
Cover Page
Getting Started with the Software Developer’s Kit (SDK)
10g Release 3 (10.1.3.3.1)

May 2007

Getting Started with the Software Developer’s Kit (SDK), 10g Release 3 (10.1.3.3.1)
Copyright © 2007, Oracle. All rights reserved.

Contributing Authors: Jean Wilson

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected by
copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or
decompilation of the Programs, except to the extent required to obtain interoperability with other independently
created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. This document is not warranted to be error-free. Except as may
be expressly permitted in your license agreement for these Programs, no part of these Programs may be reproduced
or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf
of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and technical
data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the
extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted
Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous
applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other
measures to ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim
liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not
responsible for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of
such content. If you choose to purchase any products or services from a third party, the relationship is directly between you and
the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms
of the agreement with the third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third
party.

T a b l e o f C o n t e n t s

Chapter 1: About This Guide
Overview .1-1

Audience .1-1

Recommended Skills and Tools. .1-2

Related Documentation .1-3

Document Organization .1-4

What’s New in this Guide .1-5

Document Conventions .1-5

Chapter 2: Modifying Your Instance
Overview .2-1

Customization Types .2-1

Customization Tips. .2-2

Troubleshooting .2-3
Viewing Server Errors .2-3
Viewing Page Data .2-4
Monitoring Resource Loading .2-5

Chapter 3: Content Server Architecture
Overview .3-1

Content Server Directories and Files .3-1
/bin Directory .3-2
/config Directory. .3-3
/shared/config Directory. .3-5
/weblayout Directory .3-5

Resources .3-6

Content Server Behavior .3-7
Getting Started with the Software Developer’s Kit (SDK) iii

Table of Contents
Startup Behavior .3-7
Effects of Configuration Loading .3-9

Resource Caching .3-10
Content Server Requests .3-10

Page Retrieval. .3-12
Content Server Services .3-13
Search Services .3-13

Page Assembly .3-14
Database Interaction .3-14
Resolving Localized Strings. .3-15

Chapter 4: Altering the Interface
Overview .4-1

Changing the Look of the Content Server .4-1

Generating Dynamic Server Pages .4-2

Chapter 5: Changing System Functionality
Overview .5-1

Changing System Settings. .5-1

Creating and Managing Components .5-3

Installing Components. .5-5
Using Component Manager. .5-6
Using Component Wizard .5-6

Using Components. .5-7

Changing Configuration Information .5-9

Customizing Services. .5-10

Generating Action Menus. .5-11
Creating Display Tables. .5-12

Headline View Tables .5-12
Classic View Tables .5-14
Thumbnail View Tables .5-15

Customizing Action Menus .5-15

Chapter 6: Integration Methods
Overview .6-1

Idc Utilities (Command Line/Shell Scripting) .6-2

COM Integration. .6-3
ActiveX Interface .6-3
iv Getting Started with the Software Developer’s Kit (SDK)

Table of Contents
OCX Interface .6-4
ODMA Integration .6-5

ODMA Client .6-5
ODMA Interfaces. .6-6

JSP Integration. .6-6
JSP Execution .6-7
Tomcat. .6-7
Features. .6-8
Configuring JSP Support .6-8
Loading Example Pages .6-9

Java 2 Enterprise Edition Integration (J2EE) .6-10
Integration techniques .6-10
Content Integration Suite architecture .6-10
Internationalization (character encoding). .6-12

Web Services .6-12
Web Services Framework .6-12
Virtual Folders and WebDAV Integration. .6-13

Virtual Folders .6-14
WebDAV Integration .6-14

Appendix A: Third Party Licenses
Overview . A-1

Apache Software License . A-1

W3C® Software Notice and License . A-2

Zlib License . A-4

General BSD License. A-5

General MIT License . A-5

Unicode License. A-6

Miscellaneous Attributions . A-7

Index
Getting Started with the Software Developer’s Kit (SDK) v

C h a p t e r

1.ABOUT THIS GUIDE

OVERVIEW
While Content Server is highly functional “out-of-the-box,” there are a number of ways to
tailor your content management system to your site requirements. The Software
Developer’s Kit (SDK) provides a suite of tools that can be used for system customization.

This guide provides the background information you will need before changing your
content server, and it gives pointers to other documents that provide the details.

This section covers these topics:

Audience (page 1-1)

Related Documentation (page 1-3)

Document Organization (page 1-4)

What’s New in this Guide (page 1-5)

Document Conventions (page 1-5)

AUDIENCE
This guide is intended for developers and administrators who need to customize Content
Server software to suit content management needs that are specific to a particular business
or organization.
Getting Started with the Software Developer’s Kit (SDK) 1-1

About This Guide
RECOMMENDED SKILLS AND TOOLS
Content Server brings together a wide variety of technologies to deliver advanced
functionality. To modify the system, certain experience and skills with some or all of these
technologies is required.

The technical skills required to customize your content management system will vary
depending on the complexity of the customization. For example, many customizations can
be accomplished with knowledge of HTML and Idoc Script.

This list describes, in descending order of importance, the skills you may need to modify
the content server:

Content Server Architecture—You should thoroughly understand how the content
server works and how components and dynamic server pages function before you
begin customizing your system. See Chapter 3 (Content Server Architecture) for more
information.

HTML/CSS—You’ll need a good understanding of HTML and cascading style sheets
(CSS) to make changes to the content server web page templates. The templates are
not complex in their use of HTML, but they make constant use of HTML tables and
frequent use of forms. The std_page.htm file includes cascading style sheets to control
the look-and-feel of the default templates, including fonts and layout.

Idoc Script—Idoc Script is the custom server-side scripting language for Content
Server. Almost every content server web page includes some Idoc Script, which
provides the methods for processing various page elements. See Changing
Configuration Information (page 5-9) for an overview of Idoc functionality.

JavaScript—Most content server pages do not use JavaScript, but the Search and
Checkin pages are notable exceptions. You should have an understanding of
JavaScript before you create customizations that will be called in place of these pages.
Also, you should understand JavaScript to alter layouts. Changing layouts relies
heavily on JavaScript and cascading style sheets for design and navigation.

SQL—The content server uses Structured Query Language to perform queries on the
database. Knowledge of SQL will help you understand the standard queries and create
your own custom queries.

Java Programming—The content server is implemented with Java classes. You
should have a thorough understanding of Java and the content server Java class files
before attempting to make any changes to the underlying functionality. However, the
product can be customized extensively without having to work with Java.
1-2 Getting Started with the Software Developer’s Kit (SDK)

About This Guide
Other programming—Experience with other tools such as Visual Basic, COM, .Net,
C++, VBScript, and so forth may be helpful if you are doing complex customizations
or integrating your content management system with other systems.

You may find the following tools useful when customizing the content server:

Text Editor—Most product customizing can be done with a normal text editor such as
Microsoft WordPad or vi.

HTML Editor—If you prefer to use a graphical HTML editor to work with HTML
pages, use caution—such programs often change the source HTML, and may cause
Idoc Script tags to be converted into a string of characters that will no longer be
recognized by the content server. If you use a graphical editor, make sure you edit in a
non-graphical mode.

Multiple Browsers—You should test customizations on multiple versions of any web
browsers that might be used to interface with the content management system. Internet
Explorer, Netscape, Mozilla, and Safari do not display content in the same manner,
and different versions of the same browser may exhibit different behaviors.

JavaScript Debugger—A JavaScript debugger will ease the task of JavaScript
development. A number of JavaScript debuggers are available for download from the
Internet.

Integrated Development Environment (IDE) for Java—If your customizations
require the development of Java code, you will need an appropriate Java development
environment.

RELATED DOCUMENTATION
The Content Server online help provides user, administrator, and developer-level
documentation, which describes how the standard product works and how functions can
be modified from within the content server. You should become familiar with the online
help and consult it for background knowledge before attempting to customize a particular
area of the content server.

A documentation navigation menu is provided as a starting point for access to all PDF
documentation. Installation guides, integrator and developer documentation, and all online
help topics are provided in PDF format and are accessible from the documentation
navigation menu.

You can access the product documentation navigation menu from the following locations:

Product CD: From the Content Server Documentation CD, open the menu.pdf file.
Getting Started with the Software Developer’s Kit (SDK) 1-3

About This Guide
Windows: If Content Server is installed on a Windows computer, select Start—
Programs—Content Server—Utilities—Documentation.

UNIX: If Content Server is installed on a UNIX computer, open the
<install_dir>/weblayout/help/documentation/menu.pdf file.

The following guides are referenced in this documentation and provide the details for your
customization work:

Working with Components, which describes how to create custom components for
your content server instance.

The Managing Repository Content Guide, the Managing Security and User Access
Guide, and the Managing System Settings and Processes Guide. These books explain
many basic administrative tasks as well as many customization options.

The IDOC Script Reference Guide, which describes configuration variables and their
uses.

The Services Reference Guide, which describes services and their attributes and
actions.

The Workflow Implementation Guide, which describes how to create and use
workflows.

The IdcCommand Reference Guide, which describes the Idc command utility.

WSDL Generator and SOAP Guide, which explains how to use WSDLs and SOAP for
connectivity.

The Clustering Concepts Guide, which provides an overview of clusters and their
interaction of the content server.

Modifying the Content Server Interface, which explains how to change the layout and
skins that come with the Content Server.

DOCUMENT ORGANIZATION
This guide includes the following sections:

Chapter 1 (About This Guide) outlines the audience, organization, and conventions for
this guide, and describes content management product distinctions and support
options.

Chapter 2 (Modifying Your Instance) provides an introduction to the methods you can
use to customize content server.
1-4 Getting Started with the Software Developer’s Kit (SDK)

About This Guide
Chapter 3 (Content Server Architecture) describes the architecture of the content
server and how that affects the customizations you can make.

Chapter 4 (Altering the Interface) defines the items you can adjust to change the
appearance of the content server, including the portal web page.

Chapter 5 (Changing System Functionality) describes how you can change the
functionality of the content server with system settings, components, and
configuration variables.

Chapter 6 (Integration Methods) provides information about integrating the content
server in other environments using tools such as SOAP and clusters.

WHAT’S NEW IN THIS GUIDE
Information has been added to Chapter 5 (Changing System Functionality) about
enhancements in Content Server 10gR3 which allow you to publish web resource files as
well as configure and customize Action menus.

DOCUMENT CONVENTIONS
The following conventions are used throughout this guide:

The notation <install_dir>/ is used throughout this guide to refer to the location on
your system where the Content Server product is installed.

Forward slashes (/) are used to separate the directory levels in a path name. A forward
slash will always appear after the end of a directory name.

Notes, technical tips, important notices, and cautions use these conventions:

 Symbol Description

This is a note. It brings special attention to information.

This is a tech tip. It identifies information that can be used to
make your tasks easier.
Getting Started with the Software Developer’s Kit (SDK) 1-5

About This Guide
This is an important notice. It identifies a required step or
critical information.

This is a caution. It identifies information that might cause
loss of data or serious system problems.

 Symbol Description
1-6 Getting Started with the Software Developer’s Kit (SDK)

C h a p t e r

2.MODIFYING YOUR INSTANCE

OVERVIEW
This chapter provides an overview of content server customizations and describes the
tools you need and the resources that are available. It includes the following sections:

Customization Types (page 2-1)

Customization Tips (page 2-2)

Troubleshooting (page 2-3)

CUSTOMIZATION TYPES
Before undertaking any type of alteration to your content server instance, you should
completely understand the structure and architecture of the content server and its
interaction with other parts of your environment. See Chapter 3 (Content Server
Architecture) for details about Content Server functionality and usage.

Three major types of alterations can be made to the core Content Server:

Altering the look and feel of the product: You can customize the look-and-feel of
the content server interface to meet your organization’s specifications. Interface
modifications can be as simple as replacing the icons that appear on the standard
content server web pages or as complex as a complete redesign of the interface. See
Chapter 4 (Altering the Interface) for details.
Getting Started with the Software Developer’s Kit (SDK) 2-1

Modifying Your Instance
Modifying the functionality of the product: By changing how the product functions,
you can tailor Content Server to the way your business or organization functions. For
example, you can change the default date and time stamp, or change aspects of check-
in behavior. See Chapter 5 (Changing System Functionality) for details.

Integrating the product into your environment: You can use shell scripts, SOAP,
J2EE, JSP, and clusters to more fully integrate Content Server into your site’s current
environment. See Chapter 6 (Integration Methods) for more details.

CUSTOMIZATION TIPS
Before approaching customization, it is important to clarify exactly why the customization
is being undertaken. For example, if you need to add corporate branding, you can use the
Modify Layout Samples to do so. Or if you need to change security features, you can use
components to modify the default security settings.

Customization often occurs to make the Content Server match the business practices of a
company. Often, after evaluating your business processes, you may find that sometimes it
is more efficient to slightly alter your procedures before customizing the Content Server.

There are six major stages in customization:

1. Determine why you want to customize. Is there corporate personalization to be
done? Is there a better way to present navigation options or material? Depending on
what type of need you find, you can determine which tools are best to use.

Oftentimes the cosmetic details that you change are the ones that will most please
your users; changing items such as layout, colors, and images often provide the effect
that users are looking for.

2. Plan the customization carefully, taking into account those aspects of the content
server environment that might be changed even peripherally by the customization. All
customizations should be done in a test environment, separate from the site’s
production environment.

3. Check to see if a solution may already be available. The Samples on the Support
web site contain many types of customizations. It’s possible that there may already be
a component that can be used with just a little editing.

• A number of ‘samples’ are provided on an as-is basis. These are components or
files that demonstrate, enhance or extend the functionality of your Content Server
products.
2-2 Getting Started with the Software Developer’s Kit (SDK)

Modifying Your Instance
• ‘Extras’ are supported components that add functionality to the base Content
Server, such as virtual folders, WebDAV functionality, HTML preview, threaded
discussions and lightly managed content functionality. These are available on the
product CD.

4. Evaluate the problem and how essential it is to solve. Some problems may require
more effort to fix than will provide payback. Perhaps customization isn’t needed, but
simply a minor change in business practices.

5. Test the customization thoroughly in a separate environment. If possible, have end
users assist with the testing. When the testing has passed all criteria for release, inform
users about the changes and how to implement them.

6. Document the customizations that you create. All alterations should be documented
as completely as possible, both within the actual customization (for example, as a
comment in a dynamic server page or in a component) and as a separate README
document. This provides an historical audit trail for others who may need to add to the
customizations later.

TROUBLESHOOTING
The Content Server Troubleshooting Guide provides a problem-solving model for helping
you determine where errors might be occurring.

In addition, several troubleshooting aids are available to help evaluate content server
pages as they are used. This section discusses three broad types of troubleshooting aids:

Viewing Server Errors (page 2-3)

Viewing Page Data (page 2-4)

Monitoring Resource Loading (page 2-5)

Viewing Server Errors
Syntax errors and other mistakes in component files or dynamic server pages can cause
errors in the content server. If the content server fails, it reports the error in the following
locations:

If you are running the content server from a command prompt, you can view the error
in the console window.
Getting Started with the Software Developer’s Kit (SDK) 2-3

Modifying Your Instance
If you can log in to the content server and display the Admin Server page, you can
view the content server log by selecting the content server and then clicking the View
Server Output link.

You can view the content server log files in the
<install_dir>/weblayout/groups/secure/logs/ directory.

Viewing Page Data
The IsJava setting displays the local data of a content server web page.

In a web browser, add the following code in the Address box to the end of the page’s
URL:

&IsJava=1

On a template page or in an include, use the following code:

<$IsJava=1$>

The ScriptDebugTrace setting displays a tree structure view of all includes being called on
a content server web page. The debug trace appears at the bottom of the web page.

In a web browser, add the following code in the Address box to the end of the page’s
URL:

&ScriptDebugTrace=1

On a template page or in an include, use the following code:

<$ScriptDebugTrace=1$>

To place a marker in the script debug trace, place the following code at the point
where you want to see a value or perform a step:

<$trace(marker code)$>

For example, you can use the following code to insert the current user name in the
debug trace (the eval function must be used to evaluate Idoc Script):

<$trace(eval("The user name is "<$UserName$>)$>

The ScriptErrorTrace setting enables a script error trace for a content server page request.
Script error information is added to the bottom of the displayed page. If no errors are
detected, the message “No Errors” is displayed.
2-4 Getting Started with the Software Developer’s Kit (SDK)

Modifying Your Instance
In a web browser, add the following code to the end of the page’s URL:

&ScriptErrorTrace=1

On a template page or in an include, use the following code:

<$ScriptErrorTrace=1$>

IsJava, ScriptDebugTrace, and ScriptErrorTrace are discussed in detail in the Idoc
Script Reference Guide.

Monitoring Resource Loading
There are three configuration settings that enable you to view the loading of resources
when you run the content server from a command line. Set any of these variables equal to
1 in the <install_dir>/config/config.cfg file:

TraceResourceLoad logs all resources loaded, resource overrides, resource conflicts,
and resource merges.

TraceResourceOverride logs when a system resource is overridden by a component
resource or a component resource is loaded twice.

TraceResourceConflict logs when a system resource is overridden twice by
component resources.

These configuration settings are discussed in detail in the Idoc Script Reference Guide.

The following is an example of the command line output when TraceResourceLoad=1.
Getting Started with the Software Developer’s Kit (SDK) 2-5

Modifying Your Instance
Loading Java Resources
Loading ConflictTester Component
Loading ConflictTester2 Component
Loading Compression Component
Merging into Filters
MERGE [validateStandard, compression.ConversionParamsFilter, null, 1]
Loading Html Resources
Loading System Resource
c:/intradoc/shared/config/resources/upper_clmns_map.htm
ColumnTranslation
Loading System Resource
c:/intradoc/shared/config/resources/indexer.htm
IndexerQueryTable
IndexerStatesTable
IndexerTransitionsTable
DefaultIndexerCycles
Loading System Resource
c:/intradoc/shared/config/resources/std_page.htm
std_html_head_declarations
std_definitions
std_html_head_definition_declarations
std_page_variable_definitions
…

Loading System Resource
c:/intradoc/shared/config/resources/std_docrefinery.htm
AdditionalRenditionsSource
DocumentConversions
ConversionSteps
Loading ConflictTester Component
c:/intradoc/custom/ConflictTester/resources/conflicttester_resource.htm
conflict_tester_include
ConflictTester_Table
Loading ConflictTester2 Component
c:/intradoc/custom/ConflictTester2/resources/conflicttester_resource.htm
OVERRIDE conflict_tester_include
CONFLICT ConflictTester_Table
Loading Compression Component
c:/intradoc/custom/Compression/Compression_resource.htm
OVERRIDE searchapi_result_definitions
OVERRIDE searchapi_thumbnail_result_doc_href_start
OVERRIDE searchapi_result_table_content_begin
compression_thumbnail_img
Loading Compression Component
c:/intradoc/custom/Compression/Compression_handlers.htm
CompressionHandlers
Merging ConflictTester_Templates into IntradocTemplates
MERGE HOME_PAGE
Merging ConflictTester_Templates into IntradocTemplates
MERGE HOME_PAGE
Merging CompressionIntradocTemplates into IntradocTemplates
MERGE COMPRESSION_IMAGE_INFO
Merging CompressionHandlers into ServiceHandlers
MERGE [FileService, compression.CompressionFileServiceHandler, 100]
MERGE [FileService, DocCommonHandler, 100]
MERGE [DocService, compression.CompressionFileServiceHandler, 100]
…

2-6 Getting Started with the Software Developer’s Kit (SDK)

C h a p t e r

3.CONTENT SERVER ARCHITECTURE

OVERVIEW
To create customizations efficiently and effectively, you should have a good
understanding of how the content server works. This chapter describes the architecture of
the content server in the context of what you need to know before beginning a
customization project. It includes the following sections:

Content Server Directories and Files (page 3-1)

Resources (page 3-6)

Content Server Behavior (page 3-7)

CONTENT SERVER DIRECTORIES AND FILES
When you create custom components or dynamic server pages, you work primarily with
files in the following directories:

/bin Directory (page 3-2)

/config Directory (page 3-3)

/shared/config Directory (page 3-5)

/weblayout Directory (page 3-5)

Caution: Modifying the default variables in these files can cause the content server to
malfunction. See the Idoc Script Reference Guide for more information about
configuration variables.
Getting Started with the Software Developer’s Kit (SDK) 3-1

Content Server Architecture
/bin Directory
The <install_dir>/bin directory contains the executable files that run the content server
services, applets, and utilities:

The intradoc.cfg file is used to define system variables for the content server, including
directory, Internet, and refinery settings. A number of these variables can be set using the
content server’s System Properties utility.

The following is a typical intradoc.cfg file:

Element Description

Executables Services
• IdcServer
• IdcServerNT
Applets
• IntradocApp (launches all Admin tools)
Utilities
• Batch Loader
• Installer
• IdcAnalyze
• Component Wizard
• System Properties
• IdcCommand

intradoc.cfg file Configuration file that contains the settings for content server
services, applets, and utilities.

Note: If the content server is set up as an automatic service and you attempt to start a
content server service (IdcServer or IdcServerNT) from the command line, you receive an
error message: The port could not be listened to and is already is use.
3-2 Getting Started with the Software Developer’s Kit (SDK)

Content Server Architecture
/config Directory
The <install_dir>/config directory stores global configuration information, including
information about custom components:

The config.cfg file is used to define global variables for the content server system. A
number of these variables can be set using the content server’s System Properties utility or
by modifying the variables on the Admin Server General Configuration page.

The following is a typical config.cfg file:

<?cfg jcharset="Cp1252"?>

#Content Server Directory Variables

IntradocDir=C:/stellent/idcm1/

WebBrowserPath=C:/Program Files/Internet Explorer/iexplore.exe

CLASSPATH=$COMPUTEDCLASSPATH;$SHAREDDIR/classes/jtds.jar

#Additional Variables

HTMLEditorPath=C:/Program Files/Windows NT/Accessories/wordpad.exe

JAVA_SERVICE_EXTRA_OPTIONS=-Xrs

Element Description

config.cfg file Defines system configuration variables.

components.hda Identifies custom components that have been added to the
content server system.
Getting Started with the Software Developer’s Kit (SDK) 3-3

Content Server Architecture
<?cfg jcharset="Cp1252"?>

#Content Server System Properties

IDC_Name=idcm1

SystemLocale=English-US

InstanceMenuLabel=JeanWTestSystem

InstanceDescription=idcm1

SocketHostAddressSecurityFilter=127.0.0.1|10.10.1.14

#Database Variables

IsJdbc=true

JdbcDriver=com.internetcds.jdbc.tds.Driver

JdbcConnectionString=jdbc:freetds:sqlserver://jwilsonnote:1433/stellent1;charset=UTF8;TDS=
7.0

JdbcUser=sa

JdbcPassword=UADle/+jRz7Fi8D/VzTDaGUCwUaQgQjKOQQEtI0PAqA=

JdbcPasswordEncoding=Intradoc

DatabasePreserveCase=0

#Internet Variables

HttpServerAddress=jwilsonnote

MailServer=mail.company.com

SysAdminAddress=sysadmin@company.com

SmtpPort=25

HttpRelativeWebRoot=/stellent/

CgiFileName=idcplg

UseSSL=No

WebProxyAdminServer=true

NtlmSecurityEnabled=No

UseNtlm=Yes

#General Option Variables

EnableDocumentHighlight=true

EnterpriseSearchAsDefault=0

IsDynamicConverterEnabled=0

IsJspServerEnabled=0

JspEnabledGroups=

#IdcRefinery Variables

#Additional Variables

WebServer=iis

UseAccounts=true

IdcAdminServerPort=4440

SearchIndexerEngineName=DATABASE

VIPApproval:isRepromptLogin=true

Vdk4AppSignature=SF37-432B-222T-EE65-DKST

Vdk4AppName=INTRANET INTEGRATION GROUP

IntradocServerPort=4444
3-4 Getting Started with the Software Developer’s Kit (SDK)

Content Server Architecture
/shared/config Directory
The <install_dir>/shared/config directory contains the files that the content server uses to
assemble web pages:

/weblayout Directory
The <install_dir>/weblayout directory contains the files that are available to the web
server for display on the various pages of the content server web site:

Element Description

reports Holds templates for content server reports.

resources Holds resource definitions (queries, page resources, services, and
other resource data) for the content server.

resources/lang Holds localized string definitions for the content server.

templates Holds templates for all content server pages (except reports).

Element Description

common Holds applet files and other application files that are available to the
master instance and its proxies.

groups Holds the web-viewable content items and dynamic server pages.

help Holds the online help files.

images Holds images, such as icons and home page graphics.

resources Holds layouts, skins, and schema information.
Getting Started with the Software Developer’s Kit (SDK) 3-5

Content Server Architecture
RESOURCES
Resources are files that define and implement the actual customizations you make to the
content server. They can be pieces of HTML code, dynamic page elements, queries that
gather data from the database, services that carry out content server actions, or special
code to conditionally format information.

Resources are a critical part of the content server software, so you need to be familiar with
them before you attempt to create a custom component or dynamic server page. There are
two ways to create and edit a resource file:

Edit the files manually, by opening the resource file in a text editor and editing the
code.

Use the Component Wizard, where you can add, edit, or remove a resource file. You
can also use the Component Wizard as a starting point for creating custom resources.

Resources fall into eight distinct categories, although the first four types listed below are
also called Resource-type resources:

Resource Type Description Example of Standard Resource

HTML Include Defines pieces of HTML markup and Idoc
Script code that are used on more than one
content server web page.

<install_dir>/shared/config/
resources/std_page.htm

String Defines localized strings for the user
interface and error messages.

<install_dir>/shared/config/
resources/lang/cs_strings.htm

Dynamic Table
(HDA format)

Provides dynamic (frequently changed)
content in table format to the content server.

<install_dir>/config/active_state.hda

Static Table
(HTML format)

Provides static (seldom changed) content in
table format to the content server.

<install_dir>/shared/config/
resources/std_locale.htm

Query Defines database queries. <install_dir>/shared/config/
resources/query.htm

Service Defines scripts for services that can be
performed by the content server.

<install_dir>/shared/config/
resources/std_services.htm
3-6 Getting Started with the Software Developer’s Kit (SDK)

Content Server Architecture
CONTENT SERVER BEHAVIOR
This section describes how the content server behaves in the following situations:

Startup Behavior (page 3-7)

Content Server Requests (page 3-10)

Resource Caching (page 3-10)

Page Assembly (page 3-14)

Database Interaction (page 3-14)

Resolving Localized Strings (page 3-15)

Startup Behavior
The following steps occur during content server startup:

1. Internal initialization occurs.

2. Configuration variables load.

3. Standard templates, resources, and reports load.

4. Custom components load (templates, resources, configuration variables, and reports).

Template Defines templates, which contain the code
that the content server uses to assemble a
particular web page.

<install_dir>/shared/config/
templates/checkin_new.htm

Environment Defines configuration settings for the
content server.

<install_dir>/config/config.cfg

Resource Type Description Example of Standard Resource
Getting Started with the Software Developer’s Kit (SDK) 3-7

Content Server Architecture
Figure 3-1 Content server startup behavior

1. Internal Initialization Occurs: When the content server initializes internally, the
Java class files from the content server are read and the Java Virtual Machine (JVM) is
invoked. Any variables in the <install_dir>/bin/intradoc.cfg file initialize as well.

2. Configuration Variables Load: After initializing, the content server loads the
config.cfg file from the <install_dir>/config directory. This file stores the system
properties and configuration variables, which are defined by name/value pairs (such as
SystemLocale=English-US).

The default information contained within the configuration file was supplied during
the content server installation process, but you can modify this file in several ways:

• By using the Admin Server General Configuration page, accessible from the
Administration menu.

• By using the System Properties option, which is available from the Start menu (in
Windows) or by running the SystemProperties script, located in the /bin directory
of your installation (on UNIX).

• By editing the configuration files directly.

• By using a custom component.
3-8 Getting Started with the Software Developer’s Kit (SDK)

Content Server Architecture
Any time changes are made to the config.cfg file, you must restart the content server
for the changes to take effect.

3. Standard Templates, Resources, and Reports Load: For the content server to
function properly, a number of standard templates, resources, and reports need to be
loaded. After the configuration settings have been loaded, the content server reads the
entries in the <install_dir>/shared/config/templates/templates.hda file and the
<install_dir>/shared/config/reports/reports.hda file. These files tell the content server
which templates to load, which in turn loads any standard resources referenced in the
template and report pages.

4. Custom Components Load: The content server loads custom components in the
order specified in the <install_dir>/config/components.hda file. As each custom
component is loaded, any resources defined for that component override any resources
with the same name. For example, if two components are enabled that both use a
resource called my_resource.htm, the resource definition for the component that is
loaded last takes precedence.

Effects of Configuration Loading
It is important to understand the effect of the load order of the different configuration files.

The <install_dir>/config/config.cfg file is loaded first, and the
<install_dir>/data/components/<component_name>/config.cfg file is loaded last.

Therefore, if a variable is set in more than file, the last variable loaded takes precedence.
Files are loaded in this order (not all files exist for each component):

1. <install_dir>/config/config.cfg.

2. <install_dir>/custom/<component_name>/*_environment.cfg. Some components
may not have this file or it may be named environment.cfg.

3. <install_dir>/data/components/<component_name>/install.cfg.

4. <install_dir>/data/components/<component_name>/config.cfg.

If, for example, a variable was set in each of the files listed previously, the variable in
<component_name>/config.cfg takes precedence.

To change a component variable, use the Component Manager and select Update
Component Configuration. This displays values in the <component_name>/config.cfg
file that are editable. Make the desired changes and click Update. You can also edit the
configuration file manually.
Getting Started with the Software Developer’s Kit (SDK) 3-9

Content Server Architecture
If a component doesn’t appear in the drop-down list or if the variables displayed don’t
include the one to change, make the change directly in one of the configuration files.

Resource Caching
When the content server loads template pages and resources, they are cached in
memory to accelerate page presentation.

If you change a template page, report page, or HTML include resource, or you check
in a revision to a dynamic server page, your changes go into effect immediately—the
next request for the associated web page or refresh of the page reflects the changes
and the new information is cached. This is because pages are assembled dynamically
for each page request.

If you change any other component files (including services, queries, environment
variables, strings, tables, components.hda file, and template.hda file), you must restart
the content server before the changes go into effect. This is because such changes
could cause the content server to crash if they were implemented immediately. For
more information see Working with Components.

Content Server Requests
When a web browser client sends a content server request to the web server, the
instructions are typically communicated through URLs or form fields. The web server
routes the request to the content server, which then performs one or more of the following
actions:

Retrieves pages—See Page Retrieval (page 3-12).

Runs a content server service—See Content Server Services (page 3-13).

Runs a search engine service—See Search Services (page 3-13).
3-10 Getting Started with the Software Developer’s Kit (SDK)

Content Server Architecture
Figure 3-2 Requests and responses between content management system elements.

When a content server web page is requested, all of the necessary information can be sent
to the content server through the URL. The following is a typical content server URL; in
this case, it is the URL for the Home page:

http://cs.company.name/instancename/idcplg?IdcService=GET_DOC_PAGE&Action=GetTempl
atePage&Page=HOME_PAGE

http://cs.company.com and instancename is the web address of the
content server instance.

idcplg is the path to the web server filter.

IdcService=GET_DOC_PAGE tells the content server to execute the
GET_DOC_PAGE service.

Action=GetTemplatePage tells the content server to return the results using a
specified template page.

Page=HOME_PAGE tells the content server which template page to use.

The question mark (?) indicates the end of the web server path and the beginning of
content server instructions.

Ampersands (&) are used as separators between content server instructions.
Getting Started with the Software Developer’s Kit (SDK) 3-11

Content Server Architecture
You can include some Idoc Script variables in a URL to affect page display at the time
of the page request. This is useful for troubleshooting or for temporary. For example,
the following variables can be used for customization:

• &StdPageWidth=1000

• &dDocAuthor:isHidden

• &dDocType=HRForm

Necessary information can also be sent to the content server through form fields on the
page. The following is a typical content server form:

<form name=SubscriptionForm action="<$HttpCgiPath$>" Method="GET"">

<input type=hidden name=dID value="<dID>">

<input type=hidden name=dDocName value="<$dDocName$>">

<input type=hidden name=subscribeService value=SUBSCRIBE>

<input type=hidden name=exitUrl
value="<$HttpCgiPath$>?IdcService=DOC_INFO&dID=<dID>&dDocName=<$dDocName$>">
<input type=hidden name=title value="Subscriptions">
<input type=hidden name=unsubscribeService value=UNSUBSCRIBE>
<$if ClientControlled$>
<input type=hidden name=ClientControlled value="<$ClientControlled$>">
<$endif$>
<$if DocHasSubscription$>
<input type=hidden name=IdcService value="UNSUBSCRIBE_FORM">
<input type=submit value="<$lc("wwUnsubscribe")$>">
<$else$>
<input type=hidden name=IdcService value="SUBSCRIBE_FORM">
<input type=submit value="<$lc("wwSubscribe")$>">
<$endif$>
</form>

Page Retrieval
When a web page is requested from the content server, one of the following page types is
returned:

static page: The content of a static web page is pre-formatted, and does not change
from one request to the next. In some content server web sites, the only static page is
the guest home page (<install_dir>/weblayout/portal.htm).

dynamic page: A dynamic web page is assembled at the time of the web server
request, using content server services and templates to determine the content and
formatting. For example, each user’s portal design page is generated using a content
server service called GET_PORTAL_PAGE and a template called
PNE_PORTAL_DESIGN_PAGE.
3-12 Getting Started with the Software Developer’s Kit (SDK)

Content Server Architecture
Content Server Services
When a web browser requests a dynamic page from the content server, the browser is
actually placing a request for a content server service.

For example:

1. When a user clicks the Administration link in the navigation area, a request for the
GET_ADMIN_PAGE service is sent to the web server.

2. The web server recognizes this request as a content server function, and sends the
specific request to the content server.

3. When the content server has processed the request, it passes the result back to the web
server. In the case of the Administration link, the GET_ADMIN_PAGE service:

• Provides a login prompt if the user is not currently logged in.

• Verifies that the user has admin permission.

• Assembles the Administration page using the ADMIN_LINKS template.

• Returns the assembled web page to the web server.

4. The web server delivers the results of the content server service to the originating web
browser client.

Search Services
A search request is a special kind of content server service. When the content server
receives a search request, it sends the request on to the search engine using a search engine
API. This allows different search engines to be used with the content server.

For example:

1. When a user clicks the Search button on the standard Search page, a request for the
GET_SEARCH_RESULTS service is sent to the web server.

2. The web server recognizes the request as a content server function, and sends the
specific request to the content server.

3. The content server passes the request to the search engine.

4. The search engine returns the search results to the content server.

5. Based on the user login and security permissions, the content server assembles the
search results page and returns it to the web server.

6. The web server delivers the results to the originating web browser client.
Getting Started with the Software Developer’s Kit (SDK) 3-13

Content Server Architecture
Page Assembly
The content server uses information from the files in the <install_dir>/shared/config
directory to assemble dynamic web pages.

The structure and format of a web page is defined by a particular HTML template file
in either the /templates or /reports directory.

The template file references resources, which are located in .htm files in the /resources
directory. Resources can include HTML and Idoc Script markup, localized strings,
queries to gather information from the database, and special code to conditionally
format the information.

As a rule, each web page includes the following resources:

A standard page header

A standard page beginning

A standard page ending

Because all of the content server resources are cached in memory at startup, the content
server already has a definition for the standard pieces that appear on the page. The content
server then combines the standard resources with the unique resources specified in the
template to create the web page.

For dynamic server pages, the template page and custom resource files are checked into
the content server. When one of these pages is requested by a web browser, the content
server recognizes the file extension as a dynamic server page, which allows special
processing to occur. At that point, the page assembly process is the essentially the same as
the standard process, except that the page can use both the standard resources in the
/resources directory and the custom resources that are checked in to the content server.

Database Interaction
Some databases, such as Oracle, return all column names as uppercase. Therefore, when
Content Server receives query results from these databases, column names must be
mapped from uppercase to the values used in the content server.

Because of this case mapping issue, custom components created for a content server using
one database might not work correctly on a content server using a different database.

To map column names, the <install_dir>/shared/config/resources/upper_clmns_map.htm
file contains a mapping table named ColumnTranslation. Add the query values to this file
when you create a component that accesses non-content server database fields (for
3-14 Getting Started with the Software Developer’s Kit (SDK)

Content Server Architecture
example, if you create a component that accesses a custom table within the Content Server
database).

See Working with Components for information about using the upper_clmns_map.htm
file.

Resolving Localized Strings
Localized strings are the means by which the user interface and error messages are
presented in the language specified by the user’s locale. The content server loads the string
resource files for a “base” language, and also loads resource files for every supported
language. Instead of presenting hard-coded text, the template pages, applets, and error
messages reference string IDs in these resource files, which are then resolved using the
“ExecutionContext” that contains the locale information for the user.

Note: See the Content Server International Considerations Guide for more information on
system locales, string localization and user locales.
Getting Started with the Software Developer’s Kit (SDK) 3-15

C h a p t e r

4.ALTERING THE INTERFACE

OVERVIEW
There are several different methods that can be used to alter the appearance of your
content server installation.

This chapter provides an introduction to ways to alter the interface that is presented to
users of the content server. It covers the following topics:

Changing the Look of the Content Server (page 4-1)

Generating Dynamic Server Pages (page 4-2)

CHANGING THE LOOK OF THE CONTENT SERVER
The User Personalization settings available on the My Profile page allow users to change
the layouts of the Content Server or the skin.

Layouts define the navigation hierarchy display. There are three types of navigation
hierarchies:

trays, in which the high-level navigation links appear on the left side of the screen.

top menus, in which the high-level links appear above the main display area.

Note: In addition to the methods discussed here, you can also alter the metadata fields that
are presented to users and modify the type of presentation used for check-in pages, search
pages, and other user interfaces. See the Managing Repository Content Guide for details
about creating and modifying metadata fields and creating content profiles.
Getting Started with the Software Developer’s Kit (SDK) 4-1

Altering the Interface
classic, in which a series of icons are displayed on the left side of the screen,
representing the high-level navigation links

Skins define the color scheme and other aspects of appearance of the layout such as
graphics, fonts, or font size. There are two different default skins that are provided:

Oracle: Oracle branding and colors are applied.

Oracle2: the default skin for Content Server 7.5 and later.

You can modify the graphics used, the fonts, colors, and the navigational layout of the
display to match what is needed at your site. The only skills required to create and modify
skins or layouts is an understanding of HTML, Cascading Style Sheets, and JavaScript.
After altering the appearance, the edited layouts and skins are published so that others in
your environment can use them.

Custom layouts change behavior and the look-and-feel system-wide. If you want your
changes to apply only in limited situations, you might want to consider dynamic server
pages.

See Modifying the Content Server Interface for detailed examples of editing the
appearance of the interface and publishing the changes.

GENERATING DYNAMIC SERVER PAGES
Dynamic server pages are files that are checked into the content server and then used to
generate web pages dynamically. Dynamic server pages are typically used to alter the
look-and-feel and navigation of web pages. For example, dynamic server pages can be
used to:

Create web pages to be published through Content Publisher

Implement HTML forms

Maintain a consistent look-and-feel throughout a web site

Dynamic server pages include the following file formats:

IDOC:A proprietary scripting language

HCST: Hyper Content Server Template, similar to a standard content server template
page stored in the <install_dir>/shared/config/templates directory.

HCSP: Hyper Content Server Page, an HTML-compliant version of the HCST page,
usually used for published content.
4-2 Getting Started with the Software Developer’s Kit (SDK)

Altering the Interface
HCSF: Hyper Content Server Form, similar to HCSP and HCST pages, but containing
HTML form fields that can be filled out and submitted from a web browser.

 Site Studio, a separately purchased product, can also be used to create HCSP pages,
changing the default view of Content Server. See the Site Studio documentation set for
details.

When you use dynamic server pages, the content server assembles web pages dynamically
using a custom template (HCST, HCSP, or HCSF file) that you checked in to the content
server. The template calls HTML include code from a text file (IDOC file) you also
checked in to the content server.

To make changes to the look-and-feel or navigation on a web page, you modify the HCS*
template page and/or the IDOC file, and then check in the revised files as new revisions.
Your changes are available immediately.

The following illustration shows the dynamic server page process.

Figure 4-3 Dynamic server page process
Getting Started with the Software Developer’s Kit (SDK) 4-3

Altering the Interface
Although dynamic server pages are implemented in the content server differently than
custom components, you must be familiar with component architecture concepts,
particularly content server templates and HTML includes. For more information on these
topics, see the Working with Components guide.

Use the following basic procedure to customize your content server using dynamic server
pages:

1. Create an IDOC file with custom includes.

2. Check the IDOC file into the content server.

3. Create an HCST, HCSP, or HCSF file that references the IDOC file.

4. Check the HCS* file into the content server.

Display the HCS* file in your web browser by searching for it in the content server or
linking to it from a published web page.

The advantages of using dynamic server pages with the content server include the
following:

You can introduce and test customizations quickly and easily. Simply checking in
a revision of a dynamic server page implements the changes immediately—you don’t
have to restart the content server.

Your web pages can make use of functionality not found in standard HTML. For
example, HTML forms can be submitted directly to the content server without the
need for CGI scripts. Also, Idoc Script enables you to work directly with environment
and state information about the content server.

You don’t have to install or keep track of component files. It can be difficult to
maintain and troubleshoot components if they have a lot of files or your system is
highly customized. Dynamic server pages are easier to work with because you can
check in just a few content items that contain all of your customizations.

Customizations can be applied to individual pages. Dynamic server pages enable
you to apply customizations to a single page rather than globally, leaving the standard
content server page coding intact.

Keep the following constraints in mind when deciding whether to use dynamic server
pages:

Dynamic server pages cannot be used to modify core functionality of the content
server. Dynamic server pages are most useful for customizing your web design and
form pages.
4-4 Getting Started with the Software Developer’s Kit (SDK)

Altering the Interface
Frequent revisions to dynamic server pages can result in a large number of
obsolete content items. You should do as much work on a development system as
possible before deploying to a production instance, and you may need to delete out-of-
date pages regularly.

For more details, see the Dynamic Server Pages Guide and the Working with Components
guide.
Getting Started with the Software Developer’s Kit (SDK) 4-5

C h a p t e r

5.CHANGING SYSTEM
FUNCTIONALITY

OVERVIEW
Several different methods exist that can be used to change the basic functionality of the
Content Server. This chapter provides an overview of those methods. It includes these
topics:

Changing System Settings (page 5-1)

Creating and Managing Components (page 5-3)

Installing Components (page 5-5)

Using Components (page 5-7)

Changing Configuration Information (page 5-9)

Customizing Services (page 5-10)

Generating Action Menus (page 5-11)

CHANGING SYSTEM SETTINGS
Content Server has a number of features that you can set up to change features system-
wide according to your needs. For example, you can use the following administration tools
within the content server to customize your content management system settings:
Getting Started with the Software Developer’s Kit (SDK) 5-1

Changing System Functionality
Admin Server: The Admin Server is a collection of web pages that you can use to
configure system-wide settings for multiple content server instances. To access these
pages, click Admin Server from the Administration menu to display the Admin
Server main page. From this page you can check the status of the different servers that
are running, you can check console output, and you add or edit servers. By clicking on
a server name, you can access more options for that server.

System Properties: System Properties is an administration application that is used to
configure system-wide settings for content security, internet settings, localization, and
other types of settings. Options on these pages can be used to:

• set optional functionality for the content server instance

• set options related to content item security

• set options related to the Internet and web interaction

• set JDBC connectivity options

• set functionality such as time zones and IP filters

• set localization features

• set directory paths

You do not need administrative-level permissions to set these options, just access to
the directory where the instance is installed.

Web Layout Editor: The Web Layout Editor is used to customize the Library and
system home (portal) page. To access this editor, select Web Layout Editor from the
Admin Applets page. With the Web Layout Editor, you can change the organization of
local web pages in the Library and build new portal pages for your site. You can create
links to web sites outside your local site, and you can filter files based on security
groups or queries.

User Administration: You can define security groups, aliases, roles, and accounts for
the users at your site using the User Admin function. To access this screen, click
Configuration Manager from the Admin Applets, then select User Admin from the
Apps menu. Options on this screen are used to create aliases, set permissions for
security groups, establish roles and permissions associated with those roles, and
customize information that is stored about users.

Other Administration Customizations: In addition to the system settings that are
discussed here, other settings can be changed to match your site’s needs:

• workflows can be designed, customized, and implemented using the Workflow
Admin tool available from the Admin Applets menu.
5-2 Getting Started with the Software Developer’s Kit (SDK)

Changing System Functionality
• new custom metadata fields can be created and default values set using the
Configuration Manager.

• customized ‘action’ screens (such as check-in, search, and check-out) can be
created using Content Profiles.

CREATING AND MANAGING COMPONENTS
Components are modular programs that are designed to interact with the content server at
runtime. Custom components enable you to customize Content Server without affecting
the core functionality of the software. Components can be used to alter defaults for your
system, to add new functionality, or to streamline repetitive functions.

The Component Wizard automates the process of creating custom components. You can
use the Component Wizard to create new components, modify existing components, and
package components for use on other content server instances.
Getting Started with the Software Developer’s Kit (SDK) 5-3

Changing System Functionality
Figure 5-4 Component wizard interface

Through this interface, you can create and edit all of the files necessary for a custom
component, as well as alter any components that are already installed.

The Component Manager provides a way to manage custom components in the content
server. By using the Component Manager, you can easily enable or disable components, or
add new components to the content server.

To access the Component Manager, click Admin Server on the Application menu. Click
on the server name. The options page for that server appears. Click Component Manager
to display the Component Manager page.
5-4 Getting Started with the Software Developer’s Kit (SDK)

Changing System Functionality
Figure 5-5 Component Manager page

The Component Manager lists all enabled and disabled components and provides an easy
interface to add new components.

See the Working with Components guide for details about creating and using custom
components.

INSTALLING COMPONENTS
An extensive group of components are also available that can be downloaded.
Documentation for components are included with the component and can be downloaded
when you download the component.

You can install these components using one of two methods:

Using Component Manager (page 5-6).

Using Component Wizard (page 5-6).
Getting Started with the Software Developer’s Kit (SDK) 5-5

Changing System Functionality
Before installing a component, you must first download it to your instance.

Using Component Manager
Follow these steps to install the component using the Component Manager:

1. Select Admin Server from the Administration Menu.

The Content Admin Server page is displayed.

2. Click the instance name of the server where the component will be installed.

The Content Server <instance-name> page is displayed.

3. Click Component Manager.

The Component Manager page is displayed.

4. Click the Browse button and find the zip file that was downloaded and saved.

5. Highlight the component name and click Open.

6. Click Install. A message is displayed, detailing what will be installed.

7. Click Continue to continue with installation or Cancel to stop installation.

8. If you select Continue, a message appears after successful installation. You can
choose one of two options:

• To enable the component and restart the Content Server. You are returned to the
Content Server <instance-name> page, where you can restart the server.

• To return to the Component Manager, where you can continue adding
components. When done, highlight the components you want to enable and click
Enable. When finished enabling components, return to the Content Server
<instance-name> page and restart the server.

Using Component Wizard
Follow these steps to install the component using the Component Wizard:

1. Start the Component Wizard by selecting Start—Programs—Content Server—
<install_dir>—Utilities—Component Wizard (Windows) or by running the
ComponentWizard script in the /bin directory (in UNIX).

The Component Wizard main screen and the Component List screens are displayed.

2. On the Component List screen, click Install.
5-6 Getting Started with the Software Developer’s Kit (SDK)

Changing System Functionality
The Install screen is displayed.

3. Click Select.

4. Navigate to the zip file that was downloaded and saved and select it.

5. Click Open.

The zip file contents are added to the Install screen list.

6. Click OK. You are prompted to enable the component.

7. Click Yes. The component is listed as enabled on the Component List screen.

8. Exit the Component Wizard.

Restart the Content Server.

Depending on the component being installed, a new menu option appears in the
Administration tray or on the Admin Applet page. Some components simply extend
existing functionality and do not appear as separate new options. See the component’s
documentation for details.

USING COMPONENTS

Components are modular programs that are designed to interact with the content server at
runtime. The component architecture model is derived from object-oriented technologies,
and encourages the use of small modules to customize the content server as necessary,
rather than creation of a huge, all-inclusive (but cumbersome) application.

Any type of file can be included in a component, but the following file formats are used
most often:

HDA

HTM

CFG

Java CLASS

Components are typically used to alter the core functionality of the content server. For
example, a component could be used to:

Note: You can create custom components by manually creating the necessary files and
resources. However, the Component Wizard has no limitations compared to the manual
method and using it prevents many common mistakes.
Getting Started with the Software Developer’s Kit (SDK) 5-7

Changing System Functionality
Modify the standard security features

Change the way search results are requested and returned

Allow the content server to work with a particular system (such as a Macintosh client
or a proprietary CAD program)

The advantages of using component architecture with the content server include the
following:

You can modify source code without compromising the integrity of the product.
The content server loads many of its resources from external text files, so you can
view the files to analyze how the system works, and then copy and modify the files to
your requirements.

You can use a custom component on multiple instances across multiple
platforms. Once you have created a custom component, you can package it as a zip
file and load it on other content server instances. Many custom components will work
on content server platforms other than the original development platform.

You can turn individual components on and off for troubleshooting purposes.
You can group customizations so that each component customizes a specific content
server function or area. If you have problems, disabling components one at a time can
help you quickly isolate the trouble.

You can reinstall or upgrade a content server without compromising
customizations. Custom components override existing product resources rather than
replace them. Replacing the standard content server files may not affect your
customizations.

Keep the following constraints in mind when deciding whether to use custom components:

Custom components change behavior and look-and-feel system-wide. If you want
your changes to apply only in limited situations, you might want to consider dynamic
server pages.

Custom components can be affected by changes to content server core
functionality. Because new functionality may change the way your components
behave, customizations are not guaranteed to work for future content server releases.
Whenever you upgrade, you should review and test your custom components.

A component may not be necessary for simple customizations. A large number of
simple components could become difficult to manage.
5-8 Getting Started with the Software Developer’s Kit (SDK)

Changing System Functionality
CHANGING CONFIGURATION INFORMATION
For advanced customizations and integration with other business systems, Content Server
supports several development tools and technologies, such as the following:

In addition to these tools, the proprietary Idoc Script is a server-side custom scripting
language for Content Server. It is used to reference variables, to conditionally include
content in HTML pages, and to loop over results returned from queries.

Because Idoc Script is evaluated on the server side (rather than the client side), page
elements are processed after the browser has made a request, but before the requested page
is returned to the client.

Idoc Script is primarily used in the following situations:

for include code. An include defines pieces of code used to build content server web
pages. They are defined once in a resource file then referenced by template files as
necessary. Includes are used on almost every page of the content server web site.

A super tag can also be used, which defines exceptions to an existing include. The
super tag tells the include to start with an existing include and add to it or modify it
using the specified code.

for variables. Variables can be used to customize the content server behavior. Variable
values can be stored in an environment resource, such as the config.cfg file and many
are predefined in the content server. You can also define your own custom variables.

for functions. Many built-in global functions are used in the content server. These
perform actions such as date formatting or string comparisons. Some functions return
results and some are used for personalization functions, such as those found on the My
Profile page.

for conditionals. Conditionals can be used to test code and include or exclude the
code from an assembled web page.

VBScript ASP J++

JavaScript ASP+ J2EE

Java JSP COM

Visual Basic DreamWeaver .Net

C++ Visual InterDev
Getting Started with the Software Developer’s Kit (SDK) 5-9

Changing System Functionality
for looping. Two types of looping are available using Idoc Script: ResultSet looping,
in which a set of code is repeated for each row in a ResultSet that is returned from a
query and while looping, which is a conditional loop.

in Administration areas, such as Workflow customization, web layouts, archiver and
search expressions.

See the Idoc Script Reference Guide for details on usage and for syntax and configuration
variable information.

CUSTOMIZING SERVICES
Content Server services are functions or procedures performed by the content server.
Calling a content server service (making a service request) is the only way to
communicate with the content server or to access the database.

Any service can be called externally (from outside the content server) or internally (from
within the content server). Client services are usually called externally while
administrative services are called internally. The service uses its own attributes and
actions to execute the request, based on any parameters passed to the service.

The standard content server services are defined in the StandardServices table in
<install_dir>/shared/config/resources/std_services.htm. A service definition contains
three main elements:

The service name.

The service attributes. The attributes define the following aspects of the service:

• the service class, which specifies which Java class the service has access to. This
determines what actions can be performed by the service.

• the access level, which assigns a user permission level to the service.

• a template page that specifies the template that displays the results of the service.

• the service type which specifies if the service is to be executed as a sub-service
inside another service

• subjects notified, which specifies the subsystems to be notified by the service.

• the error message that is returned by the service if no action error message
overrides it.

The service action, which is a colon-separated list that defines the following aspects
of the action:

• action type
5-10 Getting Started with the Software Developer’s Kit (SDK)

Changing System Functionality
• action name

• action parameters

• action control mask

• action error message

Understanding and using services is an integral part of creating components and thus
customizing the content server. See the Services Reference Guide for more details.

GENERATING ACTION MENUS
In previous versions of the Content Server, when a component writer wanted to create an
HTML table like those used on the search results page, HTML code had to be copied and
pasted. The information in the tables was mixed with the HTML, with no separation
between data and display.

The same issue was true for action menus. Data and display for the tables and menus were
tightly coupled, making it impossible to perform global changes to all tables in the
Content Server except for those changes done with CSS modifications. It was also difficult
for components to target and modify specific aspects of both the tables and the menus.

To customize a page’s action menu, a developer can override one of the following include
files then modify the PageMenusData resultset. These includes are all defined in the
<install_dir>/shared/config/resources/std_page.htm file:

custom_searchapi_result_menus_setup

custom_docinfo_menus_setup

custom_query_page_menus_setup

custom_audit_info_menus_setup

In addition, tables like the one used on the search results page can be created by setting up
result sets of data then calling specific resource includes which use that data to display the
page. Result sets can also be used to create action menus like those found on the Workflow
In Queue and Search Results pages.

The action menu and HTML table display frameworks allow developers to create quick
and flexible web pages that match the look and feel of the rest of the system. They also
allow component writers to easily extend, add to, and override any or all of the Headline
View, Classic View, or Thumbnail View tables on the server, as well as any of the action
menus.
Getting Started with the Software Developer’s Kit (SDK) 5-11

Changing System Functionality
Creating Display Tables
Different display tables are used for the search results page for each display type
(Headline, Classic, or Thumbnail) with an API for each. Each type is discussed in the
follow sections:

Headline View Tables (page 5-12)

Classic View Tables (page 5-14)

Thumbnail View Tables (page 5-15)

One of the first steps in any table setup is to retrieve documents to display, as in this
example:
<$QueryText = "dDocAuthor <matches> `sysadmin`"$>
<$executeService("GET_SEARCH_RESULTS")$>

Headline View Tables
The following example shows how to create a Headline View table. The concepts
discussed here are also used to create the other table types.

The initial step in this process is to create a result set that describes the columns of the
table, as in this example:
<$exec rsCreateResultSet("ColumnProperties",

"id,width,headerLabel,rowAlign")$>

<$exec rsAppendNewRow("ColumnProperties")$>
<$ColumnProperties.id = "dDocName"$>
<$ColumnProperties.width = "150px"$>
<$ColumnProperties.headerLabel = lc("wwDocNameTag")$>
<$ColumnProperties.rowAlign = "center"$>

<$exec rsAppendNewRow("ColumnProperties")$>
<$ColumnProperties.id = "dDocTitle"$>
<$ColumnProperties.width = "auto"$>
<$ColumnProperties.headerLabel = lc("wwTitle")$>
<$ColumnProperties.rowAlign = "left"$>

<$exec rsAppendNewRow("ColumnProperties")$>
<$ColumnProperties.id = "actions"$>
<$ColumnProperties.width = "75px"$>
<$ColumnProperties.headerLabel = lc("wwActions")$>
<$ColumnProperties.rowAlign = "center"$>
5-12 Getting Started with the Software Developer’s Kit (SDK)

Changing System Functionality
A result set called ColumnProperties is created. Each row in the table corresponds to
a column on the table to be created. Each column can have a number of attributes
associated with it. Some of the more common attributes are:

id: This is a mandatory attribute. Each column in the table being created must have an
ID associated with it. The ID is used later to determine what will be displayed in every
row.

width: The width of the column. This can be any CSS width declaration such as
100px, 15em, or auto, which causes the column to auto-size, filling as much of the
table as possible.

headerLabel: The text to be displayed in the header of this column.

rowAlign: An indication of whether the contents should be left, right, or center
aligned.

headerURL: Used to link the column header text to a URL.

The next step is to determine what data will be displayed in each row of the table.
<$exec rsCreateResultSet("RowData","dDocName,dDocTitle,actions")$>
<$exec rsAppendNewRow("RowData")$>
<$RowData.dDocName = "<$dDocName$>"$>
<$RowData.dDocTitle = "<$dDocTitle$>"$>
<$RowData.actions = "<$include doc_info_action_image$>"$>

The ColumnProperties result set technically has a row for each column in the table, while
in RowData, there is only one row. Data entered into this result set is of the following
form:

<$RowData.%COLUMN_ID% = "%IDOCSCRIPT%"$>

Each column in the RowData result set refers to an actual column that will appear in the
final table. Each column in this result set has a corresponding “ID” in the
ColumnProperties result set declared earlier. An IdocScript expression is assigned to
each cell in this result set. It will then be evaluated during the display of each row as it is
written to the HTML document.

Next the resource include must be created to display each row in the table.
<$include create_slim_table_row_include$>

Calling this resource include creates the slim_table_row_include resource
include. Instead of parsing and evaluating the RowData result set for each row in the
table, it is done once.

Use the following steps to set multiple row includes (for example, for a single table which
displays different rows for different types of items):

1. Delete and recreate the RowData result set.
Getting Started with the Software Developer’s Kit (SDK) 5-13

Changing System Functionality
2. Set rowIncludeName to the name of the resource include to create.

3. Include create_slim_table_row_include again.

The following code displays the table:
<$include slim_table_header$>
<$loop SearchResults$>

<$include slim_table_row_include$>
<$endloop$>
<$include slim_table_footer$>

To make the table look like the table on the search results page, set the following in the
script:

<$UseRowHighlighting = true$>

One special customization with the Headline View table allows any component writer or
administrator to easily override how the data in any column is presented. For example, a
custom include similar to the following can be declared from in a component:
<@dynamichtml slim_table_title@>

<$dDocTitle$>
<@end@>

If dDocTitle:slimTableCellInclude=slim_table_title is added to the
/config/config.cfg file or set from within a script, all Headline View tables with a column
ID of dDocTitle are displayed using the defined custom include. This overrides the
RowData for these columns.

Classic View Tables
Classic View table creation is almost identical to Headline View table creation. The major
differences center around different variables and different include names, as shown in the
following table:

Classic View Table Headline View Table

classic_table_header slim_table_header

classic_table_footer slim_table_footer

create_classic_table_row_include create_slim_table_row_include

classic_table_row_include slim_table_row_include
5-14 Getting Started with the Software Developer’s Kit (SDK)

Changing System Functionality
Thumbnail View Tables
The table for the Thumbnail View is created differently. The ColumnProperties or
RowData result sets are not constructed. Instead, the number of columns are set and an
IdocScript include name is used to “paint” each cell. This is less easy to customize and
less data-driven than the other methods, but this type of table is also much less structured.
<$numDamColumns = 4$>
<$damCellIncludeName = "my_sample_dam_cell"$>
<$include dam_table_header$>
<$loop SearchResults$>

<$include dam_table_item$>
<$endloop$>
<$include dam_table_footer$>

Customizing Action Menus
The first step in customization is to add the action menu icon to the actions column. The
following example incorporates an action menu into each row of the Headline View
sample table used previously.
<$RowData.actions = "<$include action_popup_image$>" &

" <$include doc_info_action_image$>"$>

This inserts the action image into the appropriate column. However, clicking it does
nothing because the actual menu is not written to the HTML page.

The following code creates the data to be used to construct this menu:
<$exec rsCreateResultSet("PopupProps",

"label,onClick,function,class,id,ifClause")$>

<$exec rsAppendNewRow("PopupProps")$>
<$PopupProps.label = lc("wwCheckOut")$>
<$PopupProps.function = "<$HttpCgiPath$>?IdcService=CHECKOUT" &

"&dID=<dID>&dDocName=<$url(dDocName)$>" &
"&dDocTitle=<$url(dDocTitle)$>"$>

<$PopupProps.class = "document"$>
<$PopupProps.id = "checkout"$>

<$exec rsAppendNewRow("PopupProps")$>
<$PopupProps.label = lc("wwGetNativeFile")$>
<$PopupProps.function = "<$HttpCgiPath$>?IdcService=GET_FILE" &

"&dID=<dID>&dDocName=<$url(dDocName)$>" &
"&allowInterrupt=1"$>

<$PopupProps.ifClause = "showNativeFileLink"$>
<$PopupProps.class = "document"$>
<$PopupProps.id = "getNativeFile"$>
Getting Started with the Software Developer’s Kit (SDK) 5-15

Changing System Functionality
<$exec rsAppendNewRow("PopupProps")$>
<$PopupProps.label = lc("wwTest")$>
<$PopupProps.function = "javascript:alert('<$js(dDocName)$>');"$>
<$PopupProps.ifClause = "showTestAction"$>
<$PopupProps.class = "debug"$>
<$PopupProps.id = "alertDocName"$>

This code creates a result set called PopupProps, where each row corresponds to an
action in the menu being created. Each action can have a number of attributes associated
with it. Some of the more common attributes are:

label: A string displayed as the label for the action.

function: The URL or JavaScript method to be associated with this action.

class: A classification for this action. It can be something as simple as “search”,
“document”, “workflow”, or even the name of your component. It places the action
into a group so it can be quickly enabled or disabled with the rest of the actions within
that same group.

id: Another method of classification, much more specific than “class”. This should be
unique to the application, and can be used to hide certain actions from appearing
within the menus.

ifClause: An optional attribute evaluated every time that action is about to be written
to the HTML document. If the clause evaluates to FALSE, the action is not displayed.

isDisabled: If set to 1, the action is never displayed.

linkTarget: Used to make this link open a page in a different window. This attribute
points to any anchor tag target.

After the data is set, it can be used to create an IdocScript resource that writes this action
menu.

<$include create_action_popup_container_include$>

This resource works like create_slim_table_row_include. It constructs a new
IdocScript resource called action_popup_container_include. To rename it, set
set <$actionPopupContainerIncludeName = new_include_name$> in
the script.

Use the following code to have this include called for each row of the Headline View
table.
<$exec rsCreateResultSet("PopupData", "actions")$>
<$exec rsAppendNewRow("PopupData")$>
<$PopupData.actions="<$include action_popup_container_include$>"$>
5-16 Getting Started with the Software Developer’s Kit (SDK)

Changing System Functionality
This code creates a PopupData result set similar to the RowData result set. It is
structured in the same way, and is used as a location to print the action menu containers
which are hidden until a user clicks on the action image.

The table originally created now has action menus, similar to those normally seen on the
search results page whenever the appropriate image is clicked.

Editing these actions is done by adding and deleting rows from the PopupProps result
set or editing rows that already exist. In addition to this type of customization, actions can
be hidden by setting the disabledActionPopupClasses and
disabledActionPopupIds variables. These can be set in the config/config.cfg file
or in the IdocScript itself. For example:
<$disabledActionPopupClasses = "workflow,folders"$>
<$disabledActionPopupIds = "getNativeFile,alertDocName"$>

Setting these variables causes any actions whose class is either workflow or folders, or
whose ID is getNativeFile or alertDocName, to always be hidden. This enables Content
Server administrators and component writers to hide specific actions either globally or for
specific pages.

Component writers also can override a number of IdocScript resource includes to modify
functionality in this area on either a global or targeted scale. The following includes are
just a few of the many resource includes that can be used:

custom_add_to_action_popup_data

custom_modify_action_popup_data

classic_table_row_pre_display

slim_table_row_pre_display

custom_row_pre_display
Getting Started with the Software Developer’s Kit (SDK) 5-17

C h a p t e r

6.INTEGRATION METHODS

OVERVIEW
Several easy, flexible methods are available for integrating Content Server with enterprise
applications such as application servers, catalog solutions, personalization applications,
and enterprise portals, as well as client-side software.

The content server not only serves as a content management solution for content-centric
Web sites, but also provides a scalable content management infrastructure that supports
multiple enterprise applications in many diverse environments and platforms. The
integration solutions enable other enterprise applications to access content managed by the
Content Management system and provides these applications with critical content
management capabilities such as full-text and metadata searching, library services,
workflow, subscription notifications and content conversion capabilities via a wide array
of integration methods.

In general, these integration methodologies serve to translate or pass methods and
associated parameters with the goal of executing content server services. The various
content server services are the “window” for accessing the content and content
management functions within Content Server. For example, one simple integration option
is to reference content that is managed within Oracle by persistent URL. Other integration
options are to use the Java API, the COM integrations, or the ActiveX control.
Getting Started with the Software Developer’s Kit (SDK) 6-1

Integration Methods
The focus of this chapter is to present the available integration options, suggest an
approach, (like IdcCommand X, or persistent URL, or SOAP), and provide information
about where to get the detailed documentation on that approach. Specifically, this chapter
provides basic conceptual information about the integration of Content Server within
network system environments using various protocols, interfaces, and mapping services.

For general information on the architecture and functionality of the Content Server
product, as well as a number of key concepts, refer to the Content Server Getting Started
Guide.

This chapter discusses the following integration options:

Idc Utilities (Command Line/Shell Scripting) (page 6-2)

COM Integration (page 6-3)

JSP Integration (page 6-6)

Java 2 Enterprise Edition Integration (J2EE) (page 6-10)

Web Services (page 6-12)

IDC UTILITIES (COMMAND LINE/SHELL SCRIPTING)
The IdcCommand utility is a stand-alone Java application that executes Content Server
services. Almost any action you can perform from the content server browser interface or
administration applets can be executed from IdcCommand.

The program reads a command file, which contains service commands and parameters,
and then calls the specified services. A log file can record the time that the call was
executed, whether the service was successfully executed, and if there were execution
errors. The IdcCommand utility only returns information about the success or failure of
the command. To retrieve information from the content server in an interactive session,
use the IdcCommandX Java COM wrapper available on Windows platforms (see COM
Integration (page 6-3) for details).

To run the IdcCommand utility, specify the following parameters on the command line or
in the intradoc.cfg configuration file:

command file containing the service commands and parameters.

a content server user name. This user must have permission to execute the services
being called.
6-2 Getting Started with the Software Developer’s Kit (SDK)

Integration Methods
a path and file name for a log file.

the connection mode (auto, server, or standalone).

There are certain commands that cannot be executed in stand-alone mode. In general,
these commands are performed asynchronously by the server in a background thread. This
happens in the update or rebuild of the search index.

The IdcCommand utility returns information about only the success and failure of the
command. To retrieve information from the server in an interactive session, use the Java
COM wrapper IdcCommandUX available on Microsoft Windows.

For details about using Idc Utilities, see the Idc Command Reference Guide.

COM INTEGRATION
Content Server utilizes a Component Object Model-based API which provides the
capability to call Oracle functionality from within a Microsoft Component Object Model
(COM) environment.

You can use a COM interface to integrate Content Management with Microsoft
environments and applications. An ActiveX control and an OCX component are provided
as interface options to gain access to the content and content management functions within
Content Server. Additionally, you can communicate with ODMA-aware applications
through a Component Object Model (COM) interface.

This section covers these topics:

ActiveX Interface (page 6-3)

OCX Interface (page 6-4)

ODMA Integration (page 6-5)

ActiveX Interface
The IdcCommandUX ActiveX Command Utility is an ActiveX control that allows a
program to execute a service and retrieve file path information. You can call the
IdcCommandUX utility from both a Microsoft Visual Basic and Microsoft Visual C++

Tech Tip: Calling services from a command line on the local server using the
IdcCommandUX ActiveX Command Utility provides faster execution of commands than
calling services remotely using the IntradocClient OCX component.
Getting Started with the Software Developer’s Kit (SDK) 6-3

Integration Methods
environment. For more detailed information about IdcCommandUX, see the IdcCommand
Reference Guide.

Run the IdcCommandUX ActiveX Command Utility setup executable located on the
support site.

When executing services using the IdcCommandUX ActiveX Command Utility keep
these notes in mind:

IdcCommandUX must be initialized with a valid user and the intradoc.cfg directory.
Outside of the init and connection managing methods, all methods use the serialized
HDA format for communication.

IdcCommandUX attempts to establish a connection to a running server. If a
connection is not made it fails.

The returned serialized HDA format string contains information about the success or
failure of the command. The StatusCode will be negative if a failure occurs, and
StatusMessage will indicate the error.

OCX Interface
The IntradocClient OCX component is used within a Windows Visual Basic development
environment to gain access to the content and content management functions within
Content Server. The OCX integration is designed to call services in a visual development
environment, or to connect to a remote content server.

The IntradocClient OCX component provides functionality that you can access with a
method call. Methods perform actions and often return results. Information is passed to
methods using parameters. Some functions do not take parameters; some functions take
one parameter; some take several.

The IntradocClient OCX component requires a username and password to execute the
commands. The user must have the appropriate permissions to execute the commands.
Some commands will require an administrative access level, other commands may require
only write permission.

Outside of the init and connection managing methods, all methods use the serialized
HDA format for communication. The returned serialized HDA format string contains
information about the success or failure of the command. The StatusCode will be negative
if a failure occurs, and StatusMessage indicates the error.
6-4 Getting Started with the Software Developer’s Kit (SDK)

Integration Methods
See the IdcCommand Reference Guide for additional information. This guide also contains
information about the IntradocClient OCX API specifications listing the properties,
methods, and events.

ODMA Integration
The Open Document Management Application (ODMA) is a standard API used to
interface between desktop applications and file management software. The ODMA
integration for Content Server is available with Desktop, a separate product. Use the
ODMA-integration products to gain access to the content and content management
functions within Content Server (for ODMA-compliant desktop applications).

You can publish files to your Web repository directly from any ODMA-compliant
application, such as Microsoft Word, Corel WordPerfect, and Adobe FrameMaker. With
the Web centric adoption of ODMA, you can check in and publish information directly to
the Web. This is a significant advancement over traditional ODMA client-server
implementations, where information is published first to a server and is not immediately
available on the Web for consumption.

For more information, refer to the ODMA or ODMA/FrameMaker online help.

ODMA Client
The ODMA Client is a separate product and does not ship with the core product. It is used
to check in and publish information directly to the Web from your desktop applications.
ODMA Client surpasses traditional ODMA client–server models, which publish
information to a server and not immediately to the Web for consumption. You can use
ODMA Client from within your desktop application to perform many tasks which interact
with content server, for example:

Save a file and immediately check it into the content server.

Save a file to check in later.

Check a file out of the content server.

Update a file's metadata (content information).

Save the file to your local file system and bypass the ODMA Client system.
Getting Started with the Software Developer’s Kit (SDK) 6-5

Integration Methods
ODMA Interfaces
These ODMA Interfaces are available:

ODMA Client Interface: The Select Document screen with the Recent Files option
selected displays a list of files that you recently used through ODMA. This screen is
displayed instead of the typical Open dialog box. If a file does not display on this
screen, you can search for it in the Content Server or the local file system.

ODMA Desktop Shell Interface: The Client Desktop Shell provides "drag and drop"
check-in functionality, and access to the ODMA Client - Select Document screen
from outside of your desktop application. Through the Desktop Shell, you can:

• Select a file from your desktop or a Windows Explorer window and drag it to the
Desktop Shell to check it into the Content Server.

• Select and open a file from the Recent Files list or from the Content Server.

Content Server Interface with ODMA: You can open and check out an ODMA file
directly from the Content Server Content Information page. When you open a file
from the Content Server, it opens in its native application so you can edit it and
quickly check the file back into the Content Server.

JSP INTEGRATION
You can access Content Server core functionality from a Java Server Page to deliver forms
and custom pages using any of these methods:

Through the JSP page execution functionality using the built in Apache Jakarta
Tomcat Server.

Through a separate product, Content Integration Suite. For more information, see
Java 2 Enterprise Edition Integration (J2EE) (page 6-10).

This section covers the following topics:

JSP Execution (page 6-7)

Tomcat (page 6-7)

Features (page 6-8)

Configuring JSP Support (page 6-8)

Note: You can also open and check out a file from within an ODMA-compliant
application, and you can open a copy of a file instead of checking it out. See the ODMA
Online Help for more information.
6-6 Getting Started with the Software Developer’s Kit (SDK)

Integration Methods
JSP Execution
The JSP Execution functionality uses the built-in Apache Jakarta Tomcat Servlet/JSP
Server to access the content and content management functions within Content Server.

The Apache Jakarta Tomcat Server is a free, open-source server of Java Servlet and Java
Server Pages that is run inside of Content Server when the feature is enabled. The
integration of Tomcat Server with Content Server provides the benefit of increased
performance for content delivery.

Using JSP Execution functionality enables developers to access and modify Content
Server content, ResultsSets, personalization and security definitions, and predefined
variables and configuration settings through Java Server Pages rather than through
standard component architecture. Services and IdocScript functions can also be executed
from JSP pages which reside as executable content in the Content Server.

Tomcat
Capability for JSP to call services is provided by integrating the Tomcat 5.025 server with
Content Server core functionality.

Tomcat is a free, open-source server of Java Server and Java Server Pages; version
5.025 complies with Servlet 2.4 and JSP 2.0 specifications.

The main benefit of integrating Tomcat into Content Server is the increase in
performance of delivering content. The direct integration eliminates the need for a
socket-based interface and enables use of all content server core capabilities.

Although Tomcat is embedded in content server, you can use server.xml as the
configuration file to modify the internal Tomcat engine to suit your needs.

Important: JSP pages can execute IdocScript functions only when the JSP page is being
served on the content server as part of the JSP Execution functionality. JSP pages served
on a separate JSP server do not have this functionality. In those cases, checking a JSP page
into the content server provides revision control but does not provide dynamic execution
of IdocScript functions on the presentation tier (JSP server).
Getting Started with the Software Developer’s Kit (SDK) 6-7

Integration Methods
Figure 6-6 Content Server/Tomcat integration architecture

Features
With JSP support enabled, custom components can include JSP pages of type jsp and
jspx.

The <install_dir>/weblayout/jsp/ directory is able to host JSP pages by default.

The Content Server distribution media also includes the current Java 2 SDK.

Configuring JSP Support
Use the following procedure to enable and configure JSP support.

1. In Content Server, create a new security group to be used for JSP pages (called jsp in
the steps below). This security group should be restricted to developers.

a. Display the User Admin screen.

b. Select Security—Permissions by Group.

c. Click Add Group.

d. Enter jsp as the group name, enter a description, and click OK.

Note: This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

Note: This step is not required, but is recommended for developer convenience. Any
security groups to be enabled for JSP must be specified in step 6.
6-8 Getting Started with the Software Developer’s Kit (SDK)

Integration Methods
e. Assign Admin permission to the admin role and any developer roles.

f. Assign Read permission to all non-admin roles.

g. Click Close.

2. If you are running on AIX, HP-UX, or Linux s390, the Java 2 SDK, which is required
for the JSP integration, is not installed on your system automatically, nor is it provided
on the distribution media. To get the internal JSP engine to run on these, a 1.5 JDK
must be present on the server and the CLASSPATH in the intradoc.cfg file must be
modified to include the path to the "tools.jar" file. For example, for a default 1.5
install on AIX, this file should be in /usr/java15/lib.

3. Select one of the following:

From the Admin Server, select the General Configuration page.

From the System Properties utility, select the Server tab.

4. Enable the JSP prompt:

For the Admin Server: click Enable Java Server Page (JSP)

For System Properties: click Execute Java Server Page (JSP)

5. Enter the security groups to be enabled for JSP (including the security group you
created in step 1).

6. Save the settings, and restart the Content Server.

Loading Example Pages
Use either of the following procedures to load example pages into the Content Server:

1. Check in the .war file in the JSP security group. Make sure to check in other content to
the JSP security group prior to checking in the war file.

2. Start the JSP Server Web App Admin from the Administration page.
Getting Started with the Software Developer’s Kit (SDK) 6-9

Integration Methods
JAVA 2 ENTERPRISE EDITION INTEGRATION (J2EE)
The J2EE integration for Content Server is available with Content Integration Suite, a
separate product.

The Content Integration Suite (CIS) is based on J2EE standards for implementation. Any
J2EE developer using J2EE-compliant systems will be able to develop integrations using
the CIS.

 Integration can be accomplished by using many different development environments and
protocols. CIS also supports single sign-on capabilities, so users can log on to other
systems and do not need to re-logon when those linked systems are needed to get content
from the system.

This section covers these topics

Integration techniques (page 6-10)

Content Integration Suite architecture (page 6-10)

Internationalization (character encoding) (page 6-12)

See the Content Integration Suite documentation set for additional information.

Integration techniques
Content Server is set up as a series of Java services, which enable content to be accessed
and manipulated as needed. These services include functions to search content, check the
content in, view information about the content, approve the content through workflow, set
expiration dates, and create subscriptions, to name a few applications. To use the system,
everything goes through these services—even the native, web-based interface.

Content Integration Suite architecture
The Content Server Command Layer allows application developers to focus on
presentation issues rather than being concerned with how to access IdcCommand services.

The CS Command Layer is a set of command objects, driven by Enterprise Java Beans
(EJBs), that encapsulate distinct “commands” to the content server. These commands
include common functions such as search, checkout, and workflow approval. Each
command is tied to one or more service calls.

The CS Command Layer is based on the J2EE Command Design Pattern. It is made up of
three tiers:
6-10 Getting Started with the Software Developer’s Kit (SDK)

Integration Methods
CS Command Objects, via the SCS Command EJB

The Command Facade/Invoker

The CS Adapter EJB/JCA (J2EE Connector Architecture)

This infrastructure is deployable in any J2EE-compliant application server. The CS
Command Layer encapsulates Content Server (CS) business logic and validates the
parameters of the incoming calls.

Figure 6-7 SCS Command Layer

The SCS Command Facade/Invoker locates and instantiates a command by name. It
executes a given command object and handles command execution (synchronously or
asynchronously) based on command properties. The SCS Command Facade/Invoker can
be invoked locally or remotely, so you do not have to have the CIS deployed on the same
system as your requesting application server.

The SCS Adapter Layer handles communication to the content server, encapsulates socket
communication logic (opening, validating, and streaming bits through the socket), and
implements the JCA CCI (Command Client Interface).

See the SCS Command Layer Developer’s Guide for information on SCS Command Layer
usage, command invocation and invocation, and extending the SCS Command Layer.
Getting Started with the Software Developer’s Kit (SDK) 6-11

Integration Methods
Internationalization (character encoding)
The Java Virtual Machine encoding must be set to the same encoding as the Java Virtual
Machine that is running the content server. If the Content Integration Suite is
communicating with multiple instances of Content Server in different languages, the
recommended approach is to set all the JVMs to Unicode (UTF-8) encoding.

WEB SERVICES
This section provides an overview of web services, general information on WSDL files,
and general information on the SOAP protocol. In addition, several basic implementation
architectures are described.

This section contains these topics:

Web Services Framework (page 6-12)

Virtual Folders and WebDAV Integration (page 6-13)

Web Services Framework
Web services reside as a layer above existing software systems such as application servers,
.NET servers, and the content server. Web services can be used as a bridge to dissimilar
operating systems or programming languages.

Web services are adapted to the Internet as the model for communication and rely on the
HyperText Transfer Protocol (HTTP) as the default network protocol. Thus, using web
services, you can build applications using a combination of components.

Content Server provides SOAP capabilities built into the core product. Additionally, an
extra component, the WSDL Generator, is available from the support site. For more
information, see the WSDL Generator and SOAP Guide, which is included with the
WSDL Generator component.

The core enabling technologies for web services are XML, WSDL, SOAP, and UDDL:

XML: Data: The eXtensible Markup Language (XML) is a bundle of specifications
that provides the foundation of all web services technologies. Using the XML
structure and syntax as the foundation allows for the exchange of data between
differing programming languages, middleware, and database management systems.

SOAP: Communication: The Simple Object Access Protocol (SOAP) Content Servers
communication for web services interfaces to communicate to each other over a
6-12 Getting Started with the Software Developer’s Kit (SDK)

Integration Methods
network. SOAP is an XML-based communication protocol used to access web
services. Web services receive requests and return responses using SOAP packets
encapsulated within an XML document.

UDDI: Registry: The Universal Description Discovery and Integration (UDDI)
service provides registry and repository services for storing and retrieving web
services interfaces. UDDI is a public or private XML-based directory for registration
and lookup of web services.

Public or private UDDI sources are not published. However this does not prevent users
from integrating Content Server with other applications using web services.

The XML, WSDL, SOAP, and UDDI technologies work together as layers on the web
services protocol stack. The web services protocol stack consists of these layers:

The service transport layer between applications (HTTP).

The messaging layer that provides a common communication method (XML and
SOAP).

The service description layer that describes the public interface to a specific web
service (WSDL).

The service discovery layer that provides registry and repository services for storing
and retrieving web services interfaces (UDDI).

Virtual Folders and WebDAV Integration
The Folders/WebDAV component is available as an extra component for download from
the support site. You can use the Folders component to set up an interface to the content
server in the form of “virtual folders” that enables you to create a multi-level folder
structure and also use the WebDAV component to remotely author and manage your
content using clients that support the WebDAV protocol.

The Folders component provides a hierarchical folder interface to content in Content
Server. The component is required for Oracle Collaboration Server, WebDAV
functionality, and the Oracle WebDAV Client product.

The WebDAV component enables WebDAV (Web-Based Distributed Authoring and
Versioning) functionality to remotely author and manage your Oracle content using
clients that support the WebDAV protocol. For example, you can use Microsoft

Note: While several protocols are available as a transport layer (e.g., HTTP, SMTP, FTP,
BEEP), the HTTP protocol is most commonly used. The WSDL Generator Component
relies on the HTTP protocol as the transport layer.
Getting Started with the Software Developer’s Kit (SDK) 6-13

Integration Methods
Windows Explorer to check in, check out, and modify content in the Oracle repository
rather than using Oracle’s web browser interface.

The option to install the WebDAV component is provided during the Folders/WebDAV
installation process. See the Folders and WebDAV Installation Guide, Folders and
WebDAV User Guide, and Folders and WebDAV Administration Guide for additional
information.

Virtual Folders
The Folders component sets up an interface to the content server in the form of “virtual
folders” (also called hierarchical folders). Virtual folders enable you to create a multi-
level folder structure.

Virtual folders provide two main benefits:

Users can find content by drilling down through a familiar folder-type interface.

Users can apply default metadata to content items by checking them in through a
particular folder.

The following structure is used for the Folders component:

Each content server instance has a common set of virtual folders. Any change to the
folders is applied system-wide.

There is one default system-level folder, called Content Server Folders. If you are
using the Oracle Collaboration Server or a custom folders interface, folders for these
products may also appear at the system level of the Folders hierarchy.

The system administrator can change the name of a system-level folder, but cannot
delete it or add a custom system-level folder except through changes to the database.
(Deleting a system-level folder disables it, but does not remove it from the system.)

Each folder in the hierarchy contains content items that have the same numerical
“Folder” value, which is assigned automatically upon creation of the folder. Changing
the value of the Folder field for a content item places it in a different folder.

The number of folders and number of files in each folder can be limited by the system
administrator so that virtual folder functions do not affect system performance.

WebDAV Integration
WebDAV (Web-Based Distributed Authoring and Versioning) provides a way to remotely
author and manage your Oracle content using clients that support the WebDAV protocol.
6-14 Getting Started with the Software Developer’s Kit (SDK)

Integration Methods
For example, you can use Microsoft Windows Explorer to check in, check out, and modify
content in the Oracle repository rather than using Oracle’s web browser interface.

WebDAV is an extension to the HTTP/1.1 protocol that allows clients to perform remote
web content authoring operations. The WebDAV protocol is specified by RFC 2518.0.

See the WebDAV Resources Page at http://www.webdav.org for more information

WebDAV provides support for the following authoring and versioning functions:

Version management

Locking for overwrite protection

Web page properties

Collections of Web resources

Name space management (copy/move pages on a Web server)

Access control

When WebDAV is used with a content management system such as Content Server, the
WebDAV client serves as an alternate user interface to the native files in the content
repository. The same versioning and security controls apply, whether an author uses the
Content Server web browser interface or a WebDAV client.

In Content Server, the WebDAV interface is based on the hierarchical Folders interface.
See Virtual Folders (page 6-14) for additional information.

WebDAV Clients
A WebDAV client is an application that can send requests and receive responses using a
WebDAV protocol (for example, Microsoft Windows Explorer, Word, Excel, and
PowerPoint). Check the current WebDAV Client documentation for specific versions
supported. This is not the same as the Content Server WebDAV Client, which is a product
that enhances the WebDAV interface to the content server.

You can use WebDAV virtual folders in Windows Explorer to manage files that were
created in a non-WebDAV client, but you cannot use the native application to check
content in and out of the content server repository.

The Desktop software package also includes a WebDAV Client component and a Check
Out and Open component.
Getting Started with the Software Developer’s Kit (SDK) 6-15

http://www.webdav.org

Integration Methods
WebDAV Servers
A WebDAV server is a server that can receive requests and send responses using WebDAV
protocol and can provide authoring and versioning capabilities. Because WebDAV
requests are sent over HTTP protocol, a WebDAV server typically is built as an add-on
component to a standard web server.

In Content Server, the WebDAV server is used only as an interpreter between clients and
the Content Server.

WebDAV Architecture
WebDAV is implemented in the content server by the WebDAV component. The
architecture of a WebDAV request follows these steps:

1. The WebDAV client makes a request to the content server.

2. The message is processed by the Web Server (via a DLL in IIS).

3. On the content server, the WebDAV component performs these functions:

• Recognizes the client request as WebDAV.

• Maps the client request to the appropriate WebDAV service call on the content
server.

• Converts the client request from a WebDAV request to the appropriate content
server request.

• Connects to the core content server and executes the content server request.

4. The WebDAV component converts the content server response into a WebDAV
response and returns it to the WebDAV client.
6-16 Getting Started with the Software Developer’s Kit (SDK)

A p p e n d i x

A.THIRD PARTY LICENSES

OVERVIEW
This appendix includes a description of the Third Party Licenses for all the third party
products included with this product.

Apache Software License (page A-1)

W3C® Software Notice and License (page A-2)

Zlib License (page A-4)

General BSD License (page A-5)

General MIT License (page A-5)

Unicode License (page A-6)

Miscellaneous Attributions (page A-7)

APACHE SOFTWARE LICENSE
* Copyright 1999-2004 The Apache Software Foundation.

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

* http://www.apache.org/licenses/LICENSE-2.0

*
Getting Started with the Software Developer’s Kit (SDK) A-1

Third Party Licenses
* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

W3C® SOFTWARE NOTICE AND LICENSE
* Copyright © 1994-2000 World Wide Web Consortium,

* (Massachusetts Institute of Technology, Institut National de

* Recherche en Informatique et en Automatique, Keio University).

* All Rights Reserved. http://www.w3.org/Consortium/Legal/

*

* This W3C work (including software, documents, or other related items) is

* being provided by the copyright holders under the following license. By

* obtaining, using and/or copying this work, you (the licensee) agree that

* you have read, understood, and will comply with the following terms and

* conditions:

*

* Permission to use, copy, modify, and distribute this software and its

* documentation, with or without modification, for any purpose and without

* fee or royalty is hereby granted, provided that you include the following

* on ALL copies of the software and documentation or portions thereof,

* including modifications, that you make:

*

* 1. The full text of this NOTICE in a location viewable to users of the

* redistributed or derivative work.

*

* 2. Any pre-existing intellectual property disclaimers, notices, or terms
A-2 Getting Started with the Software Developer’s Kit (SDK)

Third Party Licenses
* and conditions. If none exist, a short notice of the following form

* (hypertext is preferred, text is permitted) should be used within the

* body of any redistributed or derivative code: "Copyright ©

* [$date-of-software] World Wide Web Consortium, (Massachusetts

* Institute of Technology, Institut National de Recherche en

* Informatique et en Automatique, Keio University). All Rights

* Reserved. http://www.w3.org/Consortium/Legal/"

*

* 3. Notice of any changes or modifications to the W3C files, including the

* date changes were made. (We recommend you provide URIs to the location

* from which the code is derived.)

*

* THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS

* MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT

* NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR

* PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE

* ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

*

* COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR

* CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR

* DOCUMENTATION.

*

* The name and trademarks of copyright holders may NOT be used in advertising

* or publicity pertaining to the software without specific, written prior

* permission. Title to copyright in this software and any associated

* documentation will at all times remain with copyright holders.

*

Getting Started with the Software Developer’s Kit (SDK) A-3

Third Party Licenses
ZLIB LICENSE
* zlib.h -- interface of the 'zlib' general purpose compression library

 version 1.2.3, July 18th, 2005

Copyright (C) 1995-2005 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied

 warranty. In no event will the authors be held liable for any damages

 arising from the use of this software.

 Permission is granted to anyone to use this software for any purpose,

 including commercial applications, and to alter it and redistribute it

 freely, subject to the following restrictions:

 1. The origin of this software must not be misrepresented; you must not

 claim that you wrote the original software. If you use this software

 in a product, an acknowledgment in the product documentation would be

 appreciated but is not required.

 2. Altered source versions must be plainly marked as such, and must not be

 misrepresented as being the original software.

 3. This notice may not be removed or altered from any source distribution.

 Jean-loup Gailly jloup@gzip.org

 Mark Adler madler@alumni.caltech.edu
A-4 Getting Started with the Software Developer’s Kit (SDK)

Third Party Licenses
GENERAL BSD LICENSE
Copyright (c) 1998, Regents of the University of California

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

"Redistributions of source code must retain the above copyright notice, this

list of conditions and the following disclaimer.

"Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or other

materials provided with the distribution.

"Neither the name of the <ORGANIZATION> nor the names of its contributors may be

used to endorse or promote products derived from this software without specific

prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

GENERAL MIT LICENSE
Copyright (c) 1998, Regents of the Massachusetts Institute of Technology

Permission is hereby granted, free of charge, to any person obtaining a copy of this

software and associated documentation files (the "Software"), to deal in the

Software without restriction, including without limitation the rights to use, copy,

modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,

and to permit persons to whom the Software is furnished to do so, subject to the

following conditions:
Getting Started with the Software Developer’s Kit (SDK) A-5

Third Party Licenses
A-6 Getting Started with the Software Developer’s Kit (SDK)

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF

CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE

OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

UNICODE LICENSE
UNICODE, INC. LICENSE AGREEMENT - DATA FILES AND SOFTWARE

Unicode Data Files include all data files under the directories

http://www.unicode.org/Public/, http://www.unicode.org/reports/, and

http://www.unicode.org/cldr/data/ . Unicode Software includes any source code

published in the Unicode Standard or under the directories

http://www.unicode.org/Public/, http://www.unicode.org/reports/, and

http://www.unicode.org/cldr/data/.

NOTICE TO USER: Carefully read the following legal agreement. BY DOWNLOADING,

INSTALLING, COPYING OR OTHERWISE USING UNICODE INC.'S DATA FILES ("DATA FILES"),

AND/OR SOFTWARE ("SOFTWARE"), YOU UNEQUIVOCALLY ACCEPT, AND AGREE TO BE BOUND BY,

ALL OF THE TERMS AND CONDITIONS OF THIS AGREEMENT. IF YOU DO NOT AGREE, DO NOT

DOWNLOAD, INSTALL, COPY, DISTRIBUTE OR USE THE DATA FILES OR SOFTWARE.

COPYRIGHT AND PERMISSION NOTICE

Copyright © 1991-2006 Unicode, Inc. All rights reserved. Distributed under the

Terms of Use in http://www.unicode.org/copyright.html.

Permission is hereby granted, free of charge, to any person obtaining a copy of the

Unicode data files and any associated documentation (the "Data Files") or Unicode

software and any associated documentation (the "Software") to deal in the Data

Files or Software without restriction, including without limitation the rights to

use, copy, modify, merge, publish, distribute, and/or sell copies of the Data Files

or Software, and to permit persons to whom the Data Files or Software are furnished

to do so, provided that (a) the above copyright notice(s) and this permission notice

appear with all copies of the Data Files or Software, (b) both the above copyright

notice(s) and this permission notice appear in associated documentation, and (c)

there is clear notice in each modified Data File or in the Software as well as in

the documentation associated with the Data File(s) or Software that the data or

software has been modified.

Third Party Licenses
THE DATA FILES AND SOFTWARE ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO

EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR

ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES

WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF

CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH

THE USE OR PERFORMANCE OF THE DATA FILES OR SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used

in advertising or otherwise to promote the sale, use or other dealings in these Data

Files or Software without prior written authorization of the copyright holder.

__Unicode and the Unicode logo are trademarks

of Unicode, Inc., and may be registered in some jurisdictions. All other trademarks

and registered trademarks mentioned herein are the property of their respective

owners

MISCELLANEOUS ATTRIBUTIONS
Adobe, Acrobat, and the Acrobat Logo are registered trademarks of Adobe Systems
Incorporated.

FAST Instream is a trademark of Fast Search and Transfer ASA.

HP-UX is a registered trademark of Hewlett-Packard Company.

IBM, Informix, and DB2 are registered trademarks of IBM Corporation.

Jaws PDF Library is a registered trademark of Global Graphics Software Ltd.

Kofax is a registered trademark, and Ascent and Ascent Capture are trademarks of
Kofax Image Products.

Linux is a registered trademark of Linus Torvalds.

Mac is a registered trademark, and Safari is a trademark of Apple Computer, Inc.

Microsoft, Windows, and Internet Explorer are registered trademarks of Microsoft
Corporation.

MrSID is property of LizardTech, Inc. It is protected by U.S. Patent No. 5,710,835.
Foreign Patents Pending.

Oracle is a registered trademark of Oracle Corporation.

Portions Copyright © 1994-1997 LEAD Technologies, Inc. All rights reserved.

Portions Copyright © 1990-1998 Handmade Software, Inc. All rights reserved.

Portions Copyright © 1988, 1997 Aladdin Enterprises. All rights reserved.
Getting Started with the Software Developer’s Kit (SDK) A-7

Third Party Licenses
Portions Copyright © 1997 Soft Horizons. All rights reserved.

Portions Copyright © 1995-1999 LizardTech, Inc. All rights reserved.

Red Hat is a registered trademark of Red Hat, Inc.

Sun is a registered trademark, and Sun ONE, Solaris, iPlanet and Java are trademarks
of Sun Microsystems, Inc.

Sybase is a registered trademark of Sybase, Inc.

UNIX is a registered trademark of The Open Group.

Verity is a registered trademark of Autonomy Corporation plc
A-8 Getting Started with the Software Developer’s Kit (SDK)

I n d e x

A
action popup menus, 5-11
ActiveX Command Utility, 6-4
ActiveX Interface, 6-3
Admin Server, 5-2
Apache Jakarta Tomcat Server, 6-6
applets, 3-2
architecture overview, 3-1
architecture, WebDAV, 6-16
assembling

pages, 3-14

B
Batch Loader, 3-2
behavior, content server, 3-7
bin directory, 3-2
browser

requests, 3-10
browsers, 1-3

C
caching

resources, 3-10
changing

component files, 3-10
resources, 3-10

character encoding, 6-12
clients, WebDAV, 6-15
COM interface, 6-3
Command Design Pattern, 6-10
Command Facade/Invoker, 6-11
common directory, 3-5
component files

changing, 3-10
component functionality, 5-7
component limitations, 5-8
Component Manager, 5-4
component manager, 5-6

Component Wizard, 3-2, 5-3
component wizard, 5-6
components

loading, 3-9
components.hda file, 3-3
config directory, 3-3
configuration variables

loading, 3-8
Content Integration Suite

J2EE standards, 6-10
content server

behavior, 3-7
directories, 3-1
files, 3-1
internal initialization, 3-8
loading configuration variables, 3-8
loading custom components, 3-9
loading reports, 3-9
loading resources, 3-9
loading templates, 3-9
requests, 3-10
services, 3-13
startup, 3-7

Content Server Folders, 6-14
Content Server Interface, 6-3, 6-6, 6-6
Content Server JavaBean, 6-6
content server URLS, 3-11
CS Adapter EJB/JCA, 6-11
CS Command EJB, 6-11
CS Command Layer

explained, 6-10
CS Command Objects, 6-11
CSS, 1-2
custom components

loading, 3-9
customization

system settings, 5-1
customization stages, 2-2
customization tips, 2-2
customization types, 2-1
customizing popup menus, 5-15
Getting Started with the Software Developer’s Kit (SDK) Index-1

Index
D
database interaction, 3-14
debug trace, 2-4
directories, 3-1

bin, 3-2
common, 3-5
config, 3-3
groups, 3-5
help, 3-5
images, 3-5
reports, 3-5
resources, 3-5, 3-5
resources/lang, 3-5
shared/config, 3-5
templates, 3-5
weblayout, 3-5

documentation navigation menu, 1-3
dynamic server page file formats, 4-2
dynamic server page procedure, 4-4
dynamic server page process, 4-3
dynamic server pages

overview, 4-2
dynamic table resource

overview, 3-6

E
environment resources

overview, 3-7
Executing Services, 6-4

F
file formats

dynamic server pages, 4-2
files

content server, 3-1
Folders, 6-14

benefits, 6-14
purpose, 6-14
structure, 6-14

form fields, 3-12

G
groups directory, 3-5

H
help directory, 3-5

hierarchical folders, 6-14
HTML, 1-2
HTML editor, 1-3
HTML includes

overview, 3-6

I
IdcAnalyze, 3-2
IdcCommand, 3-2
IdcCommandUX, 6-4
IdcCommandUX ActiveX Command Utility, 6-4
IdcCommandUX Setup, 6-4
IdcServer service, 3-2, 3-2
IdcServerNT service, 3-2, 3-2
Idoc Script, 1-2
images directory, 3-5
installation

component manager, 5-6
component wizard, 5-6

Installer, 3-2
Integrated Development Environment (IDE), 1-3
interface customization overview, 4-1
internal initialization, 3-8
Internationalization (character encoding), 6-12
IntradocApp applet, 3-2
IntradocClient OCX component, 6-4
IsJava setting, 2-4

J
J2EE

Command Design Pattern, 6-10
standards, 6-10

Java programming, 1-2
Java Server Page, 6-6
JavaScript, 1-2
JavaScript debugger, 1-3
JSP Execution, 6-6

L
layouts, 4-1
loading

configuration variables, 3-8
custom components, 3-9
monitoring resources, 2-5
standard reports, 3-9
standard resources, 3-9
standard templates, 3-9

localization
resolving strings, 3-15
Index -2 Getting Started with the Software Developer’s Kit (SDK)

Index
string resource files, 3-15

M
marker, trace, 2-4
monitoring

resource loading, 2-5

O
ODMA Client, 6-5
ODMA Client Interface, 6-6, 6-6
ODMA Desktop Shell Interface, 6-6, 6-6
ODMA Interfaces, 6-6
online help, 1-3
Other Administration Customizations, 5-2
Overview

Conventions, 1-5

P
page assembly, 3-14
page retrieval, 3-12
popup menus

customizing, 5-15
programming

Java, 1-2
other, 1-3

Q
query resources

overview, 3-6

R
recommended skills, 1-2
related documentation, 1-4
reports

directory, 3-5
loading, 3-9, 3-9

requests
browser, 3-10
content server, 3-10

resource loading
monitoring, 2-5

resources
caching, 3-10
changing, 3-10
directory, 3-5
overview, 3-6

standard, 3-6
resources directory, 3-5
resources/lang

directory, 3-5
retrieving

pages, 3-12

S
search services, 3-13
servers, WebDAV, 6-16
service resources

overview, 3-6
services, 3-2, 3-2

content server, 3-13
search, 3-13

settings
IsJava, 2-4
TraceResourceConflict, 2-5
TraceResourceLoad, 2-5
TraceResourceOverride, 2-5

shared/config directory, 3-5
skins, 4-2
SOAP — Communication, 6-12
SQL, 1-2
standard page beginning, 3-14
standard page ending, 3-14
standard page header, 3-14
standard resources, 3-6

loading, 3-9
startup, content server, 3-7
static table resource

overview, 3-6
strings

overview, 3-6
resolving, 3-15
resource files, 3-15

structure, Folders, 6-14
System Properties, 3-2, 5-2
system settings, 5-1

T
template resources

overview, 3-7
templates

directory, 3-5
loading, 3-9

text editor, 1-3
Tomcat Server, 6-6
trace marker, 2-4
TraceResourceConflict setting, 2-5
Getting Started with the Software Developer’s Kit (SDK) Index-3

Index
TraceResourceLoad setting, 2-5
TraceResourceOverride setting, 2-5
troubleshooting, 2-3
types of customization, 2-1

U
UDDI — Registry, 6-13
Unicode (UTF-8) encoding, 6-12
User Administration, 5-2
utilities, 3-2

V
virtual folders, 6-14

W
web browser

requests, 3-10
Web Layout Editor, 5-2
Web Services Framework, 6-12

SOAP — Communication, 6-12
UDDI — Registry, 6-13
XML — Data, 6-12

WebDAV
architecture, 6-16
clients, 6-15
functions, 6-15
servers, 6-16

WebDAV Client, 6-15, 6-15
WebDAV component, 6-13
WebDAV Integration, 6-13
weblayout directory, 3-5

X
XML — Data, 6-12
Index -4 Getting Started with the Software Developer’s Kit (SDK)

	Cover Page
	Table of Contents
	1. About This Guide
	Overview
	Audience
	Recommended Skills and Tools
	Related Documentation
	Document Organization
	What’s New in this Guide
	Document Conventions

	2. Modifying Your Instance
	Overview
	Customization Types
	Customization Tips
	Troubleshooting
	Viewing Server Errors
	Viewing Page Data
	Monitoring Resource Loading

	3. Content Server Architecture
	Overview
	Content Server Directories and Files
	/bin Directory
	/config Directory
	/shared/config Directory
	/weblayout Directory

	Resources
	Content Server Behavior
	Startup Behavior
	Effects of Configuration Loading

	Resource Caching
	Content Server Requests
	Page Retrieval
	Content Server Services
	Search Services

	Page Assembly
	Database Interaction
	Resolving Localized Strings

	4. Altering the Interface
	Overview
	Changing the Look of the Content Server
	Generating Dynamic Server Pages

	5. Changing System Functionality
	Overview
	Changing System Settings
	Creating and Managing Components
	Installing Components
	Using Component Manager
	Using Component Wizard

	Using Components
	Changing Configuration Information
	Customizing Services
	Generating Action Menus
	Creating Display Tables
	Headline View Tables
	Classic View Tables
	Thumbnail View Tables

	Customizing Action Menus

	6. Integration Methods
	Overview
	Idc Utilities (Command Line/Shell Scripting)
	COM Integration
	ActiveX Interface
	OCX Interface
	ODMA Integration
	ODMA Client
	ODMA Interfaces

	JSP Integration
	JSP Execution
	Tomcat
	Features
	Configuring JSP Support
	Loading Example Pages

	Java 2 Enterprise Edition Integration (J2EE)
	Integration techniques
	Content Integration Suite architecture
	Internationalization (character encoding)

	Web Services
	Web Services Framework
	Virtual Folders and WebDAV Integration
	Virtual Folders
	WebDAV Integration

	A. Third Party Licenses
	Overview
	Apache Software License
	W3C® Software Notice and License
	Zlib License
	General BSD License
	General MIT License
	Unicode License
	Miscellaneous Attributions

	Index

