columns. An array is similar to a database table, but it
exists only in memory.

The sample program specifies an array called order_qty to hold the sum of the quantity of orders in a given
month. You could program this specific example without an array, but using one can be beneficial. Data that
you retrieve once and store in an array can be presented in many ways without additional database queries.
The data can even be presented in a chart.

The sample program also demonstrates an SQR feature called a three-dimensional array. This type of array
has fields (columns) and rows, and it also has repeating fields (the third dimension). In the order_qty array,
the first field is the product description. The second field is the order quantity of each month. The example
includes three months; therefore, this field repeats three times.

SQR references arrays in expressions such as array_name.field(sub1[,sub2]). The first subscript,
sub1, is the row number. The row count starts with zero. The second subscript, sub2, is specified when
the field repeats. Repeating fields are also numbered starting with zero. The subscript can be a literal or an
SQR numeric variable.

program ex8a.sqr

#define max_products 100

begin-setup

create-array

name=order_qty size={max_products}

field=product:char field=month_qty:number:3

end-setup

begin-program

do select_data

do print_array

end-program

begin-procedure print_array

let #entry_cnt = #i

let #i = 0

while #i <= #entry_cnt

let $product = order_qty.product(#i)

let #jan = order_qty.month_qty(#i,0)

44 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 9 Creating Cross-Tabular Reports

let #feb = order_qty.month_qty(#i,1)

let #mar = order_qty.month_qty(#i,2)

let #prod_tot = #jan + #feb + #mar

print $product (,1,30)

print #jan (,32,9) edit 9,999,999

print #feb (,42,9) edit 9,999,999

print #mar (,52,9) edit 9,999,999

print #prod_tot (,62,9) edit 9,999,999

position (+1)

let #jan_total = #jan_total + #jan

let #feb_total = #feb_total + #feb

let #mar_total = #mar_total + #mar

let #i = #i + 1

end-while

let #grand_total = #jan_total + #feb_total + #mar_total

print ’Totals’ (+2,1)

print #jan_total (,32,9) edit 9,999,999

print #feb_total (,42,9) edit 9,999,999

print #mar_total (,52,9) edit 9,999,999

print #grand_total (,62,9) edit 9,999,999

end-procedure print_array

begin-procedure select_data

begin-select

order_date

! The quantity for this order

quantity

! the product for this order

description

if #i = 0 and order_qty.product(#i) = ’’

let order_qty.product(#i) = &description

end-if

if order_qty.product(#i) != &description

let #i = #i + 1

if #i >= {max_products}

display ’Error: There are more than {max_products} products’

stop

end-if

let order_qty.product(#i) = &description

end-if

let #j = to_number(datetostr(&order_date,’MM’)) - 1

if #j < 3

let order_qty.month_qty(#i,#j) =

order_qty.month_qty(#i,#j) + &quantity

end-if

from orders a, ordlines b, products c

where a.order_num = b.order_num

and b.product_code = c.product_code

order by description

end-select

end-procedure ! select_data

Copyright © 1988-2007, Oracle. All rights reserved. 45

Creating Cross-Tabular Reports Chapter 9

begin-heading 4

print $current-date (1,1)

print ’Order Quantity by Product by Month’ (1,18)

page-number (1,64) ’Page ’

print ’Product’ (3,1)

print ’ January’ (,32)

print ’ February’ (,42)

print ’ March’ (,52)

print ’ Total’ (,62)

print ’-’ (4,1,70) Fill

end-heading

The following is the output for program ex8a.sqr.
11-JUN-04 Order Quantity by Product by Month Page 1

Product January February March Total

Canisters 3 0 0 3

Curtain rods 2 8 18 28

Ginger snaps 1 10 0 11

Hanging plants 1 20 0 21

Hookup wire 16 15 0 31

Hop scotch kits 2 0 0 2

Modeling clay 5 0 0 5

New car 1 9 0 10

Thimble 7 20 0 27

Thingamajigs 17 0 120 137

Widgets 4 0 12 16

Wire rings 1 0 0 1

Totals 60 82 150 292

See Chapter 14, “Using Business Charts,” page 71.

Creating an Array
You must define the size of an array when you create it. The sample program creates the order_qty array
with a size of 100.

The #DEFINE MAX_PRODUCTS 100 command defines the max_products constant as a substitution variable.
The sample program uses this constant to define the size of the array. It is a good practice to use #DEFINE
because it displays the limit at the top of the program source. Otherwise, it would be hidden in the code.

The SETUP section creates the array by using the CREATE-ARRAYcommand. All SQR arrays are created
before the program begins running. Their size must be known at compile time. If you do not know exactly
how many rows you have, you must overallocate and specify an upper bound. In the example, the array has
100 rows, even though the program uses only 12 rows to process the sample data.

46 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 9 Creating Cross-Tabular Reports

The preceding program has two procedures: select_data and print_array. Select_data performs the database
query, as its name suggests. While the database records are being processed, nothing prints, and the data
accumulates in the array. When the processing is complete, the print_array procedure does two things: the
procedure loops through the array and prints the data, and it also adds the month totals and prints them at
the bottom.

The report summarizes the product order quantities for each month, which are the records ordered by the
product description. The procedure then fills the array one product at a time. For each record that is selected,
the procedure checks to see if it’s a new product; if it is, the array is incremented by row subscript #i. The
procedure also adds the quantity to the corresponding entry in the array based on the month.

This program has one complication: how to obtain the month. Date manipulation can vary among databases,
and to write truly portable code requires careful planning.

The key is the datetostr function in the following command:

let #j = to_number(datetostr(&order_date, ’MM’)) - 1

This function converts the order_date column into a string. (The ‘MM’ edit mask specifies that only the
month part be converted.) The resulting string is then converted to a number; if it is less than 3, it represents
January, February, or March and is added to the array.

Grouping by Category
The following output is a cross-tabular report that groups the products by price range. This grouping cannot be
done by using a SQL GROUP BY clause. Moreover, to process the records in order of price category, the
program would have to sort the table by price. The sample program shows how to do it without sorting the data.

The sample program uses an SQR EVALUATE command to determine the price category and assign the array
subscript #i to 0, 1, or 2. Then it adds the order quantity to the array cell that corresponds to the price
category (row) and the month (column).

Program ex8b.sqr

#define max_categories 3

begin-setup

create-array

name=order_qty size={max_categories}

field=category:char field=month_qty:number:3

end-setup

begin-program

do select_data

do print_array

end-program

begin-procedure print_array

let #i = 0

while #i < {max_categories}

let $category = order_qty.category(#i)

let #jan = order_qty.month_qty(#i,0)

let #feb = order_qty.month_qty(#i,1)

let #mar = order_qty.month_qty(#i,2)

Copyright © 1988-2007, Oracle. All rights reserved. 47

Creating Cross-Tabular Reports Chapter 9

let #category_tot = #jan + #feb + #mar

print $category (,1,31)

print #jan (,32,9) edit 9,999,999

print #feb (,42,9) edit 9,999,999

print #mar (,52,9) edit 9,999,999

print #category_tot (,62,9) edit 9,999,999

position (+1)

let #jan_total = #jan_total + #jan

let #feb_total = #feb_total + #feb

let #mar_total = #mar_total + #mar

let #i = #i + 1

end-while

let #grand_total = #jan_total + #feb_total + #mar_total

print ’Totals’ (+2,1)

print #jan_total (,32,9) edit 9,999,999

print #feb_total (,42,9) edit 9,999,999

print #mar_total (,52,9) edit 9,999,999

print #grand_total (,62,9) edit 9,999,999

end-procedure print_array

begin-procedure select_data

let order_qty.category(0) = ’$0-$4.99’

let order_qty.category(1) = ’$5.00-$100.00’

let order_qty.category(2) = ’Over $100’

begin-select

order_date

! the price / price category for the order

c.price &price

move &price to #price_num

evaluate #price_num

when < 5.0

let #i = 0

break

when <= 100.0

let #i = 1

break

when-other

let #i = 2

break

end-evaluate

! The quantity for this order

quantity

let #j = to_number(datetostr(&order_date,’MM’)) - 1

if #j < 3

let order_qty.month_qty(#i,#j) =

order_qty.month_qty(#i,#j) + &quantity

end-if

from orders a, ordlines b, products c

where a.order_num = b.order_num

and b.product_code = c.product_code

end-select

48 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 9 Creating Cross-Tabular Reports

end-procedure ! select_databegin-heading 5

print $current-date (1,1)

page-number (1,64) ’Page ’

print ’Order Quantity by Product Price Category by Month’ (2,11)

print ’Product Price Category’ (4,1)

print ’ January’ (,32)

print ’ February’ (,42)

print ’ March’ (,52)

print ’ Total’ (,62)

print ’-’ (5,1,70) Fill

end-heading

The following is the output for program ex8b.sqr.
11-JUN-04 Page 1

Order Quantity by Product Price Category by Month

Product Price Category January February March Total

0-4.99 28 45 12 85

5.00-100.00 25 28 138 191

Over 100 7 9 0 16

Totals 60 82 150 292

Using Multiple Arrays
Using SQR arrays to buffer the data offers several advantages. In the previous example, it eliminated the need
to sort the data. Another advantage is that you can combine the two sample reports into one. With one pass on
the data, you can fill the two arrays and then print the two parts of the report.

The following sample program performs the work that is done by the first two programs. The SETUP section
specifies two arrays: one to summarize monthly orders by product, and another to summarize monthly
orders by price range.

Program ex8c.sqr

#define max_categories 3

#define max_products 100

begin-setup

create-array

name=order_qty size={max_products}

field=product:char field=month_qty:number:3

create-array

name=order_qty2 size={max_categories}

field=category:char field=month_qty:number:3

end-setup

begin-program

do select_data

do print_array

Copyright © 1988-2007, Oracle. All rights reserved. 49

Creating Cross-Tabular Reports Chapter 9

print ’-’ (+2,1,70) fill

position (+1)

do print_array2

end-program

begin-procedure print_array

let #entry_cnt = #i

let #i = 0

while #i <= #entry_cnt

let $product = order_qty.product(#i)

let #jan = order_qty.month_qty(#i,0)

let #feb = order_qty.month_qty(#i,1)

let #mar = order_qty.month_qty(#i,2)

let #prod_tot = #jan + #feb + #mar

print $product (,1,30)

print #jan (,32,9) edit 9,999,999

print #feb (,42,9) edit 9,999,999

print #mar (,52,9) edit 9,999,999

print #prod_tot (,62,9) edit 9,999,999

position (+1)

let #i = #i + 1

end-while

end-procedure ! print_array

begin-procedure print_array2

let #i = 0

while #i < {max_categories}

let $category = order_qty2.category(#i)

let #jan = order_qty2.month_qty(#i,0)

let #feb = order_qty2.month_qty(#i,1)

let #mar = order_qty2.month_qty(#i,2)

let #category_tot = #jan + #feb + #mar

print $category (,1,31)

print #jan (,32,9) edit 9,999,999

print #feb (,42,9) edit 9,999,999

print #mar (,52,9) edit 9,999,999

print #category_tot (,62,9) edit 9,999,999

position (+1)

let #jan_total = #jan_total + #jan

let #feb_total = #feb_total + #feb

let #mar_total = #mar_total + #mar

let #i = #i + 1

end-while

let #grand_total = #jan_total + #feb_total + #mar_total

print ’Totals’ (+2,1)

print #jan_total (,32,9) edit 9,999,999

print #feb_total (,42,9) edit 9,999,999

print #mar_total (,52,9) edit 9,999,999

print #grand_total (,62,9) edit 9,999,999

end-procedure ! print_array2

begin-procedure select_data

let order_qty2.category(0)=’$0-$4.99’

50 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 9 Creating Cross-Tabular Reports

let order_qty2.category(1)=’$5.00-$100.00’

let order_qty2.category(2)=’Over $100’

begin-select

order_date

! the price / price category for the order

c.price &price

move &price to #price_num

evaluate #price_num

when < 5.0

let #x = 0

break

when <= 100.0

let #x = 1

break

when-other

let #x = 2

break

end-evaluate

! The quantity for this order

quantity

let #j = to_number(datetostr(&order_date,’MM’)) - 1

if #j < 3

let order_qty2.month_qty(#x,#j) =

order_qty2.month_qty(#x,#j) + &quantity

end-if

! the product for this order

description

if #i = 0 and order_qty.product(#i) = ’’

let order_qty.product(#i) = &description

end-if

if order_qty.product(#i) != &description

let #i = #i + 1

if #i >= {max_products}

display ’Error: There are more than {max_products} products’

stop

end-if

let order_qty.product(#i) = &description

end-if

if #j < 3

let order_qty.month_qty(#i,#j) =

order_qty.month_qty(#i,#j) + &quantity

end-if

from orders a, ordlines b, products c

where a.order_num = b.order_num

and b.product_code = c.product_code

order by description

end-select

end-procedure ! select_data

begin-heading 5

print $current-date (1,1)

Copyright © 1988-2007, Oracle. All rights reserved. 51

Creating Cross-Tabular Reports Chapter 9

page-number (1,64) ’Page ’

print ’Order Quantity by Product and Price Category by Month’ (2,10)

print ’Product / Price Category’ (4,1)

print ’ January’ (,32)

print ’ February’ (,42)

print ’ March’ (,52)

print ’ Total’ (,62)

print ’-’ (5,1,70) Fill

end-heading

The following is the output for program ex8c.sqr.
11-JUN-04 Page 1

Order Quantity by Product and Price Category by Month

Product / Price Category January February March Total

--

Canisters 3 0 0 3

Curtain rods 2 8 18 28

Ginger snaps 1 10 0 11

Hanging plants 1 20 0 21

Hookup wire 16 15 0 31

Hop scotch kits 2 0 0 2

Modeling clay 5 0 0 5

New car 1 9 0 10

Thimble 7 20 0 27

Thingamajigs 17 0 120 137

Widgets 4 0 12 16

Wire rings 1 0 0 1

--

0-4.99 28 45 12 85

5.00-100.00 25 28 138 191

Over 100 7 9 0 16

Totals 60 82 150 292

SQR arrays are also advantageous in programs that produce charts. With the data for the chart already in the
array, presenting this cross-tabular report as a bar chart is easy.

See Chapter 14, “Using Business Charts,” page 71.

52 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 10

Printing Mailing Labels

This chapter provides overviews of mailing label printing and the sample program for printing mailing labels and
discusses how to:

• Define columns and rows.
• Run the print mailing labels program.

Understanding Mailing Label Printing
An SQR select paragraph retrieves the addresses and prints them on the page.

Sometimes you need to print labels in multiple columns. The page then becomes a matrix of rows and columns
of labels. SQR enables you to print in column format with the COLUMNS and NEXT-COLUMN commands
in conjunction with NEXT-LISTING.

Understanding the Sample Program for Printing
Mailing Labels

The following sample program prints mailing labels in a format of 3 columns by 10 rows. It also counts the
number of labels that are printed and prints that number on the last sheet of the report.

Program ex9a.sqr

#define MAX_LABEL_LINES 10

#define LINES_BETWEEN_LABELS 3

begin-setup

declare-layout default

paper-size=(10,11) left-margin=0.33

end-declare

end-setup

begin-program

do mailing_labels

end-program

begin-procedure mailing_labels

let #label_count = 0

let #label_lines = 0

columns 1 29 57 ! enable columns

alter-printer font=5 point-size=10

Copyright © 1988-2007, Oracle. All rights reserved. 53

Printing Mailing Labels Chapter 10

begin-select

name (1,1,30)

addr1 (2,1,30)

city

state

zip

move &zip to $zip XXXXX-XXXX

let $last_line = &city || ’, ’ || &state || ’ ’ || $zip

print $last_line (3,1,30)

next-column at-end=newline

add 1 to #label_count

if #current-column = 1

add 1 to #label_lines

if #label_lines = {MAX_LABEL_LINES}

new-page

let #label_lines = 0

else

next-listing no-advance skiplines={LINES_BETWEEN_LABELS}

end-if

end-if

from customers

end-select

use-column 0 ! disable columns

new-page

print ’Labels printed on ’ (,1)

print $current-date ()

print ’Total labels printed = ’ (+1,1)

print #label_count () edit 9,999,999

end-procedure ! mailing_labels

Defining Columns and Rows
The COLUMNS 1 29 57 command defines the starting position for three columns. The first column starts at
character position 1, the second at character position 29, and the third at character position 57.

The ex9a.sqr program writes the first address into the first column, the second address into the second, and the
third address into the third. The fourth address is written into the second row of the first column, following the
first label. When ten lines of labels are complete, a new page starts. After the last page of labels has been
printed, the program prints a summary page showing the number of labels that have been printed.

Note the technique for composing the last line of the label. The city, state, and zip columns are moved to string
variables. The command LET $last_line = &city || ’, ’ || &state || ’ ’ || $zip
combines the city, state, and zip code, plus appropriate punctuation and spacing, into a string, which it stores in
the $last_line variable. In this way, city, state, and zip code are printed without unnecessary gaps.

The program defines two counters: #label_count and #label_lines. The first counter, #label_count, counts the
total number of labels and prints it on the summary page. The second counter, #label_lines, counts the number
of rows of labels that were printed. When the program has printed the number of lines that are defined by
{MAX_LABEL_LINES}, it starts a new page and resets the #label_lines counter.

54 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 10 Printing Mailing Labels

After each row of labels, the NEXT-LISTING command redefines the print position for the next row of labels
as line 1. NEXT-LISTING skips the specified number of lines (SKIPLINES) from the last line that was printed
(NO-ADVANCE) and sets the new position as line 1.

Note the use of the ALTER-PRINTER command. This command changes the font in which the report
is printed.

The sample program prints the labels in 10-point Times Roman, which is a proportionally spaced font. In
Windows, you can use proportionally spaced fonts with any printer that supports fonts or graphics. On other
platforms, SQR directly supports HP LaserJet printers and PostScript printers.

In the sample program, the DECLARE-LAYOUT command defines a page width of 10 inches. This width
accommodates the printing of the third column, which contains 30 characters and begins at character position
57. SQR assumes a default character grid of 10 characters per inch, which would cause the third column to
print beyond the paper edge if this report used the default font. The 10-point Times Roman that is used here,
however, condenses the text so that it fits on the page. The page width is set at 10 inches to prevent SQR from
treating the third-column print position as an error.

See Chapter 15, “Changing Fonts,” page 77 and Chapter 27, “Printing with SQR,” page 147.

Running the Print Mailing Labels Program
When you print with a proportionally spaced font, you must use a slightly different technique for running the
program and viewing the output. If you are using a platform such as UNIX/Linux, specify the printer type with
the -PRINTER:xx flag. If you are using an HP LaserJet, enter -PRINTER:HP (or -printer:hp). If you are using
a PostScript printer, enter -PRINTER:PS (or -printer:ps) on the command line.

For example:

sqr ex9a username/password -printer:hp

You can also use the -KEEP command-line flag to produce output in the SQR Portable File format (SPF) and
print it by using SQR Print. You still need to use the -PRINTER:xx flag when printing.

See Chapter 27, “Printing with SQR,” page 147.

The report produces the output in three columns corresponding to the dimensions of a sheet of mailing label
stock. In the preceding example, the report prints the labels from left to right, filling each row of labels
before moving down the page.

You can also print the labels from the top down, filling each column before moving to the next column of
labels. The code to do this is shown next. The differences between this code and the previous one are shown
like this. The output is not printed here, but you can run the file and view it by using the same procedure
that you used for the previous example.

Program ex9b.sqr

#define MAX_LABEL_LINES 10

#define LINES_BETWEEN_LABELS 3

begin-setup

declare-layout default

paper-size=(10,11) left-margin=0.33

end-declare

end-setup

begin-program

Copyright © 1988-2007, Oracle. All rights reserved. 55

Printing Mailing Labels Chapter 10

do mailing_labels

end-program

begin-procedure mailing_labels

let #Label_Count = 0

let #Label_Lines = 0

columns 1 29 57 ! enable columns

alter-printer font=5 point-size=10

begin-select

name (0,1,30)

addr1 (+1,1,30)

city

state

zip

move &zip to $zip xxxxx-xxxx

let $last_line = &city || ’, ’ || &state || ’ ’ || $zip

print $last_line (+1,1,30)

add 1 to #label_count

add 1 to #label_lines

if #label_lines = {MAX_LABEL_LINES}

next-column goto-top=1 at-end=newpage

let #label_lines = 0

else

position (+1)

position (+{LINES_BETWEEN_LABELS})

end-if

from customers

end-select

use-column 0 ! disable columns

new-page

print ’Labels printed on ’ (,1)

print $current-date ()

print ’Total labels printed = ’ (+1,1)

print #label_count () edit 9,999,999

end-procedure ! mailing_labels

56 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 11

Creating Form Letters

This chapter provides an overview of the document paragraph and the sample program for form letters.

Understanding the DOCUMENT Paragraph
To create form letters, use a document paragraph. It starts with a BEGIN-DOCUMENT command and ends
with an END-DOCUMENT command. Between these commands, lay out the letter and insert variables where
you want data from the database to be inserted. SQR inserts the value of the variable when the document
prints. To leave blank lines in a letter, you must explicitly mark them with .b (see the sample program).

Document markers provide another way to add data to the letter. They are special variables whose names
begin with the @ sign. They mark a location in the document where you place data from areas external to the
document paragraph. Document markers defined in document paragraphs can be referenced in the POSITION
command outside the document paragraph to establish the next printing position.

The sample program demonstrates the use of variables and document markers. SQR prints the contents of the
variable in the position where it is placed in the document paragraph. For example, in the sample program, the
customer’s name is printed on the first line.

Using a document marker gives you more flexibility in positioning the contents of variables. The sample
program uses a document marker to position the city, state, and zip code because the city name varies in length
and thus affects the position of the state name and zip code.

Understanding the Sample Program for Form Letters
The following simple form letter program, ex10a.sqr, demonstrates the use of document markers:

Program ex10a.sqr

begin-program

do main

end-program

begin-procedure main

begin-select

name

addr1

addr2

city

state

zip

Copyright © 1988-2007, Oracle. All rights reserved. 57

Creating Form Letters Chapter 11

do write_letter

from customers

order by name

end-select

end-procedure ! main

begin-procedure write_letter

begin-document (1,1)

&name

&addr1

&addr2

@city_state_zip

.b

.b

$current-date

Dear Sir or Madam:

.b

Thank you for your recent purchases from ACME Inc. We would like

to tell you about our limited-time offer.

During this month, our entire inventory is marked down by 25%.

Yes, you can buy your favorite merchandise and save too.

To place an order simply dial 800-555-ACME.

Delivery is free too, so don’t wait.

.b

.b

Sincerely,

Clark Axelotle

ACME Inc.

end-document

position () @city_state_zip

print &city ()

print ’, ’ ()

print &state ()

print ’ ’ ()

print &zip () edit xxxxx-xxxx

new-page

end-procedure ! write_letter

First, SQR performs the main procedure and the select paragraph. Next, it performs the write_letter procedure
and the document paragraph. The POSITION command sets the position to the appropriate line, which is
given by the @city_state_zip marker. The program prints the city, then continues printing the other elements to
the current position. The state name and zip code automatically print in the correct positions with appropriate
punctuation.

The following is the output for program ex10a.sqr.
John Conway

2837 East Third Street

Greenwich Village

New York, NY 10002-1001

10-MAY-2004

58 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 11 Creating Form Letters

Dear Sir or Madam:

Thank you for your recent purchases from ACME Inc. We would like to tell you

about our limited-time offer.

During this month, our entire inventory is marked down by 25%. Yes, you can

buy your favorite merchandise and save too. To place an order simply dial

800-555-ACME. Delivery is free too, so don’t wait.

Sincerely,

Clark Axelotle

ACME Inc.

See Chapter 13, “Using Graphics,” page 63.

Copyright © 1988-2007, Oracle. All rights reserved. 59

Creating Form Letters Chapter 11

60 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 12

Exporting Data to Other Applications

This chapter provides an overview of the sample program for exporting data and discusses how to create an export file.

Understanding the Sample Program for Exporting Data
The following sample program creates an export file that you can load into a document such as a spreadsheet
or word processing file. The tabs create columns in your spreadsheet or word processing document that
correspond to the columns in your database table.

Program ex11a.sqr

begin-setup

! No margins, wide enough for the widest record

! and no page breaks

declare-layout default

left-margin=0 top-margin=0

max_columns=160 formfeed=no

end-declare

end-setup

begin-program

do main

end-program

begin-procedure main

encode ’<009>’ into $sep ! Separator character is TAB

let $cust_num = ’Customer Number’

let $name = ’Customer Name’

let $addr1 = ’Address Line 1’

let $addr2 = ’Address Line 2’

let $city = ’City’

let $state = ’State’

let $zip = ’Zip Code’

let $phone = ’Phone Number’

let $tot = ’Total’

string $cust_num $name $addr1 $addr2

$city $state $zip $phone $tot by $sep into $col_hds

print $col_hds (1,1)

new-page

begin-select

cust_num

name

addr1

Copyright © 1988-2007, Oracle. All rights reserved. 61

Exporting Data to Other Applications Chapter 12

addr2

city

state

zip

phone

tot

string &cust_num &name &addr1 &addr2

&city &state &zip &phone &tot by $sep into $db_cols

print $db_cols ()

new-page

from customers

end-select

end-procedure ! main

Creating an Export File
The ENCODE command stores the code for the tab character in the $sep variable. The code <009> is
enclosed within angle brackets to indicate that it is a character that is not displayed. SQR treats it as a character
code and sets the variable accordingly. ENCODE is a useful way to place nonalphabetical and nonnumeric
characters into variables.

The LET command creates variables for the text strings that are used as column headings in the export file. The
STRING command combines these variables in the $col_hds variable, with each heading separated by a tab.

The select paragraph uses the STRING command again, this time to combine the records (named as column
variables) in the $db_cols variable, with each record similarly separated by a tab.

The NEW-PAGE command is used in this example in an unusual way. It causes a new line and carriage
return at the end of each record, with the line number reset to 1. The page is not ejected because of the
FORMFEED=NO argument in the DECLARE-LAYOUT command. Remember that this report is for
exporting, not printing.

You can now load the output file (ex11a.lis) into a spreadsheet or other application.

62 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 13

Using Graphics

This chapter provides an overview of the sample program for simple tabular reports and discusses how to:

• Add graphics.
• Share images among reports.
• Print bar codes.

Understanding the Sample Program for Simple
Tabular Reports

The following sample program produces a simple tabular report, similar to the one in the chapter named
“Selecting Data from the Database”:

Program ex12a.sqr

begin-setup

declare-layout default

end-declare

end-setup

begin-program

do main

end-program

begin-procedure main

begin-select

name (,1,30)

city (,+1,16)

state (,+1,5)

tot (,+1,11) edit 99999999.99

next-listing no-advance need=1

let #grand_total = #grand_total + &tot

from customers

end-select

print ’-’ (,55,11) fill

print ’Grand Total’ (+1,40)

print #grand_total (,55,11) edit 99999999.99

end-procedure ! main

begin-heading 5

print $current-date (1,1) Edit ’DD-MON-YYYY’

page-number (1,60) ’Page ’

print ’Name’ (3,1)

Copyright © 1988-2007, Oracle. All rights reserved. 63

Using Graphics Chapter 13

print ’City’ (,32)

print ’State’ (,49)

print ’Total’ (,61)

print ’-’ (4,1,65) fill

end-heading

The SETUP section contains a DECLARE-LAYOUT command that specifies the default layout without
defining any options. The purpose of specifying the default layout is to use its margin settings, which are
defined as 1/2 inch. Without DECLARE-LAYOUT, the report would have no margins.

Note the PRINT command with the FILL option. This command produces dashed lines, which is a simple
way to draw lines for a report that is printed on a line printer. On a graphical printer, however, you can
draw solid lines.

The following is the output for program ex12a.sqr.
06-JUN-04 Page 1

Name City State Total

Gregory Stonehaven Everretsville OH 39.00

John Conway New York NY 42.00

Eliot Richards Queens NY 30.00

Isaiah J Schwartz and Company Zanesville OH 33.00

Harold Alexander Fink Davenport IN 36.00

Harriet Bailey Mamaroneck NY 21.00

Clair Butterfield Teaneck NJ 24.00

Quentin Fields Cleveland OH 27.00

Jerry’s Junkyard Specialties Frogline NH 12.00

Kate’s Out of Date Dress Shop New York NY 15.00

Sam Johnson Bell Harbor MI 18.00

Joe Smith and Company Big Falls NM 3.00

Corks and Bottles, Inc. New York NY 6.00

Harry’s Landmark Diner Miningville IN 9.00

Grand Total 315.00

See Chapter 4, “Selecting Data from the Database,” page 13 and Chapter 13, “Using Graphics,” Adding
Graphics, page 64.

Adding Graphics
The following sample program includes graphical features: a logo, solid lines, and a change of font in the
heading:

Program ex12b.sqr

begin-setup

declare-layout default

end-declare

end-setup

64 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 13 Using Graphics

begin-program

do main

end-program

begin-procedure main

begin-select

name (,1,30)

city (,+1,16)

state (,+1,5)

tot (,+1,11) edit 99999999.99

next-listing no-advance need=1

let #grand_total = #grand_total + &tot

from customers

end-select

graphic (,55,12) horz-line 20

print ’Grand Total’ (+2,40)

print #grand_total (,55,11) Edit 99999999.99

end-procedure ! main

begin-heading 11

print $current-date (1,1)

page-number (1,60) ’Page ’

alter-printer point-size=14 font=4 ! switch font

print ’Name’ (9,1) bold

print ’City’ (,32) bold

print ’State’ (,49) bold

print ’Total’ (,61) bold

alter-printer point-size=12 font=3 ! restore font

graphic (9,1,66) horz-line 20

print-image (1,23)

type=bmp-file

image-size=(21,5)

source=’acmelogo.bmp’

end-heading

The GRAPHIC command draws solid lines with the HORZ-LINE argument. The line is positioned by using a
normal SQR position specifier. Note that the third number in the position specifier is the length of the line,
which is given in characters. (The actual width of a character cell is determined by the CHAR-WIDTH or
MAX-COLUMNS arguments of DECLARE-LAYOUT.)

The HORZ-LINE argument of the GRAPHIC HORZ-LINE command is the thickness of the line, specified in
decipoints (there are 720 decipoints per inch). For example, the graphic (10,1,66) horz-line 20
command specifies a horizontal line following line 10 in the report, starting with position 1 (the left side of the
report) and stretching for 66 character positions (at 10 characters per inch, this is 6.6 inches). The thickness
of the line is 20 decipoints, which is 1/36 of an inch (about 0.7 mm).

You can also use the GRAPHIC command to draw vertical lines, boxes, and shaded boxes. See the sqrlaser.sqr
program in the SAMPLE (or SAMPLEW) subdirectory, for an example.

The ALTER-PRINTER command in ex12b.sqr changes the font for the heading. When used a second time, it
restores the normal font for the rest of the report. The FONT option selects a font (typeface) that is supported
by the printer. The font is specified by number, but the number is printer-specific. On a PostScript printer, for
example, font 3 is Courier, font 4 is Helvetica, and font 5 is Times Roman.

Copyright © 1988-2007, Oracle. All rights reserved. 65

Using Graphics Chapter 13

The POINT-SIZE option specifies type size in points. You can use a whole number or even a fraction (for
example, POINT-SIZE=10.5). The following command changes the font to 14-point Helvetica:

alter-printer point-size=14 font=4 ! switch font

The PRINT-IMAGE command inserts the logo. PRINT-IMAGE is followed by a print position corresponding
to the top left corner of the image (line 1, column 19 in the sample program). The TYPE option specifies the
image file type. In the example, the image is stored in Microsoft Windows bitmap format (bmp-file). The
size of the image is specified in terms of columns (width) and lines (height). In the example, the image is 30
characters wide (3 inches) and 7 lines high (1-1/6 inches).

In SQR, images are always stored in external files. The format of the image must match that of the printer
that you are using. These formats are:

• Microsoft Windows: bmp file images.
• PostScript printer or view: eps file.
• HP LaserJet:hpgl file images.
• HTML output: GIF or JPEG formats (gif file or jpeg file).

The SOURCE option specifies the file name of the image file. In the example, the file is Acmelogo.bmp.
The file is assumed to reside in the current directory or in the directory in which SQR is installed (you can
place the logo file in either of these two places). The file can reside in any directory, however, as long as you
specify a full path name for the image file.

The output file now contains graphic language commands. SQR can produce output that is suitable for HP
LaserJet printers in a file format that uses the HP PCL language or output that is suitable for PostScript printers
in a file format that uses the PostScript language. SQR can also produce printer-independent output files in a
special format called SQR Portable Format (SPF).

SQR can create a printer-specific output file (an .lis file) or create the output in portable format (SPF). When
you create an .spf file, the name of the image file is copied into it, and the image is processed at print time,
when printer-specific output is generated. When you use .spf files, a change in the contents of the image file
is reflected in the report the next time that you print it or view it. You can create printer-specific output by
using SQR or SQR Execute to directly generate an .lis file or by using SQR Print to generate an .lis file
from an .spf file.

See Chapter 7, “Adding Declarations Using the SETUP Section,” page 35 and Chapter 27, “Printing with
SQR,” page 147.

See Also
Enterprise PeopleTools 8.49 PeopleBook: SQR Language Reference for PeopleSoft

Sharing Images Among Reports
You can place logos and other images in a report by using only the PRINT-IMAGE command. However, the
DECLARE-IMAGE command is useful if you want several programs to share the definition of an image.

The ex12c.sqr program prints a simple form letter. It shows how to print a logo by using the DECLARE-IMAGE
and PRINT-IMAGE commands and how to print a signature by using only PRINT-IMAGE.

Because the image is shared among several reports, the DECLARE-IMAGE command is contained in the
acme.inc file:

66 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 13 Using Graphics

File acme.inc

declare-image acme_logo

type=bmp-file

image-size=(30,7)

source=’acmelogo.bmp’

end-declare

This file declares an image with acme-logo as the name. It specifies the logo that is used in the previous sample
program. The declaration includes the type and source file for the image. When the image is printed, you do
not need to respecify these attributes.

Multiple programs can share the declaration and include the acme.inc file. If you later need to change an
attribute, such as the source, you need to change it in only one place. The image size is specified and provides
the default.

To change the size of an image in a particular report, use the IMAGE-SIZE argument of the PRINT-IMAGE
command. It overrides the image size that is specified in DECLARE-IMAGE.

Program ex12c.sqr

begin-setup

#include ’acme.inc’

end-setup

begin-program

do main

end-program

begin-procedure main

begin-select

name

addr1

addr2

city

state

zip

phone

do write_letter

from customers

order by name

end-select

end-procedure ! main

begin-procedure write_letter

move &city to $csz

concat ’, ’ with $csz

concat &state with $csz

concat ’ ’ with $csz

move &zip to $zip xxxxx-xxxx

concat $zip with $csz

move &phone to $phone_no (xxx)bxxx-xxxx ! Edit phone number.

begin-document (1,1,0)

&name @logo

&addr1

&addr2

$csz

Copyright © 1988-2007, Oracle. All rights reserved. 67

Using Graphics Chapter 13

.b

.b

.b

$current-date

Dear &name

.b

Thank you for your inquiry regarding Encore, Maestro!!, our revolutionary

teaching system for piano and organ. If you’ve always wanted to play an

instrument but felt you could never master one, Encore, Maestro!! is made for

you.

.b

Now anyone who can hum a tune can play one too. Encore, Maestro!! begins

with a step-by-step approach to some of America’s favorite songs. You’ll learn

the correct keyboarding while hearing the sounds you make through the

headphones provided with the Encore, Maestro!! system. From there, you’ll

advance to intricate compositions with dazzling melodic runs. Encore, Maestro!!

can even teach you to improvise your own solos.

.b

Whether you like classical, jazz, pop, or blues, Encore, Maestro!! is the

music teacher for you.

.b

A local representative will be calling you at $phone_no

to set up an in-house demonstration, so get ready to play your favorite tunes!!

.b

Sincerely,

@signature

.b

.b

Clark Axelotle

end-document

position () @logo

print-image acme-logo ()

image-size=(16,4)

position () @signature

print-image ()

type=bmp-file

image-size=(12,3)

source=’clark.bmp’

new-page

end-procedure ! write_letter

The #INCLUDE command, which is performed at compile time, gets text from another file. In this program,
the #INCLUDE ’acme.inc’ command includes the code from the acme.inc file.

The document paragraph begins with a BEGIN-DOCUMENT command and ends with an END-DOCUMENT
command. It uses variables and document markers to print inside the letter. The program uses variables for the
name and address, the date, and the phone number. It uses document markers for the logo and signature.

Document markers are placeholders in the letter. The program uses the @logo and @signature document
markers in a POSITION command before printing each image. The document markers make it unnecessary to
specify the position of these items in the PRINT-IMAGE command. Instead, you print to the current position.

68 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 13 Using Graphics

The date is prepared with the $current-date reserved variable. It is printed directly in the document paragraph
without issuing a PRINT command.

The program uses the CONCAT command to put together the city, state, and zip code. In the document
paragraph, variables retain their predefined sizes. A column variable, for example, remains the width of the
column as defined in the database. You can print the date and phone number directly, however, because they
occur at the end of a line, without any following text.

Printing Bar Codes
SQR supports a wide variety of bar code types, which you can include in an SQR report.

To create a bar code, use the PRINT-BAR-CODE command. Specify the position of the bar code in an
ordinary position qualifier. In separate arguments, specify the bar code type, height, text to be encoded,
caption, and optional check sum. For example:

print-bar-code (1,1)

type=1

height=0.5

text=’01234567890’

caption=’0 12345 67890’

Arguments to PRINT-BAR-CODE may be variables or literals.

See Also
Enterprise PeopleTools 8.49 PeopleBook: SQR Language Reference for PeopleSoft

Copyright © 1988-2007, Oracle. All rights reserved. 69

Using Graphics Chapter 13

70 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 14

Using Business Charts

This chapter provides an overview of business charts and discusses how to:

• Create a chart.
• Define a chart.
• Print a chart.
• Run the program to create a graphical report.
• Pass data to the chart.

Understanding Business Charts
Business charts are useful tools for presenting summary data. SQR provides two commands for creating
charts— DECLARE-CHART and PRINT-CHART—and a varied set of chart types, including line, pie, bar,
stacked bar, 100 percent bar, overlapped bar, floating bar, histogram, area, stacked area, 100 percent area,
xy-scatter plot, and high-low-close.

You can configure many attributes of SQR charts by activating three-dimensional effects or setting titles and
legends. SQR charts are also portable: you can move them from one hardware platform to another.

You can prepare a business chart by using data that is held in an array, just like you would for a cross-tabular
report. If you have already written a cross-tabular report, you need to take just one additional step to create a
chart using the data that is already collected in the array.

See Chapter 9, “Creating Cross-Tabular Reports,” page 43.

Creating a Chart
The following sample program builds on the report that you created in the chapter “Creating Cross-Tabular
Reports” (ex8c.sqr). That sample program combined the two reports in one program. The following sample
program produces two charts corresponding to the two cross-tabs.

Here is the code, with the lines that were changed or added shown like this:

Program ex13a.sqr

#define max-categories 3

#define max-products 100

begin-setup

create-array

Copyright © 1988-2007, Oracle. All rights reserved. 71

Using Business Charts Chapter 14

name=order_qty size={max-products}

field=product:char field=month_qty:number:3

create-array

name=order_qty2 size={max-categories}

field=category:char field=month_qty:number:3

declare-chart orders-stacked-bar

chart-size=(70,30)

title=’Order Quantity’

legend-title=’Month’

type=stacked-bar

end-declare ! orders-stacked-bar

end-setup

begin-program

do select_data

do print_array

print ’-’ (+2,1,70) fill

position (+1)

do print_array2

new-page

let $done = ’YES’ ! Don’t need heading any more

do print_the_charts

end-program

begin-procedure print_array

let #entry_cnt = #i

let #i = 0

while #i <= #entry_cnt

let $product = order_qty.product(#i)

let #jan = order_qty.month_qty(#i,0)

let #feb = order_qty.month_qty(#i,1)

let #mar = order_qty.month_qty(#i,2)

let #prod_tot = #jan + #feb + #mar

print $product (,1,30)

print #jan (,32,9) edit 9,999,999

print #feb (,42,9) edit 9,999,999

print #mar (,52,9) edit 9,999,999

print #prod_tot (,62,9) edit 9,999,999

position (+1)

let #i = #i + 1

end-while

end-procedure ! print_array

begin-procedure print_array2

let #i = 0

while #i < {max_categories}

let $category = order_qty2.category(#i)

let #jan = order_qty2.month_qty(#i,0)

let #feb = order_qty2.month_qty(#i,1)

let #mar = order_qty2.month_qty(#i,2)

let #category_tot = #jan + #feb + #mar

print $category (,1,31)

print #jan (,32,9) edit 9,999,999

72 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 14 Using Business Charts

print #feb (,42,9) edit 9,999,999

print #mar (,52,9) edit 9,999,999

print #category_tot (,62,9) edit 9,999,999

position (+1)

let #jan_total = #jan_total + #jan

let #feb_total = #feb_total + #feb

let #mar_total = #mar_total + #mar

let #i = #i + 1

end-while

let #grand_total = #jan_total + #feb_total + #mar_total

print ’Totals’ (+2,1)

print #jan_total (,32,9) edit 9,999,999

print #feb_total (,42,9) edit 9,999,999

print #mar_total (,52,9) edit 9,999,999

print #grand_total (,62,9) edit 9,999,999

end-procedure ! print_array2

begin-procedure select_data

let order_qty2.category(0)=’$0-$4.99’

let order_qty2.category(1)=’$5.00-$100.00’

let order_qty2.category(2)=’Over $100’

begin-select

order_date

! the price / price category for the order

c.price &price

move &price to #price_num

evaluate #price_num

when < 5.0

let #x = 0

break

when <= 100.0

let #x = 1

break

when-other

let #x = 2

break

end-evaluate

! The quantity for this order

quantity

let #j = to_number(datetostr(&order_date,’MM’)) - 1

if #j < 3

let order_qty2.month_qty(#x,#j) =

order_qty2.month_qty(#x,#j) + &quantity

end-if

! the product for this order

description

if #i = 0 and order_qty.product(#i) = ’’

let order_qty.product(#i) = &description

end-if

if order_qty.product(#i) != &description

let #i = #i + 1

Copyright © 1988-2007, Oracle. All rights reserved. 73

Using Business Charts Chapter 14

if #i >= {max_products}

display ’Error: There are more than {max_products} products’

stop

end-if

let order_qty.product(#i) = &description

end-if

if #j < 3

let order_qty.month_qty(#i,#j) =

order_qty.month_qty(#i,#j) + &quantity

end-if

from orders a, ordlines b, products c

where a.order_num = b.order_num

and b.product_code = c.product_code

order by description

end-select

end-procedure ! select_data

begin-heading 5

if not ($done = ’YES’)

print $current-date (1,1)

page-number (1,64) ’Page ’

print ’Order Quantity by Product and Price Category by Month’ (2,10)

print ’Product / Price Category’ (4,1)

print ’ January’ (,32)

print ’ February’ (,42)

print ’ March’ (,52)

print ’ Total’ (,62)

Print ’-’ (5,1,70) Fill

end-if

end-heading

begin-procedure print_the_charts

print-chart orders-stacked-bar (+2,1)

data-array=order_qty

data-array-row-count=12

data-array-column-count=4

data-array-column-labels=(’Jan’,’Feb’,’Mar’)

sub-title=’By Product By Month’

new-page

print-chart orders-stacked-bar (+2,1)

data-array=order_qty2

data-array-row-count=3

data-array-column-count=4

data-array-column-labels=(’Jan’,’Feb’,’Mar’)

sub-title=’By Price Category By Month’

end-procedure ! print_the_charts

74 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 14 Using Business Charts

Defining a Chart
The two chart sections in the ex13a.sqr program are specified with the DECLARE-CHART command in the
SETUP section and are named orders-stacked-bar. The width and height of the charts are specified in terms of
character cells. The charts that are generated by this program are 70 characters wide, which is 7 inches on
a default layout. The height of the charts is 30 lines, which translates to 5 inches at 6 lines per inch. These
dimensions define a rectangle that contains the chart. The box that surrounds the chart is drawn by default, but
you can disable it by using the qualifier BORDER=NO.

The title is centered at the top of the chart. The text that is generated by LEGEND-TITLE must fit in the small
legend box preceding the categories, so keep this description short. Generally, charts look best when the text
items are short. Here is the DECLARE-CHART command:

declare-chart orders-stacked-bar

chart-size=(70,30)

title=’Order Quantity’

legend-title=’Month’

type=stacked-bar

end-declare ! orders-stacked-bar

The heading is printed on the first page only.

Printing a Chart
The PRINT-CHART commands are based on the orders-stacked-bar chart that was declared in the preceding
section.

print-chart orders-stacked-bar (+2,1)

data-array=order_qty

data-array-row-count=12

data-array-column-count=4

data-array-column-labels=(’Jan’,’Feb’,’Mar’)

sub-title=’By Product By Month’

new-page

print-chart orders-stacked-bar (+2,1)

data-array=order_qty2

data-array-row-count=3

data-array-column-count=4

data-array-column-labels=(’Jan’,’Feb’,’Mar’)

sub-title=’By Price Category By Month’

The data source is specified by using the DATA-ARRAY option. The named array has a structure that is
specified by the TYPE option. For a stacked-bar chart, the first field in the array gives the names of the
categories for the bars. The rest of the fields are series of numbers. In this case, each series corresponds
to a month.

Copyright © 1988-2007, Oracle. All rights reserved. 75

Using Business Charts Chapter 14

The subtitle follows the title and can be used as a second line of the title. A legend labels the series. The
DATA-ARRAY-COLUMN-LABELS argument passes these labels. The DATA-ARRAY-ROW-COUNT
argument is the number of rows (bars) to chart and DATA-ARRAY-COLUMN-COUNT is the number of
fields in the array that the chart uses. The array has four fields: the product (or price category) field and
the series that specifies three months.

Running the Program to Create a Graphical Report
When you create a graphical report, you must use a slightly different technique for running the program
and viewing the output:

• If you are using a platform such as UNIX/Linux, specify the printer type with the -PRINTER:xx flag.

• If you are using an HP LaserJet, enter -PRINTER:HP (or -printer:hp).

• If you are using a PostScript printer, enter -PRINTER:PS (or -printer:ps) on the command line.

For example:

sqr test username/password -printer:hp

You can also use the -KEEP command-line flag to produce output in the SQR Portable File format (SPF) and
print it by using SQR Print. You still must use the -PRINTER:xx flag when printing.

See Chapter 27, “Printing with SQR,” page 147.

Passing Data to the Chart
To pass the data to the chart, use the first field for the descriptions of bars (or lines or areas), and then use one
or more additional fields with series of numbers. This procedure is common to many chart types, including
line, bar, stacked-bar, 100 percent bar, overlapped bar, histogram, area, stacked-area, and 100 percent area.
You can omit the first field and SQR uses cardinal numbers (1, 2, 3, and so on) for the bars. Only text fields are
used for these options.

For pie charts, only one series is allowed. Pie charts are also a special case because you can specify which
segments to explode, or pull away, from the center of the pie. By using a third field in the array, you can have a
series of Y and N values that indicate whether to explode the segment. If Y is the value in the first row of the
array, the pie segment that corresponds to the first row is exploded. With pie charts, you cannot omit the first
field with the descriptions. Pie charts cannot have more than 12 segments.

Pie charts display the numeric value next to each segment. The description is displayed in the legend. In
addition, SQR displays the percentage next to the value. You can disable this feature by using the qualifier
PIE-SEGMENT-PERCENT-DISPLAY=NO.

When data is passed to an xy scatter plot or a floating-bar chart, the series are paired. A pair in a floating-bar
chart represents the base and height of the bars. A pair in an xy-scatter plot represents x and y coordinates. In
an xy-scatter plot, the first field does not have descriptions. In a floating-bar chart, the first field may or may
not have descriptions for the bars. For both types, you can have one or more pairs of series.

76 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 15

Changing Fonts

This chapter discusses how to:

• Set fonts.
• Position text.
• Use the WRAP option.

Setting Fonts
To select a font in SQR for PeopleSoft, use the DECLARE-PRINTER and ALTER-PRINTER commands The
DECLARE-PRINTER command sets the default font for the entire report. The ALTER-PRINTER command
changes the font anywhere in the report and the change remains in effect until the next ALTER-PRINTER.

To set a font for the entire report, use ALTER-PRINTER, which is not printer-specific, at the beginning of the
program. If you are writing a printer-independent report, the attributes that you set with DECLARE-PRINTER
take effect only when you print your report with the printer that you specify with the TYPE argument. To
specify a printer at print time, use the -PRINTER:xx command-line flag.

See Also
Enterprise PeopleTools 8.49 PeopleBook: SQR Language Reference for PeopleSoft, “SQR Command
Reference,” ALTER-PRINTER

Enterprise PeopleTools 8.49 PeopleBook: SQR Language Reference for PeopleSoft, “SQR Command
Reference,” DECLARE-PRINTER

Positioning Text
In SQR for PeopleSoft, you position text according to a grid. That grid is set by default to 10 characters
per inch and 6 lines per inch, but you can give it another definition by altering the CHAR-WIDTH and
LINE-HEIGHT parameters of the DECLARE-LAYOUT command.

Note, however, that character grid and character size function independently of one another. Fonts print in
the size that is set by DECLARE-PRINTER or ALTER-PRINTER, not the size that is defined by the grid.
A character grid is best used for positioning the first character in a string. It can express the width of a
string only in terms of the number of characters that it contains, not in an actual linear measurement, such as
inches or picas.

Copyright © 1988-2007, Oracle. All rights reserved. 77

Changing Fonts Chapter 15

When you use a proportionally spaced font, the number of letters that you print may no longer match the
number of character cells that the text actually fills. For example, in the following sample code, the word
Proportionally fills only 9 cells, although it contains 14 letters.

When you print consecutive text strings, the actual position at the end of a string may differ from the position
that SQR assumes according to the grid. For this reason, concatenate consecutive pieces of text and print
them as one.

For example, don’t write code like this:

alter-printer font=5 ! select a proportional font

print &first_name () ! print first name

print ’ ’ () ! print a space

print &last_name () ! print the last name

alter-printer font=3 ! restore the font

Instead, write code like this:
alter-printer font=5 ! select a proportional font

! concatenate the name

let $full_name = &first_name || ’ ’ || &last_name

print $full_name () ! print the name

alter-printer font=3 ! restore the font

The WRAP and CENTER options of the PRINT command also require special consideration when used with
proportional fonts. They both calculate the text length based on the character count in the grid, which is
not the same as its dimensional width.

Look at the sample program. It contains a list of reminders from the reminders table. It is printed in a mix of
fonts: Times Roman in two different sizes, plus Helvetica bold.

Program ex14a.sqr

begin-setup

declare-layout default

paper-size=(10,11)

end-declare

end-setup

begin-program

do main

end-program

begin-procedure main

! Set Times Roman as the font for the report

alter-printer font=5 point-size=12

begin-select

remind_date (,1,20) edit ’DD-MON-YY’

reminder (,+1) wrap 60 5

position (+2)

from reminders

end-select

end-procedure ! main

begin-heading 7

print $current-date (1,1) Edit ’DD-MON-YYYY’

page-number (1,60) ’Page ’

! Use large font for the title

alter-printer font=5 point-size=24

78 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 15 Changing Fonts

print ’Reminder List’ (3,25)

! Use Helvetica for the column headings

alter-printer font=4 point-size=12

print ’Date’ (6,1) bold

print ’Reminder’ (6,22) bold

graphic (6,1,66) horz-line

! Restore the font

alter-printer font=5 point-size=12

end-heading

The report uses the default layout grid of 10 characters per inch and 6 lines per inch, both for positioning
the text and for setting the length of the solid line.

The font is set at the beginning of the main procedure to font 5, which is Times Roman. The point size is set to
12. In the HEADING section, its size is set to 24 points to print the title.

The column headings are set to 12-point Helvetica with the ALTER-PRINTER FONT=4 POINT-SIZE=12
command. The BOLD option of the PRINT command specifies that they are printed in bold.

A solid line is under the column headings. Note that it is positioned at line 6, the same as the column
headings. SQR draws the solid line as an underline. At the end the HEADING section, the font is restored
to Times Roman.

In an SQR program, the report heading is performed after the body. A font change in the heading does not
affect the font that is used in the body of the current page, although it changes the font that is used in the
body of subsequent pages. Keep track of your font changes and return fonts to their original settings in the
same section in which you change them.

Positioning the title requires careful coding. The CENTER option of the PRINT command does not work
because it does not account for the actual size of the text. Instead, position the title by estimating its length. In
this case, the title should start 2 1/2 inches from the left margin. The character coordinates are (3,25), which
are line 3, character position 25. Remember that the character grid that is used for positioning assumes 10
characters per inch. Therefore, 25 characters is 2 1/2 inches.

Using the WRAP Option
The WRAP option of the PRINT command prints the text of the reminder column. This option wraps text
based on a given width, which is 60 characters in the sample program.

The WRAP option works only on the basis of the width that is given in the character grid. It does not depend
on the font.

Text that is printed in Times Roman takes about 30–50 percent less space than the same text in Courier (the
default font, which is a fixed-size font). This means that a column with a nominal width of 44 characters
(the width of the reminder column) can actually hold as many as 66 letters when it is printed in the Times
Roman font. To be conservative, specify a width of 60.

The other argument of the WRAP option is the maximum number of lines. Because the reminder column in the
database is 240 characters wide, at 60 characters per line, no more than five lines are needed. Remember, this
setting specifies only the maximum number of lines. SQR does not use more lines than necessary.

Copyright © 1988-2007, Oracle. All rights reserved. 79

Changing Fonts Chapter 15

SQR calculates the maximum number of characters on a line by using the page dimensions in the
DECLARE-LAYOUT command (the default is 8 1/2 inches wide). In the sample program, 8 1/2 inches minus
the inch that is used in the margins is 7 1/2 inches, or 75 characters at 10 characters per inch (CPI). Printing 60
characters starting from position 22 could exceed this maximum and cause an error or undesirable output.
To avoid this error, define the page as wider than it actually is. This definition is given by the argument
PAPER-SIZE=(10,11) in the DECLARE-LAYOUT command.

80 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 16

Writing Printer-Independent Reports

This chapter provides an overview of printer-independent reports and discusses the sample program for selecting
the printer type at runtime.

Understanding Printer-Independent Reports
To create a printer-independent report, you must write a program that avoids using any characteristics that
are unique to a specific printer. Although complete printer independence may be too restrictive, make your
report as printer-independent as you can by following these guidelines:

• Your program should be free of the following commands:
- GRAPHIC FONT (use ALTER-PRINTER instead).
- PRINTER-INIT, PRINTER-DEINIT, USE-PRINTER-TYPE (except for using this command to select a
printer at runtime, as demonstrated in the sample program that follows).

- CODE-PRINTER and CODE qualifiers of the PRINT command.
- DECLARE-PRINTER and PRINT-DIRECT.
- The SYMBOL-SET argument of the ALTER-PRINTER command.

• The report should be readable if printed on a line printer. Graphics or solid lines printed with the graphic
command are not printed on a line printer. Test your graphical report on a line printer.

• Use only a small set of fonts. Font numbers 3, 4, and 5 and their boldface versions are the same regardless of
the type of printer that you use (except for a line printer). Font 3 is Courier, font 4 is Helvetica, and font
5 is Times Roman. Note that on some HP printers, Helvetica may not be available. This reduces the
common fonts to fonts 3 and 5 only.

• Be aware of certain limitations. EPS-file images can be printed only on PostScript printers. HPGL-file
images can be printed only on HP LaserJet Series 3 or higher or printers that emulate HP PCL at that
level. BMP-file images can be printed using Microsoft Windows only. GIF-file and JPEG-file images are
suitable only for HTML output. PRINT-IMAGE and PRINT-CHART may not work with old printers that
use PostScript Level 1 or HP LaserJet Series II.

If your report is printer-neutral and does not specify a printer, you can specify the printer at runtime in two ways.

The first method is to use the -PRINTER:xx command-line flag, which specifies the output type for your
report. Use the following commands:

• -PRINTER:LP for line-printer output
• -PRINTER:PS for PostScript output.
• -PRINTER:HP for HP LaserJet output.
• -PRINTER:WP for Windows output.

Copyright © 1988-2007, Oracle. All rights reserved. 81

Writing Printer-Independent Reports Chapter 16

• -PRINTER:HT for HTML output.

If you are using the system shell, enter this command on the command line:

sqr test username/password -printer:ps

Note. Currently, PRINTER:WP sends output to the default Microsoft Windows printer. To specify a
nondefault Windows printer, enter the following command: -PRINTER:WP:{Printer Name}. The
{Printer Name} is the name assigned to your printer. For example, to send output to a Windows printer
named NewPrinter, you would use -PRINTER:WP:NewPrinter. If your printer name has spaces, enclose
the entire command in double quotes.

The second method of specifying the printer type is by using the USE-PRINTER-TYPE command.

See Enterprise PeopleTools 8.49 PeopleBook: SQR Language Reference for PeopleSoft, “SQR Command
Reference,” USE-PRINTER-TYPE.

Reviewing the Sample Program for Selecting the
Printer Type at Runtime

In the following example, the PROGRAM section prompts the user to select the printer type at runtime.
The relevant lines are shown like this:

begin-program

input $p ’Printer type’ ! Prompt user for printer type

let $p = lower($p) ! Convert type to lowercase

evaluate $p ! Case statement

when = ’hp’

when = ’hplaserjet’ ! HP LaserJet

use-printer-type hp

break

when = ’lp’

when = ’lineprinter’ ! Line Printer

use-printer-type lp

break

when = ’ps’

when = ’postscript’ ! PostScript

use-printer-type ps

break

when-other

display ’Invalid printer type.’

stop

end-evaluate

do list_customers

end-program

In this code, the INPUT command prompts the user to enter the printer type. Because the
USE-PRINTER-TYPE command does not accept a variable as an argument, the EVALUATE command is used
to test for the six possible values and set the printer type accordingly.

82 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 16 Writing Printer-Independent Reports

The EVALUATE command is similar to a switch statement in the C language. It compares a variable to
multiple constants and carries out the appropriate code.

Copyright © 1988-2007, Oracle. All rights reserved. 83

Writing Printer-Independent Reports Chapter 16

84 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 17

Using Dynamic SQL and Error Checking

This chapter discusses how to:

• Use variables in SQL.
• Use dynamic SQL.
• Use SQL error checking.
• Use SQL and substitution variables.

Using Variables in SQL
SQL supports the use of variables. A SQL statement containing variables is considered static. When SQR runs
this statement several times, it runs the same statement, even if the values of the variables change. Because
SQL allows variables only in places where literals are allowed (such as in a WHERE clause or INSERT
statement), the database can parse the statement before the values for the variables are given.

The ex16a.sqr sample program selects customers from a state that the user specifies:

Program ex16a.sqr

begin-program

do list_customers_for_state

end-program

begin-procedure list_customers_for_state

input $state maxlen=2 type=char ’Enter state abbreviation’

let $state = upper($state)

begin-select

name (,1)

position (+1)

from customers

where state = $state

end-select

end-procedure ! list_customers_for_state

Note the use of the $state variable in the select paragraph. When you use a variable in a SQL statement in SQR
for PeopleSoft, the SQL statement that is sent to the database contains that variable. SQR binds the variable
before the SQL is run. In many cases, the database needs to parse the SQL statement only once. The only
item that changes between runs of the select paragraph is the value of the variable. This is the most common
example of varying a select paragraph.

In the sample program, the INPUT command prompts the user to enter the value of state. The MAXLEN and
TYPE arguments verify the input, ensuring that the user enters a string of no more than two characters. If
the entry is incorrect, INPUT reprompts.

Copyright © 1988-2007, Oracle. All rights reserved. 85

Using Dynamic SQL and Error Checking Chapter 17

The sample program converts the contents of the $state variable to uppercase, which enables the user to enter
the state without worrying about the case. In the example, state is uppercase in the database. The sample
program shows the LET command that is used with the SQR upper function.

You can let the SQL perform the conversion to uppercase by using where state = upper($state) if
you are using Oracle or Sybase or by using where state = ucase($state) if you are using another
database. However, SQR enables you to write database-independent code by moving the use of such SQL
extensions to the SQR code.

When you run this program, you must specify one of the states that is included in the sample data for the
program to return any records. At the prompt, enter IN, MI, NH, NJ, NM, NY, or OH. If you enter NY (the
state where most of the customers in the sample data reside), SQR generates the following output:

Output for program ex16a.sqr

John Conway

Eliot Richards

Harriet Bailey

Kate’s Out of Date Dress Shop

Corks and Bottles, Inc.

Using Dynamic SQL
You may find it too restrictive that you can use variables only where literals are allowed. In the following
example, the ordering of the records changes based on the user’s selection. The program runs the select
statement twice. The first time, the first column is called name and the second column is called city, and
the program sorts the records by name with a secondary sort by city. The second time, the first column is
the city and the second is name, and the program sorts by city with a secondary sort by name. This is the
first select paragraph:

select name, city

from customers

order by name, city

This is the second select paragraph:
select city, name

from customers

order by city, name

These statements are different. SQR constructs the statement each time before running it. This technique is
called dynamic SQL, and it is illustrated in the following sample program. To take full advantage of the
error-handling procedure, run it with the -CB command-line flag.

Program ex16b.sqr

begin-program

let $col1 = ’name’

let $col2 = ’city’

let #pos = 32

do list_customers_for_state

position (+1)

let $col1 = ’city’

let $col2 = ’name’

let #pos = 18

86 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 17 Using Dynamic SQL and Error Checking

do list_customers_for_state

end-program

begin-procedure give_warning

display ’Database error occurred’

display $sql-error

end-procedure ! give_warning

begin-procedure list_customers_for_state

let $my_order = $col1 || ’,’ || $col2

begin-select on-error=give_warning

[$col1] &column1=char (,1)

[$col2] &column2=char (,#pos)

position (+1)

from customers

order by [$my_order]

end-select

end-procedure ! list_customers_for_state

When you use variables in an SQL statement in SQR to replace literals and more, you make them dynamic
variables by enclosing them in square brackets. For example, when you use the [$my_order] dynamic variable
in the ORDER BY clause of the select paragraph, SQR places the text from the $my_order variable in that
statement. Each time the statement is run, if the text changes, a new statement is compiled and run.

Note. The z/OS operating system does not support square brackets for dynamic variables. Use slashes
(/) instead.

Other dynamic variables are [$col1] and [$col2]. They substitute the names of the columns in the select
paragraph. The &column1 and &column2 variables are column variables.

You can use dynamic variables to produce reports like this one. The data in the first half of the report is
sorted differently from the data in the second half. Also note the give_warning error-handling procedure,
discussed next.

The following is the output for Program ex16b.sqr:
John Conway New York

Clair Butterfield Teaneck

Corks and Bottles, Inc. New York

Eliot Richards Queens

Gregory Stonehaven Everretsville

Harold Alexander Fink Davenport

Harriet Bailey Mamaroneck

Harry’s Landmark Diner Miningville

Isaiah J Schwartz and Company Zanesville

Jerry’s Junkyard Specialties Frogline

Joe Smith and Company Big Falls

Kate’s Out of Date Dress Shop New York

Quentin Fields Cleveland

Sam Johnson Bell Harbor

Bell Harbor Sam Johnson

Big Falls Joe Smith and Company

Cleveland Quentin Fields

Copyright © 1988-2007, Oracle. All rights reserved. 87

Using Dynamic SQL and Error Checking Chapter 17

Davenport Harold Alexander Fink

Everretsville Gregory Stonehaven

Frogline Jerry’s Junkyard Specialties

Mamaroneck Harriet Bailey

Miningville Harry’s Landmark Diner

New York John Conway

New York Corks and Bottles, Inc.

New York Kate’s Out of Date Dress Shop

Queens Eliot Richards

Teaneck Clair Butterfield

Zanesville Isaiah J Schwartz and Company

Using SQL Error Checking
SQR for PeopleSoft checks and reports database errors for SQL statements. When an SQR program is
compiled, SQR checks the syntax of the SELECT, UPDATE, INSERT, and DELETE SQL statements in the
program. Any SQL syntax error is detected and reported at compile time, before the report is run.

When you use dynamic SQL, SQR cannot check the syntax until runtime. In that case, the content of
the dynamic variable is used to construct the SQL statement, which can allow syntax errors to occur in
runtime. Errors could occur if the dynamic variables that are selected or used in a WHERE or ORDER
BY clause are incorrect.

SQR traps any runtime error, reports the error, and ends the program. To change this default behavior, use the
ON-ERROR option of the BEGIN-SELECT or BEGIN-SQL paragraphs.

begin-select on-error=give_warning

[$col1] &column1=char (,1)

[$col2] &column2=char (,#pos)

position (+1)

from customers

order by [$my_order]

end-select

In this sample program, if a database error occurs, SQR invokes a procedure called give_warning instead
of reporting the problem and ending. Write this procedure like this:

begin-procedure give_warning

display ’Database error occurred’

display $sql-error

end-procedure ! give_warning

This procedure displays the error message but does not stop running the program. Instead, the program
continues at the statement immediately following the SQL or SELECT paragraph. Note the use of the
$sql-error variable, which is a special SQR reserved variable. It contains the error message text from the
database and is automatically set by SQR after a database error occurs.

SQR has a number of reserved, or predefined, variables. For example, the $sqr-program variable has the name
of the program that is running. The$username variable has the user name that was used to sign in to the
database. The #page-count variable has the page number for the current page.

88 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 17 Using Dynamic SQL and Error Checking

Using SQL and Substitution Variables
SQR uses the value of a substitution variable to complete the select paragraph at compile time. Because the
select paragraph is complete at compile time, SQR can check its syntax before running the program. From this
point on, the value of {my_order} cannot change and the SQL statement is considered static.

In the following program, the ASK command in the SETUP section prompts the user at compile time. The
value that the user enters is placed in a special kind of variable called a substitution variable. This variable can
be used to substitute any command, argument, or part of a SQL statement at compile time. This example is less
common, but it demonstrates the difference between compile-time and runtime substitutions.

Program ex16c.sqr

begin-setup

ask my_order ’Enter the column name to sort by (name or city)’

end-setup

begin-program

do list_customers_for_state

end-program

begin-procedure give_warning

display ’Database error occurred’

display $sql-error

end-procedure ! give_warning

begin-procedure list_customers_for_state

begin-select on-error=give_warning

name (,1)

city (,32)

position (+1)

from customers

order by {my_order}

end-select

end-procedure ! list_customers_for_state

In this case, the ASK command prompts the user for the value of the {my_order}, substitution variable, which
is used to sort the output. If the argument is passed on the command line, no prompt appears. When you run
this program, enter name, city, or both (in either order and separated by a comma). The program produces a
report that is sorted accordingly.

You can use the ASK command only in the SETUP section. SQR processes ASK commands at compile time
before running the program. Therefore, all ASK commands are run before any INPUT command.

INPUT is more flexible than ASK. You can use INPUT inside loops. You can validate the length and type
of data input and reprompt if it is not valid. The sample program at the beginning of this chapter contains
an example of reprompting .

ASK can be more powerful. Substitution variables that are set in an ASK command enable you to modify
commands that are normally quite restrictive. The following code shows this technique:

begin-setup

ask hlines ’Number of lines for heading’

end-setup

begin-program

print ’Hello, World!!’ (1,1)

end-program

Copyright © 1988-2007, Oracle. All rights reserved. 89

Using Dynamic SQL and Error Checking Chapter 17

begin-heading {hlines}

print ’Report Title’ () center

end-heading

In this example, the {hlines} substitution variable defines the number of lines that the heading will occupy.
The BEGIN-HEADING command normally expects a literal and does not allow a runtime variable. When a
substitution variable is used with this command, its value is modified at compile time.

See Chapter 26, “Compiling Programs and Using SQR Execute,” page 145.

90 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 18

Using Procedures and Local Variables
and Passing Arguments

This chapter discusses how to:

• Use procedures.
• Use local variables.
• Pass arguments.

Using Procedures
The code example in this section shows a procedure that spells out a number. The sample program for printing
checks uses this procedure. When printing checks, you normally need to spell out the dollar amount.

In the spell.inc code example, the assumption is that the checks are preprinted and that the program has to
print only items such as the date, name, and amount.

SQR procedures that contain variables that are visible throughout the program are called global procedures.
These procedures can also directly reference any program variable.

In contrast, procedures that take arguments, such as the spell_number procedure in this section’s
check-printing sample program, are local procedures. In SQR for PeopleSoft, any procedure that takes
arguments is automatically considered local.

Variables that are introduced in a local procedure are readable only inside the spell.inc procedure. This useful
feature avoids name collisions. The spell_number procedure is in an include file because other reports
may also want to use it.

Using Local Variables
When you create library procedures that can be used in many programs, make them local. Then, if a program
has a variable with the same name as a variable that is used in the procedure, a collision will not occur.
SQR treats the two variables as separate.

Declare a procedure as local even if it does not take any arguments. To do this, place the LOCAL keyword
following the procedure name in the BEGIN-PROCEDURE command.

To reference a global variable from a local procedure, insert an underscore between the prefix character (#, $,
or &) and the variable name. Use the same technique to reference reserved variables , such as #current-line.
These variables are always global so that you can reference them from a local procedure.

Copyright © 1988-2007, Oracle. All rights reserved. 91

Using Procedures and Local Variables and Passing Arguments Chapter 18

SQR supports recursive procedure calls, but it maintains only one copy of a local variable. A procedure does
not allocate new instances of the local variables on a stack, as C or Pascal would.

Passing Arguments
Procedure arguments are treated as local variables. Arguments can be either numeric, date, or text variables or
strings. If an argument is preceded with a colon, its value is passed back to the calling procedure.

In the following code example, spell_number takes two arguments. The first argument is the check
amount. This argument is a number, and the program passes it to the procedure. The procedure does not
need to pass it back.

The second argument is the result that the procedure passes back to the calling program. We precede this
variable with a colon, which means that the value of this argument is copied back at the end of the procedure.
The colon is used only when the argument is declared in the BEGIN-PROCEDURE command.

Look at the following sample program. It is not a complete program, but it is the spell_number procedure,
which is stored in the spell.inc file. The check-printing sample program includes this code by using an
#INCLUDE command.

File spell.inc

begin-procedure spell_number(#num,:$str)

let $str = ’’

! break the number to it’s 3-digit parts

let #trillions = floor(#num / 1000000000000)

let #billions = mod(floor(#num / 1000000000),1000)

let #millions = mod(floor(#num / 1000000),1000)

let #thousands = mod(floor(#num / 1000),1000)

let #ones = mod(floor(#num),1000)

! spell each 3-digit part

do spell_3digit(#trillions,’trillion’,$str)

do spell_3digit(#billions,’billion’,$str)

do spell_3digit(#millions,’million’,$str)

do spell_3digit(#thousands,’thousand’,$str)

do spell_3digit(#ones,’’,$str)

end-procedure ! spell_number

begin-procedure spell_3digit(#num,$part_name,:$str)

let #hundreds = floor(#num / 100)

let #rest = mod(#num,100)

if #hundreds

do spell_digit(#hundreds,$str)

concat ’hundred ’ with $str

end-if

if #rest

do spell_2digit(#rest,$str)

end-if

if #hundreds or #rest

if $part_name != ’’

concat $part_name with $str

concat ’ ’ with $str

92 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 18 Using Procedures and Local Variables and Passing Arguments

end-if

end-if

end-procedure ! spell_3digit

begin-procedure spell_2digit(#num,:$str)

let #tens = floor(#num / 10)

let #ones = mod(#num,10)

if #num < 20 and #num > 9

evaluate #num

when = 10

concat ’ten ’ with $str

break

when = 11

concat ’eleven ’ with $str

break

when = 12

concat ’twelve ’ with $str

break

when = 13

concat ’thirteen ’ with $str

break

when = 14

concat ’fourteen ’ with $str

break

when = 15

concat ’fifteen ’ with $str

break

when = 16

concat ’sixteen ’ with $str

break

when = 17

concat ’seventeen ’ with $str

break

when = 18

concat ’eighteen ’ with $str

break

when = 19

concat ’nineteen ’ with $str

break

end-evaluate

else

evaluate #tens

when = 2

concat ’twenty’ with $str

break

when = 3

concat ’thirty’ with $str

break

when = 4

concat ’forty’ with $str

break

Copyright © 1988-2007, Oracle. All rights reserved. 93

Using Procedures and Local Variables and Passing Arguments Chapter 18

when = 5

concat ’fifty’ with $str

break

when = 6

concat ’sixty’ with $str

break

when = 7

concat ’seventy’ with $str

break

when = 8

concat ’eighty’ with $str

break

when = 9

concat ’ninety’ with $str

break

end-evaluate

if #num > 20

if #ones

concat ’-’ with $str

else

concat ’ ’ with $str

end-if

end-if

if #ones

do spell_digit(#ones,$str)

end-if

end-if

end-procedure ! spell_2digit

begin-procedure spell_digit(#num,:$str)

evaluate #num

when = 1

concat ’one ’ with $str

break

when = 2

concat ’two ’ with $str

break

when = 3

concat ’three ’ with $str

break

when = 4

concat ’four ’ with $str

break

when = 5

concat ’five ’ with $str

break

when = 6

concat ’six ’ with $str

break

when = 7

concat ’seven ’ with $str

94 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 18 Using Procedures and Local Variables and Passing Arguments

break

when = 8

concat ’eight ’ with $str

break

when = 9

concat ’nine ’ with $str

break

end-evaluate

end-procedure ! spell_digit

The result argument is reset in the procedure because the program begins with an empty string and keeps
concatenating the parts of the number to it. The program supports numbers up to 999 trillion only.

The number is divided into its three-digit parts: trillions, billions, millions, thousands, and ones. Another
procedure spells out the three-digit numbers such as one hundred twelve. Note that the word and is inserted
only between dollars and cents, but not between three-digit parts. This format is common for check printing
in dollars.

Note the use of math functions, such as floor and mod. SQR for PeopleSoft has a large set of functions that can
be used in expressions. These functions are listed and described under the LET command.

See Enterprise PeopleTools 8.49 PeopleBook: SQR Language Reference for PeopleSoft, “SQR Command
Reference,” LET.

The series of EVALUATE commands in the number-spelling procedures are used to correlate the numbers that
are stored in the variables with the strings that are used to spell them out.

This is the sample program that prints the checks:
Program ex17a.sqr

#include ’spell.inc’

begin-setup

declare-layout default

end-declare

end-setup

begin-program

do main

end-program

begin-procedure main

alter-printer font=5 point-size=15

begin-select

name &name

sum(d.price * c.quantity) * 0.10 &refund

do print_check(&refund)

from customers a, orders b,

ordlines c, products d

where a.cust_num = b.cust_num

and b.order_num = c.order_num

and c.product_code = d.product_code

group by name

having sum(d.price * c.quantity) * 0.10 >= 0.01

end-select

end-procedure ! main

begin-procedure print_check(#amount)

Copyright © 1988-2007, Oracle. All rights reserved. 95

Using Procedures and Local Variables and Passing Arguments Chapter 18

print $_current-date (3,45) edit ’DD-Mon-YYYY’

print &_name (8,12)

move #amount to $display_amt 9,999,990.99

! enclose number with asterisks for security

let $display_amt = ’**’ || ltrim($display_amt,’ ’) || ’**’

print $display_amt (8,58)

if #amount < 1.00

let $spelled_amount = ’Zero dollars ’

else

do spell_number(#amount,$spelled_amount)

let #len = length($spelled_amount)

! Change the first letter to uppercase

let $spelled_amount = upper(substr($spelled_amount,1,1))

|| substr($spelled_amount,2,#len - 1)

concat ’dollars ’ with $spelled_amount

end-if

let #cents = round(mod(#amount,1) * 100, 0)

let $cents_amount = ’and ’ || edit(#cents,’00’) || ’ cents’

concat $cents_amount with $spelled_amount

print $spelled_amount (12,12)

print ’Rebate’ (16,12)

print ’ ’ (20)

next-listing need=20

end-procedure ! print_check

The main procedure starts by setting the font to 15-point Times Roman. The select paragraph is a join of
several tables. (A join is created when you select data from more than one database table in the same select
paragraph.) The customers table has the customer’s name. The program joins it with the orders and ordlines
tables to get the customer’s order details. It also joins with the products table for the price.

The following expression adds up all of the customer’s purchases and calculates a 10 percent rebate:
sum(d.price * c.quantity) * 0.10

The statement groups the records by the customer name, one check per customer. This is done with the
following clause:

group by name

having sum(d.price * c.quantity) * 0.10 >= 0.01

The having clause eliminates checks for less than 1 cent.

The print_check procedure is a local procedure. Note the way that it references the date and customer
name with &_current-date and &_name, respectively.

See Also
Enterprise PeopleTools 8.49 PeopleBook: SQR Language Reference for PeopleSoft

96 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 19

Creating Multiple Reports from One Program

This chapter provides overviews of how to create multiple reports and the sample program for multiple reports and
discusses how to:

• Define heading and footing sections.
• Define program output.

Understanding How to Create Multiple Reports
You can create multiple reports based on common data, selecting the database records only once and creating
different reports simultaneously. The alternative—writing separate programs for the different reports—would
require you to perform a separate database query for each report. Repeated queries are costly because database
operations are often the most resource-consuming or time-consuming part of creating a report. Creating
multiple reports from one program can save a significant amount of processing time.

Understanding the Sample Program for Multiple Reports
The following sample program, ex18a.sqr, shows how SQR for PeopleSoft enables you to write multiple reports
with different layouts and different heading and footing sections. The sample program prints three reports: the
labels from the chapter “Printing Mailing Labels,” the form letter from “Creating Form Letters,”and the listing
report from “Selecting Data from the Database.” All three reports are based on the same data.

Program ex18a.sqr

#define MAX_LABEL_LINES 10

#define LINES_BETWEEN_LABELS 3

begin-setup

declare-layout labels

paper-size=(10,11) left-margin=0.33

end-declare

declare-layout form_letter

end-declare

declare-layout listing

end-declare

declare-report labels

layout=labels

end-declare

declare-report form_letter

layout=form_letter

Copyright © 1988-2007, Oracle. All rights reserved. 97

Creating Multiple Reports from One Program Chapter 19

end-declare

declare-report listing

layout=listing

end-declare

end-setup

begin-program

do main

end-program

begin-procedure main

do init_mailing_labels

begin-select

name

addr1

addr2

city

state

zip

move &zip to $zip xxxxx-xxxx

phone

do print_label

do print_letter

do print_listing

from customers

end-select

do end_mailing_labels

end-procedure ! main

begin-procedure init_mailing_labels

let #label_count = 0

let #label_lines = 0

use-report labels

columns 1 29 57 ! enable columns

alter-printer font=5 point-size=10

end-procedure ! init_mailing_labels

begin-procedure print_label

use-report labels

print &name (1,1,30)

print &addr1 (2,1,30)

let $last_line = &city || ’, ’ || &state || ’ ’ || $zip

print $last_line (3,1,30)

next-column at-end=newline

add 1 to #label_count

if #current-column = 1

add 1 to #label_lines

if #label_lines = {MAX_LABEL_LINES}

new-page

let #label_lines = 0

else

next-listing no-advance skiplines={LINES_BETWEEN_LABELS}

end-if

end-if

98 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 19 Creating Multiple Reports from One Program

end-procedure ! print_label

begin-procedure end_mailing_labels

use-report labels

use-column 0 ! disable columns

new-page

print ’Labels printed on ’ (,1)

print $current-date ()

print ’Total labels printed = ’ (+1,1)

print #label_count () edit 9,999,999

end-procedure ! end_mailing_labels

begin-procedure print_letter

use-report form_letter

begin-document (1,1)

&name

&addr1

&addr2

@city_state_zip

.b

.b

$current-date

Dear Sir or Madam:

.b

Thank you for your recent purchases from ACME Inc. We would

like to tell you about our limited time offer. During this month,

our entire inventory is marked down by 25%. Yes, you can buy your

favorite merchandise and save too.

To place an order simply dial 800-555-ACME.

Delivery is free too, so don’t wait.

.b

.b

Sincerely,

Clark Axelotle

ACME Inc.

end-document

position () @city_state_zip

print &city ()

print ’, ’ ()

print &state ()

print ’ ’ ()

move &zip to $zip xxxxx-xxxx

print $zip ()

new-page

end-procedure ! print_letter

begin-heading 4 for-reports=(listing)

print ’Customer Listing’ (1) center

print ’Name’ (3,1)

print ’City’ (,32)

print ’State’ (,49)

print ’Phone’ (,55)

end-heading

Copyright © 1988-2007, Oracle. All rights reserved. 99

Creating Multiple Reports from One Program Chapter 19

begin-footing 1 for-reports=(listing)

! Print "Page n of m" in the footing

page-number (1,1) ’Page ’

last-page () ’ of ’

end-footing

begin-procedure print_listing

use-report listing

print &name (,1)

print &city (,32)

print &state (,49)

print &phone (,55)

position (+1)

end-procedure ! print_listing

The SETUP section defines three layouts and three different reports that use these layouts. The labels report
requires a layout that is different from the default. The other two reports use a layout that is identical to the
default layout. You can save the last layout declaration and use the form-letter layout for the listing. However,
unless there is a logical reason why the two layouts should be the same, you should keep separate layouts. The
name of the layout indicates which report uses it.

The main procedure performs the Select. It is performed only once and includes all of the columns for all
of the reports. The phone column is used only in the listing report and the addr2 column is used only in the
form-letter report. The other columns are used in more than one report.

For each record that is selected, three procedures are run. Each procedure processes one record for its
corresponding report. The print_label procedure prints one label, print_letter prints one letter, and
print_listing prints one line in the listing report. Each procedure begins by setting the SQR printing context to
its corresponding report. SQR sets the printing context with the USE-REPORT command.

Defining Heading and Footing Sections
SQR enables you to define HEADING and FOOTING sections for each report. This sample program defines
only the heading and footing for the listing report because the other two reports do not use them. The
FOR-REPORTS option of the BEGIN-HEADING and BEGIN-FOOTING commands specifies the report
name . The parentheses are required. The USE-REPORT command is not needed in the heading or footing.
The report is implied by the FOR-REPORTS option.

Defining Program Output
Most of the code for ex18a.sqr is taken from ex9a.sqr, ex10a.sqr, and ex3a.sqr. Because this program creates
output with proportional fonts, you must run it with the -KEEP or -PRINTER:xx command-line flags.

When you run ex18a.sqr, you get three output files that match the output files for ex9a, ex10a, and ex3a,
respectively. These output files have the names ex18a.lis (labels), ex18a.l01 (form letter), and ex18a.l02
(customer listing). If you specify -KEEP, the output files are named ex18a.spf, ex18a.s01, and ex18a.s02,
respectively.

100 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 19 Creating Multiple Reports from One Program

See Also
Chapter 4, “Selecting Data from the Database,” page 13

Chapter 10, “Printing Mailing Labels,” page 53

Chapter 11, “Creating Form Letters,” page 57

Copyright © 1988-2007, Oracle. All rights reserved. 101

Creating Multiple Reports from One Program Chapter 19

102 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 20

Using Additional SQL Statements with SQR

This chapter discusses how to:

• Use SQL statements in SQR.
• Use BEGIN-SQL.

Using SQL Statements in SQR
Although SELECT may be the most common SQL statement, you can also perform other SQL commands in
SQR. Here are a few examples:

• If the program prints important documents such as checks, tickets, or invoices, you may need to update the
database to indicate that the document was printed.
You can do this in SQR with a SQL UPDATE statement.

• You can use SQR to load data into the database.
SQR can read and write external files and construct records. SQR can also insert these records into the
database by using a SQL INSERT statement.

• To hold intermediate results in a temporary database table, you can create two SQL paragraphs in the
SQR program (CREATE TABLE and DROP TABLE) to create this table at the beginning of the program
and drop the table at the end.

These are only a few examples. SQR can perform any SQL statement, and this feature is used often.

Using BEGIN-SQL
A SQL statement other than a select statement must use the BEGIN-SQL paragraph.

The following sample program loads data from an external file into the database. It demonstrates two
important features of SQR: handling external files and performing database inserts. This sample program
loads the tab-delimited file that is created by the program ex11a.sqr:

Program ex19a.sqr

begin-setup

begin-sql on-error=skip ! table may already exist

create table customers_ext (

cust_num int not null,

name varchar (30),

Copyright © 1988-2007, Oracle. All rights reserved. 103

Using Additional SQL Statements with SQR Chapter 20

addr1 varchar (30),

addr2 varchar (30),

city varchar (16),

state varchar (2),

zip varchar (10),

phone varchar (10),

tot int

)

end-sql

end-setupbegin-program

do main

end-programbegin-procedure main#if {sqr-database} = ’Sybase’

begin-sql

begin transaction

end-sql

#endif

encode ’<009>’ into $sep

open ’ex11a.lis’ as 1 for-reading record=160:vary

read 1 into $rec:160 ! skip the first record, column headings

while 1

read 1 into $rec:160

if #end-file

break

end-if

unstring $rec by $sep into $cust_num $name

$addr1 $addr2 $city $state $zip $phone $tot

move $cust_num to #cust_num

move $tot to #tot

begin-sql

insert into customers_ext (cust_num, name,

addr1, addr2, city, state, zip, phone, tot)

values

(#cust_num, $name, $addr1, $addr2, $city,

$state, $zip, $phone, #tot)

end-sql

end-while

#if {sqr-database} = ’Sybase’

begin-sql

commit transaction

end-sql

#else

#if {sqr-database} <> ’Informix’

begin-sql

commit

end-sql

#endif

#endif

close 1

end-procedure ! main

104 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 20 Using Additional SQL Statements with SQR

The sample program begins by creating the customers_ext table. If the table already exists, you receive an
error message. To ignore this error message, use the ON-ERROR=SKIP option.

The program reads the records from the file and inserts each record into the database by using an insert
statement inside a BEGIN-SQL paragraph. The input file format is one record per line, with each field
separated by the separator character. When the end of the file is encountered (if #end-file), the program
branches out of the loop. Note that #end-file is an SQR reserved variable.

The final step is to commit the changes to the database and close the file. You do this with a SQL COMMIT
statement inside a BEGIN-SQL paragraph. Alternatively, you can use the SQR COMMIT command. For
Oracle databases, use the SQR COMMIT command.

The code may be database-specific. If you are using Informix, for example, and your database was created
with transaction logging, you must add a BEGIN WORK and a COMMIT WORK, much like the Sybase
example of BEGIN TRANSACTION and COMMIT TRANSACTION.

See Chapter 17, “Using Dynamic SQL and Error Checking,” page 85.

See Enterprise PeopleTools 8.49 PeopleBook: SQR Language Reference for PeopleSoft.

Copyright © 1988-2007, Oracle. All rights reserved. 105

Using Additional SQL Statements with SQR Chapter 20

106 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 21

Working with Dates

This chapter provides an overview of dates and date arithmetic and discusses how to:

• Use literal date formats.
• Use string-to-date conversions.
• Use date-to-string conversions.
• Use dates with the INPUT command.
• Use date edit masks.
• Declare date variables.

Understanding Dates and Date Arithmetic
SQR has powerful capabilities in date arithmetic, editing, and manipulation. A date can be represented as a
character string or in an internal format by using the SQR date data type.

The date data type enables you to store dates in the range of January 1, 4712 BC to December 31, 9999 AD.
It also stores the time of day with the precision of a microsecond. The internal date representation always
keeps the year as a four-digit value. Keep dates with four-digit year values (instead of truncating to two digits)
to avoid date problems at the turn of the century.

You can obtain date values:

• By selecting a date column from the database.
• By using INPUT to get a date from the user.
• By referencing or printing the $current-date reserved variable.
• By using the SQR date functions dateadd, datediff, datenow, or strtodate.
• By declaring a date variable using the DECLARE-VARIABLE command.

For most applications, you do not need to declare date variables. Date variables are discussed later in
the section.

Many applications require date calculations. You may need to add or subtract a number of days from a given
date, subtract one date from another to find a time difference, or compare dates to determine whether one date
is later, earlier, or the same as another date. SQR enables you to perform these calculations in your program.

Many databases enable you to perform date calculations in SQL, but that can be difficult if you are trying
to write portable code because the syntax varies between databases. Instead, perform those calculations in
SQR—your programs will be portable because they won’t rely on a particular SQL syntax.

Copyright © 1988-2007, Oracle. All rights reserved. 107

Working with Dates Chapter 21

The dateadd function adds or subtracts a number of specified time units from a given date. The datediff
function returns the difference between two specified dates in the time units that you specify—years, quarters,
months, weeks, days, hours, minutes, or seconds. Fractions are allowed—you can add 2.5 days to a given
date. Conversion between time units is also allowed—you can add, subtract, or compare dates by using days
and state the difference by using weeks.

The datenow function returns the current local date and time. In addition, SQR provides a reserved date
variable, $current-date, which is automatically initialized with the local date and time at the beginning of
the program.

You can compare dates by using the usual operators (< , =, or >) in an expression. The datetostr function
converts a date to a string. The strtodate function converts a string to a date.

The following sample program uses functions to add 30 days to the invoice date and compare it to the current
date:

begin-select

order_num (,1)

invoice_date

if dateadd(&invoice_date,’day’,30) < datenow()

print ’Past Due Order’ (,12)

else

print ’Current Order’ (,12)

end-if

position (+1)

end-select

This code example uses the dateadd and datenow functions to compare dates. The dateadd function adds 30
days to the invoice date (&invoice_date). The resulting date is then compared with the current date,
which is returned by datenow. If the invoice is older than 30 days, the program prints the Past Due Order
string. If the invoice is 30 days old or less, the program prints the Current Order string.

To subtract a given number of days from a date, use the dateadd function with a negative argument. This
technique is demonstrated in the next code example. In this example, the IF condition compares the invoice
date with the date of 30 days before today. The condition is equivalent to that of the previous code example.

if &invoice_date < dateadd(datenow(),’day’,-30)

You can also write this condition as follows by using the datediff function. Note that the comparison is now a
simple numeric comparison, not a date comparison:

if datediff(datenow(),&invoice_date,’day’) > 30

All three IF statements are equivalent, and they demonstrate the flexibility that is provided by these functions.

Here is another technique for comparing dates:
begin-select

order_date

if &order_date > strtodate(’3/1/2004’,’dd/mm/yyyy’)

print ’Current Order’ ()

else

print ’Past Due Order’ ()

end-if

from orders

end-select

108 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 21 Working with Dates

The IF statement has a date column on the left side and the strtodate function on the right side. The strtodate
function returns a date type, which is compared with the &order_date column. When the order date is later
than January 3, 2004, the condition is satisfied. If the date includes the time of day, the comparison is satisfied
for orders of January 3, 2004, with a time of day greater than 00:00.

In the next code example, the date is truncated to remove the time-of-day portion of a date:
if strtodate(datetostr(&order_date,’dd/mm/yyyy’),’dd/mm/yyyy’) >

strtodate(’3/1/2004’,’dd/mm/yyyy’)

In this code example, the datetostr function converts the order date to a string that stores the day, month, and
year only. The strtodate function then converts this value back into a date. With these two conversions, the
time-of-day portion of the order date is omitted. Now when it is compared with January 3, 2004, only dates
that are of January 4 or later satisfy the condition.

Using Literal Date Formats
SQR enables you to specify date constants and date values in a special format that is recognized without the
use of an edit mask. This is called the literal date format. For example, you can use a value in this format in
the strtodate function without the use of an edit mask. This format is independent of any specific database
or language preference.

The literal date format is SYYYYMMDD[HH24[MI[SS[NNNNNN]]]]. The first S in this format represents an
optional minus sign. If preceded with a minus sign, the string represents a BC date. The digits that follow
represent year, month, day, hours, minutes, seconds, and microseconds.

Note. The literal date format assumes a 24-hour clock.

You can omit one or more time elements from the right part of the format. A default is assumed for the
missing elements. Here are some code examples:

let $a = strtodate(’20040409’)

let $a = strtodate(’20040409152000’)

The first LET statement assigns the date of April 9, 2004 to the $a variable. The default time portion is 00:00.
The second LET statement assigns 3:20 in the afternoon of April 9, 2004 to $a. The outputs (when printed
with the ‘DD-MON-YYYY HH:MI AM’ edit mask) are, respectively:

09-APR-2004 12:00 AM

09-APR-2004 03:20 PM

You can also specify a date format with the SQR_DB_DATE_FORMAT environment variable. You can
specify this as an environment variable or in the pssqr.ini file.

See Also
Enterprise PeopleTools 8.49 PeopleBook: SQR Language Reference for PeopleSoft, “Using the PSSQR.INI
File and the PSSQR Command Line”

Copyright © 1988-2007, Oracle. All rights reserved. 109

Working with Dates Chapter 21

Using String-to-Date Conversions
If you convert a string variable or constant to a date variable without specifying an edit mask that identifies the
format of the string, SQR applies a date format. This implicit conversion takes place with these commands:

• MOVE.
• The strtodate function.

• The DISPLAY, PRINT, or SHOW commands, when used to output a string variable as a date.

SQR attempts to apply date formats in this order:

1. The format specified in SQR_DB_DATE_FORMAT.
2. The database-dependent format.
3. The SYYYYMMDD[HH24[MI[SS[NNNNNN]]]] literal date format.

Using Date-to-String Conversions
If you convert a date variable to a string without specifying an edit mask, SQR applies a date format. The
conversion takes place with these commands:

• MOVE.
• The datetostr function.

• The DISPLAY, PRINT, or SHOW commands, when used to output a date variable.

SQR attempts to apply date formats in this order:

1. The format specified in SQR_DB_DATE_FORMAT.
2. The database-dependent format.

See Also
Enterprise PeopleTools 8.49 PeopleBook: SQR Language Reference for PeopleSoft

Using Dates with the INPUT Command
The INPUT command also supports dates. You can load a date into a date or string variable. For string
variables, use the TYPE=DATE qualifier. Specify a format for the date. Here is a code example:

input $start_date ’Enter starting date’ type=date format=’dd/mm/yyyy’

In this example, the user is prompted with Enter starting date: (the colon is automatically added). The user
then enters the value, which is validated as a date by using the dd/mm/yyyy format. The value is loaded
into the $start_date variable.

110 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 21 Working with Dates

Using Date Edit Masks
When you print dates, you can format them with an edit mask. For example:

print &order_date () edit ’Month dd, YYYY’

This command prints the order date in the specified format. The name of the order date month is printed,
followed by the day of the month, a comma, and four-digit year. SQR for PeopleSoft provides an extensive
set of date edit masks.

See Enterprise PeopleTools 8.49 PeopleBook: SQR Language Reference for PeopleSoft, “SQR Command
Reference,” PRINT.

If the value of the date value being edited is March 14, 2004 at 9:35 in the morning, the edit masks produce
the following results:

Edit Mask Result Notes

dd/mm/yyyy 14/03/2004 n/a

DD-MON-YYYY 14-MAR-2004 n/a

’Month dd, YYYY.’ March 14, 2004. An edit mask containing blank space
must be enclosed in single quotes.

MONTH-YYYY MARCH-2004 The name of the month in uppercase,
followed by the 4-digit year.

HH:MI 09:35 n/a

’HH:MI AM’ 09:35 AM Meridian indicators. An edit mask
containing blank space must be
enclosed in single quotes.

YYYYMMDD 20040314 n/a

DD.MM.YY 14.03.99 n/a

Mon Mar The abbreviated name of the month.

Day Thursday The day of the week.

DY THU An abbreviation for the day of the
week.

Q 1 Quarter.

Copyright © 1988-2007, Oracle. All rights reserved. 111

Working with Dates Chapter 21

Edit Mask Result Notes

WW 11 The week of the year.

W 2 The week of the month.

DDD 74 The day of the year.

DD 14 The day of the month (1–31).

D 3 The day of the week (Sunday is 1).

EY Please see below The Japanese imperial era (Meiji,
Taisho, Showa, Heisei).

ER 16 The year in Japanese imperial era.

The result for EY is:

Japanese Imperial Era

Note. The MON, MONTH, DAY, DY, AM, PM, BC, AD, ER, EY, and RM masks are case-sensitive and
follow the case of the mask that is entered. For example, if the month is January, the Mon mask yields Jan and
MON yields JAN. All other masks are case-insensitive and can be entered in either uppercase or lowercase.

If the edit mask contains other text, it is also printed. For example:
print &order_date () edit ’As of Month dd, YYYY’

This command prints the As of March 14, 2004 string if the order date is March 14, 2004. Because the words
As of are not recognized as date mask elements, they are printed.

A backslash forces the character that follows into the output. This technique is useful to print text that would
otherwise be recognized as a date mask element. For example, a mask of The \mo\nth is Month results in The
month is March as an output string. Without the backslashes, the output string would be The march is March.
The second backslash is needed because n is a valid date edit mask element.

In some cases, combining date edit mask elements can result in ambiguity. One example is the ’DDDD’
mask, which could be interpreted as various combinations of DDD (day of year), DD (day of month), and
D (day of week). To resolve such ambiguity, use a vertical bar as a delimiter between format elements. For
example, DDD followed by D can be written as DDD|D.

In addition, national language support is provided for the following masks: MON, MONTH, DAY, DY,
AM, PM, BC, and AD.

See Also
Enterprise PeopleTools 8.49 PeopleBook: SQR Language Reference for PeopleSoft

112 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 21 Working with Dates

Declaring Date Variables
To hold date values in your program, use date variables. Like string variables, date variables are prefixed with
a dollar sign ($). You must explicitly declare date variables by using the DECLARE-VARIABLE command.

Date variables are useful for holding results of date calculations. For example:

begin-setup

declare-variable

date $c

end-declare

end-setup

...

let $c = strtodate(’March 1, 2004 12:00’,’Month dd, yyyy hh:mi’)

print $c () edit ’dd/mm/yyyy’

In this code example, $c is declared as a date variable. Later, it is assigned the value of noon on March 1, 2004.
The $c variable is then printed with the dd/mm/yyyy edit mask, which yields 01/03/2004.

Date variables can be initialized with date literals as shown in this example:
begin-setup

declare-variable

date $c

end-declare

end-setup

...

let $c = ’20040409152000’

The LET statement assigns 3:20 in the afternoon of April 9, 2004 to $c.

Copyright © 1988-2007, Oracle. All rights reserved. 113

Working with Dates Chapter 21

114 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 22

Using National Language Support

This chapter provides an overview of locales and discusses how to:

• Select locales.
• Define a default locale.
• Switch locales.
• Modify locale preferences.
• Specify NUMBER, MONEY, and DATE keywords.

Understanding Locales
National Language Support (NLS) is provided through the concept of locales. A locale is a set of local
preferences for language, currency, and the presentation of dates and numbers. For example, one locale may
use English, dollar currency, dates in dd/mm/yy format, numbers with commas separating the thousands, and a
period for the decimal place.

A locale contains:

• Default edit masks for number, money, and date.
Use these edit masks to specify the NUMBER, MONEY (for currency), and DATE keywords, respectively.
You can specify these keywords in the INPUT, MOVE, DISPLAY, SHOW, and PRINT commands.

• Settings for currency symbol, thousands separator, decimal separator, date separator, and time separator.
• Settings for not applicable (NA), a.m., p.m., BC, and AD in the language of the locale.
• Settings for names of the days of the week and names of the months in the language of the locale.
• Settings for how to process lowercase and uppercase editing of day and month names.

Selecting Locales
SQR provides predefined locales such as US-English, UK-English, German, French, and Spanish. You
can define additional locales by editing any .ini file.

With the ALTER-LOCALE command, you can select a locale at the beginning of the program or anywhere
else. Different parts of the program can use different locales.

Select a locale with a command such as this:

Copyright © 1988-2007, Oracle. All rights reserved. 115

Using National Language Support Chapter 22

alter-locale locale = ’German’

Defining a Default Locale
You can define a default locale in any .ini file. Most or all of your programs can use the same locale, and
specifying the default locale makes it unnecessary to specify the locale in every program.

When you install SQR, the default locale is set to the reserved locale called System . System is not an actual
locale. It defines the behavior of older versions of SQR, before NLS was added. The preferences in the system
locale are hard-coded in the product and cannot be set or defined in the pssqr.ini; however, you can alter system
settings at runtime by using ALTER-LOCALE. The date preferences depend on the database that you are using.
Therefore, date format preferences in the system locale are different for every database that you use with SQR.

Note. If you are running SQR outside of the PeopleSoft Process Scheduler, the PS_HOME environment
variable must be set to a proper PeopleSoft installation.

Different sites can have different locales as the default. For example, an office in Paris might use the French
locale, and an office in London might use the UK-English locale. To adapt a program to any location, use the
default locale. The program automatically uses the local preferences, which are specified in the pssqr.ini file of
the machine on which it is run. For example, you can print the number 5120 by using the following command:

print #invoice_total () edit ’9,999,999.99’

The setting of the default locale in the pssqr.ini file controls the format. In London, the result might be
5,120.00, and in Paris it might be 5.120,00. The delimiters for thousands and the decimal—the comma and the
period—are switched automatically according to the preferences of the locale.

Note. Changing the settings of the default locale can change the behavior of existing programs. For example,
if you change the default locale to French, programs that used to print dates in English may now print them in
French. Be sure that you review and test existing programs when making a change to the default locale.

Switching Locales
You can switch from one locale to another any number of times while the program is running. This technique
is useful for writing reports that use multiple currencies, or reports that have different sections for different
locales.

To switch to another locale, use the ALTER-LOCALE command. For example, to switch to the Spanish locale:

alter-locale locale = ’Spanish’

From this point in the program, the locale is Spanish.

Consider this code example:
begin-procedure print_data_in_spanish

! Save the current locale

let $old_locale = $sqr-locale

! Change the locale to "Spanish"

alter-locale locale = ’Spanish’

! Print the data

do print_data

116 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 22 Using National Language Support

! restore the locale to the previous setting

alter-locale locale = $old_locale

end-procedure

In this code example, the locale is switched to Spanish and later restored to the previous locale before it
was switched. To do that, the locale setting before it is changed is read in the$sqr-locale reserved variable
and stored in $old_locale. The value of $old_locale is then used in the ALTER-LOCALE command at the
end of the procedure.

Modifying Locale Preferences
With the ALTER-LOCALE command, you can modify any individual preference in a locale. The
ALTER-LOCALE command affects only the current program. It does not modify the pssqr.ini file.

Here is a code example of how you can modify default preferences in a locale:

alter-locale

date-edit-mask = ’Mon-DD-YYYY’

money-edit-mask = ’$$,$$$,$$9.99’

To restore modified locale preferences to their defaults, reselect the modified locale. For example, suppose that
the locale was US-English and the date and money edit masks were modified by using the preceding code. The
following code resets the changed date and money edit masks:

alter-locale locale = ’US-English’

Specifying NUMBER, MONEY, and DATE Keywords
The DISPLAY, MOVE, PRINT, and SHOW commands enable you to specify the NUMBER, MONEY, and
DATE keywords in place of an explicit number or date edit mask. These keywords can be useful in two cases.

The first case is when you want to write programs that automatically adapt to the default locale. By using
the NUMBER, MONEY, and DATE keywords, you instruct SQR to take these edit masks from the default
locale settings.

The second case is when you want to specify number, money, and date formats once at the top of the program
and use these formats throughout the report. In this case, you define these formats with an ALTER-LOCALE
command at the top of the program. When you use the NUMBER, MONEY, and DATE keywords
later in the program, they format number, money, and date outputs with the masks that you defined in the
ALTER-LOCALE command.

Whether you set the locale in the pssqr.ini file or in the program, these keywords have the same effect. In
the following code example, these keywords are used with the PRINT command to produce output for the
US-English and French locales:

let #num_var = 123456

let #money_var = 123456

let $date_var = strtodate(’20040520152000’)

! set locale to US-English

alter-locale locale = ’US-English’

Copyright © 1988-2007, Oracle. All rights reserved. 117

Using National Language Support Chapter 22

print ’US-English locale’ (1,1)

print ’With NUMBER keyword ’ (+1,1)

print #num_var (,22) NUMBER

print ’With MONEY keyword ’ (+1,1)

print #money_var (,22) MONEY

print ’With DATE keyword ’ (+1,1)

print $date_var (,22) DATE! set locale to French

ALTER-LOCALE locale = ’French’

print ’French locale’ (+2,1)

print ’With NUMBER keyword ’ (+1,1)

print #num_var (,22) NUMBER

print ’With MONEY keyword ’ (+1,1)

print #money_var (,22) MONEY

print ’With DATE keyword ’ (+1,1)

print $date_var (,22) DATE

Here is the program output:
US-English locale

With NUMBER keyword 123,456.00

With MONEY keyword $ 123,456.00

With DATE keyword May 20, 2004

French locale

With NUMBER keyword 123.456,00

With MONEY keyword 123.456,00 F

With DATE keyword 20 Mai 2004

See Also
Enterprise PeopleTools 8.49 PeopleBook: SQR Language Reference for PeopleSoft

118 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 23

Using Interoperability Features

Applications can run SQR programs by using the SQR application program interface (API). An SQR program can also
call an external application’s API.

This chapter discusses how to:

• Call SQR from another application.
• Invoke an SQR program by using the SQR API.
• Invoke an external application API by using the ufunc.c interface.
• Add a user function.
• Use UFUNC in Microsoft Windows.
• Implement new user functions in Microsoft Windows.

Calling SQR from Another Application
To invoke an SQR program from another application, use:

• The SQR command line
The application initiates a process for running SQR. The SQR command includes all of the necessary
parameters.

• The SQR API
The application makes a call to the SQR API. This method is covered in the next section.

See Chapter 28, “Using the SQR Command Line,” page 151.

Invoking an SQR Program by Using the SQR API
The SQR API is provided in Microsoft Windows through a Dynamic Link Library (dll). You can use the SQR
API from any application that is capable of calling dll functions. For C and C++ applications, a header
file (sqrapi.h) and an import library (sqrwin.lib) are provided. SQR requires the following .dll files to run
for Microsoft Windows: sqrw.dll, bclw32.dll, libsti32.dll, and stimages.dll . These dll files are located in the
BINW directory.

Copyright © 1988-2007, Oracle. All rights reserved. 119

Using Interoperability Features Chapter 23

On platforms other than Windows, the SQR API is provided as a static library (sqr.a or sqr.lib) . For C and
C++ applications, a header file (SQRAPI.H or sqrapi.h) is provided. Be sure to include the SQR API library
and your database library when you link your C or C++ application. Two additional libraries are required:
bcl.a and libsti.a.

The following table describes the API functions that are defined for calling SQR:

Function Description

int sqr(char *) Runs an SQR program. Passes the address of a null
terminated string containing an SQR command line,
including program name, connectivity information, flags,
and arguments. This is a synchronous call. It returns
when the SQR program has finished. This function
returns zero if it is successful.

void sqrcancel(void) Cancels a running SQR program. The program may not
stop immediately because SQR waits for any currently
pending database operations to finishe.

Because the SQR function does not return until the
SQR program has finished, sqrcancel is called by using
another thread or some similar asynchronous method.

int sqrend(void) Releases memory and closes cursors. Cursors can be
left open to speed up repeated running of the same SQR
program. Call this function after the last program has run
or optionally between SQR program runs.

This function always returns zero.

For the benefit of C and C++ programmers, the APIs are declared in the sqrapi.h file. Include this header
file in your source code:

#include ’sqrapi.h’

When you call SQR from a program, the most recently run SQR program is saved in memory. If the same SQR
program is run again with either the same or different arguments, the program is not scanned again and the
SQL statements are not parsed again. This feature provides a significant improvement in processing time.

To force SQR to release its memory and database cursors, call sqrend() at any time.

Although memory is automatically released when the program exits, you must call sqrend before the calling
program quits to ensure that SQR properly cleans up any database resources such as database cursors and
temporary stored procedures.

To relink SQR on all UNIX/Linux platforms, use the sqrmake and makefile files that are located in
$SQRDIR/../lib. After you invoke sqrmake and optionally select the specific database version to link with, the
SQR executables are re-created.

Check which cc command line gets created and invoked for SQR, and adapt it to your program. Each
UNIX/Linux platform and database has its own requirements. Consult your operating system and database
product documentation for specific information.

You may see the following output when you relink with Sybase CT-LIB under Sun/Solaris:

120 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 23 Using Interoperability Features

cc -o {user program} {user objects} {user libraries} \

$SQRDIR/../lib/sqr.a $SQRDIR/../lib/bcl.a \

$SQRDIR/../lib/pdf.a $SQRDIR/../lib/libsti.a \

-L$ (SYBASE) /lib -Bstatic -lct -lcs -ltcl -lcomm \

-lintl -Bdynamic -lm -lnsl -ldl

Check the make files or link scripts that are supplied with SQR for details. You may want to copy and modify
those to link in your program.

To call SQR, call sqr() and pass a command line. For example, in C:
status = sqr("myprog sammy/baker arg1 arg2 arg3");

if (status != 0)

...error occurred...

The following table describes error values that are returned by SQR, both standalone and callable:

Error Value Reason

0 Normal exit

1 Error exit

2 Cannot process SQRERR.DAT

3 Command-line flag in error

4 Problem creating the .SQT file

5 Program did not compile

6 Problem with the .SQR/.SQT file (open/read)

7 Problem with the .LIS file (create/write)

8 Problem with the .ERR file (create/write)

9 Problem with the .LOG file (create/write)

10 Problem with the POSTSCRI.STR file (open/read)

11 Cannot call SQR recursively

12 Problem with Windows

Copyright © 1988-2007, Oracle. All rights reserved. 121

Using Interoperability Features Chapter 23

Error Value Reason

13 Internal error occurred

14 Problem with SQRWIN.DLL

15 Problem with -ZCF file

The error codes 9 and 12 are applicable to the Microsoft Windows release only.

For more information about linking with SQR, see your installation guide.

See PeopleTools 8.49 Installation Guide for your database platform.

Invoking an External Application API by Using
the UFUNC.C Interface

The SQR language can be extended by adding user functions that are written in standard languages, such as C.
This feature enables you to integrate your own code and third-party libraries into SQR. For example, suppose
that you had a library for communication over a serial line, with functions for initiating the connection and
sending and receiving data. SQR enables you to call these functions from SQR programs.

To extend SQR in this way, you must prepare the functions, specify them to SQR, and then link the objects
(and libraries) with the SQR objects and libraries to form a new SQR executable. The new SQR executable
then recognizes the new functions as if they were standard SQR functions.

One example of such an extension would be an initcap function. Oracle users are familiar with this function.
The initcap function changes the first letter of every word to uppercase and changes the rest of the letters to
lowercase. The result value in the following code example would be Mr. Joseph Jefferson:

let $a = initcap(’MR. JOSEPH JEFFERSON’)

Adding a User Function
This section provides an overview of the ufunc.c file and discusses how to:

• Add a function prototype.

• Add an entry to the USERFUNCS table.

• Add an implementation code.

• Relink SQR.

Understanding the UFUNC.C File
The code examples in the following sections demonstrate how to extend SQR with an initcap function.

122 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 23 Using Interoperability Features

The key to this process is an SQR source file called ufunc.c. This file contains the list of user-defined
functions. It also contains comments with a description of the process of adding a function to SQR. Ufunc.c is
in the lib subdirectory (LIBW in Microsoft Windows).

To add initcap to SQR, you must add it to a global array called userfuncs in ufunc.c.

Adding a Function Prototype
Begin by adding a function prototype to the function declaration list:

static void max CC_ARGS((int, double *[], double *));

static void split CC_ARGS((int, char *[], double *));

static void printarray CC_ARGS((int, char*[], double *));

static void initcap CC_ARGS((int, char *[], char *, int));

The preceding code segment is taken from the file ufunc.c. The first three lines are part of the original ufunc.c.
The line that adds the initcap function is shown like this. The modified version of ufunc.c is in the LIBW
(Microsoft Windows) or LIB (UNIX) directory under <PS_HOME>\bin\sqr\<database_platform>.

This code defines a prototype for a C function called initcap. The prototype is required by the C compiler. The
name of the C function does not have to be the same as the name of the SQR function. The SQR name for
the function is defined in the next step.

The CC_ARGS macro makes the code portable between compilers that expect full prototyping and compilers
where the argument prototype is omitted. You could also write:

static void initcap();

Note also that the STATIC keyword means that the code for initcap will be added in the file ufunc.c. If you
have the code in a separate file, remove the STATIC keyword.

The first argument of the C function is the argument count of the corresponding SQR function. In the case of
initcap, this argument count should be 1 because initcap takes exactly one argument.

The second argument of the C function is an array of pointers. This array is the argument list. In this case,
because initcap takes only one argument, only the first pointer is actually used.

The third argument of the C function is a pointer to the result buffer. Because initcap returns a string, it is
defined as char*.

The last argument sets the maximum length of the result string. The length of this string is the size of the result
buffer, which you must not overflow. You cannot return a value that is longer than the maximum length. The
maximum length is typically around 2000 bytes, depending on the platform.

Adding an Entry to the USERFUNCS Table
The next step is to define the initcap function to SQR. As stated before, this table exists in the ufunc.c file.
Here is the modified code:

} userfuncs[] =

{

/* (2) Define functions in userfuncs table:

Number of

Name Return_type Arguments Arg_Types Function

---- ----------- --------- --------- -------- */

"max", ’n’, 0, "n", PVR max,

"split", ’n’, 0, "C", PVR split,

Copyright © 1988-2007, Oracle. All rights reserved. 123

Using Interoperability Features Chapter 23

"printarray", ’n’, 4, "cnnc", PVR printarray,

"initcap", ’c’, 1, "c", PVR initcap,

/* Last entry must be NULL do not change */

"", ’\0’, 0, "", 0

};

The userfuncs table is an array of structures. The added line is shown like this, and it initializes one structure
in the array. The line contains five arguments, which correspond to the five fields of the structure.

The first argument is the name of the SQR function that is being added. This is the name that you will use
in the LET, IF, and WHILE commands. The second argument is the return type, which ’c’ (enclosed in
single quotation marks) indicates is a character string. The third argument is the number of arguments that
initcap will take. Set it to 1.

The fourth argument is a string representing the types of the arguments. Because initcap has only one
argument, the string contains one character enclosed in double quotation marks, "c". This character indicates
that the argument for initcap is a string. The last argument is a pointer to a C function that implements the SQR
function that you are adding. This argument is the initcap function for which we have provided a prototype in
the previous step. Note that the PVR macro that provides proper cast for the pointer.

Adding an Implementation Code
The next step is to add the implementation code for initcap. You can insert it into the file ufunc.c.

Note. To put the code in a separate file, you must remove the STATIC keyword from the prototype. You may
also need to include standard C header files, such as CTYPE.H.

Here is the code that is inserted at the end of ufunc.c:

static void initcap CC_ARGL((argc,argv,result,maxlen))

CC_ARG(int, argc) /* Number of actual arguments */

CC_ARG(char*, argv[]) /* Pointers to arguments: */

CC_ARG(char*, result) /* Where to store result */

CC_LARG(int, maxlen) /* Result’s maximum length */

{

int flag = 1;

char *ptr;

char *p;

ptr = argv[0];

p = result;

while (*ptr) {

if (ptr - argv[0] >= maxlen) break; /* don’t exceed maxlen */

if (isalnum(*ptr)) {

if (flag) *p = islower(*ptr)?toupper(*ptr):*ptr;

else *p = isupper(*ptr)?tolower(*ptr):*ptr;

flag = 0;

} else {

flag = 1;

*p = *ptr;

}

p++; ptr++;

}

124 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 23 Using Interoperability Features

*p = ’\0’;

return;

}

Note the use of the CC_ARGL, CC_ARG, and CC_LARG macros. You can also write the code as follows
(only the first five lines are shown):

static void initcap(argc,argv,result,maxlen)

int argc; /* Number of actual arguments */

char* argv[]; /* Pointers to arguments: */

char* result; /* Where to store result */

int maxlen; /* Result’s maximum length */

Relinking SQR
After you have modified ufunc.c, you must relink SQR. Use the make file that is provided in the LIB (or
LIBW) subdirectory of SQR. This step is very specific to the operating system and database. SQR is linked
with the database libraries, whose names and locations may vary. You may have to modify the make file
for your system.

See PeopleTools 8.49 Installation Guide for your database platform.

After SQR is relinked, you are ready to test. Try the following program:

begin-program

let $a = initcap(’MR. JOSEPH JEFFERSON’)

print $a ()

end-program

The result in the output file should be:
Mr. Joseph Jefferson

See the ufunc.c file for further information about argument types in user-defined functions.

Using UFUNC in Microsoft Windows
In Microsoft Windows, ufunc resides in sqrext.dll. You can rebuild sqrext.dll by using any language or tool,
as long as the appropriate calling protocol is maintained. The source code for sqrext.dll is included in the
shipped package (extufunc.c).

When sqrw.dll and sqrwt.dll are loaded, they look for sqrext.dll in the same directory and for any .dlls that are
specified in the SQR Extension section in pssqr.ini. If sqrw.dll and sqrwt.dll find sqrext.dll and the .dlls that
are specified in the pssqr.ini file, they make the following calls in all of the .dlls, passing the instance handle
(of the calling module) and three function pointers:

void InitSQRExtension (

HINSTANCE hInstance,

FARPROC lpfnUFuncRegister,

FARPROC lpfnConsole,

FARPROC lpfnError

);

Copyright © 1988-2007, Oracle. All rights reserved. 125

Using Interoperability Features Chapter 23

Implementing New User Functions in Microsoft Windows
You can implement new user functions in sqrext.dll or any other extension .dll. All of the extension .dlls must
have the InitSQRExtension() function exported. If you implement user functions in sqrext.dll, you should
rebuild the .dll by using the supplied make file, sqrext.mak. If new extension .dlls containing new user
functions are to be used, they must be listed in the SQR Extension section in pssqr.ini in the system directory.

For any ufunc, you must register it by making the following call in InitSQRExtension():

lpfnUFuncRegister(struct ufnns* ufunc);

The function pointer, lpfnUFuncRegister, is passed in from the calling module. Refer to extufunc.c for the
definition of struct ufnns and the sample user functions.

126 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 24

Testing and Debugging

This chapter discusses how to:

• Use the test feature.
• Use the #DEBUG command.
• Use compiler directives for debugging.
• Avoid common programming errors.

Using the Test Feature
When developing an SQR program, you frequently test it by running it and examining its output. Often, you
are interested only in the first few pages of the report.

To speed up the cycle of running and viewing a few pages, use the -T command-line flag. The -T flag enables
reports to finish more quickly because all BEGIN-SELECT ORDER BY clauses are ignored. The database
does not sort the data, and the first set of records are selected sooner. Enter the appropriate number of test pages
following the -T flag. For example, -T6 causes the program to stop after six pages of output have been created.

Note. If the program contains break logic, the breaks can occur in unexpected locations because the ORDER
BY clause is ignored.

To test a report file called customer.sqr, enter the following command:

sqr customer username/password -T3

The -T3 flag specifies that the program stops running after three pages have been produced.

When the test finishes successfully, check it by displaying the output file on the screen or by printing it. The
default name of the output file is the same as the program file with the .LIS extension. For example, if the
report is named customer.sqr, the output file is named customer.lis.

When you finish developing the program, run it without the -T flag. The program processes all ORDER BY
clauses and runs to completion. If the program creates more than one report, the -T flag restriction applies
only to the first report.

Using the #DEBUG Command
When debugging a program, you should:

Copyright © 1988-2007, Oracle. All rights reserved. 127

Testing and Debugging Chapter 24

• Display data or show when a procedure or query runs by using temporary SHOW or DISPLAY commands
in key places in the program.

• Isolate problem areas by temporarily skipping the parts of the program that work correctly.
• Temporarily cause additional behavior in questionable areas of the program.
For example, display or modify variables that you suspect are causing a problem.

SQR provides the #DEBUG command to help you make temporary changes to the code. Use the #DEBUG
command to conditionally process portions of the program.

Precede the command with #DEBUG, as shown in the following example:

#debug display $s

When the #DEBUG precedes a command, that command is processed only if the -DEBUG flag is specified on
the SQR command line. In this example, the value of $s is displayed only when you run the program with
-DEBUG.

You can obtain multiple debug commands by using up to 10 letters or digits to differentiate between them.
Indicate which command is to be debugged on the -DEBUG flag, as shown in the following example:

sqr myreport username/password -DEBUGabc

In this example, commands that are preceded by #DEBUG, #DEBUGa, #DEBUGb, or #DEBUGc are
compiled when the program is run. Commands that are preceded with #DEBUGd are not compiled because d
was not specified in the -DEBUG command-line flag.

Using Compiler Directives for Debugging
You can conditionally compile entire sections of a program by using the five compiler directives:

• #IF
• #ELSE
• #END-IF or #ENDIF
• #IFDEF
• #IFNDEF

Use the value of a substitution variable, declared by a #DEFINE command, to activate or deactivate a set
of statements, as shown in the following example:

#define DEBUG_SESSION Y

#if DEBUG_SESSION = ’Y’

begin-procedure dump_array

let #i = 0

while #i < #counter

! Get data from the array

get $state $city $name $phone from customer_array(#i)

print $state (,1)

print $city (,7)

print $name (,24)

print $phone (,55)

128 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 24 Testing and Debugging

position (+1)

add 1 to #i

end-while

end-procedure ! dump_array

#end-if

The dump_array procedure is used only for debugging. Because DEBUG_SESSION is defined as Y, the
dump_array procedure is included in the program. Later, you can change DEBUG_SESSION to N and
exclude the dump_array procedure from the program.

Avoiding Common Programming Errors
The most common programming error when using SQR is misspelling variable names. Because SQR does
not require variables to be declared, it does not issue an error message when variable names are misspelled.
Instead, SQR considers the misspelled variable as if it is another variable.

For example:

let #customer_access_code = 55

print #customer_acess_code ()

This example does not print 55 because the variable name is misspelled. One c in access in the PRINT
command is missing.

A related problem involves global versus local variables. If you refer to a global variable in a local procedure
without preceding it with an underscore, SQR does not issue an error message. Instead, it is taken as a
new local variable name. For example:

begin-procedure main

let $area = ’North’

do proc

end-procedure ! main

begin-procedure proc local

print $area () ! Should be $_area

end-procedure

In this example, the proc local procedure prints the value of the local $area variable and not the global
$area variable. It prints nothing because the local $area variable did not receive a value. To refer to the
global variable, use $_area.

Such small errors are difficult to detect because SQR considers #customer_acess_code as just another
variable with a value of zero.

Copyright © 1988-2007, Oracle. All rights reserved. 129

Testing and Debugging Chapter 24

130 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 25

Increasing Performance and Tuning

This chapter provides an overview of SQR performance and SQL statements and discusses how to:

• Simplify a complex select paragraph.
• Use LOAD-LOOKUP to simplify joins.
• Improve SQL performance with dynamic SQL.
• Examine SQL cursor status.
• Avoid temporary database tables.
• Create multiple reports in one pass.
• Tune SQR numerics.
• Compile SQR programs and use SQR Execute.
• Set processing limits.
• Buffer fetched rows.
• Run programs on the database server.

Understanding SQR Performance and SQL Statements
Whenever a program contains a BEGIN-SELECT, BEGIN-SQL, or EXECUTE command, it performs a SQL
statement. Processing SQL statements typically consumes significant computing resources. Tuning SQL
statements typically yields higher performance gains than tuning any other part of the program.

General tuning of SQL is outside the scope of this book. Tuning SQL is often specific to the type of database
that you are using—tuning SQL statements for an Oracle database may be different from tuning SQL
statements for DB2. This chapter focuses on SQR tools for simplifying SQL statements and reducing the
number of times SQL is run.

Simplifying a Complex Select Paragraph
With relational database design, information is often normalized by storing data entities in separate tables. To
display the normalized information, you must write a select paragraph that joins these tables together. With
many database systems, performance suffers when you join more than three or four tables in one select
paragraph.

Copyright © 1988-2007, Oracle. All rights reserved. 131

Increasing Performance and Tuning Chapter 25

With SQR, you can perform multiple select paragraphs and nest them. In this way, you can break a large
join into several simpler selects. For example, you can break a select paragraph that joins the orders and
the products tables into two selects. The first select retrieves the orders that you want. For each order that
is retrieved, a second select retrieves the products that were ordered. The second select is correlated to the
first select by having a condition such as:

where order_num = &order_num

This condition specifies that the second select retrieves only products for the current order.

Similarly, if the report is based on products that were ordered, you can make the first select retrieve the
products and make the second select retrieve the orders for each product.

This method improves performance in many cases, but not all. To achieve the best performance, you may
need to experiment with the different alternatives.

You can use master and detail reports to perform multiple select paragraphs and nest them.

See Chapter 17, “Using Dynamic SQL and Error Checking,” page 85.

Using LOAD-LOOKUP to Simplify Joins
Database tables often contain key columns, such as a product code or customer number. To retrieve a certain
piece of information, you join two or more tables that contain the same column. For example, to obtain a
product description, you can join the orderlines table with the products table by using the product_code
column as the key.

With LOAD-LOOKUP, you can reduce the number of tables that are joined in one select. Use this command
with LOOKUP commands.

The LOAD-LOOKUP command defines an array containing a set of keys and values and loads it into memory.
The LOOKUP command looks up a key in the array and returns the associated value. In some programs, this
technique performs better than a conventional table join.

You can use LOAD-LOOKUP in the SETUP section or in a procedure. If used in the SETUP section, it is
processed only once. If used in a procedure, it is processed each time that it is encountered.

LOAD-LOOKUP retrieves two fields from the database: the KEY field and the RETURN_VALUE field.
Rows are ordered by KEY and stored in an array. The KEY field must be unique and contain no null values.

When the LOOKUP command is used, the array is searched (by using a binary search) to find the
RETURN_VALUE field corresponding to the KEY that is referenced in the lookup.

The following code example illustrates LOAD-LOOKUP and LOOKUP:

begin-setup

load-lookup

name=prods

table=products

key=product_code

return_value=description

end-setup

...

begin-select

132 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 25 Increasing Performance and Tuning

order_num (+1,1)

product_code

lookup prods &product_code $desc

print $desc (,15)

from orderlines

end-select

In this code example, the LOAD-LOOKUP command loads an array with the product_code and description
columns from the products table. The lookup array is named prods. The product_code column is the key and
the description column is the return value. In the select paragraph, a LOOKUP on the prods array retrieves the
description for each product_code. This technique eliminates the need to join the products table in the select.

If the orderlines and products tables were joined in the select (without LOAD-LOOKUP), the code would
look like this:

begin-select

order_num (+1,1)

ordlines.product_code

description (,15)

from ordlines, products

where ordlines.product_code = products.product_code

end-select

Whether a database join or LOAD-LOOKUP is faster depends on the program. LOAD-LOOKUP improves
performance when:

• It is used with multiple select paragraphs.

• It keeps the number of tables being joined from exceeding three or four.

• The number of entries in the LOAD-LOOKUP table is small compared with the number of rows in the
select, and they are used often.

• Most entries in the LOAD-LOOKUP table are used.

Note. You can concatenate columns if you want RETURN_VALUE to return more than one column. The
concatenation symbol is database specific.

Improving SQL Performance with Dynamic SQL
You can use dynamic SQL in some situations to simplify a SQL statement and gain performance:

begin-select

order_num

from orders, customers

where order.customer_num = customers.customer_num

and ($state = ’CA’ and order_date > $start_date

or $state != ’CA’ and ship_date > $start_date)

end-select

In this example, a given value of $state, order_date, or ship_date is compared with
$start_date.The OR operator in the condition makes such multiple comparisons possible. With most
databases, an OR operator slows processing. It can cause the database to perform more work than necessary.

However, the same work can be done with a simpler select. For example, if $state is ‘CA,’ the following
select works:

Copyright © 1988-2007, Oracle. All rights reserved. 133

Increasing Performance and Tuning Chapter 25

begin-select

order_num

from orders, customers

where order.customer_num = customers.customer_num

and order_date > $start_date

end-select

Dynamic SQL enables you to check the value of $state and create the simpler condition:
if $state = ’CA’

let $datecol = ’order_date’

else

let $datecol = ’ship_date’

end-if

begin-select

order_num

from orders, customers

where order.customer_num = customers.customer_num

and [$datecol] > $start_date

end-select

The [$datecol] substitution variable substitutes the name of the column to be compared with $start_date.
The select is simpler and no longer uses an OR operator. In most cases, this use of dynamic SQL improves
performance.

See Chapter 17, “Using Dynamic SQL and Error Checking,” page 85.

Examining SQL Cursor Status
Because SQR programs select and manipulate data from a SQL database, you should understand how SQR
processes SQL statements and queries.

SQR programs can perform multiple SQL statements. Moreover, they can run the same SQL statement
multiple times.

When a program runs, a pool of SQL statement handles, called cursors, is maintained. A cursor is a storage
location for one SQL statement—for example, SELECT, INSERT, or UPDATE. Every SQL statement uses a
cursor for processing. A cursor holds the context for the execution of a SQL statement.

The cursor pool contains 30 cursors, and you cannot change its size. When a SQL statement is rerun, its cursor
can be immediately reused if it is still in the cursor pool. When an SQR program runs more than 30 different
SQL statements, cursors in the pool are reassigned.

To examine how cursors are managed, use the -S command-line flag. This flag displays cursor status
information at the end of a run.

The following information appears for each cursor:

Cursor #nn:

SQL = <SQL statement>

Compiles = nn

Executes = nn

Rows = nn

134 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 25 Increasing Performance and Tuning

The listing also includes the number of compiles, which vary according to the database and the complexity of
the query. With Oracle, for example, a simple query is compiled only once. With Sybase, a SQL statement is
compiled before it is first run and recompiled for the purpose of validation during the SQR compile phase.
Therefore, you may see two compiles for a SQL statement. Later, when the SQL is rerun, if its cursor is found
in the cursor pool, it can proceed without recompiling.

Avoiding Temporary Database Tables
This section provides an overview of temporary database tables and discusses how to:

• Use and sort arrays.

• Use and sort flat files.

Understanding Temporary Database Tables
Programs often use temporary database tables to hold intermediate results. Creating, updating, and deleting
temporary tables is a resource-consuming task, however, and can slow the program’s performance. SQR
provides two alternatives to using temporary database tables:

• Store intermediate results in an SQR array.
• Store intermediate results in a local flat file.

Both techniques can yield a significant performance gain. Use the SQR language to manipulate the data
that is stored in an array or a flat file.

Using and Sorting Arrays
An SQR array can hold as many records as can fit in memory. During the first pass, when records are retrieved
from the database, you can store them in the array. Subsequent passes on the data can be made without
additional database access.

The following code example retrieves records, prints them, and saves them into an array named customer_array:

create-array name=customer_array size=1000

field=state:char field=city:char

field=name:char field=phone:char

let #counter = 0

begin-select

state (,1)

city (,7)

name (,24)

phone (,55)

position (+1)

put &state &city &name &phone into customer_array(#counter)

add 1 to #counter

from customers

end-select

Copyright © 1988-2007, Oracle. All rights reserved. 135

Increasing Performance and Tuning Chapter 25

The customer_array array has four fields that correspond to the four columns that are selected from the
customers table, and it can hold up to 1,000 rows. If the customers table had more than 1,000 rows, you would
need to create a larger array.

The select paragraph prints the data. The PUT command then stores the data in the array. You could use the
LET command to assign values to array fields; however, the PUT command performs the same work, with
fewer lines of code. With PUT, you can assign all four fields in one command.

The #counter variable serves as the array subscript. It starts with zero and maintains the subscript of the next
available entry. At the end of the select paragraph, the value of #counter is the number of records in the array.

The next code example retrieves the data from customer_array and prints it:
let #i = 0

while #i < #counter

get $state $city $name $phone from customer_array(#i)

print $state (,1)

print $city (,7)

print $name (,24)

print $phone (,55)

position (+1)

add 1 to #i

end-while

In this code example, #i goes from 0 to #counter– 1. The fields from each record are moved into the
corresponding variables: $name, $city, $state, and $phone. These values are then printed.

Sorting Arrays
In many cases, intermediate results must be sorted by a different field. The following sample program indicates
how to sort customer_array by name. The sample program uses a well-known sorting algorithm called
QuickSort. You can copy this code into your program, make appropriate changes, and use it to sort your array:

Program ex24a.sqr

#define MAX_ROWS 1000

begin-setup

create-array name=customer_array size={MAX_ROWS}

field=state:char field=city:char

field=name:char field=phone:char

!

! Create a helper array that is used in the sort

!

create-array name=QSort size={MAX_ROWS}

field=n:number field=j:number

end-setup

begin-program

do main

end-program

begin-procedure main

let #counter = 0

!

! Print customers sorted by state

!

begin-select

136 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 25 Increasing Performance and Tuning

state (,1)

city (,7)

name (,24)

phone (,55)

position (+1)

! Put data in the array

put &state &city &name &phone into customer_array(#counter)

add 1 to #counter

from customers

order by state

end-select

position (+2)

!

! Sort customer_array by name

!

let #last_row = #counter - 1

do QuickSort(0, 0, #last_row)

!

! Print customers (which are now sorted by name)

!

let #i = 0

while #i < #counter

! Get data from the array

get $state $city $name $phone from customer_array(#i)

print $state (,1)

print $city (,7)

print $name (,24)

print $phone (,55)

position (+1)

add 1 to #i

end-while

end-procedure ! main

!

! QuickSort

!

! Purpose: Sort customer_array by name.

! This is a recursive function. Since SQR does not allocate

! local variables on a stack (they are all static), this

! procedure uses a helper array.

!

! #level - Recursion level (used as a subscript to the helper

! array)

! #m - The "m" argument of the classical QuickSort

! #n - The "n" argument of the classical QuickSort

!

begin-procedure QuickSort(#level, #m, #n)

if #m < #n

let #i = #m

let #j = #n + 1

! Sort key is "name"

Copyright © 1988-2007, Oracle. All rights reserved. 137

Increasing Performance and Tuning Chapter 25

let $key = customer_array.name(#m)

while 1

add 1 to #i

while #i <= #j and customer_array.name(#i) < $key

add 1 to #i

end-while

subtract 1 from #j

while #j >= 0 and customer_array.name(#j) > $key

subtract 1 from #j

end-while

if #i < #j

do QSortSwap(#i, #j)

else

break

end-if

end-while

do QSortSwap(#m, #j)

add 1 to #level

! Save #j and #n

let QSort.j(#level - 1) = #j

let QSort.n(#level - 1) = #n

subtract 1 from #j

do QuickSort(#level, #m, #j)

! restore #j and #n

let #j = QSort.j(#level - 1)

let #n = QSort.n(#level - 1)

add 1 to #j

do QuickSort(#level, #j, #n)

subtract 1 from #level

end-if

end-procedure ! QuickSort

!

!

! QSortSwap

!

! Purpose: Swaps records #i and #j of customer_array

!

! #i - Array subscript

! #j - Array subscript

!

begin-procedure QSortSwap(#i, #j)

get $state $city $name $phone from customer_array(#i)

let customer_array.state(#i) = customer_array.state(#j)

let customer_array.city(#i) = customer_array.city(#j)

let customer_array.name(#i) = customer_array.name(#j)

let customer_array.phone(#i) = customer_array.phone(#j)

put $state $city $name $phone into customer_array(#j)

end-procedure ! QSortSwap

138 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 25 Increasing Performance and Tuning

The QuickSort algorithm uses a recursive procedure, which means that it calls itself. SQR maintains only
one copy of the procedure’s local variables. In QuickSort, the #j and #n variables are overwritten when
QuickSort calls itself.

For the algorithm to work properly, the program must save the values of these two variables before making
the recursive call, and then restore those values when the call finishes. QuickSort can call itself recursively
many times, so the program may need to save many copies of #j and #n. To have the program do this, add a
#level variable that maintains the depth of recursion. In this example, a helper array, Qsort, is used to hold
multiple values of #j and #n.

The QuickSort procedure takes three arguments. The first is the recursion level (or depth), which is #level,
as previously described. The second and third arguments are the beginning and end of the range of rows to
be sorted. Each time QuickSort calls itself, the range gets smaller. The main procedure starts QuickSort
by calling it with the full range of rows.

The QSortSwap procedure swaps two rows in customer_array. Typically, rows with a lower key value are
moved up.

The QuickSort and QSortSwap procedures in ex24a.sqr refer to customer_array and its fields. If you plan to
use these procedures to sort an array in your applications, you must change these references to the applicable
array and fields. The QuickSort procedure sorts in ascending order.

SQR and Language Sensitive Sorting
SQR does not natively support National Language Sensitive sorting. SQR compares characters based on
Unicode codepoint, and sorting based on Unicode codepoint does not correctly sort order language-sensitive
data.

See Enterprise PeopleTools 8.49 PeopleBook: Global Technology, “Sorting in PeopleTools”.

The QuickSort procedure does not support National Language Sensitive character string sort. The
comparisons are simple string comparisons based on Unicode codepoint used internally in SQR to represent
string data. For instance, the following code lines from the preceding code sample would sort data in Unicode
codepoint order. Unicode codepoints are not ordered to make a correct sorting order of any language.

while #i <= #j and customer_array.name(#i) < $key

and

while #j >= 0 and customer_array.name(#j) > $key

If you want to sort string data in SQR, you may need to write a National Language Sensitive character string
comparison and add that to SQR. The QuickSort procedure will then be modified in the following way:

while #i <= #j and NLS_STRING_COMPARE(customer_array.name(#i),$key)

while #j >= 0 and NLS_STRING_COMPARE($key,customer_array.name(#j))

Using and Sorting Flat Files
An alternative to an array is a flat file. You can use a flat file when the required array size exceeds the
available memory.

The code example in the previous section can be rewritten to use a file instead of an array. The advantage of
using a file is that the program is not constrained by the amount of memory that is available. The disadvantage
of using a file is that the program performs more input and output (I/O). However, it may still be faster than
performing another SQL statement to retrieve the same data.

This program uses the UNIX/Linux sort utility to sort the file by name. This example can be extended to
include other operating systems.

Copyright © 1988-2007, Oracle. All rights reserved. 139

Increasing Performance and Tuning Chapter 25

The following code example is rewritten to use the cust.dat file instead of the array:

Program ex24b.sqr

begin-program

do main

end-program

begin-procedure main

!

! Open cust.dat

!

open ’cust.dat’ as 1 for-writing record=80:vary

begin-select

state (,1)

city (,7)

name (,24)

phone (,55)

position (+1)

! Put data in the file

write 1 from &name:30 &state:2 &city:16 &phone:10

from customers

order by state

end-select

position (+2)

!

! Close cust.dat

close 1

! Sort cust.dat by name

!

call system using ’sort cust.dat > cust2.dat’ #status

if #status <> 0

display ’Error in sort’

stop

end-if

!

! Print customers (which are now sorted by name)

!

open ’cust2.dat’ as 1 for-reading record=80:vary

while 1 ! loop until break

! Get data from the file

read 1 into $name:30 $state:2 $city:16 $phone:10

if #end-file

break ! End of file reached

end-if

print $state (,1)

print $city (,7)

print $name (,24)

print $phone (,55)

position (+1)

end-while

!

140 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 25 Increasing Performance and Tuning

! close cust2.dat

close 1

end-procedure ! main

The program starts by opening a cust.dat file:
open ’cust.dat’ as 1 for-writing record=80:vary

The OPEN command opens the file for writing and assigns it file number 1. You can open as many as 12
files in one SQR program. The file is set to support records of varying lengths with a maximum of 80 bytes
(characters). For this example, you can also use fixed-length records.

As the program selects records from the database and prints them, it writes them to cust.dat:
write 1 from &name:30 &state:2 &city:16 &phone:10

The WRITE command writes the four columns into file number 1, the currently open cust.dat. It writes the
name first, which simplifies sorting the file by name. The program writes fixed-length fields. For example,
&name:30 specifies that the name column uses exactly 30 characters. If the actual name is shorter, it is
padded with blanks. When the program has finished writing data to the file, it closes the file by using the
CLOSE command.

The file is sorted with the UNIX sort utility:
call system using ’sort cust.dat > cust2.dat’ #status

The sort cust.dat > cust2.dat command is sent to the UNIX system. It invokes the UNIX sort
command to sort cust.dat and direct the output to cust2.dat. The completion status is saved in #status; a
status of 0 indicates success. Because name is at the beginning of each record, the file is sorted by name.

Next,open cust2.dat for reading. The following command reads one record from the file and places the
first 30 characters in $name:

read 1 into $name:30 $state:2 $city:16 $phone:10

The next two characters are placed in $state, and so on. When the end of the file is encountered, the
#end-file reserved variable is automatically set to 1 (true). The program checks for #end-file and breaks out of
the loop when the end of the file is reached. Finally, the program closes the file by using the CLOSE command.

Creating Multiple Reports in One Pass
Sometimes you must create multiple reports that are based on the same data. In many cases, these reports
are similar, with only a difference in layout or summary. Typically, you can create multiple programs and
even reuse code. However, if each program is run separately, the database has to repeat the query. Such
repeated processing is often unnecessary.

With SQR, one program can create multiple reports simultaneously. In this method, a single program creates
multiple reports, making just one pass on the data and reducing the amount of database processing.

See Chapter 19, “Creating Multiple Reports from One Program,” page 97.

Tuning SQR Numerics
SQR for PeopleSoft provides three types of numeric values:

Copyright © 1988-2007, Oracle. All rights reserved. 141

Increasing Performance and Tuning Chapter 25

• Machine floating point numbers
• Decimal numbers
• Integers

Machine floating point numbers are the default. They use the floating point arithmetic that is provided by the
hardware. This method is very fast. It uses binary floating point and normally holds up to 15 digits of precision.

Some accuracy can be lost when you are converting decimal fractions to binary floating point numbers. To
overcome this loss of accuracy, you can sometimes use the ROUND option of commands such as ADD,
SUBTRACT, MULTIPLY, and DIVIDE. You can also use the round function of LET or numeric edit masks
that round the results to the needed precision.

Decimal numbers provide exact math and precision of up to 38 digits. Math is performed in the software. This
is the most accurate method, but also the slowest.

You can use integers for numbers that are known to be integers. Using integers is beneficial because they:

• Enforce the integer type by not allowing fractions.
• Adhere to integer rules when dividing numbers.

Integer math is also the fastest method, typically faster than floating point numbers.

If you use the DECLARE-VARIABLE command, the -DNT command-line flag, or the DEFAULT-NUMERIC
entry in the Default-Settings section of the PSSQR.INI file, you can select the type of numbers that SQR uses.
Moreover, you can select the type for individual variables in the program with the DECLARE-VARIABLE
command. When you select decimal numbers, you can also specify the needed precision.

Selecting the numeric type for variables enables you to fine-tune the precision of numbers in your program.
For most applications, however, this type of tuning does not yield a significant performance improvement,
so it’s best to select decimal. The default is machine floating point to provide compatibility with older
releases of the product.

Compiling SQR Programs and Using SQR Execute
Compiling an SQR program can improve its performance. The compiled program is stored in a runtime (.SQT)
file. You can then run it with SQR Execute. Your program runs faster because it bypasses the compile phase.

See Chapter 26, “Compiling Programs and Using SQR Execute,” page 145.

Setting Processing Limits
Use a startup file and the Processing-Limits section of pssqr.ini to define the sizes and limitations of some
of the internal structures that SQR uses. An -M command-line flag can specify a startup file whose entries
override those in pssqr.ini. If you use the -Mb command-line flag, then corresponding sections of the file are
not processed. Many of these settings have a direct affect on memory requirements.

142 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 25 Increasing Performance and Tuning

Tuning of memory requirements used to be a factor with older, 16-bit operating systems, such as Windows
3.1. Today, most operating systems use virtual memory, and tuning memory requirements normally do not
affect performance in any significant way. The only case in which you might need to be concerned with
processing limit settings is with large SQR programs that exceed default processing limit settings. In such
cases you must increase the corresponding settings.

Buffering Fetched Rows
When you run a BEGIN-SELECT command, SQR fetches records from the database server. For better
performance, SQR fetches them in groups rather than one at a time—by default in groups of 10 records. SQR
buffers the records, and a program processes these records one at a time. SQR therefore performs a database
fetch operation after every 10 records, instead of after every single record—a substantial performance gain. If
the database server is on another computer, network traffic is also significantly reduced.

Modify the number of records to fetch together by using the -B command-line flag or, for an individual
BEGIN-SELECT command, by using its -B option. In both cases, specify the number of records to be fetched
together. For example -B100 specifies that records be fetched in groups of 100. This means that the number of
database fetch operations is further reduced.

This feature is currently available with SQR for Oracle or Sybase databases and SQR for ODBC.

Running Programs on the Database Server
To reduce network traffic and improve performance, run SQR programs directly on the database server
machine. The SQR server is available on many server platforms including Microsoft Windows and
UNIX/Linux.

Copyright © 1988-2007, Oracle. All rights reserved. 143

Increasing Performance and Tuning Chapter 25

144 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 26

Compiling Programs and Using SQR Execute

This chapter provides an overview of compile features and discusses how to compile and run an SQR program.

Understanding Compile Features
The following table lists SQR features that apply at compile time and their possible runtime equivalents. In
some cases, no equivalent exists and you must work around the limitation. For example, you may have
to use substitution variables with commands that require a constant and do not allow a variable. The
chapter “Writing Printer-Independent Reports” includes an example that works around the limitation of the
USE-PRINTER-TYPE command, which does not accept a variable as an argument.

See Chapter 16, “Writing Printer-Independent Reports,” page 81.

Compile Time Runtime

Substitution variables Use regular SQR variables. If you are substituting parts
of a SQL statement, use dynamic SQL instead.

See Chapter 17, “Using Dynamic SQL and Error
Checking,” page 85.

ASK INPUT

#DEFINE LET

#IF IF

INCLUDE No equivalent

DECLARE-LAYOUT, margins No equivalent

Number of heading or footing lines No equivalent

DECLARE-CHART PRINT-CHART

DECLARE-IMAGE PRINT-IMAGE

Copyright © 1988-2007, Oracle. All rights reserved. 145

Compiling Programs and Using SQR Execute Chapter 26

Compile Time Runtime

DECLARE-PROCEDURE USE-PROCEDURE

DECLARE-PRINTER ALTER-PRINTER (where possible)

USE (Sybase only) -DB command-line flag

Compiling and Running an SQR Program
For the user, running an SQR program is a one-step process. For SQR, however, there are two steps: compiling
the program and running it. When compiling a program, SQR:

• Reads, interprets, and validates the program.
• Preprocesses substitution variables and certain commands: ASK, #DEFINE, #INCLUDE, #IF,and #IFDEF.
• Validates SQL statements.
• Performs the SETUP section.

SQR enables you to save the compiled version of a program and use it when you rerun a report. That way, you
perform the compile step only once and bypass it in subsequent runs. SQR does not compile the program into
machine language. SQR creates a ready-to-run version of the program that is already compiled and validated.
This file is portable between different hardware platforms and between some databases.

Run the SQR executable (SQR for UNIX/Linux or SQRW for Windows) against the SQR program file and
include the -RS command-line flag to save the runtime file. SQR creates a file with a file name extension of
.sqt . You should enter something like this:

sqrw ex1a.sqr sammy/baker@rome -RS

Run the SQR executable with the -RT command-line flag to run the .sqt file. It runs faster because the program
is already compiled. Here is an example:

sqrw ex1a.sqt sammy/baker@rome -RT

The SQR product distribution includes SQR Execute (the SQRT program). SQR Execute can run .sqt files, but
does not include the code that compiles an SQR program. (This program is equivalent to running SQR with
-RT.) Here is an example of running SQR Execute from the command line:

sqrwt ex1a.sqt sammy/baker@rome

After you save the runtime (.sqt) file, SQR no longer performs any compile-time steps such as running #IF,
#INCLUDE, or ASK commands or performing the SETUP section. These were already performed when the
program was compiled and the runtime file was saved.

You must make a clear distinction between what is performed at compile time and what is performed at
runtime. Think of compile-time steps as defining what the report is. Commands such as #IF or ASK enable
you to adapt your report at compile time. For runtime adaptation, use commands like IF and INPUT.

146 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 27

Printing with SQR

This chapter discusses how to:

• Specify output file types by using SQR command-line flags.
• Use the DECLARE-PRINTER command.

Specifying Output File Types by Using SQR
Command-Line Flags

Except on the Microsoft Windows platform, SQR does not actually print a report. SQR creates an output file
that contains the report, but does not print it directly. The output file can be a printer-specific file or an SQR
portable file (SPF). SQR portable files have a default extension of .spf or .snn (for multiple reports).

The following table summarizes SQR command-line flags and the types of output that they produce:

Command-Line Flag Output File Extension File Format Suitable Usage

-PRINTER:EH .htm Enhanced HTML Intranet or internet

-PRINTER:HP .lis PCL HP LaserJet printer

-PRINTER:HT .htm HTML Intranet and internet

-PRINTER:LP .lis US ASCII Line printer

-PRINTER:PS .lis PostScript PostScript printer

-PRINTER:WP None.

Output goes directly to
the default printer without
being saved to a file. You
can set the default printer
by using theWindows
Control Panel.

Not applicable Windows

Copyright © 1988-2007, Oracle. All rights reserved. 147

Printing with SQR Chapter 27

Command-Line Flag Output File Extension File Format Suitable Usage

-NOLIS .spf or .snn SQR Portable file SQR Print and SQR
Viewer can print this
file to different printers.

-KEEP .spf or .snn (in addition to
the .lis file that is normally
created)

SQR Portable file and the
format of the .lis file

SQR Print and SQR
Viewer can print this .spf
file to different printers.

No flag .lis US ASCII, PCL, or
PostScript

Line printer, HP LaserJet,
or PostScript, respectively

Note. When no flags are specified, SQR produces a line printer output unless it is otherwise set in the
SQR program with DECLARE-PRINTER, USE-PRINTER-TYPE, or the PRINTER-TYPE option of
DECLARE-REPORT.

SPF is a printer-independent file format that supports all of the SQR graphical features, including fonts, lines,
boxes, shaded areas, charts, bar codes, and images.

This file format is useful for saving the output of a report. SPFs can be distributed electronically and read
with the SQR Viewer. Producing SPF output also enables you to decide later where to print it. Use SQR
Viewer or SQR Print to print an SPF.

Using the DECLARE-PRINTER Command
The DECLARE-PRINTER command specifies printer-specific settings for the output file types that SQR
supports: line printer, PostScript, HP LaserJet, and HTML. The DECLARE-PRINTER command itself does
not cause the report to be produced for a specific printer. To specify a specific format, use one of these
three methods:

• The -PRINTER:xx command-line flag.
For example -PRINTER:PS produces PostScript output. If the program creates multiple reports, such as the
sample program ex18a.sqr, the -PRINTER:xx flag produces the same output format for all of the reports.

• The USE-PRINTER-TYPEcommand.
You must use this command before you print because SQR cannot switch the printer type in the middle of a
program. USE-PRINTER-TYPE PS, for example, produces PostScript output.

• The PRINTER-TYPE option of the DECLARE-REPORT command.
The DECLARE-REPORT command is normally used when a program generates more than one report.

For example, the following code example produces PostScript output for the labels report:

declare-report labels

layout=labels

printer-type=ps

end-declare

148 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 27 Printing with SQR

The DECLARE-PRINTERcommand defines settings for line printers, PostScript, or HP LaserJet printers.
Specify the type of printer by using the type option of the DECLARE-PRINTER command or one of the
predefined printers: DEFAULT-LP, DEFAULT-PS, DEFAULT-HP, and DEFAULT-HT.

A program can have more than one DECLARE-PRINTER command if you define settings for each of the
printer types. The settings for a particular printer take effect only when output is produced for that printer.
When the program generates multiple reports, you can define settings for each printer for each report. To make
a DECLARE-PRINTER command apply to a specific report, use the FOR-REPORTS option.

The output file normally has the same name as the program, but with a different file extension. The default file
extension is .lis for PostScript (PS), HP LaserJet (HP), or Line Printer (LP). If you are generating an SPF, the
default extension is .spf. If you want SQR to use another name for the output file (including a user-defined
file extension), use the -F option on the command line. For example, to use chapter1.out as the output of the
sample program ex1a.sqr, use this command to run SQR:

sqr ex1a username/password -fchapter1.out

When a program creates more than one report, you can name the output file by using multiple -F flags:
sqr ex20a username/password -flabel.lis -fletter.lis -flisting.lis

You cannot directly name .spf files. You can still use the -F command-line flag to name the file, but you
cannot control the file name extension. For example:

sqr ex20a username/password -flabel.lis -fletter.lis -flisting.lis -nolis

The -NOLIS command-line flag causes SQR to produce .spf files instead of .lis files. The actual file names
are label.spf, letter.s01, and listing.s02. The second .spf file is named .s01 and the third is named .s02. SQR
supplies file extensions such as these when a program generates multiple reports.

Different operating systems require different techniques for printing the output. On platforms other than
Microsoft Windows, if the output is in SPF format, you first use SQR Print to create the printer-specific file.
For example, the following command invokes SQR Print to create a PostScript file named myreport.lis
from the output file named myreport.spf:

sqrp myreport.spf -printer:ps

This is a one-way conversion—an .spf file can be converted to an .lis file, but an .lis file cannot be converted to
an .spf file.

The following table summarizes the commands and command-line options that you can use on different
systems to send a report output to the printer. Consult your operating system documentation for details.

Operating System Command Command-Line Options

UNIX lp myreport.lis

lp myreport.lis -d ...

Use -D for printer destination. You can
use the UNIX at command to schedule the
printing time.

Windows SQR prints directly. You can also use SQR
Viewer.

Use the Print Setup dialog box in SQR
Print or the SQR Viewer to select a printer
destination. Use SQR Print to print
multiple copies.

You can also use the File Manager Copy
command to copy the file to the printer
destination (for example, lpt1).

Copyright © 1988-2007, Oracle. All rights reserved. 149

Printing with SQR Chapter 27

Check with your systems administrator about other procedures or commands that are applicable to printing
output files at your site.

See Also
Chapter 19, “Creating Multiple Reports from One Program,” page 97

150 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 28

Using the SQR Command Line

This chapter provides an overview of the SQR command line and discusses how to:

• Specify command-line arguments.
• Use batch mode.

Understanding the SQR Command Line
You can use the SQR command line to specify flags and to pass arguments to modify your program at runtime.

You can enter command-line flags such as -Bnn, -KEEP, or -S on the command line to modify some aspect of
program processing or output. Command-line arguments are typically answers to requests (done in the SQR
program by ASK or INPUT commands) for user input.

The following code example and table describes the syntax of the SQR command line:

SQR [program] [connectivity] [flags ...] [args ...] [@file ...]

Argument Description

program The name of the program. The default file type or extension is .sqr. If entered as a question
mark (?) or omitted, SQR prompts you for the program name. On UNIX/Linux-based
systems, if your shell uses the question mark as a wildcard character, you must precede it
with a backslash (\).

connectivity Oracle:Use [Username]/[Password[@Database]] as your username and password for
the database. You can also specify the connection string for the database (for example,
@B:ORASERVER).

The information that SQR needs to connect to the database. If entered as a question mark
or omitted, SQR prompts you for it. The information you enter depends on the database
you’re using:

DB2:Use Ssname and SQLid for the subsystem name and SQL authorization ID.

Informix:Use Database as the name of the database.

ODBC:Use Data_Source_Name/[Username]/[Password] as the name of the ODBC driver
when you set up the driver and your username and password for the database.

Sybase:Use Username/[Password] as your username and password for the database.

Copyright © 1988-2007, Oracle. All rights reserved. 151

Using the SQR Command Line Chapter 28

Argument Description

flags Any of the flags that are listed in the SQR Language Reference. Begin command-line
flags with a hyphen. When a flag has an argument, enter the argument directly following
the flag with no intervening space.

See Enterprise PeopleTools 8.49 PeopleBook: SQR Language Reference for PeopleSoft,
“Understanding SQR for PeopleSoft,” SQR Command-Line Flags.

args... Arguments that are used by SQR while the program is running. Arguments that are
listed here are used by the ASK and INPUT commands rather than prompting the user.
Arguments must be entered on the command line in the same sequence that they are
expected by the program: first all ASK arguments in order and then INPUT arguments
in order.

@file... File containing program arguments, one argument per line. Arguments listed in the file
are processed one at a time. You can specify the command-line arguments program,
connectivity, and args in this file.

Specifying Command-Line Arguments
This section provides an overview of command-line arguments and discusses how to:

• Retrieve the arguments.

• Specify arguments and argument files.

• Use an argument file.

• Use other approaches to pass command-line arguments.

• Use reserved characters.

• Create an argument file from a report.

Understanding Command-Line Arguments
You can pass an almost unlimited number of command-line arguments to SQR at runtime. On some platforms,
the operating system imposes a limit on the number of arguments or the total size of the command line.
Passing arguments is especially useful in automated reports, such as those that are invoked by scripts or
menu-driven applications.

You can pass arguments to SQR on the command line, in files, or with the SQRFLAGS environment variable.
When you pass arguments in a file, reference the file name on the command line and put one argument on each
line of the file. This avoids any limits that are imposed by the operating system.

To reference a file on the command line, precede its name with the @ sign as shown in the following code
example:

sqr myreport sammy/baker arg1 arg2 @file.dat

In this example, arg1 and arg2 are passed to SQR, followed by the file.dat file. Each line in file.dat has
an additional argument.

152 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 28 Using the SQR Command Line

Retrieving the Arguments
When the ASK and INPUT commands run, SQR determines whether you entered any arguments on the
command line or whether an argument file has been opened. If either has happened, SQR uses this input
instead of prompting the user. After the available arguments are used, subsequent ASK or INPUT commands
prompt the user for input. If you use the INPUT command with the BATCH-MODE argument, SQR does not
prompt the user, but instead returns a status meaning No more arguments.

SQR processes all ASK commands before INPUT commands.

Note. If you compiled the SQR program into an .SQT file, ASK commands will have already been processed.
Use INPUT instead.

Specifying Arguments and Argument Files
You can mix argument files with simple arguments, as shown in the following code example:

sqr rep2 sammy/baker 18 @argfile1.dat "OH" @argfile2.dat "New York"

This command line passes SQR the number 18, the contents of argfile1.dat, the value OH, the contents of
argfile2.dat, and the value New York, in that order.

The OH argument is in quotes to ensure that SQR uses uppercase OH. When a command-line argument is case
sensitive or contains spaces, you must enclose it within quotes. Arguments that are stored in files do not require
quotes and cannot contain them; the actual strings with uppercase characters and any spaces are passed to SQR.

Using an Argument File
To print the same report on different printers with different characteristics, you can save values for the different
page sizes, printer initializations, and fonts in separate files and use a command-line argument to specify which
file to use. For example, the following command line code example passes the value 18 to SQR:

sqr myreport sammy/baker 18

An #INCLUDE command in the report file selects the printer18.dat file based on the command-line argument:
begin-setup

ask num ! Printer number.

#include ’printer{num}.dat’ ! Contains #DEFINE commands for

! printer and paper width and length

declare-layout report

paper-size =({paper_width} {paper_length})

end-declare

end-setup

In this example, the ASK command assigns the value 18 to the num variable; 18 is a compile-time argument.
The #INCLUDE command then uses the value of num to include the printer18.dat file, which could include
commands like this:

! Printer18.dat-definitions for printer in Bldg 4.

#define paper_length 11

#define paper_width 8.5

#define bold_font LS12755

#define light_font LS13377

#define init HM^J73011

Copyright © 1988-2007, Oracle. All rights reserved. 153

Using the SQR Command Line Chapter 28

Using Other Approaches to Pass Command-Line Arguments
SQR examines an argument file for a program name, username, or password if none is provided on the
command line. The following command line omits the program name, username, and password:

sqr @argfile.dat

The first two lines of the argument file for this code example contain the program name and the username and
password:

myreport

sammy/baker

18

OH

...

If you do not want to specify the report name, username, or password on the command line or in an argument
file, use the question mark (?). SQR prompts the user to supply these. For example:

sqr myreport ? @argfile.dat

In this example, the program prompts the user for the username and password instead of taking them from the
first line in the argument file.

You can use more than one question mark on the command line, as shown in the following code example:
sqr ? ? @argfile.dat

In this example, the program prompts the user for the program name and the username and password.

Note. SQR for Microsoft Windows does not accept the SQR program name and database connectivity to
be part of the argument file.

Using Reserved Characters
The hyphen (-) and @ sign characters have special meanings on the command line. The hyphen precedes
an SQR flag, and the @ sign precedes an argument file name. To use either of these characters as the first
character of a command-line argument, enter the character twice to indicate that it is a literal hyphen or
@ sign, as shown in the following code example:

sqr myreport ? --17 @argfile.dat @@X2H44

In this example, the double hyphen and double @ sign are interpreted as single literal characters.

Creating an Argument File from a Report
You can create an argument file for one program from the output of another program. For example, you can
print a list of account numbers to the acctlist.dat file, then run a second report with the following command:

sqr myreport sammy/baker @acctlist.dat

End acctlist.dat with a flag such as END, as shown in the following code example:
123344

134455

156664

...

END

154 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 28 Using the SQR Command Line

An SQR program can use the numbers in acctlist.dat with an INPUT command, as shown in the following
code example:

begin-procedure get_company

next:

input $account batch-mode status = #status

if #status = 3

goto end_proc

end-if

begin-select

cust_num, co_name, contact, addr, city, state, zip

do print-page ! Print page with

! complete company data

from customers

where cust_num = $account

end-select

goto next ! Get next account number

end_proc:

end-procedure !get_company

Using Batch Mode
SQR enables you to run reports in batch mode in:

• UNIX/Linux.
• Microsoft Windows.

You can create UNIX/Linux shell scripts or MS-DOS batch (.bat) files to run SQR. Include the SQR command
line in the file as you enter it.

Copyright © 1988-2007, Oracle. All rights reserved. 155

Using the SQR Command Line Chapter 28

156 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 29

Generating and Publishing HTML from
an SQR Program

This chapter provides an overview of SQR capabilities that are available with HTML and discusses how to:

• Generate HTML output.
• Use HTML procedures in an SQR program.
• Modify an existing SQR program for HTML.
• Publish a report.

Understanding SQRCapabilities That Are Available with HTML
The SQR language has a rich set of features, but some of these features are not available for HTML output due
to the limitations of that format.

The SQR features that are supported for HTML include:

• Images.
• Font sizing.
The SQR language specifies font sizes in points. HTML specifies font sizes in a value from 1 to 6. A point
size that is specified in an SQR program is mapped to an appropriate HTML font size.

• Font styles.
The bold and underline font styles are supported.

• Centering.

The SQR features that are not currently supported for HTML output include:

• Font selection.
• Bar codes.
• Lines and boxes (using -PRINTER:HT).

Note. You can generate professional quality HTML report files with SQR without having to be an HTML
expert. However, if you want to adapt HTML output by using SQR’s HTML procedures, you may find
it helpful to learn more about HTML.

Copyright © 1988-2007, Oracle. All rights reserved. 157

Generating and Publishing HTML from an SQR Program Chapter 29

Generating HTML Output
This section provides an overview of HTML output and discusses how to:

• Produce HTML output.

• Use -PRINTER:EH.

• Set HTML attributes under -PRINTER:EH.

• Use -PRINTER:HT.

• Burst reports.
• Set attributes with HTML procedures.

• Use additional HTML procedures.

• Set output file types.

• Test HTML Output.

Understanding HTML Output
When an SQR program generates HTML output, that output contains HTML tags. An HTML tag is a character
sequence that defines how information appears in a web browser.

Typically, HTML output looks like this:

<HTML><HEAD><TITLE>myreport.lis</TITLE></HEAD><BODY>

This code is only a portion of the HTML output that SQR generates. The tags that it contains indicate the
start and end points of HTML formatting.

For example, in the code example, the <HTML> tag identifies the output that follows as HTML output. The
<TITLE> and </TITLE> tags enclose the report title, in this case, myreport.lis. The <BODY> tag indicates
that the information following it makes up the body of the report.

Producing HTML Output
You can produce HTML output from an SQR program by using one of four methods, each of which provides a
different level of HTML features:

• Running an unmodified SQR program with the -PRINTER:EH command-line flag makes the HTML 3.0 or
3.2 output viewable in a web browser.

• Running an unmodified SQR program with the -PRINTER:HT command-line flag makes the HTML
2.0 output viewable in a web browser.

• Using two HTML procedures, html_set_head_tags and html_set_body_attributes, enables you to define a
title and background image for the HTML output.
With this method, you must still use the -PRINTER:HT command-line flag.

• Using additional HTML procedures produces output with a full set of HTML features, including lists,
tables, and links.
With this method, you must still use the -PRINTER:HT command-line flag.

The procedures that are used in the last two options are contained in a file called html.inc. To utilize HTML
procedures, the SQR program must include this command:

158 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 29 Generating and Publishing HTML from an SQR Program

#include ’html.inc’

The HTML.INC file is located in the SAMPLE (or SAMPLEW) directory. Use the -I command-line flag to
specify its path.

Using -PRINTER:EH
You can generate enhanced HTML output from an SQR program by using the -PRINTER:EH command-line
flag. This produces output that contains HTML formatting tags. All output is displayed as fully formatted
HTML 3.0 or 3.2 text. You can generate high-quality HTML from SQR programs by using -PRINTER:EH
to issue a command like this:

sqrw myreport.sqr sammy/baker@rome -PRINTER:EH

You can control the version of HTML that is used by editing the FullHTML enhanced HTML parameter in the
PSSQR.INI file. Set FullHTML to be equal to TRUE for HTML 3.2 or FALSE for HTML 3.0. Adjust this
based on the level of HTML that your web browser supports. The -PRINTER:EH default output is HTML 3.0.

If you have existing .spf files for which you want to generate enhanced HTML output, you do not need to
rerun your SQR program. You can invoke SQR Print (with SQRP or SQRWP, depending on your platform) to
generate enhanced HTML from .spf files by using a command like this:

sqrwp myreport.spf -PRINTER:EH

From within the SQR Viewer, you can also generate this same, high-quality HTML by selecting File, Save as
HTML. The HTML level output from the SQR Viewer is also determined by the PSSQR.INI file settings
and has the same default value.

You can also generate enhanced HTML files with precompiled SQR program files (.sqt files). Run the .sqt
file against SQR Execute with a command like this:

sqrwt myreport.sqt sammy/baker@rome -PRINTER:EH

As is true when running any .sqt file, you can run it against SQR (or sqrw, on Microsoft Windows platforms)
by including the -RT flag. To generate enhanced HTML, use the -PRINTER:EH flag in the command:

sqrw myreport.sqr sammy/baker@rome -RT -PRINTER:EH

The sample program ex7a.sqr produces a simple master and detail report. By running it with -PRINTER:EH,
you can produce HTML output. A left frame is produced with links to each page of the report. The right frame
also features a navigation bar that appears at the top of every page in the report. The navigation bar enables you
to move to the first or last page or to move one page forward or back from your relative page-viewing position.

With -PRINTER:EH, you can also use additional flags to modify the output, such as:

• -EH_CSV
This creates an additional output file in Comma Separated Value (CSV) format.

• -EH_CSV:file
This associates the CSV icon with the specified file.

• -EH_Icons:dir
This specifies the directory in which the HTML should find the referenced icons.

• -EH_Scale:{nn}
This sets the scaling factor from 50 to 200.

These flags work only with -PRINTER:EH.

Copyright © 1988-2007, Oracle. All rights reserved. 159

Generating and Publishing HTML from an SQR Program Chapter 29

Setting HTML Attributes Under -PRINTER:EH
In certain cases, you may want additional control over the enhanced HTML code that is generated with
-PRINTER:EH. SQR supports extensions that enable you to control the generated HTML, specifying titles,
background colors and images, links, text colors, and more.

Specifying HTML Titles
The HTML page title normally appears on the caption bar of the browser window and is also used when you
are creating a bookmark for the page. It is placed between the <TITLE> and </TITLE> HTML tags. Specify
the title of the HTML page by using the %%Title extension at the beginning of the SQR program by entering:

Print-Direct Printer=html ’%%Title Monthly Sales’

Specifying Background Colors
Specify a background color for the pages that are generated with -PRINTER:EH by using the
%%Body-BgColor extension. Enter code like this at the beginning of the program:

Print-Direct Printer=html ’%%Body-BgColor #0000FF’

To set the background color for the navigation bar, enter code like this:
Print-Direct Printer=html ’%%Nav-Body-BgColor #0000FF’

See “Specifying HTML Colors” below.

Specifying Background Images
To use a background image for the report pages that the enhanced HTML generates, insert the %%Background
extension at the beginning of the program:

Print-Direct Printer=html ’%%Background tile.gif’

To set the background image for the navigation bar, enter code like this:
Print-Direct Printer=html ’%%Nav-Background D:\jpegdir\house.jpg’

The background attribute can be any valid Uniform Resource Locator (URL). If you do not specify the
%%Nav-Background extension while specifying the body background, the background image you specify
for the body is used both in the body and in the navigation bar. If you do not want an image to appear in
the navigation bar, use code like this:

Print-Direct printer=html ’%%Nav-Background EMPTY’

Specifying Links
The %%Href extension specifies a link in the report. This extension enables you to make a text, number, image,
or chart object into a link. The object can be the item that you click to activate the link or it can be the location
on the page where the link takes you. Specify the latter by using the %%Anchor extension. For example:

Print-Direct Printer=html ’%%Href #section2’

Print ’ABC’ ()

...

Print-Direct Printer=html ’%%Anchor section2’

Print ’XYZ’ ()

In this example, clicking the ABC text on the page jumps to the XYZ text. When using frames or multiple
browser windows, you can control which frame displays the target of the link by using the target option of the
%%Href extension. For example, specify on one line:

160 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 29 Generating and Publishing HTML from an SQR Program

Print-Direct Printer=html ’%%Href target="_top" http://www.peoplesoft.com’

Specifying Text Colors
Use the %%Color and %%ResetColor extensions to change the color of text. The following code example
demonstrates this capability:

If &Salary > 100000

Print-Direct Printer=html ’%%Color #FF0000’

End-If

Print &Salary ()

If &Salary > 100000

Print-Direct Printer=html ’%%ResetColor’

End-If

In this example, when the value of the column is over 100000, it prints in red. The %%Color extension affects
all text (and number) printing from this point on. This is similar to the behavior of the ALTER-PRINTER
command. A subsequent invocation of %%Color with a different color value sets the current color to the new
color. To restore the color back to the default (normally, black) use the %%ResetColor extension.

Specifying HTML Colors
Specifying color as a red-green-blue (RGB) hexadecimal value is the only way to designate color in SQR.
Your browser documentation should contain a listing of supported colors and their hexadecimal values. To
specify color as an RGB hexadecimal value, enter a # character followed by six hexadecimal digits. The
first two digits specify the intensity of the red, the next two specify the green, and the last two specify the
blue. For example, green is #00FF00.

Including Your Own HTML Tags
Enhanced HTML extensions enable you to include your own HTML tags in the output. These tags are passed
through to the output without change. Use this feature to include advanced HTML capabilities such as
JavaScript and <APPLET> tags .

SQR PRINT with CODE-PRINTER=HT enables you to inject any text into the HTML output. SQR does not
check the text that you are printing. This text can contain anything that your browser understands. Do not
use this method for formatting, because your formatting may conflict with -PRINTER:EH enhanced HTML
formatting. -PRINTER:EH enhanced HTML uses HTML tables extensively. To fully control the formatting,
use the HTML procedures that are defined in html.inc and that are documented in this section. By invoking the
html_on procedure, you instruct the enhanced HTML to perform no formatting. Specify all formatting by
using the HTML procedures in html.inc or by using SQR PRINT with CODE-PRINTER=HT to insert HTML
codes. When you use SQR PRINT with CODE-PRINTER=HT, the enhanced HTML does not translate special
symbols that are used in HTML tags, such as <, >, and &.

See Also
Enterprise PeopleTools 8.49 PeopleBook: SQR Language Reference for PeopleSoft

Using -PRINTER:HT
Another method for generating HTML output from an SQR program is running a program with the
command-line flag -PRINTER:HT. Alternatively, you can make some simple modifications to the program.
Add either DECLARE-PRINTER with the TYPE=HT argument or USE-PRINTER-TYPE HT.

With these methods, HTML output is generated as follows:

Copyright © 1988-2007, Oracle. All rights reserved. 161

Generating and Publishing HTML from an SQR Program Chapter 29

• All output appears as preformatted text by using the <PRE> and </PRE> HTML tags.
• Text appears on the page at the position coordinates that are specified in the SQR program.
• Text appears in a fixed-width font, such as Courier.
• Font sizes map to HTML font sizes.
• HTML reserved characters map to the corresponding HTML sequence.
The <, >, &, " characters map to the <, >, &, and ", character sequences, respectively. This
prevents the web browser from mistaking such output as an HTML sequence.

The sample program ex7a.sqr produces a simple master and detail report. By running it with -PRINTER:HT,
you can produce HTML output. A left frame is produced with links to each page of the report. The right frame
also features a navigation bar that appears at the top of every page in the report. The navigation bar enables you
to move to the first or last page or to move one page forward or back from your relative page viewing position.

See Chapter 8, “Creating Master and Detail Reports,” page 39.

Bursting Reports
With SQR, you can generate HTML format reports by using -PRINTER:EH or -PRINTER:HT command-line
flags. If you want HTML files to be smaller in size for faster load time or to be divided on the basis of report
page ranges, or if you want to preview a report’s table of contents in your web browser without generating an
entire report, use -BURST:{xx} with -PRINTER:EH or -PRINTER:HT.

By using -BURST:P (or BURST:P1) with -PRINTER:EH, or by using -BURST:P1 with -PRINTER:HT, you
can generate HTML output files that are burst by report page numbers, one report page per .htm file. (This is
frequently referred to as demand paging.) So, a 25-page report would be divided into 25 separate .htm output
files. By using -PRINTER:HT, you can also specify the report page ranges that you want within an HTML file.
For example, -BURST:P0,1,3-5 generates an HTML file containing only report page numbers 1, 3, 4, and 5.
You can then focus on information that is truly of interest.

Similarly, if you specify -PRINTER:HT with -BURST:T, only the table of contents file is generated. And,
if you specify -PRINTER:HT with -BURST:S, report output is generated according to symbolic table of
contents entries. By using -BURST:S, you can specify the numeric level to burst on (for example, -BURST:S2
bursts on level 2). If you have used DECLARE-TOC and TOC-ENTRY commands in the SQR program,
the table of contents provides more detailed information than just page number links, as illustrated in the
following code example.

To use DECLARE-TOC and TOC-ENTRY to improve the information that is available in generated HTML
output, this example adds the following code example to the beginning of the sample program ex7a.sqr:

begin-setup

declare-toc common

for-reports=(all)

dot-leader=yes

indentation=2

end-declare

end-setup

The code example also adds this code to the body of the program, in the main procedure immediately following
the begin-select and Print ‘Customer Information’ (,1):

toc-entry text = &name

162 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 29 Generating and Publishing HTML from an SQR Program

Setting Attributes with HTML Procedures
Use SQR’s HTML procedures html_set_head_tags and html_set_body_attributes to define a title and
background image for a report. To use these procedures, the SQR program must include the html.inc file. You
must also run the program by using the -PRINTER:HT command-line flag.

These procedures must be called at the start of the program. For example:

do html_set_head_tags(’<TITLE>Monthly Report</TITLE>’)

do html_set_body_attributes(’BACKGROUND="/images/mylogo.gif"’)

The first line of this code example displays theMonthly Report title. Specifically, the entire ’<TITLE>Monthly
Report</TITLE>’ sequence is passed as an argument to the html_set_head_tags procedure. The argument
is enclosed in single quotes.

The second line displays the mylogo.gif background image for the web page. Again, an argument is passed
to the procedure. The entire argument is enclosed in single quotes, and the file name and path are enclosed
in double quotes.

Together, these two lines of code generate the following HTML output:
<HTML><HEAD><TITLE>Monthly Report</TITLE></HEAD>

<BODY BACKGROUND="/images/mylogo.gif">

Using Additional HTML Procedures
Using additional HTML procedures in the SQR program provides enhanced capabilities, including:

• Highlighting ,, including HTML physical tags and logical markup tags.
HTML physical tags include subscript, superscript, and strikethrough. HTML logical markup tags include
citation, code, keyboard, and sample.

• Headings.
• Links.
• Lists , including ordered lists, unordered lists, definition lists, directory lists, and menus.
• Paragraph formatting , including paragraph breaks, line breaks, and horizontal dividers.
• Tables , including captions, rows, columns, and column headings.

Setting Output File Types
An SQR report named myreport.sqr creates a FRAME file (myreport.htm) and report output files. The
OUTPUT-FILE-MODE entry in the Default-Setting section of the PSSQR.INI file controls the report output
file extensions. When set to SHORT, the report output files use the form myreport.hzz, and when set to LONG,
the files use the form myreport_zz.htm. The value of zz ranges from 00 to 99 and reflects the report number.

The FRAME file displays a list (links) of report pages in one frame and the report text in another frame. Each
report output file contains a list of pages (links) at the end of the file. If myreport.sqr created multiple reports,
then the FRAME file contains a link to each report output file. In addition, each report output file contains
links to the other report output files that were created during the program run.

Testing HTML Output
When an SQR program produces HTML output, you can preview it on a local system. This is a good way to
test the output before you publish it on a website.

Copyright © 1988-2007, Oracle. All rights reserved. 163

Generating and Publishing HTML from an SQR Program Chapter 29

To test a program’s output, open the file in the web browser. If your web browser supports the HTML FRAME
construct, open the FRAME file (myreport_frm.htm); otherwise open the report output file (myreport.h00,
myreport_00.htm).

Using HTML Procedures in an SQR Program
This section provides an overview of HTML procedures and discusses how to:

• Use HTML procedures.

• Position objects.

• Display records in tables.

• Create headings.

• Highlight text.

• Create links.
• Include images.

• Display text in lists.

• Format paragraphs.

• Incorporate your own HTML tags.

See Also
Enterprise PeopleTools 8.49 PeopleBook: SQR Language Reference for PeopleSoft

Understanding HTML Procedures
To enhance the appearance of the HTML output, use HTML procedures in an SQR program.

An SQR program with these procedures generates output as described previously in “Using PRINTER:HT,”
with these exceptions:

• The <PRE> and </PRE> HTML tags are not used.
• Text is displayed in a proportional font, such as Arial.
• Positioning values that are specified in the SQR program are ignored.
Text, HTML tags, and other information are placed in the HTML output in the order in which they are
generated by the SQR program.

• White space, such as spaces between PRINT commands, is removed.

Using HTML Procedures
When using the HTML procedures, include the html.inc file. As before, you must run the SQR program with
the -PRINTER:HT command-line flag.

The SQR program must also call the html_on procedure at the start of the program. The command that
calls this procedure is:

do html_on

164 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 29 Generating and Publishing HTML from an SQR Program

Additionally, the program must specify a large page length to prevent page breaks. SQR automatically inserts
the page navigation links and an <HR> HTML tag at a page break. If a page break occurs in the middle of an
HTML construct, such as a table, the output can appear incorrectly. Use the DECLARE-LAYOUT command
with a large MAX-LINES setting to prevent page breaks from occurring.

Positioning Objects
When HTML procedures are activated:

• HTML output is generated without the <PRE> and </PRE> tags.

• All position qualifiers in the SQR program are ignored, and program output and HTML tags are placed in the
output file in the order in which they are generated, regardless of their position qualifiers.

• The text that is printed in a BEGIN-HEADING section does not appear at the top of the page.

Because no positioning is done, text in the heading appears at the bottom.

• White space, such as spaces between PRINT commands, is removed.

Thus, the HTML procedures must be used to format the report.

The following code example does not use the HTML procedures to format the output:

print ’Report summary:’ (1,1)

print ’Amount billed:’ (3,1)

print #amount_amount (3,20)

print ’Total billed:’ (4,1)

print #total_amount (4,20)

In this case, all of the text appears on the same line with no spaces between the data.

With the HTML procedures for line breaks and a table, the output can be formatted properly.

The following code example uses the html_br procedure to separate the first two lines of text. The html_table,
html_tr, html_td, and html_table_end procedures display the totals in a tabular format. An empty string is
passed to each procedure as it is called. This empty string is required if no other argument is passed.

print ’Report summary:’ (1,1)

do html_br(2,’’)

do html_table(’’)

do html_tr(’’)

do html_td(’WIDTH=300’)

print ’Amount billed:’ (3,1)

do html_td(’’)

print #amount_amount (3,20)

do html_tr(’’)

do html_td(’WIDTH=300’)

print ’Total billed:’ (4,1)

do html_td(’’)

print #total_amount (4,20)

do html_table_end

Copyright © 1988-2007, Oracle. All rights reserved. 165

Generating and Publishing HTML from an SQR Program Chapter 29

Displaying Records in Tables
When the HTML procedures are activated, all positioning values in the SQR program are ignored. Thus, the
position values cannot be used to display records in a tabular format. To display records in a tabular format,
use the following procedures:

Description Beginning Procedure End Procedure

Create a table html_table html_table_end

Create a caption. The end is typically
implied and html_caption_end is
not required, but you can use it for
completeness.

html_caption html_caption_end

Create rows. The end is typically
implied and html_tr_end is not
required, but you can use it for
completeness.

html_tr html_tr_end

Create column headings. The end is
typically implied and html_th_end
is not required, but you can use it for
completeness.

html_th html_th_end

Create columns. The end is typically
implied and html_td_end is not
required, but you can use it for
completeness.

html_td html_td_end

The following sample program uses these table procedures to display information in a tabular format:

Program ex28a.sqr

#include ’html.inc’

begin-program

do main

end-program

! set a large page length to prevent page breaks

begin-setup

declare-layout default

max-lines=750

end-declare

end-setup

begin-procedure main

! turn on HTML procedures

do html_on

! start the table and display the column headings

do html_table(’border’)

do html_caption(’’)

print ’Customer Records’ (1,1)

do html_tr(’’)

do html_th(’’)

print ’Cust No’ (+1,1)

166 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 29 Generating and Publishing HTML from an SQR Program

do html_th(’’)

print ’Name’ (,10)

! display each record

begin-select

do html_tr(’’)

do html_td(’’)

cust_num (1,1,6) edit 099999

do html_td(’’)

name (1,10,25)

next-listing skiplines=1 need=1

from customers

end-select

! end the table

do html_table_end

end-procedure

Creating Headings
The heading procedures display text by using heading levels like those in a book. The available heading levels
range from 1 to 6; a first-level heading is the highest. To use the heading procedures, call the appropriate
heading procedure before the text is generated. After the text is generated, call the corresponding end
procedure.

The following code example displays text as a second-level heading:

do html_h2(’’)

print ’A Level 2 Heading’ (1,1)

do html_h2_end

Highlighting Text
The highlighting procedures enable you to display text in the various HTML highlighting styles. Highlighting
is also called logical markup.

To use the highlighting procedures, call the appropriate highlighting procedure before the text is generated.
After the text is generated, call the corresponding end procedure.

The following highlighting procedures are available:

Type of Highlighting Beginning Procedure End Procedure

Blink html_blink html_blink_end

Citation html_cite html_cite_end

Code html_code html_code_end

Keyboard html_kbd html_kbd_end

Sample html_sample html_sample_end

Strike html_strike html_strike_end

Copyright © 1988-2007, Oracle. All rights reserved. 167

Generating and Publishing HTML from an SQR Program Chapter 29

Type of Highlighting Beginning Procedure End Procedure

Subscript html_sub html_sub_end

Superscript html_sup html_sup_end

The following code example displays text in the subscript style:

print ’Here is ’ (1,1)

do html_sub(’’)

print ’subscript’ ()

do html_sub_end

print ’ text’ ()

Creating Links
The link procedures enable you to create links and link anchors. When the user clicks the link, the web browser
switches to the top of the specified HTML document, to a point within the specified document, or to a link
anchor within the same document. A link can point to the home page of a website, for example.

To insert a link, use the html_a procedure to output the information that is to become the link, and use the
html_a_end procedure to mark the end of the link. Two useful attributes for the html_a procedure are the
HREF and NAME attributes:

• Use the HREF attribute to specify the location to which the link points.
• Use the NAME attribute to specify an anchor to which a link can point.

These attributes are passed as arguments to the html_a procedure.

The following code example creates an anchor and two links. The anchor is positioned at the top of the
document. The first link points to the HTML home.html document. The second link points to the anchor
named TOP in the current document. Note the # sign in the argument, which indicates that the named anchor is
a point within a document. The third link points to an anchor named POINT1 in the mydoc.html document.

do html_a(’HREF=home.html’)

print ’Goto home page’ ()

do html_a_end

do html_a(’NAME=TOP’)

do html_a_end

print ’At the top of document’ ()

do html_br(40, ’’)

print ’At the bottom of document’ ()

do html_p(’’)

do html_a(’HREF=#TOP’)

print ’Goto top of document’ ()

do html_a_end

do html_a (’HREF=mydoc.html#POINT1’)

print ’Goto point1 in mydoc.html’ ()

168 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 29 Generating and Publishing HTML from an SQR Program

do html_a_end

Including Images
You can include an image in an HTML output with the PRINT-IMAGE command or the html_img procedure.
Both of these produce the HTML tag.

The PRINT-IMAGE command displays images for all printer types but enables you to specify only the image
type and source. The html_img procedure displays images only for the HTML printer type, but it enables you
to specify any of the attributes that are available for an HTML tag.

For HTML output, you can use only Graphics Interchange Format (GIF) or JPEG files. With PRINT-IMAGE,
use the TYPE=GIF-FILE or TYPE=JPEG-FILE argument, respectively.

Displaying Text in Lists
The list procedures display lists. To use these procedures, call the appropriate procedure before the list is
generated. After the list is generated, call the corresponding end procedure.

The following list procedures are available:

List Type Beginning Procedure End Procedure

Definition (terms and their definitions) html_dl html_dl_end

Directory html_dir html_dir_end

Menus html_menu html_menu_end

Ordered (numbered or lettered) html_ol html_ol_end

Unordered (bulleted) html_ul html_ul_end

To display a list, except for the definition list, call the appropriate list procedure before starting the output.
Call html_li to identify each item in the list; you can also call html_li_end for completeness. After specifying
the output, call the corresponding end procedure.

The following code example displays an ordered list:

do html_ol(’’)

do html_li(’’)

print ’First item in list’ (1,1)

do html_li_end

do html_li(’’)

print ’Second item in list’ (+1,1)

do html_li_end

do html_li(’’)

print ’Last item in list’ (+1,1)

do html_li_end

do html_ol_end

To display a definition list, call html_dl before starting the output. Call html_dt to identify a term and html_dd
to identify a definition. After specifying the output, call html_dl_end. You can also call html_dd_end and
html_dt_end for completeness.

Copyright © 1988-2007, Oracle. All rights reserved. 169

Generating and Publishing HTML from an SQR Program Chapter 29

The following code example displays a definition list:
do html_dl(’’)

do html_dt(’’)

print ’A daisy’ (1,1)

do html_dt_end

do html_dd(’’)

print ’A sweet and innocent flower’ (+1,1)

do html_dd_end

do html_dt(’’)

print ’A rose’ (+1,1)

do html_dt_end

do html_dd(’’)

print ’A very passionate flower’ (+1,1)

do html_dd_end

do html_ol_end

Formatting Paragraphs
The HTML procedures provide various paragraph-formatting capabilities. To use these procedures, call the
appropriate paragraph procedure before the list is output.

The following procedures are available:

Formatting Type Beginning Procedure End Procedure

Paragraph breaks html_p html_p_end

Many HTML constructs imply an end
of paragraph; thus, the html_th_end
procedure is not needed, but you can
use it for completeness.

Line breaks html_br n/a

Horizontal dividers (usually a sculpted
line)

html_hr n/a

Prevent text wrapping html_nobr html_nobr_end

The following code example uses the paragraph-formatting procedures to format text into paragraphs:

print ’Here is some normal text’ (1,1)

do html_p(’ALIGN=RIGHT’)

print ’Here is right aligned text’ (+1,1)

do html_br(1,’’)

print ’and a line break’ (+1,1)

do html_p_end

do html_hr(’’)

do html_nobr(’’)

print ’A very long line of text that cannot be wrapped’ (+1,1)

do html_nobr_end

170 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 29 Generating and Publishing HTML from an SQR Program

Incorporating Your Own HTML Tags
You can incorporate your own HTML tags into the HTML output. To do so, use the PRINT command
with the CODE-PRINTER=HT argument.

Text that is printed with this argument is placed only in the HTML output that is generated when the HTML
printer type is specified. With all other printer types, the text is not placed in the output. In addition, the
specified text is placed directly in the HTML output without any modifications, such as the mapping of
reserved characters.

The following code example uses the HTML tag to print bold text:

print ’’ () code-printer=ht

print ’Bold text’ ()

print ’’ () code-printer=ht

Modifying an Existing SQR Program for HTML
In this section, an existing sample program, ex12a.sqr, is modified to use HTML procedures. The modified
program is named program ex28b.sqr. First, examine the output from ex12a.sqr when this program is run
without modifications by using the -PRINTER:HT command-line flag. Three HTML files are generated:
ex12a.htm, ex12a_frm.htm, and ex12a_toc.htm.

Program ex28b.sqr

#include ’html.inc’

begin-setup

declare-layout default

max-lines=10000

end-declare

end-setup

begin-program

do main

end-program

begin-procedure main

do html_on

print $current-date (1,1) edit ’DD-MON-YYYY’

do html_p(’’)

do html_table(’BORDER’)

do html_tr(’’)

do html_th(’WIDTH=250’)

print ’Name’ (3,1)

do html_th(’WIDTH=120’)

print ’City’ (,32)

do html_th(’WIDTH=60’)

print ’State’ (,49)

do html_th(’WIDTH=90’)

print ’Total’ (,61)

begin-select

do html_tr(’’)

do html_td(’’)

Copyright © 1988-2007, Oracle. All rights reserved. 171

Generating and Publishing HTML from an SQR Program Chapter 29

name (,1,30)

do html_td(’’)

city (,+1,16)

do html_td(’’)

state (,+1,5)

do html_td(’ALIGN=RIGHT’)

tot (,+1,11) edit 99999999.99

next-listing no-advance need=1

let #grand_total = #grand_total + &tot

from customers

end-select

do html_tr(’’)

do html_tr(’’)

do html_td(’COLSPAN=3 ALIGN=RIGHT’)

print ’Grand Total’ (+1,40)

do html_td(’ALIGN=RIGHT’)

print #grand_total (,55,11) edit 99999999.99

do html_table_end

end-procedure ! main

In this code example, a DECLARE-LAYOUT command with a large page length setting that is specified in the
MAX-LINES argument is issued to prevent page breaks.

The html_on procedure activates the HTML procedures.

The html_table, html_tr, html_td, and html_th procedures position the information in a tabular format. Note
the arguments that are passed to the HTML procedures:

• BORDER produces the sculpted border.

• WIDTH defines the width of the columns.

• ALIGN right-aligns the text in the Total column.

• COLSPAN causes the Grand Total label to be spanned beneath three columns of data.

Instead of using a HEADING section, use the html_tr and html_th procedures to display column headings.

See Chapter 29, “Generating and Publishing HTML from an SQR Program,” Displaying Records in Tables,
page 166.

Publishing a Report
This section discusses how to:

• Publish a report.

• Support older browsers.

• View a published report.

• Publish by using an automated process.

• Publish by using a Common Gateway Interface (CGI) script.

172 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 29 Generating and Publishing HTML from an SQR Program

Publishing a Report
You can publish an SQR report on a website, and then anyone with a web browser can view the report over
the internet or an intranet by specifying its URL.

To publish a report:

1. Run the SQR program.

2. Determine where the report output will be stored on the web server.

The directory must be one that is referenced by a URL on the server. See your webmaster for more
details on creating a URL.

3. Copy the generated HTML output files to the selected directory on the web server.

If the output is generated on a client workstation, use a utility such as FTP to transfer the HTML
output files to the web server.

Note. If you select the zip file option, a zip file is created for the generated HTML output in addition to
the files being placed in the file system.

4. Create links on a home page or other website that point to the report files so that users browsing the
network can navigate to the report and view it.

Supporting Older Browsers
To support older web browsers that do not support the HTML FRAME construct, create two separate links: one
pointing to the FRAME file (.htm) and labeled to indicate the frame version, and another pointing to the report
output file and labeled to indicate the nonframe version. If the report was created with HTML procedures,
however, it should contain only a single page. In that case, a listing of report pages that are contained in the
FRAME file is not needed. Only the report output file is required for publication on a website.

Viewing a Published Report
Use a web browser to view a report that is published on a website. To do this, specify a URL in your web
browser, for example: http://www.myserver.com/myreport.htm.

Publishing by Using an Automated Process
The webmaster can create a program that automates the publishing process. The program should run the SQR
program and copy the output to the appropriate location. You can start the program by using a scheduling
utility to automatically run the program and publish it on the website at specified times.

The sample Bourne shell program:

• Sets the necessary environment variables.
• Runs the /usr2/reports/myreport.sqr program and generates the /usr2/reports/myreport.htm and
/usr2/reports/myreport.h00 output files.

• Specifies /dev/null as the source of standard input to prevent the program from stopping if it requires input.
• Redirects the standard output to /usr2/reports/myreport.out to capture any status messages.
You can view the output file at a later time to diagnose any problems.

• Copies the generated report files to the /usr2/web/docs directory to publish it on the web server.

Copyright © 1988-2007, Oracle. All rights reserved. 173

Generating and Publishing HTML from an SQR Program Chapter 29

(Use the directory name that is appropriate for your server.)

Here is the code example:

#! /bin/sh

set the appropriate environment values

ORACLE_SID=oracle7; export ORACLE_SID

ORACLE_HOME=/usr2/oracle7; export ORACLE_HOME

SQRDIR=/usr2/sqr/bin; export SQRDIR

invoke the SQR program

sqr /usr2/reports/myreport.sqr orauser/orapasswd \

-PRINTER:ht -I$SQRDIR \

> /usr2/reports/myreport.out 2>&1 < /dev/null

copy over the output

cp /usr2/reports/myreport.htm /usr2/web/docs

cp /usr2/reports/myreport.h00 /usr2/web/docs

Note. You must adjust the environment variables and the file names to fit your particular environment. See the
documentation of your scheduling software for more details.

Publishing by Using a CGI Script
If you use the CGI script method, any user with a web browser can run an SQR and view the output. You can
enable the user to run an SQR by providing a form to fill out.

When a user runs an SQR report through a website:

1. The user navigates to a form.
2. The user enters information on the form and clicks a button to invoke the CGI script.
3. The CGI script runs the SQR program.
4. The CGI script copies the report output file to the standard output.
5. The user views the report.

This process requires:

• The form
• The CGI script
• The SQR program

Creating the Form
Create an HTML form to enable the user to enter some values and start the request.

The following HTML code example defines a form with three radio buttons and a submit button. The radio
buttons enable the user to specify the sorting criteria. The Submit button invokes the CGI script.

Here is the HTML code:

<HTML>

<TITLE>View Customer Information</TITLE>

<FORM METHOD=POST ACTION="/cgi-bin/myreport.sh">

Select the Field to Sort By<P><DIR>

174 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 29 Generating and Publishing HTML from an SQR Program

<INPUT TYPE="radio" NAME="rb1" VALUE="cust_num" CHECKED> Number

<INPUT TYPE="radio" NAME="rb1" VALUE="name"> Name

<INPUT TYPE="radio" NAME="rb1" VALUE="city"> City

<P><INPUT TYPE="submit" NAME="run" VALUE="Run Report"></DIR>

</FORM>

</HTML>

The FORMMETHOD tag specifies that the /cgi-bin/myreport.sh CGI script is invoked when the submit button
is pressed. Adjust the URL of the CGI script to fit your particular environment.

In the INPUT tags, the TYPE=“radio” attribute defines a radio button. The VALUE attribute of the selected
radio button is passed by the CGI script to the SQR program.

Creating the CGI Script
The CGI script is started when a user makes a request from a form. A CGI script can be any executable
program. Don’t call SQR directly as a CGI script—a PERL script, a shell script, or a C program all provide
simpler routines for processing as a CGI script.

The CGI script:

1. Reads the contents of the standard input stream and parses them to obtain the values that were
entered on the form.

If the form has no input fields, this step is not required.

2. Identifies the output as being in HTML format by outputting the Content-type: text/html string and an
extra empty line to the standard output stream.

3. Invokes the SQR program.

Values that the user entered on the form are passed to the SQR program by the CGI script and the
command line.

4. Sends the generated .lis file to the standard output stream.

The .htm file is not used because it points to the .lis file with a relative URL.

The relative URL does not specify to the web browser where to find the .lis file. You should make
provisions within your SQR program to output an error message.

The following Bourne shell is an example of a CGI script:

#! /bin/sh

set the appropriate environment values

ORACLE_SID=oracle7; export ORACLE_SID

ORACLE_HOME=/usr2/oracle7; export ORACLE_HOME

SQRDIR=/usr2/sqr/bin; export SQRDIR

identify the output as being HTML format

echo "Content-type: text/html"

echo ""

get values from fill-out form using the POST method

read TEMPSTR

SORTBY=‘echo $TEMPSTR | sed "s;.*rb1=;;

s;&.*;;"‘

invoke the SQR program

sqr7 /usr2/reports/myreport.sqr orauser/orapasswd \

-PRINTER:ht -f/tmp/myreport$$.lis -I$SQRDIR "$SORTBY" \

Copyright © 1988-2007, Oracle. All rights reserved. 175

Generating and Publishing HTML from an SQR Program Chapter 29

> /tmp/myreport$$.out 2>&1 < /dev/null

if [$? -eq 0]; then

display the output

cat /tmp/myreport$$.lis

else

error occurred, display the error

echo "<HTML><BODY><PRE>"

echo "FAILED TO RUN SQR PROGRAM"

cat /tmp/myreport$$.out

echo "</PRE></BODY></HTML>"

fi# remove temp files

rm /tmp/myreport$$.*

The script performs the following tasks:

1. First, it sets the necessary environment variables. Then it sends the Content-type: text/html string and
an extra empty line to the standard output stream to identify the text as being HTML format.

2. Next, it retrieves the value of the selected radio button into the SORTBY variable. The script passes the
value to the SQR program on the command line.

3. Then the script runs the SQR program. The script uses the /usr2/reports/myreport.sqr report file and
generates the /tmp/myreport$$.lis file. In addition, the script redirects the standard input from /dev/null
to prevent the program from stopping if the program requires any input. It also redirects the standard
output to /tmp/myreport$$.out to capture any status messages. The $$ is the process ID of the program
and is used as a unique identifier to prevent any multiuser problems.

4. Finally, the script copies the generated report file to the standard output stream. If an error occurs,
it generates the status message file instead to enable the user to view the status messages. It then
deletes any temporary files.

Passing Arguments to the SQR Program
You must modify the SQR program to accept values that the user enters on the form.

The following code example is the main procedure from sample program ex28b.sqr. It has been modified
to use the SORT BY value that is passed from the CGI script. The $sortby variable is obtained from the
command line with an INPUT command and is used as dynamic variables in the ORDER BY clause. The
modified lines are shown like this:

begin-procedure main

input $sortby ’Sort by’ type=char

do html_on

do html_table(’’)

do html_tr(’’)

do html_th(’’)

print ’Name’ (3,1)

do html_th(’’)

print ’City’ (,32)

do html_th(’’)

print ’State’ (,49)

begin-select

do html_tr(’’)

do html_td(’’)

name (,1,30)

176 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 29 Generating and Publishing HTML from an SQR Program

do html_td(’’)

city (,+1,16)

do html_td(’’)

state (,+1,5)

next-listing no-advance need=1

let #grand_total = #grand_total + &tot

from customers

order by [$sortby]

end-select

Copyright © 1988-2007, Oracle. All rights reserved. 177

Generating and Publishing HTML from an SQR Program Chapter 29

178 Copyright © 1988-2007, Oracle. All rights reserved.

CHAPTER 30

Creating a Table of Contents

This chapter discusses how to:

• Use the DECLARE-TOC command.
• Use the TOC-ENTRY command.
• Add a table of contents to the cust.sqr sample program.

Using the DECLARE-TOC Command
Use DECLARE-TOC to define a table of contents and its attributes. When generating multiple reports and
tables of contents from one SQR program, you can also use the TOC argument of the DECLARE-REPORT
command.

You must issue the DECLARE-TOC command in the program’s SETUP section. For example:

begin-setup

declare-toc toc_name

for-reports = (all)

dot-leader = yes

indentation = 2

end-declare

.

.

.

end-setup

Following the DECLARE-TOC command, specify a table of contents name. Use the FOR-REPORTS
argument to specify the reports within the SQR program that use this table of contents. Use (all) if you want
all of the reports to use one table of contents. You need to specify individual report names only if you are
generating multiple reports with different tables of contents from one program. Use DOT-LEADER to specify
whether a dot leader precedes the page number. The default setting is NO and the dot leader is suppressed
in all HTML output except when you also specify -BURST:T with -PRINTER:HT. Use INDENTATION to
specify the number of spaces by which each level is indented. (The default setting is 4.)

DECLARE-TOC also supports procedures that are frequently used for setup and initialization purposes:

Copyright © 1988-2007, Oracle. All rights reserved. 179

Creating a Table of Contents Chapter 30

Procedure Usage

BEFORE-TOC Specify a procedure to be run before the table of contents
is generated. If no table of contents is generated, the
procedure does not run.

AFTER-TOC Specify a procedure to be run after the table of contents
is generated. If no table of contents is generated, the
procedure does not run.

BEFORE-PAGE Specify a procedure to be run at the start of each page.

AFTER-PAGE Specify a procedure to be run at the end of each page.

Using the TOC-ENTRY Command
Use TOC-ENTRY to place an entry into the table of contents and take the mandatory TEXT argument, which
specifies the text to be placed in the table of contents. Legal text includes text literals, variables, and columns.
To include levels in a table of contents, use the LEVEL argument, which specifies the level at which to place
the text. If you do not specify this argument, the previous level’s value is used.

If you are writing programs that generate multiple reports, you can:

• Use the FOR-REPORTS argument of the DECLARE-TOC command to identify the reports to which
the DECLARE-TOC applies.

• Use the TOC argument of the DECLARE-REPORT command to specify the name of the table of contents
for the report.

A program can have multiple DECLARE-TOC statements and multiple DECLARE-REPORT statements.
However, you must include the FOR-TOCS argument in the DECLARE-TOC statements or the TOC argument
in the DECLARE-REPORT statements.

To specify the name of the table of contents for a given report by using the TOC argument of the
DECLARE-REPORT command, include code in the SETUP section of the program. For example:

begin-setup

declare-report

toc = toc_name

end-declare

.

.

.

end-setup

Earlier, we modified the sample program ex7a.sqr to use the DECLARE-TOC and TOC-ENTRY commands.
Then, we generated HTML output from the modified program by using the -PRINTER:EH and -PRINTER:HT
command-line flags. In HTML, the table of contents file is a linked point of navigation for the online report.

However, you may also want to generate output files for printing reports on paper. The table of contents
features can also perform this task. To test this, run the modified version of the sample program ex7a.sqr and
print it from an .lis file (or use -PRINTER:WP in Microsoft Windows). The table of contents output contains
the traditional dot leaders and necessary page numbers relating to a hard-copy report.

180 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 30 Creating a Table of Contents

See Chapter 27, “Printing with SQR,” page 147.

Adding a Table of Contents to the CUST.SQR Program
The following program is based on cust.sqr, which is located in the SAMPLE (or SAMPLEW) directory. The
program identifies the table of contents with the specific name of cust_toc. The dot leader is turned on.
Indentation is set to 3. One table of contents level is set by using the TOC-ENTRY command’s LEVEL=1
argument. The BEFORE-PAGE and AFTER-TOC arguments of the DECLARE-TOC command are used
to print simple messages here.

Table of Contents Sample Program 1
Consider this sample program:

begin-setup

declare-toc cust_toc

for-reports=(all)

dot-leader=yes

indentation=3

after-toc=after_toc

before-page=before_page

end-declare

end-setup

begin-program

do main

end-program

begin-procedure after_toc

position (+1,1)

print ’After TOC’ () bold

position (+1,1)

end-procedure

begin-procedure before_page

position (+1,1)

print ’Before Page’ () bold

position (+1,1)

end-procedure

begin-procedure main

begin-select

print ’Customer Info’ ()

print ’-’ (+1,1,62) Fill

name (+1,1,25)

toc-entry text = &name level = 1

cust_num (,35,30)

city (+1,1,16)

state (,17,2)

phone (+1,1,15) edit (xxx)bxxx-xxxx

position (+2,1)

from customers

order by name

Copyright © 1988-2007, Oracle. All rights reserved. 181

Creating a Table of Contents Chapter 30

end-select

end-procedure ! main

begin-heading 3

print $current-date (1,1) Edit ’DD-MON-YYYY’

page-number (1,69) ’Page ’

end-heading

Table of Contents Sample Program 2
The following program is also based on cust.sqr. It is similar to the previous program but declares two table of
contents levels. This program also creates headings and footings that are specific to the table of contents. The
FOR-TOCS argument of the BEGIN-HEADING and BEGIN-FOOTING commands enables you to specify, by
name, the table of contents to which the particular heading or footing section applies. So if the program is
generating multiple reports with multiple tables of contents, you can apply unique or common headings and
footings to different reports and tables of contents. The table of contents heading of this program prints Table
of Contents and the page number. The page numbers in the table of contents print as roman numerals. The
table of contents footing prints Company Confidential.

begin-setup

declare-report cust

end-declare

declare-toc cust_toc

for-reports=(cust)

dot-leader=yes

indentation=3

after-toc=after_toc

before-page=before_page

end-declare

declare-variable

integer #num_toc

integer #num_page

end-declare

end-setup

begin-program

use-report cust

do main

end-program

begin-procedure after_toc

position (+1,1)

print ’After TOC’ () bold

position (+1,1)

end-procedure

begin-procedure before_page

position (+1,1)

print ’Before Page’ () bold

position (+1,1)

end-procedure

begin-procedure main

begin-select

print ’Customer Info’ ()

print ’-’ (+1,1,62) Fill

182 Copyright © 1988-2007, Oracle. All rights reserved.

Chapter 30 Creating a Table of Contents

name (+1,1,25)

toc-entry text = &name level = 1

cust_num (,35,30)

city (+1,1,16)

state (,17,2)

phone (+1,1,15) edit (xxx)bxxx-xxxx

position (+2,1)

do orders(&cust_num)

position (+2,1)

from customers

order by name

end-select

end-procedure ! main

begin-procedure orders (#cust_num)

let #any = 0

begin-select

if not #any

print ’Orders Booked’ (+2,10)

print ’-------------’ (+1,10)

let #any = 1

end-if

b.order_num

b.product_code

order_date (+1,10,20) Edit ’DD-MON-YYYY’

description (,+1,20)

toc-entry text = &description level=2c.price * b.quantity

(,+1,13) Edit $$$$,$$0.99

from orders a, ordlines b, products c

where a.order_num = b.order_num

and b.product_code = c.product_code

and a.cust_num = #cust_num

order by b.order_num, b.product_code

end-select

end-procedure ! orders

begin-footing 3

for-tocs=(cust_toc)

print ’Company Confidential’ (1,1,0) center

print $current-date (1,1) Edit ’DD-MON-YYYY’

end-footing

begin-heading 3

for-tocs=(cust_toc)

print ’Table of Contents’ (1,1) bold center

let $page = roman(#page-count)

print ’Page ’ (1,69)

print $page ()

end-heading

begin-heading 3

print $current-date (1,1) Edit ’DD-MON-YYYY’

page-number (1,69) ’Page ’

end-heading

Copyright © 1988-2007, Oracle. All rights reserved. 183

Creating a Table of Contents Chapter 30

184 Copyright © 1988-2007, Oracle. All rights reserved.

Glossary of PeopleSoft Enterprise Terms

absence entitlement This element defines rules for granting paid time off for valid absences, such as sick
time, vacation, and maternity leave. An absence entitlement element defines the
entitlement amount, frequency, and entitlement period.

absence take This element defines the conditions that must be met before a payee is entitled
to take paid time off.

academic career In PeopleSoft Enterprise Campus Solutions, all course work that a student undertakes
at an academic institution and that is grouped in a single student record. For example,
a university that has an undergraduate school, a graduate school, and various
professional schools might define several academic careers—an undergraduate career,
a graduate career, and separate careers for each professional school (law school,
medical school, dental school, and so on).

academic institution In PeopleSoft Enterprise Campus Solutions, an entity (such as a university or college)
that is independent of other similar entities and that has its own set of rules and
business processes.

academic organization In PeopleSoft Enterprise Campus Solutions, an entity that is part of the administrative
structure within an academic institution. At the lowest level, an academic organization
might be an academic department. At the highest level, an academic organization can
represent a division.

academic plan In PeopleSoft Enterprise Campus Solutions, an area of study—such as a major, minor,
or specialization—that exists within an academic program or academic career.

academic program In PeopleSoft Enterprise Campus Solutions, the entity to which a student applies and is
admitted and from which the student graduates.

accounting class In PeopleSoft Enterprise Performance Management, the accounting class defines how
a resource is treated for generally accepted accounting practices. The Inventory
class indicates whether a resource becomes part of a balance sheet account, such as
inventory or fixed assets, while the Non-inventory class indicates that the resource is
treated as an expense of the period during which it occurs.

accounting date The accounting date indicates when a transaction is recognized, as opposed to the date
the transaction actually occurred. The accounting date and transaction date can be the
same. The accounting date determines the period in the general ledger to which the
transaction is to be posted. You can only select an accounting date that falls within an
open period in the ledger to which you are posting. The accounting date for an item
is normally the invoice date.

accounting split The accounting split method indicates how expenses are allocated or divided among
one or more sets of accounting ChartFields.

accumulator You use an accumulator to store cumulative values of defined items as they are
processed. You can accumulate a single value over time or multiple values over
time. For example, an accumulator could consist of all voluntary deductions, or all
company deductions, enabling you to accumulate amounts. It allows total flexibility
for time periods and values accumulated.

action reason The reason an employee’s job or employment information is updated. The action
reason is entered in two parts: a personnel action, such as a promotion, termination, or
change from one pay group to another—and a reason for that action. Action reasons
are used by PeopleSoft Enterprise Human Resources, PeopleSoft Enterprise Benefits

Copyright © 1988-2007, Oracle. All rights reserved. 185

Glossary

Administration, PeopleSoft Enterprise Stock Administration, and the COBRA
Administration feature of the Base Benefits business process.

action template In PeopleSoft Enterprise Receivables, outlines a set of escalating actions that the
system or user performs based on the period of time that a customer or item has been in
an action plan for a specific condition.

activity In PeopleSoft Enterprise LearningManagement, an instance of a catalog item
(sometimes called a class) that is available for enrollment. The activity defines
such things as the costs that are associated with the offering, enrollment limits and
deadlines, and waitlisting capacities.

In PeopleSoft Enterprise Performance Management, the work of an organization and
the aggregation of actions that are used for activity-based costing.

In PeopleSoft Enterprise Project Costing, the unit of work that provides a further
breakdown of projects—usually into specific tasks.

In PeopleSoft Workflow, a specific transaction that you might need to perform in a
business process. Because it consists of the steps that are used to perform a transaction,
it is also known as a step map.

address usage In PeopleSoft Enterprise Campus Solutions, a grouping of address types defining the
order in which the address types are used. For example, you might define an address
usage code to process addresses in the following order: billing address, dormitory
address, home address, and then work address.

adjustment calendar In PeopleSoft Enterprise Campus Solutions, the adjustment calendar controls how a
particular charge is adjusted on a student’s account when the student drops classes
or withdraws from a term. The charge adjustment is based on how much time has
elapsed from a predetermined date, and it is determined as a percentage of the original
charge amount.

administrative function In PeopleSoft Enterprise Campus Solutions, a particular functional area that processes
checklists, communication, and comments. The administrative function identifies
which variable data is added to a person’s checklist or communication record when a
specific checklist code, communication category, or comment is assigned to the
student. This key data enables you to trace that checklist, communication, or comment
back to a specific processing event in a functional area.

admit type In PeopleSoft Enterprise Campus Solutions, a designation used to distinguish
first-year applications from transfer applications.

agreement In PeopleSoft Enterprise eSettlements, provides a way to group and specify processing
options, such as payment terms, pay from a bank, and notifications by a buyer and
supplier location combination.

allocation rule In PeopleSoft Enterprise Incentive Management, an expression within compensation
plans that enables the system to assign transactions to nodes and participants. During
transaction allocation, the allocation engine traverses the compensation structure
from the current node to the root node, checking each node for plans that contain
allocation rules.

alternate account A feature in PeopleSoft Enterprise General Ledger that enables you to create
a statutory chart of accounts and enter statutory account transactions at the
detail transaction level, as required for recording and reporting by some national
governments.

analysis database In PeopleSoft Enterprise Campus Solutions, database tables that store large amounts
of student information that may not appear in standard report formats. The analysis
database tables contain keys for all objects in a report that an application program can
use to reference other student-record objects that are not contained in the printed
report. For instance, the analysis database contains data on courses that are considered

186 Copyright © 1988-2007, Oracle. All rights reserved.

Glossary

for satisfying a requirement but that are rejected. It also contains information on
courses captured by global limits. An analysis database is used in PeopleSoft
Enterprise Academic Advisement.

ApplicationMessaging PeopleSoft Application Messaging enables applications within the PeopleSoft
Enterprise product family to communicate synchronously or asynchronously with
other PeopleSoft Enterprise and third-party applications. An application message
defines the records and fields to be published or subscribed to.

AR specialist Abbreviation for receivables specialist. In PeopleSoft Enterprise Receivables, an
individual in who tracks and resolves deductions and disputed items.

arbitration plan The arbiter when multiple price rules match the transaction. This plan determines the
order in which the price rules are applied to the transaction base price.

assessment rule In PeopleSoft Enterprise Receivables, a user-defined rule that the system uses to
evaluate the condition of a customer’s account or of individual items to determine
whether to generate a follow-up action.

asset class An asset group used for reporting purposes. It can be used in conjunction with the asset
category to refine asset classification.

attribute/value pair In PeopleSoft Enterprise Directory Interface, relates the data that makes up an entry in
the directory information tree.

auction event In PeopleSoft Strategic Sourcing, a sourcing event where bidders actively compete
against one another to achieve the best price or score.

audience In PeopleSoft Enterprise Campus Solutions, a segment of the database that relates
to an initiative, or a membership organization that is based on constituent attributes
rather than a dues-paying structure. Examples of audiences include the Class of ’65
and Undergraduate Arts & Sciences.

authentication server A server that is set up to verify users of the system.

base time period In PeopleSoft Enterprise Business Planning, the lowest level time period in a calendar.

benchmark job In PeopleSoft Enterprise Workforce Analytics Solution, a benchmark job is a job
code for which there is corresponding salary survey data from published, third-party
sources.

bid response In PeopleSoft Strategic Sourcing, the response by a bidder to an event.

billing career In PeopleSoft Enterprise Campus Solutions, the one career under which other careers
are grouped for billing purposes if a student is active simultaneously in multiple
careers.

bio bit or bio brief In PeopleSoft Enterprise Campus Solutions, a report that summarizes information
stored in the system about a particular constituent. You can generate standard or
specialized reports.

book In PeopleSoft Enterprise Asset Management, used for storing financial and tax
information, such as costs, depreciation attributes, and retirement information
on assets.

branch A tree node that rolls up to nodes above it in the hierarchy, as defined in PeopleSoft
Tree Manager.

budgetary account only An account used by the system only and not by users; this type of account does
not accept transactions. You can only budget with this account. Formerly called
“system-maintained account.”

Copyright © 1988-2007, Oracle. All rights reserved. 187

Glossary

budget check In commitment control, the processing of source transactions against control budget
ledgers, to see if they pass, fail, or pass with a warning.

budget control In commitment control, budget control ensures that commitments and expenditures
don’t exceed budgets. It enables you to track transactions against corresponding
budgets and terminate a document’s cycle if the defined budget conditions are not met.
For example, you can prevent a purchase order from being dispatched to a vendor if
there are insufficient funds in the related budget to support it.

budget period The interval of time (such as 12 months or 4 quarters) into which a period is divided
for budgetary and reporting purposes. The ChartField allows maximum flexibility to
define operational accounting time periods without restriction to only one calendar.

business activity The name of a subset of a detailed business process. This might be a specific
transaction, task, or action that you perform in a business process.

business event In PeopleSoft Enterprise Receivables, defines the processing characteristics for the
Receivable Update process for a draft activity.

In PeopleSoft Enterprise Sales Incentive Management, an original business transaction
or activity that may justify the creation of a PeopleSoft Enterprise Incentive
Management event (a sale, for example).

business process A standard set of 17 business processes are defined and maintained by the PeopleSoft
Enterprise product families and are supported by the Business Process Engineering
group. An example of a business process is Order Fulfillment, which is a business
process that manages sales orders and contracts, inventory, billing, and so forth.

See also detailed business process.

business unit constraints In PeopleSoft Strategic Sourcing, these constraints apply to a selected Strategic
Sourcing business unit. Spend is tracked across all of the events within the selected
Strategic Sourcing business unit.

business task The name of the specific function depicted in one of the business processes.

business unit A corporation or a subset of a corporation that is independent with regard to one or
more operational or accounting functions.

buyer In PeopleSoft Enterprise eSettlements, an organization (or business unit, as opposed
to an individual) that transacts with suppliers (vendors) within the system. A buyer
creates payments for purchases that are made in the system.

buy event In PeopleSoft Strategic Sourcing, for event creators, the purchase of goods or services,
most typically associated with a request for quote, proposal, or reverse auction.For
bidders, the sale of goods or services.

campus In PeopleSoft Enterprise Campus Solutions, an entity that is usually associated with
a distinct physical administrative unit, that belongs to a single academic institution,
that uses a unique course catalog, and that produces a common transcript for students
within the same academic career.

cash drawer A repository for monies and payments taken locally.

catalog item In PeopleSoft Enterprise LearningManagement, a specific topic that a learner can
study and have tracked. For example, “Introduction to Microsoft Word.” A catalog
item contains general information about the topic and includes a course code,
description, categorization, keywords, and delivery methods. A catalog item can
have one or more learning activities.

catalog map In PeopleSoft Enterprise Catalog Management, translates values from the catalog
source data to the format of the company’s catalog.

188 Copyright © 1988-2007, Oracle. All rights reserved.

Glossary

catalog partner In PeopleSoft Enterprise Catalog Management, shares responsibility with the
enterprise catalog manager for maintaining catalog content.

categorization Associates partner offerings with catalog offerings and groups them into enterprise
catalog categories.

category In PeopleSoft Enterprise Campus Solutions, a broad grouping to which specific
comments or communications (contexts) are assigned. Category codes are also linked
to 3C access groups so that you can assign data-entry or view-only privileges across
functions.

channel In PeopleSoft MultiChannel Framework, email, chat, voice (computer telephone
integration [CTI]), or a generic event.

ChartField A field that stores a chart of accounts, resources, and so on, depending on the
PeopleSoft Enterprise application. ChartField values represent individual account
numbers, department codes, and so forth.

ChartField balancing You can require specific ChartFields to match up (balance) on the debit and the credit
side of a transaction.

ChartField combination edit The process of editing journal lines for valid ChartField combinations based on
user-defined rules.

ChartKey One or more fields that uniquely identify each row in a table. Some tables contain only
one field as the key, while others require a combination.

checkbook In PeopleSoft Enterprise Promotions Management, enables you to view financial data
(such as planned, incurred, and actual amounts) that is related to funds and trade
promotions.

checklist code In PeopleSoft Enterprise Campus Solutions, a code that represents a list of planned
or completed action items that can be assigned to a staff member, volunteer, or unit.
Checklists enable you to view all action assignments on one page.

claimback In the wholesale distribution industry, a contract between supplier and distributor, in
which monies are paid to the distributor on the sale of specified products or product
groups to targeted customers or customer groups.

class In PeopleSoft Enterprise Campus Solutions, a specific offering of a course component
within an academic term.

See also course.

Class ChartField A ChartField value that identifies a unique appropriation budget key when you
combine it with a fund, department ID, and program code, as well as a budget period.
Formerly called sub-classification.

clearance In PeopleSoft Enterprise Campus Solutions, the period of time during which
a constituent in PeopleSoft Enterprise Contributor Relations is approved for
involvement in an initiative or an action. Clearances are used to prevent development
officers from making multiple requests to a constituent during the same time period.

clone In PeopleCode, to make a unique copy. In contrast, to copymay mean making a
new reference to an object, so if the underlying object is changed, both the copy and
the original change.

cohort In PeopleSoft Enterprise Campus Solutions, the highest level of the three-level
classification structure that you define for enrollment management. You can define a
cohort level, link it to other levels, and set enrollment target numbers for it.

See also population and division.

Copyright © 1988-2007, Oracle. All rights reserved. 189

Glossary

collection To make a set of documents available for searching in Verity, you must first create
at least one collection. A collection is set of directories and files that allow search
application users to use the Verity search engine to quickly find and display source
documents that match search criteria. A collection is a set of statistics and pointers
to the source documents, stored in a proprietary format on a file server. Because a
collection can only store information for a single location, PeopleTools maintains a set
of collections (one per language code) for each search index object.

collection rule In PeopleSoft Enterprise Receivables, a user-defined rule that defines actions to
take for a customer based on both the amount and the number of days past due for
outstanding balances.

comm key See communication key.

communication key In PeopleSoft Enterprise Campus Solutions, a single code for entering a combination
of communication category, communication context, communication method,
communication direction, and standard letter code. Communication keys (also called
comm keys or speed keys) can be created for background processes as well as for
specific users.

compensation object In PeopleSoft Enterprise Incentive Management, a node within a compensation
structure. Compensation objects are the building blocks that make up a compensation
structure’s hierarchical representation.

compensation structure In PeopleSoft Enterprise Incentive Management, a hierarchical relationship of
compensation objects that represents the compensation-related relationship between
the objects.

component interface A component interface is a set of application programming interfaces (APIs) that you
can use to access and modify PeopleSoft Enterprise database information using a
program instead of the PeopleSoft client.

condition In PeopleSoft Enterprise Receivables, occurs when there is a change of status for a
customer’s account, such as reaching a credit limit or exceeding a user-defined balance
due.

configuration parameter
catalog

Used to configure an external system with PeopleSoft Enterprise. For example, a
configuration parameter catalog might set up configuration and communication
parameters for an external server.

configuration plan In PeopleSoft Enterprise Incentive Management, configuration plans hold allocation
information for common variables (not incentive rules) and are attached to a node
without a participant. Configuration plans are not processed by transactions.

constituents In PeopleSoft Enterprise Campus Solutions, friends, alumni, organizations,
foundations, or other entities affiliated with the institution, and about which the
institution maintains information. The constituent types delivered with PeopleSoft
Enterprise Contributor Relations Solutions are based on those defined by the Council
for the Advancement and Support of Education (CASE).

constraint A business policy or rule that affects how a sourcing event is awarded. There are three
types of constraints: business, global, and event.

content reference Content references are pointers to content registered in the portal registry. These are
typically either URLs or iScripts. Content references fall into three categories: target
content, templates, and template pagelets.

context In PeopleCode, determines which buffer fields can be contextually referenced and
which is the current row of data on each scroll level when a PeopleCode program
is running.

In PeopleSoft Enterprise Campus Solutions, a specific instance of a comment or
communication. One or more contexts are assigned to a category, which you link to

190 Copyright © 1988-2007, Oracle. All rights reserved.

Glossary

3C access groups so that you can assign data-entry or view-only privileges across
functions.

In PeopleSoft Enterprise Incentive Management, a mechanism that is used to
determine the scope of a processing run. PeopleSoft Enterprise Incentive Management
uses three types of context: plan, period, and run-level.

control table Stores information that controls the processing of an application. This type of
processing might be consistent throughout an organization, or it might be used only by
portions of the organization for more limited sharing of data.

cost plus contract line A rate-based contract line associated with a fee component of Award, Fixed, Incentive,
or Other. Rate-based contract lines associated with a fee type of None are not
considered cost-plus contract lines.

cost plus pricing In PeopleSoft Enterprise Pricer, a pricing method that begins with cost of goods as
the basis.

cost profile A combination of a receipt cost method, a cost flow, and a deplete cost method. A
profile is associated with a cost book and determines how items in that book are
valued, as well as how the material movement of the item is valued for the book.

cost row A cost transaction and amount for a set of ChartFields.

counter sale A face-to-face customer transaction where the customer typically selects items from
the storefront or picks up products that they ordered ahead of time. Customers pay
for the goods at the counter and take the goods with them instead of having the goods
shipped from a warehouse.

course In PeopleSoft Enterprise Campus Solutions, a course that is offered by a school and
that is typically described in a course catalog. A course has a standard syllabus and
credit level; however, these may be modified at the class level. Courses can contain
multiple components such as lecture, discussion, and lab.

See also class.

course share set In PeopleSoft Enterprise Campus Solutions, a tag that defines a set of requirement
groups that can share courses. Course share sets are used in PeopleSoft Enterprise
Academic Advisement.

current learning In PeopleSoft Enterprise LearningManagement, a self-service repository for all of a
learner’s in-progress learning activities and programs.

data acquisition In PeopleSoft Enterprise Incentive Management, the process during which raw
business transactions are acquired from external source systems and fed into the
operational data store (ODS).

data cube In PeopleSoft Analytic Calculation Engine, a data cube is a container for one kind
of data (such as Sales data) and works with in tandem with one or more dimensions.
Dimensions and data cubes in PeopleSoft Analytic Calculation Engine are unrelated
to dimensions and online analytical processing (OLAP) cubes in PeopleSoft Cube
Manager.

data elements Data elements, at their simplest level, define a subset of data and the rules by which
to group them.

For Workforce Analytics, data elements are rules that tell the system what measures to
retrieve about your workforce groups.

dataset A data grouping that enables role-based filtering and distribution of data. You can
limit the range and quantity of data that is displayed for a user by associating dataset
rules with user roles. The result of dataset rules is a set of data that is appropriate
for the user’s roles.

Copyright © 1988-2007, Oracle. All rights reserved. 191

Glossary

delivery method In PeopleSoft Enterprise LearningManagement, identifies the primary type of
delivery method in which a particular learning activity is offered. Also provides
default values for the learning activity, such as cost and language. This is primarily
used to help learners search the catalog for the type of delivery from which they learn
best. Because PeopleSoft Enterprise LearningManagement is a blended learning
system, it does not enforce the delivery method.

In PeopleSoft Enterprise Supply Chain Management, identifies the method by which
goods are shipped to their destinations (such as truck, air, and rail). The delivery
method is specified when creating shipment schedules.

delivery method type In PeopleSoft Enterprise LearningManagement, identifies how learning activities can
be delivered—for example, through online learning, classroom instruction, seminars,
books, and so forth—in an organization. The type determines whether the delivery
method includes scheduled components.

detailed business process A subset of the business process. For example, the detailed business process named
Determine Cash Position is a subset of the business process called Cash Management.

dimension In PeopleSoft Analytic Calculation Engine, a dimension contains a list of one kind
of data that can span various contexts, and it is a basic component of an analytic
model. Within the analytic model, a dimension is attached to one or more data cubes.
In PeopleSoft Cube Manager, a dimension is the most basic component of an OLAP
cube and specifies the PeopleSoft metadata to be used to create the dimension’s rollup
structure. Dimensions and data cubes in PeopleSoft Analytic Calculation Engine are
unrelated to dimensions and OLAP cubes in PeopleSoft Cube Manager.

direct receipt Items shipped from a warehouse or vendor to another warehouse.

direct ship Items shipped from the vendor or warehouse directly to the customer (formerly
referred to as drop ship).

directory information tree In PeopleSoft Enterprise Directory Interface, the representation of a directory’s
hierarchical structure.

division In PeopleSoft Enterprise Campus Solutions, the lowest level of the three-level
classification structure that you define in PeopleSoft Enterprise Recruiting and
Admissions for enrollment management. You can define a division level, link it to
other levels, and set enrollment target numbers for it.

See also population and cohort.

document sequencing A flexible method that sequentially numbers the financial transactions (for example,
bills, purchase orders, invoices, and payments) in the system for statutory reporting
and for tracking commercial transaction activity.

dynamic detail tree A tree that takes its detail values—dynamic details—directly from a table in the
database, rather than from a range of values that are entered by the user.

edit table A table in the database that has its own record definition, such as the Department table.
As fields are entered into a PeopleSoft Enterprise application, they can be validated
against an edit table to ensure data integrity throughout the system.

effective date Amethod of dating information in PeopleSoft Enterprise applications. You can
predate information to add historical data to your system, or postdate information in
order to enter it before it actually goes into effect. By using effective dates, you don’t
delete values; you enter a new value with a current effective date.

EIM ledger Abbreviation for Enterprise Incentive Management ledger. In PeopleSoft Enterprise
Incentive Management, an object to handle incremental result gathering within the
scope of a participant. The ledger captures a result set with all of the appropriate traces
to the data origin and to the processing steps of which it is a result.

192 Copyright © 1988-2007, Oracle. All rights reserved.

Glossary

elimination set In PeopleSoft Enterprise General Ledger, a related group of intercompany accounts
that is processed during consolidations.

entry event In PeopleSoft Enterprise General Ledger, Receivables, Payables, Purchasing, and
Billing, a business process that generates multiple debits and credits resulting from
single transactions to produce standard, supplemental accounting entries.

equitization In PeopleSoft Enterprise General Ledger, a business process that enables parent
companies to calculate the net income of subsidiaries on a monthly basis and adjust
that amount to increase the investment amount and equity income amount before
performing consolidations.

equity item limit In PeopleSoft Enterprise Campus Solutions, the amounts of funds set by the institution
to be awarded with discretionary or gift funds. The limit could be reduced by amounts
equal to such things as expected family contribution (EFC) or parent contribution.
Students are packaged by Equity Item Type Groups and Related Equity Item Types.
This limit can be used to assure that similar student populations are packaged equally.

event A predefined point either in the Component Processor flow or in the program flow.
As each point is encountered, the event activates each component, triggering any
PeopleCode program that is associated with that component and that event. Examples
of events are FieldChange, SavePreChange, and RowDelete.

In PeopleSoft Enterprise Human Resources, also refers to an incident that affects
benefits eligibility.

event constraints In PeopleSoft Strategic Sourcing, these constraints are associated with a specific
sourcing event. Spend is tracked within the selected event.

event propagation process In PeopleSoft Enterprise Sales Incentive Management, a process that determines,
through logic, the propagation of an original PeopleSoft Enterprise Incentive
Management event and creates a derivative (duplicate) of the original event to
be processed by other objects. PeopleSoft Enterprise Enterprise Sales Incentive
Management uses this mechanism to implement splits, roll-ups, and so on. Event
propagation determines who receives the credit.

exception In PeopleSoft Enterprise Receivables, an item that either is a deduction or is in dispute.

exclusive pricing In PeopleSoft Enterprise Order Management, a type of arbitration plan that is
associated with a price rule. Exclusive pricing is used to price sales order transactions.

fact In PeopleSoft Enterprise applications, facts are numeric data values from fields from a
source database as well as an analytic application. A fact can be anything you want
to measure your business by, for example, revenue, actual, budget data, or sales
numbers. A fact is stored on a fact table.

financial aid term In PeopleSoft Enterprise Campus Solutions, a combination of a period of time that the
school determines as an instructional accounting period and an academic career. It
is created and defined during the setup process. Only terms eligible for financial aid
are set up for each financial aid career.

financial sanctions For U.S. based companies and their foreign subsidiaries, a federal regulation from the
Office of Foreign Assets Control (OFAC) requires that vendors be validated against a
Specially Designated Nationals (SDN) list prior to payment.

For PeopleSoft Payables, eSettlements, Cash Management, and Order to Cash, you
can validate your vendors against any financial sanctions list (for example, the SDN
list, a European Union list, and so on).

forecast item A logical entity with a unique set of descriptive demand and forecast data that is used
as the basis to forecast demand. You create forecast items for a wide range of uses, but
they ultimately represent things that you buy, sell, or use in your organization and for
which you require a predictable usage.

Copyright © 1988-2007, Oracle. All rights reserved. 193

Glossary

fund In PeopleSoft Enterprise Promotions Management, a budget that can be used to fund
promotional activity. There are four funding methods: top down, fixed accrual,
rolling accrual, and zero-based accrual.

gap In PeopleSoft Enterprise Campus Solutions, an artificial figure that sets aside an
amount of unmet financial aid need that is not funded with Title IV funds. A gap can
be used to prevent fully funding any student to conserve funds, or it can be used to
preserve unmet financial aid need so that institutional funds can be awarded.

generic process type In PeopleSoft Process Scheduler, process types are identified by a generic process
type. For example, the generic process type SQR includes all SQR process types,
such as SQR process and SQR report.

gift table In PeopleSoft Enterprise Campus Solutions, a table or so-called donor pyramid
describing the number and size of gifts that you expect will be needed to successfully
complete the campaign in PeopleSoft Enterprise Contributor Relations. The gift table
enables you to estimate the number of donors and prospects that you need at each
gift level to reach the campaign goal.

GDS Abbreviation forGlobal Distribution System. Broad-based term to describe all
computer reservation systems for making travel plans.

GL business unit Abbreviation for general ledger business unit. A unit in an organization that is an
independent entity for accounting purposes. It maintains its own set of accounting
books.

See also business unit.

GL entry template Abbreviation for general ledger entry template. In PeopleSoft Enterprise Campus
Solutions, a template that defines how a particular item is sent to the general ledger.
An item-type maps to the general ledger, and the GL entry template can involve
multiple general ledger accounts. The entry to the general ledger is further controlled
by high-level flags that control the summarization and the type of accounting—that is,
accrual or cash.

GL Interface process Abbreviation forGeneral Ledger Interface process. In PeopleSoft Enterprise Campus
Solutions, a process that is used to send transactions from PeopleSoft Enterprise
Student Financials to the general ledger. Item types are mapped to specific general
ledger accounts, enabling transactions to move to the general ledger when the GL
Interface process is run.

global constraints In PeopleSoft Strategic Sourcing, these constraints apply across multiple Strategic
Sourcing business units. Spend is tracked across all of the events from the multiple
Strategic Sourcing business units.

group In PeopleSoft Enterprise Billing and Receivables, a posting entity that comprises one
or more transactions (items, deposits, payments, transfers, matches, or write-offs).

In PeopleSoft Enterprise Human Resources Management and Supply Chain
Management, any set of records that are associated under a single name or variable to
run calculations in PeopleSoft business processes. In PeopleSoft Enterprise Time and
Labor, for example, employees are placed in groups for time reporting purposes.

ideal response In PeopleSoft Strategic Sourcing, a question that requires the response to match the
ideal value for the bid to be considered eligible for award. If the response does not
match the ideal value, you can still submit the bid, but it will be disqualified and
ineligible for award.

incentive object In PeopleSoft Enterprise Incentive Management, the incentive-related objects that
define and support the PeopleSoft Enterprise Incentive Management calculation
process and results, such as plan templates, plans, results data, and user interaction
objects.

194 Copyright © 1988-2007, Oracle. All rights reserved.

Glossary

incentive rule In PeopleSoft Enterprise Sales Incentive Management, the commands that act on
transactions and turn them into compensation. A rule is one part in the process of
turning a transaction into compensation.

incur In PeopleSoft Enterprise Promotions Management, to become liable for a promotional
payment. In other words, you owe that amount to a customer for promotional
activities.

initiative In PeopleSoft Enterprise Campus Solutions, the basis from which all advancement
plans are executed. It is an organized effort targeting a specific constituency, and it can
occur over a specified period of time with specific purposes and goals. An initiative
can be a campaign, an event, an organized volunteer effort, a membership drive, or
any other type of effort defined by the institution. Initiatives can be multipart, and
they can be related to other initiatives. This enables you to track individual parts of an
initiative, as well as entire initiatives.

inquiry access In PeopleSoft Enterprise Campus Solutions, a type of security access that permits the
user only to view data.

See also update access.

institution In PeopleSoft Enterprise Campus Solutions, an entity (such as a university or college)
that is independent of other similar entities and that has its own set of rules and
business processes.

integration A relationship between two compatible integration points that enables communication
to take place between systems. Integrations enable PeopleSoft Enterprise applications
to work seamlessly with other PeopleSoft Enterprise applications or with third-party
systems or software.

integration point An interface that a system uses to communicate with another PeopleSoft Enterprise
application or an external application.

integration set A logical grouping of integrations that applications use for the same business purpose.
For example, the integration set ADVANCED_SHIPPING_ORDER contains all of the
integrations that notify a customer that an order has shipped.

item In PeopleSoft Enterprise Inventory, a tangible commodity that is stored in a business
unit (shipped from a warehouse).

In PeopleSoft Enterprise Demand Planning, Inventory Policy Planning, and Supply
Planning, a noninventory item that is designated as being used for planning purposes
only. It can represent a family or group of inventory items. It can have a planning bill
of material (BOM) or planning routing, and it can exist as a component on a planning
BOM. A planning item cannot be specified on a production or engineering BOM or
routing, and it cannot be used as a component in a production. The quantity on hand
will never be maintained.

In PeopleSoft Enterprise Receivables, an individual receivable. An item can be an
invoice, a credit memo, a debit memo, a write-off, or an adjustment.

item shuffle In PeopleSoft Enterprise Campus Solutions, a process that enables you to change a
payment allocation without having to reverse the payment.

itinerary In PeopleSoft Expenses, a collection of travel reservations. Itineraries can have
reservations that are selected and reserved with the travel vendor. These itineraries are
not yet paid for and can be referred to as pending reservations. Reservations that have
been paid for are referred to as confirmed reservations.

joint communication In PeopleSoft Enterprise Campus Solutions, one letter that is addressed jointly to two
people. For example, a letter might be addressed to both Mr. Sudhir Awat and Ms.
Samantha Mortelli. A relationship must be established between the two individuals in
the database, and at least one of the individuals must have an ID in the database.

Copyright © 1988-2007, Oracle. All rights reserved. 195

Glossary

keyword In PeopleSoft Enterprise Campus Solutions, a term that you link to particular elements
within PeopleSoft Enterprise Student Financials, Financial Aid, and Contributor
Relations. You can use keywords as search criteria that enable you to locate specific
records in a search dialog box.

KPI An abbreviation for key performance indicator. A high-level measurement of how well
an organization is doing in achieving critical success factors. This defines the data
value or calculation upon which an assessment is determined.

KVI Abbreviation forKnown Value Item. Term used for products or groups of products
where the selling price cannot be reduced or increased.

landlord In PeopleSoft Real Estate Management, an entity that owns real estate and leases the
real estate to tenants.

LDIF file Abbreviation for Lightweight Directory Access Protocol (LDAP) Data Interchange
Format file. Contains discrepancies between PeopleSoft Enterprise data and directory
data.

learner group In PeopleSoft Enterprise LearningManagement, a group of learners who are linked
to the same learning environment. Members of the learner group can share the same
attributes, such as the same department or job code. Learner groups are used to control
access to and enrollment in learning activities and programs. They are also used to
perform group enrollments and mass enrollments in the back office.

learning components In PeopleSoft Enterprise LearningManagement, the foundational building blocks
of learning activities. PeopleSoft Enterprise Learning Management supports six
basic types of learning components: web-based, session, webcast, test, survey, and
assignment. One or more of these learning component types compose a single
learning activity.

learning environment In PeopleSoft Enterprise LearningManagement, identifies a set of categories and
catalog items that can be made available to learner groups. Also defines the default
values that are assigned to the learning activities and programs that are created within a
particular learning environment. Learning environments provide a way to partition the
catalog so that learners see only those items that are relevant to them.

learning history In PeopleSoft Enterprise LearningManagement, a self-service repository for all of a
learner’s completed learning activities and programs.

lease In PeopleSoft Real Estate Management, a legally binding agreement between a
landlord and a tenant, where the tenant rents all or part of a physical property from the
landlord.

lease abstract In PeopleSoft Real Estate Management, a summarized version of the complete lease
contract with only the important terms. The lease abstract usually fits on one page
and does not include legal terminology.

ledger mapping You use ledger mapping to relate expense data from general ledger accounts to
resource objects. Multiple ledger line items can be mapped to one or more resource
IDs. You can also use ledger mapping to map dollar amounts (referred to as rates)
to business units. You can map the amounts in two different ways: an actual amount
that represents actual costs of the accounting period, or a budgeted amount that can be
used to calculate the capacity rates as well as budgeted model results. In PeopleSoft
Enterprise Warehouse, you can map general ledger accounts to the EW Ledger table.

library section In PeopleSoft Enterprise Incentive Management, a section that is defined in a plan (or
template) and that is available for other plans to share. Changes to a library section are
reflected in all plans that use it.

line In PeopleSoft Strategic Sourcing, an individual item or service upon which there
can be a bid.

196 Copyright © 1988-2007, Oracle. All rights reserved.

Glossary

linked section In PeopleSoft Enterprise Incentive Management, a section that is defined in a plan
template but appears in a plan. Changes to linked sections propagate to plans using
that section.

linked variable In PeopleSoft Enterprise Incentive Management, a variable that is defined and
maintained in a plan template and that also appears in a plan. Changes to linked
variables propagate to plans using that variable.

LMS Abbreviation for learning management system. In PeopleSoft Enterprise Campus
Solutions, LMS is a PeopleSoft Enterprise Student Records feature that provides a
common set of interoperability standards that enable the sharing of instructional
content and data between learning and administrative environments.

load In PeopleSoft Enterprise Inventory, identifies a group of goods that are shipped
together. Load management is a feature of PeopleSoft Enterprise Inventory that is used
to track the weight, the volume, and the destination of a shipment.

local functionality In PeopleSoft Enterprise HRMS, the set of information that is available for a specific
country. You can access this information when you click the appropriate country flag
in the global window, or when you access it by a local country menu.

location Locations enable you to indicate the different types of addresses—for a company, for
example, one address to receive bills, another for shipping, a third for postal deliveries,
and a separate street address. Each address has a different location number. The
primary location—indicated by a 1—is the address you use most often and may be
different from the main address.

logistical task In PeopleSoft Enterprise Services Procurement, an administrative task that is related to
hiring a service provider. Logistical tasks are linked to the service type on the work
order so that different types of services can have different logistical tasks. Logistical
tasks include both preapproval tasks (such as assigning a new badge or ordering a
new laptop) and postapproval tasks (such as scheduling orientation or setting up the
service provider email). The logistical tasks can be mandatory or optional. Mandatory
preapproval tasks must be completed before the work order is approved. Mandatory
postapproval tasks, on the other hand, must be completed before a work order is
released to a service provider.

market template In PeopleSoft Enterprise Incentive Management, additional functionality that is
specific to a given market or industry and is built on top of a product category.

mass change In PeopleSoft Enterprise Campus Solutions, mass change is a SQL generator that can
be used to create specialized functionality. Using mass change, you can set up a
series of Insert, Update, or Delete SQL statements to perform business functions that
are specific to the institution.

See also 3C engine.

match group In PeopleSoft Enterprise Receivables, a group of receivables items and matching offset
items. The system creates match groups by using user-defined matching criteria for
selected field values.

MCF server Abbreviation for PeopleSoft MultiChannel Framework server. Comprises the
universal queue server and the MCF log server. Both processes are started whenMCF
Servers is selected in an application server domain configuration.

merchandising activity In PeopleSoft Enterprise Promotions Management, a specific discount type that is
associated with a trade promotion (such as off-invoice, billback or rebate, or lump-sum
payment) that defines the performance that is required to receive the discount. In the
industry, you may know this as an offer, a discount, a merchandising event, an event,
or a tactic.

Copyright © 1988-2007, Oracle. All rights reserved. 197

Glossary

meta-SQL Meta-SQL constructs expand into platform-specific SQL substrings. They are used in
functions that pass SQL strings, such as in SQL objects, the SQLExec function, and
PeopleSoft Application Engine programs.

metastring Metastrings are special expressions included in SQL string literals. The metastrings,
prefixed with a percent (%) symbol, are included directly in the string literals. They
expand at run time into an appropriate substring for the current database platform.

multibook In PeopleSoft Enterprise General Ledger, multiple ledgers having multiple-base
currencies that are defined for a business unit, with the option to post a single
transaction to all base currencies (all ledgers) or to only one of those base currencies
(ledgers).

multicurrency The ability to process transactions in a currency other than the business unit’s base
currency.

national allowance In PeopleSoft Enterprise Promotions Management, a promotion at the corporate level
that is funded by nondiscretionary dollars. In the industry, you may know this as a
national promotion, a corporate promotion, or a corporate discount.

NDP Abbreviation forNon-Discountable Products. Term used for products or groups of
products where the selling price cannot be decreased.

need In PeopleSoft Enterprise Campus Solutions, the difference between the cost of
attendance (COA) and the expected family contribution (EFC). It is the gap between
the cost of attending the school and the student’s resources. The financial aid package
is based on the amount of financial need. The process of determining a student’s
need is called need analysis.

node-oriented tree A tree that is based on a detail structure, but the detail values are not used.

Optimization Engine A PeopleTools component that Strategic Sourcing leverages to evaluate bids and
determine an ideal award allocation. The award recommendation is based on
maximizing the value while adhering to purchasing and company objectives and
constraints.

pagelet Each block of content on the home page is called a pagelet. These pagelets display
summary information within a small rectangular area on the page. The pagelet provide
users with a snapshot of their most relevant PeopleSoft Enterprise and non-PeopleSoft
Enterprise content.

participant In PeopleSoft Enterprise Incentive Management, participants are recipients of the
incentive compensation calculation process.

participant object Each participant object may be related to one or more compensation objects.

See also compensation object.

partner A company that supplies products or services that are resold or purchased by the
enterprise.

pay cycle In PeopleSoft Enterprise Payables, a set of rules that define the criteria by which it
should select scheduled payments for payment creation.

payment shuffle In PeopleSoft Enterprise Campus Solutions, a process allowing payments that have
been previously posted to a student’s account to be automatically reapplied when a
higher priority payment is posted or the payment allocation definition is changed.

pending item In PeopleSoft Enterprise Receivables, an individual receivable (such as an invoice,
a credit memo, or a write-off) that has been entered in or created by the system, but
hasn’t been posted.

198 Copyright © 1988-2007, Oracle. All rights reserved.

Glossary

PeopleCode PeopleCode is a proprietary language, executed by the PeopleSoft Enterprise
component processor. PeopleCode generates results based on existing data or user
actions. By using various tools provided with PeopleTools, external services are
available to all PeopleSoft Enterprise applications wherever PeopleCode can be
executed.

PeopleCode event See event.

PeopleSoft Pure Internet
Architecture

The fundamental architecture on which PeopleSoft 8 applications are constructed,
consisting of a relational database management system (RDBMS), an application
server, a web server, and a browser.

performance measurement In PeopleSoft Enterprise Incentive Management, a variable used to store data (similar
to an aggregator, but without a predefined formula) within the scope of an incentive
plan. Performance measures are associated with a plan calendar, territory, and
participant. Performance measurements are used for quota calculation and reporting.

period context In PeopleSoft Enterprise Incentive Management, because a participant typically
uses the same compensation plan for multiple periods, the period context associates
a plan context with a specific calendar period and fiscal year. The period context
references the associated plan context, thus forming a chain. Each plan context has a
corresponding set of period contexts.

person of interest A person about whom the organization maintains information but who is not part of
the workforce.

personal portfolio In PeopleSoft Enterprise Campus Solutions, the user-accessible menu item that
contains an individual’s name, address, telephone number, and other personal
information.

phase A level 1 task, meaning that if a task had subtasks, the level 1 task would be considered
the phase.

pickup quantity The product quantity that the customer is taking with them from the counter sales
environment.

plan In PeopleSoft Enterprise Sales Incentive Management, a collection of allocation rules,
variables, steps, sections, and incentive rules that instruct the PeopleSoft Enterprise
Incentive Management engine in how to process transactions.

plan context In PeopleSoft Enterprise Incentive Management, correlates a participant with
the compensation plan and node to which the participant is assigned, enabling
the PeopleSoft Enterprise Incentive Management system to find anything that is
associated with the node and that is required to perform compensation processing.
Each participant, node, and plan combination represents a unique plan context—if
three participants are on a compensation structure, each has a different plan context.
Configuration plans are identified by plan contexts and are associated with the
participants that refer to them.

plan template In PeopleSoft Enterprise Incentive Management, the base from which a plan is created.
A plan template contains common sections and variables that are inherited by all plans
that are created from the template. A template may contain steps and sections that
are not visible in the plan definition.

planned learning In PeopleSoft Enterprise LearningManagement, a self-service repository for all of
a learner’s planned learning activities and programs.

planning instance In PeopleSoft Enterprise Supply Planning, a set of data (business units, items, supplies,
and demands) constituting the inputs and outputs of a supply plan.

population In PeopleSoft Enterprise Campus Solutions, the middle level of the three-level
classification structure that you define in PeopleSoft Enterprise Recruiting and

Copyright © 1988-2007, Oracle. All rights reserved. 199

Glossary

Admissions for enrollment management. You can define a population level, link it to
other levels, and set enrollment target numbers for it.

See also division and cohort.

portal registry In PeopleSoft Enterprise applications, the portal registry is a tree-like structure in
which content references are organized, classified, and registered. It is a central
repository that defines both the structure and content of a portal through a hierarchical,
tree-like structure of folders useful for organizing and securing content references.

predecessor task A task that you must complete before you start another task.

price breaks In PeopleSoft Strategic Sourcing, a price discount or surcharge that a bidder may
apply based on the quantity awarded.

price components In PeopleSoft Strategic Sourcing, the various components, such as material costs,
labor costs, shipping costs, and so on that make up the overall bid price.

price list Enables you to select products and conditions for which the price list applies to a
transaction. During a transaction, the system either determines the product price
based on the predefined search hierarchy for the transaction or uses the product’s
lowest price on any associated, active price lists. This price is used as the basis for
any further discounts and surcharges.

price rule The conditions that must be met for adjustments to be applied to the base price.
Multiple rules can apply when conditions of each rule are met.

price rule conditions Conditions that select the price-by fields, the values for the price-by fields, and the
operator that determines how the price-by fields relate to the transaction.

price rule key The fields that are available to define price rule conditions (which are used to match a
transaction) on the price rule.

primacy number In PeopleSoft Enterprise Campus Solutions, a number that the system uses to prioritize
financial aid applications when students are enrolled in multiple academic careers and
academic programs at the same time. The Consolidate Academic Statistics process
uses the primacy number indicated for both the career and program at the institutional
level to determine a student’s primary career and program. The system also uses the
number to determine the primary student attribute value that is used when you extract
data to report on cohorts. The lowest number takes precedence.

primary name type In PeopleSoft Enterprise Campus Solutions, the name type that is used to link the name
stored at the highest level within the system to the lower-level set of names that an
individual provides.

process category In PeopleSoft Process Scheduler, processes that are grouped for server load balancing
and prioritization.

process group In PeopleSoft Enterprise Financials, a group of application processes (performed in a
defined order) that users can initiate in real time, directly from a transaction entry page.

process definition Process definitions define each run request.

process instance A unique number that identifies each process request. This value is automatically
incremented and assigned to each requested process when the process is submitted to
run.

process job You can link process definitions into a job request and process each request serially
or in parallel. You can also initiate subsequent processes based on the return code
from each prior request.

200 Copyright © 1988-2007, Oracle. All rights reserved.

Glossary

process request A single run request, such as a Structured Query Report (SQR), a COBOL or
Application Engine program, or a Crystal report that you run through PeopleSoft
Process Scheduler.

process run control A PeopleTools variable used to retain PeopleSoft Process Scheduler values needed
at runtime for all requests that reference a run control ID. Do not confuse these with
application run controls, which may be defined with the same run control ID, but only
contain information specific to a given application process request.

product A PeopleSoft Enterprise or third-party product. PeopleSoft organizes its software
products into product families and product lines. Interactive Services Repository
contains information about every release of every product that PeopleSoft sells, as
well as products from certified third-party companies. These products appear with
the product name and release number.

product adds The pricing functionality where buying product A gets product B for free or at a price
(formerly referred to as giveaways).

product bidding In PeopleSoft Strategic Sourcing, the placing of a bid on behalf of the bidder, up or
down to the bidder’s specified amount, so that the bidder can be the leading bidder.

product category In PeopleSoft Enterprise Incentive Management, indicates an application in the
PeopleSoft Enterprise Incentive Management suite of products. Each transaction in
the PeopleSoft Enterprise Incentive Management system is associated with a product
category.

product family A group of products that are related by common functionality. The family names
that can be searched using Interactive Service Repository are Oracle’s PeopleSoft
Enterprise, PeopleSoft EnterpriseOne, PeopleSoft World, and third-party, certified
partners.

product line The name of a PeopleSoft Enterprise product line or the company name of a third-party
certified partner. Integration Services Repository enables you to search for integration
points by product line.

programs In PeopleSoft Enterprise LearningManagement, a high-level grouping that guides the
learner along a specific learning path through sections of catalog items. PeopleSoft
Enterprise Learning Systems provides two types of programs—curricula and
certifications.

progress log In PeopleSoft Enterprise Services Procurement, tracks deliverable-based projects.
This is similar to the time sheet in function and process. The service provider contact
uses the progress log to record and submit progress on deliverables. The progress
can be logged by the activity that is performed, by the percentage of work that is
completed, or by the completion of milestone activities that are defined for the project.

project transaction In PeopleSoft Enterprise Project Costing, an individual transaction line that represents
a cost, time, budget, or other transaction row.

promotion In PeopleSoft Enterprise Promotions Management, a trade promotion, which is
typically funded from trade dollars and used by consumer products manufacturers to
increase sales volume.

prospects In PeopleSoft Enterprise Campus Solutions, students who are interested in applying to
the institution.

In PeopleSoft Enterprise Contributor Relations, individuals and organizations that are
most likely to make substantial financial commitments or other types of commitments
to the institution.

proxy bidding In PeopleSoft Strategic Sourcing, the placing of a bid on behalf of the bidder, up or
down to the bidder’s specified amount, so that the bidder can be the leading bidder.

Copyright © 1988-2007, Oracle. All rights reserved. 201

Glossary

publishing In PeopleSoft Enterprise Incentive Management, a stage in processing that makes
incentive-related results available to participants.

rating components In PeopleSoft Enterprise Campus Solutions, variables used with the Equation Editor to
retrieve specified populations.

record group A set of logically and functionally related control tables and views. Record groups
help enable TableSet sharing, which eliminates redundant data entry. Record groups
ensure that TableSet sharing is applied consistently across all related tables and views.

record input VAT flag Abbreviation for record input value-added tax flag. Within PeopleSoft Enterprise
Purchasing, Payables, and General Ledger, this flag indicates that you are recording
input VAT on the transaction. This flag, in conjunction with the record output VAT
flag, is used to determine the accounting entries created for a transaction and to
determine how a transaction is reported on the VAT return. For all cases within
Purchasing and Payables where VAT information is tracked on a transaction, this
flag is set to Yes. This flag is not used in PeopleSoft Enterprise Order Management,
Billing, or Receivables, where it is assumed that you are always recording only output
VAT, or in PeopleSoft Enterprise Expenses, where it is assumed that you are always
recording only input VAT.

record output VAT flag Abbreviation for record output value-added tax flag.

See record input VAT flag.

recname The name of a record that is used to determine the associated field to match a value
or set of values.

recognition In PeopleSoft Enterprise Campus Solutions, the recognition type indicates whether
the PeopleSoft Enterprise Contributor Relations donor is the primary donor of a
commitment or shares the credit for a donation. Primary donors receive hard credit that
must total 100 percent. Donors that share the credit are given soft credit. Institutions
can also define other share recognition-type values such as memo credit or vehicle
credit.

reference data In PeopleSoft Enterprise Sales Incentive Management, system objects that represent
the sales organization, such as territories, participants, products, customers, and
channels.

reference object In PeopleSoft Enterprise Incentive Management, this dimension-type object further
defines the business. Reference objects can have their own hierarchy (for example,
product tree, customer tree, industry tree, and geography tree).

reference transaction In commitment control, a reference transaction is a source transaction that is
referenced by a higher-level (and usually later) source transaction, in order to
automatically reverse all or part of the referenced transaction’s budget-checked
amount. This avoids duplicate postings during the sequential entry of the transaction at
different commitment levels. For example, the amount of an encumbrance transaction
(such as a purchase order) will, when checked and recorded against a budget, cause
the system to concurrently reference and relieve all or part of the amount of a
corresponding pre-encumbrance transaction, such as a purchase requisition.

regional sourcing In PeopleSoft Enterprise Purchasing, provides the infrastructure to maintain, display,
and select an appropriate vendor and vendor pricing structure that is based on a
regional sourcing model where the multiple ship to locations are grouped. Sourcing
may occur at a level higher than the ship to location.

relationship object In PeopleSoft Enterprise Incentive Management, these objects further define a
compensation structure to resolve transactions by establishing associations between
compensation objects and business objects.

remote data source data Data that is extracted from a separate database and migrated into the local database.

202 Copyright © 1988-2007, Oracle. All rights reserved.

Glossary

REN server Abbreviation for real-time event notification server in PeopleSoft MultiChannel
Framework.

requester In PeopleSoft Enterprise eSettlements, an individual who requests goods or services
and whose ID appears on the various procurement pages that reference purchase
orders.

reservations In PeopleSoft Expenses, travel reservations that have been placed with the travel
vendor.

reversal indicator In PeopleSoft Enterprise Campus Solutions, an indicator that denotes when a
particular payment has been reversed, usually because of insufficient funds.

RFI event In PeopleSoft Strategic Sourcing, a request for information.

RFx event In PeopleSoft Strategic Sourcing, a request for proposal or request for a quote event
when bidders submit their overall best bids and during which bidders do not actively
compete against one another.

role Describes how people fit into PeopleSoft Workflow. A role is a class of users who
perform the same type of work, such as clerks or managers. Your business rules
typically specify what user role needs to do an activity.

role user A PeopleSoft Workflow user. A person’s role user ID serves much the same purpose as
a user ID does in other parts of the system. PeopleSoft Workflow uses role user IDs
to determine how to route worklist items to users (through an email address, for
example) and to track the roles that users play in the workflow. Role users do not need
PeopleSoft user IDs.

roll up In a tree, to roll up is to total sums based on the information hierarchy.

run control A run control is a type of online page that is used to begin a process, such as the
batch processing of a payroll run. Run control pages generally start a program that
manipulates data.

run control ID A unique ID to associate each user with his or her own run control table entries.

run-level context In PeopleSoft Enterprise Incentive Management, associates a particular run (and batch
ID) with a period context and plan context. Every plan context that participates in a run
has a separate run-level context. Because a run cannot span periods, only one run-level
context is associated with each plan context.

saved bid In PeopleSoft Strategic Sourcing, a bid that has been created but not submitted. Only
submitted bids are eligible for award.

score In PeopleSoft Strategic Sourcing, the numerical sum of answers (percentages) to bid
factors on an event. Scores appear only to bidders on auction events.

SCP SCBMXMLmessage Abbreviation for Supply Chain Planning Supply Chain Business Modeler Extensible
Markup Language message. Supply Chain Business Modeler uses XML as the format
for all data that it imports and exports.

search query You use this set of objects to pass a query string and operators to the search engine.
The search index returns a set of matching results with keys to the source documents.

search/match In PeopleSoft Enterprise Campus Solutions and PeopleSoft Enterprise Human
Resources Management Solutions, a feature that enables you to search for and identify
duplicate records in the database.

seasonal address In PeopleSoft Enterprise Campus Solutions, an address that recurs for the same length
of time at the same time of year each year until adjusted or deleted.

Copyright © 1988-2007, Oracle. All rights reserved. 203

Glossary

section In PeopleSoft Enterprise Incentive Management, a collection of incentive rules that
operate on transactions of a specific type. Sections enable plans to be segmented to
process logical events in different sections.

security event In commitment control, security events trigger security authorization checking, such
as budget entries, transfers, and adjustments; exception overrides and notifications;
and inquiries.

sell event In PeopleSoft Strategic Sourcing, for event creators, the sale of goods or services most
typically associated with forward auctions. For bidders, the purchase of goods or
services.

serial genealogy In PeopleSoft Enterprise Manufacturing, the ability to track the composition of a
specific, serial-controlled item.

serial in production In PeopleSoft Enterprise Manufacturing, enables the tracing of serial information for
manufactured items. This is maintained in the ItemMaster record.

service impact In PeopleSoft Enterprise Campus Solutions, the resulting action triggered by a service
indicator. For example, a service indicator that reflects nonpayment of account
balances by a student might result in a service impact that prohibits registration for
classes.

service indicator In PeopleSoft Enterprise Campus Solutions, indicates services that may be either
withheld or provided to an individual. Negative service indicators indicate holds that
prevent the individual from receiving specified services, such as check-cashing
privileges or registration for classes. Positive service indicators designate special
services that are provided to the individual, such as front-of-line service or special
services for disabled students.

session In PeopleSoft Enterprise Campus Solutions, time elements that subdivide a term into
multiple time periods during which classes are offered. In PeopleSoft Enterprise
Contributor Relations, a session is the means of validating gift, pledge, membership,
or adjustment data entry . It controls access to the data entered by a specific user ID.
Sessions are balanced, queued, and then posted to the institution’s financial system.
Sessions must be posted to enter a matching gift or pledge payment, to make an
adjustment, or to process giving clubs or acknowledgements.

In PeopleSoft Enterprise LearningManagement, a single meeting day of an activity
(that is, the period of time between start and finish times within a day). The session
stores the specific date, location, meeting time, and instructor. Sessions are used for
scheduled training.

session template In PeopleSoft Enterprise LearningManagement, enables you to set up common
activity characteristics that may be reused while scheduling a PeopleSoft Enterprise
Learning Management activity—characteristics such as days of the week, start and
end times, facility and room assignments, instructors, and equipment. A session
pattern template can be attached to an activity that is being scheduled. Attaching a
template to an activity causes all of the default template information to populate
the activity session pattern.

setup relationship In PeopleSoft Enterprise Incentive Management, a relationship object type that
associates a configuration plan with any structure node.

share driver expression In PeopleSoft Enterprise Business Planning, a named planning method similar to a
driver expression, but which you can set up globally for shared use within a single
planning application or to be shared between multiple planning applications through
PeopleSoft Enterprise Warehouse.

short-term customer A customer not in the system who is entered during sales order entry using a template.

204 Copyright © 1988-2007, Oracle. All rights reserved.

Glossary

single signon With single signon, users can, after being authenticated by a PeopleSoft Enterprise
application server, access a second PeopleSoft Enterprise application server without
entering a user ID or password.

source key process In PeopleSoft Enterprise Campus Solutions, a process that relates a particular
transaction to the source of the charge or financial aid. On selected pages, you can drill
down into particular charges.

source transaction In commitment control, any transaction generated in a PeopleSoft Enterprise or
third-party application that is integrated with commitment control and which can be
checked against commitment control budgets. For example, a pre-encumbrance,
encumbrance, expenditure, recognized revenue, or collected revenue transaction.

sourcing objective For constraints, the option to designate whether a business rule is required (mandatory)
or is only recommended (target).

speed key See communication key.

SpeedChart A user-defined shorthand key that designates several ChartKeys to be used for voucher
entry. Percentages can optionally be related to each ChartKey in a SpeedChart
definition.

SpeedType A code representing a combination of ChartField values. SpeedTypes simplify the
entry of ChartFields commonly used together.

staging Amethod of consolidating selected partner offerings with the offerings from the
enterprise’s other partners.

standard letter code In PeopleSoft Enterprise Campus Solutions, a standard letter code used to identify
each letter template available for use in mail merge functions. Every letter generated in
the system must have a standard letter code identification.

statutory account Account required by a regulatory authority for recording and reporting financial
results. In PeopleSoft Enterprise, this is equivalent to the Alternate Account
(ALTACCT) ChartField.

step In PeopleSoft Enterprise Sales Incentive Management, a collection of sections in a
plan. Each step corresponds to a step in the job run.

storage level In PeopleSoft Enterprise Inventory, identifies the level of a material storage location.
Material storage locations are made up of a business unit, a storage area, and a storage
level. You can set up to four storage levels.

subcustomer qualifier A value that groups customers into a division for which you can generate detailed
history, aging, events, and profiles.

Summary ChartField You use summary ChartFields to create summary ledgers that roll up detail amounts
based on specific detail values or on selected tree nodes. When detail values are
summarized using tree nodes, summary ChartFields must be used in the summary
ledger data record to accommodate the maximum length of a node name (20
characters).

summary ledger An accounting feature used primarily in allocations, inquiries, and PS/nVision
reporting to store combined account balances from detail ledgers. Summary ledgers
increase speed and efficiency of reporting by eliminating the need to summarize
detail ledger balances each time a report is requested. Instead, detail balances are
summarized in a background process according to user-specified criteria and stored on
summary ledgers. The summary ledgers are then accessed directly for reporting.

summary time period In PeopleSoft Enterprise Business Planning, any time period (other than a base time
period) that is an aggregate of other time periods, including other summary time
periods and base time periods, such as quarter and year total.

Copyright © 1988-2007, Oracle. All rights reserved. 205

Glossary

summary tree A tree used to roll up accounts for each type of report in summary ledgers. Summary
trees enable you to define trees on trees. In a summary tree, the detail values are really
nodes on a detail tree or another summary tree (known as the basis tree). A summary
tree structure specifies the details on which the summary trees are to be built.

syndicate To distribute a production version of the enterprise catalog to partners.

system function In PeopleSoft Enterprise Receivables, an activity that defines how the system
generates accounting entries for the general ledger.

system source The system source identifies the source of a transaction row in the database. For
example, a transaction that originates in PeopleSoft Enterprise Expenses contains a
system source code of BEX (Expenses Batch).

When PeopleSoft Enterprise Project Costing prices the source transaction row for
billing, the system creates a new row with a system source code of PRP (Project
Costing pricing), which represents the system source of the new row. System
source codes can identify sources that are internal or external to the PeopleSoft
Enterprise system. For example, processes that import data fromMicrosoft Project
into PeopleSoft Enterprise applications create transaction rows with a source code
of MSP (Microsoft Project).

TableSet Ameans of sharing similar sets of values in control tables, where the actual data values
are different but the structure of the tables is the same.

TableSet sharing Shared data that is stored in many tables that are based on the same TableSets. Tables
that use TableSet sharing contain the SETID field as an additional key or unique
identifier.

target currency The value of the entry currency or currencies converted to a single currency for budget
viewing and inquiry purposes.

task A deliverable item on the detailed sourcing plan.

tax authority In PeopleSoft Enterprise Campus Solutions, a user-defined element that combines a
description and percentage of a tax with an account type, an item type, and a service
impact.

template A template is HTML code associated with a web page. It defines the layout of the page
and also where to get HTML for each part of the page. In PeopleSoft Enterprise, you
use templates to build a page by combining HTML from a number of sources. For a
PeopleSoft Enterprise portal, all templates must be registered in the portal registry,
and each content reference must be assigned a template.

tenant In PeopleSoft Real Estate Management, an entity that leases real estate from a
landlord.

territory In PeopleSoft Enterprise Sales Incentive Management, hierarchical relationships of
business objects, including regions, products, customers, industries, and participants.

third party A company or vendor that has extensive PeopleSoft Enterprise product knowledge
and whose products and integrations have been certified and are compatible with
PeopleSoft Enterprise applications.

tiered pricing Enables different portions of a schedule to be priced differently from one another.

time span A relative period, such as year-to-date or current period, that various PeopleSoft
General Ledger functions and reports can use when a rolling time frame, rather than
a specific date, is required.

total cost In PeopleSoft Strategic Sourcing, the estimated dollar cost (sum of real price dollars
and potential “soft” or non-price dollars) of a particular award approach.

206 Copyright © 1988-2007, Oracle. All rights reserved.

Glossary

travel group In PeopleSoft Expenses, the organization’s travel rules and polices that are associated
with specific business units, departments, or employees. You must define at least one
travel group when setting up the PeopleSoft Expenses travel feature. You must define
and associate at least one travel group with a travel vendor.

travel partner In PeopleSoft Expenses, the travel vendor with which the organization has a
contractual relationship.

3C engine Abbreviation for Communications, Checklists, and Comments engine. In PeopleSoft
Enterprise Campus Solutions, the 3C engine enables you to automate business
processes that involve additions, deletions, and updates to communications, checklists,
and comments. You define events and triggers to engage the engine, which runs
the mass change and processes the 3C records (for individuals or organizations)
immediately and automatically from within business processes.

3C group Abbreviation for Communications, Checklists, and Comments group. In PeopleSoft
Enterprise Campus Solutions, a method of assigning or restricting access privileges. A
3C group enables you to group specific communication categories, checklist codes,
and comment categories. You can then assign the group inquiry-only access or update
access, as appropriate.

trace usage In PeopleSoft Enterprise Manufacturing, enables the control of which components will
be traced during the manufacturing process. Serial- and lot-controlled components can
be traced. This is maintained in the ItemMaster record.

transaction allocation In PeopleSoft Enterprise Incentive Management, the process of identifying the owner
of a transaction. When a raw transaction from a batch is allocated to a plan context,
the transaction is duplicated in the PeopleSoft Enterprise Incentive Management
transaction tables.

transaction state In PeopleSoft Enterprise Incentive Management, a value assigned by an incentive
rule to a transaction. Transaction states enable sections to process only transactions
that are at a specific stage in system processing. After being successfully processed,
transactions may be promoted to the next transaction state and “picked up” by a
different section for further processing.

Translate table A system edit table that stores codes and translate values for the miscellaneous fields in
the database that do not warrant individual edit tables of their own.

tree The graphical hierarchy in PeopleSoft Enterprise systems that displays the relationship
between all accounting units (for example, corporate divisions, projects, reporting
groups, account numbers) and determines roll-up hierarchies.

tuition lock In PeopleSoft Enterprise Campus Solutions, a feature in the Tuition Calculation
process that enables you to specify a point in a term after which students are charged a
minimum (or locked) fee amount. Students are charged the locked fee amount even if
they later drop classes and take less than the normal load level for that tuition charge.

unclaimed transaction In PeopleSoft Enterprise Incentive Management, a transaction that is not claimed
by a node or participant after the allocation process has completed, usually due to
missing or incomplete data. Unclaimed transactions may be manually assigned to the
appropriate node or participant by a compensation administrator.

universal navigation header Every PeopleSoft Enterprise portal includes the universal navigation header, intended
to appear at the top of every page as long as the user is signed on to the portal. In
addition to providing access to the standard navigation buttons (like Home, Favorites,
and signoff) the universal navigation header can also display a welcome message for
each user.

update access In PeopleSoft Enterprise Campus Solutions, a type of security access that permits the
user to edit and update data.

Copyright © 1988-2007, Oracle. All rights reserved. 207

Glossary

See also inquiry access.

user interaction object In PeopleSoft Enterprise Sales Incentive Management, used to define the reporting
components and reports that a participant can access in his or her context. All
PeopleSoft Enterprise Sales Incentive Management user interface objects and reports
are registered as user interaction objects. User interaction objects can be linked to a
compensation structure node through a compensation relationship object (individually
or as groups).

variable In PeopleSoft Enterprise Sales Incentive Management, the intermediate results of
calculations. Variables hold the calculation results and are then inputs to other
calculations. Variables can be plan variables that persist beyond the run of an engine or
local variables that exist only during the processing of a section.

VAT exception Abbreviation for value-added tax exception. A temporary or permanent exemption
from paying VAT that is granted to an organization. This terms refers to both VAT
exoneration and VAT suspension.

VAT exempt Abbreviation for value-added tax exempt. Describes goods and services that are not
subject to VAT. Organizations that supply exempt goods or services are unable to
recover the related input VAT. This is also referred to as exempt without recovery.

VAT exoneration Abbreviation for value-added tax exoneration. An organization that has been granted a
permanent exemption from paying VAT due to the nature of that organization.

VAT suspension Abbreviation for value-added tax suspension. An organization that has been granted a
temporary exemption from paying VAT.

warehouse A PeopleSoft Enterprise data warehouse that consists of predefined ETL maps, data
warehouse tools, and DataMart definitions.

weight or weighting In PeopleSoft Strategic Sourcing, how important the line or question is to the
overall event. Weighting is used to score and analyze bids. For RFx and RFI events,
weightings may or may not appear to bidders.

work order In PeopleSoft Enterprise Services Procurement, enables an enterprise to create
resource-based and deliverable-based transactions that specify the basic terms and
conditions for hiring a specific service provider. When a service provider is hired, the
service provider logs time or progress against the work order.

worker A person who is part of the workforce; an employee or a contingent worker.

workset A group of people and organizations that are linked together as a set. You can use
worksets to simultaneously retrieve the data for a group of people and organizations
and work with the information on a single page.

worksheet Away of presenting data through a PeopleSoft Enterprise Business Analysis Modeler
interface that enables users to do in-depth analysis using pivoting tables, charts,
notes, and history information.

worklist The automated to-do list that PeopleSoft Workflow creates. From the worklist, you
can directly access the pages you need to perform the next action, and then return to
the worklist for another item.

XML link The XML Linking language enables you to insert elements into XML documents to
create a links between resources.

XML schema An XML definition that standardizes the representation of application messages,
component interfaces, or business interlinks.

XPI Abbreviation for eXtended Process Integrator. PeopleSoft XPI is the integration
infrastructure that enables both real-time and batch communication with JD Edwards
EnterpriseOne applications.

208 Copyright © 1988-2007, Oracle. All rights reserved.

Glossary

yield by operation In PeopleSoft Enterprise Manufacturing, the ability to plan the loss of a manufactured
item on an operation-by-operation basis.

zero-rated VAT Abbreviation for zero-rated value-added tax. AVAT transaction with a VAT code that
has a tax percent of zero. Used to track taxable VAT activity where no actual VAT
amount is charged. Organizations that supply zero-rated goods and services can still
recover the related input VAT. This is also referred to as exempt with recovery.

Copyright © 1988-2007, Oracle. All rights reserved. 209

Glossary

210 Copyright © 1988-2007, Oracle. All rights reserved.

Index

Numerics/Symbols
! character 10
printing 10

character 27
& character 17
- character 27
_ character 27
\ character, in edit masks 112

A
additional documentation xvi
AFTER procedure
order of processing 31
using with ON-BREAK 27

AFTER-PAGE procedure 180
AFTER-TOC procedure 180
ALIGN argument 172
ALTER-LOCALE command 116, 117
ALTER-PRINTER command 55
selecting fonts 77

API, See See application programming
interface
<APPLET> tags 161
Application Engine 2
application fundamentals xv
application programming interface
functions for calling SQR 120
invoking an SQR program using the SQR
API 119
invoking for an external
application 122
SQR 119

argument files 153
creating from reports 154
using 153

arguments 153
command-line 152
passing 92, 176
used with ASK or INPUT
command 153

arrays 44
creating 46
multiple 49
performance issues 135
sorting 135

three-dimensional 44
ASK command 153

B
background colors, HTML 160
background images, HTML 160
bar codes 69
bat files 155
batch mode 155
BATCH-MODE argument 153
bcl.a 120
bclw32.dll 119
BEFORE procedure
order of processing 31
using with ON-BREAK 27

BEFORE-PAGE procedure 180
BEFORE-TOC procedure 180
BEGIN-DOCUMENT command 57
BEGIN-FOOTING command 10, 182
BEGIN-HEADING command 10, 182
BEGIN-PROCEDURE command 14
BEGIN-PROGRAM command 6
BEGIN-SELECT command 14
HAVING clause 96
ORDER BY clause with 20

BEGIN-SQL paragraph 103
blank lines 57
bmp files 66
body, of SQR page 9
BORDER argument 172
BOTTOM-MARGIN argument 37
boxes, drawing 65
break logic 19, 20
multiple breaks 22
nesting breaks 22
order of events 28
-T command-line flag and 127
understanding 19

break procedures, with BEFORE and
AFTER 27
break values, saving 32
browser support 173
buffering
records 143
rows 143

Copyright © 1988-2007, Oracle. All rights reserved. 211

Index

-BURST
P 162
S 162
T 162
{xx} 162

bursting reports 162
business charts 71

C
C, extending SQR with 122
categories, grouping by in cross-tabular
reports 47
CENTER argument, PRINT
command 10, 78
CGI scripts
creating 175
publishing with 174

CHAR-WIDTH argument
DECLARE-LAYOUT command 77

CHAR-WIDTH argument,
DECLARE-LAYOUT command 37
character grid 6, 37, 55, 77
character size 77
charts
available types 71
business 71
creating 71
defining 75
passing data to 76
printing 75

CODE argument, PRINT command 81
CODE-PRINTER argument, PRINT
command 81
CODE-PRINTER=HT 161, 171
colors, HTML 161
COLSPAN argument 172
column variables 17
changing the name 18
using in a condition 17

columns
calculating totals 27
calculating totals with ON-BREAK 24
calling procedures before and after
breaks 27
choosing not to print ON-BREAK 32
defining 54
nesting multiple 22
printing multiple 53
reprinting values on a new page 26
with multiple breaks 31

COLUMNS command 53, 54
command line
arguments 152, 154
reserved characters 154
special characters 154
SQR 119, 151

command-line flags 7
-F 149
-KEEP 148
-NOLIS 148, 149
output files 147
-PRINTER:EH 147, 158
-PRINTER:HP 147
-PRINTER:HT 147, 158
-PRINTER:LP 147
-PRINTER:PS 147
-PRINTER:WP 147
-PRINTER:xx 148
-RS 146
-RT 146
syntax 152
-T 127

comments 10
comments, submitting xx
COMMIT statement 105
common elements xx
compile time 146
compile time features 145
compiling SQR programs 142
CONCAT command 69
conditional processing 19
connectivity 7
contact information xx
counters 54
CREATE TABLE, SQL statement 103
CREATE-ARRAY command 46
cross-references xix
cross-tabular reports
creating 43
grouping by categories in 47

$current-date
obtaining date values with 107
using with PRINT command 26

cursor status, SQL 134
Customer Connection website xvi

D
data
avoiding redundant 19
exporting 61

212 Copyright © 1988-2007, Oracle. All rights reserved.

Index

listing 13
passing to charts 76
printing 13
selecting from database 13, 14

DATA-ARRAY option, PRINT-CHART
command 75
DATA-ARRAY-COLUMN-COUNT
argument, PRINT-CHART command 76
DATA-ARRAY-COLUMN-LABELS
argument, PRINT-CHART command 76
DATA-ARRAY-ROW-COUNT argument,
PRINT-CHART command 76
database platforms supported 4
database server, running programs on 143
date arithmetic 107
date data type 107
date edit masks
case sensitivity 112
table of 111
using 111

date formats, literal 109
DATE keyword 117
date variables 27
dateadd function 108
datediff function 108
datenow function 108
dates 9
converting from strings 107, 110
converting to strings 107, 110
edit masks 111
entering with INPUT command 110
performing arithmetic with 107
printing 26
variables 113

datetostr function 47, 108, 110
DB2 151
#DEBUG command 127
-DEBUG flag 128
debugging SQR programs
using #DEBUG 127
using compiler directives 128

decimal numbers, performance issues 141
declarations
adding with SETUP 35
understanding 35

DECLARE-CHART command
LEGEND-TITLE option 75
understanding 71

DECLARE-IMAGE command 66
DECLARE-LAYOUT command 36

CHAR-WIDTH argument 37, 77
defining page width with 55
LINE-HEIGHT argument 37, 77
MAX-COLUMNS argument 37
MAX-LINES argument 37
ORIENTATION argument 37
setting margins with 37, 64
setting paper size with 37

DECLARE-PRINTER command 81, 148
FOR-REPORTS option 149
selecting fonts 77
type option 149

DECLARE-REPORT command
PRINTER-TYPE option 148
using 148

DECLARE-TOC command 179
DECLARE-VARIABLE command 107,
113
demand paging 162
DISPLAY command 110
DO command 14
document markers 57, 68
document paragraph 57
documentation
printed xvi
related xvi
updates xvi

DROP TABLE, SQL statement 103
dynamic SQL
checking syntax 88
performance issues 133
understanding 86

dynamic variables 87
in z/OS 87

E
edit masks 26, 111
and literal date formats 109
case sensitivity 112
default 115

ELSE command 27
#ELSE compiler directive 128
ENCODE command 62
END-DOCUMENT command 57
END-FOOTING command 10
END-HEADING command 10
END-IF command 27
END-PROCEDURE command 14
END-PROGRAM command 6
END-SELECT command 14

Copyright © 1988-2007, Oracle. All rights reserved. 213

Index

#ENDIF compiler directive 128
enhanced HTML 159
eps files 66
error checking 88
error values, SQR 121
EVALUATE command 47, 83
event order, in ON-BREAK processing 28
exclamation mark 10
printing 10

export file, creating 62
exporting data 61
extufunc.c 125

F
-F command-line flag 149
FILL option, PRINT command 26, 64
flags 7
See Also command-line flags

flat files
performance issues 139
sorting 139

FONT option, ALTER-PRINTER
command 65
fonts
changing 64
defaults 77
for printer-independent reports 81
setting 77

FOOTING section 10
footings 9
adding 10
adding comments 10
adding page numbers 10
defining for multiple reports 100
designating number of lines for 10
indicating the print position 10
sample program 9

FOR-REPORTS option
BEGIN-FOOTING command 100
BEGIN-HEADING command 100
DECLARE-PRINTER command 149

form letters
creating 57
sample program 57

form-feed characters 7
FORMFEED argument 62
FRAME file 163
FullHTML, enhanced HTML
parameter 159
functions 95

application programming interface 120
user 122, 126

G
gif files 66
GIF format 169
global procedures 91
global variables 91
glossary 185
GRAPHIC command 65
GRAPHIC FONT command 81
graphical reports, creating 76
graphics
adding 64
using 63

grid 6, 37, 55
for positioning text 77

groups
creating new with break logic 19
inserting lines between 21
starting new 20

H
having clause, BEGIN-SELECT
command 96
HEADING section 10, 14
headings 9
adding 10
defining for multiple reports 100
designating number of lines for 10
HTML 163, 167
reprinting on a new page 26
sample program 9

highlighting, HTML text 163, 167
HORZ-LINE argument, GRAPHIC
command 65
HP LaserJet printers 55
hpgl files 66
HTML
adding your own tags 171
background colors 160
background images 160
bursting files 162
centering 157
colors 161
enhanced 159
extensions 161
font sizing 157
font styles 157

214 Copyright © 1988-2007, Oracle. All rights reserved.

Index

formatting paragraphs 170
forms 174
FRAME construct 173
headings 163
highlighting 163
images 157, 169
links 160, 163
lists 163, 169
modifying existing SQR program
for 171
paragraph formatting 163
procedures 164
producing output 158, 161
reserved characters 162
setting attributes 160
SQR features supported 157
tables 163
tags 158
testing output 163
text colors 161
titles 160

html_br HTML procedure 170
html_hr HTML procedure 170
html_img HTML procedure 169
HTML.INC 158
html_nobr HTML procedure 170
html_on HTML procedure 164
html_p HTML procedure 170
html_set_body_attributes HTML
procedure 158, 163
html_set_head_tags HTML
procedure 158, 163
hyphens, using with commands 27

I
IF command 27
#IF compiler directive 128
if-then-else logic 27
#IFDEF compiler directive 128
#IFNDEF compiler directive 128
IMAGE-SIZE argument, PRINT-IMAGE
command 67
images
HTML 169
sharing 66
supported file formats 66

implementation codes, adding to
ufunc.c 124
#INCLUDE command 68
Informix 151

InitSQRExtension() function 126
INPUT command 153
and dates 110

INSERT, SQL statement 103
installing SQR 1, 4
integers, performance issues 141

J
JavaScript tags 161
joins
defining 96
simplifying 132

jpeg files 66
JPEG format 169

K
-KEEP flag 55, 76, 148

L
landscape orientation 37
LAST-PAGE command 10
LEFT-MARGIN argument 37
LEGEND-TITLE option,
DECLARE-CHART command 75
LET command 27
using functions in 123
using to create export file 62

LEVEL argument, using with
ON-BREAK 22, 28
libsti.a 120
libsti32.dll 119
line numbers 9
LINE-HEIGHT argument,
DECLARE-LAYOUT command 37, 77
lines
adding 64
blank 57
specifying thickness 65

link anchors 168
links 160, 163, 168
lis files 7, 66
listing data, sample program 13
lists, HTML 163, 169
literal date formats 109
literal text 6
LOAD-LOOKUP command 132
loadall.sqr, loading sample database
with 5
local procedures 91

Copyright © 1988-2007, Oracle. All rights reserved. 215

Index

local variables 91
locales
default 116
modifying preferences 117
restoring defaults 117
selecting 115
switching 116
System 116
understanding 115

logos
adding 64, 66
sharing 66
supported file formats 66

LOOKUP command 132

M
machine floating point numbers,
performance issues 141
mailing labels 53
printing 53
running the program for printing 55
sample program 53

makefile file 120
margins 37, 64
margins, setting with DECLARE-LAYOUT
command 36
master and detail reports 39
correlating subqueries in 41
one-to-many relationships 39
sample program 39

MONEY keyword 117
MOVE command 110
multiple reports, creating 141
myreport.sqr 163

N
national language support 115
for date edit masks 112

NEED qualifier, using with
ON-BREAK 26
NEVER qualifier, using with
ON-BREAK 32
NEW-PAGE command 62
NEXT-COLUMN command 53
NEXT-LISTING command 26
NLS, See national language support
NO-ADVANCE option 55
-NOLIS command-line flag 148, 149
notes xix

NUMBER keyword 117
numeric variables
and ON-BREAK 34
understanding 27

O
ODBC 151
$old-locale reserved variable 117
ON-BREAK 19
and WRAP argument 32
BEFORE and AFTER procedures 27
calculating column totals 24
choosing not to print columns 32
controlling page breaks 24
controlling page breaks with multiple
columns 31
LEVEL argument 22, 28
limitations 34
maximum levels 34
NEED qualifier 26
NEVER qualifier 32
numeric variables and 34
order of events 28
PRINT command 20
reprinting column values on a new
page 26
reprinting headings on a new page 26
SAVE qualifier 32
SKIPLINES qualifier 21, 26

one-to-many relationships, in master and
detail reports 39
Oracle 151
ORDER BY clause, with BEGIN-SELECT
command 20
ORIENTATION argument 37
output
file names 7
file types 147
files 100
printer-independent files 66
printer-specific files 66
types available in SQR 1
viewing SQR 7

P
page body 9
page breaks
controlling with multiple ON-BREAK
columns 31

216 Copyright © 1988-2007, Oracle. All rights reserved.

Index

controlling with ON-BREAK 24
handling 26
preventing 31

page footings 9
adding 10
adding comments 10
adding page numbers 10
indicating the print position 10
sample program 9

page headings 9
adding 10
sample program 9

page layout
overriding the defaults 37
setting with DECLARE-LAYOUT
command 36

page numbers 9, 10
page orientation 37
page setup 9
#page-count reserved variable 88
PAGE-NUMBER command 10
paper size, setting with DECLARE-
LAYOUT command 36
paragraphs
formatting with HTML 163, 170
select 14, 15

PeopleBooks
ordering xvi

PeopleCode, typographical
conventions xviii
performance issues 131
POINT-SIZE option, ALTER-PRINTER
command 66
portrait orientation 37
POSITION command 15
position, print 6, 10, 15, 37
positioning objects, using HTML
procedures 165
PostScript printers 55
prerequisites xv
PRINT command 6, 10, 110
CENTER argument 78
choosing not to print ON-BREAK
columns 32
FILL option 26, 64
implied in select paragraphs 15
ON-BREAK option with 20
using with $current-date 26
WRAP argument 78, 79

PRINT-BAR-CODE command 69

PRINT-CHART command 71, 75
PRINT-DIRECT command 81
PRINT-IMAGE command 66, 169
printed documentation xvi
-PRINTER flags
EH 147, 158, 159, 160
HP 76, 81, 147
HT 82, 147, 158, 161
LP 81, 147
PS 55, 76, 81, 147
WP 81, 147
xx 148

PRINTER-DEINIT command 81
printer-independent output files 66
printer-independent reports
commands to avoid in 81
understanding 81

PRINTER-INIT command 81
printer-specific output files 66
PRINTER-TYPE option 148
printers 55
selecting at runtime 81, 82

printing
data, sample program for 13
DECLARE-PRINTER command 148
specifying output file types 147
text strings 6

procedures 91
arguments 92
calling before and after column
breaks 27
global 91
local 91
naming 27
recursive 139

Process Scheduler 2
program output
output files 100

PROGRAM section 6
programs
creating 6
running 6

pssqr.ini 109, 116
modifying with ALTER-LOCALE
command 117
Processing-Limits section 142

publishing
automated 173
reports 173
using CGI scripts 174

Copyright © 1988-2007, Oracle. All rights reserved. 217

Index

Q
queries
correlating subqueries 41
detail 39
master 39
nested 39

QuickSort algorithm 136

R
records
buffering 143
displaying in tables 166
performance issues 143

recursive procedures 139
related documentation xvi
relinking SQR 125
report dates 9
report titles 9
reports
bursting 162
cross-tabular 43
graphical 76
master and detail 39
multiple 97, 141
printer-independent 81
publishing 173
sample program for creating
multiple 97
viewing published 173

reserved characters
HTML 162
using on command line 154

reserved variables 26, 88, 91
RIGHT-MARGIN argument 37
rows
buffering 143
defining 54
performance issues 143

-RS command-line flag 146
-RT command-line flag 146
running SQR programs
in UNIX/Linux 6
in Windows 6

runtime 146
arguments 153
features 145
files 146

S
sample database, setting up 5
sample programs 1
locating 4
reviewing results 4

SAVE qualifier, using with
ON-BREAK 32
SAVE variables 31
script files 155
select paragraphs
creating 14
defining 15
indentation 15
naming columns 15
simplifying 131
syntax 15

selecting data 13
SETUP section 35
commands used in 35
creating 35
understanding 35
with multiple reports 100

shell scripts 155
SHOW command 110
SKIPLINES qualifier 55
using 31
using with ON-BREAK 21, 26

SOURCE option, PRINT-IMAGE
command 66
spf files 7, 66, 76, 147, 148, 149
SPF Viewer 7
spreadsheets, exporting to 61
SQL 4
COMMIT statement 105
CREATE TABLE statement 103
cursor status 134
DELETE statement 88
DROP TABLE statement 103
dynamic 86, 133
entering with BEGIN-SQL
paragraph 103
error checking 88
INSERT statement 88, 103
SELECT statement 15, 88
statements, and SQR performance 131
substitution variables 89
UPDATE statement 88, 103
using in SQR 103
variables 85

218 Copyright © 1988-2007, Oracle. All rights reserved.

Index

$sql-error reserved variable 88
SQR
API 119
calling from another application 119
command line 119, 151
command-line arguments 152
compiling programs 146
creating programs 6
designating print position 10
error values 121
extending with user functions 122
functions 95
HTML support 157
if-then-else logic 27
implementation 1
installing 1, 4
integrating third-party libraries
with 122
invoking using the SQR API 119
numerics 141
output types 1
overview 1
portable file format 7, 76
programming language 1
relinking 125
running programs 146
sample programs 1, 4
SQL statements in 103
testing programs 127
viewing output 7

SQR executable 2
SQR Execute 1, 142, 146
SQR Print 1, 148
SQR PRINT, with CODE-PRINTER=
HT 161
SQR Viewer 4, 148
sqr.a 120
SQR_DB_DATE_FORMAT 109
sqr.lib 120
$sqr-locale reserved variable 117
$sqr-program reserved variable 88
sqrapi.h 119
sqrend 120
sqrext.dll 125
sqrext.mak 126
sqrmake file 120
SQRW executable 2, 6
sqrw.dll 119, 125
sqrwin.lib 119
sqrwt.dll 125

sqt files 146
STATIC keyword 123
stimages.dll 119
STRING command 62
string variables 27
strings
converting from dates 110
converting to dates 110

strtodate function 108, 110
subqueries, correlating 41
substitution variables 89
subtotals
calculating for ON-BREAK column 24
printing 19

suggestions, submitting xx
Sybase 151
SYMBOL-SET argument,
ALTER-PRINTER command 81
syntax conventions 4
System locale 116

T
-T command-line flag 127
tab-delimited file 61
table of contents
adding entries 180
defining 179

tables
displaying records in 166
using multiple 39
with HTML 163

tabular reports, sample program 63
temporary database tables
alternatives to 135
performance issues 135

terms 185
testing SQR programs 127
text
highlighting with HTML 167
literal 6
positioning 77
printing strings 6
specifying colors in HTML 161

text editors 6
three-dimensional arrays 44
times, printing 26
titles 9
titles, HTML 160
TOC-ENTRY command 180
TOP-MARGIN argument 37

Copyright © 1988-2007, Oracle. All rights reserved. 219

Index

totals
calculating 27
calculating for ON-BREAK column 24

tuning issues 131
type option
DECLARE-PRINTER command 149
PRINT-IMAGE command 66

typographical conventions xviii

U
ufunc.c
adding an implementation code to 124
adding user function prototypes to 123
adding user-defined functions to 122
understanding 122
USERFUNCS table in 123
using in Windows 125
using to invoke an external application
API 122

underscores, using with procedure and
variable names 27
Unicode 139
UPDATE, SQL statement 103
USE-PRINTER-TYPE command 81, 148
user functions 122
adding prototype 123
adding to ufunc.c 122
implementing in Windows 126

USERFUNCS table, adding entries to 123
$username reserved variable 88

V
variables
adding nonalphabetical and nonnumeric
characters 62
column 17
conditional processing of 19
date 27, 113
dynamic 87
for positioning 57
global 91
global versus local 129
initializing 27
local 91
misspelling names 129
naming 27
numeric 27
numeric and ON-BREAK 34
predefined 26

reserved 26, 88, 91
string 27
substitution 89
understanding 27
using in SQL 85

visual cues xix

W
warnings xix
white space, adding 19
WIDTH argument 172
word processing files, exporting to 61
WRAP argument
and ON-BREAK 32
PRINT command 78, 79

Z
z/OS, dynamic variables in 87

220 Copyright © 1988-2007, Oracle. All rights reserved.

	toc
	U.S. GOVERNMENT RIGHTS
	Open Source Disclosure
	Contents
	About This PeopleBook
	PeopleSoft Enterprise Application Prerequisites
	Application Fundamentals
	Documentation Updates and Printed Documentation
	Obtaining Documentation Updates
	Downloading and Ordering Printed Documentation
	Downloading PDF Files
	Ordering Printed, Bound Volumes

	Additional Resources
	Typographical Conventions and Visual Cues
	Typographical Conventions
	Visual Cues
	Notes
	Warnings
	Cross-References

	Country, Region, and Industry Identifiers
	Country Identifiers
	Region Identifiers
	Industry Identifiers

	Currency Codes

	Comments and Suggestions
	Common Elements Used in PeopleBooks
	SQR for PeopleSoft Developers Preface
	SQR for PeopleSoft Developers

	Getting Started with SQR for PeopleSoft
	SQR for PeopleSoft Overview
	SQR for PeopleSoft Implementation
	Other Sources of Information

	Introducing the Sample SQR Program
	Working with This Guide
	Audience
	How to Use SQR for PeopleSoft Developers
	Related Documents
	Syntax Conventions

	Setting Up the Sample Database
	Understanding the Sample Program for Printing a Text String
	Creating and Running a Sample SQR Program
	Creating an SQR Program
	Running an SQR Program

	Viewing SQR Output

	Creating Headings and Footings
	Understanding SQR Pages
	Creating Page Headings and Footings
	Understanding the Heading and Footing Code Example
	Adding Page Headings
	Adding Page Footings
	Adding Comments
	Adding Page Numbers
	Indicating the Print Position

	Selecting Data from the Database
	Understanding the Sample Program for Listing and Printing Data
	Creating SQR Select Paragraphs
	Syntax of the Select Paragraph
	Positioning Data

	Using Column Variables
	Using a Column Variable in a Condition
	Changing the Column Variable Name

	Using Break Logic
	Understanding Break Logic
	Using ON-BREAK
	Skipping Lines Between Groups
	Arranging Multiple Break Columns
	Using Break Processing Enhancements
	Controlling Page Breaks and Calculating Subtotals and Totals
	Handling Page Breaks
	Printing the Date
	Obtaining Totals
	Using Hyphens and Underscores

	Setting Break Procedures with BEFORE and AFTER
	Understanding the Order of Events

	Controlling Page Breaks with Multiple ON-BREAK Columns
	Saving a Value When a Break Occurs
	Using ON-BREAK on a Hidden Column
	Performing Break Processing on Numeric Values

	Adding Declarations Using the SETUP Section
	Understanding the SETUP Section
	Creating the SETUP Section
	Using the DECLARE-LAYOUT Command
	Sample SETUP Program
	Defining the SQR Page Layout

	Overriding the Default Settings
	Declaring the Page Orientation

	Creating Master and Detail Reports
	Understanding Master and Detail Reports
	Understanding the Sample Program for Master and Detail Reports
	Correlating Subqueries
	Sample Program Output

	Creating Cross-Tabular Reports
	Understanding Cross-Tabular Reports
	Using an Array
	Creating an Array
	Grouping by Category
	Using Multiple Arrays

	Printing Mailing Labels
	Understanding Mailing Label Printing
	Understanding the Sample Program for Printing Mailing Labels
	Defining Columns and Rows
	Running the Print Mailing Labels Program

	Creating Form Letters
	Understanding the DOCUMENT Paragraph
	Understanding the Sample Program for Form Letters

	Exporting Data to Other Applications
	Understanding the Sample Program for Exporting Data
	Creating an Export File

	Using Graphics
	Understanding the Sample Program for Simple Tabular Reports
	Adding Graphics
	Sharing Images Among Reports
	Printing Bar Codes

	Using Business Charts
	Understanding Business Charts
	Creating a Chart
	Defining a Chart
	Printing a Chart
	Running the Program to Create a Graphical Report
	Passing Data to the Chart

	Changing Fonts
	Setting Fonts
	Positioning Text
	Using the WRAP Option

	Writing Printer-Independent Reports
	Understanding Printer-Independent Reports
	Reviewing the Sample Program for Selecting the Printer Type at R

	Using Dynamic SQL and Error Checking
	Using Variables in SQL
	Using Dynamic SQL
	Using SQL Error Checking
	Using SQL and Substitution Variables

	Using Procedures and Local Variables and Passing Arguments
	Using Procedures
	Using Local Variables
	Passing Arguments

	Creating Multiple Reports from One Program
	Understanding How to Create Multiple Reports
	Understanding the Sample Program for Multiple Reports
	Defining Heading and Footing Sections
	Defining Program Output

	Using Additional SQL Statements with SQR
	Using SQL Statements in SQR
	Using BEGIN-SQL

	Working with Dates
	Understanding Dates and Date Arithmetic
	Using Literal Date Formats
	Using String-to-Date Conversions
	Using Date-to-String Conversions
	Using Dates with the INPUT Command
	Using Date Edit Masks
	Declaring Date Variables

	Using National Language Support
	Understanding Locales
	Selecting Locales
	Defining a Default Locale
	Switching Locales
	Modifying Locale Preferences
	Specifying NUMBER, MONEY, and DATE Keywords

	Using Interoperability Features
	Calling SQR from Another Application
	Invoking an SQR Program by Using the SQR API
	Invoking an External Application API by Using the UFUNC.C Interf
	Adding a User Function
	Understanding the UFUNC.C File
	Adding a Function Prototype
	Adding an Entry to the USERFUNCS Table
	Adding an Implementation Code
	Relinking SQR

	Using UFUNC in Microsoft Windows
	Implementing New User Functions in Microsoft Windows

	Testing and Debugging
	Using the Test Feature
	Using the ##DEBUG Command
	Using Compiler Directives for Debugging
	Avoiding Common Programming Errors

	Increasing Performance and Tuning
	Understanding SQR Performance and SQL Statements
	Simplifying a Complex Select Paragraph
	Using LOAD-LOOKUP to Simplify Joins
	Improving SQL Performance with Dynamic SQL
	Examining SQL Cursor Status
	Avoiding Temporary Database Tables
	Understanding Temporary Database Tables
	Using and Sorting Arrays
	Sorting Arrays
	SQR and Language Sensitive Sorting

	Using and Sorting Flat Files

	Creating Multiple Reports in One Pass
	Tuning SQR Numerics
	Compiling SQR Programs and Using SQR Execute
	Setting Processing Limits
	Buffering Fetched Rows
	Running Programs on the Database Server

	Compiling Programs and Using SQR Execute
	Understanding Compile Features
	Compiling and Running an SQR Program

	Printing with SQR
	Specifying Output File Types by Using SQR Command-Line Flags
	Using the DECLARE-PRINTER Command

	Using the SQR Command Line
	Understanding the SQR Command Line
	Specifying Command-Line Arguments
	Understanding Command-Line Arguments
	Retrieving the Arguments
	Specifying Arguments and Argument Files
	Using an Argument File
	Using Other Approaches to Pass Command-Line Arguments
	Using Reserved Characters
	Creating an Argument File from a Report

	Using Batch Mode

	Generating and Publishing HTML from an SQR Program
	Understanding SQR Capabilities That Are Available with HTML
	Generating HTML Output
	Understanding HTML Output
	Producing HTML Output
	Using -PRINTER:EH
	Setting HTML Attributes Under -PRINTER:EH
	Specifying HTML Titles
	Specifying Background Colors
	Specifying Background Images
	Specifying Links
	Specifying Text Colors
	Specifying HTML Colors
	Including Your Own HTML Tags

	Using -PRINTER:HT
	Bursting Reports
	Setting Attributes with HTML Procedures
	Using Additional HTML Procedures
	Setting Output File Types
	Testing HTML Output

	Using HTML Procedures in an SQR Program
	Understanding HTML Procedures
	Using HTML Procedures
	Positioning Objects
	Displaying Records in Tables
	Creating Headings
	Highlighting Text
	Creating Links
	Including Images
	Displaying Text in Lists
	Formatting Paragraphs
	Incorporating Your Own HTML Tags

	Modifying an Existing SQR Program for HTML
	Publishing a Report
	Publishing a Report
	Supporting Older Browsers
	Viewing a Published Report
	Publishing by Using an Automated Process
	Publishing by Using a CGI Script
	Creating the Form
	Creating the CGI Script
	Passing Arguments to the SQR Program

	Creating a Table of Contents
	Using the DECLARE-TOC Command
	Using the TOC-ENTRY Command
	Adding a Table of Contents to the CUST.SQR Program
	Table of Contents Sample Program 1
	Table of Contents Sample Program 2

	Glossary of PeopleSoft Enterprise Terms
	Index

