

Deploying and Customizing
 J2EE Applications

V4.3
Document ID: DIGN-11-4.3-01

Data Published: 4.6.04

 1997−2004 edocs Inc. All rights reserved.

edocs, Inc., One Apple Hill Dr., Natick, MA 01760

The information contained in this document is the confidential and proprietary information of edocs, Inc.
and is subject to change without notice.

This material is protected by U.S. and international copyright laws. edocs and eaPost are registered in the
U.S. Patent and Trademark Office.

No part of this publication may be reproduced or transmitted in any form or by any means without the
prior written permission of edocs, Inc.

eaSuite, eaDirect, eaPay, eaCare, eaAssist, eaMarket, and eaXchange are trademarks of edocs, Inc.

All other trademark, company, and product names used herein are trademarks of their respective
companies.

Printed in the USA.

Table of Contents

Preface.. 5
About Customer Self-Service and eaSuite� .. 5
About This Guide .. 7
Related Documentation... 7
Obtaining edocs Software and Documentation... 8
If You Need Help...8

1 About edocs Sample Applications ... 11
Before You Start.. 11

About ear-eadirect.ear... 11
Migration Issues .. 11

About the Samples Directory .. 12
J2EE Applications (EAR files) and Web Applications (WAR files) .. 12
eaDirect Applications (DDF, ALF, HTML, and XML files) ... 12

Sample J2EE and Web Applications for eaSuite .. 13
eaSample... 13
eaTraining.. 14
umfsample ... 14

Sample Datasets for eaSuite .. 14
About Jobs, Views, and Version Sets ... 15

2 Deploying and Using eaSample.. 17
About eaSample.. 17
Deploying the eaSample J2EE Web Application .. 18

Deployment Using WebLogic .. 18
Deployment Using WebSphere ... 19

Setting Up NatlWireless .. 24
Viewing NatlWireless Statements in eaSample .. 31

3 Renaming eaSample to a New J2EE Application .. 37
About Application Contexts ... 37

About the Context Root ... 37
About JNDI Names.. 37
About XML Deployment Descriptors ... 38
Define Your New Context Name ... 38

Edit EAR File Deployment Descriptors ... 38
Extract the eaSample EAR File ... 38
Architecture of eaSample EAR.. 39
Edit application.xml.. 39

Customizing and Deploying Applications | 3

Edit EJB Deployment Descriptors ... 40
About eaSample EJBs... 40
Extract descriptors from the EJB JAR File .. 41
Edit ejb-jar-xml... 41
Edit weblogic-ejb-jar.xml (WebLogic) .. 42
Edit ibm-ejb-jar-bnd.xmi (WebSphere) .. 43
Repackage the EJB Jar File .. 43
Repeat for each EJB in the EAR and WAR files ... 44

Edit WAR File Deployment Descriptors .. 44
Extract the eaSample WAR File.. 44
Architecture of the WAR File ... 44
Edit web.xml .. 45
Edit weblogic.xml (WebLogic) ... 47
Edit ibm-ejb-jar-bnd.xmi (WebSphere) .. 48
Package the WAR File .. 48

Repackage and Deploy the EAR File.. 49
4 Creating a Custom Web Application for eaDirect ... 51

Define a Custom Enrollment Model .. 51
Define Custom Servlets .. 51
Customize the WAR File ... 51
Implement JSP Validation ... 52

About Validation of HTTP Requests.. 52
Package com.edocs.common.web.validation Description .. 53
About the ValidatorBean.. 53
Using ValidatorBean for Parameter Name Checking.. 54

Appendix A: Components of EAR and WAR Samples 57
Components of ear-easample.ear... 57

<root> directory of ear-easample.ear .. 57
/lib directory ... 58
/meta-inf directory.. 59

Components of war-easample.war ... 59
enrollment directory ... 59
META-INF directory... 59
samples/edx directory.. 59
user/jsp directory ... 59
WEB-INF directory... 60

Appendix B: Components of eaDirect Application Datasets 63
Components of National Wireless dataset .. 63

Index ... 67

4 | Customizing and Deploying Applications

Preface

About Customer Self-Service and eaSuite�
edocs has developed the industry's most comprehensive software and services for
deploying Customer Self-Service solutions. eaSuite� combines electronic presentment
and payment (EPP), order management, knowledge management, personalization and
application integration technologies to create an integrated, natural starting point for all
customer service issues. eaSuite's unique architecture leverages and preserves existing
infrastructure and data, and offers unparalleled scalability for the most demanding
applications. With deployments across the healthcare, financial services, energy, retail,
and communications industries, and the public sector, eaSuite powers some of the world's
largest and most demanding customer self-service applications. eaSuite is a standards-
based, feature rich, and highly scalable platform, that delivers the lowest total cost of
ownership of any self-service solution available.

eaSuite is comprised of four product families:

Electronic Presentment and Payment (EPP) Applications •

Customizing and Deploying Applications | 5

Preface

Advanced Interactivity Applications •

•

•

Enterprise Productivity Applications

Development Tools

Electronic Presentment and Payment (EPP) Applications are the foundation of edocs�
Customer Self-Service solution. They provide the core integration infrastructure between
organizations� backend transactional systems and end users, as well as rich e-billing, e-
invoicing and e-statement functionality. Designed to meet the rigorous demands of the
most technologically advanced organizations, these applications power Customer Self-
Service by managing transactional data and by enabling payments and account
distribution.

eaDirect� is the core infrastructure of enterprise Customer Self-Service solutions
for organizations large and small with special emphasis on meeting the needs of
organizations with large numbers of customers, high data volumes and extensive
integration with systems and business processes across the enterprise. Organizations
use eaDirect with its data access layer, composition engine, and security, enrollment
and logging framework to power complex Customer Self-Service applications.

eaPay� is the electronic payment solution that decreases payment processing costs,
accelerates receivables and improves operational efficiency. eaPay is a complete
payment scheduling and warehousing system with real-time and batch connections to
payment gateways for Automated Clearing House (ACH) and credit card payments,
and payments via various payment processing service providers.

eaPost® is the account content distribution system that handles all the complexities
of enrollment, authentication and secure distribution of summary account information
to any endpoint, while also bringing customers back the organization�s Website to
manage and control their self-service experience.

Advanced Interactivity Applications are a comprehensive set of advanced customer-
facing self-service capabilities that enable the full range of business and consumer
customer service activities. These sophisticated modules have the flexibility to
completely customize the Customer Self-Service solution to meet vertical industry and
specific company requirements.

eaCare� consists of a rich set of sophisticated self-service modules � Dispute
Manager, Intelligent Assistant, Hierarchy Manager, Analytics Manager, and Service
and Order Manager - for automated assistance, advanced business-to-business
applications and account management. These capabilities come together to create a
web self-service dashboard for customers to access all service offerings from a
single, easy-to-use interface. eaCare�s modularity accelerates time to market with
components that can be deployed incrementally in a phased approach.

6 | Customizing and Deploying Applications

Preface

Enterprise Productivity Applications are employee-facing solutions that empower
customer service representatives, sales agents, account managers, marketing managers,
broker-dealers and channel partners within an organization and external partner
organizations to facilitate self-service and to support assisted service. Employees
leverage edocs� Customer Self-Service solution to deliver customer service, access
information, create and deploy marketing and customer service content, and perform
activities for the benefit of customers.

eaAssist� reduces interaction costs and increases customer satisfaction by enabling
enterprise agents � customer service representatives (CSRs), sales agents, broker-
dealers and others � to efficiently access critical account data and service-related
information to effectively service customers. Through its browser interface designed
especially for the enterprise agent, eaAssist enables agents to take advantage of
customer-facing online capabilities to provide better service by more efficiently
resolving customer account inquiries at the point of customer contact.

eaMarket� is the personalization, campaign and content management solution that
enables organizations to increase revenue and improve customer satisfaction by
weaving personalized marketing and customer service messages throughout the
Customer Self-Service experience. The transactional account data that provides the
foundation for a Customer Self-Service solution � such as transaction activity,
service or usage charges, current task and prior service history � bring valuable
insight into customers and can help optimize personalized marketing and customer
service campaigns. eaMarket leverages that data to present relevant marketing and
customer service messages to customers.

edocs� Development Tools are visual development environments for designing and
configuring edocs� Customer Self-Service solutions. The Configuration Tools
encompass data and rules management, workflow authoring, systems integration, and a
software development kit that makes it easy to create customer and employee-facing self-
service applications leveraging eaSuite.

About This Guide
This Guide describes the tasks required to deploy and customize the J2EE applications
provided by eaDirect. It also provides a step by step description of how to deploy the
eaSample application provided by eaDirect, and how to validate that it is set up correctly
by running a job through your installed eaDirect environment.

Related Documentation
This guide is part of the eaDirect documentation set. For more information about
implementing your eaDirect application, see one of the following guides:

Print Document Description

eaDirect Installation and
Configuration Guides

How to install eaDirect and configure it in a
distributed environment.

Customizing and Deploying Applications | 7

Preface

Print Document Description

eaDirect Data Definition and
Presentation Design Guides

How to design and create an eaDirect application
using the DefTool and Composer tools.

eaDirect Data Presentation
Production Guide

How to set up and run a live eaDirect application in
a J2EE environment.

Obtaining edocs Software and Documentation
You can download edocs software and documentation directly from Customer Central at
https://support.edocs.com. After you log in, click on the Downloads button on the left.
When the next page appears, you will see a table displaying all of the available
downloads. To search for specific items, select the Version and/or Category and click the
Search Downloads button. If you download software, an email from edocs Technical
Support will automatically be sent to you (the registered owner) with your license key
information.

If you received an edocs product installation CD, load it on your system and navigate
from its root directory to the folder where the software installer resides for your operating
system. You can run the installer from that location, or you can copy it to your file
system and run it from there. The product documentation included with your CD is in the
Documentation folder located in the root directory. The license key information for the
products on the CD is included with the package materials shipped with the CD.

If You Need Help
Technical support is available to customers who have valid maintenance and support
contracts with edocs. Technical support engineers can help you install, configure, and
maintain your edocs application.

edocs provides global Technical Support services from the following Support Centers:

US Support Center
Natick, MA
Mon-Fri 8:30am � 8:00pm US EST
Telephone: 508-652-8400

Europe Support Center
London, United Kingdom
Mon-Fri 9:00am � 5:00 GMT
Telephone: +44 20 8956 2673

Asia Pac Rim Support Center
Melbourne, Australia
Mon-Fri 9:00am � 5:00pm AU
Telephone: +61 3 9909 7301

8 | Customizing and Deploying Applications

Preface

Customer Central
https://support.edocs.com

Email Support
mailto:support@edocs.com

When you report a problem, please be prepared to provide us the following information:

What is your name and role in your organization? •

•

•

•

•

•

•

•

•

•

What is your company�s name?

What is your phone number and best times to call you?

What is your e-mail address?

In which edocs product did a problem occur?

What is your Operating System version?

What were you doing when the problem occurred?

How did the system respond to the error?

If the system generated a screen message, please send us that screen message.

If the system wrote information to a log file, please send us that log file.

If the system crashed or hung, please tell us.

Customizing and Deploying Applications | 9

About edocs Sample
1
Applications

Before You Start
Before you can begin to develop an application for eaDirect, you will need to install and
deploy eaDirect to your application server using the instructions described in the eaDirect
Installation and Configuration Guides and the Release Notes. Please verify that eaDirect
is configured and running correctly before proceeding.

For more specific deployment information about your application server platform, please
consult your application server product documentation.

About ear-eadirect.ear
The ear-eadirect.ear J2EE application contains the core functionality of eaDirect,
including the Command Center and the eaDirect engine. It also contains placeholder files
for other components of the eaSuite.

Caution

You should NOT modify the ear-eadirect.ear file, and you should always
keep a backup in a safe place.

Migration Issues
eaDirect 3.4 and later versions support specifying a data source for each DDN, or
eaDirect application. The default datasource EJB is edx/ejb/EdocsDataSource.
When migrating the database from 3.2 or earlier versions to 3.4 or later, you must
redeploy ear-eadirect.ear (to populate the data source mapping for eaDirect) to
view statements for eaDirect applications created before migration.

For more information about DDN to Datasource mapping, please see the eaDirect Data
Presentation Production Guide.

Customizing and Deploying Applications | 11

About edocs Sample Applications

About the Samples Directory
Your edocs installation includes the folder EDCSbd/samples, which contains J2EE,
Web, and eaDirect applications for use with the eaSuite. This topic defines each sample
and directs you to further information on its use.

In eaDirect, the term application can refer to three different types of file components:
J2EE applications, web applications, and eaDirect applications. Each is defined in the
following sections.

J2EE Applications (EAR files) and Web Applications (WAR files)
A J2EE application bundles enterprise Java components and services for deployment into
a J2EE Server container. The J2EE server provides underlying services to handle
transaction and state management, multithreading, resource pooling, and other complex
low-level details.

For an introduction to J2EE application components, see
http://java.sun.com/j2ee/sdk_1.2.1/techdocs/guides/ejb/html/Overview5.html#10106.

J2EE applications are packaged and deployed in an Enterprise Archive (EAR) file. An
EAR file contains an XML file for its deployment descriptor and one or more EJB .jar
and .war files.

Each EJB JAR file contains a deployment descriptor, the enterprise bean files, and
related files.

•

•

•

Each application client JAR file contains a deployment descriptor, the class files for
the application client, and related files.

Each WAR file contains a deployment descriptor, the Web component files, and
related resources.

A web application, sometimes called a web app, is a customized software system of web
services and code components with a business state that is changed by user input, usually
through a web interface. Each unique combination of business features and functionality
requires a unique web application.

Web applications are packaged and deployed in a Web Application Archive (WAR) file
within the EAR file. The WAR file contains JSPs, servlet classes, HTML templates and
image files, EJBs specific to the WAR file, and XML deployment descriptors for each
component.

For more information, see Sample J2EE and Web Applications for eaSuite.

eaDirect Applications (DDF, ALF, HTML, and XML files)
An eaDirect application is a customized set of eaDirect data files (DDFs, ALFs, HTML
templates, and XML/XSLT files) and Command Center jobs, created to extract and
present statements online from a particular dataset. Each unique combination of data,
business rules, and presentment requires a unique (eaDirect) application.

12 | Customizing and Deploying Applications

http://java.sun.com/j2ee/sdk_1.2.1/techdocs/guides/ejb/html/Overview5.html

About edocs Sample Applications

Your eaDirect installation includes an example eaDirect application dataset called
National Wireless, a fictional telecommunications company. Your team will use the
NatlWireless sample files and data with one or more J2EE web applications to test
your installation of eaDirect; practice the eaDirect toolset including the DefTool,
Composer, and Command Center; and customize the sample web applications for your
own environment. For more information about National Wireless, see Components of
National Wireless dataset and the eaDirect Data Definition and Data Presentation
Production Guides.

Sample J2EE and Web Applications for eaSuite
When you install eaDirect and the SDK, you will find enterprise application archives
(EAR files) for eaDirect itself and for eaSample, eaTraining, and UMFsample (SDK
only) in the EDCSbd/samples/j2eeapps directory of your eaDirect installation. Each
is defined in the following sections.

Platform EAR Installed to: Deploy EAR to:

WebLogic EDCSbd/samples/J2EEApps/weblogic WebLogic-home/config
/mydomain/applications

WebSphere EDCSbd/samples/J2EEApps/websphere WebSphere_home
/installedApps/

eaSample

The ear-easample.ear J2EE application demonstrates the core features of eaDirect,
including:

Non-hierarchical enrollment model using edocs Common Directory Access (CDA) •

•

•

Content access to statement summary and detail data

Line item disputes

edocs recommends that you use eaSample as the skeleton for developing your own
custom web applications. Each SDK module uses eaSample to demonstrate how to
customize eaDirect features.

For a list of the components in eaSample, please see Appendix A: Component Lists for
Sample Web Applications.

Tip

If you are also using eaPay, edocs recommends customizing one of the
eaPay web application EAR files instead of eaSample.

For more information about enrollment models, please see the User Management
Frameworks SDK guide.

Customizing and Deploying Applications | 13

About edocs Sample Applications

For more information about content access to statement summary and detail data, please
see the:Content Access SDK guide.

Caution

Before modifying any sample EAR file, you should always keep a backup
in a safe place.

eaTraining

The ear-eatraining.ear J2EE application demonstrates more advanced features of
eaDirect, including hierarchical user enrollment using edocs Common Directory Access
(CDA) and the use of sub-documents.

For more information about eaTraining, please see Appendix A: Components of EAR
and WAR Samples.

For more information about hierarchical enrollment and CDA, please see the User
Management Frameworks SDK guide.

umfsample
The ear-umfsample.ear J2EE application implements a non-directory enrollment
model that customizes the edocs user management framework as an interface to
enrollment information already stored in a separate repository.

umfsample does not ship with eaDirect, but is installed separately from the SDK CD.
For details of working with umfsample, see User Management Frameworks SDK guide.

Sample Datasets for eaSuite
The samples directory also contains sample data and design files (DDF , ALF, and
HTML templates) for use with sample web applications.

Datasets are optimized to implement features of sample web applications. The following
table shows which datasets to use with each sample web application.

Dataset/Web
App

eaSample eaTraining umfsample

NatlWireless X X X

NW_LDDetail X X

14 | Customizing and Deploying Applications

About edocs Sample Applications

About Jobs, Views, and Version Sets
Most features of eaDirect require that you use the edocs Command Center to publish a
specific type of view, sometimes with particular parameters and settings. A view is a set
of design files that result in a particular presentation of statement data. The view files
enable a user to dynamically display formatted statements live on the Web, receive email
notifying them that an online statement is available, or to view account data in a static
format online.

A feature may also depend on a particular sequence of jobs; for example, you must have
loaded detail data into the database in order to dispute and annotate line items.

When creating and configuring your eaDirect application, you publish the files that make
up each dynamic Web view in your application. Publishing adds a timestamp to the set of
view files. A version set is a dated set of design files for a dynamic Web view. Publishing
a view is also called creating a version set.

Tip

If you cannot see a particular feature in one of the samples, check to make sure
that you have published the necessary views and run the required jobs in the
correct sequence.

For more information about Jobs, Views, and Version Sets, see the eaDirect Data
PresentationProduction Guide.

Customizing and Deploying Applications | 15

Deploying and Using
2
eaSample

About eaSample
eaSample is a sample J2EE application that eaDirect provides as part of its software
distribution. You can use it as a framework for developing a custom EJB application, as it
contains all the Java Server Pages (JSPs), HTML, image files, scripts, and templates you
need to get started. eaSample deploys as
ear-easample.ear.

You can use eaSample to view the sample NatlWireless and NW_LDDetail applications
provided with eaDirect. You can use the data and design files in these sample
applications to become familiar with eaDirect by creating sample billing applications and
jobs, publishing data and design files in the form of version sets, and scheduling the jobs
to run in the Command Center, the administrative �hub� for the eaDirect production
environment.

The following steps describe how to deploy and use eaSample to view the sample
eaDirect application called NatlWireless. NatlWireless is a set of example design and
data files that demonstrate the features of an eaDirect presentment application.

You must set up NatlWireless in the eaDirect Command Center (production
environment), then enroll and log in to eaSample to view sample bills.

Customizing and Deploying Applications | 17

Deploying and Using eaSample

Deploying the eaSample J2EE Web Application
When you install eaDirect, you will find the Enterprise Application aRchive (EAR file)
for eaSample in the /EDCSbd/samples/j2eeapps directory of your eaDirect
installation. You will deploy this application using your application server�s
administrative console.

In general, deploying a web application involves three distinct phases:

1. Component creation, typically done by application developers

2. Application assembly, typically done by application developers (although they may
not have participated in the �component creation� phase)

3. Application deployment, typically done by both application developers and system
administrators

During development and testing, it is common for web developers to deploy their own
applications. However, when the application has been assembled and is ready for
production, a system administrator most likely will deploy it.

Deployment Using WebLogic
This section provides and example of how to deploy eaSample using the WebLogic
application server.

Caution

The specific steps for your application server may differ from the ones
described below. You should consult your System Administrator and
application server documentation for complete details of how to deploy a
J2EE application based on your system's configuration.

18 | Customizing and Deploying Applications

Deploying and Using eaSample

The steps below summarize how to deploy using WebLogic Server 7.0. When you deploy
applications to WebLogic Server 7.0, you use the Administration Console to deploy using
the new two-phase deployment protocol. WebLogic Server 8.1 may vary slightly. Please
consult your BEA WebLogic documentation for specific instructions on this task.

Note that WebLogic Server will not deploy an application that has errors in its
deployment descriptor. Previous versions of WebLogic Server would deploy an
application that had errors in its deployment descriptor.

To deploy a web application to your application server:

1. Start WebLogic Server, if it isn�t already running.

2. Open a web browser and enter a URL with the syntax:
http://host:port/console

For example:
http://audi:7001/console

The Enter Network Password dialog appears. (Note that the dialog might take a few seconds
to display.)

3. Enter your WebLogic Server user name and password. The default user name is
�system� and the password is the one you specified during installation of WebLogic
Server.

4. Click OK. The WebLogic Server Console main menu appears.

5. From your domain in the left pane, select Deployment and then Applications.

6. Click the Configure New Application link.

7. Follow the instructions of the wizard to locate and upload the eaDirect J2EE
application ear-easample.ear. By default, this file is located in
EDX_HOME/J2EEApps/weblogic.

8. After uploading the EAR file, follow the instructions in the wizard to configure and
deploy it to your application server.

Deployment Using WebSphere
This section describes how to deploy eaSample using the WebSphere application server.

Caution

The specific steps for your application server may differ from the ones
described below. You should consult your System Administrator and
application server documentation for complete details of how to deploy a
J2EE application based on your system's configuration.

The first step in setting up the application server is to generate the deployment code for
the eaSample application that you will deploy on WebSphere. This is done though the
Application Assembly Tool.

Customizing and Deploying Applications | 19

Deploying and Using eaSample

The following instructions describe how to invoke the Application Assembly Tool from
the WebSphere 4 Administrative Console. You can also start it from a command line
window; WebSphere 5 requires you to start the Application Assembly Tool from the
command line (see your WebSphere documentation).

1. From the WebSphere Administrative Console, open the Tools menu and select
Application Assembly Tool.

2. The Application Assembly Tool appears.

Tip

On UNIX, the Application Assembly Tool appears in an X-window, so
you will have to have X-window software installed and you might have to
set your display (in your .profile file) to the local machine if you are trying
to invoke the Application Assembly tool remotely. For example:
set DISPLAY=montero:0.0
export DISPLAY

To generate deployment code for eaDirect J2EE applications:

1. When the Application Assembly Tool appears, click the Existing tab.

2. Click Browse at the bottom of the dialog, and navigate to the directory that contains
the eaDirect J2EE applications. For example:

20 | Customizing and Deploying Applications

Deploying and Using eaSample

3. Select ear-easample.ear from the list of J2EE applications and click Select.

4. Click OK. The eaDirect application opens in the Application Assembly Tool.

5. In the left pane, right click on easample, and select Generate code for
deployment from the menu.

The Generate Code for deployment dialog appears.

6. In the Dependent classpath field, enter the java classpath for the edocs system,
client, and common JAR files separated by colons (for Windows the separator is a
semi-colon), for example:
/opt/EDCSbd/lib/edx_system.jar:/opt/EDCSbd/lib/edx_client.jar:/opt/ED
CSbd/lib/edx_common.jar

Tip

Be sure to include the leading slashes so that these classpaths are taken
from the root.

7. From the Database type drop-down menu, select the database you are using, such as
Oracle or DB2.

8. Click Generate Now. During generation of the deployment code, status information
is shown in the window at the bottom of the dialog.

9. Wait for the progress bar at the bottom of the Application Assembly Tool to
complete. Some applications might take several minutes to deploy, depending on the
speed of your machine.

10. Click Close to exit from the Generate code for deployment dialog.

11. Click Exitin the File menu to close the Application Assembly Tool.

To deploy a web application with WebSphere 5:

1. From the WebSphere Administrative Console,expand the Applications branch and
click on Install New Application.

Customizing and Deploying Applications | 21

Deploying and Using eaSample

2. Select �Server Path� and then type in the absolute path to where your application is
installed, for example,
/opt/EDCSbd/J2EEApps/websphere5/Deployed_ear-easample.ear

3. Keep clicking Next until you reach the last page, and then click Finish. Use the
default settings for each step.

4. Save to the Master Configuration.

To deploy a web application with WebSphere 4:

1. From the WebSphere Administrative Console, expand the WebSphere Administrative
Domain view.

2. Right-click the Enterprise Applications folder, and then select Install
Enterprise Applications on the menu.

The Install Enterprise Application Wizard dialog appears.

3. Click the Install Application radio button, and confirm that the correct node
has been chosen in the Browse for file on node field.

4. Click Browse. The Open dialog appears.

5. Navigate to $EDX_HOME/J2EEApps/websphere, and select Deployed_ear-
easample.ear. The name of the file appears in the File name field.

6. Click Open. The Install Enterprise Application Wizard dialog appears with the name
of the deployed EAR file in the InstallApplication (*.ear) Path field.

7. Click Next about nine times until you come to the Selecting Application Servers
screen. Highlight all the modules for selection by clicking the first and last module in
the list, while holding down the Shift key.

8. Click Select Server. The Select a Server or Server Group dialog appears.

9. Select the Default Server. In the sample screen below, the default server is named
javelin.

22 | Customizing and Deploying Applications

Deploying and Using eaSample

10. Click OK to close the Select a Server of Server Group dialog. The Install Enterprise
Application Wizard dialog lists the modules and the server on which they will be
installed.

11. Click Next and then Finish.

12. When asked if you want to regenerate code, click No. The installation of eaDirect
takes place on the application server.

13. Click OK to close the Information dialog reporting that the installation was successful.

14. Stop the server on which you installed the eaDirect J2EE application. Select (expand)
Nodes and <your_node> and Application Servers, and then right-click the
server name in the left pane. Select Stop on the menu.

15. An Information dialog notifies you that the application server has stopped
successfully.

16. Click OK to close the Information dialog.

17. Restart the application server by right-clicking on the its name, and selecting Start
on the menu.

Customizing and Deploying Applications | 23

Deploying and Using eaSample

18. An Information dialog notifies you that the application server has started
successfully.

19. Click OK to close the Information dialog.

20. Start the eaSample J2EE application by expanding the Enterprise Applications folder,
right clicking on the application name (for example, easample), and then selecting
Start from the menu.

21. An Information dialog notifies you that the application has started successfully. Click
OK to close the Information dialog.

Setting Up NatlWireless
1. Create a new application for NatlWireless in the eaDirect Command Center.

2. Create a new Indexer job, publishing the application�s indexing DDF for the job to
use, configure the four tasks that run sequentially as part of the Indexer job, and run
the job. Then publish the NatlWireless application (dynamic HTML view) files
designed to display the statement summary.

3. Create and configure a Detail Extractor job, publishing the DDF, database table
XML file, and statement XSLT stylesheet view files designed for the Detail Extractor
job, and run the job. Then publish the three dynamic XML Query files (views)
designed to display the extracted NatlWireless data and demonstrate the disputes and
annotations features.

To create a new eaDirect application for NatlWireless:

1. Start your application server and the Scheduler, if not already running.

2. Open a web browser and enter the URL to the eaDirect Command Center, for
example:
http://<HOST>:<PORT>/eaDirect

3. Create a new application for NatlWireless. Click Create New Application at the
Main Console. The Create New Application screen appears.

24 | Customizing and Deploying Applications

Deploying and Using eaSample

4. Enter NatlWireless as the application name.

5. Enter the JNDI name of the datasource EJB as follows:
edx/eaSample/ejb/EdocsDataSource

6. Click Create Application and Continue. eaDirect displays the Create New Job
screen.

To create and configure an Indexer job:

1. The Create New Job screen appears after you create a new application:

2. Enter Indexer for the Indexer job name, select the Indexer job type from the drop-
down menu. Click Launch Publisher to publish the indexing DDF for
NatlWireless. Click Create. The Publisher displays the Select a Version Set Type
screen:

Customizing and Deploying Applications | 25

Deploying and Using eaSample

3. Under Batch Jobs, next to Indexer, click 0 (Number of Auxiliary files). The Publisher
displays the Create a Version Set For Indexer screen:

4. Select NatlWireless from the list of application names, and browse to the
$EDX_HOME/samples/NatlWireless directory and select
Indexerjob\NatlWirelessIndexer.DDF file for the Indexer job.

5. Click Submit. The Publisher displays the Submission screen with details about the
DDF file. Close the Publisher window.

26 | Customizing and Deploying Applications

Deploying and Using eaSample

6. At the Create New Job screen in Command Center, click Configure Job and
Continue. eaDirect displays the job configuration screen. For each task, specify the
configuration parameters listed below:

Task 1: Scanner Task Configuration

Input File Path Use the default
(EDX_HOME/Input/NatlWireless).

Input File Name Specify NatlWireless.txt.

Output File Path Use the default
(EDX_HOME/Data/NatlWireless).

Task 2: Indexer Task Configuration

DDF Path (Not editable.)

Task 3: IXLoader Task Configuration

Load Method Use the default (Direct)

Task 4: AutoIndexVolAccept Task Configuration

Action on Index Volume Use the default (Auto Accept).

7. When finished entering the configuration parameters, click Submit Changes and
Schedule. eaDirect asks �OK to submit this configuration?� Click OK. eaDirect
submits the job configuration parameters and displays the Schedule screen.

8. In the left pane, click Main Console. On the Main Console�s left pane, click
Publisher, and then click Create. The Publisher displays the Select a Version Set
Type screen:

Customizing and Deploying Applications | 27

Deploying and Using eaSample

9. Next to HTML under Dynamic Web Views, click 0. The Publisher displays the
Create a Version Set for HTML screen:

10. Select NatlWireless from the drop-down list of application names. Enter
HtmlDetail for the view name. Browse to $EDX_HOME/samples/NatlWireless and
select the NatlWireless.DDF, NatlWireless.ALF, and
NatlWireless.HTM design files. Then click Submit. The Publisher displays the
Submission screen showing the files you published:

28 | Customizing and Deploying Applications

Deploying and Using eaSample

11. Close the Publisher.

12. Move the NatlWireless data file (NatlWireless.txt), which is located in
$EDX_HOME/samples/NatlWireless/datafile, to $EDX_HOME/Input/NatlWireless.
This is the same data file that you specified when you configured the job.

13. On the Main Console, click the Run Now button next to the NatlWireless Indexer
job. Monitor the job�s progress by clicking Refresh on the Main Console window.
The Indexer job completes successfully when the job status on the Main Console
changes to �Done.�

To create and configure a Detail Extractor job:

1. On the Main Console, click the application name, NatlWireless, listed under
Applications in the table.

2. Click Add New Job. eaDirect displays the Create New Job screen.

3. Enter a job name (the job name can be whatever you want it to be), and then select
job type Detail Extractor.

4. Click Launch Publisher. eaDirect displays the Publisher screen. Click Create.
The Publisher displays the Select a Version Set Type screen.

5. Under Batch Jobs, next to Detail Extractor, click 0 (Number of Auxiliary files). The
Publisher displays the Create a Version Set For Detail Extractor screen.

6. Select the NatlWireless application from the drop-down list. Enter the view name
dtlextr (this name is hard coded in several JSPs for detail, disputes, and
annotations).

Customizing and Deploying Applications | 29

Deploying and Using eaSample

7. Browse to select NatlWireless.DDF. (The default location for this file is
$EDX_HOME/samples/NatlWireless/NatlWireless.DDF.)

8. Browse to select summary_info.XML, the database table XML view file created for
this job. (The default location for this file is
$EDX_HOME/samples/NatlWireless/DetailExtractor.)

9. Browse to select summary_info.XSL, the statement XSLT stylesheet. The default
location for this file is $EDX_HOME/samples/NatlWireless/DetailExtractor.

10. Click Submit and close the Publisher.

11. On the Create New Job screen in the Command Center, click Configure Job and
Continue. eaDirect displays the Detail Extractor job configuration screen.

12. Specify the configuration parameters (below) for each of the three tasks in the Detail
Extractor job:

Task 1: IVNScanner Task Configuration

Field What to enter/select

Index Volume Status Choose the default, Accepted.

Scan Starting From
(Number of Days)

Use the default (7).

Task 2: StatementsToIR Task Configuration

Field What to enter/select

View Name dtlextr

Enroll Model Leave blank.

Output File Path Use the default (data output directory, specified in the
Scanner task for the Indexer job).

30 | Customizing and Deploying Applications

Deploying and Using eaSample

Task 3: DXLoader Configuration

Field What to enter/select

Load Method Use the default (Direct).

13. Click Submit Changes and Schedule. eaDirect asks �OK to submit this
configuration?� Click OK. eaDirect submits the job configuration parameters and
displays the Schedule screen.

14. On the Schedule screen, click Run Now.

15. On the left pane, click Main Console.

16. Publish the XMLQuery dynamic web views that use the data extracted by the Detail
Extractor; click Publisher.

17. Click Create. The Publisher displays the Select a Version Set Type screen. Under
Dynamic Web Views, click the 0 next to the XML Query job type. The Publisher
displays the Create a Version Set for XML Query screen.

18. Select the NatlWireless application. Enter DetailQuery as the view name, and
browse %EDX_HOME%\samples\NatlWireless\XMLQuery to select the
detail_sql.xml XML query file. (The DetailQuery view name is hard coded in
your JSP HTML pages as the specific name the Web browser looks for in the code.)
Click Submit. The Publisher displays the Submission screen

19. Click Create and repeat the previous two steps twice to publish two additional XML
Query views (both view names are hard coded in your JSP HTML pages as the
specific names the Web browser looks for in the code):

View Name File

DisputeQuery dispute_sql.xml

AnnotationQuery annot_sql.xml

20. Close the Publisher. You can proceed to use eaSample to display the data.

21. On the Main Console, click the Run Now button next to the NatlWireless Detail
Extractor job. Monitor the job�s progress by clicking Refresh on the Main Console
window. The Detail Extractor job completes successfully when the job status on the
Main Console changes to �Done.�

Viewing NatlWireless Statements in eaSample
When the Indexer job completes successfully (status changes to �Done�), you are ready
to view your online statements in eaSample.

Customizing and Deploying Applications | 31

Deploying and Using eaSample

To use eaSample to view NatlWireless statements:

1. Open a Web browser and access eaSample, substituting your own server name (host)
and port number:
http://<HOST>:<PORT>/eaSample/User?app=UserMain&jsp=
/user/jsp/HistoryList.jsp&ddn=NatlWireless

The eaSample User Login page appears.

2. Click the Enroll Now link. The sample enrollment page appears.

3. You can enter any user name and any password. However, you must enter a valid
email address and a valid NatlWireless customer account number, such as one of the
following: 0331734, 4191463, or 8611250. (Use Reset to clear the text fields, if
necessary.) Click Submit to save the subscription information. eaDirect displays a
message to let you know you have subscribed successfully. Click OK to display the
User Login page.

32 | Customizing and Deploying Applications

Deploying and Using eaSample

4. Enter the username (Subscriber ID) and password (the same combination you entered
during enrollment).

5. Click Submit. The sample statement summary page for the account appears. (Note:
You must have eaPay, the eaDirect payment module, installed to view the payment
screens and functionality.)

6. To view the statement summary, click the View icon .

7. To view the Manage Statement page, click from the History page.

Customizing and Deploying Applications | 33

Deploying and Using eaSample

8. Click next to an item to display the Add Note page where you can add comments
(annotations) regarding that item.

9. Click to display the Dispute Your Statement page where you can dispute the
item:

34 | Customizing and Deploying Applications

Deploying and Using eaSample

Customizing and Deploying Applications | 35

Renaming eaSample to a New
3
J2EE Application

About Application Contexts
To rename your web application, you will need to change its context name and modify
the deployment descriptors for each main component. This is the first step toward
customization of any sample web application.

The following chapter, Creating Your Own Custom Web Application for eaDirect, gives
an overview of some common customization choices and directs you to the appropriate
SDK module for working with those components. Most customization involves the WAR
file only, though if you are customizing enrollment, you may be working with an
enrollment EJB, for example ejb-enrollment-cda.jar. Other EAR file EJBs should
not be customized beyond modifying their deployment descriptors as shown below.

In this chapter, we will simply change the context root of eaSample and update the JNDI
name of each deployment descriptor to point to the new context root.

About the Context Root
A context root is a name that maps to the document root of a Web client. If your client's
context root is easample, then the request URL

http://host:8000/easample/index.html

will retrieve the file index.html from the document root easample.

You will need to change the context root easample to the name of your new web
application.

For an introduction to context root and web client configuration, see The J2EE Tutorial at
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WCC4.html.

About JNDI Names
A JNDI name is a people-friendly name for an object in the Java Naming and Directory
Interface API (JNDI). These names are bound to their objects by the J2EE server naming
and directory service.

Customizing and Deploying Applications | 37

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WCC4.html

Renaming eaSample to a New J2EE Application

A resource reference is an element in a deployment descriptor that identifies the
component's coded name for the resource. More specifically, the coded name references a
connection factory for the resource. A connection factory is an object that produces
connection objects that enable a J2EE component to access a resource.

The JNDI name of a resource and the name of the resource reference are not the same.
You will need to change both the JNDI name and the resource reference for eaSample to
the name of your new web application.

For an introduction to JNDI names, see The J2EE Tutorial at
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Resources2.html.

About XML Deployment Descriptors
Each J2EE application, Web component, enterprise bean, and J2EE application client has
a deployment descriptor. A deployment descriptor is an XML document that describes a
component's deployment settings. An enterprise bean deployment descriptor, for
example, declares transaction attributes and security authorizations for the bean.
Deployment descriptors are located in the META-INF directory of each component.

Tip

Deployment descriptors for WebLogic have the extension .xml.
Descriptors for WebSphere have the extension .xmi.

For the XML DTDs for EAR, WAR, and EJB files in the J2EE specification, see
http://java.sun.com/j2ee/dtds/.

Define Your New Context Name
Define a context name for your new web application. This name will be the web context
for all URL references; a prefix to the JNDI name references in all deployment
descriptors and part of the name of the WAR and EAR files. Be consistent: use the same
context name everywhere.

For the eaSample EAR file, the context name is eaSample. This example will use
eaNewapp as its context name, but you should use your own descriptive name.

Write your context name here: _____________________________________

Edit EAR File Deployment Descriptors

Extract the eaSample EAR File
Before you can modify eaSample, you must extract the contents of the enterprise archive
to a working directory. This allows you to view and change individual components of the
archive, in this example the context root and JNDI names only. Once you have made
your changes, you must repackage the archive and redeploy it to your application server
for the change to take effect.

38 | Customizing and Deploying Applications

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Resources2.html
http://java.sun.com/j2ee/dtds/

Renaming eaSample to a New J2EE Application

To extract ear-easample.ear to a working directory:

1. Create a working directory on your machine, for example:
/EDCSbd/ear-eanewapp

2. Copy the file ear-easample.ear

From /EDCSbd/j2eeapps

To /EDCSbd/ear-eanewapp

3. Extract the files from the EAR file, for example:
jar xvf ear-easample.ear

Windows users can extract the contents of an EAR file with WinZip.

Once you have extracted the EAR file to your working directory, delete the ear-
easample.ear file from that directory, or move it to a backup location. DO NOT delete
the version in the j2eeapps directory!

Tip

The examples described in this guide presume you are deploying to a
production environment, so you should clean up your working directory
after each step before proceeding.

After the extraction, your working directory will contain the files listed in Components of
ear-easample.ear and shown in the following diagram.

Architecture of eaSample EAR
For a complete listing and definition of components in ear-easample.ear, please see
Appendix A: Component Lists for Sample Web Applications.

To rename your web application, you must change only the deployment descriptors for
the EAR file, the WAR file, and each EJB in the EAR file. Deployment descriptors are
located in the META-INF directory of EAR and JAR files, and the WEB-INF directory
of WAR files. The following sections describe each task in detail.

Edit application.xml
The application.xml deployment descriptor defines runtime properties of the J2EE
application EAR file. Deployment descriptors are located in the WEB-INF directory of
the EAR file. The following diagram illustrates the XML elements defining runtime
properties of eaSample.

Tip

XML illustrations in this SDK were created with Anova XML Spy. For
information about XML Spy, see http://www.xmlspy.com/.

Customizing and Deploying Applications | 39

http://www.xmlspy.com/

Renaming eaSample to a New J2EE Application

From this example, we can see that the name of the J2EE application appears in three
XML elements: the display-name of the application and both the web-uri and
context root of its web application WAR file.

To rename eaSample in application.xml, search for all occurrences of eaSample or
easample (note case-sensitivity) and replace with Newapp or newapp.

The next step is to rename individual deployment descriptors inside each WAR and EJB
component of the EAR file. Once you have finished renaming these components, you
will Repackage and Deploy the EAR File.

Edit EJB Deployment Descriptors

About eaSample EJBs
As we can see in application.xml, eaSample contains thirteen EJB JAR files. For a
definition of each JAR file and which SDK features use it, see Appendix A: Components
of EAR and WAR Samples. To rename your application, you will edit deployment
descriptors for each of these JAR files.

Each EJB contains three deployment descriptors that contain structural and application
assembly information for each enterprise bean. Two of these, ejb-jar.xml (for the EJB
itself) and sun-j2ee-ri.xml (for the J2EE specification), are the same for all
platforms. The application server descriptor for WebLogic is weblogic-ejb-jar.xml;
for WebSphere, ibm-ejb-jar-bnd.xmi.

The following sections describe how to edit ejb-jar.xml and either weblogic-ejb-
jar.xml or ibm-ejb-jar-bnd.xmi. You need not modify sun-j2ee-ri.xml.

40 | Customizing and Deploying Applications

Renaming eaSample to a New J2EE Application

Caution

EJB files contain class files required by eaDirect for each J2EE
application. DO NOT MODIFY these class files while you are
renaming your application context. Edit only the XML files.

Extract descriptors from the EJB JAR File
For each EJB in eaSample, you should follow these steps:

1. Extract ejb-jar.xml from the JAR file.

2. Extract weblogic-ejb-jar.xml (WebLogic) or ibm-ejb-jar-bnd.xmi (WebSphere)
from the JAR file.

3. Change all occurrences of eaSample to Newapp, and easample to newapp (note
case-sensitivity) in both files.

4. Repackage the JAR file with its two new descriptors.

5. Clean up your working directory before proceeding.

The following sections give a detailed example of each step.

Tip

As long as eaSample is deployed on your application server, you may
find that a new J2EE application works fine without renaming these
files. However, to make your code more robust and prevent errors (for
example, your session unexpectedly timing out), use the best practice
of mapping all application server deployment descriptors to the JNDI
name of your web application.

Edit ejb-jar-xml
The ejb-jar.xml deployment descriptor defines runtime properties of the enterprise
bean. Deployment descriptors are located in the WEB-INF directory of the EJB. The
following diagram illustrates the XML elements defining runtime properties of ejb-
annotation.jar in eaSample.

Customizing and Deploying Applications | 41

Renaming eaSample to a New J2EE Application

From this example, we can see that this ejb-jar deployment descriptor refers to a JAR
file for a stateless session bean. This JAR is named AnnotationJAR, and its session
properties define its home, remote, class, session, and reference types. These properties
should not be modified.

This bean is mapped to the JMS Publisher name of its web application in the third
annotation entry of the env-entry property. The JMS publisher name contains the JNDI
name of the bean itself, in this example
jms/edx/eaSample/annotation/publisherName.

You need to change this JNDI mapping of eaSample to newapp, or the name of your
own web application. You should make this change for every EJB in the web application,
in both the EAR and WAR files.

Edit weblogic-ejb-jar.xml (WebLogic)
The weblogic-ejb-jar.xml deployment descriptor defines runtime properties of the
enterprise bean for the BEA WebLogic application server. Deployment descriptors are
located in the WEB-INF directory of the EJB. The following diagram illustrates the XML
elements defining WebLogic properties of ejb-annotation.jar in eaSample.

From this example, we can see that this weblogic-ejb-jar deployment descriptor
refers to a WebLogic enterprise bean. This bean is named Annotation, and it is a stateless
session bean that allows up to 500 instances in the free pool and may be clustered across
multiple application servers. These properties should not be modified.

For more information about XML elements in weblogic-ejb-jar, see
http://edocs.bea.com/wls/docs61/ejb/reference.html.

This bean is mapped to the JNDI name of its web application in two places:

the JNDI name of the bean itself, in this example
edx/eaSample/ejb/Annotation

•

• the JNDI name of its reference descriptor, edx/eaSample/ejb/AppIndexVolMgr.

42 | Customizing and Deploying Applications

http://edocs.bea.com/wls/docs61/ejb/reference.html

Renaming eaSample to a New J2EE Application

To rename eaSample, change both these JNDI mappings of eaSample to newapp or the
name of your own web application.

Edit ibm-ejb-jar-bnd.xmi (WebSphere)
The ibm-ejb-jar-bnd.xmi deployment descriptor defines runtime properties of the
enterprise bean for the IBM WebSphere application server. Deployment descriptors are
located in the WEB-INF directory of the EJB. The following diagram illustrates the XML
elements defining WebSphere properties of ejb-annotation.jar in eaSample.

From this example, we can see that this ibm-ejb-jar-bnd.xmi deployment descriptor
refers to a WebSphere enterprise bean (by noting that its root element is
EJBJarBinding). WebSphere defines fewer properties in its EJB descriptor, and apart
from the JNDI name, these properties should not be modified.

For more information about EJB bindings for WebSphere, see http://www-
3.ibm.com/software/webservers/appserv/doc/v40/ae/infocenter/was/003502.html.

This bean is mapped to the JNDI name of its web application in two places:

the JNDI name of the bean itself, in this example
edx/eaSample/ejb/Annotation.

•

• the JNDI name of its EJB reference bindings,
edx/eaSample/ejb/AppIndexVolMgr.

You need to change both these JNDI mappings of eaSample to newapp, or the name of
your own web application.

Repackage the EJB Jar File
Once you have modified both EJB descriptors, repackage the JAR file using the
following command:

Customizing and Deploying Applications | 43

http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/infocenter/was/003502.html
http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/infocenter/was/003502.html

Renaming eaSample to a New J2EE Application

jar cvf ejb-application.jar com META-INF/weblogic-ejb-jar.xml
META-INF/ejb-jar.xml _WL_GENERATED META-INF/sun-j2ee-ri.xml

Clean up your working directory before proceeding.

Caution

Windows users should not use WinZip to repackage components, as
this can cause your application to deploy incorrectly.

Repeat for each EJB in the EAR and WAR files
Remember to rename EJB descriptors for every EJB in the web application, in both the
EAR and WAR files. You may want to use Appendix A: Components of EAR and WAR
Samples as a checklist.

Tip

FOR WEBLOGIC ONLY, the order capture EJBs (ejb-oc-cc.jar, ejb-
oc-health.jar and ejb-telco.jar) have additional deployment
descriptors configuring their RDBMS connection pool settings. For information on
RDBMS settings, see the eaDirect Installation and Configuration Guides.

Edit WAR File Deployment Descriptors

Extract the eaSample WAR File
The war-easample.war file contains example web application components that you
can customize or extend. The following chapter, Creating Your Own Custom Web
Application for eaDirect, gives an overview of some common customization choices and
directs you to the appropriate SDK module for working with those components. Most
customization involves individual WAR file components, primarily JSPs and HTML
files. In this section, we will address only customizing the deployment descriptors to the
new context and JNDI name.

Extract the contents of the WAR file to a temporary directory using the following
command:

mkdir temp

jar xvf war-easample.war

Windows users can extract the contents of an EAR file with WinZip.

For a complete listing of components in each directory of war-easample.war, see
Appendix A: Component Lists for Sample Web Applications.

Architecture of the WAR File
After the extraction, your working directory will contain the files listed in Components of
war-easample.war and shown in the following diagram.

44 | Customizing and Deploying Applications

Renaming eaSample to a New J2EE Application

Service

Order Capture

Content Access

eaSample Architecture: WAR File Components

Enrollment/User Management

\enrollment

\samples\oc
scriptsscriptsscriptsHTML scriptsscriptsscripts

scriptsscriptsscriptsimages

scriptsscriptsscriptsHTML
scriptsscriptsscripts

<% %>

JSPs

scriptsscriptsscripts
scriptsscriptsscriptsimages

\user
scriptsscriptsscripts

<% %>

JSPs

\WEB-INF

CLASSES
CLASSES

CLASSES
.JAR.JAR.JAR

\META-INF

manifest.
MF\samples\edx

scriptsscriptsscriptsHTML
scriptsscriptsscripts

scriptsscriptsscripts

<% %>

JSPs

Dispute and Annotation

SEE CONTENT ACCESS

war.easample.
war

These include:

deployment descriptors in the WEB-INF directory. You will need to customize each
of these deployment descriptors as described in the next section.

•

JSPs, JavaScripts, and HTML pages for user management, in the enrollment
directory. To customize these files, see the SDK guide User Management
Frameworks.

•

• JSPs, JavaScripts, and HTML pages for content access and line item dispute and
annotation, in the user directory. To customize these files, see the SDK guides
Content Access and Line Item Dispute and Annotation..

• Class files and executable JAR files that reference servlets and EJBs, in the WEB-INF
directory. You will need to customize the deployment descriptors for each of the JAR
files.

Edit web.xml

The web.xml deployment descriptor is a complex file that defines the properties of your
web application WAR file.

Customizing and Deploying Applications | 45

Renaming eaSample to a New J2EE Application

For instructions on writing the web.xml deployment descriptor for BEA WebLogic, see
http://edocs.bea.com/wls/docs61/webapp/webappdeployment.html#1012209.

For more information about web.xml elements for WebSphere, see http://www-
4.ibm.com/software/webservers/studio/doc/v40/studioguide/en/html/sdswar.html#webxm
l

To rename eaSample in web.xml, search for all occurrences of eaSample or easample
(note case-sensitivity) and replace with Newapp or newapp. This will change the
elements display name, servlet account name, and some EJB references. For definitions
of web.xml elements for WebLogic, see
http://edocs.bea.com/wls/docs61/webapp/web_xml.html.

The following illustration shows the ID and servlet properties for eaSample. Note that
this illustrates only part of web.xml for eaSample.

You will need to change the display name from eaSample to Newapp or the name of
your custom web application.

eaSample uses five servlets as illustrated. You will also need to change the
Account.name parameter for each servlet. Here is an XML example of the Account
name parameter for the UserServlet:

<init-param>

<param-name>Account.name</param-name>

<param-value>edx/eaSample/ejb/CDAAccount</param-value>

</init-param>

For each servlet, you must change the Account.name value (shown in bold) from
edx/eaSample/ejb/CDAAccount to edx/newapp/ejb/CDAAccount. For more
information on customizing account names, see the SDK guide User Management
Frameworks.

The eaSample WAR file also references 23 EJBs in various components of the EAR file.
Each reference defines the type of bean and the location of its home and remote interface
classes. This illustration shows the EJB references for eaSample in web.xml.

46 | Customizing and Deploying Applications

http://edocs.bea.com/wls/docs61/webapp/webappdeployment.html
http://www-4.ibm.com/software/webservers/studio/doc/v40/studioguide/en/html/sdswar.html
http://www-4.ibm.com/software/webservers/studio/doc/v40/studioguide/en/html/sdswar.html
http://www-4.ibm.com/software/webservers/studio/doc/v40/studioguide/en/html/sdswar.html
http://edocs.bea.com/wls/docs61/webapp/web_xml.html

Renaming eaSample to a New J2EE Application

You need not change these EJB references at this stage, but you will need to update them
if you add custom components to your WAR file. Note that these reference must map to
the EJB references in weblogic.xml or ibm-ejb-jar-bnd.xmi as shown in the
following sections.

Edit weblogic.xml (WebLogic)

The weblogic.xml deployment descriptor binds each EJB in the EAR file to its JNDI
name in the WAR file. The following illustration shows the EJB reference descriptions
for eaSample in WebLogic. Note that each maps to an EJB reference in web.xml, which
in turn points back to the bean interface classes.

To rename eaSample in weblogic.xml, search for all occurrences of eaSample or
easample (note case-sensitivity) and replace with Newapp or newapp. This will map
each EJB to its correct JNDI name.

Customizing and Deploying Applications | 47

Renaming eaSample to a New J2EE Application

Edit ibm-ejb-jar-bnd.xmi (WebSphere)
The ibm-ejb-jar-bnd.xmi deployment descriptor binds each EJB in the EAR file to
its JNDI name in the WAR file. The following illustration shows the EJB reference
descriptions for eaSample in WebSphere. Note that each maps to an EJB reference in
web.xml, which in turn points back to the bean interface classes.

To rename eaSample in ibm-ejb-jar-bnd.xmi, search for all occurrences of
eaSample or easample (note case-sensitivity) and replace with Newapp or newapp.
This will map each EJB to its correct JNDI name.

Earlier versions of eaSample contained hard-coded references to its context root on its
welcome file, user/jsp/index.jsp. This JSP now requests the context root with the
method call String context = request.getContextPath(). The only
references to eaSample in index.jsp are displayed as HTML text in the title and
instructional URL, which will usually be removed as part of customization. edocs
recommends calling request.getContextPath() as a best practice when
customizing welcome or index pages.

Package the WAR File
When you have finished editing deployment descriptors for all WAR file components,
repackage the WAR file using this command:

jar cvf war-newapp.war enrollment user WEB-INF

48 | Customizing and Deploying Applications

Renaming eaSample to a New J2EE Application

It is important to clean up your working directory after packaging and BEFORE
extracting the next JAR file. If you skip cleanup, the next JAR files you edit may become
corrupted with extraneous files.

Caution

Windows users should not use WinZip to repackage components, as
this can cause your application to deploy incorrectly.

Repackage and Deploy the EAR File
Package the EAR file with a new name using the following command:

jar cvf ear-newapp.ear *

Deploy your custom application on your application server using the instructions in the
eaDirect Install and Configuration Guide.

To view your application, follow the eaDirect Install and Configuration Guide
instructions for eaSample, replacing eaSample in the URL with newapp or the context
name of your new web application.

Tip

Remember, you must index a dataset, publish a dynamic web view,
enroll a user, and log in to see your statement data online.

Customizing and Deploying Applications | 49

Creating a Custom Web
4

Application for eaDirect

Define a Custom Enrollment Model
The steps to defining your custom enrollment model will vary depending on which type
you choose: CDA, LDAP, or non-directory access models. In any case, customizing your
enrollment model will affect the enrollment EJB you select, for example enrollment-
cda.jar in eaSample, and the enrollment information for the servlets in the WAR file.

For more information on choosing an enrollment model and customizing required files,
see the SDK guide User Management Frameworks.

Define Custom Servlets
Servlets in a web application follow the architecture of the WAR file. If you create new
class files for servlets, you should place them in a new subdirectory in the WEB-
INF/classes/com directory.

For example, both the UserServlet and UserEnrollment servlet use the
AppServlet.class file located in WEB-INF/classes/com/edocs/app. If you want
to create a new AppServlet.class file, you should create it in a new subdirectory
rather than replacing the existing file.

To create a custom servlet:

1. Write and compile your servlet class file, for example, AppServletNew.class.

2. Create a new directory in WEB-INF/classes/com, for example, /newapp and
move your class file.

3. Modify the deployment descriptor files as described in preceding sections.

Customize the WAR File
The enrollment, samples, and user directories have the same basic subdirectory
structure. Use this structure when creating new directories, for clarity.

Customizing and Deploying Applications | 51

Creating a Custom Web Application for eaDirect

help�any help files that are associated with the application. •

•

•

•

•

•

html�the static display HTML pages to display such as error pages.

images�common GIF or JPEG files that used by the HTML pages or JSPs.

jsp�dynamic web application pages that are the primary interface for your custom
application.

scripts�any script files required for processing by a JSP. For example, the sorting
feature of eaDirect requires the script.js file.

templates�any template files used for your application.

Caution

When creating or modifying web application files, follow the eaDirect API
Specification to reference eaDirect APIs correctly.

After completing your changes, Package the WAR File. Be sure to include any new
WAR file directories in your jar command.

Caution

Do not include the JAR file edx_client.jar in the WEB-INF/lib directory of
your customized WAR file. This file belongs only in the lib directory of
the EAR file, and a copy inside the WAR file could cause your
application to fail to deploy correctly.

Then Edit, Package, and Deploy the EAR File to test your application.

Implement JSP Validation

About Validation of HTTP Requests
It is common practice to embed HTTP REQUEST parameters into the generated HTML
page, for any number of reasons. If such a parameter is hacked to contain HTML content,
for example to invoke a JavaScript function, the browser may end up executing malicious
code within an authenticated session. This �cross-site scripting can be very damaging.

For background and discussion. see the CERT® Advisory CA-2000-02 Malicious HTML
Tags Embedded in Client Web Requests at http://www.cert.org/advisories/CA-2000-
02.html.

To limit this vulnerability, edocs requires that all REQUEST parameters be checked to
ensure that they contain no �active content� that might somehow trigger unwanted
behavior when delivered back to an HTML browser.

EaDirect sample applications include the JSP code fragment in Validation.jsp, to be
included in application-specific JSP pages. This fragment contains a ValidatorBean
that validates the input and throws an exception in case of danger. Since this fragment
will need to be customized per site or per application, some support is provided for
helping determine the needed customizations.

52 | Customizing and Deploying Applications

Creating a Custom Web Application for eaDirect

Package com.edocs.common.web.validation Description
This API package implements the class ValidatorBean to support validation of input
to JSP pages. Bean methods capture, set, validate, and write the list of legal and illegal
parameter names and values in a ServletRequest object.

You can use a standard server-side include to call this JSP fragment, as illustrated in
these lines from the beginning of Detail.jsp:

// From Detail.jsp
<%@ include file=�Validation.jsp� %>

About the ValidatorBean
The ValidatorBean is intended to be instantiated in a JSP page via the
<jsp:useBean> tag, and the methods on the bean should validate all parameters for
every REQUEST.

The list of illegal substrings is strongly related to the character set encoding. The sample
provided assumes ISO-8859-1.

The list of illegal substrings is essentially a collection of the characters �<� and �>� in all
the various encodings. There may well be an interaction with regex dynamic patterns.

Clearly, this discussion assumes use in a JSP context. For pure servlet applications, it
should be possible to call the bean directly, though this has not been tested.

During development (especially when using the parameter name checking) you may want
to set the scope of the bean will page. For production this can be changed to application -
which will improve performance by caching the created and initialized bean.

In some limited cases it may be necessary to allow illegal substrings for certain
parameters. This can be achieved by designating them as exempt, using the
setExemptParameterNames() method.

Once a REQUEST has been checked, an attribute is set on the REQUEST object that
alerts the validator that the object been checked, and should not be checked again. This
prevents infinite recursion when the error page also performs parameter checking, since
this recursion has been known to crash application servers.

Caution

Forwarding requests between pages and modifying the URL at the same
time can introduce security holes, because the REQUEST will not be
checked again in the destination JSP.

Customizing and Deploying Applications | 53

Creating a Custom Web Application for eaDirect

To create and initialize a ValidatorBean:
<jsp:useBean id=�validator�
class=�com.edocs.common.web.validation.ValidatorBean�
scope=�application�>
<%
 // note that the entity-reference style encoding appears
without the trailing semicolon
 //
 // the reason is that some browsers are too helpful and will
guess that you
 // meant to include it. Rather than putting both < and
< in the list,
 // we really need only the short one...
 //
 // if you use a different encoding, you will need to rethink
this list.
 //
 String[] iso_8859_1_values =
{�<�,�>�,�<�,�>�,�%3c�,�%3e�,�<�,�>�};
 validator.setIllegalParameterSubStrings(iso_8859_1_values);
%>
</jsp:useBean>

In general, the only time you�ll need to modify this is if you
use a different encoding, which might cause the browser to
treat more/different characters as �active� in the same way as
�<� and �>�.

To invoke a ValidatorBean:
<%
 response.setContentType(�text/html; charset=ISO-8859-1�);
 validator.validateParameters(request);
%>

This method checks all REQUEST parameter names and values for illegal substrings and
throws a ValidationException if any illegal substring is detected.

Using ValidatorBean for Parameter Name Checking
The ValidatorBean can also be used to validate the exact identities of parameter
names. Using the ValidatorBean to check identities of parameters requires that you have
an exact list of the parameters the application uses. Generating this list can be daunting,
so the ValidatorBean implements some support for collecting this list. During
DEVELOPMENT, a flag is set to capture parameter names and record them. For
production, the flag must be cleared and the captured names put into the Validation.jsp
page.

Because the penalty for failing a validation step is an exception, validation will typically
be disabled during development, and enabled only when the application is otherwise
working. The task of discovering the list of valid parameter names can be eased
somewhat by using Capture Mode.

54 | Customizing and Deploying Applications

Creating a Custom Web Application for eaDirect

In capture mode, the bean collects all request parameter names in an internal list, and will
print them out nicely when asked (via writeParameterNames() method). No checks
are actually performed, and no exceptions thrown.

To enter Capture Mode, call setCaptureMode() with true as the argument. The
validation methods will not throw an exception, but the validateParameterNames()
method will accumulate the names of all parameters it sees. These can be output at any
time by calling writeParameterNames() method. The output can help create the
complete list of legal names.

If some parameter is designated as exempt, its identity is still checked against the list of
legal parameter names, but its value is not checked.

In validation mode, required for production, the bean actually performs the validations as
required, and throws a ValidationException when some parameter name or value is
invalid.

The list of legal parameter names in the following example is specific to an eaDirect
sample application. In practice, the list of legal parameter names will vary widely among
applications, so this procedure must be configurable.

To validate parameter names:
<jsp:useBean id=�validator�
class=�com.edocs.common.web.validation.ValidatorBean�
scope=�application�>
<%
 // this is the list of all legal request parameter names
 String[] params = { �auth__userPassword�, �docId�, �ddn�,
 �jsp�, �app�, �auth__uid�, �APP_METHOD�,
 �errforwardto�, �EDOCSLOGIN�, �edocs__re-login�,
 �auth__dn�, �Submit�, �viewType�, �viewName�,};

 validator.setLegalParameterNames(params);

 String[] iso_8859_1_values =
{�<�,�>�,�<�,�>�,�%3c�,�%3e�,�<�,�>�};
 validator.setIllegalParameterSubStrings(iso_8859_1_values);

 // set this during development to accumulate parameter names
 validator.setCaptureMode(true);
%>
</jsp:useBean>

The following JSP fragment shows the invocation of the bean:

<%
 response.setContentType(�text/html; charset=ISO-8859-1�);

 // call to check that only parameters from the name list are
present
 validator.validateParameterNames(request);

 // call to check for illegal substrings
 validator.validateParameters(request);

Customizing and Deploying Applications | 55

Creating a Custom Web Application for eaDirect

 // call DURING DEVELOPMENT to write out accumulated
parameter names
 validator.writeParameterNames(out);
%>

56 | Customizing and Deploying Applications

Appendix A: Components of

EAR and WAR Samples

Components of ear-easample.ear
The EAR file contains a customizable web application archive (WAR file) and service
EJBS to support eaDirect. EJB JAR files should NOT be modified or customized
beyond modifying their deployment descriptors as described in this guide.

<root> directory of ear-easample.ear

Name Purpose
ejb-annotation.jar Service EJB for annotation of detail data. Used by

Line Item Dispute and Annotation.

ejb-application.jar Service EJB for management of DDNs. Used by all
modules.

ejb-ccmerger.jar Service EJB for composition of views. Used by all
modules.

ejb-dispute.jar Service EJB for line item dispute of detail data.
Used by Line Item Dispute and Annotation.

ejb-enrollment-cda.jar Java class and descriptor files for defining a User
Management EJB with CDA. Used by
Implementing a User Management Framework.

ejb-fileserver.jar Service EJB for file transfer from web to
application tier. Used by all modules.

ejb-oc-cc.jar Customizable EJB for order capture for the credit
card vertical solution. Used by Order Capture and
Management.

ejb-oc-telco.jar Customizable EJB for order capture for the
telecommunications vertical solution. Used by
Order Capture and Management.

ejb-oc-health.jar Customizable EJB for order capture for the health
care vertical solution. Used by Order Capture and
Management.

Customizing and Deploying Applications | 57

Appendix A: Components of EAR and WAR Samples

Name Purpose
ejb-querymerger.jar Service EJB for processing XML queries. Used by

Content Access and Line Item Dispute and
Annotation.

ejb-session.jar Service EJB for application session management.
Used by all modules.

ejb-versioning.jar Service EJB for versioning of views. Used by all
modules.

ejb-xsltmerger.jar Service EJB for processing XSLT stylesheets. Used
by Content Access and Line Item Dispute and
Annotation.

war-easample.war Customizable Web Application aRchive file
containing JSPs, servlets, and descriptor files
required for presentment. For more information, see
Components of war-easample.war.

Tip

Note to customers migrating from previous versions: eaSample no
longer contains the service EJB ejb-log.jar. Logging in eaDirect
2.x is handled internally and no longer requires this web application
component.

/lib directory

Name Purpose
dom4j.jar Service JAR file containing Document Object Model

(DOM) Java interface for dynamic access to HTML
documents. Used by all modules. For more information,
see http://www.w3.org/DOM/.

edx_client.jar Service EJB containing client APIs for access to other
EJBs in the archive. Used by all modules. For more
information, see the eaDirect SDK API Specification.

edx_common.jar Service EJB containing Java classes common to all
beans. Used by all modules. For more information, see
the eaDirect SDK API Specification.

edx_servlet.jar Service JAR file containing Java classes for web APIs
into eaDirect. Used by all modules.
Note: This file is required in the /lib directory for each
WAR file. It is also included at the EAR level for
convenience when building a new web application.
Sample web applications include edx_servlet.jar
in both *.ear/lib and *.ear/*.war/web-
inf/lib.

xalan.jar Service JAR file containing Apache�s Java
implementation of the DOM API as an XSLT stylesheet
processor. eaDirect uses xalan-Java-2.2 D12 as the
fastest XSLT processor currently available. For more

58 | Customizing and Deploying Applications

http://www.w3.org/DOM/

Appendix A: Components of EAR and WAR Samples

Name Purpose
information, see http://xml.apache.org/.

xalanj1compat.jar* Service JAR file containing xalan-Java-1 XSLT
processor, which is no longer supported by Apache but is
required by the DOM4 API.

/meta-inf directory

Name Purpose
application.xml XML deployment descriptor for contents of the EAR file.

manifest.mf Manifest listing the contents of the EAR file.

Components of war-easample.war

enrollment directory
The enrollment directory contains HTML, images, JSPs, and scripts for an example
implementation of the edocs user management framework. For more information and a
complete listing of files in this directory, the SDK guide User Management Frameworks.

Tip

The eaSample enrollment implementation is a simplified flat model using
Common Directory Access (CDA). Most custom implementations will want to use
eaTraining or umfsample as a template for your user management
framework.

META-INF directory
The META-INF directory contains manifest.MF, which lists all the components in the
EAR file.

samples/edx directory
The samples/edx directory contains HTML, JSPs, and scripts for a generic error
message page used by edocs sample web applications. Most implementations will replace
this directory with custom error message files.

user/jsp directory
The user/jsp directory contains JSPs for content access to line item detail, dispute and
annotation. For more information and a complete listing of files in this directory, see the
SDK guide: Line Item Dispute and Annotation.

Customizing and Deploying Applications | 59

Appendix A: Components of EAR and WAR Samples

WEB-INF directory
The WEB-INF directory contains XML deployment descriptors, compiled Java class files,
and executable .JAR files that support eaDirect.

<root>

Name Purpose

ibm-web-bnd.xmi
(WebSphere only)

XML deployment descriptor specific to the IBM WebSphere
application server.

sun-j2ee-ri.xml XML deployment descriptor specific to Sun systems.

web.xml
XML deployment descriptor specific to your web
application�s WAR file.

weblogic.xml
(WebLogic only)

XML deployment descriptor specific to the BEA WebLogic
application server.

/class

This directory contains compiled Java class files for eaDirect APIs in the /com
subdirectory. For more information on files in this directory, please see the eaDirect 3.4
SDK API Specification JavaDoc.

 For WebLogic web applications, this directory also contains precompiled JSP class files
in the /jsp_servlet subdirectory. These pages take advantage of the JSP Compiling
feature of WebLogic. Since WebLogic compiles JSPs on the fly, precompiled JSPs will
load faster when first accessed; if the JSP classes don't exist, WebLogic compiles them at
runtime. For more information on compiling JSPs with WebLogic, please see the BEA
guide to Using the WebLogic JSP Compiler online at:

http://e-docs.bea.com/wls/docs61///////jsp/reference.html#57794

Tip

You can configure WebLogic Server to precompile JSPs by setting the
precompile parameter to true in the <jsp-descriptor> element of
weblogic.xml See BEA documentation for details.

/lib

This directory contains utility files used by web application components.

Name Purpose
edx_servlet.jar Service JAR file containing Java classes for web APIs

into eaDirect. Used by all modules.
This file is required in the /lib directory for each WAR
file; it is also included at the EAR level for convenience
when building a new web application. Sample web
applications include edx_servlet.jar in both
*.ear/lib and *.ear/*.war/web-inf/lib.

60 | Customizing and Deploying Applications

http://e-docs.bea.com/wls/docs61///////jsp/reference.html

Appendix A: Components of EAR and WAR Samples

Name Purpose
javachart.jar Service JAR file containing KavaChart charting utility

shipped with eaDirect. Used by Creating Custom
Charts. For more information about KavaChart, see
http://www.ve.com/.

xtags.jar Service JAR file containing XTags custom tag libraries
(taglibs) for working with XML in JSPs. Used by Content
Access and Line Item Dispute and Annotation For more
information about XTags and taglibs, see
http://jakarta.apache.org/taglibs/doc/xtags-doc/intro.html.

Customizing and Deploying Applications | 61

http://www.ve.com/

Appendix B: Components of

eaDirect Application
Datasets

Components of National Wireless dataset
The National Wireless sample application files are located in the
EDCSbd/samples/NatlWireless directory. For more information about working with
National Wireless, please see the edocs Data Definition Guide and the Presentation
Design Guide.

Filename Purpose

_datafile/NatlWireless.txt Sample data input file (source).

_DetailExtractor/edx-DE-table.xsd Custom template for validating XML input to the Detail
Extractor job.

_DetailExtractor/summary_info.xml Customizable input file to the Detail Extractor batch job
containing business logic rules for extracting summary data
as XML.

_DetailExtractor/summary_info.xsl Customizable input file to the Detail Extractor batch job
containing XSLT stylesheet rules for presenting extracted
XML summary data.

_XMLQuery/annot_sql.xml Customizable input file to the XML Query web view
containing SQL statements for extracting annotation detail
from database tables.

_XMLQuery/detail_sql.xml Customizable input file to the XML Query web view
containing SQL statements for extracting line item detail
from database tables.

_XMLQuery/dispute_sql.xml Customizable input file to the XML Query web view
containing SQL statements for extracting dispute detail from
database tables.

_XSLTDownload/summary_info_csv.xsl Customizable input file to the XSLT Download batch job
containing XSLT stylesheet rules for downloading extracted
XML summary data as comma-separated values (CSV).

B2B_cust_care_agent.gif Image file

Customizing and Deploying Applications | 63

Appendix B: Components of eaDirect Application Datasets

Filename Purpose

B2B_DSLBanner.jpg Image file

B2B_limo_ad_small.gif Image file

B2C_FreeCallingCardSmallPic.gif Image file

B2C_hawaii_promo.gif Image file

Bk2Summary.jpg Image file

edocslogo.gif Image file

LDPhoneCard.gif Image file

Loc_Summary.alf Contains the customized rules and business logic for
mapping and presenting the extracted data in the detail
statement view NW_LocSummary.

Loc_Summary.htm HTML template for presenting the detail statement view
NW_LocSummary.

Loc_Summaryn.htm

LocalSummary.jpg Image file

NatlWireless.alf Contains the customized rules and business logic for
mapping and presenting the extracted data in an online
summary statement.

NatlWireless.ddf Contains the customized rules and business logic for
extracting each field from each page of the original
statement file for presenting different views of the data in
online statements.

NatlWireless.htm HTML template for presenting the summary statement view
named HtmlDetail.

NatlWireless.tok Sample file for the Def2TOK utility.

NW_Email.alf Contains the customized rules and business logic for creating
notification email.

NW_Email.htm Example layout for notification email (its use is determined
by business logic).

NW_EmailAlternate.htm Alternate layout for notification email (its use is determined
by business logic).

NW_LocSummary.alf Contains the customized rules and business logic for
presenting the detail statement view NW_LocSummary.

NW_LocSummary.ddf Contains the customized rules and business logic for
extracting each field from each page of the original
statement file to present the detail statement view
NW_LocSummary.

NW_LocSummary.htm HTML template for presenting the detail statement view
NW_LocSummary.

NW_Logo_B2B.jpg Image file

NW_Logo_B2C.jpg Image file

64 | Customizing and Deploying Applications

Appendix B: Components of eaDirect Application Datasets

Filename Purpose

NW_Logo_commercial.jpg Image file

NW_Logo_consumer.jpg Image file

PaymentBannerAd.gif Image file

Customizing and Deploying Applications | 65

Index

A
Annotation, 57, 58
application.xml, 39

C
CDA, 13, 14, 51, 57
Content Access, 58
Context Root, 37
Creating a new application,

24
Customer Self-Service, 5

D
Deploying J2EE eaDirect

Applications to WebLogic
Server, 18

Dispute, 57, 58

E
ear-eadirect.ear, 11
ear-easample.ear, 13, 39, 57
ear-eatraining.ear, 14
ear-umfsample.ear, 14
eaSample, 13, 38
eaSuite, 5
eaTraining, 13

ejb-enrollment-cda.jar, 37

H
Help

technical support, 8

J
JNDI Names, 37

N
New application

creating, 24

S
sun-j2ee-ri.xml, 40

U
User, 57

V
Validation, 52

W
war-easample.war, 44, 59
web.xml, 45
weblogic.xml, 47
weblogic-ejb-jar.xml, 40, 42

Customizing and Deploying Applications | 67

	Preface
	About Customer Self-Service and eaSuite™
	About This Guide
	Related Documentation
	Obtaining edocs Software and Documentation
	If You Need Help

	About edocs Sample Applications
	Before You Start
	About ear-eadirect.ear
	Migration Issues

	About the Samples Directory
	J2EE Applications (EAR files) and Web Applications (WAR files)
	eaDirect Applications (DDF, ALF, HTML, and XML files)

	Sample J2EE and Web Applications for eaSuite
	eaSample
	eaTraining
	umfsample

	Sample Datasets for eaSuite
	About Jobs, Views, and Version Sets

	Deploying and Using eaSample
	About eaSample
	Deploying the eaSample J2EE Web Application
	Deployment Using WebLogic
	Deployment Using WebSphere

	Setting Up NatlWireless
	Viewing NatlWireless Statements in eaSample

	Renaming eaSample to a New J2EE Application
	About Application Contexts
	About the Context Root
	About JNDI Names
	About XML Deployment Descriptors
	Define Your New Context Name

	Edit EAR File Deployment Descriptors
	Extract the eaSample EAR File
	Architecture of eaSample EAR
	Edit application.xml

	Edit EJB Deployment Descriptors
	About eaSample EJBs
	Extract descriptors from the EJB JAR File
	Edit ejb-jar-xml
	Edit weblogic-ejb-jar.xml (WebLogic)
	Edit ibm-ejb-jar-bnd.xmi (WebSphere)
	Repackage the EJB Jar File
	Repeat for each EJB in the EAR and WAR files

	Edit WAR File Deployment Descriptors
	Extract the eaSample WAR File
	Architecture of the WAR File
	Edit web.xml
	Edit weblogic.xml (WebLogic)
	Edit ibm-ejb-jar-bnd.xmi (WebSphere)
	Package the WAR File

	Repackage and Deploy the EAR File

	Creating a Custom Web Application for eaDirect
	Define a Custom Enrollment Model
	Define Custom Servlets
	Customize the WAR File
	Implement JSP Validation
	About Validation of HTTP Requests
	Package com.edocs.common.web.validation Description
	About the ValidatorBean
	Using ValidatorBean for Parameter Name Checking

	Appendix A: Components of EAR and WAR Samples
	Components of ear-easample.ear
	<root> directory of ear-easample.ear
	/lib directory
	/meta-inf directory

	Components of war-easample.war
	enrollment directory
	META-INF directory
	samples/edx directory
	user/jsp directory
	WEB-INF directory

	Appendix B: Components of eaDirect Application Datasets
	Components of National Wireless dataset

	Index

