

List of Figures

	2-1 Layers of an Oracle Retail Data Model Warehouse
	2-2 Partitioning for Join Performance
	2-3 Parallel Execution of a Full Partition-Wise Join Between Two Tables
	2-4 Partial Partition-Wise Join
	3-1 Oracle SQL Developer with ORDM_SYS Schema
	3-2 Applying Filters
	3-3 Review Tables to Ensure Valid Data
	3-4 Checking the Result
	3-5 Star Schema Diagram
	3-6 Diagram of the OLAP Dimensional Model
	4-1 ETL Flow Diagram
	4-2 ORDM Main Intra-ETL Process Flow
	4-3 Intra-ETL Derived Process Flow
	4-4 Intra-ETL Independent MV Process Flow
	4-5 Intra-ETL Aggregate Process Flow
	4-6 OLAP Map Process Flow
	4-7 Mining Flow Process
	5-1 New Dashboard Start: BIEE Home
	5-2 New Dashboard: Enter Name
	5-3 New Dashboard: Catalog View
	5-4 New Dashboard: Catalog View with New Reports Vertical
	5-5 New Dashboard: Catalog View with New Reports Horizontal
	5-6 New Dashboard: Select Name for Page
	5-7 New Dashboard: Enter New Page Name
	5-8 New Dashboard: Rename Page Dialog
	5-9 New Dashboard: Display with Two New Reports
	5-10 Analysis Report: Welcome Page with New Menu
	5-11 Analysis Report: Welcome Page with Select Subject Area Menu
	5-12 Analysis Report: Welcome Page with Selected Columns
	5-13 Analysis Report: Results View of Report
	5-14 New Report: Create New View
	5-15 New Report: Final View of New Reports
	7-1 Currency and Transaction Amount Data Flow in Oracle Retail Data Model

2 Physical Model Customization

This chapter provides general information about customizing the physical model of Oracle Retail Data Model and more detailed information about customizing the foundation layer of the physical model. This chapter contains the following topics:

	
Characteristics of the Default Physical Model

	
Customizing the Oracle Retail Data Model Physical Model

	
Foundation Layer Customization

	
General Recommendations When Designing Physical Structures

	
See also:

Chapter 3, "Access Layer Customization"

Characteristics of the Default Physical Model

The default physical model of Oracle Retail Data Model defines:

	
Over 1,250 tables and 18,500 attributes

	
Over 1,800 industry measures and KPIs

	
12 pre-built data mining models

	
30 OLAP dimensions and 28 pre-built OLAP cubes

The default physical model of Oracle Retail Data Model shares characteristics of a multischema "traditional" data warehouse, as described in "Layers in a "Traditional" Data Warehouse", but defines all data structures in a single schema as described in "Layers in the Default Oracle Retail Data Model Warehouse".

Layers in a "Traditional" Data Warehouse

Historically, three layers are defined for a data warehouse environment:

	
Staging layer. This layer is used when moving data from the transactional system and other data sources into the data warehouse itself. It consists of temporary loading structures and rejected data. Having a staging layer enables the speedy extraction, transformation and loading (ETL) of data from your operational systems into data warehouse without disturbing any of the business users. It is in this layer the much of the complex data transformation and data quality processing occurs. The most basic approach for the design of the staging layer is as a schema identical to the one that exists in the source operational system.

	
Note:

In some implementations this layer is not necessary, because all data transformation processing is done "on the fly" as data is extracted from the source system before it is inserted directly into the foundation layer.

	
Foundation or integration layer. This layer is traditionally implemented as a Third Normal Form (3NF) schema. A 3NF schema is a neutral schema design independent of any application, and typically has a large number of tables. It preserves a detailed record of each transaction without any data redundancy and allows for rich encoding of attributes and all relationships between data elements. Users typically require a solid understanding of the data to navigate the more elaborate structure reliably. In this layer data begins to take shape and it is not uncommon to have some end-user application access data from this layer especially if they are time sensitive, as data becomes available here before it is transformed into the Access and Performance layer.

	
Access layer. This layer is traditionally defined as a snowflake or star schema that describes a "flattened" or dimensional view of the data.

Layers in the Default Oracle Retail Data Model Warehouse

Oracle Retail Data Model warehouse environment also consists of three layers, as shown in Figure 2-1. Note, in the Oracle Retail Data Model the definitions of the foundation and access layers are combined in a single schema.

Figure 2-1 Layers of an Oracle Retail Data Model Warehouse

[image: Description of Figure 2-1 follows]

The layers in the Oracle Retail Data Model warehouse are:

	
Staging layer. As in a "traditional" data warehouse environment, an Oracle Retail Data Model warehouse environment can have a staging layer. See the Oracle Retail Data Model Release Notes for more details on the staging layer.

	
Foundation and Access layers. The physical objects for these layers are defined in a single schema, the ordm_sys schema:

	
Foundation layer. The foundation layer of the Oracle Retail Data Model is defined by base (DWB_) and Reference (DWR_) tables that present the data in 3NF; this layer also includes the lookup and control tables defined in the ordm_sys schema (that is, the tables that have the DWL_ and DWC_ prefixes).

	
Access layer. The Access layer of Oracle Retail Data Model is defined by derived and aggregate tables (defined with DWD_ and DWA_ prefixes), cubes (defined with a CB$ prefix), and views (that is, views defined with the _VIEW suffix). These structures provide a summarized or "flattened" perspective of the data in the foundation layer.

This layer also contains the results of the data mining models which are stored in derived (DWD_) tables.

	
See:

Oracle Retail Data Model Reference for detailed information on the ordm_sys schema.

Customizing the Oracle Retail Data Model Physical Model

The starting point for the Oracle Retail Data Model physical data model is the 3NF logical data model. The physical data model mirrors the logical model as much as possible, although some changes in the structure of the tables or columns may be necessary, and defines database objects (such as tables, cubes, and views).

To customize the default physical model of Oracle Retail Data Model take the following steps:

	
Answer the questions outlined in "Questions to Answer Before You Customize the Physical Model".

	
Familiarize yourself with the characteristics of the logical and physical model of Oracle Retail Data Model as outlined in"Characteristics of the Default Physical Model" and presented in detail in Oracle Retail Data Model Reference.

	
Modify the foundation level of your physical model of Oracle Retail Data Model, as needed. See "Common Change Scenarios When Customizing the Foundation Layer of Oracle Retail Data Model" for a discussion of when customization might be necessary.

When defining physical structures:

	
Keep the foundation layer in 3NF form.

	
Use the information presented in "General Recommendations When Designing Physical Structures" to guide you when designing the physical objects.

	
Follow the conventions used when creating the default physical model of Oracle Retail Data Model as outlined in "Conventions When Customizing the Physical Model".

	
Tip:

Package the changes you make to the physical data model as a patch to the ordm_sys schema.

	
Modify the access layer of your physical model of Oracle Retail Data Model as discussed in Chapter 3, "Access Layer Customization".

Questions to Answer Before You Customize the Physical Model

When designing the physical model, remember that the logical data model is not one-to-one with the physical data model. Consider the load, query, and maintenance requirements when you are designing the physical model customizations. For example, answer the following questions before you design the physical data model:

	
Identify the scope of the changes. See "Common Change Scenarios When Customizing the Foundation Layer of Oracle Retail Data Model" for an overview discussion of making physical data model changes when your business needs do not result in a logical model that is the same as the Oracle Retail Data Model logical model.

	
What is the result of the source data profile?

	
What is the data load frequency for each table?

	
How many large tables are there and which tables are these?

	
How will the tables and columns be accessed? What are the common joins?

	
What is your data backup strategy?

Conventions When Customizing the Physical Model

When developing the physical model for Oracle Retail Data Model, the following conventions were used. Continue to follow these conventions as you customize the physical model.

General Naming Conventions for Physical Objects

Follow these guidelines for naming physical objects that you define:

	
When naming the physical objects follow the naming guidelines for naming objects within an Oracle Database schema. For example:

	
Table and column names must start with a letter, can use only 30 alphanumeric characters or less, cannot contain spaces or some special characters such as "!" and cannot use reserved words.

	
Table names must be unique within a schema that is shared with views and synonyms.

	
Column names must be unique within a table.

	
Although it is common to use abbreviations in the physical modeling stage, as much as possible, use names for the physical objects that correspond to the names of the entities in the logical model. Use consistent abbreviations to avoid programmer and user confusion.

	
When naming columns, use short names if possible. Short column names reduce the time required for SQL command parsing.

	
The ordm_sys schema delivered with Oracle Retail Data Model uses the prefixes and suffixes shown in the following table to identify object types.

	Prefix or Suffix	Used for Name of These Objects
	CB$	Materialized view used to support/deliver required functionality for an Oracle OLAP cube. This is an internal object built and maintained automatically by the Oracle OLAP server in the database.
Note: Do not report or query against this object. Instead access the corresponding _VIEW object.

	DMV_	Materialized view created for performance reasons (that is, not an aggregate table or an OLAP cube).
	DWA_	Aggregate tables or relational materialized views (aggregate objects)
	DWB_	Base transaction data (3NF) tables.
	DWC_	Control tables.
	DWD_	Derived tables -- including data mining result tables.
	DWL_	Lookup tables.
	DWV_	Relational view of time dimension
	DWR_	Reference data tables.
	_VIEW	A relational view of an OLAP cube, dimension, or hierarchy.

	
Note:

You should use a similar prefix and suffix, combined with an indicator for your company or project name for any new tables, views, and cubes that you define during customization. For example, if your customization project chooses a standard prefix of 'AZ', then new base tables would be created with the prefix 'AZB_', new reference tables would use the prefix 'AZR_'.

	
See:

Oracle Retail Data Model Reference for detailed information about the objects in the default Oracle Retail Data Model.

Foundation Layer Customization

The first step in customizing the physical model of Oracle Retail Data Model is customizing the foundation layer of the physical data model. Since, as mentioned in "Layers in the Default Oracle Retail Data Model Warehouse", the foundation layer of the physical model mirrors the 3NF logical model of Oracle Retail Data Model, you might choose to customize the foundation layer to reflect differences between your logical model needs and the default logical model of Oracle Retail Data Model. Additionally, you might need to customize the physical objects in the foundation layer to improve performance (for example, you might choose to compress some foundation layer tables).

When making changes to the foundation layer, keep the following points in mind:

	
When changing the foundation layer objects to reflect your logical model design, make as few changes as possible. "Common Change Scenarios When Customizing the Foundation Layer of Oracle Retail Data Model" outlines the most common customization changes you will make in this regard.

	
When defining new foundation layer objects or when redesigning existing foundation layer objects for improved performance, follow the "General Recommendations When Designing Physical Structures" and "Conventions When Customizing the Physical Model".

	
Remember that changes to the foundation layer objects can also impact the access layer objects.

	
Note:

Approach any attempt to change the Oracle Retail Data Model with caution. The foundation layer of the physical model of Oracle Retail Data Model has (at its core) a set of generic structures that allow it to be flexible and extensible. Before making extensive additions, deletions, or changes, ensure that you understand the full range of capabilities of Oracle Retail Data Model and that you cannot handle your requirements using the default objects in the foundation layer.

	
See also:

"Example of Changing the Foundation Layer of the Oracle Retail Data Model"

Common Change Scenarios When Customizing the Foundation Layer of Oracle Retail Data Model

There are several common change scenarios when customizing the foundation layer of the physical data model:

	
Additions to Existing Structures

If you identify business areas or processes that are not supported in the default foundation layer of the physical data model of Oracle Retail Data Model, add new tables and columns.

Carefully study the default foundation layer of the physical data model of Oracle Retail Data Model (and the underlying logical data model) to avoid building redundant structures when making additions. If these additions add high value to your business value, communicate the additions back to the Oracle Retail Data Model Development Team for possible inclusion in future releases of Oracle Retail Data Model.

	
Deletions of Existing Structures

If there are areas of the model that cannot be matched to any of the business requirements of your legacy systems, it is safer to keep these structures and not populate that part of the warehouse.

Deleting a table in the foundation layer of the physical data model can destroy relationships needed in other parts of the model or by applications based on the it. Some tables may not be needed during the initial implementation, but you may want to use these structures at a later time. If this is a possibility, keeping the structures now saves re-work later. If tables are deleted, perform a thorough analysis to identify all relationships originating from that entity.

	
Changes to Existing Structures

In some situations some structures in the foundation layer of the physical data model of Oracle Retail Data Model may not exactly match the corresponding structures that you use. Before implementing changes, identify the impact that the changes would have on the database design of Oracle Retail Data Model. Also identify the impact on any applications based on the new design.

	
See also:

"Example of Changing the Foundation Layer of the Oracle Retail Data Model"

Example of Changing the Foundation Layer of the Oracle Retail Data Model

As an example, let's examine how Oracle Retail Data Model supports the various retail services, what you might discover during fit-gap analysis, and how you might extend Oracle Retail Data Model to fit the discovered gaps.

Entities supporting Retail services

The entities provided with the logical model of Oracle Retail Data Model that support the retail services are:

	
Customer: An individual or organization that purchases, may purchase, or did purchase goods and or services from a store.

	
Customer Order: The entity captures information about an order placed by a customer for merchandise or services to be provided at some future date and time.

	
SKU Item: Stock Keeping Unit or unit identification, typically the UPC, used to track store inventory and sales. Each SKU is associated with an item, variant, product line, bundle, service, fee, or attachment. This is the lowest level of merchandise for which inventory and sales records are retained within the retail store.

	
Item Category: Category within a subclass in the product hierarchy, as it was at a given point in time.

The differences discovered during fit-gap analysis

Assume that during the fit-gap analysis, you discover the following need that is not supported by the logical model delivered with Oracle Retail Data Model:

Your company wants to add a new section in the retail domain. For example, if you want to add a book section in your store to other existing departments.

Extending the physical model to support the differences

For example, to extend the physical data model, do the following:

	
Create a table named DWR_AUTHOR to hold the Author's information by executing the following statements:

CREATE TABLE DWR_AUTHOR
(
AUTHOR _ID INTEGER NOT NULL,
AUTHOR _FIRST_NAME VARCHAR2 (50) NOT NULL,
AUTHOR _LAST_NAME VARCHAR2 (50)
);
ALTER TABLE DWR_AUTHOR ADD CONSTRAINT AUTHOR_PK PRIMARY KEY (AUTHOR _ID);

	
Add columns in the DWR_SKU_ITEM table using the following statement:

ALTER TABLE DWR_SKU_ITEM ADD COLUMN ISBN INTEGER NULL

	
Create another new table named DWR_AUTHOR_ITEM_ASGN:

CREATE TABLE DWR_AUTHOR_ITEM_ASGN
(
AUTHOR _ID INTEGER NOT NULL,
SKU_ITEM_KEY NUMBER (30) NOT NULL
);

General Recommendations When Designing Physical Structures

The ordm_sys schema delivered with Oracle Retail Data Model was designed and defined following best practices for data access and performance. Continue to use these practices when you add new physical objects. This section provides information about how decisions about the following physical design aspects were made to the default Oracle Retail Data Model:

	
Tablespaces in Oracle Retail Data Model

	
Data Compression in Oracle Retail Data Model

	
Surrogate Keys in the Physical Model

	
Integrity Constraints in Oracle Retail Data Model

	
Indexes and Partitioned Indexes in Oracle Retail Data Model

	
Partitioned Tables in Oracle Retail Data Model

	
Parallel Execution in Oracle Retail Data Model

Tablespaces in Oracle Retail Data Model

A tablespace consists of one or more data files, which are physical structures within the operating system you are using.

Recommendations: Defining Tablespaces

If possible, define tablespaces so that they represent logical business units.

Use ultra large data files for a significant improvement in very large Oracle Retail Data Model warehouse.

Changing the Tablespace and Partitions Used by Tables

You can change the tablespace and partitions used by Oracle Retail Data Model tables. What you do depends on whether the Oracle Retail Data Model table has partitions:

	
For tables that do not have partitions (that is, lookup tables and reference tables), you can change the existing tablespace for a table.

By default, Oracle Retail Data Model defines the partitioned tables as interval partitioning, which means the partitions are created only when new data arrives.

Consequently, for Oracle Retail Data Model tables that have partitions (that is, Base, Derived, and Aggregate tables), for the new interval partitions to be generated in new tablespaces rather than current ones, issue the following statements.

ALTER TABLE table_name MODIFY DEFAULT ATTRIBUTES
TABLESPACE new_tablespace_name;

When new data is inserted in the table specified by table_name, a new partition is automatically created in the tablespace specified as new_tablespace_name.

	
For tables that have partitions (that is, base, derived, and aggregate tables), you can specify that new interval partitions be generated into new tablespaces.

For Oracle Retail Data Model tables that do not have partitions, that is lookup tables and reference tables, change the existing tablespace for a table with the following statement.

ALTER TABLE table_name MOVE TABLESPACE new_tablespace_name;

Data Compression in Oracle Retail Data Model

A key decision that you must make is whether to compress your data. Using table compression reduces disk and memory usage, often resulting in better scale-up performance for read-only operations. Table compression can also speed up query execution by minimizing the number of round trips required to retrieve data from the disks. Compressing data however imposes a performance penalty on the load speed of the data.

Recommendations: Data Compression

In general, choose to compress the data. The overall performance gain typically outweighs the cost of compression.

If you decide to use compression, consider sorting your data before loading it to achieve the best possible compression rate. The easiest way to sort incoming data is to load it using an ORDER BY clause on either your CTAS or IAS statement. Specify an ORDER BY a NOT NULL column (ideally non numeric) that has a large number of distinct values (1,000 to 10,000).

	
See also:

"Types of Data Compression Available" and "Compressing Materialized Views".

Types of Data Compression Available

Oracle Database offers the following types of compression:

	
Basic or Standard Compression

	
OLTP Compression

	
Hybrid Columnar Compression (HCC)

Basic or Standard Compression

With standard compression Oracle Database compresses data by eliminating duplicate values in a database block. Standard compression only works for direct path operations (CTAS or IAS). If the data is modified using any kind of conventional DML operation (for example updates), the data within that database block is uncompressed to make the modifications and is written back to disk uncompressed.

By using a compression algorithm specifically designed for relational data, Oracle Database can compress data effectively and in such a way that Oracle Database incurs virtually no performance penalty for SQL queries accessing compressed tables.

Oracle Retail Data Model leverages this compress feature which reduces the amount of data being stored, reduces memory usage, and increases query performance.

You can specify table compression using the COMPRESS clause of the CREATE TABLE statement or you can enable compression for an existing table using ALTER TABLE statement as shown:

alter table <tablename> move compress;

OLTP Compression

OLTP compression is a component of the Advanced Compression option. With OLTP compression, just like standard compression, Oracle Database compresses data by eliminating duplicate values in a database block. But unlike standard compression OLTP compression allows data to remain compressed during all types of data manipulation operations, including conventional DML such as INSERT and UPDATE.

	
See:

Oracle Database Administrator's Guide for more information on OLTP table compression features.

	
Oracle by Example:

For more information on Oracle Advanced Compression, see the "Using Table Compression to Save Storage Costs" OBE tutorial.
To access the tutorial, open the Oracle Learning Library in your browser by following the instructions in "Oracle Technology Network"; and, then, search for the tutorial by name.

Hybrid Columnar Compression (HCC)

HCC is available with some storage formats and achieves its compression using a logical construct called the compression unit which is used to store a set of hybrid columnar-compressed rows. When data is loaded, a set of rows is pivoted into a columnar representation and compressed. After the column data for a set of rows has been compressed, it is fit into the compression unit. If conventional DML is issued against a table with HCC, the necessary data is uncompressed to do the modification and then written back to disk using a block-level compression algorithm.

	
Tip:

If your data set is frequently modified using conventional DML, then the use of HCC is not recommended; instead, the use of OLTP compression is recommended.

HCC provides different levels of compression, focusing on query performance or compression ratio respectively. With HCC optimized for query, fewer compression algorithms are applied to the data to achieve good compression with little to no performance impact. However, compression for archive tries to optimize the compression on disk, irrespective of its potential impact on the query performance.

	
See also:

The discussion on HCC in Oracle Database Concepts.

Surrogate Keys in the Physical Model

The surrogate key method for primary key construction involves taking the natural key components from the source systems and mapping them through a process of assigning a unique key value to each unique combination of natural key components (including source system identifier). The resulting primary key value is completely non-intelligent and is typically a numeric data type for maximum performance and storage efficiency.

Advantages of Surrogate keys include:

	
Ensure uniqueness: data distribution

	
Independent of source systems

	
Re-numbering

	
Overlapping ranges

	
Uses the numeric data type which is the most performant data type for primary keys and joins

Disadvantages of Surrogate keys:

	
Requires allocation during ETL

	
Complex and expensive re-processing and data quality correction

	
Not used in queries – performance impact

	
The operational business intelligence requires natural keys to join or trace back to source operational systems

Integrity Constraints in Oracle Retail Data Model

Integrity constraints are used to enforce business rules associated with your database and to prevent having invalid information in the tables. The most common types of constraints include:

	
PRIMARY KEY constraints, this is usually defined on the surrogate key column to ensure uniqueness of the record identifiers. In general, it is recommended that you specify the ENFORCED ENABLED RELY mode.

	
UNIQUE constraints, to ensure that a given column (or set of columns) is unique. For slowly changing dimensions, it is recommended that you add a unique constraint on the Business Key and the Effective From Date columns to allow tracking multiple versions (based on surrogate key) of the same Business Key record.

	
NOT NULL constraints, to ensure that no null values are allowed. For query rewrite scenarios, it is recommended that you have an inline explicit NOT NULL constraint on the primary key column in addition to the primary key constraint.

	
FOREIGN KEY constraints, to ensure that relation between tables are being honored by the data. Usually in data warehousing environments, the foreign key constraint is present in RELY DISABLE NOVALIDATE mode.

The Oracle Database uses constraints when optimizing SQL queries. Although constraints can be useful in many aspects of query optimization, constraints are particularly important for query rewrite of materialized views. Under some specific circumstances, constraints need space in the database. These constraints are in the form of the underlying unique index.

Unlike data in many relational database environments, data in a data warehouse is typically added or modified under controlled circumstances during the extraction, transformation, and loading (ETL) process.

Indexes and Partitioned Indexes in Oracle Retail Data Model

Indexes are optional structures associated with tables or clusters. In addition to the classical B-tree indexes, bitmap indexes are very common in data warehousing environments

	
Bitmap indexes are optimized index structures for set-oriented operations. Additionally, they are necessary for some optimized data access methods such as star transformations. Bitmap indexes are typically only a fraction of the size of the indexed data in the table.

	
B-tree indexes are most effective for high-cardinality data: that is, for data with many possible values, such as customer_name or phone_number. However, fully indexing a large table with a traditional B-tree index can be prohibitively expensive in terms of disk space because the indexes can be several times larger than the data in the table. B-tree indexes can be stored specifically in a compressed manner to enable huge space savings, storing more keys in each index block, which also leads to less I/O and better performance.

Recommendations: Indexes and Partitioned Indexes

Make the majority of the indexes in your customized Oracle Retail Data Model bitmap indexes.

Use B-tree indexes only for unique columns or other columns with very high cardinalities (that is, columns that are almost unique). Store the B-tree indexes in a compressed manner.

Partition the indexes. Indexes are just like tables in that you can partition them, although the partitioning strategy is not dependent upon the table structure. Partitioning indexes makes it easier to manage the data warehouse during refresh and improves query performance.

Typically, specify the index on a partitioned table as local. Bitmap indexes on partitioned tables must always be local. B-tree indexes on partitioned tables can be global or local. However, in a data warehouse environment, local indexes are more common than global indexes. Use global indexes only when there is a specific requirement which cannot be met by local indexes (for example, a unique index on a nonpartitioning key, or a performance requirement).

	
See also:

"Partitioned Tables in Oracle Retail Data Model", "Choosing Indexes for Materialized Views", "Choosing a Cube Partitioning Strategy for Oracle Retail Data Model", and "Partitioning and Materialized Views".

Partitioned Tables in Oracle Retail Data Model

Partitioning allows a table, index or index-organized table to be subdivided into smaller pieces. Each piece of the database object is called a partition. Each partition has its own name, and may optionally have its own storage characteristics. From the perspective of a database administrator, a partitioned object has multiple pieces that can be managed either collectively or individually. This gives the administrator considerable flexibility in managing partitioned objects. However, from the perspective of the application, a partitioned table is identical to a nonpartitioned table. No modifications are necessary when accessing a partitioned table using SQL DML commands.

As discussed in the following topics, partitioning can provide tremendous benefits to a wide variety of applications by improving manageability, availability, and performance:

	
Partitioning the Oracle Retail Data Model for Manageability

	
Partitioning the Oracle Retail Data Model for Easier Data Access

	
Partitioning the Oracle Retail Data Model for Join Performance

	
Oracle by Example:

To understand the various partitioning techniques in Oracle Database, see the "Manipulating Partitions in Oracle Database 11g" OBE tutorial.
To access the tutorial, open the Oracle Learning Library in your browser by following the instructions in "Oracle Technology Network"; and, then, search for the tutorial by name.

	
See also:

"Indexes and Partitioned Indexes in Oracle Retail Data Model", "Choosing a Cube Partitioning Strategy for Oracle Retail Data Model", and "Partitioning and Materialized Views".

Partitioning the Oracle Retail Data Model for Manageability

Range partitioning helps improve the manageability and availability of large volumes of data (Oracle Retail Data Model uses Interval partitioning which is an extension to range partitioning). For more information, see Oracle Database VLDB and Partitioning Guide.

Consider the case where two year's worth of sales data or 100 terabytes (TB) is stored in a table. At the end of each day a new batch of data must be to loaded into the table and the oldest days worth of data must be removed. If the Sales table is range partitioned by day then the new data can be loaded using a partition exchange load. This is a sub-second operation that has little or no impact on end user queries.

Partitioning the Oracle Retail Data Model for Easier Data Access

Range partitioning also helps ensure that only the necessary data to answer a query is scanned (Oracle Retail Data Model uses Interval partitioning which is an extension to range partitioning). Consider the case where business users predominately accesses the sales data on a weekly basis (for example, total sales per week) then range partitioning this table by day ensures that the data is accessed in the most efficient manner, as only seven partitions must be scanned to answer the business users query instead of the entire table. The ability to avoid scanning irrelevant partitions is known as partition pruning. For more information, see Oracle Database VLDB and Partitioning Guide.

Partitioning the Oracle Retail Data Model for Join Performance

Sub-partitioning by hash is used predominately for performance reasons. Oracle Database uses a linear hashing algorithm to create sub-partitions.

A major performance benefit of hash partitioning is partition-wise joins. Partition-wise joins reduce query response time by minimizing the amount of data exchanged among parallel execution servers when joins execute in parallel. This significantly reduces response time and improves both CPU and memory resource usage. In a clustered data warehouse, this significantly reduces response times by limiting the data traffic over the interconnect (IPC), which is the key to achieving good scalability for massive join operations. Partition-wise joins can be full or partial, depending on the partitioning scheme of the tables to be joined.

As illustrated in Figure 2-2, a full partition-wise join divides a join between two large tables into multiple smaller joins. Each smaller join, performs a joins on a pair of partitions, one for each of the tables being joined. For the optimizer to choose the full partition-wise join method, both tables must be equi-partitioned on their join keys. That is, they have to be partitioned on the same column with the same partitioning method. Parallel execution of a full partition-wise join is similar to its serial execution, except that instead of joining one partition pair at a time, multiple partition pairs are joined in parallel by multiple parallel query servers. The number of partitions joined in parallel is determined by the Degree of Parallelism (DOP).

Figure 2-2 Partitioning for Join Performance

[image: Description of Figure 2-2 follows]

Recommendations: Number of Hash Partitions

To ensure that the data gets evenly distributed among the hash partitions it is highly recommended that the number of hash partitions is a power of 2 (for example, 2, 4, 8, and so on). A good rule of thumb to follow when deciding the number of hash partitions a table should have is 2 X # of CPUs rounded to up to the nearest power of 2.

If your system has 12 CPUs, then 32 would be a good number of hash partitions. On a clustered system the same rules apply. If you have 3 nodes each with 4 CPUs, then 32 would still be a good number of hash partitions. However, ensure that each hash partition is at least 16MB. Many small partitions do not have efficient scan rates with parallel query. Consequently, if using the number of CPUs makes the size of the hash partitions too small, use the number of Oracle RAC nodes in the environment (rounded to the nearest power of 2) instead.

Parallel Execution in Oracle Retail Data Model

Parallel Execution enables a database task to be parallelized or divided into smaller units of work, thus allowing multiple processes to work concurrently. By using parallelism, a terabyte of data can be scanned and processed in minutes or less, not hours or days.

Figure 2-3 illustrates the parallel execution of a full partition-wise join between two tables, Sales and Customers. Both tables have the same degree of parallelism and the same number of partitions. They are range partitioned on a date field and sub partitioned by hash on the cust_id field. As illustrated in the picture, each partition pair is read from the database and joined directly.

There is no data redistribution necessary, thus minimizing IPC communication, especially across nodes. Figure 2-3 shows the execution plan you would see for this join.

Figure 2-3 Parallel Execution of a Full Partition-Wise Join Between Two Tables

[image: Description of Figure 2-3 follows]

To ensure that you get optimal performance when executing a partition-wise join in parallel, use the degree of parallelism as a multiple of the number of partitions. The number of partitions should be multiple of the number of cores. To get best performance use degree of parallelism that is the same as the number of partitions to be processed in a query (this should be equal to number of CPU cores).

What happens if only one table that you are joining is partitioned? In this case the optimizer could pick a partial partition-wise join. Unlike full partition-wise joins, partial partition-wise joins can be applied if only one table is partitioned on the join key. Hence, partial partition-wise joins are more common than full partition-wise joins. To execute a partial partition-wise join, Oracle Database dynamically repartitions the other table based on the partitioning strategy of the partitioned table.

After the other table is repartitioned, the execution is similar to a full partition-wise join. The redistribution operation involves exchanging rows between parallel execution servers. This operation leads to interconnect traffic in Oracle RAC environments, since data must be repartitioned across node boundaries.

Figure 2-4 illustrates a partial partition-wise join. It uses the same example as in Figure 2-3, except that the customer table is not partitioned. Before the join operation is executed, the rows from the customers table are dynamically redistributed on the join key.

Figure 2-4 Partial Partition-Wise Join

[image: Description of Figure 2-4 follows]

Enabling Parallel Execution for a Session

Parallel query is the most commonly used parallel execution feature in Oracle Database. Parallel execution can significantly reduce the elapsed time for large queries. To enable parallelization for an entire session, execute the following statement.

alter session enable parallel query;

Enabling Parallel Execution of DML Operations

Data Manipulation Language (DML) operations such as INSERT, UPDATE, and DELETE can be parallelized by Oracle Database. Parallel execution can speed up large DML operations and is particularly advantageous in data warehousing environments. To enable parallelization of DML statements, execute the following statement.

alter session enable parallel dml;

When you issue a DML statement such as an INSERT, UPDATE, or DELETE, Oracle Database applies a set of rules to determine whether that statement can be parallelized. The rules vary depending on whether the statement is a DML INSERT statement, or a DML UPDATE or DELETE statement.

	
The following rules apply when determining how to parallelize DML UPDATE and DELETE statements:

	
Oracle Database can parallelize UPDATE and DELETE statements on partitioned tables, but only when multiple partitions are involved.

	
You cannot parallelize UPDATE or DELETE operations on a nonpartitioned table or when such operations affect only a single partition.

	
The following rules apply when determining how to parallelize DML INSERT statements:

	
Standard INSERT statements using a VALUES clause cannot be parallelized.

	
Oracle Database can parallelize only INSERT . . . SELECT . . . FROM statements.

Enabling Parallel Execution at the Table Level

The setting of parallelism for a table influences the optimizer. Consequently, when using parallel query, also enable parallelism at the table level by issuing the following statement.

alter table <table_name> parallel 32;

A Sizing and Configuring an Oracle Retail Data Model Warehouse

This appendix provides information about sizing and configuring an Oracle Retail Data Model warehouse. It contains the following topics:

	
Sizing an Oracle Retail Data Model Warehouse

	
Configuring a Balanced System for Oracle Retail Data Model

Sizing an Oracle Retail Data Model Warehouse

Businesses now demand more information sooner and are delivering analytics from their Enterprise Data Warehouse (EDW) to an ever-widening set of users and applications. To keep up with this increase in demand the EDW must now be near real-time and be highly available. Regardless of the design or implementation of a data warehouse the initial key to good performance lies in the hardware configuration used. This has never been more evident than with the recent increase in the number of data warehouse appliances in the market.

But how do you go about sizing such a system? You must first understand how much throughput capacity is required for your system and how much throughput each individual CPU or core in your configuration can drive, thus the number one task is to calculate the database space requirement in your data warehouse.

There are two data volume estimate resources in a data warehouse environment:

	
The estimated raw data extract from source systems. This estimate affects the ETL system configuration and the staging layer database space in the data warehouse system. Because this value is determined by your specific transactional systems, you must calculate this information yourself.

	
The space needed for data stored to support the objects defined in the default Oracle Retail Data Model schema. This appendix provides information you can use to make this calculation.

Calculation Factors When Making a Data Volume Calculation for an Oracle Retail Data Model Warehouse

Consider the following calculation factors when making a data volume calculation:

	
Calculates data unit volume within different type:

	
Reference and lookup tables data. Assume this data is permanently stored.

	
Base tables data (transaction data). Assume that this data is stored within its life cycle.

	
Star schema (derived and summary). Assume that this data is stored within its life cycle.

	
Calculate each type of data retention.

	
Define how many months or years of each type of tables to retain.

	
Calculate data growth.

	
Assume that annual growth rate: applies to both transaction and reference data and data in the star schema.

	
Assume that annual change rate applies only to reference data.

	
Calculate Staging Area data requirements, if proposed.

	
Tip:

Multiply ETL volume by day by number of days held for problem resolution and re-run of transform with new extract from source systems.

	
Calculate data volume for indexes, temporary tables, and transaction logs.

	
Calculate the space requirement for business intelligence tools, such as cubes, and data mining.

	
Consider the redo log and Oracle ASM space requirement.

	
Consider the RAID architecture [RAID 1, 0+1, 5]

	
Consider the backup strategy.

	
Consider the compress factor if applied.

	
Consider the OS and file system disk space requirements.

Formula to Determine Minimum Disk Space Requirements for an Oracle Retail Data Model Warehouse

Use the following formula, based on the factors outlined in "Calculation Factors When Making a Data Volume Calculation for an Oracle Retail Data Model Warehouse", to determine the minimum disk space requirements for an Oracle Retail Data Model warehouse.

Disk Space Minimum Requirements = Raw data size * Database space factor * (1+GrthperY)nY*OS and File system factor * Compress Factor * Storage Redundant factor

where:

	
Raw data size = (reference and lookup data per year + base/transaction data per year + derived and summary data per year +staging data +other data(OLAP/Data Mining))

	
Database space factor = Indexes + Temporary Tables + Logs]

	
GrthperY = growth rate per year

	
OS and File system factor is the install and configuration and maintain space for OS and DB

	
Redundant factor= ASM disk space and RAID factor. [RAID 1=2, RAID 5=1.25 or 1.33]

	
Compress factor depends how you apply the compress function. If you are executing on an Oracle Exadata Database machine, it has a huge savings in disk space by using compression.

Configuring a Balanced System for Oracle Retail Data Model

Many data warehouse operations are based upon large table scans and other I/O-intensive operations, which perform vast quantities of random I/Os. To achieve optimal performance the hardware configuration must be sized end to end to sustain this level of throughput. This type of hardware configuration is called a balanced system. In a balanced system all components - from the CPU to the disks - are orchestrated to work together to guarantee the maximum possible I/O throughput. I/O performance is always a key consideration for data warehouse designers and administrators. The typical workload in a data warehouse is especially I/O intensive, with operations such as large data loads and index builds, creation of materialized views, and queries over large volumes of data. Design the underlying I/O system for a data warehouse to meet these heavy requirements.

To create a balanced system, answer the following questions:

	
How many CPUs are required? What speed is required?

	
What amount of memory is required? Data warehouses do not have the same memory requirements as mission-critical transactional applications?

	
How many I/O bandwidth components are required? What is the desired I/O speed?

Each component must be able to provide sufficient I/O bandwidth to ensure a well-balanced I/O system.

The following topics provide more information about configuring a balanced system for Oracle Retail Data Model:

	
Maintaining High Throughput in an Oracle Retail Data Model Warehouse

	
Configuring I/O in an Oracle Retail Data Model for Bandwidth not Capacity

	
Planning for Growth of Your Oracle Retail Data Model

	
Testing the I/O System Before Building the Oracle Retail Data Model Warehouse

	
Balanced Hardware Configuration Guidelines for Oracle Retail Data Model

Maintaining High Throughput in an Oracle Retail Data Model Warehouse

The hardware configuration and data throughput requirements for a data warehouse are unique mainly because of the sheer size and volume of data. Before you begin sizing the hardware configuration for your data warehouse, estimate the highest throughput requirement to determine whether current or proposed hardware configuration can deliver the necessary performance. When estimating throughput, use the following criteria:

	
The amount of data accessed by queries during peak time, and the acceptable response time

	
The amount of data that is loaded within a window of time

Configuring I/O in an Oracle Retail Data Model for Bandwidth not Capacity

Based on the data volume calculated and the highest throughput requirement, you can estimate the I/O throughput along with back-end ETL process and front end business intelligence applications by time unit. Typically, a value of approximately 200MB per second I/O throughput per core is a good planning number for designing a balanced system. All subsequent critical components on the I/O path - the Host Bus Adapters, fiber channel connections, the switch, the controller, and the disks - have to be sized appropriately.

When running a data warehouse on an Oracle Real Application Cluster (Oracle RAC) it is just as important to size the cluster interconnect with the same care and caution you would use for the I/O subsystem throughput.

When configuring the storage subsystem for a data warehouse, it should be simple, efficient, highly available and very scalable. An easy way to achieve this is to apply the S.A.M.E. methodology (Stripe and Mirror Everything). S.A.M.E. can be implemented at the hardware level or by using Oracle ASM (Automatic Storage Management) or by using a combination of both. There are many variables in sizing the I/O systems, but one basic rule of thumb is that the data warehouse system has multiple disks for each CPU (at least two disks for each CPU at a bare minimum) to achieve optimal performance.

Planning for Growth of Your Oracle Retail Data Model

A data warehouse designer plans for future growth of a data warehouse. There are several approaches to handling the growth in a system, and the key consideration is to be able to grow the I/O system without compromising on the I/O bandwidth. You cannot, for example, add four disks to an existing system of 20 disks, and grow the database by adding a new tablespace striped across only the four new disks. A better solution would be to add new tablespaces striped across all 24 disks, and over time also convert the existing tablespaces striped across 20 disks to be striped across all 24 disks.

Testing the I/O System Before Building the Oracle Retail Data Model Warehouse

When creating a data warehouse on a new system, test the I/O bandwidth before creating all of the database data files to validate that the expected I/O levels are being achieved. On most operating systems, you can perform the test using simple scripts to measure the performance of reading and writing large test files.

Balanced Hardware Configuration Guidelines for Oracle Retail Data Model

You can reference the follow tips for a balanced hardware configuration:

	
Total throughput = #cores X 100-200MB (depends on the chip set)

	
Total host bus adaptor (HBA) throughput = Total core throughput

	
Note:

If total core throughput is 1.6 GB, you need four 4 Gbit HBAs.

	
Use one disk controller per HBA port (throughput capacity must be equal).

	
Switches must have the capacity as HBAs and disk controllers.

	
Use a maximum of ten physical disk per controller (that is, use smaller drives: 146 or 300 GB).

	
Use a minimum of 4 GB of memory per core (8 GB if using compress).

	
Interconnect bandwidth equals I/O bandwidth (InfiniBand).

Oracle now provides the Oracle Database Machine, Exadata which combines industry-standard hardware from Oracle, Oracle Database 11g Release 2, and Oracle Exadata Storage Server Software to create a faster, more versatile database machine. It's a completely scalable and fault tolerant package for all data management, especially for data warehousing.

Oracle also has a series of Optimized Warehouse Reference configurations that help customers take the risk out of designing and deploying Oracle data warehouses. Using extensive field experience and technical knowledge, Oracle and its hardware partners have developed a choice of data warehouse reference configurations that can support various sizes, user populations and workloads. These configurations are fast, reliable and can easily scale from 500 GB to over 100 TB on single and clustered servers to support tens to thousands of users.

Index

A C D E F H I J K L M N O P Q R S T

A

	access layer, 2.1
	
	customizing, 3, 3.1
	Oracle Retail Data Model, 2.1, 3

	As Is reports, 5.6.1
	As Was reports, 5.6.1

C

	compression
	
	in Oracle Retail Data Model, 2.4.2, 2.4.2.1, 2.4.2.1.1
	materialized views, 3.4.4

	configuring Oracle Retail Data Model warehouse, A.2
	conventions
	
	when customizing physical model, 2.2.2

	cubes
	
	adding materialized view capabilities to, 3.3.3.2
	changing the dimensions of, 3.3.6
	changing the measures of, 3.3.6
	customizing, 3.3.4
	data maintenance methods, 3.3.9
	forecast, 3.3.7
	in Oracle Retail Data Model, 3.3.4, 3.3.5
	partitioning, 3.3.8

	customizing
	
	access layer, 3
	cubes, 3.3.4
	Oracle Retail Data Model, 1.2
	physical data model, 2

D

	dashboards, Oracle Retail Data Model, 5.2, 5.7
	data governance committee, responsibilities of, 1.3.2
	data mining models
	
	customizing, 3.2.2

	derived tables
	
	in Oracle Retail Data Model, 3.2

	dimensional components, Oracle Retail Data Model, 3.3

E

	error handling
	
	during intra-ETL execution, 4.6

	ETL for Oracle Retail Data Model, 4.1

F

	fit-gap analysis for Oracle Retail Data Model, 1.5
	forecast cube in Oracle Retail Data Model, 3.3.7
	foundation layer
	
	defined, 2.1
	Oracle Retail Data Model, 2.1

	foundation layer of Oracle Retail Data Model
	
	common change scenarios, 2.3.1

H

	HCC, 2.4.2.1.3
	hybrid columnar compression
	
	and Oracle Retail Data Model, 2.4.2.1.3

I

	implementers of Oracle Retail Data Model
	
	prerequisite knowledge, 1.3.1

	implementing
	
	Oracle Retail Data Model, 1.2

	indexes
	
	in Oracle Retail Data Model, 2.4.5
	materialized views, 3.4.2
	partitioning, 2.4.5

	integrity constraints
	
	in Oracle Retail Data Model, 2.4.4

	intra-ETL
	
	managing errors, 4.6
	monitoring execution of, 4.6.1
	Oracle Retail Data Model, 4.1
	recovery, 4.6.2
	troubleshooting, 4.6.3

	intra-ETL, Oracle Retail Data Model
	
	executing, 4.4.1.2.1

J

	join performance, improving, 2.4.6.3

K

	keys, surrogate
	
	in Oracle Retail Data Model, 2.4.3

L

	loading Oracle Retail Data Model data, 4.4

M

	materialized views, 3.4.1
	
	compressing, 3.4.4
	in Oracle Retail Data Model, 3.4
	indexing, 3.4.2
	partition change tracking, 3.4.3
	partitioning, 3.4.3
	refresh options
	
	refreshing, 3.4.1

	Metadata Dependency Manager
	
	with Oracle Retail Data Model, 1.4.5

	metadata management
	
	repository, 1.4.2, 1.4.3, 6.2
	with Oracle Retail Data Model, 1.4

	metadata repository, 1.4.2
	
	browsing, 1.4.3, 6.2
	with Oracle Retail Data Model, 1.4.3, 6.2

N

	naming conventions
	
	for physical model of Oracle Retail Data Model, 2.2.2

O

	Oracle data mining models
	
	Oracle Retail Data Model, 3.2.2.1

	Oracle Retail Data Model
	
	access layer, 2.1, 3
	components of, 1.1.1
	customizing, 1.2
	customizing physical model, 2.1, 2.2, 2.2.1, 2.2.2, 2.4
	dashboards, 5.2
	data governance, 1.3.2
	described, 1.1
	dimensional components, 3.3
	ETL, 4.1
	fit-gap analysis, 1.5
	foundation layer, 2.1
	implementing, 1.2
	intra-ETL, 4.1
	loading, 4.4
	Metadata Dependency Manager, 1.4.5
	metadata management, 1.4
	metadata repository, 1.4.2, 1.4.3, 6.2
	Oracle products used by, 1.1.2
	Oracle Warehouse Builder, using with, 1.4.5
	physical layers of, 2.1
	pre-implementation tasks, 1.3
	querying, 5.3
	refreshing data, 4.5
	reporting, 5.1, 5.3
	sample reports, 5.2
	source-ETL, 4.1, 4.2, 4.2.2, 4.2.3, 4.2.4, 4.2.5
	staging layer, 2.1
	tablespaces, design recommendations, 2.4.1

	Oracle Retail Data Model implementers
	
	prerequisite knowledge for, 1.3.1

	Oracle Retail Data Model warehouse
	
	configuring, A.2
	sizing, A.1

	Oracle Warehouse Builder
	
	with Oracle Retail Data Model, 1.4.5

P

	parallel execution
	
	enabling for a session, 2.4.7.1
	enabling for DML operations, 2.4.7.2
	in Oracle Retail Data Model, 2.4.7

	partition change tracking, 3.4.3
	partition exchange load, 4.2.7.5
	partitioned indexes in Oracle Retail Data Model, 2.4.5
	partitioning
	
	cubes, 3.3.8
	for join performance, 2.4.6.3
	for manageability, 2.4.6.1
	for source-ETL, 4.2.7.5
	indexes, 2.4.5
	materialized views, 3.4.3
	tables, 2.4.6

	partitions, changing, 2.4.1
	physical model of Oracle Retail Data Model
	
	characteristics of, 2.1, 2.2, 2.2.1
	customizing, 2.2.2
	general recommendations for, 2.4

Q

	querying Oracle Retail Data Model, 5.3

R

	refreshing
	
	Oracle Retail Data Warehouse, 4.5

	reporting
	
	Oracle Retail Data Model, 5.1, 5.3

	reports
	
	approaches to, 5.1
	As Is, 5.6.1
	As Was, 5.6.1
	troubleshooting performance, 5.5

	reports, Oracle Retail Data Model
	
	creating new, 5.8

S

	sample reports
	
	customizing, 5.2

	sizing
	
	Oracle Retail Data Model warehouse, A.1

	source-ETL
	
	exception handling, 4.2.6
	jobs control, 4.2.5
	loading considerations, 4.2.7
	Oracle Retail Data Model, 4.1, 4.2, 4.2.2, 4.2.3, 4.2.4, 4.2.5, 4.2.7
	parallel direct path load, 4.2.7.4
	partitioning for, 4.2.7.5
	workflow, 4.2.5

	staging layer, 2.1
	
	Oracle Retail Data Model, 2.1

	star queries, optimizing, 5.4
	surrogate keys
	
	in Oracle Retail Data Model, 2.4.3

T

	tables
	
	compressing, 2.4.2, 2.4.2.1, 2.4.2.1.1
	derived, 3.2
	partitioning, 2.4.6

	tablespace in Oracle Retail Data Model, 2.4.1

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Alpha and Beta Draft Documentation Notice

If this document is in preproduction status:

This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.

[image: Oracle Logo]

OEBPS/img/rbiog_rep_repfin.png
ntelligence

Primary Supplier Sales By Channel
Grieria\ Resuits ' prompts | Advanced
@R E HBEEQAE- 7 B0 BE =W

Compound Layout

oo @) B/%
Sales Value
2u0
ampaion 3
| Campaign Media Msg Selling It 200¢
Cashier 2 e
Catalog Recuest <
Certicstz g 1o
Certicss Activey -
Certicate Age Band
enficats Echeated 4
" oK
22 22 52 22 2 52 92 22 52 225232 52 52 4252
gy Sngy EpapEpun iy anEnanguagSnpuiny En oy
§7 FET $57 F5F Igr $Errsy fir zEr zaT
Business Year, Vendor Name, Channel Type

Tt
Vendor Sales By Channel

&
N
%

pivot Table

B/x

Distriution__[Seling
Sales alue | Sales Value
[pusiness vear [vendortame | | |

Party 1 62305.00 5172300

My Folders
Shared Folders

2.00 99100
1251000 11014.00
862200

7998.00

OEBPS/img/rbiog_rep_report2.png
My Dashboard

. Welcome ORDM . Advanced Analytc

Monthly Orders Report [SKU Analysis

Vendor Rank | Assaciate Performance.

Financil Performance | Flash Sales

@ inventory
O customer O o [0 cacmm O vertone | o
Contribution @ Order Management

p— actusle performance Marain Contribution @ rining

@ 5sles 2Retumn
O popaes O O e O overvinamnt | &

Create AnslyssFrom Simple Logical 501
comaen oot pssoue . Geste sl by enring simle bl Q£ Oracke 58
FCJ% ction Complisnce I
— Shrink & Theft. Merchandise: | Over/Short
T#—‘mn::diis Store Credits. ‘Stock Movement. Transaction

poversaby ORACLE

OEBPS/img/rbiog_rep_repview1.png
Primary Supplier Sales By Channel

Grieria | Results ' prompts || Advanced
EiSubject Areas @R E HBEEQAE- 7 B0 BE =W
= @retan “ | compound Layout

Tt /R
VYendor Sales By Channel
Pivat Tatle BZR
ian ¥
3 Campaign Media g Seling It

Cor
Cor

peti

mpetitor
mpetitor Retai Ttem

4 ss62.00
S0 BB remi-n

o Briefing Bock.

Selection Steps

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Retail Data Model
Implementation and
Operations Guide,
Release 11.3.2

OEBPS/img/rbiog_rep_dashname2.png

OEBPS/img/rbiog_rep_dashbi.png
ORACLE’ Business Intelligence

Create..

Analysis and Interactive Reporting

(2] vt sesoors e
Published Reporting

[Reort 1 Report 20 ere
Actionable Inteligence
Aget | action

[erormonce Managemen:

1] scovecnd 161 61 watchit
Marketing
Seqment | Seqment Tre | Lt Format

Browse,/Manage.
[Al Contert v
- s
- s
e Suhsmvtmns
8 My Agen

Get Started.
P ———

Oracle BI EE Documentatian

SF oot 0 e ok

) b iz

S5 o Ty et

@ Recent

Dashboards
. Demography - Housetold Ansl
B8 core o

Demaqvavhv Age Band
(S5 e
More Dashboards +

Others

&8
EEI

My Dashboard - Welcome Oracl.
n | Edt | M

Demﬂqvavhy Cluster Miilng List
n | Edt | M

oo e
Q Most Popular

Open| Edt | Mare v

Complsnce - Vendor Performa.

Open| Edt | Mare v

[gg] T vk
Open| Edt | Mare v

&8 ..

Store Performance - Ranking

Open| Edt | Mare v

Performance - Promation Scare,
n | Edt | M

g

Tran|
ope

anced | Administration | Help

et Prompt
W cond

publshed Reporting

Actionable Intelligence
agent

.
S action

erformance Management
3 scorecord

ot
R

et

i Seqment
Seqment Tree
List Format

In

anout O

rbiai

OEBPS/dcommon/oracle.gif

OEBPS/img/rbiog_rep_dashcat3.png
ess Intelligence

page 1

Open ed In A
3= viewew Brn | HE C

EDashboard Objects _
. Column 1 =%
Section Section 1

1 Alert secton

@ actionLink

@ Actontikiens

Linker I

Bottom N Customer
Compound View Compound View

mage
Embedded Content Customer Sales Value By Year
Text

Folder

CareoryHoroger 1
Cateqory Manager Group
Lstomer

F Stock

OEBPS/img/rbiog_rep_repnview.png
ORACLE’ Business Intelligence Al v

Primary Supplier Sales By Channel

Crteria Results ' Prompts.

5 N5 BO)

advanced
@R & S BBl

“ | compound Layout

e

AR ES BE |8

i

I
ctiviy Request Type

Fle
X
*®

dvertising Time. Tite
located space
RIS Vendor Sales By Channel 5 R

B pivot Table

o

Calendar Time.
Campai Stacked Vertical

ion
B2 Campaign Media Msg Seling It
Cashier
stalog Request
Certficate
ertficate Activty
Certficate Age Band
ertficate Escheated
Certficate It
Chanel Type:
ompetitor
 Competitor Retal Item

JeVbEDD
MEwEE

Stacked Horizontal

mpe
mpe

 Folders
Shared Folders

o Briefing Bock.

Eiews

2 pivat Table
Bl e

E1able

U8 Graph
EZ pivot Tablerz

OEBPS/img/rbiog_cdm_check.png
Fle Edit View Navigate Run Versioning Tools

Help

Bode 90 XEE@O-O- &

B\ Connections X
+

ansvs
tran

Lowbsys
I_sample_schema

o

8 Tabes (Fitered)
DWeLRTL TR

DWR_ESN5_MO

E owR_cusT_accT
1 DWR_CUST_RSTRCT_INFO

Views
Edtioning Views

Packages
Pracedures

Trigo

Types
Sequences
Materialzed Views

Puhhc o
atabase Links

Directories
Edtions

ava
ML Schemas
XML DB Repostory
Recycls B

8 other Users

>

&
> &

ordm_sys * | [5]pka_ordm_mining.sql * |[EEIDWB_RTL_TRX X

bordn_sysdbs X

[

dbor
BY BB 8%oa

5 sa5a990_cborcn_oram_s75

select cust_key, ltv_val, lty_band_cd from dud_cust_unng;

D> Query Resuk *

28@

& S0t | Fetched S0 rowsin 0,26 secods

B cosrier g tvoa [§ tveano
1014317 762211795, 42 LTV-61
1014471 1076753627, 08 LTV-G2
1014435 1212631799, 18 LTv-G2
1014495 527351695, 41 LTV-61
1014216 1447620860. 53 LTV-G3
1014435 3503495360. 83 LTV-G5
1014457 1577717.61LTV-60
lolaszs 3773500.64LTV-G0
1014308 608857075, 43 LTV-61
lolass 396519.61LTV-60
1015276 402425985. 04 LTV-G0
1014526 121153126941 LTV-G2
1014304 484547357, 42 LTV-61
1013765 440036275, 11 LTV-G0
1014475 402596457. 08 LTV-G0
1014354 1170103132, 64 LTv-62
1012695 169047.27LTV-G0
1014195 652708856 53 LTV-61
1014476 5652534516 LTV-G2

OEBPS/img/join1.gif
)

Both tables have the same
degree of paralielsm and are
parttionedhe same way on the
Join column (cust_id)

Alarge foin s diicedints

it smaler ins. sach

oins 3 par of pattions n
poraliel

OEBPS/img/rbiog_rep_dashfin.png
Business Intelligence

T .
= |
Bottom N customer
Customer Value, # Times Shopped, Customer Value Last Period
ot [7Tes o
W ™ ot e
% N st Ve
g Ao 54 vt s S i ess B @
s RO bt s
3 b oy Vo Conpony[Fotic Wi GO0 A1 2511 | 1700 T8 %
g e
£ ow i e
H Do s sl e Gogory Gk [OPD |51 011 | T ®
. TR 3055 ikl e o
s ‘=BUTLER 90832 Individual Customer . hrback [GROUP & ou 11429.00 12.00 #
A m N HEGH Indiicual [Bohuac
5 . s e o Lt [GROPE |5t 011 | SO 550 ®
H CoEVELAND ks o5 i
R W GARRETSVILLE 177 Indivicual Custo, Imagene Eagle GROLP A 011 10559.00 11.00 41
H
® o bz | w1 ®
o200 oY 21 12
e o bt SO 77 s owE bz | e T »
ows bz | e % |
i e
cotane Towasoly [GoPD [svzoit | oL s e
ooy [eudoner [esdoner e[
o Compay [senitan ol ovzoii ot 01t s Fouserond sl oy [GO0PD V2611 | 720 & s
BY20L1 Total, 200 \Gregory Geralt | GROUP C 011 8591.00 9.00 34
ot so0
[BY 2011 BVé”“ 600 Patricia White | GROLP D 011 746400 8.00 E
/BY 2011 Total 6.00 Imagene Eagle GROUP E 011 6674.00 7.00 E3
ndvidval Totol oon
DR 275 i Company e Eock ikl 2ot 51201 E o Compary ot v [S0PD 2011 | 60 o £
hi
v 2011 Toal S0 Gowe o | e 5 ®
ndvidval Totol so0
e T T T T o ThwonTos [GROPE |81 2011 | 882 5w »
hi
v 2011 Toal 600 GoPD et | 00 5w »
ot 1600
Tanya Dally. BY 2011 BY 2011 .00 (GROLP E 011 4809.00 S.00 E
i
TS - o e | w00 5 %
o con
T o oD izt | 00 i 5
i
P - RolpD o1zt | 2900 5 5
ndivicualjotal 15.00 GROLP A 011 2913.00 3.00 23
iER 5083 o Corpy B Win vl V20T BV Z01E S
12 Beryl Yan GROUP A 011 2873.00 3.00 22
v 2011 Toal S0
Individual Total 900 —

OEBPS/img/rbiog_rep_dashname1.png
Business Intelligence

SDashboard Objects
0] Column Column 1
] Section

Dsshbosrd Frogertes
POF and prin rogertes.
Section 1
L Aer section

Page Report Links
allw Saving Persanl Custonizatons
Publsh Page to Dashboar
% ActonLink
% Acton Link enu

B Lnkor Image

Customer Sales Value By Year Bottom N Customer
Embedded Contert Compound View Compound View
Text
Folder
“ICatalog
2 Bst

Shared Folder:
Ebanced s
ents

roc

-
ey e
ate: anaqemauD
Lstomer

ferchandise Manager Group
taData

ining_ORDM
RFOLAP
e
Hanagement
dev e Goup
of 5

OEBPS/img/rbiog_rep_report1.png
ORACLE’ Business Intelligence

My Dashboard

| Welcome ORDM

‘Advanced analytic | Monthly Orders Report | SKU Analysis | Vendor Renk '{ Associate Performance | Financial Performance | Flash ales | Promotion performance

o 9 rromoon [0 cacmm O rentunis o
T Condtion
e Flow Anslysis &
Transactions Tvend&Detaﬂ Sa\es Analysis Scorecard Sub Template.

tock Movement Actonable Inteligence

ngen
B

< & Profit
Pmduct Price Elastc

Q rointofsae Q Loss Prevention o Inventory O et vaemvd
ko1
EgKpr watchist
Marketing
E::,ﬁz::ms (Cashier & Associate ccounting. G seqment
Femant Defection Complisnce: [To— B seqment Tres
o Arnahsic Bt e il st Format
scorecard e Orcer status
E== Stats Outier Qualty assurance i
oz s Catic ket rsaton

poversaby ORACLE

OEBPS/img/rbiog_cdm_sys.png
%, New / Select Database Connection

(Connection Name Connection Detals | Comnection Name doordn_ardm_sys
ot | username. v

[] 05 Authentication
[Kerberos Authentication

[]Proxy Comnecton

Hostname 1s.oracle.com

port 1521

e

| e

ES)
O service name

Status Success

OEBPS/img/rbiog_cdm_filter.png
Ele Edit View Navigate Run Versioning Tools Help

Boag 90 xXEmo -O- /&

@y Comnsctions x | _ordn_sys |
PENY RR @80 [
ansys
T er X
oin.roeg s Selectth fiter rteria & Metch O Hetch
E“::::;Y‘j [nave <) e <) owe iR] T Case senstive
e e < [ore ~| pwr st] D cose Senstive
e e < me <| po_sss 10] 0] case senive
e e <= <) PR AGT] Clcasosorstve
Pl : (e < fe <] PWR_CUST_RSTRETINFO_| (] Case senstive
ccin_mining

_owbsys
sample_schema
scott

- aysba

. oadn_sys
ordn_sys

8 Tabes (Fikered)

&3 Dwe_RTL_TRY

] Overtide Schems Fiter[_] Include Synonyms
- DWR_BSNS_MO
- DwR_cUsT P

- DWR_CUST_accT

- DWR_CUST_RSTRCT_INFO

8 Edioning Views
3 nderes
G packages
) procedires essages-Log x|
5 Functions Conpiled fuith errorsi
Queses Conpilea
A Queves Tables
38 Triggers
a | T b ot

OEBPS/img/rbiog_intra_flowmine.png
9

REFRESH_MINING_SOURCE REFRESH_MODEL.
s

&
END_ERROR

OEBPS/img/rbiog_cmov1.png
Source
System1

Source
System2

Order
Management
(Transaction
Amt,
currency

Inventory,
Management
(Transaction
Amt,
currency

all
amount

columns
willbe

populate
based on

exchange
rate

Order
Management
(TXN_CRNCY_CD,
*_AMT_TRX,

= AMT_LCL,
*_AMT,
*_AMIT_RPT,
*_AMT_RPT2,
*_AMIT_RPT3)

Intra-ETL(PL/SQL Package)

DERIVED

AGGREGATE

OEBPS/img/rbiog_intra_flow2.png
B,

DWp_coST_pAY

B,

DWD_CERTIFICATE_ACTVTY_TRX

h—<2

STARTH FORlGmgrs

A1 ENp_sutcess

/"
\V/

B,

DWD_CUST_EMP_RLTNSHP_DAY

B,

DWW CARRIER_CMPLNC_fAY

OEBPS/img/rbiog_rep_dashname3.png
Business Intelligence

B Op:
3= viewew > Run \E@\@

L At Section

@ actonLink

@ Action Link enu

B Linkor Inag

. Embeded Content
Text

Folder

Dashboard Properties

General Properties

B
B

Hame. [Customer Sales Value by Year & Battom Customer|

[Preserve references to old name of this tem.

Fiters anc|

Dashboard Report Links.
Dashboard Pages

= PAXE

Pages Hdepage |

page 1

4 b b

Lo |

OEBPS/img/rbiog_rep_dashcat.png
ORACLE" Business Intelligence

Category Manager

age 1

o ed In i
FACE Q review bRun\EE\Q

»
EiDashboard Objects
0 Cotann

B section

L alert section
@ ActonLink

@ ActionLink Menu
B Uikor Inage
5] Enbedded Cantent
ER

& Folder

E\Ealal\m
Shared F
hdvanced s

om Customer

Lstomer Profit Value By ¥
stomer Sales Value By ¥

FIP Scorin

i

p N Custamer By Vearl

mer By Year?
_ouap

3

Column 1

Section 1

Customer Sales Value By Year
Compound View

