2 Day + PHP Developer's Guide
11g Release 2 (11.2)
E10811-01
July 2009
Oracle Database 2 Day + PHP Developer's Guide, 11g Release 2 (11.2)
E10811-01
Copyright © 2009, Oracle and/or its affiliates. All rights reserved.
Primary Author: Simon Watt
Contributors: Christopher Jones, Simon Law, Glenn Stokol
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Oracle Database 2 Day + PHP Developer's Guide introduces developers to the use of PHP to access Oracle Database.
This preface contains these topics:
Oracle Database 2 Day + PHP Developer's Guide is an introduction to application development using PHP and Oracle Database.
This document assumes that you have a cursory understanding of SQL, PL/SQL, and PHP.
Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/
.
Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.
Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.
Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle technical issues and provide customer support according to the Oracle service request process. Information about TRS is available at http://www.fcc.gov/cgb/consumerfacts/trs.html
, and a list of phone numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html
.
For more information, see these Oracle resources:
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
PHP is a popular scripting language that can be embedded in HTML, which makes it particularly useful for Web development.	
This chapter has the following topics:	
This document is a tutorial that shows you how to use PHP to connect to Oracle Database, and demonstrates how to use PHP to access and modify data.	
This document guides you through the development of a sample Human Resources (HR) application for a fictitious company called AnyCo Corp. For this introduction to the PHP language no framework or abstraction layer is used. However, PHP frameworks are becoming popular and they should be evaluated when building any large application.	
The application manages departmental and employee data stored in the DEPARTMENTS	
and EMPLOYEES	
tables in the HR schema provided with Oracle Database. See Oracle Database Sample Schemas for information about this schema.	
The complete sample application:	
Figure 1-1 shows the relationship among the files developed for this application.	
Figure 1-1 Components of the Sample HR Application	
The sample application files are:	
anyco.php	
This file contains the main logic for the AnyCo application. It contains control logic that determines which page is displayed. It manages session data for navigation. It calls functions in the include files anyco_cn.inc	
, anyco_db.inc	
, and anyco_ui.inc	
.anyco_ui.inc	
This file contains the functions used to present data and forms in an HTML page.anyco_cn.inc	
This file contains definitions for database connection information, the database user name, password, and database connection identifier.anyco_db.inc	
This file contains the database logic to create database connections, execute queries, and execute data manipulation statements.anyco_im.php	
This file contains logic to retrieve an image from a database column and send it to a Web browser for display as a JPEG image.style.css	
This file contains Cascading Style Sheet (CSS) definitions for various HTML tags generated by the application. It manages the look and feel of the application.Files with the suffix .inc	
are PHP code files included in other PHP files.	
Files with the suffix .php	
can be loaded in a Web browser.	
You can create and edit the PHP application source files in a text editor or any tool that supports PHP development.	
The code for each chapter builds on the files completed in the previous chapter.	
The following Oracle Technology Network Web sites provide additional information you may find useful.	
http://www.oracle.com/technology/products/database/sql_developer/	
This chapter explains how to install and test Oracle Database and PHP environment. It has the following topics:	
To install your Oracle Database and PHP environment, you need:	
You should install Oracle Database Server on your computer. The sample data used in this tutorial is installed by default. It is the HR component of the Sample Schemas.	
Throughout this tutorial Oracle SQL Developer is the graphical user interface used to perform Database tasks. Oracle SQL Developer is a free graphical tool for database development.	
See Also:	
The PHP application connects to the database as the HR user. You may need to unlock the HR
account as a user with DBA privileges. To unlock the HR
user:
For further information about unlocking an Oracle Database account, see Chapter 6, "Managing Users and Security," in the Oracle Database 2 Day DBA guide.
You should install Apache before you install PHP. Apache is typically installed by default on Linux computers. See Testing the Apache Installation on Linux before downloading the Apache software.
Perform the following steps to obtain Apache HTTP Server for Windows or Linux:
c:\tmp
on Windows or \tmp
on Linux. This section describes how to install Apache HTTP Server on Windows.
The file name and extraction directory are based on the current version. Throughout this procedure, ensure you use the directory name for the version you are installing.
You must be the administrator user to install Apache.
To install Apache, double-click the file and follow the wizards.
The default installation directory is likely to be C:\Program Files\Apache Group
. This is the directory that is assumed for the tutorial exercises. If you install to a different directory, you need to note the directory so you can change the path used in the tutorials.
You can use the Start menu option to start Apache. This opens a console window showing any error messages. Error messages may also be written to C:\Program Files\Apache Group\Apache2\logs\error.log
.
You can also use the ApacheMonitor utility to start Apache. It will appear as an icon in your System Tray, or navigate to the Apache bin
directory and double click ApacheMonitor.exe
. In a default installation, Apache bin
is located at c:\Program Files\Apache Group\Apache2\bin
.
You can also use the Windows Services to start Apache. You access Windows Services from the Windows Start menu at Start > Control Panel > Administrative Tools > Services. Select the Standard tab. Right click the Apache2 HTTP Server and then select Restart
If you have errors, double check your httpd.conf
and php.ini
files.
To test the Apache HTTP Server installation:
Your Web browser will display a page similar to the following:
If this page does not appear check your Apache configuration. Common problems are that Apache is not running, or that it is listening on a non-default port.
This section describes how to install Apache HTTP Server on Linux.
The file name and extraction directory are based on the current version. Throughout this procedure, ensure you use the directory name for the version you are installing.
Apache is typically already installed on Linux. If you find it is not installed after Testing the Apache Installation on Linux, perform the following steps to install the Apache HTTP Server:
httpd-2.2.12.tar.bz2
file. The option --enable-module=so
allows PHP to be compiled as a Dynamic Shared Object (DSO). The --prefix=
option sets the Apache installation directory used by the command make install
You use the apachectl script to start and stop Apache.
Start Apache with the apachectl
script:
Stop Apache with the apachectl
script:
When you start Apache, you must have ORACLE_HOME defined. Any other required Oracle environment variables must be set before Apache starts too. These are the same variables set by the $ORACLE_HOME/bin/oracle_env.sh
or the /usr/local/bin/oraenv
scripts.
For convenience, you could create a script to start Apache as follows:
To test the Apache HTTP Server installation:
Your Web browser will display a page similar to the following:
If this page does not appear, check your Apache configuration. Common problems are that Apache is not running, or that it is listening on a non default port.
public_html
for accessing your PHP files. Use your preferred editor to open the Apache configuration file /etc/httpd/conf/httpd.conf
(the directory may be different in your installation of Linux), and remove the pound sign (#) at the start of the following line: In this example, your Apache httpd.conf
file contains the following lines:
This enables the Web browser to make an HTTP request using a registered user on the system and to serve files from the $HOME/public_html
directory of the user. For example:
If the Apache HTTP Server does not start, check the error log files to determine the cause. It may be a configuration error.
public_html
subdirectory in the $HOME
directory with the following command: Perform the following steps to obtain PHP for Windows or Linux:
c:\tmp
on Windows or \tmp
on Linux. This section describes how to install PHP on Windows.
The file name and extraction directory are based on the current version. Throughout this procedure, ensure you use the directory name for the version you are installing.
You must be the administrator user to install PHP. To install PHP, perform the following steps:
C:\php-5.2.10
php.ini-recommended
to C:\Program Files\Apache Group\Apache2\conf\php.ini
extension_dir
to C:\php-5.2.10\ext
, which is the directory containing php_oci8.dll
and the other PHP extensions. extension=php oci8.dll
display_errors
, to On
. For testing it is helpful to see any problems in your code. httpd.conf
and add the following lines. Make sure you use forward slashes '/' and not back slashes '\': You can use the Start menu option to start Apache. This opens a console window showing any error messages. Error messages may also be written to C:\Program Files\Apache Group\Apache2\logs\error.log
.
You can also use the ApacheMonitor utility to start Apache. It will appear as an icon in your System Tray, or navigate to the Apache bin
directory and double click ApacheMonitor.exe
. In a default installation, Apache bin
is located at c:\Program Files\Apache Group\Apache2\bin
.
You can also use the Windows Services to start Apache. You access Windows Services from the Windows Start menu at Start > Control Panel > Administrative Tools > Services. Select the Standard tab. Right click the Apache2 HTTP Server and then select Restart
If you have errors, double check your httpd.conf
and php.ini
files.
This section describes how to install PHP on Linux.
The file name and extraction directory are based on the current version. Throughout this procedure, ensure you use the directory name for the version you are installing.
Perform the following steps to install PHP:
php-5.2.10.tar.bz2
file. Check the value for ORACLE_HOME to ensure it reflects your Oracle version and installation.
If you are behind a firewall, you may need to set the environment variable http_proxy
to your proxy server before running make install
. This enables PHP's PEAR components to be installed.
For testing it is helpful to edit php.ini
and set the PHP directive, display_errors
, to On
so you can see any problems in your code.
If a LoadModule line was not inserted by the PHP install, add it with:
If there are errors, they will display on your screen. They may also be written to /usr/local/apache/logs/error_log
. If you have problems, double check your httpd.conf
and php.ini
files.
To test the PHP installation:
chap2
. To create a directory for your application files, and to change to the newly created directory, enter the following commands in a command window: On Windows:
On Linux:
If you create files in a different location, you must change the steps for file editing and execution to match your working directory name and URL.
hello.php
that contains the following HTML text: On Windows:
On Linux:
The line "Hello, world!" appears in the browser.
In this chapter, you create HR application files that implement PHP functions to connect and disconnect to the Oracle Database. You also develop a PHP function that enables you to execute a query to validate that a database connection has been successfully established.
This chapter also guides you through the creation and modification of PHP files that call a function to produce the header and footer for the Departments page, where the footer section of the page includes a date and time.
This chapter has the following topics:
Note: For simplicity, the user name and password are written into this sample application code. For applications that will be deployed, coding the user name and password strings directly into your application source code is not recommended. Oracle recommends that you use a more secure technique, such as implementing a dialog that prompts the user for the user name and password.See Oracle Database Security Guide and the documentation for your development environment for details on security features and practices. |
In this section, you will create the functions and styles for the first screen of your application.
Follow these steps to build the Departments page:
On Windows:
On Linux:
If you create files in a different location, you must change the steps for file editing and execution to match your working directory name and URL.
anyco_ui.inc
that contains the two functions ui_print_header()
and ui_print_footer()
with their parameters to enable your application Web pages to have consistent header and footer sections: anyco_ui.inc
use a PHP language construct called a "here document." This enables you to place any amount of HTML formatted text between the following two lines: END;
line. If you do, the rest of the document will be treated as part of the text to be printed. $title
or $date
parameters. htmlentities()
is used to prevent user-supplied text from accidentally containing HTML markup and affecting the output formatting. style.css
to specify the presentation style in HTML in the browser. Create a style.css
file in the chap3
directory with the following CSS text:
anyco.php
file with the following text: The require()
PHP command is used to include anyco_ui.inc
. The new functions can be called to produce HTML output.
anyco.php
file, enter the following URL in your browser: On Windows:
On Linux:
The resulting Web page is similar to the following:
The date and time appear in the page footer section.
In this section, you will add a database connection to your Departments screen so that you can display Department data.
Follow these steps to add a database connection to your application.
To form a database connection, you use the oci_connect()
function with three string parameters:
The first and second parameters are the database user name and password, respectively. The third parameter is the database connection identifier. The oci_connect()
function returns a connection resource needed for other OCI8 calls; it returns FALSE if an error occurs. The connection identifier returned is stored in a variable called $conn
.
anyco.php
file to add a database connection with the following parameter values: hr
. hr
. Remember to use the actual password of your HR
user. //localhost/orcl
. anyco.php
file to validate that the oci_connect()
call returns a usable database connection, write a do_query()
function that accepts two parameters: the database connection identifier, obtained from the call to oci_connect()
, and a query string to select all the rows from the DEPARTMENTS
table. anyco.php
file to prepare the query for execution, add an oci_parse()
call. The oci_parse()
function has two parameters, the connection identifier and the query string. It returns a statement identifier needed to execute the query and fetch the resulting data rows. It returns FALSE
if an error occurs. anyco.php
file to execute the query, add a call to the oci_execute()
function. The oci_execute() function executes the statement associated with the statement identifier provided in its first parameter. The second parameter specifies the execution mode. OCI_DEFAULT
is used to indicate that you do not want statements to be committed automatically. The default execution mode is OCI_COMMIT_ON_SUCCESS
. The oci_execute()
function returns TRUE
on success; otherwise it returns FALSE
. anyco.php
file to fetch all the rows for the query executed, add a while
loop and a call to the oci_fetch_array()
function. The oci_fetch_array()
function returns the next row from the result data; it returns FALSE
if there are no more rows. The second parameter of the oci_fetch_array()
function, OCI_RETURN_NULLS
, indicates that NULL
database fields will be returned as PHP NULL values. Each row of data is returned as a numeric array of column values. The code uses a PHP foreach
construct to loop through the array and print each column value in an HTML table cell, inside a table row element. If the item value is NULL
then a nonbreaking space is printed; otherwise the item value is printed.
After the edits in Steps 1 to 5, the anyco.php
file becomes:
anyco.php
, save the modified anyco.php
file. In a browser window, enter the following URL: On Windows:
On Linux:
The page returned in the browser window should resemble the following page:
If you want to query the EMPLOYEES data, you can optionally change the query in the do_query()
function call to:
Check that the username, password and connection string are valid. The connect string '//localhost/orcl'
uses the Oracle Easy Connect syntax. If you are using an Oracle Net tnsnames.ora
file to specify the database you want to connect to, then use the network alias as the third parameter to the oci_connect()
function.
If you are not seeing errors, set the PHP directive display_errors
to ON,
and the error_reporting
directive to E_ALL|E_STRICT
.
If you have a PHP code problem and are not using a debugger, you can examine variables using the PHP var_dump()
function. For example:
In some applications, using a persistent connection improves performance by removing the need to reconnect each time the script is called. Depending on your Apache configuration, this may cause a number of database connections to remain open simultaneously. You must balance the connection performance benefits against the overhead on the database server.
Persistent connections are made with the OCI8 oci_pconnect()
function. Several settings in the PHP initialization file enable you to control the lifetime of persistent connections. Some settings include:
oci8.max_persistent - This controls the number of persistent connections per process.
oci8.persistent_timeout - This specifies the time (in seconds) that a process maintains an idle persistent connection.
oci8.ping_interval - This specifies the time (in seconds) that must pass before a persistent connection is "pinged" to check its validity.
For more information, see the PHP reference manual at
http://www.php.net/manual/en/ref.oci8.php
For information about connection pooling, see Connection Pooling in OCI in the Oracle Call Interface Programmer's Guide and the Oracle Database Net Services Administrator's Guide.
The PHP engine automatically closes the database connection at the end of the script unless a persistent connection was made. If you want to explicitly close a non-persistent database connection, you can call the oci_close()
OCI function with the connection identifier returned by the oci_connect()
call. For example:
Because PHP uses a reference counting mechanism for tracking variables, the database connection may not actually be closed until all PHP variables referencing the connection are unset or go out of scope.
In this chapter, you extend the Anyco HR application from Chapter 3 by adding information to the Departments page. You also implement the functionality to query, insert, update, and delete employee records in a specific department.
This chapter has the following topics:
In this section, you will modify your application code by moving the database access logic into separate files for inclusion in the PHP application.
chap4
directory, and change to the newly created directory: On Windows:
On Linux:
anyco_cn.inc
that defines named constants for the database connection information. This file enables you to change connection information in one place. For simplicity, the user name and password are written into this sample application code. For applications that will be deployed, coding the user name and password strings directly into your application source code is not recommended. Oracle recommends that you use a more secure technique, such as implementing a dialog that prompts the user for the user name and password.
See Oracle Database Security Guide and the documentation for your development environment for details on security features and practices.
anyco_db.inc
that declares functions for creating a database connection, executing a query, and disconnecting from the database. Use the following logic, which includes some error handling that is managed by calling an additional function called db_error ()
: The db_do_query()
function in this example uses the oci_fetch_all()
OCI8 function. The oci_fetch_all()
function accepts the following five parameters:
$stid
, the statement identifier for the statement executed $results
, the output array variable containing the data returned for the query null
in the third parameter for the number of initial rows to skip is ignored. null
in the fourth parameter for the maximum number of rows to fetch is ignored. In this case, all the rows for the query are returned. For this example where the result set is not large, it is acceptable. OCI_FETCHSTATEMENT_BY_ROW
indicates that the data in the $results
array is organized by row, where each row contains an array of column values. A value of OCI_FETCHSTATEMENT_BY_COLUMN
causes the results
array to be organized by column, where each column entry contains an array of column values for each row. Your choice of value for this flag depends on how you intend to process the data in your logic. To examine the structure of the result array, use the PHP var_dump()
function after the query has been executed. This is useful for debugging. For example:
The db_error()
function accepts three arguments. The $r
parameter can be false or null for obtaining connection errors, or a connection resource or statement resource to obtain an error for those contexts. The $file
and $line
values are populated by using __FILE__
and __LINE__
, respectively, as the actual parameters to enable the error message to display the source file and line from which the database error is reported. This enables you to easily track the possible cause of errors.
The db_ error()
function calls the oci_error()
function to obtain database error messages.
The db_error()
function calls the isset()
function before printing the message. The isset()
function checks if the message component of the database error structure is set, or if the error is unknown.
anyco_ui.inc
. To format the results of a single row from the DEPARTMENTS
table query in an HTML table format, insert the following function: As noted in Chapter 3, do not prefix END;
lines with leading spaces. If you do, the rest of the document will be treated as part of the text to be printed.
anyco.php
file. Include the anyco_ui.inc
and anyco_db.inc
files, and call the database functions to query and display information for a department with a department_id
of 80 by using the following code. The file becomes: On Windows:
On Linux:
The page returned in the browser window should resemble the following page:
Using queries with values included in the WHERE clause may be useful for some situations. However, if the conditional values in the query are likely to change it is not appropriate to encode a value into the query. Oracle recommends that you use bind variables.
A bind variable is a symbolic name preceded by a colon in the query that acts as a placeholder for literal values. For example, the query string created in the anyco.php
file could be rewritten with the bind variable :did
as follows:
By using bind variables to parameterize SQL statements:
When a query uses a bind variable, the PHP code must associate an actual value with each bind variable (placeholder) used in the query before it is executed. This process is known as run-time binding.
To enable your PHP application to use bind variables in the query, perform the following changes to your PHP application code:
anyco.php
file. Modify the query to use a bind variable, create an array to store the value to be associated with the bind variable, and pass the $bindargs
array to the db_do_query()
function: In this example, the bind variable, called DID, is an input argument in the parameterized query, and it is associated with the value 80. Later, the value of the bind variable will be dynamically determined. In addition, the length component is passed as -1 so that the OCI8 layer can determine the length. If the bind variable was used to return output from the database an explicit size would be required.
anyco_db.inc
file. Modify the db_do_query()
function to accept a $bindvars
array variable as a third parameter. Call the oci_bind_by_name()
OCI8 call to associate the PHP values supplied in $bindvars
parameter with bind variables in the query. The function becomes: The binding is performed in the foreach
loop before the oci_execute()
is done.
For each entry in $bindvars
array, the first element contains the query bind variable name that is used to create a PHP variable of the same name; that is, $$b[0]
takes the value DID in $b[0]
and forms a PHP variable called $DID
whose value is assigned from the second element in the entry.
The oci_bind_by_name()
function accepts four parameters: the $stid
as the resource, a string representing the bind variable name in the query derived from the first element in the array entry, the PHP variable containing the value to be associated with the bind variable, and the length of the input value.
anyco.php
and anyco_db.inc
files and enter the following URL: On Windows:
On Linux:
The page returned in the browser window should resemble the following page:
Adding navigation through the database records requires several important changes to the application logic. The modifications require the combination of:
To add navigation through database rows, perform the following steps:
anyco_ui.inc
file. Add Next and Previous navigation buttons to the Departments page. Change the ui_print_department()
function to append a second parameter called $posturl
that supplies the value for the form attribute action
. After printing the </table>
tag include HTML form tags for the Next and Previous buttons: anyco.php
file. To detect if the Next or Previous button was used to invoke the page and track the session state, call the PHP function session_start()
, and create a function named construct_departments()
: Move and modify the database access logic into a new construct_departments()
function, which detects if navigation has been performed, manages the session state, defines a subquery for the database access layer to process, and connects and calls a function db_get_page_data()
. The file becomes:
The if
and elseif
construct at the start of the construct_departments()
function is used to detect if a navigation button was used with an HTTP post request to process the page, and tracks if the currentdept
number is set in the session state. Depending on the circumstances, the variable $current
is decremented by one when the previous button is clicked, $current
is incremented by one when the Next button is clicked, otherwise $current
is set to the current department, or initialized to one for the first time through.
A query is formed to obtain all the department rows in ascending sequence of the department_id
. The ORDER BY
clause is an essential part of the navigation logic. The query is used as a subquery inside the db_get_page_data()
function to obtain a page of a number of rows, where the number of rows per page is specified as the fourth argument to the db_get_page_data()
function. After connecting to the database, db_get_page_data()
is called to retrieve the set of rows obtained for the specified query. The db_get_page_data()
function is provided with the connection resource, the query string, a value in $current
specifying the first row in the next page of data rows required, and the number of rows per page (in this case one row per page).
After db_get_page_data()
has been called to obtain a page of rows, the value of $current
is stored in the application session state.
Between printing the page header and footer, the ui_print_department()
function is called to display the recently fetched department row. The ui_print_department()
function uses $_SERVER['SCRIPT_NAME']
to supply the current PHP script name for the $posturl
parameter. This sets the action attribute in the HTML form, so that each Next or Previous button click calls the anyco.php
file.
anyco_db.inc
file. Implement the db_get_page_data()
function to query a subset of rows: The structure of the query in the db_get_page_data()
function enables navigation through a set (or page) of database rows.
The query supplied in $q1
is nested as a subquery inside the following subquery:
Remember that the query supplied in $q1
retrieves an ordered set of rows, which is filtered by its enclosing query to return all the rows from the first row to the next page size ($rowsperpage
) of rows. This is possible because the Oracle ROWNUM
function (or pseudocolumn) returns an integer number starting at 1 for each row returned by the query in $q1
.
The set of rows, returned by the subquery enclosing query $q1
, is filtered a second time by the condition in the following outermost query:
This condition ensures that rows prior to the value in :FIRST
(the value in $current
) are excluded from the final set of rows. The query enables navigation through a set rows where the first row is determined by the $current
value and the page size is determined by the $rowsperpage
value.
The $current
value is associated with the bind variable called :FIRST.
The expression $current+$rowsperpage-1
sets the value associated with the :LAST
bind variable.
On Windows:
On Linux:
When you request the anyco.php
page, the first DEPARTMENT
table record, the Administration department, is displayed:
You may continue to test and experiment with the application by clicking Next and Previous to navigate to other records in the DEPARTMENTS
table, as desired.
Note: If you navigate past the last record in theDEPARTMENTS table, an error will occur. Error handling is added in Adding Error Recovery in Chapter 5. |
If you were writing a PHP function with a hard coded query, the ROW_NUMBER() function may be a simpler alternative for limiting the number of rows returned. For example, a query that returns the last name of all employees:
could be written to select rows 51 to 100 inclusive as:
where
R BETWEEN 51 AND 100;The Departments page is extended to include the following additional information:
The additional information is obtained by modifying the query to perform a join operation between the DEPARTMENTS
, EMPLOYEES
, LOCATIONS
, and COUNTRIES
tables.
To extend the Departments page, perform the following tasks:
anyco_ui.inc
file. Modify the ui_print_department()
function by replacing the Manager ID and Location ID references with the Manager Name and Location, respectively, and insert a Number of Employees field after Department Name. Make the necessary changes in the table header and data fields. The function becomes: anyco.php
file. Replace the query string in construct_departments()
with: The query string is enclosed in double quotation marks to simplify writing this statement, which contains SQL literal strings in single quotation marks.
On Windows:
On Linux:
The Web page result should resemble the following output:
In this chapter, you extend the Anyco HR application with forms that enable you to insert, update, and delete an employee record.
In this section, you will extend your application to include a basic employees page.
To display employee records, perform the following tasks:
chap5
directory, copy the application files from chap4
, and change to the newly created directory: On Windows:
On Linux:
anyco.php
file. Add a construct_employees()
function. This function constructs the employee query, calls the db_do_query()
function to execute the query, and prints the results using the ui_print_employees()
function: There is no need to pass a $bindargs
parameter to the db_do_query()
call because this query does not use bind variables. The db_do_query()
declaration will provide a default value of an empty array automatically. PHP allows functions to have variable numbers of parameters.
anyco.php
file. Replace the call to construct_departments()
with a call to construct_employees()
: anyco_ui.inc
file. Implement the presentation of employee data in an HTML table by adding a ui_print_employees()
function: anyco.php
and anyco_ui.inc
files. Test the result of these changes by entering the following URL in your Web browser: On Windows:
On Linux:
Examine the result page, and scroll down to view all the employee records displayed in the page:
In this section, you will extend the basic employees page to include the ability to manipulate employee records.
To enable employee records to be manipulated, perform the following tasks:
anyco.php
file. Replace the construct_employees() call with the form handler control logic to manage the requests for showing, inserting, updating, and deleting employee records: anyco.php
file. Add the construct_insert_emp()
function: The construct_insert_emp()
function executes two queries to obtain default data to be used to populate the Insert New Employee form, which is displayed by the ui_print_insert_employee()
function.
The $query
of the JOBS
table obtains a list of all the existing job IDs and their descriptions in order to build a list for selecting a job type in the HTML form generated by the ui_print_insert_employee()
function.
The $query
using SYSDATE
obtains the current database date and time for setting the default hire date of the new employee.
There are two kinds of date used in the application code, the PHP date()
function for printing the date and time in the page footer, and the Oracle SYSDATE
function to obtain the default date and time for displaying in the hire date field of the Employees page and to ensure that text is entered in the correct database format.
The two db_do_query()
function calls provide an additional parameter value OCI_FETCHSTATEMENT_BY_COLUMN
to specify that the return type for the query is an array of column values.
anyco.php
file. Add the insert_new_emp()
function to insert an employee record into the EMPLOYEES
table: The return value from the db_execute_statement()
function is ignored and not even assigned to a variable, because no action is performed on its result.
anyco.php
file. Add the construct_modify_emp()
function to build the HTML form for updating an employee record. anyco.php
file. Add the modify_emp()
function to update the employee record in the EMPLOYEES
table, using the update form field values: anyco.php
file. Add the delete_emp()
function to delete an employee record from the EMPLOYEES
table: anyco.php
file. In the construct_employees()
function, modify the db_do_query()
call to supply OCI_FETCHSTATEMENT_BY_ROW
as the last parameter, and provide $_SERVER['SCRIPT_NAME']
as second parameter in the ui_print_employees()
call. The function becomes: anyco_db.inc
file. Add $resulttype
as a third parameter to the db_do_query()
function. Replace the last parameter value, OCI_FETCHSTATEMENT_BY_ROW
, in the oci_fetch_all()
call with a variable, so that callers can choose the output type. anyco_db.inc
file. Inside the db_get_page_data()
function, insert OCI_FETCHSTATEMENT_BY_ROW
as the third parameter value in the db_do_query()
call: anyco_db.inc
file. Add a db_execute_statement()
function to execute data manipulation statements such as INSERT statements: anyco_ui.inc
file. Change the ui_print_employees()
function to produce an HTML form containing the employee rows. The function becomes: A radio button is displayed in the first column of each row to enable you to select the record to be modified or deleted.
anyco_ui.inc
file. Add the ui_print_insert_employee()
function to generate the form to input new employee data: anyco_ui.inc
file. Add the ui_print_modify_employee()
function to generate the form to update an employee record: On Windows:
On Linux:
The list of all employees is displayed with a radio button in each row.
Scroll to the bottom of the Employees page to view the Modify, Delete, and Insert new employee buttons:
When you create or modify employee records, you will see that the database definitions require the salary to be greater than zero, and the commission to be less than 1. The commission will be rounded to two decimal places. In the Insert New Employee page, the Department ID field contains 10 (the default), Hiredate contains the current date (in default database date format), Salary contains 1, and Commission (%) contains 0. Enter the following field values:
First Name: James
Last Name: Bond
Job: Select Programmer from the list.
Salary: replace the 1 with 7000
Click Save.
On successful deletion, the deleted row does not appear in the list of employee records redisplayed in the Employees page:
In this section, you will modify your application to enable access to both Employees and Departments pages.
To combine the Departments and Employees pages, perform the following tasks:
anyco.php
file. Modify the query in the construct_employees()
function to include a WHERE
clause to compare the department_id
with a value in a bind variable called :did
. This makes the page display employees in one department at a time. Get the deptid
session parameter value to populate the bind variable: anyco.php
file. In the construct_employees()
function, update the call to the db_do_query()
function to pass the bind information: anyco.php
file. In the construct_departments()
function, save the department identifier in a session parameter: This saves the current department identifier from the Departments page as a session parameter, which is used in the Employees page.
anyco.php
file. Create a function get_dept_name()
to query the department name for printing in the Departments and Employees page titles: anyco.php
file. Modify the construct_employees()
function to print the department name in the Employees page heading: anyco.php
file. Modify the construct_departments()
function to print the department name in the Departments page heading: anyco.php
file. Modify the construct_insert_emp()
function so that the default department is obtained from the session parameter passed in the $emp
array to the ui_print_insert_employee()
function. The function becomes: anyco.php
file. Modify the final else
statement in the HTML form handler. The handler becomes: anyco_ui.inc
file. In the ui_print_department()
function, change the HTML form to enable it to call the Employees page: anyco_ui.inc
file. In the ui_print_employees()
function, change the HTML form to enable it to call the Departments page: On Windows:
On Linux:
http://localhost/~<username>/chap5/anyco.php
The Departments page is displayed.
To display a list of employees in the department, click the Show Employees button.
You can return to the Departments page by clicking the Return to Departments button. Experiment by navigating to another department and listing its employees to show the process of switching between the Departments and Employees pages.
Error management is always a significant design decision. In production systems, you might want to classify errors and handle them in different ways. Fatal errors could be redirected to a standard "site not available" page or home page. Data errors for new record creation might return to the appropriate form with invalid fields highlighted.
In most production systems, you would set the display_errors
configuration option in the php.ini
file to off
, and the log_errors
configuration option to on
.
You can use the PHP output buffering functionality to trap error text when a function is executing. Using ob_start()
prevents text from displaying on the screen. If an error occurs, the ob_get_contents()
function allows the previously generated error messages to be stored in a string for later display or analysis.
Now you change the application to display error messages and database errors on a new page using a custom error handling function. Errors are now returned from the db*
functions keeping them silent.
anyco_db.inc
file. Change the db_error()
function to return the error information in an array structure, instead of printing and quitting. The function becomes: anyco_db.inc file.
For every call to the db_error()
function, assign the return value to a variable called $e
and add a return false;
statement after each call: Make sure to keep the <error test>
and <handle>
parameters the same as they are currently specified for each call. Remember that the __FILE__
and __LINE__
constants help to pinpoint the location of the failure during development. This is useful information to log for fatal errors in a production deployment of an application.
anyco_db.inc
file. Add a $e
parameter to every function to enable the return of error information. Use the &
reference prefix to ensure that results are returned to the calling function. Each function declaration becomes: anyco_db.inc
file. In the db_get_page_data()
function, change the call to the db_do_query()
function to pass down the error parameter $e
: anyco_db.inc
file. Add an @
prefix to all oci_*
function calls. For example: The @
prefix prevents errors from displaying because each return result is tested. Preventing errors from displaying can hide incorrect parameter usage, which may hinder testing the changes in this section. You do not need to add @
prefixes, but it can effect future results when errors are displayed.
anyco.php
file. Create a function to handle the error information: anyco.php
file. Modify all calls to db_*
functions to include the additional error parameter: Steps 8 to 15 show the complete new functions, so the code changes in this step can be skipped.
db_connect()
calls to db_connect($err)
. db_do_query()
calls and insert a $err
parameter as the fourth parameter. For example, the call in construct_employees()
becomes: Change the other four db_do_query() calls in anyco.php remembering to keep the existing parameter values of each specific call.
db_get_page_data()
call and insert a $err
parameter as the fifth parameter: db_execute_statement()
calls and insert a $err
parameter as the third parameter, for example: anyco.php
file. Modify the construct_departments()
function to handle errors returned. The function becomes: anyco.php
file. Modify the construct_employees()
function to handle errors. The function becomes: anyco.php
file. Modify the construct_insert_emp()
function to handle errors. The function becomes: anyco.php
file. Modify the insert_new_emp()
function to handle errors. The function becomes: anyco.php
function. Modify the construct_modify_emp()
function to handle errors. The function becomes: anyco.php
file. Change the modify_emp()
function to handle errors. The function becomes: anyco.php
file. Modify the delete_emp()
function to handle errors. The function becomes: anyco.php
file. Modify the get_dept_name()
function to handle errors. The function becomes: anyco_ui.inc
file. Add a new function ui_print_error()
: Remember not to put leading spaces in the END;
line. Leading spaces in the END;
line cause the rest of the document to be treated as part of the text to be printed.
On Windows:
On Linux:
The Departments page is displayed:
The error handling prevents navigation past the last department record.
Specific Oracle errors can be handled individually. For example, if a new employee record is created by clicking the Insert new employee button on the Employees page, and the Department ID is changed to a department that does not exist, you can trap this error and display a more meaningful message:
anyco.php
file. Change the error handling in the insert_new_emp()
function: On Windows:
On Linux:
The following error page is displayed:
You can click Return to Departments to return to the Departments page and then click Show Employees to verify that the new employee record has not been added to the Administration department.
This chapter shows you how to run stored procedures and functions using PHP and Oracle Database. It has the following topics:
The Anyco application is extended with a PL/SQL function to calculate remuneration for each employee, and is further extended with a PL/SQL procedure to return a REF CURSOR of employee records.
Oracle PL/SQL procedures and functions enable you to store business logic in the database for any client program to use. They also reduce the amount of data that must be transferred between the database and PHP and can help improve performance.
In this section, you will create a PL/SQL stored function to calculate and display the total remuneration for each employee.
To display the total remuneration of each employee, perform the following steps:
The PHP application connects to the database as the HR user. You may need to unlock the HR
account as a user with DBA privileges. To unlock the HR
user:
grant
statement to assign the create procedure
privilege to the HR
user: hr
. calc_remuneration()
function: chap6
directory, copy the application files from chap5
, and change to the newly created directory: On Windows:
On Linux:
anyco.php
file. Modify the query in the construct_employees()
function to call the PL/SQL function for each row returned: anyco_ui.inc
file. In the ui_print_employees()
function, add a Remuneration
column to the table, and modify the foreach
loop to display the remuneration field for each employee: On Windows:
On Linux:
In the Employees page for the department, the employee remuneration is displayed in the last column:
Query data can be returned as REF CURSORS from PL/SQL blocks and displayed in PHP. This can be useful where the data set requires complex functionality or where you want multiple application programs to use the same query.
A REF CURSOR in PL/SQL is a type definition that is assigned to a cursor variable. It is common to declare a PL/SQL type inside a package specification for reuse in other PL/SQL constructs, such as a package body.
In this section, you will use a REF CURSOR to retrieve the employees for a specific department.
To create a PL/SQL package specification and body, with a REF CURSOR to retrieve employees for a specific department, perform the following steps:
hr
. cv_types
PL/SQL package: Click Run:
cv_types
PL/SQL package body: Click Run:
anyco_db.inc
file. Create a new PHP function that calls the PL/SQL packaged procedure: The db_get_employees_rc()
function executes the following anonymous (unnamed) PL/SQL block:
The PL/SQL statement inside the BEGIN END block calls the stored PL/SQL package procedure cv_types.et_employees()
. This returns an OCI_B_CURSOR
REF CURSOR bind variable in the PHP variable $refcur
.
The $refcur
variable is treated like a statement handle returned by oci_parse()
. It is used for execute and fetch operations just as if the SQL query had been done in PHP.
anyco.php
file. In the construct_employees()
function, remove the query text and the bind arguments. The function becomes: On Windows:
On Linux:
In the Employees page for the Marketing department, the employee pages displays as previously:
This chapter shows you how to change the application to upload a JPEG image for new employee records and display it on the Employees page. It has the following topics:
In this section, you will modify your application code to enable a photo to be stored in the record of an employee.
To enable images of employees to be stored in the employee records, perform the following tasks:
chap7
directory, copy the application files from chap6
, and change to the newly created directory: On Windows:
On Linux:
CREATE TABLE
statement to create a new table for storing employee images: HR
user must have the CREATE TABLE
privilege to perform this command. If you get an "insufficient privileges" error message, then log out as the HR
user, log in as system
, and execute the following GRANT
command: Then log in as HR
again to execute the CREATE TABLE
statement.
anyco_ui.inc
file. Add a Photograph column to the EMPLOYEES
table in the ui_print_employees()
function: The data for the Photograph column is populated with an
tag whose src
attribute is defined as a URL reference to a new anyco_im.php
file, which will display the image for each employee record.
anyco_ui.inc
file. Add code in the ui_print_employees()
function to generate an
tag referencing the anyco_im.php
file with the employee identifier as a parameter: anyco_ui.inc
file. To enable images to be uploaded when a new employee record is created, add an enctype
attribute to the <form>
tag in the ui_print_insert_employee()
function: At the bottom of the form add an upload field with an input type of file
:
anyco_im.php file.
This file accepts an employee identifier as a URL parameter, reads the image from the Photograph column for that employee record, and returns the thumbnail image to be displayed: The construct_image()
function uses the OCI-Lob->load()
function to retrieve the Oracle LOB data, which is the image data. The PHP header()
function sets the MIME type in the HTTP response header to ensure the browser interprets the data as a JPEG image.
If you want to display other image types, then the Content-type
needs to be changed accordingly.
anyco_db.inc
file. Add a new function db_insert_thumbnail()
to insert an image into the EMPLOYEE_PHOTOS
table: To tie the new EMPLOYEE_PHOTOS
and EMPLOYEES
tables together, you must use the same employee id in both tables.
anyco_db.inc
file. Change the $bindvars
parameter in the db_execute_statement()
function to &$bindvars
so that OUT
bind variable values are returned from the database. At the bottom of the function, add a loop to set any return bind values: anyco.php
file. Change the INSERT statement in the insert_new_emp()
function so that it returns the new employee identifier in the bind variable :neweid
. This value is inserted with the image into the new EMPLOYEE_PHOTOS
table. Also in the insert_new_emp()
function, add a call to the array_push()
function to set a new bind variable NEWEID
at the end of the list of array_push()
calls:
Because the value of NEWID
is being retrieved with the RETURNING clause in the INSERT statement, its initial value is set to NULL
. The length is set to 10 to allow enough digits in the return value.
anyco.php
file. In the insert_new_emp()
function, add a call between the db_execute_statement()
and construct_employees()
calls to insert the thumbnail image: On Windows:
On Linux:
The Employees page is displayed with the new employee record, including the image, which is displayed at its original size:
In this section, you will further modify your application code to create a thumbnail image from a supplied image, and store the thumbnail image in the record of an employee.
You can use the PHP GD graphics extension to resize employee images.
To use the ApacheMonitor utility, navigate to the Apache bin
directory and double click ApacheMonitor.exe
. In a default installation, Apache bin
is located at c:\Program Files\Apache Group\Apache2\bin
.
You can access Windows Services from the Windows Start menu at Start > Control Panel > Administrative Tools > Services. Select the Standard tab. Right click the Apache2 HTTP Server and then select Restart.
anyco_db.inc
file. To resize the image to create a thumbnail image, add the following code before the call to $lob->savefile($imgfile)
in the db_insert_thumbnail()
function: The imagecreatefromjpeg()
function reads the JPEG file and creates an internal representation used by subsequent GD functions. Next, new dimensions are calculated with the longest side no larger than 100 pixels. A template image with the new size is created using the imagecreatetruecolor()
function. Data from the original image is sampled into it with the imagecopyresampled()
function to create the thumbnail image. The thumbnail image is written back to the original file and the internal representations of the images are freed.
The existing code in the db_insert_thumbnail()
function uploads the image file to the database as it did in the previous implementation.
On Windows:
On Linux:
The Employees page shows the new uploaded JPEG image with a reduced image size, compared to the image loaded before including the image resize code:
This chapter discusses global application development in a PHP and Oracle Database environment. It addresses the basic tasks associated with developing and deploying global Internet applications, including developing locale awareness, constructing HTML content in the user-preferred language, and presenting data following the cultural conventions of the locale of the user.
Building a global Internet application that supports different locales requires good development practices. A locale refers to a national language and the region in which the language is spoken. The application itself must be aware of the locale preference of the user and be able to present content following the cultural conventions expected by the user. It is important to present data with appropriate locale characteristics, such as the correct date and number formats. Oracle Database is fully internationalized to provide a global platform for developing and deploying global applications.
This chapter has the following topics:
Correctly setting up the connectivity between the PHP engine and the Oracle database is first step in building a global application, it guarantees data integrity across all tiers. Most internet based standards support Unicode as a character encoding, in this chapter we will focus on using Unicode as the character set for data exchange.
PHP uses the OCI8 extension, and rules that apply to OCI also apply to PHP. Oracle locale behavior (including the client character set used in OCI applications) is defined by the NLS_LANG
environment variable. This environment variable has the form:
For example, for a German user in Germany running an application in Unicode, NLS_LANG
should be set to
The language and territory settings control Oracle behaviors such as the Oracle date format, error message language, and the rules used for sort order. The character set AL32UTF8 is the Oracle name for UTF-8.
For information on the NLS_LANG
environment variable, see the Oracle Database installation guides.
When PHP is installed on Apache, you can set NLS_LANG
in /etc/profile
:
If PHP is installed on Oracle HTTP Server, you must set NLS_LANG
as an environment variable in $ORACLE_HOME/opmn/conf/opmn.xml
:
You must restart the Web listener to implement the change.
PHP was designed to work with the ISO-8859-1 character set. To handle other character sets, specifically multibyte character sets, a set of "MultiByte String Functions" is available. To enable these functions, you must enable the mbstring extension.
Your application code should use functions such as mb_strlen()
to calculate the number of characters in strings. This may return different values than strlen()
, which returns the number of bytes in a string.
Once you have enabled the mbstring extension and restarted the Web server, several configuration options become available. You can change the behavior of the standard PHP string functions by setting mbstring.func_overload
to one of the "Overload" settings.
For more information, see the PHP mbstring reference manual at
In a global environment, your application should accommodate users with different locale preferences. Once it has determined the preferred locale of the user, the application should construct HTML content in the language of the locale and follow the cultural conventions implied by the locale.
A common method to determine the locale of a user is from the default ISO locale setting of the browser. Usually a browser sends its locale preference setting to the HTTP server with the Accept Language HTTP header. If the Accept Language header is NULL, then there is no locale preference information available, and the application should fall back to a predefined default locale.
The following PHP code retrieves the ISO locale from the Accept-Language HTTP header through the $_SERVER
Server variable.
Once the locale preference of the user has been determined, the application can call locale-sensitive functions, such as date, time, and monetary formatting to format the HTML pages according to the cultural conventions of the locale.
When you write global applications implemented in different programming environments, you should enable the synchronization of user locale settings between the different environments. For example, PHP applications that call PL/SQL procedures should map the ISO locales to the corresponding NLS_LANGUAGE
and NLS_TERRITORY
values and change the parameter values to match the locale of the user before calling the PL/SQL procedures. The PL/SQL UTL_I18N package contains mapping functions that can map between ISO and Oracle locales.
Table 8-1 shows how some commonly used locales are defined in ISO and Oracle environments.
Table 8-1 Locale Representations in ISO, SQL, and PL/SQL Programming Environments
Locale | Locale ID | NLS_LANGUAGE | NLS_TERRITORY |
---|---|---|---|
Chinese (P.R.C.) | zh-CN | SIMPLIFIED CHINESE | CHINA |
Chinese (Taiwan) | zh-TW | TRADITIONAL CHINESE | TAIWAN |
English (U.S.A) | en-US | AMERICAN | AMERICA |
English (United Kingdom) | en-GB | ENGLISH | UNITED KINGDOM |
French (Canada) | fr-CA | CANADIAN FRENCH | CANADA |
French (France) | fr-FR | FRENCH | FRANCE |
German | de | GERMAN | GERMANY |
Italian | it | ITALIAN | ITALY |
Japanese | ja | JAPANESE | JAPAN |
Korean | ko | KOREAN | KOREA |
Portuguese (Brazil) | pt-BR | BRAZILIAN PORTUGUESE | BRAZIL |
Portuguese | pt | PORTUGUESE | PORTUGAL |
Spanish | es | SPANISH | SPAIN |
The encoding of an HTML page is important information for a browser and an Internet application. You can think of the page encoding as the character set used for the locale that an Internet application is serving. The browser must know about the page encoding so that it can use the correct fonts and character set mapping tables to display the HTML pages. Internet applications must know about the HTML page encoding so they can process input data from an HTML form.
Instead of using different native encodings for the different locales, Oracle recommends that you use UTF-8 (Unicode encoding) for all page encodings. This encoding not only simplifies the coding for global applications, but it also enables multilingual content on a single page.
You can specify the encoding of an HTML page either in the HTTP header, or in HTML page header.
To specify HTML page encoding in the HTTP header, include the Content-Type HTTP header in the HTTP specification. It specifies the content type and character set. The Content-Type HTTP header has the following form:
The charset parameter specifies the encoding for the HTML page. The possible values for the charset parameter are the IANA names for the character encodings that the browser supports.
Use this method primarily for static HTML pages. To specify HTML page encoding in the HTML page header, specify the character encoding in the HTML header as follows:
The charset parameter specifies the encoding for the HTML page. As with the Content-Type HTTP Header, the possible values for the charset parameter are the IANA names for the character encodings that the browser supports.
You can specify the encoding of an HTML page in the Content-Type HTTP header by setting the PHP configuration variable as follows:
This setting does not imply any conversion of outgoing pages. Your application must ensure that the server-generated pages are encoded in UTF-8.
Making the user interface available in the local language of the user is a fundamental task in globalizing an application. Translatable sources for the content of an HTML page belong to the following categories:
You should externalize translatable strings within your PHP application logic, so that the text is readily available for translation. These text messages can be stored in flat files or database tables depending on the type and the volume of the data being translated.
Static files such as HTML and GIF files are readily translatable. When these files are translated, they should be translated into the corresponding language with UTF-8 as the file encoding. To differentiate the languages of the translated files, stage the static files of different languages in different directories or with different file names.
Dynamic information such as product names and product descriptions is typically stored in the database. To differentiate various translations, the database schema holding this information should include a column to indicate the language. To select the desired language, you must include a WHERE clause in your query.
Data in the application must be presented in a way that conforms to the expectation of the user. Otherwise, the meaning of the data can be misinterpreted. For example, the date '12/11/05' implies '11th December 2005' in the United States, whereas in the United Kingdom it means '12th November 2005'. Similar confusion exists for number and monetary formats of the users. For example, the symbol '.' is a decimal separator in the United States; in Germany this symbol is a thousand separator.
Different languages have their own sorting rules. Some languages are collated according to the letter sequence in the alphabet, some according to the number of stroke counts in the letter, and some languages are ordered by the pronunciation of the words. Presenting data not sorted in the linguistic sequence that your users are accustomed to can make searching for information difficult and time consuming.
Depending on the application logic and the volume of data retrieved from the database, it may be more appropriate to format the data at the database level rather than at the application level. Oracle Database offers many features that help to refine the presentation of data when the locale preference of the user is known. The following sections provide examples of locale-sensitive operations in SQL.
The three different date presentation formats in Oracle Database are standard, short, and long dates. The following examples illustrate the differences between the short date and long date formats for both the United States and Germany.
The following examples illustrate the differences in the decimal character and group separator between the United States and Germany.
Spain traditionally treats ch, ll as well as ñ as unique letters, ordered after c, l and n respectively. The following examples illustrate the effect of using a Spanish sort against the employee names Chen and Chung.
The NLS_LANGUAGE
parameter also controls the language of the database error messages being returned from the database. Setting this parameter prior to submitting your SQL statement ensures that the language-specific database error messages will be returned to the application.
Consider the following server message:
When the NLS_LANGUAGE
parameter is set to French, the server message appears as follows:
For more discussion of globalization support features in Oracle Database, see "Working in a Global Environment" in Oracle Database 2 Day Developer's Guide.
Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.