

Developer’s Overview
Guide for Siebel
Communications Billing
Analytics

Version: 5.1.1

Pub Date: 09/30/2006

Copyright © 2005, 2006, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary
information; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to
the extent required to obtain interoperability with other independently created software or as
specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. This document is not
warranted to be error-free. Except as may be expressly permitted in your license agreement
for these Programs, no part of these Programs may be reproduced or transmitted in any form
or by any means, electronic or mechanical, for any purpose.

PRODUCT MODULES AND OPTIONS. This guide contains descriptions of modules that are
optional and for which you may not have purchased a license. Siebel’s Sample Database also
includes data related to these optional modules. As a result, your software implementation
may differ from descriptions in this guide. To find out more about the modules your
organization has purchased, see your corporate purchasing agent or your Siebel sales
representative.

If the Programs are delivered to the United States Government or anyone licensing or using
the Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software"
or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification,
and adaptation of the Programs, including documentation and technical data, shall be subject
to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the
extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer
Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood
City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee's responsibility to take all
appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any
damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation
and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services
from third parties. Oracle is not responsible for the availability of, or any content provided on,
third-party Web sites. You bear all risks associated with the use of such content. If you choose
to purchase any products or services from a third party, the relationship is directly between
you and the third party. Oracle is not responsible for: (a) the quality of third-party products or
services; or (b) fulfilling any of the terms of the agreement with the third party, including
delivery of products or services and warranty obligations related to purchased products or
services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

 Developer’s Overview Guide for Siebel Communications Billing Analytics Version: 5.1.1

3

Contents

1 Communications Billing Analytics (CBA) SDK

Introduction 5

2 CBA Architecture Overview

Overall Architecture of CBA 7

CBA Online Application 7

CBA Command Center 8
CBA Package Structure 10
CBA EAR Structure 14

Ear-tam-tbm.ear 14

Ear-estatement.ear 16

3 CBA Customization Guidelines

Overview 17
General Rules 17
Ear-Repackaging 17
UI Customization 18

Customizing the Existing Look-and-Feel 18

Custom JSP Pages and Action Classes 18

Velocity Templates 18

Reports 19

Localization 19

Change the URL Prefix 19
Spring (XMA) Configuration Files 19
OLTP Database 20
OLAP Database 20

Contents

4 Developer’s Overview Guide for Siebel Communications Billing Analytics Version: 5.1.1

4 CBA Debugging Guidelines

Overview 21
Viewing log4j Logs 21
Viewing Command Center Logs 21
Displaying SQLs 22

5 CBA Migration Guidelines

Overview 23
Installing a New Version of CBA 23
Database Migration 23
Code/EAR Migration 23
Command Center Job Migration 24
Configuration Migration 24

XMA Configuration Files 25

Report XML Files 25

Report Template Files 25

Application Server Configuration 25
Test, Test, and Test 25

 Developer’s Overview Guide for Siebel Communications Billing Analytics Version: 5.1.1

5

1 Communications Billing Analytics
(CBA) SDK

Introduction
This guide describes how to use CBA as a development platform and customize it for a
particular deployment.

CBA includes three major components:

 Reporting

 Hierarchy

 Cost management

The Reporting and Hierarchy components have their own development guides (the “Hierarchy
Developer’s Guide” and the “Reporting Developer’s Guide”) because each has a set of rich
features.

This guide focuses on overall CBA development and refers to the other two guides as
necessary.

Communications Billing Analytics (CBA) SDK

6 Developer’s Overview Guide for Siebel Communications Billing Analytics Version: 5.1.1

 Developer’s Overview Guide for Siebel Communications Billing Analytics Version: 5.1.1

7

2 CBA Architecture Overview

Overall Architecture of CBA

CBA includes two applications:

 The online application

 Command Center

Each application is packaged as one ear file:

 The online application ear is called ear-tam-tbm.ear.

 The Command Center application ear is called estatement.ear.

CBA Online Application
The online application is used by the end users. This diagram shows the overall architecture of
the online application:

The user management module is used to authenticate and authorize a user. After the user has
been authenticated, the user can then access different CBA feature such as hierarchy, cost
management, reports, etc. See the CBA “Application Guide” for the details.

CBA Architecture Overview

8 Developer’s Overview Guide for Siebel Communications Billing Analytics Version: 5.1.1

All the CBA online application UIs are built upon Struts/Tiles. The Struts actions talk with the
Service APIs which then access different modules such as Hierarchy or Reporting.

 Hierarchy Management Module: Manages the life cycle of a hierarchy: creation,
modification, expiration, deletion, copy, move, search, hierarchy-based access control
(HBAC), etc.

 Cost Management Module: A set of tools to manage billing cost, such as re-bill, cost
reallocation, and budget management.

 Database Presentment Engine: A framework to retrieve data from different data
sources and present them as HTML, XML, or CSV. Offers features like paging, sorting,
charting, bread-crumb, batch report, custom report, etc.

 User Management: A framework to authenticate a user and role based access control
(RBAC).

 DB Access: The majority of our code uses Hibernate, which is an O-R mapping tool, to
access OLTP database. The access to OLAP is through direct JDBC call to boost
performance.

 Transaction Management: CBA uses distributed transaction (XA or JTA transaction) to
manage database access and JMS access. The transaction is managed through the Spring
Framework. The Spring framework is also used to manage object creations, etc.

 OLTP Database: The CBA transactional database, which includes transaction data such as
user, account, services, and hierarchies.

 OLAP Database: The CBA non-transaction database, which includes billing data. It is a
star-schema based data warehouse and includes dimensional tables, fact tables, and
hierarchy tables.

 OLTP-OLAP Synchronizer: A process which synchronizes the information from OLTP to
OLAP database. Currently, the main information being synchronized is the hierarchy. Any
change made to hierarchy on the OLTP side will be synchronized at OLAP. The OLAP
hierarchy schema is specially designed for queue performance and different from the OLTP
hierarchy schema. However, they have the exact the same content - even the hierarchy
node IDs are the same.

 JMS Queue: Currently, JMS queue is used to hold the batch report requests. The CBA
online application can send a batch report to the JMS queue and later the request can be
processed by CBA Command Center jobs.

CBA Command Center
The CBA Command Center is another application, and is packaged as a separate ear and
deployed on a separate application server. It is typically used by an administrator to run batch
jobs.

This diagram shows the overall architecture of the CBA Command Center:

CBA Architecture Overview

 Developer’s Overview Guide for Siebel Communications Billing Analytics Version: 5.1.1

9

(Note: The boxes with dotted lines are not in the product).

 Command Center UI: The UI is based on Servlet/JSP technology, not struts/tiles.

 Jobs: A Command Center job is a process which can be scheduled and run though the
Command Center console. A job consists of one or more tasks. Each task is implemented
as an EJB and has its own configuration parameters which can be configured through the
Command Center UI. When a job runs, the tasks inside each job are invoked sequentially.
Each task performs its task-specific processing.

There is a set of pre-defined CBA jobs, such as OLTP loader, batch generator, hierarchy
importer, etc. You must configure these jobs and scheduled them to run.

 PWC API: A set of APIs used to manage jobs.

 JMS Queue: The Batch Report job retrieves batch report requests from the queue then
generates batch reports.

 OLTP Loader: Loads billing information into OLTP table. The default loader configuration
loads companies, accounts, and service agreements from corresponding OLAP dim tables
into OLTP tables and hierarchies from the exchange table into hierarchy tables. The OLAP
dim tables and OTLP exchange table are usually populated by the OLAP loader.

CBA Architecture Overview

10 Developer’s Overview Guide for Siebel Communications Billing Analytics Version: 5.1.1

 OLAP Loader: OLAP loader loads billing information into OLAP dim tables, fact tables, and
OLTP exchange table. Note the current CBA product does not have an OLAP loader comes
out of box and it is all custom effort.

CBA Package Structure
After you install CBA, the installed product directories are as shown here (this example is
based on a Windows installation and installed on C: driver):

C:\Oracle\CBA

This is the default CBA installation directory on Windows. This directory is commonly referred
to as EDX_HOME, which is set during CBA installation. See the “Installation Guide” for details.

C:\Oracle\CBA\config

This directory includes some configuration files for CBA. Currently, only log4j.xml is used by
CBA and this directory is put on the class-path of CBA online application.

C:\Oracle\CBA\db

This directory includes CBA related databases scripts:

C:\Oracle\CBA\db\oracle: Contains the CBA DB schema for the Oracle database.

C:\Oracle\CBA\db\oracle\meta: Contains CBA meta data information. Not used.

C:\Oracle\CBA\db\oracle\olap: Contains CBA OLAP database schema.

C:\Oracle\CBA\db\oracle\olap\migration: Contains the OLAP schema migration scripts.

CBA Architecture Overview

 Developer’s Overview Guide for Siebel Communications Billing Analytics Version: 5.1.1

11

C:\Oracle\CBA\db\oracle\oltp: Contains CBA OLTP database schema.

C:\Oracle\CBA\db\oracle\oltp\migration: Contains the OLTP schema migration scripts.

C:\Oracle\CBA\db\oracle\oltp\util: Contains OLTP utility scripts.

C:\Oracle\CBA\db\oracle\oltp\upgrade: Not used.

 C:\Oracle\CBA\db\oracle\util: utility scripts for CBA

C:\Oracle\CBA\estatement

This directory contains information needed to run the CBA Command Center. This directory is
commonly referred as “EDX_HOME”. Note: This directory largely inherits from a legacy eBilling
product and may contain contents not used by CBA.

C:\Oracle\CBA\estatement\AppProfiles: Not used by CBA.

C:\Oracle\CBA\estatement\bin: includes scripts to run CBA Command Center
scheduler.

CBA Architecture Overview

12 Developer’s Overview Guide for Siebel Communications Billing Analytics Version: 5.1.1

C:\Oracle\CBA\estatement\config: this directory contains various CBA configuration
files. This directory should be put on the class-path of the CBA command center
server. The log4j.xml in this directory is used for the CBA command center logging.

C:\Oracle\CBA\estatement\config\chart: includes the CBA report chart property files.

C:\Oracle\CBA\estatement\config\com: not used

C:\Oracle\CBA\estatement\config\db: not used by CBA.

C:\Oracle\CBA\estatement\config\etl: configuration files used for CBA
OLTPProductionLoader job.

C:\Oracle\CBA\estatement\config\l10: Java resource bundle files for CBA reports.

C:\Oracle\CBA\estatement\config\rpt: CBA report XML definition files.

C:\Oracle\CBA\estatement\config\xml: contains XML schemas for CBA hierarchy
download and input.

C:\Oracle\CBA\estatement\data: Not used.

C:\Oracle\CBA\estatement\db: Not used.

C:\Oracle\CBA\estatement\input: Not used.

C:\Oracle\CBA\estatement\J2EEApps: Not used.

C:\Oracle\CBA\estatement\lib: Not used.

C:\Oracle\CBA\estatement\logs: Not used.

C:\Oracle\CBA\estatement\META-INF: Not used.

C:\Oracle\CBA\estatement\Output: Output directory for CBA batch reports.

C:\Oracle\CBA\estatement\samples: Not used.

C:\Oracle\CBA\estatement\template: Contains CBA report Velocity templates.

C:\Oracle\CBA\estatement\tempalte\common\lib: Contains the VM libraries used by
CBA.

C:\Oracle\CBA\estatement\template\common\reporting: Contains VM templates used
by CBA reports.

C:\Oracle\CBA\estatement\template\tam: Not used.

C:\Oracle\CBA\estatement\template\hbm: Not used.

C:\Oracle\CBA\estatement\template\hbmgrp: Not used.

C:\Oracle\CBA\estatement\template\metris: Not used.

C:\Oracle\CBA\estatement\tmp: Not used.

C:\Oracle\CBA\estatement\xma: One of the main configuration directories for CBA.
This directory includes the Spring Framework-related configuration files.

CBA Architecture Overview

 Developer’s Overview Guide for Siebel Communications Billing Analytics Version: 5.1.1

13

CBA maintains a hierarchy of Spring bean definition files. A bean can be defined in
multiple Spring files and the order of loading is defined in repos-config.xml of the ear.
If a bean is defined in more than one file, the subsequent bean definition will overwrite
previous one. Note, you will find a file with same name in <EDX_HOME> but that file
is not used. Instead, this file is here just for the purpose of illustration. This is the
loading order of Spring files defined in repos-config.xml:

<value>modules</value>
 <value>com/edocs/common</value>
 <value>com/edocs/domain/telco</value>
 <value>com/edocs/application/tam</value>

For WebSphere, some of the Spring files have been re-configured and they are saved in

modules/websphere directory.
The “modules/websphere/cba” includes files used by the CBA online application for

WebSphere. The “modules/websphere/cc” includes files used by the CBA Command Center

CBA Architecture Overview

14 Developer’s Overview Guide for Siebel Communications Billing Analytics Version: 5.1.1

application for WebSphere. The repos-config.xml in ear files for both applications have been
modified to load respective WebSphere configuration files at the end.
C:\Oracle\CBA\J2EEApps

Contains the ear files for CBA.

C:\Oracle\CBA\J2EEApps\exchange: Contains a set of sample XML file for Hierarchy
Import/Download.

C:\Oracle\CBA\J2EEApps\weblogic\estatement: Contains the Command Center ear file
for WebLogic server.

C:\Oracle\CBA\J2EEApps\weblogic\tam-tbm: Contains the online application ear file
for WebLogic server.

C:\Oracle\CBA\J2EEApps\websphere\estatement: Contains the Command Center ear
file for WebSphere server.

C:\Oracle\CBA\J2EEApps\websphere\tam-tbm: contains the online application ear file
for WebSphere server.

C:\Oracle\CBA\lib

Contains lib files used by CBA.

CBA EAR Structure
This section describes what is packaged inside CBA ear files.

Ear-tam-tbm.ear
Ear-tam-tbm.ear is the CBA online application ear. In general, this ear is deployed in a cluster
environment for the purpose of failover and load balance.

CBA Architecture Overview

 Developer’s Overview Guide for Siebel Communications Billing Analytics Version: 5.1.1

15

tam-tbm.ear: This is the root directory and contains EJB jar files.

tam-tbm.ear/lib: This directory contains the list of third-party lib files used by CBA.

tam-tbm.ear/META-INF: J2EE META-INF directory.

tam-tbm.ear/war-tbm-b2b.war: This is the CBA online application war file.

tam-tbm.ear/war-tbm-b2b.war: This directory contains a list of sub-directories. Most of
those directories are inherited from another legacy eBilling application and are not used
directly by CBA (except the tam and WEB-INF sub-directories).

tam-tbm.ear/war-tbm-b2b.war/tam: Includes CBA-related WEB components. Note: This
directory is defined as a Struts module “tam” in the main struts-config.xml and the actual CBA
action classes are defined in the strus-config-tam.xml file. Because of this, the URL accessing
these actions should all prefix with “tam”.

tam-tbm.ear/war-tbm-b2b.war/tam/_assetts: Contains the images, JavaScripts and
CSS files used by CBA.

tam-tbm.ear/war-tbm-b2b.war/tam/_includes and _templates directories: Contains
JSP page fragments used by the application; many of these are tiles.

CBA Architecture Overview

16 Developer’s Overview Guide for Siebel Communications Billing Analytics Version: 5.1.1

tam-tbm.ear/war-tbm-b2b.war/tam/hierarchy: CBA Hierarchy-related JSP pages.

tam-tbm.ear/war-tbm-b2b.war/tam/reporting: CBA Reporting-related JSP pages.

tam-tbm.ear/war-tbm-b2b.war/WEB-INF: J2EE WAR file WEB-INF directory.

tam-tbm.ear/war-tbm-b2b.war/WEB-INF/classes/azcfg/policy: Contains the CBA
RBAC policy file.

tam-tbm.ear/war-tbm-b2b.war/WEB-INF/classes/lib: Includes libraries used by the
war file.

tam-tbm.ear/war-tbm-b2b.war/WEB-INF/classes/com: Not used.

tam-tbm.ear/war-tbm-b2b.war/WEB-INF/classes/tam: Defines the struts validation
files used by CBA. Not used.

tam-tbm.ear/xma: This directory contains a list of internal library files used by CBA. In this
directory there is one jar file called api-<version-number>.jar. This jar file has all the public
CBA APIs defined and also contains the JavaDoc html files.

Ear-estatement.ear
Ear-estatement.ear is used for the Command Center application. You should deploy the
Command Center on a separate application server.

In general, you are not expected to modify this ear file during deployment.

Under ear-eStatement.ear directory are EJB and war files:

ear-eStatement.ear/lib: Third-party libraries.

ear-eStatement.ear/META-INF: J2EE META-INF directory.

ear-eStatement.ear/xma: Internal CBA libraries.

 Developer’s Overview Guide for Siebel Communications Billing Analytics Version: 5.1.1

17

 3 CBA Customization Guidelines

Overview
This chapter describes how to customize CBA. As always, customization of the product may
bring challenges for migration. See the chapter on migrating CBA for details.

General Rules
CBA provides a set of core functionalities, such as reporting and hierarchy management, and a
reference user interface (UI) to demonstrate these functionalities. The contract between CBA
core and the UI is a set of APIs. These APIs and the Java-docs are contained in the api jar file
of the ear file.

You must use these APIs for your customization purposes; do not modify or bypass these APIs
unless explicitly instructed in this document.

The reference UI demonstrates how CBA functions. The UI is customizable. For example, you
can customize the UI of reporting or even hierarchy. However, because of the complexity of
the hierarchy management UI, we strongly recommend that you try and keep your UI
as close as possible to the reference hierarchy UI to reduce your workload.

The functionalities exposed by the APIs actually exceed the ones demonstrated through the
reference UI. Please consult the API Java-docs and other sections of this guide for details. You
can customize the CBA application to take advantage of these functionalities.

When you have to change existing CBA files, such as a JSP or a Velocity template, you can
either work on an existing file or copy it and then work on the copy. The second method may
be more time consuming but will save you more time for migration. Either way, you should
keep the history of customization changes in a source control system.

Ear-Repackaging
Whenever you want to modify a JSP, add a new action class or an EJB, you need to re-
package the ear files. In general, we expect you are going to re-package the online ear but
not the Command Center ear.

When re-package the ear, make sure you don’t remove existing components and only modify
the components which are recommended as modifiable in this guide, such as JSP pages, CSS
file, app-resources.jar, etc.

CBA Customization Guidelines

18 Developer’s Overview Guide for Siebel Communications Billing Analytics Version: 5.1.1

UI Customization
UI customization may be as simple as changing the look-and-feel or as complex as adding
your own struts action classes.

Customizing the Existing Look-and-Feel
The CBA UI is based on Tiles definition and the UI properties like color, font size, etc. are all
controlled through a style sheet.

You can modify the CSS definitions in this file to change the look and feel of the CBA. All CSS
definitions are in this file: tam-tbm.ear/war-tbm-b2b.war/tam/_assets/css/screen.css.

You can modify the Tiles definitions file to use your own Tiles. All the Tiles definitions are in
this file: tam-tbm.ear/war-tbm-b2b.war/WEB-INF/tiles-def-tam.xml.

The hierarchy UI-related JSP pages are in tam-tbm.ear/war-tbm-b2b.war/tam/hierarchy and
tam-tbm.ear/war-tbm-b2b.war/tam/reporting and if needed, you can customize these JSP
pages.

In special cases for the UI when you use the CBA presentment engine to generate a report or
a search page, the result of the query is not presented by JSP, instead, a set of Velocity
templates are used. These templates are defined in <EDX_HOME>/templates/common/lib and
reporting directories. You should not touch the VM files in the lib directories. For the files
under reporting, you can customize them if necessary. However, we find that most of the time
you can customize reports using report xml files without touching the VM files.

Custom JSP Pages and Action Classes
It is possible that you may need to add your own UI components such as JSP pages,
JavaScripts etc. If possible, we recommend that you add these UI components into a separate
directory under ear-tam-tbm.ear/war-tbm-b2b.war/tam for easier migration. Because the
“tam” directory is defined as a Struts module, you need to prefix your URI with “tam”. For
example, http://localhost:7001/tbmb/tam/my-custom/my.jsp

After you create your own action class, you must modify the struts-config-tam.xml file to
register it.

Velocity Templates
The CBA reporting UI is based on Velocity templates, an open source project. The product
offers a set of out-of-the-box templates to implement common UI features such as paging,
sorting, charting, print-friendly, and download. To get more details, refer to the CBA
“Reporting Developer’s Guide.”

You can customize these out-of-the-box templates either by modifying them directly or by
copying and then modifying. If you do copy/modify, you need to configure report xmls to pick
up your new templates.

CBA Customization Guidelines

 Developer’s Overview Guide for Siebel Communications Billing Analytics Version: 5.1.1

19

Reports
All the report XML files defined in <EDX_HOME>/config/rpt are for the out-of-the-box CBA UI.
You can add your own report xml files by following the instructions in the CBA “Reporting
Developer’s Guide.” Your reports can use either the default Velocity templates provided with
CBA or your own templates.

Localization
You can change the resource bundle files to suit your own application localization needs. The
resource bundles are all packaged inside a jar file, tam-tbm.ear/xma/app-resources.jar.

Change the URL Prefix
CBA uses “tbmb” as its URL prefix. However, you can change this to fit your deployment
environment. The prefix “tbmb” is defined in the application.xml of the ear-tam-
tbm.ear/META-INF directory. All URLs from CBA use a relative URL (and no hard-coded
references to “tbmb”). This ensures that after you change the URL prefix, the application can
still work.

As you already know, the CBA related action classes and other Struts stuff are defined as a
Struts module, “tam”. Because of this, access to the Struts action classes should be prefixd
with tam, such as “tbmb/tam/report.do”. Though you could change the “tbmb” to something
else as stated above, we don’t recommend that you change “tam”.

Spring (XMA) Configuration Files
CBA uses Spring to manage Bean creation and transactions. Even the configuration of
Hibernate is through Spring. These files are also called XMA configuration files in CBA terms
and exist in the <EDX_HOME>/xma directory. They are the core configuration files of CBA and
you should not touch them unless instructed in this document.

Possible reasons to customize these files include:

 Enable Hibernate “show_sql”. See the debugging guidelines for detail.

 Extend hierarchy management, such as adding a new link target type, re-implementing a
hierarchy search interface such as “IAssignedObjectProvider”, inserting a new loader into
the OLTPPorductionLoader job, configuring a new event handler to handle hierarchy
events, or configuring the hierarchy UI behavior. See the CBA “Hierarchy Developer’s
Guide” for details.

 Configure the Batch Report job, such as whether to send emails. This is documented in the
CBA “Installation Guide.”

CBA Customization Guidelines

20 Developer’s Overview Guide for Siebel Communications Billing Analytics Version: 5.1.1

OLTP Database
OLTP is the CBA transactional database. We expect access to product tables to go through CBA
APIs. You should not change the existing product schema. However, it is ok to add your own
customization tables.

OLAP Database
OLAP is the CBA data warehouse. It is a non-transaction database used to save billing
information and has no APIs to access. Instead they are accessed directly through report XML
files. For information on how to use report XMLs to retrieve data from OLAP database, check
the report XML files used to generate various billing reports. These files are defined in
<EDX_HOME>/config/rpt.

The OLAP database includes three kinds of tables:

 OLTP-OLAP Synchronization-Related Tables: Since OLAP is a non-transactional
database, it has no (or very limited) UI transactional operations. However, it needs
transaction data to report on, for example, hierarchy information. This information is
synchronized from OLTP to OLAP at real time. The tables related to this operation are:

EDX_RPT_ACCOUNT_WSPACE
EDX_RPT_ACCOUNT_XREF (Not used.)
EDX_RPT_CC_CHARGE_WSPACE
EDX_RPT_HIERARCHY_NODE_PERIOD
EDX_RPT_HIERARCHY_TREE_DIM
EDX_RPT_HIERARCHY_TYPE_DIM
EDX_RPT_HIERARCHY_XREF_DIM
EDX_RPT_USER_HIERARCHY_WSPACE (Not used.)
EDX_RPT_USER_SERVICE_WSPACE (Not used.)

These tables are expected to be used as-is and you should not try to customize them. The
operations we expect you do on these tables should be “read-only”.

 Dimensional Tables: Except the ones mentioned above, the remaining dimensional
tables are used to save dimensional data such as accounts, services, dates, periods, etc.
Also most all the dimensional tables have some flexible fields which are for customization.
You should try to use the flexible fields to hold your custom information instead of adding
your own columns. You can also create new dimensional tables.

 Fact Tables: Tact tables are used to hold the fact information such as call details or
summaries. You can add new columns to the fact tables if necessary or add your own fact
tables.

You should never make any changes that could break the backward compatibility of the DB
schema, such as changing the column type or renaming a column or a table.

 Developer’s Overview Guide for Siebel Communications Billing Analytics Version: 5.1.1

21

 4 CBA Debugging Guidelines

Overview
CBA produces various log information for you to use to debug problems. For historical reasons,
three logging mechanisms exist in the product:

 Log4j – Log4j is the main logging mechanism. Because there are two ear applications,
each one of them needs to use different log4j files to avoid stepping on each other. See
the CBA “Installation Guide” for details.

 DB-logging - Most Command Center jobs also use DB-logging for job-level information
and log4j is still used to log API-level information. The DB-logging writes log information
into DB tables and can be viewed from the Command Center.

 Java-option-logging - The logging is controlled by pass-in a JVM “-D” option. This is
usually used to log debug-level information and mostly for development purpose.

In addition, in the majority of use cases, CBA prints out the exception stack trace to the
console or as part of the JSP error output page when an exception occurs.

Viewing log4j Logs
By default, the online application logs information logged through log4j into cba.log and
Command Center logs into estatement.log.

You can change the log level of log4j by configuring the two log4j.xml files, one for the online
application and another for the Command Center. See the log4j documentation for details.

Viewing Command Center Logs
Command Center jobs use a combination of DB-logging and log4j to log information.

When there is a problem with a Command Center job, you can view the db-logging for log4j
logs.

To view DB logging, log into Command Center, click on “Reporting” -> “View Logs” and then
fill in the search criteria.

If DB logging does not provide enough information, you can go to estatement.log which
contains log4j information.

CBA Debugging Guidelines

22 Developer’s Overview Guide for Siebel Communications Billing Analytics Version: 5.1.1

Displaying SQLs
One of the most useful debug features is to display the actual SQLs being issued to the
database.

To view the Hibernate SQLs, you need to search through all the .xma.xml files in the
<EDX_HOME>/xml directory and change this property to “true:”

hibernate.show_sql

However, this property allows you to view the SQLs but not the SQL binding values. To get the
binding values, you need to go to log4j.xml and change the log level for these two loggers to
“debug”:

<logger name="net.sf.hibernate.SQL" additivity="false">
<level value="error"/>

 <appender-ref ref="cba-log"/>
</logger>

<logger name="net.sf.hibernate.type" additivity="false">
 <level value="error"/>
 <appender-ref ref="cba-log"/>
</logger>

These configurations apply to Hibernate-based DB access. One exception is reporting-related
SQLs, which are issued without using Hibernate. To view the report SQLs and their binding
values, add a Java “-D” option:

java –Ddatasource.debug=true

 Developer’s Overview Guide for Siebel Communications Billing Analytics Version: 5.1.1

23

 5 CBA Migration Guidelines

Overview
CBA provides a development platform to develop custom features. To ensure that the
application can be migrated from an old version to new version, you must follow these
guidelines.

Installing a New Version of CBA
You should not install a new CBA release on top of the old CBA install directory. Either install
the new CBA into a new directory, which requires you re-configure startWebLogic scripts to
point to the new location, or move the old CBA to another directory and install the new CBA in
the old directory.

The reason we don’t recommend installing a new CBA on top of the old one is that some old
XMA configuration files used in old version of CBA may not be overwritten in the new version
and CBA may fail to load these old configuration files.

Database Migration
CBA provides migration scripts to upgrade from some old versions of CBA. It is possible that
you may have a very old version of CBA and there is no direct upgrade from that version to
latest; it may be necessary to upgrade to an intermediate version and then to the latest.

The migration scripts guarantee that all your old data will be migrated to the latest CBA db
schema. Because of this, it is critical to follow the database customization guidelines listed
above.

Code/EAR Migration
It is almost certain that you would customize some of our existing JSP pages and add your
own action classes or JSP pages which may call CBA APIs. You must migrate these custom
codes as well.

To ensure smooth code migration, CBA makes APIs as backward compatible as possible.

There are two kinds of APIs:

CBA Migration Guidelines

24 Developer’s Overview Guide for Siebel Communications Billing Analytics Version: 5.1.1

 The majority of the APIs are the ones for which CBA offers implementations and the
custom codes can call them. No customizations are expected on these APIs and they
should be used as it is, such as IReport and IHierarchy. If there are any changes to these
APIs, CBA usually deprecate the old APIs and adds the new ones. The deprecated APIs
should still work for old functionalities but may not work for newly added functionalities.
This ensures that your custom codes can still function in the olds ways but offers you a
path to migrate to new APIs.

 There is a set of other APIs for which CBA only offers default implementations but the
custom codes could offer their own implementations, for example,
IAssignedObjectProvider, IUnassignedObjectProvider, and IReportObjectResultSet. These
interfaces are also called callback or plug-in interfaces. Because of this, any change to
these interfaces could affect your implementations. In this case, we will release note the
changes to these interfaces.

Follow these steps to migrate your codes:

1. Get the latest CBA libraries.
2. Re-compile your custom Java classes. If an API has been deprecated, you will see a

deprecation warning and you need to check the API document to upgrade to the non-
deprecated APIs. If a callback interface has been changed and backward compatibility
being broken, you will see a compilation error. In this case, consult the API document
to use the new API.

3. For your custom JSP pages, you may want to use JSP pre-compiler which comes from
Application Server vendors to check the code. If this is not possible, you can use IDE
to go through your JSPs, which may point to you where the deprecated APIs are used
and where a compilation error may occur.

4. Repackage your custom code against the new CBA product ears to create your custom
deployment ears. These include Java code, JSP code, web resources like HTML pages,
JavaScripts etc. See the customization guidelines for how to package properly.

5. Redeploy the ear and re-test. Some times we find that an ear may not be re-deployed
without re-starting the application server. This is usually an application server issue
and can be solved by upgrading to the latest patch of the application server. If this
doesn’t help, restart your application server if re-deployment fails.

Command Center Job Migration
You must recreate and reconfigure all necessary CBA jobs in the Command Center.

New features often require new configuration parameters; because these new parameters may
not even have default values, it is not possible to migrate a CBA job to new configuration.

Configuration Migration
In addition to database and ear migration, you must migrate the configuration files in the
CBA_HOME and EDX_HOME directories as well.

CBA Migration Guidelines

 Developer’s Overview Guide for Siebel Communications Billing Analytics Version: 5.1.1

25

XMA Configuration Files

To migrate XMA configuration files:

1. Record and copy the list of XMA configuration files you have customized.
2. Install a new CBA as stated above.
3. Although it is possible that your customized XMA files may work in the new CBA, it is

strongly recommended that you compare the custom XMA files with the ones from the
new CBA and manually merge your changes if you find that new content has been
added to the files by the new CBA. A source control system or other tool may help you
compare.

Report XML Files
Backward capabilities of report XML files are guaranteed unless stated otherwise. This means
your old report XMLs can work with new CBA without any changes. You can copy your own
report XML files back to the EDX_HOME/config/rpt directory. However, in order to take
advantage of new report functionality, you need to modify your report xml files.

Report Template Files
The Velocity template files are like the JSP pages; the old templates are expected to work with
the new CBA without any changes.

As stated above, in general, we don’t expect you customize the out-of-the-box templates. If
you do, you may have to manually merge these template files to take advantage of new CBA
report features or bug fixes.

To migrate report template files:

1. Make copies of the templates you have customized.
2. Install a new CBA and its templates as stated above.
3. Compare the customized template with the new template and merge the changes

you’ve made into the new template.

Application Server Configuration
You may need to change the application server configuration, such as the startWebLogic script
or the JDBC connection pool configurations. Consult the CBA “Installation Guide” to check your
current configuration against the new configuration.

Test, Test, and Test
Be sure to perform a full regression test on the migrated application before going live.

CBA Migration Guidelines

26 Developer’s Overview Guide for Siebel Communications Billing Analytics Version: 5.1.1

	Contents
	1 Communications Billing Analytics (CBA) SDK
	Introduction

	2 CBA Architecture Overview
	Overall Architecture of CBA
	CBA Online Application
	CBA Command Center

	CBA Package Structure
	CBA EAR Structure
	Ear-tam-tbm.ear
	Ear-estatement.ear

	3 CBA Customization Guidelines
	Overview
	General Rules
	Ear-Repackaging
	UI Customization
	Customizing the Existing Look-and-Feel
	Custom JSP Pages and Action Classes
	Velocity Templates
	Reports
	Localization
	Change the URL Prefix

	Spring (XMA) Configuration Files
	OLTP Database
	OLAP Database

	4 CBA Debugging Guidelines
	Overview
	Viewing log4j Logs
	Viewing Command Center Logs
	Displaying SQLs

	5 CBA Migration Guidelines
	Overview
	Installing a New Version of CBA
	Database Migration
	Code/EAR Migration
	Command Center Job Migration
	Configuration Migration
	XMA Configuration Files
	Report XML Files
	Report Template Files
	Application Server Configuration

	Test, Test, and Test

