

List of Figures

	2-1 Interaction Between Serializable Transaction and Another Transaction
	2-2 Referential Integrity Check
	2-3 Transaction Control Flow
	2-4 Possible Sequences of Autonomous Transactions
	2-5 Example: A Buy Order
	2-6 Bank Withdrawal—Sufficient Funds
	2-7 Bank Withdrawal—Insufficient Funds with Overdraft Protection
	2-8 Bank Withdrawal—Insufficient Funds Without Overdraft Protection
	5-1 Rows That Violate and Satisfy a UNIQUE Constraint
	5-2 Rows That Violate and Satisfy a FOREIGN KEY Constraint
	6-1 Exceptions and User-Defined Errors
	9-1 PL/SQL Web Application
	9-2 Processing Client Requests with Embedded PL/SQL Gateway
	11-1 Middle-Tier Caching
	11-2 Basic Process of Continuous Query Notification (CQN)
	13-1 The OCI or OCCI Development Process
	13-2 Software Layers
	13-3 Objects and Their Relations
	13-4 Supported Oracle Database Data Types
	14-1 Oracle Database and External Procedures
	15-1 Possible DTP Model
	16-1 Oracle Publish-Subscribe Functionality
	17-1 RFID Code Categories and Their Schemes
	17-2 Oracle Database Tag Data Translation Markup Language Schema
	A-1 Multithreaded extproc Agent Architecture

List of Tables

	1-1 SQL Character Data Types
	1-2 Binary Floating-Point Format Components
	1-3 Summary of Binary Format Storage Parameters
	1-4 Range and Precision of Floating-Point Data Types
	1-5 Special Values for Native Floating-Point Formats
	1-6 Values Resulting from Exceptions
	1-7 SQL Datetime Data Types
	1-8 SQL Conversion Functions for Datetime Data Types
	1-9 Large Objects (LOBs)
	1-10 Display Types of SQL Functions
	1-11 Data Type Families
	2-1 COMMIT Statement Options
	2-2 Use of COMMIT, SAVEPOINT, and ROLLBACK
	2-3 Examples of Concurrency Under Explicit Locking
	2-4 Ways to Display Locking Information
	2-5 ANSI/ISO SQL Isolation Levels and Possible Transaction Interactions
	2-6 ANSI/ISO SQL Isolation Levels Provided by Oracle Database
	2-7 Comparison of READ COMMITTED and SERIALIZABLE Transactions
	2-8 Possible Transaction Outcomes
	3-1 Oracle SQL Pattern-Matching Condition and Functions
	3-2 Pattern-Matching Options for Oracle SQL Pattern-Matching Condition and Functions
	3-3 POSIX Operators in Oracle SQL Regular Expressions
	3-4 POSIX Operators and Multilingual Operator Relationships
	3-5 PERL-Influenced Operators in Oracle SQL Regular Expressions
	3-6 Explanation of the Regular Expression Elements in Example 3-1
	3-7 Explanation of the Regular Expression Elements in Example 3-3
	6-1 Attributes of Subprogram Parameters
	7-1 Identifier Types that PL/Scope Collects
	7-2 Usages that PL/Scope Reports
	8-1 Raw Profiler Output File Indicators
	8-2 Function Names of Operations that the PL/SQL Hierarchical Profiler Tracks
	8-3 PL/SQL Hierarchical Profiler Database Tables
	8-4 DBMSHP_RUNS Table Columns
	8-5 DBMSHP_FUNCTION_INFO Table Columns
	8-6 DBMSHP_PARENT_CHILD_INFO Table Columns
	9-1 Commonly Used Packages in the PL/SQL Web Toolkit
	9-2 Mapping Between mod_plsql and Embedded PL/SQL Gateway DAD Attributes
	9-3 Mapping Between mod_plsql and Embedded PL/SQL Gateway Global Attributes
	9-4 Authentication Possibilities for a DAD
	10-1 PSP Elements
	11-1 Continuous Query Notification Registration Options
	11-2 Attributes of CQ_NOTIFICATION$_REG_INFO
	11-3 Quality-of-Service Flags
	11-4 Attributes of CQ_NOTIFICATION$_DESCRIPTOR
	11-5 Attributes of CQ_NOTIFICATION$_TABLE
	11-6 Attributes of CQ_NOTIFICATION$_QUERY
	11-7 Attributes of CQ_NOTIFICATION$_ROW
	12-1 Oracle Flashback Version Query Row Data Pseudocolumns
	12-2 Flashback TRANSACTION_BACKOUT Options
	12-3 Static Data Dictionary Views for Flashback Data Archive Files
	13-1 PL/SQL Packages and Their Java Equivalents
	14-1 Parameter Data Type Mappings
	14-2 External Data Type Mappings
	14-3 Properties and Data Types
	15-1 Required XA Features Published by Oracle Database
	15-2 XA Library Subprograms
	15-3 Oracle XA Interface Extensions
	15-4 Required Fields of xa_open string
	15-5 Optional Fields in the xa_open String
	15-6 TX Interface Functions
	15-7 TPM Replacement Statements
	15-8 Sample Trace File Contents
	15-9 Tightly and Loosely Coupled Transaction Branches
	17-1 General Structure of EPC Encodings
	17-2 Identity Code Package ADTs
	17-3 MGD_ID ADT Subprograms
	17-4 DBMS_MGD_ID_UTL Package Utility Subprograms
	17-5 Definition and Description of the MGD_ID_CATEGORY Metadata View
	17-6 Definition and Description of the USER_MGD_ID_CATEGORY Metadata View
	17-7 Definition and Description of the MGD_ID_SCHEME Metadata View
	17-8 Definition and Description of the USER_MGD_ID_SCHEME Metadata View
	18-1 Database Object Status
	18-2 Operations that Cause Fine-Grained Invalidation
	18-3 Data Type Classes
	19-1 *_ Dictionary Views with Edition Information
	19-2 *_ Dictionary Views with Editioning View Information
	A-1 Agent Control Utility (agtctl) Commands
	A-2 Configuration Parameters for agtctl

What's New in Application Development?

This topic briefly describes the new Oracle Database features that this book documents and provides links to more information.

Topics:

	
Oracle Database 11g Release 2 (11.2.0.4) Feature

	
Oracle Database 11g Release 2 (11.2.0.2) Feature

	
Oracle Database 11g Release 2 Features

	
Oracle Database 11g Release 1 Features

Oracle Database 11g Release 2 (11.2.0.4) Feature

Optimization for Flashback Data Archive History Tables

Before Release 11.2.0.4, when creating or altering a Flashback Data Archive, you could not disable optimization for the corresponding history tables.

As of Release 11.2.0.4, when creating or altering a Flashback Data Archive, you can either enable or disable optimization for the corresponding history tables by using the OPTIMIZE DATA clause of the CREATE FLASHBACK ARCHIVE or ALTER FLASHBACK ARCHIVE statement. For more information, see "Creating a Flashback Data Archive" and "General Guidelines for Oracle Flashback Technology".

Oracle Database 11g Release 2 (11.2.0.2) Feature

Edition Attribute of Database Service

Before Release 11.2.0.2, you could not specify your initial session edition when using a database service to connect to Oracle Database. If you wanted to use Edition-Based Redefinition for hot rollover, where some database clients use the pre-upgrade edition while others use the post-upgrade edition, then you had to change the client code.

As of Release 11.2.0.2, you can specify the initial session edition as an attribute of a database service, which makes it easier to ensure that each session uses the desired edition during hot rollover. For more information, see "Your Initial Session Edition".

As of Release 11.2.0.2, each *_SERVICES static data dictionary view has an EDITION column that shows the default initial session edition. For more information, see "Displaying Information About Editions, Editioning Views, and Crossedition Triggers".

Oracle Database 11g Release 2 Features

The Oracle Database features for Oracle Database 11g Release 2 are:

	
Flashback Transaction Foreign Key Dependency Tracking

	
Fine-Grained Invalidation for Triggers

	
Edition-Based Redefinition

	
APPLYING_CROSSEDITION_TRIGGER Function

	
IGNORE_ROW_ON_DUPKEY_INDEX Hint

	
CHANGE_DUPKEY_ERROR_INDEX Hint

	
DBMS_PARALLEL_EXECUTE Package

	
Internet Protocol version 6 (IPv6) Support

Flashback Transaction Foreign Key Dependency Tracking

Flashback Transaction (the DBMS_FLASHBACK.TRANSACTION_BACKOUT procedure) with the CASCADE option rolls back a transaction and its dependent transactions while the database remains online.

Before Oracle Database 11g Release 2, Flashback Transaction did not track foreign key dependencies. Therefore, if you tried to use Flashback Transaction with the CASCADE option to roll back a transaction that had foreign key dependencies, you could get a foreign key violation error. The workaround was to include the foreign-key-dependent transactions in the list of transactions to roll back.

As of Oracle Database 11g Release 2, when using Flashback Transaction with the CASCADE option, you do not have to include any dependent transactions in the list of transactions to be rolled back.

Foreign key dependency tracking for Flashback Transaction requires that you enable foreign key supplemental logging. For instructions, see "Configuring Your Database for Flashback Transaction". For information about Flashback Transaction, see "Using Flashback Transaction".

Fine-Grained Invalidation for Triggers

The Oracle Database 11g Release 1 feature "Fine-Grained Invalidation" has been extended to triggers.

Edition-Based Redefinition

Edition-based redefinition enables you to upgrade the database component of an application while it is in use, thereby minimizing or eliminating down time.

To upgrade an application while it is in use, you copy the database objects that comprise the application and redefine the copied objects in isolation. Your changes do not affect users of the application—they continue to run the unchanged application. When you are sure that your changes are correct, you make the upgraded application available to all users.

Using edition-based redefinition means using one or more of its component features. The features you use, and the down time, depend on these factors:

	
What kind of database objects you redefine

	
How available the database objects must be to users while you are redefining them

	
Whether you make the upgraded application available to some users while others continue to use the older version of the application

You always use the edition feature to copy the database objects and redefine the copied objects in isolation.

If you change the structure of one or more tables, you also use the feature editioning views.

If other users must be able to change data in the tables while you are changing their structure, you also use forward crossedition triggers. If the pre- and post-upgrade applications will be in ordinary use at the same time (hot rollover), you also use reverse crossedition triggers. Crossedition triggers are not a permanent part of the application—you drop them when all users are using the post-upgrade application.

For more information, see Chapter 19, "Edition-Based Redefinition."

APPLYING_CROSSEDITION_TRIGGER Function

The body of a forward crossedition trigger must handle data transformation collisions. If your collision-handling strategy depends on why the trigger is running, you can determine the reason with the function APPLYING_CROSSEDITION_TRIGGER, which is defined in the package DBMS_STANDARD.

For more information, see "Handling Data Transformation Collisions".

IGNORE_ROW_ON_DUPKEY_INDEX Hint

When a statement of the form INSERT INTO target subquery runs, a unique key for some rows to be inserted might collide with existing rows. Suppose that your application must ignore such collisions and insert the rows that do not collide with existing rows.

Before Oracle Database 11g Release 2, you had to write a PL/SQL program which, in a block with a NULL handler for the DUP_VAL_ON_INDEX exception, selected the source rows and then inserted them, one at a time, into the target.

As of Oracle Database 11g Release 2, you do not have to write a PL/SQL program. You can use the IGNORE_ROW_ON_DUPKEY_INDEX hint in an INSERT statement, which is easier to write and runs much faster. This hint is especially helpful when implementing crossedition triggers.

For more information, see "Handling Data Transformation Collisions".

CHANGE_DUPKEY_ERROR_INDEX Hint

When an INSERT or UPDATE statement runs, a unique key might collide with existing rows.

Before Oracle Database 11g Release 2, the collision caused error ORA-00001. You could tell that a collision had occurred, but you could not tell where.

As of Oracle Database 11g Release 2, you can use the CHANGE_DUPKEY_ERROR_INDEX hint in an INSERT or UPDATE statement, specifying that when a unique key violation occurs for a specified index or set of columns, ORA-38911 is reported instead of ORA-00001. This hint is especially helpful when implementing crossedition triggers.

For more information, see "Handling Data Transformation Collisions".

DBMS_PARALLEL_EXECUTE Package

The DBMS_PARALLEL_EXECUTE package enables you to incrementally update the data in a large table in parallel, in two high-level steps:

	
Group sets of rows in the table into smaller chunks.

	
Apply the desired UPDATE statement to the chunks in parallel, committing each time you have finished processing a chunk.

This technique improves performance, reduces rollback space consumption, and reduces the number of row locks held. The DBMS_PARALLEL_EXECUTE package is recommended whenever you are updating a lot of data; for example, when you are applying forward crossedition triggers.

For more information, see "Transforming Data from Pre- to Post-Upgrade Representation".

Internet Protocol version 6 (IPv6) Support

Internet Protocol version 6 (IPv6) supports a much larger address space than IPv4 does. An IPv6 address has 128 bits, while an IPv4 address has only 32 bits.

Applications that use network addresses might need small changes, and recompilation, to accommodate IPv6 addresses. For more information, see "Performing Network Operations in PL/SQL Subprograms".

The agent control utility, agtctl, which starts a multithreaded extproc agent, now accepts IPv6 addresses. For more information, see "Configuration Parameters for Multithreaded extproc Agent Control".

	
See Also:

Oracle Database Net Services Administrator's Guide for detailed information about IPv6 support in Oracle Database

Oracle Database 11g Release 1 Features

The application development features for Oracle Database 11g Release 1 are:

	
WAIT Option for Data Definition Language (DDL) Statements

	
Binary XML Support for Oracle XML Database

	
Metadata for SQL Operators and Functions

	
Enhancements to Regular Expression SQL Functions

	
Invisible Indexes

	
PL/SQL Function Result Cache

	
Sequences in PL/SQL Expressions

	
PL/Scope

	
PL/SQL Hierarchical Profiler

	
Query Result Change Notification

	
Flashback Transaction

	
Flashback Data Archive (Oracle Total Recall)

	
XA API Available Within PL/SQL

	
Support for XA/JTA in Oracle Real Application Clusters (Oracle RAC) Environment

	
Identity Code Package

	
Enhanced Online Index Creation and Rebuilding

	
Embedded PL/SQL Gateway

	
Oracle Database Spawns Multithreaded extproc Agent Directly by Default

	
Fine-Grained Invalidation

WAIT Option for Data Definition Language (DDL) Statements

DDL statements require exclusive locks on internal structures. If these locks are unavailable when a DDL statement is issued, the DDL statement fails, though it might have succeeded if it had been issued subseconds later. The WAIT option of the SQL statement LOCK TABLE enables a DDL statement to wait for its locks for a specified period before failing.

For more information, see "Choosing a Locking Strategy".

Binary XML Support for Oracle XML Database

Binary XML is a third way to represent an XML document. Binary XML complements, rather than replaces, the existing object-relational storage and CLOB storage representations. Binary XML has two significant benefits:

	
XML operations can be significantly optimized, with or without an XML schema is available.

	
The internal representation of XML is the same on disk, in memory, and on wire.

As with other storage mechanisms, the details of binary XML storage are transparent to you. You continue to use XMLType and its associated methods and operators.

For more information, see "Representing XML Data".

	
See Also:

Oracle XML DB Developer's Guide

Metadata for SQL Operators and Functions

Metadata for SQL operators and functions is accessible through dynamic performance (V$) views. Third-party tools can leverage SQL functions without maintaining their metadata in the application layer.

For more information, see "Metadata for SQL Operators and Functions".

Enhancements to Regular Expression SQL Functions

The regular expression SQL functions REGEXP_INSTR and REGEXP_SUBSTR have increased functionality. A new regular expression SQL function, REGEXP_COUNT, returns the number of times a pattern appears in a string. These functions act the same in SQL and PL/SQL.

For more information, see "Oracle SQL Support for Regular Expressions".

	
See Also:

Oracle Database SQL Language Reference

Invisible Indexes

An invisible index is maintained by Oracle Database for every data manipulation language (DML) statement, but is ignored by the optimizer unless you explicitly set the parameter OPTIMIZER_USE_INVISIBLE_INDEXES to TRUE on a session or system level.

Making an index invisible is an alternative to making it unusable or dropping it. Using invisible indexes, you can:

	
Test the removal of an index before dropping it

	
Create invisible indexes temporarily for specialized, nonstandard operations, such as online application upgrades, without affecting the behavior of existing applications

For more information, see Oracle Database Administrator's Guide.

PL/SQL Function Result Cache

Before Oracle Database 11g Release 1, if you wanted your PL/SQL application to cache the results of a function, you had to design and code the cache and cache-management subprograms. If multiple sessions ran your application, each session had to have its own copy of the cache and cache-management subprograms. Sometimes each session had to perform the same expensive computations.

As of Oracle Database 11g Release 1, PL/SQL provides a function result cache. Because the function result cache is stored in a shared global area (SGA), it is available to any session that runs your application.

For more information, see "PL/SQL Function Result Cache".

	
See Also:

Oracle Database PL/SQL Language Reference

Sequences in PL/SQL Expressions

The pseudocolumns CURRVAL and NEXTVAL make writing PL/SQL source code easier for you and improve runtime performance and scalability. You can use sequence_name.CURRVAL and sequence_name.NEXTVAL wherever you can use a NUMBER expression.

See Example 6-6.

	
See Also:

Oracle Database PL/SQL Language Reference

PL/Scope

PL/Scope is a compiler-driven tool that collects and organizes data about user-defined identifiers from PL/SQL source code. Because PL/Scope is a compiler-driven tool, you use it through interactive development environments (such as SQL Developer and JDeveloper), rather than directly.

PL/Scope enables the development of powerful and effective PL/Scope source code browsers that increase PL/SQL developer productivity by minimizing time spent browsing and understanding source code.

For a detailed description of PL/Scope, see Chapter 7, "Using PL/Scope."

PL/SQL Hierarchical Profiler

Nonhierarchical (flat) profilers record the time that a program spends within each subprogram—the function time or self time of each subprogram. Function time is helpful, but often inadequate. For example, it is helpful to know that a program spends 40% of its time in the subprogram INSERT_ORDER, but it is more helpful to know which subprograms call INSERT_ORDER often and the total time the program spends under INSERT_ORDER (including its descendent subprograms). Hierarchical profilers provide such information.

The PL/SQL hierarchical profiler does this:

	
Reports the dynamic execution profile of your PL/SQL program, organized by subprogram calls

	
Accounts for SQL and PL/SQL execution times separately

	
Requires no special source or compile-time preparation

	
Stores results in database tables (hierarchical profiler tables) for custom report generation by integrated development environment (IDE) tools (such as SQL Developer and third-party tools)

To generate simple HTML reports from raw profiler output, you can use the plshprof command-line utility.

Each subprogram-level summary in the dynamic execution profile includes information such as:

	
Number of calls to the subprogram

	
Time spent in the subprogram itself (function time or self time)

	
Time spent in the subprogram itself and in its descendent subprograms (subtree time)

	
Detailed parent-children information, for example:

	
All callers of a given subprogram (parents)

	
All subprograms that a given subprogram called (children)

	
How much time was spent in subprogram x when called from y

	
How many calls to subprogram x were from y

You can browse the generated HTML reports in any browser. The browser's navigational capabilities, combined with well chosen links, provide a powerful way to analyze performance of large applications, improve application performance, and lower development costs.

For a detailed description of PL/SQL hierarchical profiler, see Chapter 8, "Using the PL/SQL Hierarchical Profiler."

Query Result Change Notification

Before Oracle Database 11g Release 1, Continuous Query Notification (CQN) published only object change notifications, which result from DML or DDL changes to the objects associated with registered the queries.

As of Oracle Database 11g Release 1, CQN can also publish query result change notifications, which result from DML or DDL changes to the result set associated with the registered queries. New static data dictionary views enable you to see which queries are registered for result-set-change notifications (see "Querying CQN Registrations").

For more information, see Chapter 11, "Using Continuous Query Notification (CQN)."

Flashback Transaction

The DBMS_FLASHBACK.TRANSACTION_BACKOUT procedure rolls back a transaction and its dependent transactions while the database remains online. This recovery operation uses undo data to create and run the compensating transactions that return the affected data to its original state.

For more information, see "Using Flashback Transaction".

Flashback Data Archive (Oracle Total Recall)

A Flashback Data Archive provides the ability to store and track transactional changes to a record over its lifetime. It is no longer necessary to build this intelligence into the application. A Flashback Data Archive is useful for compliance with record stage policies and audit reports.

For more information, see "Using Flashback Data Archive (Oracle Total Recall)".

XA API Available Within PL/SQL

The XA interface functionality that supports transactions involving multiple resource managers, such as databases and queues, is now available within PL/SQL. You can use PL/SQL to switch and share transactions across SQL*Plus sessions and across processes.

For more information, see "Using the DBMS_XA Package".

Support for XA/JTA in Oracle Real Application Clusters (Oracle RAC) Environment

An XA transaction now spans Oracle RAC instances by default, enabling any application that uses XA to take full advantage of the Oracle RAC environment, enhancing the availability and scalability of the application.

For more information, see "Using Oracle XA with Oracle Real Application Clusters (Oracle RAC)".

Identity Code Package

The Identity Code Package provides tools to store, retrieve, encode, decode, and translate between various product or identity codes, including Electronic Product Code (EPC), in Oracle Database. The Identity Code Package provides new data types, metadata tables and views, and PL/SQL packages for storing EPC standard RFID tags or new types of RFID tags in a user table.

The Identity Code Package enables Oracle Database to recognize EPC coding schemes, to support efficient storage and component-level retrieval of EPC data, and to meet the EPCglobal Tag Data Translation 1.0 (TDT) standard that defines how to decode, encode, and translate between various EPC RFID tag representations.

The Identity Code Package also provides an extensible framework that enables you to use pre-existing coding schemes with applications that are not included in the EPC standard and adapt Oracle Database both to these older systems and to evolving identity codes that might become part of a future EPC standard.

The Identity Code Package also lets you create your own identity codes by first registering the new encoding category, registering the new encoding type, and then registering the new components associated with each new encoding type.

For more information, see Chapter 17, "Using the Identity Code Package."

Enhanced Online Index Creation and Rebuilding

Online index creation and rebuilding no longer requires a DML-blocking lock.

Before Oracle Database 11g Release 1, online index creation and rebuilding required a very short-term DML-blocking lock at the end of the rebuilding. The DML-blocking lock could cause a spike in the number of waiting DML operations, and therefore a short drop and spike of system usage. This system usage anomaly could trigger operating system alarm levels.

Embedded PL/SQL Gateway

The PL/SQL gateway enables a user-written PL/SQL subprogram to be invoked in response to a URL with parameters derived from an HTTP request. mod_plsql is a form of the gateway that exists as a plug-in to the Oracle HTTP Server. Now the PL/SQL gateway is also embedded in the database itself. The embedded PL/SQL gateway uses the internal Oracle XML Database Listener and does not depend on the Oracle HTTP Server. You configure the embedded version of the gateway with the DBMS_EPG package.

For more information, see "Using Embedded PL/SQL Gateway".

Oracle Database Spawns Multithreaded extproc Agent Directly by Default

When an application calls an external C procedure, either Oracle Database or Oracle Listener starts the external procedure agent, extproc.

Before Oracle Database 11g Release 1, Oracle Listener spawned the multithreaded extproc agent, and you defined environment variables for extproc in the file listener.ora.

As of Oracle Database 11g Release 1, by default, Oracle Database spawns extproc directly, eliminating the risk that Oracle Listener might spawn extproc unexpectedly. This default configuration is recommended for maximum security. If you use it, you define environment variables for extproc in the file extproc.ora.

For more information, including situations in which you cannot use the default configuration, see "Loading External Procedures".

Fine-Grained Invalidation

Before Oracle Database 11g Release 1, a DDL statement that changed a referenced object invalidated all of its dependents.

As of Oracle Database 11g Release 1, a DDL statement that changes a referenced object invalidates only the dependents for which either of these statements is true:

	
The dependent relies on the attribute of the referenced object that the DDL statement changed.

	
The compiled metadata of the dependent is no longer correct for the changed referenced object.

For example, if view v selects columns c1 and c2 from table t, a DDL statement that changes only column c3 of t does not invalidate v.

For more information, see "Invalidation of Dependent Objects".

1 Using SQL Data Types in Database Applications

This chapter explains how to use SQL data types in database applications.

Topics:

	
Overview of SQL Data Types

	
Representing Character Data

	
Representing Numeric Data

	
Representing Date and Time Data

	
Representing Specialized Data

	
Representing Conditional Expressions as Data

	
Identifying Rows by Address

	
How Oracle Database Converts Data Types

	
Metadata for SQL Operators and Functions

	
See Also:

	
Oracle Database PL/SQL Language Reference for information about PL/SQL data types

	
Oracle Database PL/SQL Language Reference for introductory information about Abstract Data Types (ADTs)

	
Oracle Database Object-Relational Developer's Guide for advanced information about ADTs

An ADT consists of a data structure and subprograms that manipulate the data. In the static data dictionary view *_OBJECTS, the OBJECT_TYPE of an ADE is TYPE. In the static data dictionary view *_TYPES, the TYPECODE of an ADE is OBJECT.

Overview of SQL Data Types

A data type associates fixed properties with the values that can be inserted in table columns or passed as parameters to subprograms. These properties cause Oracle Database to treat values of different data types differently. For example, Oracle Database can add values of NUMBER data type, but cannot add values of RAW data type.

Oracle Database provides many data types and several categories for user-defined types that can be used as data types.

The Oracle precompilers recognize other data types in embedded SQL programs. These data types are called external data types and are associated with host variables. Do not confuse external data types with Oracle built-in, Oracle-supplied, and user-defined data types.

	
See Also:

	
Oracle Database SQL Language Reference for complete information about SQL data types

	
Oracle Database Concepts for additional introductory information about SQL data types (which it calls Oracle data types)

Representing Character Data

Table 1-1 summarizes the SQL data types that store alphanumeric data.

Table 1-1 SQL Character Data Types

	Data Types	Values Stored
	
CHAR

	
Fixed-length character literals

	
NCHAR

	
Fixed-length Unicode character literals

	
VARCHAR2

	
Variable-length character literals

	
NVARCHAR2

	
Variable-length Unicode character literals

	
CLOB

	
Single-byte and multibyte character strings of up to (4 gigabytes - 1) * (the value obtained from DBMS_LOB.GETCHUNKSIZE)

	
NCLOB

	
Single-byte and multibyte Unicode character strings of up to (4 gigabytes - 1) * (the value obtained from DBMS_LOB.GETCHUNKSIZE)

	
LONG

	
Variable-length character data of up to 2 gigabytes - 1. Provided only for backward compatibility.

For a client/server application, if the character set on the client side differs from the character set on the server side, then Oracle Database automatically converts CHAR, VARCHAR2, and LONG data from the database character set (determined by the NLS_LANGUAGE parameter) to the character set defined for the user session.

Topics:

	
Specifying Column Lengths as Bytes or Characters

	
Choosing Between CHAR and VARCHAR2 Data Types

	
See Also:

	
Oracle Database SQL Language Reference for more information about CHAR, VARCHAR2, NCHAR, and NVARCHAR2 data types

	
"Large Objects (LOBs)" for more information about CLOB and NCLOB data types

	
"LONG and LONG RAW Data Types" for more information about LONG data type

Specifying Column Lengths as Bytes or Characters

You can specify the lengths of CHAR and VARCHAR2 columns as either bytes or characters. The lengths of NCHAR and NVARCHAR2 columns are always specified in characters, making them ideal for storing Unicode character literals, where a character might consist of multiple bytes. This table shows some column length specifications and their meanings:

	Column Length Specification	Meaning
	id VARCHAR2(32 BYTE)	The id column contains up to 32 single-byte characters.
	name VARCHAR2(32 CHAR)	The name column contains up to 32 characters of the database character set. If the database character set includes multibyte characters, then the 32 characters can occupy more than 32 bytes.
	biography NVARCHAR2(2000)	The biography column contains up to 2000 characters of any Unicode-representable language. The encoding depends on the national character set. The column can contain multibyte values even if the database character set is single-byte.
	comment VARCHAR2(2000)	The comment column contains up to 2000 bytes or characters, depending on the value of the initialization parameter NLS_LENGTH_SEMANTICS.

When using a multibyte database character encoding scheme, consider carefully the space required for tables with character columns. If the database character encoding scheme is single-byte, then the number of bytes and the number of characters in a column is the same. If it is multibyte, however, then generally there is no such correspondence. A character might consist of one or more bytes, depending on the specific multibyte encoding scheme and whether shift-in/shift-out control codes are present. To avoid overflowing buffers, specify data as NCHAR or NVARCHAR2 if it might use a Unicode encoding that is different from the database character set.

	
See Also:

	
Oracle Database Globalization Support Guide for more information about SQL data types NCHAR and NVARCHAR2

	
Oracle Database SQL Language Reference for more information about SQL data types NCHAR and NVARCHAR2

Choosing Between CHAR and VARCHAR2 Data Types

When choosing a data type for a column that stores alphanumeric data in a table, consider:

	
Space usage

Oracle Database blank-pads values stored in CHAR columns but not values stored in VARCHAR2 columns. Therefore, VARCHAR2 columns use space more efficiently than CHAR columns.

	
Performance

Because of the blank-padding difference, a full table scan on a large table containing VARCHAR2 columns might read fewer data blocks than a full table scan on a table containing the same data stored in CHAR columns. If your application often performs full table scans on large tables containing character data, then you might be able to improve performance by storing data in VARCHAR2 columns rather than in CHAR columns.

	
Comparison semantics

When you need ANSI compatibility in comparison semantics, use the CHAR data type. When trailing blanks are important in string comparisons, use the VARCHAR2 data type.

	
See Also:

Oracle Database SQL Language Reference for more information about comparison semantics for these data types

	
Future compatibility

The CHAR and VARCHAR2 data types are fully supported. Today, the VARCHAR data type automatically corresponds to the VARCHAR2 data type and is reserved for future use.

Representing Numeric Data

The SQL data types that store numeric data are NUMBER, BINARY_FLOAT, and BINARY_DOUBLE.

The NUMBER data type stores real numbers in either a fixed-point or floating-point format. NUMBER offers up to 38 decimal digits of precision. In a NUMBER column, you can store positive and negative numbers of magnitude 1 x 10-130 through 9.99 x10125, and 0. All Oracle Database platforms support NUMBER values.

The BINARY_FLOAT and BINARY_DOUBLE data types store floating-point numbers in the single-precision (32-bit) IEEE 754 format and the double-precision (64-bit) IEEE 754 format, respectively. High-precision values use less space when stored as BINARY_FLOAT and BINARY_DOUBLE than when stored as NUMBER. Arithmetic operations on floating-point numbers are usually faster for BINARY_FLOAT and BINARY_DOUBLE values than for NUMBER values.

In client interfaces that Oracle Database supports, arithmetic operations on BINARY_FLOAT and BINARY_DOUBLE values are performed by the native instruction set that the hardware vendor supplies. The term native floating-point data type includes BINARY_FLOAT and BINARY_DOUBLE data types and all implementations of these types in supported client interfaces.

Native floating-point data types conform substantially with the Institute of Electrical and Electronics Engineers (IEEE) Standard for Binary Floating-Point Arithmetic, IEEE Standard 754-1985 (IEEE754). For details, see Oracle Database SQL Language Reference.

Topics:

	
Floating-Point Number Components

	
Floating-Point Number Formats

	
Comparison Operators for Native Floating-Point Data Types

	
Arithmetic Operations with Native Floating-Point Data Types

	
Conversion Functions for Floating-Point Data Types

	
Client Interfaces for Native Floating-Point Data Types

	
See Also:

	
Oracle Database SQL Language Reference for more information about the NUMBER data type

	
Oracle Database SQL Language Reference for more information about the BINARY_FLOAT and BINARY_DOUBLE data types

Floating-Point Number Components

A floating-point number has these components:

	
Binary-valued sign

	
Signed exponent

	
Significand

	
Base

The formula for a floating-point value is:

(-1)sign.significand.baseexponent

For example, the floating-point value 4.31 is represented:

(-1)0.431.10-2

The components of the preceding representation are:

	Component Name	Component Value
	Sign	0
	Significand	431
	Base	10
	Exponent	-2

Floating-Point Number Formats

A floating-point number format specifies how the components of a floating-point number are represented, thereby determining the range and precision of the values that the format can represent. The range is the interval bounded by the smallest and largest values and the precision is the number of significant digits. Both range and precision are finite. If a floating-point number is too precise for a given format, then the number is rounded.

How the number is rounded depends on the base of its format, which can be either decimal or binary. A number stored in decimal format is rounded to the nearest decimal place (for example, 1000, 10, or 0.01). A number stored in binary format is rounded to the nearest binary place (for example, 1024, 512, or 1/64).

NUMBER values are stored in decimal format. For calculations that need decimal rounding, use the NUMBER data type.

Native floating-point values are stored in binary format.

Topics:

	
Binary Floating-Point Formats

	
Special Values for Native Floating-Point Formats

Binary Floating-Point Formats

This formula determines the value of a floating-point number that uses a binary format:

(-1)sign 2E (bit0 bit1 bit2 ... bitp-1)

Table 1-2 describes the components of the preceding formula.

Table 1-2 Binary Floating-Point Format Components

	Component	Component Value
	
sign

	
0 or 1

	
E (exponent)

	
For single-precision (32-bit) data type, an integer from -126 through 127.

For double-precision (64-bit) data type, an integer from -1022 through 1023.

	
biti

	
0 or 1. (The bit sequence represents a number in base 2.)

	
p (precision)

	
For single-precision data type, 24.

For double-precision data type, 53.

The leading bit of the significand, b0, must be set (1), except for subnormal numbers (explained later). Therefore, the leading bit is not actually stored, and a binary format provides n bits of precision while storing only n-1 bits. The IEEE 754 standard defines the in-memory formats for single-precision and double-precision data types, which Table 1-3 shows.

Table 1-3 Summary of Binary Format Storage Parameters

	Data Type	Sign Bit	Exponent Bits	Significand Bits	Total Bits
	
Single-precision

	
1

	
8

	
24 (23 stored)

	
32

	
Double-precision

	
1

	
11

	
53 (52 stored)

	
64

	
Note:

Oracle Database does not support the extended single- and double-precision formats that the IEEE 754 standard defines.

A significand whose leading bit is set is called normalized. The IEEE 754 standard defines subnormal numbers (also called denormal numbers) that are too small to represent with normalized significands. If the significand of a subnormal number were normalized, then its exponent would be too large. Subnormal numbers preserve this property: If x-y==0.0 (using floating-point subtraction), then x==y. IEEE 754 formats support subnormal values.

Table 1-4 shows the range and precision of the IEEE 754 single- and double-precision formats and Oracle Database NUMBER. Range limits are expressed as positive numbers, but they also apply to absolute values of negative numbers. (The notation "number e exponent" means number * 10exponent.)

Table 1-4 Range and Precision of Floating-Point Data Types

	Range and Precision	Single-precision 32-bitFoot 1 	Double-precision 64-bit1	Oracle Database NUMBER Data Type
	
Maximum positive normal number

	
3.40282347e+38

	
1.7976931348623157e+308

	
< 1.0e126

	
Minimum positive normal number

	
1.17549435e-38

	
2.2250738585072014e-308

	
1.0e-130

	
Maximum positive subnormal number

	
1.17549421e-38

	
2.2250738585072009e-308

	
not applicable

	
Minimum positive subnormal number

	
1.40129846e-45

	
4.9406564584124654e-324

	
not applicable

	
Precision (decimal digits)

	
6 - 9

	
15 - 17

	
38 - 40

Footnote 1 These numbers are from the IEEE Numerical Computation Guide.

	
See Also:

	
Oracle Database SQL Language Reference for information about literal representation of numeric values

	
Oracle Database SQL Language Reference for more information about floating-point formats

	
Oracle Database SQL Language Reference for information about floating-point conditions

Special Values for Native Floating-Point Formats

The IEEE 754 standard supports the special values shown in Table 1-5.

Table 1-5 Special Values for Native Floating-Point Formats

	Value	Meaning
	
+INF

	
Positive infinity

	
-INF

	
Negative infinity

	
NaN

	
Not a number

	
+0

	
Positive zero

	
-0

	
Negative zero

Each value in Table 1-5 is represented by a specific bit pattern, except NaN. NaN, the result of any undefined operation, is represented by many bit patterns. Some of these bits patterns have the sign bit set and some do not, but the sign bit has no meaning.

The IEEE 754 standard distinguishes between quiet NaNs (which do not raise additional exceptions as they propagate through most operations) and signaling NaNs (which do). The IEEE 754 standard specifies action for when exceptions are enabled and action for when they are disabled.

In Oracle Database, exceptions cannot be enabled. Oracle Database acts as the IEEE 754 standard specifies for when exceptions are disabled. In particular, Oracle Database does not distinguish between quiet and signaling NaNs. You can use Oracle Call Interface (OCI) to retrieve NaN values from Oracle Database, but whether a retrieved NaN value is signaling or quiet depends on the client platform and is beyond the control of Oracle Database.

The IEEE 754 standard defines these classes of special values:

	
Zero

	
Subnormal

	
Normal

	
Infinity

	
NaN

The values in each class in the preceding list are larger than the values in the classes that precede it in the list (ignoring signs), except NaN. NaN is unordered with other classes of special values and with itself.

In Oracle Database:

	
All NaNs are quiet.

	
Any non-NaN value < NaN

	
Any NaN == any other NaN

	
All NaNs are converted to the same bit pattern.

	
-0 is converted to +0.

	
IEEE 754 exceptions are not raised.

	
See Also:

Oracle Database SQL Language Reference for information about floating-point conditions, which let you determine whether an expression is infinite or is the undefined result of an operation (is not a number or NaN).

Comparison Operators for Native Floating-Point Data Types

Oracle Database defines these comparison operators for native floating-point data types:

	
Equal to

	
Not equal to

	
Greater than

	
Greater than or equal to

	
Less than

	
Less than or equal to

	
Unordered

Comparisons ignore the sign of zero (-0 equals +0).

	
See Also:

"Special Values for Native Floating-Point Formats" for more information about comparison results, ordering, and other actions of special values

Arithmetic Operations with Native Floating-Point Data Types

Oracle Database defines these arithmetic operators for native floating-point data types:

	
Multiplication

	
Division

	
Addition

	
Subtraction

	
Remainder

	
Square root

You can define the mode used to round the result of the operation. Exceptions can be raised when operations are performed. Exceptions can also be disabled.

Formerly, Java required floating-point arithmetic to be exactly reproducible. IEEE 754 does not have this requirement. Therefore, results of operations (including arithmetic operations) can be delivered to a destination that uses a range greater than the range that the operands of the operation use.

You can compute the result of a double-precision multiplication at an extended double-precision destination, but the result must be rounded as if the destination were single-precision or double-precision. The range of the result (that is, the number of bits used for the exponent) can use the range supported by the wider (extended double-precision) destination; however, this might cause a double-rounding error in which the least significant bit of the result is incorrect.

This situation can occur only for double-precision multiplication and division on hardware that implements the IA-32 and IA-64 instruction set architecture. Therefore, except for this case, arithmetic for these data types is reproducible across platforms. When the result of a computation is NaN, all platforms produce a value for which IS NAN is true. However, all platforms do not have to use the same bit pattern.

Conversion Functions for Floating-Point Data Types

Oracle Database defines functions that convert between floating-point and other data types, including string formats that use decimal precision (but precision might be lost during the conversion). For example:

	
TO_BINARY_DOUBLE, described in Oracle Database SQL Language Reference

	
TO_BINARY_FLOAT, described in Oracle Database SQL Language Reference

	
TO_CHAR, described in Oracle Database SQL Language Reference

	
TO_NUMBER, described in Oracle Database SQL Language Reference

Oracle Database can raise exceptions during conversion. The IEEE 754 standard defines these exceptions:

	
Invalid

	
Inexact

	
Divide by zero

	
Underflow

	
Overflow

Oracle Database does not raise these exceptions for native floating-point data types. Generally, operations that raise exceptions produce the values described in Table 1-6.

Table 1-6 Values Resulting from Exceptions

	Exception	Value
	
Underflow

	
0

	
Overflow

	
-INF, +INF

	
Invalid Operation

	
NaN

	
Divide by Zero

	
-INF, +INF, NaN

	
Inexact

	
Any value – rounding was performed

Client Interfaces for Native Floating-Point Data Types

Oracle Database supports native floating-point data types in these client interfaces:

	
SQL

	
PL/SQL

	
Oracle Call Interface (OCI)

	
Oracle C++ Call Interface (OCCI)

	
Pro*C/C++

	
JDBC

Topics:

	
OCI Native Floating-Point Data Types SQLT_BFLOAT and SQLT_BDOUBLE

	
Native Floating-Point Data Types Supported in ADTs

	
Pro*C/C++ Support for Native Floating-Point Data Types

OCI Native Floating-Point Data Types SQLT_BFLOAT and SQLT_BDOUBLE

The OCI API implements the IEEE 754 single- and double-precision native floating-point data types with the data types SQLT_BFLOAT and SQLT_BDOUBLE, respectively. Conversions between these types and the SQL types BINARY_FLOAT and BINARY_DOUBLE are exact on platforms that implement the IEEE 754 standard for the C data types FLOAT and DOUBLE.

	
See Also:

Oracle Call Interface Programmer's Guide

Native Floating-Point Data Types Supported in ADTs

Oracle Database supports the SQL data types BINARY_FLOAT and BINARY_DOUBLE as attributes of ADTs.

Pro*C/C++ Support for Native Floating-Point Data Types

Pro*C/C++ supports the native FLOAT and DOUBLE data types using the column data types BINARY_FLOAT and BINARY_DOUBLE. You can use these data types in the same way that Oracle Database NUMBER data type is used. You can bind FLOAT and DOUBLE to BINARY_FLOAT and BINARY_DOUBLE, respectively, by setting the Pro*C/C++ precompiler command line option NATIVE_TYPES to Y (yes) when you compile your application.

Representing Date and Time Data

Oracle Database stores date and time (datetime) data in its own internal format, in 7-byte fields that correspond to century, year, month, day, hour, minute, and second.

Table 1-7 summarizes the SQL datetime data types. For more information about these data types, see Oracle Database SQL Language Reference.

Table 1-7 SQL Datetime Data Types

	Date Type	Usage
	
DATE

	
Use to store point-in-time (datetime) values in a table—for example, dates of jobs.

	
TIMESTAMP

	
Use to store datetime values that are precise to fractional seconds—for example, times of events that must be compared to determine the order in which they occurred.

	
TIMESTAMP WITH TIME ZONE

	
Use to store datetime values that must be gathered or coordinated across geographic regions.

	
TIMESTAMP WITH LOCAL TIME ZONE

	
Use to store datetime values when the time zone is insignificant—for example, in an application that schedules teleconferences, where participants each see the start and end times for their own time zone.

Appropriate for two-tier applications in which you want to display dates and times that use the time zone of the client system. Usually inappropriate for three-tier applications, because data displayed in a web browser is formatted according to the time zone of the web server, not the time zone of the browser. The web server is the database client, so its local time is used.

	
INTERVAL YEAR TO MONTH

	
Use to store the difference between two datetime values, where only the year and month are significant—for example, to set a reminder for a date 18 months in the future, or check whether 6 months have elapsed since a particular date.

	
INTERVAL DAY TO SECOND

	
Use to store the precise difference between two datetime values—for example, to set a reminder for a time 36 hours in the future or to record the time between the start and end of a race. To represent long spans of time with high precision, use a large number of days.

Topics:

	
Displaying Current Date and Time

	
Displaying and Inserting Dates in Nondefault Formats

	
Displaying and Inserting Times in Nondefault Formats

	
Arithmetic Operations with Datetime Data Types

	
Conversion Functions for Datetime Data Types

	
Importing, Exporting, and Comparing Datetime Types

	
See Also:

Oracle Call Interface Programmer's Guide for more information about Oracle Database internal date types

Displaying Current Date and Time

The simplest way to display the current date and time is:

SELECT SYSDATE FROM DUAL

The preceding command displays the current date and time in the default date format, which depends on the initialization parameter NLS_DATE_FORMAT.

The standard Oracle Database default date format is DD-MON-RR. The RR datetime format element lets you store 20th century dates in the 21st century by specifying only the last two digits of the year. For example, in the datetime format DD-MON-YY, 13-NOV-54 refers to the year 1954 in a query issued between 1950 and 2049, but to the year 2054 in a query issued between 2050 and 2099.

To display SYSDATE in a nondefault format, use the TO_CHAR function with a datetime format model.

Example 1-1 uses TO_CHAR with a format model to display SYSDATE in a nondefault format, which includes the qualifier BC or AD. (By default, SYSDATE is displayed without this qualifier.)

Example 1-1 Displaying Current Date and Time in Nondefault Format

SELECT TO_CHAR(SYSDATE, 'DD-MON-YYYY BC') NOW FROM DUAL;

Result:

NOW

18-MAR-2009 AD

1 row selected.

	
Tip:

When testing code that uses SYSDATE, it can be helpful to set SYSDATE to a constant. Do this with the initialization parameter FIXED_DATE, described in Oracle Database Reference.

	
See Also:

	
Oracle Database SQL Language Reference for more information about SYSDATE

	
Oracle Database Globalization Support Guide for information about NLS_DATE_FORMAT

	
Oracle Database SQL Language Reference for more information about TO_CHAR

	
Oracle Database SQL Language Reference for information about datetime format models

	
Oracle Database SQL Language Reference for more information about the RR datetime format element

Displaying and Inserting Dates in Nondefault Formats

Although Oracle Database always stores dates in the default date format (set by the initialization parameter NLS_DATE_FORMAT), you can display and insert dates in nondefault formats by using the TO_CHAR and TO_DATE functions, respectively, with datetime format models.

Example 1-2 creates a table with a DATE column and inserts into it a date specified in a nondefault format. The date is stored in the default format, as the first SELECT statement shows. The second SELECT statement displays the date in a nondefault format.

Example 1-2 Inserting and Displaying Date in Nondefault Formats

DROP TABLE dates;
CREATE TABLE dates (d DATE);

INSERT INTO dates VALUES (TO_DATE('OCT 27, 1998', 'MON DD, YYYY'));

SELECT d FROM dates;

Result:

D

27-OCT-98

1 row selected.

SELECT TO_CHAR(d, 'YYYY-MON-DD') D FROM dates;

Result:

D

1998-OCT-27

1 row selected.

	
Caution:

Be careful when using the YY datetime format element, which indicates the year in the current century. For example, in the 21st century, the format DD-MON-YY, 31-DEC-92 is December 31, 2092 (not December 31, 1992, as you might expect). To store 20th century dates in the 21st century by specifying only the last two digits of the year, use the RR datetime format element (the default).

	
See Also:

	
Oracle Database Globalization Support Guide for information about NLS_DATE_FORMAT

	
Oracle Database SQL Language Reference for more information about TO_CHAR

	
Oracle Database SQL Language Reference for more information about TO_DATE

	
Oracle Database SQL Language Reference for information about datetime format models

	
Oracle Database SQL Language Reference for more information about the RR datetime format element

Displaying and Inserting Times in Nondefault Formats

Although Oracle Database always stores times in the 24-hour format HH24:MI:SS, you can display and insert times in nondefault formats by using the TO_CHAR and TO_DATE functions, respectively, with datetime format models.

In a DATE column:

	
The default time is 12:00:00 A.M. (midnight).

The default time applies to any value in the column that has no time portion, either because none was specified or because the value was truncated.

	
The default date is the first day of the current month.

The default date applies to any value in the column that has no date portion, because none was specified.

Example 1-3 creates a table with a DATE column and inserts into it three dates specified in nondefault formats—one with both date and time portions, one with no time portion, and one with no date portion. The first SELECT statement shows the current date. The second SELECT statement displays the three dates in a nondefault format that includes both date and time portions.

Example 1-3 Inserting and Displaying Dates and Times in Nondefault Formats

DROP TABLE birthdays;
CREATE TABLE birthdays (name VARCHAR2(20), day DATE);

INSERT INTO birthdays (name, day)
VALUES ('Annie',
 TO_DATE('13-NOV-92 10:56 A.M.','DD-MON-RR HH:MI A.M.')
);

INSERT INTO birthdays (name, day)
VALUES ('Bobby',
 TO_DATE('5-APR-02','DD-MON-RR')
);

INSERT INTO birthdays (name, day)
VALUES ('Cindy',
 TO_DATE('8:25 P.M.','HH:MI A.M.')
);

Display current date:

SELECT SYSDATE FROM DUAL;

Result:

SYSDATE

05-NOV-10

1 row selected.

Display both date and time portions of stored datetime values:

SELECT name,
 TO_CHAR(day, 'Mon DD, RRRR') DAY,
 TO_CHAR(day, 'HH:MI A.M.') TIME
FROM birthdays;

Result:

NAME DAY TIME
-------------------- --------------------- ----------
Annie Nov 13, 1992 10:56 A.M.
Bobby Apr 05, 2002 12:00 A.M.
Cindy Nov 01, 2010 08:25 P.M.

3 rows selected.

Arithmetic Operations with Datetime Data Types

You can perform arithmetic operations on datetime values. The results of such operations are determined by the rules in Oracle Database SQL Language Reference.

SQL has many datetime functions that you can use in datetime expressions. For example, the function ADD_MONTHS returns the date that is a specified number of months from a specified date. For the complete list of datetime functions, see Oracle Database SQL Language Reference.

Conversion Functions for Datetime Data Types

Table 1-8 summarizes the SQL functions that convert to or from datetime data types.

Table 1-8 SQL Conversion Functions for Datetime Data Types

	Function	Converts ...	To ...
	
NUMTODSINTERVAL

	
NUMBER

	
INTERVAL DAY TO SECOND

	
NUMTOYMINTERVAL

	
NUMBER

	
INTERVAL DAY TO MONTH

	
TO_CHAR

	
DATE

TIMESTAMP

TIMESTAMP WITH TIME ZONE

TIMESTAMP WITH LOCAL TIME ZONE

INTERVAL DAY TO SECOND

INTERVAL YEAR TO MONTH

	
VARCHAR2

	
TO_DATE

	
CHAR

VARCHAR2

NCHAR

NVARCHAR2

	
DATE

	
TO_DSINTERVAL

	
CHAR

VARCHAR2

NCHAR

NVARCHAR2

	
INTERVAL DAY TO SECOND

	
TO_TIMESTAMP

	
CHAR

VARCHAR2

NCHAR

NVARCHAR2

	
TIMESTAMP

	
TO_TIMESTAMP_TZ

	
CHAR

VARCHAR2

NCHAR

NVARCHAR2

	
TIMESTAMP WITH TIME ZONE

	
TO_YMINTERVAL

	
CHAR

VARCHAR2

NCHAR

NVARCHAR2

	
INTERVAL DAY TO MONTH

Importing, Exporting, and Comparing Datetime Types

You can import, export, and compare TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE values without worrying about time zone offsets, because the database stores these values in normalized format.

When importing, exporting, and comparing DATE and TIMESTAMP values, you must adjust them to account for any time zone differences between source and target databases, because the database does not store their time zones.

Representing Specialized Data

Topics:

	
Representing Geographic Data

	
Representing Multimedia Data

	
Representing Large Amounts of Data

	
Representing Searchable Text

	
Representing XML Data

	
Representing Dynamically Typed Data

	
Representing ANSI, DB2, and SQL/DS Data

Representing Geographic Data

To represent Geographic Information System (GIS) or spatial data in the database, you can use Oracle Spatial features, including the type MDSYS.SDO_GEOMETRY. You can store the data in the database by using either an object-relational or a relational model. You can use a set of PL/SQL packages to query and manipulate the data.

	
See Also:

Oracle Spatial Developer's Guide for information about Oracle Spatial features

Representing Multimedia Data

Oracle Multimedia enables Oracle Database to store, manage, and retrieve images, audio, video, or other heterogeneous media data in an integrated fashion with other enterprise information. Oracle Multimedia extends Oracle Database reliability, availability, and data management to multimedia content in traditional, Internet, electronic commerce, and media-rich applications.

Whether you store such multimedia data inside the database as BLOB or BFILE values, or store it externally on a web server or other kind of server, you can use Oracle Multimedia to access the data using either an object-relational or a relational model, and manipulate and query the data using a set of ADTs.

Oracle Multimedia provides the ORDAudio, ORDDoc, ORDImage, ORDImageSignature, ORDVideo, and SI_StillImage ADTs (including methods) for these purposes:

	
Extracting metadata and attributes from multimedia data

	
Retrieving and managing multimedia data from Oracle Multimedia, web servers, file systems, and other servers

	
Performing manipulation operations on image data

	
See Also:

Oracle Multimedia Reference for information about Oracle Multimedia

Representing Large Amounts of Data

For representing large amounts of data, Oracle Database provides:

	
Large Objects (LOBs)

	
LONG and LONG RAW Data Types (for backward compatibility)

Large Objects (LOBs)

Large Objects (LOBs) are data types that are designed to store large amounts of data (the maximum size of a LOB depends on how your database is configured). Storing data in LOBs enables you to access and manipulate the data efficiently in your application.

Table 1-9 summarizes the LOBs.

Table 1-9 Large Objects (LOBs)

	Data Type	Description
	
BLOB

	
Binary large object

Stores any kind of data in binary format.

Typically used for multimedia data such as images, audio, and video.

	
CLOB

	
Character large object

Stores string data in the database character set format.

Used for large strings or documents that use the database character set exclusively.

	
NCLOB

	
National character large object

Stores string data in National Character Set format.

Used for large strings or documents in the National Character Set.

	
BFILE

	
External large object

Stores a binary file outside the database in the host operating system file system. Applications have read-only access to BFILEs.

Used for static data that applications do not manipulate, such as image data.

Any kind of data (that is, any operating system file) can be stored in a BFILE. For example, you can store character data in a BFILE and then load the BFILE data into a CLOB, specifying the character set when loading.

An instance of type BLOB, CLOB, or NCLOB can be either temporary (declared in the scope of your application) or persistent (created and stored in the database).

	
See Also:

	
Oracle Database SQL Language Reference for additional general information about LOBs

	
Oracle Database SecureFiles and Large Objects Developer's Guide for information about using LOBs in application development

LONG and LONG RAW Data Types

	
Note:

Oracle supports the LONG and LONG RAW data types for backward compatibility, but strongly recommends that you convert LONG columns to LOB columns and LONG RAW columns to BLOB columns.

LONG columns store variable-length character strings containing up to 2 gigabytes - 1 bytes. LONG columns have many of the characteristics of VARCHAR2 columns. You can use LONG columns to store long text strings. The length of LONG values may be limited by the memory available on your computer. For more information about the LONG data type, including its many restrictions, see Oracle Database SQL Language Reference.

The LONG RAW (and RAW) data types store data that is not to be explicitly converted by Oracle Database when moving data between different systems. These data types are intended for binary data or byte strings. For example, you can use LONG RAW to store graphics, sound, documents, or arrays of binary data, for which the interpretation is dependent on the use. You can index RAW data, but not LONG RAW data. For more information about the RAW and LONG RAW data types, see Oracle Database SQL Language Reference.

Representing Searchable Text

Rather than writing low-level code to do full-text searches, you can use Oracle Text. Oracle Text stores the search data in a special kind of index and lets you query the data with operators and PL/SQL packages. This technology enables you to create your own search engine using data from tables, files, or URLs, and combine the search logic with relational queries. You can also search XML data this way with the XPath notation.

	
See Also:

Oracle Text Application Developer's Guide for more information about Oracle Text

Representing XML Data

If you have information stored as files in XML format, or want to store an ADT in XML format, then you can use the Oracle-supplied type XMLType.

When you create an XMLType column in a table, you can store the XML data in any of these ways:

	
In a CLOB column

	
As binary XML (stored internally as a CLOB)

	
Object relationally

XMLType has member functions that access, extract, and query the XML data using W3C XPath expressions (see Oracle XML DB Developer's Guide). Also, Oracle provides SQL XML functions that manipulate or return whole or partial XML documents (see Oracle Database SQL Language Reference) and these PL/SQL packages (described in Oracle Database PL/SQL Packages and Types Reference):

	
DBMS_XMLDOM, for accessing XMLType objects

	
DBMS_XMLGEN, for converting the results of a SQL query to a canonical XML format

	
DBMS_XMLINDEX, for implementing asynchronous indexing

	
DBMS_XMLPARSER, for accessing the contents and structure of XML documents

	
DBMS_XMLQUERY, for database-to-XMLType functionality

	
DBMS_XMLSAVE, for XML-to-database-type functionality

	
DBMS_XMLSCHEMA, for managing XML schemas

	
DBMS_XMLSTORE, for storing XML data in relational tables

	
DBMS_XMLTRANSLATIONS, for translating strings so that they can be searched or displayed in various languages

	
See Also:

	
Oracle XML DB Developer's Guide for information about Oracle XML DB and how you can use it to store, generate, manipulate, manage, and query XML data in the database

	
Oracle XML Developer's Kit Programmer's Guide for information about client-side programming with XML

Representing Dynamically Typed Data

Some languages allow data types to change at run time, and some let a program check the type of a variable. For example, C has the union keyword and the void * pointer, and Java has the typeof operator and wrapper types such as Number.

In Oracle Database, you can create variables and columns that can hold data of any type and test their values to determine their underlying representation. For example, a single table column can have a numeric value in one row, a string value in another row, and an object in another row.

You can use the Oracle-supplied ADT SYS.ANYDATA to represent values of any scalar type or ADT. SYS.ANYDATA has methods that accept scalar values of any type, and turn them back into scalars or objects. Similarly, you can use the Oracle-supplied ADT SYS.ANYDATASET to represent values of any collection type. For more information about these ADTs, see Oracle Database Object-Relational Developer's Guide.

To check and manipulate type information, use the DBMS_TYPES package, as in Example 1-4. For more information about this package, see Oracle Database PL/SQL Packages and Types Reference.

With OCI, use the OCIAnyData and OCIAnyDataSet interfaces, described in Oracle Call Interface Programmer's Guide.

Example 1-4 Accessing Information in a SYS.ANYDATA Column

CREATE OR REPLACE TYPE employee_type AS
 OBJECT (empno NUMBER, ename VARCHAR2(10));
/

DROP TABLE mytab;
CREATE TABLE mytab (id NUMBER, data SYS.ANYDATA);

INSERT INTO mytab (id, data)
VALUES (1, SYS.ANYDATA.ConvertNumber(5));

INSERT INTO mytab (id, data)
VALUES (2, SYS.ANYDATA.ConvertObject(Employee_type(5555, 'john')));

CREATE OR REPLACE PROCEDURE p IS
 CURSOR cur IS SELECT id, data FROM mytab;
 v_id mytab.id%TYPE;
 v_data mytab.data%TYPE;
 v_type SYS.ANYTYPE;
 v_typecode PLS_INTEGER;
 v_typename VARCHAR2(60);
 v_dummy PLS_INTEGER;
 v_n NUMBER;
 v_employee employee_type;
 non_null_anytype_for_NUMBER exception;
 unknown_typename exception;
BEGIN
 OPEN cur;
 LOOP
 FETCH cur INTO v_id, v_data;
 EXIT WHEN cur%NOTFOUND;

 /* typecode signifies type represented by v_data.
 GetType also produces a value of type SYS.ANYTYPE with methods you
 can call to find precision and scale of a number, length of a
 string, and so on. */

 v_typecode := v_data.GetType (v_type /* OUT */);

 /* Compare typecode to DBMS_TYPES constants to determine type of data
 and decide how to display it. */

 CASE v_typecode
 WHEN DBMS_TYPES.TYPECODE_NUMBER THEN
 IF v_type IS NOT NULL THEN -- This condition should never happen.
 RAISE non_null_anytype_for_NUMBER;
 END IF;

 -- For each type, there is a Get method.
 v_dummy := v_data.GetNUMBER (v_n /* OUT */);
 DBMS_OUTPUT.PUT_LINE
 (TO_CHAR(v_id) || ': NUMBER = ' || TO_CHAR(v_n));

 WHEN DBMS_TYPES.TYPECODE_OBJECT THEN
 v_typename := v_data.GetTypeName();
 IF v_typename NOT IN ('HR.EMPLOYEE_TYPE') THEN
 RAISE unknown_typename;
 END IF;
 v_dummy := v_data.GetObject (v_employee /* OUT */);
 DBMS_OUTPUT.PUT_LINE
 (TO_CHAR(v_id) || ': user-defined type = ' || v_typename ||
 ' (' || v_employee.empno || ', ' || v_employee.ename || ')');
 END CASE;
 END LOOP;
 CLOSE cur;
EXCEPTION
 WHEN non_null_anytype_for_NUMBER THEN
 RAISE_Application_Error (-20000,
 'Paradox: the return AnyType instance FROM GetType ' ||
 'should be NULL for all but user-defined types');
 WHEN unknown_typename THEN
 RAISE_Application_Error(-20000, 'Unknown user-defined type ' ||
 v_typename || ' - program written to handle only HR.EMPLOYEE_TYPE');
END;
/

SELECT t.data.gettypename() AS "Type Name" FROM mytab t;

Result:

Type Name
--
SYS.NUMBER
HR.EMPLOYEE_TYPE

2 rows selected.

Representing ANSI, DB2, and SQL/DS Data

SQL statements that create tables and clusters can use ANSI data types and data types from the IBM products SQL/DS and DB2 (except those noted after this paragraph). Oracle Database converts the ANSI or IBM data type to the equivalent Oracle data type, records the Oracle data type as the name of the column data type, and stores the column data in the Oracle data type. For conversion details, see Oracle Database SQL Language Reference.

	
Note:

SQL statements cannot use the SQL/DS and DB2 data types TIME, GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC, because they have no equivalent Oracle data types.

Representing Conditional Expressions as Data

Oracle Expression Filter (a feature of Rules Manager) enables you to store, index, and evaluate conditional expressions in one or more columns of a database table. Then Oracle Expression Filter compares the stored expressions to incoming data, identifying rows of interest.

Scenario: You created the following table, in which each row holds data for a stock-trading account holder, and you want to define a column that stores information about the stocks in which each trader is interested as a conditional expression.

DROP TABLE traders;
CREATE TABLE traders (
 name VARCHAR2(10),
 email VARCHAR2(20),
 interest VARCHAR2(30)
);

Solution:

	
Create a type with attributes for the trading symbol, limit price, and amount of change in the stock price:

CREATE OR REPLACE TYPE ticker AS OBJECT (
 symbol VARCHAR2(20),
 price NUMBER,
 change NUMBER
);
/

	
Create an attribute set based on the type ticker:

BEGIN
 DBMS_EXPFIL.DROP_ATTRIBUTE_SET (attr_set => 'ticker');
END;
/
BEGIN
 DBMS_EXPFIL.CREATE_ATTRIBUTE_SET
 (attr_set => 'ticker',
 from_type => 'YES');
END;
/

	
Associate the attribute set with the expression set stored in the column trader.interest:

BEGIN
 DBMS_EXPFIL.ASSIGN_ATTRIBUTE_SET
 (attr_set => 'ticker',
 expr_tab => 'traders',
 expr_col => 'interest');
 END;
/

The preceding code ensures that the interest column stores valid conditional expressions.

	
Populate the table with trader names, e-mail addresses, and conditional expressions that represent stocks in which the trader is interested, at specific prices. For example:

INSERT INTO traders (name, email, interest)
VALUES ('Vishu', 'vishu@example.com', 'symbol = ''ABC'' AND price > 25');

	
Use the EVALUATE operator to identify the conditional expressions that evaluate to TRUE for a given data item. For example, this query returns traders who are interested in the stock quote (symbol='ABC', price=31, change=5.2):

SELECT name, email
FROM traders
WHERE EVALUATE (
 interest,
 'symbol=>''ABC'',
 price=>31,
 change=>5.2'
) = 1;

Result:

NAME EMAIL
---------- --------------------
Vishu vishu@example.com

1 row selected.

	
Tip:

To speed up the query, create an Oracle Expression Filter index on the interest column.

	
See Also:

Oracle Database Rules Manager and Expression Filter Developer's Guide for information about developing applications using Oracle Expression Filter

Identifying Rows by Address

The fastest way to access a row is by its address, or rowid, which uniquely identifies it. Different rows in the same data block can have the same rowid only if they are in different clustered tables. If a row is larger than one data block, then its rowid identifies its initial row piece.

To see rowids, query the ROWID pseudocolumn, whose value is a string that represents the address of the row. The string has the data type ROWID or UROWID.

	
Note:

When you update a row in a table compressed with Hybrid Columnar Compression (HCC), the ROWID of the row changes. HCC, a feature of certain Oracle storage systems, is described in Oracle Database Concepts.

Topics:

	
Querying the ROWID Pseudocolumn

	
ROWID Data Type

	
UROWID Data Type

	
See Also:

Oracle Database SQL Language Reference for more information about the ROWID pseudocolumn

Querying the ROWID Pseudocolumn

Each table in Oracle Database has a pseudocolumn named ROWID, which can appear in a query in either the SELECT list or WHERE clause.

Example 1-5 creates a table of with a column of the data type ROWID, populates it with rowids by querying the ROWID pseudocolumn inside an INSERT statement, and then displays it. The rowids of the table rows show how they are stored.

Example 1-5 Querying the ROWID Pseudocolumn

DROP TABLE t_tab; -- in case it exists
CREATE TABLE t_tab (col1 ROWID);

INSERT INTO t_tab (col1)
SELECT ROWID
FROM employees
WHERE employee_id > 199;

Query:

SELECT employee_id, rowid
FROM employees
WHERE employee_id > 199;

ROWID varies, but result is similar to:

EMPLOYEE_ID ROWID
----------- ------------------
 200 AAAPeSAAFAAAABTAAC
 201 AAAPeSAAFAAAABTAAD
 202 AAAPeSAAFAAAABTAAE
 203 AAAPeSAAFAAAABTAAF
 204 AAAPeSAAFAAAABTAAG
 205 AAAPeSAAFAAAABTAAH
 206 AAAPeSAAFAAAABTAAI

7 rows selected.

Query:

SELECT * FROM t_tab;

COL1 varies, but result is similar to:

COL1

AAAPeSAAFAAAABTAAC
AAAPeSAAFAAAABTAAD
AAAPeSAAFAAAABTAAE
AAAPeSAAFAAAABTAAF
AAAPeSAAFAAAABTAAG
AAAPeSAAFAAAABTAAH
AAAPeSAAFAAAABTAAI

7 rows selected.

ROWID Data Type

In heap-organized tables generated by Oracle Database, the values in the ROWID pseudocolumn have the data type ROWID. Internally, this data type is a structure that stores information that the database server needs to access a row. The format of this structure is either restricted, extended, or external binary.

	
Note:

Creating a column of the type ROWID (like col1 in Example 1-5) does not guarantee that its values will be valid rowids.

Topics:

	
Restricted Internal ROWID Format

	
Extended Internal ROWID Format

	
External Binary Internal ROWID Format

Restricted Internal ROWID Format

A ROWID structure with the restricted internal format has these components:

	
Data file identifier

	
Block identifier

	
Row identifier

On most platforms, the size of this structure is 6 bytes.

The database server returns a ROWID pseudocolumn value to the client application as an 18-character string with a hexadecimal encoding of each component.

Extended Internal ROWID Format

A ROWID structure with the extended internal format has the same components as the restricted format and a data object number, which identifies a database segment. On most platforms, the size of this structure is 10 bytes.

The database server returns a ROWID pseudocolumn value to the client application as an 18-character string with a base-64 encoding of each component. For example, the string might be "AAAA8mAALAAAAQkAAA", which represents a base-64 encoding of the components of the extended ROWID in a four-piece format, OOOOOOFFFBBBBBBRRR.

To access and interpret the contents of an extended rowid, use the DBMS_ROWID package, described in Oracle Database PL/SQL Packages and Types Reference.

External Binary Internal ROWID Format

Some client applications use a binary internal format for the ROWID structure. For example, OCI and some precompiler applications can map the ROWID data type to a 3GL structure on bind or define calls.

In binary internal format, the ROWID structure is the same size for restricted and extended rowids. For a restricted rowid, the data object number is stored in an unused field.

The format of the extended binary ROWID, expressed as a C struct, is:

struct riddef {
 ub4 ridobjnum; /* data obj#--this field is
 unused in restricted ROWIDs */
 ub2 ridfilenum;
 ub1 filler;
 ub4 ridblocknum;
 ub2 ridslotnum;
}

UROWID Data Type

In tables that are foreign (that is, not generated by Oracle Database) or index-organized, the values in the ROWID pseudocolumn have the data type UROWID. This data type stores a universal rowid (urowid).

Urowids for foreign tables (such as DB2 tables accessed through a gateway) are called foreign rowids.

Urowids for index-organized tables (whose rows are stored in index leaves, which can move) are called logical rowids. Oracle Database creates logical rowids based on the primary key of the table. The logical rowids do not change if the primary key does not change.

To store urowids in a table, define a column of data type UROWID for the table and then retrieve the value of the ROWID pseudocolumn into that column.

How Oracle Database Converts Data Types

Generally, you cannot assign a value of one data type to a variable or column of another data type, or create an expression with values of different data types. However, in some cases, Oracle Database accepts data of one type where it expects data of another type and then automatically converts the accepted data to the expected type. This is called implicit data conversion.

Topics:

	
Data Type Conversion During Assignments

	
Data Type Conversion During Expression Evaluation

	
See Also:

Oracle Database SQL Language Reference for more information about data type conversion

Data Type Conversion During Assignments

For the assignment

variable := expression

if the data type of expression differs from that of variable, then Oracle Database tries to convert the data type of expression to that of variable. For information about when that is possible, see Oracle Database SQL Language Reference.

A character-to-NUMBER conversion succeeds only if the character string represents a valid number. A character-to-DATE conversion succeeds only if the character string satisfies the session default date format. (For information about the default date format, see "Displaying Current Date and Time".)

Examples

Assume that test_package, its public variable var1, and table1_tab are declared as follows:

CREATE OR REPLACE PACKAGE test_package AS
 var1 CHAR(5);
END;
/

DROP TABLE table1_tab;
CREATE TABLE table1_tab (col1 NUMBER);

In the assignment

variable := expression

the data type of expression must be either the same as, or implicitly convertible to, the data type of variable. For example, for this assignment, Oracle Database automatically converts zero to the data type of var1, which is CHAR(5):

var1 := 0;

In the statement

INSERT INTO table1_tab (col1) VALUES (expression)

the data type of expression must be either the same as, or implicitly convertible to, the data type of col1. For example, for this statement, Oracle Database automatically converts the string '19' to the data type of col1, which is NUMBER:

INSERT INTO table1_tab (col1) VALUES ('19')

In the statement

UPDATE table1_tab SET column = expression

the data type of expression must be either the same as, or implicitly convertible to, the data type of column. For example, for this statement, Oracle Database automatically converts the string '30' to the data type of col1, which is NUMBER:

UPDATE table1_tab SET col1 = '30';

In the statement

SELECT column INTO variable FROM table1_tab

the data type of column must be either the same as, or convertible to, the data type of variable. For example, for this statement, Oracle Database automatically converts the value selected from col1, which is 30, to the data type of var1, which is CHAR(5):

SELECT col1 INTO var1 FROM table1_tab WHERE col1 = 30;

Data Type Conversion During Expression Evaluation

When evaluating an expression, Oracle Database can perform the same automatic conversions that it does for assignments. The target data type is determined by the context of the expression. For example, if an expression is the operand of an arithmetic operator, then Oracle Database tries to convert the value of the expression to NUMBER; if the expression is the operand of a string function, then Oracle Database tries to convert the value of the expression to VARCHAR2.

For the assignment

variable := expression

Oracle Database first evaluates expression, using the conversion rules for expressions. If the evaluation succeeds, the result is a single value of a single data type, which Oracle Database tries to assign to variable, using the conversion rules for assignments.

Metadata for SQL Operators and Functions

The dynamic performance view V$SQLFN_METADATA contains metadata about SQL operators and functions. For every function in V$SQLFN_METADATA, the dynamic performance view V$SQLFN_ARG_METADATA has one row of metadata about each function argument. If a function argument can be repeated (as in the functions LEAST and GREATEST), then V$SQLFN_ARG_METADATA has only one row for each repeating argument. You can join these two views on the column FUNCID.

These views enable third-party tools to leverage SQL functions without maintaining their metadata in the application layer.

Topics:

	
ARGn Data Type

	
DISP_TYPE Data Type

	
Data Type Families

	
See Also:

	
Oracle Database Reference for more information about V$SQLFN_METADATA

	
Oracle Database Reference for more information about V$SQLFN_ARG_METADATA

ARGn Data Type

In the view V$SQLFN_METADATA, the column DATATYPE is the data type of the function (that is, the data type that the function returns). This data type can be an Oracle data type, data type family (see "Data Type Families"), or ARGn. ARGn is the data type of the nth argument of the function. For example:

	
The MAX function (described in Oracle Database SQL Language Reference) returns a value that has the data type of its first argument, so the MAX function has return data type ARG1.

	
The DECODE function (described in Oracle Database SQL Language Reference) returns a value that has the data type of its third argument, so the DECODE function has data type ARG3.

DISP_TYPE Data Type

In the view V$SQLFN_METADATA, DISP_TYPE is the data type of an argument that can be any expression. An expression is either a single value or a combination of values and SQL functions that has a single value.

Table 1-10 Display Types of SQL Functions

	Display Type	Description	Example
	
NORMAL

	
FUNC(A,B,...)

	
LEAST(A,B,C)

	
ARITHMETIC

	
A FUNC B)

	
A+B

	
PARENTHESIS

	
FUNC()

	
SYS_GUID()

	
RELOP

	
A FUNC B

	
A IN B

	
CASE_LIKE

	
CASE statement or DECODE decode

	

	
NOPAREN

	
FUNC

	
SYSDATE

Data Type Families

Often, a SQL function argument can have any data type in a data type family. Table 1-11 shows the data type families and their member data types.

Table 1-11 Data Type Families

	Family	Data Types
	
STRING

	
CHARACTER

	
	
VARCHAR2

	
	
CLOB

	
	
NCHAR

	
	
NVARCHAR2

	
	
NCLOB

	
	
LONG

	
NUMERIC

	
NUMBER

	
	
BINARY_FLOAT

	
	
BINARY_DOUBLE

	
DATETYPE

	
DATE

	
	
TIMESTAMP

	
	
TIMESTAMP WITH TIME ZONE

	
	
TIMESTAMP WITH LOCAL TIME ZONE

	
	
INTERVAL YEAR TO MONTH

	
	
INTERVAL DAY TO SECOND

	
BINARY

	
BLOB

	
	
RAW

	
	
LONGRAW

6 Coding PL/SQL Subprograms and Packages

This chapter describes some procedural capabilities of Oracle Database for application development.

Topics:

	
Overview of PL/SQL Units

	
Compiling PL/SQL Subprograms for Native Execution

	
Cursor Variables

	
Handling PL/SQL Compile-Time Errors

	
Handling Runtime PL/SQL Errors

	
Debugging Stored Subprograms

	
Invoking Stored Subprograms

	
Invoking Remote Subprograms

	
Invoking Stored PL/SQL Functions from SQL Statements

	
Returning Large Amounts of Data from a Function

	
Coding Your Own Aggregate Functions

	
See Also:

	
Oracle Database PL/SQL Language Reference for more information about PL/SQL subprograms

	
Oracle Database PL/SQL Language Reference for more information about PL/SQL packages

	
Oracle Database Performance Tuning Guide for information about application tracing tools, which can help you find problems in PL/SQL code

Overview of PL/SQL Units

PL/SQL is a modern, block-structured programming language. It provides several features that make developing powerful database applications very convenient. For example, PL/SQL provides procedural constructs, such as loops and conditional statements, that are not available in standard SQL.

You can directly enter SQL data manipulation language (DML) statements inside PL/SQL blocks, and you can use subprograms supplied by Oracle to perform data definition language (DDL) statements.

PL/SQL code runs on the server, so using PL/SQL lets you centralize significant parts of your database applications for increased maintainability and security. It also enables you to achieve a significant reduction of network overhead in client/server applications.

	
Note:

Some Oracle tools, such as Oracle Forms, contain a PL/SQL engine that lets you run PL/SQL locally.

You can even use PL/SQL for some database applications instead of 3GL programs that use embedded SQL or Oracle Call Interface (OCI).

PL/SQL units include:

	
Anonymous Blocks

	
Stored PL/SQL Units

	
Triggers

	
See Also:

	
Oracle Database PL/SQL Language Reference for syntax and examples of operations on PL/SQL packages

	
Oracle Database PL/SQL Packages and Types Reference for information about the PL/SQL packages that come with Oracle Database

	
"Dependencies Among Local and Remote Database Procedures" for information about dependencies among stored PL/SQL units

Anonymous Blocks

An anonymous block is a PL/SQL unit that has no name. An anonymous block consists of an optional declarative part, an executable part, and one or more optional exception handlers.

The declarative part declares PL/SQL variables, exceptions, and cursors. The executable part contains PL/SQL code and SQL statements, and can contain nested blocks.

Exception handlers contain code that is invoked when the exception is raised, either as a predefined PL/SQL exception (such as NO_DATA_FOUND or ZERO_DIVIDE) or as an exception that you define.

Anonymous blocks are usually used interactively from a tool, such as SQL*Plus, or in a precompiler, OCI, or SQL*Module application. They are usually used to invoke stored subprograms or to open cursor variables.

The anonymous block in Example 6-1 uses the DBMS_OUTPUT package to print the names of all employees in the HR.EMPLOYEES table who are in department 20.

Example 6-1 Anonymous Block

DECLARE
 last_name VARCHAR2(10);
 cursor c1 IS
 SELECT LAST_NAME
 FROM EMPLOYEES
 WHERE DEPARTMENT_ID = 20
 ORDER BY LAST_NAME;
BEGIN
 OPEN c1;
 LOOP
 FETCH c1 INTO last_name;
 EXIT WHEN c1%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(last_name);
 END LOOP;
END;
/

Result:

Fay
Hartstein

Exceptions let you handle Oracle Database error conditions with PL/SQL program logic, enabling your application to prevent the server from issuing an error that can cause the client application to end. The anonymous block in Example 6-2 handles the predefined Oracle Database exception NO_DATA_FOUND (which results in ORA-01403 if not handled).

Example 6-2 Anonymous Block with Exception Handler for Predefined Error

DECLARE
 Emp_number INTEGER := 9999
 Emp_name VARCHAR2(10);
BEGIN
 SELECT LAST_NAME INTO Emp_name
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = Emp_number;
 DBMS_OUTPUT.PUT_LINE('Employee name is ' || Emp_name);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('No such employee: ' || Emp_number);
END;
/

Result:

No such employee: 9999

You can also define your own exceptions; that is, you can declare them in the declaration part of a block and define them in the exception part of the block, as in Example 6-3.

Example 6-3 Anonymous Block with Exception Handler for User-Defined Exception

DECLARE
 Emp_name VARCHAR2(10);
 Emp_number INTEGER;
 Empno_out_of_range EXCEPTION;
BEGIN
 Emp_number := 10001;
 IF Emp_number > 9999 OR Emp_number < 1000 THEN
 RAISE Empno_out_of_range;
 ELSE
 SELECT LAST_NAME INTO Emp_name
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = Emp_number;
 DBMS_OUTPUT.PUT_LINE('Employee name is ' || Emp_name);
 END IF;
EXCEPTION
 WHEN Empno_out_of_range THEN
 DBMS_OUTPUT.PUT_LINE('Employee number ' || Emp_number ||
 ' is out of range.');
END;
/

Result:

Employee number 10001 is out of range.

	
See Also:

	
Oracle Database PL/SQL Packages and Types Reference for complete information about the DBMS_OUTPUT package

	
Oracle Database PL/SQL Language Reference and "Handling Runtime PL/SQL Errors"

	
"Cursor Variables"

Stored PL/SQL Units

A stored PL/SQL unit is a subprogram (procedure or function) or package that:

	
Has a name.

	
Can take parameters, and can return values.

	
Is stored in the data dictionary.

	
Can be invoked by many users.

If a subprogram belongs to a package, it is called a package subprogram; if not, it is called a standalone subprogram.

Topics:

	
Naming Subprograms

	
Subprogram Parameters

	
Creating Subprograms

	
Altering Subprograms

	
Dropping Subprograms and Packages

	
External Subprograms

	
PL/SQL Function Result Cache

	
PL/SQL Packages

	
PL/SQL Object Size Limits

	
Creating Packages

	
Naming Packages and Package Objects

	
Package Invalidations and Session State

	
Packages Supplied with Oracle Database

	
Overview of Bulk Binding

	
When to Use Bulk Binds

Naming Subprograms

Because a subprogram is stored in the database, it must be named. This distinguishes it from other stored subprograms and makes it possible for applications to invoke it. Each publicly-visible subprogram in a schema must have a unique name, and the name must be a legal PL/SQL identifier.

	
Note:

If you plan to invoke a stored subprogram using a stub generated by SQL*Module, then the stored subprogram name must also be a legal identifier in the invoking host 3GL language, such as Ada or C.

Subprogram Parameters

Stored subprograms can take parameters. In the procedure in Example 6-4, the department number is an input parameter that is used when the parameterized cursor c1 is opened.

Example 6-4 Stored Procedure with Parameters

CREATE OR REPLACE PROCEDURE get_emp_names (
 dept_num IN NUMBER
)
IS
 emp_name VARCHAR2(10);
 CURSOR c1 (dept_num NUMBER) IS
 SELECT LAST_NAME FROM EMPLOYEES
 WHERE DEPARTMENT_ID = dept_num;
BEGIN
 OPEN c1(dept_num);
 LOOP
 FETCH c1 INTO emp_name;
 EXIT WHEN C1%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(emp_name);
 END LOOP;
 CLOSE c1;
END;
/

The formal parameters of a subprogram have three major attributes, described in Table 6-1.

Table 6-1 Attributes of Subprogram Parameters

	Parameter Attribute	Description
	
Name

	
This must be a legal PL/SQL identifier.

	
Mode

	
This indicates whether the parameter is an input-only parameter (IN), an output-only parameter (OUT), or is both an input and an output parameter (IN OUT). If the mode is not specified, then IN is assumed.

	
Data Type

	
This is a standard PL/SQL data type.

Topics:

	
Parameter Modes

	
Parameter Data Types

	
%TYPE and %ROWTYPE Attributes

	
Passing Composite Variables as Parameters

	
Initial Parameter Values

Parameter Modes

Parameter modes define the action of formal parameters. You can use the three parameter modes, IN (the default), OUT, and IN OUT, with any subprogram. Avoid using the OUT and IN OUT modes with functions. Good programming practice dictates that a function returns a single value and does not change the values of variables that are not local to the subprogram.

	
See Also:

Oracle Database PL/SQL Language Reference for details about parameter modes

Parameter Data Types

The data type of a formal parameter consists of one of these:

	
An unconstrained type name, such as NUMBER or VARCHAR2.

	
A type that is constrained using the %TYPE or %ROWTYPE attributes.

	
Note:

Numerically constrained types such as NUMBER(2) or VARCHAR2(20) are not allowed in a parameter list.

%TYPE and %ROWTYPE Attributes

Use the type attributes %TYPE and %ROWTYPE to constrain the parameter. For example, the procedure heading in Example 6-4 can be written as follows:

PROCEDURE get_emp_names(dept_num IN EMPLOYEES.DEPARTMENT_ID%TYPE)

This gives the dept_num parameter the same data type as the DEPARTMENT_ID column in the EMPLOYEES table. The column and table must be available when a declaration using %TYPE (or %ROWTYPE) is elaborated.

Using %TYPE is recommended, because if the type of the column in the table changes, it is not necessary to change the application code.

If the get_emp_names procedure is part of a package, you can use previously-declared public (package) variables to constrain its parameter data types. For example:

dept_number NUMBER(2);
...
PROCEDURE get_emp_names(dept_num IN dept_number%TYPE);

Use the %ROWTYPE attribute to create a record that contains all the columns of the specified table. The procedure in Example 6-5 returns all the columns of the EMPLOYEES table in a PL/SQL record for the given employee ID.

Example 6-5 %TYPE and %ROWTYPE Attributes

CREATE OR REPLACE PROCEDURE get_emp_rec (
 emp_number IN EMPLOYEES.EMPLOYEE_ID%TYPE,
 emp_info OUT EMPLOYEES%ROWTYPE
)
IS
BEGIN
 SELECT * INTO emp_info
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = emp_number;
END;
/

Invoke procedure from PL/SQL block:

DECLARE
 emp_row EMPLOYEES%ROWTYPE;
BEGIN
 get_emp_rec(206, emp_row);
 DBMS_OUTPUT.PUT('EMPLOYEE_ID: ' || emp_row.EMPLOYEE_ID);
 DBMS_OUTPUT.NEW_LINE;
 DBMS_OUTPUT.PUT('FIRST_NAME: ' || emp_row.FIRST_NAME);
 DBMS_OUTPUT.NEW_LINE;
 DBMS_OUTPUT.PUT('LAST_NAME: ' || emp_row.LAST_NAME);
 DBMS_OUTPUT.NEW_LINE;
 DBMS_OUTPUT.PUT('EMAIL: ' || emp_row.EMAIL);
 DBMS_OUTPUT.NEW_LINE;
 DBMS_OUTPUT.PUT('PHONE_NUMBER: ' || emp_row.PHONE_NUMBER);
 DBMS_OUTPUT.NEW_LINE;
 DBMS_OUTPUT.PUT('HIRE_DATE: ' || emp_row.HIRE_DATE);
 DBMS_OUTPUT.NEW_LINE;
 DBMS_OUTPUT.PUT('JOB_ID: ' || emp_row.JOB_ID);
 DBMS_OUTPUT.NEW_LINE;
 DBMS_OUTPUT.PUT('SALARY: ' || emp_row.SALARY);
 DBMS_OUTPUT.NEW_LINE;
 DBMS_OUTPUT.PUT('COMMISSION_PCT: ' || emp_row.COMMISSION_PCT);
 DBMS_OUTPUT.NEW_LINE;
 DBMS_OUTPUT.PUT('MANAGER_ID: ' || emp_row.MANAGER_ID);
 DBMS_OUTPUT.NEW_LINE;
 DBMS_OUTPUT.PUT('DEPARTMENT_ID: ' || emp_row.DEPARTMENT_ID);
 DBMS_OUTPUT.NEW_LINE;
END;
/

Result:

EMPLOYEE_ID: 206
FIRST_NAME: William
LAST_NAME: Gietz
EMAIL: WGIETZ
PHONE_NUMBER: 515.123.8181
HIRE_DATE: 07-JUN-02
JOB_ID: AC_ACCOUNT
SALARY: 8300
COMMISSION_PCT:
MANAGER_ID: 205
DEPARTMENT_ID: 110

Stored functions can return values that are declared using %ROWTYPE. For example:

FUNCTION get_emp_rec (dept_num IN EMPLOYEES.DEPARTMENT_ID%TYPE)
 RETURN EMPLOYEES%ROWTYPE IS ...

Passing Composite Variables as Parameters

You can pass PL/SQL composite variables (collections and records) as parameters to stored subprograms.

If the subprogram is remote, you must create a redundant loop-back DBLINK, so that when the remote subprogram compiles, the type checker that verifies the source uses the same definition of the user-defined composite variable type as the invoker uses.

Initial Parameter Values

Parameters can take initial values. Use either the assignment operator or the DEFAULT keyword to give a parameter an initial value. For example, these are equivalent:

PROCEDURE Get_emp_names (Dept_num IN NUMBER := 20) IS ...
PROCEDURE Get_emp_names (Dept_num IN NUMBER DEFAULT 20) IS ...

When a parameter takes an initial value, it can be omitted from the actual parameter list when you invoke the subprogram. When you do specify the parameter value on the invocation, it overrides the initial value.

	
Note:

Unlike in an anonymous PL/SQL block, you do not use the keyword DECLARE before the declarations of variables, cursors, and exceptions in a stored subprogram. In fact, it is an error to use it.

Creating Subprograms

Use a text editor to write the subprogram. Then, using an interactive tool such as SQL*Plus, load the text file containing the procedure by entering:

@get_emp

This loads the procedure into the current schema from the get_emp.sql file (.sql is the default file extension). The slash (/) after the code is not part of the code, it only activates the loading of the procedure.

	
Caution:

When developing a subprogram, it is usually preferable to use the statement CREATE OR REPLACE PROCEDURE or CREATE OR REPLACE FUNCTION. This statement replaces any previous version of that subprogram in the same schema with the newer version, but without warning.

You can use either the keyword IS or AS after the subprogram parameter list.

	
See Also:

	
Oracle Database SQL Language Reference for the syntax of the CREATE FUNCTION statement

	
Oracle Database SQL Language Reference for the syntax of the CREATE PROCEDURE statement

Privileges Needed

To create a subprogram, a package specification, or a package body, you must meet these prerequisites:

	
You must have the CREATE PROCEDURE system privilege to create a subprogram or package in your schema, or the CREATE ANY PROCEDURE system privilege to create a subprogram or package in another user's schema. In either case, the package body must be created in the same schema as the package.

	
Note:

To create without errors (to compile the subprogram or package successfully) requires these additional privileges:
	
The owner of the subprogram or package must be explicitly granted the necessary object privileges for all objects referenced within the body of the code.

	
The owner cannot obtain required privileges through roles.

If the privileges of the owner of a subprogram or package change, then the subprogram must be reauthenticated before it is run. If a necessary privilege to a referenced object is revoked from the owner of the subprogram or package, then the subprogram cannot be run.

The EXECUTE privilege on a subprogram gives a user the right to run a subprogram owned by another user. Privileged users run the subprogram under the security domain of the owner of the subprogram. Therefore, users need not be granted the privileges to the objects referenced by a subprogram. This allows for more disciplined and efficient security strategies with database applications and their users. Furthermore, all subprograms and packages are stored in the data dictionary (in the SYSTEM tablespace). No quota controls the amount of space available to a user who creates subprograms and packages.

Altering Subprograms

To alter a subprogram, you must first drop it using the DROP PROCEDURE or DROP FUNCTION statement, then re-create it using the CREATE PROCEDURE or CREATE FUNCTION statement. Alternatively, use the CREATE OR REPLACE PROCEDURE or CREATE OR REPLACE FUNCTION statement, which first drops the subprogram if it exists, then re-creates it as specified.

	
Caution:

The subprogram is dropped without warning.

Dropping Subprograms and Packages

A standalone subprogram, a standalone function, a package body, or an entire package can be dropped using the SQL statements DROP PROCEDURE, DROP FUNCTION, DROP PACKAGE BODY, and DROP PACKAGE, respectively. A DROP PACKAGE statement drops both the specification and body of a package.

This statement drops the Old_sal_raise procedure in your schema:

DROP PROCEDURE Old_sal_raise;

Privileges Needed

To drop a subprogram or package, the subprogram or package must be in your schema, or you must have the DROP ANY PROCEDURE privilege. An individual subprogram within a package cannot be dropped; the containing package specification and body must be re-created without the subprograms to be dropped.

External Subprograms

A PL/SQL subprogram running on an Oracle Database instance can invoke an external subprogram written in a third-generation language (3GL). The 3GL subprogram runs in a separate address space from that of the database.

	
See Also:

Chapter 14, "Developing Applications with Multiple Programming Languages," for information about external subprograms

PL/SQL Function Result Cache

Using the PL/SQL function result cache can save significant space and time. Each time a result-cached PL/SQL function is invoked with different parameter values, those parameters and their result are stored in the cache. Subsequently, when the same function is invoked with the same parameter values, the result is retrieved from the cache, instead of being recomputed. Because the cache is stored in a shared global area (SGA), it is available to any session that runs your application.

If a database object that was used to compute a cached result is updated, the cached result becomes invalid and must be recomputed.

The best candidates for result-caching are functions that are invoked frequently but depend on information that changes infrequently or never.

For more information about the PL/SQL function result cache, see Oracle Database PL/SQL Language Reference.

PL/SQL Packages

A package is a collection of related program objects (for example, subprogram, variables, constants, cursors, and exceptions) stored as a unit in the database.

Using packages is an alternative to creating subprograms as standalone schema objects. Packages have many advantages over standalone subprograms. For example, they:

	
Let you organize your application development more efficiently.

	
Let you grant privileges more efficiently.

	
Let you modify package objects without recompiling dependent schema objects.

	
Enable Oracle Database to read multiple package objects into memory at once.

	
Can contain global variables and cursors that are available to all subprograms in the package.

	
Let you overload subprograms. Overloading a subprogram means creating multiple subprograms with the same name in the same package, each taking arguments of different number or data type.

	
See Also:

Oracle Database PL/SQL Language Reference for more information about subprogram name overloading

The specification part of a package declares the public types, variables, constants, and subprograms that are visible outside the immediate scope of the package. The body of a package defines both the objects declared in the specification and private objects that are not visible to applications outside the package.

Example 6-6 creates a package that contains one stored function and two stored procedures, and then invokes a procedure.

Example 6-6 Creating PL/SQL Package and Invoking Package Subprogram

-- Sequence that package function needs:

CREATE SEQUENCE emp_sequence
START WITH 8000
INCREMENT BY 10;

-- Package specification:

CREATE or REPLACE PACKAGE employee_management IS
 FUNCTION hire_emp (
 firstname VARCHAR2,
 lastname VARCHAR2,
 email VARCHAR2,
 phone VARCHAR2,
 hiredate DATE,
 job VARCHAR2,
 sal NUMBER,
 comm NUMBER,
 mgr NUMBER,
 deptno NUMBER
) RETURN NUMBER;

 PROCEDURE fire_emp(
 emp_id IN NUMBER
);

 PROCEDURE sal_raise (
 emp_id IN NUMBER,
 sal_incr IN NUMBER
);
END employee_management;
/

-- Package body:

CREATE or REPLACE PACKAGE BODY employee_management IS
 FUNCTION hire_emp (
 firstname VARCHAR2,
 lastname VARCHAR2,
 email VARCHAR2,
 phone VARCHAR2,
 hiredate DATE,
 job VARCHAR2,
 sal NUMBER,
 comm NUMBER,
 mgr NUMBER,
 deptno NUMBER
) RETURN NUMBER
 IS
 new_empno NUMBER(10);
 BEGIN
 new_empno := emp_sequence.NEXTVAL;

 INSERT INTO EMPLOYEES (
 employee_id,
 first_name,
 last_name,
 email,
 phone_number,
 hire_date,
 job_id,
 salary,
 commission_pct,
 manager_id,
 department_id
)
 VALUES (
 new_empno,
 firstname,
 lastname,
 email,
 phone,
 hiredate,
 job,
 sal,
 comm,
 mgr,
 deptno
);

 RETURN (new_empno);
 END hire_emp;

 PROCEDURE fire_emp (
 emp_id IN NUMBER
) IS
 BEGIN
 DELETE FROM EMPLOYEES
 WHERE EMPLOYEE_ID = emp_id;

 IF SQL%NOTFOUND THEN
 raise_application_error(
 -20011,
 'Invalid Employee Number: ' || TO_CHAR(Emp_id)
);
 END IF;
 END fire_emp;

 PROCEDURE sal_raise (
 emp_id IN NUMBER,
 sal_incr IN NUMBER
) IS
 BEGIN
 UPDATE EMPLOYEES
 SET SALARY = SALARY + sal_incr
 WHERE EMPLOYEE_ID = emp_id;

 IF SQL%NOTFOUND THEN
 raise_application_error(
 -20011,
 'Invalid Employee Number: ' || TO_CHAR(Emp_id)
);
 END IF;
 END sal_raise;
END employee_management;
/

Invoke package procedures:

DECLARE
 empno NUMBER(6);
 sal NUMBER(6);
 temp NUMBER(6);
BEGIN
 empno := employee_management.hire_emp(
 'John',
 'Doe',
 'john.doe@company.com',
 '555-0100',
 '20-SEP-07',
 'ST_CLERK',
 2500,
 0,
 100,
 20);

 DBMS_OUTPUT.PUT_LINE('New employee ID is ' || TO_CHAR(empno));
END;
/

PL/SQL Object Size Limits

The size limit for PL/SQL stored database objects such as subprograms, triggers, and packages is the size of the Descriptive Intermediate Attributed Notation for Ada (DIANA) code in the shared pool in bytes. The Linux and UNIX limit on the size of the flattened DIANA/code size is 64K but the limit might be 32K on desktop platforms.

The most closely related number that a user can access is the PARSED_SIZE in the static data dictionary view *_OBJECT_SIZE. That gives the size of the DIANA in bytes as stored in the SYS.IDL_xxx$ tables. This is not the size in the shared pool. The size of the DIANA part of PL/SQL code (used during compilation) is significantly larger in the shared pool than it is in the system table.

Creating Packages

Each part of a package is created with a different statement. Create the package specification using the CREATE PACKAGE statement. The CREATE PACKAGE statement declares public package objects.

To create a package body, use the CREATE PACKAGE BODY statement. The CREATE PACKAGE BODY statement defines the procedural code of the public subprograms declared in the package specification.

You can also define private, or local, package subprograms, and variables in a package body. These objects can only be accessed by other subprograms in the body of the same package. They are not visible to external users, regardless of the privileges they hold.

It is often more convenient to add the OR REPLACE clause in the CREATE PACKAGE or CREATE PACKAGE BODY statements when you are first developing your application. The effect of this option is to drop the package or the package body without warning. The CREATE statements are:

CREATE OR REPLACE PACKAGE Package_name AS ...

and

CREATE OR REPLACE PACKAGE BODY Package_name AS ...

Creating Package Objects

The body of a package can contain:

	
Subprograms declared in the package specification.

	
Definitions of cursors declared in the package specification.

	
Local subprograms, not declared in the package specification.

	
Local variables.

Subprograms, cursors, and variables that are declared in the package specification are global. They can be invoked, or used, by external users that have EXECUTE permission for the package or that have EXECUTE ANY PROCEDURE privileges.

When you create the package body, ensure that each subprogram that you define in the body has the same parameters, by name, data type, and mode, as the declaration in the package specification. For functions in the package body, the parameters and the return type must agree in name and type.

Privileges to Needed to Create or Drop Packages

The privileges required to create or drop a package specification or package body are the same as those required to create or drop a standalone subprogram. See "Creating Subprograms" and "Dropping Subprograms and Packages".

Naming Packages and Package Objects

The names of a package and all public objects in the package must be unique within a given schema. The package specification and its body must have the same name. All package constructs must have unique names within the scope of the package, unless overloading of subprogram names is desired.

Package Invalidations and Session State

Each session that references a package object has its own instance of the corresponding package, including persistent state for any public and private variables, cursors, and constants. If any of the session's instantiated packages (specification or body) are invalidated, then all package instances in the session are invalidated and recompiled. Therefore, the session state is lost for all package instances in the session.

When a package in a given session is invalidated, the session receives ORA-04068 the first time it attempts to use any object of the invalid package instance. The second time a session makes such a package call, the package is reinstantiated for the session without error. However, if you handle this error in your application, be aware of the following:

	
For optimal performance, Oracle Database returns this error message only when the package state is discarded. When a subprogram in one package invokes a subprogram in another package, the session state is lost for both packages.

	
If a server session traps ORA-04068, then ORA-04068 is not raised for the client session. Therefore, when the client session attempts to use an object in the package, the package is not reinstantiated. To reinstantiate the package, the client session must either reconnect to the database or recompile the package.

In Example 6-7, the RAISE statement raises the current exception, ORA-04068, which is the cause of the exception being handled, ORA-06508. ORA-04068 is not trapped.

Example 6-7 Raising ORA-04068

PROCEDURE p IS
 package_exception EXCEPTION;
 PRAGMA EXCEPTION_INIT (package_exception, -6508);
BEGIN
 ...
EXCEPTION
 WHEN package_exception THEN
 RAISE;
END;
/

In Example 6-8, the RAISE statement raises the exception ORA-20001 in response to ORA-06508, instead of the current exception, ORA-04068. ORA-04068 is trapped. When this happens, the ORA-04068 error is masked, which stops the package from being reinstantiated.

Example 6-8 Trapping ORA-04068

PROCEDURE p IS
 package_exception EXCEPTION;
 other_exception EXCEPTION;
 PRAGMA EXCEPTION_INIT (package_exception, -6508);
 PRAGMA EXCEPTION_INIT (other_exception, -20001);
BEGIN
 ...
EXCEPTION
 WHEN package_exception THEN
 ...
 RAISE other_exception;
END;
/

In most production environments, DDL operations that can cause invalidations are usually performed during inactive working hours; therefore, this situation might not be a problem for end-user applications. However, if package invalidations are common in your system during working hours, then you might want to code your applications to handle this error when package calls are made.

Packages Supplied with Oracle Database

There are many packages provided with Oracle Database, either to extend the functionality of the database or to give PL/SQL access to SQL features. You can invoke these packages from your application.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for an overview of these Oracle Database packages

Overview of Bulk Binding

Oracle Database uses two engines to run PL/SQL blocks and subprograms. The PL/SQL engine runs procedural statements, while the SQL engine runs SQL statements. During execution, every SQL statement causes a context switch between the two engines, resulting in performance overhead.

Performance can be improved substantially by minimizing the number of context switches required to run a particular block or subprogram. When a SQL statement runs inside a loop that uses collection elements as bind variables, the large number of context switches required by the block can cause poor performance. Collections include:

	
Varrays

	
Nested tables

	
Index-by tables

	
Host arrays

Binding is the assignment of values to PL/SQL variables in SQL statements. Bulk binding is binding an entire collection at once. Bulk binds pass the entire collection back and forth between the two engines in a single operation.

Typically, using bulk binds improves performance for SQL statements that affect four or more database rows. The more rows affected by a SQL statement, the greater the performance gain from bulk binds.

	
Note:

This section provides an overview of bulk binds to help you decide whether to use them in your PL/SQL applications. For detailed information about using bulk binds, including ways to handle exceptions that occur in the middle of a bulk bind operation, see Oracle Database PL/SQL Language Reference.
Parallel DML statements are disabled with bulk binds.

When to Use Bulk Binds

Consider using bulk binds to improve the performance of:

	
DML Statements that Reference Collections

	
SELECT Statements that Reference Collections

	
FOR Loops that Reference Collections and Return DML

DML Statements that Reference Collections

A bulk bind, which uses the FORALL keyword, can improve the performance of INSERT, UPDATE, or DELETE statements that reference collection elements.

The PL/SQL block in Example 6-9 increases the salary for employees whose manager's ID number is 7902, 7698, or 7839, with and without bulk binds. Without bulk bind, PL/SQL sends a SQL statement to the SQL engine for each updated employee, leading to context switches that slow performance.

Example 6-9 DML Statements that Reference Collections

DECLARE
 TYPE numlist IS VARRAY (100) OF NUMBER;
 id NUMLIST := NUMLIST(7902, 7698, 7839);
BEGIN
 -- Efficient method, using bulk bind:

 FORALL i IN id.FIRST..id.LAST
 UPDATE EMPLOYEES
 SET SALARY = 1.1 * SALARY
 WHERE MANAGER_ID = id(i);

 -- Slower method:

 FOR i IN id.FIRST..id.LAST LOOP
 UPDATE EMPLOYEES
 SET SALARY = 1.1 * SALARY
 WHERE MANAGER_ID = id(i);
 END LOOP;
END;
/

SELECT Statements that Reference Collections

The BULK COLLECT INTO clause can improve the performance of queries that reference collections. You can use BULK COLLECT INTO with tables of scalar values, or tables of %TYPE values.

The PL/SQL block in Example 6-10 queries multiple values into PL/SQL tables, with and without bulk binds. Without bulk bind, PL/SQL sends a SQL statement to the SQL engine for each selected employee, leading to context switches that slow performance.

Example 6-10 SELECT Statements that Reference Collections

DECLARE
 TYPE var_tab IS TABLE OF VARCHAR2(20)
 INDEX BY PLS_INTEGER;

 empno VAR_TAB;
 ename VAR_TAB;
 counter NUMBER;

 CURSOR c IS
 SELECT EMPLOYEE_ID, LAST_NAME
 FROM EMPLOYEES
 WHERE MANAGER_ID = 7698;
BEGIN
 -- Efficient method, using bulk bind:

 SELECT EMPLOYEE_ID, LAST_NAME BULK COLLECT
 INTO empno, ename
 FROM EMPLOYEES
 WHERE MANAGER_ID = 7698;

 -- Slower method:

 counter := 1;

 FOR rec IN c LOOP
 empno(counter) := rec.EMPLOYEE_ID;
 ename(counter) := rec.LAST_NAME;
 counter := counter + 1;
 END LOOP;
END;
/

FOR Loops that Reference Collections and Return DML

You can use the FORALL keyword with the BULK COLLECT INTO keywords to improve the performance of FOR loops that reference collections and return DML.

The PL/SQL block in Example 6-11 updates the EMPLOYEES table by computing bonuses for a collection of employees. Then it returns the bonuses in a column called bonus_list_inst. The actions are performed with and without bulk binds. Without bulk bind, PL/SQL sends a SQL statement to the SQL engine for each updated employee, leading to context switches that slow performance.

Example 6-11 FOR Loops that Reference Collections and Return DML

DECLARE
 TYPE emp_list IS VARRAY(100) OF EMPLOYEES.EMPLOYEE_ID%TYPE;
 empids emp_list := emp_list(182, 187, 193, 200, 204, 206);

 TYPE bonus_list IS TABLE OF EMPLOYEES.SALARY%TYPE;
 bonus_list_inst bonus_list;

BEGIN
 -- Efficient method, using bulk bind:

 FORALL i IN empids.FIRST..empids.LAST
 UPDATE EMPLOYEES
 SET SALARY = 0.1 * SALARY
 WHERE EMPLOYEE_ID = empids(i)
 RETURNING SALARY BULK COLLECT INTO bonus_list_inst;

 -- Slower method:

 FOR i IN empids.FIRST..empids.LAST LOOP
 UPDATE EMPLOYEES
 SET SALARY = 0.1 * SALARY
 WHERE EMPLOYEE_ID = empids(i)
 RETURNING SALARY INTO bonus_list_inst(i);
 END LOOP;
END;
/

Triggers

A trigger is a special kind of PL/SQL anonymous block. You can define triggers to fire before or after SQL statements, either on a statement level or for each row that is affected. You can also define INSTEAD OF triggers or system triggers (triggers on DATABASE and SCHEMA).

	
See Also:

Oracle Database PL/SQL Language Reference for more information about triggers

Compiling PL/SQL Subprograms for Native Execution

You can speed up PL/SQL subprograms by compiling them into native code residing in shared libraries.

You can use native compilation with both the supplied packages and the subprograms you write yourself. Subprograms compiled this way work in all server environments, such as the shared server configuration (formerly known as multithreaded server) and Oracle Real Application Clusters (Oracle RAC).

This technique is most effective for computation-intensive subprograms that do not spend much time running SQL, because it can do little to speed up SQL statements invoked from these subprograms.

With Java, you can use the ncomp tool to compile your own packages and classes.

	
See Also:

	
Oracle Database PL/SQL Language Reference for details on PL/SQL native compilation

	
Oracle Database Java Developer's Guide for details on Java native compilation

Cursor Variables

A cursor is a static object; a cursor variable is a pointer to a cursor. Because cursor variables are pointers, they can be passed and returned as parameters to subprograms. A cursor variable can also refer to different cursors in its lifetime.

Additional advantages of cursor variables include:

	
Encapsulation

Queries are centralized in the stored subprogram that opens the cursor variable.

	
Easy maintenance

If you must change the cursor, then you only make the change in the stored subprogram, not in each application.

	
Convenient security

The user of the application is the user name used when the application connects to the server. The user must have EXECUTE permission on the stored subprogram that opens the cursor. But, the user need not have READ permission on the tables used in the query. Use this capability to limit access to the columns in the table and access to other stored subprograms.

	
See Also:

Oracle Database PL/SQL Language Reference for more information about cursor variables

Topics:

	
Declaring and Opening Cursor Variables

	
Examples of Cursor Variables

Declaring and Opening Cursor Variables

Memory is usually allocated for a cursor variable in the client application using the appropriate ALLOCATE statement. In Pro*C, use the EXEC SQL ALLOCATE cursor_name statement. In OCI, use the Cursor Data Area.

You can also use cursor variables in applications that run entirely in a single server session. You can declare cursor variables in PL/SQL subprograms, open them, and use them as parameters for other PL/SQL subprograms.

Examples of Cursor Variables

This section has these examples of cursor variable usage in PL/SQL:

	
Example 6-12, "Fetching Data with Cursor Variable"

	
Example 6-13, "Cursor Variable with Discriminator"

	
See Also:

For additional cursor variable examples that use programmatic interfaces:
	
Pro*COBOL Programmer's Guide

	
Oracle Call Interface Programmer's Guide

Example 6-12 creates a package that defines a PL/SQL cursor variable type and two procedures, and then invokes the procedures from a PL/SQL block. The first procedure opens a cursor variable using a bind variable in the WHERE clause. The second procedure uses a cursor variable to fetch rows from the EMPLOYEES table.

Example 6-12 Fetching Data with Cursor Variable

CREATE OR REPLACE PACKAGE emp_data AS
 TYPE emp_val_cv_type IS REF CURSOR
 RETURN EMPLOYEES%ROWTYPE;

 PROCEDURE open_emp_cv (
 emp_cv IN OUT emp_val_cv_type,
 dept_number IN EMPLOYEES.DEPARTMENT_ID%TYPE
);

 PROCEDURE fetch_emp_data (
 emp_cv IN emp_val_cv_type,
 emp_row OUT EMPLOYEES%ROWTYPE
);
END emp_data;
/
CREATE OR REPLACE PACKAGE BODY emp_data AS
 PROCEDURE open_emp_cv (
 emp_cv IN OUT emp_val_cv_type,
 dept_number IN EMPLOYEES.DEPARTMENT_ID%TYPE
)
 IS
 BEGIN
 OPEN emp_cv FOR
 SELECT * FROM EMPLOYEES
 WHERE DEPARTMENT_ID = dept_number
 ORDER BY last_name;
 END open_emp_cv;

 PROCEDURE fetch_emp_data (
 emp_cv IN emp_val_cv_type,
 emp_row OUT EMPLOYEES%ROWTYPE
)
 IS
 BEGIN
 FETCH emp_cv INTO emp_row;
 END fetch_emp_data;
END emp_data;
/

Invoke package procedures:

DECLARE
 emp_curs emp_data.emp_val_cv_type;
 dept_number EMPLOYEES.DEPARTMENT_ID%TYPE;
 emp_row EMPLOYEES%ROWTYPE;

BEGIN
 dept_number := 20;

 -- Open cursor, using variable:

 emp_data.open_emp_cv(emp_curs, dept_number);

 -- Fetch and display data:

 LOOP
 emp_data.fetch_emp_data(emp_curs, emp_row);
 EXIT WHEN emp_curs%NOTFOUND;
 DBMS_OUTPUT.PUT(emp_row.LAST_NAME || ' ');
 DBMS_OUTPUT.PUT_LINE(emp_row.SALARY);
 END LOOP;
END;
/

In Example 6-13, the procedure opens a cursor variable for either the EMPLOYEES table or the DEPARTMENTS table, depending on the value of the parameter discrim. The anonymous block invokes the procedure to open the cursor variable for the EMPLOYEES table, but fetches from the DEPARTMENTS table, which raises the predefined exception ROWTYPE_MISMATCH.

Example 6-13 Cursor Variable with Discriminator

CREATE OR REPLACE PACKAGE emp_dept_data AS
 TYPE cv_type IS REF CURSOR;

 PROCEDURE open_cv (
 cv IN OUT cv_type,
 discrim IN POSITIVE
);
 END emp_dept_data;
/

CREATE OR REPLACE PACKAGE BODY emp_dept_data AS
 PROCEDURE open_cv (
 cv IN OUT cv_type,
 discrim IN POSITIVE) IS
 BEGIN
 IF discrim = 1 THEN
 OPEN cv FOR
 SELECT * FROM EMPLOYEES ORDER BY employee_id;
 ELSIF discrim = 2 THEN
 OPEN cv FOR
 SELECT * FROM DEPARTMENTS ORDER BY department_id;
 END IF;
 END open_cv;
END emp_dept_data;
/

Invoke procedure open_cv from anonymous block:

DECLARE
 emp_rec EMPLOYEES%ROWTYPE;
 dept_rec DEPARTMENTS%ROWTYPE;
 cv Emp_dept_data.CV_TYPE;
BEGIN
 emp_dept_data.open_cv(cv, 1); -- Open cv for EMPLOYEES fetch.
 FETCH cv INTO dept_rec; -- Fetch from DEPARTMENTS.
 DBMS_OUTPUT.PUT(dept_rec.DEPARTMENT_ID);
 DBMS_OUTPUT.PUT_LINE(' ' || dept_rec.LOCATION_ID);
EXCEPTION
 WHEN ROWTYPE_MISMATCH THEN
 BEGIN
 DBMS_OUTPUT.PUT_LINE
 ('Row type mismatch, fetching EMPLOYEES data ...');
 FETCH cv INTO emp_rec;
 DBMS_OUTPUT.PUT(emp_rec.DEPARTMENT_ID);
 DBMS_OUTPUT.PUT_LINE(' ' || emp_rec.LAST_NAME);
 END;
END;
/

Result:

Row type mismatch, fetching EMPLOYEES data ...
90 King

Handling PL/SQL Compile-Time Errors

To list compile-time errors, query the static data dictionary view *_ERRORS. From these views, you can retrieve original source code. The error text associated with the compilation of a subprogram is updated when the subprogram is replaced, and it is deleted when the subprogram is dropped.

SQL*Plus issues a warning message for compile-time errors, but for more information about them, you must use the command SHOW ERRORS.

	
Note:

Before issuing the SHOW ERRORS statement, use the SET LINESIZE statement to get long lines on output. The value 132 is usually a good choice. For example:

SET LINESIZE 132

Example 6-14 has two compile-time errors: WHER should be WHERE, and END should be followed by a semicolon. SHOW ERRORS shows the line, column, and description of each error.

Example 6-14 Compile-Time Errors

CREATE OR REPLACE PROCEDURE fire_emp (
 emp_id NUMBER
) AS
BEGIN
 DELETE FROM EMPLOYEES
 WHER EMPLOYEE_ID = Emp_id;
END
/

Result:

Warning: Procedure created with compilation errors.

Command:

SHOW ERRORS;

Result:

Errors for PROCEDURE FIRE_EMP:

LINE/COL ERROR
-------- ---
5/3 PL/SQL: SQL Statement ignored
6/8 PL/SQL: ORA-00933: SQL command not properly ended
7/3 PLS-00103: Encountered the symbol "end-of-file" when expecting
 one of the following:
 ; <an identifier> <a double-quoted delimited-identifier>
 current delete exists prior <a single-quoted SQL string>
 The symbol ";" was substituted for "end-of-file" to continue.

	
See Also:

	
Oracle Database Reference for more information about the static data dictionary view *_SOURCE

	
SQL*Plus User's Guide and Reference for more information about the SHOW ERRORS statement

Handling Runtime PL/SQL Errors

Oracle Database allows user-defined errors in PL/SQL code to be handled so that user-specified error numbers and messages are returned to the client application, which can handle the error.

User-specified error messages are returned using the RAISE_APPLICATION_ERROR procedure. For example:

RAISE_APPLICATION_ERROR(error_number, 'text', keep_error_stack)

This procedure stops subprogram execution, rolls back any effects of the subprogram, and returns a user-specified error number and message (unless the error is trapped by an exception handler). error_number must be in the range of -20000 to -20999.

Use error number -20000 as a generic number for messages where it is important to relay information to the user, but having a unique error number is not required. Text must be a character expression, 2 KB or less (longer messages are ignored). To add the error to errors on the stack, set Keep_error_stack to TRUE; to replace the existing errors, set it to FALSE (the default).

	
Note:

Some Oracle Database packages, such as DBMS_OUTPUT, DBMS_DESCRIBE, and DBMS_ALERT, use application error numbers in the range -20000 to -20005. See the descriptions of these packages for more information.

The RAISE_APPLICATION_ERROR procedure is often used in exception handlers or in the logic of PL/SQL code. For example, this exception handler selects the string for the associated user-defined error message and invokes the RAISE_APPLICATION_ERROR procedure:

...
WHEN NO_DATA_FOUND THEN
 SELECT Error_string INTO Message
 FROM Error_table,
 V$NLS_PARAMETERS V
 WHERE Error_number = -20101 AND Lang = v.value AND
 v.parameter = "NLS_LANGUAGE";
 Raise_application_error(-20101, Message);
...

Topics:

	
Declaring Exceptions and Exception Handlers

	
Unhandled Exceptions

	
Handling Errors in Distributed Queries

	
Handling Errors in Remote Subprograms

Declaring Exceptions and Exception Handlers

User-defined exceptions are explicitly defined and raised within the PL/SQL block, to process errors specific to the application. When an exception is raised, the usual execution of the PL/SQL block stops, and an exception handler is invoked. Specific exception handlers can be written to handle any internal or user-defined exception.

Application code can check for a condition that requires special attention using an IF statement. If there is an error condition, then two options are available:

	
Enter a RAISE statement that names the appropriate exception. A RAISE statement stops the execution of the subprogram, and control passes to an exception handler (if any).

	
Invoke the RAISE_APPLICATION_ERROR procedure to return a user-specified error number and message.

You can also define an exception handler to handle user-specified error messages. For example, Figure 6-1 shows:

	
An exception and associated exception handler in a subprogram

	
A conditional statement that checks for an error (such as transferring funds not available) and enters a user-specified error number and message within a trigger

	
How user-specified error numbers are returned to the invoking environment (in this case, a subprogram), and how that application can define an exception that corresponds to the user-specified error number

Declare a user-defined exception in a subprogram or package body (private exceptions), or in the specification of a package (public exceptions). Define an exception handler in the body of a subprogram (standalone or package).

Figure 6-1 Exceptions and User-Defined Errors

[image: Description of Figure 6-1 follows]

Unhandled Exceptions

In database PL/SQL units, an unhandled user-error condition or internal error condition that is not trapped by an appropriate exception handler causes the implicit rollback of the program unit. If the program unit includes a COMMIT statement before the point at which the unhandled exception is observed, then the implicit rollback of the program unit can only be completed back to the previous COMMIT.

Additionally, unhandled exceptions in database-stored PL/SQL units propagate back to client-side applications that invoke the containing program unit. In such an application, only the application program unit invocation is rolled back (not the entire application program unit), because it is submitted to the database as a SQL statement.

If unhandled exceptions in database PL/SQL units are propagated back to database applications, modify the database PL/SQL code to handle the exceptions. Your application can also trap for unhandled exceptions when invoking database program units and handle such errors appropriately.

Handling Errors in Distributed Queries

You can use a trigger or a stored subprogram to create a distributed query. This distributed query is decomposed by the local Oracle Database instance into a corresponding number of remote queries, which are sent to the remote nodes for execution. The remote nodes run the queries and send the results back to the local node. The local node then performs any necessary post-processing and returns the results to the user or application.

If a portion of a distributed statement fails, possibly from a constraint violation, then Oracle Database returns ORA-02055. Subsequent statements, or subprogram invocations, return ORA-02067 until a rollback or a rollback to savepoint is entered.

Design your application to check for any returned error messages that indicates that a portion of the distributed update has failed. If you detect a failure, rollback the entire transaction (or rollback to a savepoint) before allowing the application to proceed.

Handling Errors in Remote Subprograms

When a subprogram is run locally or at a remote location, these types of exceptions can occur:

	
PL/SQL user-defined exceptions, which must be declared using the keyword EXCEPTION

	
PL/SQL predefined exceptions, such as NO_DATA_FOUND

	
SQL errors, such as ORA-00900

	
Application exceptions, which are generated using the RAISE_APPLICATION_ERROR procedure.

When using local subprograms, all of these messages can be trapped by writing an exception handler, such as:

EXCEPTION
 WHEN ZERO_DIVIDE THEN
 /* Handle the exception */

The WHEN clause requires an exception name. If the exception that is raised does not have a name, such as those generated with RAISE_APPLICATION_ERROR, then one can be assigned using PRAGMA_EXCEPTION_INIT. For example:

DECLARE
 ...
 Null_salary EXCEPTION;
 PRAGMA EXCEPTION_INIT(Null_salary, -20101);
BEGIN
 ...
 RAISE_APPLICATION_ERROR(-20101, 'salary is missing');
 ...
EXCEPTION
 WHEN Null_salary THEN
 ...

When invoking a remote subprogram, exceptions are also handled by creating a local exception handler. The remote subprogram must return an error number to the local invoking subprogram, which then handles the exception, as shown in the previous example. Because PL/SQL user-defined exceptions always return ORA-06510 to the local subprogram, these exceptions cannot be handled. All other remote exceptions can be handled in the same manner as local exceptions.

Debugging Stored Subprograms

Compiling a stored subprogram involves fixing any syntax errors in the code. You might need to do additional debugging to ensure that the subprogram works correctly, performs well, and recovers from errors. Such debugging might involve:

	
Adding extra output statements to verify execution progress and check data values at certain points within the subprogram.

	
Running a separate debugger to analyze execution in greater detail.

Topics:

	
PL/Scope

	
PL/SQL Hierarchical Profiler

	
Oracle JDeveloper

	
DBMS_OUTPUT Package

	
Privileges for Debugging PL/SQL and Java Stored Subprograms

	
Writing Low-Level Debugging Code

	
DBMS_DEBUG_JDWP Package

	
DBMS_DEBUG Package

PL/Scope

PL/Scope is a compiler-driven tool that collects and organizes data about user-defined identifiers from PL/SQL source code. Because PL/Scope is a compiler-driven tool, you use it through interactive development environments (such as SQL Developer and JDeveloper), rather than directly.

PL/Scope enables the development of powerful and effective PL/Scope source code browsers that increase PL/SQL developer productivity by minimizing time spent browsing and understanding source code.

For more information about PL/Scope, see Chapter 7, "Using PL/Scope."

PL/SQL Hierarchical Profiler

The PL/SQL hierarchical profiler reports the dynamic execution profile of your PL/SQL program, organized by subprogram calls. It accounts for SQL and PL/SQL execution times separately. Each subprogram-level summary in the dynamic execution profile includes information such as number of calls to the subprogram, time spent in the subprogram itself, time spent in the subprogram's subtree (that is, in its descendent subprograms), and detailed parent-children information.

You can browse the generated HTML reports in any browser. The browser's navigational capabilities, combined with well chosen links, provide a powerful way to analyze performance of large applications, improve application performance, and lower development costs.

For a detailed description of PL/SQL hierarchical profiler, see Chapter 8, "Using the PL/SQL Hierarchical Profiler."

Oracle JDeveloper

Recent releases of Oracle JDeveloper have extensive features for debugging PL/SQL, Java, and multi-language programs. You can get Oracle JDeveloper as part of various Oracle product suites. Often, a more recent release is available as a download at:

http://www.oracle.com/technetwork/developer-tools/jdev/downloads/index.html

DBMS_OUTPUT Package

You can also debug stored subprograms and triggers using the Oracle package DBMS_OUTPUT. Put PUT and PUT_LINE statements in your code to output the value of variables and expressions to your terminal.

Privileges for Debugging PL/SQL and Java Stored Subprograms

Starting with Oracle Database 10g, a new privilege model applies to debugging PL/SQL and Java code running within the database. This model applies whether you are using Oracle JDeveloper, Oracle Developer, or any of the various third-party PL/SQL or Java development environments, and it affects both the DBMS_DEBUG and DBMS_DEBUG_JDWP APIs.

For a session to connect to a debugger, the effective user at the time of the connect operation must have the DEBUG CONNECT SESSION system privilege. This effective user might be the owner of a DR subprogram involved in making the connect call.

When a debugger becomes connected to a session, the session login user and the enabled session-level roles are fixed as the privilege environment for that debugging connection. Any DEBUG or EXECUTE privileges needed for debugging must be granted to that combination of user and roles.

	
To be able to display and change Java public variables or variables declared in a PL/SQL package specification, the debugging connection must be granted either EXECUTE or DEBUG privilege on the relevant code.

	
To be able to either display and change private variables or breakpoint and run code lines step by step, the debugging connection must be granted DEBUG privilege on the relevant code

	
Caution:

The DEBUG privilege allows a debugging session to do anything that the subprogram being debugged could have done if that action had been included in its code.

In addition to these privilege requirements, the ability to stop on individual code lines and debugger access to variables are allowed only in code compiled with debug information generated. Use the PL/SQL compilation parameter PLSQL_DEBUG and the DEBUG keyword on statements such as ALTER PACKAGE to control whether the PL/SQL compiler includes debug information in its results. If not, variables are not accessible, and neither stepping nor breakpoints stop on code lines. The PL/SQL compiler never generates debug information for code hidden with the PL/SQL wrap utility.

	
See Also:

Oracle Database PL/SQL Language Reference, for information about the wrap utility

The DEBUG ANY PROCEDURE system privilege is equivalent to the DEBUG privilege granted on all objects in the database. Objects owned by SYS are included if the value of the O7_DICTIONARY_ACCESSIBILITY parameter is TRUE.

A debug role mechanism is available to carry privileges needed for debugging that are not normally enabled in the session. See the documentation on the DBMS_DEBUG and DBMS_DEBUG_JDWP packages for details on how to specify a debug role and any necessary related password.

The JAVADEBUGPRIV role carries the DEBUG CONNECT SESSION and DEBUG ANY PROCEDURE privileges. Grant it only with the care those privileges warrant.

	
Caution:

Granting DEBUG ANY PROCEDURE privilege, or granting DEBUG privilege on any object owned by SYS, means granting complete rights to the database.

Writing Low-Level Debugging Code

If you are writing code for part of a debugger, you might need to use packages such as DBMS_DEBUG_JDWP or DBMS_DEBUG.

DBMS_DEBUG_JDWP Package

The DBMS_DEBUG_JDWP package, provided starting with Oracle Database 9g Release 2, provides a framework for multi-language debugging that is expected to supersede the DBMS_DEBUG package over time. It is especially useful for programs that combine PL/SQL and Java.

DBMS_DEBUG Package

The DBMS_DEBUG package, provided starting with Oracle8i, implements server-side debuggers and provides a way to debug server-side PL/SQL units. Several of the debuggers available, such as Oracle Procedure Builder and various third-party vendor solutions, use this API.

	
See Also:

	
Oracle Procedure Builder Developer's Guide

	
Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_DEBUG package and associated privileges

	
Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_OUTPUT package and associated privileges

	
The Oracle JDeveloper documentation for information about using package DBMS_DEBUG_JDWP

	
Oracle Database SQL Language Reference for more details on privileges

	
http://www.oracle.com/technetwork/database/features/plsql/index.html

Invoking Stored Subprograms

Stored PL/SQL subprograms can be invoked from many different environments. For example:

	
Interactively, using an Oracle Database tool

	
From the body of another subprogram

	
From within an application (such as a SQL*Forms or a precompiler)

	
From the body of a trigger

Stored PL/SQL functions (but not procedures) can also be invoked from within SQL statements. For details, see "Invoking Stored PL/SQL Functions from SQL Statements".

Topics:

	
Privileges Required to Invoke a Subprogram

	
Invoking a Subprogram Interactively from Oracle Tools

	
Invoking a Subprogram from Another Subprogram

	
Invoking a Subprogram from a 3GL Application

	
See Also:

	Oracle Database PL/SQL Language Reference for information about invoking PL/SQL subprograms, including passing parameters.
	
Oracle Database PL/SQL Language Reference for information about coding the body of a trigger

Privileges Required to Invoke a Subprogram

You do not need privileges to invoke:

	
Standalone subprograms that you own

	
Subprograms in packages that you own

	
Public standalone subprograms

	
Subprograms in public packages

To invoke a standalone or package subprogram owned by another user:

	
You must have the EXECUTE privilege for the standalone subprogram or for the package containing the subprogram, or you must have the EXECUTE ANY PROCEDURE system privilege.

	
When running a remote subprogram, you must be granted the EXECUTE privilege or EXECUTE ANY PROCEDURE system privilege directly, not through a role.

	
You must include the name of the owner in the invocation. For example:

EXECUTE jdoe.Fire_emp (1043);
EXECUTE jdoe.Hire_fire.Fire_emp (1043);

	
If the subprogram is a definer's-rights (DR) subprogram, then it runs with the privileges of the owner. The owner must have all the necessary object privileges for any referenced objects.

	
If the subprogram is an invoker's-rights (IR) subprogram, then it runs with your privileges. You must have all the necessary object privileges for any referenced objects; that is, all objects accessed by the subprogram through external references that are resolved in your schema. You can hold these privileges either directly or through a role. Roles are enabled unless an IR subprogram is invoked directly or indirectly by a DR subprogram.

Invoking a Subprogram Interactively from Oracle Tools

You can invoke a subprogram interactively from an Oracle Database tool, such as SQL*Plus. Example 6-15 uses SQL*Plus to create a procedure and then invokes it in two different ways.

Example 6-15 Invoking a Subprogram Interactively with SQL*Plus

CREATE OR REPLACE PROCEDURE salary_raise (
 employee EMPLOYEES.EMPLOYEE_ID%TYPE,
 increase EMPLOYEES.SALARY%TYPE
)
IS
BEGIN
 UPDATE EMPLOYEES
 SET SALARY = SALARY + increase
 WHERE EMPLOYEE_ID = employee;
END;
/

Invoke procedure from within PL/SQL block:

BEGIN
 salary_raise(205, 200);
END;
/

Result:

PL/SQL procedure successfully completed.

Invoke procedure with EXECUTE statement:

EXECUTE salary_raise(205, 200);

Result:

PL/SQL procedure successfully completed.

Some interactive tools allow you to create session variables, which you can use for the duration of the session. Using SQL*Plus, Example 6-16 creates, uses, and prints a session variable.

Example 6-16 Creating and Using a Session Variable with SQL*Plus

-- Create function for later use:

CREATE OR REPLACE FUNCTION get_job_id (
 emp_id EMPLOYEES.EMPLOYEE_ID%TYPE
) RETURN EMPLOYEES.JOB_ID%TYPE
IS
 job_id EMPLOYEES.JOB_ID%TYPE;
BEGIN
 SELECT JOB_ID INTO job_id
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = emp_id;

 RETURN job_id;
END;
/
-- Create session variable:

VARIABLE job VARCHAR2(10);

-- Run function and store returned value in session variable:

EXECUTE :job := get_job_id(204);

PL/SQL procedure successfully completed.

SQL*Plus command:

PRINT job;

Result:

JOB

PR_REP

	
See Also:

	
SQL*Plus User's Guide and Reference for information about the EXECUTE command

	
Your tools documentation for information about performing similar operations using your development tool

Invoking a Subprogram from Another Subprogram

A subprogram or a trigger can invoke another stored subprogram. In Example 6-17, the procedure print_mgr_name invokes the procedure print_emp_name.

Recursive subprogram invocations are allowed (that is, a subprogram can invoke itself).

Example 6-17 Invoking a Subprogram from Within Another Subprogram

-- Create procedure that takes employee's ID and prints employee's name:

CREATE OR REPLACE PROCEDURE print_emp_name (
 emp_id EMPLOYEES.EMPLOYEE_ID%TYPE
)
IS
 fname EMPLOYEES.FIRST_NAME%TYPE;
 lname EMPLOYEES.LAST_NAME%TYPE;
BEGIN
 SELECT FIRST_NAME, LAST_NAME
 INTO fname, lname
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = emp_id;

 DBMS_OUTPUT.PUT_LINE (
 'Employee #' || emp_id || ': ' || fname || ' ' || lname
);
END;
/

-- Create procedure that takes employee's ID and prints manager's name:

CREATE OR REPLACE PROCEDURE print_mgr_name (
 emp_id EMPLOYEES.EMPLOYEE_ID%TYPE
)
IS
 mgr_id EMPLOYEES.MANAGER_ID%TYPE;
BEGIN
 SELECT MANAGER_ID
 INTO mgr_id
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = emp_id;

 DBMS_OUTPUT.PUT_LINE (
 'Manager of employee #' || emp_id || ' is: '
);

 print_emp_name(mgr_id);
END;
/

Invoke procedures:

BEGIN
 print_emp_name(200);
 print_mgr_name(200);
END;
/

Result:

Employee #200: Jennifer Whalen
Manager of employee #200 is:
Employee #101: Neena Kochhar

Invoking a Subprogram from a 3GL Application

A 3GL database application, such as a precompiler or an OCI application, can invoke a subprogram from within its own code.

Assume that the procedure Fire_emp1 was created as follows:

CREATE OR REPLACE PROCEDURE fire_emp1 (Emp_id NUMBER) AS
 BEGIN
 DELETE FROM Emp_tab WHERE Empno = Emp_id;
 END;

To run a subprogram within the code of a precompiler application, you must use the EXEC call interface. For example, this statement invokes the Fire_emp procedure in the code of a precompiler application:

EXEC SQL EXECUTE
 BEGIN
 Fire_emp1(:Empnum);
 END;
END-EXEC;

	
See Also:

Oracle Call Interface Programmer's Guide for information about invoking PL/SQL subprograms from within 3GL applications

Invoking Remote Subprograms

Remote subprograms (standalone and package) can be invoked from within a subprogram, OCI application, or precompiler by specifying the remote subprogram name, a database link, and the parameters for the remote subprogram.

For example, this SQL*Plus statement invokes the procedure fire_emp1, which is located in the database and referenced by the local database link named boston_server:

EXECUTE fire_emp1@boston_server(1043);

You must specify values for all remote subprogram parameters, even if there are defaults. You cannot access remote package variables and constants.

	
Caution:

	
Remote subprogram invocations use runtime binding. The user account to which you connect depends on the database link. (Stored subprograms use compile-time binding.)

	
If a local subprogram invokes a remote subprogram, and a time stamp mismatch is found during execution of the local subprogram, then the remote subprogram is not run, and the local subprogram is invalidated.

Topics:

	
Synonyms for Remote Subprograms

	
Committing Transactions

	
See Also:

"Handling Errors in Remote Subprograms" for information about exception handling when invoking remote subprograms

Synonyms for Remote Subprograms

You can create a synonym for a remote subprogram name and database link, and then use the synonym to invoke the subprogram. For example:

CREATE SYNONYM synonym1 for fire_emp1@boston_server;

EXECUTE synonym1(1043);
/

The synonym enables you to invoke the remote subprogram from an Oracle Database tool application, such as a SQL*Forms application, as well from within a subprogram, OCI application, or precompiler.

Synonyms provide both data independence and location transparency. Synonyms permit applications to function without modification regardless of which user owns the object and regardless of which database holds the object. However, synonyms are not a substitute for privileges on database objects. Appropriate privileges must be granted to a user before the user can use the synonym.

Because subprograms defined within a package are not individual objects (the package is the object), synonyms cannot be created for individual subprograms within a package.

If you do not want to use a synonym, you can create a local subprogram to invoke the remote subprogram. For example:

CREATE OR REPLACE PROCEDURE local_procedure
 (arg IN NUMBER)
AS
BEGIN
 fire_emp1@boston_server(arg);
END;
/
DECLARE
 arg NUMBER;
BEGIN
 local_procedure(arg);
END;
/

	
See Also:

	
Oracle Database Concepts for general information about synonyms

	
Oracle Database SQL Language Reference for information about the CREATE SYNONYM statement

Committing Transactions

All invocations to remotely stored subprograms are assumed to perform updates; therefore, this type of referencing always requires two-phase commit of that transaction (even if the remote subprogram is read-only). Furthermore, if a transaction that includes a remote subprogram invocation is rolled back, then the work done by the remote subprogram is also rolled back.

A subprogram invoked remotely can usually run a COMMIT, ROLLBACK, or SAVEPOINT statement, the same as a local subprogram. However, there are some differences in action:

	
If the transaction was originated by a database that is not an Oracle database, as might be the case in XA applications, these operations are not allowed in the remote subprogram.

	
After doing one of these operations, the remote subprogram cannot start any distributed transactions of its own.

	
If the remote subprogram does not commit or roll back its work, the commit is done implicitly when the database link is closed. In the meantime, further invocations to the remote subprogram are not allowed because it is still considered to be performing a transaction.

A distributed transaction modifies data on two or more databases. A distributed transaction is possible using a subprogram that includes two or more remote updates that access data on different databases. Statements in the construct are sent to the remote databases, and the execution of the construct succeeds or fails as a unit. If part of a distributed update fails and part succeeds, then a rollback (of the entire transaction or to a savepoint) is required to proceed. Consider this when creating subprograms that perform distributed updates.

Invoking Stored PL/SQL Functions from SQL Statements

	
Caution:

Because SQL is a declarative language, rather than an imperative (or procedural) one, you cannot know how many times a function invoked from a SQL statement will run—even if the function is written in PL/SQL, an imperative language.
If your application requires that a function be executed a certain number of times, do not invoke that function from a SQL statement. Use a cursor instead.

For example, if your application requires that a function be called for each selected row, then open a cursor, select rows from the cursor, and call the function for each row. This guarantees that the number of calls to the function is the number of rows fetched from the cursor.

To be invoked from a SQL statement, a stored PL/SQL function must be declared either at schema level or in a package specification.

These SQL statements can invoke stored PL/SQL functions:

	
INSERT

	
UPDATE

	
DELETE

	
SELECT

	
CALL

(CALL can also invoke a stored PL/SQL procedure.)

To invoke a PL/SQL subprogram from SQL, you must either own or have EXECUTE privileges on the subprogram. To select from a view defined with a PL/SQL function, you must have SELECT privileges on the view. No separate EXECUTE privileges are necessary to select from the view.

For general information about invoking subprograms, including passing parameters, see Oracle Database PL/SQL Language Reference.

Topics:

	
Why Invoke Stored PL/SQL Subprograms from SQL Statements?

	
Where PL/SQL Functions Can Appear in SQL Statements

	
When PL/SQL Functions Can Appear in SQL Expressions

	
Controlling Side Effects

Why Invoke Stored PL/SQL Subprograms from SQL Statements?

Invoking PL/SQL subprograms in SQL statements can:

	
Increase user productivity by extending SQL

Expressiveness of the SQL statement increases where activities are too complex, too awkward, or unavailable with SQL.

	
Increase query efficiency

Functions used in the WHERE clause of a query can filter data using criteria that must otherwise be evaluated by the application.

	
Manipulate character strings to represent special data types (for example, latitude, longitude, or temperature).

	
Provide parallel query execution

If the query is parallelized, then SQL statements in your PL/SQL subprogram might also be run in parallel (using the parallel query option).

Where PL/SQL Functions Can Appear in SQL Statements

A PL/SQL function can appear in a SQL statement wherever a SQL function or an expression can appear in a SQL statement. For example:

	
Select list of the SELECT statement

	
Condition of the WHERE or HAVING clause

	
CONNECT BY, START WITH, ORDER BY, or GROUP BY clause

	
VALUES clause of the INSERT statement

	
SET clause of the UPDATE statement

A PL/SQL table function (which returns a collection of rows) can appear in a SELECT statement instead of:

	
Column name in the SELECT list

	
Table name in the FROM clause

A PL/SQL function cannot appear in these contexts, which require unchanging definitions:

	
CHECK constraint clause of a CREATE or ALTER TABLE statement

	
Default value specification for a column

When PL/SQL Functions Can Appear in SQL Expressions

To be invoked from a SQL expression, a PL/SQL function must satisfy these requirements:

	
It must be a row function, not a column (group) function; that is, its argument cannot be an entire column.

	
Its formal parameters must be IN parameters, not OUT or IN OUT parameters.

	
Its formal parameters and its return value (if any) must have Oracle built-in data types (such as CHAR, DATE, or NUMBER), not PL/SQL data types (such as BOOLEAN, RECORD, or TABLE).

There is an exception to this rule: A formal parameter can have a PL/SQL data type if the corresponding actual parameter is implicitly converted to the data type of the formal parameter (as in Example 6-19).

The function in Example 6-18 satisfies the preceding requirements.

Example 6-18 PL/SQL Function in SQL Expression (Follows Rules)

DROP TABLE payroll; -- in case it exists
CREATE TABLE payroll (
 srate NUMBER,
 orate NUMBER,
 acctno NUMBER
);

CREATE OR REPLACE FUNCTION gross_pay (
 emp_id IN NUMBER,
 st_hrs IN NUMBER := 40,
 ot_hrs IN NUMBER := 0
) RETURN NUMBER
IS
 st_rate NUMBER;
 ot_rate NUMBER;
BEGIN
 SELECT srate, orate
 INTO st_rate, ot_rate
 FROM payroll
 WHERE acctno = emp_id;

 RETURN st_hrs * st_rate + ot_hrs * ot_rate;
END gross_pay;
/

In Example 6-19, the SQL statement CALL invokes the PL/SQL function f1, whose formal parameter and return value have PL/SQL data type PLS_INTEGER. The CALL statement succeeds because the actual parameter, 2, is implicitly converted to the data type PLS_INTEGER. If the actual parameter had a value outside the range of PLS_INTEGER, the CALL statement would fail.

Example 6-19 PL/SQL Function in SQL Expression (Exception to Rule)

CREATE OR REPLACE FUNCTION f1 (
 b IN PLS_INTEGER
) RETURN PLS_INTEGER
IS
BEGIN
 RETURN
 CASE
 WHEN b > 0 THEN 1
 WHEN b <= 0 THEN -1
 ELSE NULL
 END;
END f1;
/

VARIABLE x NUMBER;
CALL f1(b=>2) INTO :x;
PRINT x;

Result:

 X

 1

Controlling Side Effects

The purity of a stored subprogram refers to the side effects of that subprogram on database tables or package variables. Side effects can prevent the parallelization of a query, yield order-dependent (and therefore, indeterminate) results, or require that package state be maintained across user sessions. Various side effects are not allowed when a function is invoked from a SQL query or DML statement.

Before Oracle Database 8g Release 1, Oracle Database leveraged the PL/SQL compiler to enforce restrictions during the compilation of a stored subprogram or a SQL statement. As of Oracle Database 8g Release 1, the compile-time restrictions were relaxed, and a smaller set of restrictions are enforced during execution.

This change provides uniform support for stored subprograms written in PL/SQL, Java, and C, and it allows programmers the most flexibility possible.

Topics:

	
Restrictions

	
Declaring a Function

	
Parallel Query and Parallel DML

	
PRAGMA RESTRICT_REFERENCES for Backward Compatibility

Restrictions

When a new SQL statement is run, checks are made to see if it is logically embedded within the execution of a running SQL statement. This occurs if the statement is run from a trigger or from a subprogram that was in turn invoked from the running SQL statement. In these cases, further checks determine if the new SQL statement is safe in the specific context.

These restrictions are enforced on subprograms:

	
A subprogram invoked from a query (SELECT statement) or DML statement cannot end the current transaction, create or rollback to a savepoint, or ALTER the system or session.

	
A subprogram invoked from a query or parallelized DML statement cannot run a DML statement or otherwise modify the database.

	
A subprogram invoked from a DML statement cannot read or modify the particular table being modified by that DML statement.

These restrictions apply regardless of what mechanism is used to run the SQL statement inside the subprogram or trigger. For example:

	
They apply to a SQL statement invoked from PL/SQL, whether embedded directly in a subprogram or trigger body, run using the native dynamic mechanism (EXECUTE IMMEDIATE), or run using the DBMS_SQL package.

	
They apply to statements embedded in Java with SQLJ syntax or run using JDBC.

	
They apply to statements run with OCI using the callback context from within an "external" C function.

You can avoid these restrictions if the execution of the new SQL statement is not logically embedded in the context of the running statement. PL/SQL autonomous transactions provide one escape (see "Autonomous Transactions"). Another escape is available using OCI from an external C function, if you create a new connection rather than using the handle available from the OCIExtProcContext argument.

Declaring a Function

You can use the keywords DETERMINISTIC and PARALLEL_ENABLE in the syntax for declaring a function. These are optimization hints that inform the query optimizer and other software components about:

	
Functions that need not be invoked redundantly

	
Functions permitted within a parallelized query or parallelized DML statement

Only functions that are DETERMINISTIC are allowed in function-based indexes and in certain snapshots and materialized views.

A deterministic function depends solely on the values passed into it as arguments and does not reference or modify the contents of package variables or the database or have other side-effects. Such a function produces the same result value for any combination of argument values passed into it.

You place the DETERMINISTIC keyword after the return value type in a declaration of the function. For example:

CREATE OR REPLACE FUNCTION f1 (
 p1 NUMBER
) RETURN NUMBER DETERMINISTIC
IS
BEGIN
 RETURN p1 * 2;
END;
/

You might place this keyword in these places:

	
On a function defined in a CREATE FUNCTION statement

	
In a function declaration in a CREATE PACKAGE statement

	
On a method declaration in a CREATE TYPE statement

Do not repeat the keyword on the function or method body in a CREATE PACKAGE BODY or CREATE TYPE BODY statement.

Certain performance optimizations occur on invocations of functions that are marked DETERMINISTIC without any other action being required. These features require that any function used with them be declared DETERMINISTIC:

	
Any user-defined function used in a function-based index.

	
Any function used in a materialized view, if that view is to qualify for Fast Refresh or is marked ENABLE QUERY REWRITE.

The preceding functions features attempt to use previously calculated results rather than invoking the function when it is possible to do so.

It is good programming practice to make functions that fall into these categories DETERMINISTIC:

	
Functions used in a WHERE, ORDER BY, or GROUP BY clause

	
Functions that MAP or ORDER methods of a SQL type

	
Functions that help determine whether or where a row appears in a result set

Keep these points in mind when you create DETERMINISTIC functions:

	
The database cannot recognize if the action of the function is indeed deterministic. If the DETERMINISTIC keyword is applied to a function whose action is not truly deterministic, then the result of queries involving that function is unpredictable.

	
If you change the semantics of a DETERMINISTIC function and recompile it, then existing function-based indexes and materialized views report results for the prior version of the function. Thus, if you change the semantics of a function, you must manually rebuild any dependent function-based indexes and materialized views.

	
See Also:

Oracle Database PL/SQL Language Reference for CREATE FUNCTION restrictions

Parallel Query and Parallel DML

Oracle Database's parallel execution feature divides the work of running a SQL statement across multiple processes. Functions invoked from a SQL statement that is run in parallel might have a separate copy run in each of these processes, with each copy invoked for only the subset of rows that are handled by that process.

Each process has its own copy of package variables. When parallel execution begins, these are initialized based on the information in the package specification and body as if a user is logging into the system; the values in package variables are not copied from the original login session. And changes made to package variables are not automatically propagated between the various sessions or back to the original session. Java STATIC class attributes are similarly initialized and modified independently in each process. Because a function can use package (or Java STATIC) variables to accumulate some value across the various rows it encounters, Oracle Database cannot assume that it is safe to parallelize the execution of all user-defined functions.

For SELECT statements in Oracle Database versions before 8.1.5, the parallel query optimization allowed functions noted as both RNPS and WNPS in a PRAGMA RESTRICT_REFERENCES declaration to run in parallel. Functions defined with CREATE FUNCTION statements had their code implicitly examined to determine if they were pure enough; parallelized execution might occur even though a pragma cannot be specified on these functions.

	
See Also:

"PRAGMA RESTRICT_REFERENCES for Backward Compatibility"

For DML statements in Oracle Database versions before 8.1.5, the parallelization optimization looked to see if a function was noted as having all four of RNDS, WNDS, RNPS and WNPS specified in a PRAGMA RESTRICT_REFERENCES declaration; those functions that were marked as neither reading nor writing to either the database or package variables could run in parallel. Again, those functions defined with a CREATE FUNCTION statement had their code implicitly examined to determine if they were actually pure enough; parallelized execution might occur even though a pragma cannot be specified on these functions.

Oracle Database versions 8.1.5 and later continue to parallelize those functions that earlier versions recognize as parallelizable. The PARALLEL_ENABLE keyword is the preferred way to mark your code as safe for parallel execution. This keyword is syntactically similar to DETERMINISTIC as described in "Declaring a Function"; it is placed after the return value type in a declaration of the function, as in:

CREATE OR REPLACE FUNCTION f1 (
 p1 NUMBER
) RETURN NUMBER PARALLEL_ENABLE
IS
BEGIN
 RETURN p1 * 2;
END;
/

A PL/SQL function defined with CREATE FUNCTION might still be run in parallel without any explicit declaration that it is safe to do so, if the system can determine that it neither reads nor writes package variables nor invokes any function that might do so. A Java method or C function is never seen by the system as safe to run in parallel, unless the programmer explicitly indicates PARALLEL_ENABLE on the call specification, or provides a PRAGMA RESTRICT_REFERENCES indicating that the function is sufficiently pure.

An additional runtime restriction is imposed on functions run in parallel as part of a parallelized DML statement. Such a function is not permitted to in turn run a DML statement; it is subject to the same restrictions that are enforced on functions that are run inside a query (SELECT) statement.

	
See Also:

Restrictions

PRAGMA RESTRICT_REFERENCES for Backward Compatibility

In Oracle Database versions before 8.1.5 (Oracle8i), programmers used PRAGMA RESTRICT_REFERENCES to assert the purity level of a subprogram. In subsequent versions, use the hints PARALLEL_ENABLE and DETERMINISTIC, instead, to communicate subprogram purity to Oracle Database.

You can remove PRAGMA RESTRICT_REFERENCES from your code. However, this pragma remains available for backward compatibility in these situations:

	
When it is impossible or impractical to edit existing code to completely remove PRAGMA RESTRICT_REFERENCES.

For example, if subprogram S1 depends on subprogram S2, and you do not remove the pragma from S1, then you might need the pragma in S2 to compile S1.

	
When replacing PRAGMA RESTRICT_REFERENCES in existing code with hints PARALLEL_ENABLE and DETERMINISTIC would negatively affect the action of new, dependent code. (Use PRAGMA RESTRICT_REFERENCES to preserve the action of the existing code.)

An existing PL/SQL application can thus continue using the pragma even on new functionality, to ease integration with the existing code. Do not use the pragma in a new application.

If you use PRAGMA RESTRICT_REFERENCES, place it in a package specification, not in a package body. It must follow the declaration of a subprogram, but it need not follow immediately. Only one pragma can reference a given subprogram declaration.

To code the PRAGMA RESTRICT_REFERENCES, use this syntax:

PRAGMA RESTRICT_REFERENCES (
 Function_name, WNDS [, WNPS] [, RNDS] [, RNPS] [, TRUST]);

Where:

	Option	Description
	WNDS	The subprogram writes no database state (does not modify database tables).
	RNDS	The subprogram reads no database state (does not query database tables).
	WNPS	The subprogram writes no package state (does not change the values of package variables).
	RNPS	The subprogram reads no package state (does not reference the values of package variables)
	TRUST	The other restrictions listed in the pragma are not enforced; they are simply assumed to be true. This allows easy invocation from functions that have RESTRICT_REFERENCES declarations to those that do not.

You can pass the arguments in any order. If any SQL statement inside the subprogram body violates a rule, then you get an error when the statement is parsed.

In Example 6-20, the function compound_ neither reads nor writes database or package state; therefore, you can assert the maximum purity level. Always assert the highest purity level that a subprogram allows, so that the PL/SQL compiler never rejects the subprogram unnecessarily.

Example 6-20 PRAGMA RESTRICT_REFERENCES

DROP TABLE accounts; -- in case it exists
CREATE TABLE accounts (
 acctno INTEGER,
 balance NUMBER
);

INSERT INTO accounts (acctno, balance)
VALUES (12345, 1000.00);

CREATE OR REPLACE PACKAGE finance AS
 FUNCTION compound_ (
 years IN NUMBER,
 amount IN NUMBER,
 rate IN NUMBER
) RETURN NUMBER;
 PRAGMA RESTRICT_REFERENCES (compound_, WNDS, WNPS, RNDS, RNPS);
END finance;
/
CREATE PACKAGE BODY finance AS
 FUNCTION compound_ (
 years IN NUMBER,
 amount IN NUMBER,
 rate IN NUMBER
) RETURN NUMBER
 IS
 BEGIN
 RETURN amount * POWER((rate / 100) + 1, years);
 END compound_;
 -- No pragma in package body
END finance;
/
DECLARE
 interest NUMBER;
BEGIN
 SELECT finance.compound_(5, 1000, 6)
 INTO interest
 FROM accounts
 WHERE acctno = 12345;
END;
/

Topics:

	
Using the Keyword TRUST

	
Differences between Static and Dynamic SQL Statements

	
Overloading Package Functions

Using the Keyword TRUST

When PRAGMA RESTRICT REFERENCES includes the keyword TRUST, the restrictions listed in the pragma are assumed to be true, and not enforced.

When you invoke a subprogram that is in a section of code that does not use pragmas (such as a Java method), from a section of PL/SQL code that does use pragmas, specify PRAGMA RESTRICT REFERENCES with TRUST for either the invoked subprogram or the invoking subprogram.

In both Example 6-21 and Example 6-22, the PL/SQL function f invokes the Java procedure java_sleep. In Example 6-21, this is possible because java_sleep is declared to be WNDS with TRUST. In Example 6-22, it is possible because f is declared to be WNDS with TRUST, which allows it to invoke any subprogram.

Example 6-21 PRAGMA RESTRICT REFERENCES with TRUST on Invokee

CREATE OR REPLACE PACKAGE p IS
 PROCEDURE java_sleep (milli_seconds IN NUMBER)
 AS LANGUAGE JAVA NAME 'java.lang.Thread.sleep(long)';
 PRAGMA RESTRICT_REFERENCES(java_sleep,WNDS,TRUST);

 FUNCTION f (n NUMBER) RETURN NUMBER;
END p;
/
CREATE OR REPLACE PACKAGE BODY p IS
 FUNCTION f (
 n NUMBER
) RETURN NUMBER
 IS
 BEGIN
 java_sleep(n);
 RETURN n;
 END f;
END p;
/

Example 6-22 PRAGMA RESTRICT REFERENCES with TRUST on Invoker

CREATE OR REPLACE PACKAGE p IS
 PROCEDURE java_sleep (milli_seconds IN NUMBER)
 AS LANGUAGE JAVA NAME 'java.lang.Thread.sleep(long)';

 FUNCTION f (n NUMBER) RETURN NUMBER;
 PRAGMA RESTRICT_REFERENCES(f,WNDS,TRUST);
END p;
/
CREATE OR REPLACE PACKAGE BODY p IS
 FUNCTION f (
 n NUMBER
) RETURN NUMBER
 IS
 BEGIN
 java_sleep(n);
 RETURN n;
 END f;
END p;
/

Differences between Static and Dynamic SQL Statements

Static INSERT, UPDATE, and DELETE statements do not violate RNDS if these statements do not explicitly read any database states, such as columns of a table. However, dynamic INSERT, UPDATE, and DELETE statements always violate RNDS, regardless of whether the statements explicitly read database states.

This INSERT statement violates RNDS if it is executed dynamically, but it does not violate RNDS if it is executed statically.

INSERT INTO my_table values(3, 'BOB');

This UPDATE statement always violates RNDS statically and dynamically, because it explicitly reads the column name of my_table.

UPDATE my_table SET id=777 WHERE name='BOB';

Overloading Package Functions

If a subprogram is overloaded, PRAGMA RESTRICT_REFERENCES applies only to the most recently declared version.

In Example 6-23, the pragma applies to the second declaration of valid.

Example 6-23 Overloaded Package Function with PRAGMA RESTRICT_REFERENCES

CREATE OR REPLACE PACKAGE tests AS
 FUNCTION valid (x NUMBER) RETURN CHAR;
 FUNCTION valid (x DATE) RETURN CHAR;
 PRAGMA RESTRICT_REFERENCES (valid, WNDS);
END;
/

Returning Large Amounts of Data from a Function

In a data warehousing environment, you might use PL/SQL functions to transform large amounts of data. Perhaps the data is passed through a series of transformations, each performed by a different function. PL/SQL table functions let you perform such transformations without significant memory overhead or the need to store the data in tables between each transformation stage. These functions can accept and return multiple rows, can return rows as they are ready rather than all at once, and can be parallelized.

	
See Also:

Oracle Database PL/SQL Language Reference for more information about performing multiple transformations with pipelined table functions

Coding Your Own Aggregate Functions

To analyze a set of rows and compute a result value, you can code your own aggregate function that works the same as a SQL aggregate function like SUM:

	
Define an ADT that defines these member functions:

	
ODCIAggregateInitialize

	
ODCIAggregateIterate

	
ODCIAggregateMerge

	
ODCIAggregateTerminate

	
Code the member functions. In particular, ODCIAggregateIterate accumulates the result as it is invoked for each row that is processed. Store any intermediate results using the attributes of the ADT.

	
Create the aggregate function, and associate it with the ADT.

	
Call the aggregate function from SQL queries, DML statements, or other places that you might use the SQL aggregate functions. You can include typical options such as DISTINCT and ALL in the invocation of the aggregate function.

	
See Also:

Oracle Database Data Cartridge Developer's Guide for more information about user-defined aggregate functions

9 Developing PL/SQL Web Applications

This chapter explains how to develop PL/SQL web applications, which let you make your database available on the intranet.

Topics:

	
Overview of PL/SQL Web Applications

	
Implementing PL/SQL Web Applications

	
Using mod_plsql Gateway to Map Client Requests to a PL/SQL Web Application

	
Using Embedded PL/SQL Gateway

	
Generating HTML Output with PL/SQL

	
Passing Parameters to PL/SQL Web Applications

	
Performing Network Operations in PL/SQL Subprograms

Overview of PL/SQL Web Applications

Typically, a web application written in PL/SQL is a set of stored subprograms that interact with web browsers through HTTP. A set of interlinked, dynamically generated HTML pages forms the user interface of a web application.

The program flow of a PL/SQL web application is similar to that in a CGI PERL script. Developers often use CGI scripts to produce web pages dynamically, but such scripts are often not optimal for accessing the database. Delivering web content with PL/SQL stored subprograms provides the power and flexibility of database processing. For example, you can use data manipulation language (DML) statements, dynamic SQL statements, and cursors. You also eliminate the process overhead of forking a new CGI process to handle each HTTP request.

Figure 9-1 illustrates the generic process for a PL/SQL web application.

Figure 9-1 PL/SQL Web Application

[image: Description of Figure 9-1 follows]

Implementing PL/SQL Web Applications

You can implement a web browser-based application entirely in PL/SQL with these Oracle Database components:

	
PL/SQL Gateway

	
PL/SQL Web Toolkit

PL/SQL Gateway

The PL/SQL gateway enables a web browser to invoke a PL/SQL stored subprogram through an HTTP listener. The gateway is a platform on which PL/SQL users develop and deploy PL/SQL web applications.

mod_plsql

mod_plsql is one implementation of the PL/SQL gateway. The module is a plug-in of Oracle HTTP Server and enables web browsers to invoke PL/SQL stored subprograms. Oracle HTTP Server is a component of both Oracle Application Server and the database.

The mod_plsql plug-in enables you to use PL/SQL stored subprograms to process HTTP requests and generate responses. In this context, an HTTP request is a URL that includes parameter values to be passed to a stored subprogram. PL/SQL gateway translates the URL, invokes the stored subprogram with the parameters, and returns output (typically HTML) to the client.

Some advantages of using mod_plsql over the embedded form of the PL/SQL gateway are:

	
You can run it in a firewall environment in which the Oracle HTTP Server runs on a firewall-facing host while the database is hosted behind a firewall. You cannot use this configuration with the embedded gateway.

	
The embedded gateway does not support mod_plsql features such as dynamic HTML caching, system monitoring, and logging in the Common Log Format.

Embedded PL/SQL Gateway

You can use an embedded version of the PL/SQL gateway that runs in the XML DB HTTP Listener in the database. It provides the core features of mod_plsql in the database but does not require the Oracle HTTP Server. You configure the embedded PL/SQL gateway with the DBMS_EPG package in the PL/SQL Web Toolkit.

Some advantages of using the embedded gateway over mod_plsql are as follows:

	
You can invoke PL/SQL web applications such as Application Express without installing Oracle HTTP Server, thereby simplifying installation, configuration, and administration of PL/SQL based web applications.

	
You use the same configuration approach that is used to deliver content from Oracle XML DB in response to FTP and HTTP requests.

PL/SQL Web Toolkit

This set of PL/SQL packages is a generic interface that enables you to use stored subprograms invoked by mod_plsql at run time.

In response to a browser request, a PL/SQL subprogram updates or retrieves data from Oracle Database according to the user input. It then generates an HTTP response to the browser, typically in the form of a file download or HTML to be displayed. The PL/SQL Web Toolkit API enables stored subprograms to perform actions such as:

	
Obtain information about an HTTP request

	
Generate HTTP headers such as content-type and mime-type

	
Set browser cookies

	
Generate HTML pages

Table 9-1 describes commonly used PL/SQL Web Toolkit packages.

Table 9-1 Commonly Used Packages in the PL/SQL Web Toolkit

	Package	Description of Contents
	
HTF

	
Function versions of the subprograms in the htp package. The function versions do not directly generate output in a web page. Instead, they pass their output as return values to the statements that invoke them. Use these functions when you must nest function calls.

	
HTP

	
Subprograms that generate HTML tags. For example, the procedure htp.anchor generates the HTML anchor tag, <A>.

	
OWA_CACHE

	
Subprograms that enable the PL/SQL gateway cache feature to improve performance of your PL/SQL web application.

You can use this package to enable expires-based and validation-based caching with the PL/SQL gateway file system.

	
OWA_COOKIE

	
Subprograms that send and retrieve HTTP cookies to and from a client web browser. Cookies are strings a browser uses to maintain state between HTTP calls. State can be maintained throughout a client session or longer if a cookie expiration date is included.

	
OWA_CUSTOM

	
The authorize function used by cookies.

	
OWA_IMAGE

	
Subprograms that obtain the coordinates where a user clicked an image. Use this package when you have an image map whose destination links invoke a PL/SQL gateway.

	
OWA_OPT_LOCK

	
Subprograms that impose database optimistic locking strategies to prevent lost updates. Lost updates can otherwise occur if a user selects, and then attempts to update, a row whose values were changed in the meantime by another user.

	
OWA_PATTERN

	
Subprograms that perform string matching and string manipulation with regular expressions.

	
OWA_SEC

	
Subprograms used by the PL/SQL gateway for authenticating requests.

	
OWA_TEXT

	
Subprograms used by package OWA_PATTERN for manipulating strings. You can also use them directly.

	
OWA_UTIL

	
These types of utility subprograms:

	
Dynamic SQL utilities to produce pages with dynamically generated SQL code.

	
HTML utilities to retrieve the values of CGI environment variables and perform URL redirects.

	
Date utilities for correct date-handling. Date values are simple strings in HTML, but must be properly treated as an Oracle Database data type.

	
WPG_DOCLOAD

	
Subprograms that download documents from a document repository that you define using the DAD configuration.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for syntax, descriptions, and examples for the PL/SQL Web Toolkit packages

Using mod_plsql Gateway to Map Client Requests to a PL/SQL Web Application

As explained in detail in the Oracle HTTP Server mod_plsql User's Guide, mod_plsql maps web client requests to PL/SQL stored subprograms over HTTP. See this documentation for instructions.

	
See Also:

	
Oracle HTTP Server mod_plsql User's Guide to learn how to configure and use mod_plsql

	
Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server for information about the mod_plsql module

Using Embedded PL/SQL Gateway

The embedded gateway functions very similar to the mod_plsql gateway. Before using the embedded version of the gateway, familiarize yourself with the Oracle HTTP Server mod_plsql User's Guide. Much of the information is the same or similar.

Topics:

	
How Embedded PL/SQL Gateway Processes Client Requests

	
Installing Embedded PL/SQL Gateway

	
Configuring Embedded PL/SQL Gateway

	
Invoking PL/SQL Stored Subprograms Through Embedded PL/SQL Gateway

	
Securing Application Access with Embedded PL/SQL Gateway

	
Restrictions in Embedded PL/SQL Gateway

	
Using Embedded PL/SQL Gateway: Scenario

How Embedded PL/SQL Gateway Processes Client Requests

Figure 9-2 illustrates the process by which the embedded gateway handles client HTTP requests.

Figure 9-2 Processing Client Requests with Embedded PL/SQL Gateway

[image: Description of Figure 9-2 follows]

The explanation of the steps in Figure 9-2 is as follows:

	
The Oracle XML DB HTTP Listener receives a request from a client browser to request to invoke a PL/SQL subprogram. The subprogram can either be written directly in PL/SQL or indirectly generated when a PL/SQL Server Page is uploaded to the database and compiled.

	
The XML DB HTTP Listener routes the request to the embedded PL/SQL gateway as specified in its virtual-path mapping configuration.

	
The embedded gateway uses the HTTP request information and the gateway configuration to determine which database account to use for authentication.

	
The embedded gateway prepares the call parameters and invokes the PL/SQL subprogram in the application.

	
The PL/SQL subprogram generates an HTML page out of relational data and the PL/SQL Web Toolkit accessed from the database.

	
The application sends the page to the embedded gateway.

	
The embedded gateway sends the page to the XML DB HTTP Listener.

	
The XML DB HTTP Listener sends the page to the client browser.

Unlike mod_plsql, the embedded gateway processes HTTP requests with the Oracle XML DB Listener. This listener is the same server-side process as the Oracle Net Listener and supports Oracle Net Services, HTTP, and FTP.

Configure general HTTP listener settings through the XML DB interface (for instructions, see Oracle XML DB Developer's Guide). Configure the HTTP listener either by using Oracle Enterprise Manager or by editing the xdbconfig.xml file. Use the DBMS_EPG package for all embedded PL/SQL gateway configuration, for example, creating or setting attributes for a DAD.

Installing Embedded PL/SQL Gateway

The embedded gateway requires these components:

	
XML DB HTTP Listener

	
PL/SQL Web Toolkit

The embedded PL/SQL gateway is installed as part of Oracle XML DB. If you are using a preconfigured database created during an installation or by the Database Configuration Assistant (DBCA), then Oracle XML DB is installed and configured. For information about manually adding Oracle XML DB to an existing database, see Oracle XML DB Developer's Guide.

The PL/SQL Web Toolkit is part of the standard installation of the database, so no supplementary installation is necessary.

Configuring Embedded PL/SQL Gateway

You configure mod_plsql by editing the Oracle HTTP Server configuration files. Because the embedded gateway is installed as part of the Oracle XML DB HTTP Listener, you manage the embedded gateway as a servlet through the Oracle XML DB servlet management interface.

The configuration interface to the embedded gateway is the PL/SQL package DBMS_EPG. This package modifies the underlying xdbconfig.xml configuration file that XML DB uses. The default values of the embedded gateway configuration parameters are sufficient for most users.

Topics:

	
Configuring Embedded PL/SQL Gateway: Overview

	
Configuring User Authentication for Embedded PL/SQL Gateway

Configuring Embedded PL/SQL Gateway: Overview

As in mod_plsql, each request for a PL/SQL stored subprogram is associated with a Database Access Descriptor (DAD). A DAD is a set of configuration values used for database access. A DAD specifies information such as:

	
The database account to use for authentication

	
The subprogram to use for uploading and downloading documents

In the embedded PL/SQL gateway, a DAD is represented as a servlet in the XML DB HTTP Listener configuration. Each DAD attribute maps to an XML element in the configuration file xdbconfig.xml. The value of the DAD attribute corresponds to the element content. For example, the database-username DAD attribute corresponds to the <database-username> XML element; if the value of the DAD attribute is HR it corresponds to <database-username>HR<database-username>. DAD attribute names are case-sensitive.

Use the DBMS_EPG package to perform these embedded PL/SQL gateway configurations:

	
Create a DAD with the DBMS_EPG.CREATE_DAD procedure.

	
Set DAD attributes with the DBMS_EPG.SET_DAD_ATTRIBUTE procedure.

All DAD attributes are optional. If you do not specify an attribute, it has its initial value.

Table 9-2 lists the embedded PL/SQL gateway attributes and the corresponding mod_plsql DAD parameters. Enumeration values in the "Legal Values" column are case-sensitive.

Table 9-2 Mapping Between mod_plsql and Embedded PL/SQL Gateway DAD Attributes

	mod_plsql DAD Attribute	Embedded PL/SQL Gateway DAD Attribute	Multiple Occurrences	Legal Values
	
PlsqlAfterProcedure

	
after-procedure

	
No

	
String

	
PlsqlAlwaysDescribeProcedure

	
always-describe-procedure

	
No

	
Enumeration of On, Off

	
PlsqlAuthenticationMode

	
authentication-mode

	
No

	
Enumeration of Basic, SingleSignOn, GlobalOwa, CustomOwa, PerPackageOwa

	
PlsqlBeforeProcedure

	
before-procedure

	
No

	
String

	
PlsqlBindBucketLengths

	
bind-bucket-lengths

	
Yes

	
Unsigned integer

	
PlsqlBindBucketWidths

	
bind-bucket-widths

	
Yes

	
Unsigned integer

	
PlsqlCGIEnvironmentList

	
cgi-environment-list

	
Yes

	
String

	
PlsqlCompatibilityMode

	
compatibility-mode

	
No

	
Unsigned integer

	
PlsqlDatabaseUsername

	
database-username

	
No

	
String

	
PlsqlDefaultPage

	
default-page

	
No

	
String

	
PlsqlDocumentPath

	
document-path

	
No

	
String

	
PlsqlDocumentProcedure

	
document-procedure

	
No

	
String

	
PlsqlDocumentTablename

	
document-table-name

	
No

	
String

	
PlsqlErrorStyle

	
error-style

	
No

	
Enumeration of ApacheStyle, ModplsqlStyle, DebugStyle

	
PlsqlExclusionList

	
exclusion-list

	
Yes

	
String

	
PlsqlFetchBufferSize

	
fetch-buffer-size

	
No

	
Unsigned integer

	
PlsqlInfoLogging

	
info-logging

	
No

	
Enumeration of InfoDebug

	
PlsqlInputFilterEnable

	
input-filter-enable

	
No

	
String

	
PlsqlMaxRequestsPerSession

	
max-requests-per-session

	
No

	
Unsigned integer

	
PlsqlNLSLanguage

	
nls-language

	
No

	
String

	
PlsqlOWADebugEnable

	
owa-debug-enable

	
No

	
Enumeration of On, Off

	
PlsqlPathAlias

	
path-alias

	
No

	
String

	
PlsqlPathAliasProcedure

	
path-alias-procedure

	
No

	
String

	
PlsqlRequestValidationFunction

	
request-validation-function

	
No

	
String

	
PlsqlSessionCookieName

	
session-cookie-name

	
No

	
String

	
PlsqlSessionStateManagement

	
session-state-management

	
No

	
Enumeration of StatelessWithResetPackageState, StatelessWithFastRestPackageState, StatelessWithPreservePackageState

	
PlsqlTransferMode

	
transfer-mode

	
No

	
Enumeration of Char, Raw

	
PlsqlUploadAsLongRaw

	
upload-as-long-raw

	
No

	
String

The default values of the DAD attributes are sufficient for most users of the embedded gateway. mod_plsql users do not need these attributes:

	
PlsqlDatabasePassword

	
PlsqlDatabaseConnectString (because the embedded gateway does not support logon to external databases)

Like the DAD attributes, the global configuration parameters are optional. Table 9-3 describes the DBMS_EPG global attributes and the corresponding mod_plsql global parameters.

Table 9-3 Mapping Between mod_plsql and Embedded PL/SQL Gateway Global Attributes

	mod_plsql DAD Attribute	Embedded PL/SQL Gateway DAD Attribute	Multiple Occurrences	Legal Values
	
PlsqlLogLevel

	
log-level

	
No

	
Unsigned integer

	
PlsqlMaxParameters

	
max-parameters

	
No

	
Unsigned integer

	
See Also:

	
Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server for detailed descriptions of the mod_plsql DAD attributes. See this documentation for default values and usage notes.

	
Oracle Database PL/SQL Packages and Types Reference to learn about the DBMS_EPG package

	
Oracle XML DB Developer's Guide for an account of the xdbconfig.xml file

Configuring User Authentication for Embedded PL/SQL Gateway

Because it uses the XML DB authentication schemes, the embedded gateway handles database authentication differently from mod_plsql. In particular, it does not store database passwords in a DAD.

	
Note:

To serve a PL/SQL web application on the Internet but maintain the database behind a firewall, do not use the embedded PL/SQL gateway to run the application; use mod_plsql.

Use the DBMS_EPG package to configure database authentication.

Topics:

	
Configuring Static Authentication with DBMS_EPG

	
Configuring Dynamic Authentication with DBMS_EPG

	
Configuring Anonymous Authentication with DBMS_EPG

	
Determining the Authentication Mode of a DAD

	
Creating and Configuring DADs: Examples

	
Determining the Authentication Mode for a DAD: Example

	
Determining the Authentication Mode for All DADs: Example

	
Showing DAD Authorizations that Are Not in Effect: Example

	
Examining Embedded PL/SQL Gateway Configuration

Configuring Static Authentication with DBMS_EPG

Static authentication is for the mod_plsql user who stores database user names and passwords in the DAD so that the browser user is not required to enter database authentication information.

To configure static authentication, follow these steps:

	
Log on to the database as an XML DB administrator (that is, a user with the XDBADMIN role assigned).

	
Create the DAD. For example, this procedure creates a DAD invoked HR_DAD and maps the virtual path to /hrweb/:

EXEC DBMS_EPG.CREATE_DAD('HR_DAD', '/hrweb/*');

	
For this step, you need the ALTER ANY USER system privilege. Set the DAD attribute database-username to the database account whose privileges must be used by the DAD. For example, this procedure specifies that the DAD named HR_DAD has the privileges of the HR account:

EXEC DBMS_EPG.SET_DAD_ATTRIBUTE('HR_DAD', 'database-username', 'HR');

The DAD attribute database-username is case-sensitive.

	
Assign the DAD the privileges of the database user specified in the previous step. This authorization enables end users to invoke procedures and access document tables through the embedded PL/SQL gateway with the privileges of the authorized account. For example:

EXEC DBMS_EPG.AUTHORIZE_DAD('HR_DAD', 'HR');

Alternatively, you can log off as the user with XDBADMIN privileges, log on as the database user whose privileges must be used by the DAD, and then use this command to assign these privileges to the DAD:

EXEC DBMS_EPG.AUTHORIZE_DAD('HR_DAD');

	
Note:

Multiple users can authorize the same DAD. The database-username attribute setting of the DAD determines which user's privileges to use.

Unlike mod_plsql, the embedded gateway connects to the database as the special user ANONYMOUS, but accesses database objects with the user privileges assigned to the DAD. The database rejects access if the browser user attempts to connect explicitly with the HTTP Authorization header.

	
Note:

The account ANONYMOUS is locked after XML DB installation. To use static authentication with the embedded PL/SQL gateway, first unlock this account.

Configuring Dynamic Authentication with DBMS_EPG

Dynamic authentication is for the mod_plsql user who does not store database user names and passwords in the DAD.

In dynamic authentication, a database user does not have to authorize the embedded gateway to use its privileges to access database objects. Instead, browser users must supply the database authentication information through the HTTP Basic Authentication scheme.

The action of the embedded gateway depends on whether the database-username attribute is set for the DAD. If the attribute is not set, then the embedded gateway connects to the database as the user supplied by the browser client. If the attribute is set, then the database restricts access to the user specified in the database-username attribute.

To set up dynamic authentication, follow these steps:

	
Log on to the database as a an XML DB administrator (that is, a user with the XDBADMIN role).

	
Create the DAD. For example, this procedure creates a DAD invoked DYNAMIC_DAD and maps the virtual path to /hrweb/:

EXEC DBMS_EPG.CREATE_DAD('DYNAMIC_DAD', '/hrweb/*');

	
Optionally, set the DAD attribute database-username to the database account whose privileges must be used by the DAD. The browser prompts the user to enter the username and password for this account when accessing the DAD. For example, this procedure specifies that the DAD named DYNAMIC_DAD has the privileges of the HR account:

EXEC DBMS_EPG.SET_DAD_ATTRIBUTE('DYNAMIC_DAD', 'database-username', 'HR');

The attribute database-username is case-sensitive.

	
WARNING:

Passwords sent through the HTTP Basic Authentication scheme are not encrypted. Configure the embedded gateway to use the HTTPS protocol to protect the passwords sent by the browser clients.

Configuring Anonymous Authentication with DBMS_EPG

Anonymous authentication is for the mod_plsql user who creates a special DAD database user for database logon, but stores the application procedures and document tables in a different schema and grants access to the procedures and document tables to PUBLIC.

To set up anonymous authentication, follow these steps:

	
Log on to the database as an XML DB administrator, that is, a user with the XDBADMIN role assigned.

	
Create the DAD. For example, this procedure creates a DAD invoked HR_DAD and maps the virtual path to /hrweb/:

EXEC DBMS_EPG.CREATE_DAD('HR_DAD', '/hrweb/*');

	
Set the DAD attribute database-username to ANONYMOUS. For example:

EXEC DBMS_EPG.SET_DAD_ATTRIBUTE('HR_DAD', 'database-username', 'ANONYMOUS');

Both database-username and ANONYMOUS are case-sensitive.

You need not authorize the embedded gateway to use ANONYMOUS privileges to access database objects, because ANONYMOUS has no system privileges and owns no database objects.

Determining the Authentication Mode of a DAD

If you know the name of a DAD, then the authentication mode for this DAD depends on these factors:

	
Does the DAD exist?

	
Is the database-username attribute for the DAD set?

	
Is the DAD authorized to use the privilege of the database-username user?

	
Is the database-username attribute the one that the user authorized to use the DAD?

Table 9-4 shows how the answers to the preceding questions determine the authentication mode.

Table 9-4 Authentication Possibilities for a DAD

	DAD Exists?	database-username set?	User authorized?	Mode
	
Yes

	
Yes

	
Yes

	
Static

	
Yes

	
Yes

	
No

	
Dynamic restricted

	
Yes

	
No

	
Does not matter

	
Dynamic

	
Yes

	
Yes (to ANONYMOUS)

	
Does not matter

	
Anonymous

	
No

	
	
	
N/A

For example, assume that you create a DAD named MY_DAD. If the database-username attribute for MY_DAD is set to HR, but the HR user does not authorize MY_DAD, then the authentication mode for MY_DAD is dynamic and restricted. A browser user who attempts to run a PL/SQL subprogram through MY_DAD is prompted to enter the HR database username and password.

The DBA_EPG_DAD_AUTHORIZATION view shows which users have authorized use of a DAD. The DAD_NAME column displays the name of the DAD; the USERNAME column displays the user whose privileges are assigned to the DAD. The DAD authorized might not exist.

	
See Also:

Oracle Database Reference for more information about the DBA_EPG_DAD_AUTHORIZATION view

Creating and Configuring DADs: Examples

Example 9-1 does this:

	
Creates a DAD with static authentication for database user HR and assigns it the privileges of the HR account, which then authorizes it.

	
Creates a DAD with dynamic authentication that is not restricted to any user.

	
Creates a DAD with dynamic authentication that is restricted to the HR account.

Example 9-1 Creating and Configuring DADs

--
--- DAD with static authentication
--

CONNECT SYSTEM AS SYSDBA
PASSWORD: password
EXEC DBMS_EPG.CREATE_DAD('Static_Auth_DAD', '/static/*');
EXEC DBMS_EPG.SET_DAD_ATTRIBUTE('Static_Auth_DAD', 'database-username', 'HR');
GRANT EXECUTE ON DBMS_EPG TO HR;

-- Authorization
CONNECT HR
PASSWORD: password
EXEC DBMS_EPG.AUTHORIZE_DAD('Static_Auth_DAD');

--
-- DAD with dynamic authentication
--

CONNECT SYSTEM AS SYSDBA
PASSWORD: password
EXEC DBMS_EPG.CREATE_DAD('Dynamic_Auth_DAD', '/dynamic/*');

-- DAD with dynamic authentication restricted

EXEC DBMS_EPG.CREATE_DAD('Dynamic_Auth_DAD_Restricted', '/dynamic/*');
EXEC DBMS_EPG.SET_DAD_ATTRIBUTE
 ('Dynamic_Auth_DAD_Restricted', 'database-username', 'HR');

The creation and authorization of a DAD are independent; therefore you can:

	
Authorize a DAD that does not exist (it can be created later)

	
Authorize a DAD for which you are not the user (however, the authorization does not take effect until the DAD database-user attribute is changed to your username)

Example 9-2 creates a DAD with static authentication for database user HR and assigns it the privileges of the HR account. Then:

	
Instead of authorizing that DAD, the database user HR authorizes a nonexistent DAD.

Although the user might have done this by mistake, no error occurs, because the nonexistent DAD might be created later.

	
The database user OE authorizes the DAD (whose database-user attribute is set to HR.

No error occurs, but the authorization does not take effect until the DAD database-user attribute is changed to OE.

Example 9-2 Authorizing DADs to be Created or Changed Later

REM Create DAD with static authentication for database user HR

CONNECT SYSTEM AS SYSDBA
PASSWORD: password
EXEC DBMS_EPG.CREATE_DAD('Static_Auth_DAD', '/static/*');
EXEC DBMS_EPG.SET_DAD_ATTRIBUTE('Static_Auth_DAD', 'database-username', 'HR');
GRANT EXECUTE ON DBMS_EPG TO HR;

REM Database user HR authorizes DAD that does not exist

CONNECT HR
PASSWORD: password
EXEC DBMS_EPG.AUTHORIZE_DAD('Static_Auth_DAD_Typo');

REM Database user OE authorizes DAD with database-username 'HR'

CONNECT OE
PASSWORD: password
EXEC DBMS_EPG.AUTHORIZE_DAD('Static_Auth_DAD');

Determining the Authentication Mode for a DAD: Example

Example 9-3 creates a PL/SQL procedure, show_dad_auth_status, which accepts the name of a DAD and reports its authentication mode. If the specified DAD does not exist, the procedure exits with an error.

Example 9-3 Determining the Authentication Mode for a DAD

CREATE OR REPLACE PROCEDURE show_dad_auth_status (p_dadname VARCHAR2) IS
 v_daduser VARCHAR2(32);
 v_cnt PLS_INTEGER;
BEGIN
 -- Determine DAD user
 v_daduser := DBMS_EPG.GET_DAD_ATTRIBUTE(p_dadname, 'database-username');

 -- Determine whether DAD authorization exists for DAD user
 SELECT COUNT(*)
 INTO v_cnt
 FROM DBA_EPG_DAD_AUTHORIZATION da
 WHERE da.DAD_NAME = p_dadname
 AND da.USERNAME = v_daduser;

 -- If DAD authorization exists for DAD user, authentication mode is static
 IF (v_cnt > 0) THEN
 DBMS_OUTPUT.PUT_LINE (
 '''' || p_dadname ||
 ''' is set up for static authentication for user ''' ||
 v_daduser || '''.');
 RETURN;
 END IF;

 -- If no DAD authorization exists for DAD user, authentication mode is dynamic

 -- Determine whether dynamic authentication is restricted to particular user
 IF (v_daduser IS NOT NULL) THEN
 DBMS_OUTPUT.PUT_LINE (
 '''' || p_dadname ||
 ''' is set up for dynamic authentication for user ''' ||
 v_daduser || ''' only.');
 ELSE
 DBMS_OUTPUT.PUT_LINE (
 '''' || p_dadname ||
 ''' is set up for dynamic authentication for any user.');
 END IF;
END;
/

Assume that you have run the script in Example 9-1 to create and configure various DADs. The output is:

SET SERVEROUTPUT ON;
BEGIN
 show_dad_auth_status('Static_Auth_DAD');
END;
/
'Static_Auth_DAD' is set up for static authentication for user 'HR'.

Determining the Authentication Mode for All DADs: Example

The anonymous block in Example 9-4 reports the authentication modes of all registered DADs. It invokes the show_dad_auth_status procedure from Example 9-3.

Example 9-4 Showing the Authentication Mode for All DADs

DECLARE
 v_dad_names DBMS_EPG.VARCHAR2_TABLE;
BEGIN
 DBMS_OUTPUT.PUT_LINE
 ('---------- Authorization Status for All DADs ----------');
 DBMS_EPG.GET_DAD_LIST(v_dad_names);

 FOR i IN 1..v_dad_names.count LOOP
 show_dad_auth_status(v_dad_names(i));
 END LOOP;
END;
/

If you have run the script in Example 9-1 to create and configure various DADs, the output of Example 9-4 is:

---------- Authorization Status for All DADs ----------
'Static_Auth_DAD' is set up for static auth for user 'HR'.
'Dynamic_Auth_DAD' is set up for dynamic auth for any user.
'Dynamic_Auth_DAD_Restricted' is set up for dynamic auth for user 'HR' only.

Showing DAD Authorizations that Are Not in Effect: Example

The anonymous block in Example 9-5 reports DAD authorizations that are not in effect. A DAD authorization is not in effect in either of these situations:

	
The user who authorizes the DAD is not the user specified by the database-username attribute of the DAD

	
The user authorizes a DAD that does not exist

Example 9-5 Showing DAD Authorizations that Are Not in Effect

DECLARE
 v_dad_names DBMS_EPG.VARCHAR2_TABLE;
 v_dad_user VARCHAR2(32);
 v_dad_found BOOLEAN;
BEGIN
 DBMS_OUTPUT.PUT_LINE
 ('---------- DAD Authorizations Not in Effect ----------');
 DBMS_EPG.GET_DAD_LIST(v_dad_names);

 FOR r IN (SELECT * FROM DBA_EPG_DAD_AUTHORIZATION) LOOP -- Outer loop
 v_dad_found := FALSE;
 FOR i IN 1..v_dad_names.count LOOP -- Inner loop
 IF (r.DAD_NAME = v_dad_names(i)) THEN
 v_dad_user :=
 DBMS_EPG.GET_DAD_ATTRIBUTE(r.DAD_NAME, 'database-username');

 -- Is database-username the user for whom DAD is authorized?
 IF (r.USERNAME <> v_dad_user) THEN
 DBMS_OUTPUT.PUT_LINE (
 'DAD authorization of ''' || r.dad_name ||
 ''' by user ''' || r.username || '''' ||
 ' is not in effect because DAD user is ' ||
 '''' || v_dad_user || '''.');
 END IF;
 v_dad_found := TRUE;
 EXIT; -- Inner loop
 END IF;
 END LOOP; -- Inner loop

 -- Does DAD exist?
 IF (NOT v_dad_found) THEN
 DBMS_OUTPUT.PUT_LINE (
 'DAD authorization of ''' || r.dad_name ||
 ''' by user ''' || r.username ||
 ''' is not in effect because the DAD does not exist.');
 END IF;
 END LOOP; -- Outer loop
END;
/

If you have run the script in Example 9-2 to create and configure various DADs, the output of Example 9-5 (reformatted to fit on the page) is:

---------- DAD Authorizations Not in Effect ----------
DAD authorization of 'Static_Auth_DAD' by user 'OE' is not in effect
 because DAD user is 'HR'.
DAD authorization of 'Static_Auth_DAD_Typo' by user 'HR' is not in effect
 because DAD does not exist.

Examining Embedded PL/SQL Gateway Configuration

When you are connected to the database as a user with system privileges, this script helps you examine the configuration of the embedded PL/SQL gateway:

$ORACLE_HOME/rdbms/admin/epgstat.sql

Example 9-6 shows the output of the epgstat.sql script for Example 9-1 when the ANONYMOUS account is locked.

Example 9-6 epgstat.sql Script Output for Example 9-1

Command to run script:

@$ORACLE_HOME/rdbms/admin/epgstat.sql

Result:

+--------------------------------------+
| XDB protocol ports: |
| XDB is listening for the protocol |
| when the protocol port is nonzero. |
+--------------------------------------+

HTTP Port FTP Port
--------- --------
 0 0

1 row selected.

+---------------------------+
| DAD virtual-path mappings |
+---------------------------+

Virtual Path DAD Name
-------------------------------- --------------------------------
/dynamic/* Dynamic_Auth_DAD_Restricted
/static/* Static_Auth_DAD

2 rows selected.

+----------------+
| DAD attributes |
+----------------+

DAD Name DAD Param DAD Value
------------ --------------------- --
Dynamic_Auth database-username HR
_DAD_Restric
ted

Static_Auth_ database-username HR
DAD

2 rows selected.

+---+
| DAD authorization: |
| To use static authentication of a user in a DAD, |
| the DAD must be authorized for the user. |
+---+

DAD Name User Name
-------------------------------- --------------------------------
Static_Auth_DAD HR
 OE
Static_Auth_DAD_Typo HR

3 rows selected.

+----------------------------+
| DAD authentication schemes |
+----------------------------+

DAD Name User Name Auth Scheme
-------------------- -------------------------------- ------------------
Dynamic_Auth_DAD Dynamic
Dynamic_Auth_DAD_Res HR Dynamic Restricted
tricted

Static_Auth_DAD HR Static

3 rows selected.

+--+
| ANONYMOUS user status: |
| To use static or anonymous authentication in any DAD, |
| the ANONYMOUS account must be unlocked. |
+--+

Database User Status
--------------- --------------------
ANONYMOUS EXPIRED & LOCKED

1 row selected.

+---+
| ANONYMOUS access to XDB repository: |
| To allow public access to XDB repository without authentication, |
| ANONYMOUS access to the repository must be allowed. |
+---+

Allow repository anonymous access?

false

1 row selected.

Invoking PL/SQL Stored Subprograms Through Embedded PL/SQL Gateway

The basic steps for invoking PL/SQL subprograms through the embedded PL/SQL gateway are the same as for the mod_plsql gateway. See Oracle HTTP Server mod_plsql User's Guide for instructions. You must adapt the mod_plsql instructions slightly for use with the embedded gateway. For example, invoke the embedded gateway in a browser by entering the URL in this format:

protocol://hostname[:port]/virt-path/[[!][schema.][package.]proc_name[?query_str]]

The placeholder virt-path stands for the virtual path that you configured in DBMS_EPG.CREATE_DAD. The mod_plsql documentation uses DAD_location instead of virt-path.

These topics documented in Oracle HTTP Server mod_plsql User's Guide apply equally to the embedded gateway:

	
Transaction mode

	
Supported data types

	
Parameter-passing scheme

	
File upload and download support

	
Path-aliasing

	
Common Gateway Interface (CGI) environment variables

Securing Application Access with Embedded PL/SQL Gateway

The embedded gateway shares the same protection mechanism with mod_plsql. See Oracle HTTP Server mod_plsql User's Guide for instructions.

Restrictions in Embedded PL/SQL Gateway

The mod_plsql restrictions documented in the first chapter of Oracle HTTP Server mod_plsql User's Guide apply equally to the embedded gateway. In addition, the embedded version of the gateway does not support these features:

	
Dynamic HTML caching

	
System monitoring

	
Authentication modes other than Basic

For information about authentication modes, see Oracle HTTP Server mod_plsql User's Guide.

Using Embedded PL/SQL Gateway: Scenario

This section illustrates how to write a simple application that queries the hr.employees table and delivers HTML output to a web browser through the PL/SQL gateway. It assumes that you have both XML DB and the sample schemas installed.

To write and run the program follow these steps:

	
Log on to the database as a user with ALTER USER privileges and ensure that the database account ANONYMOUS is unlocked. The ANONYMOUS account, which is locked by default, is required for static authentication. If the account is locked, then use this SQL statement to unlock it:

ALTER USER anonymous ACCOUNT UNLOCK;

	
Log on to the database as an XML DB administrator, that is, a user with the XDBADMIN role.

To determine which users and roles were granted the XDADMIN role, query the data dictionary:

SELECT *
FROM DBA_ROLE_PRIVS
WHERE GRANTED_ROLE = 'XDBADMIN';

	
Create the DAD. For example, this procedure creates a DAD invoked HR_DAD and maps the virtual path to /plsql/:

EXEC DBMS_EPG.CREATE_DAD('HR_DAD', '/plsql/*');

	
Set the DAD attribute database-username to the database user whose privileges must be used by the DAD. For example, this procedure specifies that the DAD HR_DAD accesses database objects with the privileges of user HR:

EXEC DBMS_EPG.SET_DAD_ATTRIBUTE('HR_DAD', 'database-username', 'HR');

The attribute database-username is case-sensitive.

	
Grant EXECUTE privilege to the database user whose privileges must be used by the DAD (so that he or she can authorize the DAD). For example:

GRANT EXECUTE ON DBMS_EPG TO HR;

	
Log off as the XML DB administrator and log on to the database as the database user whose privileges must be used by the DAD (for example, HR).

	
Authorize the embedded PL/SQL gateway to invoke procedures and access document tables through the DAD. For example:

EXEC DBMS_EPG.AUTHORIZE_DAD('HR_DAD');

	
Create a sample PL/SQL stored procedure invoked print_employees. This program creates an HTML page that includes the result set of a query of hr.employees:

CREATE OR REPLACE PROCEDURE print_employees IS
 CURSOR emp_cursor IS
 SELECT last_name, first_name
 FROM hr.employees
 ORDER BY last_name;
BEGIN
 HTP.PRINT('<html>');
 HTP.PRINT('<head>');
 HTP.PRINT('<meta http-equiv="Content-Type" content="text/html">');
 HTP.PRINT('<title>List of Employees</title>');
 HTP.PRINT('</head>');
 HTP.PRINT('<body TEXT="#000000" BGCOLOR="#FFFFFF">');
 HTP.PRINT('<h1>List of Employees</h1>');
 HTP.PRINT('<table width="40%" border="1">');
 HTP.PRINT('<tr>');
 HTP.PRINT('<th align="left">Last Name</th>');
 HTP.PRINT('<th align="left">First Name</th>');
 HTP.PRINT('</tr>');
 FOR emp_record IN emp_cursor LOOP
 HTP.PRINT('<tr>');
 HTP.PRINT('<td>' || emp_record.last_name || '</td>');
 HTP.PRINT('<td>' || emp_record.first_name || '</td>');
 END LOOP;
 HTP.PRINT('</table>');
 HTP.PRINT('</body>');
 HTP.PRINT('</html>');
END;
/

	
Ensure that the Oracle Net listener can accept HTTP requests. You can determine the status of the listener on Linux and UNIX by running this command at the system prompt:

lsnrctl status | grep HTTP

Output (reformatted from a single line to multiple lines from page size constraints):

(DESCRIPTION=
 (ADDRESS=(PROTOCOL=tcp)(HOST=example.com)(PORT=8080))
 (Presentation=HTTP)
 (Session=RAW)
)

If you do not see the HTTP service started, then you can add these lines to your initialization parameter file (replacing listener_name with the name of your Oracle Net local listener), then restart the database and the listener:

dispatchers="(PROTOCOL=TCP)"
local_listener=listener_name

	
Run the print_employees program from your web browser. For example, you can use this URL, replacing host with the name of your host computer and port with the value of the PORT parameter in the previous step:

http://host:port/plsql/print_employees

For example, if your host is test.com and your HTTP port is 8080, then enter:

http://example.com:8080/plsql/print_employees

The web browser returns an HTML page with a table that includes the first and last name of every employee in the hr.employees table.

Generating HTML Output with PL/SQL

Traditionally, PL/SQL web applications use function calls to generate each HTML tag for output. These functions are part of the PL/SQL Web Toolkit packages that come with Oracle Database. Example 9-7 shows how to generate a simple HTML page by calling the HTP functions that correspond to each HTML tag.

Example 9-7 Using HTP Functions to Generate HTML Tags

CREATE OR REPLACE PROCEDURE html_page IS
BEGIN
 HTP.HTMLOPEN; -- generates <HTML>
 HTP.HEADOPEN; -- generates <HEAD>
 HTP.TITLE('Title'); -- generates <TITLE>Hello</TITLE>
 HTP.HEADCLOSE; -- generates </HTML>

 -- generates <BODY TEXT="#000000" BGCOLOR="#FFFFFF">
 HTP.BODYOPEN(cattributes => 'TEXT="#000000" BGCOLOR="#FFFFFF"');

 -- generates <H1>Heading in the HTML File</H1>
 HTP.HEADER(1, 'Heading in the HTML File');

 HTP.PARA; -- generates <P>
 HTP.PRINT('Some text in the HTML file.');
 HTP.BODYCLOSE; -- generates </BODY>
 HTP.HTMLCLOSE; -- generates </HTML>
END;
/

An alternative to making function calls that correspond to each tag is to use the HTP.PRINT function to print both text and tags. Example 9-8 illustrates this technique.

Example 9-8 Using HTP.PRINT to Generate HTML Tags

CREATE OR REPLACE PROCEDURE html_page2 IS
BEGIN
 HTP.PRINT('<html>');
 HTP.PRINT('<head>');
 HTP.PRINT('<meta http-equiv="Content-Type" content="text/html">');
 HTP.PRINT('<title>Title of the HTML File</title>');
 HTP.PRINT('</head>');
 HTP.PRINT('<body TEXT="#000000" BGCOLOR="#FFFFFF">');
 HTP.PRINT('<h1>Heading in the HTML File</h1>');
 HTP.PRINT('<p>Some text in the HTML file.');
 HTP.PRINT('</body>');
 HTP.PRINT('</html>');
END;
/

Chapter 10, "Developing PL/SQL Server Pages (PSP)," describes an additional method for delivering using PL/SQL to generate HTML content. PL/SQL server pages enables you to build on your knowledge of HTML tags and avoid learning a new set of function calls. In an application written as a set of PL/SQL server pages, you can still use functions from the PL/SQL Web Toolkit to:

	
Simplify the processing involved in displaying tables

	
Store persistent data (cookies)

	
Work with CGI protocol internals

Passing Parameters to PL/SQL Web Applications

To be useful in a wide variety of situations, a web application must be interactive enough to allow user choices. To keep the attention of impatient web surfers, streamline the interaction so that users can specify these choices very simply, without excessive decision-making or data entry.

The main methods of passing parameters to PL/SQL web applications are:

	
Using HTML form tags. The user fills in a form on one web page, and all the data and choices are transmitted to a stored subprogram when the user clicks the Submit button on the page.

	
Hard-coded in the URL. The user clicks on a link, and a set of predefined parameters are transmitted to a stored subprogram. Typically, you include separate links on your web page for all the choices that the user might want.

Topics:

	
Passing List and Dropdown-List Parameters from an HTML Form

	
Passing Option and Check Box Parameters from an HTML Form

	
Passing Entry-Field Parameters from an HTML Form

	
Passing Hidden Parameters from an HTML Form

	
Uploading a File from an HTML Form

	
Submitting a Completed HTML Form

	
Handling Missing Input from an HTML Form

	
Maintaining State Information Between Web Pages

Passing List and Dropdown-List Parameters from an HTML Form

List boxes and drop-down lists are implemented with the HTML tag <SELECT>.

Use a list box for a large number of choices or to allow multiple selections. List boxes are good for showing items in alphabetical order so that users can find an item quickly without reading all the choices.

Use a drop-down list in these situations:

	
There are a small number of choices

	
Screen space is limited.

	
Choices are in an unusual order.

The drop-down captures the attention of first-time users and makes them read the items. If you keep the choices and order consistent, then users can memorize the motion of selecting an item from the drop-down list, allowing them to make selections quickly as they gain experience. Example 9-9 shows a simple drop-down list.

Example 9-9 HTML Drop-Down List

<form>
<select name="seasons">
<option value="winter">Winter
<option value="spring">Spring
<option value="summer">Summer
<option value="fall">Fall
</select>

Passing Option and Check Box Parameters from an HTML Form

Options pass either a null value (if none of the options in a group is checked), or the value specified on the option that is checked.

To specify a default value for a set of options, you can include the CHECKED attribute in anINPUT tag, or include a DEFAULT clause on the parameter within the stored subprogram. When setting up a group of options, be sure to include a choice that indicates "no preference", because after selecting a option, the user can select a different one, but cannot clear the selection completely. For example, include a "Don't Care" or "Don't Know" selection along with "Yes" and "No" choices, in case someone makes a selection and then realizes it was wrong.

Check boxes need special handling, because your stored subprogram might receive a null value, a single value, or multiple values:

All the check boxes with the same NAME attribute comprise a check box group. If none of the check boxes in a group is checked, the stored subprogram receives a null value for the corresponding parameter.

If one check box in a group is checked, the stored subprogram receives a single VARCHAR2 parameter.

If multiple check boxes in a group are checked, the stored subprogram receives a parameter with the PL/SQL type TABLE OF VARCHAR2. You must declare a type like TABLE OF VARCHAR2, or use a predefined one like OWA_UTIL.IDENT_ARR. To retrieve the values, use a loop:

CREATE OR REPLACE PROCEDURE handle_checkboxes (
 checkboxes owa_util.ident_arr
) AS
BEGIN
 FOR i IN 1..checkboxes.count
 LOOP
 htp.print('<p>Check Box value: ' || checkboxes(i));
 END LOOP;
END;
/

Passing Entry-Field Parameters from an HTML Form

Entry fields require the most validation, because a user might enter data in the wrong format, out of range, and so on. If possible, validate the data on the client side using a client-side JavaScript function, and format it correctly for the user or prompt them to enter it again.

For example:

	
You might prevent the user from entering alphabetic characters in a numeric entry field, or from entering characters after reaching a length limit.

	
You might silently remove spaces and dashes from a credit card number if the stored subprogram expects the value in that format.

	
You might inform the user immediately when they type a number that is too large, so that they can retype it.

Because you cannot always rely on such validation to succeed, code the stored subprograms to deal with these cases anyway. Rather than forcing the user to use the Back button when they enter wrong data, display a single page with an error message and the original form with all the other values filled in.

For sensitive information such as passwords, a special form of the entry field, <INPUT TYPE=PASSWORD>, hides the text as it is typed in.

The procedure in Example 9-10 accepts two strings as input. The first time the procedure is invoked, the user sees a simple form prompting for the input values. When the user submits the information, the same procedure is invoked again to check if the input is correct. If the input is OK, the procedure processes it. If not, the procedure prompts for input, filling in the original values for the user.

Example 9-10 Passing Entry-Field Parameters from an HTML Form

DROP TABLE name_zip_table;
CREATE TABLE name_zip_table (
 name VARCHAR2(100),
 zipcode NUMBER
);

-- Store a name and associated zip code in the database.

CREATE OR REPLACE PROCEDURE associate_name_with_zipcode
 (name VARCHAR2 := NULL,
 zip VARCHAR2 := NULL)
AS
BEGIN
 -- Each entry field must contain a value. Zip code must be 6 characters.
 -- (In a real program you perform more extensive checking.)

 IF name IS NOT NULL AND zip IS NOT NULL AND length(zip) = 6 THEN
 INSERT INTO name_zip_table (name, zipcode) VALUES (name, zip);

 HTP.PRINT('<p>The person ' || HTP.ESCAPE_SC(name) ||
 ' has the zip code ' || HTP.ESCAPE_SC(zip) || '.');

 -- If input was OK, stop here. User does not see form again.
 RETURN;
 END IF;

 -- If user entered incomplete or incorrect data, show error message.

 IF (name IS NULL AND zip IS NOT NULL)
 OR (name IS NOT NULL AND zip IS NULL)
 OR (zip IS NOT NULL AND length(zip) != 6)
 THEN
 HTP.PRINT('<p>Please reenter data. Fill all fields,
 and use 6-digit zip code.');
 END IF;

 -- If user entered no data or incorrect data, show error message
 -- & make form invoke same procedure to check input values.

 HTP.FORMOPEN('HR.associate_name_with_zipcode', 'GET');
 HTP.PRINT('<p>Enter your name:</td>');

 HTP.PRINT('<td valign=center><input type=text name=name value="' ||
 HTP.ESCAPE_SC(name) || '">');

 HTP.PRINT('<p>Enter your zip code:</td>');

 HTP.PRINT('<td valign=center><input type=text name=zip value="' ||
 HTP.ESCAPE_SC(zip) || '">');

 HTP.FORMSUBMIT(NULL, 'Submit');
 HTP.FORMCLOSE;
END;
/

Passing Hidden Parameters from an HTML Form

One technique for passing information through a sequence of stored subprograms, without requiring the user to specify the same choices each time, is to include hidden parameters in the form that invokes a stored subprogram. The first stored subprogram places information, such as a user name, into the HTML form that it generates. The value of the hidden parameter is passed to the next stored subprogram, as if the user had entered it through a option or entry field.

Other techniques for passing information from one stored subprogram to another include:

	
Sending a "cookie" containing the persistent information to the browser. The browser then sends this same information back to the server when accessing other web pages from the same site. Cookies are set and retrieved through the HTTP headers that are transferred between the browser and the web server before the HTML text of each web page.

	
Storing the information in the database itself, where later stored subprograms can retrieve it. This technique involves some extra overhead on the database server, and you must still find a way to keep track of each user as multiple users access the server at the same time.

Uploading a File from an HTML Form

You can use an HTML form to choose a file on a client system, and transfer it to the server. A stored subprogram can insert the file into the database as a CLOB, BLOB, or other type that can hold large amounts of data.

The PL/SQL Web Toolkit and the PL/SQL gateway have the notion of a "document table" that holds uploaded files.

	
See Also:

mod_plsql User's Guide

Submitting a Completed HTML Form

By default, an HTML form must have a Submit button, which transmits the data from the form to a stored subprogram or CGI program. You can label this button with text of your choice, such as "Search", "Register", and so on.

You can have multiple forms on the same page, each with its own form elements and Submit button. You can even have forms consisting entirely of hidden parameters, where the user makes no choice other than clicking the button.

Using JavaScript or other scripting languages, you can eliminate the Submit button and have the form submitted in response to some other action, such as selecting from a drop-down list. This technique is best when the user only makes a single selection, and the confirmation step of the Submit button is not essential.

Handling Missing Input from an HTML Form

When an HTML form is submitted, your stored subprogram receives null parameters for any form elements that are not filled in. For example, null parameters can result from an empty entry field, a set of check boxes, options, or list items with none checked, or a VALUE parameter of "" (empty quotation marks).

Regardless of any validation you do on the client side, always code stored subprograms to handle the possibility that some parameters are null:

	
Specify an initial value in all parameter declarations, to prevent an exception when the stored subprogram is invoked with a missing form parameter. You can set the initial value to zero for numeric values (when that makes sense), and to NULL when you want to check whether the user actually specifies a value.

	
Before using an input parameter value that has the initial value NULL, check if it is null.

	
Make the subprogram generate sensible results even when not all input parameters are specified. You might leave some sections out of a report, or display a text string or image in a report to indicate where parameters were not specified.

	
Provide a way to fill in the missing values and run the stored subprogram again, directly from the results page. For example, include a link that invokes the same stored subprogram with an additional parameter, or display the original form with its values filled in as part of the output.

Maintaining State Information Between Web Pages

Web applications are particularly concerned with the idea of state, the set of data that is current at a particular moment in time. It is easy to lose state information when switching from one web page to another, which might result in asking the user to make the same choices over and over.

You can pass state information between dynamic web pages using HTML forms. The information is passed as a set of name-value pairs, which are turned into stored subprogram parameters for you.

If the user has to make multiple selections, or one selection from many choices, or it is important to avoid an accidental selection, use an HTML form. After the user makes and reviews all the choices, they confirm the choices with the Submit button. Subsequent pages can use forms with hidden parameters (<INPUT TYPE=HIDDEN> tags) to pass these choices from one page to the next.

If the user is only considering one or two choices, or the decision points are scattered throughout the web page, you can save the user from hunting around for the Submit button by representing actions as hyperlinks and including any necessary name-value pairs in the query string (the part after the ? within a URL).

An alternative way to main state information is to use Oracle Application Server and its mod_ose module. This approach lets you store state information in package variables that remain available as a user moves around a web site.

	
See Also:

The Oracle Application Server documentation set at:

http://www.oracle.com/technetwork/indexes/documentation/index.html

Performing Network Operations in PL/SQL Subprograms

Oracle provides packages that allow PL/SQL subprograms to perform these network operations:

	
Sending Email from PL/SQL

	
Getting a Host Name or Address from PL/SQL

	
Using TCP/IP Connections from PL/SQL

	
Retrieving HTTP URL Contents from PL/SQL

	
Using Tables, Image Maps, Cookies, and CGI Variables from PL/SQL

Internet Protocol version 6 (IPv6) Support

As of Oracle Database 11g Release 2, PL/SQL network utility packages support IPv6 addresses. The package interfaces have not changed: Any interface parameter that expects a network host accepts an IPv6 address in string form, and any interface that returns an IP address can return an IPv6 address.

However, applications that use network addresses might need small changes, and recompilation, to accommodate IPv6 addresses. An IPv6 address has 128 bits, while an IPv4 address has only 32 bits. In a URL, an IPv6 address must be enclosed in brackets. For example:

http://[2001:0db8:85a3:08d3:1319:8a2e:0370:7344]/

	
See Also:

	
Oracle Database Net Services Administrator's Guide for detailed information about IPv6 support in Oracle Database

	
Oracle Database PL/SQL Packages and Types Reference for information about IPv6 support in specific PL/SQL network utility packages

Sending Email from PL/SQL

Using the UTL_SMTP package, a PL/SQL subprogram can send email, as in Example 9-11.

Example 9-11 Sending Email from PL/SQL

CREATE OR REPLACE PROCEDURE send_test_message
IS
 mailhost VARCHAR2(64) := 'mailhost.example.com';
 sender VARCHAR2(64) := 'me@example.com';
 recipient VARCHAR2(64) := 'you@example.com';
 mail_conn UTL_SMTP.CONNECTION;
BEGIN
 mail_conn := UTL_SMTP.OPEN_CONNECTION(mailhost, 25); -- 25 is the port
 UTL_SMTP.HELO(mail_conn, mailhost);
 UTL_SMTP.MAIL(mail_conn, sender);
 UTL_SMTP.RCPT(mail_conn, recipient);

 UTL_SMTP.OPEN_DATA(mail_conn);
 UTL_SMTP.WRITE_DATA(mail_conn, 'This is a test message.' || chr(13));
 UTL_SMTP.WRITE_DATA(mail_conn, 'This is line 2.' || chr(13));
 UTL_SMTP.CLOSE_DATA(mail_conn);

 /* If message were in single string, open_data(), write_data(),
 and close_data() could be in a single call to data(). */

 UTL_SMTP.QUIT(mail_conn);
EXCEPTION
 WHEN OTHERS THEN
 -- Insert error-handling code here
 RAISE;
END;
/

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed information about the UTL_SMTP package

Getting a Host Name or Address from PL/SQL

Using the UTL_INADDR package, a PL/SQL subprogram can determine the host name of the local system or the IP address of a given host name.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed information about the UTL_INADDR package

Using TCP/IP Connections from PL/SQL

Using the UTL_TCP package, a PL/SQL subprogram can open TCP/IP connections to systems on the network, and read or write to the corresponding sockets.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed information about the UTL_TCP package

Retrieving HTTP URL Contents from PL/SQL

Using the UTL_HTTP package, a PL/SQL subprogram can:

	
Retrieve the contents of an HTTP URL

The contents are usually in the form of HTML-tagged text, but might be any kind of file that can be downloaded from a web server (for example, plain text or a JPEG image).

	
Control HTTP session details (such as headers, cookies, redirects, proxy servers, IDs and passwords for protected sites, and CGI parameters)

	
Speed up multiple accesses to the same web site, using HTTP 1.1 persistent connections

A PL/SQL subprogram can construct and interpret URLs for use with the UTL_HTTP package by using the functions UTL_URL.ESCAPE and UTL_URL.UNESCAPE.

The PL/SQL procedure in Example 9-12 uses the UTL_HTTP package to retrieve the contents of an HTTP URL.

Example 9-12 Retrieving HTTP URL Contents from PL/SQL

CREATE OR REPLACE PROCEDURE show_url
 (url IN VARCHAR2,
 username IN VARCHAR2 := NULL,
 password IN VARCHAR2 := NULL)
AS
 req UTL_HTTP.REQ;
 resp UTL_HTTP.RESP;
 name_ VARCHAR2(256);
 value_ VARCHAR2(1024);
 data_ VARCHAR2(255);
 my_scheme VARCHAR2(256);
 my_realm VARCHAR2(256);
 my_proxy BOOLEAN;
BEGIN
 -- When going through a firewall, pass requests through this host.
 -- Specify sites inside the firewall that do not need the proxy host.

 UTL_HTTP.SET_PROXY('proxy.example.com', 'corp.example.com');

 -- Ask UTL_HTTP not to raise an exception for 4xx and 5xx status codes,
 -- rather than just returning the text of the error page.

 UTL_HTTP.SET_RESPONSE_ERROR_CHECK(FALSE);

 -- Begin retrieving this web page.
 req := UTL_HTTP.BEGIN_REQUEST(url);

 -- Identify yourself.
 -- Some sites serve special pages for particular browsers.
 UTL_HTTP.SET_HEADER(req, 'User-Agent', 'Mozilla/4.0');

 -- Specify user ID and password for pages that require them.
 IF (username IS NOT NULL) THEN
 UTL_HTTP.SET_AUTHENTICATION(req, username, password);
 END IF;

 -- Start receiving the HTML text.
 resp := UTL_HTTP.GET_RESPONSE(req);

 -- Show status codes and reason phrase of response.
 DBMS_OUTPUT.PUT_LINE('HTTP response status code: ' || resp.status_code);
 DBMS_OUTPUT.PUT_LINE
 ('HTTP response reason phrase: ' || resp.reason_phrase);

 -- Look for client-side error and report it.
 IF (resp.status_code >= 400) AND (resp.status_code <= 499) THEN

 -- Detect whether page is password protected
 -- and you didn't supply the right authorization.

 IF (resp.status_code = UTL_HTTP.HTTP_UNAUTHORIZED) THEN
 UTL_HTTP.GET_AUTHENTICATION(resp, my_scheme, my_realm, my_proxy);
 IF (my_proxy) THEN
 DBMS_OUTPUT.PUT_LINE('Web proxy server is protected.');
 DBMS_OUTPUT.PUT('Please supply the required ' || my_scheme ||
 ' authentication username for realm ' || my_realm ||
 ' for the proxy server.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Web page ' || url || ' is protected.');
 DBMS_OUTPUT.PUT('Please supplied the required ' || my_scheme ||
 ' authentication username for realm ' || my_realm ||
 ' for the web page.');
 END IF;
 ELSE
 DBMS_OUTPUT.PUT_LINE('Check the URL.');
 END IF;

 UTL_HTTP.END_RESPONSE(resp);
 RETURN;

 -- Look for server-side error and report it.
 ELSIF (resp.status_code >= 500) AND (resp.status_code <= 599) THEN
 DBMS_OUTPUT.PUT_LINE('Check if the web site is up.');
 UTL_HTTP.END_RESPONSE(resp);
 RETURN;
 END IF;

 -- HTTP header lines contain information about cookies, character sets,
 -- and other data that client and server can use to customize each
 -- session.

 FOR i IN 1..UTL_HTTP.GET_HEADER_COUNT(resp) LOOP
 UTL_HTTP.GET_HEADER(resp, i, name_, value_);
 DBMS_OUTPUT.PUT_LINE(name_ || ': ' || value_);
 END LOOP;

 -- Read lines until none are left and an exception is raised.
 LOOP
 UTL_HTTP.READ_LINE(resp, value_);
 DBMS_OUTPUT.PUT_LINE(value_);
 END LOOP;
EXCEPTION
 WHEN UTL_HTTP.END_OF_BODY THEN
 UTL_HTTP.END_RESPONSE(resp);
END;
/

This block shows examples of calls to the procedure in Example 9-12, but the URLs are for nonexistent pages. Substitute URLs from your own web server.

BEGIN
 show_url('http://www.oracle.com/no-such-page.html');
 show_url('http://www.oracle.com/protected-page.html');
 show_url
 ('http://www.oracle.com/protected-page.html','username','password');
END;
/

	
See Also:

	
Oracle Database PL/SQL Packages and Types Reference for detailed information about the UTL_HTTP package

	
Oracle Database PL/SQL Packages and Types Reference for detailed information about UTL_URL.ESCAPE and UTL_URL.UNESCAPE

Using Tables, Image Maps, Cookies, and CGI Variables from PL/SQL

Using packages supplied by Oracle, and the mod_plsql plug-in of Oracle HTTP Server (OHS), a PL/SQL subprogram can format the results of a query in an HTML table, produce an image map, set and get HTTP cookies, check the values of CGI variables, and perform other typical web operations.

Documentation for these packages is not part of the database documentation library. The location of the documentation depends on your application server. To get started with these packages, look at their subprogram names and parameters using the SQL*Plus DESCRIBE statement:

DESCRIBE HTP;
DESCRIBE HTF;
DESCRIBE OWA_UTIL;

10 Developing PL/SQL Server Pages (PSP)

This chapter explains how to develop PL/SQL Server Pages (PSP), which let you include dynamic content in web pages.

Topics:

	
What Are PL/SQL Server Pages and Why Use Them?

	
Prerequisites for Developing and Deploying PL/SQL Server Pages

	
PL/SQL Server Pages and the HTP Package

	
PL/SQL Server Pages and Other Scripting Solutions

	
Developing PL/SQL Server Pages

	
Loading PL/SQL Server Pages into the Database

	
Querying PL/SQL Server Page Source Code

	
Running PL/SQL Server Pages Through URLs

	
Examples of PL/SQL Server Pages

	
Debugging PL/SQL Server Pages

	
Putting PL/SQL Server Pages into Production

What Are PL/SQL Server Pages and Why Use Them?

PL/SQL Server Pages (PSP) are server-side scripts that include dynamic content, including the results of SQL queries, inside web pages. You can author the web pages in an HTML authoring tool and insert blocks of PL/SQL code.

Example 10-1 shows a simple PL/SQL server page called simple.psp.

Example 10-1 simple.psp

<%@ page language="PL/SQL" %>
<%@ page contentType="text/html" %>
<%@ plsql procedure="show_employees" %>
<%-- This example displays the last name and first name of every
 employee in the hr.employees table. --%>
<%!
 CURSOR emp_cursor IS
 SELECT last_name, first_name
 FROM hr.employees
 ORDER BY last_name;
%>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html">
<title>List of Employees</title>
</head>
<body TEXT="#000000" BGCOLOR="#FFFFFF">
<h1>List of Employees</h1>
<table width="40%" border="1">
<tr>
<th align="left">Last Name</th>
<th align="left">First Name</th>
</tr>
<% FOR emp_record IN emp_cursor LOOP %>
 <tr>
 <td> <%= emp_record.last_name %> </td>
 <td> <%= emp_record.first_name %> </td>
 </tr>
<% END LOOP; %>
</table>
</body>
</html>

You can compile and load a PL/SQL server page into the database with the loadpsp command-line utility. This command loads simple.psp into the hr schema, replacing the show_employees procedure if it exists:

loadpsp -replace simple.psp
Enter Password: password

Browser users can run the show_employees procedure through a URL. An HTML page that displays the last and first names of employees in the hr.employees table is returned to the browser through the PL/SQL gateway.

Deploying content through PL/SQL Server Pages has these advantages:

	
For developers familiar with PL/SQL, the server pages are the easiest way to create professional web pages that include database-generated content. You can develop web pages as you usually do and then embed PL/SQL code in the HTML.

	
PL/SQL Server Pages can be more convenient than using the HTP and HTF packages to write out HTML content line by line.

	
Because processing is performed on the database server, the client browser receives a plain HTML page with no special script tags. You can support all browsers and browser levels equally.

	
Network traffic is efficient because use of PL/SQL Server Pages minimizes the number of database round-trips.

	
You can write content quickly and follow a rapid, iterative development process. You maintain central control of the software, with only a web browser required on the client system.

Prerequisites for Developing and Deploying PL/SQL Server Pages

To develop and deploy PL/SQL server pages, you must meet these prerequisites:

	
To write a PL/SQL server page you need access to a text editor or HTML authoring tool for writing the script. No other development tool is required.

	
To load a PL/SQL server page you need:

	
An account on the database in which to load the server pages.

	
Execution rights to the loadpsp command-line utility, which is located in $ORACLE_HOME/bin.

	
To deploy the server pages you must use mod_plsql. As explained in "Using mod_plsql Gateway to Map Client Requests to a PL/SQL Web Application", the gateway uses the PL/SQL Web Toolkit.

	
See Also:

	
"Using mod_plsql Gateway to Map Client Requests to a PL/SQL Web Application"

PL/SQL Server Pages and the HTP Package

You can enable browser users to run PL/SQL units through HTTP in these ways:

	
By writing an HTML page with embedded PL/SQL code and compiling it as a PL/SQL server page. You might invoke subprograms from the PL/SQL Web Toolkit, but not to generate every line of HTML output.

	
By writing a complete stored subprogram that produces HTML by invoking the HTP and OWA_* packages in the PL/SQL Web Toolkit. For information about this technique, see "Generating HTML Output with PL/SQL".

Thus, you must choose which technique to use when writing your web application. The key factors in choosing between these techniques are:

	
What source are you using as a starting point?

	
If you have a large body of HTML, and want to include dynamic content or make it the front end of a database application, then use PL/SQL Server Pages.

	
If you have a large body of PL/SQL code that produces formatted output, then you might find it more convenient to produce HTML tags by changing your print statements to invoke the HTP package of the PL/SQL Web Toolkit.

	
What is the fastest and most convenient authoring environment for your group?

	
If most work is done using HTML authoring tools, then use PL/SQL Server Pages.

	
If you use authoring tools that produce PL/SQL code, then it might be less convenient to use PL/SQL Server Pages.

PL/SQL Server Pages and Other Scripting Solutions

Scripting solutions can be client-side or server-side. JavaScript is a very popular client-side scripting languages. PL/SQL Server Pages fully support JavaScript. Because any kind of tags can be passed unchanged to the browser through a PL/SQL server page, you can include JavaScript or other client-side script code in a PL/SQL server page.

Java Server Pages (JSP) and Active Server Pages (ASP) are two of the most popular server-side scripting solutions. Compared to PL/SQL Server Pages:

	
Java server pages are loosely analogous to PL/SQL Server Pages pages; Java servlets are analogous to PL/SQL packages. PL/SQL Server Pages use the same script tag syntax as JSP to make it easy to switch back and forth.

	
PL/SQL Server Pages use syntax that is similar to ASP, although not identical. Typically, you must translate from VBScript or JScript to PL/SQL. The best candidates for migration are pages that use the Active Data Object (ADO) interface to perform database operations.

	
Note:

You cannot mix PL/SQL server pages with other server-side script features, such as server-side includes. Often, you can get the same results by using the corresponding PL/SQL Server Pages features.

Developing PL/SQL Server Pages

To develop a PL/SQL server page, you can start with an existing web page or with an existing stored subprogram. Either way, with a few additions and changes you can create dynamic web pages that perform database operations and display the results.

The file for a PL/SQL server page must have the extension .psp. It can contain whatever content you choose, with text and tags interspersed with PL/SQL Server Pages directives, declarations, and scriptlets. A server page can take these forms:

	
In the simplest case, it is an HTML file. Compiling it as a PL/SQL server page produces a stored subprogram that outputs the same HTML file.

	
In the most complex case, it is a PL/SQL subprogram that generates all the content of the web page, including the tags for title, body, and headings.

	
In the typical case, it is a mixture of HTML (providing the static parts of the page) and PL/SQL (providing the dynamic content).

The order and placement of the PL/SQL Server Pages directives and declarations is usually not significant. It becomes significant only when another file is included. For ease of maintenance, Oracle recommends that you put the directives and declarations near the beginning of the file.

Table 10-1 lists the PL/SQL Server Pages elements and directs you to the section that explains how to use them. The section "Using Quotation Marks and Escaping Strings in a PSP Script" describes how to use quotation marks in strings that are used in various PL/SQL Server Pages elements.

Table 10-1 PSP Elements

	PSP Element	Name	Specifies . . .	Section
	
<%@ page ... %>

	
Page Directive

	
Characteristics of the PL/SQL server page.

	
"Specifying Basic Server Page Characteristics"

	
<%@ parameter ... %>

	
Parameter Directive

	
The name, and optionally the type and default, for each parameter expected by the PSP stored procedure.

	
"Accepting User Input"

	
<%@ plsql ... %>

	
Procedure Directive

	
The name of the stored procedure produced by the PSP file.

	
"Naming the PL/SQL Stored Procedure"

	
<%@ include ... %>

	
Include Directive

	
The name of a file to be included at a specific point in the PSP file.

	
"Including the Contents of Other Files"

	
<%! ... %>

	
Declaration Block

	
The declaration for a set of PL/SQL variables that are visible throughout the page, not just within the next BEGIN/END block.

	
"Declaring Global Variables in a PSP Script"

	
<% ... %>

	
Code Block

	
A set of PL/SQL statements to be executed when the procedure is run.

	
"Specifying Executable Statements in a PSP Script"

	
<%= ... %>

	
Expression Block

	
A single PL/SQL expression, such as a string, arithmetic expression, function call, or combination of these.

	
"Substituting Expression Values in a PSP Script"

	
<%-- ... --%>

	
Comment

	
A comment in a PSP script.

	
"Including Comments in a PSP Script"

	
Note:

If you are familiar with dynamic HTML, you can go directly to "Examples of PL/SQL Server Pages".

Topics:

	
Specifying Basic Server Page Characteristics

	
Accepting User Input

	
Naming the PL/SQL Stored Procedure

	
Including the Contents of Other Files

	
Declaring Global Variables in a PSP Script

	
Specifying Executable Statements in a PSP Script

	
Substituting Expression Values in a PSP Script

	
Using Quotation Marks and Escaping Strings in a PSP Script

	
Including Comments in a PSP Script

Specifying Basic Server Page Characteristics

Use the <%@ page ... %> directive to specify characteristics of the PL/SQL server page such as:

	
What scripting language it uses.

	
What type of information (MIME type) it produces.

	
What code to run to handle all uncaught exceptions. This might be an HTML file with a friendly message, renamed to a .psp file. You must specify this same file name in the loadpsp command that compiles the main PSP file. You must specify the same name in both the errorPage directive and in the loadpsp command, including any relative path name such as ../include/.

This code shows the syntax of the page directive (the attribute names contentType and errorPage are case-sensitive):

<%@ page
language='PL/SQL'
contentType='content_type_string'
charset='encoding'
errorPage='file.psp'
%>

Topics:

	
Specifying the Scripting Language

	
Returning Data to the Client Browser

	
Handling Script Errors

Specifying the Scripting Language

To identify a file as a PL/SQL server page, include this directive somewhere in the file:

<%@ page language="PL/SQL" %>

This directive is for compatibility with other scripting environments. Example 10-1 shows an example of a simple PL/SQL server page that includes the language directive.

Returning Data to the Client Browser

Options:

	
Returning HTML

	
Returning XML, Text, and Other Document Types

	
Returning Pages Containing Different Character Sets

Returning HTML

The PL/SQL parts of a PL/SQL server page are enclosed within special delimiters. All other content is passed exactly as it is—including any white space—to the browser. To display text or HTML tags, write it as you would write a typical web page. You need not invoke any output functions. As illustration, the server page in Example 10-1 returns the HTML page shown in Example 10-2, except that it includes the table rows for the queried employees.

Example 10-2 Sample Returned HTML Page

<html>
<head>
<meta http-equiv="Content-Type" content="text/html">
<title>List of Employees</title>
</head>
<body TEXT="#000000" BGCOLOR="#FFFFFF">
<h1>List of Employees</h1>
<table width="40%" border="1">
<tr>
<th align="left">Last Name</th>
<th align="left">First Name</th>
</tr>

 <!-- result set of query of hr.employees inserted here -->

</table>
</body>
</html>

Sometimes you might want to display one line of output or another, or change the value of an attribute, based on a condition. You can include control structures and variable substitution inside the PSP delimiters, as shown in this code fragment from Example 10-1:

<% FOR emp_record IN emp_cursor LOOP %>
 <tr>
 <td> <%= emp_record.last_name %> </td>
 <td> <%= emp_record.first_name %> </td>
 </tr>
<% END LOOP; %>

Returning XML, Text, and Other Document Types

By default, the PL/SQL gateway transmits files as HTML documents so that the browser interprets the HTML tags. If you want the browser to interpret the document as XML, plain text (with no formatting), or some other document type, then include this directive:

<%@ page contentType="MIMEtype" %>

The attribute name contentType is case-sensitive. Insert text/html, text/xml, text/plain, image/jpeg, or some other MIME type that the browser or other client program recognizes. Users might have to configure their browsers to recognize some MIME types. An example of a directive for an Excel spreadsheet is:

<%@ page contentType="application/vnd.ms-excel" %>

Typically, a PL/SQL server page is intended to be displayed in a web browser. It can also be retrieved and interpreted by a program that can make HTTP requests, such as a a Java or PERL client.

Returning Pages Containing Different Character Sets

By default, the PL/SQL gateway transmits files with the character set defined by the PL/SQL gateway. To convert the data to a different character set for browser display, include this directive:

<%@ page charset="encoding" %>

Specify Shift_JIS, Big5, UTF-8, or another encoding that the client program recognizes.

You must also configure the character set setting in the database accessor descriptor (DAD) of the PL/SQL gateway. Users might have to select the same encoding in their browsers to see the data displayed properly. For example, a database in Japan might have a database character set that uses the EUC encoding, but the web browsers are configured to display Shift_JIS encoding.

Handling Script Errors

When writing PL/SQL server pages, you can get these types of errors:

	
HTML syntax errors

The browser handles these errors. The loadpsp utility does not check for them.

	
PL/SQL syntax errors

The loadpsp utility stops and displays the line number, column number, and a brief message. You must fix the error before continuing.

Any previous version of the stored subprogram can be erased when you attempt to replace it with a script that contains a syntax error. You might want to use one database for prototyping and debugging, and then load the final stored subprogram into a different database for production. You can switch databases using a command-line flag without changing any source code.

	
Runtime errors

To handle database errors that occur when the script runs, you can include PL/SQL exception-handling code within a PSP file and have any unhandled exceptions start a special PL/SQL server page. Use the errorPage attribute (the name is case-sensitive) of the <%@ page ... %> directive to specify the page name.

The page for unhandled exceptions is a PL/SQL server page with extension .psp. The error subprogram does not receive any parameters, so to determine the cause of the error, it can invoke the SQLCODE and SQLERRM functions. You can also display a standard HTML page without any scripting when an error occurs, but you must still give it the extension .psp and load it into the database as a stored subprogram.

This line specifies errors.psp as the page to run when errors are encountered:

<%@ page language="PL/SQL" contentType="text/html" errorPage="errors.psp" %>

Accepting User Input

To set up parameter passing for a PL/SQL server page, include a directive with this syntax:

<%@ plsql parameter="parameter_name" [type="PL/SQL_type"] [default="value"] %>

The default PL/SQL_type is VARCHAR2. This directive specifies that the parameter p_employee_id is of the type NUMBER:

<%@ plsql parameter="p_employee_id" type="NUMBER" %>

Specifying a default value for a parameter makes the parameter optional. The default value is substituted directly into a PL/SQL statement, so any strings must be enclosed in single quotation marks, and you can use special values such as NULL. This directive specifies that the parameter p_last_name has the default value NULL:

<%@ plsql parameter="p_last_name" default="NULL" %>

User input comes encoded in the URL that retrieves the HTML page. You can generate the URL by hard-coding it in an HTML link, or by invoking your page as the action of an HTML form. Your page receives the input as parameters to a PL/SQL stored subprogram.

Example 10-3 is like Example 10-1, except that it uses a parameter, p_employee_id. If the PL/SQL gateway is configured so that you can run procedures by invoking http://www.host.com/pls/proc_name, where proc_name is the name of a procedure, then you can pass 200 for parameter p_employee_id as follows:

http://www.example.com/pls/show_employees?p_employee_id=200

Example 10-3 simplewithuserinput.psp

<%@ page language="PL/SQL" %>
<%@ page contentType="text/html" %>
<%@ plsql parameter="p_employee_id" default="null" type="NUMBER" %>
<%@ plsql procedure="show_employees" %>
<%-- This example displays the last name and first name of every
 employee in the hr.employees table. --%>
<%!
 CURSOR emp_cursor IS
 SELECT last_name, first_name
 FROM hr.employees
 WHERE employee_id = p_employee_id
 ORDER BY last_name;
%>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html">
<title>List of Employees</title>
</head>
<body TEXT="#000000" BGCOLOR="#FFFFFF">
<h1>List of Employees</h1>
<table width="40%" border="1">
<tr>
<th align="left">Last Name</th>
<th align="left">First Name</th>
</tr>
<% FOR emp_record IN emp_cursor LOOP %>
 <tr>
 <td> <%= emp_record.last_name %> </td>
 <td> <%= emp_record.first_name %> </td>
 </tr>
<% END LOOP; %>
</table>
</body>
</html>

Naming the PL/SQL Stored Procedure

Each top-level PL/SQL server page corresponds to a stored procedure within the server. When you load the page with loadpsp, the utility creates a PL/SQL stored procedure. If the server page is name.psp, the default procedure name is name. For example, if the server page is hello_world.psp, then the default procedure name is hello_world.

To specify a procedure name, use this directive, where procname is the name for the procedure:

<%@ plsql procedure="procname" %>

In Example 10-1, this directive gives the stored procedure the name show_employees:

<%@ plsql procedure="show_employees" %>

It is the name of the procedure, not the name of the PSP script, that you include in the URL.

Including the Contents of Other Files

You can set up an include mechanism to pull in the contents of other files, typically containing either static HTML content or more PL/SQL scripting code. Insert this directive at the point where the content of the other file is to appear, replacing filename with the name of the file to be included:

<%@ include file="filename" %>

The included file must have an extension other than .psp. You must specify the same name in both the include directive and in the loadpsp command, including any relative path name such as ../include/.

Because the files are processed when you load the stored procedure into the database, the substitution is performed only once, not whenever the page is served. Therefore, changes to the included files that occur after the page is loaded into the database are not displayed when the procedure is executed.

You can use the include feature to pull in libraries of code, such as a navigation banners, footers, tables of contents, and so forth into multiple files. Alternatively, you can use this feature as a macro capability to include the same section of script code in multiple places in a page. This example includes an HTML footer:

<%@ include file="footer.htm" %>

When you use included files:

	
You can use any names and extensions for the included files. For example, you can include a file called products.txt.

	
If the included files contain PL/SQL scripting code, then they do not need their own set of directives to identify the procedure name, character set, and so on.

	
When specifying the names of files to the loadpsp utility, you must include the names of all included files also. Specify the names of included files before the names of any .psp files.

Declaring Global Variables in a PSP Script

You can use the <%! ... %> directive to define a set of PL/SQL variables that are visible throughout the page, not just within the next BEGIN/END block. This element typically spans multiple lines, with individual PL/SQL variable declarations ended by semicolons. The syntax for this directive is as follows:

<%! PL/SQL declaration;
 [PL/SQL declaration;] ... %>

The usual PL/SQL syntax is allowed within the block. The delimiters server as shorthand, enabling you to omit the DECLARE keyword. All declarations are available to the code later in the file. Example 10-1 includes this cursor declaration:

<%!
 CURSOR emp_cursor IS
 SELECT last_name, first_name
 FROM hr.employees
 ORDER BY last_name;
%>

You can specify multiple declaration blocks; internally, they are all merged into a single block when the PSP file is created as a stored procedure.

You can also use explicit DECLARE blocks within the <% ... %> delimiters that are explained in "Specifying Executable Statements in a PSP Script". These declarations are only visible to the BEGIN/END block that follows them.

	
Note:

To make things easier to maintain, keep all your directives and declarations near the beginning of a PL/SQL server page.

Specifying Executable Statements in a PSP Script

You can use the <% ... %> code block directive to run a set of PL/SQL statements when the stored procedure is run. This code shows the syntax for executable statements:

<% PL/SQL statement;
 [PL/SQL statement;] ... %>

This element typically spans multiple lines, with individual PL/SQL statements ended by semicolons. The statements can include complete blocks, as in this example, which invokes the OWA_UTIL.TABLEPRINT procedure:

<% OWA_UTIL.TABLEPRINT(CTABLE => 'hr.employees', CATTRIBUTES => 'border=2',
 CCOLUMNS => 'last_name,first_name', CCLAUSES => 'WHERE employee_id > 100'); %>

The statements can also be the bracketing parts of IF/THEN/ELSE or BEGIN/END blocks. When a code block is split into multiple directives, you can put HTML or other directives in the middle, and the middle pieces are conditionally executed when the stored procedure is run. This code from Example 10-11 provides an illustration of this technique:

 <% FOR ITEM IN (SELECT product_name, list_price, catalog_url
 FROM product_information
 WHERE list_price IS NOT NULL
 ORDER BY list_price DESC) LOOP
 IF item.list_price > p_minprice THEN
 v_color := '#CCCCFF';
 ELSE
 v_color := '#CCCCCC';
 END IF;
 %>
 <TR BGCOLOR="<%= v_color %>">
 <TD><A HREF="<%= item.catalog_url %>"><%= item.product_name %></TD>
 <TD><BIG><%= item.list_price %></BIG></TD>
 </TR>
 <% END LOOP; %>

All the usual PL/SQL syntax is allowed within the block. The delimiters server as shorthand, letting you omit the DECLARE keyword. All the declarations are available to the code later on in the file.

	
Note:

To share procedures, constants, and types across different PL/SQL server pages, compile them into a package in the database by using a plain PL/SQL source file. Although you can reference package procedures, constants, and types from PSP scripts, the PSP scripts can only produce standalone procedures, not packages.

Substituting Expression Values in a PSP Script

An expression directive outputs a single PL/SQL expression, such as a string, arithmetic expression, function call, or combination of these things. The result is substituted as a string at that spot in the HTML page that is produced by the stored procedure. The expression result must be a string value or be able to be cast to a string. For any types that cannot be implicitly cast, such as DATE, pass the value to the PL/SQL TO_CHAR function.

The syntax of an expression directive is as follows, where the expression placeholder is replaced by the desired expression:

<%= expression %>

You need not end the PL/SQL expression with a semicolon.

Example 10-1 includes a directive to print the value of a variable in a row of a cursor:

<%= emp_record.last_name %>

Compare the preceding example to the equivalent htp.print call in this example (note especially the semicolon that ends the statement):

<% HTP.PRN (emp_record.last_name); %>

The content within the <%= ... %> delimiters is processed by the HTP.PRN function, which trims leading or trailing white space and requires that you enclose literal strings in single quotation marks.

You can use concatenation by using the twin pipe symbol (||) as in PL/SQL. This directive shows an example of concatenation:

<%= 'The employee last name is ' || emp_record.last_name %>

Using Quotation Marks and Escaping Strings in a PSP Script

PSP attributes use double quotation marks to delimit data. When values specified in PSP attributes are used for PL/SQL operations, they are passed exactly as you specify them in the PSP file. Thus, if PL/SQL requires a string enclosed in single quotation marks, then you must specify the string enclosed in single quotation marks, and enclose the whole thing in double quotation marks.

For example, your PL/SQL procedure might use the string Babe Ruth as the default value for a variable. For the string to be used in PL/SQL, you must enclose it in single quotation marks as 'Babe Ruth'. If you specify this string in the default attribute of a PSP directive, you must enclose it in double quotation marks, like this:

<%@ plsql parameter="in_players" default="'Babe Ruth'" %>

You can also enclose strings that are enclosed in single quotation marks in another set of single quotation marks. In this case, you must escape the inner single quotation marks by specifying the sequence \'. For example:

<%@ plsql parameter="in_players" default="'Walter \'Big Train\' Johnson'" %>

You can include most characters and character sequences in a PSP file without having them changed by the PSP loader. To include the sequence %>, specify the escape sequence %\>. To include the sequence <%, specify the escape sequence <\%. For example:

<%= 'The %\> sequence is used in scripting language: ' || lang_name %>
<%= 'The <\% sequence is used in scripting language: ' || lang_name %>

Including Comments in a PSP Script

To put a comment in the HTML portion of a PL/SQL server page for the benefit of those reading the PSP source code, use this syntax:

<%-- PSP comment text --%>

Comments in the preceding form do not appear in the HTML output from the PSP and also do not appear when you query the PL/SQL source code in USER_OBJECTS.

To create a comment that is visible in the HTML output and in the USER_OBJECTS source, place the comment in the HTML and use the normal HTML comment syntax:

<!-- HTML comment text -->

To include a comment inside a PL/SQL block within a PSP, and to make the comment invisible in the HTML output but visible in USER_OBJECTS, use the normal PL/SQL comment syntax, as in this example:

-- Comment in PL/SQL code

Example 10-4 shows a fragment of a PSP file with the three types of comments.

Example 10-4 Sample Comments in a PSP File

<p>Today we introduce our new model XP-10.
<%--
 This is the project with code name "Secret Project".
 Users viewing the HTML page do not see this PSP script comment.
 The comment is not visible in the USER_OBJECTS source code.
--%>
<!--
 Some pictures of the XP-10.
 Users viewing the HTML page source see this comment.
 The comment is also visible in the USER_OBJECTS source code.
-->
<%
FOR image_file IN (SELECT pathname, width, height, description
 FROM image_library WHERE model_num = 'XP-10')
-- Comments interspersed with PL/SQL statements.
-- Users viewing the HTML page source do not see these PL/SQL comments.
-- These comments are visible in the USER_OBJECTS source code.
LOOP
%>
<img src="<%= image_file.pathname %>" width=<% image_file.width %>
height=<% image_file.height %> alt="<% image_file.description %>">

<% END LOOP; %>

Loading PL/SQL Server Pages into the Database

Use the loadpsp utility, which is located in $ORACLE_HOME/bin, to load one or more PSP files into the database as stored procedures. Each .psp file corresponds to one stored procedure. The pages are compiled and loaded in one step, to speed up the development cycle. The syntax of the loadpsp utility is:

loadpsp [-replace] [include_file_name...] [error_file_name] psp_file_name...
Enter Password: password

When you load a PSP file, the loader performs these actions:

	
Logs on to the database with the specified user name, password, and net service name

	
Creates the stored procedures in the user schema

-replace creates procedures with CREATE OR REPLACE syntax.

include_file_name is the name of a file that is specified in the PSP include directive.

error_file_name is the name of the file that is specified in the errorPage attribute of the PSP page directive.

psp_file_name is the name of a file that is specified in a PSP page directive.

The filenames on the loadpsp command line must exactly match the names specified in the PSP include and page directives, including any relative path name such as ../include/.

Example 10-5 shows a sample PSP load command.

Example 10-5 Loading PL/SQL Server Pages

loadpsp -replace -user joe/abc123@/db3 banner.inc error.psp display_order.psp

In Example 10-5:

	
The stored procedure is created in the database db3. The database is accessed as user joe with password abc123, both to create the stored procedure and when the stored procedure is executed.

	
banner.inc is a file containing boilerplate text and script code that is included by the .psp file. The inclusion occurs when the PSP is loaded into the database, not when the stored procedure is executed.

	
error.psp is a file containing code, text, or both that is processed when an unhandled exception occurs, to present a friendly page rather than an internal error message.

	
display_order.psp contains the main code and text for the web page. By default, the corresponding stored procedure is named display_order.

Querying PL/SQL Server Page Source Code

The code that loadpsp generates is different from the code in the source file. It has calls to the HTP package, which generates the HTML tags for the web page.

After loading a PSP file, you can see the generated source code by querying the static data dictionary views *_SOURCE. For example, suppose that you load the script in Example 10-1 with this command:

loadpsp -replace -user hr simple.psp
Enter Password: password

If you log on to the database as user hr, you can view the source code of the PSP as shown in Example 10-6.

Example 10-6 Querying PL/SQL Server Page Source Code

Query:

SELECT TEXT
FROM USER_SOURCE
WHERE NAME = 'SHOW_EMPLOYEES'
ORDER BY LINE;

Result:

PROCEDURE show_employees AS

 CURSOR emp_cursor IS
 SELECT last_name, first_name
 FROM hr.employees
 ORDER BY last_name;

 BEGIN NULL;
owa_util.mime_header('text/html'); htp.prn('
');
htp.prn('
');
htp.prn('
');
htp.prn('
');
htp.prn('
');
htp.prn('
<html>
<head>
<meta http-equiv="Content-Type" content="text/html">
<title>List of Employees</title>
</head>
<body TEXT="#000000" BGCOLOR="#FFFFFF">
<h1>List of Employees</h1>
<table width="40%" border="1">
<tr>
<th align="left">Last Name</th>
<th align="left">First Name</th>
</tr>
');
 FOR emp_record IN emp_cursor LOOP
htp.prn('
 <tr>
 <td> ');
htp.prn(emp_record.last_name);
htp.prn(' </td>
 <td> ');
htp.prn(emp_record.first_name);
htp.prn(' </td>
 </tr>
');
 END LOOP;
htp.prn('
</table>
</body>
</html>
');
 END;

Running PL/SQL Server Pages Through URLs

After the PL/SQL server page is turned into a stored procedure, you can run the procedure by retrieving an HTTP URL through a web browser or other Internet-aware client program. The virtual path in the URL depends on the way the PL/SQL gateway is configured.

The parameters to the stored procedure are passed through either the POST method or the GET method of the HTTP protocol. With the POST method, the parameters are passed directly from an HTML form and are not visible in the URL. With the GET method, the parameters are passed as name-value pairs in the query string of the URL, separated by & characters, with most nonalphanumeric characters in encoded format (such as %20 for a space). You can use the GET method to invoke a PSP page from an HTML form, or you can use a hard-coded HTML link to invoke the stored procedure with a given set of parameters.

Using METHOD=GET, the syntax of the URL looks something like this:

http://sitename/schemaname/procname?parmname1=value1&parmname2=value2

For example, this URL includes a p_lname and p_fname parameter:

http://www.example.com/pls/show_employees?p_lname=Ashdown&p_fname=Lance

Using METHOD=POST, the syntax of the URL does not show the parameters:

http://sitename/schemaname/procname

For example, this URL specifies a procedure name but does not pass parameters:

http://www.example.com/pls/show_employees

The METHOD=GET format is more convenient for debugging and allows visitors to pass the same parameters when they return to the page through a bookmark.

The METHOD=POST format allows a larger volume of parameter data, and is suitable for passing sensitive information that must not be displayed in the URL. (URLs linger on in the browser's history list and in the HTTP headers that are passed to the next-visited page.) It is not practical to bookmark pages that are invoked this way.

Examples of PL/SQL Server Pages

This section shows how you might start with a very simple PL/SQL server page, and produce progressively more complicated versions as you gain more confidence.

As you go through each step, you can follow the instructions in "Loading PL/SQL Server Pages into the Database" and "Running PL/SQL Server Pages Through URLs" to test the examples.

Topics:

	
Setup for PL/SQL Server Pages Examples

	
Printing the Sample Table with a Loop

	
Allowing a User Selection

	
Using an HTML Form to Invoke a PL/SQL Server Page

	
Including JavaScript in a PSP File

Setup for PL/SQL Server Pages Examples

These examples use the PRODUCT_INFORMATION table in the OE schema, which is described as follows:

SQL*Plus command:

DESCRIBE PRODUCT_INFORMATION;

Result:

 Name Null? Type
 --- -------- ----------------------------
 PRODUCT_ID NOT NULL NUMBER(6)
 PRODUCT_NAME VARCHAR2(50)
 PRODUCT_DESCRIPTION VARCHAR2(2000)
 CATEGORY_ID NUMBER(2)
 WEIGHT_CLASS NUMBER(1)
 WARRANTY_PERIOD INTERVAL YEAR(2) TO MONTH
 SUPPLIER_ID NUMBER(6)
 PRODUCT_STATUS VARCHAR2(20)
 LIST_PRICE NUMBER(8,2)
 MIN_PRICE NUMBER(8,2)
 CATALOG_URL VARCHAR2(50)

The examples assume:

	
You have set up mod_plsql as described in "Using mod_plsql Gateway to Map Client Requests to a PL/SQL Web Application".

	
You have created a DAD for static authentication of the OE user.

	
You can access PL/SQL stored procedures created in the OE schema through this URL, where proc_name is the name of a stored procedure:http://www.example.com/pls/proc_name

For debugging purposes, you can display the complete contents of a SQL table with a call to OWA_UTIL.TABLEPRINT, as in Example 10-7. Later examples show other techniques that give more control over the presentation.

Example 10-7 show_prod_simple.psp

<%@ plsql procedure="show_prod_simple" %>
<HTML>
<HEAD><TITLE>Show Contents of product_information (Complete Dump)</TITLE></HEAD>
<BODY>
<%
DECLARE
 dummy BOOLEAN;
BEGIN
 dummy := OWA_UTIL.TABLEPRINT('oe.product_information','border');
END;
%>
</BODY>
</HTML>

Load the PSP in Example 10-7 at the command line as follows:

loadpsp -replace -user oe/password show_prod_simple.psp
Enter Password: password

Access the PSP through this URL:

http://www.example.com/pls/show_prod_simple

Printing the Sample Table with a Loop

Example 10-7 loops through the items in the product_information table and adjusts the SELECT statement to retrieve only a subset of the rows or columns. This example uses a very simple presentation, a set of list items, to avoid any problems from mismatched or unclosed table tags.

Example 10-8 show_catalog_raw.psp

<%@ plsql procedure="show_prod_raw" %>
<HTML>
<HEAD><TITLE>Show Products (Raw Form)</TITLE></HEAD>
<BODY>

<% FOR item IN (SELECT product_name, list_price, catalog_url
 FROM product_information
 WHERE list_price IS NOT NULL
 ORDER BY list_price DESC) LOOP %>

Item = <%= item.product_name %>

Price = <%= item.list_price %>

URL = <%= item.catalog_url %>

<% END LOOP; %>

</BODY>
</HTML>

Example 10-9 shows a more sophisticated variation of Example 10-8 in which formatting is added to the HTML to improve the presentation.

Example 10-9 show_catalog_pretty.psp

<%@ plsql procedure="show_prod_pretty" %>
<HTML>
<HEAD><TITLE>Show Products (Better Form)</TITLE></HEAD>
<BODY>

<% FOR item IN (SELECT product_name, list_price, catalog_url
 FROM product_information
 WHERE list_price IS NOT NULL
 ORDER BY list_price DESC) LOOP %>

Item = <A HREF=<%= item.catalog_url %>><%= item.product_name %>

Price = <BIG><%= item.list_price %></BIG>

<% END LOOP; %>

</BODY>
</HTML>

Allowing a User Selection

In Example 10-7, Example 10-8, and Example 10-9, the HTML page remains the same unless the PRODUCT_INFORMATION table is updated. Example 10-10:

	
Makes the HTML page accept a minimum price, and presents only the items that are more expensive. (Your customers' buying criteria might vary.)

	
Sets the default minimum price to 100 units of the appropriate currency.

Example 10-10 show_product_partial.psp

<%@ plsql procedure="show_product_partial" %>
<%@ plsql parameter="p_minprice" default="100" %>
<HTML>
<HEAD><TITLE>Show Items Greater Than Specified Price</TITLE></HEAD>
<BODY>
<P>This report shows the items whose price is greater than <%= p_minprice %>.

<% FOR ITEM IN (SELECT product_name, list_price, catalog_url
 FROM product_information
 WHERE list_price > p_minprice
 ORDER BY list_price DESC)
 LOOP %>

Item = <A HREF="<%= item.catalog_url %>"><%= item.product_name %>

Price = <BIG><%= item.list_price %></BIG>

<% END LOOP; %>

</BODY>
</HTML>

After loading Example 10-10 into the database, you can pass a parameter to the show_product_partial procedure through a URL. This example specifies a minimum price of 250:

http://www.example.com/pls/show_product_partial?p_minprice=250

Filtering results is appropriate for applications such as search results, where users might be overwhelmed by choices. But in a retail situation, you might want to use the alternative technique illustrated in Example 10-11, so that customers can still choose to purchase other items:

	
Instead of filtering the results through a WHERE clause, retrieve the entire result set and then take different actions for different returned rows.

	
Change the HTML to highlight the output that meets their criteria. Example 10-11 uses the background color for an HTML table row. You can also insert a special icon, increase the font size, or use another technique to call attention to the most important rows.

	
Present the results in an HTML table.

Example 10-11 show_product_highlighed.psp

<%@ plsql procedure="show_product_highlighted" %>
<%@ plsql parameter="p_minprice" default="100" %>
<%! v_color VARCHAR2(7); %>

<HTML>
<HEAD><TITLE>Show Items Greater Than Specified Price</TITLE></HEAD>
<BODY>
<P>This report shows all items, highlighting those whose price is
 greater than <%= p_minprice %>.
<P>
<TABLE BORDER>
 <TR>
 <TH>Product</TH>
 <TH>Price</TH>
 </TR>
 <% FOR ITEM IN (SELECT product_name, list_price, catalog_url
 FROM product_information
 WHERE list_price IS NOT NULL
 ORDER BY list_price DESC) LOOP
 IF item.list_price > p_minprice THEN
 v_color := '#CCCCFF';
 ELSE
 v_color := '#CCCCCC';
 END IF;
 %>
 <TR BGCOLOR="<%= v_color %>">
 <TD><A HREF="<%= item.catalog_url %>"><%= item.product_name %></TD>
 <TD><BIG><%= item.list_price %></BIG></TD>
 </TR>
 <% END LOOP; %>
</TABLE>
</BODY>
</HTML>

Using an HTML Form to Invoke a PL/SQL Server Page

Example 10-12 shows a bare-bones HTML form that allows the user to enter a price. The form invokes the show_product_partial stored procedure illustrated in Example 10-10 and passes it the entered value as the p_minprice parameter.

To avoid coding the entire URL of the stored procedure in the ACTION= attribute of the form, you can make the form a PSP file so that it resides in the same directory as the PSP file that it invokes. Even though this HTML file contains no PL/SQL code, you can give it a .psp extension and load it as a stored procedure into the database. When the product_form stored procedure is executed through a URL, it displays the HTML exactly as it appears in the file.

Example 10-12 product_form.psp

<HTML>
<BODY>
<FORM method="POST" action="show_product_partial">
 <P>Enter the minimum price you want to pay:
 <INPUT type="text" name="p_minprice">
 <INPUT type="submit" value="Submit">
</FORM>
</BODY>
</HTML>

Including JavaScript in a PSP File

To produce an elaborate HTML file, perhaps including dynamic content such as JavaScript, you can simplify the source code by implementing it as a PSP. This technique avoids having to deal with nested quotation marks, escape characters, concatenated literals and variables, and indentation of the embedded content.

Example 10-13 shows a version of Example 10-10 that uses JavaScript to display the order status in the browser status bar when the user moves his or her mouse over the product URL.

Example 10-13 show_product_javascript.psp

<%@ plsql procedure="show_product_javascript" %>
<%@ plsql parameter="p_minprice" default="100" %>
<HTML>
<HEAD>
 <TITLE>Show Items Greater Than Specified Price</TITLE>

<SCRIPT language="JavaScript">
<!--hide

var text=" ";

function overlink (text)
{
 window.status=text;
}
function offlink (text)
{
 window.status=text;
}

//-->
</SCRIPT>

</HEAD>
<BODY>
<P>This report shows the items whose price is greater than <%= p_minprice %>.
<P>

<% FOR ITEM IN (SELECT product_name, list_price, catalog_url, product_status
 FROM product_information
 WHERE list_price > p_minprice
 ORDER BY list_price DESC)
 LOOP %>

Item =
 <A HREF="<%= item.catalog_url %>"
 onMouseover="overlink('PRODUCT STATUS: <%= item.product_status %>');return true"
 onMouseout="offlink(' ');return true">
 <%= item.product_name %>

Price = <BIG><%= item.list_price %></BIG>

<% END LOOP; %>

</BODY>
</HTML>

Debugging PL/SQL Server Pages

As you begin experimenting with PL/SQL Server Pages, and as you adapt your first simple pages into more elaborate ones, keep these guidelines in mind when you encounter problems:

	
The first step is to get all the PL/SQL syntax and PSP directive syntax right. If you make a mistake here, the file does not compile.

	
Use semicolons to terminate lines where required.

	
If a value must be quoted, quote it. You might need to enclose a value in single quotation marks (which PL/SQL needs) inside double quotation marks (which PSP needs).

	
Mistakes in the PSP directives are usually reported through PL/SQL syntax messages. Check that your directives use the right syntax, that directives are closed properly, and that you are using the right element (declaration, expression, or code block) depending on what goes inside it.

	
PSP attribute names are case-sensitive. Most are specified in all lowercase; contentType and errorPage must be specified as mixed-case.

	
When using a URL to request a PSP, you might get an error that the file is not found. In this case:

	
Be sure you are requesting the right virtual path, depending on the way the web gateway is configured. Typically, the path includes the host name, optionally a port number, the schema name, and the name of the stored procedure (with no .psp extension).

	
If you use the -replace option when compiling the file, the old version of the stored procedure is erased. So, after a failed compilation, you must fix the error or the page is not available. You might want to test scripts in a separate schema, then load them into the production schema.

	
If you copied the file from another file, remember to change any procedure name directives in the source to match the correct file name.

	
When you get one file-not-found error, request the latest version of the page the next time. The error page might be cached by the browser. You might need to force a page reload in the browser to bypass the cache.

	
When the PSP script is run, and the results come back to the browser, use standard debugging techniques to check for and correct wrong output. The difficult part is to configure the interface between different HTML forms, scripts, and CGI programs so that the right values are passed into your page. The page might return an error because of a parameter mismatch.

Guidelines:

	
To determine exactly what is being passed to your page, use METHOD=GET in the invoking form so that the parameters are visible in the URL.

	
Ensure that the form or CGI program that invokes your page passes the correct number of parameters, and that the names specified by the NAME= attributes on the form match the parameter names in the PSP file. If the form includes any hidden input fields, or uses the NAME= attribute on the Submit or Reset buttons, then the PSP file must declare equivalent parameters.

	
Ensure that the parameters can be cast from string into the correct PL/SQL types. For example, do not include alphabetic characters if the parameter in the PSP file is declared as a NUMBER.

	
Ensure that the query string of the URL consists of name-value pairs, separated by equals signs, especially if you are passing parameters by constructing a hard-coded link to the page.

	
If you are passing a lot of parameter data, such as large strings, you might exceed the volume that can be passed with METHOD=GET. You can switch to METHOD=POST in the invoking form without changing your PSP file.

	
Although the loadpsp command reports line numbers correctly when there is a syntax error in your source file, line numbers reported for runtime errors refer to a transformed version of the source and do not match the line numbers in the original source. When you encounter errors that produce an error trace instead of the expected web page, you must locate the error through exception handlers and by printing debug output.

Putting PL/SQL Server Pages into Production

Before putting your PSP application into production, consider issues such as usability and download speed:

	
Pages can be rendered faster in the browser if the HEIGHT= and WIDTH= attributes are specified for all images. You might standardize on picture sizes, or store the height and width of images in the database along with the data or URL.

	
For viewers who turn off graphics, or who use alternative browsers that read the text out loud, include a description of significant images using the ALT= attribute. You might store the description in the database along with the image.

	
Although an HTML table provides a good way to display data, a large table can make your application seem slow. Often, the reader sees a blank page until the entire table is downloaded. If the amount of data in an HTML table is large, consider splitting the output into multiple tables.

	
If you set text, font, or background colors, test your application with different combinations of browser color settings:

	
Test what happens if you override just the foreground color in the browser, or just the background color, or both.

	
If you set one color (such as the foreground text color), set all the colors through the <BODY> tag, to avoid hard-to-read combinations like white text on a white background.

	
If you use a background image, specify a similar background color to provide proper contrast for viewers who do not load graphics.

	
If the information conveyed by different colors is crucial, consider using an alternative technique. For example, you might put an icon next to special items in a table. Some users might see your page on a monochrome screen or on browsers that cannot represent different colors.

	
Providing context information prevents users from getting lost. Include a descriptive <TITLE> tag for your page. If the user is partway through a procedure, indicate which step is represented by your page. Provide links to logical points to continue with the procedure, return to a previous step, or cancel the procedure completely. Many pages might use a standard set of links that you embed using the include directive.

	
In any entry fields, users might enter incorrect values. Where possible, use SELECT lists to present a set of choices. Validate any text entered in a field before passing it to SQL. The earlier you can validate, the better; a JavaScript function can detect incorrect data and prompt the user to correct it before they press the Submit button and call the database.

	
Browsers tend to be lenient when displaying incorrect HTML. What looks OK in one browser might look bad or might not display at all in another browser.

Guidelines:

	
Pay attention to HTML rules for quotation marks, closing tags, and especially for anything to do with tables.

	
Minimize the dependence on tags that are only supported by a single browser. Sometimes you can provide an extra bonus using such tags, but your application must still be usable with other browsers.

	
You can check the validity, and even in some cases the usability, of your HTML for free at many sites on the World Wide Web.

11 Using Continuous Query Notification (CQN)

Continuous Query Notification (CQN) allows an application to register queries with the database for either object change notification (the default) or query result change notification. An object referenced by a registered query is a registered object.

If a query is registered for object change notification (OCN), the database notifies the application whenever a transaction changes an object that the query references and commits, regardless of whether the query result changed.

If a query is registered for query result change notification (QRCN), the database notifies the application whenever a transaction changes the result of the query and commits.

A CQN registration associates a list of one or more queries with a notification type (OCN or QRCN) and a notification handler. To create a CQN registration, you can use either the PL/SQL interface or Oracle Call Interface (OCI). If you use the PL/SQL interface, the notification handler is a server-side PL/SQL stored procedure; if you use OCI, the notification handler is a client-side C callback procedure.

This chapter explains general CQN concepts and explains how to use the PL/SQL CQN interface. For information about using OCI for CQN, see Oracle Call Interface Programmer's Guide.

Topics:

	
Object Change Notification (OCN)

	
Query Result Change Notification (QRCN)

	
Events that Generate Notifications

	
Notification Contents

	
Good Candidates for CQN

	
Creating CQN Registrations

	
Querying CQN Registrations

	
Interpreting Notifications

	
Deleting Registrations

	
Configuring CQN: Scenario

	
Note:

The terms OCN and QRCN refer to both the notification type and the notification itself: An application registers a query for OCN, and the database sends the application an OCN; an application registers a query for QRCN, and the database sends the application a QRCN.

Object Change Notification (OCN)

If an application registers a query for object change notification (OCN), the database sends the application an OCN whenever a transaction changes an object associated with the query and commits, regardless of whether the result of the query changed.

For example, if an application registers the query in Example 11-1 for OCN, and a user commits a transaction that changes the EMPLOYEES table, the database sends the application an OCN, even if the changed row or rows did not satisfy the query predicate (for example, if DEPARTMENT_ID = 5).

Example 11-1 Query to be Registered for Change Notification

SELECT EMPLOYEE_ID, SALARY
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 10;

Query Result Change Notification (QRCN)

	
Note:

For QRCN support, the COMPATIBLE initialization parameter of the database must be at least 11.0.0, and Automatic Undo Management (AUM) must be enabled (as it is by default).
For information about the COMPATIBLE initialization parameter, see Oracle Database Administrator's Guide.

For information about AUM, see Oracle Database Administrator's Guide.

If an application registers a query for query result change notification (QRCN), the database sends the application a QRCN whenever a transaction changes the result of the query and commits.

For example, if an application registers the query in Example 11-1 for QRCN, the database sends the application a QRCN only if the query result set changes; that is, if one of these data manipulation language (DML) statements commits:

	
An INSERT or DELETE of a row that satisfies the query predicate (DEPARTMENT_ID = 10).

	
An UPDATE to the EMPLOYEE_ID or SALARY column of a row that satisfied the query predicate (DEPARTMENT_ID = 10).

	
An UPDATE to the DEPARTMENT_ID column of a row that changed its value from 10 to a value other than 10, causing the row to be deleted from the result set.

	
An UPDATE to the DEPARTMENT_ID column of a row that changed its value to 10 from a value other than 10, causing the row to be added to the result set.

The default notification type is OCN. For QRCN, specify QOS_QUERY in the QOSFLAGS attribute of the CQ_NOTIFICATION$_REG_INFO object.

With QRCN, you have a choice of guaranteed mode (the default) or best-effort mode.

Topics:

	
Guaranteed Mode

	
Best-Effort Mode

Guaranteed Mode

In guaranteed mode, there are no false positives: the database sends the application a QRCN only when the query result set is guaranteed to have changed.

For example, suppose that an application registered the query in Example 11-1 for QRCN, that employee 201 is in department 10, and that these statements are executed:

UPDATE EMPLOYEES
SET SALARY = SALARY + 10
WHERE EMPLOYEE_ID = 201;

UPDATE EMPLOYEES
SET SALARY = SALARY - 10
WHERE EMPLOYEE_ID = 201;

COMMIT;

Each UPDATE statement in the preceding transaction changes the query result set, but together they have no effect on the query result set; therefore, the database does not send the application a QRCN for the transaction.

For guaranteed mode, specify QOS_QUERY, but not QOS_BEST_EFFORT, in the QOSFLAGS attribute of the CQ_NOTIFICATION$_REG_INFO object.

Some queries are too complex for QRCN in guaranteed mode. For the characteristics of queries that can be registered in guaranteed mode, see "Queries that Can Be Registered for QRCN in Guaranteed Mode".

Best-Effort Mode

Some queries that are too complex for guaranteed mode can be registered for QRCN in best-effort mode, in which CQN creates and registers simpler versions of them.

For example, the query in Example 11-2 is too complex for QRCN in guaranteed mode because it contains the aggregate function SUM.

Example 11-2 Query Too Complex for QRCN in Guaranteed Mode

SELECT SUM(SALARY)
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 20;

In best-effort mode, CQN registers this simpler version of the query in Example 11-2:

SELECT SALARY
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 20;

Whenever the result of the original query changes, the result of its simpler version also changes; therefore, no notifications are lost from the simplification. However, the simplification might cause false positives, because the result of the simpler version can change when the result of the original query does not.

In best-effort mode, the database:

	
Minimizes the OLTP response overhead that is from notification-related processing, as follows:

	
For a single-table query, the database determines whether the query result has changed by which columns changed and which predicates the changed rows satisfied.

	
For a multiple-table query (a join), the database uses the primary-key/foreign-key constraint relationships between the tables to determine whether the query result has changed.

	
Sends the application a QRCN whenever a DML statement changes the query result set, even if a subsequent DML statement nullifies the change made by the first DML statement.

The overhead minimization of best-effort mode infrequently causes false positives, even for queries that CQN does not simplify. For example, consider the query in Example 11-1 and the transaction in "Guaranteed Mode". In best-effort mode, CQN does not simplify the query, but the transaction generates a false positive.

Some types of queries are so simplified that invalidations are generated at object level; that is, whenever any object referenced in those queries changes. Examples of such queries are those that use unsupported column types or include subqueries. The solution to this problem is to rewrite the original queries.

For example, the query in Example 11-3 is too complex for QRCN in guaranteed mode because it includes a subquery.

Example 11-3 Query Whose Simplified Version Invalidates Objects

SELECT SALARY
FROM EMPLOYEES
WHERE DEPARTMENT_ID IN (
 SELECT DEPARTMENT_ID
 FROM DEPARTMENTS
 WHERE LOCATION_ID = 1700
);

In best-effort mode, CQN simplifies the query in Example 11-3 to this:

SELECT * FROM EMPLOYEES, DEPARTMENTS;

The simplified query can cause objects to be invalidated. However, if you rewrite the original query as follows, you can register it in either guaranteed mode or best-effort mode:

SELECT SALARY
FROM EMPLOYEES, DEPARTMENTS
WHERE EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID
 AND DEPARTMENTS.LOCATION_ID = 1700;

Queries that can be registered only in best-effort mode are described in "Queries that Can Be Registered for QRCN Only in Best-Effort Mode".

The default for QRCN mode is guaranteed mode. For best-effort mode, specify QOS_BEST_EFFORT in the QOSFLAGS attribute of the CQ_NOTIFICATION$_REG_INFO object.

Events that Generate Notifications

These events generate notifications:

	
Committed DML Transactions

	
Committed DDL Statements

	
Deregistration

	
Global Events

Committed DML Transactions

When the notification type is OCN, any DML transaction that changes one or more registered objects generates one notification for each object when it commits.

When the notification type is QRCN, any DML transaction that changes the result of one or more registered queries generates a notification when it commits. The notification includes the query IDs of the queries whose results changed.

For either notification type, the notification includes:

	
Name of each changed table

	
Operation type (INSERT, UPDATE, or DELETE)

	
ROWID of each changed row, if the registration was created with the ROWID option and the number of modified rows was not too large. For more information, see "ROWID Option".

Committed DDL Statements

For both OCN and QRCN, these data definition language (DDL) statements, when committed, generate notifications:

	
ALTER TABLE

	
TRUNCATE TABLE

	
FLASHBACK TABLE

	
DROP TABLE

	
Note:

When the notification type is OCN, a committed DROP TABLE statement generates a DROP NOTIFICATION.
Any OCN registrations of queries on the dropped table become disassociated from that table (which no longer exists), but the registrations themselves continue to exist. If any of these registrations are associated with objects other than the dropped table, committed changes to those other objects continue to generate notifications. Registrations associated only with the dropped table also continue to exist, and their creator can add queries (and their referenced objects) to them.

An OCN registration is based on the version and definition of an object at the time the query was registered. If an object is dropped, registrations on that object are disassociated from it forever. If an object is created with the same name, and in the same schema, as the dropped object, the created object is not associated with OCN registrations that were associated with the dropped object.

When the notification type is QRCN:

	
The notification includes:

	
Query IDs of the queries whose results have changed

	
Name of the modified table

	
Type of DDL operation

	
Some DDL operations that invalidate registered queries can cause those queries to be deregistered.

For example, suppose that this query is registered for QRCN:

SELECT COL1 FROM TEST_TABLE
 WHERE COL2 = 1;

Suppose that TEST_TABLE has this schema:

(COL1 NUMBER, COL2 NUMBER, COL3 NUMBER)

This DDL statement, when committed, invalidates the query and causes it to be removed from the registration:

ALTER TABLE DROP COLUMN COL2;

Deregistration

For both OCN and QRCN, deregistration—removal of a registration from the database—generates a notification. The reasons that the database removes a registration are:

	
Timeout

If TIMEOUT is specified with a nonzero value when the queries are registered, the database purges the registration after the specified time interval.

If QOS_DEREG_NFY is specified when the queries are registered, the database purges the registration after it generates its first notification.

	
Loss of privileges

If privileges are lost on an object associated with a registered query, and the notification type is OCN, the database purges the registration. (When the notification type is QRCN, the database removes that query from the registration, but does not purge the registration.)

For privileges needed to register queries, see "Prerequisites for Creating CQN Registrations".

A notification is not generated when a client application performs an explicit deregistration.

Global Events

The global events EVENT_STARTUP and EVENT_SHUTDOWN generate notifications.

In an Oracle RAC environment, these events generate notifications:

	
EVENT_STARTUP when the first instance of the database starts

	
EVENT_SHUTDOWN when the last instance of the database shuts down

	
EVENT_SHUTDOWN_ANY when any instance of the database shuts down

The preceding global events are constants defined in the DBMS_CQ_NOTIFICATION package.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_CQ_NOTIFICATION package

Notification Contents

A notification contains some or all of this information:

	
Type of event, which is one of:

	
Startup

	
Object change

	
Query result change

	
Deregistration

	
Shutdown

	
Registration ID of affected registration

	
Names of changed objects

	
If ROWID option was specified, ROWIDs of changed rows

	
If the notification type is QRCN: Query IDs of queries whose results changed

	
If notification resulted from a DML or DDL statement:

	
Array of names of modified tables

	
Operation type (for example, INSERT or UPDATE)

A notification does not contain the changed data itself. For example, the notification does not say that a monthly salary increased from 5000 to 6000. To obtain more recent values for the changed objects or rows or query results, the application must query the database.

Good Candidates for CQN

Good candidates for CQN are applications that cache the result sets of queries on infrequently changed objects in the middle tier, to avoid network round trips to the database. These applications can use CQN to register the queries to be cached. When such an application receives a notification, it can refresh its cache by rerunning the registered queries.

An example of such an application is a web forum. Because its users need not view content as soon as it is inserted into the database, this application can cache information in the middle tier and have CQN tell it when it when to refresh the cache.

Figure 11-1 illustrates a typical scenario in which the database serves data that is cached in the middle tier and then accessed over the Internet.

Figure 11-1 Middle-Tier Caching

[image: Description of Figure 11-1 follows]

Applications in the middle tier require rapid access to cached copies of database objects while keeping the cache as current as possible in relation to the database. Cached data becomes obsolete when a transaction modifies the data and commits, thereby putting the application at risk of accessing incorrect results. If the application uses CQN, the database can publish a notification when a change occurs to registered objects with details on what changed. In response to the notification, the application can refresh cached data by fetching it from the back-end database.

Figure 11-2 illustrates the process by which middle-tier Web clients receive and process notifications.

Figure 11-2 Basic Process of Continuous Query Notification (CQN)

[image: Description of Figure 11-2 follows]

Explanation of steps in Figure 11-2 (if registrations are created using PL/SQL and that the application has cached the result set of a query on HR.EMPLOYEES):

	
The developer uses PL/SQL to create a CQN registration for the query, which consists of creating a stored PL/SQL procedure to process notifications and then using the PL/SQL CQN interface to create a registration for the query, specifying the PL/SQL procedure as the notification handler.

	
The database populates the registration information in the data dictionary.

	
A user updates a row in the HR.EMPLOYEES table in the back-end database and commits the update, causing the query result to change. The data for HR.EMPLOYEES cached in the middle tier is now outdated.

	
The database adds a message that describes the change to an internal queue.

	
The database notifies a JOBQ background process of a notification message.

	
The JOBQ process runs the stored procedure specified by the client application. In this example, JOBQ passes the data to a server-side PL/SQL procedure. The implementation of the PL/SQL notification handler determines how the notification is handled.

	
Inside the server-side PL/SQL procedure, the developer can implement logic to notify the middle-tier client application of the changes to the registered objects. For example, it notifies the application of the ROWID of the changed row in HR.EMPLOYEES.

	
The client application in the middle tier queries the back-end database to retrieve the data in the changed row.

	
The client application updates the cache with the data.

Creating CQN Registrations

A CQN registration associates a list of one or more queries with a notification type and a notification handler.

The notification type is either OCN or QRCN. For information about these types, see "Object Change Notification (OCN)" and "Query Result Change Notification (QRCN)".

To create a CQN registration, you can use either the PL/SQL interface or OCI. If you use the PL/SQL interface, the notification handler is a server-side PL/SQL stored procedure; if you use OCI, the notification handler is a client-side C callback procedure. (This topic explains only the PL/SQL interface. For information about OCI, see Oracle Call Interface Programmer's Guide.)

Once created, a registration is stored in the database. In an Oracle RAC environment, it is visible to all database instances. Transactions that change the query results in any database instance generate notifications.

By default, a registration survives until the application that created it explicitly deregisters it or until the database implicitly purges it (from loss of privileges, for example).

Topics:

	
PL/SQL CQN Registration Interface

	
CQN Registration Options

	
Prerequisites for Creating CQN Registrations

	
Queries that Can Be Registered for Object Change Notification (OCN)

	
Queries that Can Be Registered for Query Result Change Notification (QRCN)

	
Using PL/SQL to Register Queries for CQN

	
Best Practices for CQN Registrations

	
Troubleshooting CQN Registrations

PL/SQL CQN Registration Interface

The PL/SQL CQN registration interface is implemented with the DBMS_CQ_NOTIFICATION package. You use the DBMS_CQ_NOTIFICATION.NEW_REG_START function to open a registration block. You specify the registration details, including the notification type and notification handler, as part of the CQ_NOTIFICATION$_REG_INFO object, which is passed as an argument to the NEW_REG_START procedure. Every query that you run while the registration block is open is registered with CQN. If you specified notification type QRCN, the database assigns a query ID to each query. You can retrieve these query IDs with the DBMS_CQ_NOTIFICATION.CQ_NOTIFICATION_QUERYID function. To close the registration block, you use the DBMS_CQ_NOTIFICATION.REG_END function.

For step-by-step instructions, see "Using PL/SQL to Register Queries for CQN".

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_CQ_NOTIFICATION package

CQN Registration Options

You can change the CQN registration defaults with the options summarized in Table 11-1.

Table 11-1 Continuous Query Notification Registration Options

	Option	Description
	
Notification Type

	
Specifies QRCN (the default is OCN).

	
QRCN ModeFoot 1

	
Specifies best-effort mode (the default is guaranteed mode).

	
ROWID

	
Includes the value of the ROWID pseudocolumn for each changed row in the notification.

	
Operations FilterFoot 2

	
Publishes the notification only if the operation type matches the specified filter condition.

	
Transaction LagFootref 2

	
Deprecated. Use Notification Grouping instead.

	
Notification Grouping

	
Specifies how notifications are grouped.

	
Reliable

	
Stores notifications in a persistent database queue (instead of in shared memory, the default).

	
Purge on Notify

	
Purges the registration after the first notification.

	
Timeout

	
Purges the registration after a specified time interval.

Footnote 1 Applies only when notification type is QRCN.

Footnote 2 Applies only when notification type is OCN.

Topics:

	
Notification Type Option

	
QRCN Mode (QRCN Notification Type Only)

	
ROWID Option

	
Operations Filter Option (OCN Notification Type Only)

	
Transaction Lag Option (OCN Notification Type Only)

	
Notification Grouping Options

	
Reliable Option

	
Purge-on-Notify and Timeout Options

Notification Type Option

The notification types are OCN (described in "Object Change Notification (OCN)") and QRCN (described in "Query Result Change Notification (QRCN)").

QRCN Mode (QRCN Notification Type Only)

The QRCN mode option applies only when the notification type is QRCN. Instructions for setting the notification type to QRCN are in "Notification Type Option".

The QRCN modes are guaranteed (described in "Guaranteed Mode") and best-effort (described in "Best-Effort Mode").

The default is guaranteed mode. For best-effort mode, specify QOS_BEST_EFFORT in the QOSFLAGS attribute of the CQ_NOTIFICATION$_REG_INFO object.

ROWID Option

The ROWID option includes the value of the ROWID pseudocolumn (the rowid of the row) for each changed row in the notification. To include the ROWID option of each changed row in the notification, specify QOS_ROWIDS in the QOSFLAGS attribute of the CQ_NOTIFICATION$_REG_INFO object.

	
Note:

When you update a row in a table compressed with Hybrid Columnar Compression (HCC), the ROWID of the row changes. HCC, a feature of certain Oracle storage systems, is described in Oracle Database Concepts.

From the ROWID information in the notification, the application can retrieve the contents of the changed rows by performing queries of this form:

SELECT * FROM table_name_from_notification
WHERE ROWID = rowid_from_notification;

ROWIDs are published in the external string format. For a regular heap table, the length of a ROWID is 18 character bytes. For an Index Organized Table (IOT), the length of the ROWID depends on the size of the primary key, and might exceed 18 bytes.

If the server does not have enough memory for the ROWIDs, the notification might be "rolled up" into a FULL-TABLE-NOTIFICATION, indicated by a special flag in the notification descriptor. Possible reasons for a FULL-TABLE-NOTIFICATION are:

	
Total shared memory consumption from ROWIDs exceeds 1% of the dynamic shared pool size.

	
Too many rows were changed in a single registered object within a transaction (the upper limit is approximately 80).

	
Total length of the logical ROWIDs of modified rows for an IOT is too large (the upper limit is approximately 1800 bytes).

	
You specified the Notification Grouping option NTFN_GROUPING_TYPE with the value DBMS_CQ_NOTIFICATION.NTFN_GROUPING_TYPE_SUMMARY, described in "Notification Grouping Options".

Because a FULL-TABLE-NOTIFICATION does not include ROWIDs, the application that receives it must assume that the entire table (that is, all rows) might have changed.

Operations Filter Option (OCN Notification Type Only)

The Operations Filter option applies only when the notification type is OCN.

The Operations Filter option enables you to specify the types of operations that generate notifications.

The default is all operations. To specify that only some operations generate notifications, use the OPERATIONS_FILTER attribute of the CQ_NOTIFICATION$_REG_INFO object. With the OPERATIONS_FILTER attribute, specify the type of operation with the constant that represents it, which is defined in the DBMS_CQ_NOTIFICATION package, as follows:

	Operation	Constant
	INSERT	DBMS_CQ_NOTIFICATION.INSERTOP
	UPDATE	DBMS_CQ_NOTIFICATION.UPDATEOP
	DELETE	DBMS_CQ_NOTIFICATION.DELETEOP
	ALTEROP	DBMS_CQ_NOTIFICATION.ALTEROP
	DROPOP	DBMS_CQ_NOTIFICATION.DROPOP
	UNKNOWNOP	DBMS_CQ_NOTIFICATION.UNKNOWNOP
	All (default)	DBMS_CQ_NOTIFICATION.ALL_OPERATIONS

To specify multiple operations, use bitwise OR. For example:

DBMS_CQ_NOTIFICATION.INSERTOP + DBMS_CQ_NOTIFICATION.DELETEOP

OPERATIONS_FILTER has no effect if you also specify QOS_QUERY in the QOSFLAGS attribute, because QOS_QUERY specifies notification type QRCN.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_CQ_NOTIFICATION package

Transaction Lag Option (OCN Notification Type Only)

The Transaction Lag option applies only when the notification type is OCN.

	
Note:

This option is deprecated. To implement flow-of-control notifications, use "Notification Grouping Options".

The Transaction Lag option specifies the number of transactions by which the client application can lag behind the database. If the number is 0, every transaction that changes a registered object results in a notification. If the number is 5, every fifth transaction that changes a registered object results in a notification. The database tracks intervening changes at object granularity and includes them in the notification, so that the client does not lose them.

A transaction lag greater than 0 is useful only if an application implements flow-of-control notifications. Ensure that the application generates notifications frequently enough to satisfy the lag, so that they are not deferred indefinitely.

If you specify TRANSACTION_LAG, then notifications do not include ROWIDs, even if you also specified QOS_ROWIDS.

Notification Grouping Options

By default, notifications are generated immediately after the event that causes them.

Notification Grouping options, which are attributes of the CQ_NOTIFICATION$_REG_INFO object, are:

	Attribute	Description
	NTFN_GROUPING_CLASS	Specifies the class by which to group notifications. The only allowed values are DBMS_CQ_NOTIFICATION.NTFN_GROUPING_CLASS_TIME, which groups notifications by time, and zero, which is the default (notifications are generated immediately after the event that causes them).
	NTFN_GROUPING_VALUE	Specifies the time interval that defines the group, in seconds. For example, if this value is 900, notifications generated in the same 15-minute interval are grouped.
	NTFN_GROUPING_TYPE	Specifies the type of grouping, which is either of:
	
DBMS_CQ_NOTIFICATION.NTFN_GROUPING_TYPE_SUMMARY: All notifications in the group are summarized into a single notification.

Note: The single notification does not include ROWIDs, even if you specified the ROWID option.

	
DBMS_CQ_NOTIFICATION.NTFN_GROUPING_TYPE_LAST: Only the last notification in the group is published and the earlier ones discarded.

	NTFN_GROUPING_START_TIME	Specifies when to start generating notifications. If specified as NULL, it defaults to the current system-generated time.
	NTFN_GROUPING_REPEAT_COUNT	Specifies how many times to repeat the notification. Set to DBMS_CQ_NOTIFICATION.NTFN_GROUPING_FOREVER to receive notifications for the life of the registration. To receive at most n notifications during the life of the registration, set to n.

	
Note:

Notifications generated by timeouts, loss of privileges, and global events might be published before the specified grouping interval expires. If they are, any pending grouped notifications are also published before the interval expires.

Reliable Option

By default, a CQN registration is stored in shared memory. To store it in a persistent database queue instead—that is, to generate reliable notifications—specify QOS_RELIABLE in the QOSFLAGS attribute of the CQ_NOTIFICATION$_REG_INFO object.

The advantage of reliable notifications is that if the database fails after generating them, it can still deliver them after it restarts. In an Oracle RAC environment, a surviving database instance can deliver them.

The disadvantage of reliable notifications is that they have higher CPU and I/O costs than default notifications do.

Purge-on-Notify and Timeout Options

By default, a CQN registration survives until the application that created it explicitly deregisters it or until the database implicitly purges it (from loss of privileges, for example).

To purge the registration after it generates its first notification, specify QOS_DEREG_NFY in the QOSFLAGS attribute of the CQ_NOTIFICATION$_REG_INFO object.

To purge the registration after n seconds, specify n in the TIMEOUT attribute of the CQ_NOTIFICATION$_REG_INFO object.

You can use the Purge-on-Notify and Timeout options together.

Prerequisites for Creating CQN Registrations

These are prerequisites for creating CQN registrations:

	
You must have these privileges:

	
EXECUTE privilege on the DBMS_CQ_NOTIFICATION package, whose subprograms you use to create a registration

	
CHANGE NOTIFICATION system privilege

	
SELECT privileges on all objects to be registered

Loss of privileges on an object associated with a registered query generates a notification—see "Deregistration".

	
You must be connected as a non-SYS user.

	
You must not be in the middle of an uncommitted transaction.

	
The dml_locks init.ora parameter must have a nonzero value (as its default value does).

(This is also a prerequisite for receiving notifications.)

	
Note:

For QRCN support, the COMPATIBLE setting of the database must be at least 11.0.0.

Queries that Can Be Registered for Object Change Notification (OCN)

Most queries can be registered for OCN, including those executed as part of stored procedures and REF cursors.

Queries that cannot be registered for OCN are:

	
Queries on fixed tables or fixed views

	
Queries on user views

	
Queries that contain database links (dblinks)

	
Queries over materialized views

	
Note:

You can use synonyms in OCN registrations, but not in QRCN registrations.

Queries that Can Be Registered for Query Result Change Notification (QRCN)

Some queries can be registered for QRCN in guaranteed mode, some can be registered for QRCN only in best-effort mode, and some cannot be registered for QRCN in either mode. (For information about modes, see "Guaranteed Mode" and "Best-Effort Mode".)

Topics:

	
Queries that Can Be Registered for QRCN in Guaranteed Mode

	
Queries that Can Be Registered for QRCN Only in Best-Effort Mode

	
Queries that Cannot Be Registered for QRCN in Either Mode

Queries that Can Be Registered for QRCN in Guaranteed Mode

To be registered for QRCN in guaranteed mode, a query must conform to these rules:

	
Every column that it references is either a NUMBER data type or a VARCHAR2 data type.

	
Arithmetic operators in column expressions are limited to these binary operators, and their operands are columns with numeric data types:

	
+ (addition)

	
- (subtraction, not unary minus)

	
* (multiplication)

	
/ (division)

	
Comparison operators in the predicate are limited to:

	
< (less than)

	
<= (less than or equal to)

	
= (equal to)

	
>= (greater than or equal to)

	
> (greater than)

	
<> or != (not equal to)

	
IS NULL

	
IS NOT NULL

	
Boolean operators in the predicate are limited to AND, OR, and NOT.

	
The query contains no aggregate functions (such as SUM, COUNT, AVERAGE, MIN, and MAX).

For a list of SQL aggregate functions, see Oracle Database SQL Language Reference.

Guaranteed mode supports most queries on single tables and some inner equijoins, such as:

SELECT SALARY FROM EMPLOYEES, DEPARTMENTS
 WHERE EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID
 AND DEPARTMENTS.LOCATION_ID = 1700;

	
Notes:

	
Sometimes the query optimizer uses an execution plan that makes a query incompatible for guaranteed mode (for example, OR-expansion). For information about the query optimizer, see Oracle Database Performance Tuning Guide.

	
Queries that can be registered in guaranteed mode can also be registered in best-effort mode, but results might differ, because best-effort mode can cause false positives even for queries that CQN does not simplify. For details, see "Best-Effort Mode".

Queries that Can Be Registered for QRCN Only in Best-Effort Mode

A query that does any of the following can be registered for QRCN only in best-effort mode, and its simplified version generates notifications at object granularity:

	
Refers to columns that have encryption enabled

	
Has more than 10 items of the same type in the SELECT list

	
Has expressions that include any of these:

	
String functions (such as SUBSTR, LTRIM, and RTRIM)

	
Arithmetic functions (such as TRUNC, ABS, and SQRT)

For a list of SQL functions, see Oracle Database SQL Language Reference.

	
Pattern-matching conditions LIKE and REGEXP_LIKE

	
EXISTS or NOT EXISTS condition

	
Has disjunctions involving predicates defined on columns from different tables. For example:

SELECT EMPLOYEE_ID, DEPARTMENT_ID
 FROM EMPLOYEES, DEPARTMENTS
 WHERE EMPLOYEES.EMPLOYEE_ID = 10
 OR DEPARTMENTS.DEPARTMENT_ID = 'IT';

	
Has user rowid access. For example:

SELECT DEPARTMENT_ID
 FROM DEPARTMENTS
 WHERE ROWID = 'AAANkdAABAAALinAAF';

	
Has any join other than an inner join

	
Has an execution plan that involves any of these:

	
Bitmap join, domain, or function-based indexes

	
UNION ALL or CONCATENATION

(Either in the query itself, or as the result of an OR-expansion execution plan chosen by the query optimizer.)

	
ORDER BY or GROUP BY

(Either in the query itself, or as the result of a SORT operation with an ORDER BY option in the execution plan chosen by the query optimizer.)

	
Partitioned index-organized table (IOT) with overflow segment

	
Clustered objects

	
Parallel execution

Queries that Cannot Be Registered for QRCN in Either Mode

A query that refers to any of the following cannot be registered for QRCN in either guaranteed or best-effort mode:

	
Views

	
Tables that are fixed, remote, or have Virtual Private Database (VPD) policies enabled

	
DUAL (in the SELECT list)

	
Synonyms

	
Calls to user-defined PL/SQL subprograms

	
Operators not listed in "Queries that Can Be Registered for QRCN in Guaranteed Mode"

	
The aggregate function COUNT

(Other aggregate functions are allowed in best-effort mode, but not in guaranteed mode.)

	
Application contexts; for example:

SELECT SALARY FROM EMPLOYEES
WHERE USER = SYS_CONTEXT('USERENV', 'SESSION_USER');

	
SYSDATE, SYSTIMESTAMP, or CURRENT TIMESTAMP

Also, a query that the query optimizer has rewritten using a materialized view cannot be registered for QRCN. For information about the query optimizer, see Oracle Database Performance Tuning Guide.

Using PL/SQL to Register Queries for CQN

To use PL/SQL to create a CQN registration, follow these steps:

	
Create a stored PL/SQL procedure to serve as the notification handler.

	
Create a CQ_NOTIFICATION$_REG_INFO object that specifies the name of the notification handler, the notification type, and other attributes of the registration.

	
In your client application, use the DBMS_CQ_NOTIFICATION.NEW_REG_START function to open a registration block.

	
Run the queries to register. (Do not run DML or DDL operations.)

	
Close the registration block, using the DBMS_CQ_NOTIFICATION.REG_END function.

Topics:

	
Creating a PL/SQL Notification Handler

	
Creating a CQ_NOTIFICATION$_REG_INFO Object

	
Identifying Individual Queries in a Notification

	
Adding Queries to an Existing Registration

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about the CQ_NOTIFICATION$_REG_INFO object and the functions NEW_REG_START and REG_END, all of which are defined in the DBMS_CQ_NOTIFICATION package

Creating a PL/SQL Notification Handler

The PL/SQL stored procedure that you create to serve as the notification handler must have this signature:

PROCEDURE schema_name.proc_name(ntfnds IN CQ_NOTIFICATION$_DESCRIPTOR)

In the preceding signature, schema_name is the name of the database schema, proc_name is the name of the stored procedure, and ntfnds is the notification descriptor.

The notification descriptor is a CQ_NOTIFICATION$_DESCRIPTOR object, whose attributes describe the details of the change (transaction ID, type of change, queries affected, tables modified, and so on).

The JOBQ process passes the notification descriptor, ntfnds, to the notification handler, proc_name, which handles the notification according to its application requirements. (This is step 6 in Figure 11-2.)

	
Note:

The notification handler runs inside a job queue process. The JOB_QUEUE_PROCESSES initialization parameter specifies the maximum number of processes that can be created for the execution of jobs. You must set JOB_QUEUE_PROCESSES to a nonzero value to receive PL/SQL notifications.

Creating a CQ_NOTIFICATION$_REG_INFO Object

An object of type CQ_NOTIFICATION$_REG_INFO specifies the notification handler that the database runs when a registered objects changes. In SQL*Plus, you can view its type attributes by running this statement:

DESC CQ_NOTIFICATION$_REG_INFO

Table 11-2 describes the attributes of SYS.CQ_NOTIFICATION$_REG_INFO.

Table 11-2 Attributes of CQ_NOTIFICATION$_REG_INFO

	Attribute	Description
	
CALLBACK

	
Specifies the name of the PL/SQL procedure to be executed when a notification is generated (a notification handler). You must specify the name in the form schema_name.procedure_name, for example, hr.dcn_callback.

	
QOSFLAGS

	
Specifies one or more quality-of-service flags, which are constants in the DBMS_CQ_NOTIFICATION package. For their names and descriptions, see Table 11-3.

To specify multiple quality-of-service flags, use bitwise OR. For example: DBMS_CQ_NOTIFICATION.QOS_RELIABLE + DBMS_CQ_NOTIFICATION.QOS_ROWIDS

	
TIMEOUT

	
Specifies the timeout period for registrations. If set to a nonzero value, it specifies the time in seconds after which the database purges the registration. If 0 or NULL, then the registration persists until the client explicitly deregisters it.

Can be combined with the QOSFLAGS attribute with its QOS_DEREG_NFY flag.

	
OPERATIONS_FILTER

	
Applies only to OCN (described in "Object Change Notification (OCN)"). Has no effect if you specify the QOS_FLAGS attribute with its QOS_QUERY flag.

Filters messages based on types of SQL statement. You can specify these constants in the DBMS_CQ_NOTIFICATION package:

	
ALL_OPERATIONS notifies on all changes

	
INSERTOP notifies on inserts

	
UPDATEOP notifies on updates

	
DELETEOP notifies on deletes

	
ALTEROP notifies on ALTER TABLE operations

	
DROPOP notifies on DROP TABLE operations

	
UNKNOWNOP notifies on unknown operations

You can specify a combination of operations with a bitwise OR. For example: DBMS_CQ_NOTIFICATION.INSERTOP + DBMS_CQ_NOTIFICATION.DELETEOP.

	
TRANSACTION_LAG

	
Deprecated. To implement flow-of-control notifications, use the NTFN_GROUPING_* attributes.

Applies only to OCN (described in "Object Change Notification (OCN)"). Has no effect if you specify the QOS_FLAGS attribute with its QOS_QUERY flag.

Specifies the number of transactions or database changes by which the client can lag behind the database. If 0, then the client receives an invalidation message as soon as it is generated. If 5, then every fifth transaction that changes a registered object results in a notification. The database tracks intervening changes at an object granularity and bundles the changes along with the notification. Thus, the client does not lose intervening changes.

Most applications that must be notified of changes to an object on transaction commit without further deferral are expected to chose 0 transaction lag. A nonzero transaction lag is useful only if an application implements flow control on notifications. When using nonzero transaction lag, it is recommended that the application workload has the property that notifications are generated at a reasonable frequency. Otherwise, notifications might be deferred indefinitely till the lag is satisfied.

If you specify TRANSACTION_LAG, then the ROWID level granularity is not available in the notification messages even if you specified QOS_ROWIDS during registration.

	
NTFN_GROUPING_CLASS

	
Specifies the class by which to group notifications. The only allowed value is DBMS_CQ_NOTIFICATION.NTFN_GROUPING_CLASS_TIME, which groups notifications by time.

	
NTFN_GROUPING_VALUE

	
Specifies the time interval that defines the group, in seconds. For example, if this value is 900, notifications generated in the same 15-minute interval are grouped.

	
NTFN_GROUPING_TYPE

	
Specifies either of these types of grouping:

	
DBMS_CQ_NOTIFICATION.NTFN_GROUPING_TYPE_SUMMARY: All notifications in the group are summarized into a single notification.

	
DBMS_CQ_NOTIFICATION.NTFN_GROUPING_TYPE_LAST: Only the last notification in the group is published and the earlier ones discarded.

	
NTFN_GROUPING_START_TIME

	
Specifies when to start generating notifications. If specified as NULL, it defaults to the current system-generated time.

	
NTFN_GROUPING_REPEAT_COUNT

	
Specifies how many times to repeat the notification. Set to DBMS_CQ_NOTIFICATION.NTFN_GROUPING_FOREVER to receive notifications for the life of the registration. To receive at most n notifications during the life of the registration, set to n.

The quality-of-service flags in Table 11-3 are constants in the DBMS_CQ_NOTIFICATION package. You can specify them with the QOS_FLAGS attribute of CQ_NOTIFICATION$_REG_INFO (see Table 11-2).

Table 11-3 Quality-of-Service Flags

	Flag	Description
	
QOS_DEREG_NFY

	
Purges the registration after the first notification.

	
QOS_RELIABLE

	
Stores notifications in a persistent database queue.

In an Oracle RAC environment, if a database instance fails, surviving database instances can deliver any queued notification messages.

Default: Notifications are stored in shared memory, which performs more efficiently.

	
QOS_ROWIDS

	
Includes the ROWID of each changed row in the notification.

	
QOS_QUERY

	
Registers queries for QRCN, described in Query Result Change Notification (QRCN).

If a query cannot be registered for QRCN, an error is generated at registration time, unless you also specify QOS_BEST_EFFORT.

Default: Queries are registered for OCN, described in "Object Change Notification (OCN)"

	
QOS_BEST_EFFORT

	
Used with QOS_QUERY. Registers simplified versions of queries that are too complex for query result change evaluation; in other words, registers queries for QRCN in best-effort mode, described in "Best-Effort Mode".

To see which queries were simplified, query the static data dictionary view DBA_CQ_NOTIFICATION_QUERIES or USER_CQ_NOTIFICATION_QUERIES. These views give the QUERYID and the text of each registered query.

Default: Queries are registered for QRCN in guaranteed mode, described in "Guaranteed Mode"

Suppose that you must invoke the procedure HR.dcn_callback whenever a registered object changes. In Example 11-4, you create a CQ_NOTIFICATION$_REG_INFO object that specifies that HR.dcn_callback receives notifications. To create the object you must have EXECUTE privileges on the DBMS_CQ_NOTIFICATION package.

Example 11-4 Creating a CQ_NOTIFICATION$_REG_INFO Object

DECLARE
 v_cn_addr CQ_NOTIFICATION$_REG_INFO;

BEGIN
 -- Create object:

 v_cn_addr := CQ_NOTIFICATION$_REG_INFO (
 'HR.dcn_callback', -- PL/SQL notification handler
 DBMS_CQ_NOTIFICATION.QOS_QUERY -- notification type QRCN
 + DBMS_CQ_NOTIFICATION.QOS_ROWIDS, -- include rowids of changed objects
 0, -- registration persists until unregistered
 0, -- notify on all operations
 0 -- notify immediately
);

 -- Register queries: ...
END;
/

Identifying Individual Queries in a Notification

Any query in a registered list of queries can cause a continuous query notification. To know when a certain query causes a notification, use the DBMS_CQ_NOTIFICATION.CQ_NOTIFICATION_QUERYID function in the SELECT list of that query. For example:

SELECT EMPLOYEE_ID, SALARY, DBMS_CQ_NOTIFICATION.CQ_NOTIFICATION_QUERYID
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 10;

Result:

EMPLOYEE_ID SALARY CQ_NOTIFICATION_QUERYID
----------- ---------- -----------------------
 200 2800 0

1 row selected.

When that query causes a notification, the notification includes the query ID.

Adding Queries to an Existing Registration

To add queries to an existing registration, follow these steps:

	
Retrieve the registration ID of the existing registration.

You can retrieve it from either saved output or a query of *_CHANGE_NOTIFICATION_REGS.

	
Open the existing registration by calling the procedure DBMS_CQ_NOTIFICATION.ENABLE_REG with the registration ID as the parameter.

	
Run the queries to register. (Do not run DML or DDL operations.)

	
Close the registration, using the DBMS_CQ_NOTIFICATION.REG_END function.

Example 11-5 adds a query to an existing registration whose registration ID is 21.

Example 11-5 Adding a Query to an Existing Registration

DECLARE
 v_cursor SYS_REFCURSOR;

BEGIN
 -- Open existing registration
 DBMS_CQ_NOTIFICATION.ENABLE_REG(21);
 OPEN v_cursor FOR
 -- Run query to be registered
 SELECT DEPARTMENT_ID
 FROM HR.DEPARTMENTS; -- register this query
 CLOSE v_cursor;
 -- Close registration
 DBMS_CQ_NOTIFICATION.REG_END;
END;
/

Best Practices for CQN Registrations

For best CQN performance, follow these registration guidelines:

	
Register few queries—preferably those that reference objects that rarely change.

Extremely volatile registered objects cause numerous notifications, whose overhead slows OLTP throughput.

	
Minimize the number of duplicate registrations of any given object, to avoid replicating a notification message for multiple recipients.

Troubleshooting CQN Registrations

If you are unable to create a registration, or if you have created a registration but are not receiving the notifications that you expected, the problem might be one of these:

	
The JOB_QUEUE_PROCESSES parameter is not set to a nonzero value.

This prevents you from receiving PL/SQL notifications through the notification handler.

	
You were connected as a SYS user when you created the registrations.

You must be connected as a non-SYS user to create CQN registrations.

	
You changed a registered object, but did not commit the transaction.

Notifications are generated only when the transaction commits.

	
The registrations were not successfully created in the database.

To check, query the static data dictionary view *_CHANGE_NOTIFICATION_REGS. For example, this statement displays all registrations and registered objects for the current user:

SELECT REGID, TABLE_NAME FROM USER_CHANGE_NOTIFICATION_REGS;

	
Runtime errors occurred during the execution of the notification handler.

If so, they were logged to the trace file of the JOBQ process that tried to run the procedure. The name of the trace file usually has this form:

ORACLE_SID_jnumber_PID.trc

For example, if the ORACLE_SID is dbs1 and the process ID (PID) of the JOBQ process is 12483, the name of the trace file is usually dbs1_j000_12483.trc.

Suppose that a registration is created with 'chnf_callback' as the notification handler and registration ID 100. Suppose that 'chnf_callback' was not defined in the database. Then the JOBQ trace file might contain a message of the form:

**
 Run-time error during execution of PL/SQL cbk chnf_callback for reg CHNF100.
 Error in PLSQL notification of msgid:
 Queue :
 Consumer Name :
 PLSQL function :chnf_callback
 Exception Occured, Error msg:
 ORA-00604: error occurred at recursive SQL level 2
 ORA-06550: line 1, column 7:
 PLS-00201: identifier 'CHNF_CALLBACK' must be declared
 ORA-06550: line 1, column 7:
 PL/SQL: Statement ignored
**

If runtime errors occurred during the execution of the notification handler, create a very simple version of the notification handler to verify that you are actually receiving notifications, and then gradually add application logic.

An example of a very simple notification handler is:

REM Create table in HR schema to hold count of notifications received.
CREATE TABLE nfcount(cnt NUMBER);
INSERT INTO nfcount (cnt) VALUES(0);
COMMIT;
CREATE OR REPLACE PROCEDURE chnf_callback
 (ntfnds IN CQ_NOTIFICATION$_DESCRIPTOR)
IS
BEGIN
 UPDATE nfcount SET cnt = cnt+1;
 COMMIT;
END;
/

	
There is a time lag between the commit of a transaction and the notification received by the end user.

Querying CQN Registrations

To see top-level information about all registrations, including their QOS options, query the static data dictionary view *_CHANGE_NOTIFICATION_REGS.

For example, you can obtain the registration ID for a client and the list of objects for which it receives notifications. To view registration IDs and table names for HR, use this query:

SELECT regid, table_name FROM USER_CHANGE_NOTIFICATION_REGS;

To see which queries are registered for QRCN, query the static data dictionary view USER_CQ_NOTIFICATION_QUERIES or DBA_CQ_NOTIFICATION_QUERIES. These views include information about any bind values that the queries use. In these views, bind values in the original query are included in the query text as constants. The query text is equivalent, but maybe not identical, to the original query that was registered.

	
See Also:

Oracle Database Reference for more information about the static data dictionary views USER_CHANGE_NOTIFICATION_REGS and DBA_CQ_NOTIFICATION_QUERIES

Interpreting Notifications

When a transaction commits, the database determines whether registered objects were modified in the transaction. If so, it runs the notification handler specified in the registration.

Topics:

	
Interpreting a CQ_NOTIFICATION$_DESCRIPTOR Object

	
Interpreting a CQ_NOTIFICATION$_TABLE Object

	
Interpreting a CQ_NOTIFICATION$_QUERY Object

	
Interpreting a CQ_NOTIFICATION$_ROW Object

Interpreting a CQ_NOTIFICATION$_DESCRIPTOR Object

When a CQN registration generates a notification, the database passes a CQ_NOTIFICATION$_DESCRIPTOR object to the notification handler. The notification handler can find the details of the database change in the attributes of the CQ_NOTIFICATION$_DESCRIPTOR object.

In SQL*Plus, you can list these attributes by connecting as SYS and running this statement:

DESC CQ_NOTIFICATION$_DESCRIPTOR

Table 11-4 summarizes the attributes of CQ_NOTIFICATION$_DESCRIPTOR.

Table 11-4 Attributes of CQ_NOTIFICATION$_DESCRIPTOR

	Attribute	Description
	
REGISTRATION_ID

	
The registration ID that was returned during registration.

	
TRANSACTION_ID

	
The ID for the transaction that made the change.

	
DBNAME

	
The name of the database in which the notification was generated.

	
EVENT_TYPE

	
The database event that triggers a notification. For example, the attribute can contain these constants, which correspond to different database events:

	
EVENT_NONE

	
EVENT_STARTUP (Instance startup)

	
EVENT_SHUTDOWN (Instance shutdown - last instance shutdown for Oracle RAC)

	
EVENT_SHUTDOWN_ANY (Any instance shutdown for Oracle RAC)

	
EVENT_DEREG (Registration was removed)

	
EVENT_OBJCHANGE (Change to a registered table)

	
EVENT_QUERYCHANGE (Change to a registered result set)

	
NUMTABLES

	
The number of tables that were modified.

	
TABLE_DESC_ARRAY

	
This field is present only for OCN registrations. For QRCN registrations, it is NULL.

If EVENT_TYPE is EVENT_OBJCHANGE]: a VARRAY of table change descriptors of type CQ_NOTIFICATION$_TABLE, each of which corresponds to a changed table. For attributes of CQ_NOTIFICATION$_TABLE, see Table 11-5.

Otherwise: NULL.

	
QUERY_DESC_ARRAY

	
This field is present only for QRCN registrations. For OCN registrations, it is NULL.

If EVENT_TYPE is EVENT_QUERYCHANGE]: a VARRAY of result set change descriptors of type CQ_NOTIFICATION$_QUERY, each of which corresponds to a changed result set. For attributes of CQ_NOTIFICATION$_QUERY, see Table 11-6.

Otherwise: NULL.

Interpreting a CQ_NOTIFICATION$_TABLE Object

The CQ_NOTIFICATION$_DESCRIPTOR type contains an attribute called TABLE_DESC_ARRAY, which holds a VARRAY of table descriptors of type CQ_NOTIFICATION$_TABLE.

In SQL*Plus, you can list these attributes by connecting as SYS and running this statement:

DESC CQ_NOTIFICATION$_TABLE

Table 11-5 summarizes the attributes of CQ_NOTIFICATION$_TABLE.

Table 11-5 Attributes of CQ_NOTIFICATION$_TABLE

	Attribute	Specifies . . .
	
OPFLAGS

	
The type of operation performed on the modified table. For example, the attribute can contain these constants, which correspond to different database operations:

	
ALL_ROWS signifies that either the entire table is modified, as in a DELETE *, or row-level granularity of information is not requested or not available in the notification, and the recipient must assume that the entire table has changed

	
UPDATEOP signifies an update

	
DELETEOP signifies a deletion

	
ALTEROP signifies an ALTER TABLE

	
DROPOP signifies a DROP TABLE

	
UNKNOWNOP signifies an unknown operation

	
TABLE_NAME

	
The name of the modified table.

	
NUMROWS

	
The number of modified rows.

	
ROW_DESC_ARRAY

	
A VARRAY of row descriptors of type CQ_NOTIFICATION$_ROW, which Table 11-7 describes. If ALL_ROWS was set in the opflags, then the ROW_DESC_ARRAY member is NULL.

Interpreting a CQ_NOTIFICATION$_QUERY Object

The CQ_NOTIFICATION$_DESCRIPTOR type contains an attribute called QUERY_DESC_ARRAY, which holds a VARRAY of result set change descriptors of type CQ_NOTIFICATION$_QUERY.

In SQL*Plus, you can list these attributes by connecting as SYS and running this statement:

DESC CQ_NOTIFICATION$_QUERY

Table 11-6 summarizes the attributes of CQ_NOTIFICATION$_QUERY.

Table 11-6 Attributes of CQ_NOTIFICATION$_QUERY

	Attribute	Specifies . . .
	
QUERYID

	
Query ID of the changed query.

	
QUERYOP

	
Operation that changed the query (either EVENT_QUERYCHANGE or EVENT_DEREG).

	
TABLE_DESC_ARRAY

	
A VARRAY of table change descriptors of type CQ_NOTIFICATION$_TABLE, each of which corresponds to a changed table that caused a change in the result set. For attributes of CQ_NOTIFICATION$_TABLE, see Table 11-5.

Interpreting a CQ_NOTIFICATION$_ROW Object

If the ROWID option was specified during registration, the CQ_NOTIFICATION$_TABLE type has a ROW_DESC_ARRAY attribute, a VARRAY of type CQ_NOTIFICATION$_ROW that contains the ROWIDs for the changed rows. If ALL_ROWS was set in the OPFLAGS field of the CQ_NOTIFICATION$_TABLE object, then ROWID information is not available.

Table 11-7 summarizes the attributes of CQ_NOTIFICATION$_ROW.

Table 11-7 Attributes of CQ_NOTIFICATION$_ROW

	Attribute	Specifies . . .
	
OPFLAGS

	
The type of operation performed on the modified table. See the description of OPFLAGS in Table 11-5.

	
ROW_ID

	
The ROWID of the changed row.

Deleting Registrations

To delete a registration, call the procedure DBMS_CQ_NOTIFICATION.DEREGISTER with the registration ID as the parameter. For example, this statement deregisters the registration whose registration ID is 21:

DBMS_CQ_NOTIFICATION.DEREGISTER(21);

Only the user who created the registration or the SYS user can deregister it.

Configuring CQN: Scenario

In this scenario, you are a developer who manages a Web application that provides employee data: name, location, phone number, and so on. The application, which runs on Oracle Application Server, is heavily used and processes frequent queries of the HR.EMPLOYEES and HR.DEPARTMENTS tables in the back-end database. Because these tables change relatively infrequently, the application can improve performance by caching the query results. Caching avoids a round trip to the back-end database and server-side execution latency.

You can use the DBMS_CQ_NOTIFICATION package to register queries based on HR.EMPLOYEES and HR.DEPARTMENTS tables. To configure CQN, you follow these steps:

	
Create a server-side PL/SQL stored procedure to process the notifications, as instructed in "Creating a PL/SQL Notification Handler".

	
Register the queries on the HR.EMPLOYEES and HR.DEPARTMENTS tables for QRCN, as instructed in "Registering the Queries".

After you complete these steps, any committed change to the result of a query registered in step 2 causes the notification handler created in step 1 to notify the Web application of the change, whereupon the Web application refreshes the cache by querying the back-end database.

Topics:

	
Creating a PL/SQL Notification Handler

	
Registering the Queries

Creating a PL/SQL Notification Handler

Create a a server-side stored PL/SQL procedure to process notifications as follows:

	
Connect to the database AS SYSDBA.

	
Grant the required privileges to HR:

GRANT EXECUTE ON DBMS_CQ_NOTIFICATION TO HR;
GRANT CHANGE NOTIFICATION TO HR;

	
Enable the JOB_QUEUE_PROCESSES parameter to receive notifications:

ALTER SYSTEM SET "JOB_QUEUE_PROCESSES"=4;

	
Connect to the database as a non-SYS user (such as HR).

	
Create database tables to hold records of notification events received:

-- Create table to record notification events.
DROP TABLE nfevents;
CREATE TABLE nfevents (
 regid NUMBER,
 event_type NUMBER
);

-- Create table to record notification queries:
DROP TABLE nfqueries;
CREATE TABLE nfqueries (
 qid NUMBER,
 qop NUMBER
);

-- Create table to record changes to registered tables:
DROP TABLE nftablechanges;
CREATE TABLE nftablechanges (
 qid NUMBER,
 table_name VARCHAR2(100),
 table_operation NUMBER
);

-- Create table to record ROWIDs of changed rows:
DROP TABLE nfrowchanges;
CREATE TABLE nfrowchanges (
 qid NUMBER,
 table_name VARCHAR2(100),
 row_id VARCHAR2(2000)
);

	
Create the procedure HR.chnf_callback, as shown in Example 11-6.

Example 11-6 Creating Server-Side PL/SQL Notification Handler

CREATE OR REPLACE PROCEDURE chnf_callback (
 ntfnds IN CQ_NOTIFICATION$_DESCRIPTOR
)
IS
 regid NUMBER;
 tbname VARCHAR2(60);
 event_type NUMBER;
 numtables NUMBER;
 operation_type NUMBER;
 numrows NUMBER;
 row_id VARCHAR2(2000);
 numqueries NUMBER;
 qid NUMBER;
 qop NUMBER;

BEGIN
 regid := ntfnds.registration_id;
 event_type := ntfnds.event_type;

 INSERT INTO nfevents (regid, event_type)
 VALUES (chnf_callback.regid, chnf_callback.event_type);

 numqueries :=0;

 IF (event_type = DBMS_CQ_NOTIFICATION.EVENT_QUERYCHANGE) THEN
 numqueries := ntfnds.query_desc_array.count;

 FOR i IN 1..numqueries LOOP -- loop over queries
 qid := ntfnds.query_desc_array(i).queryid;
 qop := ntfnds.query_desc_array(i).queryop;

 INSERT INTO nfqueries (qid, qop)
 VALUES(chnf_callback.qid, chnf_callback.qop);

 numtables := 0;
 numtables := ntfnds.query_desc_array(i).table_desc_array.count;

 FOR j IN 1..numtables LOOP -- loop over tables
 tbname :=
 ntfnds.query_desc_array(i).table_desc_array(j).table_name;
 operation_type :=
 ntfnds.query_desc_array(i).table_desc_array(j).Opflags;

 INSERT INTO nftablechanges (qid, table_name, table_operation)
 VALUES (
 chnf_callback.qid,
 tbname,
 operation_type
);

 IF (bitand(operation_type, DBMS_CQ_NOTIFICATION.ALL_ROWS) = 0) THEN
 numrows := ntfnds.query_desc_array(i).table_desc_array(j).numrows;
 ELSE
 numrows :=0; -- ROWID info not available
 END IF;

 -- Body of loop does not run when numrows is zero.
 FOR k IN 1..numrows LOOP -- loop over rows
 Row_id :=
 ntfnds.query_desc_array(i).table_desc_array(j).row_desc_array(k).row_id;

 INSERT INTO nfrowchanges (qid, table_name, row_id)
 VALUES (chnf_callback.qid, tbname, chnf_callback.Row_id);

 END LOOP; -- loop over rows
 END LOOP; -- loop over tables
 END LOOP; -- loop over queries
 END IF;
 COMMIT;
END;
/

Registering the Queries

After creating the notification handler, you register the queries for which you want to receive notifications, specifying HR.chnf_callback as the notification handler, as in Example 11-7.

Example 11-7 Registering a Query

DECLARE
 reginfo CQ_NOTIFICATION$_REG_INFO;
 mgr_id NUMBER;
 dept_id NUMBER;
 v_cursor SYS_REFCURSOR;
 regid NUMBER;

BEGIN
 /* Register two queries for QRNC: */
 /* 1. Construct registration information.
 chnf_callback is name of notification handler.
 QOS_QUERY specifies result-set-change notifications. */

 reginfo := cq_notification$_reg_info (
 'chnf_callback',
 DBMS_CQ_NOTIFICATION.QOS_QUERY,
 0, 0, 0
);

 /* 2. Create registration. */

 regid := DBMS_CQ_NOTIFICATION.new_reg_start(reginfo);

 OPEN v_cursor FOR
 SELECT dbms_cq_notification.CQ_NOTIFICATION_QUERYID, manager_id
 FROM HR.EMPLOYEES
 WHERE employee_id = 7902;
 CLOSE v_cursor;

 OPEN v_cursor FOR
 SELECT dbms_cq_notification.CQ_NOTIFICATION_QUERYID, department_id
 FROM HR.departments
 WHERE department_name = 'IT';
 CLOSE v_cursor;

 DBMS_CQ_NOTIFICATION.reg_end;
END;
/

View the newly created registration:

SELECT queryid, regid, TO_CHAR(querytext)
FROM user_cq_notification_queries;

Result is similar to:

QUERYID REGID TO_CHAR(QUERYTEXT)
------- ----- --
 22 41 SELECT HR.DEPARTMENTS.DEPARTMENT_ID
 FROM HR.DEPARTMENTS
 WHERE HR.DEPARTMENTS.DEPARTMENT_NAME = 'IT'

 21 41 SELECT HR.EMPLOYEES.MANAGER_ID
 FROM HR.EMPLOYEES
 WHERE HR.EMPLOYEES.EMPLOYEE_ID = 7902

Run this transaction, which changes the result of the query with QUERYID 22:

UPDATE DEPARTMENTS
SET DEPARTMENT_NAME = 'FINANCE'
WHERE department_name = 'IT';

The notification procedure chnf_callback (which you created in Example 11-6) runs.

Query the table in which notification events are recorded:

SELECT * FROM nfevents;

Result is similar to:

REGID EVENT_TYPE
----- ----------
 61 7

EVENT_TYPE 7 corresponds to EVENT_QUERYCHANGE (query result change).

Query the table in which changes to registered tables are recorded:

SELECT * FROM nftablechanges;

Result is similar to:

REGID TABLE_NAME TABLE_OPERATION
----- -------------- ---------------
 42 HR.DEPARTMENTS 4

TABLE_OPERATION 4 corresponds to UPDATEOP (update operation).

Query the table in which ROWIDs of changed rows are recorded:

SELECT * FROM nfrowchanges;

Result is similar to:

REGID TABLE_NAME ROWID
----- -------------- ------------------
 61 HR.DEPARTMENTS AAANkdAABAAALinAAF

Part III

Advanced Topics for Application Developers

This part presents application development information that either involves sophisticated technology or is used by a small minority of developers.

Chapters:

	
Chapter 12, "Using Oracle Flashback Technology"

	
Chapter 13, "Choosing a Programming Environment"

	
Chapter 14, "Developing Applications with Multiple Programming Languages"

	
Chapter 15, "Developing Applications with Oracle XA"

	
Chapter 16, "Developing Applications with the Publish-Subscribe Model"

	
Chapter 17, "Using the Identity Code Package"

	
Chapter 18, "Schema Object Dependency"

	
Chapter 19, "Edition-Based Redefinition"

	
See Also:

Oracle Database Performance Tuning Guide for performance issues to consider when developing applications

15 Developing Applications with Oracle XA

This chapter explains how to use the Oracle XA library. Typically, you use this library in applications that work with transaction monitors. The XA features are most useful in applications in which transactions interact with multiple databases.

Topics:

	
X/Open Distributed Transaction Processing (DTP)

	
Oracle XA Library Subprograms

	
Developing and Installing XA Applications

	
Troubleshooting XA Applications

	
Oracle XA Issues and Restrictions

	
See Also:

	
X/Open CAE Specification - Distributed Transaction Processing: The XA Specification, X/Open Document Number XO/CAE/91/300, for an overview of XA, including basic architecture. Access at http://www.opengroup.org/pubs/catalog/c193.htm.

	
Oracle Call Interface Programmer's Guide for background and reference information about the Oracle XA library

	
The Oracle Database platform-specific documentation for information about library linking filenames

	
README for changes, bugs, and restrictions in the Oracle XA library for your platform

X/Open Distributed Transaction Processing (DTP)

The X/Open Distributed Transaction Processing (DTP) architecture defines a standard architecture or interface that enables multiple application programs (APs) to share resources provided by multiple, and possibly different, resource managers (RMs). It coordinates the work between APs and RMs into global transactions.

The Oracle XA library conforms to the X/Open software architecture's XA interface specification. The Oracle XA library is an external interface that enables a client-side transaction manager (TM) that is not an Oracle client-side TM to coordinate global transactions, thereby allowing inclusion of database RMs that are not Oracle Database RMs in distributed transactions. For example, a client application can manage an Oracle Database transaction and a transaction in an NTFS file system as a single, global transaction.

Figure 15-1 illustrates a possible X/Open DTP model.

Figure 15-1 Possible DTP Model

[image: Description of Figure 15-1 follows]

Topics:

	
DTP Terminology

	
Required Public Information

DTP Terminology

	
Resource Manager (RM)

	
Distributed Transaction

	
Branch

	
Transaction Manager (TM)

	
Transaction Processing Monitor (TPM)

	
Two-Phase Commit Protocol

	
Application Program (AP)

	
TX Interface

	
Tight and Loose Coupling

	
Dynamic and Static Registration

Resource Manager (RM)

A resource manager controls a shared, recoverable resource that can be returned to a consistent state after a failure. Examples are relational databases, transactional queues, and transactional file systems. Oracle Database is an RM and uses its online redo log and undo segments to return to a consistent state after a failure.

Distributed Transaction

A distributed transaction, also called a global transaction, is a client transaction that involves updates to multiple distributed resources and requires "all-or-none" semantics across distributed RMs.

Branch

A branch is a unit of work contained within one RM. Multiple branches comprise a global transaction. For Oracle Database, each branch maps to a local transaction inside the database server.

Transaction Manager (TM)

A transaction manager provides an API for specifying the boundaries of the transaction and manages commit and recovery. The TM implements a two-phase commit engine to provide "all-or-none" semantics across distributed RMs.

An external TM is a middle-tier component that resides outside Oracle Database. Normally, the database is its own internal TM. Using a standards-based TM enables Oracle Database to cooperate with other heterogeneous RMs in a single transaction.

Transaction Processing Monitor (TPM)

A TM is usually provided by a transaction processing monitor (TPM), such as:

	
Oracle Tuxedo

	
IBM Transarc Encina

	
IBM CICS

A TPM coordinates the flow of transaction requests between the client processes that issue requests and the back-end servers that process them. Basically, a TPM coordinates transactions that require the services of several different types of back-end processes, such as application servers and RMs distributed over a network.

The TPM synchronizes any commits or rollbacks required to complete a distributed transaction. The TM portion of the TPM is responsible for controlling when distributed commits and rollbacks take place. Thus, if a distributed application program takes advantage of a TPM, then the TM portion of the TPM is responsible for controlling the two-phase commit protocol. The RMs enable the TMs to perform this task.

Because the TM controls distributed commits or rollbacks, it must communicate directly with Oracle Database (or any other RM) through the XA interface. It uses Oracle XA library subprograms, which are described in "Oracle XA Library Subprograms", to tell Oracle Database how to process the transaction, based on its knowledge of all RMs in the transaction.

Two-Phase Commit Protocol

The Oracle XA library interface follows the two-phase commit protocol. The sequence of events is as follows:

	
In the prepare phase, the TM asks each RM to guarantee that it can commit any part of the transaction. If this is possible, then the RM records its prepared state and replies affirmatively to the TM. If it is not possible, then the RM might roll back any work, reply negatively to the TM, and forget about the transaction. The protocol allows the application, or any RM, to roll back the transaction unilaterally until the prepare phase completes.

	
In phase two, the TM records the commit decision and issues a commit or rollback to all RMs participating in the transaction. TM can issue a commit for an RM only if all RMs have replied affirmatively to phase one.

Application Program (AP)

An application program defines transaction boundaries and specifies actions that constitute a transaction. For example, an AP can be a precompiler or Oracle Call Interface (OCI) program. The AP operates on the RM resource through its native interface, for example, SQL.

TX Interface

An application program starts and completes all transaction control operations through the TM through an interface called TX. The AP does not directly use the XA interface. APs are not aware of branches that fork in the middle-tier: application threads do not explicitly join, leave, suspend, and resume branch work, instead the TM portion of the transaction processing monitor manages the branches of a global transaction for APs. Ultimately, APs call the TM to commit all-or-none.

	
Note:

The naming conventions for the TX interface and associated subprograms are vendor-specific. For example, the tx_open call might be referred to as tp_open on your system. In some cases, the calls might be implicit, for example, at the entry to a transactional RPC. See the documentation supplied with the transaction processing monitor for details.

Tight and Loose Coupling

Application threads are tightly coupled if the RM considers them as a single entity for all isolation semantic purposes. Tightly coupled branches must see changes in each other. Furthermore, an external client must either see all changes of a tightly coupled set or none of the changes. If application threads are not tightly coupled, then they are loosely coupled.

Dynamic and Static Registration

Oracle Database supports both dynamic and static registration. In dynamic registration, the RM runs an application callback before starting any work. In static registration, you must call xa_start for each RM before starting any work, even if some RMs are not involved.

Required Public Information

As a resource manager, Oracle Database must publish the information described in Table 15-1.

Table 15-1 Required XA Features Published by Oracle Database

	XA Feature	Oracle Database Details
	
xa_switch_t structures

	
The Oracle Database xa_switch_t structure name is xaosw for static registration and xaoswd for dynamic registration. These structures contain entry points and other information for the resource manager.

	
xa_switch_t resource manager

	
The Oracle Database resource manager name within the xa_switch_t structure is Oracle_XA.

	
Close string

	
The close string used by xa_close is ignored and can be null.

	
Open string

	
For the description of the format of the open string that xa_open uses, see "Defining the xa_open String".

	
Libraries

	
Libraries needed to link applications using Oracle XA have platform-specific names. The procedure is similar to linking an ordinary precompiler or OCI program except that you might have to link any TPM-specific libraries.

If you are not using sqllib, then link with $ORACLE_HOME/rdbms/lib/xaonsl.o or $ORACLE_HOME/rdbms/lib32/xaonsl.o (for 32 bit application on 64 bit platforms).

	
Requirements

	
None. The functionality to support XA is part of both Standard Edition and Enterprise Edition.

Oracle XA Library Subprograms

The Oracle XA library subprograms enable a TM to tell Oracle Database how to process transactions. Generally, the TM must open the resource by using xa_open. Typically, the opening of the resource results from the AP call to tx_open. Some TMs might call xa_open implicitly when the application begins.

Similarly, there is a close (using xa_close) that occurs when the application is finished with the resource. The close might occur when the AP calls tx_close or when the application terminates.

The TM instructs the RMs to perform several other tasks, which include:

	
Starting a transaction and associating it with an ID

	
Rolling back a transaction

	
Preparing and committing a transaction

Topics:

	
Oracle XA Library Subprograms

	
Oracle XA Interface Extensions

Oracle XA Library Subprograms

XA Library subprograms are described in Table 15-2.

Table 15-2 XA Library Subprograms

	XA Subprogram	Description
	
xa_open

	
Connects to the RM.

	
xa_close

	
Disconnects from the RM.

	
xa_start

	
Starts a transaction and associates it with the given transaction ID (XID), or associates the process with an existing transaction.

	
xa_end

	
Disassociates the process from the given XID.

	
xa_rollback

	
Rolls back the transaction associated with the given XID.

	
xa_prepare

	
Prepares the transaction associated with the given XID. This is the first phase of the two-phase commit protocol.

	
xa_commit

	
Commits the transaction associated with the given XID. This is the second phase of the two-phase commit protocol.

	
xa_recover

	
Retrieves a list of prepared, heuristically committed, or heuristically rolled back transactions.

	
xa_forget

	
Forgets the heuristically completed transaction associated with the given XID.

In general, the AP need not worry about the subprograms in Table 15-2 except to understand the role played by the xa_open string.

Oracle XA Interface Extensions

Oracle Database's XA interface includes some additional functions, which are described in Table 15-3.

Table 15-3 Oracle XA Interface Extensions

	Function	Description
	
OCISvcCtx *xaoSvcCtx(text *dbname)

	
Returns the OCI service handle for a given XA connection. The dbname parameter must be the same as the DB parameter passed in the xa_open string. OCI applications can use this routing instead of the sqlld2 calls to obtain the connection handle. Hence, OCI applications need not link with the sqllib library. The service handle can be converted to the Version 7 OCI logon data area (LDA) by using OCISvcCtxToLda [Version 8 OCI]. Client applications must remember to convert the Version 7 LDA to a service handle by using OCILdaToSvcCtx after completing the OCI calls.

	
OCIEnv *xaoEnv(text *dbname)

	
Returns the OCI environment handle for a given XA connection. The dbname parameter must be the same as the DB parameter passed in the xa_open string.

	
int xaosterr(OCISvcCtx *SvcCtx,sb4 error)

	
Converts an Oracle Database error code to an XA error code (only applicable to dynamic registration). The first parameter is the service handle used to run the work in the database. The second parameter is the error code that was returned from Oracle Database. Use this function to determine if the error returned from an OCI statement was caused because the xa_start failed. The function returns XA_OK if the error was not generated by the XA module or a valid XA error if the error was generated by the XA module.

Developing and Installing XA Applications

This section explains how to develop and install Oracle XA applications:

	
DBA or System Administrator Responsibilities

	
Application Developer Responsibilities

	
Defining the xa_open String

	
Developing and Installing XA Applications

	
Managing Transaction Control with Oracle XA

	
Migrating Precompiler or OCI Applications to TPM Applications

	
Managing Oracle XA Library Thread Safety

	
Using the DBMS_XA Package

DBA or System Administrator Responsibilities

The responsibilities of the DBA or system administrator are as follows:

	
Define the open string, with help from the application developer. For details, see "Defining the xa_open String".

	
Ensure that the static data dictionary view DBA_PENDING_TRANSACTIONS exists and grant the SELECT privilege to the view for all Oracle users specified in the xa_open string.

Grant FORCE TRANSACTION privilege to the Oracle user who might commit or roll back pending (in-doubt) transactions that he or she created, using the command COMMIT FORCE local_tran_id or ROLLBACK FORCE local_tran_id.

Grant FORCE ANY TRANSACTION privilege to the Oracle user who might commit or roll back XA transactions created by other users. For example, if user A might commit or roll back a transaction that was created by user B, user A must have FORCE ANY TRANSACTION privilege.

In Oracle Database version 7 client applications, all Oracle Database accounts used by Oracle XA library must have the SELECT privilege on the dynamic performance view V$XATRANS$. This view must have been created during the XA library installation. If necessary, you can manually create the view by running the SQL script xaview.sql as Oracle Database user SYS.

	
See Also:

Your Oracle Database platform-specific documentation for the location of the catxpend.sql script

	
Using the open string information, install the RM into the TPM configuration. Follow the TPM vendor instructions.

The DBA or system administrator must be aware that a TPM system starts the process that connects to Oracle Database. See your TPM documentation to determine what environment exists for the process and what user ID it must have. Ensure that correct values are set for $ORACLE_HOME and $ORACLE_SID in this environment.

	
Grant the user ID write permission to the directory in which the system is to write the XA trace file.

	
See Also:

"Defining the xa_open String" for information about how to specify an Oracle System Identifier (SID) or a trace directory that is different from the defaults

	
Start the relevant database instances to bring Oracle XA applications on-line. Perform this task before starting any TPM servers.

Application Developer Responsibilities

The responsibilities of the application developer are as follows:

	
Define the open string with help from the DBA or system administrator, as explained in "Defining the xa_open String".

	
Develop the applications.

Observe special restrictions on transaction-oriented SQL statements for precompilers.

	
See Also:

"Developing and Installing XA Applications"

	
Link the application according to TPM vendor instructions.

Defining the xa_open String

The open string is used by the transaction monitor to open the database. The maximum number of characters in an open string is 256.

Topics:

	
Syntax of the xa_open String

	
Required Fields for the xa_open String

	
Optional Fields for the xa_open String

Syntax of the xa_open String

You can define an open string with the syntax shown in Example 15-1.

Example 15-1 xa_open String

ORACLE_XA{+required_fields...} [+optional_fields...]

These strings shows sample parameter settings:

ORACLE_XA+DB=MANAGERS+SqlNet=SID1+ACC=P/username/password
 +SesTM=10+LogDir=/usr/local/xalog
ORACLE_XA+DB=PAYROLL+SqlNet=SID2+ACC=P/username/password
 +SesTM=10+LogDir=/usr/local/xalog
ORACLE_XA+SqlNet=SID3+ACC=P/username/password
 +SesTM=10+LogDir=/usr/local/xalog

These topics describe valid parameters for the required_fields and optional_fields placeholders:

	
Required Fields for the xa_open String

	
Optional Fields for the xa_open String

	
Note:

	
You can enter the required fields and optional fields in any order when constructing the open string.

	
All field names are case insensitive. Whether their values are case-sensitive depends on the platform.

	
There is no way to use the plus character (+) as part of the actual information string.

Required Fields for the xa_open String

The required_fields placeholder in Example 15-1 refers to any of the name-value pairs described in Table 15-4.

Table 15-4 Required Fields of xa_open string

	Syntax Element	Description
	
Acc=P//

	
Specifies that no explicit user or password information is provided and that the operating system authentication form is used. For more information see Oracle Database Administrator's Guide.

	
Acc=P/user/password

	
Specifies the user name and password for a valid Oracle Database account. As described in "DBA or System Administrator Responsibilities", ensure that HR has the SELECT privilege on the DBA_PENDING_TRANSACTIONS table.

	
SesTm=session_time_limit

	
Specifies the maximum number of seconds allowed in a transaction between one service and the next, or between a service and the commit or rollback of the transaction, before the system terminates the transaction. For example, SesTM=15 indicates that the session idle time limit is 15 seconds.

For example, if the TPM uses remote subprogram calls between the client and the servers, then SesTM applies to the time between the completion of one RPC and the initiation of the next RPC, or the tx_commit, or the tx_rollback.

The value of 0 indicates no limit. Entering a value of 0 is strongly discouraged. It might tie up resources for a long time if something goes wrong. Also, if a child process has SesTM=0, then the SesTM setting is not effective after the parent process is terminated.

Optional Fields for the xa_open String

The optional_fields placeholder in Example 15-1 refers to any of the name-value pairs described in Table 15-5.

Table 15-5 Optional Fields in the xa_open String

	Syntax Element	Description
	
NoLocal= true | false

	
Specifies whether local transactions are allowed. The default value is false. If the application must disallow local transactions, then set the value to true.

	
DB=db_name

	
Specifies the name used by Oracle Database precompilers to identify the database. For example, DB=payroll specifies that the database name is payroll and that the application server program uses that name in AT clauses.

Application programs that use only the default database for the Oracle Database precompiler (that is, they do not use the AT clause in their SQL statements) must omit the DB=db_name clause in the open string. Applications that use explicitly named databases must indicate that database name in their DB=db_name field. Oracle Database Version 7 OCI programs must call the sqlld2 function to obtain the correct context for logon data area (Lda_Def), which is the equivalent of an OCI service context. Version 8 and higher OCI programs must call the xaoSvcCtx function to get the OCISvcCtx service context.

The db_name is not the SID and is not used to locate the database to be opened. Rather, it correlates the database opened by this open string with the name used in the application program to run SQL statements. The SID is set from either the environment variable ORACLE_SID of the TPM application server or the SID given in the Oracle Net clause in the open string. The Oracle Net clause is described later in this section.Some TPM vendors provide a way to name a group of servers that use the same open string. You might find it convenient to choose the same name both for that purpose and for db_name.

	
LogDir=log_dir

	
Specifies the path name on the local system where the Oracle XA library error and tracing information is to be logged. The default is $ORACLE_HOME/rdbms/log if ORACLE_HOME is set; otherwise, it specifies the current directory. For example, LogDir=/xa_trace indicates that the logging information is located under the /xa_trace directory. Ensure that the directory exists and the application server can write to it.

	
Objects= true | false

	
Specifies whether the application is initialized in object mode. The default value is false. If the application must use certain API calls that require object mode, such as OCIRawAssignBytes, then set the value to true.

	
MaxCur=maximum_#_of_open_cursors

	
Specifies the number of cursors to be allocated when the database is opened. It serves the same purpose as the precompiler option maxopencursors. For example, MaxCur=5 indicates that the precompiler tries to keep five open cursors cached. This parameter overrides the precompiler option maxopencursors that you might have specified in your source code or at compile time.

	
SqlNet=db_link

	
Specifies the Oracle Net database link to use to log on to the system. This string must be an entry in tnsnames.ora. For example, the string SqlNet=inst1_disp might connect to a shared server at instance 1 if so defined in tnsnames.ora.

You can use the SqlNet parameter to specify the ORACLE_SID in cases where you cannot control the server environment variable. You must also use it when the server must access multiple Oracle Database instances. To use the Oracle Net string without actually accessing a remote database, use the Pipe driver. For example, specify SqlNet=localsid1, where localsid1 is an alias defined in the tnsnames.ora file.

	
Loose_Coupling=true | false

	
Specifies whether locks are shared. Oracle Database transaction branches within the same global transaction can be coupled tightly or loosely. If branches are loosely coupled, then they do not share locks. Set the value to true for loosely coupled branches. If branches are tightly coupled, then they share locks. Set the value to false for tightly coupled branches. The default value is false.

Note: When running Oracle RAC, if transaction branches land on different Oracle RAC instances, then they are loosely coupled even if Loose_Coupling=false.

	
SesWt=session_wait_limit

	
Specifies the number of seconds Oracle Database waits for a transaction branch that is being used by another session before XA_RETRY is returned. The default value is 60 seconds.

	
Threads=true | false

	
Specifies whether the application is multithreaded. The default value is false. If the application is multithreaded, then the setting is true.

Using Oracle XA with Precompilers

When used in an Oracle XA application, cursors are valid only for the duration of the transaction. Explicit cursors must be opened after the transaction begins, and closed before the commit or rollback.

You have these options when interfacing with precompilers:

	
Using Precompilers with the Default Database

	
Using Precompilers with a Named Database

The examples in this topic use the precompiler Pro*C/C++.

Using Precompilers with the Default Database

To interface to a precompiler with the default database, ensure that the DB=db_name field used in the open string is not present. The absence of this field indicates the default connection. Only one default connection is allowed for each process.

This is an example of an open string identifying a default Pro*C/C++ connection:

ORACLE_XA+SqlNet=maildb+ACC=P/username/password
 +SesTM=10+LogDir=/usr/local/logs

The DB=db_name is absent, indicating an empty database ID string.

The syntax of a SQL statement is:

EXEC SQL UPDATE Emp_tab SET Sal = Sal*1.5;

Using Precompilers with a Named Database

To interface to a precompiler with a named database, include the DB=db_name field in the open string. Any database you refer to must reference the same db_name you specified in the corresponding open string.

An application might include the default database and one or more named databases. For example, suppose you want to update an employee's salary in one database, his department number (DEPTNO) in another, and his manager in a third database. Configure the open strings in the transaction manager as shown in Example 15-2.

Example 15-2 Sample Open String Configuration

ORACLE_XA+DB=MANAGERS+SqlNet=SID1+ACC=P/username/password
 +SesTM=10+LogDir=/usr/local/xalog
ORACLE_XA+DB=PAYROLL+SqlNet=SID2+ACC=P/username/password
 +SesTM=10+LogDir=/usr/local/xalog
ORACLE_XA+SqlNet=SID3+ACC=P/username/password
 +SesTM=10+LogDir=/usr/local/xalog

There is no DB=db_name field in the last open string in Example 15-2.

In the application server program, enter declarations such as:

EXEC SQL DECLARE PAYROLL DATABASE;
EXEC SQL DECLARE MANAGERS DATABASE;

Again, the default connection (corresponding to the third open string that does not contain the DB field) needs no declaration.

When doing the update, enter statements similar to these:

EXEC SQL AT PAYROLL UPDATE Emp_Tab SET Sal=4500 WHERE Empno=7788;
EXEC SQL AT MANAGERS UPDATE Emp_Tab SET Mgr=7566 WHERE Empno=7788;
EXEC SQL UPDATE Emp_Tab SET Deptno=30 WHERE Empno=7788;

There is no AT clause in the last statement because it is referring to the default database.

In Oracle Database precompilers release 1.5.3 or later, you can use a character host variable in the AT clause, as this example shows:

EXEC SQL BEGIN DECLARE SECTION;
 DB_NAME1 CHARACTER(10);
 DB_NAME2 CHARACTER(10);
EXEC SQL END DECLARE SECTION;
 ...
SET DB_NAME1 = 'PAYROLL'
SET DB_NAME2 = 'MANAGERS'
 ...
EXEC SQL AT :DB_NAME1 UPDATE...
EXEC SQL AT :DB_NAME2 UPDATE...

	
Caution:

Do not have XA applications create connections other than those created through xa_open. Work performed on non-XA connections is outside the global transaction and must be committed separately.

Using Oracle XA with OCI

Oracle Call Interface applications that use the Oracle XA library must not call OCISessionBegin to log on to the resource manager. Rather, the logon must be done through the TPM. The applications can run the function xaoSvcCtx to obtain the service context structure when they must access the resource manager.

In applications that must pass the environment handle to OCI functions, you can also call xaoEnv to find that handle.

Because an application server can have multiple concurrent open Oracle Database resource managers, it must call the function xaoSvcCtx with the correct arguments to obtain the correct service context.

	
See Also:

Oracle Call Interface Programmer's Guide

Managing Transaction Control with Oracle XA

When you use the XA library, transactions are not controlled by the SQL statements that commit or roll back transactions. Rather, they are controlled by an API accepted by the TM that starts and stops transactions. You call the API that is provided by the transaction manager, including the TX interface listed in Table 15-6, but not the XA Library Subprograms listed in Table 15-2.

The TMs typically control the transactions through the XA interface. This interface includes the functions described in Table 15-2.

Table 15-6 TX Interface Functions

	TX Function	Description
	
tx_open

	
Logs into the resource manager(s)

	
tx_close

	
Logs out of the resource manager(s)

	
tx_begin

	
Starts a transaction

	
tx_commit

	
Commits a transaction

	
tx_rollback

	
Rolls back the transaction

Most TPM applications use a client/server architecture in which an application client requests services and an application server provides them. The examples shown in "Examples of Precompiler Applications" use such a client/server model. A service is a logical unit of work that, for Oracle Database as the resource manager, comprises a set of SQL statements that perform a related unit of work.

For example, when a service named "credit" receives an account number and the amount to be credited, it runs SQL statements to update information in certain tables in the database. In addition, a service might request other services. For example, a "transfer fund" service might request services from a "credit" and "debit" service.

Typically, application clients request services from the application servers to perform tasks within a transaction. For some TPM systems, however, the application client itself can offer its own local services. As shown in "Examples of Precompiler Applications", you can encode transaction control statements within either the client or the server.

To have multiple processes participating in the same transaction, the TPM provides a communication API that enables transaction information to flow between the participating processes. Examples of communications APIs include RPC, pseudo-RPC functions, and send/receive functions.

Because the leading vendors support different communication functions, these examples use the communication pseudo-function tpm_service to generalize the communications API.

X/Open includes several alternative methods for providing communication functions in their preliminary specification. At least one of these alternatives is supported by each of the leading TPM vendors.

Examples of Precompiler Applications

These examples illustrate precompiler applications. Assume that the application server has logged onto the RMs system, in a TPM-specific manner. Example 15-3 shows a transaction started by an application server.

Example 15-3 Transaction Started by an Application Server

/***** Client: *****/
tpm_service("ServiceName"); /*Request Service*/

/***** Server: *****/
ServiceName()
{
 <get service specific data>
 tx_begin(); /* Begin transaction boundary */
 EXEC SQL UPDATE ...;

 /* This application server temporarily becomes */
 /* a client and requests another service. */

 tpm_service("AnotherService");
 tx_commit(); /* Commit the transaction */
 <return service status back to the client>
}

Example 15-4 shows a transaction started by an application client.

Example 15-4 Transaction Started by an Application Client

/***** Client: *****/
tx_begin(); /* Begin transaction boundary */
tpm_service("Service1");
tpm_service("Service2");
tx_commit(); /* Commit the transaction */

/***** Server: *****/
Service1()
{
 <get service specific data>
 EXEC SQL UPDATE ...;
 <return service status back to the client>
}
Service2()
{
 <get service specific data>
 EXEC SQL UPDATE ...;
 ...
 <return service status back to client>
}

Migrating Precompiler or OCI Applications to TPM Applications

To migrate existing precompiler or OCI applications to a TPM application that uses the Oracle XA library, you must:

	
Reorganize the application into a framework of "services" so that application clients request services from application servers. Some TPMs require the application to use the tx_open and tx_close functions, whereas other TPMs do the logon and logoff implicitly.

If you do not specify the SqlNet parameter in your open string, then the application uses the default Oracle Net driver. Thus, ensure that the application server is brought up with the ORACLE_HOME and ORACLE_SID environment variables properly defined. This is accomplished in a TPM-specific fashion. See your TPM vendor documentation for instructions on how to accomplish this.

	
Ensure that the application replaces the regular connect and disconnect statements. For example, replace the connect statements EXEC SQL CONNECT (for precompilers) or OCISessionBegin, OCIServerAttach, and OCIEnvCreate (for OCI) with tx_open. Replace the disconnect statements EXEC SQL COMMIT/ROLLBACK WORK RELEASE (for precompilers) or OCISessionEnd/OCIServerDetach (for OCI) with tx_close.

	
Ensure that the application replaces the regular commit or rollback statements for any global transactions and begins the transaction explicitly.

For example, replace the COMMIT/ROLLBACK statements EXEC SQL COMMIT/ROLLBACK WORK (for precompilers), or OCITransCommit/OCITransRollback (for OCI) with tx_commit/tx_rollback and start the transaction by calling tx_begin.

	
Note:

The preceding is only true for global rather than local transactions. Commit or roll back local transactions with the Oracle API.

	
Ensure that the application resets the fetch state before ending a transaction. In general, use release_cursor=no. Use release_cursor=yes only when you are certain that a statement will run only once.

Table 15-7 lists the TPM functions that replace regular Oracle Database statements when migrating precompiler or OCI applications to TPM applications.

Table 15-7 TPM Replacement Statements

	Regular Oracle Database Statements	TPM Functions
	
CONNECTuser/password

	
tx_open (possibly implicit)

	
implicit start of transaction

	
tx_begin

	
SQL

	
Service that runs the SQL

	
COMMIT

	
tx_commit

	
ROLLBACK

	
tx_rollback

	
disconnect

	
tx_close (possibly implicit)

Managing Oracle XA Library Thread Safety

If you use a transaction monitor that supports threads, then the Oracle XA library enables you to write applications that are thread-safe. Nevertheless, keep certain issues in mind.

A thread of control (or thread) refers to the set of connections to resource managers. In an nonthreaded system, each process is considered a thread of control because each process has its own set of connections to RMs and maintains its own independent resource manager table. In a threaded system, each thread has an autonomous set of connections to RMs and each thread maintains a private RM table. This private table must be allocated for each thread and de-allocated when the thread terminates, even if the termination is abnormal.

	
Note:

In Oracle Database, each thread that accesses the database must have its own connection.

Topics:

	
Specifying Threading in the Open String

	
Restrictions on Threading in Oracle XA

Specifying Threading in the Open String

The xa_open string provides the clause Threads=. You must specify this clause as true to enable the use of threads by the TM. The default is false. In most cases, the TM creates the threads; the application does not know when a thread is created. Therefore, it is advisable to allocate a service context on the stack within each service that is written for a TM application. Before doing any Oracle Database-related calls in that service, you must call the xaoSvcCtx function to retrieve the initialized OCI service context. You can then use this context for OCI calls within the service.

Restrictions on Threading in Oracle XA

These restrictions apply when using threads:

	
Any Pro* or OCI code that runs as part of the application server process on the transaction monitor cannot be threaded unless the transaction monitor is explicitly told when each application thread is started. This is typically accomplished by using a special C compiler provided by the TM vendor.

	
The Pro* statements EXEC SQL ALLOCATE and EXEC SQL USE are not supported. Therefore, when threading is enabled, you cannot use embedded SQL statements across non-XA connections.

	
If one thread in a process connects to Oracle Database through XA, then all other threads in the process that connect to Oracle Database must also connect through XA. You cannot connect through EXEC SQL CONNECT in one thread and through xa_open in another thread.

Using the DBMS_XA Package

PL/SQL applications can use the Oracle XA library with the DBMS_XA package. For information about this package, see Oracle Database PL/SQL Packages and Types Reference.

In Example 15-5, one PL/SQL session starts a transaction but does not commit it, a second session resumes the transaction, and a third session commits the transaction. All three sessions are connected to the HR schema.

Example 15-5 Using the DBMS_XA Package

REM Session 1 starts a transaction and does some work.
DECLARE
 rc PLS_INTEGER;
 oer PLS_INTEGER;
 xae EXCEPTION;
BEGIN
 rc := DBMS_XA.XA_START(DBMS_XA_XID(123), DBMS_XA.TMNOFLAGS);

 IF rc!=DBMS_XA.XA_OK THEN
 oer := DBMS_XA.XA_GETLASTOER();
 DBMS_OUTPUT.PUT_LINE('ORA-' || oer || ' occurred, XA_START failed');
 RAISE xae;
 ELSE DBMS_OUTPUT.PUT_LINE('XA_START(new xid=123) OK');
 END IF;

 UPDATE employees SET salary=salary*1.1 WHERE employee_id = 100;
 rc := DBMS_XA.XA_END(DBMS_XA_XID(123), DBMS_XA.TMSUSPEND);

 IF rc!=DBMS_XA.XA_OK THEN
 oer := DBMS_XA.XA_GETLASTOER();
 DBMS_OUTPUT.PUT_LINE('ORA-' || oer || ' occurred, XA_END failed');
 RAISE xae;
 ELSE DBMS_OUTPUT.PUT_LINE('XA_END(suspend xid=123) OK');
 END IF;

 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE
 ('XA error('||rc||') occurred, rolling back the transaction ...');
 rc := DBMS_XA.XA_END(DBMS_XA_XID(123), DBMS_XA.TMSUCCESS);
 rc := DBMS_XA.XA_ROLLBACK(DBMS_XA_XID(123));

 IF rc != DBMS_XA.XA_OK THEN
 oer := DBMS_XA.XA_GETLASTOER();
 DBMS_OUTPUT.PUT_LINE('XA-'||rc||', ORA-' || oer ||
 ' XA_ROLLBACK does not return XA_OK');
 raise_application_error(-20001, 'ORA-'||oer||
 ' error in rolling back a failed transaction');
 END IF;

 raise_application_error(-20002, 'ORA-'||oer||
 ' error in transaction processing, transaction rolled back');
END;
/
SHOW ERRORS
DISCONNECT

REM Session 2 resumes the transaction and does some work.
DECLARE
 rc PLS_INTEGER;
 oer PLS_INTEGER;
 s NUMBER;
 xae EXCEPTION;
BEGIN
 rc := DBMS_XA.XA_START(DBMS_XA_XID(123), DBMS_XA.TMRESUME);

 IF rc!=DBMS_XA.XA_OK THEN
 oer := DBMS_XA.XA_GETLASTOER();
 DBMS_OUTPUT.PUT_LINE('ORA-' || oer || ' occurred, xa_start failed');
 RAISE xae;
 ELSE DBMS_OUTPUT.PUT_LINE('XA_START(resume xid=123) OK');
 END IF;

 SELECT salary INTO s FROM employees WHERE employee_id = 100;
 DBMS_OUTPUT.PUT_LINE('employee_id = 100, salary = ' || s);
 rc := DBMS_XA.XA_END(DBMS_XA_XID(123), DBMS_XA.TMSUCCESS);

 IF rc!=DBMS_XA.XA_OK THEN
 oer := DBMS_XA.XA_GETLASTOER();
 DBMS_OUTPUT.PUT_LINE('ORA-' || oer || ' occurred, XA_END failed');
 RAISE xae;
 ELSE DBMS_OUTPUT.PUT_LINE('XA_END(detach xid=123) OK');
 END IF;

 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE
 ('XA error('||rc||') occurred, rolling back the transaction ...');
 rc := DBMS_XA.XA_END(DBMS_XA_XID(123), DBMS_XA.TMSUCCESS);
 rc := DBMS_XA.XA_ROLLBACK(DBMS_XA_XID(123));

 IF rc != DBMS_XA.XA_OK THEN
 oer := DBMS_XA.XA_GETLASTOER();
 DBMS_OUTPUT.PUT_LINE('XA-'||rc||', ORA-' || oer ||
 ' XA_ROLLBACK does not return XA_OK');
 raise_application_error(-20001, 'ORA-'||oer||
 ' error in rolling back a failed transaction');
 END IF;

 raise_application_error(-20002, 'ORA-'||oer||
 ' error in transaction processing, transaction rolled back');
END;
/
SHOW ERRORS
DISCONNECT

REM Session 3 commits the transaction.
DECLARE
 rc PLS_INTEGER;
 oer PLS_INTEGER;
 xae EXCEPTION;
BEGIN
 rc := DBMS_XA.XA_COMMIT(DBMS_XA_XID(123), TRUE);

 IF rc!=DBMS_XA.XA_OK THEN
 oer := DBMS_XA.XA_GETLASTOER();
 DBMS_OUTPUT.PUT_LINE('ORA-' || oer || ' occurred, XA_COMMIT failed');
 RAISE xae;
 ELSE DBMS_OUTPUT.PUT_LINE('XA_COMMIT(commit xid=123) OK');
 END IF;

 EXCEPTION
 WHEN xae THEN
 DBMS_OUTPUT.PUT_LINE
 ('XA error('||rc||') occurred, rolling back the transaction ...');
 rc := DBMS_XA.XA_ROLLBACK(DBMS_XA_XID(123));

 IF rc != DBMS_XA.XA_OK THEN
 oer := DBMS_XA.XA_GETLASTOER();
 DBMS_OUTPUT.PUT_LINE('XA-'||rc||', ORA-' || oer ||
 ' XA_ROLLBACK does not return XA_OK');
 raise_application_error(-20001, 'ORA-'||oer||
 ' error in rolling back a failed transaction');
 END IF;

 raise_application_error(-20002, 'ORA-'||oer||
 ' error in transaction processing, transaction rolled back');
END;
/
SHOW ERRORS
DISCONNECT
QUIT

Troubleshooting XA Applications

Topics:

	
Accessing Oracle XA Trace Files

	
Managing In-Doubt or Pending Oracle XA Transactions

	
Using SYS Account Tables to Monitor Oracle XA Transactions

Accessing Oracle XA Trace Files

The Oracle XA library logs any error and tracing information to its trace file. This information is useful in supplementing the XA error codes. For example, it can indicate whether an xa_open failure is caused by an incorrect open string, failure to find the Oracle Database instance, or a logon authorization failure.

The name of the trace file is xa_db_namedate.trc, where db_name is the database name specified in the open string field DB=db_name, and date is the date when the information is logged to the trace file. If you do not specify DB=db_name in the open string, then it automatically defaults to NULL.

For example, xa_NULL06022005.trc indicates a trace file that was created on June 2, 2005. Its DB field was not specified in the open string when the resource manager was opened. The filename xa_Finance12152004.trc indicates a trace file was created on December 15, 2004. Its DB field was specified as "Finance" in the open string when the resource manager was opened.

	
Note:

Multiple Oracle XA library resource managers with the same DB field and LogDir field in their open strings log all trace information that occurs on the same day to the same trace file.

Suppose that a trace file contains these contents:

1032.12345.2: ORA-01017: invalid username/password; logon denied
1032.12345.2: xaolgn: XAER_INVAL; logon denied

Table 15-8 explains the meaning of each element.

Table 15-8 Sample Trace File Contents

	String	Description
	
1032

	
The time when the information is logged.

	
12345

	
The process ID (PID).

	
2

	
Resource manager ID

	
xaolgn

	
Name of module

	
XAER_INVAL

	
Error returned as specified in the XA standard

	
ORA-01017

	
Oracle Database information that was returned

Topics:

	
xa_open String DbgFl

	
Trace File Locations

xa_open String DbgFl

Normally, the XA trace file is opened only if an error is detected. The xa_open string DbgFl provides a tracing facility to record additional detail about the XA library. By default, its value is zero. You can set it to any combination of these values:

	
0x1, which enables you to trace the entry and exit to each subprogram in the XA interface. This value can be useful in seeing exactly which XA calls the TP Monitor is making and which transaction identifier it is generating.

	
0x2, which enables you to trace the entry to and exit from other nonpublic XA library programs. This is generally of use only to Oracle Database developers.

	
0x4, which enables you to trace various other "interesting" calls made by the XA library, such as specific calls to the OCI. This is generally of use only to Oracle Database developers.

	
Note:

The flags are independent bits of an ub4, so to obtain printout from two or more flags, you must set a combined value of the flags.

Trace File Locations

The XA application determines a location for the trace file according to this algorithm:

	
The LogDir directory specified in the open string.

	
If you do not specify LogDir in the open string, then the Oracle XA application attempts to create the trace file in this directory (if the Oracle home is accessible):

	
%ORACLE_HOME%\rdbms\trace on Windows

	
$ORACLE_HOME/rdbms/log on Linux and UNIX

	
If the Oracle XA application cannot determine where the Oracle home is located, then the application creates the trace file in the current working directory.

Managing In-Doubt or Pending Oracle XA Transactions

In-doubt or pending transactions are transactions that were prepared but not committed to the database. In general, the TM provided by the TPM system resolves any failure and recovery of in-doubt or pending transactions. The DBA might have to override an in-doubt transaction if these situations occur:

	
It is locking data that is required by other transactions.

	
It is not resolved in a reasonable amount of time.

See the TPM documentation for more information about overriding in-doubt transactions in such circumstances and about how to decide whether to commit or roll back the in-doubt transaction.

Using SYS Account Tables to Monitor Oracle XA Transactions

These views under the Oracle Database SYS account contain transactions generated by regular Oracle Database applications and Oracle XA applications:

	
DBA_PENDING_TRANSACTIONS

	
V$GLOBAL_TRANSACTION

	
DBA_2PC_PENDING

	
DBA_2PC_NEIGHBORS

For transactions generated by Oracle XA applications, this column information applies specifically to the DBA_2PC_NEIGHBORS table:

	
The DBID column is always xa_orcl

	
The DBUSER_OWNER column is always db_namexa.oracle.com

Remember that the db_name is always specified as DB=db_name in the open string. If you do not specify this field in the open string, then the value of this column is NULLxa.oracle.com for transactions generated by Oracle XA applications.

For example, this SQL statement provide more information about in-doubt transactions generated by Oracle XA applications:

SELECT *
FROM DBA_2PC_PENDING p, DBA_2PC_NEIGHBORS n
WHERE p.LOCAL_TRAN_ID = n.LOCAL_TRAN_ID
AND n.DBID = 'xa_orcl';

Alternatively, if you know the format ID used by the transaction processing monitor, then you can use DBA_PENDING_TRANSACTIONS or V$GLOBAL_TRANSACTION. Whereas DBA_PENDING_TRANSACTIONS gives a list of prepared transactions, V$GLOBAL_TRANSACTION provides a list of all active global transactions.

Oracle XA Issues and Restrictions

Topics:

	
Using Database Links in Oracle XA Applications

	
Managing Transaction Branches in Oracle XA Applications

	
Using Oracle XA with Oracle Real Application Clusters (Oracle RAC)

	
SQL-Based Oracle XA Restrictions

	
Miscellaneous Restrictions

Using Database Links in Oracle XA Applications

Oracle XA applications can access other Oracle Database instances through database links with these restrictions:

	
They must use the shared server configuration.

The transaction processing monitors (TPMs) use shared servers to open the connection to an Oracle Database A. Then the operating system network connection required for the database link is opened by the dispatcher instead of a dedicated server process. This allows different services or threads to operate on the transaction.

If this restriction is not satisfied, then when you use database links within an XA transaction, it creates an operating system network connection between the dedicated server process and the other Oracle Database B. Because this network connection cannot be moved from one dedicated server process to another, you cannot detach from this dedicated server process of database A. Then when you access the database B through a database link, you receive an ORA-24777 error.

	
The other database being accessed must be another Oracle Database.

If these restrictions are satisfied, Oracle Database allows such links and propagates the transaction protocol (prepare, rollback, and commit) to the other Oracle Database instances.

If using the shared server configuration is not possible, then access the remote database through the Pro*C/C++ application by using EXEC SQL AT syntax.

The init.ora parameter OPEN_LINKS_PER_INSTANCE specifies the number of open database link connections that can be migrated. These dblink connections are used by XA transactions so that the connections are cached after a transaction is committed. Another transaction can use the database link connection if the user who created the connection also created the transaction. This parameter is different from the init.ora parameter OPEN_LINKS, which specifies the maximum number of concurrent open connections (including database links) to remote databases in one session. The OPEN_LINKS parameter does not apply to XA applications.

Managing Transaction Branches in Oracle XA Applications

Oracle Database transaction branches within the same global transaction can be coupled tightly or loosely. If the transaction branches are tightly coupled, then they share locks. Consequently, pre-COMMIT updates in one transaction branch are visible in other branches that belong to the same global transaction. In loosely coupled transaction branches, the branches do not share locks and do not see updates in other branches.

In a tightly coupled branch, Oracle Database obtains the DX lock before running any statement. Because the system does not obtain a lock before running the statement, loosely coupled transaction branches result in greater concurrency. The disadvantage is that all transaction branches must go through the two phases of commit, that is, the system cannot use XA one-phase optimization.

Table 15-9 summarizes the trade-offs between tightly coupled branches and loosely coupled branches.

Table 15-9 Tightly and Loosely Coupled Transaction Branches

	Attribute	Tightly Coupled Branches	Loosely Coupled Branches
	
Two Phase Commit

	
Read-only optimization

[prepare for all branches, commit for last branch]

	
Two phases

[prepare and commit for all branches]

	
Serialization

	
Database call

	
None

Using Oracle XA with Oracle Real Application Clusters (Oracle RAC)

As of Oracle Database 11g Release 1, an XA transaction can span Oracle RAC instances, allowing any application that uses XA to take full advantage of the Oracle RAC environment, enhancing the availability and scalability of the application.

	
Note:

External procedure callouts combined with distributed transactions is not supported.

Topics:

	
GLOBAL_TXN_PROCESSES Initialization Parameter

	
Managing Transaction Branches on Oracle RAC

	
Managing Instance Recovery in Oracle RAC with DTP Services

	
Global Uniqueness of XIDs in Oracle RAC

	
Tight and Loose Coupling

GLOBAL_TXN_PROCESSES Initialization Parameter

The initialization parameter GLOBAL_TXN_PROCESSES specifies the initial number of GTXn background processes for each Oracle RAC instance. Its default value is 1.

Leave this parameter at its default value clusterwide if distributed transactions might span multiple Oracle RAC instances. This allows the units of work performed across these Oracle RAC instances to share resources and act as a single transaction (that is, the units of work are tightly coupled). It also allows 2PC requests to be sent to any node in the cluster.

	
See Also:

Oracle Database Reference for more information about GLOBAL_TXN_PROCESSES

Managing Transaction Branches on Oracle RAC

	
Note:

This topic applies if either of the following is true:
	
The initialization parameter GLOBAL_TXN_PROCESSES is not at its default value in the initialization file of every Oracle RAC instance.

	
The Oracle XA application resumes or joins previously detached branches of a transaction.

Oracle Database permits different instances to operate on different transaction branches in Oracle RAC. For example, Node 1 can operate on branch A while Node 2 operates on branch B. Before Oracle Database 11g Release 1, if transaction branches were on different instances, then they were loosely coupled and did not share locks. In this case, Oracle Database treated different units of work in different application threads as separate entities that did not share resources.

A different case is when multiple instances operate on a single transaction branch. For example, assume that a single transaction lands on Node 1 and Node 2 as follows:

Node 1

	
xa_start

	
SQL operations

	
xa_end (SUSPEND)

Node 2

	
xa_start (RESUME)

	
xa_prepare

	
xa_commit

	
xa_end

In the immediately preceding sequence, Oracle Database returns an error because Node 2 must not resume a branch that is physically located on a different node (Node 1).

Before Oracle Database 11g Release 1, the way to achieve tight coupling in Oracle RAC was to use Distributed Transaction Processing (DTP) services, that is, services whose cardinality (one) ensured that all tightly-coupled branches landed on the same instance—regardless of whether load balancing was enabled. Middle-tier components addressed Oracle Database through a common logical database service name that mapped to a single Oracle RAC instance at any point in time. An intermediate name resolver for the database service hid the physical characteristics of the database instance. DTP services enabled all participants of a tightly-coupled global transaction to create branches on one instance.

As of Oracle Database 11g Release 1, the DTP service is no longer required to support XA transactions with tightly coupled branches. By default, tightly coupled branches that land on different Oracle RAC instances remain tightly coupled; that is, they share locks and resources across Oracle RAC instances.

For example, when you use a DTP service, this sequence of actions occurs on the same instance:

	
xa_start

	
SQL operations

	
xa_end (SUSPEND)

	
xa_start (RESUME)

	
SQL operations

	
xa_prepare

	
xa_commit or xa_rollback

Moreover, multiple tightly-coupled branches land on the same instance if each addresses the Oracle RM with the same DTP service.

To leverage all instances in the cluster, create multiple DTP services, with one or more on each node that hosts distributed transactions. All branches of a global distributed transaction exist on the same instance. Thus, you can leverage all instances and nodes of an Oracle RAC cluster to balance the load of many distributed XA transactions, thereby maximizing application throughput.

	
See Also:

Oracle Real Application Clusters Administration and Deployment Guide to learn how to manage distributed transactions in a Real Application Clusters configuration

Managing Instance Recovery in Oracle RAC with DTP Services

Before Oracle Database 10g Release 2, TM was responsible for detecting failure and triggering failover and failback in Oracle RAC. To ensure that information about in-doubt transactions was propagated to DBA_2PC_PENDING, TM had to call xa_recover before resolving the in-doubt transactions. If an instance failed, then the XA client library could not fail over to another instance until it had run theSYS.DBMS_XA.DIST_TXN_SYNC procedure to ensure that the undo segments of the failed instance were recovered. As of Oracle Database 10g Release 2, there is no such requirement to call xa_recover in cases where the TM has enough information about in-flight transactions.

	
Note:

As of Oracle Database 9g Release 2, xa_recover is required to wait for distributed data manipulation language (DML) statements to complete on remote sites.

Using DTP services in Oracle RAC has these benefits:

	
Automates instance failure detection.

	
Automates instance failover and failback. When an instance fails, the DTP service hosted on this instance fails over to another instance. The failover forces clients to reconnect; nevertheless, the logical names for the service remain the same. Failover is automatic and does not require an administrator intervention. The administrator can induce failback by a service relocate statement, but all failback-related recovery is automatically handled within the database server.

	
Enables Oracle Database rather than the client to drive instance recovery. The database does not require middle-tier TM involvement to determine the state of transactions prepared by other instances.

	
See Also:

	
Oracle Real Application Clusters Administration and Deployment Guide to learn how to manage instance recovery

	
Oracle Real Application Clusters Administration and Deployment Guide for information about services and distributed transaction processing in Oracle RAC

Global Uniqueness of XIDs in Oracle RAC

Before Oracle Database 11g Release 1, Oracle RAC database cannot determine whether a given XID is unique for XA transactions throughout the cluster.

For example, suppose that there is an XID Fmt(x).Tx(1).Br(1) on Oracle RAC instance 1 and another XID Fmt(x).Tx(1).Br(1) on Oracle RAC instance 2. Each of these can start a branch and run SQL even though the XID is not unique across Oracle RAC instances.

As of Oracle Database 11g Release 1, Oracle RAC database detects the duplicate XIDs across Oracle RAC instances and prevents a branch with a duplicate XID from starting.

	
See Also:

Oracle Real Application Clusters Administration and Deployment Guide for information about services and distributed transaction processing in Oracle RAC

Tight and Loose Coupling

Oracle Database transaction branches within the same global transaction can be coupled either tightly or loosely (for details, see "Managing Transaction Branches in Oracle XA Applications"). Ordinarily, coupling type is determined by the value of the Loose_Coupling field of the xa_open string (see Table 15-5). However, if branches land on different Oracle RAC instances when running Oracle RAC, then they are loosely coupled even if Loose_Coupling=false.

	
See Also:

Oracle Real Application Clusters Administration and Deployment Guide for information about services and distributed transaction processing in Oracle RAC

SQL-Based Oracle XA Restrictions

This section describes restrictions concerning these SQL operations:

	
Rollbacks and Commits

	
DDL Statements

	
Session State

	
EXEC SQL

Rollbacks and Commits

Because the transaction manager is responsible for coordinating and monitoring the progress of the global transaction, the application must not contain any Oracle Database-specific statement that independently rolls back or commits a global transaction. However, you can use rollbacks and commits in a local transaction.

Do not use EXEC SQL ROLLBACK WORK for precompiler applications when you are in the middle of a global transaction. Similarly, an OCI application must not run OCITransRollback, or the Version 7 equivalent orol. You can roll back a global transaction by calling tx_rollback.

Similarly, a precompiler application must not have the EXEC SQL COMMIT WORK statement in the middle of a global transaction. An OCI application must not run OCITransCommit or the Version 7 equivalent ocom. For example, use tx_commit or tx_rollback to end a global transaction.

DDL Statements

Because a data definition language (DDL) statement, such as CREATE TABLE, implies an implicit commit, the Oracle XA application cannot run any DDL statements.

Session State

Oracle Database does not guarantee that session state is valid between TPM services. For example, if a TPM service updates a session variable (such as a global package variable), then another TPM service that runs as part of the same global transaction might not see the change. Use savepoints only within a TPM service. The application must not refer to a savepoint that was created in another TPM service. Similarly, an application must not attempt to fetch from a cursor that was executed in another TPM service.

EXEC SQL

Do not use the EXEC SQL statement to connect or disconnect. That is, do not use EXEC SQL CONNECT, EXEC SQL COMMIT WORK RELEASE or EXEC SQL ROLLBACK WORK RELEASE.

Miscellaneous Restrictions

	
You cannot use both Oracle XA and a gateway in the same session.

	
Oracle Database does not support association migration (a means whereby a transaction manager might resume a suspended branch association in another branch).

	
The optional XA feature asynchronous XA calls is not supported.

	
Set the TRANSACTIONS initialization parameter to the expected number of concurrent global transactions. The initialization parameter OPEN_LINKS_PER_INSTANCE specifies the number of open database link connections that can be migrated. These database link connections are used by XA transactions so that the connections are cached after a transaction is committed.

	
See Also:

"Using Database Links in Oracle XA Applications"

	
The maximum number of xa_open calls for each thread is 32.

	
When building an XA application based on TP-monitor, ensure that the TP-monitors libraries (that define the symbols ax_reg and ax_unreg) are placed in the link line before Oracle Database's client shared library. If your platform does not support shared libraries or if your linker is not sensitive to ordering of libraries in the link line, use Oracle Database's nonshared client library. These link restrictions are applicable only when using XA's dynamic registration (Oracle XA switch xaoswd).

16 Developing Applications with the Publish-Subscribe Model

This chapter explains how to develop applications on the publish-subscribe model.

Topics:

	
Introduction to the Publish-Subscribe Model

	
Publish-Subscribe Architecture

	
Publish-Subscribe Concepts

	
Examples of a Publish-Subscribe Mechanism

Introduction to the Publish-Subscribe Model

Because the database is the most significant resource of information within the enterprise, Oracle created a publish-subscribe solution for enterprise information delivery and messaging to complement this role.

Networking technologies and products enable a high degree of connectivity across a large number of computers, applications, and users. In these environments, it is important to provide asynchronous communications for the class of distributed systems that operate in a loosely-coupled and autonomous fashion, and which require operational immunity from network failures. This requirement is filled by various middleware products that are characterized as messaging, message-oriented middleware (MOM), message queuing, or publish-subscribe.

Applications that communicate through a publish and subscribe paradigm require the sending applications (publishers) to publish messages without explicitly specifying recipients or having knowledge of intended recipients. Similarly, receiving applications (subscribers) must receive only those messages that the subscriber has registered an interest in.

This decoupling between senders and recipients is usually accomplished by an intervening entity between the publisher and the subscriber, which serves as a level of indirection. This intervening entity is a queue that represents a subject or channel. Figure 16-1 illustrates publish and subscribe functionality.

Figure 16-1 Oracle Publish-Subscribe Functionality

[image: Description of Figure 16-1 follows]

A subscriber subscribes to a queue by expressing interest in messages enqueued to that queue and by using a subject- or content-based rule as a filter. This results in a set of rule-based subscriptions associated with a given queue.

At run time, publishers post messages to various queues. The queue (in other words, the delivery mechanisms of the underlying infrastructure) then delivers messages that match the various subscriptions to the appropriate subscribers.

Publish-Subscribe Architecture

Oracle Database includes these features to support database-enabled publish-subscribe messaging:

	
Database Events

	
Oracle Advanced Queuing

	
Client Notification

Database Events

Database events support declarative definitions for publishing database events, detection, and runtime publication of such events. This feature enables active publication of information to end-users in an event-driven manner, to complement the traditional pull-oriented approaches to accessing information.

	
See Also:

Oracle Database PL/SQL Language Reference

Oracle Advanced Queuing

Oracle Advanced Queuing (AQ) supports a queue-based publish-subscribe paradigm. Database queues serve as a durable store for messages, along with capabilities to allow publish and subscribe based on queues. A rules-engine and subscription service dynamically route messages to recipients based on expressed interest. This allows decoupling of addressing between senders and receivers to complement the existing explicit sender-receiver message addressing.

	
See Also:

Oracle Streams Advanced Queuing User's Guide

Client Notification

Client notifications support asynchronous delivery of messages to interested subscribers, enabling database clients to register interest in certain queues, and it enables these clients to receive notifications when publications on such queues occur. Asynchronous delivery of messages to database clients is in contrast to the traditional polling techniques used to retrieve information.

	
See Also:

Oracle Call Interface Programmer's Guide

Publish-Subscribe Concepts

queue

A queue is an entity that supports the notion of named subjects of interest. Queues can be characterized as persistent or nonpersistent (lightweight).

A persistent queue serves as a durable container for messages. Messages are delivered in a deferred and reliable mode.

The underlying infrastructure of a nonpersistent, or lightweight, queue pushes the messages published to connected clients in a lightweight, at-best-once, manner.

agent

Publishers and subscribers are internally represented as agents.

An agent is a persistent logical subscribing entity that expresses interest in a queue through a subscription. An agent has properties, such as an associated subscription, an address, and a delivery mode for messages. In this context, an agent is an electronic proxy for a publisher or subscriber.

client

A client is a transient physical entity. The attributes of a client include the physical process where the client programs run, the node name, and the client application logic. Several clients can act on behalf of a single agent. The same client, if authorized, can act on behalf of multiple agents.

rule on a queue

A rule on a queue is specified as a conditional expression using a predefined set of operators on the message format attributes or on the message header attributes. Each queue has an associated message content format that describes the structure of the messages represented by that queue. The message format may be unstructured (RAW) or it may have a well-defined structure (ADT). This allows both subject- or content-based subscriptions.

subscriber

Subscribers (agents) may specify subscriptions on a queue using a rule. Subscribers are durable and are stored in a catalog.

database event publication framework

The database represents a significant source for publishing information. An event framework is proposed to allow declarative definition of database event publication. As these pre-defined events occur, the framework detects and publishes such events. This allows active delivery of information to end-users in an event-driven manner as part of the publish-subscribe capability.

registration

Registration is the process of associated delivery information by a given client, acting on behalf of an agent. There is an important distinction between the subscription and registration related to the agent/client separation.

Subscription indicates an interest in a particular queue by an agent. It does not specify where and how delivery must occur. Delivery information is a physical property that is associated with a client, and it is a transient manifestation of the logical agent (the subscriber). A specific client process acting on behalf of an agent registers delivery information by associating a host and port, indicating where the delivery is to be done, and a callback, indicating how there delivery is to be done.

publishing a message

Publishers publish messages to queues by using the appropriate queuing interfaces. The interfaces may depend on which model the queue is implemented on. For example, an enqueue call represents the publishing of a message.

rules engine

When a message is posted or published to a given queue, a rules engine extracts the set of candidate rules from all rules defined on that queue that match the published message.

subscription services

Corresponding to the list of candidate rules on a given queue, the set of subscribers that match the candidate rules can be evaluated. In turn, the set of agents corresponding to this subscription list can be determined and notified.

posting

The queue notifies all registered clients of the appropriate published messages. This concept is called posting. When the queue must notify all interested clients, it posts the message to all registered clients.

receiving a message

A subscriber may receive messages through any of these mechanisms:

	
A client process acting on behalf of the subscriber specifies a callback using the registration mechanism. The posting mechanism then asynchronously invokes the callback when a message matches the subscriber's subscription. The message content may be passed to the callback function (nonpersistent queues only).

	
A client process acting on behalf of the subscriber specifies a callback using the registration mechanism. The posting mechanism then asynchronously invokes the callback function, but without the full message content. This serves as a notification to the client, which subsequently retrieves the message content in a pull fashion (persistent queues only).

	
A client process acting on behalf of the subscriber simply retrieves messages from the queue in a periodic, or some other appropriate, manner. While the messages are deferred, there is no asynchronous delivery to the end-client.

Examples of a Publish-Subscribe Mechanism

This example shows how database events, client notification, and AQ work to implement publish-subscribe.

	
Create under the user schema, pubsub, with all objects necessary to support a publish-subscribe mechanism. In this particular code, the Agent snoop subscribe to messages that are published at logon events. To use AQ functionality, user pubsub needs AQ_ADMINISTRATOR_ROLE privileges and EXECUTE privilege on DBMS_AQ and DBMS_AQADM.

Rem --
REM create queue table for persistent multiple consumers:
Rem --

Rem Create or replace a queue table
BEGIN
DBMS_AQADM.CREATE_QUEUE_TABLE(
 Queue_table => 'Pubsub.Raw_msg_table',
 Multiple_consumers => TRUE,
 Queue_payload_type => 'RAW',
 Compatible => '8.1');
END;
/
Rem --
Rem Create a persistent queue for publishing messages:
Rem --

Rem Create a queue for logon events
BEGIN
 DBMS_AQADM.CREATE_QUEUE(
 Queue_name => 'Pubsub.Logon',
 Queue_table => 'Pubsub.Raw_msg_table',
 Comment => 'Q for error triggers');
END;
/

Rem --
Rem Start the queue:
Rem --

BEGIN
 DBMS_AQADM.START_QUEUE('pubsub.logon');
END;
/

Rem --
Rem define new_enqueue for convenience:
Rem --

CREATE OR REPLACE PROCEDURE New_enqueue(
 Queue_name IN VARCHAR2,
 Payload IN RAW ,
 Correlation IN VARCHAR2 := NULL,
 Exception_queue IN VARCHAR2 := NULL)
AS

Enq_ct DBMS_AQ.Enqueue_options_t;
Msg_prop DBMS_AQ.Message_properties_t;
Enq_msgid RAW(16);
Userdata RAW(1000);

BEGIN
 Msg_prop.Exception_queue := Exception_queue;
 Msg_prop.Correlation := Correlation;
 Userdata := Payload;

DBMS_AQ.ENQUEUE(Queue_name, Enq_ct, Msg_prop, Userdata, Enq_msgid);
END;
/

Rem --
Rem add subscriber with rule based on current user name,
Rem using correlation_id
Rem --

DECLARE
Subscriber Sys.Aq$_agent;
BEGIN
 Subscriber := sys.aq$_agent('SNOOP', NULL, NULL);
DBMS_AQADM.ADD_SUBSCRIBER(
 Queue_name => 'Pubsub.logon',
 Subscriber => subscriber,
 Rule => 'CORRID = ''HR'' ');
END;
/

Rem --
Rem create a trigger on logon on database:
Rem --

Rem create trigger on after logon:
CREATE OR REPLACE TRIGGER pubsub.Systrig2
 AFTER LOGON
 ON DATABASE
 BEGIN
 New_enqueue('Pubsub.Logon', HEXTORAW('9999'), Dbms_standard.login_user);
 END;
/

	
After subscriptions are created, the next step is for the client to register for notification using callback functions. This is done using the Oracle Call Interface (OCI). This code performs necessary steps for registration. The initial steps of allocating and initializing session handles are omitted here for sake of clarity:

ub4 namespace = OCI_SUBSCR_NAMESPACE_AQ;

/* callback function for notification of logon of user 'HR' on database: */

ub4 notifySnoop(ctx, subscrhp, pay, payl, desc, mode)
dvoid *ctx;
OCISubscription *subscrhp;
dvoid *pay;
ub4 payl;
dvoid *desc;
ub4 mode;
{
 printf("Notification : User HR Logged on\n");
}

int main()
{
 OCISession *authp = (OCISession *) 0;
 OCISubscription *subscrhpSnoop = (OCISubscription *)0;

 /***
 Initialize OCI Process/Environment
 Initialize Server Contexts
 Connect to Server
 Set Service Context
 **/

 /* Registration Code Begins */

 /* Each call to initSubscriptionHn allocates
 and Initialises a Registration Handle */

 initSubscriptionHn(&subscrhpSnoop, /* subscription handle */
 "ADMIN:PUBSUB.SNOOP", /* subscription name */
 /* <agent_name>:<queue_name> */
 (dvoid*)notifySnoop); /* callback function */

 /***
 The Client Process does not need a live Session for Callbacks
 End Session and Detach from Server
 **/

 OCISessionEnd (svchp, errhp, authp, (ub4) OCI_DEFAULT);

 /* detach from server */
 OCIServerDetach(srvhp, errhp, OCI_DEFAULT);

 while (1) /* wait for callback */
 sleep(1);

}

void initSubscriptionHn (subscrhp,
subscriptionName,
func)

OCISubscription **subscrhp;
char* subscriptionName;
dvoid * func;
{

 /* allocate subscription handle: */

 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)subscrhp,
 (ub4) OCI_HTYPE_SUBSCRIPTION,
 (size_t) 0, (dvoid **) 0);

 /* set subscription name in handle: */

 (void) OCIAttrSet((dvoid *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) subscriptionName,
 (ub4) strlen((char *)subscriptionName),
 (ub4) OCI_ATTR_SUBSCR_NAME, errhp);

 /* set callback function in handle: */

 (void) OCIAttrSet((dvoid *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) func, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_CALLBACK, errhp);

 (void) OCIAttrSet((dvoid *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) 0, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_CTX, errhp);

 /* set namespace in handle: */

 (void) OCIAttrSet((dvoid *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) &namespace, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_NAMESPACE, errhp);

 checkerr(errhp, OCISubscriptionRegister(svchp, subscrhp, 1, errhp,

 OCI_DEFAULT));
}

If user HR logs on to the database, the client is notified, and the call back function notifySnoop is invoked.

17 Using the Identity Code Package

The Identity Code Package is a feature in the Oracle Database that offers tools and techniques to store, retrieve, encode, decode, and translate between various product or identity codes, including Electronic Product Code (EPC), in an Oracle Database. The Identity Code Package provides data types, metadata tables and views, and PL/SQL packages for storing EPC standard RFID tags or new types of RFID tags in a user table.

The Identity Code Package empowers Oracle Database with the knowledge to recognize EPC coding schemes, support efficient storage and component level retrieval of EPC data, and comply with the EPCglobal Tag Data Translation 1.0 (TDT) standard that defines how to decode, encode, and translate between various EPC RFID tag representations.

The Identity Code Package also provides an extensible framework that allows developers to use pre-existing coding schemes with their applications that are not included in the EPC standard and make the Oracle Database adaptable to these older systems and to any evolving identity codes that may some day be part of a future EPC standard.

The Identity Code Package also lets developers create their own identity codes by first registering the encoding category, registering the encoding type, and then registering the components associated with each encoding type.

Topics.

	
Identity Concepts

	
What is the Identity Code Package?

	
Using the Identity Code Package

	
Identity Code Package Types

	
DBMS_MGD_ID_UTL Package

	
Identity Code Metadata Tables and Views

	
Electronic Product Code (EPC) Concepts

	
Oracle Database Tag Data Translation Schema

Identity Concepts

A database object MGD_ID is defined that lets users use EPC standard identity codes and use their own existing identity codes. See "Electronic Product Code (EPC) Concepts" for a brief description of EPC concepts. The MGD_ID object serves as the base code object to which belong certain categories, or types of the RFID tag, such as the EPC category, NASA category, and many other categories. Each category has a set of tag schemes or documents that define tag representation structures and their components. For the EPC category, the metadata needed to define encoding schemes (SGTIN-64, SGTIN-96, GID-96, and so forth) representing different encoding types (defined in the EPC standard v1.1) is loaded by default into the database. Users can define encoding their own categories and schemes as shown in Figure 17-1 and load these into the database as well.

Figure 17-1 RFID Code Categories and Their Schemes

[image: Description of Figure 17-1 follows]

An MGD_ID object contains two attributes, a category_id and a list of components consisting of name-value pairs. When MGD_ID objects are stored, the tag representation must be parsed into these component name-value pairs upon object creation.

EPC standard version 1.1 defines one General Identifier type (GID) that is independent of any known, existing code schemes, five Domain Identifier types that are based on EAN.UCC specifications, and the identity type United States Department of Defense (USDOD). The five EAN.UCC based identity types are the serialized global trade identification number (SGTIN), the serial shipping container code (SSCC), the serialized global location number (SGLN), the global returnable asset identifier (GRAI) and the global individual asset identifier (GIAI).

Except GID, which has only one bit-level encoding, all the other identity types each have two encodings depending on their length: 64-bit and 96-bit. So in total there are thirteen different standard encodings for EPC tags. In addition, tags can be encoded in representations other than binary, such as the tag URI and pure identity representations.

Each EPC encoding has its own structure and organization, see Table 17-1. The EPC encoding structure field names relate to the names in the parameter_list parameter name-value pairs in the Identity Code Package API. For example, for SGTIN-64, the structure field names are Filter Value, Company Prefix Index, Item Reference, and Serial Number.

Table 17-1 General Structure of EPC Encodings

	Encoding Name	Header Length in bits	Field Names (parameter_list name-value pairs) and (length in bits)
	
GID-96

	
8

	
General Manager Number (8), Object Class (24), Serial Number (36)

	
SGTIN-64

	
2

	
Filter Value (3), Company Prefix Index (14), Item Reference 20), Serial Number (25)

	
SGTIN-96

	
8

	
Filter Value (3), Partition (3), Company Prefix (20-40), Item Reference (24-4), Serial Number (38)

	
SSCC-64

	
8

	
Filter Value (3), Company Prefix Index (14), Serial Reference (39)

	
SSCC-96

	
8

	
Filter Value (3), Partition (3), Company Prefix (20-40), Serial Reference (38-18), Unallocated (24)

	
SGLN-64

	
8

	
Filter Value (3), Company Prefix Index (14), Location Reference (20), Serial Number (19)

	
SGLN-96

	
8

	
Filter Value (3), Partition (3), Company Prefix (20-40), Location Reference (21-1), Serial Number (41)

	
GRAI-64

	
8

	
Filter Value (3), Company Prefix Index (14), Asset Type (20), Serial Number (19)

	
GRAI-96

	
8

	
Filter Value (3), Partition (3), Company Prefix (20-40), Asset Type (24-4), Serial Number (38)

	
GIAI-64

	
8

	
Filter Value (3), Company Prefix Index (14), Individual Asset Reference (39)

	
GIAI-96

	
8

	
Filter Value (3), Partition (3), Company Prefix (20-40), Individual Asset Reference (62-42)

	
USDOD-64

	
8

	
Filter Value (2), Government Managed Identifier (30), Serial Number (24)

	
USDOD-96

	
8

	
Filter Value (4), Government Managed Identifier (48), Serial Number (36)

EPCglobal defines eleven tag schemes (GID-96, SGTIN-64, SGTIN-96, and so forth). Each of these schemes has various representations; today, the most often used are BINARY, TAG_URI, and PURE_IDENTITY. For example, information in an SGTIN-64 can be represented in these ways:

BINARY: 1001100000000000001000001110110001000010000011111110011000110010
PURE_IDENTITY: urn:epc:id:sgtin:0037000.030241.1041970
TAG_URI: urn:epc:tag:sgtin-64:3.0037000.030241.1041970
LEGACY: gtin=00037000302414;serial=1041970
ONS_HOSTNAME: 030241.0037000.sgtin.id.example.com

Some representations contain all information about the tag (BINARY and TAG_URI), while other representations contain only partial information (PURE_IDENTITY). It is therefore possible to translate a tag from its TAG_URI to its PURE_IDENTITY representation, but it is not possible to translate in the other direction without more information being provided, namely the filter value must be supplied.

EPCglobal released a Tag Data Translation 1.0 (TDT) standard that defines how to decode, encode, and translate between various EPC RFID tag representations. Decoding refers to parsing a given representation into field/value pairs, and encoding refers to reconstructing representations from these fields. Translating refers to decoding one representation and instantly encoding it into another.TDT defines this information using a set of XML files, each referred to as a scheme. For example, the SGTIN-64 scheme defines how to decode, encode, and translate between various SGTIN-64 representations, such as binary and pure identity. For details about the EPCglobal TDT schema, see the EPCglobal Tag Data Translation specification.

A key feature of the TDT specification is its ability to define any EPC scheme using the same XML schema. This approach creates a standard way of defining EPC metadata that RFID applications can then use to write their parsers, encoders, and translators. When the application is written according to the TDT specification, it must be able to update its set of EPC tag schemes and modify its action according to the metadata.

The Oracle Database metadata structure is similar, but not identical to the TDT standard. To fit the EPCglobal TDT specification, the Oracle RFID package must be able to ingest any TDT compatible scheme and seamlessly translate it into the generic Oracle Database defined metadata. See the EPC_TO_ORACLE Function in Table 17-4 for more information.

Reconstructing tag representation from fields, or in other words, encoding tag data into predefined representations is easily accomplished using the MGD_ID.format function. Likewise, the decoding of tag representations into MGD_ID objects and then encoding these objects into tag representations is also easily accomplished using the MGDID.translate function. See the FORMAT Member Function and the TRANSLATE Static Function in Table 17-3 for more information.

Because the EPCglobal TDT standard is powerful and highly extensible, the Oracle RFID standard metadata is a close relative of the TDT specification. See "Oracle Database Tag Data Translation Schema" for the actual Oracle Database TDT XML schema. Developers can refer to this Oracle Database TDT XML schema to define their own tag structures.

Figure 17-2 shows the Oracle Database Tag Data Translation Markup Language Schema diagram.

Figure 17-2 Oracle Database Tag Data Translation Markup Language Schema

[image: Description of Figure 17-2 follows]

The top level element in a tag data translation xml is 'scheme'. Each scheme defines various tag encoding representations, or levels. SGTIN-64 and GID-96 are examples of tag encoding schemes, and BINARY or PURE_IDENTITY are examples of levels within these schemes. Each level has a set of options that define how to parse various representations into fields, and rules that define how to derive values for fields that require additional work, such as an external table lookup or the concatenation of other parsed out fields. See the EPCGlobal Tag Translator Specification for more information.

What is the Identity Code Package?

The Identity Code Package provides an extensible framework that supports the current RFID tags with the standard family of EPC bit encodings for the supported encoding types and new and evolving tag encodings that are not included in the current EPC standard.

The Identity Code Package defines these ADTs:

	
MGD_ID -- defines these (see MGD_ID ADT in Table 17-2 for more information):

	
Two attributes, category_id and components.

	
Four MGD_ID constructor functions for constructing identity code type objects to represent RFID tags.

	
A set of member subprograms for operating on these ADTs.

"Using the Identity Code Package" describes how to use these ADTs and member functions.

"Identity Code Package Types" and "DBMS_MGD_ID_UTL Package" briefly describe the reference information for these ADTs along with a set of utility subprograms. See Oracle Database PL/SQL Packages and Types Reference for detailed reference information.

	
MGD_ID_COMPONENT — defines two attributes, comp_name, which identifies the name of the component and comp_value, which identifies the components value.

	
MGD_ID_COMPONENT_VARRAY — defines an array type that can store up to 128 elements of MGD_IDCOMPONENT type, which is used in two constructor functions for creating an identity code type object with a list of components.

The Identity Code Package supports EPC spec v1.1 by supplying the predefined EPC_ENCODING_CATEGORY encoding_category attribute definition with its bit-encoding structures for the supported encoding types. This information is stored as meta information in the supplied encoding metadata views, MGD_USR_ID_CATEGORY, MGD_USR_ID_SCHEME, the read-only views MGD_ID_CATEGORY, MGD_ID_SCHEME, and their underlying tables: MGD_ID_CATEGORY_TAB, MGD_ID_SCHEME_TAB, MGD_ID_XML_VALIDATOR. See these topics and files for more information:

	
"Electronic Product Code (EPC) Concepts" describes the EPC spec v1.1 product code and its family of coding schemes.

	
"Identity Code Metadata Tables and Views" describes the structure of the identity code meta tables and views and how metadata are used by the Identity Code Package to interpret the various RFID tags.

	
The mgdmeta.sql file describes the meta table data for the EPC_ENCODING_CATEGORY categories and each of its specific encoding schemes.

After storing many thousands of RFID tags into the column of MGD_ID column type of your user table, you can improve query performance by creating an index on this column. See these topics for more information:

	
"Building a Function-Based Index Using the Member Functions of the MGD_ID Column Type" describes how to create a function based index or bitmap function based index using the member functions of the MGD_ID ADT.

The Identity Code Package provides a utility package that consists of various utility subprograms. See this topic for more information:

	
"Identity Code Package Types" and "DBMS_MGD_ID_UTL Package" describes each of the member subprograms. A proxy utility sets and removes proxy information. A metadata utility gets a category ID, refreshes a tag scheme for a category, removes a tag scheme for a category, and validates a tag scheme. A conversion utility translates standard EPCglobal Tag Data Translation (TDT) files into Oracle Database TDT files.

The Identity Code Package is extensible and lets you create your own identity code types for your new or evolving RFID tags. You can define your identity code types, catagory_id attribute values, and components structures for your own encoding types. See these topics for more information:

	
"Creating a Category of Identity Codes" describes how to create your own identity codes by first registering the encoding category, and then registering the schemes associated to the encoding category.

	
"Identity Code Metadata Tables and Views" describes the structure of the identity code meta tables and views and how to register meta information by storing it in the supplied metadata tables and views.

Using the Identity Code Package

Topics:

	
Storing RFID Tags in Oracle Database Using MGD_ID ADT

	
Building a Function-Based Index Using the Member Functions of the MGD_ID Column Type

	
Using MGD_ID ADT Functions

	
Defining a Category of Identity Codes and Adding Encoding Schemes to an Existing Category

Storing RFID Tags in Oracle Database Using MGD_ID ADT

Topics:

	
Creating a Table with MGD_ID Column Type and Storing EPC Tag Encodings in the Column

	
Constructing MGD_ID Objects to Represent RFID Tags

	
Inserting an MGD_ID Object into a Database Table

	
Querying MGD_ID Column Type

Creating a Table with MGD_ID Column Type and Storing EPC Tag Encodings in the Column

You can create tables using MGD_ID as the column type to represent RFID tags, for example:

Example 1. Using the MGD_ID column type:

CREATE TABLE Warehouse_info (
 Code MGD_ID,
 Arrival_time TIMESTAMP,
 Location VARCHAR2(256);
 ...);

SQL*Plus command:

describe warehouse_info;

Result:

Name Null? Type
--- -------- ----------------------------
CODE NOT NULL MGDSYS.MGD_ID
ARRIVAL_TIME TIMESTAMP(6)
LOCATION VARCHAR2(256)

Constructing MGD_ID Objects to Represent RFID Tags

There are several ways to construct MGD_ID objects:

	
Constructing an MGD_ID Object (SGTIN-64) Passing in the Category ID and a List of Components

	
Constructing an MGD_ID object (SGTIN-64) and Passing in the Category ID, the Tag Identifier, and the List of Additional Required Parameters

	
Constructing an MGD_ID object (SGTIN-64) and Passing in the Category Name, Category Version (if null, then the latest version is used), and a List of Components

	
Constructing an MGD_ID object (SGTIN-64) and Passing in the Category Name and Category Version, the Tag Identifier, and the List of Additional Required Parameters

Constructing an MGD_ID Object (SGTIN-64) Passing in the Category ID and a List of Components

If a RFID tag complies to the EPC standard, an MGD_ID object can be created using its category ID and a list of components. For example:

call DBMS_MGD_ID_UTL.set_proxy('www-proxy.us.oracle.com', '80');
call DBMS_MGD_ID_UTL.refresh_category('1');
select MGD_ID ('1',
 MGD_ID_COMPONENT_VARRAY(
 MGD_ID_COMPONENT('companyprefix','0037000'),
 MGD_ID_COMPONENT('itemref','030241'),
 MGD_ID_COMPONENT('serial','1041970'),
 MGD_ID_COMPONENT('schemes','SGTIN-64')
)
) from DUAL;
call DBMS_MGD_ID_UTL.remove_proxy();

@constructor11.sql
.
.
.
MGD_ID ('1', MGD_ID_COMPONENT_VARRAY
 (MGD_ID_COMPONENT('companyprefix', '0037000'),
 MGD_ID_COMPONENT('itemref', '030241'),
 MGD_ID_COMPONENT('serial', '1041970'),
 MGD_ID_COMPONENT('schemes', 'SGTIN-64')))
.
.
.

Constructing an MGD_ID object (SGTIN-64) and Passing in the Category ID, the Tag Identifier, and the List of Additional Required Parameters

Use this constructor when there is a list of additional parameters required to create the MGD_ID object. For example:

call DBMS_MGD_ID_UTL.set_proxy('www-proxy.us.oracle.com', '80');
call DBMS_MGD_ID_UTL.refresh_category('1');
select MGD_ID('1',
 'urn:epc:id:sgtin:0037000.030241.1041970',
 'filter=3;scheme=SGTIN-64') from DUAL;
call DBMS_MGD_ID_UTL.remove_proxy();

@constructor22.sql
.
.
.
MGD_ID('1', MGD_ID_COMPONENT_VARRAY(MGD_ID_COMPONENT('filter', '3'),
 MGD_ID_COMPONENT('schemes', 'SGTIN-64'),
 MGD_ID_COMPONENT('companyprefixlength', '7'),
 MGD_ID_COMPONENT('companyprefix', '0037000'),
 MGD_ID_COMPONENT('scheme', 'SGTIN-64'),
 MGD_ID_COMPONENT('serial', '1041970'),
 MGD_ID_COMPONENT('itemref', '030241')))
.
.
.

Constructing an MGD_ID object (SGTIN-64) and Passing in the Category Name, Category Version (if null, then the latest version is used), and a List of Components

Use this constructor when a category version must be specified along with a category ID and a list of components. For example:

call DBMS_MGD_ID_UTL.set_proxy('www-proxy.us.oracle.com', '80');
call DBMS_MGD_ID_UTL.refresh_category
 (DBMS_MGD_ID_UTL.get_category_id('EPC', NULL));
select MGD_ID('EPC', NULL,
 MGD_ID_COMPONENT_VARRAY(
 MGD_ID_COMPONENT('companyprefix','0037000'),
 MGD_ID_COMPONENT('itemref','030241'),
 MGD_ID_COMPONENT('serial','1041970'),
 MGD_ID_COMPONENT('schemes','SGTIN-64')
)
) from DUAL;
call DBMS_MGD_ID_UTL.remove_proxy();

@constructor33.sql
.
.
.
MGD_ID('1', MGD_ID_COMPONENT_VARRAY
 (MGD_ID_COMPONENT('companyprefix', '0037000'),
 MGD_ID_COMPONENT('itemref', '030241'),
 MGD_ID_COMPONENT('serial', '1041970'),
 MGD_ID_COMPONENT('schemes', 'SGTIN-64')
)
)
.
.
.

Constructing an MGD_ID object (SGTIN-64) and Passing in the Category Name and Category Version, the Tag Identifier, and the List of Additional Required Parameters

Use this constructor when the category version and an additional list of parameters is required.

call DBMS_MGD_ID_UTL.set_proxy('www-proxy.us.oracle.com', '80');
call DBMS_MGD_ID_UTL.refresh_category
 (DBMS_MGD_ID_UTL.get_category_id('EPC', NULL));
select MGD_ID('EPC', NULL,
 'urn:epc:id:sgtin:0037000.030241.1041970',
 'filter=3;scheme=SGTIN-64') from DUAL;
call DBMS_MGD_ID_UTL.remove_proxy();

@constructor44.sql
.
.
.
MGD_ID('1', MGD_ID_COMPONENT_VARRAY
 (MGD_ID_COMPONENT('filter', '3'),
 MGD_ID_COMPONENT('schemes', 'SGTIN-64'),
 MGD_ID_COMPONENT('companyprefixlength', '7'),
 MGD_ID_COMPONENT('companyprefix', '0037000'),
 MGD_ID_COMPONENT('scheme', 'SGTIN-64'),
 MGD_ID_COMPONENT('serial', '1041970'),
 MGD_ID_COMPONENT('itemref', '030241')
)
)
.
.
.

Inserting an MGD_ID Object into a Database Table

This example shows how to populate the WAREHOUSE_INFO table by inserting each MGD_ID object into the table along with the additional column values:

call DBMS_MGD_ID_UTL.set_proxy('www-proxy.us.oracle.com', '80');

call DBMS_MGD_ID_UTL.refresh_category
 (DBMS_MGD_ID_UTL.get_category_id('EPC', NULL));

INSERT INTO WAREHOUSE_INFO (code, arrival_time, location)
 values (MGDSYS.MGD_ID ('EPC',
 NULL,
 'urn:epc:id:sgtin:0037000.030241.1041970',
 null
),
 SYSDATE,
 'SHELF_123');

INSERT INTO WAREHOUSE_INFO (code, arrival_time, location)
 values (MGDSYS.MGD_ID ('EPC',
 NULL,
 'urn:epc:id:sgtin:0037000.053021.1012353',
 null
),
 SYSDATE,
 'SHELF_456');
INSERT INTO WAREHOUSE_INFO (code, arrival_time, location)
 values (MGDSYS.MGD_ID ('EPC',
 NULL,
 'urn:epc:id:sgtin:0037000.020140.10174832',
 null
),
 SYSDATE,
 'SHELF_1034');

COMMITT;
call DBMS_MGD_ID_UTL.remove_proxy();

Querying MGD_ID Column Type

There are three ways to query on MGD_ID column type.

	
Query the MGD_ID column type. Find all items with item reference 030241.

SELECT location, wi.code.get_component('itemref') as itemref,
 wi.code.get_component('serial') as serial
FROM warehouse_info wi WHERE wi.code.get_component('itemref') = '030241';

LOCATION	ITEMREF	SERIAL
SHELF_123 |030241 |1041970

	
Query using the member functions of the MGD_ID ADT. Select the pure identity representations of all RFID tags in the table.

SELECT wi.code.format(null,'PURE_IDENTITY')
 as PURE_IDENTITY FROM warehouse_info wi;

PURE_IDENTITY

urn:epc:id:sgtin:0037000.030241.1041970
urn:epc:id:gid:0037000.053021.1012353
urn:epc:id:sgtin:0037000.020140.10174832

See "Using the get_component Function with the MGD_ID Object" for more information and see Table 17-3 for a list of member functions.

Building a Function-Based Index Using the Member Functions of the MGD_ID Column Type

You can improve the performance of queries based on a certain component of the RFID tags by creating a function-based index that uses the get_component member function or its variation convenience functions. For example:

CREATE INDEX warehouseinfo_idx2
 on warehouse_info(code.get_component('itemref'));

You can also improve the performance of queries based on a certain component of the RFID tags by creating a bitmap function based index that uses the get_component member function or its variation convenience functions. For example:

CREATE BITMAP INDEX warehouseinfo_idx3
 on warehouse_info(code.get_component('serial'));

Using MGD_ID ADT Functions

The MGD_ID ADT contains member subprograms that operate on these ADTs. See Table 17-2 for MGD_ID_COMPONENT, MGD_ID_COMPONENT_VARRAY, MGD_ID ADT reference information. See the mgdtyp.sql file for the MGD_ID ADT definition and its member subprograms.

Topics:

	
Using the get_component Function with the MGD_ID Object

	
Parsing Tag Data from Standard Representations

	
Reconstructing Tag Representations from Fields

	
Translating Between Tag Representations

Using the get_component Function with the MGD_ID Object

The get_component function is defined as follows:

MEMBER FUNCTION get_component(component_name IN VARCHAR2)
 RETURN VARCHAR2 DETERMINISTIC,

Each component in a identity code has a name. It is defined when the code type is registered. See "Defining a Category of Identity Codes and Adding Encoding Schemes to an Existing Category" for more information about how to create a identity code type.

The get_component function takes the name of the component, component_name as a parameter, uses the metadata registered in the metadata table to analyze the identity code, and returns the component with the name component_name.

The get_component function can be used in a SQL query. For example, find the current location of the coded item for the component named itemref; or, in other words find all items with the item reference of 03024. Because the code tag has encoded the "itemref" as a component, you can use this SQL query:

SELECT location,
 w.code.get_component('itemref') as itemref,
 w.code.get_component('serial') as serial
FROM warehouse_info w
 WHERE w.code.get_component('itemref') = '030241';

LOCATION	ITEMREF	SERIAL
SHELF_123 |030241 |1041970

See Table 17-3 for a list of other member functions.

Parsing Tag Data from Standard Representations

RFID readers read the bit strings stored in the tags. The tag data and other information, such as the reader ID and the time stamp, first go through an edge server to be processed, normalized, and preliminarily filtered. Then, in many application scenarios, the information must be persistently stored and later on be retrieved. The Oracle Database understands the code structures representations of various EPC tags as described in Table 17-1 because these code representation schemes defined in the EPC Standard are pre-registered. This gives the Oracle Database the ability to understand all the EPC code schemes and parse various tag representations into fields. Users can also register their own coding structures for the identity codes that use other encoding technologies. In this way the system is extensible.

As mentioned in "Identity Concepts", each of the EPCGlobal tag schemes (GID-96, SGTIN-64, SGTIN-96, and so forth) has various representations with the most often used ones being BINARY, TAG_URI, and PURE_IDENTITY.

Some representations contain all the information about the tag (BINARY and TAG_URI), while representations contain only partial information (PURE_IDENTITY). It is therefore possible to translate a tag from it's TAG_URI to it's PURE_IDENTITY representation, but it is not possible to translate in the other direction (PURE_IDENTITY to TAG_URI) without supplying more information, namely the filter value.

One MGD_ID constructor takes in four fields, the category name (such as EPC), the category version, the tag identifier (for EPC, the identifier must be in a representation previously described), and a parameter list for any additional parameters that may be required to parse the tag representation. For example, this code creates an MGD_ID object from its BINARY representation.

SELECT MGD_ID
 ('EPC',
 null,
 '1001100000000000001000001110110001000010000011111110011000110010',
 null
)
 AS NEW_RFID_CODE FROM DUAL;

NEW_RFID_CODE(CATEGORY_ID, COMPONENTS(NAME, VALUE))
--
MGD_ID ('1',
 MGD_ID_COMPONENT_VARRAY(MGD_ID_COMPONENT('filter', '3'),
 MGD_ID_COMPONENT('schemes', 'SGTIN-64'),
 MGD_ID_COMPONENT('companyprefixlength', '7'),
 MGD_ID_COMPONENT('companyprefix', '0037000'),
 MGD_ID_COMPONENT('companyprefixindex', '1'),
 MGD_ID_COMPONENT('serial', '1041970'),
 MGD_ID_COMPONENT('itemref', '030241')
)
)

For example, an identical object can be created if the call is done with the TAG_URI representation of the tag as follows with the addition of the value of the filter value:

SELECT MGD_ID ('EPC',
 null,
 'urn:epc:tag:sgtin-64:3.0037000.030241.1041970',
 null
)
 as NEW_RFID_CODE FROM DUAL;

NEW_RFID_CODE(CATEGORY_ID, COMPONENTS(NAME, VALUE))
--
MGD_ID ('1',
 MGD_ID_COMPONENT_VARRAY (
 (MGD_ID_COMPONENT('filter', '3'),
 MGD_ID_COMPONENT('schemes', 'SGTIN-64'),
 MGD_ID_COMPONENT('companyprefixlength', '7'),
 MGD_ID_COMPONENT('companyprefix', '0037000'),
 MGD_ID_COMPONENT('serial', '1041970'),
 MGD_ID_COMPONENT('itemref', '030241')
)
)

Reconstructing Tag Representations from Fields

Another useful feature of the Identity Code package is the ability to encode tag data into predefined representations. For example, a warehouse wants to send certain inventory to a retailer, but first it wants to send an invoice that tells the retailer what inventory to expect. The invoice can be a list of pure identity URIs that the warehouse intends to send. If all the inventory in the WAREHOUSE_INFO table is to be sent, this example constructs the desired URIs:

SELECT wi.code.format (null,'PURE_IDENTITY')
 as PURE_IDENTITY FROM warehouse_info wi;

PURE_IDENTITY
--
urn:epc:id:sgtin:0037000.030241.1041970
urn:epc:id:gid:0037000.053021.1012353
urn:epc:id:sgtin:0037000.020140.10174832

Translating Between Tag Representations

The Identity Code package can decode tag representations into MGD_ID objects and encode these objects into tag representations. These two steps can be combined into one step using the MGD_ID.translate function. Static translation allows for the conversion of an RFID tag from one representation to another. For example:

SELECT MGD_ID.translate ('EPC',
 null,
 'urn:epc:id:sgtin:0037000.030241.1041970',
 'filter=3;scheme=SGTIN-64',
 'BINARY'
)
 as BINARY FROM DUAL;

BINARY
--
1001100000000000001000001110110001000010000011111110011000110010

In this example, the binary representation contains more information than the pure identity representation. Specifically, it also contains the filter value and in this case the scheme value must also be specified to distinguish SGTIN-64 from SGTIN-96. Thus, the function call must provide the missing filter parameter information and specify the scheme name in order for translation call to succeed.

Defining a Category of Identity Codes and Adding Encoding Schemes to an Existing Category

Topics:

	
Creating a Category of Identity Codes

	
Adding Two Metadata Schemes to a Newly Created Category

Creating a Category of Identity Codes

Because the EPCglobal TDT standard is powerful and highly extensible, the Oracle Database RFID standard metadata is a close relative of the TDT specification. Thus, the Identity Code package is extensible: You can create your own categories and tag structures using generic metadata. To create a category of identity codes, use the DBMS_MGD_ID_UTIL.create_category function.

For example, suppose you want to create a category called MGD_SAMPLE_CATEGORY, which has two types of tags, a CONTRACTOR_TAG and an EMPLOYEE_TAG. This category and its two metadata schemes might be used within a company that must grant different access privileges to people who are full time employees from those who are contractors, and thus require that their security software be able to identify quickly between the two badge types at an RFID reader. This script creates a category named 'MGD_SAMPLE_CATEGORY', with a 1.0 category version, having an agency name as Oracle, with a URI as http://www.oracle.com/mgd/sample. See "Adding Two Metadata Schemes to a Newly Created Category" for an example.

Adding Two Metadata Schemes to a Newly Created Category

Next, create an CONTRACTOR_TAG metadata scheme such as:

<?xml version="1.0" encoding="UTF-8"?>
<TagDataTranslation version="0.04" date="2005-04-18T16:05:00Z"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema"
 xmlns="oracle.mgd.idcode">
 <scheme name="CONTRACTOR_TAG" optionKey="1" xmlns="">
 <level type="URI" prefixMatch="mycompany.contractor.">
 <option optionKey="1" pattern="mycompany.contractor.([0-9]*).([0-9]*)"
 grammar="''mycompany.contractor.'' contractorID ''.'' divisionID">
 <field seq="1" characterSet="[0-9]*" name="contractorID"/>
 <field seq="2" characterSet="[0-9]*" name="divisionID"/>
 </option>
 </level>
 <level type="BINARY" prefixMatch="11">
 <option optionKey="1" pattern="11([01]{7})([01]{6})"
 grammar="''11'' contractorID divisionID ">
 <field seq="1" characterSet="[01]*" name="contractorID"/>
 <field seq="2" characterSet="[01]*" name="divisionID"/>
 </option>
 </level>
 </scheme>
</TagDataTranslation>

The CONTRACTOR_TAG scheme contains two encoding levels, or ways in which the tag can be represented. The first level is URI and the second level is BINARY. The URI representation starts with the prefix "mycompany.contractor." and is then followed by two numeric fields separated by a period. The names of the two fields are contractorID and divisionID. The pattern field in the option tag defines the parsing structure of the tag URI representation, and the grammar field defines how to reconstruct the URI representation. The BINARY representation can be understood in a similar fashion. This representation starts with the prefix "01" and is then followed by the same two fields, contractorID and divisionID, this time, in their respective binary formats. Given this XML metadata structure, contractor tags can now be decoded from their URI and BINARY representations and the resulting fields can be re-encoded into one of these representations.

The EMPLOYEE_TAG scheme is defined in a similar fashion and is shown as follows.

<?xml version="1.0" encoding="UTF-8"?>
<TagDataTranslation version="0.04" date="2005-04-18T16:05:00Z"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema"
 xmlns="oracle.mgd.idcode">
 <scheme name="EMPLOYEE_TAG" optionKey="1" xmlns="">
 <level type="URI" prefixMatch="mycompany.employee.">
 <option optionKey="1" pattern="mycompany.employee.([0-9]*).([0-9]*)"
 grammar="''mycompany.employee.'' employeeID ''.'' divisionID">
 <field seq="1" characterSet="[0-9]*" name="employeeID"/>
 <field seq="2" characterSet="[0-9]*" name="divisionID"/>
 </option>
 </level>
 <level type="BINARY" prefixMatch="01">
 <option optionKey="1" pattern="01([01]{7})([01]{6})"
 grammar="''01'' employeeID divisionID ">
 <field seq="1" characterSet="[01]*" name="employeeID"/>
 <field seq="2" characterSet="[01]*" name="divisionID"/>
 </option>
 </level>
 </scheme>
</TagDataTranslation>;

To add these schemes to the category ID previously created, use the DBMS_MGD_ID_UTIL.add_scheme function.

This script creates the MGD_SAMPLE_CATEGORY category, adds a contractor scheme and an employee scheme to the MGD_SAMPLE_CATEGORY category, validates the MGD_SAMPLE_CATEGORY scheme, tests the tag translation of the contractor scheme and the employee scheme, then removes the contractor scheme, tests the tag translation of the contractor scheme and this returns the expected exception for the removed contractor scheme, tests the tag translation of the employee scheme and this returns the expected values, then removes the MGD_SAMPLE_CATEGORY category:

--contents of add_scheme2.sql
SET LINESIZE 160
CALL DBMS_MGD_ID_UTL.set_proxy('www-proxy.us.oracle.com', '80');

---CREATE CATEGORY, ADD_SCHEME, REMOVE_SCHEME, REMOVE_CATEGORY-------

DECLARE
 amt NUMBER;
 buf VARCHAR2(32767);
 pos NUMBER;
 tdt_xml CLOB;
 validate_tdtxml VARCHAR2(1042);
 category_id VARCHAR2(256);
BEGIN
 -- remove the testing category if it exists
 DBMS_MGD_ID_UTL.remove_category('MGD_SAMPLE_CATEGORY', '1.0');
 -- create the testing category 'MGD_SAMPLE_CATEGORY', version 1.0
 category_id := DBMS_MGD_ID_UTL.CREATE_CATEGORY('MGD_SAMPLE_CATEGORY', '1.0', 'Oracle',
'http://www.oracle.com/mgd/sample');
 -- add contractor scheme to the category
 DBMS_LOB.CREATETEMPORARY(tdt_xml, true);
 DBMS_LOB.OPEN(tdt_xml, DBMS_LOB.LOB_READWRITE);

 buf := '<?xml version="1.0" encoding="UTF-8"?>
<TagDataTranslation version="0.04" date="2005-04-18T16:05:00Z"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema"
 xmlns="oracle.mgd.idcode">
 <scheme name="CONTRACTOR_TAG" optionKey="1" xmlns="">
 <level type="URI" prefixMatch="mycompany.contractor.">
 <option optionKey="1" pattern="mycompany.contractor.([0-9]*).([0-9]*)"
 grammar="''mycompany.contractor.'' contractorID ''.'' divisionID">
 <field seq="1" characterSet="[0-9]*" name="contractorID"/>
 <field seq="2" characterSet="[0-9]*" name="divisionID"/>
 </option>
 </level>
 <level type="BINARY" prefixMatch="11">
 <option optionKey="1" pattern="11([01]{7})([01]{6})"
 grammar="''11'' contractorID divisionID ">
 <field seq="1" characterSet="[01]*" name="contractorID"/>
 <field seq="2" characterSet="[01]*" name="divisionID"/>
 </option>
 </level>
 </scheme>
</TagDataTranslation>';

 amt := length(buf);
 pos := 1;
 DBMS_LOB.WRITE(tdt_xml, amt, pos, buf);
 DBMS_LOB.CLOSE(tdt_xml);

 DBMS_MGD_ID_UTL.ADD_SCHEME(category_id, tdt_xml);

 -- add employee scheme to the category
 DBMS_LOB.CREATETEMPORARY(tdt_xml, true);
 DBMS_LOB.OPEN(tdt_xml, DBMS_LOB.LOB_READWRITE);

 buf := '<?xml version="1.0" encoding="UTF-8"?>
<TagDataTranslation version="0.04" date="2005-04-18T16:05:00Z"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema"
 xmlns="oracle.mgd.idcode">
 <scheme name="EMPLOYEE_TAG" optionKey="1" xmlns="">
 <level type="URI" prefixMatch="mycompany.employee.">
 <option optionKey="1" pattern="mycompany.employee.([0-9]*).([0-9]*)"
 grammar="''mycompany.employee.'' employeeID ''.'' divisionID">
 <field seq="1" characterSet="[0-9]*" name="employeeID"/>
 <field seq="2" characterSet="[0-9]*" name="divisionID"/>
 </option>
 </level>
 <level type="BINARY" prefixMatch="01">
 <option optionKey="1" pattern="01([01]{7})([01]{6})"
 grammar="''01'' employeeID divisionID ">
 <field seq="1" characterSet="[01]*" name="employeeID"/>
 <field seq="2" characterSet="[01]*" name="divisionID"/>
 </option>
 </level>
 </scheme>
</TagDataTranslation>';

 amt := length(buf);
 pos := 1;
 DBMS_LOB.WRITE(tdt_xml, amt, pos, buf);
 DBMS_LOB.CLOSE(tdt_xml);
 DBMS_MGD_ID_UTL.ADD_SCHEME(category_id, tdt_xml);

 -- validate the scheme
 dbms_output.put_line('Validate the MGD_SAMPLE_CATEGORY Scheme');
 validate_tdtxml := DBMS_MGD_ID_UTL.validate_scheme(tdt_xml);
 dbms_output.put_line(validate_tdtxml);
 dbms_output.put_line('Length of scheme xml is: '||DBMS_LOB.GETLENGTH(tdt_xml));

 -- test tag translation of contractor scheme
 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 'mycompany.contractor.123.45',
 NULL, 'BINARY'));

 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 '111111011101101',
 NULL, 'URI'));

 -- test tag translation of employee scheme
 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 'mycompany.employee.123.45',
 NULL, 'BINARY'));

 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 '011111011101101',
 NULL, 'URI'));

 DBMS_MGD_ID_UTL.REMOVE_SCHEME(category_id, 'CONTRACTOR_TAG');

 -- Test tag translation of contractor scheme. Doesn't work any more.
 BEGIN
 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 'mycompany.contractor.123.45',
 NULL, 'BINARY'));

 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 '111111011101101',
 NULL, 'URI'));
 EXCEPTION
 WHEN others THEN
 dbms_output.put_line('Contractor tag translation failed: '||SQLERRM);
 END;

 -- Test tag translation of employee scheme. Still works.
 BEGIN
 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 'mycompany.employee.123.45',
 NULL, 'BINARY'));
 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 '011111011101101',
 NULL, 'URI'));
 EXCEPTION
 WHEN others THEN
 dbms_output.put_line('Employee tag translation failed: '||SQLERRM);
 END;

 -- remove the testing category, which also removes all the associated schemes
 DBMS_MGD_ID_UTL.remove_category('MGD_SAMPLE_CATEGORY', '1.0');
END;
/
SHOW ERRORS;
call DBMS_MGD_ID_UTL.remove_proxy();

@add_scheme3.sql
.
.
.
Validate the MGD_SAMPLE_CATEGORY Scheme
EMPLOYEE_TAG;URI,BINARY;divisionID,employeeID
Length of scheme xml is: 933
111111011101101
mycompany.contractor.123.45
011111011101101
mycompany.employee.123.45
Contractor tag translation failed: ORA-55203: Tag data translation level not found
ORA-06512: at "MGDSYS.DBMS_MGD_ID_UTL", line 54
ORA-06512: at "MGDSYS.MGD_ID", line 242
ORA-29532: Java call terminated by uncaught Java
exception: oracle.mgd.idcode.exceptions.TDTLevelNotFound: Matching level not
found for any configured scheme
011111011101101
mycompany.employee.123.45
.
.
.

Identity Code Package Types

Table 17-2 describes the Identity Code Package ADTs.

Table 17-2 Identity Code Package ADTs

	ADT Name	Description
	
MGD_ID_COMPONENT ADT

	
A data type that specifies the name and value pair attributes that define a component.

	
MGD_ID_COMPONENT_VARRAY ADT

	
A data type that specifies a list of up to 128 components as name-value attribute pairs used in two constructor functions for creating an identity code type object.

	
MGD_ID ADT

	
Represents an identity code type that specifies the category identifier for the code category for this identity code and its list of components.

Table 17-3 describes the subprograms in the MGD_ID ADT.

All the values and names passed to the subprograms defined in the MGD_ID ADT are case-insensitive unless otherwise noted. To preserve case, enclose values in double quotation marks.

Table 17-3 MGD_ID ADT Subprograms

	Subprogram	Description
	
MGD_ID Constructor Function

	
Creates an identity code type object, MGD_ID, and returns self.

	
FORMAT Member Function

	
Returns a representation of an identity code given an MGD_ID component.

	
GET_COMPONENT Member Function

	
Returns the value of an MGD_ID component.

	
TO_STRING Member Function

	
Concatenates the category_id parameter value with the components name-value attribute pair.

	
TRANSLATE Static Function

	
Translates one MGD_ID representation of an identity code into a different MGD_ID representation.

DBMS_MGD_ID_UTL Package

Table 17-4 describes the Utility subprograms in the DBMS_MGD_ID_UTL package.

All the values and names passed to the subprograms defined in the MGD_ID ADT are case-insensitive unless otherwise noted. To preserve case, enclose values in double quotation marks.

Table 17-4 DBMS_MGD_ID_UTL Package Utility Subprograms

	Subprogram	Description
	
ADD_SCHEME Procedure

	
Adds a tag data translation scheme to an existing category.

	
CREATE_CATEGORY Function

	
Creates a category or a version of a category.

	
EPC_TO_ORACLE Function

	
Converts the EPCglobal tag data translation (TDT) XML to Oracle Database tag data translation XML.

	
GET_CATEGORY_ID Function

	
Returns the category ID given the category name and the category version.

	
GET_COMPONENTS Function

	
Returns all relevant separated component names separated by semicolon (';') for the specified scheme.

	
GET_ENCODINGS Function

	
Returns a list of semicolon (';') separated encodings (formats) for the specified scheme.

	
GET_JAVA_LOGGING_LEVEL Function

	
Returns an integer representing the current Java trace logging level.

	
GET_PLSQL_LOGGING_LEVEL Function

	
Returns an integer representing the current PL/SQL trace logging level.

	
GET_SCHEME_NAMES Function

	
Returns a list of semicolon (';') separated scheme names for the specified category.

	
GET_TDT_XML Function

	
Returns the Oracle Database tag data translation XML for the specified scheme.

	
GET_VALIDATOR Function

	
Returns the Oracle Database tag data translation schema.

	
REFRESH_CATEGORY Function

	
Refreshes the metadata information about the Java stack for the specified category.

	
REMOVE_CATEORY Function

	
Removes a category including all the related TDT XML.

	
REMOVE_PROXY Procedure

	
Unsets the host and port of the proxy server.

	
REMOVE_SCHEME Procedure

	
Removes the tag scheme for a category.

	
SET_JAVA_LOGGING_LEVEL Procedure

	
Sets the Java logging level.

	
SET_PLSQL_LOGGING_LEVEL Procedure

	
Sets the PL/SQL tracing logging level.

	
SET_PROXY Procedure

	
Sets the host and port of the proxy server for Internet access.

	
VALIDATE_SCHEME Function

	
Validates the input tag data translation XML against the Oracle Database tag data translation schema.

Identity Code Metadata Tables and Views

This topic describes the structure of identity code metadata tables and views and explains how the metadata are used by the Identity Code Package to interpret the various RFID tags. The creation of these meta tables, views, and triggers is done automatically during the Identity Code Package installation.

Encoding metadata views are used to store encoding categories and schemes. Application developers can insert the meta information of their own identity codes into these views. The MGD_ID ADT is designed to understand the encodings if the metadata for the encodings are stored in the meta tables. If an application developer only uses the encodings defined in the EPC specification v1.1, the developer does not have to worry about the meta tables because product codes specified in EPC spec v1.1 are predefined.

There are two encoding metadata views.

	
user_mgd_id_category — this view is used to store the encoding category information defined by the session user.

	
user_mgd_id_scheme — this view is used to store the encoding type information defined by the session user.

In addition, these read-only views are defined for a user to query the system predefined encoding metadata and the metadata defined by the user:

	
mgd_id_category — this view is used to query the encoding category information defined by the system or the session user

	
mgd_id_scheme — this view is used to query the encoding type information defined by the system or the session user.

The underlying metadata tables for the preceding views are:

	
mgd_id_xml_validator

	
mgd_id_category_tab

	
mgd_id_scheme_tab

Users other than the Identity Code Package system users cannot operate on these tables. Users must not use the metadata tables directly. They must use the read only views and the metadata functions described in the DBMS_MGD_ID_UTL package.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for information about the DBMS_MGD_ID_UTL package

Metadata View Definitions

Table 17-5, Table 17-6, Table 17-7, and Table 17-8 describe the metadata view definitions for the MGD_ID_CATEGORY, USER_ID_CATEGORY, MGD_ID_SCHME, and USER_MGD_ID_SCHME respectively as defined in the mgdview.sql file.

Table 17-5 Definition and Description of the MGD_ID_CATEGORY Metadata View

	Column Name	Data Type	Description
	
CATEGORY_ID

	
NUMBER(4)

	
Category identifier

	
CATEGORY_NAME

	
VARCHAR2(256)

	
Category name

	
AGENCY

	
VARCHAR2(256)

	
Organization that defined the category

	
VERSION

	
VARCHAR2(256)

	
Category version

	
URI

	
VARCHAR2(256)

	
URI that describes the category

Table 17-6 Definition and Description of the USER_MGD_ID_CATEGORY Metadata View

	Column Name	Data Type	Description
	
CATEGORY_ID

	
NUMBER(4)

	
Category identifier

	
CATEGORY_NAME

	
VARCHAR2(256)

	
Category name

	
AGENCY

	
VARCHAR2(256)

	
Organization that defined the category

	
VERSION

	
VARCHAR2(256)

	
Category version

	
URI

	
VARCHAR2(256)

	
URI that describes the category

Table 17-7 Definition and Description of the MGD_ID_SCHEME Metadata View

	Column Name	Data Type	Description
	
CATEGORY_ID

	
NUMBER(4)

	
Category identifier

	
TYPE_NAME

	
VARCHAR2(256)

	
Encoding scheme name, for example, SGTIN-96, GID-96, and so forth

	
TDT_XML

	
CLOB

	
Tag data translation XML for this encoding scheme

	
ENCODINGS

	
VARCHAR2(256)

	
Encodings separated by a comma (,), for example, LEGACY, TAG_ENCODING, PURE_IDENTITY, BINARY (for SGTIN-96)

	
COMPONENTS

	
VARCHAR2(1024)

	
Relevant component names, extracted from each level and then combined. Each is separated by a comma (,). For example, objectclass, generalmanager, serial (for GID-96)

Table 17-8 Definition and Description of the USER_MGD_ID_SCHEME Metadata View

	Column Name	Data Type	Description
	
CATEGORY_ID

	
NUMBER(4)

	
Category identifier

	
TYPE_NAME

	
VARCHAR2(256)

	
Encoding scheme name, for example, SGTIN-96, GID-96, and so forth

	
TDT_XML

	
CLOB

	
Tag data translation XML for this encoding scheme

	
ENCODINGS

	
VARCHAR2(256)

	
Encodings separated by a comma (,), for example, LEGACY, TAG_ENCODING, PURE_IDENTITY, BINARY (for SGTIN-96)

	
COMPONENTS

	
VARCHAR2(1024)

	
Relevant component names, extracted from each level and then combined. Each is separated by a comma (,). For example, objectclass, generalmanager, serial (for GID-96)

Electronic Product Code (EPC) Concepts

Topics:

	
RFID Technology and EPC v1.1 Coding Schemes

	
Product Code Concepts and Their Current Use

RFID Technology and EPC v1.1 Coding Schemes

Radio Frequency Identification (RFID) technology continues to gain momentum with suppliers, distributors, manufacturers, and retailers for its ability to eliminate line-of-site processes and automate critical supply chain transactions. Electronic Product Code (EPC), an identification scheme for universally identifying objects using RFID tags and other means, is gaining widespread acceptance as an emerging standard. Its capabilities enable companies to reduce warehouse and distribution costs through improved inventory control and extended supply chain visibility.

The standardized EPC Identifier is a metacoding scheme designed to support the needs of various industries. Therefore, the EPC represents a family of coding schemes and a means to make them unique across all possible EPC-compliant tags. EPC Version 1.1 includes these specific coding schemes:

	
General Identifier (GID)

	
Serialized version of the EAN.UCC Global Trade Item Number (GTIN)

	
EAN.UCC Serial Shipping Container Code (SSCC)

	
EAN.UCC Global Location Number (GLN)

	
EAN.UCC Global Returnable Asset Identifier (GRAI)

	
EAN.UCC Global Individual Asset Identifier (GIAI)

RFID applications require the storage of a large volume of EPC data into a database. The efficient use of EPC data also requires that the database recognizes the different coding schemes of EPC data.

EPC is an emerging standard. It does not cover all the numbering schemes used in the various industries and is itself still evolving (the changes from EPC version 1.0 to EPC version 1.1 are significant).

Identity Code Package empowers the Oracle Database with the knowledge to recognize EPC coding schemes. It makes the Oracle Database a database system that not only provides efficient storage and component level retrieval for EPC data, but also has features to support EPC data encoding and decoding, and conversion between bit encoding and URI encoding.

Identity Code Package provides an extensible framework that allows developers to define their own coding schemes that are not included in the EPC standard. This extensibility feature also makes the Oracle Database adaptable to the evolving future EPC standard.

This chapter describes the requirement of storing, retrieving, encoding and decoding various product codes, including EPC, in an Oracle Database and shows how the Identity Code Package solution meets all these requirements by providing data types, metadata tables, and PL/SQL packages for these purposes.

Product Code Concepts and Their Current Use

This topic describes these product codes:

	
Electronic Product Code (EPC)

	
Global Trade Identification Number (GTIN) and Serializable Global Trade Identification Number (SGTIN)

	
Serial Shipping Container Code (SSCC)

	
Global Location Number (GLN) and Serializable Global Location Number (SGLN)

	
Global Returnable Asset Identifier (GRAI)

	
Global Individual Asset Identifier (GIAI)

	
RFID EPC Network

Electronic Product Code (EPC)

The Electronic Product Code™ (EPC™) is an identification scheme for universally identifying physical objects using Radio Frequency Identification (RFID) tags and other means. The standardized EPC data consists of an EPC (or EPC Identifier) that uniquely identifies an individual object, and an optional Filter Value when judged to be necessary to enable effective and efficient reading of the EPC tags. In addition to this standardized data, certain classes of EPC tags allow user-defined data.

The EPC Identifier is a meta-coding scheme designed to support the needs of various industries by accommodating both existing coding schemes where possible and defining schemes where necessary. The various coding schemes are referred to as Domain Identifiers, to indicate that they provide object identification within certain domains such as a particular industry or group of industries. As such, EPC represents a family of coding schemes (or "namespaces") and a means to make them unique across all possible EPC-compliant tags.

The EPCGlobal EPC Data Standards Version 1.1 defines the abstract content of the Electronic Product Code, and its concrete realization in the form of RFID tags, Internet URIs, and other representations. In EPC Version 1.1, the specific coding schemes include a General Identifier (GID), a serialized version of the EAN.UCC Global Trade Item Number (GTIN®), the EAN.UCC Serial Shipping Container Code (SSCC®), the EAN.UCC Global Location Number (GLN®), the EAN.UCC Global Returnable Asset Identifier (GRAI®), and the EAN.UCC Global Individual Asset Identifier (GIAI®).

EPC Pure Identity

The EPC pure identity is the identity associated with a specific physical or logical entity, independent of any particular encoding vehicle such as an RF tag, bar code or database field. As such, a pure identity is an abstract name or number used to identify an entity. A pure identity consists of the information required to uniquely identify a specific entity, and no more.

EPC Encoding

EPC encoding is a pure identity with more information, such as filter value, rendered into a specific syntax (typically consisting of value fields of specific sizes). A given pure identity might have several possible encodings, such as a Barcode Encoding, various Tag Encodings, and various URI Encodings. Encodings may also incorporate additional data besides the identity (such as the Filter Value used in some encodings), in which case the encoding scheme specifies what additional data it can hold.

For example, the Serial Shipping Container Code (SSCC) format as defined by the EAN.UCC System is an example of a pure identity. An SSCC encoded into the EPC- SSCC 96-bit format is an example of an encoding.

EPC Tag Bit-Level Encoding

EPC encoding on a tag is a string of bits, consisting of a tiered, variable length header followed by a series of numeric fields whose overall length, structure, and function are completely determined by the header value.

EPC Identity URI

The EPC identity URI is a representation of a pure identity as a Uniform Resource Identifier (URI).

EPC Tag URI Encoding

The EPC tag URI encoding represents a specific EPC tag bit-level encoding, for example, urn:epc:tag:sgtin-64:3.0652642.800031.400.

EPC Encoding Procedure

The EPC encoding procedure is used to generate an EPC tag bit-level encoding using various information.

EPC Decoding Procedure

The EPC decoding procedure is used to convert an EPC tag bit-level encoding to an EAN.UCC code.

Global Trade Identification Number (GTIN) and Serializable Global Trade Identification Number (SGTIN)

A Global Trade Identification Number (GTIN) is used for the unique identification of trade items worldwide within the EAN.UCC system. The Serialized Global Trade Identification Number (SGTIN) is an identity type in EPC standard version1.1. It is based on the EAN.UCC GTIN code defined in the General EAN.UCC Specifications [GenSpec5.0]. A GTIN identifies a particular class of object, such as a particular kind of product or SKU. The combination of GTIN and a unique serial number is called a Serialized GTIN (SGTIN).

Serial Shipping Container Code (SSCC)

The Serial Shipping Container Code (SSCC) is defined by the General EAN.UCC Specifications [GenSpec5.0]. The unique identification of logistics units is achieved in the EAN.UCC system by the use of the SSCC. The SSCC is intended for assignment to individual objects.

Global Location Number (GLN) and Serializable Global Location Number (SGLN)

The Global Location Number (GLN) is defined by the General EAN.UCC Specifications [GenSpec5.0]. A GLN can represent either a discrete, unique physical location such as a dock door or a warehouse slot, or an aggregate physical location such as an entire warehouse. In addition, a GLN can represent a logical entity such as an organization that performs a business function (for example, placing an order). The combination of GLN and a unique serial number is called a Serialized GLN (SGLN). However, until the EAN.UCC community determines the appropriate way to extend GLN, the serial number field is reserved and must not be used.

Global Returnable Asset Identifier (GRAI)

A returnable asset is a reusable package or transport equipment of a certain value. Global Returnable Asset Identifier is (GRAI) is defined by the General EAN.UCC Specifications [GenSpec5.0] for the unique identification of a returnable asset.

Global Individual Asset Identifier (GIAI)

The Global Individual Asset Identifier (GIAI) is defined by the General EAN.UCC Specifications [GenSpec5.0]. Unlike the GTIN, the GIAI is intended for assignment to individual objects. Global Individual Asset Identifier (GIAI) is used to uniquely identify an entity that is part of the fixed inventory of a company. The GIAI identifies any fixed asset of an organization.

RFID EPC Network

The RFID EPC network is used to identify, track and locate assets. Physical objects are identified by a unique RFID enabled EPC.

Oracle Database Tag Data Translation Schema

The Oracle Database Tag Data Translation Schema is closely related to the EPCglobal TDT schema, however it is not exact. The Oracle Database TDT is shown as follows:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="oracle.mgd.idcode"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tdt="oracle.mgd.idcode" elementFormDefault="qualified"
 attributeFormDefault="unqualified" version="1.0">

 <xsd:simpleType name="InputFormatList">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="BINARY"/>
 <xsd:enumeration value="STRING"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="LevelTypeList">
 <xsd:restriction base="xsd:string">
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="SchemeNameList">
 <xsd:restriction base="xsd:string">
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="ModeList">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="EXTRACT"/>
 <xsd:enumeration value="FORMAT"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="CompactionMethodList">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="32-bit"/>
 <xsd:enumeration value="16-bit"/>
 <xsd:enumeration value="8-bit"/>
 <xsd:enumeration value="7-bit"/>
 <xsd:enumeration value="6-bit"/>
 <xsd:enumeration value="5-bit"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="PadDirectionList">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="LEFT"/>
 <xsd:enumeration value="RIGHT"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="Field">
 <xsd:attribute name="seq" type="xsd:integer" use="required"/>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="bitLength" type="xsd:integer"/>
 <xsd:attribute name="characterSet" type="xsd:string" use="required"/>
 <xsd:attribute name="compaction" type="tdt:CompactionMethodList"/>
 <xsd:attribute name="compression" type="xsd:string"/>
 <xsd:attribute name="padChar" type="xsd:string"/>
 <xsd:attribute name="padDir" type="tdt:PadDirectionList"/>
 <xsd:attribute name="decimalMinimum" type="xsd:long"/>
 <xsd:attribute name="decimalMaximum" type="xsd:long"/>
 <xsd:attribute name="length" type="xsd:integer"/>
 </xsd:complexType>

 <xsd:complexType name="Option">
 <xsd:sequence>
 <xsd:element name="field" type="tdt:Field" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="optionKey" type="xsd:string" use="required"/>
 <xsd:attribute name="pattern" type="xsd:string"/>
 <xsd:attribute name="grammar" type="xsd:string" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="Rule">
 <xsd:attribute name="type" type="tdt:ModeList" use="required"/>
 <xsd:attribute name="inputFormat" type="tdt:InputFormatList" use="required"/>
 <xsd:attribute name="seq" type="xsd:integer" use="required"/>
 <xsd:attribute name="newFieldName" type="xsd:string" use="required"/>
 <xsd:attribute name="characterSet" type="xsd:string" use="required"/>
 <xsd:attribute name="padChar" type="xsd:string"/>
 <xsd:attribute name="padDir" type="tdt:PadDirectionList"/>
 <xsd:attribute name="decimalMinimum" type="xsd:long"/>
 <xsd:attribute name="decimalMaximum" type="xsd:long"/>
 <xsd:attribute name="length" type="xsd:string"/>
 <xsd:attribute name="function" type="xsd:string" use="required"/>
 <xsd:attribute name="tableURI" type="xsd:string"/>
 <xsd:attribute name="tableParams" type="xsd:string"/>
 <xsd:attribute name="tableXPath" type="xsd:string"/>
 <xsd:attribute name="tableSQL" type="xsd:string"/>
 </xsd:complexType>

 <xsd:complexType name="Level">
 <xsd:sequence>
 <xsd:element name="option" type="tdt:Option" minOccurs="1"
 maxOccurs="unbounded"/>
 <xsd:element name="rule" type="tdt:Rule" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="type" type="tdt:LevelTypeList" use="required"/>
 <xsd:attribute name="prefixMatch" type="xsd:string"/>
 <xsd:attribute name="requiredParsingParameters" type="xsd:string"/>
 <xsd:attribute name="requiredFormattingParameters" type="xsd:string"/>
 </xsd:complexType>

 <xsd:complexType name="Scheme">
 <xsd:sequence>
 <xsd:element name="level" type="tdt:Level" minOccurs="4" maxOccurs="5"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="tdt:SchemeNameList" use="required"/>
 <xsd:attribute name="optionKey" type="xsd:string" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="TagDataTranslation">
 <xsd:sequence>
 <xsd:element name="scheme" type="tdt:Scheme" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="version" type="xsd:string" use="required"/>
 <xsd:attribute name="date" type="xsd:dateTime" use="required"/>
 </xsd:complexType>
 <xsd:element name="TagDataTranslation" type="tdt:TagDataTranslation"/>
</xsd:schema>

Index

A B C D E F G H I J K L M N O P Q R S T U V W X Y

Symbols

	%ROWTYPE attribute, 6.1.2.2.3
	%TYPE attribute, 6.1.2.2.3

Numerics

	32-bit IEEE 754 format, 1.3.2.1
	3GL (third-generation language), 6.7.4
	64-bit IEEE 754 format, 1.3.2.1

A

	Abstract Data Type (ADT)
	
	editions and, 19.1.1.2
	resetting evolved, 19.1.1.3

	Active Server Pages (ASP), 10.4
	actual object, 19.1.3
	actualization, 19.1.3
	
	schema object dependency and, 19.1.3.2

	address of row
	
	See rowid

	ADT
	
	editions and, 19.1.1.2
	resetting evolved, 19.1.1.3

	AFTER SUSPEND trigger, 2.9.2.1
	agent, 16.3
	Agent Control Utility (agtctl)
	
	commands
	
	in shell mode, A.3.3
	in single-line mode, A.3.2
	list of, A.3.1

	extproc administration and, A.3
	extproc architecture and, A.2

	aggregate function, 6.11
	altering application online
	
	See edition-based redefinition

	ancestor edition, 19.1.2
	anonymous block, 6.1.1
	ANSI data type, 1.5.7
	ANYDATA data type, 1.5.6
	ANYDATASET data type, 1.5.6
	AP (application program), 15.1.1
	application architecture, 13.1
	application domain index, 4.3
	application program (AP), 15.1.1
	application SQL, 19.3.3.2.3
	APPLYING_CROSSEDITION_TRIGGER function, 19.3.4.1.1
	AQ (Oracle Advanced Queuing), 16.2.2
	archive
	
	See Flashback Data Archive

	ARGn data type, 1.9.1
	arithmetic operation
	
	with datetime data type, 1.4.4
	with native floating-point data type, 1.3.4

	ASP (Active Server Pages), 10.4
	assignment
	
	data type conversion during, 1.8.1, 1.8.1
	reported by PL/Scope, 7.6

	attribute
	
	%ROWTYPE, 6.1.2.2.3
	%TYPE, 6.1.2.2.3
	Java STATIC class, 6.9.4.3

	auditing policy, editioning view and, 19.5.1
	Automatic Undo Management system, 12.1
	autonomous transaction, 2.8
	
	trigger as, 2.9.2.1

B

	backward compatibility
	
	LONG and LONG RAW data types for, 1.5.3.2
	RESTRICT_REFERENCES pragma for, 6.9.4.4

	BATCH commit redo option, 2.2.4
	BFILE data type, 1.5.3.1
	binary format, 1.3.2.1
	binary internal ROWID format, 1.7.2.3
	binary large object (BLOB) data type, 1.5.3.1
	binary number, 1.3.2
	BINARY_DOUBLE data type, 1.3
	BINARY_FLOAT data type, 1.3
	BLOB data type, 1.5.3.1
	block, anonymous, 6.1.1
	branch, 15.1.1
	built-in function
	
	See SQL function

	bulk binding, 6.1.2.14
	
	when to use, 6.1.2.15

	business rule, 5

C

	C external subprogram
	
	callback with, 14.13
	global variable in, 14.13.6
	interface between PL/SQL and, 14.5.2
	invoking, 14.10.4
	loading, 14.4.2
	passing parameter to, 14.9
	publishing, 14.7
	running, 14.10
	service routine and, 14.12
	See also external subprogram

	C++ Class Library, 13.11.5
	call specification
	
	for external subprogram, 14.3
	location of, 14.8

	CALL statement, 14.10
	calling subprogram
	
	See invoking subprogram

	cascading invalidation, 18.4
	CHANGE_DUPKEY_ERROR_INDEX hint, 19.3.4.1.1
	CHAR data type
	
	compared to VARCHAR2 data type, 1.2.2
	specifying length of, 1.2.1
	values stored, 1.2

	character data type class, 18.10.2.4
	character data types, 1.2
	character large object (CLOB) data type, 1.5.3.1
	CHECK constraint
	
	compared to NOT NULL constraint, 5.12.4
	designing, 5.12.2
	multiple, 5.12.3
	naming, 5.13.2
	restrictions on, 5.12.1
	when to use, 5.12

	client notification, 16.2.3
	client/server architecture, 13.1.1
	CLOB data type, 1.5.3.1
	coarse-grained invalidation, 18.4
	collection
	
	edition and, 19.1.1.2
	referenced by DML statement, 6.1.2.15.1
	referenced by FOR loop, 6.1.2.15.3
	referenced by SELECT statement, 6.1.2.15.2

	column
	
	default value for
	
	when to use, 5.5

	multiple foreign key constraints on, 5.8.3
	specifying length of, 1.2.1

	commit redo management, 2.2.4
	COMMIT statement, 2.2.3
	committing transaction, 2.2.3
	comparison operator, 1.3.3
	compile-time error, handling
	
	for multilanguage program, 14.11

	concurrency
	
	serializable transaction for, 2.7
	under explicit locking, 2.5.5

	conditional expression represented as data, 1.6
	connection pool, 13.6.1
	constraint, 5
	
	altering, 5.15
	CHECK
	
	See CHECK constraint

	compared to trigger, 5.1
	crossedition trigger and
	
	collisions, 19.3.4.1.1
	dropping, 19.3.6

	deferring checking of, 5.8.4
	disabling
	
	effect of, 5.14
	existing, 5.14.5, 5.14.5
	new, 5.14.3, 5.14.3
	reasons for, 5.14.1

	dropping, 5.17, 5.17
	editioning view and, 19.2.6
	enabling
	
	effect of, 5.14
	existing, 5.14.4
	new, 5.14.2

	exception to, 5.14.7
	FOREIGN KEY
	
	See FOREIGN KEY constraint

	minimizing overhead of, 5.9
	naming, 5.13.2
	NOT NULL
	
	See NOT NULL constraint

	on view, 5
	PRIMARY KEY
	
	See PRIMARY KEY constraint

	privileges needed for defining, 5.13.1
	referential integrity
	
	See FOREIGN KEY constraint

	renaming, 5.16
	UNIQUE
	
	See UNIQUE constraint

	viewing definition of, 5.19
	violating, 5.14.7

	Continuous Query Notification (CQN), 11
	converting data types
	
	See data type conversion

	copying on change, 19.1.3
	coupling, 15.1.1
	CQ_NOTIFICATION$_DESCRIPTOR object, 11.8.1
	CQ_NOTIFICATION$_QUERY object, 11.8.3
	CQ_NOTIFICATION$_REG_INFO object, 11.6.6.2
	CQ_NOTIFICATION$_ROW object, 11.8.4
	CQ_NOTIFICATION$_TABLE object, 11.8.2
	CQN (Continuous Query Notification), 11
	CREATE OR REPLACE optimization, 18.4
	
	actualization and, 19.1.3

	crossedition trigger, 19.3
	
	creating, 19.3.4
	displaying information about, 19.4
	dropping, 19.3.6
	execution of, 19.3.3.4
	forward, 19.3.1
	interaction with editions, 19.3.3
	read-only editioning view and, 19.2.1
	read-write editioning view and, 19.2.1
	reverse, 19.3.2
	sharing child cursor and, 19.4

	crossedition trigger SQL
	
	forward, 19.3.3.2.1
	reverse, 19.3.3.2.2

	cross-session PL/SQL function result cache, 6.1.2.7
	current date and time, displaying, 1.4.1
	current edition, 19.1.6
	cursor, 2.4
	
	canceling, 2.4.5
	closing, 2.4.4
	crossedition trigger and, 19.4
	number in session, 2.4.1
	Oracle XA application and, 15.3.4
	rerunning statement with, 2.4.2
	schema object dependency and, 18.11
	scrollable, 2.4.3
	See also cursor variable

	cursor variable, 6.3
	
	declaring, 6.3.1
	examples of, 6.3.2
	opening, 6.3.1

D

	data definition language statement
	
	See DDL statement

	data integrity, 5
	
	See also constraint

	data type, 1.1
	
	ANSI, 1.5.7
	DB2, 1.5.7
	dynamic, 1.5.6
	external, 1.1
	family of, 1.9.3
	for character data, 1.2
	for datetime data, 1.4
	for geographic data, 1.5.1
	for large amount of data, 1.5.3
	for multimedia data, 1.5.2
	for numeric data, 1.3
	for spatial data, 1.5.1
	for XML data, 1.5.5
	object, 13.11.3
	of formal subprogram parameter, 6.1.2.2.2
	SQL/DS, 1.5.7

	data type class, 18.10.2.4
	data type conversion, 1.8
	
	of ANSI and IBM data types, 1.5.7
	of datetime data types, 1.4.5
	of native floating-point data types, 1.3.5

	date
	
	default format for, 1.4.1
	default value for, 1.4.3
	displaying
	
	current, 1.4.1
	in nondefault format, 1.4.2

	inserting in nondefault format, 1.4.2
	See also datetime data types

	datetime data type class, 18.10.2.4
	datetime data types, 1.4
	
	arithmetic operations with, 1.4.4
	conversion functions for, 1.4.5
	importing, exporting, and comparing, 1.4.6

	DB2 data type, 1.5.7
	DBMS_DEBUG package, 6.6.8
	DBMS_DEBUG_JDWP package, 6.6.7
	DBMS_FLASHBACK package, 12.7
	DBMS_FLASHBACK.TRANSACTION_BACKOUT procedure, 12.8
	DBMS_HPROF package, 8.2
	DBMS_LOCK package, 2.6
	DBMS_OUTPUT package, 6.6.4
	DBMS_PARALLEL_EXECUTE package, 19.3.5
	DBMS_STATS package, 12.11
	DBMS_TYPES package, 1.5.6
	DBMS_XA package, 15.3.10
	DDL statement
	
	Flashback Data Archive and, 12.9.6
	ineffective, 18.4
	Oracle XA and, 15.5.4.2
	processing, 2.1
	that generates notification, 11.3.2

	deadlock, undetected, 2.6
	debugging
	
	PL/SQL Server Pages, 10.10
	subprograms, 6.6

	decimal number, 1.3.2
	default column value, 5.5
	default subprogram parameter value, 6.1.2.2.5
	deferring constraint checks, 5.8.4
	definer’s-rights subprogram, 6.7.1
	denormal floating-point number, 1.3.2.1
	dependency mode, 18.10
	dependent object
	
	See schema object dependency

	dependent transaction, 12.8.1
	descendent edition, 19.1.2
	DETERMINISTIC function, 6.9.4.2
	
	function-based index and, 4.4.2
	RPC signature and, 18.10.2

	dirty read, 2.7.1
	disabling constraint
	
	effect of, 5.14
	existing, 5.14.5
	new, 5.14.3
	reasons for, 5.14.1

	dispatcher thread, A.2
	distributed database
	
	FOREIGN KEY constraint and, 5.11
	remote dependency management and, 18.9

	distributed query, runtime error in, 6.5.3
	distributed transaction, 15.1.1
	
	how it works, 6.8.2

	DLL (dynamic link library), 14.2
	DML statement
	
	bulk binding for, 6.1.2.15.1
	parallel, 6.9.4.3
	that references collection, 6.1.2.15.1

	DML_LOCKS initialization parameter, 2.5, 2.5
	domain index, 4.3
	double-precision IEEE 754 format, 1.3.2.1
	drivers, Oracle JDBC, 13.4.2.1
	DTP (X/Open Distributed Transaction architecture), 15.1
	dynamic link library (DLL), 14.2
	dynamic registration, 15.1.1
	dynamic SQL statement, 6.9.4.4.2
	dynamically typed data, 1.5.6

E

	edition, 19.1
	
	ancestor, 19.1.2
	creating, 19.1.2
	crossedition triggers and, 19.3.3
	current, 19.1.6
	descendent, 19.1.2
	displaying information about, 19.4
	enabling for a user, 19.1.1.3
	leaf, 19.1.2
	making available
	
	to all users, 19.1.5
	to some users, 19.1.4

	ora$base, 19.1, 19.1.2
	retiring, 19.1.7
	root, 19.1.2
	session, 19.1.6
	visibility of trigger in, 19.3.3.1

	editionable schema object type, 19.1.1.1
	edition-based redefinition, 19
	editioned object, 19.1.1
	editioning view, 19.2
	
	auditing policy and, 19.5.1
	changing base table of, 19.2.5
	changing write-ability of, 19.2.3
	covering table with, 19.5.1
	creating, 19.2.1
	displaying information about, 19.4
	partition-extended name for, 19.2.2
	preparing application for, 19.5.1
	read-only, 19.2.1
	read-write, 19.2.1
	replacing, 19.2.4
	SQL optimizer hint and, 19.2.7

	editions-enabled user, 19.1.1.3
	Electronic Product Code (EPC), 17.7.2.1
	embedded PL/SQL gateway, 9.2.1.2
	
	how to use, 9.4

	enabling constraint
	
	effect of, 5.14
	existing, 5.14.4
	new, 5.14.2

	enabling editions for a user, 19.1.1.3
	encoding scheme, adding, 17.3.4
	environment, programming, 13
	EPC (Electronic Product Code), 17.7.2.1
	error handling
	
	compile-time, 6.4
	
	for multilanguage program, 14.11

	runtime
	
	See runtime error handling

	exception
	
	IEEE 754 standard
	
	not raised, 1.3.2.2
	raised during conversion, 1.3.5

	in multilanguage program, 14.11
	to constraint, 5.14.7
	unhandled, 6.5.2
	user-defined, 6.5.1
	See also runtime error handling

	EXCLUSIVE MODE option of LOCK TABLE statement, 2.5.2.4
	EXPR data type, 1.9.2
	expression
	
	conditional, represented as data, 1.6
	evaluation of, during data type conversion, 1.8.2
	index built on
	
	See function-based index

	regular
	
	See regular expression

	expression directive in PSP script, 10.5.7
	extended internal ROWID format, 1.7.2.2
	external binary internal ROWID format, 1.7.2.3
	external data type, 1.1
	external large object (BFILE) data type, 1.5.3.1
	external subprogram, 14.2
	
	call specification for, 14.3
	debugging, 14.13.4
	loading, 14.4
	publishing, 14.5

	external transaction manager, 15.1.1
	extproc agent, A

F

	families of data types, 1.9.3, 1.9.3
	fine-grained auditing (FGA) policy, editioning view and, 19.5.1
	fine-grained invalidation, 18.4
	firing order of triggers, 19.3.3.3
	FIXED_DATE initialization parameter, 1.4.1
	Flashback Data Archive, 12.9
	Flashback Transaction, 12.8
	FLASHBACK_TRANSACTION_QUERY view, 12.5
	floating-point data type, 1.3
	
	range and precision of, 1.3.2.1
	See also native floating-point data type

	floating-point number
	
	components of, 1.3.1
	denormal, 1.3.2.1
	format of, 1.3.2
	rounding, 1.3.2
	subnormal, 1.3.2.1

	FOR loop
	
	bulk binding for, 6.1.2.15.3
	that references collection, 6.1.2.15.3

	FORCE option of ALTER USER statement, 19.1.1.3
	FOREIGN KEY constraint, 5.8
	
	distributed databases and, 5.11
	dropping, 5.17
	editioned view and, 19.1.1.2
	enabling, 5.18
	Flashback Transaction and, 12.8.1
	indexing, 5.10
	multiple, 5.8.3
	naming, 5.13.2
	NOT NULL constraint on, 5.8.2, 5.8.2
	NULL value and, 5.8.1
	privileges needed to create, 5.18.4
	referential integrity enforced by, 5.18.5
	UNIQUE constraint on, 5.8.2, 5.8.2
	without other constraints, 5.8.2

	foreign key dependency, 12.8.1
	foreign rowid, 1.7.3
	formal subprogram parameter, data type of, 6.1.2.2.2
	forward crossedition trigger, 19.3.1
	forward crossedition trigger SQL, 19.3.3.2.1
	function
	
	aggregate, 6.11
	built-in
	
	See SQL function

	controlling side effects of, 6.9.4
	DETERMINISTIC, 6.9.4.2
	
	function-based index and, 4.4.2
	RPC signature and, 18.10.2

	invoking from SQL statement, 6.9
	MGD_ID ADT, 17.3.3
	OCI or OCCI, 13.7.2
	PARALLEL_ENABLE, 6.9.4.2, 6.9.4.2
	
	RPC signature and, 18.10.2

	purity of, 6.9.4
	
	RPC signature and, 18.10.2

	result-cached, 6.1.2.7
	returning large amount of data from, 6.10
	SQL
	
	See SQL function

	See also subprogram

	function result cache, 6.1.2.7
	function-based index, 4.4
	
	editioned function and, 19.1.1.2
	examples of, 4.4.3
	optimizer and, 4.4, 4.4.1

G

	Geographic Information System (GIS) data, 1.5.1
	global transaction, 15.1.1
	global variable, in C external subprogram, 14.13.6
	greedy operator in regular expression, 3.4.1
	group commit, 2.2.4

H

	hierarchical profiler, 8
	host language, 13.6
	host program, 13.6
	hot rollover, 19
	HTML syntax error in PSP script, 10.5.1.3

I

	IA-32 and IA-64 instruction set architecture, 1.3.4
	IBM CICS, 15.1.1
	IBM Transarc Encina, 15.1.1
	Identity Code Package, 17
	IEEE 754 format, 1.3
	
	See Also native floating-point data type

	IEEE 754 standard
	
	exception
	
	not raised, 1.3.2.2
	raised during conversion, 1.3.5

	OCI support for datatypes of, 1.3.6.1
	special values supported by, 1.3.2.2

	IGNORE_ROW_ON_DUPKEY_INDEX hint, 19.3.4.1.1
	IMMEDIATE commit redo option, 2.2.4
	IN OUT subprogram parameter mode, 6.1.2.2.1
	IN subprogram parameter mode, 6.1.2.2.1
	independent transaction
	
	See autonomous transaction

	index, 4
	
	domain, 4.3
	edition-based redefinition and, 19.2.6
	function-based
	
	See function-based index

	on MGD_ID column, 17.3.2

	infinity, 1.3.2.2, 1.3.2.2
	inherited object, 19.1.3
	
	dropping, 19.1.3.1

	initialization parameter
	
	DML_LOCKS, 2.5
	FIXED_DATE, 1.4.1
	NLS_DATE_FORMAT, 1.4.1
	OPEN_CURSORS, 2.4.1

	integer data type class, 18.10.2.4
	integrity constraint
	
	See constraint

	integrity of data, 5
	interface
	
	between PL/SQL and C, 14.5.2
	between PL/SQL and Java, 14.5.1
	OraDatabase, 13.11.2.3
	program, 13.2
	TX, 15.1.1
	user, 13.2.1
	
	stateful or stateless, 13.2.2

	See also Oracle Call Interface

	invalidation
	
	cascading, 18.4
	coarse-grained, 18.4
	fine-grained, 18.4
	of dependent object, 18.4
	of package, 6.1.2.12

	invoker’s-rights subprogram, 6.7.1
	invoking subprogram, 6.7
	
	from 3GL application, 6.7.4
	from subprogram, 6.7.3
	from trigger, 6.7.3
	interactively from Oracle Database tools, 6.7.2
	through embedded PL/SQL gateway, 9.4.4

	isolation level
	
	See transaction isolation level

J

	Java class method
	
	calling, 14.10.3
	interface between PL/SQL and, 14.5.1
	loading, 14.4.1
	publishing, 14.6
	See also external subprogram

	Java Database Connectivity
	
	See Oracle JDBC

	Java language
	
	compared to PL/SQL, 13.5
	Oracle Database support for, 13.4
	STATIC class attribute of, 6.9.4.3

	Java Server Pages (JSP), 10.4
	Java Virtual Machine
	
	See Oracle JVM

	JavaScript, 10.9.5
	JDBC
	
	See Oracle JDBC

	JSP (Java Server Pages), 10.4
	JVM
	
	See Oracle JVM

K

	key
	
	foreign
	
	See FOREIGN KEY constraint

	primary
	
	See PRIMARY KEY constraint

	unique
	
	See UNIQUE constraint

L

	Large Object (LOB), 1.5.3.1
	
	Oracle Objects for OLE support for, 13.11.3

	leaf edition, 19.1.2
	LGWR (log writer process), 2.2.4, 2.2.4
	libunit, 14.2
	lightweight queue, 16.3
	loadpsp utility, 10.6
	LOB
	
	See Large Object (LOB)

	LOCK TABLE statement, 2.5.2
	
	SELECT FOR UPDATE statement with, 2.5.5

	locking row explicitly, 2.5.4
	locking table
	
	explicitly, 2.5
	implicitly, 2.5.3

	log writer process (LGWR), 2.2.4
	logical rowid, 1.7.3
	LONG and LONG RAW data types, 1.5.3.2
	loose coupling, 15.1.1

M

	main transaction, 2.8
	maximum availability of table, 19.2.1
	metacharacter in regular expression, 3.1
	metadata for SQL operator or function, 1.9
	MGD_ID ADT, 17.1
	MGD_ID database ADT function, 17.3.3
	mod_plsql module, 9.2.1.1
	mode
	
	agtctl command, A.3
	dependency, 18.10
	lock, 2.5.2
	serialized
	
	See serializable transaction

	subprogram parameter, 6.1.2.2.1

	MODIFY CONSTRAINT clause of ALTER TABLE statement, 5.15
	modifying
	
	See altering

	monitor thread, A.2
	multilanguage program, 14.1
	
	error or exception in, 14.11

	multiline mode, 3.2
	multilingual data, 3.4.2
	multimedia data, 1.5.2
	multithreaded extproc agent, A

N

	name resolution, 18.7
	
	editions and, 19.1.3.2

	NaN (not a number), 1.3.2.2
	national character large object (NCLOB) data type, 1.5.3.1
	native execution, compiling subprogram for, 6.2
	native floating-point data type, 1.3
	
	arithmetic operation with, 1.3.4
	binary format for, 1.3.2.1
	clients that support, 1.3.6
	comparison operator for, 1.3.3
	conversion functions for, 1.3.5
	special values for, 1.3.2.2

	NCHAR data type
	
	specifying length of, 1.2.1
	values stored, 1.2

	NCLOB data type, 1.5.3.1
	negative infinity, 1.3.2.2
	negative zero, 1.3.2.2
	new features, Preface
	NLS_DATE_FORMAT initialization parameter, 1.4.1
	noneditionable schema object type, 19.1.1.1
	noneditioned object, 19.1.1
	nongreedy operator in regular expression, 3.4.3
	nonpersistent queue, 16.3
	normalized significand, 1.3.2.1
	NOT NULL constraint
	
	compared to CHECK constraint, 5.12.4
	naming, 5.13.2
	on FOREIGN KEY constraint, 5.8.2, 5.8.2
	when to use, 5.4

	NOWAIT commit redo option, 2.2.4
	NOWAIT option of LOCK TABLE statement, 2.5.2
	NULL value
	
	FOREIGN KEY constraint and, 5.8.1
	function-based index and, 4.4
	indexing and, 5.4

	number
	
	binary, 1.3.2
	decimal, 1.3.2
	rounding, 1.3.2

	NUMBER data type, 1.3
	number data type class, 18.10.2.4
	numeric data types, 1.3
	NVARCHAR2 data type
	
	specifying length of, 1.2.1
	values stored, 1.2

O

	object
	
	actual, 19.1.3
	dependent
	
	See schema object dependency

	editioned, 19.1.1
	inherited, 19.1.3
	
	dropping, 19.1.3.1

	large
	
	See Large Object (LOB)

	noneditioned, 19.1.1
	potentially editioned, 19.1.1
	referenced
	
	See schema object dependency

	size limit for PL/SQL stored, 6.1.2.9

	object change notification, 11.1
	object data type, 13.11.3
	object type
	
	See schema object type

	OCCI
	
	See Oracle C++ Call Interface

	OCI
	
	See Oracle Call Interface

	OCIAnyData and OCIAnyDataSet interfaces, 1.5.6
	ODC (Oracle Data Control), 13.11.4
	ODP.NET, 13.9
	online application upgrade
	
	See edition-based redefinition

	OO4O
	
	See Oracle Objects for OLE

	OPEN_CURSORS initialization parameter, 2.4.1
	operator
	
	comparison, 1.3.3
	in regular expression, 3.4
	
	greedy, 3.4.1
	nongreedy, 3.4.3

	metadata for, 1.9
	relational, 1.3.3

	optimizer
	
	editioning view and, 19.2.7
	function-based index and, 4.4, 4.4.1
	RPC signature and, 18.10.2

	ora$base edition, 19.1, 19.1.2
	Oracle Advanced Queuing (AQ), 16.2.2
	Oracle C++ Call Interface, 13.7
	
	building application with, 13.7.4
	kinds of functions in, 13.7.2
	procedural and nonprocedural elements of, 13.7.3

	Oracle Call Interface, 13.7
	
	building application with, 13.7.4
	commit redo action in, 2.2.4
	compared to precompiler, 13.8
	kinds of functions in, 13.7.2
	procedural and nonprocedural elements of, 13.7.3
	with Oracle XA, 15.3.5

	Oracle Data Control (ODC), 13.11.4
	Oracle Data Provider for .NET, 13.9
	Oracle data type
	
	See data type

	Oracle Database package, 6.1.2.13
	
	for writing low-level debugging code, 6.6.6
	runtime error raised by, 6.5

	Oracle Expression Filter, 1.6
	Oracle Flashback Query, 12.3
	Oracle Flashback Technology, 12.1
	
	application development features, 12.1.1
	configuring database for, 12.2
	database administration features, 12.1.2
	performance guidelines for, 12.11

	Oracle Flashback Transaction Query, 12.5
	Oracle Flashback Version Query, 12.4
	Oracle JDBC, 13.4.2
	
	compared to Oracle SQLJ, 13.4.4
	sample program
	
	2.0, 13.4.2.2
	pre-2.0, 13.4.2.3

	Oracle JDeveloper, 6.6.3
	
	Oracle SQLJ and, 13.4.3.1

	Oracle JPublisher, 13.4.5
	Oracle JVM, 13.4.1
	Oracle Lock Management services, 2.6
	Oracle Multimedia, 1.5.2
	Oracle Objects for OLE, 13.11
	
	Automation Server, 13.11.1
	C++ Class Library, 13.11.5
	object data type support, 13.11.3
	object model, 13.11.2

	Oracle RAC and Oracle XA, 15.5.3
	Oracle SQLJ, 13.4.3
	
	compared to Oracle JDBC, 13.4.4
	Oracle JDeveloper and, 13.4.3.1

	Oracle Text, 1.5.4, 1.5.4
	Oracle Total Recall, 12.9
	Oracle Tuxedo, 15.1.1
	Oracle Virtual Private Database (VPD) policy, editioning view and, 19.5.1
	Oracle XA
	
	Oracle RAC and, 15.5.3
	subprograms, 15.2
	when to use, 15

	OUT subprogram parameter mode, 6.1.2.2.1
	out-of-space error, 2.9
	overloaded subprogram, 6.1.2.8

P

	package, 6.1.2.8
	
	advantages of, 6.1.2.8
	body of, 6.1.2.8
	creating, 6.1.2.10
	invalidation of, 6.1.2.12
	naming, 6.1.2.11
	Oracle Database, 6.1.2.13
	
	for writing low-level debugging code, 6.6.6
	runtime error raised by, 6.5

	privileges needed to create, 6.1.2.10.2
	privileges needed to drop, 6.1.2.10.2
	session state and, 18.4.1
	size limit for, 6.1.2.9
	specification of, 6.1.2.8
	synonym for, 6.8.1

	package invalidation and, 6.1.2.12
	package subprogram, 6.1.2
	parallel DML statement, 6.9.4.3
	parallel query, 6.9.4.3
	PARALLEL_ENABLE function, 6.9.4.2
	
	RPC signature and, 18.10.2

	parameter
	
	initialization
	
	See initialization parameter

	subprogram
	
	See subprogram parameter

	parameter mode, 6.1.2.2.1
	partition-extended editioning view name, 19.2.2
	persistent LOB instance, 1.5.3.1
	persistent queue, 16.3
	phantom read, 2.7.1
	PL/Scope tool, 7
	plshprof utility, 8.5
	PL/SQL function result cache, 6.1.2.7
	PL/SQL gateway, 9.2.1
	PL/SQL hierarchical profiler, 8
	PL/SQL language, 13.3
	
	compared to Java, 13.5

	PL/SQL object, CREATE OR REPLACE and, 18.4
	PL/SQL Server Pages
	
	characteristics of, 10.5.1
	elements of, 10.5
	loading, 10.6
	script error in, 10.5.1.3

	PL/SQL unit, 6.1
	
	stored, 6.1.2

	PL/SQL Web Toolkit, 9.2.2
	pool, connection, 13.6.1
	positive infinity, 1.3.2.2
	positive zero, 1.3.2.2
	POSIX standard for regular expressions
	
	operators defined in, 3.4.1
	Oracle SQL and, 3.3
	Oracle SQL multilingual extensions to, 3.4.2
	Oracle SQL PERL-influenced extensions to, 3.4.3

	potentially editioned object, 19.1.1
	precompiler, 13.6
	
	compared to Oracle Call Interface, 13.8
	Oracle XA and, 15.3.4

	PRIMARY KEY constraint, 5.6
	
	dropping, 5.17
	Flashback Transaction and, 12.8.1
	naming, 5.13.2

	primary key dependency, 12.8.1
	privileges
	
	for creating package, 6.1.2.3
	for creating subprogram, 6.1.2.3
	for debugging subprogram, 6.6.5
	for defining constraint, 5.13.1
	for dropping package, 6.1.2.5
	for dropping packages, 6.1.2.10.2
	for dropping subprogram, 6.1.2.5
	for Oracle Flashback Technology, 12.2.5
	for running subprogram, 6.7.1
	revoked, object dependency and, 18.4.2

	Pro*C/C++ precompiler, 13.6.1
	
	native floating-point data type support in, 1.3.6.3

	Pro*COBOL precompiler, 13.6.2
	procedure
	
	PL/SQL Server Pages and, 10.5.3
	See also subprogram

	product code, 17.7.2
	profiler, 8
	program interface, 13.2
	programming environment, 13
	PSP
	
	See PL/SQL Server Pages

	public information, required, 15.1.2
	publish-subscribe model, 16
	purity of function, 6.9.4
	
	RPC signature and, 18.10.2

Q

	quality-of-service flag, 11.6.6.2
	query
	
	parallel, 6.9.4.3
	registering for Continuous Query Notification, 11.6
	runtime error in distributed, 6.5.3

	query result change notification, 11.2
	queue, 16.3

R

	Radio Frequency Identification (RFID) technology, 17.7.1
	RAISE statement, 6.5.1
	RAW data type, 1.5.3.2
	raw data type class, 18.10.2.4
	READ COMMITTED transaction isolation level
	
	compared to SERIALIZABLE, 2.7.4.2
	in Oracle Database, 2.7.1
	transaction interactions with, 2.7.1

	read consistency
	
	statement-level, 2.3
	transaction-level, 2.3
	
	locking tables explicitly for, 2.5
	read-only transaction for, 2.3

	read lock, 2.7.3
	READ UNCOMMITTED transaction isolation level
	
	in Oracle Database, 2.7.1
	transaction interactions with, 2.7.1

	read-only editioning view, 19.2.1
	read-only transaction, 2.3
	read-write editioning view, 19.2.1
	redefinition, edition-based, 19
	redo information for transaction, 2.2.4
	redo management, 2.2.4
	referenced object
	
	See schema object dependency

	referential integrity
	
	serializable transactions and, 2.7.3
	trigger for enforcing, 2.7.3

	referential integrity constraint
	
	See FOREIGN KEY constraint

	REGEXP_COUNT function, 3.2
	REGEXP_INSTR function, 3.2
	REGEXP_LIKE condition, 3.2
	REGEXP_REPLACE function, 3.2
	
	back reference operator in, 3.4.1

	REGEXP_SUBSTR function, 3.2
	registration
	
	dynamic, 15.1.1
	for Continuous Query Notification, 11.6
	in publish-subscribe model, 16.3
	static, 15.1.1

	regular expression, 3
	
	in Oracle SQL, 3.2
	in SQL statement, 3.5
	metacharacter in, 3.1
	POSIX standard and
	
	See POSIX standard for regular expressions

	Unicode and, 3.3

	relational operator, 1.3.3
	remote dependency management, 18.9
	remote procedure call dependency management, 18.10
	repeatable read, 2.3
	
	read-only transaction for, 2.3

	REPEATABLE READ transaction isolation level
	
	in Oracle Database, 2.7.1
	locking tables explicitly for, 2.5
	transaction interactions with, 2.7.1

	required public information, 15.1.2
	rerunning SQL statement, 2.4.2
	resource manager (RM), 15.1.1
	RESTRICT_REFERENCES pragma
	
	for backward compatibility, 6.9.4.4
	overloaded functions and, 6.9.4.4.3
	static and dynamic SQL statements and, 6.9.4.4.2

	restricted internal ROWID format, 1.7.2.1
	result cache, 6.1.2.7
	resumable storage allocation, 2.9
	RETENTION GUARANTEE clause for undo tablespace, 12.2.1
	RETENTION option of ALTER TABLE statement, 12.2.4
	reverse crossedition trigger, 19.3.2
	reverse crossedition trigger SQL, 19.3.3.2.2
	RFID (Radio Frequency Identification) technology, 17.7.1
	RM (resource manager), 15.1.1
	ROLLBACK statement, 2.2.5
	rolling back transaction, 2.2.5
	root edition, 19.1.2
	roundiing floating-point numbers, 1.3.2
	routine
	
	See subprogram

	row
	
	address of
	
	See rowid

	locking explicitly, 2.5.4

	ROW EXCLUSIVE MODE option of LOCK TABLE statement, 2.5.2.1, 2.5.2.1
	ROW SHARE MODE option of LOCK TABLE statement, 2.5.2.1
	rowid, 1.7
	
	foreign, 1.7.3
	logical, 1.7.3
	universal (urowid), 1.7.3

	ROWID data type, 1.7.2
	ROWID pseudocolumn, 1.7
	
	CQN and, 11.6.2.3
	See also rowid

	ROWTYPE_MISMATCH exception, 6.3.2
	RPC dependency management, 18.10
	RPC-signature dependency mode, 18.10.2
	RR datetime format element, 1.4.1
	rule on queue, 16.3
	rules engine, 16.3
	runtime error handling, 6.5
	
	for distributed query, 6.5.3
	for PL/SQL Server Pages (PSP) script, 10.5.1.3
	for remote subprogram, 6.5.4
	for storage allocation error, 2.9
	for user-defined exception, 6.5.1
	See also exception

S

	SAVEPOINT statement, 2.2.6, 2.2.6
	schema object dependency, 18
	
	actualization and, 19.1.3.2
	in distributed database, 18.9
	invalidation and, 18.4
	on nonexistence of other objects, 18.7
	revoked privileges and, 18.4.2
	shared pool and, 18.11

	schema object type
	
	editionable, 19.1.1.1
	noneditionable, 19.1.1.1

	scrollable cursor, 2.4.3
	searchable text, 1.5.4
	SELECT FOR UPDATE statement, 2.5.4
	
	LOCK TABLE statement with, 2.5.5
	referential integrity and
	
	inside trigger, 2.7.3
	outside trigger, 2.7.3

	SELECT statement
	
	bulk binding for, 6.1.2.15.2
	referencing collection with, 6.1.2.15.2
	with AS OF clause, 12.3
	with FOR UPDATE clause
	
	See SELECT FOR UPDATE statement

	with VERSIONS BETWEEN clause, 12.4

	semi-available table, 19.2.1
	serendipitous change, 19.3.5
	
	data transformation collisions and, 19.3.4.1.1
	identifying, 19.3.4.1.1

	serializable transaction
	
	for concurrency control, 2.7
	interaction with, 2.7.1
	referential integrity and, 2.7.3

	SERIALIZABLE transaction isolation level
	
	compared to READ COMMITTED, 2.7.4.2
	in Oracle Database, 2.7.1
	transaction interactions with, 2.7.1
	See also serializable transaction

	server-side programming, 13.1.2
	service routine, C external subprogram and, 14.12
	session edition, 19.1.6
	session state, 18.4.1
	session variable, 6.7.2
	SET CONSTRAINTS statement, 5.8.4
	SET TRANSACTION statement with READ ONLY option, 2.3
	SHARE MODE option of LOCK TABLE statement, 2.5.2.2
	SHARE ROW EXCLUSIVE MODE option of LOCK TABLE statement, 2.5.2.3
	shared SQL area, 2.1
	side effects of function, controlling, 6.9.4
	signature checking, 18.9.1
	single-precision IEEE 754 format, 1.3.2.1
	spatial data, 1.5.1
	SQL area, shared, 2.1
	SQL data type
	
	See data type

	SQL function
	
	display type of, 1.9.2
	for data type conversion, 1.4.5
	metadata for, 1.9

	SQL optimizer hint and editioning view, 19.2.7
	SQL statement
	
	application, 19.3.3.2.3
	crossedition trigger
	
	forward, 19.3.3.2.1
	reverse, 19.3.3.2.2

	dynamic, 6.9.4.4.2
	invoking PL/SQL function from, 6.9
	processing
	
	DDL statement, 2.1
	stages of, 2.1
	system management statement, 2.1, 2.1

	rerunning, 2.4.2
	static, 6.9.4.4.2

	SQL/DS data type, 1.5.7
	SQLJ
	
	See Oracle SQLJ

	SQLT_BDOUBLE data type, 1.3.6.1
	SQLT_BFLOAT data type, 1.3.6.1
	standalone subprogram, 6.1.2
	state
	
	session, 18.4.1
	user interface and, 13.2.2
	web application and, 9.6.8

	statement
	
	See SQL statement

	statement-level read consistency, 2.3
	static registration, 15.1.1
	static SQL statement, 6.9.4.4.2
	static variable, in C external subprogram, 14.13.7
	statistics
	
	for application, 8
	for identifier, 7

	storage allocation error, 2.9
	stored PL/SQL unit, 6.1.2
	subnormal floating-point number, 1.3.2.1
	subprogram
	
	compiling for native execution, 6.2
	creating, 6.1.2.3
	definer’s-rights, 6.7.1
	editioned, 19.1.1.2
	exception-handling, 6.5.1
	external
	
	See external subprogram

	invoker’s-rights, 6.7.1
	invoking
	
	See invoking subprogram

	naming, 6.1.2.1
	Oracle XA, 15.2
	overloaded, 6.1.2.8
	package, 6.1.2
	parameter of
	
	See subprogram parameter

	privileges needed to debug, 6.6.5
	privileges needed to run, 6.7.1
	remote, 6.5.4
	size limit for, 6.1.2.9
	standalone, 6.1.2
	synonym for, 6.8.1
	See also function and procedure

	subprogram parameter, 6.1.2.2
	
	composite variable as, 6.1.2.2.4
	data type of formal, 6.1.2.2.2
	default value of, 6.1.2.2.5
	mode of, 6.1.2.2.1

	subscriber, 16.3
	subscription services, 16.3
	synonym
	
	CREATE OR REPLACE and, 18.4
	for package, 6.8.1
	for subprogram, 6.8.1
	public, for editioned object, 19.1.1.2

	SYSDATE function, 1.4.1
	system management statement, 2.1, 2.1

T

	table
	
	locking
	
	choosing strategy for, 2.5.2
	explicitly, 2.5
	implicitly, 2.5.3

	with maximum availability, 19.2.1
	with semi-availability, 19.2.1

	Tag Data Translation Markup Language Schema, 17.1
	task thread, A.2
	temporary LOB instance, 1.5.3.1
	thin client configuration, 13.1.3
	third-generation language (3GL), 6.7.4
	thread
	
	dispatcher, A.2
	monitor, A.2
	Oracle XA library, 15.3.9
	task, A.2

	three-tier architecture, 13.1.3
	tight coupling, 15.1.1
	time
	
	default format for, 1.4.3
	default value for, 1.4.3
	displaying
	
	current, 1.4.1
	in nondefault format, 1.4.3

	inserting in nondefault format, 1.4.3
	See also datetime data types

	time stamp checking, 18.9.1
	time-stamp dependency mode, 18.10.1
	TM (transaction manager), 15.1.1
	TPM (transaction processing monitor), 15.1.1
	transaction
	
	autonomous, 2.8
	
	trigger as, 2.9.2.1

	choosing isolation level for, 2.7.4.2
	committing, 2.2.3
	dependent, 12.8.1
	distributed, 15.1.1
	
	how it works, 6.8.2

	global, 15.1.1
	grouping operations into, 2.2.1
	improving performance of, 2.2.2
	main, 2.8, 2.8
	read-only, 2.3
	redo entry for, 2.2.4
	rolling back, 2.2.5
	savepoints for, 2.2.6
	serializable
	
	See serializable transaction

	statements in, 2.2.6

	transaction interaction
	
	kinds of, 2.7.1
	serializable transaction and, 2.7.1
	transaction isolation level and, 2.7.1

	transaction isolation level
	
	choosing, 2.7.4.2
	setting, 2.7.2
	transaction interaction and, 2.7.1

	transaction manager (TM), 15.1.1
	transaction processing monitor (TPM), 15.1.1
	transaction set consistency, 2.7.4.1
	transaction-level read consistency, 2.3
	
	locking tables explicitly for, 2.5
	read-only transaction for, 2.3

	transform, 19.3.1
	
	applying, 19.3.5

	trigger, 6.1.2.16
	
	AFTER SUSPEND, 2.9.2.1
	as autonomous transaction, 2.9.2.1
	compared to constraint, 5.1
	crossedition
	
	See crossedition trigger

	enforcing referential integrity with, 2.7.3
	in edition
	
	firing order of, 19.3.3.3
	visibility of, 19.3.3.1
	what kind can fire, 19.3.3.2

	invoking subprogram from, 6.7.3
	size limit for, 6.1.2.9

	TRUST keyword in RESTRICT_REFERENCES pragma, 6.9.4.4.1
	two-phase commit protocol, 15.1.1
	two-tier architecture, 13.1.3
	TX interface, 15.1.1
	type attribute, 6.1.2.2.3

U

	undetected deadlock, 2.6
	undo data, 12.1
	UNDO_RETENTION parameter, 2.3
	undoing transaction, 2.2.5
	unhandled exception, 6.5.2
	Unicode
	
	character literals and, 1.2.1
	regular expressions and, 3.3

	UNIQUE constraint
	
	crossedition trigger and, 19.3.4.1.1
	dropping, 5.17
	naming, 5.13.2
	on FOREIGN KEY constraint, 5.8.2, 5.8.2
	when to use, 5.7

	universal rowid (urowid), 1.7.3
	unrepeatable read, 2.7.1
	upgrading applications online
	
	See edition-based redefinition

	UROWID data type, 1.7.3
	user interface, 13.2.1
	
	stateful and stateless, 13.2.2

	user lock, 2.6
	user-defined exception, 6.5.1
	user-defined type, as subprogram parameter, 6.1.2.2.4
	UTLLOCKT.SQL script, 2.6.2

V

	VARCHAR data type class, 18.10.2.4
	VARCHAR2 data type
	
	compared to CHAR data type, 1.2.2
	specifying length of, 1.2.1, 1.2.1
	values stored, 1.2

	variable
	
	cursor
	
	See cursor variable

	in C external subprogram
	
	global, 14.13.6
	static, 14.13.7

	VERSIONS_ENDSCN pseudocolumn, 12.4
	VERSIONS_ENDTIME pseudocolumn, 12.4
	VERSIONS_OPERATION pseudocolumn, 12.4
	VERSIONS_STARTSCN pseudocolumn, 12.4
	VERSIONS_STARTTIME pseudocolumn, 12.4
	VERSIONS_XID pseudocolumn, 12.4
	view
	
	constraint on, 5
	editioned
	
	FOREIGN KEY constraint and, 19.1.1.2
	materialized view and, 19.1.1.2

	editioning
	
	See editioning view

	VPD policy, editioning view and, 19.5.1

W

	WAIT commit redo option, 2.2.4
	WAIT option of LOCK TABLE statement, 2.5.2, 2.5.2
	web application, 9.1
	
	implementing, 9.2
	state and, 9.6.8

	web page
	
	See also PL/SQL Server Pages

	web services, 13.4.7
	web toolkit
	
	See PL/SQL Web Toolkit

	WORK option of ROLLBACK statement, 2.2.5
	wrap utility, debugging and, 6.6.5
	write-ability of editioning view, 19.2.3
	write-after-write dependency, 12.8.1

X

	xa_open string, 15.3.3
	XMLType data type, 1.5.5
	X/Open Distributed Transaction architecture, 15.1
	X/Open Distributed Transaction Processing (DTP) architecture, 15.1

Y

	YY datetime format element, 1.4.2

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Alpha and Beta Draft Documentation Notice

If this document is in preproduction status:

This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.

[image: Oracle Logo]

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Database Advanced
Application Developer's
Guide, 11g Release 2
(11.2)

OEBPS/dcommon/oracle.gif

OEBPS/img/adfns059.gif

