

1 Quick Start

This section offers a quick introduction to using Oracle Application Express. It is assumed you have completed the installation process.

This section contains the following topics:

	
What is Oracle Application Express?

	
About Oracle Application Express Architecture

	
Understanding Application Express User Roles

	
Logging In to Oracle Application Express

	
About the Workspace Home Page

	
Navigation Alternatives

	
Using Online Help

	
See Also:

Oracle Database 2 Day + Oracle Application Express Developer's Guide

What is Oracle Application Express?

Oracle Application Express is a hosted declarative development environment for developing and deploying database-centric Web applications. Thanks to built-in features such as user interface themes, navigational controls, form handlers, and flexible reports, Oracle Application Express accelerates the application development process.

The Application Express engine renders applications in real time from data stored in database tables. When you create or extend an application, Oracle Application Express creates or modifies metadata stored in database tables. When the application is run, the Application Express engine then reads the metadata and displays the application.

To provide stateful behavior within an application, Oracle Application Express transparently manages session state in the database. Application developers can get and set session state using simple substitutions and standard SQL bind variable syntax.

The sections that follow describe key features of Oracle Application Express.

Reporting

With Oracle Application Express, you can quickly generate HTML reports that display the results of SQL queries. You can also download and print reports in HTML, an Adobe Portable Document Format (PDF), Microsoft Word Rich Text Format (RTF), or Microsoft Excel format (XLS), or XML.

You can declaratively link reports together to provide drill-down reporting and use bind variables to pass information from session state to a report. Reports support declarative column heading sorting, control breaks, sums, and pagination. Report sorting and pagination can use Partial Page Refresh (PPR) technology to avoid refreshing the entire page. You can also add declarative links to a report to download the report data to CSV or XML formats. Plus, you can customize the report appearance using templates. See "About Bind Variable Syntax" and "Creating Reports".

Interactive Reporting Regions enable end users to customize reports. Users can alter the layout of report data by choosing the columns they are interested in, applying filters, highlighting, and sorting. They can also define breaks, aggregations, different charts, and their own computations. Users can create multiple variations of the report and save them as named reports, output to comma-delimited files, and print them to PDF documents. See "Editing Interactive Reports".

Forms

Using wizards, you can easily create forms on tables or on a stored procedure. For example, when creating a form on a table, these wizards provide automatic management of insert, update, and delete as well as lost update detection. Once you create a form, you can rearrange form fields (called form items) using a visual representation, enabling you to quickly achieve the layout you want. Form items offer a variety of display options including text fields, text areas, radio groups, select lists, check boxes, date pickers, and popup list of values. See "Creating Forms".

Charting

You can also use wizards to create HTML, SVG, or Flash charts. You can create charts that enable users to drill down from one chart to another chart or report. Charts can also be refreshed using Partial Page Refresh (PPR) technology, avoiding the need to refresh an entire page. You can also configure a chart to refresh at defined intervals. Additionally, you can take advantage of report column templates to add simple HTML bar charts to any report. See "Creating Charts".

Spreadsheet Upload

Use the Create Application from Spreadsheet Wizard to quickly upload spreadsheet data directly into the database. You can choose to store the data in a new database table or add it to an existing database table. Once the data is uploaded, you can quickly create an application. This handy wizard enables you to go from spreadsheet to a shared application in just a few clicks. See "About the Create Application from Spreadsheet Wizard".

Session State Management

Oracle Application Express transparently manages session state (or application context) in the database. Forms automatically save session state, remembering your application context over your session. Referencing session state within SQL and PL/SQL is as simple as using bind variables. For example, consider the following SELECT statement:

SELECT * FROM EMP WHERE EMPNO = :P1_ID

In this example, the value in the item P1_ID is automatically bound when the query is run. You can also reference session state within a static context by prefixing the item name with an ampersand (&) and suffixing it with a period(.), for example:

&P1_NAME.

For management of two dimensional data sets, Oracle Application Express provides a robust collections infrastructure. Best of all, session management is stateless and does not consume any memory. See "Managing Session State Values" and "About Bind Variable Syntax".

User Interface Themes

Oracle Application Express separates presentation (or user interface themes) from the application logic. You can design your application in one theme, change to another supplied theme, or create and use your own custom theme. By separating the application logic (such as queries, processes, and branches) from the HTML rendering, your application can take advantage of new designs and other technological advances without an application rewrite. See "Managing Themes".

Flow Control and Navigation

Every Web application needs navigation and dynamic applications need flow control. Oracle Application Express provides built-in components to simplify the development and maintenance of navigational controls. Navigation is controlled using declarative tabs (one or two levels), breadcrumbs, tree controls, and lists of links. Flow control is performed using declarative branches which can take effect at specific events and under certain conditions. The appearance of navigation controls are managed through templates, making it easy to change from one look to another. See "Adding Navigation" and "Controlling Navigation Using Branches".

Conditionality on All Components

When creating dynamic Web applications, many application components and processing are conditional. In other words, you only show or process certain pieces of information based on the application context, the data, an event, or a privilege. Oracle Application Express enables you to declaratively specify conditionality of all components. This gives you exact control over what users see or do not see on a tab, button, item, list entry, and so. See "Understanding Conditional Rendering and Processing".

External Interfaces and Extensibility

Even though Oracle Application Express provides a robust declarative environment for building applications, you also have the option of developing custom interfaces or controls. For example, if a component does not meet the needs of your environment, you can generate your own custom HTML using PL/SQL. See "Rendering HTML Using Custom PL/SQL". You can also call external services using Web services. See "Implementing Web Services". Oracle Application Express also includes APIs to easily integrate email alerts into an application. See "Sending Email from an Application". Plus, because Oracle Application Express resides in the Oracle database, you can take advantage of inherent database capabilities, including external tables, PL/SQL, database links, gateways, and database Java to extend the functionality of your application.

Security

With Oracle Application Express, you can create public applications that do not require a user log in, or you can create secure applications that require authentication. Oracle Application Express provides a number of built-in authentication schemes including Single Sign On, Database Account Credentials, and an easy-to-use user management system. You can also use custom schemes that interface with just about any authentication service including Microsoft Active Directory and Oracle Applications.

Additionally, you can customize authorization to meet the needs of your environment and apply authorization selectively to an entire application, a page, or a page component. Finally, you can also take advantage of an innovative session state protection feature to prevent URL tampering and built-in features to protect an application form SQL Injection and cross-site scripting (XSS) attacks. See "Managing Application Security".

SQL Workshop Tools

SQL Workshop provides tools to enable you to view and manage database objects from a Web browser. Use SQL Commands to run SQL and PL/SQL statements. See "Using SQL Commands" in Oracle Application Express SQL Workshop and Utilities Guide.

Query Builder enables you to define queries by dragging and dropping tables and easily create relationships between objects. See "Building Queries with Query Builder" in Oracle Application Express SQL Workshop and Utilities Guide.

Object Browser provides an easy-to-use graphical user interface for viewing, creating, modifying, browsing, and dropping database objects. See "Managing Database Objects with Object Browser" in Oracle Application Express SQL Workshop and Utilities Guide.

Finally, you can use SQL Scripts to create, edit, view, run, and delete script files. See "Using SQL Scripts" in Oracle Application Express SQL Workshop and Utilities Guide.

Supporting Objects Utility

You can simplify the steps needed to export, install, upgrade, and deinstall an application in another Oracle Application Express instance by creating a packaged application. Using the Supporting Objects utility, you can bundle the application definition with scripts for creating the database objects, seed data, images, cascading style sheets, and JavaScript.

Creating a packaged application provides application users with an installer-like experience and automates the process of importing and installing an application in another development, test, or even production instance. See "How to Create a Packaged Application".

Performance

Oracle Application Express provides application developers and application users with an extremely high level of performance. Because Oracle Application Express resides in the Oracle database, it has minimal impact on network traffic. Plus, Application Builder includes a large number of monitoring reports to enable you to identify and tune application performance. See "Debugging an Application".

Hosted Development

Oracle Application Express enables a single database to host large numbers of users. Users work in a dedicated work area called a workspace. A workspace is a virtual private database that enables multiple users to work within the same Oracle Application Express installation while keeping their objects, data and applications private. This flexible architecture enables a single database instance to manage thousands of applications.

You determine how the process of provisioning (or creating) a workspace works. For example, in email verification provision mode, users request a workspace using a link on the login page. After the workspace request has been granted, users receive an email containing a link that they must click to verify the validity of their email address. Then they receive an email with their login credentials. To see an example of email verification provision mode, go to:

http://apex.oracle.com

See "Configuring Your Oracle Application Express Environment" and "Oracle Application Express Hosted Instance Administration" in Oracle Application Express Administration Guide.

Using Online Help

The Application Express user interface features three types of online help: Procedural Online Help, Page-level Help, and Field-Level Help.

About Procedural Online Help

You can access an HTML-based online Help system by clicking the Help link in the upper right corner of the window.

[image: Description of hlp_ico.gif follows]

When you click the Help link, a help topic appears that describes the current page. To view the table of contents of another help set, select it from the list in the upper left side of the window.

[image: Description of help_window.gif follows]

You can browse through help topics by:

	
Expanding and collapsing the table of contents. To view a topic, simply select it.

	
Clicking the breadcrumb links at the top of each help topic.

	
Clicking the Previous and Next buttons within a topic. Click these buttons to access the previous and next help topic within the structure of the help set.

The top of the window features a gray bar. Click Back and Forward to return to a previously viewed page. These controls work similarly to the Back and Forward controls in a Web browser.

Click Find to perform a keyword search of the entire help system. When the search field appears, enter a case insensitive query in the field provided and click Find. To search for an exact phrase, enclose the phrase in double quotation marks.

	
Tip:

With Oracle Database 11g, you must enable network services in order use the Find link. See "Enabling Network Services in Oracle Database 11g"

About Page-level Help

Many pages with in the Application Express user interface include Page-level Help. Page-level Help displays in a text box on the right side of the page and offers a brief description of the page functionality.

About Field-Level Help

Most select lists, check boxes, items, and fields within the Application Express user interface include Field-level Help. Items within the user interface that have Field-level Help have a light gray underline. When Field-level Help is available, the item label changes to red when you pass your cursor over it and the cursor changes to an arrow and question mark.

[image: Description of hlp_item.gif follows]

Click the item label to display a description in a separate window.

Modifying a Demonstration Application

Once you understand the type of functionality available in a demonstration application, the next step is to learn more about the construction of each page. An efficient way to speed up the learning process is to analyze and deconstruct the pages in the demonstration applications. If you happen to break something, you can quickly delete the demonstration application and install it again. See "Deleting an Application" and "Installing a Demonstration Application".

You edit existing pages in an application, add pages to an application, or create entirely new applications using Application Builder.

Topics in this section include:

	
About the Developer Toolbar

	
Editing a Demonstration Application

About the Developer Toolbar

The Developer toolbar is a quick way to edit the current application, the current running page, create a new page, control, or component, view session state, or turn edit links on or off.

	
See Also:

"About the Developer Toolbar"

[image: Description of d_toolbar_149.gif follows]

The Developer toolbar consists of the following links:

	
Home links you to the Workspace home page. See "About the Workspace Home Page".

	
Application links you to the Application home page. See "Application Builder Concepts".

	
Edit Page accesses the Page Definition for the current running page. See "About the Page Definition".

	
Create links to a wizard for creating a new page, region, page control (item, button, branch, computation, process, or validation), or a shared control (navigation bar icon, tab, list of values, list, or breadcrumb). See "Building an Application".

	
Session links you to session state information for the current page. See "Viewing Session State".

	
Activity links you to the Activity reports page. See "Activity Reports".

	
Debug toggles the page between Debug and No Debug mode. See "Accessing Debug Mode".

	
Show Edit Links toggles between Show Edit Links and Hide Edit Links. Clicking Show Edit Links displays a small orange icon next to each editable object on the page. Each icon is orange and contains a triangle with two rules beneath it. Clicking the link displays another window in which to edit the object.

Editing a Demonstration Application

There are two ways to edit a demonstration application:

	
From the Demonstration Applications page, click Edit next to the desired application.

	
If you are running an application, click Application on the Developer toolbar.

The Application home page appears. The application ID and application name display at the top of the page.

[image: Description of bldr_hm_top.gif follows]

You can run the current application, edit supporting objects, create shared components, or export and import information by clicking one of the following:

	
Run Application submits the pages in the current application to the Application Express engine to render viewable HTML. See "How the Application Express Engine Renders and Processes Pages".

	
Supporting Objects links to the Supporting Objects page. See "How to Create a Packaged Application".

	
Shared Components links to a list of shared components and user interface controls that can display or be applied on every page within an application. See "Working with Shared Components".

	
Export/Import links you to the Export/Import Wizard. Use this wizard to import and export an entire application and related files such as cascading style sheets, images, static files, script files, themes, user interface defaults, and workspace users. See "Exporting an Application and Related Files".

The pages that make up the application appear on the Application home page. To access a specific page, simply click it. To search for a specific page, enter a case insensitive query for the page title or page number in the Page field and click Go.

	
See Also:

"About the Application Home Page" and "About the Page Definition"

3 Application Builder Concepts

This section provides basic conceptual information about Application Builder. Use Application Builder to assemble an HTML interface (or application) on top of database objects such as tables and procedures. Each application is a collection of pages linked together using tabs, buttons, or hypertext links.

This section contains the following topics:

	
What Is a Page?

	
Understanding Page Processing and Page Rendering

	
Understanding Session State Management

	
Understanding URL Syntax

	
Managing Session State Values

	
Understanding Substitution Strings

	
See Also:

"Using Application Builder" and "Building an Application"

Understanding Session State Management

HTTP, the protocol over which HTML pages are most often delivered, is a stateless protocol. A Web browser is only connected to the server for as long as it takes to download a complete page. In addition, each page request is treated by the server as an independent event, unrelated to any page requests that happened previously or may occur in the future. This means that to access form values entered on one page on a subsequent page, some form of session state management needs to occur. Typically, when a user enters values into a form on one page, those values are not accessible on later pages. Oracle Application Express transparently maintains session state and provides developers with the ability to get and set session state values from any page in the application.

Topics in this section include:

	
What Is a Session?

	
Understanding Session IDs

	
Referencing Session State

What Is a Session?

A session is a logical construct that establishes persistence (or stateful behavior) across page views. Each session is assigned a unique identifier. The Application Express engine uses this identifier (or session ID) to store and retrieve an application's working set of data (or session state) before and after each page view.

Because sessions are entirely independent of one another, any number of sessions can exist in the database at the same time. Also, because sessions persist in the database until purged by an administrator, a user can return to an old session and continue running an application long after first launching it. A user can also run multiple instances of an application simultaneously in different browser sessions.

Sessions are logically and physically distinct from Oracle database sessions used to service page requests. A user runs an application in a single Oracle Application Express session from log in to log out with a typical duration measured in minutes or hours. Each page requested during that session results in the Application Express engine creating or reusing an Oracle database session to access database resources. Often these database sessions last just a fraction of a second.

	
See Also:

"Viewing Active Sessions" in Oracle Application Express Administration Guide

Understanding Session IDs

The Application Express engine establishes the identity (or anonymity) of the user for each page request and the session ID to fetch session state from the database. The most visible location of the session ID is in the URL for a page request. The session ID displays as the third parameter in the URL, for example:

http://apex.somewhere.com/pls/apex/f?p=4350:1:220883407765693447

In this example, the session ID is 220883407765693447.

Another visible location is in the page's HTML POST data and indirectly in the contents of a session cookie. This cookie is sent by the Application Express engine during authentication and is maintained for the life of the application (or browser) session.

Oracle Application Express assigns new session IDs during authentication processing, records the authenticated user's identity with the session ID, and continually checks the session ID in each page request's URL or POST data with the session cookie and the session record in the database. These checks provide users with flexibility and security.

While the session ID is the key to session state, the session cookie (where applicable) and the session record safeguard the integrity of the session ID and the authentication status of the user.

	
See Also:

"Understanding the URL that Displays for a Page"

Viewing Session State

The behavior of an Oracle Application Express application is usually driven by values in session state. For example, a button may display conditionally based on the value of an item session state. You can view the session state for a page by clicking Session on the Developer toolbar.

[image: Description of d_toolbar.gif follows]

About the Session State Page

The Session State page provides valuable information about the session in which the application is currently running. To locate a specific page, enter the page number in the page field and click Go. Table 3-1 describes the various types of information available on the Session State page.

Table 3-1 Information Available on the Session State Page

	Heading	Description
	
Application

	
Identifies the application name.

	
Session

	
Summarizes session state for the current session.

	
User

	
Identifies the current user.

	
Workspace

	
Identifies the current workspace ID.

	
Browser Language

	
Identifies the current browser language.

	
Page Items

	
Identify attributes of the page item, including the application ID, page number, item name, how the item displays (for example, check box, date picker, display only, text field, hidden, popup, radio group, and so on), the item value in session state, and status.

The Status column indicates the status of the session state. Available values include:

	
I - Inserted

	
U - Updated

	
R - Reset

See Also: "Understanding Page-Level Items"s

	
Application Items

	
Application items are items that do not reside on a page. Application items are session state variables without the associated user interface properties.

See Also: "Understanding Application-Level Items" and "Understanding Substitution Strings" for information about referencing item values

	
See Also:

"Managing Session State Values"

Understanding Substitution Strings

You can use substitution strings within a page template or region source to replace a character string with another value. As you design your application and enable users to edit items, you use substitution strings to pass information.

Topics in this section include:

	
Using Substitution Strings

	
About Built-in Substitution Strings

Using Substitution Strings

You can use substitution strings in Application Builder in the following ways:

	
Include a substitution string within a template to reference component values

	
Reference page or application items using &ITEM. syntax

	
Use built-in substitution strings to achieve a specific type of functionality

Special substitution strings available within a template are denoted by the number symbol (#). For example:

#ABC#

To reference page or application items using substitution variables:

	
Reference the page or application item in all capital letters.

	
Precede the item name with an ampersand (&).

	
Append a period (.) to the item name.

For example, you would refer to an application item named F101_X in an HTML region, a region title, an item label, or in any of numerous other contexts in which static text is used, for example:

&F101_X.

Notice the required trailing period. When the page is rendered, Application Express engine replaces value the substitution string with the value of item F101_X.

Determining Substitution String Usage within a Given Template

You can determine what template-specific substitution strings are supported in which templates by viewing the template definition. See "Customizing Templates".

About Built-in Substitution Strings

Application Builder supports a number of built-in substitution strings. You may need to reference these values to achieve specific types of functionality.

The following sections describe these substitution strings, when to use them, and what supported syntax is currently available. Note that bind variable :USER has special meaning within the database. Also, the term Direct PL/SQL refers to PL/SQL that can be used in stored database objects such as procedures and functions.

Topics in this section include:

	
APP_ALIAS

	
APP_ID

	
APP_IMAGES

	
APP_PAGE_ID

	
APP_SESSION

	
APP_UNIQUE_PAGE_ID

	
APP_USER

	
AUTHENTICATED_URL_PREFIX

	
BROWSER_LANGUAGE

	
CURRENT_PARENT_TAB_TEXT

	
DEBUG

	
HOME_LINK

	
LOGIN_URL

	
IMAGE_PREFIX

	
Application Express SCHEMA OWNER

	
PRINTER_FRIENDLY

	
LOGOUT_URL

	
PROXY_SERVER

	
PUBLIC_URL_PREFIX

	
REQUEST

	
SQLERRM

	
SYSDATE_YYYYMMDD

	
WORKSPACE_IMAGES

	
See Also:

	
"Substitutions" for information about defining static substitution strings as an application attribute

	
"Establishing User Identity Through Authentication" for information about authentication

APP_ALIAS

APP_ALIAS is an alphanumeric name for the current application. APP_ALIAS is different from the APP_ID in that the APP_ID must be unique over all workspaces and all applications hosted in one database. In contrast, APP_ALIAS must be unique within a workspace. For example, by using the same APP_ALIAS you can create the application, ABC, in two different workspaces. You can use APP_ALIAS almost anywhere APP_ID can be used. For example, f?p syntax can use an APP_ALIAS or an application ID as demonstrated in this example:

f?p=ABC:1:&APP_SESSION.

This example runs application ABC, page 1 using the current session.

Table 3-4 describes the supported syntax for referencing APP_ALIAS.

Table 3-4 APP_ALIAS Syntax

	Reference Type	Syntax
	
Bind variable

	
:APP_ALIAS

	
PL/SQL

	
V('APP_ALIAS')

	
Substitution string

	
&APP_ALIAS.

The following is an HTML example:

Click me to go to page 1 of the current application

APP_ID

APP_ID identifies the application ID of the currently executing application. Table 3-5 describes the supported syntax for referencing APP_ID.

Table 3-5 APP_ID Syntax

	Reference Type	Syntax
	
Bind variable

	
:APP_ID

	
Direct PL/SQL

	
APEX_APPLICATION.G_FLOW_ID (A NUMBER)

	
PL/SQL

	
NV('APP_ID')

	
Substitution string

	
&APP_ID.

The following is an example of a substitution string reference:

f?p=&APP_ID.:40:&APP_SESSION.

APP_IMAGES

Use this substitution string to reference uploaded images, JavaScript, and cascading style sheets that are specific to a given application and are not shared over many applications. If you upload a file and make it specific to an application, then you must use this substitution string, or bind variable. Table 3-6 describes the supported syntax for referencing APP_IMAGES.

Table 3-6 APP_IMAGES Syntax

	Reference Type	Syntax
	
Bind variable

	
:APP_IMAGES

	
Direct PL/SQL

	
Not available.

	
PL/SQL

	
V('APP_IMAGES')

	
Substitution string

	
&APP_IMAGES.

	
Template substitution

	
#APP_IMAGES#

	
See Also:

"IMAGE_PREFIX", "WORKSPACE_IMAGES", and "Managing Images"

APP_PAGE_ID

APP_PAGE_ID is the current application ID. For example, if your application was on page 3, then the result would be 3. Using this syntax is useful when writing application components that need to work generically in multiple applications. Table 3-7 describes the supported syntax for referencing APP_PAGE_ID.

Table 3-7 APP_PAGE_ID Syntax

	Reference Type	Syntax
	
Bind variable

	
:APP_PAGE_ID

	
PL/SQL

	
:APP_PAGE_ID

	
PL/SQL and Direct PL

	
NV('APP_PAGE_ID')

	
Substitution string

	
&APP_PAGE_ID.

The following is an example of a substitution string reference:

f?p=&APP_ID.:&APP_PAGE_ID.:&APP_SESSION.

APP_SESSION

APP_SESSION is one of the most commonly used built-in substitution strings. You can use this substitution string to create hypertext links between application pages that maintain a session state by passing the session number. Note that you can also use the substitution string SESSION in place of APP_SESSION. Table 3-8 describes the supported syntax for referencing APP_SESSION.

Table 3-8 APP_SESSION Syntax

	Reference Type	Syntax
	
Bind variable

	
:APP_SESSION

	
PL/SQL

	
V('APP_SESSION')

	
Short PL/SQL

	
V('SESSION')

	
Substitution string

	
&APP_SESSION.

Consider the following examples:

	
From within an HTML region:

click me

	
Using PL/SQL:

htf.anchor('f?p=100:5:'||V('APP_SESSION'),'click me');

	
Using a SQL query:

SELECT htf.anchor('f?p=100:5:'||:APP_SESSION,'clickme') FROM DUAL;

APP_UNIQUE_PAGE_ID

APP_UNIQUE_PAGE_ID is an integer generated from an Oracle sequence which is unique for each page view. This number is used by applications to prevent duplicate page submissions and can be used for other purposes. For example, to make a unique URL and avoid browser caching issues, you can embed this number in the request or debug column in calls to the f procedure. Table 3-9 describes the supported syntax for referencing APP_UNIQUE_PAGE_ID.

Table 3-9 APP_UNIQUE_PAGE_ID Syntax

	Reference Type	Syntax
	
Bind variable

	
:APP_UNIQUE_PAGE_ID

	
PL/SQL

	
V('APP_UNIQUE_PAGE_ID')

	
Substitution string

	
&APP_UNIQUE_PAGE_ID.

The following is an HTML example:

SELECT 'f?p=100:1:'||:APP_SESSION||':'||:APP_UNIQUE_PAGE_ID||
 ':::P1_EMPNO:'||employee_id,
 first_name,
 job_id
FROM employees

Note the use of the APP_UNIQUE_PAGE_ID in the request column. This makes this URL unique and may avoid excessive browser caching problems.

APP_USER

APP_USER is the current user running the application. Depending upon your authentication model, the value of the user is set differently. If the application is running using database authentication, then the value of the user is the same as the database pseudo column USER. If the application uses an authentication scheme that requires the user to authenticate, the value of APP_USER is set by the authentication scheme, usually to the user name used during authentication. Table 3-10 describes the supported syntax for referencing APP_USER.

Table 3-10 APP_USER Syntax

	Reference Type	Syntax
	
Bind variable

	
:APP_USER

	
PL/SQL

	
V('APP_USER')

	
Substitution string

	
&APP_USER.

Consider the following examples:

	
From within an HTML region:

Hello you are logged in as &APP_USER.

	
Using PL/SQL:

htp.p('Hello you are logged in as'||V('APP_USER'));

	
As a bind variable:

SELECT * FROM some_table WHERE user_id = :APP_USER

	
See Also:

"Authentication" for information about the Public User attribute

AUTHENTICATED_URL_PREFIX

This application-level attribute identifies a valid authenticated prefix (that is, a logged in URL prefix). You can use a relative path or a full path beginning with http. This item is useful if your application can be run in both authenticated (logged in) and public (not logged in) modes. You can use AUTHENTICATED_URL_PREFIX to construct a link to an authenticated page. This item is most useful when using basic database authentication because changes to the URL can require authentication. Table 3-11 describes the supported syntax for referencing AUTHENTICATED_URL_PREFIX.

Table 3-11 AUTHENTICATED_URL_PREFIX Syntax

	Reference Type	Syntax
	
Bind variable

	
:AUTHENTICATED_URL_PREFIX

	
PL/SQL

	
V('AUTHENTICATED_URL_PREFIX')

	
Substitution string

	
&AUTHENTICATED_URL_PREFIX.

BROWSER_LANGUAGE

BROWSER_LANGUAGE refers to the Web browser's current language preference. Table 3-12 describes the supported syntax for referencing BROWSER_LANGUAGE.

Table 3-12 BROWSER_LANGUAGE Syntax

	Reference Type	Syntax
	
Bind variable

	
:BROWSER_LANGUAGE

	
Direct PL/SQL

	
APEX_APPLICATION.G_BROWSER_LANGUAGE

	
PL/SQL

	
V('BROWSER_LANGUAGE')

	
Substitution string

	
:BROWSER_LANGUAGE.

	
Substitution string

	
&BROWSER_LANGUAGE.

CURRENT_PARENT_TAB_TEXT

CURRENT_PARENT_TAB_TEXT is most useful in page templates, but is only relevant for applications that use two-level tabs (that is, parent and standard tabs). Use this string to reference the parent tab label. This substitution string enables you to repeat the currently selected parent tab within the page template. Table 3-13 describes the supported syntax for referencing CURRENT_PARENT_TAB_TEXT.

Table 3-13 CURRENT_PARENT_TAB_TEXT Syntax

	Reference Type	Syntax
	
Bind variable

	
Not Available.

	
Substitution string

	
&CURRENT_PARENT_TAB_TEXT.

DEBUG

Valid values for the DEBUG flag are Yes or No. Turning debug on shows details about application processing. If you write your own custom code, you may want to generate debug information only if the debug mode is set to Yes. Table 3-14 describes the supported syntax for referencing DEBUG.

Table 3-14 DEBUG Syntax

	Reference Type	Syntax
	
Bind variable

	
:DEBUG

	
Direct PL/SQL

	
APEX_APPLICATION.G_DEBUG

	
PL/SQL

	
V('DEBUG')

	
Substitution string

	
&DEBUG.

The following is an example of a substitution string reference that preserves the current value of DEBUG:

f?p=100:1:&APP_SESSION.::&DEBUG

HOME_LINK

HOME_LINK is the home page of an application. The Application Express engine will redirect to this location if no page is given and if no alternative page is dictated by the authentication scheme's logic. You define the Home Link on the Application Attributes page.

Table 3-15 describes the supported syntax for referencing HOME_LINK.

Table 3-15 HOME_LINK Syntax

	Reference Type	Syntax
	
Direct PL/SQL

	
APEX_APPLICATION.G_HOME_LINK

	
PL/SQL

	
V('HOME_LINK')

	
Template Reference

	
#HOME_LINK#

	
Substitution String

	
&HOME_LINK.

	
See Also:

"Authentication" for information about the Home Link attribute

LOGIN_URL

Use LOGIN_URL to display a link to a login page for users that are not currently logged in. Table 3-16 describes the supported syntax for LOGIN_URL.

	
See Also:

"Authentication" and "About the Security Attributes Page"

Table 3-16 LOGIN_URL Syntax

	Reference Type	Syntax
	
Bind variable

	
:LOGIN_URL

	
Direct PL/SQL

	
APEX_APPLICATION.G_LOGIN_URL

	
PL/SQL

	
V('LOGIN_URL')

	
Substitution string

	
&LOGIN_URL.

	
Template Substitution

	
#LOGIN_URL#

IMAGE_PREFIX

The value of IMAGE_PREFIX determines the virtual path the Web server uses to point to the images directory distributed with Oracle Application Express. To reference uploaded images, use WORKSPACE_IMAGES and APP_IMAGES. Table 3-17 describes the supported syntax for referencing IMAGE_PREFIX.

	
See Also:

"APP_IMAGES","WORKSPACE_IMAGES", and "Configuring the Application Definition"

Table 3-17 IMAGE_PREFIX Syntax

	Reference Type	Syntax
	
Bind variable

	
:IMAGE_PREFIX

	
Direct PL/SQL

	
APEX_APPLICATION.G_IMAGE_PREFIX

	
PL/SQL

	
V('IMAGE_PREFIX')

	
Substitution string

	
&IMAGE_PREFIX.

	
Template Substitution

	
#IMAGE_PREFIX#

Application Express SCHEMA OWNER

If you are generating calls to applications from within your PL/SQL code, you may need to reference the owner of the Oracle Application Express schema. The following describes the correct syntax for a direct PL/SQL reference:

APEX_APPLICATION.G_FLOW_SCHEMA_OWNER

You may also use #FLOW_OWNER# to reference this value in SQL queries and PL/SQL (for example, in a region or a process).

PRINTER_FRIENDLY

The value of PRINTER_FRIENDLY determines if the Application Express engine is running in print view mode. This setting can be referenced in conditions to eliminate elements not desired in a printed document from a page. Table 3-18 describes the supported syntax for referencing PRINTER_FRIENDLY.

Table 3-18 PRINTER_FRIENDLY Syntax

	Reference Type	Syntax
	
Direct PL/SQL

	
APEX_APPLICATION.G_PRINTER_FRIENDLY (VARCHAR2 DATATYPE)

	
PL/SQL

	
V('PRINTER_FRIENDLY')

	
Substitution string

	
&PRINTER_FRIENDLY.

LOGOUT_URL

LOGOUT_URL is an application-level attribute used to identify the logout URL. This is a URL that navigates the user to a logout page or optionally directly logs out a user. To create a logout navigation bar entry, add a trailing period to &LOGOUT_URL (&LOGOUT_URL.). If you are coding a page template, use #LOGOUT_URL#. Table 3-19 describes the supported syntax for referencing LOGOUT_URL.

Table 3-19 LOGOUT_URL Syntax

	Reference Type	Syntax
	
Bind variable

	
:LOGOUT_URL

	
PL/SQL

	
V('LOGOUT_URL')

	
Substitution string

	
&LOGOUT_URL.

	
Template substitution

	
#LOGOUT_URL#

PROXY_SERVER

PROXY_SERVER is an application attribute. The attribute may be used by regions whose source comes from a URL. The following is the correct syntax for a direct PL/SQL reference used when you are writing PL/SQL to access remote Web servers from within the database (for example, when using the utl_http package shipped with the database).

APEX_APPLICATION.G_PROXY_SERVER

PUBLIC_URL_PREFIX

PUBLIC_URL_PREFIX is an application-level attribute that identifies a URL to toggle out of a logged in mode to a public view. Table 3-20 describes the supported syntax for referencing PUBLIC_URL_PREFIX.

Table 3-20 PUBLIC_URL_PREFIX Syntax

	Reference Type	Syntax
	
Bind variable

	
:PUBLIC_URL_PREFIX

	
PL/SQL

	
V('PUBLIC_URL_PREFIX')

	
Substitution string

	
&PUBLIC_URL_PREFIX.

	
Template substitution

	
#PUBLIC_URL_PREFIX#

REQUEST

Each application button sets the value of REQUEST to the name of the button or to the request value attribute associated with the button. This enables accept processing to reference the name of the button when a user clicks it. In the f?p syntax, REQUEST may be set using the fourth argument.

Referencing the Value of REQUEST

REQUEST is typically referenced during Accept processing (that is, the processing that occurs when you post a page). Table 3-21 describes the supported syntax for referencing REQUEST.

Table 3-21 REQUEST Syntax

	Reference Type	Syntax
	
Bind variable

	
:REQUEST

	
Direct PL/SQL

	
APEX_APPLICATION.G_REQUEST

	
PL/SQL

	
V('REQUEST')

	
Substitution string

	
&REQUEST

&REQUEST. (exact syntax match)

Scope and Value of REQUEST for Posted Pages

When you post a page, you initiate Accept processing. Accept processing consists of computations, validations, processes, and branches. The value of REQUEST is available during each phase of the Accept processing. Once an application branches to a different page then REQUEST is set to NULL.

The value of REQUEST is the name of the button the user clicks, or the name of the tab the user selects. For example, suppose you have a button with a name of CHANGE, and a label Apply Change. When a user clicks the button, the value of REQUEST is CHANGE.

About the When Button Pressed Attribute

Validations, processes, and branches have a When Button Pressed attribute. This attribute displays as a select list and contains the names of buttons that exist on the current page. If you make a selection from When Button Pressed, you associate the button's REQUEST value with the validation, process, or branch.

When you use a button to submit a page, the REQUEST value is passed to the page. The Accept processing logic evaluates each validation, process, and branch that uses a When Button Pressed attribute to determine whether the component should run (or fire). When one of these components runs, do not assume that a user actually clicked the associated button and caused the page to be submitted. Keep in mind, that another button using the same request value may have submitted the page. Similarly, JavaScript on the page can also submit the page and pass in a request value.

Referencing REQUEST Using Declarative Conditions

It is common to reference REQUEST using conditions. For example, you may want to reset pagination when a user clicks Go on a report page. You can reset pagination by creating an on-submit page process. The page process can be made conditional using the condition Request = Expression 1.

To conditionalize an on-submit page process:

	
Under Condition, select the condition type Request = Expression 1.

	
In Expression 1, enter GO.

Using REQUEST for Show Processing

You can also use REQUEST for Show processing when navigating to a page using f?p syntax. For example:

f?p=100:1:&APP_SESSION.:GO

Remember that the fourth argument in the f?p syntax is REQUEST. This example goes to application 100, page 1 for the current session, and sets the value of REQUEST to GO. Any process or region can reference the value of REQUEST using Show processing.

The following is a similar example using PL/SQL:

IF V ('REQUEST') = 'GO' THEN
 htp.p('hello');
END IF;

Note that htp.p('hello') is a call to a PL/SQL Web Toolkit package to print out the specified text string.

	
See Also:

	
Oracle Database Advanced Application Developer's Guide for information about developing Web applications with PL/SQL

	
Oracle Database PL/SQL Packages and Types Reference for information about htp packages

SQLERRM

SQLERRM is a template substitution only available in the Applications Region Error Message. The following describes the correct syntax for a region template substitution reference:

#SQLERRM#

SYSDATE_YYYYMMDD

SYSDATE_YYYYMMDD represents the current date on the database server, with the YYYYMMDD format mask applied. You may use this value instead of repeated calls to the SYSDATE() function. The following list describes the supported syntax for referencing SYSDATE_YYYYMMDD.

	
Bind variable

:SYSDATE_YYYYMMDD

	
PL/SQL

V('SYSDATE_YYYYMMDD')

	
Direct PL/SQL

APEX_APPLICATION.G_SYSDATE (DATE DATATYPE)

Table 3-22 SYSDATE_YYYYMMDD Syntax

	Reference Type	Syntax
	
Bind variable

	
:SYSDATE_YYYYMMDD

	
Direct PL/SQL

	
APEX_APPLICATION.G_SYSDATE (DATE DATATYPE)

	
PL/SQL

	
V('SYSDATE_YYYYMMDD')

WORKSPACE_IMAGES

Use this substitution string to reference uploaded images, JavaScript, and cascading style sheets that are shared over many applications within a workspace. Table 3-23 describes the supported syntax for referencing WORKSPACE_IMAGES.

Table 3-23 WORKSPACE_IMAGES Syntax

	Reference Type	Syntax
	
Bind variable

	
:WORKSPACE_IMAGES

	
Direct PL/SQL

	
Not available

	
PL/SQL

	
V('WORKSPACE_IMAGES')

	
Substitution string

	
&WORKSPACE_IMAGES.

	
Template substitution

	
#WORKSPACE_IMAGES#

	
See Also:

"APP_IMAGES" and "IMAGE_PREFIX"

About the Page Definition

A Page Definition is the basic building block of a page. Each page can have buttons and fields (called items), which are grouped into containers called regions. Pages can also have application logic (or processes). You can branch from one page to the next using conditional navigation; perform calculations (called computations); perform validations (such as edit checks); and display reports, calendars, and charts. You view, create, and edit the controls that define a page by accessing the Page Definition.

Topics in this section include:

	
Accessing a Page Definition

	
Understanding the Page Definition

	
See Also:

"Using the View List on the Page Definition", "Editing a Page Definition", "Editing Page Attributes", and "Using the Page Finder"

Accessing a Page Definition

You can view, create, and edit the controls that define a page through the Page Definition.

To access the Page Definition for an existing page:

	
On the Workspace home page, click the Application Builder icon.

The Application Builder home page appears.

	
Select an application.

The Application home page appears.

	
Select a page.

The Page Definition appears.

	
See Also:

"Using the Page Finder"

Understanding the Page Definition

A Page Definition is the basic building block of a page. You use the Page Definition to view, create, and edit the controls and application logic that define a page. The sections that follow describe the different parts of the Page Definition.

Topics in this section include:

	
Available Navigation Bar Controls and Buttons

	
About the Action Bar

	
About Page Rendering, Page Processing, and Shared Components

Available Navigation Bar Controls and Buttons

A navigation bar appears directly beneath the breadcrumb trail.

[image: Description of pg_def_top.gif follows]

Available controls on the page navigation bar include:

	
Page. Displays the current page number. To view another page, enter the page number in the Page field and click Go.

	
Previous and Next. These buttons resemble less than (<) and greater than (>) signs. Click these buttons to move to the previous or next page.

	
View. Controls the current page view. To view alternative reports, make a selection from the list and click Go. See "Using the View List on the Page Definition".

The following buttons appear to the right of the navigation bar:

	
Run. Submits the current page to the Application Express engine to render viewable HTML. See "Running a Page or Application".

	
Copy. Creates a copy of the current page. You specify a page number and page name.

	
Delete. Deletes the current page.

	
Create. Links to a wizard for creating a page. See "Creating a Page from the Page Definition".

	
See Also:

"Managing Pages in an Application" and "Running a Page or Application"

About the Action Bar

The Run Page, Shared Components, Comment, Lock, Export Page, and Find icons display on the Action bar.

[image: Description of pg_def_icons.gif follows]

Run Page Icon

The Run Page icon resembles a small, light green traffic light. Click this icon to render the current page into viewable HTML. When you run a page, the Application Express engine dynamically renders the page based on data stored in the database. See "Running a Page or Application".

Shared Components Icon

The Shared Components icon resembles a small mechanical gear. Click this icon to view a list of shared components and user interface controls that can display or be applied on every page within an application. See "Working with Shared Components".

Developer Comment Icon

The Developer Comment icon resembles a green balloon. Use this icon to add comments to an application, a page, or a group of pages. See "Adding Developer Comments".

Lock Icon

The Lock icon indicates whether a page is available for editing. If a page is unlocked, the icon appears as an open padlock. If the page is locked, the icon appears as a locked padlock. Click this icon to change the lock status. See "