
TESTING SIEBEL eBUSINESS
APPLICATIONS
VERSION 7.5

AUGUST 2003

12-FRKIM5

Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404
Copyright © 2003 Siebel Systems, Inc.
All rights reserved.
Printed in the United States of America

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including
but not limited to photocopy, photographic, magnetic, or other record, without the prior agreement and written
permission of Siebel Systems, Inc.

Siebel, the Siebel logo, TrickleSync, TSQ, Universal Agent, and other Siebel product names referenced herein
are trademarks of Siebel Systems, Inc., and may be registered in certain jurisdictions.

Other product names, designations, logos, and symbols may be trademarks or registered trademarks of their
respective owners.

U.S. GOVERNMENT RESTRICTED RIGHTS. Programs, Ancillary Programs and Documentation, delivered
subject to the Department of Defense Federal Acquisition Regulation Supplement, are “commercial computer
software” as set forth in DFARS 227.7202, Commercial Computer Software and Commercial Computer Software
Documentation, and as such, any use, duplication and disclosure of the Programs, Ancillary Programs and
Documentation shall be subject to the restrictions contained in the applicable Siebel license agreement. All
other use, duplication and disclosure of the Programs, Ancillary Programs and Documentation by the U.S.
Government shall be subject to the applicable Siebel license agreement and the restrictions contained in
subsection (c) of FAR 52.227-19, Commercial Computer Software - Restricted Rights (June 1987), or
FAR 52.227-14, Rights in Data—General, including Alternate III (June 1987), as applicable. Contractor/licensor
is Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404.

Proprietary Information
Siebel Systems, Inc. considers information included in this documentation and
in Siebel eBusiness Applications Online Help to be Confidential Information.
Your access to and use of this Confidential Information are subject to the terms
and conditions of: (1) the applicable Siebel Systems software license
agreement, which has been executed and with which you agree to comply; and
(2) the proprietary and restricted rights notices included in this documentation.

Contents
Testing Siebel eBusiness Applications 1

Introduction
How This Guide Is Organized . 8

Additional Resources . 9

Revision History . 10

Chapter 1. Overview of Testing Siebel Applications
Introduction to Application Software Testing . 11

Application Software Testing Methodology . 12

Common Test Definitions . 12

Siebel eRoadmap Implementation Methodology . 15

Phased Delivery . 17

Continuous Application Lifecycle . 17

Iterative Development . 17

Testing and Deployment Readiness . 18

Chapter 2. Testing Process
Overview of the Siebel Testing Process . 21

Plan Testing Strategy . 22

Develop Tests . 22

Execute Siebel Functional Tests . 22

Execute Integration Tests . 23

Execute Acceptance Tests . 23

Execute Performance Tests . 23
Version 7.5 Testing Siebel eBusiness Applications 3

Contents
Improve Testing . 23

Chapter 3. Plan Testing Strategy
Overview of Test Planning . 25

Test Objectives . 26

Test Plans . 28

Test Cases . 29

Component Inventory . 32

Test Plan Schedule . 33

Test Environments . 34

Performance Test Environment . 35

Chapter 4. Develop Tests
Overview of Test Development . 37

Design Evaluation . 39

Reviewing Design and Usability . 40

Test Case Authoring .41

Functional Test Cases . 42

Structural Test Cases . 44

Performance Test Cases . 45

Test Case Automation . 49

Functional Automation . 49

Performance Automation . 49

Chapter 5. Execute Siebel Functional Tests
Overview of Executing Siebel Functional Tests 53

Reviews . 54

Track Defects Subprocess . 56
4 Testing Siebel eBusiness Applications Version 7.5

Contents
Chapter 6. Execute Integration and Acceptance Tests
Overview of Executing Integration and Acceptance Tests 59

Execute Integration Tests . 60

Execute Acceptance Tests . 61

Chapter 7. Execute Performance Tests
Overview of Executing Performance Tests . 63

Execute Test . 64

Performing SQL Trace . 64

Measure System Metrics . 65

Monitor Failed Transactions . 66

Chapter 8. Improving the Testing Process
Improve Testing . 69

Index
Version 7.5 Testing Siebel eBusiness Applications 5

Contents
6 Testing Siebel eBusiness Applications Version 7.5

Introduction
This guide introduces and describes processes and concepts of testing Siebel
eBusiness Applications. It is intended to be a best practices guide for Siebel Systems
customers currently deploying or planning to deploy Siebel 7. It does not describe
specific features of the Siebel eBusiness Application product suite.

Although job titles and duties at your company may differ from those listed in the
following table, the audience for this guide consists primarily of employees in these
categories:

Application Testers Testers responsible for developing and executing tests. Functional
testers focus on testing application functionality, while
performance testers focus on system performance.

Business Analysts Analysts responsible for defining business requirements and
delivering relevant business functionality. Business analysts serve
as the advocate for the business user community during
application deployment.

Business Users Actual users of the application. Business users are the customer of
the application development team.

Database
Administrators

Administrators who administer the database system, including
data loading, system monitoring, backup and recovery, space
allocation and sizing, and user account management.

Project Managers Manager or management team responsible for planning,
executing, and delivering application functionality. Project
managers are responsible for project scope, schedule, and
resource allocation.

Siebel Application
Developers

Developers who plan, implement, and configure Siebel
applications, possibly adding new functionality.

Siebel System
Administrators

Administrators responsible for the whole system, including
installing, maintaining, and upgrading Siebel applications.
Version 7.5 Testing Siebel eBusiness Applications 7

Introduction

How This Guide Is Organized
Product Modules and Options
This Siebel Bookshelf contains descriptions of modules that are optional and for
which you may not have purchased a license. Siebel’s Sample Database also
includes data related to these optional modules. As a result, your software
implementation may differ from descriptions in this Bookshelf. To find out more
about the modules your organization has purchased, see your corporate purchasing
agent or your Siebel sales representative.

How This Guide Is Organized
This book describes the seven high-level processes for planning and executing
testing activities for Siebel eBusiness Applications. These processes are based on
best practices and proven test methodologies. This book should be used as a guide
to identify what tests should be run, when to run tests, and who should be involved
in the quality assurance process.

The first two chapters of this book provide an introduction to testing and the test
processes. All readers are encouraged to read Chapter 2, “Testing Process,” which
describes the relationships between the seven high-level processes. The chapters
that follow each describe a specific process in detail. In each of these chapters, a
process diagram is presented to help readers understand the important high-level
steps. You are encouraged to modify the processes to suit your specific situation.

Depending on your role, experience, and current project phases you will use the
information in this book differently. Here are some suggestions about where you
might want to focus your reading:

■ Test Manager. At the beginning of the project, review the book in its entirety to
understand all testing processes.

■ Functional Testing. A functional tester should focus on Chapters 3 through 7.
These chapters discuss the process of defining, developing, and executing test
cases.

■ Performance Testing. A performance tester should focus on Chapters 3, 4, and 8.
These chapters describe the planning, development, and execution of
performance tests.
8 Testing Siebel eBusiness Applications Version 7.5

Introduction

Additional Resources
At certain points in this book, you will see information presented as a Best Practice.
These tips are intended to highlight practices proven to improve the testing process.

Additional Resources
■ American Society of Quality

http://www.asq.org/pub/sqp

■ British Computer Society Specialist Interest Group in Software Testing
http://www.bcs.org.uk

■ Economic Impact of Inadequate Infrastructure for Software Testing
http://www.nist.gov/director/prog-ofc/report02-3.pdf

■ Empirix
http://www.empirix.com/Empirix/Corporate/Resources/

■ Internet/Software Quality Hotlist
http://www.soft.com/Institute/HotList/index.html

■ Mercury Interactive
http://www-heva.mercuryinteractive.com/service_support/library/

■ Software Testing Institute
http://www.softwaretestinginstitute.com/index.html

■ StickyMinds
http://www.stickyminds.com/testing.asp

■ STQE Magazine
http://www.stqemagazine.com
Version 7.5 Testing Siebel eBusiness Applications 9

Introduction

Revision History
Revision History
Testing Siebel eBusiness Applications Version 7.5
10 Testing Siebel eBusiness Applications Version 7.5

Overview of Testing Siebel Applications 1
This section provides an overview of the reasons for implementing testing in
software development projects, and introduces a methodology for testing Siebel
eBusiness applications with descriptions of the processes and types of testing that
are used in this methodology.

Introduction to Application Software Testing
Testing is a key component of any application deployment project. The testing
process determines the readiness of the application. Therefore, it must be designed
to adequately inform deployment decisions. Without well-planned testing, project
teams may be forced to make under-informed decisions and expose the business to
undue risk. Conversely, well-planned and executed testing can deliver significant
benefit to a project including:

■ Reduced Deployment Cost. Identifying defects early in the project is a critical
factor in reducing the total cost of ownership. Research shows that the cost of
resolving a defect increases dramatically in later deployment phases. A defect
discovered in the requirements definition phase as a requirement gap can be a
hundred times less expensive to address than if it is discovered after the
application has been deployed. Once in production, a serious defect can result
in lost business and impact the success of the project.

■ Higher User Acceptance. User perception of quality is extremely important to the
success of a deployment. Functional testing, usability testing, system testing,
and performance testing can provide insights into deficiencies from the users’
perspective early enough so that these deficiencies can be corrected before
releasing the application to the larger user community.
Version 7.5 Testing Siebel eBusiness Applications 11

Overview of Testing Siebel Applications

Application Software Testing Methodology
■ Improved Deployment Quality. Hardware and software components of the system
must also meet a high level of quality. The ability of the system to perform
reliably is critical in delivering consistent service to the users or customers. A
system outage caused by inadequate system resources can result in lost
business. Performance, reliability, and stress testing can provide an early
assessment of the system to handle the production load and allow IT
organizations to plan accordingly.

Inserting testing early and often is a key component to lowering the total cost of
ownership. Software projects that attempt to save time and money by lowering their
initial investment in testing find that the cost of not testing is much greater.
Insufficient investment in testing may result in higher deployment costs, lower user
adoption, and failure to achieve business returns.

Best Practice
Test Early and Often. The cost of resolving a defect when detected early is much less
then resolving the same defect in later project stages. Testing early and often is the
key to identifying defects as early as possible and reducing total cost of ownership.

Application Software Testing Methodology
The processes described in this book are based on common application software
test definitions and the Siebel eRoadmap implementation methodology. These
definitions and methodologies have been proven in customer engagement and
remind us that testing must occur throughout the project lifecycle. For more
information about the Siebel eRoadmap implementation methodology, see Planning
a Successful Siebel Implementation.

Common Test Definitions
There are several common terms used to describe specific aspects of software
testing. These testing classifications are used to break down the problem of testing
into manageable pieces. Here are some of the common terms that are used
throughout this book:
12 Testing Siebel eBusiness Applications Version 7.5

Overview of Testing Siebel Applications

Application Software Testing Methodology
■ Unit Testing. Developers test their code against predefined design specifications.
A unit test is an isolated test that is often the first feature test that developers
perform in their own environment before checking changes into the
configuration repository. Unit testing prevents introducing unstable components
(or units) into the larger system.

■ Integration Testing. Validates that all programs and interfaces external to the
Siebel application function correctly. Sometimes adding a new module,
application, or interface may negatively affect the functionality of another
module.

■ Regression Testing. Code additions or changes may unintentionally introduce
unexpected errors or regressions that do not exist previously. Regression tests are
executed when a new build or release is available to make sure existing and new
features function correctly.

■ Interoperability Testing. Applications that support multiple platforms or devices
need to be tested to verify that every combination of device and platform works
properly.

■ Usability Testing. User interaction with the graphical user interface (GUI) is tested
to observe the effectiveness of the GUI when test users attempt to complete
common tasks.

■ System Testing. System testing is a complete system test in a controlled
environment. Both users and IT organization are involved to assess the system’s
readiness for general release.

■ User Acceptance Test (UAT). Users test the complete, end-to-end business
processes. Functional and performance requirements are verified to make sure
there are no user task failures and no prohibitive system response times.

■ Performance Testing. This test is usually performed using an automation tool to
simulate user load while measuring system resources used. Client and server
response times are both measured.

■ Stress Testing. This test identifies the maximum load a given hardware
configuration can handle. Test scenarios usually simulate expected peak loads.

■ Reliability Testing. Reliability tests are performed over an extended period of time
to determine the durability of an application as well as to capture any defects
that become visible over time.
Version 7.5 Testing Siebel eBusiness Applications 13

Overview of Testing Siebel Applications

Application Software Testing Methodology
■ Positive Testing. Verifies that the software functions correctly by inputting a value
known to be correct to verify that the expected data or view is returned
appropriately.

■ Negative Testing. Validates that the software fails appropriately by inputting a
value known to be incorrect to verify that the action fails as expected. This
allows you to understand and identify failures, and by displaying the appropriate
warning messages, that the unit is operating correctly.
14 Testing Siebel eBusiness Applications Version 7.5

Overview of Testing Siebel Applications

Application Software Testing Methodology
Siebel eRoadmap Implementation Methodology
The Siebel eRoadmap implementation methodology accelerates project
implementations by focusing on the key strategic and tactical areas that must be
addressed to maximize the customer's return on investment, while minimizing
their business risk to promote a successful completion of a Siebel project. The Siebel
implementation is comprised of activities logically grouped into eight distinct
eRoadmap stages to make sure proper project management and control techniques
are used during the life cycle of a project. These stages (illustrated in Figure 1) are
iterative in nature, allowing customers to realize the benefits of their new eBusiness
system.

Figure 1. Siebel eRoadmap Implementation Methodology
Version 7.5 Testing Siebel eBusiness Applications 15

Overview of Testing Siebel Applications

Application Software Testing Methodology
Testing is an end-to-end process that begins when you begin to configure the Siebel
application. The first stage is the development of a testing strategy by the testing
team to define environmental simulation requirements and testing approaches,
establish priorities, and define and create proper functional and load test scripts.
The output of this is stage is a comprehensive Test Plan.

As mentioned earlier, functional testing begins once prototyping begins and
continues throughout the configuration of the Siebel application as developers test
each unit they configure. Tested units are then moved into the testing environment,
where the appropriate units are combined to form a corresponding module. The test
team then verifies whether or not the module functions correctly (for example,
returns the correct value), has the correct layout (for example, drop-down menus
and text fields) and the interface is correct. After validating a module, functional
testing continues using business processes and scenarios to verify whether or not
all modules work together as required.

The next stage of functional testing, System and Integration testing, is validation
that the Siebel application operates with other systems and interfaces. Test the
Siebel application in a test environment that allows the Siebel application to
interoperate with the other required systems (such as CTI, load balancer, and
middleware).

User Acceptance testing (UAT) consists of testing the Siebel application using the
appropriate business owners and end users. When performing UAT, make sure that
you have users who are familiar with the existing business processes.

Performance testing provides an assessment of whether or not an infrastructure will
perform and scale to your requirements. This phase requires an image of the full
database and all interfaces with the Siebel application (such as CTI, middleware,
and email). The first step is to establish a benchmark of performance through the
completion of a performance test. Next, complete a capacity test by adding users
until you reach the number of users expected to use the system over the life of the
application. Finally, execute the test over an extended period of time (longevity test)
to determine durability of an application as well as capture any defects that become
visible over time.

For more information about the Siebel eRoadmap implementation methodology, see
Planning a Successful Siebel Implementation.
16 Testing Siebel eBusiness Applications Version 7.5

Overview of Testing Siebel Applications

Phased Delivery
Phased Delivery
A phased delivery strategy which implements complex features over time in
successive projects is preferred. This approach manages project risks by gradually
adding functionality and users. It also provides an early opportunity to validate
requirements and improve the deployment process. Project phasing is a general IT
project concept, and not testing specific. The test plan, however, must consider the
concepts of phased delivery.

Continuous Application Lifecycle
One deployment best practice is Continuous Application Lifecycle. In this approach,
application features and enhancements are delivered in small packages on a
continuous delivery schedule. New features are considered and scheduled
according to a fixed release schedule (for example, once per quarter). This model
of phased delivery provides an opportunity to evaluate the effectiveness of prebuilt
application functionality, minimizes risk, and allows you to adapt the application to
changing business requirements.

Continuous application lifecycle incorporates changing business requirements into
the application on a regular timeline, so the business customers do not have a
situation where they become locked into functionality that does not quite meet their
needs. Since there is always another delivery date on the horizon, features do not
have to be rushed into production. This approach also allows an organization to
separate multiple, possibly conflicting change activities. For example, the upgrade
(repository merge) of an application can be separated from the addition of new
configuration.

Best Practice
Continuous Application Lifecycle. The Continuous Application Lifecycle approach to
deployment allows organizations to reduce the complexity and risk on any single
release and provides regular opportunities to enhance application functionality.

Iterative Development
Another best practice is Iterative Development, in which functionality is delivered
to the testing team based on a fixed build schedule. Functionality is scheduled to be
delivered in specific builds and testing is scheduled according to the build strategy.
Version 7.5 Testing Siebel eBusiness Applications 17

Overview of Testing Siebel Applications

Testing and Deployment Readiness
Iterative Development provides benefits similar to those of Continuous Application
Lifecycle, by allowing a project to carefully manage risk and introduce new
functionality in a controlled manner.

Best Practice
Iterative Development. Iterative Development introduces functionality to a release in
incremental builds. This approach reduces risk by allowing testing to occur more
frequently and with fewer changes to all parts of the application.

Testing and Deployment Readiness
The testing processes provide crucial inputs for determining deployment readiness.
Determining whether or not an application is ready to deploy is an important
decision that requires clear input from testing.

Part of the challenge in making a good decision is the lack of well-planned testing
and the availability of testing data to gauge release readiness. To address this, it is
important to plan and track testing activity for the purpose of informing the
deployment decision. In general, testing coverage and defect trends can be
measured and provide a good indicator of quality. The following are some suggested
analyses to compile.

■ For each test plan, the number and percentage of test cases passed, in progress,
failed, and blocked. This data illustrates the test objectives that have been met,
versus those that are in progress or at risk.

■ Trend analysis of open defects targeted to the current release for each priority
level.
18 Testing Siebel eBusiness Applications Version 7.5

Overview of Testing Siebel Applications

Testing and Deployment Readiness
■ Trend analysis of defects discovered, defects fixed, and test cases executed.
Application convergence (point A in Figure 2) is demonstrated by a slowing of
defect discovery and fix rates, while maintaining even levels of test case activity.

Testing is a key input to the deployment readiness decision, however it is not the
only input to be considered. Testing metrics must be considered in conjunction with
business conditions and organizational readiness.

Figure 2. Trend Analysis of Testing and Defect Resolution
Version 7.5 Testing Siebel eBusiness Applications 19

Overview of Testing Siebel Applications

Testing and Deployment Readiness
20 Testing Siebel eBusiness Applications Version 7.5

Testing Process 2
This section describes the series of phases that are involved in the testing process.
Figure 3 presents a high-level map of testing processes.

As you can see, testing processes occur throughout the implementation lifecycle,
and are closely linked to other configuration, deployment, and operations
processes. Each of the seven testing processes described in this book are highlighted
in bold in the diagram and are outlined briefly in the next section, “Overview of the
Siebel Testing Process.”

Overview of the Siebel Testing Process
This section provides a brief overview of each of the seven testing processes.

Figure 3. High-level Testing Process Map
Version 7.5 Testing Siebel eBusiness Applications 21

Testing Process

Overview of the Siebel Testing Process
Plan Testing Strategy
The test planning process makes sure that the testing performed is able to inform
the deployment decision process, minimize risk, and provide a structure for
tracking progress. Without proper planning many customers may perform either too
much or too little testing. The process is designed to identify key project objectives
and develop plans based on those objectives.

It is important to develop a testing strategy early and to use effective
communications to coordinate among all stakeholders of the project.

Develop Tests
In the test development process, the test cases identified during the planning
process are developed. Developers and testers finalize the test cases based on
approved technical designs. The written test cases can also serve as blueprints for
developing automated test scripts. Test cases should be developed with strong
participation from the business analyst to understand the details of usage and
corner use cases.

Design evaluation is the first form of testing, and often the most effective.
Unfortunately, this process is often neglected. In this process, business analysts and
developers verify that the design meets the business unit requirements.
Development work should not start in earnest until there is agreement that the
designed solution meets requirements. The business analyst who defines the
requirements should approve the design.

Preventing design defects or omissions at this stage is more cost effective than
addressing them later in the project. If a design is flawed from the beginning, the
cost to redesign after implementation can be high.

Execute Siebel Functional Tests
Functional testing is focused on validating the Siebel eBusiness Application
components of the system. Functional tests are performed progressively on
components (units), modules, and business processes in order to verify that the
Siebel application functions correctly. Test execution and defect resolution are the
focus of this process. The development team is fully engaged in implementing
features, and the defect-tracking process is used to manage quality.
22 Testing Siebel eBusiness Applications Version 7.5

Testing Process

Overview of the Siebel Testing Process
Execute Integration Tests
Integration testing verifies that the Siebel application, validated earlier, integrates
with other applications and infrastructure in your system. Integration with various
backend, middleware, and third-party systems are verified. Integration testing
occurs on the system as a whole to make sure that the Siebel application functions
properly when connected to related systems and running along side system
infrastructure components.

Execute Acceptance Tests
Acceptance testing is performed on the complete system and is focused on
validating support for business processes, as well as verifying acceptability to the
user community from both the lines of business and the IT organization. This is
typically a very busy time in the project, when people, process, and technology are
all preparing for the roll out.

Execute Performance Tests
Performance testing validates that the system can meet specified service levels for
performance, capacity, and reliability. In this process, tests are run on the complete
system simulating expected loads and verifying system performance.

Improve Testing
Testing is not complete when the application is rolled out. After the initial
deployment, regular configuration changes are delivered in new releases. In
addition, Siebel Systems delivers regular maintenance and major software releases
that may need to be applied. Both configuration changes and new software releases
should be tested to verify that the quality of the system is sustained.

The testing process should be evaluated after deployment to identify opportunities
for improvement. The testing strategy and its objectives should be reviewed to
identify any inadequacies in planning. Test plans and test cases should be reviewed
to determine their effectiveness. Test cases should be updated to include testing
scenarios that were discovered during testing and were not previously identified.
Version 7.5 Testing Siebel eBusiness Applications 23

Testing Process

Overview of the Siebel Testing Process
24 Testing Siebel eBusiness Applications Version 7.5

Plan Testing Strategy 3
This section describes the process of planning your tests.

Overview of Test Planning
The objective of the test planning process is to create the strategy and tactics that
provide the proper level of test coverage for your project. The Test Planning process
is illustrated in Figure 4 on page 26.

The inputs to this process are the business requirements and the project scope. The
outputs, or deliverables, of this process include:

■ Test Objectives. The high-level objectives for a quality release. The test objectives
are used to measure project progress and deployment readiness. Each test
objective has a corresponding test plan that is designed to achieve the objectives.

■ Test Plans. Describes the tasks necessary to verify a particular test objective. For
example, a performance test plan may have an objective of verifying that a given
server configuration can support five hundred users. The test plan must
document how this will be verified, covering what hardware and software are
needed, how often to execute the test, who will develop the test case and execute
it, and what data points or analysis output are required.

■ Test Cases. A test plan is made up of a set of test cases. Test cases are detailed
step-by-step instructions about how to perform a test. The instructions should
be specific and repeatable by anyone who would typically perform the tasks
being tested. In the planning process, you identify the number and type of test
cases to be performed.

■ Definition of test environments. The number, type, and configuration for test
environments should also be defined. Clear entry and exit criteria for each
environment should be defined.
Version 7.5 Testing Siebel eBusiness Applications 25

Plan Testing Strategy

Test Objectives
Test Objectives
The first step in the test planning process is to document the high-level test
objectives. The test objectives provide a prioritized list of verification or validation
objectives for the project. This list of objectives is used to measure testing progress
and verify that testing activity is consistent with project objectives.

Test objectives can typically be grouped into the following categories:

Figure 4. Diagram of the Plan Testing Strategy Process
26 Testing Siebel eBusiness Applications Version 7.5

Plan Testing Strategy

Test Objectives
■ Functional Correctness. Validation that the application correctly supports required
business processes and transactions. List all of the business processes that the
application is required to support. Also list any standards for which there is
required compliance.

■ Authorization. Verification that actions and data are only available to those users
with correct authorization. List any key authorization requirements that must be
satisfied, including access to functionality and data.

■ Service Level. Verification that the system will support the required service levels
of the business. This includes system availability, load, and responsiveness. List
any key performance indicators (KPIs) for service level and the level of
operational effort required to meet KPIs.

■ Usability. Validation that the application meets required levels of usability. List
the required training level and user KPI required.

The list of test objectives and their priority should be agreed to by the testing team,
development team, and the business unit. Figure 5 shows a sample Test Objectives
document.

For each test objective, there is a specified test plan that testers follow to verify or
validate the stated objective. The details of the test plan are described in “Test
Plans” on page 28.

Figure 5. Sample Test Objectives
Version 7.5 Testing Siebel eBusiness Applications 27

Plan Testing Strategy

Test Plans
Test Plans
The purpose of the test plan is three-fold. First, it provides a detailed plan for
verifying a stated objective. Second, it anticipates issues associated with high-risk
components. Third, it communicates schedule and progress toward a stated
objective. The test plan has the following components:

■ Test Cases. Detail level test scenarios. Each test plan is made up of a list of test
cases, their relevant test phases, and relationship to components.

■ Component Inventory / Risk Assessment. A list of components that need to be
tested. Also describes related components and identifies high risk components
or scenarios that may require additional test coverage.

■ Test Schedule. A schedule that describes when test cases will be executed.

Business Process Testing is an important best practice. Business Process Testing
drives the test case definition from the definition of the business process. In
business process testing, coverage is measured based on the percentage of validated
process steps.

Best Practice
Business Process Testing. Functional testing based on a required business process
definition provides a structured way to design test cases, and a meaningful way to
measure test coverage based on business process steps.

Business Process Testing is described in more detail in the sections that follow.
28 Testing Siebel eBusiness Applications Version 7.5

Plan Testing Strategy

Test Plans
Test Cases
A test case represents an application behavior that needs to be verified. For each
component, application, and business process one can identify one or more test
cases that need verification. Figure 6 shows a sample test case list for a few test
plans. Each test plan contains one or more test cases, which are categorized by type.

There are three major types of test cases that may be specified: Functional,
Structural, and Performance.

■ Functional Test Cases. Functional test cases are designed to validate that the
application performs a specified business function. The majority of these test
cases take the form of user or business scenarios that resemble common
transactions. Testers and business users should work together to compile a list
of scenarios. Following the Business Process Testing practice, functional test
cases should be derived directly from the business process, where each step of
the business process is clearly represented in the test case.

For example, if the test plan objective is to validate support for the Manage
Quotes Business Process, then there should be test cases specified based on the
process definition. Typically this means that each process or subprocess has one
or more defined test cases and each step in the process is specified within the
test case definition. Figure 7 illustrates the concept of a process-driven test case.
Considerations must also be given for negative test cases that test behaviors
when unexpected actions are taken (for example, creation of a quote with a
create date before the current date).

Figure 6. Sample Test Plan: Test Case List
Version 7.5 Testing Siebel eBusiness Applications 29

Plan Testing Strategy

Test Plans
■ Structural Test Cases. Structural test cases are designed to verify that the
application structure is correct. They differ from functional cases in that
structural test cases are based on the structure of the application, not on a
scenario. Typically, each component has an associated structural test case that
verifies that the component has the correct layout and definition (for example,
verify that a view contains all the specified applets and controls).

■ Performance Test Cases. Performance test cases are designed to verify the
performance of the system or a transaction. There are three categories of
performance test cases commonly used:

Figure 7. Process-Driven Test Case with its Corresponding Process Diagram
30 Testing Siebel eBusiness Applications Version 7.5

Plan Testing Strategy

Test Plans
■ Response Time or Throughput. Verifies the time for a set of specified actions.
For example, tests the time for a view to paint or a process to run. Response
time tests are often called performance tests.

■ Scalability. Verifies the capacity of a specified system or component. For
example, test the number of users that can be supported by the system.
Scalability tests are often called load or stress tests.

■ Reliability. Verifies the duration for which a system or component can be run
without the need for restarting. For example, test the number of days that a
particular process can run without failing.

Test Phase
Each test case should have a primary testing phase identified. A given test case may
be run several times in multiple testing phases, but typically the first phase in which
it is run is considered the primary phase. The following describes how standard
testing phases typically apply to Siebel eBusiness Application deployments.

■ Unit Test. The objective of Unit Test is to verify that a unit (also called a
component) functions as designed. The definition of a unit is discussed in
“Component Inventory” on page 32. In this phase of testing, in-depth
verification of a single component is functionally and structurally tested.

For example, during unit test the developer of a newly-configured view verifies
that the view structure meets specification and validates that common user
scenarios, within the view, are supported.

■ Module Test. The objective of Module Test is to validate that related components
fit together to meet specified application design criteria. In this phase of testing,
functional scenarios are primarily used. For example, testers will test common
navigation paths through a set of related views. The objective of this phase of
testing is to verify that related Siebel components function correctly as a module.

■ Process Test. The objective of Process Test is to validate that business process are
supported by the Siebel application. During the process test, the previously-
tested modules are strung together to validate an end-to-end business process.
Functional test cases, based on the defined business processes are used in this
phase.
Version 7.5 Testing Siebel eBusiness Applications 31

Plan Testing Strategy

Test Plans
■ Integration Test. In the Integration Test phase, the integration of the Siebel
eBusiness Application with other backend, middleware, or third-party
components are tested. This phase includes functional test cases and structural
test cases specific to integration logic. For example, in this phase the integration
of Siebel Orders with an ERP Order Processing system is tested.

■ Acceptance Test. The objective of Acceptance Test is to validate that the system
is able to meet user requirements. This phase consists primarily of formal and
ad-hoc functional tests.

■ Performance Test. The objective of Performance Test is to validate that the system
will support specified performance KPIs, maintenance, and reliability
requirements. This phase consists of performance test cases.

Component Inventory
The Component Inventory is a comprehensive list of the applications, modules, and
components in the current project. Typically, the component inventory is done at
the project level and is not a testing-specific activity. There are two ways projects
typically identify components. The first is to base component definition on the work
that needs to be done (for example, specific configuration activities). The second
method is to base the components on the functionality to be supported. In many
cases these two approaches produce similar results. A combination of the two
methods is most effective in making sure that the test plan is complete and
straightforward to execute. The worksheet shown in Figure 8 is an example of a
component inventory.

Figure 8. Sample Component Inventory Document
32 Testing Siebel eBusiness Applications Version 7.5

Plan Testing Strategy

Test Plans
Risk Assessment
A risk assessment is used to identify those components that carry higher risk and
may require enhanced levels of testing. The following characteristics increase
component risk:

■ High Business Impact. Component supports high business-impact business logic
(for example, complex financial calculation).

■ Integration. Component that integrates the Siebel application to an external or
third-party system.

■ Scripting. Component includes the coding of browser script, eScript, or VB script.

■ Ambiguous or Incomplete Design. Component design is either ambiguous (for
example, multiple implementation options described) or design is not fully
specified.

■ Downstream Dependencies. Component is required by several downstream
components.

As shown in Figure 8 on page 32, one column of the component inventory provides
a risk score to each component based on the guidelines above. In this example one
risk point is given to a component for each of the criteria met. The scoring system
should be defined to correctly represent the relative risk between components.
Performing a risk assessment is important for completing a test plan, since the risk
assessment provides guidance on the sequence and amount of testing required.

Best Practice
Risk Assessment. Performing a Risk Assessment during the planning process allows
you to design your test plan in a way that minimizes overall project risk.

Test Plan Schedule
For each test plan, a schedule of test case execution should be specified. The
schedule is built using three different inputs:

■ Overall Project Schedule. The execution of all test plans must be consistent with
the overall project schedule.

■ Component Development Schedule. The completion of component configuration is
a key input to the testing schedule.
Version 7.5 Testing Siebel eBusiness Applications 33

Plan Testing Strategy

Test Environments
■ Environment Availability. The availability of the required test environment needs
to be considered in constructing schedules.

■ Test Case Risk. The risk associated with components under test is another
important consideration in the overall schedule. Components with higher risk
should be tested as early as possible.

Test Environments
The specified test objectives influence the test environment requirements. For
example, service level test objectives (such as system availability, load, and
responsiveness) often require an isolated environment to verify. In addition,
controlled test environments can help:

■ Provide integrity of the application under test. During a project, at any given time
there are multiple versions of a module or system configuration. Maintaining
controlled environments can make sure that tests are being executed on the
appropriate versions. Significant time can be wasted executing tests on incorrect
versions of a module or debugging environment configuration without these
controls.

■ Control and mange risk as a project nears roll out. There is always risk associated
with introducing configuration changes during the lifecycle of the project. For
example, changing configuration just before rollout carries a significant amount
of risk. Using controlled environments allows a team to isolate late-stage and
risky changes.

It is typical to have established Development, Functional Testing, System Testing,
Performance Testing, and Production environments to support testing. More
complex projects often include more environments or parallel environments to
support parallel development. Many customers use standard code control systems
to facilitate the management of code across environments.

The environment management approach includes the following components:
34 Testing Siebel eBusiness Applications Version 7.5

Plan Testing Strategy

Test Environments
■ Named Environments and Migration Process. A set of named test environments and
a specific purpose (for example, Integration Test environment) and a clear set of
environment entry and exit criteria. Typically, the movement of components
from one environment to the next requires that each component pass a
predefined set of test cases, and is done with the appropriate level of controls
(for example, code control and approvals).

■ Environment Audit. A checklist of system components and configuration for each
environment. Audits are performed prior to any significant test activity. The
Environment Verification Tool can be used to facilitate the audit of test
environments. For more information about the Environment Verification Tool,
please refer to Siebel SupportWeb at http://ebusiness.siebel.com/supportweb/.

■ Environment Schedule. A schedule that outlines the dates when test cases will be
executed in a given environment.

Performance Test Environment
In general, the more closely the system test environment reflects the production
configuration, the more applicable the test results will be. It is important that the
system test environment include all of the relevant components to test all aspects
of the system, including integration and third-party components. Often it is not
feasible to build a full duplicate of the production configuration for testing
purposes. In that case, the following scaled-down strategy should be employed for
each tier:
Version 7.5 Testing Siebel eBusiness Applications 35

Plan Testing Strategy

Test Environments
■ Web Servers and Siebel Servers. To scale down the web and application server
tiers, the individual servers should be maintained in the production
configuration and the number of servers scaled down proportionately. The
overall performance of a server depends on a number of factors besides number
of CPUs, CPU speed, and memory size, so it is generally not accurate to try to
map the capacity of one server to another even within a single vendor’s product
line.

The primary tier of interest from an application scalability perspective is the
application server tier. Scalability issues are very rarely found on the web server
tier. If further scale-down is required it is reasonable to maintain a single web
server and continue to scale the application server tier down to a single server.
The application server should still be of the same configuration as those used in
the production environment, so that tuning activity can be accurately reflected
in the system test and production environments.

■ Database Server. If a database server needs to be scaled down, there is generally
little alternative but to use a system as close as possible to the production
architecture, but with CPU, memory, and I/O resources scaled down as
appropriate.

■ Network. The network configuration is one area in which it is particularly
difficult to replicate the same topology and performance characteristics that exist
in the production environment. It is important that system test include any
active network devices such as proxy servers and firewalls. The nature of these
devices can impact not only the performance of the system, but also the
functionality, since in some cases these devices manipulate the content that
passes through them. The performance of the network can often be simulated
using bandwidth and latency simulation tools generally available from
third-party vendors.
36 Testing Siebel eBusiness Applications Version 7.5

Develop Tests 4
This section describes the process of developing the tests that you should perform
during the development of your project.

Overview of Test Development
It is important for the development of test cases to be performed in close
cooperation between the tester, the business analyst, and the business user. The
process illustrated in Figure 9 illustrates some of the activities that should take place
in the test development process.

To generate valid and complete test cases, they must be written with full
understanding of the requirements, specifications, and usage scenarios.

Figure 9. Diagram of the Develop Tests Process
Version 7.5 Testing Siebel eBusiness Applications 37

Develop Tests

Overview of Test Development
The deliverables of the test development process include:

■ Requirement Gaps. As a part of the design review process, the business analyst
should identify business requirements that have incomplete or missing designs.
This can be a simple list of gaps tracked in a spreadsheet. Gaps must be
prioritized and critical issues scoped and reflected in the updated design. Lower
priority gaps enter the change management process.

■ Approved Technical Design. This is an important document that the development
team produces to document its approach to solving a business problem. It
should provide detailed process-flow diagrams, UI mock-ups, pseudo-code, and
integration dependencies. The technical design should be reviewed and
approved by both business analysts and the testing team.

■ Detailed Test Cases. Step-by-step instructions for how testers execute a test.

■ Test Automation Scripts. If test automation is a part of the testing strategy, the test
cases need to be recorded as actions in the automation tool. The testing team
develops the functional test automation scripts, while the IT team typically
develops the performance test scripts.
38 Testing Siebel eBusiness Applications Version 7.5

Develop Tests

Design Evaluation
Design Evaluation
The earliest form of testing is design evaluation. Testing during this stage of the
implementation is often neglected. Development work should not start until
requirements are well understood, and the design can fully address the
requirements. All stakeholders should be involved in reviewing the design. Both the
business analyst and business user, who defined the requirements, should approve
the design. The design evaluation process is illustrated in Figure 10.

Figure 10. Diagram of the Evaluate Design Process
Version 7.5 Testing Siebel eBusiness Applications 39

Develop Tests

Design Evaluation
Reviewing Design and Usability
Two tools for identifying issues or defects are the Design Review and Usability
Review. These early stage reviews serve two purposes. First, they provide a way for
development to describe the components to the requirement solution. Second, they
allow the team to identify missing or incomplete requirements early in the project.
Many critical issues are often introduced by incomplete or incorrect design. These
reviews can be as formal or informal as deemed appropriate. Many customers have
used design documents, white board sessions, and paper-based user interface
mock-ups for these reviews.

Once the design is available, the business analyst should review it to make sure that
the business objectives can be achieved with the system design. This review
identifies functional gaps or inaccuracies. Usability reviews determine design
effectiveness with the UI mock-ups, and help identify design inadequacies.

Task-based usability tests are the most effective. In this type of usability testing, the
tester gives a user a task to complete (for example, create an activity), and using
the user interface prototype or mock-up, the user describes the steps that he or she
would perform to complete the task. Let the user continue without any prompting,
and then measure the task completion rate. This UI testing approach allows you to
quantify the usability of specific UI designs.

The development team is responsible for completing the designs for all business
requirements. Having a rigorous design and review process can help avoid costly
oversights.
40 Testing Siebel eBusiness Applications Version 7.5

Develop Tests

Test Case Authoring
Test Case Authoring
Based on the test case objective, requirements, design, and usage scenarios, the
process of authoring test cases can begin. Typically this activity is performed with
close cooperation between the testing team and business analysts. Figure 11
illustrates the process for authoring a test case.

As you can see from the process, functional, structural, and performance test cases
have different structures based on their nature.

Figure 11. Diagram of the Test Authoring Process
Version 7.5 Testing Siebel eBusiness Applications 41

Develop Tests

Test Case Authoring
Functional Test Cases
Functional test cases test a common business operation or scenario. Table 1 shows
some examples of functional test cases.

A functional test case may verify common control navigation paths through a view.
Functional test cases typically have two components, test paths and test data.

Table 1. Common Functional Test Cases

Test Phase Example

Unit Test ■ Test common control-level navigation through a view. Test
any field validation or default logic.

■ Invoke methods on an applet.

Module Test ■ Test common module-level user scenarios (for example,
create an account and add an activity).

■ Verify correct interaction between two related Siebel
components (for example, Workflow Process and
Business Service).

Process Test ■ Test proper support for a business process.
42 Testing Siebel eBusiness Applications Version 7.5

Develop Tests

Test Case Authoring
Test Path
Test paths describe the actions and objects to be tested. A path is presented as a list
of steps and the expected behavior at the completion of a step. Figure 12 shows an
example of a test path. Notice that in the Test Case Step column, there are no data
values in the path; instead you see a parameter name in italics as a place holder.
This parameterization approach is a common technique used with automation tools
and is helpful for creating reusable test cases.

Test Data
Frequently, a single path can be used to test many scenarios by simply changing the
data that is used. For example, you can test the processing of both high-value and
low-value opportunities by changing the opportunity data entered, or you can test
the same path on two different language versions of the application. For this reason,
it can be helpful to define the test path separate from the test data.

Figure 12. Sample Test Path
Version 7.5 Testing Siebel eBusiness Applications 43

Develop Tests

Test Case Authoring
Structural Test Cases
Structural test cases are typically used in unit or module test phases to make sure
that a component or module is built to specification. Where functional tests focus
on validating support for a scenario, structural tests make sure that the structure of
the application is correct. Table 2 shows some examples of typical structural tests.

Table 2. Common Structural Test Cases

Object Type Example

User Interface (View) Verify that a view has all specified applets and each applet has
specified controls with correct type and layout.

Interface Verify that an interface data structure has the correct data
elements and correct data types.

Business Rule Verify that a business rule (for example, assignment rule)
handles all inputs and outputs correctly.

Data Object Verify that a data object has the specified data fields with
correct data types.
44 Testing Siebel eBusiness Applications Version 7.5

Develop Tests

Test Case Authoring
Figure 13 shows a typical structural test case for a view. It is set up to verify that all
components of the view (object) are built and function as specified.

Performance Test Cases
Performance testing is accomplished by simulating system activity using automated
testing tools. Siebel Systems has several software partners who provide load testing
tools that have been validated to integrate with Siebel 7. Automated load-testing
tools are important since they allow you to accurately control the load level and
correlate observed behavior with system tuning. This section describes the process
of authoring test cases using an automation framework.

The first thing to document when authoring a performance test case are the key
performance indicators (KPIs) that will be measured. The KPIs can drive the
structure of the performance test and also provide direction for tuning activities.
Typical KPIs include resource utilization (CPU, memory) of any server component,
uptime, response time, and transaction throughput.

Figure 13. Sample Structural Test Case
Version 7.5 Testing Siebel eBusiness Applications 45

Develop Tests

Test Case Authoring
The performance test case describes the types of users and number of users of each
type that will be simulated in a performance test. Figure 14 presents a typical test
profile for a performance test.

Test cases should be created to mirror various states of your system usage,
including:

■ Response Time or Throughput. Simulate the expected typical usage level of the
system to measure system performance at a typical load. This allows evaluation
against response time and throughput KPIs.

■ Scalability. Simulate loads at peak times (for example, end of quarter or early
morning) to verify system scalability. Scalability (stress test) scenarios allow
evaluation of system sizing and scalability KPIs.

■ Reliability. Determine the duration for which the application can be run without
the need to restart or recycle components. Run the system at the expected load
level for a long period of time and monitor system failures.

Figure 14. Performance Test Profile
46 Testing Siebel eBusiness Applications Version 7.5

Develop Tests

Test Case Authoring
User Scenarios
The user scenario defines the type of user, as well as the actions that the user
performs. The first step to authoring performance test cases is to identify the user
types that are involved. A user type is a category of typical business user. Arrive at
a list of user types by categorizing all users based on the transactions they perform.
For example, you may have call center users who respond to services requests and
call center users who make outbound sales calls. For each user type, define a typical
scenario. It is important that scenarios accurately reflect the typical set of actions
taken by a typical user, as scenarios that are too simple or too complex skew the
test results. There is a trade-off that must be balanced between the effort to create
and maintain a complex scenario and accurately simulating a typical user. Complex
scenarios require more time-consuming scripting, while scenarios that are too
simple may result in excessive database contention as all the simulated users
attempt simultaneous access to the small number of tables that support a few
operations.

Most user types fall into one of two usage patterns:

■ Multiple-iteration users tend to log in once and then cycle through a business
process multiple times (for example, call center representatives). The Siebel
application has a number of optimizations that take advantage of persistent
application state during a user session, and it is important to accurately simulate
this behavior to obtain representative scalability results. The scenario should
show the user logging in, iterating over a set of transactions, and then logging
out.
Version 7.5 Testing Siebel eBusiness Applications 47

Develop Tests

Test Case Authoring
■ Single-iteration scenarios emulate the behavior of occasional users such as
e-commerce buyers, partners at a partner portal, or employees accessing ERM
functions such as employee locator. These users typically execute an operation
once and then leave the Siebel environment, and so do not take advantage of the
persistent state optimizations for multiple-iteration users. The scenario should
show the user logging in, performing a single transaction, and then logging out.

As shown in Figure 15, the user think times are specified in the scenario. It is
important that think times be distributed throughout the scenario and reflect the
times that an actual user takes to perform the tasks.

Figure 15. Sample Test Case Excerpt With Think Time
48 Testing Siebel eBusiness Applications Version 7.5

Develop Tests

Test Case Automation
Data Sets
The data in the database and used in the performance scenarios can impact test
results, since this data impacts the performance of the database. It is important to
define the data shape to be similar to what is expected in the production system.
Many customers find it easiest to use a snapshot of true production data sets to do
this.

Test Case Automation
Siebel Systems partners with the leading test automation tool vendors, who provide
validated integrations to Siebel 7. Automation tools can be a very effective way to
execute tests. In the case of performance testing, automation tools are critical to
provide controlled, accurate test execution. Once you have defined test cases, they
can be automated using third-party tools.

Functional Automation
Using automation tools for functional or structural testing can cost less than
performing manual test execution. You should consider which tests to automate
since there is a cost to creating and maintaining functional test scripts. Acceptance
regression tests benefit the most from functional test automation technology.

For functional testing, automation provides the greatest benefit when testing
relatively stable functionality. Typically, automating a test case takes approximately
seven times as long as manually executing it once. Therefore, if a test case is not
expected to be run more than seven times, the cost of automating it may not be
justified.

Performance Automation
Automation is necessary to conduct a successful performance test. Performance
testing tools virtualize real users, allowing you to simulate thousands of users. In
addition, these virtual users are less expensive, more precise, and more tolerant
than actual users. The process of performance testing and tuning is iterative, so it
is expected that a test case will be run multiple times to first identify performance
issues and then verify that any tuning changes have corrected observed
performance issues.
Version 7.5 Testing Siebel eBusiness Applications 49

Develop Tests

Test Case Automation
Performance testing tools virtualize real users by simulating the HTTP requests
made by the client for the given scenario. The Siebel 7 Smart Web Architecture
separates the client-to-server communication into two channels, one for layout and
one for data. The protocol for the data channel communication is highly
specialized; therefore Siebel Systems has worked closely with leading test vendors
to provide their support for Siebel 7. Since the communication protocol is highly
specialized and subject to change, it is strongly recommended that you use a
validated tool.

At a high level, the process of developing automated test scripts for performance
testing has four steps. Please refer to the instructions provided by your selected tool
vendor for details:

1 Record scripts for each of the defined user types. Use the automation tool’s
recording capability to record the scenario documented in the test case for each
user. Keep in mind the multi-iteration versus single-iteration distinction between
user types. Many tools automatically record user think times; modify these
values, if necessary, to make sure that the recorded values accurately reflect
what was defined in the user type scenario.

2 Insert Parameterization. Typically the recorded script must be modified for
parameterization. Parameterization allows you to pass in data values for each
running instance of the script. Since each virtual user runs in parallel, this is
important for segmenting data and avoiding uniqueness constraints.

3 Insert Dynamic Variables. Dynamic variables are generated based on data returned
in a prior response. Dynamic variables allow your script to intelligently build
requests that accurately reflect the server state. For example, if you execute a
query, your next request should be based on a record returned in the query result
set. Examples of dynamic variables in Siebel 7 include session ids, row ids, and
timestamps. All validated load test tool vendors provide details on how dynamic
variables can be used in their product.

4 Script Verification. After you have recorded and enhanced your scripts, you
should run each script with a single user to verify that it functions as expected.

Siebel Systems offers testing services that can help you design, build, and execute
performance tests if you need assistance.
50 Testing Siebel eBusiness Applications Version 7.5

Develop Tests

Test Case Automation
Best Practice
Test Automation. Using test automation tools can reduce the effort required to
execute tests, and allows a project team to achieve greater test coverage. Test
Automation is critical for Performance testing, as it provides an accurate way to
simulate large numbers of users.
Version 7.5 Testing Siebel eBusiness Applications 51

Develop Tests

Test Case Automation
52 Testing Siebel eBusiness Applications Version 7.5

Execute Siebel Functional Tests 5
This section describes the process of executing Siebel functional tests.

Overview of Executing Siebel Functional Tests
The process of executing Siebel functional tests is designed to provide for delivery
of a functionally validated Siebel application into the system environment. For
many customers the Siebel application is one component of the overall system,
which may include other backend applications, integration infrastructure, and
network infrastructure. Therefore, the objective of the Execute Siebel Functional
Tests process is to verify that the Siebel application functions properly before
inserting it into the larger system environment. This process is illustrated in
Figure 16.

Figure 16. Diagram of the Execute Siebel Functional Tests Process
Version 7.5 Testing Siebel eBusiness Applications 53

Execute Siebel Functional Tests

Overview of Executing Siebel Functional Tests
There are three phases to this process:

■ Unit Test. The unit test validates the functionality of a single component (for
example, an applet or a business service).

■ Module Test. The module test validates the functionality of a set of related
components that make up a module (for example, Contacts or Activities).

■ Process Test. The process test validates that multiple modules can work together
to enable a business process (for example, Opportunity Management or Quote
to Order).

Application developers test their individual components for functional correctness
and completeness before checking component code into the repository. The unit
test cases should have been designed to test the low-level details of the component
(for example: control behavior, layout, data handling).

Typical unit tests include structural tests of components, negative tests, boundary
tests, and component-level scenarios. The unit test phase allows developers to fast
track fixes for obvious defects before checking in. A developer must demonstrate
successful completion of all unit test cases before checking in their component. In
some cases, unit testing identifies a defect that is not critical for the given
component; these defects are logged into the defect tracking system for
prioritization.

Once unit testing has been completed on a component, that component is moved
into a controlled test environment, where the component can be tested along side
others at the module and process level.

Reviews
There are two types of reviews done in conjunction with functional testing:
configuration review and scripting code review.

■ Configuration Review. This is a review of the Siebel application configuration done
in Siebel Tools. Configuration best practices should be followed. Some common
recommendations include using optimized built-in functionalities rather than
developing custom scripts and using Primary joins to improve MVG
performance.
54 Testing Siebel eBusiness Applications Version 7.5

Execute Siebel Functional Tests

Overview of Executing Siebel Functional Tests
■ Scripting Code Review. Custom scripting is the source of many potential defects.
These defects are the result of poor design or inefficient code that can lead to
severe performance problems. A code review can identify design flaws and
recommend code optimization to improve performance.

Checking in a component allows the testing team to exercise that component along
side related components in an integration test environment. Once in this
environment, the testing team executes the integration test cases based on the
available list of components. Integration tests are typically modeled as actual usage
scenarios, which allow testers to validate that a user can perform common tasks. In
contrast to unit test cases, these tests are not concerned with specific details of any
one component, but rather the way that logic is handled when working across
multiple components.
Version 7.5 Testing Siebel eBusiness Applications 55

Execute Siebel Functional Tests

Track Defects Subprocess
Track Defects Subprocess
The Track Defects subprocess is designed to collect the data required to measure
and monitor the quality of the application, and also to control project risk and
scope. The process, illustrated in Figure 17, is designed so that those with the best
understanding of the customer priorities are in control of defect prioritization. The
business analyst monitors a list of newly discovered issues using a defect tracking
system like the Siebel Quality module. These users monitor, prioritize, and target
defects with regular frequency. This is typically done daily in the early stages of a
project and perhaps several times a day in later stages.

Figure 17. Diagram of the Track Defects subprocess
56 Testing Siebel eBusiness Applications Version 7.5

Execute Siebel Functional Tests

Track Defects Subprocess
The level of scrutiny is escalated for defects discovered after the project freeze date.
A very careful measurement of the impact to the business of a defect versus the risk
associated with introducing a late change must be made at the project level.
Commonly, projects that do not have appropriate levels of change management in
place have difficulty reaching a level of system stability adequate for deployment.
Each change introduced carries with it some amount of regression risk. Late in a
project, it is the responsibility of the entire project team, including the business unit,
to carefully manage the amount of change introduced.

Once a defect has been approved to be fixed, it is assigned to development and a
fix is designed, implemented, unit tested, and checked in. The testing team must
then verify the fix by bringing the affected components back to the same testing
phase where the defect was discovered. This requires reexecution of test cases from
earlier phases. The defect is finally closed and verified when the component or
module successfully passes the test cases in which it was discovered. The process
of validating a fix can often require the reexecution of past test cases, so this is one
activity where automated testing tools can provide significant savings. One best
practice is to define regression suites of test cases that allow the team to reexecute
a relevant, comprehensive set of test cases when a fix is checked in.

Tracking defects also collects the data required to measure and monitor system
quality. Important data inputs to the deployment readiness decision include the
number of open defects and defect discovery rate. Also, it is important for the
business customer to understand and approve the known open defects prior to
system deployment.

Best Practice
Track Defects. The use of a Defect Tracking System allows a project manager to
understand the current quality of the application, prioritize defect fixes based on
business impact, and carefully control risk associated with configuration changes
late in the project.
Version 7.5 Testing Siebel eBusiness Applications 57

Execute Siebel Functional Tests

Track Defects Subprocess
58 Testing Siebel eBusiness Applications Version 7.5

Execute Integration and Acceptance Tests 6
This section describes the process of executing integration and acceptance tests.

Overview of Executing Integration and Acceptance Tests
The processes of executing integration and acceptance tests are designed to verify
that the Siebel application can properly communicate with other applications or
components in the system, support end-to-end business processes, and will be
accepted by the user community. This is a very busy and exciting phase of any
project, since it marks a point where the system is nearing deployment.

The three major pieces to the executing integration and acceptance tests processes
include:

■ Testing integrations with the Siebel application. In most customer deployments, the
Siebel application integrates with several other applications or components.
Integration testing focuses on these Siebel touch points with third-party
applications, network infrastructure, and integration middleware.

■ Functional testing of business processes. Required business processes must be
tested end-to-end to verify that transactions are handled appropriately across
component, application, and integration logic. It is important to push a
representative set of transaction data through the system and follow all branches
of required business processes.

■ Testing system acceptance with users. User acceptance testing allows system users
to use the system to perform simulated work. This phase of testing makes sure
that users will be able to effectively use the system once it is live.
Version 7.5 Testing Siebel eBusiness Applications 59

Execute Integration and Acceptance Tests

Execute Integration Tests
Execute Integration Tests
Completion of the Siebel Functional Testing process verifies that the Siebel
application functions correctly as a unit. In Integration Testing you verify that this
unit functions correctly when inserted into the complete, larger system. In this
process, your test cases should be defined to test the integration points between the
Siebel application and other applications or components. Typical components
include back office applications, integration middleware, network infrastructure
components, and security infrastructure. Tests in this process should focus on
exercising integration logic, and validating end-to-end business processes that span
multiple systems. Figure 18 illustrates this process.

Figure 18. Execute Integration Tests Process
60 Testing Siebel eBusiness Applications Version 7.5

Execute Integration and Acceptance Tests

Execute Acceptance Tests
Execute Acceptance Tests
Once the system as a whole has been validated, you need to make sure that the
functionality provided is acceptable to the business users. Hopefully, the business
user has been engaged all along, approving at each phase of the project to make
sure that there are no surprises. In the User Acceptance testing process, open the
system up to a larger community of trained users and ask them to simulate running
their business on the system. User Acceptance testing should be designed to
simulate live business as closely as possible. Complete this process by having the
user community representative (business user) approve the acceptance test results.
Figure 19 illustrates this process.

Figure 19. Diagram of the Execute Acceptance Tests Process
Version 7.5 Testing Siebel eBusiness Applications 61

Execute Integration and Acceptance Tests

Execute Acceptance Tests
62 Testing Siebel eBusiness Applications Version 7.5

Execute Performance Tests 7
This section describes the process of executing performance tests.

Overview of Executing Performance Tests
As described earlier, there are three types of performance test cases that are
typically executed: response time, stress, and reliability testing. It is important to
differentiate between the three since they are intended to measure different KPIs
(key performance indicators). Performance tests are typically managed by
specialized members of the testing and system administration organizations, who
have ownership of the system architecture and infrastructure.

Figure 20 illustrates the process for performance test execution. The first step
involves validating recorded user-type scripts in the system test environment.

Figure 20. Diagram of the Execute Performance Tests Process
Version 7.5 Testing Siebel eBusiness Applications 63

Execute Performance Tests

Overview of Executing Performance Tests
Execute Test
Execute each script for a single user to validate the health of the environment. A
low user-load baseline should be obtained before attempting the target user load.
This baseline allows you to measure system scalability by comparing results
between the baseline and target loads.

Users need to be started at a controlled rate to prevent excessive resource utilization
due to large numbers of simultaneous logins. This rate depends on the total
configured capacity of the system. For every 1000 users of configured system
capacity, you should add one user every three seconds. For example, if the system
is configured for 5000 users, you add five users every three seconds.

Excessive login rate causes the application server tier to consume 100% CPU, and
logins begin to fail. Think times should be randomized during load testing to
prevent inaccuracies due to simulated users executing transactions simultaneously.
Randomization ranges should be set based on determining the relative think times
of expert and new users when compared to the average think times in the script.

Performing SQL Trace
Since many performance issues are caused by poorly formed SQL or sub optimal
database tuning, the first step to improve performance is to perform SQL trace. SQL
trace creates a log file that records the statements generated in the Siebel object
manager and that are executed on the database. The time required to execute and
fetch on an SQL statement has a significant impact on both the response time seen
by end users of a system and on the system’s resource utilization on the database
tier. It is important to discover slow SQL statements and root cause, and fix issues
before attempting scalability or load tests, as excessive resource utilization on the
database server will invalidate the results of the test or cause it to fail.

To obtain an SQL trace

1 Set a breakpoint in the script at the end of each action and execute the script for
two iterations.

2 Enable EvtLogLvl (ObjMgrSqlLog=5) to obtain SQL traces for the component on
the application server that has this user session or task running.

3 Continue executing the script for the third iteration and wait for the breakpoint
at the end of action.
64 Testing Siebel eBusiness Applications Version 7.5

Execute Performance Tests

Overview of Executing Performance Tests
4 Turn OFF SQL tracing on the application server (reset it to its original value,
or 1).

5 Complete the script execution.

The log file resulting from this procedure has current SQL traces for this business
scenario. Typically, any SQL statement over 0.1 seconds is considered suspect and
needs to be investigated, either by optimizing the execution of the query (typically
by creating an index on the database) or by altering the application to change the
query.

Measure System Metrics
Results collection should occur during a measurement period while the system is at
a steady state, simulating ongoing operation in the course of a business day. Steady
state is achieved once all users are logged in and caches (including simulated
client-side caches) are primed. The measurement interval should commence after
the last user has logged in and completed the first iteration of the business scenario.

The measurement interval should last at least one hour, during which system
statistics should be collected across all server tiers. We recommend that you
measure the following statistics:

■ CPU

■ Memory

■ System Calls

■ Context Switches

■ Paging rates

■ I/O waits (on the database server)

■ Transaction response times as reported by load testing tool

NOTE: Response times will be shorter than true end-user response times due to
additional processing on the client, which is not included in the measured time.
Version 7.5 Testing Siebel eBusiness Applications 65

Execute Performance Tests

Overview of Executing Performance Tests
The analysis of the statistics starts by identifying transactions with unacceptable
response times, and then correlating them to observed numbers for CPU, memory,
I/O, and so on. This analysis provides insight into the performance bottleneck.

Monitor Failed Transactions
Less than 1% of transactions should fail during the measurement interval. A failure
rate greater than 1% indicates a problem with the scripts or the environment.

Typically, transactions fail for one of the following three reasons:

■ Timeout. A transaction may fail after waiting for a response for a specified
timeout interval. This can be caused by a resource issue at a server tier or by a
long-running query or script in the application.

If a long-running query or script is applicable to all users of a business scenario,
it should be caught in the SQL tracing step. If SQL tracing has been performed
and the problem is only seen during loaded testing, it is often caused by data
specific to a particular user or item in the test database. For example, a calendar
view might be slow for a particular user because prior load testing might have
created thousands of activities for that user on a specific day. This would only
show as a slow query and a failed transaction during load testing when that user
picks that day as part of their usage scenario.

Long-running transactions under load can also be caused by consumption of all
available resources on some server tier. In this case, transaction response times
typically stay reasonable until utilization of the critical resource closely
approaches 100%. As utilization approaches 100%, response times begin to
increase sharply and transactions start to fail. Most often, this consumption of
resources is due to CPU or memory on the Web server, application server, or
database server, I/O bandwidth on the database server, or network bandwidth.
Resource utilization across the server tiers should be closely monitored during
testing, primarily for data gathering purposes, but also for diagnosing the
resource consumption problem.

Very often, a long-running query or script can cause consumption of all available
resources at the database server or application server tier, which then causes
response times to increase and transactions to time out. While a timeout
problem may initially appear to be resource starvation, it is possible that the root
cause of the starvation is a long-running query or script.
66 Testing Siebel eBusiness Applications Version 7.5

Execute Performance Tests

Overview of Executing Performance Tests
■ Data Issues. In the same way that an issue specific to a particular data item may
cause a timeout due to a long-running query or script, a data issue may also
cause a transaction to fail. For example, a script that randomly picks a quote
associated with an opportunity will fail for opportunities that do not have any
associated quotes. Data should be fixed if error rates are significant, but a small
number of failures do not generally affect results significantly.

■ Script Issues. Transaction failures can also be caused by defects in scripts.
Common pitfalls in script recording include the following:

■ Inability to parse Web server responses due to special characters (quotes,
control characters, and so on) embedded in data fields for specific records.

■ Required fields not being parameterized or handled dynamically.

■ Strings in data fields that are interpreted by script error-checking code as
indicating a failed transaction. For example, it is common for a technical
support database to contain problem descriptions that include the string, The
server is down or experiencing problems.
Version 7.5 Testing Siebel eBusiness Applications 67

Execute Performance Tests

Overview of Executing Performance Tests
68 Testing Siebel eBusiness Applications Version 7.5

Improving the Testing Process 8
This section describes the steps you can take to make iterative improvements to the
testing process, as illustrated in Figure 21 on page 70.

Improve Testing
After the initial deployment, regular configuration changes are delivered in new
releases. In addition, Siebel Systems delivers regular maintenance and major
software releases. Configuration changes and new software releases must be tested
to verify that the quality of the system is sustained. This is a continuous effort using
a phased deployment approach, as discussed in “Phased Delivery” on page 17.

This ongoing lifecycle of the application is an opportunity for continuous
improvement in testing. First, a strategy for testing functionality across the life of
the application is built by identifying a regression test suite. This test suite provides
an abbreviated set of test cases that can be run with each delivery to identify any
regression defects that may be introduced. The use of automation is particularly
helpful for executing regression tests. By streamlining the regression test process,
organizations are able to incorporate change into their applications at a much lower
cost.
Version 7.5 Testing Siebel eBusiness Applications 69

Improving the Testing Process

Improve Testing
The testing strategy and its objectives should be reviewed to identify any
inadequacies in planning. A full review of the logged defects (both open and closed)
can help calibrate the risk assessment performed earlier. This provides an
opportunity to measure the observed risk of specific components (for example,
which component introduced the largest number of defects). A project-level final
review meeting (also called a post-mortem) provides an opportunity to have a
discussion about what went well and what could have gone better with respect to
testing. Test plans and test cases should be reviewed to determine their
effectiveness. Update test cases to include testing scenarios exposed during testing
that were not previously identified.

Figure 21. Diagram of the Improve Testing Process
70 Testing Siebel eBusiness Applications Version 7.5

Index
No index is available for this guide.
Version 7.5 Testing Siebel eBusiness Applications 71

72 Testing Siebel eBusiness Applications Version 7.5

	Contents
	Introduction
	Product Modules and Options
	How This Guide Is Organized
	Additional Resources
	Revision History

	Overview of Testing Siebel Applications
	Introduction to Application Software Testing
	Best Practice

	Application Software Testing Methodology
	Common Test Definitions
	Siebel eRoadmap Implementation Methodology

	Phased Delivery
	Continuous Application Lifecycle
	Best Practice

	Iterative Development
	Best Practice

	Testing and Deployment Readiness

	Testing Process
	Overview of the Siebel Testing Process
	Plan Testing Strategy
	Develop Tests
	Execute Siebel Functional Tests
	Execute Integration Tests
	Execute Acceptance Tests
	Execute Performance Tests
	Improve Testing

	Plan Testing Strategy
	Overview of Test Planning
	Test Objectives
	Test Plans
	Best Practice
	Test Cases
	Test Phase

	Component Inventory
	Risk Assessment
	Best Practice

	Test Plan Schedule

	Test Environments
	Performance Test Environment

	Develop Tests
	Overview of Test Development
	Design Evaluation
	Reviewing Design and Usability

	Test Case Authoring
	Functional Test Cases
	Test Path
	Test Data

	Structural Test Cases
	Performance Test Cases
	User Scenarios
	Data Sets

	Test Case Automation
	Functional Automation
	Performance Automation
	Best Practice

	Execute Siebel Functional Tests
	Overview of Executing Siebel Functional Tests
	Reviews

	Track Defects Subprocess
	Best Practice

	Execute Integration and Acceptance Tests
	Overview of Executing Integration and Acceptance Tests
	Execute Integration Tests
	Execute Acceptance Tests

	Execute Performance Tests
	Overview of Executing Performance Tests
	Execute Test
	Performing SQL Trace
	Measure System Metrics
	Monitor Failed Transactions

	Improving the Testing Process
	Improve Testing

	Index

