Report and Query Customization

5 Report and Query Customization

This chapter provides information about creating reports, queries, and dashboards against the data in an Oracle Communications Data Model warehouse. It contains the following topics:

	
Reporting Approaches in Oracle Communications Data Model

	
Customizing Oracle Communications Data Model Sample Reports

	
Writing Your Own Queries and Reports

	
Optimizing Star Queries

	
Troubleshooting Oracle Communications Data Model Report Performance

	
Writing As Is and As Was Queries

	
Tutorial: Creating a New Oracle Communications Data Model Dashboard

	
Tutorial: Creating a New Oracle Communications Data Model Report

Reporting Approaches in Oracle Communications Data Model

There are two main approaches to creating reports from data in an Oracle Communications Data Model warehouse:

Relational Reporting

With relational reporting, you create reports against the analytical layer entities using the fact entities as the center of the star with the reference entities (that is, DWR_ and DWL_ tables) acting as the dimensions of the star. Typically the fact entities include the derived and aggregate entities (that is, DWD_ and DWA_ tables). However in some cases, you may need to use the base entities (that is, DWB_ tables) along with the reference tables to generate more detailed reports.

The reference tables (that is, DWR_ tables) typically represent dimensions which contain a business hierarchy and are present in the form of snowflake entities containing a table for each level of the hierarchy. This allows us to attach the appropriate set of reference entities for the multiple subject area and fact entities composed of differing granularity.

For example, you can use the set of tables comprising DWR_DAY and DWR_BSNS_MO, DWR_BSNS_QTR, DWR_BSNS_YR tables to query against a DAY level CDR Wireless entity such as DWD_VOI_CALL_DAY. On the other hand, you need to use the higher level snowflakes at Month level and above such as DWR_BSNS_MO, DWR_BSNS_QTR, DWR_BSNS_YR in order to query against the MONTH level CDR Wireless entity such as DWA_VOI_CALL_MO.

The lookup tables (that is tables, with the DWL_ prefix) represent the simpler dimensions comprising a single level containing a flat list of values. Typically, most reporting tools add a superficial top level to the dimension. These could be individual tables starting with DWL_ or views (also named DWL_) on DWL_CODE_MASTER that break out different code types into separate dimensions.

	
Note:

The use of numbers as text in Lookup code allows you to group them by using only the first character of the lookup value code. This could provide an artificial hierarchy level.

OLAP Reporting

With OLAP reporting, you access Oracle OLAP cubes using SQL against the dimension and cube (fact) views. Cubes and dimensions are represented using a star schema design. Dimension views form a constellation around the cube (or fact) view. The dimension and cube views are relational views with names ending with _VIEW. Typically, the dimension view used in the reports is named dimension_hierarchy_VIEW and the cube view is named cube_VIEW.

Unlike the corresponding relational dimension entities stored in DWR_ tables, the OLAP dimension views contains information relating to the whole dimension including all the levels of the hierarchy logically partitioned on the basis of a level column (identified as level_name). On a similar note, the cube views also contain the facts pertaining to the cross-combination of the levels of individual dimensions which are part of the cube definition. Also the join from the cube view and the dimension views are based on the dimension keys along with required dimension level filters.

Although the OLAP views are also modeled as a star schema, there are certain unique features to the OLAP reporting methodology which requires special modeling techniques in Oracle Business Intelligence Suite Enterprise Edition.

	
See also:

The Oracle By Example tutorial, entitled "Using Oracle OLAP 11g With Oracle BI Enterprise Edition". To access the tutorial, open the Oracle Learning Library in your browser by following the instructions in "Oracle Technology Network"; and, then, search for the tutorials by name.

The rest of this chapter explains how to create Oracle Communications Data Model reports. For examples of Oracle Communications Data Model reports, see:

	
"Writing As Is and As Was Queries"

	
"Tutorial: Creating a New Oracle Communications Data Model Dashboard"

	
"Tutorial: Creating a New Oracle Communications Data Model Report"

	
The sample reports provided with Oracle Communications Data Model that are documented in Oracle Communications Data Model Reference.

Customizing Oracle Communications Data Model Sample Reports

Sample reports and dashboards are delivered with Oracle Communications Data Model. These sample reports illustrate the analytic capabilities provided with Oracle Communications Data Model -- including the OLAP and data mining capabilities.

	
See:

Oracle Communications Data Model Installation Guide for more information on installing the sample reports and deploying the Oracle Communications Data Model RPD and webcat on the Business Intelligence Suite Enterprise Edition instance.

The sample reports were developed using Oracle Business Intelligence Suite Enterprise Edition which is a comprehensive suite of enterprise business intelligence products that delivers a full range of analysis and reporting capabilities. Thus, the reports also illustrate the ease with which you can use Oracle Business Intelligence Suite Enterprise Edition Answers and Dashboard presentation tools to create useful reports.

You can use Oracle Business Intelligence Suite Enterprise Edition Answers and Dashboard presentation tools to customize the predefined sample dashboard reports:

	
Oracle BI Answers. Provides end user ad hoc capabilities in a pure Web architecture. Users interact with a logical view of the information -- completely hidden from data structure complexity while simultaneously preventing runaway queries. Users can easily create charts, pivot tables, reports, and visually appealing dashboards.

	
Oracle BI Interactive Dashboards. Provide any knowledge worker with intuitive, interactive access to information. The end user can be working with live reports, prompts, charts, tables, pivot tables, graphics, and tickers. The user has full capability for drilling, navigating, modifying, and interacting with these results.

	
See:

Oracle Communications Data Model Reference for detailed information on the sample reports.

Writing Your Own Queries and Reports

The ocdm_sys schema defines the relational tables and views in Oracle Communications Data Model. You can use any SQL reporting tool to query and report on these tables and views.

Oracle Communications Data Model also supports On Line Analytic processing (OLAP) reporting using OLAP cubes defined in the ocdm_sys schema. You can query and write reports on OLAP cubes by using SQL tools to query the views that are defined for the cubes or by using OLAP tools to directly query the OLAP components.

	
See also:

"Reporting Approaches in Oracle Communications Data Model", "Oracle OLAP Cube Views", and the discussion on querying dimensional objects in Oracle OLAP User's Guide.

Example 5-1 Creating a Relational Query for Oracle Communications Data Model

For example, assume that you want to know the total call minutes for the top ten customers in the San Francisco area for March 2012. To answer this question, you might have to query the tables described in the following table.

	Entity Name	Table Name	Description
	WIRELESS CALL EVENT	DWB_WRLS_CALL_EVT	Occurrences of the wireless call.
	CUSTOMER	DWR_CUST	Individual customers
	ADDRESS LOCATION	DWR_ADDR_LOC	All addresses. The table has levels as country, state, city, address, and so on.
	GEOGRAPHY CITY	DWR_GEO_CITY	The CITY level of the GEOGRAPHY hierarchy.

To perform this query, you execute the following SQL statement.

SELECT cust_key, tot_call_min FROM
(select round(sum(call.call_drtn)/60,2) tot_call_min , call.cust_key
from DWB_WRLS_CALL_EVT call,
DWR_CUST cust,
DWR_ADDR_LOC addr,
DWR_GEO_CITY city
 Where to_date(to_char(call.evt_begin_dt,'MON-YY'),'MON-YY') like to_date('MAR-12','MON-YY')
and cust.cust_key = call.cust_key
and cust.addr_loc_key = addr.addr_loc_key
and addr.geo_city_key = city.geo_city_key
and initcap(city.geo_city_name)='San Francisco'
group by call.cust_key
order by 1 desc) WHERE ROWNUM < 10;

The result of this query is shown below.

 CUST_KEY TOT_CALL_MIN
---------- ------------
 3390 101.6
 4304 100.25
 4269 97.37
 4152 93.02
 4230 92.97
 4157 92.95
 3345 91.62
 4115 48.43
 4111 44.48

Optimizing Star Queries

A typical query in the access layer is a join between the fact table and some number of dimension tables and is often referred to as a star query. In a star query each dimension table is joined to the fact table using a primary key to foreign key join. Normally the dimension tables do not join to each other.

Typically, in this kind of query all of the WHERE clause predicates are on the dimension tables and the fact table. Optimizing this type of query is very straight forward.

To optimize this query, do the following:

	
Create a bitmap index on each of the foreign key columns in the fact table or tables

	
Set the initialization parameter STAR_TRANSFORMATION_ENABLED to TRUE.

This enables the optimizer feature for star queries which is off by default for backward compatibility.

If your environment meets these two criteria, your star queries should use a powerful optimization technique that rewrites or transforms your SQL called star transformation. Star transformation executes the query in two phases:

	
Retrieves the necessary rows from the fact table (row set).

	
Joins this row set to the dimension tables.

The rows from the fact table are retrieved by using bitmap joins between the bitmap indexes on all of the foreign key columns. The end user never needs to know any of the details of STAR_TRANSFORMATION, as the optimizer automatically chooses STAR_TRANSFORMATION when it is appropriate.

Example 5-2, "Star Transformation" gives the step by step process to use STAR_TRANSFORMATION to optimize a star query.

Example 5-2 Star Transformation

A business question that could be asked against the star schema in Figure 3-1, "Star Schema Diagram" would be "What was the total number of umbrellas sold in Boston during the month of May 2008?"

	
The original query.

select SUM(quantity_sold) total_umbrellas_sold_in_Boston
From Sales s, Customers c, Products p, Times t
Where s.cust_id=cust_id
And s.prod_id = p.prod_id
And s.time_id=t.time_id
And c.cust_city='BOSTON'
And p.product='UMBRELLA'
And t.month='MAY'
And t.year=2012;

As you can see all of the where clause predicates are on the dimension tables and the fact table (Sales) is joined to each of the dimensions using their foreign key, primary key relationship.

	
Take the following actions:

	
Create a bitmap index on each of the foreign key columns in the fact table or tables.

	
Set the initialization parameter STAR_TRANSFORMATION_ENABLED to TRUE.

	
The rewritten query. Oracle rewrites and transfers the query to retrieve only the necessary rows from the fact table using bitmap indexes on the foreign key columns

select SUM(quantity_sold
From Sales
Where cust_id IN
(select c.cust_id From Customers c Where c.cust_city='BOSTON')
And s.prod_id IN
(select p.prod_id From Products p Where p.product='UMBRELLA')
And s.time_id IN
(select t.time_id From Times(Where t.month='MAY' And t.year=2012);

By rewriting the query in this fashion you can now leverage the strengths of bitmap indexes. Bitmap indexes provide set based processing within the database, allowing you to use various fact methods for set operations such as AND, OR, MINUS, and COUNT. So, you use the bitmap index on time_id to identify the set of rows in the fact table corresponding to sales in May 2008. In the bitmap the set of rows are actually represented as a string of 1's and 0's. A similar bitmap is retrieved for the fact table rows corresponding to the sale of umbrellas and another is accessed for sales made in Boston. At this point there are three bitmaps, each representing a set of rows in the fact table that satisfy an individual dimension constraint. The three bitmaps are then combined using a bitmap AND operation and this newly created final bitmap is used to extract the rows from the fact table needed to evaluate the query.

	
Using the rewritten query, Oracle joins the rows from fact tables to the dimension tables.

The join back to the dimension tables is normally done using a hash join, but the Oracle Optimizer selects the most efficient join method depending on the size of the dimension tables.

The following figure shows the typical execution plan for a star query when STAR_TRANSFORMATION has kicked in. The execution plan may not look exactly as you expected. There is no join back to the customer table after the rows have been successfully retrieved from the Sales table. If you look closely at the select list, you can see that there is not anything actually selected from the Customers table so the optimizer knows not to bother joining back to that dimension table. You may also notice that for some queries even if STAR_TRANSFORMATION does kick in it may not use all of the bitmap indexes on the fact table. The optimizer decides how many of the bitmap indexes are required to retrieve the necessary rows from the fact table. If an additional bitmap index would not improve the selectivity, the optimizer does not use it. The only time you see the dimension table that corresponds to the excluded bitmap in the execution plan is during the second phase or the join back phase.

[image: Description of optquery3.gif follows]

Troubleshooting Oracle Communications Data Model Report Performance

Take the following actions to identify problems generating a report created using Oracle Business Intelligence Suite Enterprise Edition:

	
In the (Online) Oracle BI Administrator Tool, select Manage, then Security, then Users, and then ocdm.

Ensure that the value for Logging level is 7.

	
Open the Oracle Communications Data Model Repository, select Manage, and then Cache.

	
In the right-hand pane of the Cache Manager window, select all of the records, then right-click and select Purge.

	
Run the report or query that you want to track using the SQL log.

	
Open the query log file (NQQuery.log) under OracleBI\server\Log.

The last query SQL is the log of the report you have just run. If an error was returned in your last accessed report, there is an error at the end of this log.

The following examples illustrate how to use these error messages:

	
Example 5-3, "Troubleshooting an Oracle Communications Data Model Report"

	
Example 5-4, "Troubleshooting a Report: A Table Does Not Exist"

	
Example 5-5, "Troubleshooting a Report: When the Database is Not Connected"

Example 5-3 Troubleshooting an Oracle Communications Data Model Report

Assume the log file contains the following error.

Query Status: Query Failed: [nQSError: 15018] Incorrectly defined logical table source (for fact table Customer Mining) does not contain mapping for [Customer.Cell Phone Number, Customer.Customer Segment Name, Customer.Party Name].

This error occurs when there is a problem in the Business layer in your Oracle Business Intelligence Suite Enterprise Edition repository.

In this case, you need to check the mapping for Customer.Cell Phone Number, Customer.Customer Segment Name, and Customer.Party Name.

Example 5-4 Troubleshooting a Report: A Table Does Not Exist

Assume the log file contains the following error.

Query Status: Query Failed: [encloser: 17001] Oracle Error code: 942, message: ORA-00942: table or view does not exist.

This error occurs when the physical layer in your Oracle Business Intelligence Suite Enterprise Edition repository has the table which actually does not exist in the Database.

To find out which table has problem:

	
Copy the SQL query to database environment.

	
Execute the query.

The table which does not exist is marked out by the database client.

Example 5-5 Troubleshooting a Report: When the Database is Not Connected

Assume the log file contains the following error.

Error: Query Status: Query Failed: [nQSError: 17001] Oracle Error code: 12545, message: ORA-12545: connect failed because target host or object does not exist.

Meaning: This error occurs when the Database is not connected.

Action: Check connecting information in physical layer and ODBC connection to ensure that the repository is connecting to the correct database.

Writing As Is and As Was Queries

Two common query techniques are "as is" and "as was" queries:

	
Characteristics of an As Is Query

	
Characteristics of an As Was Query

	
Examples: As Is and As Was Queries Against Oracle Communications Data Model

Characteristics of an As Is Query

An As Is query has the following characteristics:

	
The resulting report shows the data as it happened.

	
The snowflake dimension tables are also joined using the surrogate key columns (that is the primary key and foreign key columns).

	
The fact table is joined with the dimension tables (at leaf level) using the surrogate key column.

	
Slowly-changing data in the dimensions are joined with their corresponding fact records and are presented individually.

	
It is possible to add up the components if the different versions share similar characteristics.

Characteristics of an As Was Query

An As Was query (also known as point-in-time analysis) has the following characteristics:

	
The resulting report shows the data that would result from freezing the dimensions and dimension hierarchy at a specific point in time.

	
Each snowflake table is initially filtered by applying a point-in-time date filter which selects the records or versions which are valid as of the analysis date. This structure is called the point-in-time version of the snowflake.

	
The filtered snowflake is joined with an unfiltered version of itself by using the natural key. All of the snowflake attributes are taken from the point-in-time version alias. The resulting structure is called the composite snowflake.

	
A composite dimension is formed by joining the individual snowflakes on the surrogate key.

	
The fact table is joined with the composite dimension table at the leaf level using the surrogate key column.

	
The point-in-time version is super-imposed on all other possible SCD versions of the same business entity -- both backward and forward in time. Joining in this fashion gives the impression that the dimension is composed of only the specific point-in-time records.

	
All of the fact components for various versions add up correctly due to the super-imposition of point-in-time attributes within the dimensions.

Examples: As Is and As Was Queries Against Oracle Communications Data Model

Based on the Data used for the examples, the following examples illustrate the characteristics of As Is and As Was queries:

	
Example 5-6, "As Is Query for Tax Collection Split by Marital Status"

	
Example 5-7, "As Was Queries for Tax Collection Split by Marital Status"

	
Example 5-8, "As Is Query for Tax Collection Data Split by County"

	
Example 5-9, "As Was Queries for Tax Collection Data Split by County"

Data used for the examples

Assume that your data warehouse has a Customer table, a County, and a TaxPaid fact table. As of January 1, 2012, these tables include the values shown below.

Customer Table

	Cust Id	Cust Cd	Cust Nm	Gender	M Status	County Id	County Cd	Country Nm	...	Eff Frm	Eff To
	101	JoD	John Doe	Male	Single	5001	SV	Sunnyvale	...	1-Jan-12	31-Dec-99
	102	JaD	Jane Doe	Female	Single	5001	SV	Sunnyvale	...	1-Jan-12	31-Dec-99
	103	JiD	Jim Doe	Male	Married	5002	CU	Cupertino	...	1-Jan-12	31-Dec-99

County Table

	County Id	County CD	County Nm	Population	...	Eff Frm	Eff To
	5001	SV	Sunnyvale	Very High	...	1-Jan-12	31-Dec-99
	5002	CU	Cupertino	High	...	1-Jan-12	31-Dec-99

TaxPaid Table

	Cust Id	Day	Tax Type	Tax
	101	1-Jan-12	Professional Tax	100
	102	1-Jan-12	Professional Tax	100
	103	1-Jan-12	Professional Tax	100

Assume that the following events occurred in January 2012:

	
On January 20, 2012, Jane Doe marries.

	
On Jan 29, 2012, John Doe moves from Sunnyvale to Cupertino.

Consequently, as shown below, on February 1, 2012, the Customer and TaxPaid tables have new data while the values in the County table stay the same.

Customer table

	Cust Id	Cust Cd	Cust Nm	Gender	M Status	County Id	County Cd	Country Nm	...	Eff Frm	Eff To
	101	JoD	John Doe	Male	Single	5001	SV	Sunnyvale	...	1-Jan-12	29-Jan-12
	102	JaD	Jane Doe	Female	Single	5001	SV	Sunnyvale	...	1-Jan-12	20-Jan-12
	103	JiD	Jim Doe	Male	Married	5002	CU	Cupertino	...	1-Jan-12	31-Dec-99
	104	JaD	Jane Doe	Female	Married	5001	SV	Sunnyvale	...	21-Jan-12	31-Dec-99
	105	JoD	John Doe	Male	Single	5002	CD	Cupertino	...	30-Jan-12	31-Dec-99

County table

	County Id	County CD	County Nm	Population	...	Eff Frm	Eff To
	5001	SV	Sunnyvale	Very High	...	1-Jan-12	31-Dec-99
	5002	CU	Cupertino	High	...	1-Jan-12	31-Dec-99

TaxPaid Table

	Cust Id	Day	Tax Type	Tax
	101	1-Jan-12	Professional Tax	100
	102	1-Jan-12	Professional Tax	100
	103	1-Jan-12	Professional Tax	100
	105	1-Feb-12	Professional Tax	100
	104	1-Feb-12	Professional Tax	100
	103	1-Feb-12	Professional Tax	100

Example 5-6 As Is Query for Tax Collection Split by Marital Status

Assuming the Data used for the examples, to show the tax collection data split by martial status, the following SQL statement that joins the TaxPaid fact table and the Customer dimension table on the cust_id surrogate key and the Customer and County snowflakes on the cnty_id surrogate key.

SELECT cust.cust_nm, cust.m_status, SUM(fct.tx)
FROM taxpaid fct, customer cust, county cnty
WHERE fct.cust_id = cust.cust_id
AND cust.cnty_id = cnt.cnt_id
GROUP BY cust.cust_nm, cust.m_status
ORDER BY 1,2,3;

The results of this query are shown below. Note that there are two rows for Jane Doe; one row for a marital status of Married and another for a marital status of Single.

	Cust Nm	M Status	Tax
	Jane Doe	Married	100
	Jane Doe	Single	100
	Jim Doe	Married	200
	John Doe	Single	200

Example 5-7 As Was Queries for Tax Collection Split by Marital Status

Assuming the Data used for the examples, issue the following SQL statement to show the tax collection data split by marital status using an analysis date of January 15, 2012.

select
 cust.cust_nm, cust.m_status, sum(fct.tax)
from
 TaxPaid fct,
 (
 select
 cust_act.cust_id, cust_pit.cust_cd, cust_pit.cust_nm,
 cust_pit.m_status, cust_pit.gender,
 cust_pit.cnty_id, cust_pit.cnty_cd, cust_pit.cnty_nm
 from Customer cust_act
 inner join (
 select
 cust_id, cust_cd, cust_nm,
 m_status, gender,
 cnty_id, cnty_cd, cnty_nm
 from Customer cust_all
 where to_date('15-JAN-2012', 'DD-MON-YYYY') between eff_from and eff_to
) cust_pit
 on (cust_act.cust_cd = cust_pit.cust_cd)
) cust,
 (
 select
 cnty_act.cnty_id, cnty_pit.cnty_cd, cnty_pit.cnty_nm
 from County cnty_act
 inner join (
 select
 cnty_id, cnty_cd, cnty_nm
 from County cnty_all
 where to_date('15-JAN-2012', 'DD-MON-YYYY') between eff_from and eff_to
) cnty_pit
 on (cnty_act.cnty_cd = cnty_pit.cnty_cd)
) cnty
where fct.cust_id = cust.cust_id
and cust.cnty_id = cnty.cnty_id
GROUP BY cust.cust_nm, cust.m_status
order by 1,2,3;

The results of this query are shown below. Since Jane Doe was single on January 15, 2012 (the analysis date), all tax for Jane Doe is accounted under her Single status.

	Cust Nm	M Status	Tax
	Jane Doe	Single	200
	Jim Doe	Married	200
	John Doe	Single	200

Assume instead that you issued the exact same query except that for the to_date phrase you specify 09-FEB-2012 rather than 15-JAN-2012. Since Jane Doe was married on February 9, 2012, then, as shown below all tax for Jane Doe would be accounted under her Married status.

	Cust Nm	M Status	Tax
	Jane Doe	Married	200
	Jim Doe	Married	200
	John Doe	Single	200

Example 5-8 As Is Query for Tax Collection Data Split by County

Assuming the Data used for the examples, issue the following SQL statement to show the tax collection data split by county.

SELECT cust.cust_nm, cnty.cnty_nm, SUM(fct.tax)
FROM TaxPaid fct, customer cust, county cnty
WHERE fct.cust_id = cust.cust_id
AND cust.cnty_id = cnty.cnty_ID
GROUP BY cut.cust_nm, cnty.cnty_nm
ORDER BY 1,2,3;

The results of this query are shown below. Note that since John Doe lived in two different counties, there are two rows of data for John Doe.

	Cust Nm	County Nm	Tax
	Jane Doe	Sunnyvale	200
	Jim Doe	Cupertino	200
	John Doe	Cupertino	100
	John Doe	Sunnyvale	100

Example 5-9 As Was Queries for Tax Collection Data Split by County

Assuming the Data used for the examples, issue the following SQL statement to show the tax collection data split by county using an analysis date of January 15, 2012.

select
 cust.cust_nm, cnty.cnty_nm, sum(fct.tax)
from
 TaxPaid fct,
 (
 select
 cust_act.cust_id, cust_pit.cust_cd, cust_pit.cust_nm,
 cust_pit.m_status, cust_pit.gender,
 cust_pit.cnty_id, cust_pit.cnty_cd, cust_pit.cnty_nm
 from Customer cust_act
 inner join (
 select
 cust_id, cust_cd, cust_nm,
 m_status, gender,
 cnty_id, cnty_cd, cnty_nm
 from Customer cust_all
 where to_date('15-JAN-2012', 'DD-MON-YYYY') between eff_from and eff_to
) cust_pit
 on (cust_act.cust_cd = cust_pit.cust_cd
) cust,
 (
 select
 cnty_act.cnty_id, cnty_pit.cnty_cd, cnty_pit.cnty_nm
 from County cnty_act
 inner join (
 select
 cnty_id, cnty_cd, cnty_nm
 from County cnty_all
 where to_date('15-JAN-2012', 'DD-MON-YYYY') between eff_from and eff_to
) cnty_pit
 on (cnty_act.cnty_cd = cnty_pit.cnty_cd)
) cnty
where fct.cust_id = cust.cust_id
and cust.cnty_id = cnty.cnty_id
GROUP BY cust.cust_nm, cnty.cnty_nm
order by 1,2,3;

The results of this query are shown below. Note that since John Doe was in Sunnyvale as of the analysis date of January 15, 2012, all tax for John Doe is accounted for under the Sunnyvale county.

	Cust Nm	County Nm	Tax
	Jane Doe	Sunnyvale	200
	Jim Doe	Cupertino	200
	John Doe	Sunnyvale	200

Assume instead that you issued the exact same query except that for the to_date phrase you specify 09-FEB-2012 rather than 15-JAN-2012. Since John Doe lived in Cupertino on February 9, 2012, then, as shown below all tax for John Doe would be accounted under Cupertino.

	Cust Nm	County Nm	Tax
	Jane Doe	Sunnyvale	200
	Jim Doe	Cupertino	200
	John Doe	Cupertino	200

Tutorial: Creating a New Oracle Communications Data Model Dashboard

This tutorial explains how to create a dashboard based on the Oracle Communications Data Model webcat included with the sample Oracle Business Intelligence Suite Enterprise Edition reports delivered with Oracle Communications Data Model.

	
See:

Oracle Communications Data Model Installation Guide for more information on installing the sample reports and deploying the Oracle Communications Data Model RPD and webcat on the Business Intelligence Suite Enterprise Edition instance.

In this example assume that you want to create a dashboard named "Dropped call and Failed Call", and put both "Dropped Call Rate Report" and "Failed Call Rate Report" into this new dashboard.

To create a dashboard, take the following steps:

	
In the browser, open the login page at http://servername:9704/analytics where servername is the server on which the webcat is installed.

	
Login with username of ocdm, and provide the password.

Then, click newDashboard to create an Oracle Business Intelligence Suite Enterprise Edition dashboard.

[image: Description of dbd1.gif follows]

	
Input name and description, save it to the Network Health folder. Click OK.

[image: Description of dbd2.gif follows]

	
In the Catalog view, expand the Network Health Analysis folder. You can see the Failed Call Rate Report and Dropped Call Rate Report.

[image: Description of dbd3.gif follows]

	
Drag the Failed Call Rate Report and Dropped Call Rate Report from the Catalog view into the right panel.

[image: Description of dbd4.gif follows]

	
You can change the layout of this section to organize the two reports by horizontal or vertical.

[image: Description of dbd5.gif follows]

Note that the page name is still "Page1" so you must change it.

	
To change the page name:

	
Select the Dashboard.

[image: Description of dbd6.gif follows]

	
In Dashboard Properties window, click Change Name.

[image: Description of dbd7.gif follows]

	
Change the name to "Dropped Call Rate and Failed Call Rate", then click OK.

[image: Description of dbd8.gif follows]

	
Click Save on the top of the dashboard. Now you have a new dashboard.

[image: Description of dbd9.gif follows]

	
Oracle by Example:

For more information on creating dashboards see the "Creating Analyses and Dashboards 11g" OBE tutorial.
To access the tutorial, open the Oracle Learning Library in your browser by following the instructions in "Oracle Technology Network"; and, then, search for the tutorial by name.

Tutorial: Creating a New Oracle Communications Data Model Report

This tutorial explains how to create a report based on the Oracle Communications Data Model webcat included with the sample Oracle Business Intelligence Suite Enterprise Edition reports delivered with Oracle Communications Data Model.

	
See:

Oracle Communications Data Model Installation Guide for more information on installing the sample reports and deploying the Oracle Communications Data Model RPD and webcat on the Business Intelligence Suite Enterprise Edition instance.

In this example, assume that you want to create a report named "Dropped call vs. Failed Call" to put both dropped call rate and failed call rate in one report.

To create a this new report, take the following steps:

	
In the browser, open the login page at http://servername:9704/analytics where servername is the server on which the webcat is installed.

	
Login with username of ocdm, and provide the password.

Then, click newAnalysis to create an Oracle Business Intelligence Suite Enterprise Edition report.

[image: Description of rpt1.gif follows]

	
Select Subject Area, then select ODWT to create a relational report. [image: Description of rpt2.gif follows]

	
Drag and put the dimension and fact columns into the Select Columns panel. [image: Description of rpt3.gif follows]

	
Select the Results tab to view the report [image: Description of rpt4.gif follows]

	
Click New View to add a chart into report. [image: Description of rpt5.gif follows]

	
Click Save to save this report to the Network Health Analysis folder

[image: Description of rpt6.gif follows]

	
Oracle by Example:

For more information on creating a report, see the "Creating Analyses and Dashboards 11g" OBE tutorial.
To access the tutorial, open the Oracle Learning Library in your browser by following the instructions in "Oracle Technology Network"; and, then, search for the tutorial by name.

Oracle Legal Notices
Copyright Notice
Copyright © 1994-2017, Oracle and/or its affiliates. All rights reserved.
License Restrictions Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
Restricted Rights Notice
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
Hazardous Applications Notice
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Trademark Notice
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
Third-Party Content, Products, and Services Disclaimer
This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.
Alpha and Beta Draft Documentation Notice
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.
Private Alpha and Beta Draft Documentation Notice
If this document is in private preproduction status:
The information contained in this document is for
informational sharing purposes only and should be considered in your
capacity as a customer advisory board member or pursuant to your beta
trial agreement only. It is not a commitment to deliver any material,
code, or functionality, and should not be relied upon in making
purchasing decisions. The development, release, and timing of any
features or functionality described in this document remains at the
sole discretion of Oracle.
This document in any form, software or printed matter, contains proprietary information that is the exclusive property
of Oracle. Your access to and use of this confidential material is
subject to the terms and conditions of your Oracle Master Agreement, Oracle License and Services Agreement, Oracle PartnerNetwork Agreement, Oracle distribution agreement, or other license agreement which has been executed by you and Oracle and with which you agree to
comply. This document and information contained herein may not be
disclosed, copied, reproduced, or distributed to anyone outside Oracle
without prior written consent of Oracle. This document is not part of
your license agreement nor can it be incorporated into any contractual
agreement with Oracle or its subsidiaries or affiliates.
Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.
Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.
[image: Oracle Logo]

List of Examples

	2-1 Creating a Compressed Table for Oracle Communications Data Model
	3-1 Adding a New Column to a Mining Model in Oracle Communications Data Model
	4-1 Using Exchange Partition Statement with a Partitioned Table
	5-1 Creating a Relational Query for Oracle Communications Data Model
	5-2 Star Transformation
	5-3 Troubleshooting an Oracle Communications Data Model Report
	5-4 Troubleshooting a Report: A Table Does Not Exist
	5-5 Troubleshooting a Report: When the Database is Not Connected
	5-6 As Is Query for Tax Collection Split by Marital Status
	5-7 As Was Queries for Tax Collection Split by Marital Status
	5-8 As Is Query for Tax Collection Data Split by County
	5-9 As Was Queries for Tax Collection Data Split by County

Oracle® Communications Data Model

Implementation and Operations Guide

Release 11.3.2

E28442-05

October 2013

Oracle Communications Data Model Implementation and Operations Guide, Release 11.3.2

E28442-05

Copyright © 2011, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

6 Metadata Collection and Reports

This chapter includes the following sections:

	
Overview of Managing Metadata for Oracle Communications Data Model

	
Browsing Metadata Reports and Dashboard

	
Browsing Metadata Reports and Dashboard

Overview of Managing Metadata for Oracle Communications Data Model

Metadata is any data about data and, as such, is an important aspect of the data warehouse environment. Metadata allows the end user and the business analyst to navigate through the possibilities at a higher business object level.

Metadata management is a comprehensive, ongoing process of overseeing and actively managing metadata in a central environment which helps an enterprise to identify how data is constructed, what data exists, and what the data means. It is particularly helpful to have good metadata management when customizing Oracle Communications Data Model so that you can do impact analysis to ensure that changes do not adversely impact data integrity anywhere in your data warehouse.

	
Metadata Categories and Standards

	
Working with a Metadata Repository

Metadata Categories and Standards

Metadata is organized into three major categories:

	
Business metadata describes the meaning of data in a business sense. The business interpretation of data elements in the data warehouse is based on the actual table and column names in the database. Business metadata gathers this mapping information, business definitions, and rules information.

	
Technical metadata represents the technical aspects of data, including attributes such as data types, lengths, lineage, results from data profiling, and so on.

	
Process execution metadata presents statistics on the results of running the ETL process itself, including measures such as rows loaded successfully, rows rejected, amount of time to load, and so on.

Since metadata is so important in information management, many organizations attempt to standardize metadata at various levels, such as:

	
Metadata Encoding and Transmission Standard (METS). A standard for encoding descriptive, administrative, and structural metadata regarding objects within a digital library.

	
American National Standards Institute (ANSI). The organization that coordinates the U.S. voluntary standardization and conformity-assessment systems.

	
International Organization for Standardization (ISO). The body that establishes, develops, and promotes standards for international exchange.

	
Common Warehouse Metamodel (CWM). A specification, released and owned by the Object Management Group, for modeling metadata for relational, non-relational, multi-dimensional, and most other objects found in a data warehousing environment.

When you implement your metadata management solution, reference your data warehouse infrastructure environment and make the decision which standard to follow.

Working with a Metadata Repository

You manage metadata using a Metadata Repository. At the highest level, a Metadata Repository includes three layers of information. The layers are defined in the following order:

	
Physical layer: this metadata layer identifies the source data.

	
Business Model and Mapping layer: this metadata layer organizes the physical layer into logical categories and records the appropriate metadata for access to the source data.

	
Presentation layer: this metadata layer exposes the business model entities for end-user access.

The first step in creating a Metadata Repository is to scope your metadata management needs by:

	
Identifying the metadata consumers. Typically, there are business consumers and technical consumers.

	
Determine the business and technical metadata requirements.

	
Aligning metadata requirements to specific data elements and logical data flows.

Then:

	
Decide how important each part is.

	
Assign responsibility to someone for each piece.

	
Decide what constitutes a consistent and working set of metadata

	
Where to store, backup, and recover the metadata.

	
Ensure that each piece of metadata is available only to those people who need it.

	
Quality-assure the metadata and ensure that it is complete and up to date.

	
Identify the Metadata Repository to use and how to control that repository from one place

After creating the metadata definitions, review your data architecture to ensure you can acquire, integrate, and maintain the metadata.

As the data keeps on changing in your data warehouse day by day, update the Metadata Repository. When you want to change business rules, definitions, formulas or process (especially when customizing the Oracle Communications Data Model), your first step is to survey the metadata and do an impact analysis to list all of the attributes in the data warehouse environment that would be affected by a proposed change.

Browsing Metadata Reports and Dashboard

To customize the Oracle Communications Data Model model, you must understand the dependencies among Oracle Communications Data Model components, especially how the report KPIs are mapped to the physical tables and columns. Oracle Communications Data Model provides a tool, the OCDM Metadata browser that helps you discover these dependencies. When you install Oracle Communications Data Model with its sample reports, the metadata browser is delivered as a sample Dashboard in the webcat.

	
See:

Oracle Communications Data Model Installation Guide for more information on installing the sample reports and deploying the Oracle Communications Data Model RPD and webcat on the Business Intelligence Suite Enterprise Edition instance.

There are four tabs (reports) in the Oracle Communications Data Model Metadata browser. To browse the metadata repository:

	
In the browser, open the login page at http://servername:9704/analytics where servername is the server on which the webcat is installed.

	
Login with username of ocdm, and provide the password.

	
Select the Metadata Browser dashboard.

	
Use the tabs in the Metadata browser to explore the metadata.

	
Measure-Entity tab

On the Measure-Entity tab you can see the business areas (relational, OLAP, mining), the measures description, corresponding formula, responsible entities, and attributes for the measure.

	
Entity-Measure tab

Using the Entity-Measure tab, you can discover the mappings between entities, attributes, supported measures, and calculations of the measures. You can discover information about particular entities and attributes.

	
Program-Table tab

Using the Program-Table tab you can browse for information on the intra-ETL mappings and report information. Take the following steps:

	
Table-Program tab

By default when you go to the Table-Program tab you see all of the tables used for all the reports.

To discover what reports use a particular table, you must move a particular table from the right pane to the left (Selected) pane.

Using the Measure-Entity Tab Business Areas and Measures Attributes and Entities

The Measure-Entity tab provides information on the measure descriptions, computational formulas with physical columns, physical tables, and corresponding entities by Business Area.

To browse the Measure-Entity data, select the business area and measure description that you are interested in.

Using the Entity-Measure Tab Entity to Attribute Measures

The Entity-Measure tab displays the measures supported by the entities and how they are calculated. You can discover information about particular entities and attributes.

To view the Entity-Measure tab perform the following steps to learn more about an entity:

	
Select the entity.

	
Click GO.

Using the Program-Table Tab

The Program-Table tab displays the input and output tables used in the selected programs.

To use the Program-Table tab, perform the following steps to learn more about intra-ETL mappings:

	
Select the program type (that is, intra-ETL or report) and program name for showing particular report or intra-ETL information.

	
Select GO.

Using the Table-Program Tab

The Table-Program tab lists the Programs used by a given table and whether that table is an input or output, or both, of that program. To discover what reports use a particular table, move a particular table from the right pane to the left (Selected) pane.

To see the reports that use a particular table, perform the following steps:

	
In the right pane of the Table-Program tab, select the table.

	
Move the table to the Selected list on the left by clicking on < (left arrow), and click OK.

	
Select GO.

The reports for the selected table are displayed.

Collecting and Populating Metadata

The Oracle Communications Data Model metadata browser generation packages generate and update the Oracle Communications Data Model metadata. The metadata generation package contains four main tables and several staging tables and views. The metadata generation tables are:

	
MD_ENTY

	
MD_PRG

	
MD_KPI

	
MD_REF_ENTY_KPI

Use the following steps to collect and populate the metadata.

	
Collect LDM Metadata:

Extract the Logical Data Model repository metadata from Oracle SQL Developer Data Modeler (OSDM) into a database schema. Use manual steps to generate Logical Data Model repository tables in the database with Oracle SQL Developer Data Modeler.

	
Start Oracle SQL Developer Data Modeler

	
Open Logical Data Model

	
Select File.

	
Select Export.

	
Select To Reporting Schema.

	
Collect Sample Dashboard Metadata:

Extract the BIEE dashboard metadata from webcat to csv file.

Using OBIEE catalog manager open the SQL Developer sample report webcat:

Tools -> create Report -> Select type to report on -> select dashboard

Select columns one by one as shown in the md_dashboard.ldr specified in the meta_data folder, then save as a csv format file, md_dashboard.csv.

Put this file in the meta_data folder.

Column Sequence:

	
Name

	
Description

	
Path

	
Folder

	
Analysis Path

	
Analysis Name

	
Analysis Description

	
Dashboard Page Description

	
Dashboard Page Name

	
Dashboard Page Path

	
Owner

	
Collect Sample Report Metadata:

Extract BIEE report metadata from webcat to csv file. Use OBIEE catalog manager to open Oracle Communications Data Model sample report webcat.

	
Tools -> create Report -> Select type to report on -> select Analysis -> select columns one by one as shown in the md_dashboard.ldr specified in the meta_data folder.

	
Save the file as csv format, md_dashboard.csv. Put the file under meta_data folder

Column Sequence:

	
NAME

	
DESCRIPTION

	
TABLE_NAME

	
COLUMN_NAME

	
FOLDER

	
PATH

	
SUBJECT_AREA

	
FORMULA

	
Collect Sample RPD Metadata:

Extract BIEE RPD metadata from RPD to csv file. Use Administrator Tool to open Oracle Communications Data Model sample report RPD:

	
Tools -> Utilities -> Repository Documentation -> Execute -> select location -> set xls file name as md_rpd.

	
Save as csv format md_rpd.csv and put under meta_data folder.

	
Load Naming Convention Information:

Load Oracle Communications Data Model Physical Data Model naming convention information from csv into a staging table. Use sqlloader to load data from name_conversion.csv into MD_NAME_CONVERSION table. The sqlloader format file: Name_conversion.ldr

Name_conversion.ldr:
OPTIONS (SKIP=1)
LOAD DATA
INFILE 'name_conversion.csv'
BADFILE 'name_conversion.csv.bad'
DISCARDFILE 'name_conversion.csv.dsc'
truncate
INTO TABLE MD_NAME_CONVERSION
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
TRAILING NULLCOLS
(
ABBREVIATION ,
FULL_NAME
)

	
Load Sample Dashboard Metadata:

Load sample dashboard metadata from csv into a staging table. Use sqlloader to load data from md_dashboard.csv into MD_DASHBOARD table. The sqlloader format file: md_dashboard.ldr.

Md_dashboard.ldr:

OPTIONS (SKIP=1)
LOAD DATA
INFILE 'md_dashboard.csv'
BADFILE 'md_dashboard.csv.bad'
DISCARDFILE 'md_dashboard.csv.dsc'
truncate
INTO TABLE MD_DASHBOARD
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
TRAILING NULLCOLS
(
NAME char(2000),
DESCRIPTION char(2000),
PATH char(2000),
FOLDER char(2000),
ANALYSIS_PATH char(2000),
ANALYSIS_NAME char(2000),
ANALYSIS_DESCRIPTION char(2000),
DASHBOARD_PAGE_DESCRIPTION char(2000),
DASHBOARD_PAGE_NAME char(2000),
DASHBOARD_PAGE_PATH char(2000),
OWNER char(2000)
)

	
Load Sample Report Metadata

Load sample report metadata from csv into a staging table. Use sqlloader to load data from md_report.csv into MD_REPORT table. The sqlloader format file: md_report.ldr.

Md_dashboard.ldr:

OPTIONS (SKIP=1)
LOAD DATA
INFILE 'md_dashboard.csv'
BADFILE 'md_dashboard.csv.bad'
DISCARDFILE 'md_dashboard.csv.dsc'
truncate
INTO TABLE MD_DASHBOARD
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
TRAILING NULLCOLS
(
NAME char(2000),
DESCRIPTION char(2000),
PATH char(2000),
FOLDER char(2000),
ANALYSIS_PATH char(2000),
ANALYSIS_NAME char(2000),
ANALYSIS_DESCRIPTION char(2000),
DASHBOARD_PAGE_DESCRIPTION char(2000),
DASHBOARD_PAGE_NAME char(2000),
DASHBOARD_PAGE_PATH char(2000),
OWNER char(2000)
)

	
Load Sample RPD Metadata:

Load sample RPD metadata from csv into a staging table.

	
Note:

If the OLAP part of the RPD is populated by the BIEE native OLAP import. Then the metadata of this part will not be shown in md_rpd.csv. You need to manually populate this part of metadata from the RPD.

Use sqlloader to load data from md_rpd.csv into MD_RPD table. The sqlloader format file: md_rpd.ldr.

Md_rpd.ldr:

OPTIONS (SKIP=0)
LOAD DATA
INFILE 'md_rpd.csv'
BADFILE 'md_rpd.csv.bad'
DISCARDFILE 'md_rpd.csv.dsc'
truncate
INTO TABLE MD_RPD
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
TRAILING NULLCOLS
(
 SUBJECT_AREA
,PRESENTATION_TABLE
,PRESENTATION_COLUMN char(500)
,DESC_PRESENTATION_COLUMN
,BUSINESS_MODEL
,DERIVED_LOGICAL_TABLE
,DERIVED_LOGICAL_COLUMN
,DESC_DERIVED_LOGICAL_COLUMN
,EXPRESSION char(1000)
,LOGICAL_TABLE
,LOGICAL_COLUMN
,DESC_LOGICAL_COLUMN
,LOGICAL_TABLE_SOURCE
,EXPRESSION_1 char(1000)
,INITIALIZATION_BLOCK
,VARIABLE
,DATABASE
,PHYSICAL_CATALOG
,PHYSICAL_SCHEMA
,PHYSICAL_TABLE
,ALIAS
,PHYSICAL_COLUMN
,DESC_PHYSICAL_COLUMN
)

	
Load LDM/PDM Metadata (Table MD_ENTY):

Load LDM/PDM mapping and related information into table MD_ENTY. For information on this step, see "Load LDM/PDM Metadata (Table MD_ENTY)".

	
Load Program (Intra-ETL) Metadata (Table MD_PRG):

Load Intra-ETL program input/output and related information into table MD_PRG.

For information on this step, see "Load Program (Intra-ETL) Metadata (Table MD_PRG)"

	
Load Reports and KPI Metadata (Table - MD_KPI and MD_REF_ENTY_KPI)

Load sample report metadata into MD_KPI and load report/PDM/LDM mapping related information into table MD_REF_ENTY_KPI.

For information on this step see "Load Reports and KPI Metadata (Table MD_KPI and MD_REF_ENTY_KPI):".

Load LDM/PDM Metadata (Table MD_ENTY)

If you want to get the mapping between a business area and an entity, you have to manually populate this information. You can only get this information from the metadata report for those entities which are used in the report, for those entities which are not used in report, you have to manually map them to the correct business area.

Source Tables Required

	Source Table Name	Description
	DMRS_ATTRIBUTES	Containing attributes of the particular entity
	DMRS_ENTITIES	Containing entity name with unique id
	MD_NAME_CONVERSION	Containing full name and abbreviation of the distinct word used in the LDM

Staging Tables/Views

	Staging Table/View Name	Description
	MD_OIDM_ATTR_COL_NAME_MAP	Used to store abbreviate the column names based on the standard abbreviation used in the project.
	MD_DM_ALL_ENT_ATTR	Used to generate and keep the entity description.

Loading MD_ENTY (MD_ENTY_POP.SQL)

GIVE_ABBRV

Type: Function

This database function GIVE_ABBRV provides the abbreviation for a named token from the table MD_NAME_CONVERSION.

Source Table

MD_NAME_CONVERSION

Columns: ABBREVIATION

Target

Table: MD_OIDM_ATTR_COL_NAME_MAP

Columns: column_name_abbr

MD_DM_ALL_ENT_ATTR

Type: View

This database view provides the description of each entity.

	Source Table	Target View
	DMRS_ENTITIES	MD_DM_ALL_ENT_ATTR

PL/SQL Program to Update Column Name

Type: PL/SQL Program

This program updates the column name based on the result of function GIVE_ABBRV.

	Source Tables	Target Table
	MD_OIDM_ATTR_COL_NAME_MAP
DMRS_ATTRIBUTES

	MD_OIDM_ATTR_COL_NAME_MAP
Column: column_name_abbr

PL/SQL program to insert initial data into MD_OIDM_ATTR_COL_NAM

Type: PL/SQL Program

Provides initial loading for table MD_OIDM_ATTR_COL_NAME_MAP

	Source Tables	Target Table
	MD_DM_ALL_ENT_ATTR
DMRS_ENTITIES

	MD_OIDM_ATTR_COL_NAME_MAP

PL/SQL program to load data into MD_ENTY

Type: PL/SQL Program

Loads data into MD_ENTY from all the staging tables.

	Source Table	Target Table
	MD_OIDM_ATTR_COL_NAME_MAP	MD_ENTY

Load Program (Intra-ETL) Metadata (Table MD_PRG)

Source Tables Required

	Source Table Name	Description
	USER_DEPENDENCIES	This database view describes dependencies between procedures, packages, functions, package bodies, and triggers owned by the current user, including dependencies on views created without any database links.
	MD_RPD_RPT	This table contains the sample report related information.

Staging Tables/Views

	Staging Table/View Name	Description
	MD_INTRA_ETL	Used to generate and keep the relational/OLAP ETL program metadata information.
	MD_MINING	Used to generate and keep the data mining ETL program metadata information.

Loading MD_PRG (MD_PRG_POP.SQL, MD_MIN_PRG_POP.SQL)

Program: MD_INTRA_ETL

Type: View

This view extracts information for relational and OLAP Intra-ETL packages. The structure is the same as MD_PRG.

	Source View	Target View
	USER_DEPENDENCIES	MD_INTRA_ETL

Program: MD_MINING

Type: View

This view extracts information for the data mining Intra-ETL packages. The structure of the view same as MD_PRG.

	Source View	Target View
	USER_DEPENDENCIES	MD_MINING

Program: PL/SQL program to load ETL mapping data into MD_PRG.

Type: PL/SQL Program

Load ETL program data into MD_PRG from all the staging views

	Source Views	Target Table
	MD_INTRA_ETL
MD_MINING

	MD_PRG

Program: PL/SQL program insert report data into MD_PRG

Type: PL/SQL Program

Load report data into MD_PRG from report staging table.

	Source Table	Target Table
	MD_RPD_RPT	MD_PRG

Load Reports and KPI Metadata (Table MD_KPI and MD_REF_ENTY_KPI):

Source Tables Required

	Source Table Name	Description
	MD_RPD	This tables stores all the RPD metadata information, it is directly loaded from md_rpd.csv
	MD_REPORT	This tables stores all the report (analysis) metadata information, it is directly loaded from md_report.csv
	MD_DASHBOARD	This tables stores all the sample report dashboard metadata information, it's directly loaded from md_dashboard.csv

Staging Tables/Views

	Staging Table/View Name	Description
	MD_RPD_CALC_PHY	Stores the missing physical tables and columns for derived measures. Wrote a query to find out missing Physical tables and columns for derived measures.
	MD_REPORT1	MD_REPORT1 has the same structure of MD_RPT, it is used to store comma separated tables and columns to the new row, by that it can directly join with physical tables and columns from MD_RPD_CALC_PHY.
	MD_RPT_DASH	Contains all mappings information between RPD and reports.
	MD_RPD_RPT_DASH	Stores all the mappings information of Report, RPD and Dashboard.

Loading MD_KPI and MD_REF_ENTY_KPI (SAMPLE_REP_POP.SQL)

Program: PL/SQL program Insert non calculated columns Data Into MD_RPD_CALC_PHY

Type: PL/SQL Program

This program extracts those base KPIs or non calculated column information and inserts into MD_RPD_CALC_PHY.

	Source Table	Target Table
	MD_RPD	MD_RPD_CALC_PHY

Program: PROCEDURE Proc_DelmValuePopulate2

Type: Procedure

This procedure loads comma separated data to new row of the MD_REPORT1 table.

	Source Table	Target Table
	MD_REPORT	MD_REPORT1

Program: PL/SQL program to create and perform initial load of data into MD_RPD_RPT

Type: PL/SQL Program

This program creates and performs initial load of data for the table MD_RPD_RPT.

	Source Tables	Target Table
	MD_RPD_CALC_PHY
MD_REPORT1

	MD_RPD_RPT

Program: PL/SQL program to create and initial load data into MD_RPD_RPT_DASH.

Type: PL/SQL Program

This program creates and performs initial load of data for table MD_RPD_RPT_DASH.

	Source Tables	Target Table
	MD_RPD_CALC_PHY
MD_RPT_DASH

MD_RPD_RPT_DASH

	MD_RPD_RPT_DASH

Program: PL/SQL program to create and initial load data into MD_RPD_RPT.

Type: PL/SQL Program

This program creates performs initial load of data for table MD_RPD_RPT.

	Source Tables	Target Table
	MD_RPD_CALC_PHY
MD_REPORT1

	MD_RPD_RPT

Program: MD_DRVD_KP

Type: View

This view extracts and keeps the information for all the calculated KPIs.

	Source Table	Target Table
	MD_RPD_RPT_DASH	MD_DRVD_KPI

Program: PL/SQL program to create and performs initial load of data into MD_KPI.

Type: PL/SQL Program

This program creates and performs initial load of data for table MD_KPI.

	Source Table	Target Table
	MD_RPD_RPT_DASH	MD_KPI

Program: PL/SQL program to create and initial load data into MD_REF_ENTY_KPI.

Type: PL/SQL Program

This program creates and performs the initial load of data for table MD_REF_ENTY_KPI.

	Source Table	Target Table
	MD_RPD_RPT_DASHI	MD_REF_ENTY_KPI

