

2 Getting Started with Oracle XML DB

This chapter provides some preliminary design criteria for consideration when planning your Oracle XML DB solution.

This chapter contains these topics:

	
Oracle XML DB Installation

	
Oracle XML DB Use Cases

	
Application Design Considerations for Oracle XML DB

	
Oracle XML DB Performance

Oracle XML DB Installation

Oracle XML DB is installed automatically in the following situations:

	
If Database Configuration Assistant (DBCA) is used to build Oracle Database using the general-purpose template

	
If you use SQL script catqm to install Oracle Database

You can determine whether or not Oracle XML DB is already installed. If it is installed, then the following are true:

	
Database schema (user account) XDB exists. To check that, run this query:

SELECT * FROM ALL_USERS;

	
View RESOURCE_VIEW exists. To check that, use this command:

DESCRIBE RESOURCE_VIEW

	
See Also:

	
Chapter 34, "Administering Oracle XML DB" for information about installing and uninstalling Oracle XML DB manually

	
Oracle Database 2 Day + Security Guide for information about database schema XDB

Oracle XML DB Use Cases

Oracle XML DB is suited for any application where some or all of the data processed by the application is represented using XML. Oracle XML DB provides for high-performance database ingestion, storage, processing and retrieval of XML data. It also lets you quickly and easily generate XML from existing relational data.

Applications for which Oracle XML DB is particularly suited include the following:

	
Business-to-business (B2B) and application-to-application (A2A) integration

	
Internet

	
Content-management

	
Messaging

	
Web Services

A typical Oracle XML DB application has one or more of the following characteristics:

	
Large numbers of XML documents must be ingested or generated

	
Large XML documents must be processed or generated

	
High-performance searching is needed, both within a document and across large collections of documents

	
High levels of security are needed

	
Fine-grained security is needed

	
Data processing must use XML documents, and data must be stored in relational tables

	
Programming must support open standards such as SQL, XML, XQuery, XPath, and XSL

	
Information must be accessed using standard Internet protocols such as FTP, HTTP(S)/WebDAV, and Java Database Connectivity (JDBC)

	
XML data must be queried from SQL

	
Analytic capabilities must be applied to XML data

	
XML documents must be validated against an XML schema

Oracle XML DB lets you fine-tune how XML documents are stored and processed in Oracle Database. Depending on the nature of the application, XML storage must have at least one of the following features

	
High performance ingestion and retrieval of XML documents

	
High performance indexing and searching of XML documents

	
Ability to update sections of an XML document

	
Management of structured or unstructured XML documents

Application Design Considerations for Oracle XML DB

This section mentions some preliminary design criteria that you can consider when planning your Oracle XML DB application.

Structure of Your Data

Is your data be highly structured (mostly XML), semi-structured, or mostly unstructured? If highly structured, are your tables XML schema-based or non-schema-based?

If your XML data is not XML schema-based, then, regardless of how structured it is, you can store it in an XMLType table or view as binary XML or as a CLOB instance, or you can store it as a file in an Oracle XML DB Repository folder.

If your XML data is XML schema-based then you can use unstructured, structured (object-relational), or binary XML storage for its structured parts. For the unstructured parts, you have the same options as for data that is not XML schema-based.

	
See Also:

Chapter 3, "Using Oracle XML DB"

Oracle XML DB Repository Access

This section pertains to data that is stored as resources in Oracle XML DB Repository.

How do other applications and users need to access your XML and other data? How secure must the access be? Do you need versioning?

There are two main repository access methods:

	
Navigation-based access or path-based access. This is suitable for both content/document and data oriented applications. Oracle XML DB provides the following languages and access APIs:

	
SQL access through resource and path views. See Chapter 25, "Accessing the Repository using RESOURCE_VIEW and PATH_VIEW".

	
PL/SQL access through DBMS_XDB. See Chapter 26, "Accessing the Repository using PL/SQL".

	
Protocol-based access using HTTP(S)/WebDAV or FTP, most suited to content-oriented applications. See Chapter 28, "Accessing the Repository using Protocols".

	
Query-based access. This can be most suited to data oriented applications. Oracle XML DB provides access using SQL queries through the following APIs:

	
Java access (through JDBC). See Java DOM API for XMLType.

	
PL/SQL access. See Chapter 13, "PL/SQL APIs for XMLType".

These options for accessing repository data are also discussed in Chapter 21, "Accessing Oracle XML DB Repository Data".

You can also consider the following access criteria:

	
What levels of security do you need? See Chapter 27, "Repository Access Control".

	
What kind of indexing best suits your application? Do you need to use Oracle Text indexing and querying? See Chapter 4, "XMLType Operations", Chapter 6, "Indexing XMLType Data", and Chapter 12, "Full-Text Search Over XML Data".

	
Do you need to version the data? If yes, see Chapter 24, "Managing Resource Versions".

Application Language

In which languages do you program your application?

You can program your Oracle XML DB applications in the following languages:

	
Java (JDBC, Java Servlets)

	
See Also:

	
Chapter 15, "Java DOM API for XMLType"

	
Chapter 32, "Writing Oracle XML DB Applications in Java"

	
PL/SQL

	
See Also:

	
Chapter 13, "PL/SQL APIs for XMLType"

	
Chapter 26, "Accessing the Repository using PL/SQL"

	
"APIs for XML"

Processing

Do you need to generate XML data? See Chapter 18, "Generating XML Data from the Database".

How often are XML documents accessed, updated, and manipulated? Do you need to update fragments or whole documents?

Do you need to transform XML data to HTML, WML, or other languages? If so, how does your application do this? See Chapter 11, "Transforming and Validating XMLType Data".

Must your application be primarily database-resident or must it work in both the database and middle tier?

Is your application data-centric, document-centric (content-centric), or both?

The following processing options are available and should be considered when designing your Oracle XML DB application:

	
XSLT. Do you need to transform the XML data to HTML, WML, or other languages, and, if so, how does your application transform the XML data? While storing XML documents in Oracle XML DB, you can optionally ensure that their structure complies with (validates against) specific XML schemas. See Chapter 11, "Transforming and Validating XMLType Data".

	
DOM fidelity, document fidelity. Use unstructured storage to preserve document fidelity. Use binary XML or structured storage for XML schema-based data to preserve DOM fidelity. See Chapter 13, "PL/SQL APIs for XMLType" and "DOM Fidelity".

	
XPath searching. You can use XPath syntax embedded in a SQL statement or as part of an HTTP(S) request to query XML content in the database. See Chapter 4, "XMLType Operations", Chapter 12, "Full-Text Search Over XML Data", Chapter 21, "Accessing Oracle XML DB Repository Data", and Chapter 25, "Accessing the Repository using RESOURCE_VIEW and PATH_VIEW".

	
XML Generation and XMLType views. Do you need to generate or regenerate XML data? If yes, see Chapter 18, "Generating XML Data from the Database".

How often are XML documents accessed, updated, and manipulated? See Chapter 4, "XMLType Operations" and Chapter 25, "Accessing the Repository using RESOURCE_VIEW and PATH_VIEW".

Do you need to update fragments or whole documents? You can use XPath expressions to specify individual elements and attributes of your document during updates, without rewriting the entire document. This is more efficient, especially for large XML documents. Chapter 7, "XML Schema Storage and Query: Basic".

Is your application data-centric, document- and content-centric, or integrated (is both data- and document-centric)? See Chapter 3, "Using Oracle XML DB".

Messaging

Does your application exchange XML data with other applications across gateways? Do you need Oracle Streams Advanced Queuing (AQ) or SOAP compliance? See Chapter 37, "Exchanging XML Data using Oracle Streams AQ".

Advanced Queuing (AQ) supports XML and XMLType applications. You can create queues with payloads that contain XMLType attributes. These can be used for transmitting and storing messages that contain XML documents. By defining Oracle Database objects with XMLType attributes, you can do the following:

	
Store more than one type of XML document in the same queue. The documents are stored internally as CLOB values.

	
Selectively dequeue messages with XMLType attributes using an XPath or XQuery expression.

	
Define rule-based subscribers that query message content using an XPath or XQuery expression.

	
Define transformations to convert Oracle Database objects to XMLType.

	
See Also:

	
Chapter 37, "Exchanging XML Data using Oracle Streams AQ"

	
Oracle Streams Advanced Queuing User's Guide

Storage

How and where do you store your relational data, XML data, XML schemas, and so on?

	
Note:

The choices you make for data structure, access, language, and processing are typically interdependent, but they are not dependent on the storage model you choose.

Figure 2-1 shows the Oracle XML DB storage options for XMLType tables and views.

Figure 2-1 Oracle XML DB Storage Options for XML Data

[image: Description of Figure 2-1 follows]

If you have existing relational data, you can access it as XML data by creating XMLType views over it. You can use the following to define the XMLType views:

	
SQL/XML functions. See Chapter 18, "Generating XML Data from the Database" and Chapter 5, "Using XQuery with Oracle XML DB".

	
Object types: object tables, object constructors, and object views.

Regardless of which storage options you choose for your application, Oracle XML DB provides the same functionality. Though the storage model you use can affect your application performance and XML data fidelity, it is totally independent of all of the following:

	
How, and how often, you query or update your data.

	
How you access your data. This is determined only by your application processing requirements.

	
What language(s) your application uses. This is determined only by your application processing requirements.

	
See Also:

	
"XMLType Storage Models"

	
"DOM Fidelity"

Oracle XML DB Performance

One objection to using XML to represent data is that it generates higher overhead than other representations. Oracle XML DB incorporates several features specifically designed to address this issue by significantly improving the performance of XML processing. These are described in the following sections:

	
XML Storage Requirements

	
XML Memory Management

	
XML Parsing Optimizations

	
Node-Searching Optimizations

	
XML Schema Optimizations

	
Load Balancing Through Cached XML Schema

	
Reduced Bottlenecks From Code That Is Not Native

	
Reduced Java Type Conversion Bottlenecks

XML Storage Requirements

Data represented in XML and stored in a text file averages three times the size of the same data in a Java object or in relational tables. There are two main reasons for this:

	
Tag names (metadata describing the data) and white space (formatting characters) take up a significant amount of space in the document, particularly for highly structured, data-centric XML.

	
All data in an XML file is represented in human readable (string) format.

The string representation of a numeric value needs about twice as many bytes as the native (binary) representation. When XML documents are stored in Oracle XML DB using structured or binary XML storage, the storage process discards all tags and white space in the document.

The amount of space saved by this optimization depends on the ratio of tag names to data, and the number of collections in the document. For highly-structured, data-centric XML data, the savings can be significant. When a document is printed, or when node-based operations such as XPath evaluation take place, Oracle XML DB uses the information contained in the associated XML schema to dynamically reconstruct any necessary tag information.

XML Memory Management

Document Object Model (DOM) is the dominant programming model for XML documents. DOM APIs are easy to use but the DOM Tree that underpins them is expensive to generate, in terms of memory. A typical DOM implementation maintains approximately 80 to 120 bytes of system overhead for each node in the DOM tree. For highly structured data, the DOM tree can require 10 to 20 times more memory than the document on which it is based.

A conventional DOM implementation requires the entire contents of an XML document to be loaded into the DOM tree before any operations can take place. If an application only needs to process a small percentage of the nodes in the document, this is extremely inefficient in terms of memory and processing overhead. The alternative Simple API for XML (SAX) approach reduces the amount of memory required to process an XML document, but its disadvantage is that it only allows linear processing of nodes in the XML document.

	
See Also:

	
http://www.w3.org/DOM/ for information about DOM

	
http://www.saxproject.org/ for information about SAX

Use of XOBs Reduces Memory Overhead for XML Schema-Based Documents

Oracle XML DB reduces memory overhead associated with DOM programming by managing XML schema-based XML documents using an internal structure in dynamic memory called an XML Object (XOB). A XOB is much smaller than the equivalent DOM since it does not duplicate information like tag names and node types, that can easily be obtained from the associated XML schema. Oracle XML DB automatically uses a XOB whenever an application works with the contents of a schema-based XMLType. The use of the XOB is transparent to you. It is hidden behind the XMLType data type and the C, PL/SQL, and Java APIs.

XOB Uses a Lazily-Loaded Virtual DOM

The XOB can also reduce the amount of memory required to work with an XML document using the Lazily-Loaded Virtual DOM feature. This lets Oracle XML DB defer loading the dynamic memory representation of nodes that are part of sub-elements or collection until code attempts to operate on a node in that object. Consequently, if an application only operates on a few nodes in a document, only those nodes and their immediate siblings are loaded into memory.The XOB can only used when an XML document is based on an XML schema. If the contents of the XML document are not based on an XML schema, a traditional DOM is used instead of the XOB.

XML Parsing Optimizations

To populate a DOM tree the application must parse the XML document. The process of creating a DOM tree from an XML file is very CPU- intensive. In a typical DOM-based application, where the XML documents are stored as text, every document has to be parsed and loaded into the DOM tree before the application can work with it. If the contents of the DOM tree are updated the entire tree must be serialized back into a text format and written out to disk.

Oracle XML DB eliminates the need to parse documents over and over again. No parsing is needed when an XML document is loaded from disk into memory, if the document is stored as structured or binary XML storage. Oracle XML DB maps directly between the format on disk and the format in dynamic memory using information derived from the associated XML schema. When changes are made to XML schema-based data, Oracle XML DB is able to write just the updated data back to disk. When XML data is not based on an XML schema, a traditional DOM is used instead.

Node-Searching Optimizations

Most DOM implementations use string comparisons when searching for a particular node in the DOM tree. Even a simple search of a DOM tree can require hundreds or thousands of instruction cycles. Searching for a node in a XOB is much more efficient than searching for a node in a DOM. A XOB is based on a computed offset model, similar to a C/C++ object, and uses dynamic hashtables rather than string comparisons to perform node searches.

XML Schema Optimizations

Making use of the powerful features associated with XML schema in a conventional XML application can generate significant amounts of additional overhead. For example, before an XML document can be validated against an XML schema, the schema itself must be located, parsed, and validated.

Oracle XML DB minimizes the overhead associated with using XML schema. When an XML schema is registered with the database, it is loaded in the Oracle XML DB schema cache, together with all of the metadata required to map between the textual, XOB and on- disk representations of the data. After the XML schema has been registered with the database no additional parsing or validation of the XML schema is required before it can be used. The schema cache is shared by all users of the database. Whenever an Oracle XML DB operation requires information contained in the XML schema, it can access the required information directly from the cache.

Load Balancing Through Cached XML Schema

Some operations, such as performing a full schema validation, or serializing an XML document back into text form, can still require significant memory and CPU resources. Oracle XML DB let these operations be off-loaded to the client or middle tier processor. Both Oracle Call Interface (OCI) interface and the OCI driver for JDBC allow the XOB to be managed by the client.The cached representation of the XML schema can also be downloaded to the client. This lets operations such as XML printing, and XML schema validation be performed using client or middle tier resources, rather than server resources.

Reduced Bottlenecks From Code That Is Not Native

Another bottleneck for XML-based Java applications happens when parsing an XML file. Even natively compiled or JIT compiled Java performs XML parsing operations twice as slowly compared to using native C language. One of the major performance bottlenecks in implementing XML applications is the cost of transforming data in an XML document between text, Java, and native server representations. The cost of performing these transformations is proportional to the size and complexity of the XML file and becomes severe even in moderately sized files.

Oracle XML DB addresses these issues by implementing all of the Java and PL/SQL interfaces as thin facades over a native implementation in the C language. Java, C, PL/SQL, and SQL all use the same underlying implementation. This provides for language-neutral XML support and higher performance XML parsing and DOM processing.

Reduced Java Type Conversion Bottlenecks

One of the biggest bottlenecks when using Java and XML is with type conversions. Internally Java uses UCS-2 to represent character data. Most XML files and databases do not contain UCS-2 encoded data. All data contained in an XML file must be converted from 8-Bit or UTF-8 encoding to UCS-2 encoding before it can be manipulated in a Java program.

Oracle XML DB addresses these problems with lazy type conversions. With lazy type conversions, the content of a node is not converted into the format required by Java until the application attempts to access the contents of the node. Data remains in the internal representation till the last moment. Avoiding unnecessary type conversions can result in significant performance improvements when an application only needs to access a few nodes in an XML document.

Consider a JSP that loads a name from the Oracle Database and prints it out in the generated HTML output. Typical JSP implementations read the name from the database (that probably contains data in the ASCII or ISO8859 character sets), convert the data to UCS-2, and return it to Java as a string. The JSP would not look at the string content, but only print it out after printing the enclosing HTML, probably converting back to the same ASCII or ISO8859 for the client browser. Oracle XML DB provides a write interface on XMLType so that any element can write itself directly to a stream (such as a ServletOutputStream) without conversion through Java character sets. Figure 2-2 shows the Oracle XML DB Application Program Interface (API) stack.

Figure 2-2 Oracle XML DB Application Program Interface (API) Stack

[image: Description of Figure 2-2 follows]

1 Introduction to Oracle XML DB

This chapter introduces the features and architecture of Oracle XML DB. It contains these topics:

	
Overview of Oracle XML DB

	
Oracle XML DB Architecture

	
Oracle XML DB Features

	
Oracle XML DB Benefits

	
Search XML Data using Oracle Text

	
Build Messaging Applications using Oracle Streams Advanced Queuing

	
Standards Supported by Oracle XML DB

	
Oracle XML DB Technical Support

	
Oracle XML DB Examples Used in This Manual

	
Further Oracle XML DB Case Studies and Demonstrations

Overview of Oracle XML DB

Oracle XML DB is a set of Oracle Database technologies related to high-performance handling of XML data: storing, generating, accessing, searching, validating, transforming, evolving, and indexing. It provides native XML support by encompassing both the SQL and XML data models in an interoperable way. Oracle XML DB is included as part of Oracle Database starting with Oracle9i Release 2 (9.2).

Oracle XML DB includes the following features:

	
An abstract SQL data type, XMLType, for XML data.

	
Enterprise-level Oracle Database features for XML content: reliability, availability, scalability, and security. XML-specific memory management and optimizations.

	
Industry-standard ways to access and update XML data. The standards include the SQL/XML standard and the World Wide Web Consortium (W3C) XML and XML Schema data models and recommendations for XPath and XQuery. You can use FTP, HTTP(S), and WebDAV to move XML content into and out of Oracle Database. Industry-standard APIs provide programmatic access and manipulation of XML content using Java, C, and PL/SQL.

	
Ways to store, query, update, and transform XML data while accessing it using SQL.

	
Ways to perform XML operations on SQL data.

	
Oracle XML DB Repository: a simple, lightweight repository where you can organize and manage database content, including XML content, using a file/folder/URL metaphor.

	
Ways to access and combine data from disparate systems through gateways, using a single, common data model. This reduces the complexity of developing applications that must deal with data from different stores.

	
Ways to use Oracle XML DB in conjunction with Oracle XML Developer's Kit (XDK) to build applications that run in the middle tier in either Oracle Application Server or Oracle Database.

	
See Also:

	
"XMLType Data Type"

	
http://www.oracle.com/technetwork/database-features/xmldb/overview/index.html for the latest news and white papers about Oracle XML DB

	
Oracle XML Developer's Kit Programmer's Guide

Oracle XML DB Architecture

Figure 1-1 and Figure 1-2 show the software architecture of Oracle XML DB. The main features are:

	
Storage of XMLType tables and views.

	
You can index XMLType tables and views using XMLIndex, B-tree, and Oracle Text indexes.

	
You can store data that is in XMLType views in local or remote tables. You can access remote tables using database links.

	
Oracle XML DB Repository. You can store any kind of documents in the repository, including XML documents that are associated with an XML schema that is registered with Oracle XML DB. You can access documents in the repository in any of the following ways:

	
HTTP(S), through the HTTP protocol handler

	
WebDAV and FTP, through the WebDAV and FTP protocol handlers

	
SQL, through Oracle Net Services, including Java Database Connectivity (JDBC)

	
Support of XML data messaging using Oracle Streams Advanced Queuing (AQ) and Web Services.

Figure 1-1 XMLType Storage and Oracle XML DB Repository

[image: Description of Figure 1-1 follows]

Figure 1-2 XMLType Storage

[image: Description of Figure 1-2 follows]

	
See Also:

	
Part II, "Storing and Retrieving XML Data in Oracle XML DB"

	
Chapter 28, "Accessing the Repository using Protocols"

	
Chapter 37, "Exchanging XML Data using Oracle Streams AQ"

APIs for XML

Table 1-1 lists the reference documentation for the PL/SQL, C, and C++ Application Programming Interfaces (APIs) that you can use to manipulate XML data. The main reference for PL/SQL, C, and C++ APIs is Oracle Database PL/SQL Packages and Types Reference.

	
See Also:

Oracle Database XML Java API Reference for information about Java APIs for XML

Table 1-1 APIs Related to XML

	API	Documentation	Description
	
XMLType

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "XMLType", Oracle Database XML C API Reference, and Oracle Database XML C++ API Reference

	
PL/SQL, C, and C++ APIs with XML operations on XMLType data – validation, transformation.

	
Database URI types

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "Database URI TYPEs"

	
Functions used for various URI types.

	
DBMS_METADATA

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_METADATA"

	
PL/SQL API for retrieving metadata from the database dictionary as XML, or retrieving creation DDL and submitting the XML to re-create the associated object.

	
DBMS_RESCONFIG

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_RESCONFIG"

	
PL/SQL API to operate on a resource configuration list, and to retrieve listener information for a resource.

	
DBMS_XDB

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XDB"

	
PL/SQL API for managing Oracle XML DB Repository resources, ACL-based security, and configuration sessions.

	
DBMS_XDB_ADMIN

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XDB_ADMIN"

	
PL/SQL API for managing miscellaneous features of Oracle XML DB, including the XMLIndex index on the Oracle XML DB Repository.

	
DBMS_XDBRESOURCE

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XDBRESOURCE"

	
PL/SQL API to operate on repository resource metadata and contents.

	
DBMS_XDBT

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XDBT"

	
PL/SQL API for creation of text indexes on repository resources.

	
DBMS_XDB_VERSION

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XDB_VERSION"

	
PL/SQL API for version management of repository resources.

	
DBMS_XDBZ

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XDBZ"

	
Oracle XML DB Repository ACL-based security.

	
DBMS_XEVENT

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XEVENT"

	
PL/SQL API providing event-related types and supporting interface..

	
DBMS_XMLDOM

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XMLDOM"

	
PL/SQL implementation of the DOM API for XMLType.

	
DBMS_XMLGEN

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XMLGEN"

	
PL/SQL API for transformation of SQL query results into canonical XML format.

	
DBMS_XMLINDEX

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XMLINDEX

	
PL/SQL API for XMLIndex.

	
DBMS_XMLPARSER

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XMLPARSER"

	
PL/SQL implementation of the DOM Parser API for XMLType.

	
	
	
DBMS_XMLSCHEMA

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XMLSCHEMA

	
PL/SQL API for managing XML schemas within Oracle Database – schema registration, deletion.

	
DBMS_XMLSTORE

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XMLSTORE"

	
PL/SQL API for storing XML data in relational tables.

	
DBMS_XSLPROCESSOR

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XSLPROCESSOR"

	
PL/SQL implementation of an XSLT processor.

Catalog Views Related to XML

Table 1-2 lists the catalog views related to XML. Information about a given view can be obtained by using SQL command DESCRIBE.

DESCRIBE USER_XML_SCHEMAS

Table 1-2 Catalog Views Related to XML

	Schema	Description
	

USER_XML_SCHEMAS

	
Registered XML schemas owned by the current user

	

ALL_XML_SCHEMAS

	
Registered XML schemas usable by the current user

	

DBA_XML_SCHEMAS

	
Registered XML schemas in Oracle XML DB

	

USER_XML_TABLES

	
XMLType tables owned by the current user

	

ALL_XML_TABLES

	
XMLType tables usable by the current user

	

DBA_XML_TABLES

	
XMLType tables in Oracle XML DB

	

USER_XML_TAB_COLS

	
XMLType table columns owned by the current user

	

ALL_XML_TAB_COLS

	
XMLType table columns usable by the current user

	

DBA_XML_TAB_COLS

	
XMLType table columns in Oracle XML DB

	

USER_XML_VIEWS

	
XMLType views owned by the current user

	

ALL_XML_VIEWS

	
XMLType views usable by the current user

	

DBA_XML_VIEWS

	
XMLType views in Oracle XML DB

	

USER_XML_VIEW_COLS

	
XMLType view columns owned by the current user

	

ALL_XML_VIEW_COLS

	
XMLType view columns usable by the current user

	

DBA_XML_VIEW_COLS

	
XMLType view columns in Oracle XML DB

In addition to the views ALL_XML_TABLES, DBA_XML_TABLES, and USER_XML_TABLES, views ALL_OBJECT_TABLES, DBA_OBJECT_TABLES, and USER_OBJECT_TABLES provide tablespace and other storage information for XMLType data stored object-relationally.

	
See Also:

	
Oracle Database Reference

	
Oracle Database PL/SQL Packages and Types Reference

Overview of Oracle XML DB Repository

Oracle XML DB Repository is a component of Oracle Database that lets you handle XML data using a file/folder/URL metaphor. The repository contains resources, which can be either folders (directories, containers) or files.

A resource has these properties:

	
It is identified by a path and name.

	
It has content (data), which can be XML data but need not be.

	
It has a set of system-defined metadata (properties), such as Owner and CreationDate, in addition to its content. Oracle XML DB uses this information to manage the resource.

	
It might also have user-defined metadata. Like system-defined metadata, this is information that is not part of the content, but is associated with it.

	
It has an associated access control list that determines who can access the resource, and for what operations.

Although Oracle XML DB Repository treats XML content specially, you can use the repository to store other kinds of data besides XML. You can use the repository to access any data that is stored in Oracle Database.

You can access data in the repository in the following ways (see Figure 1-1):

	
SQL – Using views RESOURCE_VIEW and PATH_VIEW

	
PL/SQL – Using package DBML_XDB

	
Java – Using the Oracle XML DB resource API for Java

	
See Also:

	
Part V. "Oracle XML DB Repository"

	
Chapter 28, "Accessing the Repository using Protocols" for information about accessing XML data in XMLType tables and columns using external protocols

	
Chapter 29, "User-Defined Repository Metadata"

XML Services

Besides providing APIs for accessing and manipulating repository data, Oracle XML DB provides APIs for the following repository services:

	
Versioning – Oracle XML DB uses PL/SQL package DBMS_XDB_VERSION to version resources in Oracle XML DB Repository. Updating a resource creates a new version. Previous versions are retained. Versioning support is based on the IETF WebDAV standard.

	
ACL Security – Repository security is based on access control lists (ACLs). Each resource has an associated ACL that lists the privileges required to use it in various ways. When a resource is accessed or manipulated, its ACL determines whether the requested operation is allowed. An ACL is an XML document that contains a set of access control entries (ACEs). Each ACE grants or revokes a set of permissions to a particular user or group (database role). This access control mechanism is based on the WebDAV specification.

	
Foldering – Oracle XML DB Repository manages a persistent hierarchy of folder (that is, directory) resources that contain other resources (files or folders). Oracle XML DB modules such as protocol servers, the XML schema manager, and the Oracle XML DB RESOURCE_VIEW API use foldering to map repository path names to the resources they target.

Views RESOURCE_VIEW and PATH_VIEW

Views RESOURCE_VIEW and PATH_VIEW provide SQL access to data in Oracle XML DB Repository through protocols such as FTP and WebDAV. View PATH_VIEW has one row for each unique path in the repository. View RESOURCE_VIEW has one row for each resource in the repository.

The Oracle XML DB resource API for PL/SQL, DBMS_XDB, provides query and DML functions. It is based on RESOURCE_VIEW and PATH_VIEW.

	
See Also:

	
Chapter 25, "Accessing the Repository using RESOURCE_VIEW and PATH_VIEW"

	
Oracle Database Reference for more information about view PATH_VIEW

	
Oracle Database Reference for more information about view RESOURCE_VIEW

Oracle XML DB Repository Architecture

Figure 1-3 illustrates the architecture of Oracle XML DB Repository.

	
See Also:

	
Chapter 21, "Accessing Oracle XML DB Repository Data"

	
Chapter 25, "Accessing the Repository using RESOURCE_VIEW and PATH_VIEW"

Figure 1-3 Oracle XML DB Repository Architecture

[image: Description of Figure 1-3 follows]

Files and Folders

Relational databases are traditionally poor at managing hierarchical structures and traversing a path or a URL. Oracle XML DB Repository provides you with a hierarchical organization of XML content in the database. You can query and manage it as if it were organized using files and folders.

The relational table-row-column metaphor is an effective model for managing highly structured data. It can be less effective for managing semi-structured and unstructured data, such as document-oriented XML data.

For example, a book is not easily represented as a set of rows in a table. It might be more natural to represent a book as a hierarchy, book — chapter — section — paragraph, and to represent the hierarchy as a set of folders and subfolders.

	
A hierarchical repository index speeds up folder and path traversals. Oracle XML DB includes a patented hierarchical index that speeds up folder and path traversals in Oracle XML DB Repository. The hierarchical repository index is transparent to end users, and lets Oracle XML DB perform folder and path traversals at speeds comparable to or faster than conventional file systems.

	
You can access XML documents in Oracle XML DB Repository using standard connect-access protocols such as FTP, HTTP(S), and WebDAV, in addition to languages SQL, PL/SQL, Java, and C. The repository provides content authors and editors direct access to XML content stored in Oracle Database.

	
A resource in this context is a file or folder, identified by a URL. WebDAV is an IETF standard that defines a set of extensions to the HTTP protocol. It lets an HTTP server act as a file server for a DAV-enabled client. For example, a WebDAV-enabled editor can interact with an HTTP/WebDAV server as if it were a file system. The WebDAV standard uses the term resource to describe a file or a folder. Each resource managed by a WebDAV server is identified by a URL. Oracle XML DB adds native support to Oracle Database for these protocols. The protocols were designed for document-centric operations. By providing support for these protocols, Oracle XML DB lets Microsoft Windows Explorer, Microsoft Office, and products from vendors such as Altova and Adobe work directly with XML content stored in Oracle XML DB Repository. Figure 1-4 shows the root-level directory of the repository as seen from a Web browser.

Figure 1-4 Web Browser View of Oracle XML DB Repository

[image: Description of Figure 1-4 follows]

	
See Also:

Chapter 3, "Using Oracle XML DB"

Hence, WebDAV clients such as Microsoft Windows Explorer can connect directly to Oracle XML DB Repository. No additional Oracle Database or Microsoft-specific software or other complex middleware is needed. End users can work directly with Oracle XML DB Repository using familiar tools and interfaces.

Oracle XML DB Protocol Architecture

One key feature of the Oracle XML DB architecture is that protocols HTTP(S), WebDAV, and FTP are supported, including in a shared server configuration. When the Listener receives an HTTP(S) or FTP request, it hands it off to an Oracle Database shared server process which services it and sends the appropriate response back to the client.You can use the TNS Listener command, lsnrctl status, to verify that HTTP(S) and FTP support has been enabled. Example 1-1 illustrates this.

Example 1-1 Listener Status with FTP and HTTP(S) Protocol Support Enabled

LSNRCTL for 32-bit Windows: Version 11.1.0.5.0 - Production on 20-AUG-2007 16:02:34

Copyright (c) 1991, 2007, Oracle. All rights reserved.

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)(KEY=EXTPROC1521))) STATUS of the LISTENER
--
Alias LISTENER
Version TNSLSNR for 32-bit Windows: Version 11.1.0.5.0 - Beta
Start Date 20-JUN-2007 15:35:40
Uptime 0 days 16 hr. 47 min. 42 sec
Trace Level off
Security ON: Local OS Authentication
SNMP OFF
Listener Parameter File C:\oracle\product\11.1.0\db_1\network\admin\listener.ora
Listener Log File c:\oracle\diag\tnslsnr\quine-pc\listener\alert\log.xml

Listening Endpoints Summary...
(DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(PIPENAME=\\.\pipe\EXTPROC1521ipc)))
(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=quine-pc.example.com)(PORT=1521)))
(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=quine-pc.example.com)
 (PORT=21))(Presentation=FTP)(Session=RAW)) (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=quine-pc.example.com)
 (PORT=443))(Presentation=HTTP)(Session=RAW))
Services Summary...
Service "orcl.example.com" has 1 instance(s).
 Instance "orcl", status READY, has 1 handler(s) for this service...
Service "orclXDB.example.com" has 1 instance(s).
 Instance "orcl", status READY, has 1 handler(s) for this service...
Service "orcl_XPT.example.com" has 1 instance(s).
 Instance "orcl", status READY, has 1 handler(s) for this service...
The command completed successfully

	
See Also:

Chapter 28, "Accessing the Repository using Protocols"

Programmatic Access to Oracle XML DB (Java, PL/SQL, and C)

All Oracle XML DB functionality is accessible from C, PL/SQL, and Java. You can build Web-based applications in various ways, including these:

	
Using servlets and Java Server Pages (JSP). A typical API accesses data using Java Database Connectivity (JDBC).

	
Using Extensible Stylesheet Language (XSL) plus XML Server Pages (XSP). A typical API accesses data in the form of XML documents that are processed using a Document Object Model (DOM) API implementation.

Oracle XML DB supports such styles of application development. It provides Java, PL/SQL, and C implementations of the DOM API.Applications that use JDBC, such as those based on servlets, need prior knowledge of the data structure they are processing. Oracle JDBC drivers allow you to access and update XMLType tables and columns, and call PL/SQL procedures that access Oracle XML DB Repository.Applications that use DOM, such as those based on XSLT transformations, typically require less knowledge of the data structure. DOM-based applications use string names to identify pieces of content, and must dynamically walk through the DOM tree to find the required information. For this, Oracle XML DB supports the use of the DOM API to access and update XMLType columns and tables. Programming to a DOM API is more flexible than programming through JDBC, but it may require more resources at run time.

Oracle XML DB Features

Any database used for managing XML must be able to persist XML documents. Oracle XML DB is capable of much more than this. It provides standard database features such as transaction control, data integrity, replication, reliability, availability, security, and scalability, while also allowing for efficient indexing, querying, updating, and searching of XML documents in an XML-centric manner.

The hierarchical nature of XML presents the traditional relational database with some challenges:

	
In a relational database, the table-row metaphor locates content. Primary-Key Foreign-Key relationships help define the relationships between content. Content is accessed and updated using the table-row-column metaphor.

	
XML, on the other hand, uses hierarchical techniques to achieve the same functionality. A URL is used to locate an XML document. URL-based standards such as XLink are used to define relationships between XML documents. W3C Recommendations such as XPath are used to access and update content contained within XML documents. Both URLs and XPath expressions are based on hierarchical metaphors. A URL uses a path through a folder hierarchy to identify a document, whereas XPath uses a path through the node hierarchy of an XML document to access part of an XML document.

Oracle XML DB addresses these challenges by introducing SQL functions and methods that allow the use of XML-centric metaphors, such as XQuery and XPath expressions for querying and updating XML Documents.

These are the major features of Oracle XML DB:

	
XMLType Data Type

	
XML Schema Support

	
XMLType Storage Models

	
XML/SQL Duality

	
SQL/XML Standard Functions

	
Automatic Rewriting of XQuery and XPath Expressions

	
Overview of Oracle XML DB Repository. This was described.

XMLType Data Type

XMLType is an abstract native SQL data type for XML data. It provides methods that allow operations such as XML Schema validation and XSL transformation of XML content. You can use XMLType as you would any other SQL data type. For example, you can use XMLType when you do any of the following:

	
Create a column in a relational table

	
Declare a PL/SQL variable

	
Define or call a PL/SQL procedure or function

XMLType is an Oracle Database object type, so you can also create a table of XMLType object instances. By default, an XMLType table or column can contain any well-formed XML document.

	
See Also:

Oracle Database Object-Relational Developer's Guide for information about Oracle Database object types and object-relational storage

XMLType Tables and Columns Can Conform to an XML Schema

XMLType tables or columns can be constrained to conform to an XML schema. This has several advantages:

	
The database ensures that only XML documents that validate against the XML schema are stored in the column or table. Invalid documents are excluded.

	
Because XML schema-based data conforms to a predefined XML structure, Oracle XML DB can use the information contained in the XML schema to optimize querying and updating of the data.

	
If you store XML schema-based data using structured storage, Oracle XML DB automatically decomposes it and stores it as a set of object-relational objects. The object-relational model used to store the document is derived from the XML schema.

XMLType API

Data type XMLType provides the following:

	
Constructors, which you can use to create an XMLType instance from a VARCHAR, CLOB, BLOB, or BFILE value.

	
XML-specific methods that operate on XMLType instances. These include the following:

	
extract()– Extract a subset of nodes contained in the XMLType instance.

	
existsNode() – Check whether or not a particular node exists in the XMLType instance.

	
schemaValidate() – Validate the content of the XMLType instance against an XML schema.

	
transform() – Perform an XSL transformation on the content of an XMLType instance.

	
See Also:

Chapter 4, "XMLType Operations" and Chapter 11, "Transforming and Validating XMLType Data"

XML Schema Support

Support for the Worldwide Web Consortium (W3C) XML Schema Recommendation is a key feature in Oracle XML DB. XML Schema specifies the structure, content, and certain semantics of XML documents. It is described in detail at http://www.w3.org/TR/xmlschema-0/.

The W3C Schema Working Group publishes a particular XML schema, often referred to as the schema for schemas, that provides the definition, or vocabulary, of the XML Schema language. An XML schema definition (XSDFoot 1), also called an XML schema, is an XML document that is compliant with the vocabulary defined by the schema for schemas.

An XML schema uses vocabulary defined by the schema for schemas to create a collection of XML Schema type definitions and element declarations that comprise a vocabulary for describing the contents and structure of a new class of XML documents, the XML instance documents that conform to that XML schema.

	
Note:

This manual uses the term "XML schema" (lower-case "s") to reference any XML schema that conforms to the W3C XML Schema (upper-case "S") Recommendation. Since an XML schema is used to define a class of XML documents, the term "instance document" is often used to describe an XML document that conforms to a particular XML schema.

The XML Schema language provides strong typing of elements and attributes. It defines numerous scalar data types. This base set of data types can be extended to define more complex types, using object-oriented techniques such as inheritance and extension. The XML Schema vocabulary also includes constructs that you can use to define complex types, substitution groups, repeating sets, nesting, ordering, and so on. Oracle XML DB supports all of the constructs defined by the XML Schema Recommendation, except for redefines.

XML schemas are commonly used as a mechanism for checking (validating) whether XML instance documents conform with their specifications. Oracle XML DB includes XMLType methods and SQL functions that you can use to validate XML documents against an XML schema.

In Oracle XML DB, you can use a standard data model for all of your data, regardless of how structured it is. You can use XML Schema to automatically create database tables for storing your XML data. XML schema-based data maintains DOM fidelity and allows for significant database optimizations.

XML schema-based data can be stored using any Oracle XML DB XMLType storage model: binary XML storage, structured (object-relational) storage, or unstructured (CLOB) storage. Non-schema-based XML data can be stored using binary XML storage or unstructured storage.

You can also wrap existing relational and object-relational data as XMLType views, which can optionally be XML schema-based. You can map from incoming XML documents to XMLType storage, specifying the mapping using a registered XML schema.

	
See Also:

Chapter 7, "XML Schema Storage and Query: Basic" for more information about using XML schemas with Oracle XML DB

XMLType Storage Models

XMLType is an abstract data type that provides different storage models to best fit your data and your use of it. As an abstract data type, your applications and database queries gain in flexibility: the same interface is available for all XMLType operations. Because different storage (persistence) models are available, you can tailor performance and functionality to best fit the kind of XML data you have and the pattern of its use. One key decision to make when using Oracle XML DB for persisting XML data as XMLType is thus which storage model to use for which XML data.

You can change XMLType storage from one model to another, using database import/export (see Chapter 36, "Exporting and Importing XMLType Tables"). Your application code need not change. You can change XML storage options when tuning your application.

XMLType tables and columns can be stored in these ways:

	
Structured storage – XMLType data is stored as a set of objects. This is also referred to as object-relational storage and object-based persistence.

	
Unstructured storage – XMLType data is stored in Character Large Object (CLOB) instances. This is also referred to as CLOB storage and text-based persistence.

	
Binary XML storage – XMLType data is stored in a post-parse, binary format specifically designed for XML data. Binary XML is compact, post-parse, XML schema-aware XML. This is also referred to as post-parse persistence.

Oracle Database provides two LOB storage options, SecureFile and BasicFile. Either of these can be used with unstructured (CLOB-based) XMLType storage. BasicFile LOB storage is the default for unstructured storage.

For binary XML data, SecureFile is the default storage option.Foot 2 However, if either of the following is true then it is not possible to use SecureFile LOB storage. In that case, BasicFile is the default option for binary XML data:

	
The tablespace for the XMLType table does not use automatic segment space management.

	
A setting in file init.ora prevents SecureFile LOB storage. For example, see parameter DB_SECUREFILE.

	
See Also:

	
Oracle Database SQL Language Reference, section "CREATE TABLE", clause "LOB_storage_clause"

	
Oracle Database SecureFiles and Large Objects Developer's Guide for information about LOB storage options SecureFile and BasicFile

	
Oracle Database Administrator's Guide for information about automatic segment space management

	
Oracle Database Reference for information about parameter DB_SECUREFILE

You can mix storage models, using one model for one part of an XML document and a different model for another part. The mixture of structured and unstructured storage is sometimes called hybrid storage. What is true about structured storage is true about the structured part of hybrid storage. What is true about unstructured storage is true about the unstructured part of hybrid storage.

XMLType has multiple storage models, and some models can be configured in more than one way. Each model has its advantages, depending on the context. Each model has one or more types of index that are appropriate for it.

The first thing to consider, when choosing an XMLType storage model, is the nature of your XML data and the ways you use it. A spectrum exists, with data-centric use of highly structured data at one end, and document-centric use of highly unstructured data at the other. The first question to ask yourself is this: Is your use case primarily data-centric or document-centric?

	
Data-centric – Your data is, in general, highly structured, with relatively static and predictable structure, and your applications take advantage of this structure. Your data conforms to an XML schema.

	
Document-centric – Two cases:

	
Your data is generally without structure or of variable structure. Document structure can vary over time (evolution). Content is mixed (semi-structured): many elements contain both text nodes and child elements. Many XML elements can be absent or can appear in different orders. Documents might or might not conform to an XML schema.

	
Your data relatively structured, but your applications do not take advantage of that structure: they treat the data as if it were without structure.

	
Note:

Please be aware of the context, so as not to confuse discussion of storage options with discussion of the structure of the XML content to be stored. In this book, "structured" and "unstructured" generally refer to XMLType storage options. They refer less often to the nature of your data. "Hybrid" refers to object-relational storage with some embedded CLOB storage. "Semi-structured" refers to XML content, regardless of storage. Unstructured storage is CLOB-based storage, and structured storage is object-relational storage.

Once you've located the data-centric or document-centric half of the spectrum that is appropriate for your use case and data, consider whether your case is at an end of the spectrum or closer to the middle. That is, just how data-centric or document-centric is your case?

	
Employ object-relational (structured) storage for purely data-centric uses. A typical example of this use case would be an employee record (fields employee number, name, address, and so on). Use B-tree indexing with object-relational storage.

	
Employ hybrid storage if your data is composed primarily of invariable XML structures, but it does contain some variable data; that is, it contains a predictably few mixed-content elements. A typical example of this use case would be an employee record that includes a free-form resume. Index the structured and unstructured parts of your data separately, using appropriate indexes for each part.

	
Employ binary XML storage or CLOB-based (unstructured) storage for all document-centric use cases. XMLIndex is the indexing method of choice here.

	
For general indexing of document-centric XML data, use XMLIndex indexes with unstructured components. A typical example of this use case would be an XML Web document or a book chapter.

	
If your data contains some predictable, fixed structures that you query frequently, then you can use XMLIndex indexes with structured components on those parts. A typical example of this use case would be a free-form specification, with author, date, and title fields.

A single XMLIndex index can have both structured and unstructured components, to handle islands of structure within generally unstructured content. A use case where you might use both components would be to support queries that extract an XML fragment from a document whenever some structured data is present. The unstructured index component is used for the fragment extraction. The structured component is used for the SQL WHERE clause that checks for the structured data.

In all cases, you can additionally use Oracle Text indexing for full-text queries. This is especially useful for document-centric cases.

These considerations are summarized in Figure 1-5. The figure shows the spectrum of use cases, from most data-centric, at the left, to most document-centric, at the right. The table in the figure classifies use cases and shows the corresponding storage models and indexing methods.

Figure 1-5 XML Use Cases and XMLType Storage Models

[image: Description of Figure 1-5 follows]

See Chapter 6, "Indexing XMLType Data" for more information about indexing XML data. In particular, note that some types of indexing are complementary or orthogonal, so you can use them together.

The following list and Table 1-3 outline some of the advantages of each storage model.

	
Structured (object-relational) storage advantages over the other storage models include near-relational query and update performance, optimized memory management, reduced storage requirements, B-tree indexing, and in-place updates. These advantages are at a cost of increased processing overhead during ingestion and full retrieval of XML data, and reduced flexibility in the structure of the XML that can be managed by a given XMLType table or column. Structural flexibility is reduced because data and metadata (such as column names) are separated in object-relational storage. Instance structures cannot vary easily. Structured storage is particularly appropriate for highly structured data whose structure does not vary, if this maps to a manageable number of database tables and joins.

	
Unstructured (CLOB) storage enables higher throughput than structured storage when inserting and retrieving entire XML documents. No data conversion is needed, so the same format can be used outside the database. Unstructured storage also provides greater flexibility than structured storage in the structure of the XML that can be stored. Unstructured storage is particularly appropriate for document-centric use cases. These advantages can come at the expense of certain aspects of intelligent processing: in the absence of indexing, there is little that the database can do to optimize queries or updates on XML data that is stored in a CLOB instance. In particular, the cost of XML parsing (often implicit) can significantly impact query performance. Indexing with XMLIndex can improve the performance of queries against unstructured storage.

	
Binary XML storage provides more efficient database storage, updating, indexing, and fragment extraction than unstructured storage. It can provide better query performance than unstructured storage — it does not suffer from the XML parsing bottleneck (it is a post-parse persistence model). Like structured storage, binary XML storage is aware of XML Schema data types and can take advantage of native database data types. Like structured storage, binary XML storage allows for piecewise updates. Because binary XML data can also be used outside the database, it can serve as an efficient XML exchange medium, and you can off load work from the database to increase overall performance in many cases. Like unstructured storage, binary XML data is kept in document order. Like structured storage, data and metadata can, using binary storage, be separated at the database level, for efficiency. Like unstructured storage, however, binary XML storage allows for intermixed data and metadata, which lets instance structures vary. Binary XML storage allows for very complex and variable data, which in the structured-storage model could necessitate using many database tables. Unlike the other XMLType storage models, you can use binary storage for XML schema-based data even if the XML schema is not known beforehand, and you can store multiple XML schemas in the same table and query across common elements.

Table 1-3 XMLType Storage Models: Relative Advantages

	Quality	Structured (Object-Relational) Storage	Binary XML Storage	Unstructured (CLOB) Storage
	
Throughput

	
– XML decomposition can result in reduced throughput when ingesting or retrieving the entire content of an XML document.

	
+ High throughput. Fast DOM loading. There is a slight overhead from the binary XML encoder/decoder.

	
++ High throughput when ingesting and retrieving the entire content of an XML document.

	
Queries

	
++ Extremely fast: relational query performance.

You can create B-tree indexes on the underlying object-relational columns.

	
+ Streaming XPath evaluation avoids DOM construction and allows evaluation of multiple XPath expressions in a single pass. Navigational XPath evaluation is significantly faster than with unstructured storage.

XMLIndex indexing can improve performance of XPath-based queries.

	
– XPath operations are evaluated by constructing a DOM from the CLOB data and using functional evaluation. Expensive when performing operations on large documents or large collections of documents.

XMLIndex indexing can improve performance of XPath-based queries.

	
Update operations (DML)

	
++ Extremely fast: relational columns are updated in place.

	
+ In-place, piecewise update for SecureFile LOB storage.

	
– When any part of the document is updated, the entire document must be written back to disk.

	
Space efficiency (disk)

	
++ Extremely space-efficient.

	
+ Space-efficient.

	
– Consumes the most disk space, due to insignificant whitespace and repeated tags.

	
Data flexibility

	
– Limited flexibility. Only documents that conform to the XML schema can be stored in the XMLType table or column.

	
+ Flexibility in the structure of the XML documents that can be stored in an XMLType column or table.

	
+ Flexibility in the structure of the XML documents that can be stored in an XMLType column or table.

	
XML schema flexibility

	
– An XMLType table can only store documents that conform to the same XML schema.

In-place XML schema evolution is available, with some restrictions.

	
++ Can store XML schema-based or non-schema-based documents. An XMLType table can store documents that conform to any registered XML schemas.

	
++ Can store XML schema-based or non-schema-based documents. Cannot use multiple XML schemas for the same XMLType table.

	
XML fidelity

	
DOM fidelity: A DOM created from an XML document that has been stored in the database is identical to a DOM created from the original document. However, insignificant whitespace may be discarded.

	
DOM fidelity (see structured storage description).

	
+ Document fidelity: Maintains the original XML data, byte for byte. In particular, all original whitespace is preserved.

	
Indexing support

	
+ B-tree, bitmap, Oracle Text, XMLIndex, and function-based indexes.

	
XMLIndex, function-based, and Oracle Text indexes.

	
XMLIndex, function-based, and Oracle Text indexes.

	
Optimized memory management

	
+ XML operations can be optimized to reduce memory requirements.

	
+ XML operations can be optimized to reduce memory requirements.

	
– XML operations on the document require creating a DOM from the document.

	
Validation upon insert

	
XML data is partially validated when it is inserted.

	
+ XML schema-based data is fully validated when it is inserted.

	
XML schema-based data is partially validated when it is inserted.

	
Partitioning

	
+ Available.Foot 1

	
Partition based on virtual columns.

	
XMLType columns can be partitioned if the partitioning key is a relational column.

	
Streams-based replication

	
– Not available.

	
– Not available.

	
++ Available.

	
Compression

	
++ XML elements and attributes can be compressed individually.

	
+ XML data that uses SecureFile LOB storage can be compressed.

	
– Not available.

Footnote 1 Partitioning of ordered collection tables (OCTs) reflects the partitioning of the top-level XMLType tables. Partition maintenance operations on the top-level tables are cascaded to the associated OCTs. See "Partitioning XMLType Tables and Columns Stored Object-Relationally".

	
Note:

When you insert XML schema-based data into binary XMLType columns or tables, the data is fully validated against the XML schema. Insertion fails if the data is invalid.

When XMLType is stored object-relationally, the XMLType instances contain hidden columns that store information about the XML data that does not fit into the SQL object model.

XML/SQL Duality

A key objective of Oracle XML DB is to provide XML/SQL duality. XML programmers can leverage the power of the relational model when working with XML content and SQL programmers can leverage the flexibility of XML when working with relational content. This lets you use the most appropriate tools for a particular business problem.

XML/SQL duality means that the same data can be exposed as rows in a table and manipulated using SQL or exposed as nodes in an XML document and manipulated using techniques such as DOM and XSL transformation. Access and processing techniques are independent of the underlying storage format.

These features provide simple solutions to common business problems. For example:

	
You can use Oracle XML DB SQL functions to generate XML data directly from a SQL query. You can then transform the XML data into other formats, such as HTML, using the database-resident XSLT processor.

	
You can access XML content without converting between different data formats, using SQL queries, on-line analytical processing (OLAP), and business-intelligence/data warehousing operations.

	
You can perform text, spatial data, and multimedia operations on XML content.

SQL/XML Standard Functions

Oracle XML DB provides the SQL functions that are defined in the SQL/XML standard. SQL/XML functions fall into two groups:

	
Functions that you can use to generate XML data from the result of a SQL query. In this book, these are called SQL/XML publishing functions. They are also sometimes called SQL/XML generation functions.

	
Functions that you can use to query and access XML content as part of normal SQL operations. In this book, these are called SQL/XML query and access functions.

Using SQL/XML functions you can address XML content in any part of a SQL statement. These functions use XQuery or XPath expressions to traverse the XML structure and identify the nodes on which to operate. The ability to embed XQuery and XPath expressions in SQL statements greatly simplifies XML access.

	
See Also:

	
Oracle Database SQL Language Reference for information about Oracle support for the SQL/XML standard

	
Chapter 4, "XMLType Operations" and Chapter 5, "Using XQuery with Oracle XML DB" for detailed descriptions of the SQL/XML standard functions for querying XML data

	
Generating XML using SQL Functions for information about SQL/XML standard functions for generating XML data

	
Chapter 3, "Using Oracle XML DB" for additional examples that use SQL/XML standard functions

	
"Standards Supported by Oracle XML DB"

Automatic Rewriting of XQuery and XPath Expressions

SQL/XML functions and XMLType methods use XQuery or XPath expressions to search collections of XML documents and to access a subset of the nodes contained within an XML document. In many cases, Oracle XML DB is able to automatically rewrite such expressions to code that executes directly against the underlying database objects.

How XPath Expressions Are Evaluated by Oracle XML DB

Oracle XML DB provides the following ways of evaluating XPath expressions that operate on XMLType columns and tables, depending on the XML storage method used:

	
Structured storage – Oracle XML DB attempts to translate the XPath expression in a SQL/XML function into an equivalent SQL query. The SQL query references the object-relational data structures that underpin a schema-based XMLType. This process is referred to as XPath rewrite. It can occur when performing queries and UPDATE operations. In addition, B-tree indexes on the underlying object-relational tables can be used to evaluate XPath expressions for structured storage.

	
Unstructured storage – XMLIndex indexes can be used to evaluate XPath expressions for unstructured storage. Use XMLIndex by preference.

	
If an XMLIndex index can be used, then it is used instead of functional evaluation.

	
In the absence of such an index, Oracle XML DB evaluates the XPath expression using functional evaluation. Functional evaluation builds a DOM tree for each XML document, and then resolves the XPath programmatically using the methods provided by the DOM API. If the operation involves updating the DOM tree, the entire XML document must be written back to disk when the operation is completed.

	
Binary XML storage – Oracle XML DB can evaluate XPath expressions in different ways: using XMLIndex and using single-pass streaming. Single-pass streaming means evaluating a set of XPath expressions in a single scan of binary XML data. During query compilation, the cost-based optimizer picks the fastest combination of evaluation methods.

	
See Also:

Table 1-3, "XMLType Storage Models: Relative Advantages"

Rewriting SQL Code That Contains XQuery and XPath Expressions

For XML data that is stored object-relationally, Oracle XML DB can rewrite SQL statements that contain XQuery and XPath expressions to purely relational SQL statements, which are then processed in an optimal manner. In this way, Oracle XML DB insulates the database optimizer from needing to understand the XQuery and XPath languages and the XML data model. The database optimizer processes a rewritten SQL statement the same way it processes other SQL statements. The general term applied to this rewriting process is XPath rewrite.

The database optimizer can thus derive an execution plan based on conventional relational algebra. This in turn means that Oracle XML DB can leverage all of the features of the database, and ensure that SQL statements containing XQuery and XPath expressions are executed in a highly performant and efficient manner. There is little overhead with this rewriting, and Oracle XML DB executes XQuery-based and XPath-based queries at near-relational speed, while preserving the XML abstraction.

When Can XPath Rewrite Occur?

XPath rewrite is possible when all of the following conditions are met:

	
An XMLType column or table uses structured storage techniques to provide the underlying storage model.

	
An XMLType column or table is associated with a registered XML schema.

	
A SQL statement contains SQL/XML functions or XMLType methods that use XPath expressions to refer to one or more nodes within a set of XML documents.

	
The nodes referenced by an XPath expression can be mapped, using the XML schema, to attributes of the underlying SQL object model.

What is the XPath-Rewrite Process?

XPath rewrite performs the following tasks:

	
Identify the set of XPath expressions included in the SQL statement.

	
Translate each XPath expression into an object relational SQL expression that references the tables, types, and attributes of the underlying SQL: 1999 object model.

	
Rewrite the original SQL statement into an equivalent object relational SQL statement.

	
Pass the new SQL statement to the database optimizer for plan generation and query execution.

In certain cases, XPath rewrite is not possible. This normally occurs when there is no SQL equivalent of the XPath expression. In this situation, Oracle XML DB performs a functional evaluation of the XPath expressions.

In general, functional evaluation of a SQL statement is more expensive than XPath rewrite, particularly if the number of documents to be processed is large. The advantage of functional evaluation is that it is always possible, regardless of whether the XMLType data is stored using structured storage and regardless of the complexity of the XPath expression.

Understanding the concept of XPath rewrite, and the conditions under which it can take place, is a key step in developing Oracle XML DB applications that deliver the required levels of scalability and performance.

	
See Also:

Chapter 8, "XPath Rewrite for Structured Storage"

Oracle XML DB Benefits

This section describes several benefits of using Oracle XML DB. Figure 1-6 presents an overview.

Figure 1-6 Oracle XML DB Benefits

[image: Description of Figure 1-6 follows]

Unifying Data and Content

Most application data and Web content is stored in a relational database, a file system, or both. XML data is often used for data exchange, and it can be generated from a relational database or a file system. As the volume of XML data exchanged grows, the cost of regenerating this data grows, and these storage methods become less effective at accommodating XML content.

Figure 1-7 Unifying Data and Content: Some Common XML Architectures

[image: Description of Figure 1-7 follows]

Organizations often manage their structured data and unstructured data differently:

	
Unstructured data, in tables, makes document access transparent and table access complex.

	
Structured data, often in binary large objects (such as in BLOB instances), makes access more complex and table access transparent.

With Oracle XML DB, you can store and manage data that is structured, unstructured, and semi-structured using a standard data model and standard SQL and XML. You can perform SQL operations on XML documents and XML operations on object-relational (such as table) data.

Exploiting Database Capabilities

Oracle Database has the following key database capabilities for working with XML:

	
Indexing and search – Applications use queries such as "find all the product definitions created between March and April 2002", a query that is typically supported by a B-tree index on a date column. Oracle XML DB can enable efficient structured searches on XML data, saving content-management vendors the need to build proprietary query APIs to handle such queries.

	
See Also:

	
Chapter 4, "XMLType Operations"

	
Chapter 12, "Full-Text Search Over XML Data"

	
Chapter 18, "Generating XML Data from the Database"

	
Updates and transaction processing – Commercial relational databases use fast updates of subparts of records, with minimal contention between users trying to update. As traditionally document-centric data participate in collaborative environments through XML, this requirement becomes more important. File or CLOB storage cannot provide the granular concurrency control that Oracle XML DB does.

	
See Also:

Chapter 4, "XMLType Operations"

	
Managing relationships – Data with any structure typically has foreign-key constraints. XML data stores generally lack this feature, so you must implement any constraints in application code. Oracle XML DB enables you to constrain XML data according to XML schema definitions, and hence achieve control over relationships that structured data has always enjoyed.

	
See Also:

	
Chapter 7, "XML Schema Storage and Query: Basic"

	
The purchase-order examples in Chapter 4, "XMLType Operations"

	
Multiple views of data – Most enterprise applications need to group data together in different ways for different modules. This is why relational views are necessary—to allow for these multiple ways to combine data. By allowing views on XML, Oracle XML DB creates different logical abstractions on XML for, say, consumption by different types of applications.

	
See Also:

Chapter 19, "XMLType Views"

	
Performance and scalability – Users expect data storage, retrieval, and query to be fast. Loading a file or CLOB value, and parsing, are typically slower than relational data access. Oracle XML DB dramatically speeds up XML storage and retrieval.

	
See Also:

	
Chapter 2, "Getting Started with Oracle XML DB"

	
Chapter 3, "Using Oracle XML DB"

	
Ease of development – Databases are foremost an application platform that provides standard, easy ways to manipulate, transform, and modify individual data elements. While typical XML parsers give standard read access to XML data they do not provide an easy way to modify and store individual XML elements. Oracle XML DB supports several standard ways to store, modify, and retrieve data. These include XML Schema, XQuery, XPath, DOM, and Java.

	
See Also:

	
Chapter 15, "Java DOM API for XMLType"

	
Chapter 25, "Accessing the Repository using RESOURCE_VIEW and PATH_VIEW"

	
Chapter 26, "Accessing the Repository using PL/SQL"

Exploiting XML Capabilities

If the drawbacks of XML file storage force you to break down XML into database tables and columns, there are several XML advantages you have left:

	
Structure independence: The open content model of XML cannot be captured easily in the pure tables-and-columns world. XML schemas allow global element declarations, not just scoped to a container. Hence you can find a particular data item regardless of where in the XML document it moves to as your application evolves.

	
See Also:

Chapter 7, "XML Schema Storage and Query: Basic"

	
Storage independence: When you use relational design, your client programs must know where your data is stored, in what format, what table, and what the relationships are among those tables. XMLType enables you to write applications without that knowledge and lets database administrators map structured data to physical table and column storage.

	
See Also:

	
Chapter 7, "XML Schema Storage and Query: Basic"

	
Chapter 21, "Accessing Oracle XML DB Repository Data"

	
Ease of presentation: XML is understood natively by Web browsers, many popular desktop applications, and most Internet applications. Relational data is generally not accessible directly from applications. Additional programming is required to make relational data accessible to standard clients. Oracle XML DB stores data as XML and makes it available as XML outside the database. No extra programming is required to display database content.

	
See Also:

	
Chapter 11, "Transforming and Validating XMLType Data".

	
Chapter 18, "Generating XML Data from the Database".

	
Chapter 19, "XMLType Views".

	
Ease of interchange – XML is the language of choice in business-to-business (B2B) data exchange. If you are forced to store XML in an arbitrary table structure, you are using some kind of proprietary translation. Whenever you translate a language, information is lost and interchange suffers. By natively understanding XML and providing DOM fidelity in the storage/retrieval process, Oracle XML DB enables a clean interchange.

	
See Also:

	
Chapter 11, "Transforming and Validating XMLType Data"

	
Chapter 19, "XMLType Views"

Efficient Storage and Retrieval of Complex XML Documents

Users today face a performance barrier when storing and retrieving complex, large, or many XML documents. Oracle XML DB provides high performance and scalability for XML operations. The major performance features are:

	
Native XMLType. See Chapter 4, "XMLType Operations".

	
A lazily evaluated virtual DOM. See Chapter 13, "PL/SQL APIs for XMLType".

	
XQuery, XPath, and XSLT support. This is described in several chapters, including Chapter 4, "XMLType Operations", Chapter 11, "Transforming and Validating XMLType Data", and Chapter 5, "Using XQuery with Oracle XML DB".

	
XML schema caching support. See Chapter 7, "XML Schema Storage and Query: Basic".

	
Indexing, both full-text and XML. See Chapter 6, "Indexing XMLType Data" and Chapter 12, "Full-Text Search Over XML Data".

	
A hierarchical index over Oracle XML DB Repository. See Chapter 21, "Accessing Oracle XML DB Repository Data".

Use XMLType Views If Your Data Is Not XML

XMLType views provide a way for you wrap existing relational and object-relational data in XML format. This is especially useful if, for example, your legacy data is not in XML format but you must migrate it to XML format. Using XMLType views, you need not alter your application code.

	
See Also:

Chapter 19, "XMLType Views"

To use XMLType views, you must first register an XML schema with annotations that represent a bidirectional mapping between XML Schema data types and either SQL data types or binary XML encoding types. You can then create an XMLType view conforming to this mapping, by providing an underlying query that constructs instances of the appropriate types.

Search XML Data using Oracle Text

Oracle Database enables special indexing on XML data, including Oracle Text indexes for section searching, SQL functions to process XML data, aggregation of XML data, and special optimization of queries involving XML data. Oracle SQL functions hasPath and inPath are designed to optimize XML data searches where you can search within XML text for substring matches.

	
See Also:

	
Chapter 12, "Full-Text Search Over XML Data"

	
"Oracle Text Indexes on XML Data"

	
Oracle Text Application Developer's Guide

	
Oracle Text Reference

Build Messaging Applications using Oracle Streams Advanced Queuing

Oracle Streams Advanced Queuing supports the use of:

	
XMLType as a message/payload type, including XML schema-based XMLType

	
Queuing or dequeuing of XMLType messages

	
See Also:

	
Oracle Streams Advanced Queuing User's Guide for information about using XMLType with Oracle Streams Advanced Queuing

	
Chapter 37, "Exchanging XML Data using Oracle Streams AQ"

Standards Supported by Oracle XML DB

Oracle XML DB supports all major XML, SQL, Java, and Internet standards:

	
W3C XML Schema 1.0 Recommendation. You can register XML schemas, validate stored XML content against XML schemas, or constrain XML stored in the server to XML schemas.

	
W3C XQuery 1.0 Recommendation and W3C XPath 2.0 Recommendation. You can search or traverse XML stored inside the database using XQuery and XPath, either from HTTP(S) requests or from SQL.

	
SQL/XML.

	
Java Database Connectivity (JDBC) API. JDBC access to XML is available for Java programmers.

	
W3C XSL 1.0 Recommendation. You can transform XML documents at the server using XSLT.

	
W3C DOM Recommendation Levels 1.0 and 2.0 Core. You can retrieve XML stored in the server as an XML DOM, for dynamic access.

	
Protocol support. You can store or retrieve XML data from Oracle XML DB using Oracle Net or standard protocols such as HTTP(S), FTP, and IETF WebDAV.

	
Java Servlet version 2.2, (except: the servlet WAR file, web.xml, is not supported in its entirety; only one ServletContext; one web-app are currently supported; and stateful servlets are not supported).

	
Web services: SOAP 1.1. You can access XML stored in the server from SOAP requests. You can build, publish, or find Web Services using Oracle XML DB and Oracle9iAS, using WSDL and UDDI. You can use Oracle Streams Advanced Queuing IDAP, the SOAP specification for queuing operations, on XML stored in Oracle Database.

	
W3C XML Linking Language (Xlink) 1.0 Recommendation. You can define various types of links between XML documents.

	
W3C XML Pointer Language (XPointer) Recommendation and XPointer Framework. You can include the content of multiple XML documents or fragments in a single infoset.

	
See Also:

	
"SQL/XML Standard Functions" for more information about the SQL/XML functions

	
Oracle Database SQL Language Reference for information about Oracle support for the SQL/XML standard

	
Chapter 23, "Using XLink and XInclude with Oracle XML DB" for more information about XLink and XPointer support

	
Chapter 28, "Accessing the Repository using Protocols" for more information about protocol support

	
Chapter 32, "Writing Oracle XML DB Applications in Java" for information about using the Java servlet

	
Chapter 37, "Exchanging XML Data using Oracle Streams AQ" and Oracle Streams Advanced Queuing User's Guide for information about using SOAP

Oracle XML DB Technical Support

Besides your regular channels of support through your customer representative or consultant, technical support for Oracle Database XML-enabled technologies is available free through the Discussion Forums section of Oracle Technology Network (OTN):

http://forums.oracle.com/forums/category.jspa?categoryID=51

Oracle XML DB Examples Used in This Manual

This manual contains examples that illustrate the use of Oracle XML DB and XMLType. The examples are based on various database schemas, sample XML documents, and sample XML schemas.

	
See Also:

Appendix A, "Oracle-Supplied XML Schemas and Examples"

Further Oracle XML DB Case Studies and Demonstrations

Visit OTN to view Oracle XML DB examples, white papers, case studies, and demonstrations:

http://www.oracle.com/technetwork/database-features/xmldb/overview/index.html

Comprehensive XML classes on how to use Oracle XML DB are also available. See the Oracle University link on OTN.

Several detailed Oracle XML DB case studies are available on OTN and include the following:

	
Oracle XML DB Downloadable Demonstration. This detailed demonstration illustrates how to use many Oracle XML DB features. Parts of this demonstration are also included in Chapter 3, "Using Oracle XML DB".

	
SAX Loader Application. This demonstrates an efficient way to break up large files containing multiple XML documents outside the database and insert them into the database as a set of separate documents. This is provided as a standalone and a Web-based application.

	
Oracle XML DB Utilities package. This highlights the subprograms provided with the XDB_Utilities package. These subprograms operate on BFILE values, CLOB values, DOM, and Oracle XML DB Resource APIs. With this package, you can perform basic Oracle XML DB foldering operations, read and load XML files into a database, and perform basic DOM operations through PL/SQL.

	
Card Payment Gateway Application. This application uses Oracle XML DB to store all your data in XML format and enables access to the resulting XML data using SQL. It illustrates how a credit card company can store its account and transaction data in the database and also maintain XML fidelity.

	
Survey Application. This application determines what members want from Oracle products. OTN posts the online surveys and studies the responses. This Oracle XML DB application demonstrates how a company can create dynamic, interactive HTML forms, deploy them to the Internet, store the responses as XML, and analyze them using the XML enabled Oracle Database.

Footnote Legend

Footnote 1: xsd is the prefix used in the schema of schemas for the XML Schema namespace, hence it is also the namespace prefix used for the XML Schema data types, such as xsd:string. xsd is also used often as the file extension of XML schema files.

Footnote 2: Prior to Oracle Database 11g Release 2 (11.2.0.2) the BasicFile option was the default for binary XML storage. Use of the BasicFile option for binary XML data is deprecated.

17 Using Oracle Data Provider for .NET with Oracle XML DB

Oracle Data Provider for Microsoft .NET (ODP.NET) is an implementation of a data provider for Oracle Database. It uses Oracle native APIs to offer fast and reliable access to Oracle data and features from any .NET application. It also uses and inherits classes and interfaces available in the Microsoft .NET Framework Class Library. ODP.NET supports the following LOB data types natively with .NET: BLOB, CLOB, NCLOB, and BFILE.

This chapter describes how to use ODP.NET with Oracle XML DB. It contains these topics:

	
ODP.NET XML Support and Oracle XML DB

	
ODP.NET Sample Code

ODP.NET XML Support and Oracle XML DB

ODP.NET supports XML natively in the database, through Oracle XML DB. ODP.NET XML support includes the following features:

	
Stores XML data natively in Oracle Database as XMLType.

	
Accesses relational and object-relational data as XML data from Oracle Database to a Microsoft .NET environment, and processes the XML using Microsoft .NET framework.

	
Saves changes to the database server using XML data.

For the .NET application developer, these features include the following:

	
Enhancements to the OracleCommand, OracleConnection, and OracleDataReader classes. Provides the following XML-specific classes:

	
OracleXmlType

	
OracleXmlStream

	
OracleXmlQueryProperties

	
OracleXmlSaveProperties

ODP.NET Sample Code

Example 17-1 retrieves XMLType data from the database to .NET and outputs the results:

Example 17-1 Retrieve XMLType Data to .NET

//Create OracleCommand and query XMLType
OracleCommand xmlCmd = new OracleCommand();
poCmd.CommandText = "SELECT po FROM po_tab";
poCmd.Connection = conn;
// Execute OracleCommand and output XML results to an OracleDataReader
OracleDataReader poReader = poCmd.ExecuteReader();
// ODP.NET native XML data type object from Oracle XML DB
OracleXmlType poXml;
string str = ""; //read XML results
while (poReader.Read())
{
 // Return OracleXmlType object of the specified XmlType column
 poXml = poReader.GetOracleXmlType(0);
 // Concatenate output for all the records
 str = str + poXml.Value;
} //Output XML results to the screen
Console.WriteLine(str);

	
See Also:

Oracle Data Provider for .NET Developer's Guide for complete information about Oracle .NET support for Oracle XML DB.

21 Accessing Oracle XML DB Repository Data

This chapter describes how to access data in Oracle XML DB Repository using standard protocols such as FTP and HTTP(S)/WebDAV, and other Oracle XML DB resource Application Program Interfaces (APIs). It also introduces you to using RESOURCE_VIEW and PATH_VIEW as the SQL mechanism for accessing and manipulating repository data. It includes a table for comparing repository operations through the various resource APIs.

This chapter contains these topics:

	
Overview of Oracle XML DB Repository

	
Repository Terminology and Supplied Resources

	
Oracle XML DB Repository Resources

	
Two Ways to Access Oracle XML DB Repository Resources

	
Navigational or Path Access to Repository Resources

	
Query-Based Access to Repository Resources

	
Servlet Access to Repository Resources

	
Operations on Repository Resources

Overview of Oracle XML DB Repository

Using Oracle XML DB Repository you can store content in the database in hierarchical structures, as opposed to traditional relational database structures.

Figure 21-1 is an example of a hierarchical structure that shows a typical tree of folders and files in Oracle XML DB Repository. The top of the tree shows /, the root folder.

Figure 21-1 A Folder Tree, Showing Hierarchical Structures in the Repository

[image: Description of Figure 21-1 follows]

	
Note:

Folder /sys is used by Oracle XML DB to maintain system-defined XML schemas, access control lists (ACLs), and so on. Do not add or modify any data in folder /sys.

Foldering lets applications access hierarchically indexed content in the database using the FTP, HTTP(S), and WebDAV protocol standards as if the database content were stored in a file system. You can set access control privileges on repository folders and resources.

This chapter provides an overview of how to access data in Oracle XML DB Repository folders using the standard protocols. It discusses APIs that you can use to access the repository object hierarchy using Java, SQL, and PL/SQL.

	
See Also:

	
Chapter 25, "Accessing the Repository using RESOURCE_VIEW and PATH_VIEW"

	
Chapter 26, "Accessing the Repository using PL/SQL"

	
Chapter 27, "Repository Access Control"

	
Chapter 28, "Accessing the Repository using Protocols"

Two Ways to Access Oracle XML DB Repository Resources

There are two ways to access Oracle XML DB Repository resources:

	
Navigational or path-based access. This uses a hierarchical index of resources. Each resource has one or more unique path names that reflect its location in the hierarchy. You can navigate, using XPath expressions, to any repository resource.

A repository resource can be created as a reference to an existing XMLType object in the database. You can navigate to any such database object using XPath. See "Navigational or Path Access to Repository Resources".

	
SQL access to the repository. This is done using special views that expose resource properties and path names, and map hierarchical access operators onto the Oracle XML DB schema. See "Query-Based Access to Repository Resources".

	
See Also:

	
"Oracle XML DB Repository Access" for guidance on selecting an access method

	
Table 21-3, "Accessing Oracle XML DB Repository: API Options" for a summary comparison of the access methods

A Uniform Resource Locator (URL) is used to access an Oracle XML DB resource. A URL includes the host name, protocol information, path name, and resource name of the object.

Repository Terminology and Supplied Resources

Oracle XML DB Repository is the set of database objects, across all XML and database schemas, that are mapped to path names. It is a connected, directed, acyclicFoot 1 graph of resources, with a single root node (/). Each resource in the graph has one or more associated path names: the repository supports multiple links to a given resource. The repository can be thought of as a file system of objects rather than files.

Repository Terminology

The following list describes terms used in Oracle XML DB Repository:

	
resource – Any object or node in the repository hierarchy. Resources are identified by URLs.

	
See Also:

	
"Overview of Oracle XML DB Repository"

	
"Oracle XML DB Repository Resources"

	
folder – A resource that can contain other resources. Sometimes called a directory.

	
path name – A hierarchical name representing an absolute path to a resource. It is composed of a slash (/) representing the repository root, followed by zero or more path components separated by slashes. A path component cannot be only . or .., but a period (.) can otherwise be used in a path component. A path component is composed of any characters in the database character set except slash (/), backslash (\), and those characters specified in the Oracle XML DB configuration file, /xdbconfig.xml, by configuration parameter /xdbconfig/sysconfig/invalid-pathname-chars.

	
resource name (or link name) – The name of a resource within its parent folder. This is the rightmost path component of a path name. Resource names must be unique within their immediately containing folder, and they are case-sensitive.

	
resource content – The body, or data, of a resource. This is what you get when you treat the resource as a file and ask for its content. This is always of type XMLType.

	
XDBBinary element – An XML element that contains binary data. It is defined by the Oracle XML DB XML schema. XDBBinary elements are stored in the repository whenever unstructured binary data is uploaded into Oracle XML DB.

	
access control list (ACL) – A set of principals (users or roles) that are allowed access to one or more specific resources.

	
See Also:

Chapter 27, "Repository Access Control"

Many terms used by Oracle XML DB have common synonyms in other contexts, as shown in Table 21-1.

Table 21-1 Synonyms for Oracle XML DB Repository Terms

	Synonym	Repository Term	Usage
	
collection

	
folder

	
WebDAV

	
directory

	
folder

	
operating systems

	
privilege

	
privilege

	
permission

	
right

	
privilege

	
various

	
WebDAV folder

	
folder

	
Web folder

	
role

	
group

	
access control

	
revision

	
version

	
RCS, CVS

	
file system

	
repository

	
operating systems

	
hierarchy

	
repository

	
various

	
file

	
resource

	
operating systems

	
binding

	
link

	
WebDAV

Supplied Files and Folders

The list of supplied Oracle XML DB Repository files and folders is as follows. In addition to using these, you can create your own folders and files wherever you want.

/public
/sys
/sys/acls
/sys/acls/all_all_acl.xml
/sys/acls/all_owner_acl.xml
/sys/acls/bootstrap_acl.xml
/sys/acls/ro_all_acl.xml
/sys/apps
/sys/asm
/sys/log
/sys/schemas
/sys/schemas/PUBLIC
/sys/schemas/PUBLIC/www.w3.org
/sys/schemas/PUBLIC/www.w3.org/2001
/sys/schemas/PUBLIC/www.w3.org/2001/xml.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/XDBFolderListing.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/XDBResource.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/XDBSchema.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/XDBStandard.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/acl.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/dav.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/log
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/log/ftplog.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/log/httplog.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/log/xdblog.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/stats.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/xdbconfig.xsd
/xdbconfig.xml

Oracle XML DB Repository Resources

Oracle XML DB Repository resources conform to the Oracle XML DB XML schema XDBResource.xsd. The elements in a resource include those needed to persistently store WebDAV-defined properties, such as creation date, modification date, WebDAV locks, owner, ACL, language, and character set.

	
See Also:

"XDBResource.xsd: XML Schema for Oracle XML DB Resources"

A resource index has a special element called Contents that contains the contents of the resource.

The XML schema for a resource also defines an any element, with maxoccurs attribute unbounded. An any element can contain any element outside of the Oracle XML DB XML namespace. Arbitrary instance-defined properties can be associated with the resource.

Where Is Repository Data Stored?

Oracle XML DB stores Oracle XML DB Repository data in a set of tables and indexes to which you have access. If you register an XML schema and request that the tables be generated by Oracle XML DB, then the tables are created in your database schema. You are then able to see or modify them. Other users cannot see your tables unless you grant them permission to do so.

Names of Generated Tables

The names of the generated tables are assigned by Oracle XML DB, and can be obtained by finding the xdb:defaultTable attribute in your XML schema document (or in the default XML schema document). When you register an XML schema, you can alternatively provide your own table name, instead of using the default name supplied by Oracle XML DB. If the table specifies binary XML storage, then a document is encoded in binary XML format before storing it in the table.

	
See Also:

"Default Tables Created During XML Schema Registration"

Defining Structured Storage for Resources

Applications that need to define structured storage for resources can do so in one of these ways:

	
Subclass the Oracle XML DB resource type. Subclassing Oracle XML DB resources requires privileges on the table XDB$RESOURCE.

	
Store data that conforms to a visible, registered XML schema.

	
See Also:

Chapter 7, "XML Schema Storage and Query: Basic"

Oracle ASM Virtual Folder

The Oracle Automatic Storage Management (Oracle ASM) virtual folder, /sys/asm, is an exception to the description of the previous sections: its contents are Oracle ASM files and folders that are managed automatically by Oracle ASM.

	
See Also:

	
"Accessing Oracle ASM Files using Protocols and Resource APIs – For DBAs"

	
Oracle Automatic Storage Management Administrator's Guide

Path-Name Resolution

The data relating a folder to its contents is managed by the Oracle XML DB hierarchical repository index. This provides a fast mechanism for evaluating path names, similar to the directory mechanisms that are used by operating-system file systems.

Resources that are folders have the Container attribute of element Resource set to true.

To resolve a resource name in a folder, the current user must have the following privileges:

	
resolve privilege on the folder

	
read-properties on the resource in that folder

If the user does not have these privileges, then the user receives an access denied error. Folder listings and other queries do not return a row when the read-properties privilege is denied on its resource.

	
Caution:

Error handling in path-name resolution differentiates between invalid resource names and resources that are not folders, for compatibility with file systems. Because Oracle XML DB resources are accessible from outside Oracle XML DB Repository (using SQL), denying read access on a folder that contains a resource does not prevent read access to that resource.

	
See Also:

"XDBResource.xsd: XML Schema for Oracle XML DB Resources" for the definition of element Resource and its attribute Container

Link Types

Links in Oracle XML DB can be repository links or document links. Repository links can be hard links or weak links. Document links can also be hard links or weak links, when their targets are repository resources. These terms are explained further in the following sections.

Repository and Document Links

In addition to containing resources, a folder resource can contain links to other resources (files or folders). These repository links, sometimes called folder links, are not to be confused with document links, which correspond to the links provided by the XLink and XInclude standards, and which are also supported by Oracle XML DB. Repository links are navigational, folder–child links among repository resources. Document links are arbitrary links among documents that are not necessarily repository resources.

Repository links represent repository hierarchical relationships. Document links represent arbitrary relationships whose semantics derives from the applications that use them. Because they represent repository hierarchical relationships, repository links can be navigated using file system-related protocols. This is not true of document links. Because document links can represent arbitrary relationships, they can also represent repository relationships. When document links thus target resources, they can also be hard or weak.

	
See Also:

Chapter 23, "Using XLink and XInclude with Oracle XML DB" for information about document links

Hard Links and Weak Links

Links that target repository resources can be hard links or weak links. Both hard and weak links are references, or pointers, to physical data — (internal) repository resource identifiers. They do not point to symbolic names or paths to other links. Their targets are resolved at the time of link creation. Because they point directly to resource identifiers, hard and weak links cannot dangle: they remain valid even when their targets are renamed or moved. You need the same privileges to create or delete hard and weak links.

The difference between hard and weak links lies in their relationship to target resource deletion. A target resource is dependent on its hard links, in the sense that it cannot be deleted as long as it remains the target of a hard link. Deletion of a hard link also deletes the resource targeted by the link, if the following are both true:

	
The resource is not versioned.

	
The hard link that was deleted was the last (that is, the only) hard link to the resource.

A weak link has no such hold on a resource: you can delete a resource, even if it is the target of a weak link (as long as it is not the target of a hard link). Because of this, weak links can be used as shortcuts to frequently accessed resources, without impacting deletion of those resources.

There is a dependency in the other direction, however: If you delete a resource that is the target of one or more weak links, then those links are automatically deleted, as well. In this sense, too, weak links cannot dangle. Both hard and weak links provide referential integrity: if a link exists, then so does its target.

Another difference between hard and weak links is this: Hard links to ancestor folders are not permitted, because they introduce cycles. There is no such restriction for weak links: a weak link can target any folder, possibly creating a cycle. It is the set of hard links that define the (acyclic) structure of Oracle XML DB Repository. Weak links represent an additional mapping on top of that basic structure.

You can query the repository path view, PATH_VIEW, to determine the type of a repository link: the link information contains the link type. XMLType column LINK of PATH_VIEW contains this information in element LinkType, which is a child of the root element, LINK. Example 21-1 illustrates this. You can also determine the type of a repository link by using the getLink() callback function on an event handler (LinkIn, LinkTo, UnlinkIn, or UnlinkFrom).

Example 21-1 Querying PATH_VIEW to Determine Link Type

SELECT RESID, XMLCast(XMLQuery('/LINK/LinkType' PASSING LINK RETURNING CONTENT)
 AS VARCHAR2(24)) link_type
 FROM PATH_VIEW WHERE equals_path(RES, '/home/QUINE/purchaseOrder.xml') = 1;

RESID LINK_TYPE
-------------------------------- ---------
DF9856CF2FE0829EE030578CCE0639C5 Weak

	
See Also:

	
"Deleting Repository Resources: Examples"

	
"Query-Based Access to Repository Resources" for information about PATH_VIEW

	
Oracle Database PL/SQL Packages and Types Reference for information on PL/SQL function getLink

Creating a Weak Link with No Knowledge of Folder Hierarchy

Suppose that you want to read a file resource that belongs to one of your colleagues. You cannot create a hard link to that resource, to make it accessible for your use, unless you have the privilege <xdb:resolve> on all of the ancestor folders of that file. Having that privilege would mean that you could see all of your colleague's folder names and the structure of the hierarchy down to the target resource.

However, because weak links essentially represent a mapping on top of the real repository structure, which structure is determined by the set of hard links, you can create a weak link to a resource using just its OID rather than its full, named path (URL). Your colleague can determine the OID path to the file, send you that instead of the named path, and you can create a weak link to the document using that OID path. Example 21-2 and Example 21-3 illustrate this.

Example 21-2 prints the OID path for the file resource /home/QUINE/purchaseOrder.xml. User quine can use this to obtain the OID path to the resource, and then send that path to user curry, who can create a weak link to the resource (Example 21-3).

Example 21-2 Obtaining the OID Path of a Resource

DECLARE
 resoid RAW(16);
 oidpath VARCHAR2(100);
BEGIN
 SELECT RESID INTO :resoid FROM RESOURCE_VIEW
 WHERE equals_path(RES, '/home/QUINE/purchaseOrder.xml') = 1;
 oidpath := DBMS_XDB.createOIDPath(resoid)
 DBMS_OUTPUT.put_line(oidpath);
END;

In Example 21-3, user curry creates a weak link named quinePurchaseOrder.xml in folder /home/CURRY. The target of the link is the OID path that corresponds to the URL /home/QUINE/purchaseOrder.xml. User curry need not be aware of the repository structure that is visible to user quine.

Example 21-3 Creating a Weak Link using an OID Path

CALL DBMS_XDB.Link(/sys/oid/1BDCB46477B59C20E040578CCE0623D3
 '/home/CURRY', 'quinePurchaseOrder.xml',
 DBMS_XDB.LINK_TYPE_WEAK);

Restricting Multiple Hard Links

Sometimes, it is useful to restrict the creation of hard links, disallowing multiple hard links to folders or files (or both). In particular, allowing multiple hard links to file resources, but disallowing multiple hard links to folder resources, provides behavior that is similar to that for some file systems, including UNIX and Linux. This can simplify application design, by, in effect, ensuring that each file resource has a unique, canonical hard-link path to it. In addition, preventing multiple hard links to a resource can lead to query performance improvements.

You can configure the prevention of multiple hard links using the following Boolean parameters in configuration file xdbconfig.xml. The default value of each parameter is true, meaning that multiple hard links can be created.

	
folder-hard-links – Prevent the creation of multiple hard links to a folder resource, if false.

	
non-folder-hard-links – Prevent the creation of multiple hard links to a file resource, if false.

	
See Also:

"Configuring Oracle XML DB using xdbconfig.xml"

Navigational or Path Access to Repository Resources

Oracle XML DB Repository folders support the same protocol standards used by many operating systems. This lets a repository folder act like a native folder (directory) in supported operating-system environments. For example, you can:

	
Use Windows Explorer to open and access Oracle XML DB folders and resources the same way you access other directories or resources in the Windows NT file system, as shown in Figure 21-2.

	
Access Oracle XML DB Repository data using HTTP(S)/WebDAV from an Internet Explorer browser, such as when viewing Web Folders, as shown in Figure 21-3. Figure 21-3 shows a Web browser visiting URL http://xdbdemo:8080/: the server it is connected to is xdbdemo, and its HTTP port number is 8080.

	
See Also:

"Configuring Protocol Server Parameters" for information about configuring the HTTP port number

Figure 21-2 Oracle XML DB Folders in Windows Explorer

[image: Description of Figure 21-2 follows]

Figure 21-3 Accessing Repository Data using HTTP(S)/WebDAV and Navigational Access From IE Browser: Viewing Web Folders

[image: Description of Figure 21-3 follows]

Accessing Oracle XML DB Resources using Internet Protocols

Oracle Net Services provides one way of accessing database resources. Oracle XML DB support for Internet protocols provides another way of accessing database resources.

Where You Can Use Oracle XML DB Protocol Access

Oracle Net Services is optimized for record-oriented data. Internet protocols are designed for stream-oriented data, such as binary files or XML text documents. Oracle XML DB protocol access is a valuable alternative to Net Services in the following scenarios:

	
Direct database access from file-oriented applications using the database like a file system

	
Heterogeneous application server environments that require a uniform data access method (such as XML over HTTP, which is supported by most data servers, including MS SQL Server, Exchange, Notes, many XML databases, stock quote services and news feeds)

	
Application server environments that require data in the form of XML text

	
Web applications that use client-side XSL to format datagrams that do not need much application processing

	
Web applications that use Java servlets that run inside the database

	
Web access to XML-oriented stored procedures

Using Protocol Access

Accessing Oracle XML DB using a protocol proceeds as follows:

	
A connection object is established, and the protocol might read part of the request.

	
The protocol decides whether the user is already authenticated and wants to reuse an existing session or the connection must be re-authenticated (the latter is more common).

	
An existing session is pulled from the session pool, or else a new one is created.

	
If authentication has not been provided, and the request is HTTP get or head, then the session is run as the ANONYMOUS user. If the session has already been authenticated as the ANONYMOUS user, then there is no cost to reuse the existing session. If authentication has been provided, then the database re-authentication routines are used to authenticate the connection.

	
The request is parsed.

	
(HTTP only) If the requested path name maps to a servlet, then the servlet is invoked using Java Virtual Machine (VM). The servlet code writes the response to a response stream or asks XMLType instances to do so.

Retrieving Oracle XML DB Resources

When the protocol indicates that a resource is to be retrieved, the path name to the resource is resolved. Resources being fetched are always streamed out as XML, with the exception of resources containing the XDBBinary element, an element defined to be the XML binary data type, which have their contents streamed out in RAW form.

Storing Oracle XML DB Resources

When the protocol indicates that a resource must be stored, Oracle XML DB checks the document file name extension for .xml, .xsl, .xsd, and so on. If the document is XML, then a pre-parse step is done, whereby enough of the resource is read to determine the XML schemaLocation and namespace of the root element in the document. If a registered schema is located at the schemaLocation URL, and it has a definition for the root element of the current document, then the default table specified for that root element is used to store the contents of the resource.

Using Internet Protocols and XMLType: XMLType Direct Stream Write

Oracle XML DB supports Internet protocols at the XMLType level by using Java XMLType method writeToStream(). This method is implemented natively and writes XMLType data directly to the protocol request stream. This avoids Java VM execution costs and the overhead of converting database data through Java data types and creating Java objects, resulting in significantly higher performance. Performance is further enhanced if the Java code deals only with XML element trees that are close to the root, and does not traverse too many of the leaf elements, so that relatively few Java objects are created.

	
See Also:

Chapter 28, "Accessing the Repository using Protocols"

Accessing Oracle ASM Files using Protocols and Resource APIs – For DBAs

Oracle Automatic Storage Management (Oracle ASM) organizes database files into disk groups for simplified management and added benefits such as database mirroring and I/O balancing.

Repository access using protocols and resource APIs (such as DBMS_XDB) extends to Oracle ASM files. These files are accessed in the virtual repository folder /sys/asm. However, this access is reserved for database administrators (DBAs). It is not intended for developers.

A typical use of such access is to copy Oracle ASM files from one database instance to another. For example, a DBA can view folder /sys/asm in a graphical user interface using the WebDAV protocol, and then drag-and-drop a copy of a data-pump dump set from an Oracle ASM disk group to an operating-system file system.

Virtual folder /sys/asm is created by default during Oracle XML DB installation. If the database is not configured to use Oracle ASM, the folder is empty and no operations are permitted on it.

Folder /sys/asm contains folders and subfolders that follow the hierarchy defined by the structure of an Oracle ASM fully qualified filename:

	
It contains a subfolder for each mounted disk group.

	
A disk-group folder contains a subfolder for each database that uses that disk group. In addition, a disk-group folder may contain files and folders corresponding to Oracle ASM aliases created by the administrator.

	
A database folder contains file-type folders.

	
A file-type folder contains Oracle ASM files, which are binary.

This hierarchy is shown in Figure 21-4, which omits directories created for aliases, for simplicity.

Figure 21-4 Oracle ASM Virtual Folder Hierarchy

[image: Description of Figure 21-4 follows]

The following usage restrictions apply to virtual folder /sys/asm. You cannot:

	
query /sys/asm using SQL

	
put regular files under /sys/asm (you can put only Oracle ASM files there)

	
move (rename) an Oracle ASM file to a different Oracle ASM disk group or to a folder outside Oracle ASM

	
create hard links to existing Oracle ASM files or directories

In addition:

	
You must have the privileges of role DBA to view folder /sys/asm.

	
To access /sys/asm using Oracle XML DB protocols, you must log in as a user other than SYS.

Again, Oracle ASM virtual-folder operations are intended only for database administrators, not developers.

	
See Also:

	
"Using FTP with Oracle ASM Files" for an example of using protocol FTP with /sys/asm

	
Oracle Automatic Storage Management Administrator's Guide for information about the syntax of a fully qualified Oracle ASM filename and details on the virtual folder structure

Query-Based Access to Repository Resources

There are two views that enable SQL access to Oracle XML DB Repository data:

	
PATH_VIEW

	
RESOURCE_VIEW

Table 21-2 summarizes the differences between PATH_VIEW and RESOURCE_VIEW.

Table 21-2 Differences Between PATH_VIEW and RESOURCE_VIEW

	PATH_VIEW	RESOURCE_VIEW
	
Contains link properties

	
No link properties

	
Has one row for each unique path in repository

	
Has one row for each resource in repository

Rows in these two repository views are of XMLType. In the RESOURCE_VIEW, the single path associated with a resource is arbitrarily chosen from among the possible paths that refer to the resource. Oracle XML DB provides SQL functions, such as under_path, that let applications search for the resources contained within a particular folder (recursively), obtain the resource depth, and so on.

DML can be used on the repository views to insert, rename, delete, and update resource properties and contents. Programmatic APIs must be used for other operations, such as creating links to existing resources.

	
See Also:

	
Chapter 25, "Accessing the Repository using RESOURCE_VIEW and PATH_VIEW" for details on SQL access to Oracle XML DB Repository

	
Chapter 27, "Repository Access Control"

Servlet Access to Repository Resources

Oracle XML DB implements Java Servlet API, version 2.2, with the following exceptions:

	
All servlets must be distributable. They must expect to run in different virtual machines.

	
WAR and web.xml files are not supported. Oracle XML DB supports a subset of the XML configurations in this file. An XSL style sheet can be applied to the web.xml to generate servlet definitions. An external tool must be used to create database roles for those defined in the web.xml file.

	
JSP (Java Server Pages) support can be installed as a servlet and configured manually.

	
HTTPSession and related classes are not supported.

	
Only one servlet context (that is, one Web application) is supported.

	
See Also:

Chapter 32, "Writing Oracle XML DB Applications in Java"

Operations on Repository Resources

You can operate on data stored in Oracle XML DB Repository resources using any of the following:

	
Oracle XML DB resource APIs for Java

	
A combination of Oracle XML DB resource views API and Oracle XML DB resource API for PL/SQL

	
Internet protocols (HTTP(S)/WebDAV and FTP) and Oracle XML DB protocol server

	
Oracle XML DB Content Connector and, through it, the standard Content Repository API for Java (JCR).

These access methods can be used equivalently. It does not matter how you add content to the repository or retrieve it from there. For example, you can add content to the repository using SQL or PL/SQL and then retrieve it using an Internet protocol, or the other way around.

Table 21-3 lists common Oracle XML DB Repository operations, and describes how these operations can be accomplished using each of several access methods. The table shows functionality common to the different methods, but not all of the methods are equally suited to any particular task. Unless mentioned otherwise, "resource" in this table can be either a file resource or a folder resource.

Table 21-3 also shows the resource privileges that are required for each operation. In addition to the privileges listed in the table, privilege xdb:read-properties is required on each resource affected by an operation. Operations that affect the parent folder of a resource, in addition to the resource targeted by the operation, also require privilege xdb:read-properties on that parent folder. For example, deleting a resource affects both the resource to delete and its parent folder, so you need privilege xdb:read-properties on both the resource and its parent folder.

Table 21-3 Accessing Oracle XML DB Repository: API Options

	Data Access	SQL and PL/SQL	Protocols	Resource Privileges Required	JCR Support
	
Create resource

	

DBMS_XDB.createResource('/public/T1/testcase.txt',
 'ORIGINAL text');
INSERT INTO RESOURCE_VIEW (ANY_PATH, RES)
SELECT '/public/T1/copy1.txt', RES
 FROM RESOURCE_VIEW
 WHERE equals_path(RES,
 '/public/T1/testcase.txt')
 = 1;

	
HTTP:PUT;

FTP: PUT

	
DAV::bind on parent folder

	
Yes

	
Update resource contents

	

UPDATE RESOURCE_VIEW
SET RES =
updateXML(
 RES,
 '/Resource/Contents/text/text()',
 'NEW text',
 'xmlns =
"http://xmlns.oracle.com/xdb/XDBResource.xsd')
WHERE equals_path(RES,
 '/public/T1/copy1.txt') = 1;

	
HTTP: PUT;

FTP: PUT

	
xdb:write-content on resource

	
Yes

	
Update resource properties

	

UPDATE RESOURCE_VIEW
SET RES =
updateXML(
 RES,
 '/Resource/DisplayName/text()',
 'NewName1.txt',
 'xmlns =
"http://xmlns.oracle.com/xdb/XDBResource.xsd')
WHERE equals_path(RES,
 '/public/T1/copy1.txt') = 1;

	
WebDAV:

PROPPATCH;

	
DAV::write-properties on resource

	
Yes

	
Update resource ACL

	

EXEC DBMS_XDB.setACL(
 '/public/T1/copy1.txt',
 '/sys/acls/all_owner_acl.xml');

	
not applicable

	
DAV::write-acl on resource

	
No

	
Unlink resource (delete if last link)

	

EXEC DBMS_XDB.deleteResource()
DELETE FROM RESOURCE_VIEW
 WHERE equals_path(RES, path) > 0

	
HTTP:

DELETE;

FTP: delete

	
DAV::unbind on parent folder

xdb:unlink-from on resource

	
Yes

	
Forcibly remove all links to resource

	

DBMS_XDB.deleteResource()
DELETE FROM PATH_VIEW
WHERE
XMLCast(
XMLQuery(
 'declare namespace n1=
"http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
 //n1:DisplayName'
 PASSING RES RETURNING CONTENT)
AS VARCHAR2(256))
= 'My resource'

	
FTP:

quote

rm_rf

resource

	
DAV::unbind on all parent folders

xdb:unlink-from on resource

	
Yes

	
Move resource

	

UPDATE PATH_VIEW
 SET path = '/public/T1/copy2.txt'
 WHERE equals_path(RES,
 '/public/T1/copy1.txt')
 = 1;

	
WebDAV:

MOVE;

FTP: rename

	
DAV::unbind on source parent folder

DAV::bind on target parent folder

xdb:unlink-from and xdb:link-to on resource

	
Yes

	
Copy resource

	

INSERT INTO PATH_VIEW (path, RES, link)
 SELECT '/public/T1/copy3.txt', RES, link
 FROM PATH_VIEW
 WHERE equals_path(RES,
 '/public/T1/copy2.txt')
 = 1;

	
WebDAV:

COPY;

	
Copy to new:

DAV::bind on target parent folder

DAV::read on resource

Copy to existing (replacement):

DAV::read on resource

DAV::write-properties and DAV::write-content on existing target resource

	
Yes

	
Create hard link to existing resource

	

EXEC DBMS_XDB.link('/public/T1/copy3.txt',
 '/public/T1',
 'myhardlink');

	
not applicable

	
DAV::bind on parent folder

xdb:link-to on resource

	
No

	
Create weak link to existing resource

	

EXEC DBMS_XDB.link('/public/T1/copy3.txt',
 '/public/T1',
 'myweaklink',
 DBMS_XDB.LINK_TYPE_WEAK);

	
not applicable

	
DAV::bind on parent folder

xdb:link-to on resource

	
No

	
Change owner of resource

	

UPDATE RESOURCE_VIEW
 SET RES =
 updateXML(
 RES,
 '/Resource/Owner/text()',
 'U2')
 WHERE equals_path(RES, '/public/T1/copy3.txt')
 = 1;

	
not applicable

	
DAV::take-ownership on resource

	
Yes

	
Get binary or text representation of resource contents

	

SELECT XDBURIType(path).getBLOB()
 FROM DUAL;

SELECT
XMLQuery(
'declare default element namespace
"http://xmlns.oracle.com/xdb/XDBResource.xsd";(: :)
 $r/Resource/Contents'
PASSING RES AS "r" RETURNING CONTENT)
FROM RESOURCE_VIEW
WHERE equals_path(RES, '/public/T1/copy2.text') = 1;

	
HTTP: GET;

FTP: get

	
xdb:read-contents on resource

	
Yes

	
Get XMLType representation of resource contents

	

SELECT XDBURIType('/public/T1/res.xml').getXML
 FROM DUAL;

SELECT
XMLQuery(
'declare default element namespace
"http://xmlns.oracle.com/xdb/XDBResource.xsd";(: :)
 $r/Resource/Contents/*'
PASSING RES AS "r" RETURNING CONTENT)
FROM RESOURCE_VIEW
WHERE equals_path(RES, '/public/T1/res.xml') = 1;

	
not applicable

	
xdb:read-contents on resource

	
No

	
Get resource properties

	

SELECT
XMLCast(
XMLQuery(
'declare default element namespace
"http://xmlns.oracle.com/xdb/XDBResource.xsd";(: :)
$r/Resource/LastModifier'
PASSING RES AS "r" RETURNING CONTENT)
AS VARCHAR2(128))
FROM RESOURCE_VIEW
WHERE equals_path(RES, '/public/T1/res.xml') = 1;

	
WebDAV:

PROPFIND

(depth = 0);

	
xdb:read-properties on resource

	
Yes

	
List resources in folder

	

SELECT PATH FROM PATH_VIEW
 WHERE under_path(res, '/public/T1') = 1;

	
WebDAV:

PROPFIND

(depth = 0);

	
xdb:read-contents on folder

	
Yes

	
Create folder

	

Call DBMS_XDB.createFolder('/public/T2');

	
WebDAV:

MKCOL;

FTP: mkdir

	
DAV::bind on parent folder

	
Yes

	
Unlink empty folder

	

DBMS_XDB.deleteResource('/public/T2')

	
HTTP:

DELETE;

FTP: rmdir

	
DAV::unbind on parent folder

xdb:unlink-from on resource

	
Yes

	
Forcibly delete folder and all links to it

	

DBMS_XDB.deleteResource(
 '/public/T2',
 DBMS_XDB.DELETE-RECURSIVE_FORCE);

	
not applicable

	
DAV::unbind on all parent folders

xdb:unlink-from on folder resource

	
Yes

	
Get resource with a row lock

	

SELECT ...
 FROM RESOURCE_VIEW
 FOR UPDATE ...;

	
not applicable

	
xdb:read-properties and xdb:read-contents on resource

	
No

	
Add WebDAV lock on resource

	

EXEC DBMS_XDB.LockResource('/public/T1/res.xml',
 TRUE,
 TRUE);

	
WebDAV:

LOCK;

FTP:

quote lock

	
DAV::write-properties on resource

	
No

	
Remove WebDAV lock

	

DECLARE...
BEGIN
 DBMS_XDB.GetLockToken('/public/T1/res.xml',
 locktoken);
 DBMS_XDB.UnlockResource('/public/T1/res.xml',
 locktoken);
END;

	
WebDAV: UNLOCK;

FTP:

quote unlock

	
DAV::write-properties and DAV::unlock on resource

	
No

	
Check out file resource

	

EXEC DBMS_XDB_VERSION.checkOut(
 '/public/T1/res.xml');

	
not applicable

	
DAV::write-properties on resource

	
No

	
Check in file resource

	

EXEC DBMS_XDB_VERSION.checkIn(
 '/public/T1/res.xml');

	
not applicable

	
DAV::write-properties on resource

	
No

	
Uncheck out file resource

	

EXEC DBMS_XDB_VERSION.unCheckOut(
 '/public/T1/res.xml');

	
not applicable

	
DAV::write-properties on resource

	
No

	
Make file resource versioned

	

EXEC DBMS_XDB_VERSION.makeVersioned(
 '/public/T1/res.xml');

	
not applicable

	
DAV::write-properties on resource

	
No

	
Remove an event handler

	
DBMS_XEVENT.remove

	
not applicable

	
xdb:write-config on resource or parent folder (depending on the context)

	
No

	
Commit changes

	

COMMIT;

	
Automatic commit after each request

	
not applicable

	
Yes

	
Rollback changes

	

ROLLBACK;

	
not applicable

	
not applicable

	
Yes

	
See Also:

	
Chapter 25, "Accessing the Repository using RESOURCE_VIEW and PATH_VIEW"

	
Chapter 26, "Accessing the Repository using PL/SQL"

	
Chapter 28, "Accessing the Repository using Protocols"

	
Chapter 31, "Using Oracle XML DB Content Connector"

	
Oracle Database PL/SQL Packages and Types Reference for information about PL/SQL package DBMS_XDB

	
Oracle Database PL/SQL Packages and Types Reference for information about PL/SQL package DBMS_XDB_VERSION

	
Oracle Database PL/SQL Packages and Types Reference for information about PL/SQL package DBMS_XEVENT

Footnote Legend

Footnote 1: The graph is established by the hard links that define the repository structure, and cycles are not permitted using hard links. You can, however, introduce cycles using weak links. See "Hard Links and Weak Links".

[image: Oracle Corporation]

20 Accessing Data Through URIs

This chapter describes how to generate and store URLs in the database and how to retrieve data pointed to by those URLs. Three kinds of URIs are discussed:

	
DBUris – addresses to relational data in the database

	
XDBUris – addresses to data in Oracle XML DB Repository

	
HTTPUris – Web addresses that use the Hyper Text Transfer Protocol (HTTP(S))

This chapter contains these topics:

	
Overview of Oracle XML DB URL Features

	
URIs and URLs

	
URIType and its Subtypes

	
Accessing Data using URIType Instances

	
XDBUris: Pointers to Repository Resources

	
DBUris: Pointers to Database Data

	
Creating New Subtypes of URIType using Package URIFACTORY

	
SYS_DBURIGEN SQL Function

	
DBUriServlet

Overview of Oracle XML DB URL Features

The two main features described in this chapter are these:

	
Using paths as an indirection mechanism – You can store a path in the database and then access its target indirectly by referring to the path. The paths in question are various kinds of Uniform Resource Identifier (URI).

	
Using paths that target database data to produce XML documents – One kind of URI that you can use for indirection in particular, a DBUri, provides a convenient XPath notation for addressing database data. You can use a DBUri to construct an XML document that contains database data and whose structure reflects the database structure.

URIs and URLs

In developing Web-based XML applications, you often refer to data located on a network using Uniform Resource Identifiers, or URIs. A URL, or Uniform Resource Locator, is a URI that accesses an object using an Internet protocol.

A URI has two parts, separated by a number sign (#):

	
A URL part, that identifies a document.

	
A fragment part, that identifies a fragment within the document. The notation for the fragment depends on the document type. For HTML documents, it is an anchor name. For XML documents, it is an XPath expression.

These are typical URIs:

	
For HTML – http://www.example.com/document1#some_anchor, where some_anchor is a named anchor in the HTML document.

	
For XML – http://www.example.com/xml_doc#/po/cust/custname, where:

	
http://www.example.com/xml_doc identifies the location of the XML document.

	
/po/cust/custname identifies a fragment within the document. This portion is defined by the W3C XPointer recommendation.

	
See Also:

	
http://www.w3.org/2002/ws/Activity.html an explanation of HTTP(S) URL notation

	
http://www.w3.org/TR/xpath for an explanation of the XML XPath notation

	
http://www.w3.org/TR/xptr/ for an explanation of the XML XPointer notation

	
http://xml.coverpages.org/xmlMediaMIME.html for a discussion of MIME types

URIType and its Subtypes

Oracle XML DB can represent paths of various kinds as database objects. These are the available path object types:

	
HTTPURIType – An object of this type is called an HTTPUri and represents a URL that begins with http://. With HTTPURIType, you can create objects that represent links to remote Web pages (or files) and retrieve those Web pages by calling object methods. Applications using HTTPUriType must have the proper access privileges. HTTPUriType implements the Hyper Text Transfer Protocol (HTTP(S)) for accessing remote Web pages. HTTPURIType uses package UTL_HTTP to fetch data, so session settings and access control for this package can also be used to influence HTTP fetches.

	
See Also:

	
"HTTPURIType PL/SQL Method GETCONTENTTYPE()"

	
Oracle Database Security Guide for information about managing fine-grained access to external network services

	
DBURIType – An object of this type is called a DBUri and represents a URI that targets database data – a table, one or more rows, or a single column. With DBURIType, you can create objects that represent links to database data, and retrieve such data as XML by calling object methods. A DBUri uses a simple form of XPath expression as its URI syntax – for example, the following XPath expression is a DBUri reference to the row of table HR.employees where column first_name has value Jack:

/HR/EMPLOYEES/ROW[FIRST_NAME="Jack"]

	
See Also :

DBUris: Pointers to Database Data

	
XDBURIType – An object of this type is called an XDBUri, and represents a URI that targets a resource in Oracle XML DB Repository. With XDBURIType, you can create objects that represent links to repository resources, and retrieve all or part of any resource by calling object methods. The URI syntax for an XDBUri is a repository resource address optionally followed by an XPath expression. For example, /public/hr/doc1.xml#/purchaseOrder/lineItem is an XDBUri reference to the lineItem child element of the root element purchaseOrder in repository file doc1.xml in folder /public/hr.

	
See Also :

XDBUris: Pointers to Repository Resources

Each of these object types is derived from an abstract object type, URIType. As an abstract type, it has no instances (objects). Only its subtypes have instances.

Type URIType provides the following features:

	
Unified access to data stored inside and outside the server. Because you can use URIType values to store pointers to HTTP(S) and DBUris, you can create queries and indexes without worrying about where the data resides.

	
Mapping of URIs in XML Documents to Database Columns. When an XML document is broken up and stored in object-relational tables and columns, any URIs contained in the document are mapped to database columns of the appropriate URIType subtype.

You can reference data stored in relational columns and expose it to the external world using URIs. Oracle Database provides a standard servlet, DBUriServlet, that interprets DBUris. It also provides PL/SQL package UTL_HTTP and Java class java.net.URL, which you can use to fetch URL references.

URIType columns can be indexed natively in Oracle Database using Oracle Text – no special data store is needed.

	
See Also:

	
"Creating New Subtypes of URIType using Package URIFACTORY" for information about defining new URIType subtypes

	
Chapter 6, "Indexing XMLType Data"

DBUris and XDBUris – What For?

The following are typical uses of DBUris and XDBUris:

	
You can reference XSLT style sheets from within database-generated Web pages. PL/SQL package DBMS_METADATA uses DBUris to reference XSL style sheets. An XDBUri can be used to reference XSLT style sheets stored in Oracle XML DB Repository.

	
You can reference HTML text, images and other data stored in the database. URLs can be used to point to data stored in database tables or in repository folders.

	
You can improve performance by bypassing the Web server. Replace a global URL in your XML document with a reference to the database, and use a servlet, a DBUri, or an XDBUri to retrieve the targeted content. Using a DBUri or an XDBUri generally provides better performance than using a servlet, because you interact directly with the database rather than through a Web server.

	
With a DBUri, you can access an XML document in the database without using SQL.

	
Whenever a repository resource is stored in a database table to which you have access, you can use either an XDBUri or a DBUri to access its content.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference, "DBMS_METADATA package"

URIType Methods

Abstract object type URIType includes PL/SQL methods that can be used with each of its subtypes. Each of these methods can be overridden by any of the subtypes. Table 20-1 lists the URIType PL/SQL methods. In addition, each of the subtypes has a constructor with the same name as the subtype.

Table 20-1 URIType PL/SQL Methods

	URIType Method	Description
	

getURL()

	
Returns the URL of the URIType instance.

Use this method instead of referencing a URL directly. URIType subtypes override this method to provide the correct URL. For example, HTTPURIType stores a URL without prefix http://. Method getURL() then prepends the prefix and returns the entire URL.

	

getExternalURL()

	
Similar to getURL(), but getExternalURL() escapes characters in the URL, to conform with the URL specification. For example, spaces are converted to the escaped value %20.

	

getContentType()

	
Returns the MIME content type for the URI.

HTTPUri: To return the content type, the URL is followed and the MIME header examined.

DBUri: The returned content type is either text/plain (for a scalar value) or text/xml (otherwise).

XDBUri: The value of the ContentType metadata property of the repository resource is returned.

	

getCLOB()

	
Returns the target of the URI as a CLOB value. The database character set is used for encoding the data.

DBUri: XML data is returned (unless node-test text() is used, in which case the targeted data is returned as is). When a BLOB column is targeted, the binary data in the column is translated as hexadecimal character data.

	

getBLOB()

	
Returns the target of the URI as a BLOB value. No character conversion is performed, and the character encoding is that of the URI target. This method can also be used to fetch binary data.

DBUri: When applied to a DBUri that targets a BLOB column, getBLOB() returns the binary data translated as hexadecimal character data. When applied to a DBUri that targets non-binary data, the data is returned in the database character set.

	

getXML()

	
Returns the target of the URI as an XMLType instance. Using this, an application that performs operations other than getCLOB() and getBLOB() can use XMLType methods to do those operations. This throws an exception if the URI does not target a well-formed XML document.

	

createURI()

	
Constructs an instance of one of the URIType subtypes.

HTTPURIType PL/SQL Method GETCONTENTTYPE()

HTTPURIType PL/SQL method getContentType() returns the MIME information for its targeted document. You can use this information to decide whether to retrieve the document as a BLOB value or a CLOB value. For example, you might treat a Web page with a MIME type of x/jpeg as a BLOB value, and one with a MIME type of text/plain or text/html as a CLOB value.

Example 20-1 tests the HTTP content type to determine whether to retrieve data as a CLOB or BLOB value. The content-type data is the HTTP header, for HTTPURIType, or the metadata of the database column, for DBURIType.

Example 20-1 Using HTTPURIType PL/SQL Method GETCONTENTTYPE()

DECLARE
 httpuri HTTPURIType;
 y CLOB;
 x BLOB;
BEGIN
 httpuri := HTTPURIType('http://www.oracle.com/index.html');
 DBMS_OUTPUT.put_line(httpuri.getContentType());
 IF httpuri.getContentType() = 'text/html'
 THEN
 y := httpuri.getCLOB();
 END IF;
 IF httpuri.getContentType() = 'application-x/bin'
 THEN
 x := httpuri.getBLOB();
 END IF;
END;
/
text/html

DBURIType PL/SQL Method GETCONTENTTYPE()

PL/SQL method getContentType() returns the MIME information for a URL. If a DBUri targets a scalar value, then the MIME content type returned is text/plain. Otherwise, the type returned is text/xml.

CREATE TABLE dbtab (a VARCHAR2(20), b BLOB);

DBUris corresponding to the following XPath expressions have content type text/xml, because each targets a complete column of XML data.

	
/HR/DBTAB/ROW/A

	
/HR/DBTAB/ROW/B

DBUris corresponding to the following XPath expressions have content type text/plain, because each targets a scalar value.

	
/HR/DBTAB/ROW/A/text()

	
/HR/DBTAB/ROW/B/text()

DBURIType PL/SQL Method GETCLOB()

When PL/SQL method getCLOB() is applied to a DBUri, the targeted data is returned as XML data, using the targeted column or table name as an XML element name. If the target XPath uses node-test text(), then the data is returned as text without an enclosing XML tag. In both cases, the returned data is in the database character set.

For example: If applied to a DBUri with XPath /HR/DBTAB/ROW/A/text(), where A is a non-binary column, the data in column A is returned as is. Without XPath node-test text(), the result is the data wrapped in XML:

<HR><DBTAB><ROW><A>...data_in_column_A...</ROW></DBTAB></HR>

When applied to a DBUri that targets a binary (BLOB) column, the binary data in the column is translated as hexadecimal character data.

For example: If applied to a DBUri with XPath /HR/DBTAB/ROW/B/text(), where B is a BLOB column, the targeted binary data is translated to hexadecimal character data and returned. Without XPath node-test text(), the result is the translated data wrapped in XML:

<HR><DBTAB><ROW>...data_translated_to_hex...</ROW></DBTAB></HR>

DBURIType PL/SQL Method GETBLOB()

When applied to a DBUri that targets a BLOB column, getBLOB() returns the binary data translated as hexadecimal character data. When applied to a DBUri that targets non-binary data, getBLOB() returns the data (as a BLOB value) in the database character set.

For example, consider table dbtab:

CREATE TABLE dbtab (a VARCHAR2(20), b BLOB);

When getBLOB() is applied to a DBUri corresponding to XPath expression /HR/DBTAB/ROW/B, it returns a BLOB value containing an XML document with root element B whose content is the hexadecimal-character translation of the binary data of column B.

When getBLOB() is applied to a DBUri corresponding to XPath expression /HR/DBTAB/ROW/B/text(), it returns a BLOB value containing only the hexadecimal-character translation of the binary data of column B.

When getBLOB() is applied to a DBUri corresponding to XPath expression /HR/DBTAB/ROW/A/text(), which targets non-binary data, it returns a BLOB value containing the data of column A, in the database character set.

Accessing Data using URIType Instances

To use instances of URIType subtypes for indirection, you generally store such instances in the database and then use them in queries with a PL/SQL method such as getCLOB() to retrieve the targeted data. This section illustrates how to do this.

You can create database columns using URIType or any of its subtypes, or you can store just the text of each URI as a string and then create the needed URIType instances on demand, when the URIs are accessed. You can store objects of different URIType subtypes in the same URIType database column.

You can also define your own object types that inherit from the URIType subtypes. Deriving new types lets you use custom techniques to retrieve, transform, or filter data.

	
See Also:

	
"Creating New Subtypes of URIType using Package URIFACTORY" for information about defining new URIType subtypes

	
"XSL Transformation and Oracle XML DB" for information about transforming XML data

Example 20-2 stores an HTTPUri and a DBUri (instances of URIType subtypes HTTPURIType and DBURIType) in the same database column of type URIType. A query retrieves the data addressed by each of the URIs. The first URI is a Web-page URL. The second URI references data in table employees of standard database schema HR. (For brevity, only the beginning of the Web page is shown.)

Example 20-2 Creating and Querying a URI Column

CREATE TABLE uri_tab (url URIType);
Table created.

INSERT INTO uri_tab VALUES (HTTPURIType.createURI('http://www.oracle.com'));
1 row created.

INSERT INTO uri_tab VALUES (DBURIType.createURI(
 '/HR/EMPLOYEES/ROW[FIRST_NAME="Jack"]'));
1 row created.

SELECT e.url.getCLOB() FROM uri_tab e;

E.URL.GETCLOB()

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
. . .

<?xml version="1.0"?>
 <ROW>
 <EMPLOYEE_ID>177</EMPLOYEE_ID>
 <FIRST_NAME>Jack</FIRST_NAME>
 <LAST_NAME>Livingston</LAST_NAME>
 <EMAIL>JLIVINGS</EMAIL>
 <PHONE_NUMBER>011.44.1644.429264</PHONE_NUMBER>
 <HIRE_DATE>23-APR-06</HIRE_DATE>
 <JOB_ID>SA_REP</JOB_ID>
 <SALARY>8400</SALARY>
 <COMMISSION_PCT>.2</COMMISSION_PCT>
 <MANAGER_ID>149</MANAGER_ID>
 <DEPARTMENT_ID>80</DEPARTMENT_ID>
 </ROW>

2 rows selected.

To use URIType PL/SQL method createURI(), you must know the particular URIType subtype to use. PL/SQL method getURI() of package URIFACTORY lets you instead use the flexibility of late binding, determining the particular type information at run time.

URIFACTORY.getURI() takes as argument a URI string. It returns a URIType instance of the appropriate subtype (HTTPURIType, DBURIType, or XDBURIType), based on the form of the URI string:

	
If the URI starts with http://, then getURI() creates and returns an HTTPUri.

	
If the URI starts with either /oradb/ or /dburi/, then getURI() creates and returns a DBUri.

	
Otherwise, getURI() creates and returns an XDBUri.

Example 20-3 is similar to Example 20-2, but it uses two different ways to obtain documents targeted by URIs:

	
PL/SQL method SYS.URIFACTORY.getURI() with absolute URIs:

	
an HTTPUri that targets HTTP address http://www.oracle.com

	
a DBUri that targets database address /oradb/HR/EMPLOYEES/ROW[EMPLOYEE_ID=200]

	
Constructor SYS.HTTPURIType() with a relative URL (no http://). The same HTTPUri is used as for the absolute URI: the Oracle home page.

In Example 20-3, the URI strings passed to getURI() are hard-coded, but they could just as easily be string values that are obtained by an application at run time.

Example 20-3 Using Different Kinds of URI, Created in Different Ways

CREATE TABLE uri_tab (docUrl SYS.URIType, docName VARCHAR2(200));
Table created.

-- Insert an HTTPUri with absolute URL into SYS.URIType using URIFACTORY.
-- The target is Oracle home page.
INSERT INTO uri_tab VALUES
 (SYS.URIFACTORY.getURI('http://www.oracle.com'), 'AbsURL');
1 row created.

-- Insert an HTTPUri with relative URL using constructor SYS.HTTPURIType.
-- Note the absence of prefix http://. The target is the same.
INSERT INTO uri_tab VALUES (SYS.HTTPURIType('www.oracle.com'), 'RelURL');
1 row created.

-- Insert a DBUri that targets employee data from table HR.employees.
INSERT INTO uri_tab VALUES
 (SYS.URIFACTORY.getURI('/oradb/HR/EMPLOYEES/ROW[EMPLOYEE_ID=200]'), 'Emp200');
1 row created.

-- Extract all of the documents.
SELECT e.docUrl.getCLOB(), docName FROM uri_tab e;

E.DOCURL.GETCLOB()

DOCNAME

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
. . .
AbsURL

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
. . .
RelURL

<?xml version="1.0"?>
 <ROW>
 <EMPLOYEE_ID>200</EMPLOYEE_ID>
 <FIRST_NAME>Jennifer</FIRST_NAME>
 <LAST_NAME>Whalen</LAST_NAME>
 <EMAIL>JWHALEN</EMAIL>
 <PHONE_NUMBER>515.123.4444</PHONE_NUMBER>
 <HIRE_DATE>17-SEP-03</HIRE_DATE>
 <JOB_ID>AD_ASST</JOB_ID>
 <SALARY>4400</SALARY>
 <MANAGER_ID>101</MANAGER_ID>
 <DEPARTMENT_ID>10</DEPARTMENT_ID>
 </ROW>
Emp200

3 rows selected.

-- In PL/SQL
CREATE OR REPLACE FUNCTION returnclob
 RETURN CLOB
 IS a SYS.URIType;
BEGIN
 SELECT docUrl INTO a FROM uri_Tab WHERE docName LIKE 'Emp200%';
 RETURN a.getCLOB;
END;
/
Function created.

SELECT returnclob() FROM DUAL;

RETURNCLOB()

<?xml version="1.0"?>
 <ROW>
 <EMPLOYEE_ID>200</EMPLOYEE_ID>
 <FIRST_NAME>Jennifer</FIRST_NAME>
 <LAST_NAME>Whalen</LAST_NAME>
 <EMAIL>JWHALEN</EMAIL>
 <PHONE_NUMBER>515.123.4444</PHONE_NUMBER>
 <HIRE_DATE>17-SEP-03</HIRE_DATE>
 <JOB_ID>AD_ASST</JOB_ID>
 <SALARY>4400</SALARY>
 <MANAGER_ID>101</MANAGER_ID>
 <DEPARTMENT_ID>10</DEPARTMENT_ID>
 </ROW>

1 row selected.

XDBUris: Pointers to Repository Resources

XDBURIType is a subtype of URIType that provides a way to expose resources in Oracle XML DB Repository using URIs. Instances of type XDBURIType are called XDBUris.

XDBUri URI Syntax

The URL portion of an XDBUri URI is the hierarchical address of the targeted repository resource – it is a repository path (not an XPath expression).

The optional fragment portion of the URI uses the XPath syntax, and is separated from the URL part by a number-sign (#). It is appropriate only if the targeted resource is an XML document, in which case the fragment portion targets one or more parts of the XML document. If the targeted resource is not an XML document, then omit the fragment and number-sign.

The following are examples of XDBUri URIs:

	
/public/hr/image27.jpg

	
/public/hr/doc1.xml#/PurchaseOrder/LineItem

Based on the form of these URIs:

	
/public/hr is a folder resource in Oracle XML DB Repository.

	
image27.jpg and doc1.xml are resources in folder /public/hr.

	
Resource doc1.xml is a file resource, and it contains an XML document.

	
The XPath expression /PurchaseOrder/LineItem refers to the LineItem child element in element PurchaseOrder of XML document doc1.xml.

You can create an XDBUri using PL/SQL method getURI() of package URIFACTORY.

XDBURIType is the default URIType used when generating instances using URIFACTORY PL/SQL method getURI(), unless the URI has one of the recognized prefixes http://, /dburi, or /oradb.

For example, if resource doc1.xml is present in repository folder /public/hr, then the following query returns an XDBUri that targets that resource.

SELECT SYS.URIFACTORY.getURI('/public/hr/doc1.xml') FROM DUAL;

It is the lack of a special prefix that determines that the type is XDBURIType, not any particular resource file extension or the presence of # followed by an XPath expression. Even if the resource were named foo.bar instead of doc1.xml, the returned URIType instance would still be an XDBUri.

XDBUri Examples

Example 20-4 creates an XDBUri, inserts values into a purchase-order table, and then selects all of the purchase orders. Because there is no special prefix used in the URI passed to URIFACTORY.getURI(), the created URIType instance is an XDBUri.

Example 20-4 Access a Repository Resource by URI using an XDBUri

DECLARE
res BOOLEAN;
postring VARCHAR2(100):= '<?xml version="1.0"?>
<ROW>
<PO>999</PO>
</ROW>';
BEGIN
res:=DBMS_XDB.createFolder('/public/orders/');
res:=DBMS_XDB.createResource('/public/orders/po1.xml', postring);
END;
/
PL/SQL procedure successfully completed.

CREATE TABLE uri_tab (poUrl SYS.URIType, poName VARCHAR2(1000));
Table created.

-- Create an abstract type column so any type of URI can be used
-- Insert an absolute URL into poUrl.
-- The factory will create an XDBURIType because there is no prefix.
-- Here, po1.xml is an XML file that is stored in /public/orders/
-- of the XML repository.
INSERT INTO uri_tab VALUES
 (URIFACTORY.getURI('/public/orders/po1.xml'), 'SomePurchaseOrder');
1 row created.

-- Get all the purchase orders
SELECT e.poUrl.getCLOB(), poName FROM uri_tab e;

E.POURL.GETCLOB()

PONAME

<?xml version="1.0"?>
<ROW>
<PO>999</PO>
</ROW>
SomePurchaseOrder

1 row selected.

-- Using PL/SQL, you can access table uri_tab as follows:
CREATE OR REPLACE FUNCTION returnclob
 RETURN CLOB
 IS a URIType;
BEGIN
 -- Get absolute URL for purchase order named like 'Some%'
 SELECT poUrl INTO a FROM uri_tab WHERE poName LIKE 'Some%';
 RETURN a.getCLOB();
END;
/
Function created.

SELECT returnclob() FROM DUAL;

RETURNCLOB()

<?xml version="1.0"?>
<ROW>
<PO>999</PO>
</ROW>

1 row selected.

Because PL/SQL method getXML() returns an XMLType instance, you can use it with SQL/XML functions such as XMLQuery. The query in Example 20-5 illustrates this. The query retrieves all purchase orders numbered 999.

Example 20-5 Using PL/SQL Method GETXML() with XMLCAST and XMLQUERY

SELECT e.poUrl.getCLOB() FROM uri_tab e
 WHERE XMLCast(XMLQuery('$po/ROW/PO'
 PASSING e.poUrl.getXML() AS "po"
 RETURNING CONTENT)
 AS VARCHAR2(24))
 = '999';

E.POURL.GETCLOB()

<?xml version="1.0"?>
<ROW>
<PO>999</PO>
</ROW>

1 row selected.

DBUris: Pointers to Database Data

A DBUri is a URI that targets database data. As for all instances of URIType subtypes, a DBUri provides an indirection mechanism for accessing data. In addition, DBURIType lets you do the following:

	
Address database data using XPath notation. This, in effect, lets you visualize and access the database as if it were XML data.

For example, a DBUri can use an expression such as /HR/EMPLOYEES/ROW[FIRST_NAME="Jack"] to target the row of table HR.employees where column first_name has value Jack.

	
Construct an XML document that contains database data targeted by a DBUri and whose structure reflects the database structure.

For example: A DBUri with XPath /HR/DBTAB/ROW/A can be used to construct an XML document that wraps the data of column A in XML elements that reflect the database structure and are named accordingly:

<HR><DBTAB><ROW><A>...data_in_column_A...</ROW></DBTAB></HR>

A DBUri does not reference a global location as does an HTTPUri. You can, however, also access objects addressed by a DBUri in a global manner, by appending the DBUri to an HTTPUri that identifies a servlet that handles DBUris – see "DBUriServlet" .

Viewing the Database as XML Data

You can access only those database schemas to which you have been granted access privileges. This portion of the database is, in effect, your own view of the database.

Using DBURIType, you can have corresponding XML views of the database, which are portions of the database to which you have access, presented in the form of XML data. This means all kinds database data, not just data that is stored as XML. When visualized this way, the database data is effectively wrapped in XML elements, resulting in one or more XML documents.

Such "XML views" are not database views, in the technical sense of the term. "View" here means only an abstract perspective that can be useful for understanding DBURIType. You can think of DBURIType as providing a way to visualize and access the database as if it were XML data.

However, DBURIType does not just provide an exercise in visualization and an additional means to access database data. Each "XML view" can be realized as an XML document – that is, you can use DBURIType to generate XML documents using database data.

All of this is another way of saying that DBURIType lets you use XPath notation to 1) address and access any database data to which you have access and 2) construct XML representations of that data.

Figure 20-1 illustrates the relation between a relational table, HR.employees, a corresponding XML view of a portion of that table, and the corresponding DBUri URI (a simple XPath expression). In this case, the portion of the data exposed as XML is the row where employee_id is 200. The URI can be used to access the data and construct an XML document that reflects the "XML view".

Figure 20-1 A DBUri Corresponds to an XML Visualization of Relational Data

[image: Description of Figure 20-1 follows]

The XML elements in the "XML view" and the steps in the URI XPath expression both reflect the database table and column names. Note the use of ROW to indicate a row in the database table – both in the "XML view" and in the URI XPath expression.

Note also that the XPath expression contains a root-element step, oradb. This is used to indicate that the URI corresponds to a DBUri, not an HTTPUri or an XDBUri. Whenever this correspondence is understood from context, this XPath step can be skipped. For example, if it is known that the path in question is a path to database data, the following URIs are equivalent:

	
/oradb/HR/EMPLOYEES/ROW[EMPLOYEE_ID=200]/LAST_NAME

	
/HR/EMPLOYEES/ROW[EMPLOYEE_ID=200]/LAST_NAME

Whenever the URI context is not clear, however, you must use the prefix /oradb to distinguish a URI as corresponding to a DBUri. In particular, you must supply the prefix to URIFACTORY PL/SQL methods and to DBUriServlet.

	
See Also:

	
"Creating New Subtypes of URIType using Package URIFACTORY"

	
"DBUriServlet"

	
Chapter 18, "Generating XML Data from the Database" for other ways to generate XML from database data

DBUri URI Syntax

An XPath expression is a path into XML data that addresses one or more XML nodes. A DBUri exploits the notion of a virtual XML user visualization of the database to use a simple form of XPath expression as a URI to address database data. This is so, regardless of the type of data, in particular, whether or not the data is XML.

Thus, for DBURIType, Oracle Database supports only a subset of the full XPath or XPointer syntax. There are no syntax restrictions for XDBUri XPath expressions. There is also an exception in the DBUri case: data in XMLType tables. For an XMLType table, the simple XPath form is used to address the table itself within the database. Then, to address particular XML data in the table, the remainder of the XPath expression can use the full XPath syntax. This exception applies only to XMLType tables, not to XMLType columns.

In any case, unlike an XDBUri, a DBUri URI does not use a number-sign (#) to separate the URL portion of a URI from a fragment (XPath) portion. DBURIType does not use URI fragments. Instead, the entire URI is treated as a (simple) XPath expression.

You can create DBUris to any database data to which you have access. XPath expressions such as the following are allowed:

	
/database_schema/table

	
/database_schema/table/ROW[predicate_expression]/column

	
/database_schema/table/ROW[predicate_expression]/object_column/attribute

	
/database_schema/XMLType_table/ROW/XPath_expression

In the last case, XMLType_table is an XMLType table, and XPath_expression is any XPath expression. For tables that are not XMLType, a DBUri XPath expression must end at a column (it cannot address specific data inside a column). This restriction includes XMLType columns, LOB columns, and VARCHAR2 columns that contain XML data.

A DBUri XPath expression can do any of the following:

	
Target an entire table.

For example, /HR/EMPLOYEES targets table employees of database schema HR.

	
Include XPath predicates at any step in the path, except the database schema and table steps.

For example, /HR/EMPLOYEES/ROW[EMPLOYEE_ID=200]/EMAIL targets column email of table HR.employees, where employee_id is 200.

	
Use the text() XPath node test on data with scalar content. This is the only node test that can be used, and it cannot be used with the table or row step.

The following can be used in DBUri (XPath) predicate expressions:

	
Boolean operators and, or, and not

	
Relational operators <, >, <=, !=, >=, =, mod, div, * (multiply)

A DBUri XPath expression must do all of the following:

	
Use only the child XPath axis – other axes, such as parent, are not allowed.

	
Either specify a database schema or specify PUBLIC to resolve the table name without a specific schema.

	
Specify a database view or table name.

	
Include a ROW step, if a database column is targeted.

	
Identify a single data value, which can be an object-type instance or a collection.

	
Result in well-formed XML when it is used to generate XML data using database data.

An example of a DBUri that does not result in well-formed XML is /HR/EMPLOYEES/ROW/LAST_NAME. It returns more than one <LAST_NAME> element fragment, with no single root element.

	
Use none of the following:

	
* (wildcard)

	
. (self)

	
.. (parent)

	
// (descendant or self)

	
XPath functions, such as count

A DBUri XPath expression can optionally be prefixed by /oradb or /dburi (the two are equivalent) to distinguish it. This prefix is case-insensitive. However, the rest of the DBUri XPath expression is case-sensitive, as are XPath expressions generally. Thus, for example, to specify table HR.employees as a DBUri XPath expression, you must use HR/EMPLOYEES, not hr/employees (or a mixed-case combination), because table and column names are uppercase, by default.

	
See Also:

http://www.w3.org/TR/xpath on XPath notation

DBUris are Scoped to a Database and Session

The content of the XML views you have of the database, and hence of the XML documents that you can construct, reflects the permissions you have for accessing particular database data at a given time. That is, a DBUri is scoped to a given database session, so the same DBUri can give different results in the same query, depending on the session context (which user is connected and what privileges the user has).

To complicate things a bit, there is also an XML element PUBLIC, under which database data is accessible without any database-schema qualification. This is a convenience feature, but it can also lead to some confusion if you forget that the XML views of the database for a given user depend on the specific access the user has to the database at a given time.

XML element PUBLIC corresponds to the use of a public synonym. For example, when queried by user quine, the following query tries to match table foo under database schema quine, but if no such table exists, it tries to match a public synonym named foo.

SELECT * FROM foo;

In the same way, XML element PUBLIC contains all of the database data visible to a given user and all of the data visible to that user through public synonyms. So, the same DBUri URI /PUBLIC/FOO can resolve to quine.foo when user quine is connected, and resolve to curry.foo when user curry is connected.

DBUri Examples

A DBUri can identify a table, a row, a column in a row, or an attribute of an object column. The following sections describe how to target different object types.

Targeting a Table

You can target a complete database table, using this syntax:

/database_schema/table

Example 20-6 uses a DBUri that targets a complete table. An XML document is returned that corresponds to the table contents. The top-level XML element is named for the table. The values of each row are enclosed in a ROW element.

Example 20-6 Targeting a Complete Table using a DBUri

CREATE TABLE uri_tab (url URIType);
Table created.

INSERT INTO uri_tab VALUES
 (DBURIType.createURI('/HR/EMPLOYEES'));
1 row created.

SELECT e.url.getCLOB() FROM uri_tab e;

E.URL.GETCLOB()

<?xml version="1.0"?>
<EMPLOYEES>
 <ROW>
 <EMPLOYEE_ID>100</EMPLOYEE_ID>
 <FIRST_NAME>Steven</FIRST_NAME>
 <LAST_NAME>King</LAST_NAME>
 <EMAIL>SKING</EMAIL>
 <PHONE_NUMBER>515.123.4567</PHONE_NUMBER>
 <HIRE_DATE>17-JUN-03</HIRE_DATE>
 <JOB_ID>AD_PRES</JOB_ID>
 <SALARY>24000</SALARY>
 <DEPARTMENT_ID>90</DEPARTMENT_ID>
 </ROW>
 <ROW>
 <EMPLOYEE_ID>101</EMPLOYEE_ID>
 <FIRST_NAME>Neena</FIRST_NAME>
 <LAST_NAME>Kochhar</LAST_NAME>
 <EMAIL>NKOCHHAR</EMAIL>
 <PHONE_NUMBER>515.123.4568</PHONE_NUMBER>
 <HIRE_DATE>21-SEP-05</HIRE_DATE>
 <JOB_ID>AD_VP</JOB_ID>
 <SALARY>17000</SALARY>
 <MANAGER_ID>100</MANAGER_ID>
 <DEPARTMENT_ID>90</DEPARTMENT_ID>
 </ROW>
 . . .

1 row selected.

Targeting a Row in a Table

You can target one or more specific rows of a table, using this syntax:

/database_schema/table/ROW[predicate_expression]

Example 20-7 uses a DBUri that targets a single table row. The XPath predicate expression identifies the single table row that corresponds to employee number 200. The result is an XML document with ROW as the top-level element.

Example 20-7 Targeting a Particular Row in a Table using a DBUri

CREATE TABLE uri_tab (url URIType);
Table created.

INSERT INTO uri_tab VALUES
 (DBURIType.createURI('/HR/EMPLOYEES/ROW[EMPLOYEE_ID=200]'));
1 row created.

SELECT e.url.getCLOB() FROM uri_tab e;

E.URL.GETCLOB()

<?xml version="1.0"?>
 <ROW>
 <EMPLOYEE_ID>200</EMPLOYEE_ID>
 <FIRST_NAME>Jennifer</FIRST_NAME>
 <LAST_NAME>Whalen</LAST_NAME>
 <EMAIL>JWHALEN</EMAIL>
 <PHONE_NUMBER>515.123.4444</PHONE_NUMBER>
 <HIRE_DATE>17-SEP-03</HIRE_DATE>
 <JOB_ID>AD_ASST</JOB_ID>
 <SALARY>4400</SALARY>
 <MANAGER_ID>101</MANAGER_ID>
 <DEPARTMENT_ID>10</DEPARTMENT_ID>
 </ROW>

1 row selected.

Targeting a Column

You can target a specific column, using this syntax:

/database_schema/table/ROW[predicate_expression]/column

You can target a specific attribute of an object column, using this syntax:

/database_schema/table/ROW[predicate_expression]/object_column/attribute

You can target a specific object column whose attributes have specific values, using this syntax:

/database_schema/table/ROW[predicate_expression_with_attributes]/object_column

Example 20-8 uses a DBUri that targets column last_name for the same employee as in Example 20-7. The top-level XML element is named for the targeted column.

Example 20-8 Targeting a Specific Column using a DBUri

CREATE TABLE uri_tab (url URIType);
Table created.

INSERT INTO uri_tab VALUES
 (DBURIType.createURI('/HR/EMPLOYEES/ROW[EMPLOYEE_ID=200]/LAST_NAME'));
1 row created.

SELECT e.url.getCLOB() FROM uri_tab e;

E.URL.GETCLOB()

<?xml version="1.0"?>
 <LAST_NAME>Whalen</LAST_NAME>

1 row selected.

Example 20-9 uses a DBUri that targets a CUST_ADDRESS object column containing city and postal code attributes with certain values. The top-level XML element is named for the column, and it contains child elements for each of the object attributes.

Example 20-9 Targeting an Object Column with Specific Attribute Values using a DBUri

CREATE TABLE uri_tab (url URIType);
Table created.

INSERT INTO uri_tab VALUES
 (DBURIType.createURI(
 '/OE/CUSTOMERS/ROW[CUST_ADDRESS/CITY="Poughkeepsie" and
 CUST_ADDRESS/POSTAL_CODE=12601]/CUST_ADDRESS'));
1 row created.

SELECT e.url.getCLOB() FROM uri_tab e;

E.URL.GETCLOB()

<?xml version="1.0"?>
 <CUST_ADDRESS>
 <STREET_ADDRESS>33 Fulton St</STREET_ADDRESS>
 <POSTAL_CODE>12601</POSTAL_CODE>
 <CITY>Poughkeepsie</CITY>
 <STATE_PROVINCE>NY</STATE_PROVINCE>
 <COUNTRY_ID>US</COUNTRY_ID>
 </CUST_ADDRESS>

1 row selected.

The DBUri identifies the object that has a CITY attribute with Poughkeepsie as value and a POSTAL_CODE attribute with 12601 as value.

Retrieving the Text Value of a Column

In many cases, it can be useful to retrieve only the text values of a column and not the enclosing tags. For example, if XSLT style sheets are stored in a CLOB column, you can retrieve the document text without having any enclosing column-name tags. You can use the text() XPath node test for this. It specifies that you want only the text value of the node. Use the following syntax:

/oradb/database_schema/table/ROW[predicate_expression]/column/text()

Example 20-10 retrieves the text value of the employee last_name column for employee number 200, without the XML tags.

Example 20-10 Retrieve Only the Text Value of a Node using a DBUri

CREATE TABLE uri_tab (url URIType);
Table created.

INSERT INTO uri_tab VALUES
 (DBURIType.createURI(
 '/HR/EMPLOYEES/ROW[EMPLOYEE_ID=200]/LAST_NAME/text()'));

1 row created.

SELECT e.url.getCLOB() FROM uri_tab e;

E.URL.GETCLOB()

Whalen

1 row selected.

Targeting a Collection

You can target a database collection, such as an ordered collection table. You must, however, target the entire collection – you cannot target individual members of a collection. When a collection is targeted, the XML document produced by the DBUri contains each collection member as an XML element, with all such elements enclosed in a element named for the type of the collection.

Example 20-11 uses a DBUri that targets a collection of numbers. The top-level XML element is named for the collection, and its children are named for the collection type (NUMBER).

Example 20-11 Targeting a Collection using a DBUri

CREATE TYPE num_collection AS VARRAY(10) OF NUMBER;
/
Type created.

CREATE TABLE orders (item VARCHAR2(10), quantities num_collection);
Table created.

INSERT INTO orders VALUES ('boxes', num_collection(3, 7, 4, 9));
1 row created.

SELECT * FROM orders;

ITEM

QUANTITIES

boxes
NUM_COLLECTION(3, 7, 4, 9)

1 row selected.

SELECT DBURIType('/HR/ORDERS/ROW[ITEM="boxes"]/QUANTITIES').getCLOB() FROM DUAL;

DBURITYPE('/HR/ORDERS/ROW[ITEM="BOXES"]/QUANTITIES').GETCLOB()
--
<?xml version="1.0"?>
 <QUANTITIES>
 <NUMBER>3</NUMBER>
 <NUMBER>7</NUMBER>
 <NUMBER>4</NUMBER>
 <NUMBER>9</NUMBER>
 </QUANTITIES>

1 row selected.

Creating New Subtypes of URIType using Package URIFACTORY

You can use PL/SQL package URIFACTORY to do more than create URIType instances. Additional PL/SQL methods are listed in Table 20-2.

Table 20-2 URIFACTORY PL/SQL Methods

	PL/SQL Method	Description
	

getURI()

	
Returns the URL of the URIType instance.

	
escapeURI()

	
Escapes the URI string by replacing characters that are not permitted in URIs by their equivalent escape sequence.

	
unescapeURI()

	
Removes escaping from a given URI.

	
registerURLHandler()

	
Registers a particular type name for handling a particular URL. This is called by getURI() to generate an instance of the type.

A Boolean argument can be used to indicate that the prefix must be stripped off before calling the appropriate type constructor.

	
unregisterURLHandler()

	
Unregisters a URL handler.

Of particular note is that you can use package URIFACTORY to define new subtypes of type URIType. You can then use those subtypes to provide specialized processing of URIs. In particular, you can define URIType subtypes that correspond to particular protocols – URIFACTORY then recognizes and processes instances of those subtypes accordingly.

Defining new types and creating database columns specific to the new types has these advantages:

	
It provides an implicit constraint on the columns to contain only instances of those types. This can be useful for implementing specialized indexes on a column for specific protocols. For a DBUri, for instance, you can implement specialized indexes that fetch data directly from disk blocks, rather than executing SQL queries.

	
You can have different constraints on different columns, based on the type. For a HTTPUri, for instance, you can define proxy and firewall constraints on a column, so that any access through the HTTP uses the proxy server.

Registering New URIType Subtypes with Package URIFACTORY

To provide specialized processing of URIs, you define and register a new URIType subtype, as follows:

	
Create the new type using SQL statement CREATE TYPE. The type must implement PL/SQL method createURI().

	
Optionally override the default methods, to perform specialized processing when retrieving data or to transform the XML data before displaying it.

	
Choose a new URI prefix, to identify URIs that use this specialized processing.

	
Register the new prefix using PL/SQL method registerURLHandler(), so that package URIFACTORY can create an instance of your new subtype when it receives a URI starting with the new prefix you defined.

After the new subtype is defined, a URI with the new prefix is recognized by URIFACTORY methods, and you can create and use instances of the new type.

For example, suppose that you define a new protocol prefix, ecom://, and define a subtype of URIType to handle it. Perhaps the new subtype implements some special logic for PL/SQL method getCLOB(), or perhaps it makes some changes to XML tags or data in method getXML(). After you register prefix ecom:// with URIFACTORY, a call to getURI() generates an instance of the new URIType subtype for a URI with that prefix.

Example 20-12 creates a new type, ECOMURIType, to handle a new protocol, ecom://. The example stores three different kinds of URIs in a single table: an HTTPUri, a DBUri, and an instance of the new type, ECOMURIType. To run this example, you would need to define each of the ECOMURIType member functions.

Example 20-12 URIFACTORY: Registering the ECOM Protocol

CREATE TABLE url_tab (urlcol varchar2(80));
Table created.

-- Insert an HTTP URL reference
INSERT INTO url_tab VALUES ('http://www.oracle.com/');
1 row created.

-- Insert a DBUri
INSERT INTO url_tab VALUES ('/oradb/HR/EMPLOYEES/ROW[FIRST_NAME="Jack"]');
1 row created.

-- Create a new type to handle a new protocol called ecom://
-- This is just an example template. For this to run, the implementations
-- of these functions must be specified.
CREATE OR REPLACE TYPE ECOMURIType UNDER SYS.URIType (
 OVERRIDING MEMBER FUNCTION getCLOB RETURN CLOB,
 OVERRIDING MEMBER FUNCTION getBLOB RETURN BLOB,
 OVERRIDING MEMBER FUNCTION getExternalURL RETURN VARCHAR2,
 OVERRIDING MEMBER FUNCTION getURI RETURN VARCHAR2,
 -- Must have this for registering with the URL handler
 STATIC FUNCTION createURI(url IN VARCHAR2) RETURN ECOMURIType);
/
-- Register a new handler for the ecom:// prefixes
BEGIN
 -- The handler type name is ECOMURIType; schema is HR
 -- Ignore the prefix case, so that URIFACTORY creates the same subtype
 -- for URIs beginning with ECOM://, ecom://, eCom://, and so on.
 -- Strip the prefix before calling PL/SQL method createURI(),
 -- so that the string 'ecom://' is not stored inside the
 -- ECOMURIType object. It is added back automatically when
 -- you call ECOMURIType.getURI().
 URIFACTORY.registerURLHandler (prefix => 'ecom://',
 schemaname => 'HR',
 typename => 'ECOMURITYPE',
 ignoreprefixcase => TRUE,
 stripprefix => TRUE);
END;
/
PL/SQL procedure successfully completed.

-- Insert this new type of URI into the table
INSERT INTO url_tab VALUES ('ECOM://company1/company2=22/comp');
1 row created.

-- Use the factory to generate an instance of the appropriate
-- subtype for each URI in the table.

-- You would need to define the member functions for this to work:
SELECT urifactory.getURI(urlcol) FROM url_tab;

-- This would generate:
HTTPURIType('www.oracle.com'); -- an HTTPUri
DBURIType('/oradb/HR/EMPLOYEES/ROW[FIRST_NAME="Jack"]', null); -- a DBUri
ECOMURIType('company1/company2=22/comp'); -- an ECOMURIType instance

SYS_DBURIGEN SQL Function

You can create a DBUri by providing an XPath expression to constructor DBURIType or to appropriate URIFACTORY PL/SQL methods. With Oracle SQL function sys_DburiGen, you can alternatively create a DBUri with an XPath that is composed from database columns and their values.

Oracle SQL function sys_DburiGen takes as its argument one or more database columns or attributes, and optionally a rowid, and generates a DBUri that targets a particular column or row object. Function sys_DburiGen takes an additional parameter that indicates whether the text value of the node is needed. See Figure 20-2.

Figure 20-2 SYS_DBURIGEN Syntax

[image: Description of Figure 20-2 follows]

All columns or attributes referenced must reside in the same table. They must each reference a unique value. If you specify multiple columns, then the initial columns identify the row, and the last column identifies the column within that row. If you do not specify a database schema, then the table name is interpreted as a public synonym.

	
See Also:

Oracle Database SQL Language Reference

Example 20-13 uses Oracle SQL function sys_DburiGen to generate a DBUri that targets column email of table HR.employees where employee_id is 206:

Example 20-13 SYS_DBURIGEN: Generating a DBUri that Targets a Column

SELECT sys_DburiGen(employee_id, email)
 FROM employees
 WHERE employee_id = 206;

SYS_DBURIGEN(EMPLOYEE_ID,EMAIL)(URL, SPARE)

DBURITYPE('/PUBLIC/EMPLOYEES/ROW[EMPLOYEE_ID = "206"]/EMAIL', NULL)

1 row selected.

Rules for Passing Columns or Object Attributes to SYS_DBURIGEN

A column or attribute passed to Oracle SQL function sys_DburiGen must obey the following rules:

	
Same table: All columns referenced in function sys_DburiGen must come from the same table or view.

	
Unique mapping: The column or object attribute must be uniquely mappable back to the table or view from which it came. The only virtual columns allowed are those produced with value or ref. The column can come from a subquery with a SQL TABLE collection expression, that is, TABLE(...), or from an inline view (as long as the inline view does not rename the columns).

See Oracle Database SQL Language Reference for information about the SQL TABLE collection expression.

	
Key columns: Either the rowid or a set of key columns must be specified. The list of key columns is not required to be declared as a unique or primary key, as long as the columns uniquely identify a particular row in the result.

	
PUBLIC element: If the table or view targeted by the rowid or key columns does not specify a database schema, then the PUBLIC keyword is used. When a DBUri is accessed, the table name resolves to the same table, synonym, or database view that was visible by that name when the DBUri was created.

	
Optional text() argument: By default, DBURIType constructs an XML document. Use text() as the third argument to sys_DburiGen to create a DBUri that targets a text node (no XML elements). For example:

SELECT sys_DburiGen(employee_id, last_name, 'text()') FROM hr.employees,
 WHERE employee_id=200;

This constructs a DBUri with the following URI:

/HR/EMPLOYEES/ROW[EMPLOYEE_ID=200]/LAST_NAME/text()

	
Single-column argument: If there is a single-column argument, then the column is used as both the key column to identify the row and the referenced column.

The query in Example 20-14 uses employee_id as both the key column and the referenced column. It generates a DBUri that targets the row with employee_id 200.

Example 20-14 Passing Columns with Single Arguments to SYS_DBURIGEN

SELECT sys_DburiGen(employee_id) FROM employees
 WHERE employee_id=200;

SYS_DBURIGEN(EMPLOYEE_ID)(URL, SPARE)

DBURITYPE('/PUBLIC/EMPLOYEES/ROW[EMPLOYEE_ID=''200'']/EMPLOYEE_ID', NULL)

1 row selected.

SYS_DBURIGEN SQL Function: Examples

Example 20-15 Inserting Database References using SYS_DBURIGEN

CREATE TABLE doc_list_tab (docno NUMBER PRIMARY KEY, doc_ref SYS.DBURIType);
Table created.

-- Insert a DBUri that targets the row with employee_id=177
INSERT INTO doc_list_tab VALUES(1001, (SELECT sys_DburiGen(rowid, employee_id)
 FROM employees WHERE employee_id=177));
1 row created.

-- Insert a DBUri that targets the last_name column of table employees
INSERT INTO doc_list_tab VALUES(1002,
 (SELECT sys_DburiGen(employee_id, last_name)
 FROM employees WHERE employee_id=177));
1 row created.

SELECT * FROM doc_list_tab;

 DOCNO

DOC_REF(URL, SPARE)

 1001
DBURITYPE('/PUBLIC/EMPLOYEES/ROW[ROWID=''AAAQCcAAFAAAABSABN'']/EMPLOYEE_ID', NULL)

 1002
DBURITYPE('/PUBLIC/EMPLOYEES/ROW[EMPLOYEE_ID=''177'']/LAST_NAME', NULL)

2 rows selected.

Returning Partial Results

When selecting from a large column, you might sometimes want to retrieve only a portion of the result, and create a URL to the column instead. For example, consider the case of a travel story Web site. If travel stories are stored in a table, and users search for a set of relevant stories, then you do not want to list each entire story in the search-result page. Instead, you might show just the first 20 characters of each story, to represent the gist, and then return a URL to the full story. This can be done as follows:

Example 20-16 creates the travel story table.

Example 20-16 Creating the Travel Story Table

CREATE TABLE travel_story (story_name VARCHAR2(100), story CLOB);
Table created.

INSERT INTO travel_story
 VALUES ('Egypt', 'This is the story of my time in Egypt....');
1 row created.

Example 20-17 creates a function that returns only the first 20 characters from the story.

Example 20-17 A Function that Returns the First 20 Characters

CREATE OR REPLACE FUNCTION charfunc(clobval IN CLOB) RETURN VARCHAR2 IS
 res VARCHAR2(20);
 amount NUMBER := 20;
BEGIN
 DBMS_LOB.read(clobval, amount, 1, res);
 RETURN res;
END;
/
Function created.

Example 20-18 creates a view that selects only the first twenty characters from the travel story, and returns a DBUri to the story column.

Example 20-18 Creating a Travel View for Use with SYS_DBURIGEN

CREATE OR REPLACE VIEW travel_view AS
 SELECT story_name, charfunc(story) short_story,
 sys_DburiGen(story_name, story, 'text()') story_link
 FROM travel_story;
View created.

SELECT * FROM travel_view;

STORY_NAME

SHORT_STORY

STORY_LINK(URL, SPARE)

Egypt
This is the story of
DBURITYPE('/PUBLIC/TRAVEL_STORY/ROW[STORY_NAME=''Egypt'']/STORY/text()', NULL)

1 row selected.

RETURNING URLs to Inserted Objects

You can use Oracle SQL function sys_DburiGen in the RETURNING clause of DML statements to retrieve the URL of an object as it is inserted.

In Example 20-19, whenever a document is inserted into table clob_tab, its URL is inserted into table uri_tab. This is done using Oracle SQL function sys_DburiGen in the RETURNING clause of the INSERT statement.

Example 20-19 Retrieving a URL using SYS_DBURIGEN in RETURNING Clause

CREATE TABLE clob_tab (docid NUMBER, doc CLOB);
Table created.

CREATE TABLE uri_tab (docs SYS.DBURIType);
Table created.

In PL/SQL, specify the storage of the URL of the inserted document as part of the insertion operation, using the RETURNING clause and EXECUTE IMMEDIATE:

DECLARE
 ret SYS.DBURIType;
BEGIN
 -- execute the insert operation and get the URL
 EXECUTE IMMEDIATE
 'INSERT INTO clob_tab VALUES (1, ''TEMP CLOB TEST'')
 RETURNING sys_DburiGen(docid, doc, ''text()'') INTO :1'
 RETURNING INTO ret;
 -- Insert the URL into uri_tab
 INSERT INTO uri_tab VALUES (ret);
END;
/

SELECT e.docs.getURL() FROM hr.uri_tab e;
E.DOCS.GETURL()
--
/ORADB/PUBLIC/CLOB_TAB/ROW[DOCID='1']/DOC/text()

1 row selected.

DBUriServlet

Oracle XML DB Repository resources can be retrieved using the HTTP server that is incorporated in Oracle XML DB. Oracle Database also includes a servlet, DBUriServlet, that makes any kind of database data available through HTTP(S) URLs. The data can be returned as plain text, HTML, or XML.

A Web client or application can access such data without using SQL or a specialized database API. You can retrieve the data by linking to it on a Web page or by requesting it through HTTP-aware APIs of Java, PL/SQL, and Perl. You can display or process the data using an application such as a Web browser or an XML-aware spreadsheet. DBUriServlet can generate content that is XML data or not, and it can transform the result using XSLT style sheets.

You make database data Web-accessible by using a URI that is composed of a servlet address (URL) plus a DBUri URI that specifies which database data to retrieve. This is the syntax, where http://server:port is the URL of the servlet (server and port), and /oradb/database_schema/table is the DBUri URI (any DBUri URI can be used):

http://server:port/oradb/database_schema/table

When using XPath notation in a URL for the servlet, you might need to escape certain characters. You can use URIType PL/SQL method getExternalURL() to do this.

You can either use DBUriServlet, which is pre-installed as part of Oracle XML DB, or write your own servlet that runs on a servlet engine. The servlet reads the URI portion of the invoking URL, creates a DBUri using that URI, calls URIType PL/SQL methods to retrieve the data, and returns the values in a form such as a Web page, an XML document, or a plain-text document.

The MIME type to use is specified to the servlet through the URI:

	
By default, the servlet produces MIME types text/xml and text/plain. If the DBUri path ends in text(), then text/plain is used. Otherwise, an XML document is generated with MIME type text/xml.

	
You can override the default MIME type, setting it to binary/x-jpeg or some other value, by using the contenttype argument to the servlet.

	
See Also:

Chapter 32, "Writing Oracle XML DB Applications in Java", for information about Oracle XML DB servlets

Table 20-3 describes each of the optional URL parameters you can pass to DBUriServlet to customize its output.

Table 20-3 DBUriServlet: Optional Arguments

	Argument	Description
	

rowsettag

	
Changes the default root tag name for the XML document. For example:

http://server:8080/oradb/HR/EMPLOYEES?rowsettag=OracleEmployees

	

contenttype

	
Specifies the MIME type of the generated document. For example:

http://server:8080/oradb/HR/EMPLOYEES?contenttype=text/plain

	

transform

	
Passes a URL to URIFACTORY, which retrieves the XSL style sheet at that location. This style sheet is then applied to the XML document being returned by the servlet. For example:

http://server:8080/oradb/HR/EMPLOYEES?transform=/oradb/QUINE/XSLS/DOC/text()&contenttype=text/html

Overriding the MIME Type using a URL

To retrieve the employee_id column of the employee table, you can use a URL such as one of the following, where computer server.oracle.com is running Oracle Database with a Web service listening to requests on port 8080. Step oradb is the virtual path that maps to the servlet.

	

http://server.oracle.com:8080/oradb/QUINE/A/ROW[B=200]/C/text()

Produces a content type of text/plain

	

http://server.oracle.com:8080/oradb/QUINE/A/ROW[B=200]/C

Produces a content type of text/xml

To override the content type, you can use a URL that passes text/html to the servlet as the contenttype parameter:

	

http://server.oracle.com:8080/oradb/QUINE/A/ROW[B=200]/C?contenttype=text/html

Produces a content type of text/html

Customizing DBUriServlet

DBUriServlet is built into the database – to customize the servlet, you must edit the Oracle XML DB configuration file, xdbconfig.xml. You can edit it with database schema (user account) XDB, using WebDAV, FTP, Oracle Enterprise Manager, or PL/SQL. To update the file using FTP or WebDAV, download the document, edit it, and save it back into the database.

	
See Also:

	
Chapter 32, "Writing Oracle XML DB Applications in Java"

	
Chapter 34, "Administering Oracle XML DB"

	
Oracle Database 2 Day + Security Guide for information about database schema XDB

DBUriServlet is installed at /oradb/*, which is the address specified in the servlet-pattern tag of xdbconfig.xml. The asterisk (*) is necessary to indicate that any path following oradb is to be mapped to the same servlet. oradb is published as the virtual path. You can change the path that is used to access the servlet.

In Example 20-20, the configuration file is modified to install DBUriServlet under /dburi/*.

Example 20-20 Changing the Installation Location of DBUriServlet

DECLARE
 doc XMLType;
 doc2 XMLType;
BEGIN
 doc := DBMS_XDB.cfg_get();
 SELECT
 updateXML(doc,
'/xdbconfig/sysconfig/protocolconfig/httpconfig/webappconfig/servletconfig/
servlet-mappings/servlet-mapping[servlet-name="DBUriServlet"]/servlet-pattern/
text()',
 '/dburi/*')
 INTO doc2 FROM DUAL;
 DBMS_XDB.cfg_update(doc2);
 COMMIT;
END;
/

Security parameters, the servlet display-name, and the description can also be customized in configuration file xdbconfig.xml. The servlet can be removed by deleting its servlet-pattern. This can also be done using Oracle SQL function updateXML to update the servlet-mapping element to NULL.

DBUriServlet Security

Servlet security is handled by Oracle Database using roles. When users log in to the servlet, they use their database user name and password. The servlet checks to ensure that the user logging has one of the roles specified in the configuration file using parameter security-role-ref). By default, the servlet is available to role authenticatedUser, and any user who logs into the servlet with a valid database password has this role.

The role parameter can be changed to restrict access to any specific database roles. To change from the default authenticatedUser role to a role that you have created, you modify the Oracle XML DB configuration file.

Example 20-21 changes the default role authenticatedUser to role servlet-users (which you must have created).

Example 20-21 Restricting Servlet Access to a Database Role

DECLARE
 doc XMLType;
 doc2 XMLType;
 doc3 XMLType;
BEGIN
 doc := DBMS_XDB.cfg_get();
 SELECT updateXML(doc,
'/xdbconfig/sysconfig/protocolconfig/httpconfig/webappconfig/servletconfig/
servlet-list/servlet[servlet-name="DBUriServlet"]/security-role-ref/role-name/
text()',
 'servlet-users')
 INTO doc2 FROM DUAL;
 SELECT updateXML(doc2,
'/xdbconfig/sysconfig/protocolconfig/httpconfig/webappconfig/servletconfig/
servlet-list/servlet[servlet-name="DBUriServlet"]/security-role-ref/role-link/
text()',
 'servlet-users')
 INTO doc3 FROM DUAL;
 DBMS_XDB.cfg_update(doc3);
 COMMIT;
END;
/

Configuring Package URIFACTORY to Handle DBUris

A URL such as http://server/servlets/oradb is handled by DBUriServlet (or by a custom servlet). When a URL such as this is stored as a URIType instance, it is generally desirable to use subtype DBURIType, since this URI targets database data.

However, if a URIType instance is created using PL/SQL methods of package URIFACTORY, then, by default, the subtype used is HTTPURIType, not DBURIType. This is because URIFACTORY looks only at the URI prefix, sees http://, and assumes that the URI targets a Web page. This results in unnecessary layers of communication and perhaps extra character conversions.

To make things more efficient, you can teach URIFACTORY that URIs of the given form represent database accesses and so should be realized as DBUris, not HTTPUris. You do this by registering a handler for this URI as a prefix, specifying DBURIType as the type of instance to generate.

Example 20-22 effectively tells URIFACTORY that any URI string starting with http://server/servlets/oradb corresponds to a database access.

Example 20-22 Registering a Handler for a DBUri Prefix

BEGIN
 URIFACTORY.registerURLHandler('http://server/servlets/oradb',
 'SYS', 'DBURIType', true, true);
END;
/

After you execute this code, all getURI() calls in the same session automatically create DBUris for any URI strings with prefix http://server/servlets/oradb.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for information about URIFACTORY functions

What's New in Oracle XML DB?

This chapter describes the new features and functionality, enhancements, APIs, and product integration support added to Oracle XML DB for Oracle Database 11g.

It also describes the deprecation of certain Oracle XML DB constructs.

Oracle Database 11g Release 2 (11.2.0.3) Deprecated Oracle XML DB Constructs

The following Oracle XML DB constructs are deprecated in Oracle Database 11g Release 2 (11.2.0.3). They are still supported in 11.2.0.3 for backward compatibility, but Oracle recommends that you do not use them in new applications.

	
PL/SQL procedure DBMS_XDB_ADMIN.createRepositoryXMLIndex

	
PL/SQL procedure DBMS_XDB_ADMIN.XMLIndexAddPath

	
PL/SQL procedure DBMS_XDB_ADMIN.XMLIndexRemovePath

	
PL/SQL procedure DBMS_XDB_ADMIN.dropRepositoryXMLIndex

	
XML schema annotation (attribute) csx:encodingType

	
XMLIndex index on CLOB portions of hybrid XMLType storage, that is, on CLOB data that is embedded within object-relational storage

Oracle Database 11g Release 2 (11.2.0.3) Other Changes in Oracle XML DB

The following PL/SQL procedures have been moved from package DBMS_XDB to package DBMS_XDB_ADMIN in Oracle Database 11g Release 2 (11.2.0.3):

	
moveXDB_tablespace

	
rebuildHierarchicalIndex

Oracle Database 11g Release 2 (11.2.0.2) New Features in Oracle XML DB

The following Oracle XML DB features are new in Oracle Database 11g Release 2 (11.2.0.2).

Default Storage Model for XMLType

The default XMLType storage model is used if you do not specify a storage model when you create an XMLType table or column. Prior to Oracle Database 11g Release 2 (11.2.0.2), unstructured (CLOB) storage was used by default. The default storage model is now binary XML storage.

	
Note:

You can create a new table that uses binary XML storage and populate it with existing XMLType data that is stored using CLOB storage. Use CREATE TABLE AS SELECT..., selecting from the existing data.

This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).

Default LOB Storage for Binary XML

XMLType data that uses the binary XML storage model is stored internally using large objects (LOBs). Prior to Oracle Database 11g Release 2 (11.2.0.2), binary XML data was stored by default using the BasicFile LOB storage option. By default, LOB storage for binary XML data now uses the SecureFile LOB storage option whenever possible.

If SecureFile LOB storage is not possible then the default behavior uses BasicFile LOB storage. This can occur if either of the following is true:

	
The tablespace for the XMLType table does not use automatic segment space management.

	
A setting in file init.ora prevents SecureFile LOB storage. For example, see parameter DB_SECUREFILE.

	
See Also:

	
Oracle Database Administrator's Guide for information about automatic segment space management

	
Oracle Database Reference for information about parameter DB_SECUREFILE

	
"Oracle Database 11g Release 2 (11.2.0.2) Deprecated Oracle XML DB Constructs"

This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).

XQuery Pragma ora:defaultTable for Repository Query Performance

Previously, to obtain optimal performance for XQuery expressions that use fn:doc and fn:collection over Oracle XML DB Repository resources, you needed to carry out explicit joins with RESOURCE_VIEW. The new XQuery extension-expression pragma ora:defaultTable now performs the necessary joins automatically.

This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).

XML Diagnosability Mode: SQL*Plus System Variable XMLOptimizationCheck

You can use the SQL*Plus SET command with the new system variable XMLOptimizationCheck to turn on an XML diagnosability mode for SQL. When this mode is on, execution plans are automatically checked for XPath rewrite, and if a plan is suboptimal then an error is raised and diagnostic information is written to the trace file indicating which operators are not rewritten.

This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).

	
See Also:

"Diagnosing XQuery Optimization: XMLOptimizationCheck"

Oracle Database 11g Release 2 (11.2.0.2) Deprecated Oracle XML DB Constructs

The following Oracle XML DB constructs are deprecated in Oracle Database 11g Release 2 (11.2.0.2). They are still supported in 11.2.0.2 for backward compatibility, but Oracle recommends that you do not use them in new applications.

	
XMLType data stored as binary XML using BasicFile LOB storage. See also the new feature "Default LOB Storage for Binary XML".

	
Oracle XQuery function ora:view – Use XQuery functions fn:doc and fn:collection instead. See Chapter 5, "Using XQuery with Oracle XML DB".

Oracle Database 11g Release 2 (11.2.0.1) New Features in Oracle XML DB

The following Oracle XML DB features are new in Oracle Database 11g Release 2 (11.2.0.1).

Partitioning XMLType Tables and Columns

For XMLType data stored object-relationally, when you partition a base XMLType table or a base table with an XMLType column, any collection tables that use heap-based table storage are now, by default, automatically equipartitioned also. Equipartitioning means that there is a corresponding collection-table partition for each partition of the base table. A child element is stored in the collection-table partition that corresponds to the base-table partition of its parent element.

	
See Also:

"Partitioning XMLType Tables and Columns Stored Object-Relationally"

Access Control Enhancements

Access control lists (ACLs) have been enhanced in various ways, to provide fine-grained access control that you can customize. You can define your own privileges and associate them with users and roles in flexible ways. Inheritance is available for ACLs. Access control entries (ACEs) can stipulate start and end dates. You can control access for application users and roles that are not necessarily the same as database users and roles.

	
See Also:

Chapter 27, "Repository Access Control"

Repository Read and Write Performance Enhancements

Performance has been improved for Oracle XML DB Repository read and write operations.

Binary XML Performance Enhancements and Partitioning

The performance of queries and DML operations on binary XML tables has been improved, and you can now partition binary XML tables, using a virtual column as the partitioning key.

XMLIndex Enhancements

You can use XMLIndex to index islands of structured XML content embedded in content that is generally unstructured. An XMLIndex index can thus index both structured and unstructured XML content.

You can create a local XMLIndex index on data in partitioned XMLType tables.

	
See Also:

"XMLIndex"

Cost-Based XPath Rewrite

You can use a new optimizer hint to request cost-based optimization of XQuery expressions.

Oracle Database 11g Release 2 (11.2.0.1) Deprecated Oracle XML DB Constructs

The following Oracle XML DB constructs are deprecated in Oracle Database 11g Release 2 (11.2.0.1). They are still supported in 11.2.0.1 for backward compatibility, but Oracle recommends that you do not use them in new applications.

	
Oracle SQL function extract – Use SQL/XML function XMLQuery instead. See "XMLQUERY SQL/XML Function in Oracle XML DB".

	
Oracle SQL function extractValue – Use SQL/XML function XMLTable or SQL/XML functions XMLCast and XMLQuery instead.

	
See "SQL/XML Functions XMLQUERY and XMLTABLE" for information about using function XMLTable

	
See "XMLCAST SQL/XML Function" for information about using functions XMLCast and XMLQuery

	
Oracle SQL function existsNode – Use SQL/XML function XMLExists instead. See "XMLEXISTS SQL/XML Function".

	
Oracle SQL function XMLSequence – Use SQL/XML function XMLTable instead. See "XMLTABLE SQL/XML Function in Oracle XML DB".

	
Oracle XPath function ora:instanceof – Use XQuery operator instance of instead.

	
Oracle XPath function ora:instanceof-only – Use XML Schema attribute xsi:type instead.

	
PL/SQL XMLType methods getStringVal(), getCLOBVal(), and getBLOBVal(), – Use SQL/XML function XMLSerialize instead. See "XMLSERIALIZE SQL/XML Function".

	
PL/SQL XMLType method getNamespace() – Use XQuery function fn:namespace-uri instead.

	
PL/SQL XMLType method getRootElement() – Use XQuery function fn:local-name instead.

	
Function-based indexes on XMLType – Use XMLIndex with a structured component instead. See "Function-Based Indexes".

Oracle Database 11g Release 1 (11.1) New Features in Oracle XML DB

Binary XML

Binary XML is a new storage model for abstract data type XMLType, joining the existing storage models of structured (object-relational) and unstructured (CLOB) storage. Binary XML is XML-Schema aware, but it can also be used with XML data that is not based on an XML schema. See "XMLType Storage Models".

	
See Also:

	
Oracle Database Advanced Application Developer's Guide for an overview of XMLType data stored as binary XML

	
Oracle Database SQL Language Reference for information about creating XMLType tables and columns stored as binary XML

	
Oracle Database XML Java API Reference for information about manipulating binary XML data using Java

	
Oracle Database XML C API Reference for information about manipulating binary XML data using C

XMLIndex

A new index type is provided for XMLType: XMLIndex. This can greatly improve the performance of XPath-based predicates and fragment extraction for XMLType data, whether based on an XML schema or not. The new index type is a (logical) domain index that consists of underlying physical tables and secondary indexes. See Chapter 6, "Indexing XMLType Data".

	
Note:

The CTXSYS.CTXXPath index is deprecated in Oracle Database 11g Release 1 (11.1). The functionality that was provided by CTXXPath is now provided by XMLIndex.
Oracle recommends that you replace CTXXPath indexes with XMLIndex indexes. The intention is that CTXXPath will no longer be supported in a future release of the database.

	
See Also:

	
Oracle Database Reference for information about new view XIDX_USER_PENDING

	
Oracle Database PL/SQL Packages and Types Reference for information about new PL/SQL package DBMS_XMLINDEX

XMLType OCTs Now Use Heap Storage Instead of IOTs

You can store collections of XML elements as ordered collection tables (OCTs). OCTs now use heap storage, by default. In prior releases, OCTs were index-organized tables (IOTs), by default. A new XML schema registration option, REGISTER_NT_AS_IOT, forces the use of IOTs.

	
See Also:

"Controlling How Collections Are Stored for Object-Relational XMLType Storage"

Default Value of XML Schema Annotation storeVarrayAsTable Is Now true

In prior releases, the default value of XML schema annotation storeVarrayAsTable was false; the default value is now true. This means that by default an XML collection is stored as a set of rows in an ordered collection table (OCT). Each row corresponds to an element in the collection. With annotation storeVarrayAsTable = "false", the entire collection is instead serialized as a varray and stored in a LOB column.

Using storeVarrayAsTable = "true" facilitates the efficient use of collections: queries, updates, and creation of B-tree indexes.

	
See Also:

"Controlling How Collections Are Stored for Object-Relational XMLType Storage" for more information about storing XML collections object-relationally

Repository Events

Applications can now register listeners with handlers for events associated with Oracle XML DB Repository operations such as creating, deleting, and updating a resource. See Chapter 30, "Oracle XML DB Repository Events".

	
See Also:

	
Oracle Database XML Java API Reference for new Java methods

	
Oracle Database PL/SQL Packages and Types Reference for information about new PL/SQL package DBMS_XEVENT

	
Oracle Database PL/SQL Packages and Types Reference for information about new PL/SQL package DBMS_RESCONFIG

	
Oracle Database PL/SQL Packages and Types Reference for information about new PL/SQL package DBMS_XDBRESOURCE

Support for Content Repository API for Java (JCR: JSR-170)

Oracle XML DB now supports Content Repository API for Java (JCR) and the JSR-170 standard. You can access Oracle XML DB Repository using the JCR APIs. See Chapter 31, "Using Oracle XML DB Content Connector".

	
See Also:

Oracle Database XML Java API Reference for new Java methods

New Repository Resource Link Types

You can now create weak folder links to represent Oracle XML DB Repository folder-child relationships. Hard links are still available, as well. See "Link Types".

	
See Also:

	
Oracle Database PL/SQL Packages and Types Reference for updates to PL/SQL package DBMS_XDB

	
Oracle Database SQL Language Reference for updates to function under_path

Support for WebDAV Privileges and New Oracle XML DB Privileges

All WebDAV privileges are now supported by Oracle XML DB Repository. In addition, there are some new Oracle XML DB-specific atomic privileges. See Chapter 27, "Repository Access Control".

	
See Also:

	
Oracle Database PL/SQL Packages and Types Reference for information about new PL/SQL package DBMS_NETWORK_ACL_ADMIN

	
Oracle Database PL/SQL Packages and Types Reference for information about PL/SQL package UTL_TCP

	
Oracle Database PL/SQL Packages and Types Reference for information about PL/SQL package UTL_INADDR

Web Services

You can now access Oracle Database through Web services. You can write and deploy Web services that can query the database using SQL or XQuery, or access stored PL/SQL functions and procedures. See Chapter 33, "Using Native Oracle XML DB Web Services"

In-Place XML Schema Evolution

In many cases, you can now evolve XML schemas without copying the corresponding XML instance documents. See Chapter 10, "XML Schema Evolution".

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for updates to PL/SQL package DBMS_XMLSCHEMA

Support for Recursive XML Schemas

Oracle XML DB now performs XPath rewrite on some queries that use '//' in XPath expressions to target nodes at multiple or arbitrary depths, even when the XML data conforms to a recursive XML schema. See "Support for Recursive Schemas"

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for updates to PL/SQL package DBMS_XMLSCHEMA

Support for XLink and XInclude

Oracle XML DB now supports the XLink and XInclude standards. See Chapter 23, "Using XLink and XInclude with Oracle XML DB".

Support for XML Translations

You can now associate natural-language translation information with XML schemas and corresponding instance documents. This includes support for standard attributes xml:lang and xml:srclang. See "XML Translations".

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for information about new PL/SQL package DBMS_XMLTRANSLATIONS

Support for Large XML Nodes

The previous 64K limit on text nodes and attribute values has been lifted. Text nodes and attribute values are no longer limited in size to 64K bytes each. New streaming push and pull APIs are available in PL/SQL, Java, and C to provide virtually unlimited node sizes. See "Large Node Handling using DBMS_XMLDOM" for information about handling large nodes in PL/SQL and "Handling Large Nodes using Java".

	
See Also:

	
Oracle Database SQL Language Reference for information about creating XMLType tables and columns stored as binary XML

	
Oracle Database XML Java API Reference for information about new Java methods

	
Oracle Database PL/SQL Packages and Types Reference for information about new PL/SQL package DBMS_SDA and updates to PL/SQL package DBMS_XMLDOM

Unified Java API

The Java XML APIs in Oracle XML DB and Oracle XML Developer's Kit have been unified.

	
See Also:

	
Oracle XML Developer's Kit Programmer's Guide

	
Oracle Database XML Java API Reference, package oracle.xml.parser.v2

Oracle Data Pump Support for XMLType

Oracle Data Pump is now the recommended way to import and export XMLType data. See Chapter 36, "Exporting and Importing XMLType Tables".

Support for XMLType by Oracle Streams and Logical Standby

Oracle Streams and logical standby now support XMLType stored as CLOB. Both XML schema-based and non-schema-based XML data are supported.

	
See Also:

	
Oracle Streams Concepts and Administration

	
Oracle Data Guard Concepts and Administration

	
Oracle Database Utilities

	
Oracle Database Reference for information on views DBA_STREAMS_UNSUPPORTED and DBA_STREAMS_COLUMNS

Oracle XML Developer's Kit Pull-Parser API (XML Events, JSR-173)

You can use the new Oracle XML Developer Kit (XDK) pull-parser API with Oracle XML DB. See "Using the Oracle XML Developer's Kit Pull Parser with Oracle XML DB".

	
See Also:

	
Oracle Database XML C API Reference for information about new C methods and types

	
Oracle XML Developer's Kit Programmer's Guide

XQuery Standard Compliance

Oracle XML DB support for the XQuery language has been updated to reflect the latest version of the XQuery standard, W3C XQuery 1.0 Recommendation.

	
See Also:

	
Oracle XML Developer's Kit Programmer's Guide

	
http://www.w3.org for information about the XQuery language

Fine-Grained Access to Network Services Using PL/SQL

New atomic privileges are provided for access control entries (ACEs). These privileges are used for fine-grained PL/SQL access to network services.

SQL/XML Standard Compliance and Performance Enhancements

Oracle XML DB support for the SQL/XML standard has been updated to reflect the latest version of the standard. This includes support for standard SQL functions XMLExists and XMLCast. See "Querying XMLType Data using SQL/XML Functions XMLExists and XMLCast" and "Generating XML using SQL Functions".

	
See Also:

Oracle Database SQL Language Reference for information about SQL/XML functions XMLExists, XMLCast, XMLQuery, XMLTable, and XMLForest.

XML-Update Performance Enhancements

The performance of SQL functions used to update XML data has been enhanced for XML schema-based data that is stored object-relationally. This includes XPath rewrite for SQL functions updateXML, insertChildXML, and deleteXML.

XQuery and SQL/XML Performance Enhancements

XQuery and SQL/XML performance enhancements include treatment of the following:

	
User-defined XQuery functions

	
XQuery prolog variables

	
XQuery count function applied to the result of using a SQL/XML generation function

	
Positional expressions in XPath predicates

	
XQuery computed constructors

	
SQL/XML function XMLAgg

XSLT Performance Enhancements

The performance of XSLT transformations using SQL function XMLTransform and XMLType method transform() has been enhanced.

26 Accessing the Repository using PL/SQL

This chapter describes the Oracle XML DB resource application program interface (API) for PL/SQL (PL/SQL package DBMS_XDB). It contains these topics:

	
Overview of PL/SQL Package DBMS_XDB

	
DBMS_XDB: Resource Management

	
DBMS_XDB: ACL-Based Security Management

	
DBMS_XDB: Configuration Management

Overview of PL/SQL Package DBMS_XDB

PL/SQL package DBMS_XDB is the Oracle XML DB resource application program interface (API) for PL/SQL. It is also known as the PL/SQL foldering API. This API provides functions and procedures to access and manage Oracle XML DB Repository resources using PL/SQL. It includes methods for managing resource security and Oracle XML DB configuration.

Oracle XML DB Repository is modeled on XML, and provides a database file system for any data. The repository maps path names (or URLs) onto database objects of XMLType and provides management facilities for these objects.

PL/SQL package DBMS_XDB is an API that you can use to manage all of the following:

	
Oracle XML DB resources

	
Oracle XML DB security based on access control lists (ACLs). An ACL is a list of access control entries (ACEs) that determines which principals (users and roles) have access to which resources

	
Oracle XML DB configuration

	
See Also:

	
Oracle Database PL/SQL Packages and Types Reference

	
"APIs for XML"

DBMS_XDB: Resource Management

Table 26-1 describes DBMS_XDB Oracle XML DB resource management functions and procedures.

Table 26-1 DBMS_XDB Resource Management Functions and Procedures

	Function/Procedure	Description
	
appendResourceMetadata

	
Add user-defined metadata to a resource.

	
createFolder

	
Create a new folder resource.

	
createOIDPath

	
Create a virtual path to a resource, based on its object identifier (OID).

	
createResource

	
Create a new file resource.

	
deleteResource

	
Delete a resource from the repository.

	
deleteResourceMetadata

	
Delete specific user-defined metadata from a resource.

	
existsResource

	
Indicate whether or not a resource exists, given its absolute path.

	
getLockToken

	
Return a resource lock token for the current user, given a path to the resource.

	
getResOID

	
Return the object identifier (OID) of a resource, given its absolute path.

	
getXDB_tablespace

	
Return the current tablespace of database schema (user account) XDB.

	
link

	
Create a link to an existing resource.

	

lockResource

	
Obtain a WebDAV-style lock on a resource, given a path to the resource.

	
purgeResourceMetadata

	
Delete all user-defined metadata from a resource.

	
renameResource

	
Rename a resource.

	
unlockResource

	
Unlock a resource, given its lock token and path.

	
updateResourceMetadata

	
Modify user-defined resource metadata.

	
Tip:

For optimal performance of queries on repository resources, gather statistics for the optimizer using procedure DBMS_XDB_ADMIN.gatherRepositoryStats after resource creation. You need the XDBADMIN role with privilege ANALYZE ANY or the DBA role to use gatherRepositoryStats.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference

The examples in this section illustrate the use of these functions and procedures.

Example 26-1 uses package DBMS_XDB to manage repository resources. It creates the following:

	
a folder, mydocs, under folder /public

	
two file resources, emp_selby.xml and emp_david.xml

	
two links to the file resources, person_selby.xml and person_david.xml

It then deletes each of the newly created resources and links. The folder contents are deleted before the folder itself.

Example 26-1 Managing Resources using DBMS_XDB

DECLARE
 retb BOOLEAN;
BEGIN
 retb := DBMS_XDB.createfolder('/public/mydocs');
 retb := DBMS_XDB.createresource('/public/mydocs/emp_selby.xml',
 '<emp_name>selby</emp_name>');
 retb := DBMS_XDB.createresource('/public/mydocs/emp_david.xml',
 '<emp_name>david</emp_name>');
END;
/
PL/SQL procedure successfully completed.

CALL DBMS_XDB.link('/public/mydocs/emp_selby.xml',
 '/public/mydocs',
 'person_selby.xml');
Call completed.

CALL DBMS_XDB.link('/public/mydocs/emp_david.xml',
 '/public/mydocs',
 'person_david.xml');
Call completed.

CALL DBMS_XDB.deleteresource('/public/mydocs/emp_selby.xml');
Call completed.

CALL DBMS_XDB.deleteresource('/public/mydocs/person_selby.xml');
Call completed.

CALL DBMS_XDB.deleteresource('/public/mydocs/emp_david.xml');
Call completed.

CALL DBMS_XDB.deleteresource('/public/mydocs/person_david.xml');
Call completed.

CALL DBMS_XDB.deleteresource('/public/mydocs');
Call completed.

	
See Also:

Chapter 29, "User-Defined Repository Metadata" for examples using appendResourceMetadata and deleteResourceMetadata

DBMS_XDB: ACL-Based Security Management

Table 26-2 lists the DBMS_XDB Oracle XML DB ACL- based security management functions and procedures.

Table 26-2 DBMS_XDB: Security Management Procedures and Functions

	Function/Procedure	Description
	
ACLCheckPrivileges

	
Checks the access privileges granted to the current user by an ACL.

	
changePrivileges

	
Adds an ACE to a resource ACL.

	
checkPrivileges

	
Checks the access privileges granted to the current user for a resource.

	
getACLDocument

	
Retrieves the ACL document that protects a resource, given the path name of the resource.

	
getPrivileges

	
Returns all privileges granted to the current user for a resource.

	
setACL

	
Sets the ACL on a resource.

	
See Also:

	
Oracle Database PL/SQL Packages and Types Reference

	
Oracle XML Developer's Kit Programmer's Guide

The examples in this section illustrate the use of these functions and procedures.

In Example 26-2, database user HR creates two resources: a folder, /public/mydocs, with a file in it, emp_selby.xml. Procedure getACLDocument is called on the file resource, showing that the <principal> user for the document is PUBLIC.

Example 26-2 Using DBMS_XDB.GETACLDOCUMENT

CONNECT hr
Enter password: password

Connected.

DECLARE
 retb BOOLEAN;
BEGIN
 retb := DBMS_XDB.createFolder('/public/mydocs');
 retb := DBMS_XDB.createResource('/public/mydocs/emp_selby.xml',
 '<emp_name>selby</emp_name>');
END;
/
PL/SQL procedure successfully completed.

SELECT XMLSerialize(DOCUMENT
 DBMS_XDB.getACLDocument('/public/mydocs/emp_selby.xml')
 AS CLOB)
 FROM DUAL;

XMLSERIALIZE(DOCUMENTDBMS_XDB.GETACLDOCUMENT('/PUBLIC/MYDOCS/EMP_SELBY.XML')ASCL
--
<acl description="Public:All privileges to PUBLIC" xmlns="http://xmlns.oracle.co
m/xdb/acl.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaL
ocation="http://xmlns.oracle.com/xdb/acl.xsd http://xm
lns.oracle.com/xdb/acl.xsd" shared="true">
 <ace>
 <grant>true</grant>
 <principal>PUBLIC</principal>
 <privilege>
 <all/>
 </privilege>
 </ace>
</acl>

1 row selected.

In Example 26-3, the system manager connects and uses procedure setACL to give the owner (database schema HR) all privileges on the file resource created in Example 26-2. Procedure getACLDocument then shows that the <principal> user is dav:owner, the owner (HR).

Example 26-3 Using DBMS_XDB.SETACL

CONNECT SYSTEM
Enter password: password

Connected.

-- Give all privileges to owner, HR.
CALL DBMS_XDB.setACL('/public/mydocs/emp_selby.xml',
 '/sys/acls/all_owner_acl.xml');
Call completed.
COMMIT;
Commit complete.

SELECT XMLSerialize(DOCUMENT
 DBMS_XDB.getACLDocument('/public/mydocs/emp_selby.xml')
 AS CLOB)
 FROM DUAL;

XMLSERIALIZE(DOCUMENTDBMS_XDB.GETACLDOCUMENT('/PUBLIC/MYDOCS/EMP_SELBY.XML')ASCL
--
<acl description="Private:All privileges to OWNER only and not accessible to oth
ers" xmlns="http://xmlns.oracle.com/xdb/acl.xsd" xmlns:dav="DAV:" xmlns:xsi="htt
p://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.oracle.
com/xdb/acl.xsd http://xmlns.oracle.com/xdb/acl.xsd" shared="true">
 <ace>
 <grant>true</grant>
 <principal>dav:owner</principal>
 <privilege>
 <all/>
 </privilege>
 </ace>
</acl>

1 row selected.

In Example 26-4, user HR connects and uses function changePrivileges to add a new access control entry (ACE) to the ACL, which gives all privileges on resource emp_selby.xml to user oe. Procedure getACLDocument shows that the new ACE was added to the ACL.

Example 26-4 Using DBMS_XDB.CHANGEPRIVILEGES

CONNECT hr
Enter password: password

Connected.

SET SERVEROUTPUT ON

-- Add an ACE giving privileges to user OE
DECLARE
 r PLS_INTEGER;
 ace XMLType;
 ace_data VARCHAR2(2000);
BEGIN
 ace_data := '<ace xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd
 http://xmlns.oracle.com/xdb/acl.xsd
 DAV:http://xmlns.oracle.com/xdb/dav.xsd">
 <principal>OE</principal>
 <grant>true</grant>
 <privilege><all/></privilege>
 </ace>';
 ace := XMLType.createXML(ace_data);
 r := DBMS_XDB.changePrivileges('/public/mydocs/emp_selby.xml', ace);
END;
/

PL/SQL procedure successfully completed.

COMMIT;

SELECT XMLSerialize(DOCUMENT
 DBMS_XDB.getACLDocument('/public/mydocs/emp_selby.xml')
 AS CLOB)
 FROM DUAL;

XMLSERIALIZE(DOCUMENTDBMS_XDB.GETACLDOCUMENT('/PUBLIC/MYDOCS/EMP_SELBY.XML')ASCL
--
<acl description="Private:All privileges to OWNER only and not accessible to oth
ers" xmlns="http://xmlns.oracle.com/xdb/acl.xsd" xmlns:dav="DAV:" xmlns:xsi="htt
p://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.oracle.
com/xdb/acl.xsd http://xmlns.oracle.com/xdb/acl.xsd" s
hared="false">
 <ace>
 <grant>true</grant>
 <principal>dav:owner</principal>
 <privilege>
 <all/>
 </privilege>
 </ace>
 <ace>
 <grant>true</grant>
 <principal>OE</principal>
 <privilege>
 <all/>
 </privilege>
 </ace>
</acl>

1 row selected.

In Example 26-5, user oe connects and calls DBMS_XDB.getPrivileges, which shows all of the privileges granted to user oe on resource emp_selby.xml.

Example 26-5 Using DBMS_XDB.GETPRIVILEGES

CONNECT oe
Enter password: password

Connected.

SELECT XMLSerialize(DOCUMENT
 DBMS_XDB.getPrivileges('/public/mydocs/emp_selby.xml')
 AS CLOB)
 FROM DUAL;

XMLSERIALIZE(DOCUMENTDBMS_XDB.GETPRIVILEGES('/PUBLIC/MYDOCS/EMP_SELBY.XML')ASCLO
--
<privilege xmlns="http://xmlns.oracle.com/xdb/acl.xsd" xmlns:xsi="http://www.w3.
org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl
.xsd http://xmlns.oracle.com/xdb/acl.xsd DAV: http://xmlns.oracle.com/xdb/dav.xs
d" xmlns:xdbacl="http://xmlns.oracle.com/xdb/acl.xsd" xmlns:dav="DAV:">
 <read-properties/>
 <read-contents/>
 <write-config/>
 <link/>
 <unlink/>
 <read-acl/>
 <write-acl-ref/>
 <update-acl/>
 <resolve/>
 <link-to/>
 <unlink-from/>
 <dav:lock/>
 <dav:unlock/>
 <dav:write-properties/>
 <dav:write-content/>
 <dav:execute/>
 <dav:take-ownership/>
 <dav:read-current-user-privilege-set/>
</privilege>

1 row selected.

DBMS_XDB: Configuration Management

Table 26-3 lists the DBMS_XDB Oracle XML DB configuration management functions and procedures.

Table 26-3 DBMS_XDB: Configuration Management Functions and Procedures

	Function/Procedure	Description
	
cfg_get

	
Returns the configuration information for the current session.

	
cfg_refresh

	
Refreshes the session configuration information using the current Oracle XML DB configuration file, xdbconfig.xml.

	
cfg_update

	
Updates the Oracle XML DB configuration information. This writes the configuration file, xdbconfig.xml.

	
getFTPPort

	
Returns the current FTP port number.

	
getHTTPPort

	
Returns the current HTTP port number.

	
setFTPPort

	
Sets the Oracle XML DB FTP port to the specified port number.

	
setHTTPPort

	
Sets the Oracle XML DB HTTP port to the specified port number.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference

The examples in this section illustrate the use of these functions and procedures.

Example 26-6 uses function cfg_get to retrieve the Oracle XML DB configuration file, xdbconfig.xml.

Example 26-6 Using DBMS_XDB.CFG_GET

CONNECT SYSTEM
Enter password: password

Connected.

SELECT DBMS_XDB.cfg_get() FROM DUAL;

DBMS_XDB.CFG_GET()
--
<xdbconfig xmlns="http://xmlns.oracle.com/xdb/xdbconfig.xsd" xmlns:xsi="http://w
ww.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.oracle.com/x
db/xdbconfig.xsd http://xmlns.oracle.com/xdb
/xdbconfig.xsd">
 <sysconfig>
 <acl-max-age>19</acl-max-age>
 <acl-cache-size>32</acl-cache-size>
 <invalid-pathname-chars/>
 <case-sensitive>true</case-sensitive>
 <call-timeout>6000</call-timeout>
 <max-link-queue>65536</max-link-queue>
 <max-session-use>100</max-session-use>
 <persistent-sessions>false</persistent-sessions>
 <default-lock-timeout>3600</default-lock-timeout>
 <xdbcore-logfile-path>/sys/log/xdblog.xml</xdbcore-logfile-path>
 <xdbcore-log-level>0</xdbcore-log-level>
 <resource-view-cache-size>1048576</resource-view-cache-size>
 <protocolconfig>
 <common>
 . . .
 </common>
 <ftpconfig>
 . . .
 </ftpconfig>
 <httpconfig>
 <http-port>0</http-port>
 <http-listener>local_listener</http-listener>
 <http-protocol>tcp</http-protocol>
 <max-http-headers>64</max-http-headers>
 <max-header-size>16384</max-header-size>
 <max-request-body>2000000000</max-request-body>
 <session-timeout>6000</session-timeout>
 <server-name>XDB HTTP Server</server-name>
 <logfile-path>/sys/log/httplog.xml</logfile-path>
 <log-level>0</log-level>
 <servlet-realm>Basic realm="XDB"</servlet-realm>
 <webappconfig>
 . . .
 </webappconfig>
 <authentication>
 . . .
 </authentication>
 </protocolconfig>
 <xdbcore-xobmem-bound>1024</xdbcore-xobmem-bound>
 <xdbcore-loadableunit-size>16</xdbcore-loadableunit-size>
 <acl-evaluation-method>ace-order</acl-evaluation-method>
 </sysconfig>
</xdbconfig>

1 row selected.

Example 26-7 illustrates the use of procedure cfg_update. The current configuration is retrieved as an XMLType instance and modified. It is then rewritten using cfg_update.

Example 26-7 Using DBMS_XDB.CFG_UPDATE

DECLARE
 configxml SYS.XMLType;
 configxml2 SYS.XMLType;
BEGIN
 -- Get the current configuration
 configxml := DBMS_XDB.cfg_get();

 -- Modify the configuration
 SELECT updateXML(
 configxml,
 '/xdbconfig/sysconfig/protocolconfig/httpconfig/http-port/text()',
 '8000',
 'xmlns="http://xmlns.oracle.com/xdb/xdbconfig.xsd"')
 INTO configxml2 FROM DUAL;

 -- Update the configuration to use the modified version
 DBMS_XDB.cfg_update(configxml2);
END;
/

PL/SQL procedure successfully completed.

SELECT DBMS_XDB.cfg_get() FROM DUAL;

DBMS_XDB.CFG_GET()
--
<xdbconfig xmlns="http://xmlns.oracle.com/xdb/xdbconfig.xsd" xmlns:xsi="http://w
ww.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.oracle.com/x
db/xdbconfig.xsd http://xmlns.oracle.com/xdb/xdbconfig.xsd">
 <sysconfig>
 <acl-max-age>15</acl-max-age>
 <acl-cache-size>32</acl-cache-size>
 <invalid-pathname-chars/>
 <case-sensitive>true</case-sensitive>
 <call-timeout>6000</call-timeout>
 <max-link-queue>65536</max-link-queue>
 <max-session-use>100</max-session-use>
 <persistent-sessions>false</persistent-sessions>
 <default-lock-timeout>3600</default-lock-timeout>
 <xdbcore-logfile-path>/sys/log/xdblog.xml</xdbcore-logfile-path>
 <resource-view-cache-size>1048576</resource-view-cache-size>
 <protocolconfig>
 <common>
 . . .
 </common>
 <ftpconfig>
 . . .
 </ftpconfig>
 <httpconfig>
 <http-port>8000</http-port>
 . . .
 </httpconfig>
 </protocolconfig>
 <xdbcore-xobmem-bound>1024</xdbcore-xobmem-bound>
 <xdbcore-loadableunit-size>16</xdbcore-loadableunit-size>
 <acl-evaluation-method>ace-order</acl-evaluation-method>
</xdbconfig>

1 row selected.

Oracle® XML DB

Developer's Guide

11g Release 2 (11.2)

E23094-04

February 2014

This manual describes Oracle XML DB. It includes guidelines and examples for storing, generating, accessing, searching, validating, transforming, evolving, and indexing XML data in Oracle Database.

Oracle XML DB Developer's Guide, 11g Release 2 (11.2)

E23094-04

Copyright © 2002, 2014, Oracle and/or its affiliates. All rights reserved.

Primary Author: Drew Adams

Contributing Author: Nipun Agarwal, Abhay Agrawal, Omar Alonso, David Anniss, Sandeepan Banerjee, Mark Bauer, Ravinder Booreddy, Stephen Buxton, Yuen Chan, Sivasankaran Chandrasekar, Vincent Chao, Ravindranath Chennoju, Dan Chiba, Mark Drake, Fei Ge, Janis Greenberg, Wenyun He, Shelley Higgins, Thuvan Hoang, Sam Idicula, Namit Jain, Neema Jalali, Deepti Kamal, Bhushan Khaladkar, Viswanathan Krishnamurthy, Muralidhar Krishnaprasad, Geoff Lee, Wesley Lin, Annie Liu, Anand Manikutty, Jack Melnick, Nicolas Montoya, Steve Muench, Chuck Murray, Ravi Murthy, Eric Paapanen, Syam Pannala, John Russell, Eric Sedlar, Vipul Shah, Cathy Shea, Asha Tarachandani, Tarvinder Singh, Simon Slack, Muralidhar Subramanian, Asha Tarachandani, Priya Vennapusa, James Warner

Contributor: Reema Al-Shaikh, Harish Akali, Vikas Arora, Deanna Bradshaw, Paul Brandenstein, Lisa Eldridge, Craig Foch, Wei Hu, Reema Koo, Susan Kotsovolos, Sonia Kumar, Roza Leyderman, Zhen Hua Liu, Diana Lorentz, Yasuhiro Matsuda, Valarie Moore, Bhagat Nainani, Visar Nimani, Sunitha Patel, Denis Raphaely, Rebecca Reitmeyer, Ronen Wolf

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

23 Using XLink and XInclude with Oracle XML DB

This chapter describes how to use XLink and XInclude with resources in Oracle XML DB Repository. It contains these topics:

	
Overview of XLink and XInclude

	
XLink and XInclude Link Types

	
XInclude: Compound Documents

	
Using XLink with Oracle XML DB

	
Using XInclude with Oracle XML DB

	
Examining XLink and XInclude Links using DOCUMENT_LINKS View

	
Configuring Resources for XLink and XInclude

	
Managing XLink and XInclude Links using DBMS_XDB.processLinks

Overview of XLink and XInclude

A document-oriented, or content-management, application often tracks relationships, between documents, and those relationships are often represented and manipulated as links of various kinds. Such links can affect application behavior in various ways, including affecting the document content and the response to user operations such as mouse clicks.

W3C has two recommendations that are pertinent in this context, for documents that are managed in XML repositories:

	
XLink – Defines various types of links between resources. These links can model arbitrary relationships between documents. Those documents can reside inside or outside the repository.

	
XInclude – Defines ways to include the content of multiple XML documents or fragments in a single infoset. This provides for compound documents, which model inclusion relationships. Compound documents are documents that contain other documents. More precisely, they are file resources that include documents or document fragments. The included objects can be file resources in the same repository or documents or fragments outside the repository.

Each of these standards is very general, and it is not limited to modeling relationships between XML documents. There is no requirement that the documents linked using XLink or included in an XML document using XInclude be XML documents.

Using XLink and XInclude to represent document relationships provides flexibility for applications, facilitates reuse of component documents, and enables their fine-grained manipulation (access control, versioning, metadata, and so on). Whereas using XML data structure (an ancestor–descendents hierarchy) to model relationships requires those relationships to be relatively fixed, using XLink and XInclude to model relationships can easily allow for change in those relationships.

	
Note:

For XML schema-based documents to be able to use XLink and XInclude attributes, the XML schema must either explicitly declare those attributes or allow any attributes.

	
See Also:

	
http://www.w3.org/TR/xlink for information about the XLink standard

	
http://www.w3.org/TR/xinclude for information about the XInclude standard

XLink and XInclude Link Types

This section describes XLink and XInclude link types and the relation between these and Oracle XML DB Repository links. XLink links are more general than repository links. XLink links can be simple or extended. Oracle XML DB supports only simple XLink links, not extended links.

XLink and XInclude Links Model Document Relationships

XLink and XInclude links model arbitrary relationships among documents. The meaning and behavior of a relationship are determined by the applications that use the link. They are not inherent in the link itself. XLink and XInclude links can be mapped to Oracle XML DB document links. When document links target Oracle XML DB Repository resources, they can (according to a configuration option) be hard or weak links. In this, they are similar to repository links in that context. Repository links can be navigated using file system-related protocols such as FTP and HTTP. Document links cannot, but they can be navigated using the XPath 2.0 function fn:doc.

	
See Also:

"Hard Links and Weak Links"

XLink and XInclude Link Types

XLink and XInclude can provide links to other documents. In the case of XInclude, attributes href and xpointer are used to specify the target document.

Xlink links can be simple or extended. Simple links are unidirectional, from a source to a target. Extended links (sometimes called complex) can model relationships between multiple documents, with different directionalities. Both simple and extended links can include link metadata. XLink links are represented in XML data using various attributes of the namespace http://www.w3.org/1999/xlink, which has the predefined prefix xlink. Simple links are represented in XML data using attribute type with value simple, that is, xlink:type = "simple". Extended Xlink links are represented using xlink:type = "extended".

Third-party extended Xlink links are not contained in any of the documents whose relationships they model. Third-party links can thus be used to relate documents, such as binary files, that, themselves, have no way of representing a link.

The source end of a simple Xlink link (that is, the document containing the link) must be an XML document. The target end of a simple link can be any document. There are no such restrictions for extended links. Example 23-3 shows examples of simple links. The link targets are represented using attribute xlink:href.

XInclude: Compound Documents

XInclude is the W3C recommendation for the syntax and processing model for merging the infosets of multiple XML documents into a single infoset. Element xi:include is used to include another document, specifying its URI as the value of an href attribute. Element xi:include can be nested, so that an included document can itself include other documents.

(However, an inclusion cycle raises an error in Oracle XML DB. The resources are created, but an error is raised when the inclusions are expanded.)

XInclude thus provides for compound documents: repository file resources that include other XML documents or fragments. The included objects can be file resources in the same repository or documents or fragments outside the repository.

A book might be an example of a typical compound document, as managed by a content-management system. Each book includes chapter documents, which can each be managed as separate objects, with their own URLs. A chapter document can have its own metadata and access control, and it can be versioned. A book can include (reference) a specific version of a chapter document. The same chapter document can be included in multiple book documents, for reuse. Because inclusion is modeled using XInclude, content management is simplified. It is easy, for example, to replace one chapter in a book by another.

Example 23-1 illustrates an XML Book element that includes four documents. One of those documents, part1.xml, is also shown. Document part1.xml includes other documents, representing chapters.

Example 23-1 XInclude Used in a Book Document to Include Parts and Chapters

The top-level document representing a book contains element Book.

<Book xmlns:xi="http://www.w3.org/2001/XInclude">
 <xi:include href=toc.xml"/>
 <xi:include href=part1.xml"/>
 <xi:include href=part2.xml"/>
 <xi:include href=index.xml"/>
</Book>

A major book part, file (resource) part2.xml, contains a Part element, which includes multiple chapter documents.

<?xml version="1.0"?>
<Part xmlns:xi="http://www.w3.org/2001/XInclude">
 <xi:include href="chapter5.xml"/>
 <xi:include href="chapter6.xml"/>
 <xi:include href="chapter8.xml"/>
 <xi:include href="chapter9.xml"/>
</Part>

These are some additional features of XInclude:

	
Inclusion of plain text – You can include unparsed, non-XML text using attribute parse with a value of text: parse = "text".

	
Inclusion of XML fragments – You can use an xpointer attribute in an xi:include element to specify an XML fragment to include, instead of an entire document.

	
Fallback processing – In case of error, such as inability to access the URI of an included document, an xi:include syntax error, or an xpointer reference that returns null, XInclude performs the treatment specified by element xi:fallback. This generally specifies an alternative element to be included. The alternative element can itself use xi:include to include other documents.

Using XLink with Oracle XML DB

Oracle XML DB supports only simple XLink links, not extended XLink links.

When an XML document containing XLink attributes is added to Oracle XML DB Repository, either as resource content or as user-defined resource metadata, special processing can occur, depending on how the repository or individual repository resources are configured. Element XLinkConfig of the resource configuration document, XDBResConfig.xsd, determines this behavior. In particular, you can configure resources so that XLink links are ignored, or so that they are mapped to Oracle XML DB document links. In the latter case, configuration can specify that the document links are to be hard or weak. Hard and weak document links have the same properties as hard and weak repository links.

The privileges needed to create or update document links are the same as those needed to create or update repository links. Even partially updating a document requires the same privileges needed to delete the entire document and reinsert it. In particular, even if you update just one document link you must have delete and insert privileges for each of the documents linked by the document containing the link.

If configuration maps XLink links to document links, then, whenever a document containing XLink links is added to the repository, the XLink information is extracted and stored in a system link table. Link target (destination) locations are replaced by direct paths that are based on the resource OIDs. Configuration can also specify whether OID paths are to be replaced by named paths (URLs) upon document retrieval. Using OID paths instead of named paths generally offers a performance advantage when links are processed, including when resource contents are retrieved.

You can use XLink within resource content, but not within resource metadata.

	
See Also:

	
"Examining XLink and XInclude Links using DOCUMENT_LINKS View"

	
Chapter 29, "User-Defined Repository Metadata"

	
"Hard Links and Weak Links"

	
"Configuring Resources for XLink and XInclude"

	
"XDBResConfig.xsd: XML Schema for Resource Configuration"

Using XInclude with Oracle XML DB

Oracle XML DB supports XInclude 1.0 as the standard mechanism for managing compound documents. It does not support attribute xpointer and the inclusion of document fragments, however. Only complete documents can be included (using attribute href).

You can use XInclude to create XML documents that include existing content. You can also configure the implicit decomposition of non-schema-based XML documents, creating a set of repository resources that contain XInclude inclusion references.

The content of included documents must be XML data or plain text (with attribute parse = "text"). You cannot include binary content directly using XInclude, but you can use XLink to link to binary content.

You can use XInclude within resource content, but not within resource metadata.

	
See Also:

"Examining XLink and XInclude Links using DOCUMENT_LINKS View"

Expanding Compound-Document Inclusions

When you retrieve a compound document from Oracle XML DB Repository, you have a choice:

	
Retrieve it as is, with the xi:include elements remaining as such. This is the default behavior.

	
Retrieve it after replacing the xi:include elements with their targets, recursively, that is, after expansion of all inclusions. An error is raised if any xi:include element cannot be resolved.

To retrieve the document in expanded form, use PL/SQL constructor XDBURIType, passing a value of '1' or '3' as the second argument (flags). Example 23-2 illustrates this. These are the possible values for the XDBURIType constructor second argument:

	
1 – Expand all XInclude inclusions before returning the result. If any such inclusion cannot be resolved according to the XInclude standard fallback semantics, then raise an error.

	
2 – Suppress all errors that might occur during document retrieval. This includes dangling href pointers.

	
3 – Same as 1 and 2 together.

Example 23-2 retrieves all documents that are under repository folder public/bookdir, expanding each inclusion:

Example 23-2 Expanding Document Inclusions using XDBURIType

SELECT XDBURIType(ANY_PATH, '1').getXML() FROM RESOURCE_VIEW
 WHERE under_path(RES, '/public/bookdir') = 1;

XDBURITYPE(ANY_PATH,'1').GETXML()

<Book>
 <Title>A book</Title>
 <Chapter id="1">
 <Title>Introduction</Title>
 <Body>
 <Para>blah blah</Para>
 <Para>foo bar</Para>
 </Body>
 </Chapter>
 <Chapter id="2">
 <Title>Conclusion</Title>
 <Body>
 <Para>xyz xyz</Para>
 <Para>abc abc</Para>
 </Body>
 </Chapter>
</Book>

<Chapter id="1">
 <Title>Introduction</Title>
 <Body>
 <Para>blah blah</Para>
 <Para>foo bar</Para>
 </Body>
</Chapter>

<Chapter id="2">
 <Title>Conclusion</Title>
 <Body>
 <Para>xyz xyz</Para>
 <Para>abc abc</Para>
 </Body>
</Chapter>

3 rows selected.

(The result shown here corresponds to the resource bookfile.xml shown in Example 23-8, together with its included resources, chap1.xml and chap2.xml.)

	
See Also:

	
"Versioning, Locking, and Controlling Access to Compound Documents" for information about access control during expansion

	
Oracle Database PL/SQL Packages and Types Reference for more information about XDBURIType

Validating Compound Documents

You validate a compound document the way you would any XML document. However, you can choose to validate it in either form: with xi:include elements as is or after replacing them with their targets.

You can also choose to use one XML schema to validate the unexpanded form, and another to validate the expanded form. For example, you might use one XML schema to validate without first expanding, in order to set up storage structures, and then use another XML schema to validate the expanded document after it is stored.

Updating Compound Documents

You can update a compound document just as you would update any resource. This replaces the resource with a new value. It thus corresponds to a resource deletion followed by a resource insertion. This means, in particular, that any xi:include elements in the original resource are deleted. Any xi:include elements in the replacement (inserted) document are processed as usual, according to the configuration defined at the time of insertion.

Versioning, Locking, and Controlling Access to Compound Documents

The components of a compound document are separate resources. They are versioned and locked independently, and their access is controlled independently.

	
Document links to version-controlled resources (VCRs) always resolve to the latest version of the target resource, or the selected version within the current workspace. You can, however, explicitly refer to any specific version, by identifying the target resource by its OID-based path.

	
Locking a document that contains xi:include elements does not also lock the included documents. Locking an included document does not also lock documents that include it.

	
The access control list (ACL) on each referenced document is checked whenever you retrieve a compound document with expansion. This is done using the privileges of the current user (invoker's rights). If privileges are insufficient for any of the included documents, the expansion is canceled and an error is raised.

	
See Also:

	
"Expanding Compound-Document Inclusions"

	
Chapter 24, "Managing Resource Versions" for information about VCRs

	
Chapter 27, "Repository Access Control" for information about resource ACLs

Examining XLink and XInclude Links using DOCUMENT_LINKS View

You can query the read-only public view DOCUMENT_LINKS to obtain system information about document links derived from both XLink and XInclude links. The information in this view includes the following columns, for each link:

	
SOURCE_ID – The source resource OID. RAW(16).

	
TARGET_ID – The target resource OID. RAW(16).

	
TARGET_PATH – Always NULL. Reserved for future use. VARCHAR2(4000).

	
LINK_TYPE – The document link type: Hard or Weak. VARCHAR2(8).

	
LINK_FORM – Whether the original link was of form XLink or XInclude. VARCHAR2(8).

	
SOURCE_TYPE – Always Resource Content. VARCHAR2(17).

You can obtain information about a resource from this view only if one of the following conditions holds:

	
The resource is a link source, and you have the privilege read-contents or read-properties on it.

	
The resource is a link target, and you have the privilege read-properties on it.

	
See Also:

Oracle Database Reference for more information on public view DOCUMENT_LINKS

Querying DOCUMENT_LINKS for XLink Information

Example 23-3 shows how XLink links are treated when resources are created, and how to obtain system information about document links from view DOCUMENT_LINKS. It assumes that the folder containing the resource has been configured to map XLink links to document hard links.

Example 23-3 Querying Document Links Mapped From XLink Links

DECLARE
 b BOOLEAN;
BEGIN
 b := DBMS_XDB.createResource(
 '/public/hardlinkdir/po101.xml',
 '<PurchaseOrder id="101" xmlns:xlink="http://www.w3.org/1999/xlink">
 <Company xlink:type="simple"
 xlink:href="/public/hardlinkdir/oracle.xml">Oracle Corporation</Company>
 <Approver xlink:type="simple"
 xlink:href="/public/hardlinkdir/quine.xml">Willard Quine</Approver>
 </PurchaseOrder>');

 b := DBMS_XDB.createResource(
 '/public/hardlinkdir/po102.xml',
 '<PurchaseOrder id="102" xmlns:xlink="http://www.w3.org/1999/xlink">
 <Company xlink:type="simple"
 xlink:href="/public/hardlinkdir/oracle.xml">Oracle Corporation</Company>
 <Approver xlink:type="simple"
 xlink:href="/public/hardlinkdir/curry.xml">Haskell Curry</Approver>
 <ReferencePO xlink:type="simple"
 xlink:href="/public/hardlinkdir/po101.xml"/>
 </PurchaseOrder>');
END;
/

SELECT r1.ANY_PATH source, r2.ANY_PATH target, dl.LINK_TYPE, dl.LINK_FORM
 FROM DOCUMENT_LINKS dl, RESOURCE_VIEW r1, RESOURCE_VIEW r2
 WHERE dl.SOURCE_ID = r1.RESID and dl.TARGET_ID = r2.RESID;

SOURCE TARGET LINK_TYPE LINK_FORM
----------------------------- ------------------------------ --------- ---------
/public/hardlinkdir/po101.xml /public/hardlinkdir/oracle.xml Hard XLink
/public/hardlinkdir/po101.xml /public/hardlinkdir/quine.xml Hard XLink
/public/hardlinkdir/po102.xml /public/hardlinkdir/oracle.xml Hard XLink
/public/hardlinkdir/po102.xml /public/hardlinkdir/curry.xml Hard XLink
/public/hardlinkdir/po102.xml /public/hardlinkdir/po101.xml Hard XLink

	
See Also:

"Mapping XInclude Links to Hard Document Links, with OID Retrieval" for an example of configuring a folder to map XLink links to hard links

Querying DOCUMENT_LINKS for XInclude Information

Example 23-4 queries view DOCUMENT_LINKS to show all document links.

Example 23-4 Querying Document Links Mapped From XInclude Links

DECLARE
 ret BOOLEAN;
BEGIN
 ret := DBMS_XDB.createResource(
 '/public/hardlinkdir/book.xml',
 '<Book xmlns:xi="http://www.w3.org/2001/XInclude">
 <xi:include href="/public/hardlinkdir/toc.xml"/>
 <xi:include href="/public/hardlinkdir/part1.xml"/>
 <xi:include href="/public/hardlinkdir/part2.xml"/>
 <xi:include href="/public/hardlinkdir/index.xml"/>
 </Book>');
END;

SELECT r1.ANY_PATH source, r2.ANY_PATH target, dl.LINK_TYPE, dl.LINK_FORM
 FROM DOCUMENT_LINKS dl, RESOURCE_VIEW r1, RESOURCE_VIEW r2
 WHERE dl.SOURCE_ID = r1.RESID and dl.TARGET_ID = r2.RESID;

SOURCE TARGET LINK_TYPE LINK_FORM
------ ------ --------- ---------
/public/hardlinkdir/book.xml /public/hardlinkdir/toc.xml Hard XInclude
/public/hardlinkdir/book.xml /public/hardlinkdir/part1.xml Hard XInclude
/public/hardlinkdir/book.xml /public/hardlinkdir/part2.xml Hard XInclude
/public/hardlinkdir/book.xml /public/hardlinkdir/index.xml Hard XInclude

Configuring Resources for XLink and XInclude

You configure XLink and XInclude treatment for Oracle XML DB Repository resources as you would configure any other treatment of repository resources — see "Configuring a Resource". The rest of this section describes the resource configuration file that you use as a resource to configure XLink and XInclude processing for other resources.

A resource configuration file is an XML file that conforms to the XML schema XDBResConfig.xsd, which is accessible in Oracle XML DB Repository at path /sys/schemas/PUBLIC/xmlns.oracle.com/xdb/XDBResConfig.xsd. You use elements XLinkConfig and XIncludeConfig, children of element ResConfig, to configure XLink and XInclude treatment, respectively. If one of these elements is absent, then there is no treatment of the corresponding type of links.

Both XLinkConfig and XIncludeConfig can have attribute UnresolvedLink and child elements LinkType and PathFormat. Element XIncludeConfig can also have child element ConflictRule. If the LinkType element content is None, however, then there must be no PathFormat or ConflictRule element.

You cannot define any preconditions for XLinkConfig or XIncludeConfig. During repository resource creation, the ResConfig element of the parent folder determines the treatment of XLink and XInclude links for the new resource. If the parent folder has no ResConfig element, then the repository-wide configuration applies.

Any change to the resource configuration file applies only to documents that are created or updated after the configuration-file change. To process links in existing documents, use PL/SQL procedure DBMS_XDB.processLinks, after specifying the appropriate resource configuration parameters.

	
See Also:

	
"Managing XLink and XInclude Links using DBMS_XDB.processLinks"

	
Chapter 22, "Configuring Oracle XML DB Repository"

Configuring Treatment of Unresolved Links: UnresolvedLink Attribute

A LinkConfig element can have an UnresolvedLink attribute with a value of Error (default value) or Skip. This determines what happens if an XLink or XInclude link cannot be resolved at the time of document insertion into the repository (resource creation). Error means raise an error and roll back the current operation. Skip means skip any treatment of the XLink or XInclude link. Skipping treatment creates the resource with no corresponding document links, and sets the resource's HasUnresolvedLinks attribute to true, to indicate that the resource has unresolved links.

Using Skip as the value of attribute UnresolvedLink can be especially useful when you create a resource that contains a cycle of weak links, which would otherwise lead to unresolved-link errors during resource creation. After the resource and all of its linked resources have been created, you can use PL/SQL procedure DBMS_XDB.processLinks to process the skipped links. If all XLink and XInclude links have been resolved by this procedure, then attribute HasUnresolvedLinks is set to false.

Resource attribute HasUnresolvedLinks is also set to true for a resource that has a weak link to a resource that has been deleted. Deleting a resource thus effectively also deletes any weak links pointing to that resource. In particular, whenever the last hard link to a resource is deleted, the resource is itself deleted, and all resources that point to the deleted resource with a weak link have attribute HasUnresolvedLinks set to true.

	
See Also:

	
"Hard Links and Weak Links"

	
"Managing XLink and XInclude Links using DBMS_XDB.processLinks"

Configuring the Document Links to Create: LinkType Element

You use the LinkType element of a resource configuration file to specify the type of document link to be created whenever an XLink or XInclude link is encountered when a document is stored in Oracle XML DB Repository. The LinkType element has these possible values (element content):

	
None (default) – Ignore XLink or XInclude links: create no corresponding document links.

	
Hard – Map XLink or XInclude links to hard document links in repository documents.

	
Weak – Map XLink or XInclude links to weak document links in repository documents.

	
See Also:

	
Example 23-5

	
Example 23-6

Configuring the Path Format for Retrieval: PathFormat Element

You use the PathFormat element of a resource configuration file to specify the path format to be used when retrieving documents with xlink:href or xi:include:href attributes. The PathFormat element has these possible values (element content) for hard and weak document links:

	
OID (default) – Map XLink or XInclude href paths to OID-based paths in repository documents — that is, use OIDs directly.

	
Named – Map XLink or XInclude href paths to named paths (URLs) in repository documents. The path is computed from the internal OID when the document is retrieved, so retrieval can be slower than in the case of using OID paths directly.

	
See Also:

	
Example 23-5

	
Example 23-6

Configuring Conflict-Resolution for XInclude: ConflictRule Element

You use the ConflictRule element of a resource configuration file to specify the conflict-resolution rules to use if the path computed for a component document is already present in Oracle XML DB Repository. The ConflictRule element has these possible values (element content):

	
Error (default) – Raise an error.

	
Overwrite – Update the document targeted by the existing repository path, replacing it with the document to be included. If the existing document is a version-controlled resource, then it must already be checked out, unless it is autoversioned. Otherwise, an error is raised.

	
Syspath – Change the path to the included document to a new, system-defined path.

	
See Also:

Chapter 24, "Managing Resource Versions" for information about version-controlled resources

Configuring Decomposition of Documents using XInclude: SectionConfig Element

You use the SectionConfig element of a resource configuration file to specify how non-schema-based XML documents are to be decomposed when added to Oracle XML DB Repository, to create a set of resources that contain XInclude inclusion references. You use simple XPath expressions in the resource configuration file to identify which parts of a document to map to separate resources, and which resources to map them to.

Element SectionConfig contains one or more Section elements, each of which contains the following child elements:

	
sectionPath – Simple XPath 1.0 expression that identifies a section root. This must use only child and descendant axes, and it must not use wildcards.

	
documentPath (optional) – Simple XPath 1.0 expression that is evaluated to identify the resources to be created from decomposing the document according to sectionPath. The XPath expression must use only child, descendant, and attribute axes.

	
namespace (optional) – Namespace in effect for sectionPath and documentPath.

Element Section also has a type attribute that specifies the type of section to be created. Value Document means create a document. The default value, None, means do not create anything. Using None is equivalent to removing the SectionConfig element. You can thus set the type attribute to None to disable a SectionConfig element temporarily, without removing it, and then set it back to Document to enable it again.

If an element in the document being added to the repository matches more than one sectionPath value, only the first such expression (in document order) is used.

If no documentPath element is present, then the resource created has a system-defined name, and is put into the folder specified for the original document.

	
See Also:

	
Example 23-7, "Configuring XInclude Document Decomposition"

	
Example 23-8, "Repository Document, Showing Generated xi:include Elements"

XLink and XInclude Configuration Examples

Example 23-5 shows a configuration-file section that configures XInclude treatment, mapping XInclude attributes to Oracle XML DB Repository hard document links. Repository paths in retrieved resources are configured to be based on resource OIDs.

Example 23-5 Mapping XInclude Links to Hard Document Links, with OID Retrieval

<ResConfig>
 . . .
 <XIncludeConfig UnresolvedLink="Skip">
 <LinkType>Hard</LinkType>
 <PathFormat>OID</PathFormat>
 </XIncludeConfig>
 . . .
</ResConfig>

Example 23-6 shows an XLinkConfig section that maps XLink links to weak document links in the repository. In this case, retrieval of a document uses named paths (URLs).

Example 23-6 Mapping XLInk Links to Weak Links, with Named-Path Retrieval

<ResConfig>
 . . .
 <XLinkConfig UnresolvedLink="Skip">
 <LinkType>Weak</LinkType>
 <PathFormat>Named</PathFormat>
 </XLinkConfig>
 . . .
</ResConfig>

Example 23-7 shows a SectionConfig section that specifies that each Chapter element in an input document is to become a separate repository file, when the input document is added to Oracle XML DB Repository. The repository path for the resulting file is specified using configuration element documentPath, and this path is relative to the location of the resource configuration file of Example 23-6.

Example 23-7 Configuring XInclude Document Decomposition

<ResConfig>
 . . .
 <SectionConfig>
 <Section type = "Document">
 <sectionPath>//Chapter</sectionPath>
 <documentPath>concat("chap", @id, ".xml")</documentPath>
 </Section>
 </SectionConfig>
 . . .
</ResConfig>

The XPath expression here uses XPath function concat to concatenate the following strings to produce the resulting repository path to use:

	
chap – (prefix) chap.

	
The value of attribute id of element Chapter in the input document.

	
.xml as a file extension.

For example, a repository path of chap27.xml would result from an input document with a Chapter element that has an id attribute with value 27:

<Chapter id="27"> ... </Chapter>

If the configuration document of Example 23-6 and the book document that contains the XInclude elements are in repository folder /public/bookdir, then the individual chapter files generated from XInclude decomposition are in files /public/bookdir/chapN.xml, where the values of N are the values of the id attributes of Chapter elements.

The book document that is added to the repository is derived from the input book document. The embedded Chapter elements in the input book document are replaced by xi:include elements that reference the generated chapter documents — Example 23-8 illustrates this.

Example 23-8 Repository Document, Showing Generated xi:include Elements

SELECT XDBURIType('/public/bookdir/bookfile.xml').getclob() FROM DUAL;

XDBURITYPE('/PUBLIC/BOOKDIR/BOOKFILE.XML').GETCLOB()
--
<Book>
 <Title>A book</Title>
 <xi:include xmlns:xi="http://www.w3.org/2001/XInclude" href="/public/bookdir/chap1.xml"/>
 <xi:include xmlns:xi="http://www.w3.org/2001/XInclude" href="/public/bookdir/chap2.xml"/>
</Book>

	
See Also:

	
Chapter 22, "Configuring Oracle XML DB Repository"

	
XDBResConfig.xsd: XML Schema for Resource Configuration

	
"Configuring Decomposition of Documents using XInclude: SectionConfig Element"

Managing XLink and XInclude Links using DBMS_XDB.processLinks

You can use PL/SQL procedure DBMS_XDB.processLinks to manually process all XLink and XInclude links in a single document or in all documents of a folder. Pass RECURSIVE as the mode argument to this procedure, if you want to process all hard-linked subfolders recursively. All XLink and XInclude links are processed according to the corresponding configuration parameters. If any of the links within a resource cannot be resolved, the resource's HasUnresolvedLinks attribute is set to true, to indicate that the resource has unresolved links. The default value of attribute HasUnresolvedLinks is false.

	
See Also:

"Configuring Treatment of Unresolved Links: UnresolvedLink Attribute"

3 Using Oracle XML DB

This chapter is an overview of how to use Oracle XML DB. The examples presented here illustrate techniques for accessing and managing XML content in purchase-order documents. Purchase orders are highly structured documents, but you can use the techniques shown here to also work with XML documents that have little structure.

This chapter contains these topics:

	
Storing XML Data as XMLType

	
Creating XMLType Tables and Columns

	
Partitioning or Constraining Binary XML Data using Virtual Columns

	
Loading XML Content into Oracle XML DB

	
Character Sets of XML Documents

	
Overview of the W3C XML Schema Recommendation

	
Using XML Schema with Oracle XML DB

	
Identifying XML Schema Instance Documents

	
Enforcing XML Data Integrity using the Database

	
DML Operations on XML Content using Oracle XML DB

	
Querying XML Content Stored in Oracle XML DB

	
Accessing XML Data in Oracle XML DB using Relational Views

	
Updating XML Content Stored in Oracle XML DB

	
Namespace Support in Oracle XML DB

	
How Oracle XML DB Processes XMLType Methods and SQL Functions

	
Generating XML Data from Relational Data

	
XSL Transformation and Oracle XML DB

	
Using Oracle XML DB Repository

	
Viewing Relational Data as XML From a Browser

	
XSL Transformation using DBUri Servlet

Storing XML Data as XMLType

Before the introduction of Oracle XML DB, there were two ways to store XML content in Oracle Database:

	
Use Oracle XML Developer's Kit (XDK) to parse the XML document outside Oracle Database, and store the extracted XML data as rows in one or more tables in the database.

	
Store the XML document in Oracle Database using a Character Large Object (CLOB), Binary Large Object (BLOB), Binary File (BFILE), or VARCHAR column.

In both cases, Oracle Database is unaware that it is managing XML content.

Oracle XML DB and the XMLType abstract data type make Oracle Database XML-aware. Storing XML data as an XMLType column or table lets the database perform XML-specific operations on the content. This includes XML validation and optimization. XMLType storage allows highly efficient processing of XML content in the database.

What is XMLType?

XMLType is an abstract data type for native handling of XML data in the database.

	
XMLType has built-in methods to create, extract, and index database XML data.

	
XMLType provides SQL access to XML data.

	
XMLType functionality is also available through a set of Application Program Interfaces (APIs) provided in PL/SQL and Java. XMLType can be used in PL/SQL stored procedures for parameters, return values, and variables.

Using XMLType, SQL developers can leverage the power of the relational database while working in the context of XML. XML developers can leverage the power of XML standards while working in the context of a relational database.

XMLType can be used as the data type of columns in tables and views. XMLType variables can be used in PL/SQL stored procedures as parameters and return values. You can also use XMLType in SQL, PL/SQL, C, Java (through JDBC), and Oracle Data Provider for .NET (ODP.NET).

The XMLType API provides several useful methods that operate on XML content. For example, method extract() extracts one or more nodes from an XMLType instance.

Oracle XML DB functionality is based on the Oracle XML Developer's Kit C implementations of the relevant XML standards such as XML Parser, XML DOM, and XML Schema Validator.

	
See Also:

	
"XMLType Data Type"

	
"XMLType Storage Models" for the available XMLType storage options and their relative advantages

Benefits of XMLType Data Type and API

The XMLType data type and application programming interface (API) enable SQL operations on XML content and XML operations on SQL content:

	
Versatile API – XMLType has a versatile API for application development that includes built-in functions, indexing, and navigation support.

	
XMLType and SQL – You can use XMLType in SQL statements, combined with other data types. For example, you can query XMLType columns and join the result of the extraction with a relational column. Oracle Database determines an optimal way to run such queries.

	
Indexing – You can created several kinds of indexes to improve the performance of queries on XML data.

	
For structured storage of XMLType data, you can create B-tree indexes and function-based indexes on the object-relational tables that underlie XMLType tables and columns. Create function-based indexes only on scalar data, that is, columns that represent singleton elements or attributes.

	
For unstructured and binary XML storage of XMLType data, you can create an XMLIndex index, which specifically targets the XML structure of a document.

	
You can index the textual content of XML data with an Oracle Text CONTEXT index, for use in full-text search. This applies to all XMLType storage models.

Creating XMLType Tables and Columns

XMLType is an abstract data type, so it is straightforward to create an XMLType table or column. The basic CREATE TABLE statement, specifying no storage options and no XML schema, stores XMLType data as binary XML.Foot 1

Example 3-1 creates an XMLType column, and Example 3-2 creates an XMLType table.

Example 3-1 Creating a Table with an XMLType Column

CREATE TABLE mytable1 (key_column VARCHAR2(10) PRIMARY KEY, xml_column XMLType);

Example 3-2 Creating a Table of XMLType

CREATE TABLE mytable2 OF XMLType;

	
See Also:

"Creating XMLType Tables and Columns Based on XML Schemas"

	
Note:

To create an XMLType table in a different database schema from your own, you must have not only privilege CREATE ANY TABLE but also privilege CREATE ANY INDEX. This is because a unique index is created on column OBJECT_ID when you create the table. Column OBJECT_ID stores a system-generated object identifier.

Partitioning or Constraining Binary XML Data using Virtual Columns

XML data has its own structure, which, except for object-relational storage of XMLType, is not reflected directly in database data structure. That is, individual XML elements and attributes are not mapped to individual database columns or tables.

Therefore, to constrain or partition XML data according to the values of individual elements or attributes, the standard approach for relational data does not apply. Instead, you must create virtual columns that represent the XML data of interest, and then use those virtual columns to define the constraints or partitions that you need.

This approach applies only to XML data that is stored as binary XML. For XML data that uses unstructured storage, the database has no knowledge of the XML structure —the data is treated as flat text, but for binary XML storage that structure is known. You can exploit this structural knowledge to create virtual columns, which the database can then use with constraints or partitions.

The technique is as follows:

	
Define virtual columns that correspond to the XML data that you are interested in.

	
Use those columns to partition or constrain the XMLType data as a whole.

You create virtual columns on XMLType data as you would create virtual columns using any other type of data, but using a slightly different syntax. In particular, you cannot specify any constraints in association with the column definition.

Because XMLType is an abstract data type, if you create virtual columns on an XMLType table then those columns are hidden. They do not show up in DESCRIBE statements, for example. This hiding enables tools that use operations such as DESCRIBE to function normally and not be misled by the virtual columns.

	
Note:

	
Partitioning of binary XML tables is supported starting with 11g Release 2 (11.2). It is supported only if the database compatibility (parameter compatible in file init.ora) is 11.2 or higher.

	
Range, hash, and list partitioning are supported.

	
You can partition an XMLType table using a virtual column. You cannot partition a relational table that has an XMLType column, using that column to define virtual columns of XML data.

You create a virtual column based on an XML element or attribute by defining it in terms of a SQL expression that involves that element or attribute. The column is thus function-based. You use SQL/XML functions XMLCast and XMLQuery to do this, as shown in Example 3-3. The XQuery expression argument to function XMLQuery must be a simple XPath expression that uses only the child and attribute axes.

Example 3-3 Partitioning a Binary XML Table using Virtual Columns

CREATE TABLE po_binaryxml OF XMLType
 XMLTYPE STORE AS BINARY XML
 VIRTUAL COLUMNS
 (DATE_COL AS (XMLCast(XMLQuery('/PurchaseOrder/@orderDate'
 PASSING OBJECT_VALUE RETURNING CONTENT)
 AS DATE)))
 PARTITION BY RANGE (DATE_COL)
 (PARTITION orders2001 VALUES LESS THAN (to_date('01-JAN-2002')),
 PARTITION orders2002 VALUES LESS THAN (MAXVALUE));

Example 3-3 partitions an XMLType table using a virtual column, DATE_COL, which targets the orderDate element in a purchase-order document.

To use a virtual column for partitioning, its data type must be constant. In the case where the XMLType data in the column or table is mixed, some documents being encoded using an XML schema and others being encoded without using any schema, you must cast the functional expression, to ensure that the same data type is used for all rows in the virtual column.

	
Note:

For best performance, choose, as the partitioning key, an XPath expression whose target occurs within 32 K bytes of the beginning of the XML document.

You define constraints on binary XML data similarly. See Example 3-20.

	
See Also:

	
"XMLIndex Partitioning and Parallelism"

	
"Enforcing Referential Integrity using SQL Constraints"

	
Oracle Database SQL Language Reference for information about creating tables with virtual columns

Loading XML Content into Oracle XML DB

You can load XML content into Oracle XML DB using these techniques:

	
Table-based loading:

	
Loading XML Content using SQL or PL/SQL

	
Loading XML Content using Java

	
Loading XML Content using C

	
Loading Large XML Files that Contain Small XML Documents

	
Loading Large XML Files using SQL*Loader

	
Path-based repository loading techniques:

	
Loading XML Documents into the Repository using DBMS_XDB

	
Loading Documents into the Repository using Protocols

Loading XML Content using SQL or PL/SQL

You can use a simple INSERT operation in SQL or PL/SQL to load an XML document into the database. Before the document can be stored as an XMLType column or table, you must convert it into an XMLType instance using one of the XMLType constructors.

	
See Also:

	
Chapter 4, "XMLType Operations"

	
"APIs for XML"

	
Oracle Database PL/SQL Packages and Types Reference for a description of the XMLType constructors

XMLType constructors allow an XMLType instance to be created from different sources, including VARCHAR, CLOB, and BFILE values. The constructors accept additional arguments that reduce the amount of processing associated with XMLType creation. For example, if you are sure that a given source XML document is valid, you can provide an argument to the constructor that disables the type-checking that is otherwise performed.

In addition, if the source data is not encoded in the database character set, an XMLType instance can be constructed using a BFILE or BLOB value. The encoding of the source data is specified through the character set id (csid) argument of the constructor.

Example 3-5 shows how to insert XML content into an XMLType table. Before making this insertion, you must create a database directory object that points to the directory containing the file to be processed. To do this, you must have the CREATE ANY DIRECTORY privilege.

	
See Also:

Oracle Database SQL Language Reference, Chapter 18, under GRANT

Example 3-4 Creating a Database Directory

CREATE DIRECTORY xmldir AS path_to_folder_containing_XML_file;

Example 3-5 Inserting XML Content into an XMLType Table

INSERT INTO mytable2 VALUES (XMLType(bfilename('XMLDIR', 'purchaseOrder.xml'),
 nls_charset_id('AL32UTF8')));

The value passed to nls_charset_id indicates that the encoding for the file to be read is UTF-8.

When you use SQL INSERT to insert a large document containing collections into XMLType tables (but not into XMLType columns), Oracle XML DB optimizes load time and memory usage.

	
See Also:

"Loading and Retrieving Large Documents with Collections"

Loading XML Content using Java

Example 3-6 shows how to load XML content into Oracle XML DB by first creating an XMLType instance in Java, given a Document Object Model (DOM).

Example 3-6 Inserting Content into an XMLType Table using Java

public void doInsert(Connection conn, Document doc)
throws Exception
{
 String SQLTEXT = "INSERT INTO purchaseorder VALUES (?)";
 XMLType xml = null;
 xml = XMLType.createXML(conn,doc);
 OraclePreparedStatement sqlStatement = null;
 sqlStatement = (OraclePreparedStatement) conn.prepareStatement(SQLTEXT);
 sqlStatement.setObject(1,xml);
 sqlStatement.execute();
}

A simple bulk loader application is available on the Oracle Technology Network (OTN) site at http://www.oracle.com/technetwork/database-features/xmldb/overview/index.html. It shows how to load a directory of XML files into Oracle XML DB using Java Database Connectivity (JDBC). JDBC is a set of Java interfaces to Oracle Database.

Loading XML Content using C

Example 3-7 shows how to insert XML content into an XMLType table using C code, by creating an XMLType instance given a DOM.

Example 3-7 Inserting Content into an XMLType Table using C

#include "stdio.h"
#include <xml.h>
#include <stdlib.h>
#include <string.h>
#include <ocixmldb.h>
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
OCIServer *srvhp;
OCIDuration dur;
OCISession *sesshp;
oratext *username = "QUINE";
oratext *password = "************"; /* Replace with the real password. */
oratext *filename = "AMCEWEN-20021009123336171PDT.xml";
oratext *schemaloc = "http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd";

/*--*/
/* Execute a SQL statement that binds XML data */
/*--*/

sword exec_bind_xml(OCISvcCtx *svchp, OCIError *errhp, OCIStmt *stmthp,
 void *xml, OCIType *xmltdo, OraText *sqlstmt)
{
 OCIBind *bndhp1 = (OCIBind *) 0;
 sword status = 0;
 OCIInd ind = OCI_IND_NOTNULL;
 OCIInd *indp = &ind;
 if(status = OCIStmtPrepare(stmthp, errhp, (OraText *)sqlstmt,
 (ub4)strlen((const char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 return OCI_ERROR;
 if(status = OCIBindByPos(stmthp, &bndhp1, errhp, (ub4) 1, (dvoid *) 0,
 (sb4) 0, SQLT_NTY, (dvoid *) 0, (ub2 *)0,
 (ub2 *)0, (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT))
 return OCI_ERROR;
 if(status = OCIBindObject(bndhp1, errhp, (CONST OCIType *) xmltdo,
 (dvoid **) &xml, (ub4 *) 0,
 (dvoid **) &indp, (ub4 *) 0))
 return OCI_ERROR;
 if(status = OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT))
 return OCI_ERROR;
 return OCI_SUCCESS;
}

/*--*/
/* Initialize OCI handles, and connect */
/*--*/

sword init_oci_connect()
{
. . .
}

/*--*/
/* Free OCI handles, and disconnect */
/*--*/

void free_oci()
{
. . .
}

void main()
{
 OCIType *xmltdo;
 xmldocnode *doc;
 ocixmldbparam params[1];
 xmlerr err;
 xmlctx *xctx;
 oratext *ins_stmt;
 sword status;
 xmlnode *root;
 oratext buf[10000];

 /* Initialize envhp, svchp, errhp, dur, stmthp */
 init_oci_connect();

 /* Get an XML context */
 params[0].name_ocixmldbparam = XCTXINIT_OCIDUR;
 params[0].value_ocixmldbparam = &dur;
 xctx = OCIXmlDbInitXmlCtx(envhp, svchp, errhp, params, 1);
 if (!(doc = XmlLoadDom(xctx, &err, "file", filename,
 "schema_location", schemaloc, NULL)))
 {
 printf("Parse failed.\n");
 return;
 }
 else
 printf("Parse succeeded.\n");
 root = XmlDomGetDocElem(xctx, doc);
 printf("The xml document is :\n");
 XmlSaveDom(xctx, &err, (xmlnode *)doc, "buffer", buf, "buffer_length", 10000, NULL);
 printf("%s\n", buf);

 /* Insert the document into my_table */
 ins_stmt = (oratext *)"insert into purchaseorder values (:1)";
 status = OCITypeByName(envhp, errhp, svchp, (const text *) "SYS",
 (ub4) strlen((const char *)"SYS"), (const text *) "XMLTYPE",
 (ub4) strlen((const char *)"XMLTYPE"), (CONST text *) 0,
 (ub4) 0, OCI_DURATION_SESSION, OCI_TYPEGET_HEADER,
 (OCIType **) &xmltdo);
 if (status == OCI_SUCCESS)
 {
 status = exec_bind_xml(svchp, errhp, stmthp, (void *)doc,
 xmltdo, ins_stmt);
 }
 if (status == OCI_SUCCESS)
 printf ("Insert successful\n");
 else
 printf ("Insert failed\n");

 /* Free XML instances */
 if (doc)
 XmlFreeDocument((xmlctx *)xctx, (xmldocnode *)doc);
 /* Free XML CTX */
 OCIXmlDbFreeXmlCtx(xctx);
 free_oci();
}

	
Note:

For simplicity in demonstrating this feature, this example does not perform the password management techniques that a deployed system normally uses. In a production environment, follow the Oracle Database password management guidelines, and disable any sample accounts. See Oracle Database Security Guide for password management guidelines and other security recommendations.

	
See Also:

Appendix A, "Oracle-Supplied XML Schemas and Examples" for a complete listing of this example

Loading Large XML Files that Contain Small XML Documents

When loading large XML files consisting of a collection of smaller XML documents, it is often more efficient to use Simple API for XML (SAX) parsing to break the file into a set of smaller documents, and then insert those documents. SAX is an XML standard interface provided by XML parsers for event-based applications.

You can use SAX to load a database table from very large XML files in the order of 30 MB or larger, by creating individual documents from a collection of nodes. You can also bulk load XML files.

	
See Also:

	
http://www.saxproject.org/ for information about SAX

	
http://www.oracle.com/technetwork/database-features/xmldb/overview/index.html, for an application example that loads large files using SAX

Loading Large XML Files using SQL*Loader

Use SQL*Loader to load large amounts of XML data into Oracle Database. SQL*Loader loads in one of two modes, conventional or direct path. Table 3-1 compares these modes.

Table 3-1 SQL*Loader – Conventional and Direct-Path Load Modes

	Conventional Load Mode	Direct-Path Load Mode
	
Uses SQL to load data into Oracle Database. This is the default mode.

	
Bypasses SQL and streams the data directly into Oracle Database.

	
Advantage: Follows SQL semantics. For example triggers are fired and constraints are checked.

	
Advantage: This loads data much faster than the conventional load mode.

	
Disadvantage: This loads data slower than with the direct load mode.

	
Disadvantage: SQL semantics is not obeyed. For example triggers are not fired and constraints are not checked.

When loading LOBs with SQL*Loader direct-path load, much memory can be used. If the message SQL*Loader 700 (out of memory) appears, then it is likely that more rows are being included in each load call than can be handled by your operating system and process memory. Workaround: use the ROWS option to read a smaller number of rows in each data save.

	
See Also:

Chapter 35, "Loading XML Data using SQL*Loader"

Loading XML Documents into the Repository using DBMS_XDB

You can also store XML documents in Oracle XML DB Repository, and access these documents using path-based rather than table-based techniques. To load an XML document into the repository under a given path, use PL/SQL function DBMS_XDB.createResource. Example 3-8 illustrates this.

Example 3-8 Inserting XML Content into the Repository using CREATERESOURCE

DECLARE
 res BOOLEAN;
BEGIN
 res := DBMS_XDB.createResource('/home/QUINE/purchaseOrder.xml',
 bfilename('XMLDIR', 'purchaseOrder.xml'),
 nls_charset_id('AL32UTF8'));
END;/

Many operations for configuring and using Oracle XML DB are based on processing one or more XML documents. Examples include registering an XML schema and performing an XSL transformation. The easiest way to make these XML documents available to Oracle Database is to load them into Oracle XML DB Repository.

Loading Documents into the Repository using Protocols

Oracle XML DB Repository can store XML documents that are either XML schema-based or non-schema-based. It can also store content that is not XML data, such as HTML files, image files, and Microsoft Word documents.

You can load XML documents from a local file system into Oracle XML DB Repository using protocols such as WebDAV, from Windows Explorer or other tools that support WebDAV. Figure 3-1 shows a simple drag and drop operation for copying the contents of the SCOTT folder from the local hard drive to folder poSource in the Oracle XML DB Repository.

Figure 3-1 Loading Content into the Repository using Windows Explorer

[image: Description of Figure 3-1 follows]

The copied folder might contain, for example, an XML schema document, an HTML page, and some XSLT style sheets.

Character Sets of XML Documents

This section describes how character sets of XML documents are determined.

	
Caution:

AL32UTF8 is the Oracle Database character set that is appropriate for XMLType data. It is equivalent to the IANA registered standard UTF-8 encoding, which supports all valid XML characters.
Do not confuse Oracle Database database character set UTF8 (no hyphen) with database character set AL32UTF8 or with character encoding UTF-8. Database character set UTF8 has been superseded by AL32UTF8. Do not use UTF8 for XML data. Character set UTF8 supports only Unicode version 3.1 and earlier. It does not support all valid XML characters. AL32UTF8 has no such limitation.

Using database character set UTF8 for XML data could potentially stop a system or affect security negatively. If a character that is not supported by the database character set appears in an input-document element name, a replacement character (usually "?") is substituted for it. This terminates parsing and raises an exception. It can cause an irrecoverable error.

XML Encoding Declaration

Each XML document is composed of units called entities. Each entity in an XML document may use a different encoding for its characters. Entities that are stored in an encoding other than UTF-8 or UTF-16 must begin with an XML declaration containing an encoding specification indicating the character encoding in use. For example:

<?xml version='1.0' encoding='EUC-JP' ?>

Entities encoded in UTF-16 must begin with the Byte Order Mark (BOM), as described in Appendix F of the XML 1.0 Reference. For example, on big-endian platforms, the BOM required of a UTF-16 data stream is #xFEFF.

In the absence of both the encoding declaration and the BOM, the XML entity is assumed to be encoded in UTF-8. Because ASCII is a subset of UTF-8, ASCII entities do not require an encoding declaration.

In many cases, external sources of information are available, besides the XML data, to provide the character encoding in use. For example, the encoding of the data can be obtained from the charset parameter of the Content-Type field in an HTTP(S) request as follows:

Content-Type: text/xml; charset=ISO-8859-4

Character-Set Determination When Loading XML Documents into the Database

In releases prior to Oracle Database 10g release 1, all XML documents were assumed to be in the database character set, regardless of the document encoding declaration. Starting with Oracle Database 10g release 1, the document encoding is detected from the encoding declaration when the document is loaded into the database.

However, if the XML data is obtained from a CLOB or VARCHAR value, then the encoding declaration is ignored, because these two data types are always encoded in the database character set.

In addition, when loading data into Oracle XML DB, either through programmatic APIs or transfer protocols, you can provide external encoding to override the document encoding declaration. An error is raised if you try to load a schema-based XML document that contains characters that are not legal in the determined encoding.

The following examples show different ways to specify external encoding:

	
Using PL/SQL function DBMS_XDB.createResource to create a file resource from a BFILE, you can specify the file encoding with the CSID argument. If a zero CSID is specified then the file encoding is auto-detected from the document encoding declaration.

CREATE DIRECTORY xmldir AS '/private/xmldir';
CREATE OR REPLACE PROCEDURE loadXML(filename VARCHAR2, file_csid NUMBER) IS
 xbfile BFILE;
 RET BOOLEAN;
BEGIN
 xbfile := bfilename('XMLDIR', filename);
 ret := DBMS_XDB.createResource('/public/mypurchaseorder.xml',
 xbfile,
 file_csid);
END;/

	
Use the FTP protocol to load documents into Oracle XML DB. Use the quote set_charset FTP command to indicate the encoding of the files to be loaded.

ftp> quote set_charset Shift_JIS
ftp> put mypurchaseorder.xml

	
Use the HTTP(S) protocol to load documents into Oracle XML DB. Specify the encoding of the data to be transmitted to Oracle XML DB in the request header.

Content-Type: text/xml; charset= EUC-JP

Character-Set Determination When Retrieving XML Documents from the Database

XML documents stored in Oracle XML DB can be retrieved using a SQL client, programmatic APIs, or transfer protocols. You can specify the encoding of the retrieved data (except in Oracle Database releases prior to 10g, where XML data is retrieved only in the database character set).

When XML data is stored as a CLOB or VARCHAR2 value, the encoding declaration, if present, is always ignored for retrieval, just as for storage. The encoding of a retrieved document can thus be different from the encoding explicitly declared in that document.

The character set for an XML document retrieved from the database is determined in the following ways:

	
SQL client – If a SQL client (such as SQL*Plus) is used to retrieve XML data, then the character set is determined by the client-side environment variable NLS_LANG. In particular, this setting overrides any explicit character-set declarations in the XML data itself.

For example, if you set the client side NLS_LANG variable to AMERICAN_AMERICA.AL32UTF8 and then retrieve an XML document with encoding EUC_JP provided by declaration <?xml version="1.0" encoding="EUC-JP"?>, the character set of the retrieved document is AL32UTF8, not EUC_JP.

	
See Also:

Oracle Database Globalization Support Guide for information about NLS_LANG

	
PL/SQL and APIs – Using PL/SQL or programmatic APIs, you can retrieve XML data into VARCHAR, CLOB, or XMLType data types. As for SQL clients, you can control the encoding of the retrieved data by setting NLS_LANG.

You can also retrieve XML data into a BLOB value using XMLType and URIType methods. These let you specify the character set of the returned BLOB value. Here is an example:

CREATE OR REPLACE FUNCTION getXML(pathname VARCHAR2, charset VARCHAR2)
 RETURN BLOB IS
 xblob BLOB;
BEGIN
 SELECT XMLSERIALIZE(DOCUMENT e.RES AS BLOB ENCODING charset) INTO xblob
 FROM RESOURCE_VIEW e WHERE equals_path(e.RES, pathname) = 1;
 RETURN xblob;
END;
/

	
FTP – You can use the FTP quote set_nls_locale command to set the character set:

ftp> quote set_nls_locale EUC-JP
ftp> get mypurchaseorder.xml

	
See Also:

FTP Quote Methods

	
HTTP(S) – You can use the Accept-Charset parameter in an HTTP(S) request:

/httptest/mypurchaseorder.xml 1.1 HTTP/Host: localhost:2345
Accept: text/*
Accept-Charset: iso-8859-1, utf-8

	
See Also:

Controlling Character Sets for HTTP(S)

Overview of the W3C XML Schema Recommendation

The W3C XML Schema Recommendation defines a standardized language for specifying the structure, content, and certain semantics of a set of XML documents. An XML schema can be considered the metadata that describes a class of XML documents. The XML Schema Recommendation is described at: http://www.w3.org/TR/xmlschema-0/

XML Instance Documents

Documents conforming to a given XML schema can be considered as members or instances of the class defined by that XML schema. Consequently the term instance document is often used to describe an XML document that conforms to a given XML schema. The most common use of an XML schema is to validate that a given instance document conforms to the rules defined by the XML schema.

XML Schema for Schemas

The W3C Schema working group publishes an XML schema, often referred to as the "Schema for Schemas". This XML schema provides the definition, or vocabulary, of the XML Schema language. All valid XML schemas can be considered to be members of the class defined by this XML schema. An XML schema is thus an XML document that conforms to the class defined by the XML schema published at http://www.w3.org/2001/XMLSchema.

Editing XML Schemas

XML schemas can be authored and edited using any of the following:

	
A simple text editor, such as emacs or vi

	
An XML schema-aware editor, such as the XML editor included with Oracle JDeveloper

	
An explicit XML schema-authoring tool, such as XMLSpy from Altova Corporation

XML Schema Features

The XML Schema language defines 47 scalar data types. This provides for strong typing of elements and attributes. The W3C XML Schema Recommendation also supports object-oriented techniques such as inheritance and extension, hence you can design XML schema with complex objects from base data types defined by the XML Schema language. The vocabulary includes constructs for defining and ordering, default values, mandatory content, nesting, repeated sets, and redefines. Oracle XML DB supports all the constructs, except for redefines.

Text Representation of the Purchase Order XML Schema

Example 3-9 shows the purchase order XML schema as an XML file, purchaseOrder.xsd.

Example 3-9 Purchase-Order XML Schema, purchaseOrder.xsd

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.0">
 <xs:element name="PurchaseOrder" type="PurchaseOrderType"/>
 <xs:complexType name="PurchaseOrderType">
 <xs:sequence>
 <xs:element name="Reference" type="ReferenceType"/>
 <xs:element name="Actions" type="ActionsType"/>
 <xs:element name="Reject" type="RejectionType" minOccurs="0"/>
 <xs:element name="Requestor" type="RequestorType"/>
 <xs:element name="User" type="UserType"/>
 <xs:element name="CostCenter" type="CostCenterType"/>
 <xs:element name="ShippingInstructions" type="ShippingInstructionsType"/>
 <xs:element name="SpecialInstructions" type="SpecialInstructionsType"/>
 <xs:element name="LineItems" type="LineItemsType"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="LineItemsType">
 <xs:sequence>
 <xs:element name="LineItem" type="LineItemType" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="LineItemType">
 <xs:sequence>
 <xs:element name="Description" type="DescriptionType"/>
 <xs:element name="Part" type="PartType"/>
 </xs:sequence>
 <xs:attribute name="ItemNumber" type="xs:integer"/>
 </xs:complexType>
 <xs:complexType name="PartType">
 <xs:attribute name="Id">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="10"/>
 <xs:maxLength value="14"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="Quantity" type="moneyType"/>
 <xs:attribute name="UnitPrice" type="quantityType"/>
 </xs:complexType>
 <xs:simpleType name="ReferenceType">
 <xs:restriction base="xs:string">
 <xs:minLength value="18"/>
 <xs:maxLength value="30"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="ActionsType">
 <xs:sequence>
 <xs:element name="Action" maxOccurs="4">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="User" type="UserType"/>
 <xs:element name="Date" type="DateType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="RejectionType">
 <xs:all>
 <xs:element name="User" type="UserType" minOccurs="0"/>
 <xs:element name="Date" type="DateType" minOccurs="0"/>
 <xs:element name="Comments" type="CommentsType" minOccurs="0"/>
 </xs:all>
 </xs:complexType>
 <xs:complexType name="ShippingInstructionsType">
 <xs:sequence>
 <xs:element name="name" type="NameType" minOccurs="0"/>
 <xs:element name="address" type="AddressType" minOccurs="0"/>
 <xs:element name="telephone" type="TelephoneType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="moneyType">
 <xs:restriction base="xs:decimal">
 <xs:fractionDigits value="2"/>
 <xs:totalDigits value="12"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="quantityType">
 <xs:restriction base="xs:decimal">
 <xs:fractionDigits value="4"/>
 <xs:totalDigits value="8"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="UserType">
 <xs:restriction base="xs:string">
 <xs:minLength value="0"/>
 <xs:maxLength value="10"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="RequestorType">
 <xs:restriction base="xs:string">
 <xs:minLength value="0"/>
 <xs:maxLength value="128"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="CostCenterType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="4"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="VendorType">
 <xs:restriction base="xs:string">
 <xs:minLength value="0"/>
 <xs:maxLength value="20"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="PurchaseOrderNumberType">
 <xs:restriction base="xs:integer"/>
 </xs:simpleType>
 <xs:simpleType name="SpecialInstructionsType">
 <xs:restriction base="xs:string">
 <xs:minLength value="0"/>
 <xs:maxLength value="2048"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="NameType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="20"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="AddressType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="256"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="TelephoneType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="24"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="DateType">
 <xs:restriction base="xs:date"/>
 </xs:simpleType>
 <xs:simpleType name="CommentsType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="2048"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="DescriptionType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="256"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

	
See Also:

Example 3-10, "Annotated Purchase-Order XML Schema, purchaseOrder.xsd"

Graphical Representation of the Purchase-Order XML Schema

Figure 3-2 shows the purchase-order XML schema displayed using XMLSpy. XMLSpy is a graphical and user-friendly tool from Altova Corporation for creating and editing XML schema and XML documents. See http://www.altova.com for details. XMLSpy also supports WebDAV and FTP protocols hence can directly access and edit content stored in Oracle XML DB Repository.

Figure 3-2 XMLSpy Graphical Representation of the PurchaseOrder XML Schema

[image: Description of Figure 3-2 follows]

The purchase order XML schema demonstrates some key features of a typical XML document:

	
Global element PurchaseOrder is an instance of the complexType PurchaseOrderType

	
PurchaseOrderType defines the set of nodes that make up a PurchaseOrder element

	
LineItems element consists of a collection of LineItem elements

	
Each LineItem element consists of two elements: Description and Part

	
Part element has attributes Id, Quantity, and UnitPrice

Using XML Schema with Oracle XML DB

This section describes the use of XML Schema with Oracle XML DB.

Why Use XML Schema with Oracle XML DB?

The following paragraphs describe the main reasons for using XML schema with Oracle XML DB.

Validating Instance Documents with XML Schema

The most common usage of XML Schema is as a mechanism for validating that instance documents conform to a given XML schema. The XMLType methods isSchemaValid() and schemaValidate() validate the contents of an instance document stored as XMLType.

Constraining Instance Documents for Business Rules or Format Compliance

An XML schema can also be used as a constraint when creating tables or columns of XMLType. For example, the XMLType is constrained to storing XML documents compliant with one of the global elements defined by the XML schema.

Defining How XMLType Contents Must be Stored in the Database

Oracle XML DB also uses XML Schema as a mechanism for defining how the contents of an XMLType instance should be stored inside the database. All storage models support the use of XML Schema: binary XML, structured, unstructured, and hybrid (a combination of structured and unstructured). See "XMLType Storage Models" for information on the available storage models for XMLType.

Structured Storage of XML Documents

Structured storage of XML documents is based on decomposing the content of the document into a set of SQL objects. These SQL objects are based on the SQL 1999 Type framework. When an XML schema is registered with Oracle XML DB, the required SQL type definitions are automatically generated from the XML schema.

A SQL type definition is generated from each complexType defined by the XML schema. Each element or attribute defined by the complexType becomes a SQL attribute in the corresponding SQL type. Oracle XML DB automatically maps the 47 scalar data types defined by the XML Schema Recommendation to the 19 scalar data types supported by SQL. A varray type is generated for each element and this can occur multiple times.

The generated SQL types allow XML content, compliant with the XML schema, to be decomposed and stored in the database as a set of objects without any loss of information. When the document is ingested the constructs defined by the XML schema are mapped directly to the equivalent SQL types. This lets Oracle XML DB leverage the full power of Oracle Database when managing XML and can lead to significant reductions in the amount of space required to store the document. It can also reduce the amount of memory required to query and update XML content.

Annotating an XML Schema to Control Naming, Mapping, and Storage

The W3C XML Schema Recommendation defines an annotation mechanism that lets vendor-specific information be added to an XML schema. Oracle XML DB uses this mechanism to control the mapping between the XML schema and database features.

You can use XML schema annotations to do the following:

	
Specify which database tables are used to store the XML data.

	
Override the default mapping between XML Schema data types and SQL data types, for structured storage.

	
Name the database objects and attributes that are created to store XML data (for structured storage).

Controlling How Collections Are Stored for Object-Relational XMLType Storage

When you register an XML schema for data that is stored object-relationally and you set registration parameter GENTABLES to TRUE, default tables are created automatically to store the associated XML instance documents.

Order is preserved among XML collection elements when they are stored. The result is an ordered collection.Foot 2 You can store data in an ordered collection in these ways:

	
Varray in a table. Each element in the collection is mapped to a SQL object. The collection of SQL objects is stored as a set of rows in a table, called an ordered collection table (OCT). By default, all collections are stored in OCTs. This default behavior corresponds to the XML schema annotation xdb:storeVarrayAsTable = "true" (default value).

	
Varray in a LOB. Each element in the collection is mapped to a SQL object. The entire collection of SQL objects is serialized as a varray and stored in a LOB column. To store a given collection as a varray in a LOB, use XML schema annotation xdb:storeVarrayAsTable = "false".

You can also use out-of-line storage for an ordered collection. This corresponds to XML schema annotation SQLInline = "false", and it means that a varray of REFs in the collection table or LOB tracks the collection content, which is stored out of line.

There is no requirement to annotate an XML schema before using it. Oracle XML DB uses a set of default assumptions when processing an XML schema that contains no annotations.

If you do not supply any of the annotations mentioned in this section, then Oracle XML DB stores a collection as a heap-based OCT. You can force OCTs to be stored as index-organized tables (IOTs) instead, by passing REGISTER_NT_AS_IOT in the OPTIONS parameter of DBMS_XMLSCHEMA.registerSchema.

	
Note:

Use heap-based OCTs, not IOTs, unless you are explicitly advised by Oracle to use IOTs. IOT storage has these significant limitations:
	
It disables partitioning of the collection tables (IOTs).

	
It supports only document-level Oracle Text indexes. It disables indexes that are element-specific or attribute-specific.

See also: Chapter 12, "Full-Text Search Over XML Data" for information about using Oracle Text with XML data.

	
Note:

In releases prior to Oracle Database 11g Release 1:
	
OCTs were stored as IOTs by default.

	
The default value for xdb:storeVarrayAsTable was false.

	
See Also:

	
"Structured Storage of XML Schema-Based Data" for information about collection storage when you create XMLType tables and columns manually using structured storage

	
Chapter 7, "XML Schema Storage and Query: Basic"

	
"Setting Annotation Attribute SQLInline to false for Out-Of-Line Storage"

	
Partitioning XMLType Tables and Columns Stored Object-Relationally

Declaring the Oracle XML DB Namespace

Before annotating an XML schema you must first declare the Oracle XML DB namespace. The Oracle XML DB namespace is defined as:

http://xmlns.oracle.com/xdb

The namespace is declared in the XML schema by adding a namespace declaration such as the following to the root element of the XML schema:

xmlns:xdb="http://xmlns.oracle.com/xdb"

Note the use of a namespace prefix (xdb). This makes it possible to abbreviate the namespace to xdb when adding annotations.

Example 3-10 shows the beginning of the PurchaseOrder XML schema with annotations. See Example A-1 for the complete schema listing.

Example 3-10 Annotated Purchase-Order XML Schema, purchaseOrder.xsd

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xdb="http://xmlns.oracle.com/xdb"
 version="1.0"
 xdb:storeVarrayAsTable="true">
 <xs:element name="PurchaseOrder" type="PurchaseOrderType" xdb:defaultTable="PURCHASEORDER"/>
 <xs:complexType name="PurchaseOrderType" xdb:SQLType="PURCHASEORDER_T">
 <xs:sequence>
 <xs:element name="Reference" type="ReferenceType" minOccurs="1" xdb:SQLName="REFERENCE"/>
 <xs:element name="Actions" type="ActionsType" xdb:SQLName="ACTIONS"/>
 <xs:element name="Reject" type="RejectionType" minOccurs="0" xdb:SQLName="REJECTION"/>
 <xs:element name="Requestor" type="RequestorType" xdb:SQLName="REQUESTOR"/>
 <xs:element name="User" type="UserType" minOccurs="1" xdb:SQLName="USERID"/>
 <xs:element name="CostCenter" type="CostCenterType" xdb:SQLName="COST_CENTER"/>
 <xs:element name="ShippingInstructions" type="ShippingInstructionsType"
 xdb:SQLName="SHIPPING_INSTRUCTIONS"/>
 <xs:element name="SpecialInstructions" type="SpecialInstructionsType"
 xdb:SQLName="SPECIAL_INSTRUCTIONS"/>
 <xs:element name="LineItems" type="LineItemsType" xdb:SQLName="LINEITEMS"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="LineItemsType" xdb:SQLType="LINEITEMS_T">
 <xs:sequence>
 <xs:element name="LineItem" type="LineItemType" maxOccurs="unbounded"
 xdb:SQLName="LINEITEM" xdb:SQLCollType="LINEITEM_V"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="LineItemType" xdb:SQLType="LINEITEM_T">
 <xs:sequence>
 <xs:element name="Description" type="DescriptionType"
 xdb:SQLName="DESCRIPTION"/>
 <xs:element name="Part" type="PartType" xdb:SQLName="PART"/>
 </xs:sequence>
 <xs:attribute name="ItemNumber" type="xs:integer" xdb:SQLName="ITEMNUMBER"
 xdb:SQLType="NUMBER"/>
 </xs:complexType>
 <xs:complexType name="PartType" xdb:SQLType="PART_T">
 <xs:attribute name="Id" xdb:SQLName="PART_NUMBER" xdb:SQLType="VARCHAR2">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="10"/>
 <xs:maxLength value="14"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="Quantity" type="moneyType" xdb:SQLName="QUANTITY"/>
 <xs:attribute name="UnitPrice" type="quantityType" xdb:SQLName="UNITPRICE"/>
 </xs:complexType>
 <xs:simpleType name="ReferenceType">
 <xs:restriction base="xs:string">
 <xs:minLength value="18"/>
 <xs:maxLength value="30"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="ActionsType" xdb:SQLType="ACTIONS_T">
 <xs:sequence>
 <xs:element name="Action" maxOccurs="4" xdb:SQLName="ACTION" xdb:SQLCollType="ACTION_V">
 <xs:complexType xdb:SQLType="ACTION_T">
 <xs:sequence>
 <xs:element name="User" type="UserType" xdb:SQLName="ACTIONED_BY"/>
 <xs:element name="Date" type="DateType" minOccurs="0" xdb:SQLName="DATE_ACTIONED"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="RejectionType" xdb:SQLType="REJECTION_T">
 <xs:all>
 <xs:element name="User" type="UserType" minOccurs="0" xdb:SQLName="REJECTED_BY"/>
 <xs:element name="Date" type="DateType" minOccurs="0" xdb:SQLName="DATE_REJECTED"/>
 <xs:element name="Comments" type="CommentsType" minOccurs="0" xdb:SQLName="REASON_REJECTED"/>
 </xs:all>
 </xs:complexType>
 <xs:complexType name="ShippingInstructionsType" xdb:SQLType="SHIPPING_INSTRUCTIONS_T">
 <xs:sequence>
 <xs:element name="name" type="NameType" minOccurs="0" xdb:SQLName="SHIP_TO_NAME"/>
 <xs:element name="address" type="AddressType" minOccurs="0" xdb:SQLName="SHIP_TO_ADDRESS"/>
 <xs:element name="telephone" type="TelephoneType" minOccurs="0" xdb:SQLName="SHIP_TO_PHONE"/>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="moneyType">
 <xs:restriction base="xs:decimal">
 <xs:fractionDigits value="2"/>
 <xs:totalDigits value="12"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="quantityType">
 <xs:restriction base="xs:decimal">
 <xs:fractionDigits value="4"/>
 <xs:totalDigits value="8"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="UserType">
 <xs:restriction base="xs:string">
 <xs:minLength value="0"/>
 <xs:maxLength value="10"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="RequestorType">
 <xs:restriction base="xs:string">
 <xs:minLength value="0"/>
 <xs:maxLength value="128"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="CostCenterType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="4"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="VendorType">
 <xs:restriction base="xs:string">
 <xs:minLength value="0"/>
 <xs:maxLength value="20"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="PurchaseOrderNumberType">
 <xs:restriction base="xs:integer"/>
 </xs:simpleType>
 <xs:simpleType name="SpecialInstructionsType">
 <xs:restriction base="xs:string">
 <xs:minLength value="0"/>
 <xs:maxLength value="2048"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="NameType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="20"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="AddressType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="256"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="TelephoneType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="24"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="DateType">
 <xs:restriction base="xs:date"/>
 </xs:simpleType>
 <xs:simpleType name="CommentsType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="2048"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="DescriptionType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="256"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

The PurchaseOrder XML schema defines the following two namespaces:

	
http://www.w3c.org/2001/XMLSchema. This is reserved by W3C for the Schema for Schemas.

	
http://xmlns.oracle.com/xdb. This is reserved by Oracle for the Oracle XML DB schema annotations.

The PurchaseOrder schema uses several annotations, including the following:

	
defaultTable annotation in the PurchaseOrder element. This specifies that XML documents, compliant with this XML schema are stored in a database table called purchaseorder.

	
SQLType annotation.

The first occurrence of SQLType specifies that the name of the SQL type generated from complexType element PurchaseOrderType is purchaseorder_t.

The second occurrence of SQLType specifies that the name of the SQL type generated from the complexType element LineItemType is lineitem_t and the SQL type that manages the collection of LineItem elements is lineitem_v.

	
SQLName annotation. This provides an explicit name for each SQL attribute of purchaseorder_t.

Figure 3-3 shows the XMLSpy Oracle tab, which facilitates adding Oracle XML DB schema annotations to an XML schema while working in the graphical editor.

Figure 3-3 XMLSpy Showing Support for Oracle XML DB Schema Annotations

[image: Description of Figure 3-3 follows]

Registering an XML Schema with Oracle XML DB

For an XML schema to be useful to Oracle XML DB you must first register it with Oracle XML DB. After it has been registered, it can be used for validating XML documents and for creating XMLType tables and columns bound to the XML schema.

Two items are required to register an XML schema with Oracle XML DB:

	
The XML schema document

	
A string that can be used as a unique identifier for the XML schema, after it is registered with Oracle Database. Instance documents use this unique identifier to identify themselves as members of the class defined by the XML schema. The identifier is typically in the form of a URL, and is often referred to as the schema location hint or document location hint.

You register an XML schema using PL/SQL procedure DBMS_XMLSCHEMA.registerSchema. Example 3-11 illustrates this. By default, when an XML schema is registered, Oracle XML DB automatically generates all of the SQL object types and XMLType tables required to manage the instance documents. An XML schema can be registered as global or local.

	
See Also:

	
"Delete and Reload Documents Before Registering Their XML Schema" for considerations to keep in mind when you register an XML schema

	
"Local and Global XML Schemas"

	
Oracle Database PL/SQL Packages and Types Reference for information about DBMS_XMLSCHEMA.registerSchema

Example 3-11 Registering an XML Schema using DBMS_XMLSCHEMA.REGISTERSCHEMA

BEGIN
 DBMS_XMLSCHEMA.registerSchema(
 SCHEMAURL => 'http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd',
 SCHEMADOC => XDBURIType('/source/schemas/poSource/xsd/purchaseOrder.xsd').getCLOB(),
 LOCAL => TRUE,
 GENTYPES => TRUE,
 GENTABLES => TRUE);
END;
/

In Example 3-11, the unique identifier for the XML schema is:

http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd

The XML schema document was previously loaded into Oracle XML DB Repository at this path: /source/schemas/poSource/xsd/purchaseOrder.xsd.

During XML schema registration, an XDBURIType accesses the content of the XML schema document, based on its location in the repository. Options passed to procedure registerSchema specify that the schema in Example 3-11 is to be registered as a local XML schema, and that SQL objects, and that tables are to be generated during the registration process.

PL/SQL procedure DBMS_XMLSCHEMA.registerSchema performs the following operations:

	
Parses and validates the XML schema.

	
Creates a set of entries in Oracle Data Dictionary that describe the XML schema.

	
Creates a set of SQL object definitions, based on complexType elements defined in the XML schema.

	
Creates an XMLType table for each global element defined by the XML schema.

	
See Also:

"Local and Global XML Schemas"

SQL Types and Tables Created During XML Schema Registration

Example 3-12 illustrates the creation of object types during XML schema registration with Oracle XML DB.

Example 3-12 Objects Created During XML Schema Registration

DESCRIBE purchaseorder_t
 purchaseorder_t is NOT FINAL
 Name Null? Type
 --- -------- ----------------------------
 SYS_XDBPD$ XDB.XDB$RAW_LIST_T
 REFERENCE VARCHAR2(30 CHAR)
 ACTIONS ACTIONS_T
 REJECTION REJECTION_T
 REQUESTOR VARCHAR2(128 CHAR)
 USERID VARCHAR2(10 CHAR)
 COST_CENTER VARCHAR2(4 CHAR)
 SHIPPING_INSTRUCTIONS SHIPPING_INSTRUCTIONS_T
 SPECIAL_INSTRUCTIONS VARCHAR2(2048 CHAR)
 LINEITEMS LINEITEMS_T

DESCRIBE lineitems_t
 lineitems_t is NOT FINAL
 Name Null? Type
 --- -------- ----------------------------
 SYS_XDBPD$ XDB.XDB$RAW_LIST_T
 LINEITEM LINEITEM_V

DESCRIBE lineitem_v
 lineitem_v VARRAY(2147483647) OF LINEITEM_T
 LINEITEM_T is NOT FINAL
 Name Null? Type
 --- -------- ----------------------------
 SYS_XDBPD$ XDB.XDB$RAW_LIST_T
 ITEMNUMBER NUMBER(38)
 DESCRIPTION VARCHAR2(256 CHAR)
 PART PART_T

This example shows that SQL type definitions were created when the XML schema was registered with Oracle XML DB. These SQL type definitions include:

	
purchaseorder_t. This type is used to persist the SQL objects generated from a PurchaseOrder element. When an XML document containing a PurchaseOrder element is stored in Oracle XML DB the document is broken up, and the contents of the document are stored as an instance of purchaseorder_t.

	
lineitems_t, lineitem_v, and lineitem_t. These types manage the collection of LineItem elements that may be present in a PurchaseOrder document. Type lineitems_t consists of a single attribute lineitem, defined as an instance of type lineitem_v. Type lineitem_v is defined as a varray of linteitem_t objects. There is one instance of the lineitem_t object for each LineItem element in the document.

Working with Large XML Schemas

Several issues can arise when working with large, complex XML schemas. Sometimes, you encounter one of these errors when you register an XML schema or you create a table that is based on a global element defined by an XML schema:

	
ORA-01792: maximum number of columns in a table or view is 1000

	
ORA-04031: unable to allocate string bytes of shared memory ("string","string","string","string")

These errors are raised when an attempt is made to create an XMLType table or column based on a global element and the global element is defined as a complexType that contains a very large number of element and attribute definitions.The errors are raised only when creating an XMLType table or column that uses object-relational storage. In this case, the table or column is persisted using a SQL type, and each object attribute defined by the SQL type counts as one column in the underlying table. If the SQL type contains object attributes that are based on other SQL types, then the attributes defined by those types also count as columns in the underlying table.

If the total number of object attributes in all of the SQL types exceeds the Oracle Database limit of 1000 columns in a table, then the storage table cannot be created. When the total number of elements and attributes defined by a complexType reaches 1000, it is not possible to create a single table that can manage the SQL objects that are generated when an instance of that type is stored in the database.

	
Tip:

You can use the following query to determine the number of columns for a given XMLType table stored object-relationally:

SELECT count(*) FROM USER_TAB_COLS WHERE TABLE_NAME = '<the table>'

where <the table> is the table you want to check.

Error ORA-01792 reports that the 1000-column limit has been exceeded. Error ORA-04031 reports that memory is insufficient during the processing of a large number of element and attribute definitions.To resolve this problem of having too many element and attribute definitions, you must reduce the total number of object attributes in the SQL types that are used to create the storage tables.

There are two ways to achieve this reduction:

	
Use a top-down technique, with multiple XMLType tables that manage the XML documents. This reduces the number of SQL attributes in the SQL type hierarchy for a given storage table. As long as none of the tables need to manage more than 1000 object attributes, the problem is resolved.

	
Use a bottom-up technique, which reduces the number of SQL attributes in the SQL type hierarchy, collapsing some elements and attributes defined by the XML schema so that they are stored as a single CLOB value.

Both techniques rely on annotating the XML schema to define how a particular complexType is stored in the database.

For the top-down technique, annotations SQLInline = "false" and defaultTable force some subelements in the XML document to be stored as rows in a separate XMLType table. Oracle XML DB maintains the relationship between the two tables using a REF of XMLType. Good candidates for this approach are XML schemas that do either of the following:

	
Define a choice, where each element within the choice is defined as a complexType

	
Define an element based on a complexType that contains a large number of element and attribute definitions

The bottom-up technique involves reducing the total number of attributes in the SQL object types by choosing to store some of the lower-level complexType elements as CLOB values, rather than as objects. This is achieved by annotating the complexType or the usage of the complexType with SQLType = "CLOB".

Which technique you use depends on the application and the type of queries and updates to be performed against the data.

Working with Global Elements

By default, when an XML schema is registered with the database, Oracle XML DB generates a default table for each global element defined by the XML schema.

You can use attribute xdb:defaultTable to specify the name of the default table for a given global element. Each xdb:defaultTable attribute value you provide must be unique among all schemas registered by a given database user. If you do not supply a nonempty default table name for some element, then a unique name is provided automatically.

In practice, however, you do not want to create a default table for most global elements. Elements that never serve as the root element for an XML instance document do not need default tables — such tables are never used. Creating default tables for all global elements can lead to significant overhead in processor time and space used, especially if an XML schema contains a large number of global element definitions.

As a general rule, then, you want to prevent the creation of a default table for any global element (or any local element stored out of line) that you are sure will not be used as a root element in any document. You can do this in one of the following ways:

	
Add the annotation xdb:defaultTable = "" (empty string) to the definition of each global element that will not appear as the root element of an XML instance document. Using this approach, you allow automatic default-table creation, in general, and you prohibit it explicitly where needed, using xdb:defaultTable = "".

	
Set parameter GENTABLES to FALSE when registering the XML schema, and then manually create the default table for each global element that can legally appear as the root element of an instance document. Using this approach, you inhibit automatic default-table creation, and you create only the tables that are needed, by hand.

Creating XML Schema-Based XMLType Columns and Tables

After an XML schema has been registered with Oracle XML DB, it can be referenced when defining tables that contain XMLType columns or creating XMLType tables.

If you specify no storage model when creating an XMLType table or column for XML schema-based data, then the storage model used is that specified during registration of the referenced XML schema. If no storage model was specified for the XML schema registration, then object-relational storage is used.

Example 3-13 shows how to manually create table purchaseorder, the default table for PurchaseOrder elements.

Example 3-13 Creating an XMLType Table that Conforms to an XML Schema

CREATE TABLE purchaseorder OF XMLType
 XMLSCHEMA "http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd"
 ELEMENT "PurchaseOrder"
 VARRAY "XMLDATA"."ACTIONS"."ACTION"
 STORE AS TABLE action_table
 ((PRIMARY KEY (NESTED_TABLE_ID, SYS_NC_ARRAY_INDEX$)))
 VARRAY "XMLDATA"."LINEITEMS"."LINEITEM"
 STORE AS TABLE lineitem_table
 ((PRIMARY KEY (NESTED_TABLE_ID, SYS_NC_ARRAY_INDEX$)));

Each member of the varray that manages the collection of Action elements is stored in the ordered collection table action_table. Each member of the varray that manages the collection of LineItem elements is stored as a row in ordered collection table lineitem_table. The ordered collection tables are heap-based. Because of the PRIMARY KEY specification, they automatically contain pseudocolumn NESTED_TABLE_ID and column SYS_NC_ARRAY_INDEX$, which are required to link them back to the parent column.

This CREATE TABLE statement is equivalent to the CREATE TABLE statement that is generated automatically by Oracle XML DB when you set parameter GENTABLES to TRUE during XML schema registration. By default, the value of XML schema annotation storeVarrayAsTable is true, which automatically generates ordered collection tables (OCTs) for collections during XML schema registration. These OCTs are given system-generated names, which can be difficult to work with. You can give them more meaningful names using the SQL statement RENAME TABLE.

The CREATE TABLE statement in Example 3-13 corresponds to a purchase-order document with a single level of nesting: The varray that manages the collection of LineItem elements is ordered collection table lineitem_table.

What if you had a different XML schema that had, say, a collection of Shipment elements inside a Shipments element that was, in turn, inside a LineItem element? In that case, you could create the table manually as shown in Example 3-14.

Example 3-14 Creating an XMLType Table for Nested Collections

CREATE TABLE purchaseorder OF XMLType
 XMLSCHEMA "http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd"
 ELEMENT "PurchaseOrder"
 VARRAY "XMLDATA"."ACTIONS"."ACTION"
 STORE AS TABLE action_table
 ((PRIMARY KEY (NESTED_TABLE_ID, SYS_NC_ARRAY_INDEX$)))
 VARRAY "XMLDATA"."LINEITEMS"."LINEITEM"
 STORE AS TABLE lineitem_table
 ((PRIMARY KEY (NESTED_TABLE_ID, SYS_NC_ARRAY_INDEX$))
 VARRAY "SHIPMENTS"."SHIPMENT"
 STORE AS TABLE shipments_table
 ((PRIMARY KEY (NESTED_TABLE_ID,
 SYS_NC_ARRAY_INDEX$))));

A SQL*Plus DESCRIBE statement can be used to view information about an XMLType table, as shown in Example 3-15.

Example 3-15 Using DESCRIBE with an XML Schema-Based XMLType Table

DESCRIBE purchaseorder
 Name Null? Type
 --- -------- ----------------------------
TABLE of SYS.XMLTYPE(XMLSchema
"http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd"
Element "PurchaseOrder") STORAGE Object-relational TYPE "PURCHASEORDER_T"

The output of the DESCRIBE statement of Example 3-15 shows the following information about table purchaseorder:

	
The table is an XMLType table

	
The table is constrained to storing PurchaseOrder documents as defined by the PurchaseOrder XML schema

	
Rows in this table are stored as a set of objects in the database

	
SQL type purchaseorder_t is the base object for this table

Default Tables

The XML schema in Example 3-13 specifies that the PurchaseOrder table is the default table for PurchaseOrder elements. When an XML document compliant with the XML schema is inserted into Oracle XML DB Repository using protocols or PL/SQL, the content of the XML document is stored as a row in the purchaseorder table.

When an XML schema is registered as a global schema, you must grant the appropriate access rights on the default table to all other users of the database, before they can work with instance documents that conform to the globally registered XML schema.

	
See Also:

"Local and Global XML Schemas"

Identifying XML Schema Instance Documents

Before an XML document can be inserted into an XML schema-based XMLType table or column the document must identify the associated XML schema. There are two ways to do this:

	
Explicitly identify the XML schema when creating the XMLType. This can be done by passing the name of the XML schema to the XMLType constructor, or by invoking XMLType method createSchemaBasedXML().

	
Use the XMLSchema-instance mechanism to explicitly provide the required information in the XML document. This option can be used when working with Oracle XML DB.

The advantage of the XMLSchema-instance mechanism is that it lets the Oracle XML DB protocol servers recognize that an XML document inserted into Oracle XML DB Repository is an instance of a registered XML schema. The content of the instance document is automatically stored in the default table specified by that XML schema.

The XMLSchema-instance mechanism is defined by the W3C XML Schema working group. It is based on adding attributes that identify the target XML schema to the root element of the instance document. These attributes are defined by the XMLSchema-instance namespace.

To identify an instance document as a member of the class defined by a particular XML schema you must declare the XMLSchema-instance namespace by adding a namespace declaration to the root element of the instance document. For example:

xmlns:xsi = http://www.w3.org/2001/XMLSchema-instance

Once the XMLSchema-instance namespace has been declared and given a namespace prefix, attributes that identify the XML schema can be added to the root element of the instance document. In the preceding example, the namespace prefix for the XMLSchema-instance namespace was defined as xsi. This prefix can then be used when adding the XMLSchema-instance attributes to the root element of the instance document.

Which attributes must be added depends on several factors. There are two possibilities, noNamespaceSchemaLocation and schemaLocation. Depending on the XML schema, one or both of these attributes is required to identify the XML schemas that the instance document is associated with.

Attributes noNamespaceSchemaLocation and schemaLocation

If the target XML schema does not declare a target namespace, the noNamespaceSchemaLocation attribute is used to identify the XML schema. The value of the attribute is the schema location hint. This is the unique identifier passed to PL/SQL procedure DBMS_XMLSCHEMA.registerSchema when the XML schema is registered with the database.

For XML schema purchaseOrder.xsd, the correct definition of the root element of the instance document would read as follows:

<PurchaseOrder
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:noNamespaceSchemaLocation=
 "http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd">

If the target XML schema declares a target namespace, then the schemaLocation attribute is used to identify the XML schema. The value of this attribute is a pair of values separated by a space:

	
the value of the target namespace declared in the XML schema

	
the schema location hint, the unique identifier passed to procedure DBMS_XMLSCHEMA.registerSchema when the schema is registered with the database

For example, assume that the PurchaseOrder XML schema includes a target namespace declaration. The root element of the schema would look like this:

<xs:schema targetNamespace="http://demo.oracle.com/xdb/purchaseOrder"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xdb="http://xmlns.oracle.com/xdb"
 version="1.0" xdb:storeVarrayAsTable="true">
 <xs:element name="PurchaseOrder" type="PurchaseOrderType"
 xdb:defaultTable="PURCHASEORDER"/>

In this case, the correct form of the root element of the instance document would read as follows:

<PurchaseOrder
 xnlns="http://demo.oracle.com/xdb/purchaseOrder"
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:schemaLocation=
 "http://demo.oracle.com/xdb/purchaseOrder
 http://mdrake-lap:8080/source/schemas/poSource/xsd/purchaseOrder.xsd">

Dealing with Multiple Namespaces

When the XML schema includes elements defined in multiple namespaces, an entry must occur in the schemaLocation attribute for each of the XML schemas. Each entry consists of the namespace declaration and the schema location hint. The entries are separated from each other by one or more whitespace characters. If the primary XML schema does not declare a target namespace, then the instance document also needs to include a noNamespaceSchemaLocation attribute that provides the schema location hint for the primary XML schema.

Enforcing XML Data Integrity using the Database

One advantage of using Oracle XML DB to manage XML content is that SQL can be used to supplement the functionality provided by XML schema. Combining the power of SQL and XML with the ability of the database to enforce rules makes the database a powerful framework for managing XML content.

Only well-formed XML documents can be stored in XMLType tables or columns. A well-formed XML document is one that conforms to the syntax of the XML version declared in its XML declaration. This includes having a single root element, properly nested tags, and so forth. Additionally, if the XMLType table or column is constrained to an XML schema, only documents that conform to that XML schema can be stored in that table or column. Any attempt to store or insert any other kind of XML document in an XML schema-based XMLType raises an error. Example 3-16 illustrates this.

Example 3-16 Error From Attempting to Insert an Incorrect XML Document

INSERT INTO purchaseorder
 VALUES (XMLType(bfilename('XMLDIR', 'Invoice.xml'), nls_charset_id('AL32UTF8')))
 VALUES (XMLType(bfilename('XMLDIR', 'Invoice.xml'), nls_charset_id('AL32UTF8')))
 *
ERROR at line 2:
ORA-19007: Schema - does not match expected
http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd.

Such an error only occurs when content is inserted directly into an XMLType table. It indicates that Oracle XML DB did not recognize the document as a member of the class defined by the XML schema. For a document to be recognized as a member of the class defined by the schema, the following conditions must be true:

	
The name of the XML document root element must match the name of global element used to define the XMLType table or column.

	
The XML document must include the appropriate attributes from the XMLSchema-instance namespace, or the XML document must be explicitly associated with the XML schema using the XMLType constructor or XMLType method createSchemaBasedXML().

If the constraining XML schema declares a targetNamespace, then the instance documents must contain the appropriate namespace declarations to place the root element of the document in the targetNamespace defined by the XML schema.

	
Note:

XML constraints are enforced only within individual XML documents. Database (SQL) constraints are enforced across sets of XML documents.

Comparing Partial to Full XML Schema Validation

This section describes the differences between partial and full XML schema validation used when inserting XML documents into the database.

Partial Validation

For binary XML storage, Oracle XML DB performs a full validation whenever an XML document is inserted into an XML schema-based XMLType table or column. For all other models of XML storage, Oracle XML DB performs only a partial validation of the document. This is because, except for binary XML storage, complete XML schema validation is quite costly, in terms of performance.

Partial validation ensures only that all of the mandatory elements and attributes are present, and that there are no unexpected elements or attributes in the document. That is, it ensures only that the structure of the XML document conforms to the SQL data type definitions that were derived from the XML schema. Partial validation does not ensure that the instance document is fully compliant with the XML schema.

Example 3-17 provides an example of failing partial validation while inserting an XML document into table PurchaseOrder, which is stored object-relationally.

Example 3-17 Error When Inserting Incorrect XML Document (Partial Validation)

INSERT INTO purchaseorder
 VALUES(XMLType(bfilename('XMLDIR', 'InvalidElement.xml'),
 nls_charset_id('AL32UTF8')));
 VALUES(XMLType(bfilename('XMLDIR', 'InvalidElement.xml'),
 *
ERROR at line 2:
ORA-30937: No schema definition for 'UserName' (namespace '##local') in parent
'/PurchaseOrder'

Full Validation

Loading XML data into XML schema-based binary XML storage causes full validation against the target XML schemas. Otherwise, regardless of storage model, you can force full validation of XML instance documents against an XML schema at any time, using either of the following:

	
Table level CHECK constraint

	
PL/SQL BEFORE INSERT trigger

Both approaches ensure that only valid XML documents can be stored in the XMLType table.

The advantage of a TABLE CHECK constraint is that it is easy to code. The disadvantage is that it is based on Oracle SQL function XMLisValid, so it can only indicate whether or not the XML document is valid. If an XML document is invalid, a TABLE CHECK constraint cannot provide any information as to why it is invalid.

A BEFORE INSERT trigger requires slightly more code. The trigger validates the XML document by invoking XMLType method schemaValidate(). The advantage of using schemaValidate() is that the exception raised provides additional information about what was wrong with the instance document. Using a BEFORE INSERT trigger also makes it possible to attempt corrective action when an invalid document is encountered.

Full XML Schema Validation Costs Processing Time and Memory Usage

Unless you are using binary XML storage, full XML schema validation costs processing time and memory. You should thus perform full XML schema validation only when necessary. If you can rely on your application to validate an XML document, you can obtain higher overall throughput with non-binary XML storage, by avoiding the overhead associated with full validation. If you cannot be sure about the validity of incoming XML documents, you can rely on the database to ensure that an XMLType table or column contains only schema-valid XML documents.

Example 3-18 shows how to force a full XML schema validation by adding a CHECK constraint to an XMLType table. In Example 3-18, the XML document InvalidReference is a not valid with respect to the XML schema. The XML schema defines a minimum length of 18 characters for the text node associated with the Reference element. In this document, the node contains the value SBELL-20021009, which is only 14 characters long. Partial validation would not catch this error. Unless the constraint or trigger is present, attempts to insert this document into the database would succeed.

Example 3-18 Forcing Full XML Schema Validation using a CHECK Constraint

ALTER TABLE purchaseorder
 ADD CONSTRAINT validate_purchaseorder
 CHECK (XMLIsValid(OBJECT_VALUE) = 1);

Table altered.

INSERT INTO purchaseorder
 VALUES (XMLType(bfilename('XMLDIR', 'InvalidReference.xml'),
 nls_charset_id('AL32UTF8')));

INSERT INTO purchaseorder
*

ERROR at line 1:
ORA-02290: check constraint (QUINE.VALIDATE_PURCHASEORDER) violated

Pseudocolumn OBJECT_VALUE can be used to access the content of an XMLType table from within a trigger. Example 3-19 illustrates this, showing how to use a BEFORE INSERT trigger to validate that the data being inserted into the XMLType table conforms to the specified XML schema.

Example 3-19 Enforcing Full XML Schema Validation using a BEFORE INSERT Trigger

CREATE OR REPLACE TRIGGER validate_purchaseorder
 BEFORE INSERT ON purchaseorder
 FOR EACH ROW
BEGIN
 IF (:new.OBJECT_VALUE IS NOT NULL) THEN :new.OBJECT_VALUE.schemavalidate();
 END IF;
END;
/

INSERT INTO purchaseorder VALUES (XMLType(bfilename('XMLDIR', 'InvalidReference.xml'),
 nls_charset_id('AL32UTF8')));
 VALUES (XMLType(bfilename('XMLDIR', 'InvalidReference.xml'),
 *
ERROR at line 2:
ORA-31154: invalid XML document
ORA-19202: Error occurred in XML processing
LSX-00221: "SBELL-20021009" is too short (minimum length is 18)
ORA-06512: at "SYS.XMLTYPE", line 354
ORA-06512: at "QUINE.VALIDATE_PURCHASEORDER", line 3
ORA-04088: error during execution of trigger 'QUINE.VALIDATE_PURCHASEORDER'

Enforcing Referential Integrity using SQL Constraints

The W3C XML Schema Recommendation defines a powerful language for defining the contents of an XML document. However, there are some simple data management concepts that are not currently addressed by the W3C XML Schema Recommendation. These include the ability to ensure that the value of an element or attribute has either of these properties:

	
It is unique across a set of XML documents (a UNIQUE constraint).

	
It exists in a particular data source that is outside of the current document (FOREIGN KEY constraint).

With Oracle XML DB, however, you can enforce such constraints. The mechanisms that you use to enforce integrity on XML data are the same mechanisms that you use to enforce integrity on relational data. Simple rules, such as uniqueness and foreign-key relationships, can be enforced by specifying constraints. More complex rules can be enforced by specifying database triggers.

Oracle XML DB lets you use the database to enforce business rules on XML content, in addition to enforcing rules that can be specified using XML Schema constructs. The database enforces these business rules regardless of whether XML is inserted directly into a table or uploaded using one of the protocols supported by Oracle XML DB Repository.

Example 3-20, Example 3-21, and Example 3-22 illustrate how you can use SQL constraints to enforce referential integrity. Example 3-20 defines a uniqueness constraint on an XMLType table that is stored as binary XML. It defines a virtual column, using the Reference element in a purchase-order document. The uniqueness constraint reference_is_unique ensures that the value of node /PurchaseOrder/Reference/text() is unique across all documents that are stored in the table.

	
See Also:

"Partitioning or Constraining Binary XML Data using Virtual Columns"

Example 3-20 Constraining a Binary XML Table using a Virtual Column

CREATE TABLE po_binaryxml OF XMLType
 XMLTYPE STORE AS BINARY XML
 VIRTUAL COLUMNS
 (c_reference AS (XMLCast(XMLQuery('/PurchaseOrder/Reference'
 PASSING OBJECT_VALUE RETURNING CONTENT)
 AS VARCHAR2(32))));

INSERT INTO po_binaryxml SELECT OBJECT_VALUE FROM OE.purchaseorder;

132 rows created.

ALTER TABLE po_binaryxml ADD CONSTRAINT reference_is_unique UNIQUE (c_reference);

INSERT INTO po_binaryxml
 VALUES (XMLType(bfilename('XMLDIR', 'DuplicateReference.xml'),
 nls_charset_id('AL32UTF8')));
INSERT INTO po_binaryxml
*
ERROR at line 1:
ORA-00001: unique constraint (OE.REFERENCE_IS_UNIQUE) violated

Example 3-21 defines a uniqueness constraint similar to that of Example 3-20, but on XMLType table purchaseorder in standard database schema OE. In addition, it defines a foreign-key constraint that requires the User element of each purchase-order document to be the e-mail address of an employee that is in standard database table HR.employees. For XML data that is stored object-relationally, such as that in table OE.purchaseorder, constraints must be specified in terms of object attributes of the SQL data types that are used to manage the XML content.

Example 3-21 Integrity Constraints and Triggers for an XMLType Table Stored Object-Relationally

ALTER TABLE purchaseorder
 ADD CONSTRAINT reference_is_unique
 UNIQUE (XMLDATA."REFERENCE");

ALTER TABLE purchaseorder
 ADD CONSTRAINT user_is_valid
 FOREIGN KEY (XMLDATA."USERID") REFERENCES hr.employees(email);

INSERT INTO purchaseorder
 VALUES (XMLType(bfilename('XMLDIR', 'purchaseOrder.xml'),
 nls_charset_id('AL32UTF8')));

INSERT INTO purchaseorder
 VALUES (XMLType(bfilename('XMLDIR', 'DuplicateReference.xml'),
 nls_charset_id('AL32UTF8')));

INSERT INTO purchaseorder
*
ERROR at line 1:
ORA-00001: unique constraint (QUINE.REFERENCE_IS_UNIQUE) violated

INSERT INTO purchaseorder
 VALUES (XMLType(bfilename('XMLDIR', 'InvalidUser.xml'),
 nls_charset_id('AL32UTF8')));

INSERT INTO purchaseorder
*
ERROR at line 1:
ORA-02291: integrity constraint (QUINE.USER_IS_VALID) violated - parent key not
 found

Just as for Example 3-20, the uniqueness constraint reference_is_unique of Example 3-21 ensures the uniqueness of the purchase-order Reference element across all documents stored in the table. The foreign key constraint user_is_valid here ensures that the value of element User corresponds to a value in column email of table employees.

The text node associated with the Reference element in the XML document DuplicateRefernce.xml contains the same value as the corresponding node in XML document PurchaseOrder.xml. Attempting to store both documents in Oracle XML DB thus violates the constraint reference_is_unique.

The text node associated with the User element in XML document InvalidUser.xml contains the value HACKER. There is no entry in the employees table where the value of column email is HACKER. Attempting to store this document in Oracle XML DB violates the constraint user_is_valid.

Integrity rules defined using constraints and triggers are also enforced when XML schema-based XML content is loaded into Oracle XML DB Repository. Example 3-22 illustrates this. It shows that database integrity is also enforced when a protocol, such as FTP, is used to upload XML schema-based XML content into Oracle XML DB Repository.

Example 3-22 Enforcing Database Integrity When Loading XML using FTP

$ ftp localhost 2100
Connected to localhost.
220 mdrake-sun FTP Server (Oracle XML DB/Oracle Database 10g Enterprise Edition
Release 10.1.0.0.0 - Beta) ready.
Name (localhost:oracle10): QUINE
331 Password required for QUINE
Password: password
230 QUINE logged in
ftp> cd /source/schemas
250 CWD Command successful
ftp> put InvalidReference.xml
200 PORT Command successful
150 ASCII Data Connection
550- Error Response
ORA-00604: error occurred at recursive SQL level 1
ORA-31154: invalid XML document
ORA-19202: Error occurred in XML processing
LSX-00221: "SBELL-20021009" is too short (minimum length is 18)
ORA-06512: at "SYS.XMLTYPE", line 333
ORA-06512: at "QUINE.VALIDATE_PURCHASEORDER", line 3
ORA-04088: error during execution of trigger 'QUINE.VALIDATE_PURCHASEORDER'
550 End Error Response
ftp> put InvalidElement.xml
200 PORT Command successful
150 ASCII Data Connection
550- Error Response
ORA-30937: No schema definition for 'UserName' (namespace '##local') in parent
'PurchaseOrder'
550 End Error Response
ftp> put DuplicateReference.xml
200 PORT Command successful
150 ASCII Data Connection
550- Error Response
ORA-00604: error occurred at recursive SQL level 1
ORA-00001: unique constraint (QUINE.REFERENCE_IS_UNIQUE) violated
550 End Error Response
ftp> put InvalidUser.xml
200 PORT Command successful
150 ASCII Data Connection
550- Error Response
ORA-00604: error occurred at recursive SQL level 1
ORA-02291: integrity constraint (QUINE.USER_IS_VALID) violated - parent key not
 found
550 End Error Response

When an error occurs while a document is being uploaded with a protocol, Oracle XML DB provides the client with the full SQL error trace. How the error is interpreted and reported to you is determined by the error-handling built into the client application. Some clients, such as the command line FTP tool, reports the error returned by Oracle XML DB, while others, such as Microsoft Windows Explorer, report a generic error message.

	
See also:

	
"Specifying Relational Constraints on XMLType Tables and Columns"

	
Oracle Database Error Messages

DML Operations on XML Content using Oracle XML DB

Another major advantage of using Oracle XML DB to manage XML content is that it leverages the power of Oracle Database to deliver powerful, flexible capabilities for querying and updating XML content, including the following:

	
Retrieving nodes and fragments within an XML document

	
Updating nodes and fragments within an XML document

	
Creating indexes on specific nodes within an XML document

	
Indexing the entire content of an XML document

	
Determining whether an XML document contains a particular node

XPath and Oracle XML

Oracle XML DB includes XMLType methods and XML-specific SQL functions. With these, you can query and update XML content stored in Oracle Database. They use the W3C XPath Recommendation to identify the required node or nodes. Each node in an XML document can be uniquely identified by an XPath expression.

An XPath expression consists of a slash-separated list of element names, attributes names, and XPath functions. XPath expressions can contain positions and conditions that determine which branch of the tree is traversed in determining the target nodes.

By supporting XPath-based methods and functions, Oracle XML DB makes it possible for XML programmers to query and update XML documents in a familiar, standards-compliant manner.

	
Note:

Oracle SQL functions and XMLType methods respect the W3C XPath recommendation, which states that if an XPath expression targets no nodes when applied to XML data, then an empty sequence must be returned. An error must not be raised in this case.
The specific semantics of an Oracle SQL function or XMLType method that applies an XPath expression to XML data determines what is returned. For example, SQL/XML function XMLQuery returns NULL if its XPath-expression argument targets no nodes, and the updating SQL functions, such as deleteXML, return the input XML data unchanged. An error is never raised if no nodes are targeted, but updating SQL functions can raise an error if an XPath-expression argument targets inappropriate nodes, such as attribute nodes or text nodes.

Querying XML Content Stored in Oracle XML DB

This section describes techniques for querying Oracle XML DB and retrieving XML content. This section contains these topics:

	
PurchaseOrder XML Document

	
Retrieving the Content of an XML Document using Pseudocolumn OBJECT_VALUE

	
Accessing Fragments or Nodes of an XML Document using XMLQUERY

	
Accessing Text Nodes and Attribute Values using XMLCAST and XMLQUERY

	
Searching an XML Document using XMLEXISTS, XMLCast, and XMLQuery

	
Performing SQL Operations on XMLType Fragments using XMLTABLE

PurchaseOrder XML Document

Examples in this section are based on the PurchaseOrder XML document shown in Example 3-23.

Example 3-23 PurchaseOrder XML Instance Document

<PurchaseOrder
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd">
 <Reference>SBELL-2002100912333601PDT</Reference>
 <Actions>
 <Action>
 <User>SVOLLMAN</User>
 </Action>
 </Actions>
 <Reject/>
 <Requestor>Sarah J. Bell</Requestor>
 <User>SBELL</User>
 <CostCenter>S30</CostCenter>
 <ShippingInstructions>
 <name>Sarah J. Bell</name>
 <address>400 Oracle Parkway
 Redwood Shores
 CA
 94065
 USA</address>
 <telephone>650 506 7400</telephone>
 </ShippingInstructions>
 <SpecialInstructions>Air Mail</SpecialInstructions>
 <LineItems>
 <LineItem ItemNumber="1">
 <Description>A Night to Remember</Description>
 <Part Id="715515009058" UnitPrice="39.95" Quantity="2"/>
 </LineItem>
 <LineItem ItemNumber="2">
 <Description>The Unbearable Lightness Of Being</Description>
 <Part Id="37429140222" UnitPrice="29.95" Quantity="2"/>
 </LineItem>
 <LineItem ItemNumber="3">
 <Description>Sisters</Description>
 <Part Id="715515011020" UnitPrice="29.95" Quantity="4"/>
 </LineItem>
 </LineItems>
</PurchaseOrder>

Retrieving the Content of an XML Document using Pseudocolumn OBJECT_VALUE

Pseudocolumn OBJECT_VALUE can be used as an alias for the value of an object table. For an XMLType table that consists of a single column of XMLType, the entire XML document is retrieved. (OBJECT_VALUE replaces the value(x) and SYS_NC_ROWINFO$ aliases used in releases prior to Oracle Database10g Release 1.)

In Example 3-24, the SQL*Plus settings PAGESIZE and LONG are used to ensure that the entire document is printed correctly, without line breaks. (The output has been formatted for readability.)

Example 3-24 Retrieving an Entire XML Document using OBJECT_VALUE

SET LONG 10000
SET PAGESIZE 100

SELECT OBJECT_VALUE FROM purchaseorder;

OBJECT_VALUE

<PurchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://localhost:8080/source/schemas
/poSource/xsd/purchaseOrder.xsd">
 <Reference>SBELL-2002100912333601PDT</Reference>
 <Actions>
 <Action>
 <User>SVOLLMAN</User>
 </Action>
 </Actions>
 <Reject/>
 <Requestor>Sarah J. Bell</Requestor>
 <User>SBELL</User>
 <CostCenter>S30</CostCenter>
 <ShippingInstructions>
 <name>Sarah J. Bell</name>
 <address>400 Oracle Parkway
Redwood Shores
CA
94065
USA</address>
 <telephone>650 506 7400</telephone>
 </ShippingInstructions>
 <SpecialInstructions>Air Mail</SpecialInstructions>
 <LineItems>
 <LineItem ItemNumber="1">
 <Description>A Night to Remember</Description>
 <Part Id="715515009058" UnitPrice="39.95" Quantity="2"/>
 </LineItem>
 <LineItem ItemNumber="2">
 <Description>The Unbearable Lightness Of Being</Description>
 <Part Id="37429140222" UnitPrice="29.95" Quantity="2"/>
 </LineItem>
 <LineItem ItemNumber="3">
 <Description>Sisters</Description>
 <Part Id="715515011020" UnitPrice="29.95" Quantity="4"/>
 </LineItem>
 </LineItems>
</PurchaseOrder>

1 row selected.

Accessing Fragments or Nodes of an XML Document using XMLQUERY

You can use SQL/XML function XMLQuery to extract the nodes that match an XPath expression. The result is returned as an instance of XMLType. Example 3-25 illustrates this with several queries.

Example 3-25 Accessing XML Fragments using XMLQUERY

The following query returns an XMLType instance containing the Reference element that matches the XPath expression.

SELECT XMLQuery('/PurchaseOrder/Reference' PASSING OBJECT_VALUE RETURNING CONTENT)
 FROM purchaseorder;

XMLQUERY('/PURCHASEORDER/REFERENCE'PASSINGOBJECT_

<Reference>SBELL-2002100912333601PDT</Reference>

1 row selected.

The following query returns an XMLType instance containing the first LineItem element in the LineItems collection:

SELECT XMLQuery('/PurchaseOrder/LineItems/LineItem[1]'
 PASSING OBJECT_VALUE RETURNING CONTENT)
 FROM purchaseorder;

XMLQUERY('/PURCHASEORDER/LINEITEMS/LINEITEM[1]'PASSINGOBJECT_

<LineItem ItemNumber="1">
 <Description>A Night to Remember</Description>
 <Part Id="715515009058" UnitPrice="39.95" Quantity="2"/>
</LineItem>

1 row selected.

The following query returns an XMLType instance that contains the three Description elements that match the XPath expression. These elements are returned as nodes in a single XMLType instance. The XMLType instance does not have a single root node; it is an XML fragment.

SELECT XMLQuery('/PurchaseOrder/LineItems/LineItem/Description'
 PASSING OBJECT_VALUE RETURNING CONTENT)
 FROM purchaseorder;

XMLQUERY('/PURCHASEORDER/LINEITEMS/LINEITEM/DESCRIPTION'PASSINGOBJECT_
--
<Description>A Night to Remember</Description>
<Description>The Unbearable Lightness Of Being</Description>
<Description>Sisters</Description>

1 row selected.

	
See Also:

"Performing SQL Operations on XMLType Fragments using XMLTABLE"

Accessing Text Nodes and Attribute Values using XMLCAST and XMLQUERY

You can access text node and attribute values using SQL/XML standard functions XMLQuery and XMLCast. To do this, the XPath expression passed to XMLQuery must uniquely identify a single text node or attribute value within the document – that is, a leaf node. Example 3-26 illustrates this using several queries.

Example 3-26 Accessing a Text Node Value using XMLCAST and XMLQuery

The following query returns the value of the text node associated with the Reference element that matches the target XPath expression. The value is returned as a VARCHAR2 value.

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/Reference/text()'
 PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
 AS VARCHAR2(30))
 FROM purchaseorder;

XMLCAST(XMLQUERY('$P/PURCHASEO

SBELL-2002100912333601PDT

1 row selected.

The following query returns the value of the text node associated with a Description element contained in a LineItem element. The particular LineItem element is specified by its Id attribute value. The predicate that identifies the LineItem element is [Part/@Id="715515011020"]. The at-sign character (@) specifies that Id is an attribute rather than an element. The value is returned as a VARCHAR2 value.

SELECT XMLCast(
 XMLQuery('$p/PurchaseOrder/LineItems/LineItem[Part/@Id="715515011020"]/Description/text()'
 PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
 AS VARCHAR2(30))
 FROM purchaseorder;

XMLCAST(XMLQUERY('$P/PURCHASEO

Sisters

1 row selected.

The following query returns the value of the text node associated with the Description element contained in the first LineItem element. The first LineItem element is indicated by the position predicate[1].

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/LineItems/LineItem[1]/Description'
 PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
 AS VARCHAR2(4000))
 FROM purchaseorder;

XMLCAST(XMLQUERY('$P/PURCHASEORDER/LINEITEMS/LINEITEM[1]/DESCRIPTION'PASSINGOBJECT_VALUEAS"P"

A Night to Remember

1 row selected.

	
See Also:

	
"Querying XMLType Data using SQL/XML Functions XMLExists and XMLCast" for information on SQL/XML function XMLCast

	
Chapter 5, "Using XQuery with Oracle XML DB" for information on SQL/XML function XMLQuery

Searching an XML Document using XMLEXISTS, XMLCast, and XMLQuery

SQL/XML standard function XMLExists evaluates whether or not a given document contains a node that matches a W3C XPath expression. Function XMLExists returns a Boolean value of true if the document contains the node specified by the XPath expression supplied to the function and a value of false if it does not. Since XPath expressions can contain predicates, XMLExists can determine whether or not a given node exists in the document, and whether or not a node with the specified value exists in the document.

Similarly, you can use SQL/XML functions XMLCast and XMLQuery in a SQL WHERE clause to limit the query results to documents that satisfy some property. Example 3-27 illustrates the use of XMLExists, XMLCast, and XMLQuery to search for documents.

Example 3-27 Searching XML Content using XMLExists, XMLCast, and XMLQuery

The following query uses XMLExists to check if the XML document contains an element named Reference that is a child of the root element PurchaseOrder:

SELECT count(*) FROM purchaseorder
 WHERE XMLExists('$p/PurchaseOrder/Reference' PASSING OBJECT_VALUE AS "p");

 COUNT(*)

 132

1 row selected.

The following query checks if the value of the text node associated with the Reference element is SBELL-2002100912333601PDT:

SELECT count(*) FROM purchaseorder
 WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
 PASSING OBJECT_VALUE AS "p");

 COUNT(*)

 1
1 row selected.

This query checks whether the value of the text node associated with the Reference element is SBELL-XXXXXXXXXXXXXXXXXX:

SELECT count(*) FROM purchaseorder
 WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-XXXXXXXXXXXXXXXXXX"]'
 PASSING OBJECT_VALUE AS "p");

 COUNT(*)

 0

1 row selected.

This query checks whether the XML document contains a root element PurchaseOrder that contains a LineItems element that contains a LineItem element that contains a Part element with an Id attribute.

SELECT count(*) FROM purchaseorder
 WHERE XMLExists('$p/PurchaseOrder/LineItems/LineItem/Part/@Id'
 PASSING OBJECT_VALUE AS "p");

 COUNT(*)

 132

1 row selected.

The following query checks whether the XML document contains a root element PurchaseOrder that contains a LineItems element that contains a LineItem element that contains a Part element with Id attribute value 715515009058.

SELECT count(*) FROM purchaseorder
 WHERE XMLExists('$p/PurchaseOrder/LineItems/LineItem/Part[@Id="715515009058"]'
 PASSING OBJECT_VALUE AS "p");

 COUNT(*)

 21

The following query checks whether the XML document contains a root element PurchaseOrder that contains a LineItems element whose third LineItem element contains a Part element with Id attribute value 715515009058.

SELECT count(*) FROM purchaseorder
 WHERE XMLExists(
 '$p/PurchaseOrder/LineItems/LineItem[3]/Part[@Id="715515009058"]'
 PASSING OBJECT_VALUE AS "p");

 COUNT(*)

 1
1 row selected.

The following query limits the results of the SELECT statement to rows where the text node associated with element User starts with the letter S. XQuery does not include support for LIKE-based queries.

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/Reference' PASSING OBJECT_VALUE AS "p"
 RETURNING CONTENT)
 AS VARCHAR2(30))
 FROM purchaseorder
 WHERE XMLCast(XMLQuery('$p/PurchaseOrder/User' PASSING OBJECT_VALUE AS "p"
 RETURNING CONTENT)
 AS VARCHAR2(30))
 LIKE 'S%';

XMLCAST(XMLQUERY('$P/PURCHASEORDER

SBELL-20021009123336231PDT
SBELL-20021009123336331PDT
SKING-20021009123336321PDT
...
36 rows selected.

The following query performs a join based on the values of a node in an XML document and data in another table.

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/Reference' PASSING OBJECT_VALUE AS "p"
 RETURNING CONTENT)
 AS VARCHAR2(30))
 FROM purchaseorder p, hr.employees e
 WHERE XMLCast(XMLQuery('$p/PurchaseOrder/User' PASSING OBJECT_VALUE AS "p"
 RETURNING CONTENT)
 AS VARCHAR2(30)) = e.email
 AND e.employee_id = 100;

XMLCAST(XMLQUERY('$P/PURCHASEOREDER

SKING-20021009123336321PDT
SKING-20021009123337153PDT
SKING-20021009123335560PDT
SKING-20021009123336952PDT
SKING-20021009123336622PDT
SKING-20021009123336822PDT
SKING-20021009123336131PDT
SKING-20021009123336392PDT
SKING-20021009123337974PDT
SKING-20021009123338294PDT
SKING-20021009123337703PDT
SKING-20021009123337383PDT
SKING-20021009123337503PDT

13 rows selected.

The following query uses XMLExists to limit the results of a SELECT statement to rows where the text node of element User contains the value SBELL.

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/Reference' PASSING OBJECT_VALUE AS "p"
 RETURNING CONTENT)
 AS VARCHAR2(30)) "Reference"
 FROM purchaseorder
 WHERE XMLExists('$p/PurchaseOrder[User="SBELL"]' PASSING OBJECT_VALUE AS "p");

Reference

SBELL-20021009123336231PDT
SBELL-20021009123336331PDT
SBELL-20021009123337353PDT
SBELL-20021009123338304PDT
SBELL-20021009123338505PDT
SBELL-20021009123335771PDT
SBELL-20021009123335280PDT
SBELL-2002100912333763PDT
SBELL-2002100912333601PDT
SBELL-20021009123336362PDT
SBELL-20021009123336532PDT
SBELL-20021009123338204PDT
SBELL-20021009123337673PDT

13 rows selected.

Example 3-28 uses SQL/XML functions XMLQuery and XMLExists to find the Reference element for any PurchaseOrder element whose first LineItem element contains an order for the item with Id 715515009058. Function XMLExists is used in the WHERE clause to determine which rows are selected, and XMLQuery is used in the SELECT list to control which part of the selected documents appears in the result.

Example 3-28 Finding the Reference for a Purchase Order using XMLQuery and XMLExists

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/Reference' PASSING OBJECT_VALUE AS "p"
 RETURNING CONTENT)
 AS VARCHAR2(30)) "Reference"
 FROM purchaseorder
 WHERE XMLExists('$p/PurchaseOrder/LineItems/LineItem[1]/Part[@Id="715515009058"]'
 PASSING OBJECT_VALUE AS "p");

Reference

SBELL-2002100912333601PDT

1 row selected.

	
See Also:

	
"Querying XMLType Data using SQL/XML Functions XMLExists and XMLCast" for information on SQL/XML functions XMLCast and XMLExists

	
Chapter 5, "Using XQuery with Oracle XML DB" for information on SQL/XML function XMLQuery

Performing SQL Operations on XMLType Fragments using XMLTABLE

Example 3-25 demonstrates how to extract an XMLType instance that contains the node or nodes that match an XPath expression. When the document contains multiple nodes that match the supplied XPath expression, such a query returns an XML fragment that contains all of the matching nodes. Unlike an XML document, an XML fragment has no single element that is the root element.

This kind of result is common in these cases:

	
When you retrieve the set of elements contained in a collection, in which case all nodes in the fragment are of the same type – see Example 3-29

	
When the target XPath expression ends in a wildcard, in which case the nodes in the fragment can be of different types – see Example 3-31

You can use SQL/XML function XMLTable to break up an XML fragment contained in an XMLType instance, inserting the collection-element data into a new, virtual table, which you can then query using SQL — in a join expression, for example. In particular, converting an XML fragment into a virtual table makes it easier to process the result of evaluating an XMLQuery expression that returns multiple nodes.

Example 3-29 shows how to access the text nodes for each Description element in the PurchaseOrder document. It breaks up the single XML Fragment output from Example 3-25 into multiple text nodes.

Example 3-29 Accessing Description Nodes using XMLTABLE

SELECT des.COLUMN_VALUE
 FROM purchaseorder p,
 XMLTable('/PurchaseOrder/LineItems/LineItem/Description'
 PASSING p.OBJECT_VALUE) des
 WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
 PASSING OBJECT_VALUE AS "p");

COLUMN_VALUE

<Description>A Night to Remember</Description>
<Description>The Unbearable Lightness Of Being</Description>
<Description>Sisters</Description>

3 rows selected.

To use SQL to process the contents of the text nodes, Example 3-29 converts the collection of Description nodes into a virtual table, using SQL/XML function XMLTable. The virtual table has three rows, each of which contains a single XMLType instance with a single Description element.

The XPath expression targets the Description elements. The PASSING clause says to use the contents (OBJECT_VALUE) of XMLType table purchaseorder as the context for evaluating the XPath expression.

The XMLTable expression thus depends on the purchaseorder table. This is a left lateral join. This correlated join ensures a one-to-many (1:N) relationship between the purchaseorder row accessed and the rows generated from it by XMLTable. Because of this correlated join, the purchaseorder table must appear before the XMLTable expression in the FROM list. This is a general requirement in any situation where the PASSING clause refers to a column of the table.

Each XMLType instance in the virtual table contains a single Description element. You can use the COLUMNS clause of XMLTable to break up the data targeted by the XPath expression 'Description' into a column named description of SQL data type VARCHAR2(256). The 'Description' expression that defines this column is relative to the context XPath expression, '/PurchaseOrder/LineItems/LineItem'.

SELECT des.description
 FROM purchaseorder p,
 XMLTable('/PurchaseOrder/LineItems/LineItem' PASSING p.OBJECT_VALUE
 COLUMNS description VARCHAR2(256) PATH 'Description') des
 WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
 PASSING OBJECT_VALUE AS "p");

DESCRIPTION

A Night to Remember
The Unbearable Lightness Of Being
Sisters

3 rows selected.

The COLUMNS clause lets you specify precise SQL data types, which can make static type-checking more helpful. This example uses only a single column (description). To expose data that is contained at multiple levels in an XMLType table as individual rows in a relational view, apply XMLTable to each document level to be broken up and stored in relational columns. See Example 3-33 for an example.

Example 3-30 counts the number of elements in a collection. It also shows how SQL keywords such as ORDER BY and GROUP BY can be applied to the virtual table data created by SQL/XML function XMLTable.

Example 3-30 Counting the Number of Elements in a Collection using XMLTABLE

SELECT reference, count(*)
 FROM purchaseorder,
 XMLTable('/PurchaseOrder' PASSING OBJECT_VALUE
 COLUMNS reference VARCHAR2(32) PATH 'Reference',
 lineitem XMLType PATH 'LineItems/LineItem'),
 XMLTable('LineItem' PASSING lineitem)
 WHERE XMLExists('$p/PurchaseOrder[User="SBELL"]'
 PASSING OBJECT_VALUE AS "p")
 GROUP BY reference
 ORDER BY reference;

REFERENCE COUNT(*)
-------------------------- --------
SBELL-20021009123335280PDT 20
SBELL-20021009123335771PDT 21
SBELL-2002100912333601PDT 3
SBELL-20021009123336231PDT 25
SBELL-20021009123336331PDT 10
SBELL-20021009123336362PDT 15
SBELL-20021009123336532PDT 14
SBELL-20021009123337353PDT 10
SBELL-2002100912333763PDT 21
SBELL-20021009123337673PDT 10
SBELL-20021009123338204PDT 14
SBELL-20021009123338304PDT 24
SBELL-20021009123338505PDT 20

13 rows selected.

The query in Example 3-30 locates the set of XML documents that match the XPath expression to SQL/XML function XMLExists. It generates a virtual table with two columns:

	
reference, containing the Reference node for each document selected

	
lineitem, containing the set of LineItem nodes for each document selected

It counts the number of LineItem nodes for each document. A correlated join ensures that the GROUP BY correctly determines which LineItem elements belong to which PurchaseOrder element.

Example 3-31 shows how to use SQL/XML function XMLTable to count the number of child elements of a given element. The XPath expression passed to XMLTable contains a wildcard (*) that matches all elements that are direct descendants of a PurchaseOrder element. Each row of the virtual table created by XMLTable contains a node that matches the XPath expression. Counting the number of rows in the virtual table provides the number of element children of element PurchaseOrder.

Example 3-31 Counting the Number of Child Elements in an Element using XMLTABLE

SELECT count(*)
 FROM purchaseorder p, XMLTable('/PurchaseOrder/*' PASSING p.OBJECT_VALUE)
 WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
 PASSING OBJECT_VALUE AS "p");

 COUNT(*)

 9

1 row selected.

Accessing XML Data in Oracle XML DB using Relational Views

You can use the XML-specific functions and methods provided by Oracle XML DB to create conventional relational views that provide relational access to XML content. This lets programmers, tools, and applications that understand Oracle Database, but not XML, to work with XML content stored in the database.

The relational views can use XPath expressions and SQL/XML query and access functions such as XMLTable to define a mapping between columns in the view and nodes in the XML document. For performance reasons, this approach is recommended only when XML documents are stored using structured (object-relational) or binary XML storage, not when stored as CLOB instances.

	
See Also:

	
Chapter 4, "XMLType Operations" for a description of XMLType data type and functions

	
http://www.w3.org/TR/xpath for information about XPath 1.0

	
http://www.w3.org/TR/xpath20/ for information about XPath 2.0

	
http://www.w3.org/TR/2002/NOTE-unicode-xml-20020218/ for information about using Unicode in XML

Breaking Up a Single Level of XML Data

When you need to expose each document in an XMLType table as a row in a relational view, you can use this technique:

	
Define the set of columns that make up the view, using CREATE OR REPLACE VIEW.

	
Map the nodes in the XML document to the columns defined by the view. You do this by extracting the nodes using SQL/XML function XMLTable with appropriate XPath expressions.

This technique can be used whenever there is a one-to-one (1:1) relationship between documents in the XMLType table and the rows in the view.

Example 3-32 shows how to create a simple relational view, purchaseorder_master_view, that exposes XML content. There is one row in the view for each row in XMLType table purchaseorder.

Example 3-32 Creating a Relational View of XML Content

CREATE OR REPLACE VIEW purchaseorder_master_view AS
 SELECT po.*
 FROM purchaseorder pur,
 XMLTable(
 '$p/PurchaseOrder' PASSING pur.OBJECT_VALUE as "p"
 COLUMNS
 reference VARCHAR2(30) PATH 'Reference',
 requestor VARCHAR2(128) PATH 'Requestor',
 userid VARCHAR2(10) PATH 'User',
 costcenter VARCHAR2(4) PATH 'CostCenter',
 ship_to_name VARCHAR2(20) PATH 'ShippingInstructions/name',
 ship_to_address VARCHAR2(256) PATH 'ShippingInstructions/address',
 ship_to_phone VARCHAR2(24) PATH 'ShippingInstructions/telephone',
 instructions VARCHAR2(2048) PATH 'SpecialInstructions') po;

View created.

DESCRIBE purchaseorder_master_view

Name Null? Type
--
REFERENCE VARCHAR2(30)
REQUESTOR VARCHAR2(128)
USERID VARCHAR2(10)
COSTCENTER VARCHAR2(4)
SHIP_TO_NAME VARCHAR2(20)
SHIP_TO_ADDRESS VARCHAR2(256)
SHIP_TO_PHONE VARCHAR2(24)
INSTRUCTIONS VARCHAR2(2048)

Breaking Up Multiple Levels of XML Data

When you need to expose data contained at multiple levels in an XMLType table as individual rows in a relational view, you use the same general approach as for breaking up a single level: 1) define the columns making up the view, and 2) map the XML nodes to the columns. However, in this case you apply XMLTable, to each document level that is to be broken up and stored in relational columns.

This technique can be used whenever there is a one-to-many (1:N) relationship between documents in the XMLType table and the rows in the view.

For example, each PurchaseOrder element contains a LineItems element, which in turn contains one or more LineItem elements. Each LineItem element has child elements, such as Description, and an ItemNumber attribute. To make such lower-level data accessible as a relational value, you must break up both the PurchaseOrder element and the LineItem collection. Each such decomposition is done with XMLTable. When element PurchaseOrder is broken up, the LineItem element is mapped to a relational column of type XMLType, which contains an XML fragment. That column is then passed to the second call to XMLType, to be broken into its various parts as multiple rows of relational values.

Example 3-33 illustrates this. It shows how to use SQL/XML function XMLTable for a one-to-many (1:N) relationship between the documents in XMLType table purchaseorder and the view rows. The view provides access to the individual members of a collection, and exposes the collection members as a set of rows.

Example 3-33 Accessing Individual Members of a Collection using a View

CREATE OR REPLACE VIEW purchaseorder_detail_view AS
 SELECT po.reference, li.*
 FROM purchaseorder p,
 XMLTable('/PurchaseOrder' PASSING p.OBJECT_VALUE
 COLUMNS
 reference VARCHAR2(30) PATH 'Reference',
 lineitem XMLType PATH 'LineItems/LineItem') po,
 XMLTable('/LineItem' PASSING po.lineitem
 COLUMNS
 itemno NUMBER(38) PATH '@ItemNumber',
 description VARCHAR2(256) PATH 'Description',
 partno VARCHAR2(14) PATH 'Part/@Id',
 quantity NUMBER(12, 2) PATH 'Part/@Quantity',
 unitprice NUMBER(8, 4) PATH 'Part/@UnitPrice') li;

View created.

DESCRIBE purchaseorder_detail_view
Name Null? Type

REFERENCE VARCHAR2(30)
ITEMNO NUMBER(38)
DESCRIPTION VARCHAR2(256)
PARTNO VARCHAR2(14)
QUANTITY NUMBER(12,2)
UNITPRICE NUMBER(8,4)

In Example 3-33, there is one row in view purchaseorder_detail_view for each LineItem element in the XML documents stored in XMLType table purchaseorder.

The CREATE OR REPLACE VIEW statement defines the set of columns that make up the view. The SELECT statement passes the purchaseorder table as context to function XMLTable, to create the virtual table p, which has columns reference and lineitem. These columns contain the Reference and LineItem elements of the purchase-order documents, respectively.

Column lineitem contains a collection of LineItem elements, as an XMLType instance — one row for each LineItem element. These rows are in turn passed to a second XMLTable expression, to serve as its context. This second XMLTable expression creates a virtual table of line-item rows, with columns corresponding to various descendant nodes of element LineItem. Most of these descendants are attributes (ItemNumber, Part/@Id, and so on). One of the descendants is the Description child element.

The Reference element is included in view purchaseorder_detail_view as column reference. It provides a foreign key that can be used to joins rows in view purchaseorder_detail_view to the corresponding row in view purchaseorder_master_view. The correlated join in the CREATE VIEW statement ensures that the one-to-many (1:N) relationship between the Reference element and the associated LineItem elements is maintained whenever the view is accessed.

Querying XML Content As Relational Data

The examples in this section show relational queries of XML data. They point out some of the benefits provided by creating relational views over XMLType tables and columns.

Example 3-34 shows how to query master and detail relational views of XML data.

Example 3-34 Querying XML Data using Views

The following simple query against a master view uses a conventional SELECT statement to return the rows where the userid column starts with S.

SELECT reference, costcenter, ship_to_name
 FROM purchaseorder_master_view
 WHERE userid LIKE 'S%';

REFERENCE COST SHIP_TO_NAME
------------------------------ ---- --------------
SBELL-20021009123336231PDT S30 Sarah J. Bell
SBELL-20021009123336331PDT S30 Sarah J. Bell
SKING-20021009123336321PDT A10 Steven A. King
...
36 rows selected.

The following query is based on a join between the master view and the detail view. A conventional SELECT statement finds the purchaseorder_detail_view rows where the value of column itemno is 1 and the corresponding purchaseorder_master_view row contains a userid column with the value SBELL.

SELECT d.reference, d.itemno, d.partno, d.description
 FROM purchaseorder_detail_view d, purchaseorder_master_view m
 WHERE m.reference = d.reference
 AND m.userid = 'SBELL'
 AND d.itemno = 1;

REFERENCE ITEMNO PARTNO DESCRIPTION
------------------------------ --
SBELL-20021009123336231PDT 1 37429165829 Juliet of the Spirits
SBELL-20021009123336331PDT 1 715515009225 Salo
SBELL-20021009123337353PDT 1 37429141625 The Third Man
SBELL-20021009123338304PDT 1 715515009829 Nanook of the North
SBELL-20021009123338505PDT 1 37429122228 The 400 Blows
SBELL-20021009123335771PDT 1 37429139028 And the Ship Sails on
SBELL-20021009123335280PDT 1 715515011426 All That Heaven Allows
SBELL-2002100912333763PDT 1 715515010320 Life of Brian - Python
SBELL-2002100912333601PDT 1 715515009058 A Night to Remember
SBELL-20021009123336362PDT 1 715515012928 In the Mood for Love
SBELL-20021009123336532PDT 1 37429162422 Wild Strawberries
SBELL-20021009123338204PDT 1 37429168820 Red Beard
SBELL-20021009123337673PDT 1 37429156322 Cries and Whispers

13 rows selected.

The views in Example 3-34 look and act like standard relational views. They can be queried using standard relational syntax. No XML-specific syntax is required in either the query or the generated result set.

By exposing XML content as relational data, Oracle XML DB lets you apply advanced database features, such as business intelligence and analytic capabilities, to XML content, even if such features themselves are not XML-aware.

Example 3-35 shows how to use relational views over XML content to perform business-intelligence queries on XML documents. The example query selects PurchaseOrder documents that contain orders for titles identified by UPC codes 715515009058 and 715515009126.

Example 3-35 Business-Intelligence Query of XML Data using a View

SELECT partno, count(*) "No of Orders", quantity "No of Copies"
 FROM purchaseorder_detail_view
 WHERE partno IN (715515009126, 715515009058)
 GROUP BY rollup(partno, quantity);

PARTNO No of Orders No of Copies
-------------- ------------ ------------
715515009058 7 1
715515009058 9 2
715515009058 5 3
715515009058 2 4
715515009058 23
715515009126 4 1
715515009126 7 3
715515009126 11
 34
9 rows selected.

The query in Example 3-35 determines the number of copies of each title that are ordered in each PurchaseOrder document. For part number 715515009126, there are four PurchaseOrder documents where one copy of the item is ordered and seven PurchaseOrder documents where three copies of the item are ordered.

Updating XML Content Stored in Oracle XML DB

Oracle XML DB lets update operations take place on XML content. Update operations can either replace the entire contents of a document or parts of a document. The ability to perform partial updates on XML documents is very powerful, particularly when you make small changes to large documents, as it can significantly reduce the amount of network traffic and disk input-output required to perform the update.

SQL function updateXML enables partial update of an XML document stored as an XMLType instance. It lets multiple changes be made to the document in a single operation. Each change consists of an XPath expression that identifies a node to be updated, and the new value for the node.

Example 3-36 uses SQL function updateXML to update the text node associated with element User.

Example 3-36 Updating XML Content using UPDATEXML

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/User' PASSING OBJECT_VALUE AS "p"
 RETURNING CONTENT)
 AS VARCHAR2(60))
 FROM purchaseorder
 WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
 PASSING OBJECT_VALUE AS "p");

XMLCAST(XMLQUERY('$P/PURCHAS

SBELL

1 row selected.

UPDATE purchaseorder
SET OBJECT_VALUE =
 updateXML(OBJECT_VALUE, '/PurchaseOrder/User/text()', 'SKING')
 WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
 PASSING OBJECT_VALUE AS "p");

1 row updated.

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/User' PASSING OBJECT_VALUE AS "p"
 RETURNING CONTENT)
 AS VARCHAR2(60))
 FROM purchaseorder
 WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
 PASSING OBJECT_VALUE AS "p");

XMLCAST(XMLQUERY('$P/PURCHAS

SKING

1 row selected.

Example 3-37 uses SQL function updateXML to replace an entire element within an XML document. The XPath expression references the element, and the replacement value is passed as an XMLType object.

Example 3-37 Replacing an Entire Element using UPDATEXML

SELECT XMLQuery('$p/PurchaseOrder/LineItems/LineItem[1]'
 PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
 FROM purchaseorder
 WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
 PASSING OBJECT_VALUE AS "p");

XMLQUERY('$P/PURCHAS

<LineItem ItemNumber="1">
 <Description>A Night to Remember</Description>
 <Part Id="715515009058" UnitPrice="39.95" Quantity="2"/>
</LineItem>

1 row selected.

UPDATE purchaseorder
 SET OBJECT_VALUE =
 updateXML(
 OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem[1]',
 XMLType('<LineItem ItemNumber="1">
 <Description>The Lady Vanishes</Description>
 <Part Id="37429122129" UnitPrice="39.95" Quantity="1"/>
 </LineItem>'))
 WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
 PASSING OBJECT_VALUE AS "p");

1 row updated.

SELECT XMLQuery('$p/PurchaseOrder/LineItems/LineItem[1]'
 PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
 FROM purchaseorder
 WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
 PASSING OBJECT_VALUE AS "p");

XMLQUERY('$P/PURCHAS

<LineItem ItemNumber="1">
 <Description>The Lady Vanishes</Description>
 <Part Id="37429122129" UnitPrice="39.95" Quantity="1"/>
</LineItem>

1 row selected.

Example 3-38 illustrates the common mistake of using SQL function updateXML to update a node that occurs multiple times in a collection. The UPDATE statement sets the value of the text node of a Description element to The Wizard of Oz, where the current value of the text node is Sisters. The statement includes an XMLExists expression in the WHERE clause that identifies the set of nodes to be updated.

Example 3-38 Incorrectly Updating a Node That Occurs Multiple Times in a Collection

SELECT XMLCast(des.COLUMN_VALUE AS VARCHAR2(256))
 FROM purchaseorder,
 XMLTable('$p/PurchaseOrder/LineItems/LineItem/Description'
 PASSING OBJECT_VALUE AS "p") des
 WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
 PASSING OBJECT_VALUE AS "p");

XMLCAST(DES.COLUMN_VALUEASVARCHAR2(256))
--
The Lady Vanishes
The Unbearable Lightness Of Being
Sisters

3 rows selected.

UPDATE purchaseorder p
 SET p.OBJECT_VALUE =
 updateXML(p.OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem/Description/text()',
 'The Wizard of Oz')
 WHERE XMLExists('$p/PurchaseOrder/LineItems/LineItem[Description="Sisters"]'
 PASSING OBJECT_VALUE AS "p")
 AND XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
 PASSING OBJECT_VALUE AS "p");

1 row updated.

SELECT XMLCast(des.COLUMN_VALUE AS VARCHAR2(256))
 FROM purchaseorder,
 XMLTable('$p/PurchaseOrder/LineItems/LineItem/Description'
 PASSING OBJECT_VALUE AS "p") des
 WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
 PASSING OBJECT_VALUE AS "p");

XMLCAST(DES.COLUMN_VALUEASVARCHAR2(256))
--
The Wizard of Oz
The Wizard of Oz
The Wizard of Oz

3 rows selected.

In Example 3-38, instead of updating only the intended node, SQL function updateXML updates the values of all text nodes that belong to the Description element. This is the correct updateXML behavior, but it is not what was intended.

A WHERE clause can be used only to identify which documents must be updated, not which nodes within a document must be updated.

After the document has been selected, the XPath expression passed to updateXML determines which nodes within the document must be updated. In this case, the XPath expression identifies all three Description nodes, so all three of the associated text nodes were updated.

To correctly use SQL function updateXML to update a node that occurs multiple times within a collection, use the XPath expression passed to updateXML to identify which nodes in the XML document to update. By introducing the appropriate predicate into the XPath expression, you can limit which nodes in the document are updated. Example 3-39 illustrates the correct way to update one node within a collection.

Example 3-39 Correctly Updating a Node That Occurs Multiple Times in a Collection

SELECT XMLCast(des.COLUMN_VALUE AS VARCHAR2(256))
 FROM purchaseorder,
 XMLTable('$p/PurchaseOrder/LineItems/LineItem/Description'
 PASSING OBJECT_VALUE AS "p") des
 WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
 PASSING OBJECT_VALUE AS "p");

XMLCAST(DES.COLUMN_VALUEASVARCHAR2(256))
--

A Night to Remember
The Unbearable Lightness Of Being
Sisters

3 rows selected.

UPDATE purchaseorder p
 SET p.OBJECT_VALUE =
 updateXML(
 p.OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem/Description[text()="Sisters"]/text()',
 'The Wizard of Oz')
 WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
 PASSING OBJECT_VALUE AS "p");

1 row updated.

SELECT XMLCast(des.COLUMN_VALUE AS VARCHAR2(256))
 FROM purchaseorder,
 XMLTable('$p/PurchaseOrder/LineItems/LineItem/Description'
 PASSING OBJECT_VALUE AS "p") des
 WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
 PASSING OBJECT_VALUE AS "p");

XMLCAST(DES.COLUMN_VALUEASVARCHAR2(256))
--
A Night to Remember
The Unbearable Lightness Of Being
The Wizard of Oz

3 rows selected.

SQL function updateXML lets multiple changes be made to the document in one statement. Example 3-40 shows how to change the values of text nodes belonging to the User and SpecialInstructions elements in one statement.

Example 3-40 Changing Text Node Values using UPDATEXML

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/CostCenter'
 PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
 AS VARCHAR2(4)) "Cost Center",
 XMLCast(XMLQuery('$p/PurchaseOrder/SpecialInstructions'
 PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
 AS VARCHAR2(2048)) "Instructions"
 FROM purchaseorder
 WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
 PASSING OBJECT_VALUE AS "p");

Cost Center Instructions
------------ ------------
S30 Air Mail

1 row selected.

The following single UPDATE SQL statement changes the User and SpecialInstructions element text node values:

UPDATE purchaseorder
 SET OBJECT_VALUE =
 updateXML(OBJECT_VALUE,
 '/PurchaseOrder/CostCenter/text()',
 'B40',
 '/PurchaseOrder/SpecialInstructions/text()',
 'Priority Overnight Service')
 WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
 PASSING OBJECT_VALUE AS "p");

1 row updated.

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/CostCenter'
 PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
 AS VARCHAR2(4)) "Cost Center",
 XMLCast(XMLQuery('$p/PurchaseOrder/SpecialInstructions'
 PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
 AS VARCHAR2(2048)) "Instructions"
 FROM purchaseorder
 WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
 PASSING OBJECT_VALUE AS "p");

Cost Center Instructions
------------ --------------------------
B40 Priority Overnight Service

1 row selected.

Updating XML Schema-Based and Non-Schema-Based XML Documents

The way SQL functions such as updateXML modify an XML document depends on how the XML document is stored and whether it is based on an XML schema:

	
XML documents stored in CLOB values – When a SQL function such as updateXML modifies an XML document stored as a CLOB (whether or not it is XML schema-based), Oracle XML DB performs the update by creating a Document Object Model (DOM) from the document and using DOM API methods to modify the appropriate XML data. After modification, the updated DOM is returned back to the underlying CLOB value.

	
XML documents stored object-relationally – When a SQL function such as updateXML modifies an XML schema-based document that is stored object-relationally, Oracle XML DB can use XPath rewrite to modify the underlying objects in place. This is a partial update, which translates the XPath argument to the SQL function into an equivalent SQL operation. The SQL operation then directly modifies the attributes of underlying objects. Such a partial update can be much quicker than a DOM-based update. This can improve performance significantly when executing SQL code that applies a SQL function such as updateXML to a large number of documents.

	
XML documents stored as binary XML – When a SQL function such as updateXML is used on a binary XML column, Oracle XML DB often need not build a DOM. The exact portion of the document that must be updated is calculated using query evaluation techniques such as streaming and XMLIndex. The updated data is written to disk starting only where the first change occurs — anything before that is unchanged. In addition, if SecureFile LOBs are used for storing the data (the default behavior), then the change is applied in a sliding manner, without causing the rest of the LOB to be rewritten. That is, with SecureFile LOB storage of binary XML data, only the data that is actually changed is updated. This can significantly improve performance relative to unstructured storage. These optimizations apply to both non-schema-based and XML schema-based data.

	
See Also:

Chapter 8, "XPath Rewrite for Structured Storage"

Namespace Support in Oracle XML DB

Namespace support is a key feature of the W3C XML Recommendations. Oracle XML DB fully supports the W3C Namespace Recommendation. All XMLType methods and XML-specific SQL functions work with XPath expressions that include namespace prefixes. All methods and functions accept an optional namespace argument that provides the namespace declarations for correctly resolving namespace prefixes used in XPath expressions. The namespace parameter is required whenever the provided XPath expression contains namespace prefixes. When parameter namespace is provided, it must provide an explicit declaration for the default namespace in addition to the prefixed namespaces, unless the default namespace is the noNamespace namespace. When parameter namespace is not provided, Oracle XML DB makes the following assumptions about the XPath expression:

	
If the content of the XMLType instance is not based on a registered XML schema, then any term in the XPath expression that does include a namespace prefix is assumed to be in the noNamespace namespace.

	
If the content of the XMLType is based on a registered XML schema, then any term in the XPath expression that does not include a namespace prefix is assumed to be in the targetNamespace declared by the XML schema, if any. If the XML schema does not declare a targetnamespace, then names noNamespace is used.

Failing to correctly define the namespaces required to resolve XPath expressions results in XPath-based operations not working as expected. When the namespace declarations are incorrect or missing, the result of the operation is normally null, rather than an error. To avoid confusion, whenever any namespaces other than noNamespace are present in either the XPath expression or the target XML document, pass the complete set of namespace declarations, including the declaration for the default namespace.

How Oracle XML DB Processes XMLType Methods and SQL Functions

Oracle XML DB processes SQL/XML access and query functions such as XMLQuery and XMLType methods using DOM-based or SQL-based techniques:

	
DOM-based XMLType processing – Oracle XML DB performs the required processing by constructing a DOM from the contents of the XMLType object. It uses methods provided by the DOM API to perform the required operation on the DOM. If the operation involves updating the DOM tree, then the entire XML document has to be written back to disk when the operation is completed. The process of using DOM-based operations on XMLType data is referred to as functional evaluation.

The advantage of functional evaluation is that it can be used regardless of the storage model (structured, binary XML, or unstructured) used for the XMLType instance. The disadvantage of functional evaluation is that it much more expensive than XPath rewrite, and does not scale across large numbers of XML documents.

	
SQL-based XMLType processing – Oracle XML DB constructs a SQL statement that performs the processing required to complete the function or method. The SQL statement works directly against the object-relational data structures that underlie a schema-based XMLType. This process is referred to as XPath rewrite. See Chapter 8, "XPath Rewrite for Structured Storage".

The advantage of XPath rewrite is that it lets Oracle XML DB evaluate XPath-based SQL functions and methods at near relational speeds. This lets these operations scale across large numbers of XML documents. The disadvantage of XPath rewrite is that since it relies on direct access and updating the objects used to store the XML document, it can be used only when the XMLType instance is stored using XML schema-based object-relational storage techniques.

	
Streaming evaluation of binary XML data – If you use binary XML as the XMLType storage model, then XPath expressions used in SQL/XML access and query functions such as XMLQuery are evaluated in a streaming fashion, without recourse to building a DOM.

Generating XML Data from Relational Data

This section presents examples of using Oracle XML DB to generate XML data from relational data.

	
See Also:

	
Chapter 5, "Using XQuery with Oracle XML DB"

	
Chapter 18, "Generating XML Data from the Database"

Generating XML Data from Relational Data using SQL/XML Functions

You can use standard SQL/XML functions to generate one or more XML documents. SQL/XML function XMLQuery is the most general way to do this. Other SQL/XML functions that you can use for this are the following:

	
XMLElement creates a element

	
XMLAttributes adds attributes to an element

	
XMLForest creates forest of elements

	
XMLAgg creates a single element from a collection of elements

The query in Example 3-41 uses these functions to generate an XML document that contains information from the tables departments, locations, countries, employees, and jobs.

Example 3-41 Generating XML Data using SQL/XML Functions

SELECT XMLElement(
 "Department",
 XMLAttributes(d.Department_id AS "DepartmentId"),
 XMLForest(d.department_name AS "Name"),
 XMLElement(
 "Location",
 XMLForest(street_address AS "Address",
 city AS "City",
 state_province AS "State",
 postal_code AS "Zip",
 country_name AS "Country")),
 XMLElement(
 "EmployeeList",
 (SELECT XMLAgg(
 XMLElement(
 "Employee",
 XMLAttributes(e.employee_id AS "employeeNumber"),
 XMLForest(
 e.first_name AS "FirstName",
 e.last_name AS "LastName",
 e.email AS "EmailAddress",
 e.phone_number AS "PHONE_NUMBER",
 e.hire_date AS "StartDate",
 j.job_title AS "JobTitle",
 e.salary AS "Salary",
 m.first_name || ' ' || m.last_name AS "Manager"),
 XMLElement("Commission", e.commission_pct)))
 FROM hr.employees e, hr.employees m, hr.jobs j
 WHERE e.department_id = d.department_id
 AND j.job_id = e.job_id
 AND m.employee_id = e.manager_id)))
 AS XML
 FROM hr.departments d, hr.countries c, hr.locations l
 WHERE department_name = 'Executive'
 AND d.location_id = l.location_id
 AND l.country_id = c.country_id;

The query returns the following XML:

XML
--
<Department DepartmentId="90"><Name>Executive</Name><Location><Address>2004
 Charade Rd</Address><City>Seattle</City><State>Washingto
n</State><Zip>98199</Zip><Country>United States of
 America</Country></Location><EmployeeList><Employee
 employeeNumber="101"><FirstNa
me>Neena</FirstName><LastName>Kochhar</LastName><EmailAddress>NKOCHHAR</EmailAdd
ess><PHONE_NUMBER>515.123.4568</PHONE_NUMBER><Start
Date>2005-09-21</StartDate><JobTitle>Administration Vice
 President</JobTitle><Salary>17000</Salary><Manager>Steven King</Manager><Com
mission></Commission></Employee><Employee
 employeeNumber="102"><FirstName>Lex</FirstName><LastName>De
 Haan</LastName><EmailAddress>L
DEHAAN</EmailAddress><PHONE_NUMBER>515.123.4569</PHONE
NUMBER><StartDate>2001-01-13</StartDate><JobTitle>Administration Vice Presiden
t</JobTitle><Salary>17000</Salary><Manager>Steven
 King</Manager><Commission></Commission></Employee></EmployeeList></Department>

This query generates element Department for each row in the departments table.

	
Each Department element contains attribute DepartmentID. The value of DepartmentID comes from the department_id column. The Department element contains sub-elements Name, Location, and EmployeeList.

	
The text node associated with the Name element comes from the name column in the departments table.

	
The Location element has child elements Address, City, State, Zip, and Country. These elements are constructed by creating a forest of named elements from columns in the locations and countries tables. The values in the columns become the text node for the named element.

	
The EmployeeList element contains an aggregation of Employee Elements. The content of the EmployeeList element is created by a subquery that returns the set of rows in the employees table that correspond to the current department. Each Employee element contains information about the employee. The contents of the elements and attributes for each Employee element is taken from tables employees and jobs.

The output generated by SQL/XML functions is generally not pretty-printed. The only exception is function XMLSerialize — use XMLSerialize to pretty-print. This lets the other SQL/XML functions (1) avoid creating a full DOM when generating the required output, and (2) reduce the size of the generated document. This lack of pretty-printing by most SQL/XML functions does not matter to most applications. However, it makes verifying the generated output manually more difficult.

Example 3-42 Creating XMLType Views Over Conventional Relational Tables

CREATE OR REPLACE VIEW department_xml OF XMLType
 WITH OBJECT ID (substr(
 XMLCast(
 XMLQuery('$p/Department/Name'
 PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
 AS VARCHAR2(30)),
 1,
 128))
 AS
 SELECT XMLElement(
 "Department",
 XMLAttributes(d.department_id AS "DepartmentId"),
 XMLForest(d.department_name AS "Name"),
 XMLElement("Location", XMLForest(street_address AS "Address",
 city AS "City",
 state_province AS "State",
 postal_code AS "Zip",
 country_name AS "Country")),
 XMLElement(
 "EmployeeList",
 (SELECT XMLAgg(
 XMLElement(
 "Employee",
 XMLAttributes(e.employee_id AS "employeeNumber"),
 XMLForest(e.first_name AS "FirstName",
 e.last_name AS "LastName",
 e.email AS "EmailAddress",
 e.phone_number AS "PHONE_NUMBER",
 e.hire_date AS "StartDate",
 j.job_title AS "JobTitle",
 e.salary AS "Salary",
 m.first_name || ' ' ||
 m.last_name AS "Manager"),
 XMLElement("Commission", e.commission_pct)))
 FROM hr.employees e, hr.employees m, hr.jobs j
 WHERE e.department_id = d.department_id
 AND j.job_id = e.job_id
 AND m.employee_id = e.manager_id))).extract('/*')
 AS XML
 FROM hr.departments d, hr.countries c, hr.locations l
 WHERE d.location_id = l.location_id
 AND l.country_id = c.country_id;

View created.

The XMLType view lets relational data be persisted as XML content. Rows in XMLType views can be persisted as documents in Oracle XML DB Repository. The contents of an XMLType view can be queried, as shown in Example 3-43.

Example 3-43 shows a simple query against an XMLType view. The XPath expression passed to SQL/XML function XMLExists restricts the result set to the node that contains the Executive department information. The result is shown pretty-printed here for clarity.

Example 3-43 Querying XMLType Views

SELECT OBJECT_VALUE FROM department_xml
 WHERE XMLExists('$p/Department[Name="Executive"]' PASSING OBJECT_VALUE AS "p");

OBJECT_VALUE
--
<Department DepartmentId="90">
 <Name>Executive</Name>
 <Location>
 <Address>2004 Charade Rd</Address>
 <City>Seattle</City>
 <State>Washington</State>
 <Zip>98199</Zip>
 <Country>United States of America</Country>
 </Location>
 <EmployeeList>
 <Employee employeeNumber="101">
 <FirstName>Neena</FirstName>
 <LastName>Kochhar</LastName>
 <EmailAddress>NKOCHHAR</EmailAddress>
 <PHONE_NUMBER>515.123.4568</PHONE_NUMBER>
 <StartDate>2005-09-21</StartDate>
 <JobTitle>Administration Vice President</JobTitle>
 <Salary>17000</Salary>
 <Manager>Steven King</Manager>
 <Commission/>
 </Employee>
 <Employee employeeNumber="102">
 <FirstName>Lex</FirstName>
 <LastName>De Haan</LastName>
 <EmailAddress>LDEHAAN</EmailAddress>
 <PHONE_NUMBER>515.123.4569</PHONE_NUMBER>
 <StartDate>2001-01-13</StartDate>
 <JobTitle>Administration Vice President</JobTitle>
 <Salary>17000</Salary>
 <Manager>Steven King</Manager>
 <Commission/>
 </Employee>
 </EmployeeList>
</Department>

1 row selected.

As can be seen from the following execution plan output, Oracle XML DB is able to correctly rewrite the XPath-expression argument in the XMLExists expression into a SELECT statement on the underlying relational tables.

SELECT OBJECT_VALUE FROM department_xml
 WHERE XMLExists('$p/Department[Name="Executive"]' PASSING OBJECT_VALUE AS "p");

PLAN_TABLE_OUTPUT

Plan hash value: 2414180351

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		1	80	3 (0)	00:00:01
1	SORT AGGREGATE		1	115		
* 2	HASH JOIN		10	1150	7 (15)	00:00:01
* 3	HASH JOIN		10	960	5 (20)	00:00:01
4	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	10	690	2 (0)	00:00:01
* 5	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	10		1 (0)	00:00:01
6	TABLE ACCESS FULL	JOBS	19	513	2 (0)	00:00:01
7	TABLE ACCESS FULL	EMPLOYEES	107	2033	2 (0)	00:00:01
8	NESTED LOOPS		1	80	3 (0)	00:00:01
9	NESTED LOOPS		1	68	3 (0)	00:00:01
* 10	TABLE ACCESS FULL	DEPARTMENTS	1	19	2 (0)	00:00:01
11	TABLE ACCESS BY INDEX ROWID	LOCATIONS	1	49	1 (0)	00:00:01
* 12	INDEX UNIQUE SCAN	LOC_ID_PK	1		0 (0)	00:00:01
* 13	INDEX UNIQUE SCAN	COUNTRY_C_ID_PK	1	12	0 (0)	00:00:01
--

Predicate Information (identified by operation id):

 2 - access("M"."EMPLOYEE_ID"="E"."MANAGER_ID")
 3 - access("J"."JOB_ID"="E"."JOB_ID")
 5 - access("E"."DEPARTMENT_ID"=:B1)
 10 - filter("D"."DEPARTMENT_NAME"='Executive')
 12 - access("D"."LOCATION_ID"="L"."LOCATION_ID")
 13 - access("L"."COUNTRY_ID"="C"."COUNTRY_ID")

30 rows selected.

	
Note:

XPath rewrite on XML expressions that operate on XMLType views is only supported when nodes referenced in the XPath expression are not descendants of an element created using SQL function XMLAgg.

Generating XML Data from Relational Data using DBURITYPE

You can also generate XML from relational data using SQL function DBURIType. Function DBURIType exposes one or more rows in a given table or view as a single XML document. The name of the root element is derived from the name of the table or view. The root element contains a set of ROW elements. There is one ROW element for each row in the table or view. The children of each ROW element are derived from the columns in the table or view. Each child element contains a text node with the value of the column for the given row.

Example 3-44 shows how to use SQL function DBURIType to access the contents of table departments in database schema HR. It uses method getXML() to return the resulting document as an XMLType instance.

Example 3-44 Generating XML Data from a Relational Table using DBURIType and getXML()

SELECT DBURIType('/HR/DEPARTMENTS').getXML() FROM DUAL;

DBURITYPE('/HR/DEPARTMENTS').GETXML()
--
<?xml version="1.0"?>
<DEPARTMENTS>
 <ROW>
 <DEPARTMENT_ID>10</DEPARTMENT_ID>
 <DEPARTMENT_NAME>Administration</DEPARTMENT_NAME>
 <MANAGER_ID>200</MANAGER_ID>
 <LOCATION_ID>1700</LOCATION_ID>
 </ROW>
...
 <ROW>
 <DEPARTMENT_ID>20</DEPARTMENT_ID>
 <DEPARTMENT_NAME>Marketing</DEPARTMENT_NAME>
 <MANAGER_ID>201</MANAGER_ID>
 <LOCATION_ID>1800</LOCATION_ID>
 </ROW>
</DEPARTMENTS>

Example 3-45 shows how to use an XPath predicate to restrict the rows that are included in an XML document generated using DBURIType. The XPath expression in the example restricts the XML document to DEPARTMENT_ID columns with value 10.

Example 3-45 Restricting Rows using an XPath Predicate

SELECT DBURIType('/HR/DEPARTMENTS/ROW[DEPARTMENT_ID="10"]').getXML()
 FROM DUAL;

DBURITYPE('/HR/DEPARTMENTS/ROW[DEPARTMENT_ID="10"]').GETXML()
--
<?xml version="1.0"?>
 <ROW>
 <DEPARTMENT_ID>10</DEPARTMENT_ID>
 <DEPARTMENT_NAME>Administration</DEPARTMENT_NAME>
 <MANAGER_ID>200</MANAGER_ID>
 <LOCATION_ID>1700</LOCATION_ID>
 </ROW>

1 row selected.

SQL function DBURIType provides a simple way to expose some or all rows in a relational table as one or more XML documents. The URL passed to function DBURIType can be extended to return a single column from the view or table, but in that case the URL must also include predicates that identify a single row in the target table or view.

Example 3-46 illustrates this. The predicate [DEPARTMENT_ID="10"] causes the query to return the value of column department_name for the departments row where column department_id has the value 10.

Example 3-46 Restricting Rows and Columns using an XPath Predicate

SELECT DBURIType(
 '/HR/DEPARTMENTS/ROW[DEPARTMENT_ID="10"]/DEPARTMENT_NAME').getXML()
 FROM DUAL;

DBURITYPE('/HR/DEPARTMENTS/ROW[DEPARTMENT_ID="10"]/DEPARTMENT_NAME').GETXML()

<?xml version="1.0"?>
 <DEPARTMENT_NAME>Administration</DEPARTMENT_NAME>

1 row selected.

SQL function DBURIType is less flexible than the SQL/XML functions:

	
It provides no way to control the shape of the generated document.

	
The data can come only from a single table or view.

	
The generated document consists of one or more ROW elements. Each ROW element contains a child for each column in the target table.

	
The names of the child elements are derived from the column names.

To control the names of the XML elements, to include columns from more than one table, or to control which columns from a table appear in the generated document, create a relational view that exposes the desired set of columns as a single row, and then use function DBURIType to generate an XML document from the contents of that view.

XSL Transformation and Oracle XML DB

The W3C XSLT Recommendation defines an XML language for specifying how to transform XML documents from one form to another. Transformation can include mapping from one XML schema to another or mapping from XML to some other format such as HTML or WML.

	
See Also:

http://www.w3.org/XML/Schema for information about the XSLT standard

XSL transformation is typically expensive in terms of the amount of memory and processing required. Both the source document and the style sheet must be parsed and loaded into memory structures that allow random access to different parts of the documents. Most XSL processors use DOM to provide the dynamic memory representation of both documents. The XSL processor then applies the style sheet to the source document, generating a third document.

Oracle XML DB includes an XSLT processor that lets XSL transformations be performed inside the database. In this way, Oracle XML DB can provide XML-specific memory optimizations that significantly reduce the memory required to perform the transformation. It can also eliminate overhead associated with parsing the documents. These optimizations are only available when the source for the transformation is a schema-based XML document, however.

Oracle XML provides three ways to invoke the XSL processor:

	
SQL function XMLtransform

	
XMLType method transform()

	
PL/SQL package DBMS_XSLPROCESSOR

Each of these XML transformation methods takes as input a source XML document and an XSL style sheet in the form of XMLType instances. For SQL function XMLtransform and XMLType method transform(), the result of the transformation can be an XML document or a non-XML document, such as HTML. However, for PL/SQL package DBMS_XSLPROCESSOR, the result of the transformation is expected to be a valid XML document. Any HTML generated by a transformation using package DBMS_XSLPROCESSOR is XHTML, which is both valid XML and valid HTML.

Example 3-47 shows part of an XSLT style sheet, PurchaseOrder.xsl. The complete style sheet is given in "XSL Style Sheet Example, PurchaseOrder.xsl".

Example 3-47 XSLT Style Sheet Example: PurchaseOrder.xsl

<?xml version="1.0" encoding="WINDOWS-1252"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xdb="http://xmlns.oracle.com/xdb"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <xsl:template match="/">
 <html>
 <head/>
 <body bgcolor="#003333" text="#FFFFCC" link="#FFCC00" vlink="#66CC99" alink="#669999">

 <xsl:for-each select="PurchaseOrder"/>
 <xsl:for-each select="PurchaseOrder">
 <center>

 PurchaseOrder

 </center>

 <center>
 <xsl:for-each select="Reference">

 <xsl:apply-templates/>

 </xsl:for-each>
 </center>
 </xsl:for-each>
 <P>
 <xsl:for-each select="PurchaseOrder">

 </xsl:for-each>
 <P/>
 <P>
 <xsl:for-each select="PurchaseOrder">

 </xsl:for-each>
 </P>
 </P>
 <xsl:for-each select="PurchaseOrder"/>
 <xsl:for-each select="PurchaseOrder">
 <table border="0" width="100%" BGCOLOR="#000000">
 <tbody>
 <tr>
 <td WIDTH="296">
 <P>

 Internal

 </P>

 ...

 </td>
 <td width="93"/>
 <td valign="top" WIDTH="340">

 Ship To

 <xsl:for-each select="ShippingInstructions">
 <xsl:if test="position()=1"/>
 </xsl:for-each>
 <xsl:for-each select="ShippingInstructions">
 </xsl:for-each>

 ...

These is nothing Oracle XML DB-specific about the style sheet of Example 3-47. A style sheet can be stored in an XMLType table or column or stored as non-schema-based XML data inside Oracle XML DB Repository.

Performing transformations inside the database lets Oracle XML DB optimize features such as memory usage, I/O operations, and network traffic. These optimizations are particularly effective when the transformation operates on a small subset of the nodes in the source document.

In traditional XSL processors, the entire source document must be parsed and loaded into memory before XSL processing can begin. This process requires significant amounts of memory and processor. When only a small part of the document is processed this is inefficient.

When Oracle XML DB performs XSL transformations on a schema-based XML document there is no need to parse the document before processing can begin. The lazily loaded virtual DOM eliminates the need to parse the document, by loading content directly from disk as the nodes are accessed. The lazy load also reduces the amount of memory required to perform the transformation, because only the parts of the document that are processed are loaded into memory.

Example 3-48 shows how to use SQL function XMLtransform to apply an XSL style sheet to a document stored in an XMLType table, producing HTML code. SQL function XDBURIType reads the XSL style sheet from Oracle XML DB Repository.

In the interest of brevity, only part of the result of the transformation is shown in Example 3-48. Omitted parts are indicated with an ellipsis (. . .). Figure 3-7 shows what the transformed result looks like in a Web browser.

Example 3-48 Applying a Style Sheet using TRANSFORM

SELECT
 XMLtransform(
 OBJECT_VALUE,
 XDBURIType('/source/schemas/poSource/xsl/purchaseOrder.xsl').getXML())
 FROM purchaseorder
 WHERE XMLExists('$p/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]'
 PASSING OBJECT_VALUE AS "p");

XMLTRANSFORM(OBJECT_VALUE, XDBURITYPE('/SOURCE/SCHEMAS/POSOURCE/XSL/PURCHASEORDER.XSL').GET

<html xmlns:xdb="http://xmlns.oracle.com/xdb"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <head/>
 <body bgcolor="#003333" text="#FFFFCC" link="#FFCC00" vlink="#66CC99" alink="#669999">

 <center>

 PurchaseOrder

 </center>

 <center>
 SBELL-2002100912333601PDT
 </center>
 <P>

 <P/>
 <P>

 </P>
 </P>
 <table border="0" width="100%" BGCOLOR="#000000">
 <tbody>
 <tr>
 <td WIDTH="296">
 <P>

 <FONT SIZE="+1" COLOR="#FF0000" FACE="Arial, Helvetica,
 sans-serif">Internal

 </P>
 <table border="0" width="98%" BGCOLOR="#000099">
 . . .
 </table>
 </td>
 <td width="93">
 </td>
 <td valign="top" WIDTH="340">

 Ship To

 <table border="0" BGCOLOR="#999900">
 . . .
 </table>
 </td>
 </tr>
 </tbody>
 </table>

 Items:

 <table border="0">
 . . .
 </table>

 </body>
</html>

1 row selected.

	
See Also:

Chapter 11, "Transforming and Validating XMLType Data"

Using Oracle XML DB Repository

Oracle XML DB Repository makes it possible to organize XML content using a file/folder metaphor. This lets you use a URL to uniquely identify XML documents stored in the database. This approach appeals to XML developers used to using constructs such as URLs and XPath expressions to identify content.

Oracle XML DB Repository is modelled on the DAV standard. The DAV standard uses the term resource to describe any file or folder managed by a WebDAV server. A resource consists of a combination of metadata and content. The DAV specification defines the set of (system-defined) metadata properties that a WebDAV server is expected to maintain for each resource and the set of XML documents that a DAV server and DAV-enabled client uses to exchange metadata.

Although Oracle XML DB Repository can manage any kind of content, it provides specialized capabilities and optimizations related to managing resources where the content is XML.

Installing and Uninstalling Oracle XML DB Repository

All of the metadata and content managed by Oracle XML DB Repository is stored using a set of tables in the database schema owned by database schema (user account) XDB. User XDB is a locked account that is installed using DBCA or by running script catqm.sql. Script catqm.sql is located in the directory ORACLE_HOME/rdbms/admin. The repository can be uninstalled using DBCA or by running the script catnoqm.sql. Take great care when running catnoqm.sql as it drops all content stored in Oracle XML DB Repository and invalidates any XMLType tables or columns associated with registered XML schemas.

	
See Also:

Oracle Database 2 Day + Security Guide for information about database schema XDB

Oracle XML DB Provides Name-Level Locking

When using a relational database to maintain hierarchical folder structures, ensuring a high degree of concurrency when adding and removing items in a folder is a challenge. In conventional file system there is no concept of a transaction. Each operation (add a file, create a subfolder, rename a file, delete a file, and so on) is treated as an atomic transaction. Once the operation has completed the change is immediately available to all other users of the file system.

	
Note:

As a consequence of transactional semantics enforced by the database, folders created using SQL statements are not visible to other database users until the transaction is committed. Concurrent access to Oracle XML DB Repository is controlled by the same mechanism used to control concurrency in Oracle Database. The integration of the repository with Oracle Database provides strong management options for XML content.

One key advantage of Oracle XML DB Repository is the ability to use SQL for repository operations in the context of a logical transaction. Applications can create long-running transactions that include updates to one or more folders. In this situation, a conventional locking strategy that takes an exclusive lock on each updated folder or directory tree would quickly result in significant concurrency problems.

Oracle XML DB solves this by providing for name-level locking rather than folder-level locking. Repository operations such as creating, renaming, moving, or deleting a sub-folder or file do not require that your operation be granted an exclusive write lock on the target folder. The repository manages concurrent folder operations by locking the name within the folder rather than the folder itself. The name and the modification type are put on a queue.

Only when the transaction is committed is the folder locked and its contents modified. Hence Oracle XML DB lets multiple applications perform concurrent updates on the contents of a folder. The queue is also used to manage folder concurrency by preventing two applications from creating objects with the same name.

Queuing folder modifications until commit time also minimizes I/O when a number of changes are made to a single folder in the same transaction.

This is useful when several applications generate files quickly in the same directory, for example when generating trace or log files, or when maintaining a spool directory for printing or e-mail delivery.

Use Protocols or SQL to Access and Process Repository Content

You can work with content stored in Oracle XML DB Repository in these ways:

	
Using industry standard protocols such as HTTP(S), WebDAV, and FTP to perform document-level operations such as insert, update, and delete.

	
By directly accessing Oracle XML DB Repository content at the table or row level, using SQL.

	
Using Oracle XML DB Content Connector — see Chapter 31, "Using Oracle XML DB Content Connector".

Storing and Retrieving Database Content using Standard Protocols

Oracle XML DB supports industry-standard internet protocols such as HTTP(S), WebDav, and FTP. The combination of protocol support and URL-based access makes it possible to insert, retrieve, update, and delete content stored in Oracle Database from standard desktop applications such as Windows Explorer, Microsoft Word, and XMLSpy.

Figure 3-4 shows Windows Explorer used to insert a folder from the local hard drive into Oracle Database. Windows Explorer includes support for the WebDAV protocol. WebDAV extends the HTTP standard, adding additional verbs that allow an HTTP server to act as a file server.

When a Windows Explorer copy operation or FTP input command is used to transfer a number of documents into Oracle XML DB Repository, each put or post command is treated as a separate atomic operation. This ensures that the client does not get confused if one of the file transfers fails. It also means that changes made to a document through a protocol are visible to other users as soon as the request has been processed.

Figure 3-4 Copying Files into Oracle XML DB Repository

[image: Description of Figure 3-4 follows]

Uploading Content to Oracle XML DB using FTP

Example 3-49 shows commands issued and output generated when a standard command line FTP tool loads documents into Oracle XML DB Repository:

Example 3-49 Uploading Content to the Repository using FTP

$ ftp mdrake-sun 2100
Connected to mdrake-sun.
220 mdrake-sun FTP Server (Oracle XML DB/Oracle Database 10g Enterprise Edition
Release 10.1.0.1.0 - Beta) ready.
Name (mdrake-sun:oracle10): QUINE
331 Password required for QUINE
Password: password
230 QUINE logged in
ftp> cd /source/schemas
250 CWD Command successful
ftp> mkdir PurchaseOrders
257 MKD Command successful
ftp> cd PurchaseOrders
250 CWD Command successful
ftp> mkdir 2002
257 MKD Command successful
ftp> cd 2002
250 CWD Command successful
ftp> mkdir "Apr"
257 MKD Command successful
ftp> put "Apr/AMCEWEN-20021009123336171PDT.xml"
"Apr/AMCEWEN-20021009123336171PDT.xml"
200 PORT Command successful
150 ASCII Data Connection
226 ASCII Transfer Complete
local: Apr/AMCEWEN-20021009123336171PDT.xml remote:
Apr/AMCEWEN-20021009123336171PDT.xml
4718 bytes sent in 0.0017 seconds (2683.41 Kbytes/s)
ftp> put "Apr/AMCEWEN-20021009123336271PDT.xml"
"Apr/AMCEWEN-20021009123336271PDT.xml"
200 PORT Command successful
150 ASCII Data Connection
226 ASCII Transfer Complete
local: Apr/AMCEWEN-20021009123336271PDT.xml remote:
Apr/AMCEWEN-20021009123336271PDT.xml
4800 bytes sent in 0.0014 seconds (3357.81 Kbytes/s)
.....
ftp> cd "Apr"
250 CWD Command successful
ftp> ls -l
200 PORT Command successful
150 ASCII Data Connection
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 AMCEWEN-20021009123336171PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 AMCEWEN-20021009123336271PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 EABEL-20021009123336251PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 PTUCKER-20021009123336191PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 PTUCKER-20021009123336291PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 SBELL-20021009123336231PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 SBELL-20021009123336331PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 SKING-20021009123336321PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 SMCCAIN-20021009123336151PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 SMCCAIN-20021009123336341PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 VJONES-20021009123336301PDT.xml
226 ASCII Transfer Complete
remote: -l
959 bytes received in 0.0027 seconds (349.45 Kbytes/s)
ftp> cd ".."
250 CWD Command successful
....
ftp> quit
221 QUIT Goodbye.
$

The key point demonstrated by Figure 3-4 and Example 3-49 is that neither Windows Explorer nor an FTP tool is aware that it is working with Oracle XML DB. Since the tools and Oracle XML DB both support open Internet protocols they work with each other out of the box.

Any tool that understands the WebDAV or FTP protocol can be used to create content managed by Oracle XML DB Repository. No additional software has to installed on the client or the mid-tier.

When the contents of the folders are viewed using a tool such as Windows Explorer or FTP, the length of any schema-based XML documents contained in the folder is shown as zero (0) bytes. This was designed as such for two reasons:

	
It is not clear what the size of the document should be. Is it the size of the CLOB instance generated by printing the document, or the number of bytes required to store the objects used to persist the document inside the database?

	
Regardless of which definition is chosen, calculating and maintaining this information is costly.

Figure 3-5 shows Internet Explorer using a URL and the HTTP protocol to view an XML document stored in the database.

Figure 3-5 Path-Based Access using HTTP and a URL

[image: Description of Figure 3-5 follows]

Accessing Oracle XML DB Repository Programmatically

Oracle XML DB Repository can be accessed and updated directly from SQL. Thus, any application or programming language that can use SQL to interact with Oracle Database can also access and update content stored in the repository. Oracle XML DB includes PL/SQL package DBMS_XDB, which provides methods that allow resources to be created, modified, and deleted programmatically.

Example 3-50 shows how to create a simple text document resource using PL/SQL function DBMS_XDB.createResource.

Example 3-50 Creating a Text Document Resource using CREATERESOURCE

DECLARE
 res BOOLEAN;
BEGIN
 res := DBMS_XDB.createResource('/home/QUINE/NurseryRhyme.txt',
 bfilename('XMLDIR', 'tdadxdb-03-01.txt'),
 nls_charset_id('AL32UTF8'));
END;
/

Accessing and Updating XML Content in the Repository

This section describes features for accessing and updating Oracle XML DB Repository content.

Accessing XML Documents using SQL

Content stored in the repository can be accessed and updated from SQL and PL/SQL. You can interrogate the structure of the repository in complex ways. For example, you can query to determine how many files with extension .xsl are under a location other than /home/mystylesheetdir.

You can also mix path-based repository access with content-based access. You can, for example, ask "How many documents not under /home/purchaseOrders have a node identified by the XPath /PurchaseOrder/User/text() with a value of KING?"

All of the metadata for managing the repository is stored in a database schema owned by database schema (user account) XDB. User XDB is created during Oracle XML DB installation. The primary table in this schema is an XMLType table called XDB$RESOURCE. This contains one row for each resource (file or folder) in the repository. Documents in this table are referred to as resource documents. The XML schema that defines the structure of an Oracle XML DB resource document is registered under URL, "http://xmlns.oracle.com/xdb/XDBResource.xsd.

	
See Also:

Oracle Database 2 Day + Security Guide for information about database schema XDB

Repository Content is Exposed Through RESOURCE_VIEW and PATH_VIEW

Table XDB$RESOURCE is not directly exposed to SQL programmers. Instead, the contents of the repository are exposed through two public views, RESOURCE_VIEW and PATH_VIEW. Through these views, you can access and update both the metadata and the content of documents stored in the repository. Both views contain a virtual column, RES. Use RES to access and update resource documents with SQL statements using a path notation. Operations on the views use underlying tables in the repository.

Use EXISTS_PATH and UNDER_PATH for Path-Based Predicates in a WHERE Clause

Oracle XML DB includes two repository-specific SQL functions: exists_path and under_path. Use these functions to include path-based predicates in the WHERE clause of a SQL statement. SQL operations can select repository content based on the location of the content in the repository folder hierarchy. The hierarchical repository index ensures that path-based queries are executed efficiently.

When XML schema-based XML documents are stored in the repository, the document content is stored as an object in the default table identified by the XML schema. The repository contains only metadata about the document and a pointer (REF of XMLType) that identifies the row in the default table that contains the content.

You Can Also Store Non-XML Documents in the Repository

It is also possible to store other kinds of documents in the repository. When a document that is not XML or is not schema-based XML is stored in the repository, the document content is stored in a LOB along with the metadata about the document.

PL/SQL Packages to Create, Delete, Rename, Move,... Folders and Documents

Because you can access and update Oracle XML DB Repository using SQL, any application capable of calling a PL/SQL procedure can use the repository. All SQL and PL/SQL repository operations are transactional. Access to the repository and its contents is subject to both standard database security controls and repository access control lists (ACLs).

With supplied PL/SQL packages DBMS_XDB, DBMS_XDBZ, and DBMS_XDB_VERSION, you can create, delete, and rename documents and folders, move a file or folder within the folder hierarchy, set and change the access permissions on a file or folder, and initiate and manage versioning.

Example 3-51 uses PL/SQL package DBMS_XDB to create a set of subfolders beneath folder /public.

Example 3-51 Creating Folders using PL/SQL Package DBMS_XDB

DECLARE
 RESULT BOOLEAN;
BEGIN
 IF (NOT DBMS_XDB.existsResource('/public/mysource')) THEN
 result := DBMS_XDB.createFolder('/public/mysource');
 END IF;
 IF (NOT DBMS_XDB.existsResource('/public/mysource/schemas')) THEN
 result := DBMS_XDB.createFolder('/public/mysource/schemas');
 END IF;
 IF (NOT DBMS_XDB.existsResource('/public/mysource/schemas/poSource')) THEN
 result := DBMS_XDB.createFolder('/public/mysource/schemas/poSource');
 END IF;
 IF (NOT DBMS_XDB.existsResource('/public/mysource/schemas/poSource/xsd')) THEN
 result := DBMS_XDB.createFolder('/public/mysource/schemas/poSource/xsd');
 END IF;
 IF (NOT DBMS_XDB.existsResource('/public/mysource/schemas/poSource/xsl')) THEN
 result := DBMS_XDB.createFolder('/public/mysource/schemas/poSource/xsl');
 END IF;
END;
/

Accessing the Content of Documents using SQL

You can access the content of documents stored in Oracle XML DB Repository in several ways. The easiest way is to use XDBURIType. XDBURIType uses a URL to specify which resource to access. The URL passed to the XDBURIType is assumed to start at the root of the repository. Data type XDBURIType provides methods getBLOB(), getCLOB(), and getXML() to access the different kinds of content that can be associated with a resource.

Example 3-52 shows how to use XDBURIType to access the content of the text document:

Example 3-52 Accessing a Text Document in the Repository using XDBURITYPE

SELECT XDBURIType('/home/QUINE/NurseryRhyme.txt').getCLOB() FROM DUAL;

XDBURITYPE('/HOME/QUINE/NURSERYRHYME.TXT').GETCLOB()
--
Mary had a little lamb
Its fleece was white as snow
and everywhere that Mary went
that lamb was sure to go

1 row selected.

The contents of a document can also be accessed using the resource document. Example 3-53 shows how to access the content of a text document:

Example 3-53 Accessing Resource Content using RESOURCE_VIEW

SELECT CONTENT
 FROM RESOURCE_VIEW,
 XMLTable(XMLNAMESPACES (default 'http://xmlns.oracle.com/xdb/XDBResource.xsd'),
 '/Resource/Contents' PASSING RES
 COLUMNS content CLOB PATH 'text')
 WHERE equals_path(RES, '/home/QUINE/NurseryRhyme.txt') = 1;

CONTENT

Mary had a little lamb
Its fleece was white as snow
and everywhere that Mary went
that lamb was sure to go

1 row selected.

The content of non-schema-based and schema-based XML documents can also be accessed through a resource. Example 3-54 shows how to use an XPath expression that includes nodes from a resource document and nodes from an XML document to access the contents of a PurchaseOrder document using the resource.

Example 3-54 Accessing XML Documents using Resource and Namespace Prefixes

SELECT des.description
 FROM RESOURCE_VIEW rv,
 XMLTable(XMLNAMESPACES ('http://xmlns.oracle.com/xdb/XDBResource.xsd' AS "r"),
 '/r:Resource/r:Contents/PurchaseOrder/LineItems/LineItem'
 PASSING rv.RES
 COLUMNS description VARCHAR2(256) PATH 'Description') des
 WHERE
 equals_path(rv.RES, '/home/QUINE/PurchaseOrders/2002/Mar/SBELL-2002100912333601PDT.xml') = 1;

DES.DESCRIPTION

A Night to Remember
The Unbearable Lightness Of Being
The Wizard of Oz

3 rows selected.

In Example 3-54, the namespace prefix, r identifies which nodes in the XPath expression are members of the resource namespace. Namespace prefix r is defined using the XMLNAMESPACES clause of SQL/XML function XMLTable. The namespace declaration is needed here because the purchase-order XML schema does not define a namespace, and it is not possible to apply a namespace prefix to nodes in the PurchaseOrder document.

	
See Also:

Chapter 5, "Using XQuery with Oracle XML DB" for more information about the XMLNAMESPACES clause of XMLTable

Accessing the Content of XML Schema-Based Documents

The content of a schema-based XML document can be accessed in two ways.

	
In the same manner as for non-schema-based XML documents, by using the resource document. This lets RESOURCE_VIEW be used to query different types of schema-based XML documents with a single SQL statement.

	
As a row in the default table that was defined when the XML schema was registered with Oracle XML DB.

Accessing Resource Content using Element XMLRef in Joins

The XMLRef element in the resource document provides the join key required when a SQL statement needs to access or update metadata and content as part of a single operation.

The following queries use joins based on the value of element XMLRef to access resource content.

Example 3-55 locates a row in the defaultTable based on a path in Oracle XML DB Repository. SQL function ref locates the target row in the default table, based on the value of the XMLRef element in the resource document, RES.

Example 3-55 Querying Repository Resource Data using SQL Function REF and Element XMLRef

SELECT des.description
 FROM RESOURCE_VIEW rv,
 purchaseorder p,
 XMLTable('$p/PurchaseOrder/LineItems/LineItem' PASSING p.OBJECT_VALUE AS "p"
 COLUMNS description VARCHAR2(256) PATH 'Description') des
 WHERE equals_path(rv.RES, '/home/QUINE/PurchaseOrders/2002/Mar/SBELL-2002100912333601PDT.xml')
 = 1
 AND ref(p) = XMLCast(XMLQuery('declare default element namespace
 "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
 fn:data(/Resource/XMLRef)' PASSING rv.RES RETURNING CONTENT)
 AS REF XMLType);

DES.DESCRIPTION

A Night to Remember
The Unbearable Lightness Of Being
The Wizard of Oz

3 rows selected.

Example 3-56 shows how to select fragments from XML documents based on metadata, path, and content. The query returns the value of element Reference for documents under /home/QUINE/PurchaseOrders/2002/Mar that contain orders for part number 715515009058.

Example 3-56 Selecting XML Document Fragments Based on Metadata, Path, and Content

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/Reference'
 PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
 AS VARCHAR2(30))
 FROM RESOURCE_VIEW rv, purchaseorder po
 WHERE under_path(rv.RES, '/home/QUINE/PurchaseOrders/2002/Mar') = 1
 AND ref(po) = XMLCast(
 XMLQuery('declare default element namespace
 "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
 fn:data(/Resource/XMLRef)'
 PASSING rv.RES RETURNING CONTENT)
 AS REF XMLType)
 AND XMLExists('$p/PurchaseOrder/LineItems/LineItem/Part[@Id="715515009058"]'
 PASSING po.OBJECT_VALUE AS "p");

XMLCAST(XMLQUERY('$P/PURCHASEO

CJOHNSON-20021009123335851PDT
LSMITH-2002100912333661PDT
SBELL-2002100912333601PDT

3 rows selected.

In general, when accessing the content of schema-based XML documents, joining RESOURCE_VIEW or PATH_VIEW with the default table is more efficient than using RESOURCE_VIEW or PATH_VIEW on its own. An explicit join between the resource document and the default table tells Oracle XML DB that the SQL statement works on only one type of XML document. XPath rewrite can thus be used to optimize operations on the default table and the resource.

Updating the Content of Documents Stored in the Repository

You can update the content of documents stored in Oracle XML DB Repository using protocols or SQL.

Updating Repository Content using Protocols

The most popular content authoring tools support HTTP, FTP, and WebDAV protocols. These tools can use a URL and the HTTP verb get to access the content of a document, and the HTTP verb put to save the contents of a document. Hence, given the appropriate access permissions, a simple URL is all you need to access and edit content stored in Oracle XML DB Repository.

Figure 3-6 shows how, with the WebDAV support included in Microsoft Word, you can use Microsoft Word to update and edit a document stored in Oracle XML DB Repository.

Figure 3-6 Updating and Editing Content Stored in Oracle XML DB using Microsoft Word

[image: Description of Figure 3-6 follows]

When an editing application such as Microsoft Word updates an XML document that is stored in Oracle XML DB, the database receives an input stream containing the new content of the document. Unfortunately, applications such as Word do not provide Oracle XML DB with any way of identifying which changes have taken place in the document.Partial updates are thus impossible. It is necessary to parse the entire document again, replacing all of the objects derived from the original document with objects derived from the new content.

Updating Repository Content using SQL

SQL functions such as updateXML can be used to update the content of any document stored in Oracle XML DB Repository. The content of the document can be modified by updating the resource document or by updating the default table that holds the content of the document.

Example 3-57 shows how to update the contents of a simple text document using a SQL UPDATE statement and SQL function updateXML on the resource document. An XPath expression is passed to updateXML as the target of the update operation, identifying the text node belonging to element /Resource/Contents/text.

Example 3-57 Updating a Document using UPDATE and UPDATEXML on the Resource

DECLARE
 file BFILE;
 contents CLOB;
 dest_offset NUMBER := 1;
 src_offset NUMBER := 1;
 lang_context NUMBER := 0;
 conv_warning NUMBER := 0;
BEGIN
 file := bfilename('XMLDIR', 'tdadxdb-03-02.txt');
 DBMS_LOB.createTemporary(contents, true, DBMS_LOB.SESSION);
 DBMS_LOB.fileopen(file, DBMS_LOB.file_readonly);
 DBMS_LOB.loadClobfromFile(contents,
 file,
 DBMS_LOB.getLength(file),
 dest_offset,
 src_offset,
 nls_charset_id('AL32UTF8'),
 lang_context,
 conv_warning);
 DBMS_LOB.fileclose(file);
 UPDATE RESOURCE_VIEW
 SET res = updateXML(res,
 '/Resource/Contents/text/text()',
 contents,
 'xmlns="http://xmlns.oracle.com/xdb/XDBResource.xsd"')
 WHERE equals_path(res, '/home/QUINE/NurseryRhyme.txt') = 1;
 DBMS_LOB.freeTemporary(contents);
END;
/

This technique for updating the content of a document by updating the associated resource has the advantage that it can be used to update any kind of document stored in Oracle XML DB Repository.

Example 3-58 shows how to update a node in an XML document by performing an update on the resource document. Here, SQL function updateXML changes the value of the text node associated with element User.

Example 3-58 Updating a Node using UPDATE and UPDATEXML

UPDATE RESOURCE_VIEW
 SET res = updateXML(res,
 '/r:Resource/r:Contents/PurchaseOrder/User/text()',
 'SKING',
 'xmlns:r="http://xmlns.oracle.com/xdb/XDBResource.xsd"')
 WHERE equals_path(
 res,
 '/home/QUINE/PurchaseOrders/2002/Mar/SBELL-2002100912333601PDT.xml')
 = 1;

1 row updated.

SELECT XMLCast(XMLQuery(
 'declare namespace ns="http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
 $r/ns:Resource/ns:Contents/PurchaseOrder/User/text()'
 PASSING RES AS "r" RETURNING CONTENT)
 AS VARCHAR2(32))
 FROM RESOURCE_VIEW
 WHERE equals_path(RES,
 '/home/QUINE/PurchaseOrders/2002/Mar/SBELL-2002100912333601PDT.xml')
 = 1;

XMLCAST(XMLQUERY('DECLARENAMESPA

SKING

1 row selected.

Updating XML Schema-Based Documents in the Repository

You can update XML schema-based XML documents by performing the update operation directly on the default table that is used to manage the content of the document. If the document must be located by a WHERE clause that includes a path or conditions based on metadata, then the UPDATE statement must use a join between the resource and the default table.

In general, when updating the contents of XML schema-based XML documents, joining the RESOURCE_VIEW or PATH_VIEW with the default table is more efficient than using the RESOURCE_VIEW or PATH_VIEW on its own. The explicit join between the resource document and the default table tells Oracle XML DB that the SQL statement works on only one type of XML document. This lets a partial update be used on the default table and resource.

In Example 3-59, SQL function updateXML operates on the default table, with the target row identified by a path. The row to be updated is identified by a REF. The REF is identified by a repository path using SQL function equals_path. This limits the update to the row corresponding to the resource identified by the specified path.

Example 3-59 Updating XML Schema-Based Documents in the Repository

UPDATE purchaseorder p
 SET p.OBJECT_VALUE = updateXML(p.OBJECT_VALUE, '/PurchaseOrder/User/text()', 'SBELL')
 WHERE ref(p) =
 (SELECT XMLCast(XMLQuery('declare default element namespace
 "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
 fn:data(/Resource/XMLRef)' PASSING rv.RES RETURNING CONTENT)
 AS REF XMLType)
 FROM RESOURCE_VIEW rv
 WHERE equals_path(rv.RES,
 '/home/QUINE/PurchaseOrders/2002/Mar/SBELL-2002100912333601PDT.xml')
 = 1);

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/User/text()'
 PASSING p.OBJECT_VALUE AS "p" RETURNING CONTENT)
 AS VARCHAR2(32))
 FROM purchaseorder p, RESOURCE_VIEW rv
 WHERE ref(p) = XMLCast(XMLQuery('declare default element namespace
 "http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
 fn:data(/Resource/XMLRef)' PASSING rv.RES RETURNING CONTENT)
 AS REF XMLType)
 AND equals_path(rv.RES, '/home/QUINE/PurchaseOrders/2002/Mar/SBELL-2002100912333601PDT.xml')
 = 1;

XMLCAST(XMLQUERY('$P/PURCHASEO

SBELL

Controlling Access to Repository Data

You can control access to the resources in Oracle XML DB Repository by using access control lists (ACLs). An ACL is a list of access control entries (ACEs), each of which grants or denies a set of privileges to a specific principal. The principal can be a database user, a database role, an LDAP user, an LDAP group or the special principal DAV::owner, which refers to the owner of the resource. Each resource in the repository is protected by an ACL. The ACL determines what privileges, such as read-properties and update, a user has on the resource. Each repository operation includes a check of the ACL to determine if the current user is allowed to perform the operation. By default, a new resource inherits the ACL of its parent folder. But you can set the ACL of a resource using PL/SQL procedure DBMS_XDB.setACL. For more details on Oracle XML DB resource security, see Chapter 27, "Repository Access Control".

In the following example, the current user is QUINE. The query gives the number of resources in the folder /public. Assume that there are only two resources in this folder: f1 and f2. Also assume that the ACL on f1 grants the read-properties privilege to QUINE while the ACL on f2 does not grant QUINE any privileges. A user needs the read-properties privilege on a resource for it to be visible to the user. The result of the query is 1, because only f1 is visible to QUINE.

SELECT count(*) FROM RESOURCE_VIEW r WHERE under_path(r.res, '/public') = 1;

COUNT(*)

 1

Oracle XML DB Transactional Semantics

When working from SQL, normal transactional behavior is enforced. Multiple calls to SQL functions such as updateXML can be used within a single logical unit of work. Changes made through functions like updateXML are not visible to other database users until the transaction is committed. At any point, ROLLBACK can be used to back out the set of changes made since the last commit.

Querying Metadata and the Folder Hierarchy

In Oracle XML DB, the system-defined metadata for each resource is preserved as an XML document. The structure of these resource documents is defined by XML schema XDBResource.xsd. This schema is registered as a global XML schema at URL http://xmlns.oracle.com/xdb/XDBResource.xsd.

Oracle XML DB gives you access to metadata and information about the folder hierarchy using two public views, RESOURCE_VIEW and PATH_VIEW.

RESOURCE_VIEW and PATH_VIEW

RESOURCE_VIEW contains one entry for each file or folder stored in Oracle XML DB Repository. Column RES of RESOURCE_VIEW contains the resource, an XML document that manages the metadata properties associated with the resource content. Column ANY_PATH contains a valid URL that the current user can pass to XDBURIType to access the resource content. If this content is not binary data, then the resource itself also contains the content.

Oracle XML DB supports the concept of linking. Linking makes it possible to define multiple paths to a given document. A separate XML document, called the link-properties document, maintains metadata properties that are specific to the path, rather than to the resource. Whenever a resource is created, an initial link is also created.

PATH_VIEW exposes the link-properties documents. There is one entry in PATH_VIEW for each possible path to a document. Column RES of PATH_VIEW contains the resource document pointed to by this link. Column PATH contains the path that the link lets you use to access the resource. Column LINK contains the link-properties document (metadata) for this PATH.

Example 3-60 shows the description of public views RESOURCE_VIEW and PATH_VIEW:

Example 3-60 Viewing RESOURCE_VIEW and PATH_VIEW Structures

DESCRIBE RESOURCE_VIEW

Name Null? Type

RES SYS.XMLTYPE(XMLSchema
 "http://xmlns.oracle.com/xdb/XDBResource.xsd"
 Element
 "Resource")
ANY_PATH VARCHAR2(4000)
RESID RAW(16)

DESCRIBE PATH_VIEW

Name Null? Type

PATH VARCHAR2(1024)
RES SYS.XMLTYPE(XMLSchema
 "http://xmlns.oracle.com/xdb/XDBResource.xsd"
 Element
 "Resource")
LINK SYS.XMLTYPE
RESID RAW(16)

	
See Also:

	
Chapter 25, "Accessing the Repository using RESOURCE_VIEW and PATH_VIEW"

	
Oracle Database Reference for more information about view PATH_VIEW

	
Oracle Database Reference for more information about view RESOURCE_VIEW

Querying Resources in RESOURCE_VIEW and PATH_VIEW

Oracle XML DB provides two SQL functions, equals_path and under_path, that can be used to perform folder-restricted queries. Such queries limit SQL statements that operate on the RESOURCE_VIEW or PATH_VIEW to documents that are at a particular location in Oracle XML DB folder hierarchy. Function equals_path restricts the statement to a single document identified by the specified path. Function under_path restricts the statement to those documents that exist beneath a certain point in the hierarchy.

The following examples demonstrate simple folder-restricted queries against resource documents stored in RESOURCE_VIEW and PATH_VIEW.

The query in Example 3-61 uses SQL function equals_path and RESOURCE_VIEW to access the resource created in Example 3-60.

Example 3-61 Accessing Resources using EQUALS_PATH and RESOURCE_VIEW

SELECT XMLSerialize(DOCUMENT r.res AS CLOB)
 FROM RESOURCE_VIEW r
 WHERE equals_path(res, '/home/QUINE/NurseryRhyme.txt') = 1;

XMLSERIALIZE(DOCUMENTR.RESASCLOB)
--
<Resource xmlns="http://xmlns.oracle.com/xdb/XDBResource.xsd"
 Hidden="false"
 Invalid="false"
 Container="false"
 CustomRslv="false"
 VersionHistory="false"
 StickyRef="true">
 <CreationDate>2005-06-13T13:19:20.566623</CreationDate>
 <ModificationDate>2005-06-13T13:19:22.997831</ModificationDate>
 <DisplayName>NurseryRhyme.txt</DisplayName>
 <Language>en-US</Language>
 <CharacterSet>UTF-8</CharacterSet>
 <ContentType>text/plain</ContentType>
 <RefCount>1</RefCount>
 <ACL>
 <acl description=
 "Private:All privileges to OWNER only and not accessible to others"
 xmlns="http://xmlns.oracle.com/xdb/acl.xsd" xmlns:dav="DAV:"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd
 http://xmlns.oracle.com/xdb/acl.xsd"
 shared="true">
 <ace>
 <grant>true</grant>
 <principal>dav:owner</principal>
 <privilege>
 <all/>
 </privilege>
 </ace>
 </acl>
 </ACL>
 <Owner>QUINE</Owner>
 <Creator>QUINE</Creator>
 <LastModifier>QUINE</LastModifier>
 <SchemaElement>http://xmlns.oracle.com/xdb/XDBSchema.xsd#text</SchemaElement>
 <Contents>
 <text>Hickory Dickory Dock
The Mouse ran up the clock
The clock struck one
The Mouse ran down
Hickory Dickory Dock
 </text>
 </Contents>
</Resource>

1 row selected.

As Example 3-61 shows, a resource document is an XML document that captures the set of metadata defined by the DAV standard. The metadata includes information such as CreationDate, Creator, Owner, ModificationDate, and DisplayName. The content of the resource document can be queried and updated just like any other XML document, using SQL/XML access and query functions.

The query in Example 3-62 finds a path to each of the XSL style sheets stored in Oracle XML DB Repository. It performs a search based on the DisplayName ending in .xsl.

Example 3-62 Determining the Path to XSL Style Sheets Stored in the Repository

SELECT ANY_PATH FROM RESOURCE_VIEW
 WHERE XMLCast(XMLQuery(
 'declare namespace ns="http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
 $r/ns:Resource/ns:DisplayName'
 PASSING RES AS "r" RETURNING CONTENT)
 AS VARCHAR2(100))
 LIKE '%.xsl';

ANY_PATH

/source/schemas/poSource/xsl/empdept.xsl
/source/schemas/poSource/xsl/purchaseOrder.xsl

2 rows selected.

The query in Example 3-63 counts the number of resources (files and folders) under the path /home/QUINE/PurchaseOrders. Using RESOURCE_VIEW rather than PATH_VIEW ensures that any resources that are the target of multiple links are only counted once. SQL function under_path restricts the result set to documents that can be accessed using a path that starts from /home/QUINE/PurchaseOrders.

Example 3-63 Counting Resources Under a Path

SELECT count(*)
 FROM RESOURCE_VIEW
 WHERE under_path(RES, '/home/QUINE/PurchaseOrders') = 1;

 COUNT(*)

 145

1 row selected.

The query in Example 3-64 lists the contents of the folder identified by path /home/QUINE/PurchaseOrders/2002/Apr. This is effectively a directory listing of the folder.

Example 3-64 Listing the Folder Contents in a Path

SELECT PATH
 FROM PATH_VIEW
 WHERE under_path(RES, '/home/QUINE/PurchaseOrders/2002/Apr') = 1;

PATH
--
/home/QUINE/PurchaseOrders/2002/Apr/AMCEWEN-20021009123336171PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/AMCEWEN-20021009123336271PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/EABEL-20021009123336251PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/PTUCKER-20021009123336191PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/PTUCKER-20021009123336291PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SBELL-20021009123336231PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SBELL-20021009123336331PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SKING-20021009123336321PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SMCCAIN-20021009123336151PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SMCCAIN-20021009123336341PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/VJONES-20021009123336301PDT.xml

11 rows selected.

The query in Example 3-65 lists the set of links contained in the folder identified by the path /home/QUINE/PurchaseOrders/2002/Apr where the DisplayName element in the associated resource starts with S.

Example 3-65 Listing the Links Contained in a Folder

SELECT PATH
 FROM PATH_VIEW
 WHERE XMLCast(XMLQuery(
 'declare namespace ns="http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
 $r/ns:Resource/ns:DisplayName'
 PASSING RES AS "r" RETURNING CONTENT)
 AS VARCHAR2(100))
 LIKE 'S%'
 AND under_path(RES, '/home/QUINE/PurchaseOrders/2002/Apr') = 1;

PATH
--
/home/QUINE/PurchaseOrders/2002/Apr/SBELL-20021009123336231PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SBELL-20021009123336331PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SKING-20021009123336321PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SMCCAIN-20021009123336151PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SMCCAIN-20021009123336341PDT.xml

5 rows selected.

The query in Example 3-66 finds a path to each resource in Oracle XML DB Repository that contains a PurchaseOrder document. The documents are identified based on the metadata property SchemaElement that identifies the XML schema URL and global element for schema-based XML data stored in the repository.

Example 3-66 Finding Paths to Resources that Contain Purchase-Order XML Documents

SELECT ANY_PATH
 FROM RESOURCE_VIEW
 WHERE XMLExists(
 'declare namespace ns="http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
 $r/ns:Resource[ns:SchemaElement=
 "http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd#PurchaseOrder"]'
 PASSING RES AS "r");

The query returns the following paths, each of which contains a PurchaseOrder document:

ANY_PATH

/home/QUINE/PurchaseOrders/2002/Apr/AMCEWEN-20021009123336171PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/AMCEWEN-20021009123336271PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/EABEL-20021009123336251PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/PTUCKER-20021009123336191PDT.xml

...

132 rows selected.

Oracle XML DB Hierarchical Repository Index

In a conventional relational database, path-based access and folder-restricted queries are implemented using CONNECT BY operations. Such queries are expensive, so path-based access and folder-restricted queries would become inefficient as the number of documents and depth of the folder hierarchy increase.

To address this issue, Oracle XML DB introduces a new index type, the hierarchical repository index. This lets the database resolve folder-restricted queries without relying on a CONNECT BY operation. Because of this, Oracle XML DB can execute path-based and folder-restricted queries efficiently. The hierarchical repository index is implemented as an Oracle domain index. This is the same technique used to add Oracle Text indexing support and many other advanced index types to the database.

Example 3-67 shows the execution plan output generated for a folder-restricted query. As shown, the hierarchical repository index XDBHI_IDX is used to resolve the query.

Example 3-67 Execution Plan Output for a Folder-Restricted Query

SELECT PATH
 FROM PATH_VIEW
 WHERE XMLCast(
 XMLQuery(
 'declare namespace ns="http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
 $r/ns:Resource/ns:DisplayName'
 PASSING RES AS "r" RETURNING CONTENT)
 AS VARCHAR2(100))
 LIKE 'S%'
 AND under_path(RES, '/home/QUINE/PurchaseOrders/2002/Apr') = 1;

PLAN_TABLE_OUTPUT
--
Plan hash value: 2568289845

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		17	3111	34 (6)	00:00:01
1	NESTED LOOPS		17	3111	34 (6)	00:00:01
2	NESTED LOOPS		17	2822	34 (6)	00:00:01
3	NESTED LOOPS		466	63842	34 (6)	00:00:01
* 4	TABLE ACCESS BY INDEX ROWID	XDB$RESOURCE	1	135	3 (0)	00:00:01
* 5	DOMAIN INDEX	XDBHI_IDX				
6	COLLECTION ITERATOR PICKLER FETCH					
* 7	INDEX UNIQUE SCAN	XDB_PK_H_LINK	1	28	0 (0)	00:00:01
* 8	INDEX UNIQUE SCAN	SYS_C003900	1	17	0 (0)	00:00:01
--

Predicate Information (identified by operation id):

 4 - filter(CAST("P"."SYS_NC00011$" AS VARCHAR2(100)) LIKE 'S%')
 5 - access("XDB"."UNDER_PATH"(SYS_MAKEXML('8758D485E6004793E034080020B242C6',734,"XMLEXTRA"
 ,"XMLDATA"),'/home/QUINE/PurchaseOrders/2002/Apr',9999)=1)
 7 - access("H"."PARENT_OID"=SYS_OP_ATG(VALUE(KOKBF$),3,4,2) AND
 "H"."NAME"=SYS_OP_ATG(VALUE(KOKBF$),2,3,2))
 8 - access("R2"."SYS_NC_OID$"=SYS_OP_ATG(VALUE(KOKBF$),3,4,2))

25 rows selected.

How Documents are Stored in the Repository

Oracle XML DB provides special handling for XML documents. The rules for storing the contents of schema-based XML document are defined by the XML schema. The content of the document is stored in the default table associated with the global element definition.

Oracle XML DB Repository also stores files that do not contain XML data, such as JPEG images or Word documents. The XML schema for each resource defines which elements are allowed, and specifies whether the content of these files is to be stored as BLOB or CLOB instances. The content of a non-schema-based XML document is stored as a CLOB instance in the repository.

There is one resource and one link-properties document for each file or folder in the repository. If there are multiple access paths to a given document, there is a link-properties document for each possible link. Both the resource document and the link-properties are stored as XML documents. All these documents are stored in tables in the repository.

When an XML file is loaded into the repository, the following sequence of events takes place:

	
Oracle XML DB examines the root element of the XML document to see if it is associated with a known (registered) XML schema. This involves looking to see if the document includes a namespace declaration for the XMLSchema-instance namespace, and then looking for a schemaLocation or noNamespaceSchemaLocation attribute that identifies which XML schema the document is associated with.

	
If the document is based on a known XML schema, then the metadata for the XML schema is loaded from the XML schema cache.

	
The XML document is parsed and decomposed into a set of SQL objects derived from the XML schema.

	
The SQL objects created from the XML file are stored in the default table defined when the XML schema was registered with the database.

	
A resource document is created for each document processed. This lets the content of the document be accessed using the repository. The resource document for an XML schema-based XMLType instance includes an XMLRef element. This element contains a REF of XMLType that can be used to locate the row in the default table containing the content associated with the resource.

Viewing Relational Data as XML From a Browser

The HTTP server built into Oracle XML DB makes it possible to use a browser to access any document stored in Oracle XML DB Repository. Since a resource can include a REF to a row in an XMLType table or view, it is possible to use a path to access this type of content.

Accessing a Table or View from a Browser using DBUri SERVLET

Oracle XML DB includes the DBUri servlet, which makes it possible to access the content of any table or view directly from a browser. DBUri servlet uses the facilities of the DBURIType to generate a simple XML document from the contents of the table. The servlet is C language-based and installed in the Oracle XML DB HTTP server. By default, the servlet is installed under the virtual directory /oradb.

The URL passed to the DBUri Servlet is an extension of the URL passed to the DBURIType. The URL is extended with the address and port number of the Oracle XML DB HTTP server and the virtual root that directs HTTP(S) requests to the DBUri servlet. The default configuration for this is /oradb.

The URL http://localhost:8080/oradb/HR/DEPARTMENTS would thus return an XML document containing the contents of the DEPARTMENTS table in the HR database schema. This assumes that the Oracle XML DB HTTP server is running on port 8080, the virtual root for the DBUri servlet is /oradb, and that the user making the request has access to the HR database schema.

DBUri servlet accepts parameters that allow you to specify the name of the ROW tag and MIME-type of the document that is returned to the client.

Content in XMLType table or view can also be accessed through the DBUri servlet. When the URL passed to the DBUri servlet references an XMLType table or XMLType view the URL can be extended with an XPath expression that can determine which documents in the table or row are returned. The XPath expression appended to the URL can reference any node in the document.

XML generated by DBUri servlet can be transformed using the XSLT processor built into Oracle XML DB. This lets XML that is generated by DBUri servlet be presented in a more legible format such as HTML.

	
See Also:

"DBUriServlet"

Style sheet processing is initiated by specifying a transform parameter as part of the URL passed to DBUri servlet. The style sheet is specified using a URI that references the location of the style sheet within database. The URI can either be a DBURIType value that identifies a XMLType column in a table or view, or a path to a document stored in Oracle XML DB Repository. The style sheet is applied directly to the generated XML before it is returned to the client. When using DBUri servlet for XSLT processing, it is good practice to use the contenttype parameter to explicitly specify the MIME type of the generated output.

If the XML document being transformed is stored as an XML schema-based XMLType instance, then Oracle XML DB can reduce the overhead associated with XSL transformation by leveraging the capabilities of the lazily loaded virtual DOM.

The root of the URL is /oradb, so the URL is passed to the DBUri servlet that accesses the purchaseorder table in the SCOTT database schema, rather than as a resource in Oracle XML DB Repository. The URL includes an XPath expression that restricts the result set to those documents where node /PurchaseOrder/Reference/text() contains the value specified in the predicate. The contenttype parameter sets the MIME type of the generated document to text/xml.

XSL Transformation using DBUri Servlet

Figure 3-7 shows how an XSL transformation can be applied to XML content generated by the DBUri servlet. In this example the URL passed to the DBUri includes the transform parameter. This causes the DBUri servlet to use Oracle SQL function XMLtransform to apply the style sheet /home/SCOTT/xsl/purchaseOrder.xsl to the PurchaseOrder document identified by the main URL, before returning the document to the browser. This style sheet transforms the XML document to a more user-friendly HTML page. The URL also uses contentType parameter to specify that the MIME-type of the final document is text/html.

Figure 3-7 Database XSL Transformation of a PurchaseOrder using DBUri Servlet

[image: Description of Figure 3-7 follows]

Figure 3-8 shows the departments table displayed as an HTML document. You need no code to achieve this, you only need an XMLType view, based on SQL/XML functions, an industry-standard XSL style sheet, and DBUri servlet.

Figure 3-8 Database XSL Transformation of Departments Table using DBUri Servlet

[image: Description of Figure 3-8 follows]

Footnote Legend

Footnote 1: The XMLType storage model for XML schema-based data is whatever was specified during registration of the referenced XML schema. If no storage model was specified during registration, then binary XML storage is used.

Footnote 2: If you use XML schema annotation maintainOrder = "false", then an unordered collection is used instead of an ordered collection. Oracle recommends that you use ordered collections (maintainOrder = "true") for XML data, to preserve document order. By default, attribute maintainOrder is true.

31 Using Oracle XML DB Content Connector

This chapter describes how to use Oracle XML DB Content Connector to access Oracle XML DB Repository.

Oracle XML DB Content Connector implements Content Repository API for Java (sometimes referred to as JCR), a Java API standard developed by the Java community as JSR-170.

This chapter contains these topics:

	
Overview of JCR and Oracle XML DB Content Connector

	
How Oracle XML DB Repository Is Exposed in JCR

	
How to Use Oracle XML DB Content Connector

	
Using XML Schemas with JCR

Overview of JCR and Oracle XML DB Content Connector

This section contains the following topics:

	
About the Content Repository API for Java (JCR)

	
About Oracle XML DB Content Connector

About the Content Repository API for Java (JCR)

JCR 1.0 defines a standard Java API for applications to interact with content repositories.

	
See Also:

Java Community Process, "Content Repository for Java technology API", http://jcp.org/en/jsr/detail?id=170. Chapter 4 of the JSR-170 specification provides a concise introduction to JCR 1.0

JCR models the data in a content repository as a tree of nodes. Each node may have one or more child nodes. Every node has exactly one parent node, except for the root node, which has no parent.

In addition to child nodes, a node may also have one or more properties. A property is a simple name/value pair. For example, a node representing a particular file in the content repository has a property named jcr:created whose value is the date the file was created.

Each property has a property type. For example, the jcr:created property has the DATE property type, requiring its value to be a valid date/time.

Similarly, each node has a node type. For example, a node representing a file has node type nt:file. The node type controls what child nodes and properties the node may have or must have. For example, all nodes of type nt:file must have a jcr:created property.

Because nodes and properties are named, they can be addressed by path. JCR supports both absolute and relative paths. For example, the absolute path

/My Documents/pictures/puppy.jpg/jcr:created

resolves to the jcr:created property of file puppy.jpg. This property can also be addressed relative to the My Documents folder by the following relative path:

pictures/puppy.jpg/jcr:created

Node and property names can be namespace qualified. Like XML, JCR uses colon-delimited namespace prefixes to express namespace-qualified names, for example, jcr:created. Unlike XML, JCR records the namespace prefix-to-URI mappings in a repository-wide namespace registry, which, for example, maps the jcr prefix to the URI http://www.jcp.org/jcr/1.0.

About Oracle XML DB Content Connector

Oracle XML DB Content Connector lets you access Oracle XML DB Repository using the JCR 1.0 Java API. Your applications can run either in a standalone Java Virtual Machine or a J2EE container.

	
Note:

Using Oracle XML DB Content Connector in the database Oracle JVM (the Java Virtual Machine available within a database process) is not supported. To use the content connector in the database tier, you must use either a standalone Java Virtual Machine or a J2EE container.

Files and folders in Oracle XML DB Repository are represented as JCR nodes (and properties of those nodes). They can be created, retrieved, and updated using the JCR APIs.

How Oracle XML DB Repository Is Exposed in JCR

Oracle XML DB Content Connector represents data in Oracle XML DB Repository as JCR nodes and properties. Files and folders are represented as nodes of type nt:file and nt:folder, respectively. Their content and metadata is exposed as nodes of node type nt:resource.

This section contains the following topics:

	
Example of How Files and Folders are Exposed in JCR

	
Oracle Extensions to JCR Node Types

	
Binary and XML Content

	
System-Defined Metadata

	
User-Defined Metadata

	
Hard Links and Weak Links

Example of How Files and Folders are Exposed in JCR

The folder MyFolder is stored in the root folder of Oracle XML DB Repository. It contains two files, Address.xml and Car.jpg.

File Address.xml has the following XML content:

<Address country="US">
 <name>Alice Smith</name>
 <street>123 Maple Street</street>
 <city>Mill Valley</city>
 <state>CA</state>
 <zip>90952</zip>
</Address>

File Car.jpg has binary content: a picture of an automobile. It also has the following user-defined XML metadata:

<i:ImageMetadata>
 <Height>640</Height>
 <Width>480</Width>
 <RGB R="44" G="123" B="74"/>
</i:ImageMetadata>

Oracle XML DB Content Connector exposes MyFolder, Address.xml, and Car.jpg as JCR nodes and properties.

Example 31-1 shows folder MyFolder represented as a tree of JCR nodes and properties. In this representation, bold type indicates a node, italic type indicates a node type, regular type indicates a property, and italic type with angle brackets (<>) indicates omitted data, such as binary data.

Example 31-1 JCR Node Representation of MyFolder

[root] (nt:folder)
 jcr:created="2001-01-01T00:00:00.000Z"
 jcr:content (nt:resource)
 jcr:data=null
 jcr:lastModified="2001-01-01T00:00:00.000Z"
 ojcr:owner="SYS"
 ojcr:creator="SYS"
 ojcr:lastModifier="SYS"
 ojcr:displayName=""
 ojcr:language="en-US"
 MyFolder (nt:folder)
 jcr:created="2001-01-01T00:00:00.000Z"
 jcr:content (nt:resource)
 jcr:data=null
 jcr:lastModified="2001-01-01T00:00:00.000Z"
 ojcr:owner="ALICE"
 ojcr:creator="BOB"
 ojcr:lastModifier="CHARLIE"
 ojcr:author="BOB"
 ojcr:comment="An application folder"
 ojcr:displayName="MyFolder"
 ojcr:language="en-US"
 ojcr:links (ojcr:links)
 ojcr:folderLink (ojcr:linkProperties)
 ojcr:linkType="Hard"
 ojcr:linkSource=<RESID of the root folder>
 ojcr:linkTarget=<RESID of folder MyFolder>
 ojcr:linkName="MyFolder"
 Address.xml (nt:file)
 jcr:created="2005-09-01T12:34:56.789Z"
 jcr:content (nt:resource)
 jcr:encoding="UTF-8"
 jcr:mimeType="text/xml"
 jcr:data=<binary representation of the XML content>
 jcr:lastModified="2005-09-01T12:34:56.789Z"
 ojcr:owner="ALICE"
 ojcr:creator="BOB"
 ojcr:lastModifier="CHARLIE"
 ojcr:author="BOB"
 ojcr:displayName="Address.xml"
 ojcr:language="en-US"
 ojcr:xmlContent (nt:unstructured)
 Address
 country="US"
 name
 jcr:xmltext
 jcr:xmlcharacters="Alice Smith"
 street
 jcr:xmltext
 jcr:xmlcharacters="123 Maple Street"
 city
 jcr:xmltext
 jcr:xmlcharacters="Mill Valley"
 state
 jcr:xmltext
 jcr:xmlcharacters="CA"
 zip
 jcr:xmltext
 jcr:xmlcharacters="90952"
 ojcr:links (ojcr:links)
 ojcr:folderLink (ojcr:linkProperties)
 ojcr:linkType="Hard"
 ojcr:linkSource=<RESID of folder MyFolder>
 ojcr:linkTarget=<RESID of file Address.xml>
 ojcr:linkName="Address.xml"
 Car.jpg (nt:file)
 jcr:created="2004-02-12T16:15:23.247Z"
 jcr:content (nt:resource)
 jcr:mimeType="image/jpeg"
 jcr:data=<binary content of file Car.jpg>
 jcr:lastModified="2004-02-12T17:20:25.314Z"
 ojcr:owner="ALICE"
 ojcr:creator="BOB"
 ojcr:lastModifier="CHARLIE"
 ojcr:author="BOB"
 ojcr:displayName="A shiny red car!"
 ojcr:language="en-US"
 i:ImageMetadata
 Height
 jcr:xmltext
 jcr:xmlcharacters="640"
 Width
 jcr:xmltext
 jcr:xmlcharacters="480"
 RGB
 R="44"
 G="123"
 B="74"
 ojcr:links (ojcr:links)
 ojcr:folderLink (ojcr:linkProperties)
 ojcr:linkType="Hard"
 ojcr:linkSource=<RESID of folder MyFolder>
 ojcr:linkTarget=<RESID of file Car.jpg>
 ojcr:linkName="Car.jpg"

Oracle Extensions to JCR Node Types

Oracle XML DB Content Connector augments the definitions of node types nt:file, nt:folder, and nt:resource to include additional information held in Oracle XML DB Repository. Node type ojcr:folder is added as a supertype of nt:folder, and node type ojcr:resource is added as a supertype of nt:resource. All Oracle extensions are in the namespace http://xmlns.oracle.com/jcr/1.0, which is mapped to namespace prefix ojcr.

In addition, node type mix:referenceable is added as a supertype of nt:file and nt:folder to allow all files and folders to be accessed by their resource id.

Binary and XML Content

Property jcr:data contains the binary content of a file. Note that jcr:data is a property not of node nt:file, but rather of its child node jcr:content.For files containing XML content, node jcr:content has a child node ojcr:xmlContent, under which the XML content can be accessed as a set of JCR nodes and properties. File Address.xml, referenced in Example 31-1, is such a file. The XML content of an XML file in the repository is mapped to JCR nodes and properties using the document view serialization defined by JCR, in which:

	
XML elements are exposed as JCR nodes.

	
XML attributes are exposed as JCR properties.

	
XML text is exposed as JCR properties named jcr:xmlcharacters within nodes named jcr:xmltext.

System-Defined Metadata

Oracle XML DB Repository maintains metadata for each repository file and folder. In database views RESOURCE_VIEW and PATH_VIEW, this metadata is represented as a set of XML elements within XMLType column RES. In JCR, this metadata is mapped to properties in namespaces jcr and ojcr. Table 31-1 describes this mapping.

Table 31-1 Oracle XML DB Resource to JCR Mappings

	XPath	Relative Path From Node nt:file or nt:folder
	
/Resource/CreationDate

	
jcr:created

	
/Resource/ModificationDate

	
jcr:content/jcr:lastModified

	
/Resource/Author

	
jcr:content/ojcr:author

	
/Resource/DisplayName

	
jcr:content/ojcr:displayName

	
/Resource/Comment

	
jcr:content/ojcr:comment

	
/Resource/Language

	
jcr:content/ojcr:language

	
/Resource/CharacterSet

	
jcr:content/jcr:encoding

	
/Resource/ContentType

	
jcr:content/jcr:mimeType

	
/Resource/Owner

	
jcr:content/ojcr:owner

	
/Resource/Creator

	
jcr:content/ojcr:creator

	
/Resource/LastModifier

	
jcr:content/ojcr:lastModifier

User-Defined Metadata

User-defined XML metadata is exposed as JCR nodes and properties under the jcr:content child node of the repository file or folder. As with XML file content, XML metadata is mapped to JCR nodes and properties using the document view serialization that is defined by JCR. See "Binary and XML Content" for a description of this serialization.

In Example 31-1, file Car.jpg has this user-defined metadata:

<i:ImageMetadata>
 <Height>640</Height>
 <Width>480</Width>
 <RGB R="44" G="123" B="74"/>
</i:ImageMetadata>

The following JCR path retrieves the Width value:

/My Folder/Car.jpg/jcr:content/i:ImageMetadata/
 Width/jcr:xmltext/jcr:xmlcharacters

Hard Links and Weak Links

In JCR, each node and property has exactly one parent node, except for the root node, which has no parent. Consequently, there is exactly one absolute path to each JCR node or property.

However, in Oracle XML DB Repository, a resource (file or folder) can be linked to more than one parent folder, either by hard links, which control the life span of the child, or by weak links, which do not. Consequently, there can be more than one path to a resource, and a resource can have more than one parent.

In resolving a path, Oracle XML DB Content Connector traverses both hard and weak links. If there is more than one path to a resource, JCR method getPath() returns the path by which that resource was first discovered, subsequent to the most recent call to either save() or refresh(boolean) by that session. JCR method getParent() returns the folder targeted by that path.

It is often useful to obtain a list of all parents of a resource, if the resource is the target of more than one link and therefore has more than one parent folder. Oracle XML DB Content Connector presents this as nodes of type ojcr:linkProperties with path jcr:content/ojcr:links/ojcr:folderLink relative to node nt:file or nt:folder. There is one ojcr:folderLink node for each parent of the resource.

Node ojcr:folderLink has the following properties:

	
ojcr:linkType: Link type (Hard or Weak)

	
ojcr:linkSource: Resource id of the parent folder

	
ojcr:linkTarget: Resource id of the child file or folder

	
ojcr:linkName: Name of the child file or folder in that parent

How to Use Oracle XML DB Content Connector

This section describes how to use Oracle XML DB Content Connector to access information in Oracle XML DB Repository. It has the following topics:

	
Setting CLASSPATH

	
Obtaining the JCR Repository Object

	
Sample Code to Upload File

	
Additional Code Samples

	
Logging API for Oracle XML DB Content Connector

	
Supported JCR Compliance Levels

	
Oracle XML DB Content Connector Restrictions

Setting CLASSPATH

Oracle XML DB Content Connector requires the following entries in the Java CLASSPATH variable:

	
$ORACLE_HOME/lib/jcr-1.0.jar

	
$ORACLE_HOME/lib/ojcr.jar

	
$ORACLE_HOME/lib/xmlparserv2.jar

	
$ORACLE_HOME/jlib/xquery.jar

Obtaining the JCR Repository Object

In Oracle XML DB Content Connector, oracle.jcr.OracleRepository implements the JCR interface javax.jcr.Repository, which provides the entry point to a JCR repository. The code fragment in Example 31-2 shows how to obtain a Repository object for Oracle XML DB Repository.

Example 31-2 Code Fragment Showing How to Get a Repository Object

import oracle.jcr.OracleRepository;
import oracle.jcr.OracleRepositoryFactory;
import oracle.jcr.xdb.XDBRepositoryConfiguration;
import oracle.jdbc.pool.OracleDataSource;
...
XDBRepositoryConfiguration configuration =
 new XDBRepositoryConfiguration();
OracleDataSource ods =
 (OracleDataSource)configuration.getDataSource();
// databaseURL is a JDBC database URL.
ods.setURL(databaseURL);
// OracleRepository implements javax.jcr.Repository.
OracleRepository repository =
 OracleRepositoryFactory.createOracleRepository(configuration);

OracleRepository implements both java.io.Serializable and javax.naming.Referenceable. This lets you create and configure an OracleRepository object upon application deployment, and store the ready-to-use OracleRepository object in a JNDI directory. At run-time, your application can retrieve the preconfigured OracleRepository object from the JNDI directory. This approach, recommended by the JCR specification, separates deployment and run-time concerns.

In Oracle XML DB Content Connector, the set of prefix-to-URI mappings forming the JCR namespace registry is stored as part of the OracleRepository configuration.

	
See Also:

Oracle Database XML Java API Reference, package oracle.jcr

Sample Code to Upload File

Example 31-3 is a Java program that uploads a file from the local file system to Oracle XML DB Repository using Oracle XML DB Content Connector.

Example 31-3 Uploading a File using Oracle XML DB Content Connector

import java.io.FileInputStream;

import javax.jcr.Node;
import javax.jcr.Session;
import javax.jcr.SimpleCredentials;

import oracle.jcr.OracleRepository;
import oracle.jcr.OracleRepositoryFactory;

import oracle.jcr.xdb.XDBRepositoryConfiguration;

import oracle.jdbc.pool.OracleDataSource;

public class UploadFile
{
 public static void main(String[] args)
 throws Exception
 {
 String databaseURL = args[0];
 String userName = args[1];
 String password = args[2];
 String parentPath = args[3];
 String fileName = args[4];
 String mimeType = args[5];

 // Get the JCR Repository object.
 XDBRepositoryConfiguration configuration =
 new XDBRepositoryConfiguration();

 OracleDataSource ods =
 (OracleDataSource)configuration.getDataSource();

 ods.setURL(databaseURL);

 OracleRepository repository =
 OracleRepositoryFactory.createOracleRepository(configuration);

 // Create a JCR Session.
 SimpleCredentials sc =
 new SimpleCredentials(userName, password.toCharArray());

 Session session = repository.login(sc);

 // Get the parent node.
 Node parentNode = (Node)session.getItem(parentPath);

 // Get the child contents.
 FileInputStream inputStream = new FileInputStream(fileName);

 // Create child node.
 Node node = parentNode.addNode(fileName, "nt:file");
 Node contentNode = node.getNode("jcr:content");
 contentNode.setProperty("jcr:mimeType", mimeType);
 contentNode.setProperty("jcr:data", inputStream);

 // Save changes and logout.
 session.save();
 session.logout();
 }
}

// EOF

You can compile and run Example 31-3 from the command line. The program requires the following command-line arguments:

	
JDBC database URL

	
User ID

	
User password

	
Folder in Oracle XML DB Repository into which to upload the file

	
File to be uploaded

	
MIME type

Example 31-4 illustrates this.

Example 31-4 Uploading a File Using the Command Line

export CLASSPATH=.:$ORACLE_HOME/lib/jcr-1.0.jar:$ORACLE_HOME/lib/ojcr.jar:$ORACLE_HOME/lib/xmlparserv2.jar:$ORACLE_HOME/jlib/xquery.jar

javac UploadFile.java

java UploadFile jdbc:oracle:oci:@ quine password /public MyFile.txt text/plain

Additional Code Samples

You can find additional sample code at the following location:

$ORACLE_HOME/xdk/demo/java/jcr

For each code sample, a README file describes its purpose and use.

Logging API for Oracle XML DB Content Connector

Oracle XML DB Content Connector uses the standard java.util.logging framework. You can use the logging API provided by that framework to control logging behavior. For example, the following Java code fragment disables all logging.

import java.util.logging.LogManager;
...
LogManager.getLogManager().reset();

Supported JCR Compliance Levels

The JSR-170 standard, which defines JCR version 1.0, defines two compliance levels and a set of optional features. Oracle XML DB Content Connector supports Level 1 (read functions) and Level 2 (write functions).

Oracle XML DB Content Connector Restrictions

This section describes certain restrictions of Oracle XML DB Content Connector.

Default Workspace Name

A single workspace is supported. In calling the login(Credentials, String) or login(String) methods of javax.jcr.Repository, the workspace name must be either an empty-string ("") or NULL.

Operations Restricted to Specific Node Types

Methods save() and refresh() of javax.jcr.Item can be called only on nodes whose type is nt:file or nt:folder. Method move() of javax.jcr.Session and methods copy() and move() of javax.jcr.Workspace can be called only on nt:file and nt:folder nodes.

Determining the State of Files or Folders

Methods isNew() and isModified() of javax.jcr.Item return the state of the file or folder containing the item, not the item itself. Method isNew() returns true if the file or folder has been created in the JCR transient layer but not saved. Method isModified() returns true if the file or folder has been changed in the transient layer but not saved.

Interaction Between Binary and XML Content

The jcr:data property contains the binary-format content of a file. If the file content is XML, there is also an ojcr:xmlContent node under which its XML content is exposed as JCR nodes and properties. Changes you make to the ojcr:xmlContent subtree are not reflected in the jcr:data property until those changes are saved. If you change both the jcr:data property and the ojcr:xmlContent subtree, then the ojcr:xmlContent subtree takes precedence when those changes are saved.

Order in Which Changes Are Saved

Method save of class javax.jcr.Session or class javax.jcr.Item saves changes made in the transient layer. If more than one node or property has been changed, then JCR does not specify the order in which the changes are stored. Oracle XML DB Content Connector saves changes in the following:

	
Apply updates to existing files and folders, in path-sorted order.

	
Create new files and folders, in path-sorted order.

	
Move existing files and folders, in reverse path-sorted order.

	
Delete existing files and folders, in reverse path-sorted order.

Undefined Properties

Properties that have definitions of type UNDEFINED are stored as STRING values.

Node Type nt:base Is Abstract

Node type nt:base is abstract and cannot be specified as the type of a new node.

Node jcr:content Is Created Automatically

When you create a node of type nt:file or nt:folder, a jcr:content node is created automatically as a child.

Saving Normalizes Node jcr:xmltext

Saving combines successive jcr:xmltext nodes, which represent text within XML content or user-defined metadata, into a single jcr:xmltext node.

Node Type mix:referenceable

Node types nt:file, nt:folder, and nt:resource are subtypes of mix-in node type mix:referenceable. Consequently, all nt:file, nt:folder, and nt:resource nodes can be referenced by UUID. You cannot add mix:referenceable to nodes of any type.

Full-Text Indexing

You can create a full-text index on file content using PL/SQL package DBMS_XDBT. This lets queries apply function jcr:contains to property jcr:data of a jcr:content node. Full-text indexes on other properties are not supported.

Using XML Schemas with JCR

Oracle XML DB Content Connector can create JCR node types from XML schemas.

This section has the following topics:

	
Why Register XML Schemas for Use with JCR?

	
How to Register an XML Schema with JCR

	
How JCR Node Types are Generated from XML Schemas

Why Register XML Schemas for Use with JCR?

XML data can be stored in Oracle XML DB Repository as either file content or user-defined metadata. In either case, the XML data can be based on an XML schema. XML schema-based data is validated against an XML schema that has been registered with Oracle XML DB.

By default, the JCR nodes corresponding to XML document content and user-defined metadata are of node type nt:unstructured, a generic node type defined by JCR, even if the XML data is XML schema-based. Oracle XML DB Repository still validates any changes made through the Oracle XML DB Content Connector against the XML schema, but it is not possible to access or specify typing metadata through JCR.

However, Oracle XML DB Content Connector lets XML schemas be registered for use in JCR. This causes the content connector to generate JCR node types for the XML-schema simple types, complex types, and global element declarations in the registered XML schema.

In exposing XML data as JCR nodes, the content connector determines whether the XML data conforms to an XML schema registered for JCR use, based on the value of XML attribute xsi:schemaLocation or xsi:noNamespaceSchemaLocation of its root element. If the XML data conforms to a JCR registered XML schema, then the XML data is exposed as JCR nodes of the node types generated from the XML schema, instead of using the generic node type nt:unstructured.

You can also use the generated JCR node types to create or update XML document content and user-defined metadata.

Example 31-5 shows an XML document with XML schema-based content.

Example 31-5 XML Document with XML Schema-Based Content

<Address country="US"
 xmlns:xsi=
 "http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://www.example.com/Address">
 <name>Alice Smith</name>
 <street>123 Maple Street</street>
 <city>Mill Valley</city>
 <state>CA</state>
 <zip>90952</zip>
</Address>

The content of Example 31-5 is valid with respect to the XML schema shown in Example 31-6.

Example 31-6 XML Schema

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:complexType name="USAddress">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zip" type="xsd:long"/>
 </xsd:sequence>
 <xsd:attribute name="country" type="xsd:NMTOKEN"
 fixed="US"/>
 </xsd:complexType>
</xsd:schema>

Initially, this XML schema is not registered for JCR use. The JCR nodes and properties representing the XML content are shown in Example 31-7.

Example 31-7 JCR Representation of XML Content Not Registered for JCR Use

 ojcr:xmlContent (nt:unstructured)
 Address (nt:unstructured)
 country="US" (String)
 name (nt:unstructured)
 jcr:xmltext(ojcr:xmltext)
 jcr:xmlcharacters="Alice Smith" (String)
 street (nt:unstructured)
 jcr:xmltext(ojcr:xmltext)
 jcr:xmlcharacters="123 Maple Street" (String)
 city (nt:unstructured)
 jcr:xmltext(ojcr:xmltext)
 jcr:xmlcharacters="Mill Valley" (String)
 state (nt:unstructured)
 jcr:xmltext(ojcr:xmltext)
 jcr:xmlcharacters="CA" (String)
 zip (nt:unstructured)
 jcr:xmltext (ojcr:xmltext)
 jcr:xmlcharacters="90952" (String)

The XML schema is then registered for JCR use. The JCR nodes and properties are shown in Example 31-8.

Example 31-8 JCR Representation of XML Content Registered for JCR Use

ojcr:xmlContent (nt:unstructured)
 Address (USAddress)
 country="US" (String)
 name (xsd:string)
 jcr:xmltext(ojcr:xmltext)
 jcr:xmlcharacters="Alice Smith" (String)
 street (xsd:string)
 jcr:xmltext(ojcr:xmltext)
 jcr:xmlcharacters="123 Maple Street" (String)
 city (xsd:string)
 jcr:xmltext(ojcr:xmltext)
 jcr:xmlcharacters="Mill Valley" (String)
 state (xsd:string)
 jcr:xmltext(ojcr:xmltext)
 jcr:xmlcharacters="CA" (String)
 zip (xsd:long)
 jcr:xmltext (ojcr:xmltext)
 jcr:xmlcharacters="90952" (Long)

Node Address now has node type USAddress. Similarly, nodes name, street, city, and state have node type xsd:string. Node zip has node type xsd:long, and the jcr:xmlcharacters property of its jcr:xmltext child is a LONG property type.

	
See Also:

Chapter 29, "User-Defined Repository Metadata"

How to Register an XML Schema with JCR

Before you register an XML schema for use with JCR, you must register it for use with Oracle XML DB, using PL/SQL procedure DBMS_XMLSCHEMA.registerSchema. For example, to register an XML schema with location http://www.example.com/Address, first register it for use with Oracle XML DB, as shown in Example 31-9. Then, register it for use with JCR, using Oracle XML DB Content Connector Java APIs, as shown in Example 31-10.

Example 31-9 Registering an XML Schema for Use with Oracle XML DB

BEGIN
 DBMS_XMLSCHEMA.registerSchema(
 SCHEMAURL => 'http://www.example.com/Address',
 SCHEMADOC => bfileContainingSchema,
 LOCAL => FALSE,
 ENABLEHIERARCHY => DBMS_XMLSCHEMA.ENABLE_HIERARCHY_RESMETADATA);
END;
/

	
Note:

You can use only globally registered XML schemas (local => false) with JCR.

Example 31-10 Registering an XML Schema for Use with JCR

import oracle.jcr.nodetype.OracleNodeTypeManager;...
OracleNodeTypeManager ntm = (OracleNodeTypeManager)
 session.getWorkspace().getNodeTypeManager();

ntm.registerXMLSchema("http://www.example.com/Address", null);

The list of XML schemas registered for use with JCR is stored in the OracleRepository object. You can save this registration data by storing the OracleRepository object in a JNDI directory, as recommended by the JCR specification.

JCR requires that each node type have a unique name. By default, Oracle XML DB Content Connector generates JCR nodes types that correspond to a registered XML schema in the target namespace of the XML schema. If you wish to register two XML schemas with the same namespace, and the XML schemas declare types with the same names, you can avoid a name clash by overriding the namespace into which the JCR node types are generated. Refer to the Javadoc of method registerXMLSchema() for details.

	
See Also:

	
"Managing XML Schemas with DBMS_XMLSCHEMA" for information on registering XML schemas with Oracle XML DB

	
Oracle Database XML Java API Reference, package oracle.jcr, for information on Java method registerXMLSchema()

How JCR Node Types are Generated from XML Schemas

This section describes how Oracle XML DB Content Connector generates JCR node types from XML schemas that are registered for JCR use.

The type models of JCR and XML Schema are similar but not equivalent. Some aspects of XML Schema have no representation in JCR. For example, some constraining facets of an XML-schema simple type are not discoverable through JCR. They are enforced by Oracle XML DB Content Connector nonetheless.

More generally, the JCR node types generated from an XML schema do not augment, detract, or alter the XML schema validation performed when XML data that conforms to that XML schema is created or updated, whether through JCR or other interfaces.

Built-In Simple Types

A JCR node type is provided for each XML Schema built-in type. For example, the JCR node type xsd:decimal corresponds to the built-in type xsd:decimal.

The inheritance hierarchy of the JCR node types follows that of the built-in types. For example, xsd:integer is a subtype of xsd:decimal.

Each XML Schema built-in type maps to a JCR property value type, which is used to represent values of that type in JCR.

Table 31-2 XML Schema Built-In Types Mapped to JCR Property Value Types

	XML Schema Built-in Type	JCR Property Value Type
	
xsd:anySimpleType

	
STRING

	
xsd:anyURI

	
STRING

	
xsd:base64Binary

	
BINARY

	
xsd:boolean

	
BOOLEAN

	
xsd:byte

	
LONG

	
xsd:date

	
DATE (1)

	
xsd:dateTime

	
DATE (1)

	
xsd:decimal

	
DOUBLE (2)

	
xsd:double

	
DOUBLE

	
xsd:duration

	
STRING

	
xsd:ENTITIES

	
STRING (3)

	
xsd:ENTITY

	
STRING

	
xsd:float

	
DOUBLE

	
xsd:gDay

	
STRING

	
xsd:gMonth

	
STRING

	
xsd:gMonthDay

	
STRING

	
xsd:gYear

	
STRING

	
xsd:gYearMonth

	
STRING

	
xsd:hexBinary

	
BINARY

	
xsd:ID

	
STRING

	
xsd:IDREF

	
STRING

	
xsd:IDREFS

	
STRING (3)

	
xsd:int

	
LONG

	
xsd:integer

	
LONG (2)

	
xsd:language

	
STRING

	
xsd:long

	
LONG

	
xsd:Name

	
STRING

	
xsd:NCName

	
STRING

	
xsd:negativeInteger

	
LONG

	
xsd:NMTOKEN

	
STRING

	
xsd:NMTOKENS

	
STRING (3)

	
xsd:nonNegativeInteger

	
LONG

	
xsd:nonPositiveInteger

	
LONG

	
xsd:normalizedString

	
STRING

	
xsd:NOTATION

	
STRING

	
xsd:positiveInteger

	
LONG

	
xsd:QName

	
STRING

	
xsd:short

	
LONG

	
xsd:string

	
STRING

	
xsd:time

	
DATE (1)

	
xsd:token

	
STRING

	
xsd:unsignedByte

	
LONG

	
xsd:unsignedInt

	
LONG

	
xsd:unsignedLong

	
LONG

	
xsd:unsignedShort

	
LONG

Notes for Table 31-2:

	
The JCR DATE property type is accessed using java.util.Calendar objects. Since Calendar requires all fields to be set, a mask of 1970-01-01T00:00:00.000+00:00 is used to supply default values for missing fields when Property.getDate() or Value.getDate() is called. This includes omitted hour/minute/second values (for xsd:date), year/month/day values (for xsd:time), or time-zone values (for xsd:date, xsd:time, and xsd:dateTime). Calling Property.getString() or Value.getString() returns the unparsed string representation. Similarly, Property.setValue(String) or Property.setValue(valueFactory.createValue(String)) may be used to set DATE properties without applying the mask.

	
The value space of xsd:decimal and xsd:integer exceeds that of the corresponding JCR types, DOUBLE and LONG (accessed as Java double and long values). Consequently, some xsd:decimal and xsd:integer values can only be accessed in JCR as strings. For example, bigIntegerProperty.getLong() throws a javax.jcr.ValueFormatException, but bigIntegerProperty.getString() returns the unparsed string representation. Similarly, Property.setValue(String) or Property.setValue(valueFactory.createValue(String)) may be used to set DOUBLE or LONG properties to values outside the JCR value space.

	
xsd:ENTITIES, xsd:IDREFS, and xsd:NMTOKENS are represented in JCR as multi-valued STRING properties.

XML Schema-Defined Simple Types

A JCR node type is created for each simple type defined in an XML schema. The inheritance hierarchy of the JCR node types follows that of the XML schema types.

A derived-by-list simple type is represented by a multi-valued JCR property definition.

A derived-by-union simple type is represented by a JCR property definition with property type UNDEFINED.

The JCR node type corresponding to an anonymous simple type has a synthetic name anonymousNodeType#sequenceNumber. Your application should not rely on the synthesized name. It is not guaranteed to be the same across sessions, and it may change when an XML schema is registered or deregistered for JCR use or the definition of a registered XML schema is changed.

Complex Types

A JCR node type is created for each complex type defined in an XML schema. The inheritance hierarchy of the JCR node types follows that of the XML schema types.

For a JCR node type corresponding to an XML schema complex type:

	
A property definition is created for each attribute declaration of the complex type. Attribute declarations or attribute groups referenced by name in a complex type are treated as though they were defined in line.

	
A residual property definition is created if the complex type has an attribute wildcard.

	
A child node definition is created for each uniquely-named element declaration in the complex type's content model. Element declarations or module groups referenced by name are treated as though they were defined in line. If an element declaration is the head of a substitution group, a child node definition is also created for each element declaration within the substitution group.

	
A residual child node definition is created if the complex type has an element wildcard.

	
A jcr:xmltext child node definition is created if the complex type permits XML text, either because xsd:mixed = "true" or it is an xsd:simpleContent definition.

The JCR node type for a complex type supports child node ordering.

It is not possible to determine whether a type was derived by extension or restriction using JCR.

The JCR node type corresponding to an anonymous complex type has a synthetic name anonymousNodeType#sequenceNumber. Your application should not rely on the synthesized name. It is not guaranteed to be the same across sessions, and it may change when an XML schema is registered or deregistered for JCR use or the definition of a registered XML schema is changed.

Global Element Declarations

A JCR node type is created for each global element declaration in an XML schema. The local name of the generated node type is formed by prepending an underscore (_) to the local name of the global element declaration. For example, in a namespace-qualified purchase order XML schema, a node type named po:_purchaseOrder is created for global element named po:purchaseOrder.

35 Loading XML Data using SQL*Loader

This chapter describes how to load XML data into Oracle XML DB with a focus on SQL*Loader.

This chapter contains these topics:

	
Overview of Loading XMLType Data Into Oracle Database

	
Loading XMLType Data using SQL*Loader

	
Loading Large XML Documents into Oracle Database

	
See Also:

Chapter 3, "Using Oracle XML DB"

Overview of Loading XMLType Data Into Oracle Database

Starting with Oracle9i release 1 (9.0.1), the Export-Import utility and SQL*Loader support XMLType as a column type. Starting with Oracle Database 10g, SQL*Loader also supports loading XMLType tables. You can load XMLType data with SQL*Loader using either the conventional method or the direct-path method, regardless of how it is stored (structured, unstructured, or binary XML storage).

	
Note:

For structured storage of XML data, if the data involves inheritance (extension or restriction) of XML Schema types, then SQL*Loader does not support direct-path loading.
That is, if an XML schema contains a complexType element that extends or restricts another complexType element (the base type), then this results in some SQL types being defined in terms of other SQL types. In this case, direct-path loading is not supported for object-relational storage.

	
See Also:

Chapter 36, "Exporting and Importing XMLType Tables" and Oracle Database Utilities

Oracle XML DB Repository information is not exported when user data is exported. Neither the resources nor any information are exported.

Loading XMLType Data using SQL*Loader

XML columns are columns declared to be of type XMLType.

SQL*Loader treats XMLType columns and tables like object-relational columns and tables. All methods described in the following sections for loading LOB data from the primary datafile or from a LOBFILE value apply also to loading XMLType columns and tables when the XMLType data is stored as a LOB.

	
See Also:

Oracle Database Utilities

	
Note:

You cannot specify a SQL string for LOB fields. This is true even if you specify LOBFILE_spec.

XMLType data can be present in a control file or in a LOB file. In the former case, the LOB file name is present in the control file.

Because XMLType data can be quite large, SQL*Loader can load LOB data from either a primary datafile (in line with the rest of the data) or from LOB files, independent of how the data is stored (the underlying storage can, for example, still be object-relational).

Loading XMLType Data in LOBs using SQL*Loader

To load internal LOBs, Binary Large Objects (BLOBs), Character Large Objects (CLOBs), and National Character Large Object (NCLOBs), or XMLType columns and tables from a primary datafile, use the following standard SQL*Loader formats:

	
Predetermined size fields

	
Delimited fields

	
Length-value pair fields

These formats are described in the following sections and in more detail in Oracle Database Utilities.

Loading LOB Data in Predetermined Size Fields

This is a very fast and conceptually simple format to load LOBs.

	
Note:

Because the LOBs you are loading might not be of equal size, you can use whitespace to pad the LOB data to make the LOBs all of equal length within a particular data field.

Loading LOB Data in Delimited Fields

This format handles LOBs of different sizes within the same column (datafile field) without problem. However, this added flexibility can affect performance, because SQL*Loader must scan through the data, looking for the delimiter string.

As with single-character delimiters, when you specify string delimiters, you should consider the character set of the datafile. When the character set of the datafile is different than that of the control file, you can specify the delimiters in hexadecimal (that is, hexadecimal string). If the delimiters are specified in hexadecimal notation, then the specification must consist of characters that are valid in the character set of the input datafile. In contrast, if hexadecimal specification is not used, then the delimiter specification is considered to be in the client (that is, the control file) character set. In this case, the delimiter is converted into the datafile character set before SQL*Loader searches for the delimiter in the datafile.

Loading XML Columns Containing LOB Data from LOBFILEs

LOB data can be lengthy enough so that it makes sense to load it from a LOBFILE instead of from a primary datafile. In LOBFILEs, LOB data instances are still considered to be in fields (predetermined size, delimited, length-value), but these fields are not organized into records (the concept of a record does not exist within LOBFILEs). Therefore, the processing overhead of dealing with records is avoided. This type of organization of data is ideal for LOB loading.

There is no requirement that a LOB from a LOBFILE fit in memory. SQL*Loader reads LOBFILEs in 64 KB chunks.

In LOBFILEs the data can be in any of the following types of fields, any of which can be used to load XML columns:

	
A single LOB field into which the entire contents of a file can be read

	
Predetermined size fields (fixed-length fields)

	
Delimited fields (that is, TERMINATED BY or ENCLOSED BY)

The clause PRESERVE BLANKS is not applicable to fields read from a LOBFILE.

	
Length-value pair fields (variable-length fields) .

To load data from this type of field, use the  VARRAY, VARCHAR, or VARCHAR2 SQL*Loader data types.

Specifying LOBFILEs

You can specify LOBFILEs either statically (you specify the name of the file) or dynamically (you use a FILLER field as the source of the filename). In either case, when the EOF of a LOBFILE is reached, the file is closed and additional attempts to read data from that file produce results equivalent to reading data from an empty field.

You should not specify the same LOBFILE as the source of two different fields. If you do so, then typically, the two fields read the data independently.

Loading XMLType Data Directly from a Control File using SQL*Loader

XMLType data can be loaded directly from a control file. SQL*Loader treats XMLType data like any scalar type. For example, consider a table containing a NUMBER column followed by an XMLType column that is stored object-relationally. The control file used for this table can contain the value of the NUMBER column followed by the value of the XMLType instance.

SQL*Loader accommodates XMLType instances that are very large. You also have the option to load such data from a LOB file.

Loading Large XML Documents into Oracle Database

You can use SQL*Loader to load large amounts of XML data into Oracle Database. Follow these steps:

	
List in a data file, say filelist.dat, the locations of the XML documents to be loaded.

	
Create a control file, say load_data.ctl, with commands that process the files listed in the data file.

	
Invoke the SQL*Loader shell command, sqlldr, passing it the name of the control file.

This is illustrated in Example 35-2, Example 35-1, and Example 35-3. File filelist.dat lists XML files that contain purchase orders for the year 2002.

Example 35-1 Data File filelist.dat: List of XML Files to Load

2002/Jan/AMCEWEN-20021009123335370PDT.xm
2002/Jan/AWALSH-2002100912333570PDT.xml
2002/Jan/CJOHNSON-20021009123335170PDT.xml
2002/Jan/LSMITH-20021009123335500PDT.xml
2002/Jan/PTUCKER-20021009123335430PDT.xml
2002/Jan/SBELL-20021009123335280PDT.xml
2002/Jan/SKING-20021009123335560PDT.xml
2002/Jan/SMCCAIN-20021009123335470PDT.xml
2002/Jan/TFOX-20021009123335520PDT.xml
2002/Jan/VJONES-20021009123335350PDT.xml
2002/Jan/WSMITH-20021009123335450PDT.xml
2002/Feb/AMCEWEN-20021009123335600PDT.xml
2002/Feb/AMCEWEN-20021009123335701PDT.xml
2002/Feb/DAUSTIN-20021009123335811PDT.xml
2002/Feb/EABEL-20021009123335791PDT.xml
2002/Feb/PTUCKER-20021009123335721PDT.xml
2002/Feb/PTUCKER-20021009123335821PDT.xml
2002/Feb/SBELL-20021009123335771PDT.xml
2002/Feb/SMCCAIN-20021009123335681PDT.xml
2002/Feb/WSMITH-20021009123335650PDT.xml
2002/Feb/WSMITH-20021009123335741PDT.xml
2002/Feb/WSMITH-20021009123335751PDT.xml
...

Example 35-2 Control File load_datra.ctl, for Loading Purchase-Order XML Documents

load data
infile 'filelist.dat'
append
into table PURCHASEORDER
xmltype(XMLDATA)
(
 filename filler char(120),
 XMLDATA lobfile(filename) terminated by eof
)

Example 35-3 Loading XML Data Using Shell Command sqlldr

sqlldr load_data.ctl

For direct-path loading, use this instead:

sqlldr load_data.ctl direct=y

	
See Also:

	
Chapter 3, "Using Oracle XML DB", "Loading Large XML Files using SQL*Loader"

	
Oracle Database Utilities for information about shell command sqlldr

List of Examples

	1-1 Listener Status with FTP and HTTP(S) Protocol Support Enabled
	3-1 Creating a Table with an XMLType Column
	3-2 Creating a Table of XMLType
	3-3 Partitioning a Binary XML Table using Virtual Columns
	3-4 Creating a Database Directory
	3-5 Inserting XML Content into an XMLType Table
	3-6 Inserting Content into an XMLType Table using Java
	3-7 Inserting Content into an XMLType Table using C
	3-8 Inserting XML Content into the Repository using CREATERESOURCE
	3-9 Purchase-Order XML Schema, purchaseOrder.xsd
	3-10 Annotated Purchase-Order XML Schema, purchaseOrder.xsd
	3-11 Registering an XML Schema using DBMS_XMLSCHEMA.REGISTERSCHEMA
	3-12 Objects Created During XML Schema Registration
	3-13 Creating an XMLType Table that Conforms to an XML Schema
	3-14 Creating an XMLType Table for Nested Collections
	3-15 Using DESCRIBE with an XML Schema-Based XMLType Table
	3-16 Error From Attempting to Insert an Incorrect XML Document
	3-17 Error When Inserting Incorrect XML Document (Partial Validation)
	3-18 Forcing Full XML Schema Validation using a CHECK Constraint
	3-19 Enforcing Full XML Schema Validation using a BEFORE INSERT Trigger
	3-20 Constraining a Binary XML Table using a Virtual Column
	3-21 Integrity Constraints and Triggers for an XMLType Table Stored Object-Relationally
	3-22 Enforcing Database Integrity When Loading XML using FTP
	3-23 PurchaseOrder XML Instance Document
	3-24 Retrieving an Entire XML Document using OBJECT_VALUE
	3-25 Accessing XML Fragments using XMLQUERY
	3-26 Accessing a Text Node Value using XMLCAST and XMLQuery
	3-27 Searching XML Content using XMLExists, XMLCast, and XMLQuery
	3-28 Finding the Reference for a Purchase Order using XMLQuery and XMLExists
	3-29 Accessing Description Nodes using XMLTABLE
	3-30 Counting the Number of Elements in a Collection using XMLTABLE
	3-31 Counting the Number of Child Elements in an Element using XMLTABLE
	3-32 Creating a Relational View of XML Content
	3-33 Accessing Individual Members of a Collection using a View
	3-34 Querying XML Data using Views
	3-35 Business-Intelligence Query of XML Data using a View
	3-36 Updating XML Content using UPDATEXML
	3-37 Replacing an Entire Element using UPDATEXML
	3-38 Incorrectly Updating a Node That Occurs Multiple Times in a Collection
	3-39 Correctly Updating a Node That Occurs Multiple Times in a Collection
	3-40 Changing Text Node Values using UPDATEXML
	3-41 Generating XML Data using SQL/XML Functions
	3-42 Creating XMLType Views Over Conventional Relational Tables
	3-43 Querying XMLType Views
	3-44 Generating XML Data from a Relational Table using DBURIType and getXML()
	3-45 Restricting Rows using an XPath Predicate
	3-46 Restricting Rows and Columns using an XPath Predicate
	3-47 XSLT Style Sheet Example: PurchaseOrder.xsl
	3-48 Applying a Style Sheet using TRANSFORM
	3-49 Uploading Content to the Repository using FTP
	3-50 Creating a Text Document Resource using CREATERESOURCE
	3-51 Creating Folders using PL/SQL Package DBMS_XDB
	3-52 Accessing a Text Document in the Repository using XDBURITYPE
	3-53 Accessing Resource Content using RESOURCE_VIEW
	3-54 Accessing XML Documents using Resource and Namespace Prefixes
	3-55 Querying Repository Resource Data using SQL Function REF and Element XMLRef
	3-56 Selecting XML Document Fragments Based on Metadata, Path, and Content
	3-57 Updating a Document using UPDATE and UPDATEXML on the Resource
	3-58 Updating a Node using UPDATE and UPDATEXML
	3-59 Updating XML Schema-Based Documents in the Repository
	3-60 Viewing RESOURCE_VIEW and PATH_VIEW Structures
	3-61 Accessing Resources using EQUALS_PATH and RESOURCE_VIEW
	3-62 Determining the Path to XSL Style Sheets Stored in the Repository
	3-63 Counting Resources Under a Path
	3-64 Listing the Folder Contents in a Path
	3-65 Listing the Links Contained in a Folder
	3-66 Finding Paths to Resources that Contain Purchase-Order XML Documents
	3-67 Execution Plan Output for a Folder-Restricted Query
	4-1 Finding a Node using SQL/XML Function XMLExists
	4-2 Extracting the Scalar Value of an XML Fragment using XMLCAST
	4-3 Querying XMLTYPE Data
	4-4 Querying Transient XMLTYPE Data using a PL/SQL Cursor
	4-5 Extracting XML Data using XMLTABLE, and Inserting It into a Database Table
	4-6 Extracting XML Data and Inserting It into a Table using a PL/SQL Procedure
	4-7 Searching XML Data using SQL/XML Functions
	4-8 Extracting Fragments from an XMLTYPE Instance using XMLQUERY
	4-9 Updating XMLType Data using a SQL UPDATE Statement
	4-10 Updating XMLTYPE using UPDATE and UPDATEXML
	4-11 Updating Multiple Text Nodes and Attribute Values using UPDATEXML
	4-12 Updating Selected Nodes within a Collection using UPDATEXML
	4-13 NULL Updates with UPDATEXML – Element and Attribute
	4-14 NULL Updates with UPDATEXML – Text Node
	4-15 XPath Expressions in UPDATEXML Expression
	4-16 Object Relational Equivalent of UPDATEXML Expression
	4-17 Creating a View using UPDATEXML
	4-18 Inserting a LineItem Element into a LineItems Element
	4-19 Inserting an Element that Uses a Namespace
	4-20 Inserting a LineItem Element Before the First LineItem ELement
	4-21 Inserting a Date Element as the Last Child of an Action Element
	4-22 Deleting LineItem Element Number 222
	5-1 Creating Resources for Examples
	5-2 XMLQuery Applied to a Sequence of Items of Different Types
	5-3 FLOWR Expression using for, let, order by, where, and return
	5-4 FLOWR Expression using Built-In Functions
	5-5 Querying Relational Tables as XML
	5-6 Using Relational Data in a Nested FLWOR Query
	5-7 Querying a Relational Table as XML using XMLTable
	5-8 Querying an XMLType Column using XMLQuery PASSING Clause
	5-9 Using XMLTABLE with XML Schema-Based Data
	5-10 Using XMLQUERY with Schema-Based Data
	5-11 Using XMLTABLE with PASSING and COLUMNS Clauses
	5-12 Decomposing XML Collection Elements into Relational Data using XMLTABLE
	5-13 Using XMLQUERY with a Namespace Declaration
	5-14 Using XMLTABLE with the XMLNAMESPACES Clause
	5-15 Optimization of XMLQuery over Relational Data
	5-16 Optimization of XMLTable over Relational Data
	5-17 Optimization of XMLQuery with Schema-Based XMLType Data
	5-18 Optimization of XMLTable with Schema-Based XMLType Data
	5-19 Unoptimized Repository Query using fn:doc
	5-20 Optimized Repository Query using EQUALS_PATH
	5-21 Repository Query using Oracle XQuery Pragma ora:defaultTable
	5-22 Static Type-Checking of XQuery Expressions: oradb URI scheme
	5-23 Static Type-Checking of XQuery Expressions: Schema-Based XML
	5-24 Using the SQL*Plus XQUERY Command
	5-25 Using XQuery with PL/SQL
	5-26 Using XQuery with JDBC
	5-27 Using XQuery with ODP.NET and C#
	6-1 CREATE INDEX using XMLCAST and XMLQUERY on a Singleton Element
	6-2 CREATE INDEX using EXTRACTVALUE on a Singleton Element
	6-3 Making Query Data Compatible with Index Data – SQL Cast
	6-4 Making Query Data Compatible with Index Data – XQuery Cast
	6-5 Path Table Contents for Two Purchase Orders
	6-6 Creating an XMLIndex Index on XMLType Unstructured Storage
	6-7 Obtaining the Name of an XMLIndex Index on a Particular Table
	6-8 Renaming and Dropping an XMLIndex Index
	6-9 Naming the Path Table of an XMLIndex Index
	6-10 Determining the System-Generated Name of an XMLIndex Path Table
	6-11 Specifying Storage Options When Creating an XMLIndex Index
	6-12 Dropping an XMLIndex Unstructured Component
	6-13 Determining the Names of the Secondary Indexes of an XMLIndex Index
	6-14 Creating a Function-Based Index on Path-Table Column VALUE
	6-15 Trying to Create a Numeric Index on Path-Table Column VALUE Directly
	6-16 Creating a Numeric Index on Column VALUE with Procedure createNumberIndex
	6-17 Creating a Date Index on Column VALUE with Procedure createDateIndex
	6-18 Creating an Oracle Text CONTEXT Index on Path-Table Column VALUE
	6-19 Showing All Secondary Indexes on an XMLIndex Path Table
	6-20 XMLIndex Index: Adding a Structured Component
	6-21 Dropping an XMLIndex Structured Component
	6-22 Creating a B-Tree Index on an XMLIndex Index Content Table
	6-23 Oracle Text CONTEXT Index on an XMLIndex Index Content Table
	6-24 XMLIndex with Only a Structured Component and using Namespaces
	6-25 Checking Whether an XMLIndex Unstructured Component Is Used
	6-26 Obtaining the Name of an XMLIndex Index from Its Path-Table Name
	6-27 Extracting Data from an XML Fragment using XMLIndex
	6-28 Using a Structured XMLIndex Component for a Query with Two Predicates
	6-29 Using a Structured XMLIndex Component for a Query with Multilevel Chaining
	6-30 Turning Off XMLIndex using Optimizer Hints
	6-31 XMLIndex Path Subsetting with CREATE INDEX
	6-32 XMLIndex Path Subsetting with ALTER INDEX
	6-33 XMLIndex Path Subsetting using a Namespace Prefix
	6-34 Creating an XMLIndex Index in Parallel
	6-35 Using Different PARALLEL Degrees for XMLIndex Internal Objects
	6-36 Specifying Deferred Synchronization for XMLIndex
	6-37 Manually Synchronizing an XMLIndex Index using SYNCINDEX
	6-38 Automatic Collection of Statistics on XMLIndex Objects
	6-39 Creating an Oracle Text Index
	6-40 Searching XML Data using SQL Function CONTAINS
	6-41 Using an Oracle Text Index and an XMLIndex Index
	7-1 XML Schema Instance purchaseOrder.xsd
	7-2 purchaseOrder.xml: Document That Conforms to purchaseOrder.xsd
	7-3 Registering an XML Schema using DBMS_XMLSCHEMA.REGISTERSCHEMA
	7-4 Creating SQL Object Types to Store XMLType Tables
	7-5 Default Table for Global Element PurchaseOrder
	7-6 Data Dictionary Table for Registered Schemas
	7-7 Deleting an XML Schema with DBMS_XMLSCHEMA.DELETESCHEMA
	7-8 Registering a Local XML Schema
	7-9 Registering a Global XML Schema
	7-10 XML Schema Defining Documents with a Title To Be Translated
	7-11 Untranslated Instance Document
	7-12 XML Schema with Attribute xdb:translate for a Single-Valued Element
	7-13 Translated Document
	7-14 XML Schema with Attribute xdb:translate for a Multi-Valued Element
	7-15 Translated Document for an XML Schema with Multiple-Valued Elements
	7-16 Inserting a Document with No Language Information
	7-17 Document After Insertion into the Repository
	7-18 Inserting a Document with Language Information
	7-19 Document After Insertion
	7-20 Creating XML Schema-Based XMLType Tables and Columns
	7-21 Specifying CLOB Storage for Schema-Based XMLType Tables and Columns
	7-22 Specifying Structured Storage Options for XMLType Tables and Columns
	7-23 Using STORE ALL VARRAYS AS
	7-24 Using Common Schema Annotations
	7-25 Registering an Annotated XML Schema
	7-26 Querying Metadata from a Registered XML Schema
	7-27 Mapping XML Schema Data Types to SQL Data Types using Attribute SQLType
	8-1 XPath Rewrite
	8-2 Execution Plan Generated When XPath Rewrite Does Not Occur
	8-3 Analyzing an Execution Plan to Determine a Column to Index
	8-4 Creating an Index on a Column Targeted by a Predicate
	8-5 Creating a Function-Based Index for a Column Targeted by a Predicate
	8-6 Execution Plan Showing that Index Is Picked Up
	8-7 Creating a Function-Based Index for a Column Targeted by a Predicate
	8-8 Execution Plan for a Selection of Collection Elements
	8-9 Creating an Index for Direct Access to an Ordered Collection Table
	9-1 Generating an XML Schema with Function GENERATESCHEMA
	9-2 Adding a Unique Constraint to the Parent Element of an Attribute
	9-3 Setting SQLInline to False for Out-Of-Line Storage
	9-4 Generated XMLType Tables and Types
	9-5 Querying an Out-Of-Line Table
	9-6 XPath Rewrite for an Out-Of-Line Table
	9-7 Using an Index with an Out-Of-Line Table
	9-8 Storing a Collection Out of Line
	9-9 Generated Out-Of-Line Collection Type
	9-10 Renaming an Intermediate Table of REF Values
	9-11 XPath Rewrite for an Out-Of-Line Collection
	9-12 XPath Rewrite for an Out-Of-Line Collection, with Index on REFs
	9-13 Specifying Partitioning Information During XML Schema Registration
	9-14 Specifying Partitioning Information During Table Creation
	9-15 Oracle XML DB XML Schema: Mapping complexType XML Fragments to LOBs
	9-16 XML Schema Inheritance: complexContent as an Extension of complexTypes
	9-17 Inheritance in XML Schema: Restrictions in complexTypes
	9-18 XML Schema complexType: Mapping complexType to simpleContent
	9-19 XML Schema: Mapping complexType to any/anyAttribute
	9-20 An XML Schema with Circular Dependency
	9-21 XML Schema: Cycling Between complexTypes
	9-22 XML Schema: Cycling Between complexTypes, Self-Reference
	9-23 An XML Schema that Includes a Non-Existent XML Schema
	9-24 Using the FORCE Option to Register XML Schema xm40.xsd
	9-25 Trying to Create a Table Using a Cyclic XML Schema
	9-26 Using the FORCE Option to Register XML Schema xm40a.xsd
	9-27 Recursive XML Schema
	9-28 Out-of-line Table
	9-29 Invalid Default Table Sharing
	10-1 Revised Purchase-Order XML Schema
	10-2 evolvePurchaseOrder.xsl: Style Sheet to Update Instance Documents
	10-3 Loading Revised XML Schema and XSL Style Sheet
	10-4 Updating an XML Schema using DBMS_XMLSCHEMA.COPYEVOLVE
	10-5 Splitting a Complex Type into Two Complex Types
	10-6 diffXML Parameter Document
	11-1 Registering an XML Schema and Inserting XML Data
	11-2 Retrieving a Style Sheet using XMLTRANSFORM and DBURITYPE
	11-3 Retrieving a Style Sheet using XMLTRANSFORM and a Subquery
	11-4 Using Method TRANSFORM() with a Transient Style Sheet
	11-5 Validating XML using Method ISSCHEMAVALID() in SQL
	11-6 Validating XML using Method ISSCHEMAVALID() in PL/SQL
	11-7 Validating XML using Method SCHEMAVALIDATE() within Triggers
	11-8 Checking XML Validity using XMLISVALID within CHECK Constraints
	12-1 Simple Query using Oracle SQL Function CONTAINS
	12-2 Restricting a Query using CONTAINS and WITHIN
	12-3 Restricting a Query using CONTAINS and INPATH
	12-4 ora:contains with an Arbitrarily Complex Text Query
	12-5 CONTAINS Query with a Simple Boolean Operator
	12-6 CONTAINS Query with Complex Boolean
	12-7 CONTAINS Query with Stemming
	12-8 CONTAINS Query with Complex Query Expression
	12-9 Simple CONTAINS Query with SCORE
	12-10 WITHIN
	12-11 Nested WITHIN
	12-12 WITHIN an Attribute
	12-13 WITHIN and AND: Two Words in Some Comment Section
	12-14 WITHIN and AND: Two Words in the Same Comment
	12-15 WITHIN and AND: No Parentheses
	12-16 WITHIN and AND: Parentheses Illustrating Operator Precedence
	12-17 Structure Inside Full-Text Predicate: INPATH
	12-18 Structure Inside Full-Text Predicate: INPATH
	12-19 INPATH with Complex Path Expression (1)
	12-20 INPATH with Complex Path Expression (2)
	12-21 Nested INPATH
	12-22 Nested INPATH Rewritten
	12-23 Simple HASPATH
	12-24 HASPATH Equality
	12-25 HASPATH with Other Operators
	12-26 Scoping the Results of a CONTAINS Query
	12-27 Projecting the Result of a CONTAINS Query using ora:contains
	12-28 Simple CONTEXT Index on Table PURCHASE_ORDERS
	12-29 Simple CONTEXT Index on XMLType Table with Path Section Group
	12-30 Simple CONTEXT Index on XMLType Column
	12-31 Simple CONTEXT Index on XMLType Table
	12-32 CONTAINS Query on XMLType Table
	12-33 CONTAINS: Default Case Matching
	12-34 Create a Preference for Mixed Case
	12-35 CONTEXT Index on PURCHASE_ORDERS Table, Mixed Case
	12-36 CONTAINS: Mixed (Exact) Case Matching
	12-37 Simple CONTEXT Index on purchase_orders Table with Path Section Group
	12-38 Using ora:contains with XMLQuery and XMLExists
	12-39 Create a Policy to Use with ora:contains
	12-40 Finding a Stopword using ora:contains
	12-41 Finding a Stopword using ora:contains and Policy my_nostopwords_policy
	12-42 ora:contains, Default Case-Sensitivity
	12-43 Create a Preference for Mixed Case
	12-44 Create a Policy with Mixed Case (Case-Insensitive)
	12-45 ora:contains, Case-Sensitive (1)
	12-46 ora:contains, Case-Sensitive (2)
	12-47 ora:contains in Large Table
	12-48 B-tree Index on ID
	12-49 ora:contains in Large Table, with Additional Predicate
	12-50 ora:contains Search for "electric"
	12-51 Using XQuery Pragma ora:use_text_index with ora:contains
	12-52 Purchase Order XML Document, po001.xml
	12-53 Create Table PURCHASE_ORDERS
	12-54 Create Table PURCHASE_ORDERS_XMLTYPE
	12-55 Create Table PURCHASE_ORDERS_XMLTYPE_TABLE
	12-56 Purchase-Order XML Schema for Full-Text Search Examples
	13-1 Creating and Manipulating a DOM Document
	13-2 Creating an Element Node and Obtaining Information About It
	13-3 Creating a User-Defined Subtype of SYS.util_BinaryOutputStream()
	13-4 Retrieving Node Value with a User-Defined Stream
	13-5 Get-Pull of Binary Data
	13-6 Get-Pull of Character Data
	13-7 Set-Pull of Binary Data
	13-8 Set-Push of Binary Data
	13-9 Parsing an XML Document
	13-10 Transforming an XML Document using an XSL Style Sheet
	14-1 Inserting Data with Specified Columns
	14-2 Updating Data with Key Columns
	14-3 DBMS_XMLSTORE.DELETEXML Example
	15-1 Querying an XMLType Table using JDBC
	15-2 Selecting XMLType Data using getStringVal() and getCLOB()
	15-3 Returning XMLType Data using getObject()
	15-4 Returning XMLType Data using an Output Parameter
	15-5 Updating XMLType Data using SQL UPDATE with Constructor XMLType
	15-6 Updating XMLType Data using SQL UPDATE with setObject()
	15-7 Retrieving Metadata about XMLType Data using JDBC
	15-8 Updating an Element in an XMLType Column using JDBC
	15-9 Updated Purchase-Order Document
	15-10 Manipulating an XMLType Column using JDBC
	15-11 Java Method insertXML()
	15-12 Java Method getCLOB()
	15-13 Creating a DOM Object with the Java DOM API
	15-14 Using the Java DOM API with Binary XML
	16-1 Using OCIXMLDBINITXMLCTX() and OCIXMLDBFREEXMLCTX()
	16-2 Using the C API for XML with Binary XML
	16-3 Using the Oracle XML DB Pull Parser
	16-4 Using the DOM to Count Ordered Parts
	17-1 Retrieve XMLType Data to .NET
	18-1 XMLELEMENT: Formatting a Date
	18-2 XMLELEMENT: Generating an Element for Each Employee
	18-3 XMLELEMENT: Generating Nested XML
	18-4 XMLELEMENT: Generating Employee Elements with Attributes ID and Name
	18-5 XMLELEMENT: Characters in Generated XML Are Not Escaped
	18-6 Creating a Schema-Based XML Document using XMLELEMENT with Namespaces
	18-7 XMLELEMENT: Generating an Element from a User-Defined Data-Type Instance
	18-8 XMLFOREST: Generating Elements with Attribute and Child Elements
	18-9 XMLFOREST: Generating an Element from a User-Defined Data-Type Instance
	18-10 XMLCONCAT: Concatenating XMLType Instances from a Sequence
	18-11 XMLCONCAT: Concatenating XML Elements
	18-12 XMLAGG: Generating a Department Element with Child Employee Elements
	18-13 XMLAGG: Using GROUP BY to Generate Multiple Department Elements
	18-14 XMLAGG: Generating Nested Elements
	18-15 Using SQL/XML Function XMLPI
	18-16 Using SQL/XML Function XMLCOMMENT
	18-17 Using SQL/XML Function XMLSERIALIZE
	18-18 Using SQL/XML Function XMLPARSE
	18-19 Using Oracle SQL Function XMLRoot
	18-20 XMLCOLATTVAL: Generating Elements with Attribute and Child Elements
	18-21 Using Oracle SQL Function XMLCDATA
	18-22 DBMS_XMLGEN: Generating Simple XML
	18-23 DBMS_XMLGEN: Generating Simple XML with Pagination (Fetch)
	18-24 DBMS_XMLGEN: Generating XML using Object Types
	18-25 DBMS_XMLGEN: Generating XML using User-Defined Data-Type Instances
	18-26 DBMS_XMLGEN: Generating an XML Purchase Order
	18-27 DBMS_XMLGEN: Generating a New Context Handle from a REF Cursor
	18-28 DBMS_XMLGEN: Specifying NULL Handling
	18-29 DBMS_XMLGEN: Generating Recursive XML with a Hierarchical Query
	18-30 DBMS_XMLGEN: Binding Query Variables using SETBINDVALUE()
	18-31 Creating XML Data using SYS_XMLGEN
	18-32 SYS_XMLGEN: Generating an XML Element from a Database Column
	18-33 SYS_XMLGEN: Converting a Scalar Value to XML Element Contents
	18-34 SYS_XMLGEN: Default Element Name ROW
	18-35 Overriding the Default Element Name using SYS_XMLGEN with XMLFormat
	18-36 SYS_XMLGEN: Converting a User-Defined Data-Type Instance to XML
	18-37 SYS_XMLGEN: Converting an XMLType Instance
	18-38 Using SYS_XMLGEN with Object Views
	18-39 Using XMLAGG ORDER BY Clause
	18-40 Returning a Rowset using XMLTABLE
	19-1 Creating an XMLType View using XMLELEMENT
	19-2 Creating an XMLType View using Object Types and SYS_XMLGEN
	19-3 Registering XML Schema emp_simple.xsd
	19-4 Creating an XMLType View using SQL/XML Publishing Functions
	19-5 Querying an XMLType View
	19-6 Using Namespace Prefixes with SQL/XML Publishing Functions
	19-7 XML Schema with No Target Namespace
	19-8 Creating a View for an XML Schema with No Target Namespace
	19-9 Using SQL/XML Functions in XML Schema-Based XMLType Views
	19-10 Creating Object Types for Schema-Based XMLType Views
	19-11 Generating an XML Schema with DBMS_XMLSCHEMA.GENERATESCHEMA
	19-12 Registering XML Schema emp_complex.xsd
	19-13 Creating XMLType View emp_xml
	19-14 Creating an Object View and an XMLType View on the Object View
	19-15 Creating Object Types
	19-16 Registering XML Schema dept_complex.xsd
	19-17 Creating XMLType View dept_xml using Object Type dept_t
	19-18 Creating XMLType View dept_xml using Relational Data Directly
	19-19 Creating an XMLType View by Restricting Rows from an XMLType Table
	19-20 Creating an XMLType View by Transforming an XMLType Table
	19-21 Determining Whether an XMLType View is Implicitly Updatable
	20-1 Using HTTPURIType PL/SQL Method GETCONTENTTYPE()
	20-2 Creating and Querying a URI Column
	20-3 Using Different Kinds of URI, Created in Different Ways
	20-4 Access a Repository Resource by URI using an XDBUri
	20-5 Using PL/SQL Method GETXML() with XMLCAST and XMLQUERY
	20-6 Targeting a Complete Table using a DBUri
	20-7 Targeting a Particular Row in a Table using a DBUri
	20-8 Targeting a Specific Column using a DBUri
	20-9 Targeting an Object Column with Specific Attribute Values using a DBUri
	20-10 Retrieve Only the Text Value of a Node using a DBUri
	20-11 Targeting a Collection using a DBUri
	20-12 URIFACTORY: Registering the ECOM Protocol
	20-13 SYS_DBURIGEN: Generating a DBUri that Targets a Column
	20-14 Passing Columns with Single Arguments to SYS_DBURIGEN
	20-15 Inserting Database References using SYS_DBURIGEN
	20-16 Creating the Travel Story Table
	20-17 A Function that Returns the First 20 Characters
	20-18 Creating a Travel View for Use with SYS_DBURIGEN
	20-19 Retrieving a URL using SYS_DBURIGEN in RETURNING Clause
	20-20 Changing the Installation Location of DBUriServlet
	20-21 Restricting Servlet Access to a Database Role
	20-22 Registering a Handler for a DBUri Prefix
	21-1 Querying PATH_VIEW to Determine Link Type
	21-2 Obtaining the OID Path of a Resource
	21-3 Creating a Weak Link using an OID Path
	22-1 Resource Configuration File
	22-2 applicationData Element
	23-1 XInclude Used in a Book Document to Include Parts and Chapters
	23-2 Expanding Document Inclusions using XDBURIType
	23-3 Querying Document Links Mapped From XLink Links
	23-4 Querying Document Links Mapped From XInclude Links
	23-5 Mapping XInclude Links to Hard Document Links, with OID Retrieval
	23-6 Mapping XLInk Links to Weak Links, with Named-Path Retrieval
	23-7 Configuring XInclude Document Decomposition
	23-8 Repository Document, Showing Generated xi:include Elements
	24-1 Creating a Repository Resource
	24-2 Creating a Version-Controlled Resource
	24-3 Retrieving Resource Content by Referencing the Resource ID
	24-4 Checking Out a Version-Controlled Resource
	24-5 Updating Resource Content
	24-6 Checking In a Version-Controlled Resource
	24-7 Retrieving Resource Version Content using XDBURITYPE and CREATEOIDPATH
	24-8 Retrieving Resource Version Content using GETCONTENTSCLOBBYRESID
	24-9 Retrieving Resource Version Metadata using GETRESOURCEBYRESID
	24-10 Canceling a Check-Out using UNCHECKOUT
	25-1 Determining Paths Under a Path: Relative
	25-2 Determining Paths Under a Path: Absolute
	25-3 Determining Paths Not Under a Path
	25-4 Determining Paths using Multiple Correlations
	25-5 Relative Path Names for Three Levels of Resources
	25-6 Extracting Resource Metadata using UNDER_PATH
	25-7 Using Functions PATH and DEPTH with PATH_VIEW
	25-8 Extracting Link and Resource Information from PATH_VIEW
	25-9 All Repository Paths to a Certain Depth Under a Path
	25-10 Locating a Repository Path using EQUALS_PATH
	25-11 Retrieve RESID of a Given Resource
	25-12 Obtaining the Path Name of a Resource from its RESID
	25-13 Folders Under a Given Path
	25-14 Joining RESOURCE_VIEW with an XMLType Table
	25-15 Deleting Resources
	25-16 Deleting Links to Resources
	25-17 Deleting a Nonempty Folder
	25-18 Updating a Resource
	25-19 Updating a Path in the PATH_VIEW
	25-20 Updating Resources Based on Attributes
	25-21 Finding Resources Inside a Folder
	25-22 Copying Resources
	25-23 Find All Resources Containing "Paper"
	25-24 Find All Resources Containing "Paper" that are Under a Specified Path
	26-1 Managing Resources using DBMS_XDB
	26-2 Using DBMS_XDB.GETACLDOCUMENT
	26-3 Using DBMS_XDB.SETACL
	26-4 Using DBMS_XDB.CHANGEPRIVILEGES
	26-5 Using DBMS_XDB.GETPRIVILEGES
	26-6 Using DBMS_XDB.CFG_GET
	26-7 Using DBMS_XDB.CFG_UPDATE
	27-1 Simple Access Control Entry (ACE) that Grants a Privilege
	27-2 Simple Access Control List (ACL) that Grants a Privilege
	27-3 Element extends-from
	27-4 Element constrained-with
	27-5 Complementing a Set of Principals with Element invert
	27-6 ACE with Start and End Dates
	27-7 Creating an ACL using CREATERESOURCE
	27-8 Retrieving an ACL Document, Given its Repository Path
	27-9 Setting the ACL of a Resource
	27-10 Deleting an ACL
	27-11 Updating (Replacing) an Access Control List
	27-12 Appending ACEs to an Access Control List
	27-13 Deleting an ACE from an Access Control List
	27-14 Retrieving the ACL Document for a Resource
	27-15 Retrieving Privileges Granted to the Current User for a Particular Resource
	27-16 Checking If a User Has a Certain Privileges on a Resource
	27-17 Checking User Privileges using ACLCheckPrivileges
	27-18 Retrieving the Path of the ACL that Protects a Given Resource
	27-19 Retrieving the Paths of All Resources Protected by a Given ACL
	27-20 ACL Referencing an LDAP User
	27-21 ACL Referencing an LDAP Group
	28-1 Navigating Oracle ASM Folders
	28-2 Transferring Oracle ASM Files Between Databases with FTP proxy Method
	28-3 FTP Connection Using IPv6
	28-4 Modifying the Default Timeout Value of an FTP Session
	29-1 Register an XML Schema for Technical Photo Information
	29-2 Register an XML Schema for Photo Categorization
	29-3 Add Metadata to a Resource – Technical Photo Information
	29-4 Add Metadata to a Resource – Photo Content Categories
	29-5 Delete Specific Metadata from a Resource
	29-6 Adding Metadata to a Resource using DML with RESOURCE_VIEW
	29-7 Adding Metadata using WebDAV PROPPATCH
	29-8 Query XML Schema-Based Resource Metadata
	29-9 Add Non-Schema-Based Metadata to a Resource
	30-1 Resource Configuration File for Java Event Listeners with Preconditions
	30-2 Resource Configuration File for PL/SQL Event Listeners with No Preconditions
	30-3 PL/SQL Code Implementing Event Listeners
	30-4 Java Code Implementing Event Listeners
	30-5 Invoking Event Handlers
	31-1 JCR Node Representation of MyFolder
	31-2 Code Fragment Showing How to Get a Repository Object
	31-3 Uploading a File using Oracle XML DB Content Connector
	31-4 Uploading a File Using the Command Line
	31-5 XML Document with XML Schema-Based Content
	31-6 XML Schema
	31-7 JCR Representation of XML Content Not Registered for JCR Use
	31-8 JCR Representation of XML Content Registered for JCR Use
	31-9 Registering an XML Schema for Use with Oracle XML DB
	31-10 Registering an XML Schema for Use with JCR
	32-1 An Oracle XML DB Servlet
	32-2 Registering and Mapping an Oracle XML DB Servlet
	33-1 Adding a Web Services Configuration Servlet
	33-2 Verifying Addition of Web Services Configuration Servlet
	33-3 XML Schema for Database Queries To Be Processed by Web Service
	33-4 Input XML Document for SQL Query using Query Web Service
	33-5 Output XML Document for SQL Query using Query Web Service
	33-6 Definition of PL/SQL Function Used for Web-Service Access
	33-7 WSDL Document Corresponding to a Stored PL/SQL Function
	33-8 Input XML Document for PL/SQL Query using Web Service
	33-9 Output XML Document for PL/SQL Query using Web Service
	34-1 Oracle XML DB Configuration File
	34-2 Updating the Configuration File using CFG_UPDATE and CFG_GET
	35-1 Data File filelist.dat: List of XML Files to Load
	35-2 Control File load_datra.ctl, for Loading Purchase-Order XML Documents
	35-3 Loading XML Data Using Shell Command sqlldr
	36-1 Exporting XMLType Data in TABLE Mode
	36-2 Importing XMLType Data in TABLE Mode
	36-3 Creating Table po2
	36-4 Exporting XMLType Data in SCHEMA Mode
	36-5 Importing XMLType Data in SCHEMA Mode
	36-6 Importing XMLType Data in SCHEMA Mode, Remapping Schema
	37-1 Creating a Queue Table and Queue
	37-2 Creating a Transformation to Convert Message Data to XML
	37-3 Applying a Transformation before Sending Messages Overseas
	37-4 XMLType and AQ: Dequeuing Messages
	A-1 Annotated Purchase-Order XML Schema, purchaseOrder.xsd
	A-2 Revised Purchase-Order XML Schema
	A-3 PurchaseOrder.xsl Style Sheet
	A-4 Inserting XML Data into an XMLType Table using C
	A-5 Using OCIXmlDbInitXmlCtx() and OCIXmlDbFreeXmlCtx()

8 XPath Rewrite for Structured Storage

This chapter explains the fundamentals of XPath rewrite for structured (object-relational) storage in Oracle XML DB. It details the rewriting of XPath-expression arguments to various SQL functions.

This chapter contains these topics:

	
Overview of XPath Rewrite for Structured Storage

	
Sample of XPath Expressions that Are Rewritten

	
Analyzing and Optimizing XPath Queries using Execution Plans

	
See Also:

"Performance Tuning for XQuery"

Overview of XPath Rewrite for Structured Storage

Oracle XML DB can often optimize queries that use XPath expressions — for example, queries involving SQL functions such as XMLQuery, XMLTable, XMLExists, and updateXML, which take XPath (XQuery) expressions as arguments. The XPath expression is, in effect, evaluated against the XML document without ever constructing the XML document in memory.

This optimization is called XPath rewrite. It is a proper subset of XML query optimization, which also involves optimization of XQuery expressions, such as FLWOR expressions, that are not XPath expressions. XPath rewrite also enables indexes, if present on the column, to be used in query evaluation by the Optimizer.

The XPath expressions that can be rewritten by Oracle XML DB are a proper subset of those that are supported by Oracle XML DB. Whenever you can do so without losing functionality, use XPath expressions that can be rewritten.

XPath rewrite can occur in these contexts (or combinations thereof):

	
When XMLType data is stored in an object-relational column or table (structured storage) or when an XMLType view is built on relational data.

	
When you use an XMLIndex index. See "XMLIndex".

	
When XMLType data is stored as binary XML. See "How Oracle XML DB Processes XMLType Methods and SQL Functions" for information about streaming evaluation.

This chapter covers the first case: rewriting queries that use structured XML data or XMLType views. The XMLType views can be XML schema-based or not. Structured storage of XMLType data is always XML schema-based. Examples in this chapter are related to XML schema-based tables.

Example 8-1 illustrates XPath rewrite for a simple query that uses an XPath expression.

Example 8-1 XPath Rewrite

SELECT po.OBJECT_VALUE FROM purchaseorder po
 WHERE XMLCast(XMLQuery('$p/PurchaseOrder/Requestor'
 PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
 AS VARCHAR2(128))
 = 'Sarah J. Bell';

The XMLCast(XMLQuery...)) expression here is rewritten to the underlying relational column that stores the requestor information for the purchase order. The query is rewritten to something like the following:Foot 1

SELECT OBJECT_VALUE FROM purchaseorder p
 WHERE CAST (p."XMLDATA"."REQUESTOR" AS VARCHAR2(128)) = 'Sarah J. Bell';

Sample of XPath Expressions that Are Rewritten

Table 8-1 describes some XPath expressions that are rewritten during XPath rewrite.

Table 8-1 Sample of XPath Expressions that Are Rewritten to Underlying SQL Constructs

	XPath Expression for Translation	Description
	
Simple XPath expressions (expressions with child and attribute axes only):

/PurchaseOrder/@Reference

/PurchaseOrder/Requestor

	
Involves traversals over object type attributes only, where the attributes are simple scalar or object types themselves.

	
Collection traversal expressions:

/PurchaseOrder/LineItems/LineItem/Part/@Id

	
Involves traversal of collection expressions. The only axes supported are child and attribute axes. Collection traversal is not supported if the SQL function is used during a CREATE INDEX operation.

	
Predicates:

[Requestor = "Sarah J. Bell"]

	
Predicates in the XPath are rewritten into SQL predicates.

	
List index (positional predicate):

LineItem[1]

	
Indexes are rewritten to access the nth item in a collection.

	
Wildcard traversals:

/PurchaseOrder/*/Part/@Id

	
If the wildcard can be translated to one or more simple XPath expressions, then it is rewritten.

	
Descendant axis (XML schema-based data only), without recursion:

/PurchaseOrder//Part/@Id

	
Similar to a wildcard expression. The descendant axis is rewritten if it can be mapped to one or more simple XPath expressions.

	
Descendant axis (XML schema-based data only), with recursion:

/PurchaseOrder//Part/@Id

	
The descendant axis is rewritten if both of these conditions holds:

	
All simple XPath expressions to which this XPath expression expands map to the same out-of-line table.

	
Any simple XPath expression to which this XPath expression does not expand does not map to that out-of-line table.

	
XPath functions

	
Some XPath functions are rewritten. These functions include not, floor, ceiling, substring, and string-length.

	
See Also:

"Performance Tuning for XQuery" for information about rewrite of XQuery expressions

Analyzing and Optimizing XPath Queries using Execution Plans

This section presents some guidelines for using execution plans to do the following, for queries that use XPath expressions:

	
Analyze query execution, to determine whether XPath rewrite occurs.

	
Optimize query execution, by using secondary indexes.

Use these guidelines together, taking all that apply into consideration.

As is true also for the rest of this chapter, this section is applicable only to XMLType data that is stored object-relationally (structured storage).

XPath rewrite for object-relational storage means that a query that selects XML fragments defined by an XPath expression is rewritten to a SQL SELECT statement on the underlying object-relational tables and columns. These underlying tables can include out-of-line tables.

	
See Also:

"XPath Rewrite for Out-Of-Line Tables"

Guideline: Look for underlying tables versus XML functions in execution plans

The execution plan of a query that has been rewritten refers to the object-relational tables and columns that underlie the queried XMLType data.

The names of the underlying tables can be meaningful to you, if they are derived from XML element or attribute names or if the governing XML schema explicitly names them by using annotation xdb:defaultTable. Otherwise, these names are system-generated and have no obvious meaning. In particular, they do not reflect the corresponding XML element or attribute names. Also, some system-generated columns are hidden. You do not see them if you use the SQL describe command. They nevertheless show up in execution plans.

The plan of a query that has not been rewritten shows only the base table names, and it typically refers to user-level XML functions, such as XMLExists. Look for this difference to determine whether a query has been optimized. The XML function name shown in an execution plan is actually the internal name (for example, XMLEXISTS2), which is sometimes slightly different from the user-level name.

Example 8-2 shows the kind of execution plan output that is generated when Oracle XML DB cannot perform XPath rewrite. The plan here is for a query that uses SQL/XML function XMLExists. The corresponding internal function XMLExists2 appears in the plan output, indicating that the query is not rewritten.

Example 8-2 Execution Plan Generated When XPath Rewrite Does Not Occur

Predicate Information (identified by operation id):

 1 - filter(XMLEXISTS2('$p/PurchaseOrder[User="SBELL"]' PASSING BY VALUE
 SYS_MAKEXML('61687B202644E297E040578C8A175C1D',4215,"PO"."XMLEXTRA","PO"."X
 MLDATA") AS "p")=1)

In this situation, Oracle XML DB constructs a pre-filtered result set based on any other conditions specified in the query WHERE clause. It then filters the rows in this potential result set to determine which rows belong in the result set. The filtering is performed by constructing a DOM on each document and performing a functional evaluation (using the methods defined by the DOM API) to determine whether or not each document is a member of the result set.

Guideline: Name the default tables, so you recognize them in execution plans

When designing an XML schema, use annotation xdb:defaultTable to name the underlying tables that correspond to elements that you select in queries where performance is important. This lets you easily recognize them in an execution plan, indicating by their presence or absence whether the query has been rewritten.

Guideline: Create an index on a column targeted by a predicate

A query resulting from XPath rewrite sometimes includes a SQL predicate (WHERE clause). This can happen even if the original query does not use an XPath predicate, and it can happen even if the original query does not have a SQL WHERE clause.

When this happens, you can sometimes improve performance by creating an index on the column that is targeted by the SQL predicate, or by creating an index on a function application to that column. Example 8-1 illustrates XPath rewrite for a query that includes a WHERE clause. Example 8-3 shows the predicate information from an execution plan for this query.

Example 8-3 Analyzing an Execution Plan to Determine a Column to Index

Predicate Information (identified by operation id):

 1 - filter(CAST("PURCHASEORDER"."SYS_NC00021$" AS VARCHAR2(128))='Sarah
 J. Bell' AND SYS_CHECKACL("ACLOID","OWNERID",xmltype('<privilege
 xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd
 http://xmlns.oracle.com/xdb/acl.xsd DAV:http://xmlns.oracle.com/xdb/dav.xsd
 "><read-properties/><read-contents/></privilege>'))=1)

The predicate information indicates that the expression XMLCast(XMLQuery...)) is rewritten to an application of SQL function cast to the underlying relational column that stores the requestor information for the purchase order, SYS_NC0021$. This column name is system-generated. The execution plan refers to this system-generated name, in spite of the fact that the governing XML schema uses annotation SQLName to name this column REQUESTOR.

Because these two names (user-defined and system-generated) refer to the same column, you can create a B-tree index on this column using either name. Alternatively, you can use the extractValue shortcut to create the index, by specifying an XPath expression that targets the purchase-order requestor data. Example 8-4 shows these three equivalent ways to create the B-tree index on the predicate-targeted column.

Example 8-4 Creating an Index on a Column Targeted by a Predicate

CREATE INDEX requestor_index ON purchaseorder ("SYS_NC00021$");

CREATE INDEX requestor_index ON purchaseorder ("XMLDATA"."REQUESTOR");

CREATE INDEX requestor_index ON purchaseorder
 (extractvalue(OBJECT_VALUE, '/PurchaseOrder/Requestor'));

However, for this particular query it makes sense to create a function-based index, using a functional expression that matches the one in the rewritten query. Example 8-5 illustrates this.

Example 8-5 Creating a Function-Based Index for a Column Targeted by a Predicate

CREATE INDEX requestor_index ON purchaseorder
 (cast("XMLDATA"."REQUESTOR" AS VARCHAR2(128)));

Example 8-6 shows an execution plan that indicates that the index is picked up.

Example 8-6 Execution Plan Showing that Index Is Picked Up

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		1	524	2 (0)	00:00:01
* 1	TABLE ACCESS BY INDEX ROWID	PURCHASEORDER	1	524	2 (0)	00:00:01
* 2	INDEX RANGE SCAN	REQUESTOR_INDEX	1		1 (0)	00:00:01

Predicate Information (identified by operation id):

 1 - filter(SYS_CHECKACL("ACLOID","OWNERID",xmltype('<privilege
 xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd
 http://xmlns.oracle.com/xdb/acl.xsd
 DAV:http://xmlns.oracle.com/xdb/dav.xsd">
 <read-properties/><read-contents/></privilege>'))=1)
 2 - access(CAST("SYS_NC00021$" AS VARCHAR2(128))='Sarah J. Bell')

In the particular case of this query, the original functional expression applies XMLCast to XMLQuery to target a singleton element, Requestor. This is a special case, where you can as a shortcut use such a functional expression directly in the CREATE INDEX statement. That statement is rewritten to create an index on the underlying scalar data. Example 8-7, which targets an XPath expression, thus has the same effect as Example 8-5, which targets the corresponding object-relational column.

Example 8-7 Creating a Function-Based Index for a Column Targeted by a Predicate

CREATE INDEX requestor_index
 ON purchaseorder po
 (XMLCast(XMLQuery('$p/PurchaseOrder/Requestor' PASSING po.OBJECT_VALUE AS "p"
 RETURNING CONTENT)
 AS VARCHAR2(128)));

	
See Also:

"Indexing Non-Repeating text() Nodes or Attribute Values" for information about using the shortcut of XMLCast applied to XMLQuery and the extractValue shortcut to index singleton data

Guideline: Create indexes on ordered collection tables

If a collection is stored as an ordered collection table or an XMLType instance, then you can directly access members of the collection. Each member of the collection becomes a row in a table, so you can access it directly with SQL.

You can often improve performance by indexing such collection members. You do this by creating a composite index on (a) the object attribute that corresponds to the collection XML element or its attribute and (b) pseudocolumn NESTED_TABLE_ID.

Example 8-8 shows the execution plan for a query to find the Reference elements in documents that contain an order for part number 717951002372 (Part element with an Id attribute of value 717951002372). The collection of LineItem elements is stored as rows in the ordered collection table lineitem_table.

	
Note:

Example 8-8 does not use the purchaseorder table from sample database schema OE. It uses the purchaseorder table defined in Example 3-13. This table uses an ordered collection table (OCT) named lineitem_table for the collection element LineItem.

Example 8-8 Execution Plan for a Selection of Collection Elements

SELECT XMLCast(XMLQuery('$p/PurchaseOrder/Reference'
 PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
 AS VARCHAR2(4000)) "Reference"
 FROM purchaseorder
 WHERE XMLExists('$p/PurchaseOrder/LineItems/LineItem/Part[@Id="717951002372"]'
 PASSING OBJECT_VALUE AS "p");

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		1	122	16 (13)	00:00:01
1	NESTED LOOPS					
2	NESTED LOOPS		1	122	16 (13)	00:00:01
3	SORT UNIQUE		1	50	14 (8)	00:00:01
* 4	TABLE ACCESS FULL	LINEITEM_TABLE	1	50	14 (8)	00:00:01
* 5	INDEX UNIQUE SCAN	LINEITEM_TABLE_MEMBERS	1		0 (0)	00:00:01
6	TABLE ACCESS BY INDEX ROWID	PURCHASEORDER	1	72	1 (0)	00:00:01

Predicate Information (identified by operation id):

 4 - filter("SYS_NC00009$" IS NOT NULL AND "SYS_NC00011$"='717951002372')
 5 - access("NESTED_TABLE_ID"="PURCHASEORDER"."SYS_NC0003400035$")

The execution plan shows a full scan of ordered collection table lineitem_table. This could be acceptable if there were only a few hundred documents in the purchaseorder table, but it would be unacceptable if there were thousands or millions of documents in the table.

To improve the performance of such a query, you can create an index that provides direct access to pseudocolumn NESTED_TABLE_ID, given the value of attribute Id. Unfortunately, Oracle XML DB does not allow indexes on collections to be created using XPath expressions directly. To create the index, you must understand the structure of the SQL object that is used to manage the LineItem elements. Given this information, you can create the required index using conventional object-relational SQL.

In this case, element LineItem is stored as an instance of object type lineitem_t. Element Part is stored as an instance of SQL data type part_t. XML attribute Id is mapped to object attribute part_number. Given this information, you can create a composite index on attribute part_number and pseudocolumn NESTED_TABLE_ID, as shown in Example 8-9. This index provides direct access to those purchase-order documents that have LineItem elements that reference the required part.

Example 8-9 Creating an Index for Direct Access to an Ordered Collection Table

CREATE INDEX lineitem_part_index ON lineitem_table l (l.part.part_number, l.NESTED_TABLE_ID);

Guideline: Use XMLOptimizationCheck to determine why a query is not rewritten

If a query has not been optimized, you can use system variable XMLOptimizationCheck to try to determine why.

	
See Also:

"Diagnosing XQuery Optimization: XMLOptimizationCheck"

Footnote Legend

Footnote 1: This example uses sample database schema OE and its table purchaseorder. The XML schema for this table is annotated with attribute SQLName to specify SQL object attribute names such as REQUESTOR — see Example 3-10. Without such annotations, this example would use p."XMLDATA"."Requestor", not p."XMLDATA".".REQUESTOR".

Part VI

Oracle Tools that Support Oracle XML DB

Part VI of this manual provides information about Oracle tools that you can use with Oracle XML DB. It describes tools for managing Oracle XML DB, loading XML data, and exchanging XML data.

Part VI contains the following chapters:

	
Chapter 34, "Administering Oracle XML DB"

	
Chapter 35, "Loading XML Data using SQL*Loader"

	
Chapter 36, "Exporting and Importing XMLType Tables"

	
Chapter 37, "Exchanging XML Data using Oracle Streams AQ"

5 Using XQuery with Oracle XML DB

This chapter describes how to use the XQuery language with Oracle XML DB. It covers Oracle XML DB support for the language, including SQL/XML functions XMLQuery and XMLTable and the SQL*Plus XQUERY command.

This chapter contains these topics:

	
Overview of XQuery in Oracle XML DB

	
Overview of the XQuery Language

	
SQL/XML Functions XMLQUERY and XMLTABLE

	
When To Use XQuery

	
Predefined Namespaces and Prefixes

	
URI Scheme oradb: Querying Table or View Data with XQuery

	
Oracle XQuery Extension Functions

	
XMLQUERY and XMLTABLE Examples

	
Performance Tuning for XQuery

	
XQuery Static Type-Checking in Oracle XML DB

	
SQL*Plus XQUERY Command

	
Using XQuery with PL/SQL, JDBC, and ODP.NET

	
Oracle XML DB Support for XQuery

Overview of XQuery in Oracle XML DB

Oracle XML DB support for the XQuery language is provided through a native implementation of SQL/XML functions XMLQuery and XMLTable. As a convenience, SQL*Plus command XQUERY is also provided, which lets you enter XQuery expressions directly — in effect, this command turns SQL*Plus into an XQuery command-line interpreter.

Oracle XML DB compiles XQuery expressions that are passed as arguments to SQL/XML functions XMLQuery, XMLTable, XMLExists, and XMLCast. This compilation produces SQL query blocks and operator trees that use SQL/XML functions and XPath functions. A SQL statement that includes XMLQuery, XMLTable, XMLExists, or XMLCast is compiled and optimized as a whole, leveraging both relational database and XQuery-specific optimization technologies. Depending on the XML storage and indexing methods used, XPath functions can be further optimized. The resulting optimized operator tree is executed in a streaming fashion.

	
See Also:

	
SQL/XML Functions XMLQUERY and XMLTABLE and SQL*Plus XQUERY Command

	
Oracle XQuery Extension Functions for Oracle-specific XQuery functions that extend the language

	
Oracle XML DB Support for XQuery for details on Oracle XML DB support for XQuery

Overview of the XQuery Language

Oracle XML DB supports the latest version of the XQuery language specification, W3C XQuery 1.0 Recommendation. This section presents a brief overview of the language. For more information, consult a recent book on the language or refer to the standards documents that define it, which are available at http://www.w3c.org.

Functional Language Based on Sequences

XQuery 1.0 is the W3C language designed for querying XML data. It is similar to SQL in many ways, but just as SQL is designed for querying structured, relational data, XQuery is designed especially for querying semi-structured, XML data from a variety of data sources. You can use XQuery to query XML data wherever it is found, whether it is stored in database tables, available through Web Services, or otherwise created on the fly. In addition to querying XML data, XQuery can be used to construct XML data. In this regard, XQuery can serve as an alternative or a complement to both XSLT and the other SQL/XML publishing functions, such as XMLElement.

XQuery builds on the Post-Schema-Validation Infoset (PSVI) data model, which unites the XML Information Set (Infoset) data model and the XML Schema type system. XQuery defines a new data model based on sequences: the result of each XQuery expression is a sequence. XQuery is all about manipulating sequences. This makes XQuery similar to a set-manipulation language, except that sequences are ordered and can contain duplicate items. XQuery sequences differ from the sequences in some other languages in that nested XQuery sequences are always flattened in their effect.

In many cases, sequences can be treated as unordered, to maximize optimization – where this is available, it is under your control. This unordered mode can be applied to join order in the treatment of nested iterations (for), and it can be applied to the treatment of XPath expressions (for example, in /a/b, the matching b elements can be processed without regard to document order).

An XQuery sequence consists of zero or more items, which can be either atomic (scalar) values or XML nodes. Items are typed using a rich type system that is based upon the types of XML Schema. This type system is a major change from that of XPath 1.0, which is limited to simple scalar types such as Boolean, number, and string.

XQuery is a functional language. As such, it consists of a set of possible expressions that are evaluated and return values (which, for XQuery, are sequences). As a functional language, XQuery is also referentially transparent, generally: the same expression evaluated in the same context returns the same value.

Exceptions to this desirable mathematical property include the following:

	
XQuery expressions that derive their value from interaction with the external environment. For example, an expression such as fn:current-time(...) or fn:doc(...) does not necessarily always return the same value, since it depends on external conditions that can change (the time changes; the content of the target document might change).

In some cases, like that of fn:doc, XQuery is defined to be referentially transparent within the execution of a single query: within a query, each invocation of fn:doc with the same argument results in the same document.

	
XQuery expressions that are defined to be dependent on the particular XQuery language implementation. The result of evaluating such expressions might vary between implementations. Function fn:doc is an example of a function that is essentially implementation-defined.

Referential transparency applies also to XQuery variables: the same variable in the same context has the same value. Functional languages are like mathematics formalisms in this respect and unlike procedural, or imperative, programming languages. A variable in a procedural language is really a name for a memory location; it has a current value, or state, as represented by its content at any time. A variable in a declarative language such as XQuery is really a name for a static value.

XQuery Expressions

XQuery expressions are case-sensitive. The expressions include the following:

	
primary expression – literal, variable, or function application. A variable name starts with a dollar-sign ($) – for example, $foo. Literals include numerals, strings, and character or entity references.

	
XPath expression – Any XPath expression. The XPath 2.0 standard is a subset of XQuery.

	
FLWOR expression – The most important XQuery expression, composed of the following, in order, from which FLWOR takes its name: for, let, where, order by, return.

	
XQuery sequence – The comma (,) constructor creates sequences. Sequence-manipulating functions such as union and intersect are also available. All XQuery sequences are effectively flat: a nested sequence is treated as its flattened equivalent. Thus, for instance, (1, 2, (3, 4, (5), 6), 7) is treated as (1, 2, 3, 4, 5, 6, 7). A singleton sequence, such as (42), acts the same in most XQuery contexts as does its single item, 42. Remember that the result of any XQuery expression is a sequence.

	
Direct (literal) constructions – XML element and attribute syntax automatically constructs elements and attributes: what you see is what you get. For example, the XQuery expression <a>33 constructs the XML element <a>33.

	
Computed (dynamic) constructions – You can construct XML data at run time using computed values. For example, the following XQuery expression constructs this XML data: <foo toto="5"><bar>tata titi</bar> why? </foo>.

<foo>attribute toto {2+3},
 element bar {"tata", "titi"},
 text {" why? "}</foo>

In this example, element foo is a direct construction; the other constructions are computed. In practice, the arguments to computed constructors are not literals (such as toto and "tata"), but expressions to be evaluated (such as 2+3). Both the name and the value arguments of an element or attribute constructor can be computed. Braces ({, }) are used to mark off an XQuery expression to be evaluated.

	
Conditional expression – As usual, but remember that each part of the expression is itself an arbitrary expression. For instance, in this conditional expression, each of these subexpressions can be any XQuery expression: something, somethingElse, expression1, and expression2.

 if (something < somethingElse) then expression1 else expression2

	
Arithmetic, relational expression – As usual, but remember that each relational expression returns a (BooleanFoot 1) value. Examples:

2 + 3
42 < $a + 5
(1, 4) = (1, 2)
5 > 3 eq true()

	
Quantifier expression – Universal (every) and existential (some) quantifier functions provide shortcuts to using a FLWOR expression in some cases. Examples:

every $foo in doc("bar.xml")//Whatever satisfies $foo/@bar > 42
some $toto in (42, 5), $titi in (123, 29, 5) satisfies $toto = $titi

	
Regular expression – XQuery regular expressions are based on XML Schema 1.0 and Perl. (See Support for XQuery Functions and Operators.)

	
Type expression – An XQuery expression that represents an XQuery type. Examples: item(), node(), attribute(), element(), document-node(), namespace(), text(), xs:integer, xs:string.Foot 2

Type expressions can have occurrence indicators: ? (optional: zero or one), * (zero or more), + (one or more). Examples: document-node(element())*, item()+, attribute()?.

XQuery also provides operators for working with types. These include cast as, castable as, treat as, instance of, typeswitch, and validate. For example, "42" cast as xs:integer is an expression whose value is the integer 2. (It is not, strictly speaking, a type expression, because its value does not represent a type.)

FLWOR Expressions

As for XQuery in general, there is a lot to learn about FLWOR expressions. This section provides only a brief overview.

FLWOR is the most general expression syntax in XQuery. FLWOR (pronounced "flower") stands for for, let, where, order by, and return. A FLWOR expression has at least one for or let clause and a return clause; single where and order by clauses are optional.

	
for – Bind one or more variables each to any number of values, in turn. That is, for each variable, iterate, binding the variable to a different value for each iteration.

At each iteration, the variables are bound in the order they appear, so that the value of a variable $earlier that is listed before a variable $later in the for list, can be used in the binding of variable $later. For example, during its second iteration, this expression binds $i to 4 and $j to 6 (2+4):

 for $i in (3, 4), $j in ($i, 2+$i)

	
let – Bind one or more variables.

Just as with for, a variable can be bound by let to a value computed using another variable that is listed previously in the binding list of the let (or an enclosing for or let). For example, this expression binds $j to 5 (3+2):

let $i := 3, $j := $i + 2

	
where – Filter the for and let variable bindings according to some condition. This is similar to a SQL WHERE clause.

	
order by – Sort the result of where filtering.

	
return – Construct a result from the ordered, filtered values. This is the result of the FLWOR expression as a whole. It is a flattened sequence.

Expressions for and let act similarly to a SQL FROM clause. Expression where acts like a SQL WHERE clause Expression order by is similar to ORDER BY in SQL. Expression return is like SELECT in SQL. Except for the two keywords whose names are the same in both languages (where, order by), FLWOR clause order is more or less opposite to the SQL clause order, but the meanings of the corresponding clauses are quite similar.

Note that using a FLWOR expression (with order by) is the only way to construct an XQuery sequence in any order other than document order.

SQL/XML Functions XMLQUERY and XMLTABLE

SQL/XML functions XMLQuery, XMLTable, XMLExists, and XMLCast are defined by the SQL/XML standard as a general interface between the SQL and XQuery languages. As is the case for the other SQL/XML functions, these functions let you take advantage of the power and flexibility of both SQL and XML. Using these functions, you can construct XML data using relational data, query relational data as if it were XML, and construct relational data from XML data.

SQL functions XMLExists and XMLCast are documented elsewhere in this manual. This section presents functions XMLQuery and XMLTable, but many of the examples in this chapter use also XMLExists, and XMLCast. In terms of typical use:

	
XMLQuery and XMLCast are typically used in a SELECT list.

	
XMLTable is typically used in a SQL FROM clause.

	
XMLExists is typically used in a SQL WHERE clause.

Both XMLQuery and XMLTable evaluate an XQuery expression. In the XQuery language, an expression always returns a sequence of items. Function XMLQuery aggregates the items in this sequence to return a single XML document or fragment. Function XMLTable returns a SQL table whose rows each contain one item from the XQuery sequence.

	
See Also:

	
Oracle Database SQL Language Reference for information about Oracle support for the SQL/XML standard

	
http://www.sqlx.org for information about SQL/XML functions

	
http://www.w3.org for information about the XQuery language

	
"Generating XML using SQL Functions" for information about using other SQL/XML functions with Oracle XML DB

	
"Querying XMLType Data using SQL/XML Functions XMLExists and XMLCast"

XMLQUERY SQL/XML Function in Oracle XML DB

You use SQL/XML function XMLQuery to construct or query XML data. This function takes as arguments an XQuery expression, as a string literal, and an optional XQuery context item, as a SQL expression. The context item establishes the XPath context in which the XQuery expression is evaluated. Additionally, XMLQuery accepts as arguments any number of SQL expressions whose values are bound to XQuery variables during the XQuery expression evaluation. The function returns the result of evaluating the XQuery expression, as an XMLType instance.

Figure 5-1 XMLQUERY Syntax

[image: Description of Figure 5-1 follows]

XML_passing_clause ::=

[image: Description of xml_passing_clause.gif follows]

	
XQuery_string is a complete XQuery expression, possibly including a prolog, as a literal string.

	
The XML_passing_clause is the keyword PASSING followed by one or more SQL expressions (expr) that each return an XMLType instance or an instance of a SQL scalar data type (that is, not an object or collection data type). Each expression (expr) can be a table or view column value, a PL/SQL variable, or a bind variable with proper casting. All but possibly one of the expressions must each be followed by the keyword AS and an XQuery identifier. The result of evaluating each expr is bound to the corresponding identifier for the evaluation of XQuery_string. If there is an expr that is not followed by an AS clause, then the result of evaluating that expr is used as the context item for evaluating XQuery_string. Oracle XML DB supports only passing BY VALUE, not passing BY REFERENCE, so the clause BY VALUE is implicit and can be omitted.

	
RETURNING CONTENT indicates that the value returned by an application of XMLQuery is an instance of parameterized XML type XML(CONTENT), not parameterized type XML(SEQUENCE). It is a document fragment that conforms to the extended Infoset data model. As such, it is a single document node with any number of children. The children can each be of any XML node type; in particular, they can be text nodes.

Oracle XML DB supports only the RETURNING CONTENT clause of SQL/XML function XMLQuery; it does not support the RETURNING SEQUENCE clause.

You can pass an XMLType column, table, or view as the context-item argument to function XMLQuery — see, for example, Example 5-8.

To query a relational table or view as if it were XML data, without having to first create a SQL/XML view on top of it, use XQuery function fn:collection within an XQuery expression, passing as argument a URI that uses the URI-scheme name oradb together with the database location of the data. See "URI Scheme oradb: Querying Table or View Data with XQuery".

	
Note:

Prior to Oracle Database 11g Release 2, some users employed Oracle SQL functions extract and extractValue to do some of what can be done better using SQL/XML functions XMLQuery and XMLCast. SQL functions extract and extractValue are deprecated in Oracle Database 11g Release 2.

	
See Also:

	
http://www.sqlx.org for information about the definition of SQL/XML function XMLQuery

	
Oracle Database SQL Language Reference for reference information about SQL/XML function XMLQuery in Oracle Database

XMLTABLE SQL/XML Function in Oracle XML DB

You use SQL/XML function XMLTable to decompose the result of an XQuery-expression evaluation into the relational rows and columns of a new, virtual table. You can then insert the virtual table into a pre-existing database table, or you can query it using SQL — in a join expression, for example (see Example 5-9). You use XMLTable in a SQL FROM clause.

Figure 5-2 XMLTABLE Syntax

[image: Description of Figure 5-2 follows]

XML_namespaces_clause ::=

[image: Description of xml_namespaces_clause.gif follows]

XMLTABLE_options ::=

[image: Description of xmltable_options.gif follows]

XML_passing_clause ::=

[image: Description of xml_passing_clause.gif follows]

XML_table_column ::=

[image: Description of xml_table_column.gif follows]

	
XQuery_string is a complete XQuery expression, possibly including a prolog, as a literal string. The value of the expression serves as input to the XMLTable function; it is this XQuery result that is decomposed and stored as relational data.

	
The optional XMLNAMESPACES clause contains XML namespace declarations that are referenced by XQuery_string and by the XPath expression in the PATH clause of XML_table_column.

	
The XML_passing_clause is the keyword PASSING followed by one or more SQL expressions (expr) that each return an XMLType instance or an instance of a SQL scalar data type (that is, not an object or collection data type). Each expression (expr) can be a table or view column value, a PL/SQL variable, or a bind variables with proper casting. All but possibly one of the expressions must each be followed by the keyword AS and an XQuery identifier. The result of evaluating each expr is bound to the corresponding identifier for the evaluation of XQuery_string. If there is an expr that is not followed by an AS clause, then the result of evaluating that expr is used as the context item for evaluating XQuery_string. Oracle XML DB supports only passing BY VALUE, not passing BY REFERENCE, so the clause BY VALUE is implicit and can be omitted.

	
The optional COLUMNS clause defines the columns of the virtual table to be created by XMLTable.

	
If you omit the COLUMNS clause, then XMLTable returns a row with a single XMLType pseudo-column, named COLUMN_VALUE.

	
FOR ORDINALITY specifies that column is to be a column of generated row numbers (SQL data type NUMBER). There must be at most one FOR ORDINALITY clause.

	
For each resulting column except the FOR ORDINALITY column, you must specify the column data type, which can be XMLType or any other SQL data type (called datatype in the syntax description).

	
The optional PATH clause specifies that the portion of the XQuery result that is addressed by XQuery expression string is to be used as the column content. You can use multiple PATH clauses to split the XQuery result into different virtual-table columns.

If you omit PATH, then the XQuery expression column is assumed. For example, these two expressions are equivalent:

XMLTable(... COLUMNS foo)
XMLTable(... COLUMNS foo PATH 'FOO')

The XQuery expression string must represent a relative path; it is relative to the path XQuery_string.

	
The optional DEFAULT clause specifies the value to use when the PATH expression results in an empty sequence (or NULL). Its expr is an XQuery expression that is evaluated to produce the default value.

	
See Also:

	
http://www.sqlx.org for information about the definition of SQL/XML function XMLTable

	
Oracle Database SQL Language Reference for reference information about SQL/XML function XMLTable in Oracle Database

	
Note:

Prior to Oracle Database 11g Release 2, some users employed Oracle SQL function XMLSequence within a SQL TABLE collection expression, that is, TABLE(XMLSequence(...)), to do some of what can be done better using SQL/XML function XMLTable. Function XMLSequence is deprecated in Oracle Database 11g Release 2.
See Oracle Database SQL Language Reference for information about the SQL TABLE collection expression.

When To Use XQuery

You can use XQuery to do many of the same things that you might do using the SQL/XML generation functions or XSLT; there is a great deal of overlap. The decision to use one or the other tool to accomplish a given task can be based on many considerations, most of which are not specific to Oracle Database. Please consult external documentation on this general question.

One general rule of thumb is that XQuery is often used when the focus is the world of XML data, while the SQL/XML generation functions (XMLElement, XMLAgg, and so on) are often used when the focus is the world of relational data.

Other things being equal, if a query constructs an XML document from fragments extracted from existing XML documents, then it is likely that an XQuery FLOWR expression is simpler (simplifying code maintenance) than extracting scalar values from relational data and constructing appropriate XML data using SQL/XML generation functions. If, instead, a query constructs an XML document from existing relational data, the SQL/XML generation functions can often be more suitable.

With respect to Oracle XML DB, you can expect the same general level of performance using the SQL/XML generation functions as with XMLQuery and XMLTable — all are subject to rewrite optimizations.

Predefined Namespaces and Prefixes

The following namespaces and prefixes are predefined for use with XQuery in Oracle XML DB:

Table 5-1 Predefined Namespaces and Prefixes

	Prefix	Namespace	Description
	
ora

	
http://xmlns.oracle.com/xdb

	
Oracle XML DB namespace

	
local

	
http://www.w3.org/2003/11/xpath-local-functions

	
XPath local function declaration namespace

	
fn

	
http://www.w3.org/2003/11/xpath-functions

	
XPath function namespace

	
xml

	
http://www.w3.org/XML/1998/namespace

	
XML namespace

	
xs

	
http://www.w3.org/2001/XMLSchema

	
XML Schema namespace

	
xsi

	
http://www.w3.org/2001/XMLSchema-instance

	
XML Schema instance namespace

You can use these prefixes in XQuery expressions without first declaring them in the XQuery-expression prolog. You can redefine any of them except xml in the prolog. All of these prefixes except ora are predefined in the XQuery standard.

URI Scheme oradb: Querying Table or View Data with XQuery

You can use XQuery functions fn:doc and fn:collection to query resources in Oracle XML DB Repository — see"Querying XML Data in Oracle XML DB Repository using XQuery". This section is about using XQuery function fn:collection to query data in database tables and views.

To do this, you pass function fn:collection a URI argument that specifies the table or view to query. The Oracle URI scheme oradb identifies this usage: without it, the argument is treated as a repository location.

The table or view that is queried can be relational or of type XMLType. If relational, its data is converted on the fly and treated as XML. The result returned by fn:collection is always an XQuery sequence.

	
For an XMLType table, the root element of each XML document returned by fn:collection is the same as the root element of an XML document in the table.

	
For a relational table, the root element of each XML document returned by fn:collection is ROW. The children of the ROW element are elements with the same names (uppercase) as columns of the table. The content of a child element corresponds to the column data. That content is an XML element if the column is of type XMLType; otherwise (the column is a scalar type), the content is of type xs:string.

The format of the URI argument passed to fn:collection is as follows:

	
For an XMLType or relational table or view, TABLE, in database schema DB-SCHEMA:

oradb:/DB-SCHEMA/TABLE/

You can use PUBLIC for DB-SCHEMA if TABLE is a public synonym or TABLE is a table or view that is accessible to the database user currently logged in.

	
For an XMLType column in a relational table or view:

oradb:/DB-SCHEMA/REL-TABLE/ROWPRED/X-COL

REL-TABLE is a relational table or view; PRED is an XPath predicate that does not involve any XMLType columns; and X-COL is an XMLType column in REL-TABLE. PRED is optional; DB-SCHEMA, REL-TABLE, and X-COL are required.

Optional XPath predicate PRED must satisfy the following conditions:

	
It does not involve any XMLType columns.

	
It involves only conjunctions (and) and disjunctions (or) of general equality and inequality comparisons (=, !=, >, <, >=, and <=).

	
For each comparison operation: Either both sides name (non-XML) columns in REL-TABLE or one side names such a column and the other is a value of the proper type, as specified in Table 5-2. Use of any other type raises an error.

Table 5-2 oradb Expressions: Column Types for Comparisons

	Relational Column Type	XQuery Value Type
	
VARCHAR2, CHAR

	
xs:string or string literal

	
NUMBER, FLOAT, BINARY_FLOAT, BINARY_DOUBLE

	
xs:decimal, xs:float, xs:double, or numeric literal

	
DATE, TIMESTAMP, TIMESTAMP WITH TIMEZONE, TIMESTAMP WITH LOCAL TIMEZONE

	
xs:date, xs:time, or xs:dateTime

	
INTERVAL YEAR TO MONTH

	
xs:yearMonthDuration

	
INTERVAL DAY TO SECOND

	
xs:dayTimeDuration

	
RAW

	
xs:hexBinary

	
ROWID

	
xs:string or string literal

For example, this XQuery expression represents all XML documents in XMLType column warehouse_spec of table oe.warehouses, for the rows where column warehouse_id has a value less than 6:

fn:collection('oradb:/OE/WAREHOUSES/ROW[WAREHOUSE_ID < 6]/WAREHOUSE_SPEC')

	
See Also:

"Querying Table or View Data using XQuery"

Oracle XQuery Extension Functions

Oracle XML DB adds some XQuery functions to those provided in the W3C standard. These additional functions are in the Oracle XML DB namespace, http://xmlns.oracle.com/xdb, which uses the predefined prefix ora. This section describes these Oracle extension functions.

ora:contains XQuery Function

ora:contains Syntax

ora:contains (input_text, text_query [, policy_name] [, policy_owner])

XQuery and XPath function ora:contains can be used in an XQuery expression in a call to SQL/XML function XMLQuery, XMLTable, or XMLExists. It is used to restrict a structural search with a full-text predicate. Function ora:contains returns a positive integer when the input_text matches text_query (the higher the number, the more relevant the match), and zero otherwise. When used in an XQuery expression (that is not also an XPath expression), the XQuery return type is xs:integer(); when used in an XPath expression outside of an XQuery expression, the XPath return type is number.

Argument input_text must evaluate to a single text node or an attribute. The syntax and semantics of text_query in ora:contains are the same as text_query in contains, with a few restrictions.

	
See Also:

"ora:contains XQuery Function"

ora:matches XQuery Function

ora:matches Syntax

ora:matches (target_string, match_pattern [, match_parameter])

XQuery function ora:matches lets you use a regular expression to match text in a string. It returns true() if its target_string argument matches its regular-expression match_pattern argument and false() otherwise. If target_string is the empty sequence, false() is returned. Optional argument match_parameter is a code that qualifies matching: case-sensitivity and so on.

The behavior of XQuery function ora:matches is the same as that of SQL condition REGEXP_LIKE, but the types of its arguments are XQuery types instead of SQL data types. The argument types are as follows:

	
target_string – xs:string?Foot 3

	
match_pattern – xs:string

	
match_parameter – xs:string

	
See Also:

Oracle Database SQL Language Reference for information about SQL condition REGEXP_LIKE

ora:replace XQuery Function

ora:replace Syntax

ora:replace (target_string, match_pattern, replace_string [, match_parameter])

XQuery function ora:replace lets you use a regular expression to replace matching text in a string. Each occurrence in target_string that matches regular-expression match_pattern is replaced by replace_string. It returns the new string that results from the replacement. If target_string is the empty sequence, then the empty string ("") is returned. Optional argument match_parameter is a code that qualifies matching: case-sensitivity and so on.

The behavior of XQuery function ora:replace is the same as that of SQL function regexp_replace, but the types of its arguments are XQuery types instead of SQL data types. The argument types are as follows:

	
target_string – xs:string?Foot 4

	
match_pattern – xs:string

	
replace_string – xs:string

	
match_parameter – xs:string

In addition, ora:replace requires argument replace_string (it is optional in regexp_replace) and it does not use arguments for position and number of occurrences – search starts with the first character and all occurrences are replaced.

	
See Also:

Oracle Database SQL Language Reference for information about SQL function regexp_replace

ora:sqrt XQuery Function

ora:sqrt Syntax

ora:sqrt (number)

XQuery function ora:sqrt returns the square root of its numeric argument, which can be of XQuery type xs:decimal, xs:float, or xs:double. The returned value is of the same XQuery type as the argument.

ora:tokenize XQuery Function

ora:tokenize Syntax

ora:tokenize (target_string, match_pattern [, match_parameter])

XQuery function ora:tokenize lets you use a regular expression to split the input string target_string into a sequence of strings. It treats each substring that matches the regular-expression match_pattern as a separator indicating where to split.

It returns the sequence of tokens as an XQuery value of type xs:string* (a sequence of xs:string values). If target_string is the empty sequence, it is returned. Optional argument match_parameter is a code that qualifies matching: case-sensitivity and so on.

The argument types are as follows:

	
target_string – xs:string?Foot 5

	
match_pattern – xs:string

	
match_parameter – xs:string

Oracle XQuery Extension-Expression Pragmas

The W3C XQuery specification lets an implementation provide implementation-defined extension expressions. An XQuery extension expression is an XQuery expression that is enclosed in braces ({, }) and prefixed by an implementation-defined pragma.

The Oracle implementation provides the pragmas described in this section. No other pragmas are recognized than those listed here. Use of any other pragma, or use of any of these pragmas with incorrect pragma content (for example, (#ora:view_on_null something_else #)), raises an error.

In the ora:view_on_null examples here, assume that table null_test has columns a and b of type VARCHAR2(10), and that column b (but not a) is empty.

	
(#ora:defaultTable #) – Specify the default table used to store repository data. Use this to improve the performance of repository queries that use Query function fn:doc or fn:collection. See "Using Oracle XQuery Pragma ora:defaultTable".

	
(#ora:invalid_path empty #) – Treat an invalid XPath expression as if its targeted nodes do not exist. For example:

SELECT XMLQuery('(#ora:invalid_path empty #)
 {exists($p/PurchaseOrder//NotInTheSchema)}'
 PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
 FROM oe.purchaseorder p;

The XML schema for table oe.purchaseorder does not allow any such node NotInTheSchema as a descendant of node PurchaseOrder. Without the pragma, the use of this invalid XPath expression would raise an error. But with the pragma, the calling context acts just as if the XPath expression had targeted no nodes. That calling context in this example is XQuery function exists, which returns XQuery Boolean value false when passed an empty node sequence. (XQuery function exists is used in this example only to illustrate the behavior; the pragma is not especially related to function exists.)

	
(#ora:view_on_null empty #) – XQuery function fn:collection returns an empty XML element for each NULL column. For example, the following query returns <ROW><A>x</ROW>:

SELECT XMLQuery('(#ora:view_on_null empty #)
 {for $i in fn:collection("oradb:/PUBLIC/NULL_TEST")/ROW
 return $i}'
 RETURNING CONTENT)
 FROM DUAL;

	
(#ora:view_on_null null #) – XQuery function fn:collection returns no element for a NULL column. For example, the following query returns <ROW><A>x</ROW>:

SELECT XMLQuery('(#ora:view_on_null null #)
 {for $i in fn:collection("oradb:/PUBLIC/NULL_TEST")/ROW
 return $i}'
 RETURNING CONTENT)
 FROM DUAL;

	
(#ora:xq_proc #) – Do not optimize XQuery procedure calls in the XQuery expression that follows the pragma; use functional evaluation instead.

This has the same effect as the SQL hint /*+ NO_XML_QUERY_REWRITE */, but the scope of the pragma is only the XQuery expression that follows it (not an entire SQL statement).

	
See Also:

"Turning Off Use of XMLIndex" for information about optimizer hint NO_XML_QUERY_REWRITE

	
(#ora:xq_qry #) – Try to optimize the XQuery expression that follows the pragma. That is, if possible, do not evaluate it functionally.

As an example of using both ora:xq_proc and ora:xq_qry, in the following query the XQuery expression argument to XMLQuery will in general be evaluated functionally, but the fn:collection subexpressions that are preceded by pragma ora:xq_qry will be optimized, if possible.

SELECT XMLQuery('(#ora:xq_proc#) (: Do not optimize the XQuery expression :)
 {for $i in (#ora:xq_qry#) (: Optimize this subexpression :)
 {fn:collection("oradb:/HR/REGIONS")},
 $j in (#ora:xq_qry#) (: Optimize this subexpression :)
 {fn:collection("oradb:/HR/COUNTRIES")}
 where $i/ROW/REGION_ID = $j/ROW/REGION_ID
 and $i/ROW/REGION_NAME = $regionname
 return $j}'
 PASSING CAST('®ION' AS VARCHAR2(40)) AS "regionname"
 RETURNING CONTENT)
 AS asian_countries FROM DUAL;

XMLQUERY and XMLTABLE Examples

XQuery is a very general and expressive language, and SQL/XML functions XMLQuery, XMLTable, and XMLExists combine that power of expression and computation with the similar strengths of SQL. This section illustrates some of what you can do with these two SQL/XML functions. See "XMLEXISTS SQL/XML Function" for information about XMLExists.

You typically use XQuery with Oracle XML DB in the following ways. The examples here are organized to reflect these different uses.

	
Query XML data in Oracle XML DB Repository.

See "Querying XML Data in Oracle XML DB Repository using XQuery".

	
Query a relational table or view as if it were XML data. To do this, you use Oracle XQuery function fn:collection, passing as argument a URI that uses the URI-scheme name oradb together with the database location of the data.

See "Querying Table or View Data using XQuery".

	
Query XMLType relational data, possibly decomposing the resulting XML into relational data using function XMLTable.

See "Using XQuery with XMLType Data".

Example 5-1 creates Oracle XML DB Repository resources that are used in some of the other examples in this chapter.

Example 5-1 Creating Resources for Examples

DECLARE
 res BOOLEAN;
 empsxmlstring VARCHAR2(300):=
 '<?xml version="1.0"?>
 <emps>
 <emp empno="1" deptno="10" ename="John" salary="21000"/>
 <emp empno="2" deptno="10" ename="Jack" salary="310000"/>
 <emp empno="3" deptno="20" ename="Jill" salary="100001"/>
 </emps>';
 empsxmlnsstring VARCHAR2(300):=
 '<?xml version="1.0"?>
 <emps xmlns="http://example.com">
 <emp empno="1" deptno="10" ename="John" salary="21000"/>
 <emp empno="2" deptno="10" ename="Jack" salary="310000"/>
 <emp empno="3" deptno="20" ename="Jill" salary="100001"/>
 </emps>';
 deptsxmlstring VARCHAR2(300):=
 '<?xml version="1.0"?>
 <depts>
 <dept deptno="10" dname="Administration"/>
 <dept deptno="20" dname="Marketing"/>
 <dept deptno="30" dname="Purchasing"/>
 </depts>';
BEGIN
 res := DBMS_XDB.createResource('/public/emps.xml', empsxmlstring);
 res := DBMS_XDB.createResource('/public/empsns.xml', empsxmlnsstring);
 res := DBMS_XDB.createResource('/public/depts.xml', deptsxmlstring);
END;
/

XQuery Is About Sequences

It is important to keep in mind that XQuery is a general sequence-manipulation language. Its expressions and their results are not necessarily XML data. An XQuery sequence can contain items of any XQuery type, which includes numbers, strings, Boolean values, dates, and various types of XML node (document-node(), element(), attribute(), text(), namespace(), and so on). Example 5-2 provides a sampling.

Example 5-2 XMLQuery Applied to a Sequence of Items of Different Types

SELECT XMLQuery('(1, 2 + 3, "a", 100 to 102, <A>33)'
 RETURNING CONTENT) AS output
 FROM DUAL;

OUTPUT

1 5 a 100 101 102<A>33

1 row selected.

Example 5-2 applies SQL/XML function XMLQuery to an XQuery sequence that contains items of several different kinds:

	
an integer literal: 1

	
a arithmetic expression: 2 + 3

	
a string literal: "a"

	
a sequence of integers: 100 to 102

	
a constructed XML element node: <A>33

Example 5-2 also shows construction of a sequence using the comma operator (,) and parentheses ((,)) for grouping.

The sequence expression 100 to 102 evaluates to the sequence (100, 101, 102), so the argument to XMLQuery here is a sequence that contains a nested sequence. The sequence argument is automatically flattened, as is always the case for XQuery sequences. The argument is, in effect, (1, 5, "a", 100, 101, 102, <A>33).

Querying XML Data in Oracle XML DB Repository using XQuery

This section presents examples of using XQuery with XML data in Oracle XML DB Repository. You use XQuery functions fn:doc and fn:collection to query file and folder resources in the repository, respectively. The examples in this section use XQuery function fn:doc to obtain a repository file that contains XML data, and then bind XQuery variables to parts of that data using for and let FLWOR-expression clauses.

	
See Also:

XQuery Functions fn:doc, fn:collection, and fn:doc-available

Example 5-3 queries two XML-document resources in Oracle XML DB Repository: /public/emps.xml and /public/depts.xml. It illustrates the use of fn:doc and each of the possible FLWOR-expression clauses.

Example 5-3 FLOWR Expression using for, let, order by, where, and return

SELECT XMLQuery('for $e in doc("/public/emps.xml")/emps/emp
 let $d :=
 doc("/public/depts.xml")//dept[@deptno = $e/@deptno]/@dname
 where $e/@salary > 100000
 order by $e/@empno
 return <emp ename="{$e/@ename}" dept="{$d}"/>'
 RETURNING CONTENT) FROM DUAL;

XMLQUERY('FOR$EINDOC("/PUBLIC/EMPS.XML")/EMPS/EMPLET$D:=DOC("/PUBLIC/DEPTS.XML")
--
<emp ename="Jack" dept="Administration"></emp><emp ename="Jill" dept="Marketing"
></emp>

1 row selected.

In Example 5-3, the various FLWOR clauses perform these operations:

	
for iterates over the emp elements in /public/emps.xml, binding variable $e to the value of each such element, in turn. That is, it iterates over a general list of employees, binding $e to each employee.

	
let binds variable $d to a sequence consisting of all of the values of dname attributes of those dept elements in /public/emps.xml whose deptno attributes have the same value as the deptno attribute of element $e (this is a join operation). That is, it binds $d to the names of all of the departments that have the same department number as the department of employee $e. (It so happens that the dname value is unique for each deptno value in depts.xml.) Note that, unlike for, let never iterates over values; $d is bound only once in this example.

	
Together, for and let produce a stream of tuples ($e, $d), where $e represents an employee and $d represents the names of all of the departments to which that employee belongs —in this case, the unique name of the employee's unique department.

	
where filters this tuple stream, keeping only tuples with employees whose salary is greater than 100,000.

	
order by sorts the filtered tuple stream by employee number, empno (in ascending order, by default).

	
return constructs emp elements, one for each tuple. Attributes ename and dept of these elements are constructed using attribute ename from the input and $d, respectively. Note that the element and attribute names emp and ename in the output have no necessary connection with the same names in the input document emps.xml.

Example 5-4 also uses each of the FLWOR-expression clauses. It shows the use of XQuery functions doc, count, avg, and integer, which are in the namespace for built-in XQuery functions, http://www.w3.org/2003/11/xpath-functions. This namespace is bound to the prefix fn.

Example 5-4 FLOWR Expression using Built-In Functions

SELECT XMLQuery('for $d in fn:doc("/public/depts.xml")/depts/dept/@deptno
 let $e := fn:doc("/public/emps.xml")/emps/emp[@deptno = $d]
 where fn:count($e) > 1
 order by fn:avg($e/@salary) descending
 return
 <big-dept>{$d,
 <headcount>{fn:count($e)}</headcount>,
 <avgsal>{xs:integer(fn:avg($e/@salary))}</avgsal>}
 </big-dept>'
 RETURNING CONTENT) FROM DUAL;

XMLQUERY('FOR$DINFN:DOC("/PUBLIC/DEPTS.XML")/DEPTS/DEPT/@DEPTNOLET$E:=FN:DOC("/P
--
<big-dept deptno="10"><headcount>2</headcount><avgsal>165500</avgsal></big-dept>

1 row selected.

In Example 5-4, the various FLWOR clauses perform these operations:

	
for iterates over deptno attributes in input document /public/depts.xml, binding variable $d to the value of each such attribute, in turn.

	
let binds variable $e to a sequence consisting of all of the emp elements in input document /public/emps.xml whose deptno attributes have value $d (this is a join operation).

	
Together, for and let produce a stream of tuples ($d, $e), where $d represents a department number and $e represents the set of employees in that department.

	
where filters this tuple stream, keeping only tuples with more than one employee.

	
order by sorts the filtered tuple stream by average salary in descending order. The average is computed by applying XQuery function avg (in namespace fn) to the values of attribute salary, which is attached to the emp elements of $e.

	
return constructs big-dept elements, one for each tuple produced by order by. The text() node of big-dept contains the department number, bound to $d. A headcount child element contains the number of employees, bound to $e, as determined by XQuery function count. An avgsal child element contains the computed average salary.

Querying Table or View Data using XQuery

This section presents examples of using XQuery to query relational data as if it were XML data.

Example 5-5 uses Oracle XQuery function fn:collection in a FLWOR expression to query two relational tables, regions and countries. Both tables belong to sample database schema HR. The example also passes scalar SQL value Asia to XQuery variable $regionname. Any SQL expression can be evaluated to produce a value passed to XQuery using PASSING. In this case, the value comes from a SQL*Plus variable, REGION. You must cast the value to the scalar SQL data type expected, in this case, VARCHAR2(40).

Example 5-5 Querying Relational Tables as XML

DEFINE REGION = 'Asia'
SELECT XMLQuery('for $i in fn:collection("oradb:/HR/REGIONS"),
 $j in fn:collection("oradb:/HR/COUNTRIES")
 where $i/ROW/REGION_ID = $j/ROW/REGION_ID
 and $i/ROW/REGION_NAME = $regionname
 return $j'
 PASSING CAST('®ION' AS VARCHAR2(40)) AS "regionname"
 RETURNING CONTENT) AS asian_countries
 FROM DUAL;

This produces the following result. (The result is shown here pretty-printed, for clarity.)

ASIAN_COUNTRIES

<ROW>
 <COUNTRY_ID>AU</COUNTRY_ID>
 <COUNTRY_NAME>Australia</COUNTRY_NAME>
 <REGION_ID>3</REGION_ID>
</ROW>
<ROW>
 <COUNTRY_ID>CN</COUNTRY_ID>
 <COUNTRY_NAME>China</COUNTRY_NAME>
 <REGION_ID>3</REGION_ID>
</ROW>
<ROW>
 <COUNTRY_ID>HK</COUNTRY_ID>
 <COUNTRY_NAME>HongKong</COUNTRY_NAME>
 <REGION_ID>3</REGION_ID>
</ROW>
<ROW>
 <COUNTRY_ID>IN</COUNTRY_ID>
 <COUNTRY_NAME>India</COUNTRY_NAME>
 <REGION_ID>3</REGION_ID>
</ROW>
<ROW>
 <COUNTRY_ID>JP</COUNTRY_ID>
 <COUNTRY_NAME>Japan</COUNTRY_NAME>
 <REGION_ID>3</REGION_ID>
</ROW>
<ROW>
 <COUNTRY_ID>SG</COUNTRY_ID>
 <COUNTRY_NAME>Singapore</COUNTRY_NAME>
 <REGION_ID>3</REGION_ID>
</ROW>

1 row selected.

In Example 5-5, the various FLWOR clauses perform these operations:

	
for iterates over sequences of XML elements returned by calls to fn:collection. In the first call, each element corresponds to a row of relational table hr.regions and is bound to variable $i. Similarly, in the second call to fn:collection, $j is bound to successive rows of table hr.countries. Since regions and countries are not XMLType tables, the top-level element corresponding to a row in each table is ROW (a wrapper element). Iteration over the row elements is unordered.

	
where filters the rows from both tables, keeping only those pairs of rows whose region_id is the same for each table (it performs a join on region_id) and whose region_name is Asia.

	
return returns the filtered rows from table hr.countries as an XML document containing XML fragments with ROW as their top-level element.

Example 5-6 uses fn:collection within nested FLWOR expressions to query relational data.

Example 5-6 Using Relational Data in a Nested FLWOR Query

CONNECT hr
Enter password: password

Connected.

GRANT SELECT ON LOCATIONS TO OE
/
CONNECT oe
Enter password: password

Connected.

SELECT XMLQuery(
 'for $i in fn:collection("oradb:/OE/WAREHOUSES")/ROW
 return <Warehouse id="{$i/WAREHOUSE_ID}">
 <Location>
 {for $j in fn:collection("oradb:/HR/LOCATIONS")/ROW
 where $j/LOCATION_ID eq $i/LOCATION_ID
 return ($j/STREET_ADDRESS, $j/CITY, $j/STATE_PROVINCE)}
 </Location>
 </Warehouse>'
 RETURNING CONTENT) FROM DUAL;

This query is an example of using nested FLWOR expressions. It accesses relational table warehouses, which is in sample database schema oe, and relational table locations, which is in sample database schema HR. To run this example as user oe, you must first connect as user hr and grant permission to user oe to perform SELECT operations on table locations.

This produces the following result. (The result is shown here pretty-printed, for clarity.)

XMLQUERY('FOR$IINFN:COLLECTION("ORADB:/OE/WAREHOUSES")/ROWRETURN<WAREHOUSEID="{$
--
<Warehouse id="1">
 <Location>
 <STREET_ADDRESS>2014 Jabberwocky Rd</STREET_ADDRESS>
 <CITY>Southlake</CITY>
 <STATE_PROVINCE>Texas</STATE_PROVINCE>
 </Location>
</Warehouse>
<Warehouse id="2">
 <Location>
 <STREET_ADDRESS>2011 Interiors Blvd</STREET_ADDRESS>
 <CITY>South San Francisco</CITY>
 <STATE_PROVINCE>California</STATE_PROVINCE>
 </Location>
</Warehouse>
<Warehouse id="3">
 <Location>
 <STREET_ADDRESS>2007 Zagora St</STREET_ADDRESS>
 <CITY>South Brunswick</CITY>
 <STATE_PROVINCE>New Jersey</STATE_PROVINCE>
 </Location>
</Warehouse>
<Warehouse id="4">
 <Location>
 <STREET_ADDRESS>2004 Charade Rd</STREET_ADDRESS>
 <CITY>Seattle</CITY>
 <STATE_PROVINCE>Washington</STATE_PROVINCE>
 </Location>
</Warehouse>
<Warehouse id="5">
 <Location>
 <STREET_ADDRESS>147 Spadina Ave</STREET_ADDRESS>
 <CITY>Toronto</CITY>
 <STATE_PROVINCE>Ontario</STATE_PROVINCE>
 </Location>
</Warehouse>
<Warehouse id="6">
 <Location>
 <STREET_ADDRESS>12-98 Victoria Street</STREET_ADDRESS>
 <CITY>Sydney</CITY>
 <STATE_PROVINCE>New South Wales</STATE_PROVINCE>
 </Location>
</Warehouse>
<Warehouse id="7">
 <Location>
 <STREET_ADDRESS>Mariano Escobedo 9991</STREET_ADDRESS>
 <CITY>Mexico City</CITY>
 <STATE_PROVINCE>Distrito Federal,</STATE_PROVINCE>
 </Location>
</Warehouse>
<Warehouse id="8">
 <Location>
 <STREET_ADDRESS>40-5-12 Laogianggen</STREET_ADDRESS>
 <CITY>Beijing</CITY>
 </Location>
</Warehouse>
<Warehouse id="9">
 <Location>
 <STREET_ADDRESS>1298 Vileparle (E)</STREET_ADDRESS>
 <CITY>Bombay</CITY>
 <STATE_PROVINCE>Maharashtra</STATE_PROVINCE>
 </Location>
</Warehouse>

1 row selected.

In Example 5-6, the various FLWOR clauses perform these operations:

	
The outer for iterates over the sequence of XML elements returned by fn:collection: each element corresponds to a row of relational table oe.warehouses and is bound to variable $i. Since warehouses is not an XMLType table, the top-level element corresponding to a row is ROW. The iteration over the row elements is unordered.

	
The inner for iterates, similarly, over a sequence of XML elements returned by fn:collection: each element corresponds to a row of relational table hr.locations and is bound to variable $j.

	
where filters the tuples ($i, $j), keeping only those whose location_id child is the same for $i and $j (it performs a join on location_id).

	
The inner return constructs an XQuery sequence of elements STREET_ADDRESS, CITY, and STATE_PROVINCE, all of which are children of locations-table ROW element $j; that is, they are the values of the locations-table columns of the same name.

	
The outer return wraps the result of the inner return in a Location element, and wraps that in a Warehouse element. It provides the Warehouse element with an id attribute whose value comes from the warehouse_id column of table warehouses.

	
See Also:

Example 5-15 for the execution plan of Example 5-6

Example 5-7 uses SQL/XML function XMLTable to decompose the result of an XQuery query to produce virtual relational data. The XQuery expression used in this example is identical to the one used in Example 5-6; the result of evaluating the XQuery expression is a sequence of Warehouse elements. Function XMLTable produces a virtual relational table whose rows are those Warehouse elements. More precisely, the value of pseudocolumn COLUMN_VALUE for each virtual-table row is an XML fragment (of type XMLType) with a single Warehouse element.

Example 5-7 Querying a Relational Table as XML using XMLTable

SELECT *
 FROM XMLTable(
 'for $i in fn:collection("oradb:/OE/WAREHOUSES")/ROW
 return <Warehouse id="{$i/WAREHOUSE_ID}">
 <Location>
 {for $j in fn:collection("oradb:/HR/LOCATIONS")/ROW
 where $j/LOCATION_ID eq $i/LOCATION_ID
 return ($j/STREET_ADDRESS, $j/CITY, $j/STATE_PROVINCE)}
 </Location>
 </Warehouse>');

This produces the same result as Example 5-6, except that each Warehouse element is output as a separate row, instead of all Warehouse elements being output together in a single row.

COLUMN_VALUE
--
<Warehouse id="1">
 <Location>
 <STREET_ADDRESS>2014 Jabberwocky Rd</STREET_ADDRESS>
 <CITY>Southlake</CITY>
 <STATE_PROVINCE>Texas</STATE_PROVINCE>
 </Location>
</Warehouse>
<Warehouse id="2">
 <Location>
 <STREET_ADDRESS>2011 Interiors Blvd</STREET_ADDRESS>
 <CITY>South San Francisco</CITY>
 <STATE_PROVINCE>California</STATE_PROVINCE>
 </Location>
</Warehouse>
. . .

9 rows selected.

	
See Also:

Example 5-16 for the execution plan of Example 5-7

Using XQuery with XMLType Data

This section presents examples of using XQuery with XMLType relational data.

The query in Example 5-8 passes an XMLType column, warehouse_spec, as context item to XQuery, using function XMLQuery with the PASSING clause. It constructs a Details element for each of the warehouses whose area is greater than 80,000: /Warehouse/ Area > 80000.

Example 5-8 Querying an XMLType Column using XMLQuery PASSING Clause

SELECT warehouse_name,
 XMLQuery(
 'for $i in /Warehouse
 where $i/Area > 80000
 return <Details>
 <Docks num="{$i/Docks}"/>
 <Rail>{if ($i/RailAccess = "Y") then "true" else "false"}
 </Rail>
 </Details>'
 PASSING warehouse_spec RETURNING CONTENT) big_warehouses
 FROM oe.warehouses;

This produces the following output:

WAREHOUSE_NAME

BIG_WAREHOUSES

Southlake, Texas

San Francisco

New Jersey
<Details><Docks num=""></Docks><Rail>false</Rail></Details>

Seattle, Washington
<Details><Docks num="3"></Docks><Rail>true</Rail></Details>

Toronto

Sydney

Mexico City

Beijing

Bombay

9 rows selected.

In Example 5-8, function XMLQuery is applied to the warehouse_spec column in each row of table warehouses. The various FLWOR clauses perform these operations:

	
for iterates over the Warehouse elements in each row of column warehouse_spec (the passed context item): each such element is bound to variable $i, in turn. The iteration is unordered.

	
where filters the Warehouse elements, keeping only those whose Area child has a value greater than 80,000.

	
return constructs an XQuery sequence of Details elements, each of which contains a Docks and a Rail child elements. The num attribute of the constructed Docks element is set to the text() value of the Docks child of Warehouse. The text() content of Rail is set to true or false, depending on the value of the RailAccess attribute of element Warehouse.

The SELECT statement in Example 5-8 applies to each row in table warehouses. The XMLQuery expression returns the empty sequence for those rows that do not match the XQuery expression. Only the warehouses in New Jersey and Seattle satisfy the XQuery query, so they are the only warehouses for which <Details>...</Details> is returned.

Example 5-9 uses SQL/XML function XMLTable to query an XMLType table, oe.purchaseorder, which contains XML Schema-based data. It uses the PASSING clause to provide the purchaseorder table as the context item for the XQuery-expression argument to XMLTable. Pseudocolumn COLUMN_VALUE of the resulting virtual table holds a constructed element, A10po, which contains the Reference information for those purchase orders whose CostCenter element has value A10 and whose User element has value SMCCAIN. The query performs a join between the virtual table and database table purchaseorder.

Example 5-9 Using XMLTABLE with XML Schema-Based Data

SELECT xtab.COLUMN_VALUE
 FROM purchaseorder, XMLTable('for $i in /PurchaseOrder
 where $i/CostCenter eq "A10"
 and $i/User eq "SMCCAIN"
 return <A10po pono="{$i/Reference}"/>'
 PASSING OBJECT_VALUE) xtab;

COLUMN_VALUE

<A10po pono="SMCCAIN-20021009123336151PDT"></A10po>
<A10po pono="SMCCAIN-20021009123336341PDT"></A10po>
<A10po pono="SMCCAIN-20021009123337173PDT"></A10po>
<A10po pono="SMCCAIN-20021009123335681PDT"></A10po>
<A10po pono="SMCCAIN-20021009123335470PDT"></A10po>
<A10po pono="SMCCAIN-20021009123336972PDT"></A10po>
<A10po pono="SMCCAIN-20021009123336842PDT"></A10po>
<A10po pono="SMCCAIN-20021009123336512PDT"></A10po>
<A10po pono="SMCCAIN-2002100912333894PDT"></A