Security Guide
11g Release 2 (11.2)
E36292-05
March 2014
Oracle Database Security Guide 11g Release 2 (11.2)
E36292-05
Copyright © 2006, 2014, Oracle and/or its affiliates. All rights reserved.
Primary Author: Patricia Huey
Contributors: Tammy Bednar, Naveen Gopal, Don Gosselin, Sumit Jeloka, Peter Knaggs, Sergei Kucherov, Nina Lewis, Bryn Llewellyn, Rahil Mir, Narendra Manappa, Gopal Mulagund, Janaki Narasinghanallur, Paul Needham, Deb Owens, Robert Pang, Preetam Ramakrishna, Vipin Samar, Digvijay Sirmukaddam, Richard Smith, Sachin Sonawane, James Spiller, Ashwini Surpur, Srividya Tata, Kamal Tbeileh, Rodney Ward, Daniel Wong
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Welcome to Oracle Database Security Guide. This guide describes how you can configure security for Oracle Database by using the default database features.
This preface contains these topics:
Oracle Database Security Guide is intended for database administrators (DBAs), security administrators, application developers, and others tasked with performing the following operations securely and efficiently:
To use this document, you need a basic understanding of how and why a database is used, and basic familiarity with SQL.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more security-related information, see these Oracle resources:
Many of the examples in this guide use the sample schemas of the seed database, which you can create when you install Oracle Database. See Oracle Database Sample Schemas for information about how these schemas were created and how you can use them yourself.
Oracle Technology Network (OTN)
You can download free release notes, installation documentation, updated versions of this guide, white papers, or other collateral from the Oracle Technology Network (OTN). Visit
http://www.oracle.com/technetwork/index.html
For security-specific information on OTN, visit
http://www.oracle.com/technetwork/topics/security/whatsnew/index.html
For the latest version of the Oracle documentation, including this guide, visit
http://www.oracle.com/technetwork/documentation/index.html
My Oracle Support
You can find information about security patches, certifications, and the support knowledge base by visiting My Oracle Support (formerly OracleMetaLink) at
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
The Oracle Database 11g Release 2 (11.2) security features and enhancements described in this section comprise the overall effort to provide superior access control, privacy, and accountability with this release of Oracle Database.	
The following sections describe new security features of Oracle Database 11g Release 2 (11.2) and provide pointers to additional information:	
This section contains:	
In this release, when you use fine-grained access control to configure external network services and wallets, you now can control access to the DBMS_LDAP	
PL/SQL package. In a default database installation, this package is created with the EXECUTE	
privilege granted to PUBLIC	
users. This release enhances the security of this package by enabling you to control access to applications in the database that use this package. As part of this enhancement, the DBMS_LDAP	
package is now an invoker's rights package. Before a user can connect to a remote network host, he or she must be granted the connect	
privilege in the access control list that was assigned to the remote network host.	
See Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_LDAP	
package.	
In previous releases of Oracle Database, when you created an Oracle Virtual Private Database policy on an application that included the MERGE INTO	
statement, the MERGE INTO	
statement would be prevented with an ORA-28132: Merge into syntax does not support security policies	
error, due to the presence of the Virtual Private Database policy. In this release, you can create policies on applications that include MERGE INTO	
operations. To do so, in the DBMS_RLS.ADD_POLICY	
statement_types	
parameter, include the INSERT	
, UPDATE	
, and DELETE	
statements, or just omit the statement_types	
parameter altogether.	
See "Enforcing Policies on Specific SQL Statement Types" for more information.	
Starting with this release, the standard audit records will by default be generated using the BY ACCESS	
clause functionality of the AUDIT	
statement. Both the BY ACCESS	
and BY SESSION	
clauses write an individual audit record for each audited event, but BY ACCESS	
captures more detail about the audited event.	
See "Benefits of Using the BY ACCESS Clause in the AUDIT Statement" for more information.	
Starting with this release, the UTL_SMTP	
PL/SQL package has the following new functionality:	
UTL_SMTP	
PL/SQL package for use on both Transport Layer Security (TLS) and Secure Sockets Layer (SSL) servers. UTL_SMTP	
now provides support for the PLAIN	
, LOGON	
and CRAM_MD5	
password authentication schemes. See Oracle Database PL/SQL Packages and Types Reference for more information about the UTL_SMTP	
package.	
The DBMS_SCHEDULER	
PL/SQL package the following two new global scheduler attributes, which are used to control encryption for connections to a mail server:	
email_server_credential	
, which enables you to specify the schema and name of an existing credential object on which user SYS	
has the EXECUTE	
object privilege email_server_encryption	
, which enables you to set one of three encryption settings for your mail server: ssl_tls	
, which uses SSL or TLS to encrypt the connection to the mail server form the beginning of the connection starttls	
, in which the connection to the mail server starts as unencrypted but switches to an encrypted connection none	
, in which no encryption is used to connect to the mail server See Oracle Database Administrator's Guide for more information about Scheduler preferences.	
In previous releases, when you revoked the UNLIMITED TABLESPACE	
system privilege from users, then the explicit quotas again took effect. Starting with this release, after you revoke the UNLIMITED TABLESPACE	
system privilege, you must explicitly grant quotas to individual tablespaces.	
See "Granting Users the UNLIMITED TABLESPACE System Privilege" for more information about the UNLIMITED TABLESPACE	
system privilege.	
This section contains:	
The previous release of Oracle Database introduced the ability to create fine-grained access control to external network services and wallets. In this release, the following enhancements are available:	
DBMS_NETWORK_ACL_ADMIN	
and DBMS_NETWORK_ACL_UTILTIY	
packages, and the PL/SQL network utility packages (such as UTL_TCP	
, UTL_SMTP	
, UTL_MAIL	
, UTL_HTTP	
, and UTL_INADDR	
), now support both IP Version 4 (IPv4) and IPv6 addresses. See "Managing Fine-Grained Access in PL/SQL Packages and Types" for more information.	
In this release, changes to global application context values are automatically accessible across all Oracle Real Application Clusters (Oracle RAC) instances.	
See "Using Global Application Contexts" for more information about creating a global application context.	
Starting with Oracle Database 11g Release 2 (11.2), SSL version 2 is no longer included in the default list of default supported protocols. If your applications must use SSL version 2, then you can do so by explicitly setting SSL version 2 while maintaining the connection.	
See Oracle Database Advanced Security Administrator's Guide for more information.	
This section contains:	
You now can grant users the EXECUTE	
privilege on directory objects that contain a user-supplied preprocessor program for use by the ORACLE_LOADER	
access driver. This prevents the user from accidentally or maliciously corrupting the preprocessor program. The SQL statements that are affected by the EXECUTE	
privilege are GRANT	
and REVOKE	
. The ORACLE_LOADER	
access parameters now include the PREPROCESSOR	
clause, which you can use to specify the name and location of a preprocessor program that modifies the contents of a data file so that the ORACLE_LOADER	
access driver can read it.	
For more information about using the ORACLE_LOADER	
access driver preprocessor, see the following:	
ORACLE_LOADER	
access driver EXECUTE	
privilege for a directory object GRANT	
and REVOKE	
SQL statements You now can audit the EXECUTE	
privilege on directory objects. This enables you to monitor users who run a preprocessor program (which is used by the ORACLE_LOADER	
access driver) that has been added to a directory object.	
See "Auditing Directory Objects" for more information.	
This section contains:	
In this release, the master encryption key for transparent tablespace encryption and transparent column encryption are now combined to one unified master encryption key. Combining these keys enables transparent re-key operations for both of these transparent data encryption features, regardless of whether the master encryption key is stored in the Oracle Wallet or in one of the certified Hardware Security Modules offered by RSA, SafeNet, Thales (including nCipher), and Utimaco.	
For more information about transparent data encryption, see Oracle Database Advanced Security Administrator's Guide.	
In this release, Oracle Advanced Security enables you to change the master key that protects the encryption keys used to encrypt Oracle Database tablespaces. Industry initiatives, such as the Payment Card Industry Data Security Standard (PCI DSS), mandate periodic rotation of encryption keys associated with credit card data.	
For more information about tablespace encryption, see Oracle Database Advanced Security Administrator's Guide.	
Starting with this release, the master encryption key is copied to the intelligent storage cells, where data encrypted with transparent tablespace encryption or transparent column encryption is now decrypted before the pre-filtering of the result set takes place. This feature improves performance in databases that use transparent data encryption.	
For more information about Oracle Exadata, see Oracle Database High Availability Overview.	
When you now open or close an Oracle wallet or re-key the master encryption key on one Oracle RAC instance, then the changes you make automatically are propagated to all other Oracle RAC instances.	
For more information, see Oracle Database Advanced Security Administrator's Guide.	
Oracle Database 11g Release 2 (11.2) introduces several enhancements to the audit trail cleanup process. In this release, you can:	
See "Step 4: Optionally, Set an Archive Timestamp for Audit Records" for more information.	
See the following sections:	
SYSTEM	
tablespace if it is too busy. See "Moving the Database Audit Trail to a Different Tablespace" for more information.	
See "Step 6: Optionally, Configure the Audit Trail Records to be Deleted in Batches" for more information.	
See the following sections:	
The DB_EXTENDED	
setting in the AUDIT_TRAIL	
initialization parameter has been deprecated. Instead, use the DB, EXTENDED	
setting in its place.	
See "Configuring Standard Auditing with the AUDIT_TRAIL Initialization Parameter" for more information.	
The WKUSER	
role and the WKSYS	
, WKTEST	
, WKPROXY	
schemas have been deprecated. For more information about Oracle Ultra Search, see Oracle Ultra Search Administrator's Guide.	
In the previous release of Oracle Database, you could use Database Configuration Assistant (DBCA) to add password security and audit options to a new database. This option is not available in this release. In this release, DBCA automatically adds audit options and password policies to new databases.	
See the following sections for more information:	
The AUTHENTICATED USING PASSWORD	
clause of the ALTER USER	
statement has been deprecated for this release. If you use this clause, Oracle Database converts it to the AUTHENTICATION REQUIRED	
clause. If you do not specify the AUTHENTICATION REQUIRED	
clause, then Oracle Database uses either the AUTHENTICATED USING CERTIFICATE	
clause or the AUTHENTICATED USING DISTINGUISHED NAME	
clause.	
See Oracle Database SQL Language Reference for more information about the ALTER USER	
statement options.	
This section contains:	
When you create a new database, you can use Database Configuration Assistant (DBCA) to automatically create a more secure configuration than in previous releases of Oracle Database. You can enable the following secure configuration settings in one operation:	
To configure your database for greater security, follow the guidelines in Chapter 10, "Keeping Your Oracle Database Secure."	
Oracle Database now includes the following new password protections:	
"Enforcing Password Complexity Verification" describes built-in password verification.	
You can now use the Secure Sockets Layer (SSL) and Kerberos strong authentication methods to authenticate users who have the SYSDBA	
and SYSOPER	
privileges.	
See "Strong Authentication and Centralized Management for Database Administrators" for more information.	
The SYSASM	
system privilege has been added to Oracle Database 11g Release 2 (11.2), to be used exclusively to administer Automatic Storage Management (ASM). Use the SYSASM	
privilege instead of the SYSDBA	
privilege to connect to and administer ASM instances.	
See Oracle Automatic Storage Management Administrator's Guide for more information about the SYSASM	
privilege.	
This section describes the following enhancements in encryption:	
Oracle Database supports a new, faster, and scalable Large Object (LOB) storage paradigm called SecureFiles. SecureFiles, in addition to performance, supports efficient compression, deduplication (that is, coalescing duplicate data), and encryption. LOB data can now be encrypted with Oracle Database, and is available for random reads and writes.	
For more information about SecureFiles, see Oracle Database SecureFiles and Large Objects Developer's Guide. See also Oracle Database SQL Language Reference for updates in the CREATE TABLE	
and ALTER TABLE	
statements to support this feature.	
In this release, you can use Oracle Data Pump to compress and encrypt an entire dump file set. You can optionally compress and encrypt the data, metadata, or complete dump file set during an Oracle Data Pump export.	
For more information, see Oracle Database Utilities.	
Transparent data encryption (TDE) stores the master key in an encrypted software wallet and uses this key to encrypt the column keys, which in turn encrypt column data. While this approach to key management is sufficient for many applications, it may not be sufficient for environments that require stronger security. TDE has been extended to use hardware security modules (HSMs). This enhancement provides high assurance requirements of protecting the master key.	
This release enables you to store the TDE master encryption key within a hardware security module (HSM) at all times, leveraging its key management capabilities. Only the table keys (for TDE column encryption) and tablespace keys (for TDE tablespace encryption) are decrypted on the HSM, before they are returned to the database; the encryption and decryption of application data remains with the database. Oracle recommends that you encrypt the traffic between HSM device and databases. This new feature provides additional security for transparent data encryption, because the master encryption key cannot leave the HSM, neither in clear text nor in encrypted format. Furthermore, it enables the sharing of the same key between multiple databases and instances in an Oracle Real Applications Clusters (Oracle RAC) or Data Guard environment.	
To configure transparent data encryption with hardware security module integration, see Oracle Database Advanced Security Administrator's Guide.	
Transparent tablespace encryption enables you to encrypt entire application tablespaces, encrypting all the data within these tablespaces. When a properly authorized application accesses the tablespace, Oracle Database transparently decrypts the relevant data blocks for the application.	
Transparent tablespace encryption provides an alternative to TDE column encryption: It eliminates the need for granular analysis of applications to determine which columns to encrypt, especially for applications with a large number of columns containing personally identifiable information (PII), such as Social Security numbers or patient health care records. If your tables have small amounts of data to encrypt, then you can continue to use the TDE column encryption solution.	
For an introduction to transparent encryption, see Oracle Database 2 Day + Security Guide. For detailed information about transparent tablespace encryption, see Oracle Database Advanced Security Administrator's Guide.	
Oracle Database provides a set of PL/SQL utility packages, such as UTL_TCP	
, UTL_SMTP	
, UTL_MAIL	
, UTL_HTTP	
, and UTL_INADDR	
, that are designed to enable database users to access network services on the database. Oracle Database PL/SQL Packages and Types Reference describes the PL/SQL utility packages in detail.	
In a default database installation, these packages are created with EXECUTE	
privileges granted to PUBLIC	
users. This release enhances the security of these packages by providing database administrators the ability to control access to applications in the database that use these packages.	
See "Managing Fine-Grained Access in PL/SQL Packages and Types" for more information.	
The BY SESSION	
clause of the AUDIT	
statement now writes one audit record for every audited event. In previous releases, BY SESSION	
wrote one audit record for all SQL statements or operations of the same type that were executed on the same schema objects in the same user session. Now, both BY SESSION	
and BY ACCESS	
write one audit record for each audit operation. In addition, there are separate audit records for LOGON	
and LOGOFF	
events. If you omit the BY ACCESS	
clause, then BY SESSION	
is used as the default.	
The audit record that BY SESSION	
generates is different from the BY ACCESS	
audit record. Oracle recommends that you include the BY ACCESS	
clause for all AUDIT	
statements, which results in a more detailed audit record. In the case of LOGOFF	
events, the timestamp for the audit record has a greater precision than in previous releases.	
Be aware that this change applies to schema object audit options, statement options, and system privileges that audit SQL statements other than data definition language (DDL) statements. Oracle Database has always audited using the BY ACCESS	
clause on all SQL statements and system privileges that audit a DDL statement.	
See the following sections for more information:	
This section contains:	
Security objects are now stored in the Oracle XML DB repository as XMLType objects. These security objects can contain strings that need to be translated to different languages so that they can be searched or displayed in those languages. Developers can store translated strings with the XMLType and retrieve and operate on these strings depending on the language settings of the user. The advantage of this feature is that it reduces the costs associated with developing applications that are independent of the target preferred language of the user.	
To configure security for XMLType objects, see Oracle XML DB Developer's Guide.	
You can now use the Oracle XML DB HTTP server for service-oriented architecture (SOA) operations. This allows the database to be treated as simply another service provider in an SOA environment. Security administrators can control user access to Oracle Database Web services and their associated database objects by using the XDB_WEBSERVICES	
, XDB_WEBSERVICES_OVER_HTTP	
, and XDB_WEBSERVICES_WITH_PUBLIC	
predefined roles.	
To configure Oracle Database Web services, see Oracle XML DB Developer's Guide.For information on this feature's predefined roles, see Table 4-3, "Oracle Database Predefined Roles".	
In this release, administrators can now disallow anonymous access to database service information in a directory and require clients to authenticate when performing LDAP directory-based name look-ups. If you are using Microsoft Active Directory-based name lookups, then Oracle Database uses the native operating system-based authentication. If you are using Oracle Internet Directory (OID)-based name lookups, then Oracle Database performs authentication by using wallets.	
To configure directory security, see Oracle Database Net Services Reference.	
The following security enhancements are available for Oracle Call Interface (OCI):	
Database administrators can manage these security enhancements for Oracle Call Interface developers by configuring a set of new initialization parameters. See Parameters for Enhanced Security of Database Communication for more information. See also Oracle Call Interface Programmer's Guide for detailed information on Oracle Call Interface.	
This chapter contains:	
You can use the default Oracle Database features to configure security in the following areas for your Oracle Database installation:	
WHERE	
predicate into SQL statements the user issues. Chapter 7, "Using Oracle Virtual Private Database to Control Data Access," describes how to create and manage Virtual Private Database policies. DBMS_CRYPTO	
and PL/SQL package to encrypt data. In addition, Chapter 10, "Keeping Your Oracle Database Secure," provides guidelines that you should follow when you secure your Oracle Database installation.	
In addition to the security resources described in this guide, Oracle Database provides the following database security products:	
In addition to these products, you can find the latest information about Oracle Database security, such as new products and important information about security patches and alerts, by visiting the Security Technology Center on Oracle Technology Network at	
http://www.oracle.com/technetwork/topics/security/whatsnew/index.html	
This chapter contains:	
Each Oracle database has a list of valid database users. To access a database, a user must run a database application, and connect to the database instance using a valid user name defined in the database. Oracle Database enables you to set up security for your users in a variety of ways. When you create user accounts, you can specify limits to the user account. You can also set limits on the amount of various system resources available to each user as part of the security domain of that user. Oracle Database provides a set of database views that you can query to find information such as resource and session information. This chapter also describes profiles. A profile is collection of attributes that apply to a user. It enables a single point of reference for any of multiple users that share those exact attributes.	
Another way to manage user security is to assign users privileges and roles. Chapter 4, "Configuring Privilege and Role Authorization," provides detailed information.	
This section contains:	
For guidelines about creating and managing user accounts and passwords, see the following sections:	
You create a database user with the CREATE USER	
statement. To create a user, you must have the CREATE USER	
system privilege. Because it is a powerful privilege, a database administrator or security administrator is usually the only user who has the CREATE USER	
system privilege.	
Example 2-1 creates a user and specifies the user password, default tablespace, temporary tablespace where temporary segments are created, tablespace quotas, and profile. It also grants the user the minimum privilege, CREATE SESSION	
, to log in to the database session.	
Example 2-1 Creating a User Account with the CREATE SESSION Privilege	
Replace password	
with a password that is secure. See "Minimum Requirements for Passwords" for more information.	
A newly created user cannot connect to the database until you grant the user the CREATE SESSION	
system privileges. So, immediately after you create the user account, use the GRANT	
SQL statement to grant the user these privileges. If the user must access Oracle Enterprise Manager, you should also grant the user the SELECT ANY DICTIONARY	
privilege.	
Note: As a security administrator, you should create your own roles and assign only those privileges that are needed. For example, many users formerly granted theCONNECT privilege did not need the additional privileges CONNECT used to provide. Instead, only CREATE SESSION was actually needed, and in fact, that is the only privilege CONNECT presently retains. Creating organization-specific roles gives an organization detailed control of the privileges it assigns, and protects it in case Oracle Database changes the roles that it defines in future releases. Chapter 4, "Configuring Privilege and Role Authorization," discusses how to create and manage roles.	
Within each database, a user name must be unique with respect to other user names and roles. A user and role cannot have the same name. Furthermore, each user has an associated schema. Within a schema, each schema object must have a unique name. In the following, the text in bold shows how to create the user name.	
User jward	
is stored in the database in upper-case letters. For example:	
However, if you enclose the user name in double quotation marks, then the name is stored using the case sensitivity that you used for the name. For example:	
So, when you query the ALL_USERS	
data dictionary view, you will find that the user account is stored using the case that you used to create it.	
User JWARD	
and user jward	
are both stored in the database as separate user accounts. Later on, if you must modify or drop the user that you had created using double quotation marks, then you must enclose the user name in double quotation marks.	
For example:	
In Example 2-1, the new user is to be authenticated using the database. In this case, the connecting user must supply the correct password to the database to connect successfully. To specify a password for the user, use the IDENTIFIED BY	
clause in the CREATE USER	
statement.	
See Also:	
Each user should have a default tablespace. When a schema object is created in the user's schema and the DDL statement does not specify a tablespace to contain the object, Oracle Database stores the object in the default user's tablespace.	
The default setting for the default tablespaces of all users is the SYSTEM	
tablespace. If a user does not create objects, and has no privileges to do so, then this default setting is fine. However, if a user is likely to create any type of object, then you should specifically assign the user a default tablespace, such as the USERS	
tablespace. Using a tablespace other than SYSTEM	
reduces contention between data dictionary objects and user objects for the same data files. In general, do not store user data in the SYSTEM	
tablespace.	
You can use the CREATE TABLESPACE	
SQL statement to create a permanent default tablespace other than SYSTEM	
at the time of database creation, to be used as the database default for permanent objects. By separating the user data from the system data, you reduce the likelihood of problems with the SYSTEM	
tablespace, which can in some circumstances cause the entire database to become nonfunctional. This default permanent tablespace is not used by system users, that is, SYS	
, SYSTEM	
, and OUTLN	
, whose default permanent tablespace is SYSTEM	
. A tablespace designated as the default permanent tablespace cannot be dropped. To accomplish this goal, you must first designate another tablespace as the default permanent tablespace. You can use the ALTER TABLESPACE	
SQL statement to alter the default permanent tablespace to another tablespace. Be aware that this will affect all users or objects created after the ALTER	
DDL statement commits.	
You can also set a user default tablespace during user creation, and change it later with the ALTER USER	
statement. Changing the user default tablespace affects only objects created after the setting is changed.	
When you specify the default tablespace for a user, also specify a quota on that tablespace.	
In the following CREATE USER	
statement, the default tablespace for user jward	
is data_ts	
, and his quota on that tablespace is 500K	
:	
You can assign each user a tablespace quota for any tablespace (except a temporary tablespace). Assigning a quota accomplishes the following:	
By default, a user has no quota on any tablespace in the database. If the user has the privilege to create a schema object, then you must assign a quota to allow the user to create objects. At a minimum, assign users a quota for the default tablespace, and additional quotas for other tablespaces in which they can create objects.	
The following CREATE USER	
statement assigns the following quotas for the test_ts	
and data_ts	
tablespaces:	
You can assign a user either individual quotas for a specific amount of disk space in each tablespace or an unlimited amount of disk space in all tablespaces. Specific quotas prevent a user's objects from using too much space in the database.	
You can assign quotas to a user tablespace when you create the user, or add or change quotas later. (You can find existing user quotas by querying the USER_TS_QUOTAS	
view.) If a new quota is less than the old one, then the following conditions remain true:	
You can restrict the quota limits for user objects in a tablespace by using the ALTER USER	
SQL statement to change the current quota of the user to zero. After a quota of zero is assigned, the objects of the user in the tablespace remain, and the user can still create new objects, but the existing objects will not be allocated any new space. For example, you could not insert data into one of this user's existing tables. The operation will fail with an ORA-1536 space quota exceeded for tables	
error.	
To permit a user to use an unlimited amount of any tablespace in the database, grant the user the UNLIMITED TABLESPACE	
system privilege. This overrides all explicit tablespace quotas for the user. If you later revoke the privilege, then you must explicitly grant quotas to individual tablespaces. You can grant this privilege only to users, not to roles.	
Before granting the UNLIMITED TABLESPACE	
system privilege, you must consider the consequences of doing so.	
Advantage:	
You can grant a user unlimited access to all tablespaces of a database with one statement.	
Disadvantages:	
You should assign each user a temporary tablespace. When a user executes a SQL statement that requires a temporary segment, Oracle Database stores the segment in the temporary tablespace of the user. These temporary segments are created by the system when performing sort or join operations. Temporary segments are owned by SYS	
, which has resource privileges in all tablespaces.	
In the following, the temporary tablespace of jward	
is temp_ts	
, a tablespace created explicitly to contain only temporary segments.	
To create a temporary tablespace, use the CREATE TEMPORARY TABLESPACE	
SQL statement.	
If you do not explicitly assign the user a temporary tablespace, then Oracle Database assigns the user the default temporary tablespace that was specified at database creation, or by an ALTER DATABASE	
statement at a later time. If there is no default temporary tablespace explicitly assigned, then the default is the SYSTEM	
tablespace or another permanent default established by the system administrator. Do not store user data in the SYSTEM	
tablespace. Assigning a tablespace to be used specifically as a temporary tablespace eliminates file contention among temporary segments and other types of segments.	
Note: If yourSYSTEM tablespace is locally managed, then users must be assigned a specific default (locally managed) temporary tablespace. They may not be allowed to default to using the SYSTEM tablespace because temporary objects cannot be placed in locally managed permanent tablespaces.	
You can set the temporary tablespace for a user at user creation, and change it later using the ALTER USER	
statement. You can also establish tablespace groups instead of assigning individual temporary tablespaces.	
See Also:	
You can specify a profile when you create a user. A profile is a set of limits on database resources and password access to the database. If you do not specify a profile, then Oracle Database assigns the user a default profile.	
The following example demonstrates how to assign a user a profile.	
A role is a named group of related privileges that you grant as a group to users or other roles. A default role is automatically enabled for a user when the user creates a session. You can assign a user zero or more default roles.	
You cannot set default roles for a user in the CREATE USER	
statement. When you first create a user, the default role setting for the user is ALL	
, which causes all roles subsequently granted to the user to be default roles. Use the ALTER USER	
statement to change the default roles for the user. For example:	
Before a role can be made the default role for a user, that user must have been already granted the role.	
This section contains:	
Users can change their own passwords. However, to change any other option of a user security domain, you must have the ALTER USER	
system privilege. Security administrators are typically the only users that have this system privilege, as it allows a modification of any user security domain. This privilege includes the ability to set tablespace quotas for a user on any tablespace in the database, even if the user performing the modification does not have a quota for a specified tablespace.	
You can alter user security settings with the ALTER USER	
SQL statement. Changing user security settings affects the future user sessions, not current sessions.	
Example 2-2 shows how to use the ALTER USER	
statement to alter the security settings for the user avyrros	
:	
Example 2-2 Altering a User Account	
The ALTER USER	
statement here changes the security settings for the user avyrros	
as follows:	
avyrros	
. AVYRROS	
. avyrros	
is given a 100M quota for the DATA_TS	
tablespace. test_ts	
is revoked for the user avyrros	
. avyrros	
is assigned the clerk	
profile. Most users can change their own passwords with the PASSWORD	
statement, as follows:	
No special privileges (other than those to connect to the database and create a session) are required for a user to change his or her own password. Encourage users to change their passwords frequently. "Guidelines for Securing Passwords" provides advice on the best ways to secure passwords. You can find existing users for the current database instance by querying the ALL_USERS	
view.	
Users can also use the ALTER USER	
SQL statement change their passwords. For example:	
However, for better security, use the PASSWORD	
statement to change the account's password. The ALTER USER	
statement displays the new password on the screen, where it can be seen by any overly curious coworkers. The PASSWORD	
command does not display the new password, so it is only known to you, not to your co-workers. In both cases, the password is encrypted on the network.	
Users must have the PASSWORD	
and ALTER USER	
privilege to switch between methods of authentication. Usually, only an administrator has this privilege.	
See Also:	
If you must change the SYS	
user password, then you should use the ORAPWD	
command line utility to create a new password file that contains the password that you want to use. Do not use the ALTER USER	
statement or the PASSWORD	
command to change the SYS	
user password. Note the following:	
SYS	
user account is used by most of the internal recursive SQL. Therefore, if you try to use the ALTER USER	
statement to change this password while the database is open, then there is a chance that deadlocks will result. ALTER USER	
to change the SYS	
user password, and if the instance initialization parameter REMOTE_LOGIN_PASSWORDFILE	
has been set to SHARED	
, then you cannot change the SYS	
password. The ALTER USER	
statement fails with an ORA-28046: Password change for SYS disallowed	
error. Example 2-3 shows how to use ORAPWD	
to create a password file that has a new SYS	
password. In this example, the new password will be stored in a password file that will be called orapworcl	
. (If the password file already exists, then an OPW-00005: File with same name exists - please delete or rename	
error warns you so that you can choose another name. If you want to overwrite the existing password file, then append the force=y	
argument to the ORAPWD	
command.)	
Example 2-3 Using ORAPWD to Change the SYS User Password	
See Also: Oracle Database Administrator's Guide for detailed information about theorapwd command syntax and arguments	
This section contains:	
You can set limits on the amount of various system resources available to each user as part of the security domain of that user. By doing so, you can prevent the uncontrolled consumption of valuable system resources such as CPU time. To set resource limits, you use Database Resource Manager, which is described in Oracle Database Administrator's Guide.	
This resource limit feature is very useful in large, multiuser systems, where system resources are very expensive. Excessive consumption of these resources by one or more users can detrimentally affect the other users of the database. In single-user or small-scale multiuser database systems, the system resource feature is not as important, because user consumption of system resources is less likely to have a detrimental impact.	
You manage user resource limits by using Database Resource Manager. You can set password management preferences using profiles, either set individually or using a default profile for many users. Each Oracle database can have an unlimited number of profiles. Oracle Database allows the security administrator to enable or disable the enforcement of profile resource limits universally.	
Setting resource limits causes a slight performance degradation when users create sessions, because Oracle Database loads all resource limit data for each user upon each connection to the database.	
Oracle Database can limit the use of several types of system resources, including CPU time and logical reads. In general, you can control each of these resources at the session level, call level, or both, as discussed in the following sections:	
Each time a user connects to a database, a session is created. Each session uses CPU time and memory on the computer that runs Oracle Database. You can set several resource limits at the session level.	
If a user exceeds a session-level resource limit, then Oracle Database terminates (rolls back) the current statement and returns a message indicating that the session limit has been reached. At this point, all previous statements in the current transaction are intact, and the only operations the user can perform are COMMIT	
, ROLLBACK	
, or disconnect (in this case, the current transaction is committed). All other operations produce an error. Even after the transaction is committed or rolled back, the user cannot accomplish any more work during the current session.	
Each time a user runs a SQL statement, Oracle Database performs several steps to process the statement. During this processing, several calls are made to the database as a part of the different execution phases. To prevent any one call from using the system excessively, Oracle Database lets you set several resource limits at the call level.	
If a user exceeds a call-level resource limit, then Oracle Database halts the processing of the statement, rolls back the statement, and returns an error. However, all previous statements of the current transaction remain intact, and the user session remains connected.	
When SQL statements and other types of calls are made to Oracle Database, a certain amount of CPU time is necessary to process the call. Average calls require a small amount of CPU time. However, a SQL statement involving a large amount of data or a runaway query can potentially use a large amount of CPU time, reducing CPU time available for other processing.	
To prevent uncontrolled use of CPU time, you can set fixed or dynamic limits on the CPU time for each call and the total amount of CPU time used for Oracle Database calls during a session. The limits are set and measured in CPU one-hundredth seconds (0.01 seconds) used by a call or a session.	
Input/output (I/O) is one of the most expensive operations in a database system. SQL statements that are I/O-intensive can monopolize memory and disk use and cause other database operations to compete for these resources.	
To prevent single sources of excessive I/O, you can limit the logical data block reads for each call and for each session. Logical data block reads include data block reads from both memory and disk. The limits are set and measured in number of block reads performed by a call or during a session.	
Oracle Database provides for limiting several other resources at the session level:	
Note: Oracle Database does not constantly monitor the elapsed idle time or elapsed connection time. Doing so reduces system performance. Instead, it checks every few minutes. Therefore, a session can exceed this limit slightly (for example, by 5 minutes) before Oracle Database enforces the limit and terminates the session.	
See Also: For instructions about enabling or disabling resource limits:	
Before creating profiles and setting the resource limits associated with them, you should determine appropriate values for each resource limit. You can base these values on the type of operations a typical user performs. For example, if one class of user does not usually perform a high number of logical data block reads, then use the ALTER RESOURCE COST	
SQL statement to set the LOGICAL_READS_PER_SESSION	
setting conservatively.	
Usually, the best way to determine the appropriate resource limit values for a given user profile is to gather historical information about each type of resource usage. For example, the database or security administrator can use the AUDIT	
SESSION	
clause to gather information about the limits CONNECT_TIME	
, LOGICAL_READS_PER_SESSION	
.	
You can gather statistics for other limits using the Monitor feature of Oracle Enterprise Manager (or SQL*Plus), specifically the Statistics monitor.	
See Also:	
A profile is a named set of resource limits and password parameters that restrict database usage and instance resources for a user. You can assign a profile to each user, and a default profile to all others. Each user can have only one profile, and creating a new one supersedes an earlier version.	
You need to create and manage user profiles only if resource limits are a requirement of your database security policy. To use profiles, first categorize the related types of users in a database. Just as roles are used to manage the privileges of related users, profiles are used to manage the resource limits of related users. Determine how many profiles are needed to encompass all types of users in a database and then determine appropriate resource limits for each profile.	
In general, the word profile refers to a collection of attributes that apply to a user, enabling a single point of reference for any of multiple users that share those exact attributes. User profiles in Oracle Internet Directory contain attributes pertinent to directory usage and authentication for each user. Similarly, profiles in Oracle Label Security contain attributes useful in label security user administration and operations management. Profile attributes can include restrictions on system resources. You can use Database Resource Manager to set these types of resource limits.	
Profile resource limits are enforced only when you enable resource limitation for the associated database. Enabling this limitation can occur either before starting up the database (using the RESOURCE_LIMIT	
initialization parameter) or while it is open (using the ALTER SYSTEM	
statement).	
Though password parameters reside in profiles, they are unaffected by RESOURCE_LIMIT	
or ALTER SYSTEM	
and password management is always enabled. In Oracle Database, Database Resource Manager primarily handles resource allocations and restrictions.	
See Also:	
Any authorized database user can create, assign to users, alter, and drop a profile at any time (using the CREATE USER	
or ALTER USER	
statement). Profiles can be assigned only to users and not to roles or other profiles. Profile assignments do not affect current sessions, instead, they take effect only in subsequent sessions. To find information about current profiles, query the DBA_PROFILES	
view.	
See Also:	
To drop a profile, you must have the DROP PROFILE	
system privilege. You can drop a profile (other than the default profile) using the SQL statement DROP PROFILE	
.To successfully drop a profile currently assigned to a user, use the CASCADE	
option.	
The following statement drops the profile clerk	
, even though it is assigned to a user:	
Any user currently assigned to a profile that is dropped is automatically assigned to the DEFAULT	
profile. The DEFAULT	
profile cannot be dropped. When a profile is dropped, the drop does not affect currently active sessions. Only sessions created after a profile is dropped use the modified pro file assignments.	
When you drop a user account, Oracle Database removes the user account and associated schema from the data dictionary. It also immediately drops all schema objects contained in the user schema, if any.	
Notes:	
A user that is currently connected to a database cannot be dropped. To drop a connected user, you must first terminate the user sessions using the SQL statement ALTER SYSTEM	
with the KILL SESSION	
clause. You can find the session ID (SID) by querying the V$SESSION	
view.	
Example 2-4 shows how to query V$SESSION	
and displays the session ID, serial number, and user name for user ANDY	
.	
Example 2-4 Querying V$SESSION for the Session ID of a User	
Example 2-5 shows how to stop the session for user andy	
.	
You can drop a user from a database using the DROP USER	
statement. To drop a user and all the user schema objects (if any), you must have the DROP USER	
system privilege. Because the DROP USER	
system privilege is powerful, a security administrator is typically the only type of user that has this privilege.	
If the schema of the user contains any dependent schema objects, then use the CASCADE	
option to drop the user and all associated objects and foreign keys that depend on the tables of the user successfully. If you do not specify CASCADE	
and the user schema contains dependent objects, then an error message is returned and the user is not dropped.	
Before dropping a user whose schema contains objects, thoroughly investigate which objects the schema contains and the implications of dropping them. You can find the objects owned by a particular user by querying the DBA_OBJECTS	
view.	
Example 2-6 shows how to find the objects owned by user andy	
.	
Example 2-6 Finding Objects Owned by a User	
(Enter the user name in capital letters.) Pay attention to any unknown cascading effects. For example, if you intend to drop a user who owns a table, then check whether any views or procedures depend on that particular table.	
Example 2-7 drops the user andy	
and all associated objects and foreign keys that depend on the tables owned by andy	
.	
Table 2-1 lists data dictionary views that contain information about database users and profiles. For detailed information about these views, see Oracle Database Reference.	
Table 2-1 Data Dictionary Views That Display Information about Users and Profiles	
View	Description
---	---
Describes all objects accessible to the current user	
Lists users visible to the current user, but does not describe them	
Displays all profiles and their limits	
Describes tablespace quotas for users	
Describes all objects in the database	
Describes all users of the database	
Lists all user accounts that have default passwords	
Describes users who can assume the identity of other users	
Lists the cost for each resource in terms of CPUs for each session, reads for each session, connection times, and SGA	
Describes the password profile parameters that are assigned to the user	
Displays the resource limits for the current user	
Describes tablespace quotas for users	
Describes all objects owned by the current user	
Describes only the current user	
Lists session information for each current session, includes user name	
Lists user session statistics	
Displays decoded statistic names for the statistics shown in the	
The following sections present examples of using these views. These examples assume that the following statements have been run:	
To find all users and their associated information as defined in the database, query the DBA_USERS	
view. For detailed information on the DBA_USERS	
view, see Oracle Database Reference.	
For example:	
Use the DBA_TS_QUOTAS	
view to list all tablespace quotas specifically assigned to each user. (For detailed information on this view, see Oracle Database Reference.) For example:	
When specific quotas are assigned, the exact number is indicated in the MAX_BYTES	
column. This number is always a multiple of the database block size, so if you specify a tablespace quota that is not a multiple of the database block size, then it is rounded up accordingly. Unlimited quotas are indicated by -1	
.	
The DBA_PROFILE	
view lists all profiles in the database and associated settings for each limit in each profile. (For detailed information on this view, see Oracle Database Reference.) For example:	
To find the default profile values, run the following query:	
To find the memory use for each user session, query the V$SESSION	
view. (For detailed information on this view, see Oracle Database Reference. The following query lists all current sessions, showing the Oracle Database user and current User Global Area (UGA) memory use for each session:	
To see the maximum UGA memory allocated to each session since the instance started, replace 'session uga memory'	
in the preceding query with 'session uga memory max'.	
This chapter contains:	
Authentication means verifying the identity of someone (a user, device, or other entity) who wants to use data, resources, or applications. Validating that identity establishes a trust relationship for further interactions. Authentication also enables accountability by making it possible to link access and actions to specific identities. After authentication, authorization processes can allow or limit the levels of access and action permitted to that entity.	
You can authenticate both database and nondatabase users for an Oracle database. For simplicity, the same authentication method is generally used for all database users, but Oracle Database allows a single database instance to use any or all methods. Oracle Database requires special authentication procedures for database administrators, because they perform special database operations. Oracle Database also encrypts passwords during transmission to ensure the security of network authentication.	
After authentication, authorization processes can allow or limit the levels of access and action permitted to that entity. Authorization is described in Chapter 4, "Configuring Privilege and Role Authorization."	
This section contains:	
See also "Guidelines for Securing Passwords" for advice on securing passwords. If you want to configure Oracle XML DB to authenticate users by encrypting their passwords but you do not need to encrypt other data (for example, an Intranet email), see Oracle XML DB Developer's Guide for more information.	
Oracle Database provides a set of built-in password protections designed to protect your users' passwords. These password protections are as follows:	
This feature significantly decreases the number of passwords that an intruder would be able to try within a fixed time period when attempting to log in. The failed logon delay slows down each failed logon attempt, increasing the overall time that is required to perform a password-guessing attack, because such attacks usually require a very large number of failed logon attempts.	
hPP5620qr	
fails if it is entered as hpp5620QR	
or hPp5620Qr	
. In previous releases, passwords were not case sensitive. See "Enabling or Disabling Password Case Sensitivity" for information about how case sensitivity works, and how it affects password files and database links. Passwords must not exceed 30 characters or 30 bytes. For greater security, however, follow the additional guidelines described in "Guidelines for Securing Passwords".	
To create passwords for users, you can use the CREATE USER	
or ALTER USER	
SQL statements. SQL statements that accept the IDENTIFIED BY	
clause also enable you to create passwords. Example 3-1 shows several SQL statements that create passwords with the IDENTIFIED BY	
clause.	
Example 3-1 Password Creation SQL Statements	
See Also:	
This section contains:	
See Also:	
Database security systems that depend on passwords require that passwords be kept secret at all times. Because passwords are vulnerable to theft and misuse, Oracle Database uses a password management policy. Database administrators and security officers control this policy through user profiles, enabling greater control of database security.	
Use the CREATE PROFILE	
statement to create a user profile. The profile is assigned to a user with the CREATE USER	
or ALTER USER	
statement. Details of creating and altering database users are not discussed in this section. This section describes password parameters that can be specified using the CREATE PROFILE	
(or ALTER PROFILE	
) statement.	
When you create a database in Oracle Database 11g Release 2 (11.2), most of its default accounts are locked with the passwords expired. If you have upgraded from an earlier release of Oracle Database, you may have user accounts that have default passwords. These are default accounts that are created when you create a database, such as the HR	
, OE	
, and SCOTT	
accounts.	
For greater security, change the passwords for these accounts. Using a default password that is commonly known can make your database vulnerable to attacks by intruders. To find both locked and unlocked accounts that use default passwords, log onto SQL*Plus using the SYSDBA	
privilege and then query the DBA_USERS_WITH_DEFPWD	
data dictionary view.	
For example, to find both the names of accounts that have default passwords and the status of the account:	
Then change the passwords for any accounts that the DBA_USERS_WITH_DEFPWD	
view lists. Oracle recommends that you do not assign these accounts passwords that they may have had in previous releases of Oracle Database.	
Replace password	
with a password that is secure. "Minimum Requirements for Passwords" describes the minimum requirements for passwords.	
A profile is a collection of parameters that sets limits on database resources. If you assign the profile to a user, then that user cannot exceed these limits. You can use profiles to configure database settings such as sessions per user, logging and tracing features, and so on. Profiles can also control user passwords. To find information about the current password settings in the profile, you can query the DBA_PROFILES	
data dictionary view.	
Table 3-1 lists the password-specific parameter settings in the default profile.	
Table 3-1 Password-Specific Settings in the Default Profile	
Parameter	Default Setting
---	---
Sets the maximum times a user try to log in and to fail before locking the account. Notes:	
Sets the number of days that a user has to change his or her password before it expires. See "Controlling Password Aging and Expiration" for more information.	
Sets the number of days the user can use his or her current password. See "Controlling Password Aging and Expiration" for more information.	
Sets the number of days an account will be locked after the specified number of consecutive failed login attempts. After the time passes, then the account becomes unlocked. This user's profile parameter is useful to help prevent brute force attacks on user passwords but not to increase the maintenance burden on administrators. See "Automatically Locking a User Account After a Failed Login" for more information.	
Sets the number of password changes required before the current password can be reused. See "Controlling User Ability to Reuse Previous Passwords" for more information.	
Sets the number of days before which a password cannot be reused. See "Controlling User Ability to Reuse Previous Passwords" for more information.	
For greater security, use the default settings described in Table 3-1, based on your needs. You can create or modify the password-specific parameters individually by using the CREATE PROFILE	
or ALTER PROFILE	
statement. For example:	
See Oracle Database SQL Language Reference for more information about CREATE PROFILE	
, ALTER PROFILE	
, and the password-related parameters described in this section.	
If your applications use the default password security settings from Oracle Database 10g Release 2 (10.2), then you can revert to these settings until you modify the applications to use the Release 11g password security settings. To do so, run the undopwd.sql	
script.	
After you have modified your applications to conform to the Release 11g password security settings, you can manually update your database to use the password security configuration that suits your business needs, or you can run the secconf.sql	
script to apply the Release 11g default password settings. You can customize this script to have different security settings if you like, but remember that the settings listed in the original script are Oracle-recommended settings.	
If you created your database manually, then you should run the secconf.sql	
script to apply the Release 11g default password settings to the database. Databases that have been created with Database Configuration Assistant (DBCA) will have these settings, but manually created databases do not.	
The undopwd.sql	
and secconf.sql	
scripts are in the $ORACLE_HOME/rdbms/admin	
directory. The undopwd.sql	
script affects password settings only, and the secconf.sql	
script affects both password and audit settings. They have no effect on other security settings.	
Oracle Database can lock a user's account after a specified number of consecutive failed log-in attempts. You can set the PASSWORD_LOCK_TIME	
user's profile parameter to configure the account to unlock automatically after a specified time interval or to require database administrator intervention to be unlocked. The database administrator also can lock accounts manually, so that they must be unlocked explicitly by the database administrator.	
You can specify the permissible number of failed login attempts by using the CREATE PROFILE	
statement. You can also specify the amount of time accounts remain locked.	
Example 3-2 sets the maximum number of failed login attempts for the user johndoe	
to 10 (the default), and the amount of time the account locked to 30 days. The account will unlock automatically after 30 days.	
Example 3-2 Locking an Account with the CREATE PROFILE Statement	
Each time the user unsuccessfully logs in, Oracle Database increases the delay exponentially with each login failure.	
If you do not specify a time interval for unlocking the account, then PASSWORD_LOCK_TIME	
assumes the value specified in a default profile. (The recommended value is 1 day.) If you specify PASSWORD_LOCK_TIME	
as UNLIMITED	
, then you must explicitly unlock the account by using an ALTER USER	
statement. For example, assuming that PASSWORD_LOCK_TIME	
UNLIMITED	
is specified for johndoe	
, then you use the following statement to unlock the johndoe	
account:	
After a user successfully logs into an account, Oracle Database resets the unsuccessful login attempt count for the user, if it is non-zero, to zero.	
The security officer can also explicitly lock user accounts. When this occurs, the account cannot be unlocked automatically, and only the security officer should unlock the account. The CREATE USER	
or ALTER USER	
statements explicitly lock or unlock user accounts. For example, the following statement locks the user account, susan	
:	
You can ensure that users do not reuse their previous passwords for a specified amount of time or for a specified number of password changes. To do so, configure the rules for password reuse with CREATE	
PROFILE	
or ALTER PROFILE	
statements. For the complete syntax of these statements, see the Oracle Database SQL Language Reference.	
Table 3-2 lists the CREATE PROFILE	
and ALTER PROFILE	
parameters that control ability of a user to reuse a previous password.	
Table 3-2 Parameters Controlling Reuse of a Previous Password	
If you do not specify a parameter, then the user can reuse passwords at any time, which is not a good security practice.	
If neither parameter is UNLIMITED	
, then password reuse is allowed, but only after meeting both conditions. The user must have changed the password the specified number of times, and the specified number of days must have passed since the previous password was last used.	
For example, suppose that the profile of user A had PASSWORD_REUSE_MAX	
set to 10	
and PASSWORD_REUSE_TIME	
set to 30	
. User A cannot reuse a password until he or she has reset the password 10 times, and until 30 days had passed since the password was last used.	
If either parameter is specified as UNLIMITED	
, then the user can never reuse a password.	
If you set both parameters to UNLIMITED	
, then Oracle Database ignores both, and the user can reuse any password at any time.	
Note: If you specifyDEFAULT for either parameter, then Oracle Database uses the value defined in the DEFAULT profile, which sets all parameters to UNLIMITED . Oracle Database thus uses UNLIMITED for any parameter specified as DEFAULT , unless you change the setting for that parameter in the DEFAULT profile.	
You can specify a password lifetime, after which the password expires. This means that the next time the user logs in with the current, correct password, he or she is prompted to change the password. By default, there are no complexity or password history checks, so users can still reuse any previous or weak passwords. You can control these factors by setting the PASSWORD_REUSE_TIME	
, PASSWORD_REUSE_MAX	
, and PASSWORD_VERIFY_FUNCTION	
parameters. (See "Controlling User Ability to Reuse Previous Passwords" and "Enforcing Password Complexity Verification" for more information.)	
In addition, you can set a grace period, during which each attempt to log in to the database account receives a warning message to change the password. If the user does not change it by the end of that period, then Oracle Database expires the account.	
As a database administrator, you can manually set the password state to be expired, which sets the account status to EXPIRED	
. The user must then follow the prompts to change the password before the logon can proceed.	
For example, in SQL*Plus, suppose user SCOTT	
tries to log in with the correct credentials, but his password has expired. User SCOTT	
will then see the ORA-28001: The password has expired	
error and be prompted to change his password, as follows:	
Use the CREATE PROFILE	
or ALTER PROFILE	
statement to specify a lifetime for passwords. To understand the life cycle of passwords, see "Password Change Life Cycle".	
Example 3-3 demonstrates how to create and assign a profile to user johndoe	
, and the PASSWORD_LIFE_TIME	
parameter specifies that johndoe	
can use the same password for 180 days before it expires.	
Example 3-3 Setting Password Aging and Expiration with CREATE PROFILE	
You can check the status of any account, whether it is open, in grace, or expired, by running the following query:	
Figure 3-1 shows the lifecycle of the password lifetime and grace period.	
DBA_USERS.EXPIRY_DATE	
column to a new value using the current time plus the value of the PASSWORD_GRACE_TIME	
setting from the account's password profile. At this point, the user receives an ORA-28002	
warning message about the password expiring in the near future (for example, ORA-28002 The password will expire within 7	
days	
if PASSWORD_GRACE_TIME	
is set to 7	
days), but the user can still log in without changing the password. The DBA_USERS.EXPIRY_DATE	
column shows the time in the future when the user will be prompted to change their password. ORA-28001: The password has expired	
error appears, and the user is prompted to change the password after entering the current, correct password before the authentication can proceed. If the user has an Oracle Active Data Guard configuration, where there is a primary and a stand-by database, and the authentication attempt is made on the standby database (which is a read-only database), then the ORA-28032: Your password has expired and the database is set to read-only	
error appears. The user should log into the primary database and change the password there. During any of these four phases, you can query the DBA_USERS	
data dictionary view to find the user's account status in the DBA_USERS.ACCOUNT_STATUS	
column.	
In the following example, the profile assigned to johndoe	
includes the specification of a grace period: PASSWORD_GRACE_TIME = 3	
(the recommended value). The first time johndoe	
tries to log in to the database after 90 days (this can be any day after the 90th day, that is, the 91st day, 100th day, or another day), he receives a warning message that his password will expire in 3 days. If 3 days pass, and if he does not change his password, then the password expires. After this, he receives a prompt to change his password on any attempt to log in.	
A database administrator or a user who has the ALTER USER	
system privilege can explicitly expire a password by using the CREATE USER	
and ALTER USER	
statements. The following statement creates a user with an expired password. This setting forces the user to change the password before the user can log in to the database.	
There is no "password unexpire" clause for the CREATE USER	
statement, but an account can be "unexpired" by changing the password on the account.	
Be careful if you plan to set the PASSWORD_LIFE_TIME	
parameter of CREATE PROFILE	
or ALTER PROFILE	
to a low value (for example, 1 day). The PASSWORD_LIFE_TIME	
limit of a profile is measured from the last time that an account's password is changed, or the account creation time if the password has never been changed. These dates are recorded in the PTIME	
(password change time) and CTIME	
(account creation time) columns of the SYS.USER$	
system table. The PASSWORD_LIFE_TIME	
limit is not measured starting from the timestamp of the last change to the PASSWORD_LIFE_TIME	
profile parameter, as may be initially thought. Therefore, any accounts affected by the changed profile whose last password change time was more than PASSWORD_LIFE_TIME	
days ago immediately expire and enter their grace period on their next connection, issuing the ORA-28002: The password will expire within	
n	
days	
warning.	
As a database administrator, you can find an account's last password change time as follows:	
To find when the account was created and the password expiration date, issue the following query:	
If the user who is assigned this profile is currently logged in when you set the PASSWORD_LIFE_TIME	
parameter and remains logged in, then Oracle Database does not change the user's account status from OPEN	
to EXPIRED(GRACE)	
when the currently listed expiration date passes. The timing begins only when the user logs into the database. You can check the user's last login time as follows:	
When making changes to a password profile, a database administrator must be aware that if some of the users who are subject to this profile are currently logged in to the Oracle database while their password profile is being updated by the administrator, then those users could potentially remain logged in to the system even beyond the expiration date of their password. You can find the currently logged in users by querying the USERNAME	
column of the V$SESSION	
view.	
This is because the expiration date of a user's password is based on the timestamp of the last password change on their account plus the value of the PASSWORD_LIFE_TIME	
password profile parameter set by the administrator. It is not based on the timestamp of the last change to the password profile itself.	
Note the following:	
PASSWORD_LIFE_TIME	
to a low value, then the user's account status does not change until the user logs in. PASSWORD_LIFE_TIME	
parameter to UNLIMITED	
, but this only affects accounts that have not entered their grace period. After the grace period expires, the user must change the password. Complexity verification checks that each password is complex enough to provide reasonable protection against intruders who try to break into the system by guessing passwords. This forces users to create strong, secure passwords for database user accounts. You need to ensure that the passwords for your users are complex enough to provide reasonable protection against intruders who try to break into the system by guessing passwords.	
How Oracle Database Checks the Complexity of Passwords	
Oracle Database provides a sample password verification function in the PL/SQL script utlpwdmg.sql	
(located in $ORACLE_HOME/rdbms/admin	
) that, when enabled, checks whether users are correctly creating or modifying their passwords. The utlpwdmg.sql	
script provides two password verification functions: one for previous releases of Oracle Database and an updated version for Oracle Database Release 11g.	
The utlpwdmg.sql	
script checks for the following requirements when users create or modify passwords:	
welcome1	
, database1	
, account1	
, user1234	
, password1	
, oracle	
, oracle123	
, computer1	
, abcdefg1	
, or change_on_install	
. oracle	
or oracle	
with the numbers 1–100 appended. Customizing Password Complexity Verification	
You can create your own password complexity verification function by backing up and customizing the verify_function_11G	
function in the utlpwdmg.sql	
script. In fact, Oracle recommends that you do so to further secure your site's passwords. See also Guideline 1 in "Guidelines for Securing Passwords" for general advice on creating passwords. However, be aware that the password complexity checking is not enforced for user SYS	
.	
By default, password complexity verification is not enabled. To enable the password complexity verification:	
utlpwdmg.sql	
script (or your modified version of this script) to create the password complexity function in the SYS	
schema. PASSWORD_VERIFY_FUNCTION	
setting to either the sample password complexity function in the utlpwdmg.sql	
script, or to your customized function. Use one of the following methods: CREATE PROFILE	
or ALTER PROFILE	
statement to enable the function. For example, to update the default profile to use the verify_function_11G	
function: After you have enabled password complexity verification, it takes effect immediately.	
Note: TheALTER USER statement has a REPLACE clause. With this clause, users can change their own unexpired passwords by supplying the previous password to authenticate themselves. If the password has expired, then the user cannot log in to SQL to issue the A database administrator with	
This section contains:	
About Enabling or Disabling Password Case Sensitivity	
When you create or modify user accounts, by default, passwords are case sensitive. To control the use of case sensitivity in passwords, set the SEC_CASE_SENSITIVE_LOGON	
initialization parameter. Only users who have the ALTER SYSTEM	
privilege can set the SEC_CASE_SENSITIVE_LOGON	
parameter. Set it to TRUE	
to enable case sensitivity or FALSE	
to disable case sensitivity.	
For greater security, Oracle recommends that you enable case sensitivity in passwords. However, if you have compatibility issues with your applications, you can use this parameter to disable password case sensitivity. Examples of application compatibility issues are passwords for your applications being hard-coded to be case insensitive, or different application modules being inconsistent about case sensitivity when sending credentials to start a database session.	
Do not set the SEC_CASE_SENSITIVE_LOGON	
parameter to FALSE	
when exclusive mode is enabled (the SQLNET.ALLOWED_LOGON_VERSION	
parameter is set to 11)	
, because the more secure verifiers used in exclusive mode only support case-sensitive password checking. For compatibility reasons, Oracle Database does not prevent the use of the FALSE	
setting for SEC_CASE_SENSITIVE_LOGON	
when the SQLNET.ALLOWED_LOGON_VERSION	
parameter is set to 11	
. This can result in accounts becoming inaccessible if these settings are in effect when users change their passwords or you create new user accounts.	
Procedure for Enabling Password Case Sensitivity	
To enable case sensitivity in passwords:	
IGNORECASE	
parameter set to N	
. The IGNORECASE	
parameter overrides the SEC_CASE_SENSITIVE_LOGON	
parameter. By default, IGNORECASE	
is set to Y	
, which means that passwords are treated as case-insensitive. For more information about password files, see Oracle Database Administrator's Guide.	
ALTER SYSTEM	
statement: Finding the Password Versions of User Accounts	
In previous releases of Oracle Database, passwords were not case sensitive. If you import user accounts from a previous release, for example, Release 10g, into the current database release, the case-insensitive passwords in these accounts remain case insensitive until the user changes his or her password. If the account was granted SYSDBA	
or SYSOPER	
privilege, it is imported to the password file. (See "How Case Sensitivity Affects Password Files" for more information.) When a password from a user account from the previous release is changed, it then becomes case sensitive.	
You can find users who have case sensitive or case insensitive passwords by querying the DBA_USERS	
view. The PASSWORD_VERSIONS	
column in this view indicates the release in which the password was created. For example:	
The passwords for accounts jones	
, adams	
, and clark	
were originally created in Release 10g and then reset in Release 11g. Their passwords, assuming case sensitivity has been enabled, are now case sensitive, as is the password for preston	
. However, the account for blake	
is still using the Release 10g standard, so it is case insensitive. Ask him to reset his password so that it will be case sensitive, and therefore more secure.	
See Oracle Database Reference for more information about the DBA_USERS	
view.	
How Case Sensitivity Affects Password Files	
You can enable or disable case sensitivity for password files by using the ignorecase	
argument in the ORAPWD	
command line utility. The default value for ignorecase	
is n	
(no), which enforces case sensitivity.	
Example 3-4 shows how to enable case sensitivity in password files.	
Example 3-4 Enabling Password Case Sensitivity	
This creates a password file called orapwd	
. Because ignorecase	
is set to n (no), the password entered for the password	
parameter will be case sensitive. Afterwards, if you connect using this password, it succeeds—as long as you enter it using the exact case sensitivity in which it was created. If you enter the same password but with different case sensitivity, it will fail.	
If you set ignorecase	
to y	
, then the passwords in the password file are case insensitive, which means that you can enter the password using any capitalization that you want.	
If you imported user accounts from a previous release and these accounts were created with SYSDBA	
or SYSOPER	
privileges, then they will be included in the password file. The passwords for these accounts are case insensitive. The next time these users change their passwords, and assuming case sensitivity is enabled, the passwords become case sensitive. For greater security, have these users change their passwords.	
See Oracle Database Administrator's Guide for more information about password files.	
How Case Sensitivity Affects Accounts Created for Database Link Connections	
When you create a database link connection, you must define a user name and password for the connection. When you create the database link connection, the password is case sensitive. How this user enters his or her password for connections depends on the release in which the database link was created:	
You can find the user accounts for existing database links by running the V$DBLINK	
view. For example:	
See Oracle Database Reference for more information about the V$DBLINK	
view.	
The SHA-1 cryptographic hashing algorithm protects against password-based security threats by including support for mixed case characters, special characters, and multibyte characters in passwords. In addition, the SHA-1 hashing algorithm adds a salt to the password when it is hashed, which provides additional protection. This enables your users to create far more complex passwords, and therefore, makes it more difficult for an intruder to gain access to these passwords. Oracle recommends that you use the SHA-1 hashing algorithm.	
The password versions (also known as password hash values) are considered to be extremely sensitive, because they are used as a "shared secret" between the server and person who is logging in. If an intruder learns this secret, then the protection of the authentication is immediately and severely compromised. Remember that administrative users who have account management privileges, administrative users who have the SYSDBA	
system privilege, or even users who have the EXP_FULL_DATABASE	
role can immediately access the password hash values. Therefore, this type of administrative user must be trustworthy if the integrity of the database password-based authentication is to be preserved. If you cannot trust these administrators, then it is better to deploy a directory server (such as Oracle Database Enterprise User Security) so that the password versions remain within the Enterprise User Security directory and are never accessible to anyone except the Enterprise User Security administrator.	
You optionally can configure Oracle Database to run in exclusive mode for Release 11 or later. When you enable exclusive mode, then Oracle Database uses the SHA-1 hashing algorithm exclusively. Oracle Database 11g exclusive mode is compatible with Oracle Database 10g and later products that use OCI-based drivers, including SQL*Plus, ODBC, Oracle .NET, Oracle Forms, and various third-party Oracle Database adapters. However, be aware that exclusive mode for Release 11g is not compatible with JDBC type-4 (thin) versions earlier than Oracle Database 11g or Oracle Database Client interface (OCI)-based drivers earlier than Oracle Database 10g. After you configure exclusive mode, Oracle recommends that you remove the previous password hash values from the data dictionary.	
sqlnet.ora	
parameter file, by default located in the $ORACLE_HOME/network/admin	
directory on UNIX operating systems and the %ORACLE_HOME%\network\admin	
directory on Microsoft Windows operating systems. sqlnet.ora	
file has the following line: If you have applied the October 2012 CPU or if you are using Oracle Database Release 11.2.0.3, then ensure that you set SQLNET.ALLOWED_LOGON_VERSION	
to 12, not 11	
.	
sqlnet.ora	
file. Oracle recommends that you use random passwords with a length of at least twelve characters. See Guideline 1 under "Guidelines for Securing Passwords" for additional guidelines for creating passwords, and techniques for creating complex but easy to remember passwords.	
This section contains:	
You can store password credentials for connecting to databases by using a client-side Oracle wallet. An Oracle wallet is a secure software container that stores authentication and signing credentials.	
This wallet usage can simplify large-scale deployments that rely on password credentials for connecting to databases. When this feature is configured, application code, batch jobs, and scripts no longer need embedded user names and passwords. This reduces risk because the passwords are no longer exposed, and password management policies are more easily enforced without changing application code whenever user names or passwords change.	
See Also:	
Note: The external password store of the wallet is separate from the area where public key infrastructure (PKI) credentials are stored. Consequently, you cannot use Oracle Wallet Manager to manage credentials in the external password store of the wallet. Instead, use the command-line utilitymkstore to manage these credentials.	
Typically, users (and as applications, batch jobs, and scripts) connect to databases by using a standard CONNECT	
statement that specifies a database connection string. This string can include a user name and password, and an Oracle Net service name identifying the database on an Oracle Database network. If the password is omitted, the connection prompts the user for the password.	
For example, the service name could be the URL that identifies that database, or a TNS alias you entered in the tnsnames.ora	
file in the database. Another possibility is a host:port:sid	
string.	
The following examples are standard CONNECT	
statements that could be used for a client that is not configured to use the external password store:	
In these examples, salesapp	
is the user name, with the unique connection string for the database shown as specified in three different ways. You could use its URL sales_db.us.example.com	
, or its TNS alias orasales	
from the tnsnames.ora	
file, or its host:port:sid	
string.	
However, when clients are configured to use the secure external password store, applications can connect to a database with the following CONNECT	
statement syntax, without specifying database login credentials:	
In this specification, db_connect_string	
is a valid connection string to access the intended database, such as the service name, URL, or alias as shown in the earlier examples. Each user account must have its own unique connection string; you cannot create one connection string for multiple users.	
In this case, the database credentials, user name and password, are securely stored in an Oracle wallet created for this purpose. The autologin feature of this wallet is turned on, so the system does not need a password to open the wallet. From the wallet, it gets the credentials to access the database for the user they represent.	
See Also: Oracle Database Advanced Security Administrator's Guide for information about autologin wallets	
If your client is already configured to use external authentication, such as Windows native authentication or Secure Sockets Layer (SSL), then Oracle Database uses that authentication method. The same credentials used for this type of authentication are typically also used to log in to the database.	
For clients not using such authentication methods or wanting to override them for database authentication, you can set the SQLNET.WALLET_OVERRIDE	
parameter in sqlnet.ora	
to TRUE	
. The default value for SQLNET.WALLET_OVERRIDE	
is FALSE	
, allowing standard use of authentication credentials as before.	
If you want a client to use the secure external password store feature, then perform the following configuration task:	
Create a wallet on the client by using the following syntax at the command line:	
For example:	
wallet_location	
is the path to the directory where you want to create and store the wallet. This command creates an Oracle wallet with the autologin feature enabled at the location you specify. The autologin feature enables the client to access the wallet contents without supplying a password. See Oracle Database Advanced Security Administrator's Guide for information about autologin wallets.	
The mkstore	
utility -create	
option uses password complexity verification. See "Enforcing Password Complexity Verification" for more information.	
For example:	
In this specification:	
wallet_location	
is the path to the directory where you created the wallet in Step 1. db_connect_string	
is the TNS alias you use to specify the database in the tnsnames.ora	
file or any service name you use to identify the database on an Oracle network. By default, tnsnames.ora	
is located in the $ORACLE_HOME/network/admin	
directory on UNIX systems and in ORACLE_HOME	
\network\admin	
on Windows. username	
is the database login credential. When prompted, enter the password for this user. Repeat this step for each database you want accessible using the CONNECT /@	
db_connect_string	
syntax.	
Note: Thedb_connect_string used in the CONNECT /@ db_connect_string statement must be identical to the db_connect_string specified in the -createCredential command.	
sqlnet.ora	
file, enter the WALLET_LOCATION	
parameter and set it to the directory location of the wallet you created in Step 1. For example, if you created the wallet in $ORACLE_HOME/network/admin	
and your Oracle home is set to /private/ora11	
, then you need to enter the following into your client sqlnet.ora	
file:	
sqlnet.ora	
file, enter the SQLNET.WALLET_OVERRIDE	
parameter and set it to TRUE	
as follows: This setting causes all CONNECT /@	
db_connect_string	
statements to use the information in the wallet at the specified location to authenticate to databases.	
When external authentication is in use, an authenticated user with such a wallet can use the CONNECT /@	
db_connect_string	
syntax to access the previously specified databases without providing a user name and password. However, if a user fails that external authentication, then these connect statements also fail.	
Note: If an application uses SSL for encryption, then thesqlnet.ora parameter, SQLNET.AUTHENTICATION_SERVICES , specifies SSL and an SSL wallet is created. If this application wants to use secret store credentials to authenticate to databases (instead of the SSL certificate), then those credentials must be stored in the SSL wallet. After SSL authentication, if SQLNET.WALLET_OVERRIDE = TRUE , then the user names and passwords from the wallet are used to authenticate to databases. If SQLNET.WALLET_OVERRIDE = FALSE , then the SSL certificate is used.	
Example 3-5 shows a sample sqlnet.ora	
file with the WALLET_LOCATION	
and the SQLNET.WALLET_OVERRIDE	
parameters set as described in Steps 3 and 4.	
This section summarizes the following tasks you can perform to manage credentials in the external password store by using the mkstore	
command-line utility:	
Periodically, you may want to view all contents of a client wallet external password store, or you may need to check specific credentials by viewing them. Listing the external password store contents provides information you can use to decide whether to add or delete credentials from the store.	
To list the contents of the external password store, enter the following command at the command line:	
For example:	
wallet_location	
specifies the path to the directory where the wallet, whose external password store contents you want to view, is located. This command lists all of the credential database service names (aliases) and the corresponding user name (schema) for that database. Passwords are not listed.	
You can store multiple credentials in one client wallet. For example, if a client batch job connects to hr_database	
and a script connects to sales_database	
, then you can store the login credentials in the same client wallet. You cannot, however, store multiple credentials (for logging in to multiple schemas) for the same database in the same wallet. If you have multiple login credentials for the same database, then they must be stored in separate wallets.	
To add database login credentials to an existing client wallet, enter the following command at the command line:	
For example:	
In this specification:	
wallet_location	
is the path to the directory where the client wallet to which you want to add credentials is stored. db_alias	
can be the TNS alias you use to specify the database in the tnsnames.ora	
file or any service name you use to identify the database on an Oracle network. username	
is the database login credential for the schema to which your application connects. When prompted, enter the password for this user. If the database connection strings change, then you can modify the database login credentials that are stored in the wallet.	
To modify database login credentials in a wallet, enter the following command at the command line:	
For example:	
In this specification:	
wallet_location	
is the path to the directory where the wallet is located. db_alias	
is a new or different alias you want to use to identify the database. It can be a TNS alias you use to specify the database in the tnsnames.ora	
file or any service name you use to identify the database on an Oracle network. username	
is the new or different database login credential. When prompted, enter the password for this user. If a database no longer exists or if you want to disable connections to a specific database, then you can delete all login credentials for that database from the wallet.	
To delete database login credentials from a wallet, enter the following command at the command line:	
For example:	
In this specification:	
wallet_location	
is the path to the directory where the wallet is located. db_alias	
is the TNS alias you use to specify the database in the tnsnames.ora	
file, or any service name you use to identify the database on an Oracle Database network. Database administrators perform special operations, such as shutting down or starting up a database, that should not be performed by non-administrative database users. Oracle Database provides the following methods to secure the authentication of database administrators who have either SYSDBA	
or SYSOPER	
privileges:	
Strong authentication lets you centrally control SYSDBA	
and SYSOPER	
access to multiple databases. Consider using this type of authentication for database administration for the following situations:	
To enable the Oracle Internet Directory server to authorize SYSDBA	
and SYSOPER	
connections, use one of the following methods, depending on your environment:	
To configure directory authentication for administrative users:	
SYSDBA	
or SYSOPER	
privilege to the user for the database that this user will administer. Grant SYSDBA	
or SYSOPER	
only to trusted users. See "Guidelines for Securing User Accounts and Privileges" for advice on this topic.	
LDAP_DIRECTORY_SYSAUTH	
initialization parameter to YES	
: When set to YES	
, the LDAP_DIRECTORY_SYSAUTH	
parameter enables SYSDBA	
and SYSOPER	
users to authenticate to the database by using a strong authentication method.	
See Oracle Database Reference for more information about LDAP_DIRECTORY_SYSAUTH	
.	
LDAP_DIRECTORY_ACCESS	
parameter to either PASSWORD	
or SSL	
. For example: Ensure that the LDAP_DIRECTORY_ACCESS	
initialization parameter is not set to NONE	
. Setting this parameter to PASSWORD	
or SSL	
ensures that users can be authenticated using the SYSDBA	
or SYSOPER	
privileges through Oracle Internet Directory. See Oracle Database Reference for more information about LDAP_DIRECTORY_ACCESS	
.	
Afterward, this user can log in by including the net service name in the CONNECT	
statement in SQL*Plus. For example, to log on as SYSDBA	
if the net service name is orcl	
:	
If the database is configured to use a password file for remote authentication, Oracle Database checks the password file first.	
To configure Kerberos authentication for administrative users:	
See Oracle Database Advanced Security Administrator's Guide for more information.	
See Oracle Database Enterprise User Security Administrator's Guide for more information.	
SYSDBA	
or SYSOPER	
privilege to the user for the database that this user will administer. Grant SYSDBA	
or SYSOPER	
only to trusted users. See "Guidelines for Securing User Accounts and Privileges" for advice on this topic.	
LDAP_DIRECTORY_SYSAUTH	
initialization parameter to YES	
: When set to YES	
, the LDAP_DIRECTORY_SYSAUTH	
parameter enables SYSDBA	
and SYSOPER	
users to authenticate to the database by using strong authentication methods. See Oracle Database Reference for more information about LDAP_DIRECTORY_SYSAUTH	
.	
LDAP_DIRECTORY_ACCESS	
parameter to either PASSWORD	
or SSL	
. For example: Ensure that the LDAP_DIRECTORY_ACCESS	
initialization parameter is not set to NONE	
. Setting this parameter to PASSWORD	
or SSL	
ensures that users can be authenticated using SYSDBA	
or SYSOPER	
through Oracle Internet Directory. See Oracle Database Reference for more information about LDAP_DIRECTORY_ACCESS	
.	
Afterward, this user can log in by including the net service name in the CONNECT	
statement in SQL*Plus. For example, to log on as SYSDBA	
if the net service name is orcl	
:	
To configure Secure Sockets Layer (SSL) authentication for administrative users:	
sqlnet.ora	
configuration file. You can use Wallet Manager to configure the client wallet and user certificate. See Oracle Database Advanced Security Administrator's Guide for more information.	
tnsnames.ora	
. listener.ora	
. sqlnet.ora	
. LDAP_DIRECTORY_ACCESS	
initialization parameter to SSL	
: See Oracle Database Reference for more information about LDAP_DIRECTORY_ACCESS	
.	
See Oracle Database Enterprise User Security Administrator's Guide for information on configuring enterprise user security SSL authentication.	
SYSDBA	
or SYSOPER	
privilege to the user for the database that the user will administer. LDAP_DIRECTORY_SYSAUTH	
initialization parameter to YES	
. When set to YES	
, the LDAP_DIRECTORY_SYSAUTH	
parameter enables SYSDBA	
and SYSOPER	
users to authenticate to the database by using a strong authentication method. See Oracle Database Reference for more information about LDAP_DIRECTORY_SYSAUTH	
.	
Afterward, this user can log in by including the net service name in the CONNECT	
statement in SQL*Plus. For example, to log on as SYSDBA	
if the net service name is orcl	
:	
Operating system authentication for a database administrator typically involves establishing a group on the operating system, granting DBA	
privileges to that group, and then adding the names of persons who should have those privileges to that group. (On UNIX systems, the group is the dba group.)	
On Microsoft Windows systems, users who connect with the SYSDBA	
privilege can take advantage of the Windows native authentication. If these users work with Oracle Database using their domain accounts, then you must explicitly grant them local administrative privileges and ORA_DBA	
membership.	
See Also: Your Oracle Database operating system-specific documentation for information about configuring operating system authentication of database administrators	
Oracle Database uses database-specific password files to keep track of database user names that have been granted the SYSDBA	
and SYSOPER	
privileges. These privileges enable the following activities:	
SYSOPER	
system privilege lets database administrators perform STARTUP	
, SHUTDOWN	
, ALTER DATABASE	
OPEN/MOUNT	
, ALTER	
DATABASE	
BACKUP	
, ARCHIVE	
LOG	
, and RECOVER	
operations. SYSOPER	
also includes the RESTRICTED	
SESSION	
privilege. SYSDBA	
system privilege has all system privileges with ADMIN	
OPTION	
, including the SYSOPER	
system privilege, and permits CREATE	
DATABASE	
and time-based recovery. SYSDBA	
or SYSOPER	
privileges can be shared between different databases. You can have a shared password file that contains users in addition to the SYS	
user. To share a password file among different databases, set the REMOTE_LOGIN_PASSWORDFILE	
parameter in the init.ora	
file to SHARED	
. If you set the REMOTE_LOGIN_PASSWORDFILE	
initialization parameter to EXCLUSIVE	
or SHARED	
from NONE	
, then ensure that the password file is in sync with the dictionary passwords. See Oracle Database Administrator's Guide for more information.	
SYSDBA	
or SYSOPER	
system privileges. Password file based authentication is activated as soon as you create a password file using the ORAPWD	
utility. Anyone who has EXECUTE	
privileges and write privileges to the $ORACLE_HOME/dbs	
directory can run the ORAPWD	
utility.	
However, be aware that using password files may pose security risks. For this reason, consider using the authentication methods described in "Strong Authentication and Centralized Management for Database Administrators". Examples of password security risks are as follows:	
Note: Connections requestedAS SYSDBA or AS SYSOPER must use these phrases; without them, the connection fails. The Oracle Database parameter O7_DICTIONARY_ACCESSIBILITY is set to FALSE by default, to limit sensitive data dictionary access only to those authorized. The parameter also enforces the required AS SYSDBA or AS SYSOPER syntax.	
See Also: Oracle Database Administrator's Guide for information about creating and maintaining password files	
Oracle Database can authenticate users attempting to connect to a database by using information stored in that database itself. To configure Oracle Database to use database authentication, you must create each user with an associated password. User names can be multibyte, but each password must be composed of single-byte characters, even if your database uses a multibyte character set. The user must provide this user name and password when attempting to establish a connection. Oracle Database stores user passwords in the data dictionary in an encrypted format.	
To identify the authentication protocols that are allowed by a client or a database, a database administrator can explicitly set the SQLNET.ALLOWED_LOGON_VERSION	
parameter in the server sqlnet.ora	
file. Each connection attempt is tested, and if the client or server does not meet the minimum version specified by its partner, authentication fails with an ORA-28040 No matching authentication protocol	
error. The parameter can take the values 11, 10, 9, or 8. The default value is 8. These values represent database server versions. Oracle recommends the value 11 for the strongest protection. However, be aware that if you set SQLNET.ALLOWED_LOGON_VERSION	
to 11, then pre-Oracle Database Release 11.1 client applications or JDBC thin clients cannot authenticate to the Oracle database using password-based authentication.	
To enhance security when using database authentication, Oracle recommends that you use password management, including account locking, password aging and expiration, password history, and password complexity verification. See "Using a Password Management Policy" for more information about password management.	
The advantages of database authentication are as follows:	
Some operating systems permit Oracle Database to use information they maintain to authenticate users. This has the following benefits:	
Within SQL*Plus, you enter:	
IDENTIFIED EXTERNALLY	
clause of the CREATE USER	
statement, and then you set the OS_AUTHENT_PREFIX	
initialization parameter to specify a prefix that Oracle Database uses to authenticate users attempting to connect to the server. IDENTIFIED GLOBALLY	
clause of the CREATE USER	
statement, and then authenticated by Oracle Internet Directory (OID) currently in the same database. However, you should be aware of the following drawbacks to using the operating system to authenticate users:	
See Also:	
You can authenticate users over a network by using Secure Sockets Layer with third-party services.	
The Secure Sockets Layer (SSL) protocol is an application layer protocol. You can use it for user authentication to a database, and it is independent of global user management in Oracle Internet Directory. That is, users can use SSL to authenticate to the database without a directory server in place.	
See Oracle Database Advanced Security Administrator's Guide for instructions about configuring SSL.	
You need to use third-party network authentication services if you want to authenticate Oracle Database users over a network. Prominent examples include Kerberos, PKI (public key infrastructure), the RADIUS (Remote Authentication Dial-In User Service), and directory-based services, as described in the following sections.	
If network authentication services are available to you, then Oracle Database can accept authentication from the network service. If you use a network authentication service, then some special considerations arise for network roles and database links.	
Note: To use a network authentication service with Oracle Database, you need Oracle Database Enterprise Edition with the Oracle Database Advanced Security option.	
See Also: Oracle Database Advanced Security Administrator's Guide for information about Oracle Enterprise Edition with the Oracle Database Advanced Security option	
Authenticating Using Kerberos	
Kerberos is a trusted third-party authentication system that relies on shared secrets. It presumes that the third party is secure, and provides single sign-on capabilities, centralized password storage, database link authentication, and enhanced PC security. It does this through a Kerberos authentication server, or through Cybersafe Active Trust, a commercial Kerberos-based authentication server.	
See Also: Oracle Database Advanced Security Administrator's Guide for more information about Kerberos	
Authenticating Using RADIUS	
Oracle Database supports remote authentication of users through the Remote Authentication Dial-In User Service (RADIUS), a standard lightweight protocol used for user authentication, authorization, and accounting. This feature also enables users to use the RSA One-Time Password Specifications (OTPS) to authenticate to the Oracle database.	
See Also:	
Authenticating Using Directory-Based Services	
Using a central directory can make authentication and its administration efficient. Directory-based services include the following:	
For more information about Oracle Internet Directory, see Oracle Internet Directory Administrator's Guide.	
Authenticating Using Public Key Infrastructure	
Authentication systems based on public key infrastructure (PKI) issue digital certificates to user clients, which use them to authenticate directly to servers in the enterprise without directly involving an authentication server. Oracle Database provides a PKI for using public keys and certificates, consisting of the following components:	
You can use Oracle Wallet Manager to manage Oracle wallets. This is a standalone Java application used to manage and edit the security credentials in Oracle wallets. It performs the following operations:	
You can use Oracle Advanced Security to centralize the management of user-related information, including authorizations, in an LDAP-based directory service. This allows users and administrators to be identified in the database as global users, meaning that they are authenticated by SSL and that the management of these users is handled outside of the database by the centralized directory service. Global roles are defined in a database and are known only to that database, but the directory service handles authorizations for global roles.	
Note: You can also have users authenticated by SSL, whose authorizations are not managed in a directory, that is, they have local database roles only. See Oracle Database Advanced Security Administrator's Guide for details.	
This centralized management enables the creation of enterprise users and enterprise roles. Enterprise users are defined and managed in the directory. They have unique identities across the enterprise and can be assigned enterprise roles that determine their access privileges across multiple databases. An enterprise role consists of one or more global roles, and might be thought of as a container for global roles.	
See Also: "Strong Authentication and Centralized Management for Database Administrators" if you want to centralize the management ofSYSDBA or SYSOPER access	
You have the following options to specify users who are authorized by a directory service:	
The following statement shows the creation of a global user with a private schema, authenticated by SSL, and authorized by the enterprise directory service:	
The string provided in the AS	
clause provides an identifier (distinguished name, or DN) meaningful to the enterprise directory.	
In this case, psmith	
is a global user. But, the disadvantage here is that user psmith	
must then be created in every database that he must access, plus the directory.	
Multiple enterprise users can share a single schema in the database. These users are authorized by the enterprise directory service but do not own individual private schemas in the database. These users are not individually created in the database. They connect to a shared schema in the database.	
To create a schema-independent user:	
The mapping object tells the database how you want to map the DNs for the users to the shared schema. You can either create a full DN mapping (one directory entry for each unique DN), or you can map, for each user, multiple DN components to one schema. For example:	
See Also: Oracle Database Enterprise User Security Administrator's Guide for an explanation of these mappings	
Most users do not need their own schemas, and implementing schema-independent users separates users from databases. You create multiple users who share the same schema in a database, and as enterprise users, they can also access shared schemas in other databases.	
Some advantages of global user authentication and authorization are as follows:	
CURRENT_USER	
database links connect as a global user. A local user can connect as a global user in the context of a stored procedure, that is, without storing the global user password in a link definition. See Also: The following manuals for additional information about global authentication and authorization and enterprise users and roles:	
This section contains:	
When you use external authentication for user accounts, Oracle Database maintains the user account, but an external service performs the password administration and user authentication. This external service can be the operating system or a network service, such as Oracle Net.	
With external authentication, your database relies on the underlying operating system or network authentication service to restrict access to database accounts. A database password is not used for this type of login. If your operating system or network service permits, then it can authenticate users before they can log in to the database. To enable this feature, set the initialization parameter OS_AUTHENT_PREFIX	
, and use this prefix in Oracle Database user names. The OS_AUTHENT_PREFIX	
parameter defines a prefix that Oracle Database adds to the beginning of the operating system account name of every user. Oracle Database compares the prefixed user name with the Oracle Database user names in the database when a user attempts to connect.	
You should set OS_AUTHENT_PREFIX	
to a null string (an empty set of double quotation marks: ""	
). Using a null string eliminates the addition of any prefix to operating system account names, so that Oracle Database user names exactly match operating system user names.	
After you set OS_AUTHENT_PREFIX	
, it should remain the same for the life of a database. If you change the prefix, then any database user name that includes the old prefix cannot be used to establish a connection, unless you alter the user name to have it use password authentication.	
The default value of this parameter is OPS$	
for backward compatibility with previous versions of Oracle Database. For example, assume that you set OS_AUTHENT_PREFIX	
as follows:	
Note: The text of theOS_AUTHENT_PREFIX initialization parameter is case-sensitive on some operating systems. See your operating system-specific Oracle Database documentation for more information about this initialization parameter.	
If a user with an operating system account named tsmith	
is to connect to an Oracle database installation and be authenticated by the operating system, then Oracle Database checks that there is a corresponding database user OPS$tsmith	
and, if so, lets the user connect. All references to a user authenticated by the operating system must include the prefix, OPS$	
, as seen in OPS$tsmith	
.	
The advantages of external authentication are as follows:	
The following statement creates a user who is identified by Oracle Database and authenticated by the operating system or a network service. This example assumes that the OS_AUTHENT_PREFIX	
parameter has been set to a blank space (" "	
).	
Using the CREATE USER ... IDENTIFIED EXTERNALLY	
statement, you create database accounts that must be authenticated by the operating system or network service. Oracle Database then relies on this external login authentication when it provides that specific operating system user with access to the database resources of a specific user.	
See Also: Oracle Database Advanced Security Administrator's Guide for more information about external authentication	
By default, Oracle Database allows operating system-authenticated logins only over secure connections, which precludes using Oracle Net and a shared server configuration. This restriction prevents a remote user from impersonating another operating system user over a network connection.	
Setting the REMOTE_OS_AUTHENT	
parameter to TRUE	
in the database initialization parameter file forces the database to accept the client operating system user name received over an unsecure connection and use it for account access. Because clients, in general, such as PCs, are not trusted to perform operating system authentication properly, it is very poor security practice to turn on this feature.	
The default setting, REMOTE_OS_AUTHENT = FALSE	
, creates a more secure configuration that enforces proper, server-based authentication of clients connecting to an Oracle database.	
Any change to this parameter takes effect the next time you start the instance and mount the database. Generally, user authentication through the host operating system offers faster and more convenient connection to Oracle Database without specifying a separate database user name or password. Also, user entries correspond in the database and operating system audit trails.	
Be aware that the REMOTE_OS_AUTHENT	
parameter was deprecated in Oracle Database 11g Release 1 (11.1), and is retained only for backward compatibility.	
Oracle Advanced Security performs network authentication, which you can configure to use a third-party service such as Kerberos. If you are using Oracle Advanced Security as your only external authentication service, then the REMOTE_OS_AUTHENT	
parameter setting is irrelevant, because Oracle Advanced Security allows only secure connections.	
In a multitier environment, Oracle Database controls the security of middle-tier applications by limiting their privileges, preserving client identities through all tiers, and auditing actions taken on behalf of clients. In applications that use a very busy middle tier, such as a transaction processing monitor, the identity of the clients connecting to the middle tier must be preserved. One advantage of using a middle tier is connection pooling, which allows multiple users to access a data server without each of them needing a separate connection. In such environments, you need to be able to set up and break down connections very quickly.	
For these environments, you can use the Oracle Call Interface to create lightweight sessions, which enable database password authentication for each user. This method preserves the identity of the real user through the middle tier without the overhead of a separate database connection for each user.	
You can create lightweight sessions with or without passwords. However, if a middle tier is outside of or on a firewall, then security is better when each lightweight session has its own password. For an internal application server, lightweight sessions without passwords might be appropriate.	
In a multitier environment, an application server provides data for clients and serves as an interface from them to one or more database servers. The application server can validate the credentials of a client, such as a Web browser, and the database server can audit operations performed by the application server. These auditable operations include actions performed by the application server on behalf of clients, such as requests that information be displayed on the client. A request to connect to the database server is an example of an application server operation not related to a specific client.	
Authentication in a multitier environment is based on trust regions. Client authentication is the domain of the application server. The application server itself is authenticated by the database server. The following operations are performed:	
Application servers can also enable roles for an end user on whose behalf they connect. The application server can obtain these roles from a directory, which serves as an authorization repository. The application server can only request that these roles be enabled. The database verifies the following requirements:	
Figure 3-2 shows an example of multitier authentication.	
The following actions take place:	
Security for middle-tier applications must address the following key issues:	
Many organizations want to know who the user is through all tiers of an application without sacrificing the benefits of a middle tier. Oracle Database supports the following ways to preserve user identity through the middle tier of an application:	
The following sections explain how to use proxy authentication:	
Oracle Database provides proxy authentication in Oracle Call Interface (OCI), JDBC/OCI, or JDBC Thin Driver for database users or enterprise users. Enterprise users are those who are managed in Oracle Internet Directory and who access a shared schema in the database.	
You can design a middle-tier server to authenticate clients in a secure fashion by using the following three forms of proxy authentication:	
Note: The use of certificates for proxy authentication may not be supported in future Oracle Database releases.	
In all cases, an administrator must authorize the middle-tier server to act on behalf of the client.	
See Also: Oracle Call Interface Programmer's Guide and Oracle Database Advanced Application Developer's Guide or details about designing a middle-tier server to proxy users	
In multitier environments, proxy authentication controls the security of middle-tier applications by preserving client identities and privileges through all tiers and by auditing actions taken on behalf of clients. For example, this feature allows the identity of a user using a Web application (which acts as a proxy) to be passed through the application to the database server.	
Three-tier systems provide the following benefits to organizations:	
In addition, Oracle Database proxy authentication provides the following security benefits:	
Note: Oracle Database supports this proxy authentication functionality in three tiers only. It does not support it across multiple middle tiers.	
To create proxy user accounts, users must have the following minimum privileges:	
CREATE USER	
system privilege to create a database user account that will be used as a proxy user account DV_ACCTMGR	
role if Oracle Database Vault is enabled, to create the proxy user account CREATE SESSION	
system privilege to the proxy user account ALTER USER	
system privilege to enable existing user accounts to connect to the database through the proxy account Follow these guidelines when you create proxy user accounts:	
CREATE SESSION	
privilege. Do not grant this user any other privileges. The proxy user account is designed to only enable another user to connect using the proxy account. Any privileges that must be exercised during the connection should belong to the connecting user, not to the proxy account. ALTER USER	
statement enables you to configure the user to connect using specified roles, any role except a specified role, or with no roles at all. The CREATE USER	
statement enables you to create the following types of user accounts, all of which can be used as proxy accounts:	
To create a proxy user account and authorize users to connect through it:	
CREATE USER	
statement to create the proxy user account. For example:	
GRANT CONNECT THROUGH	
clause of the ALTER USER	
statement to enable an existing user to connect through the proxy user account. For example:	
Suppose user preston	
has a large number of roles, but you only want her to use one role (for example, the appuser_role	
) when she is connected to the database through the appuser	
proxy account. You can use the following ALTER USER	
statement:	
Any other roles that user preston	
will not be available to her as long as she is connecting as the appuser	
proxy.	
After you complete these steps, user preston	
can connect using the appuser	
proxy user as follows:	
Note the following:	
appuser	
, only has the minimum privileges (CREATE SESSION	
). PROXY_USERS	
data dictionary view, for example: REVOKE CONNECT THROUGH	
clause of ALTER USER	
to disallow a proxy connection. For example, to revoke user preston	
from connecting through the proxy user appuser	
, enter the following statement: See Also:	
If you are concerned about the password used in proxy authentication being obtained by a malicious user, then you can use the secure external password store with the proxy authentication to store the password credentials in a wallet. Connecting to Oracle Database using proxy authentication and the secure external password store is ideal for situations such as running batch files. When a proxy user connects to the database and authenticates using a secure external password, the password is not exposed in the event that a malicious user tries to obtain the password.	
To use proxy authentication with the secure external password store:	
Afterward, the user can connect using the proxy but without having to specify a password. For example:	
When you use the secure external password store, the user logging in does not need to supply the user name and password. Only the SERVICE_NAME	
value (that is, db_alias	
) from the tnsnames.ora	
file must be specified.	
For enterprise users or database users, Oracle Call Interface, JDBC/OCI, or Thin driver enables a middle tier to set up several user sessions within a single database connection, each of which uniquely identifies a connected user (connection pooling). These sessions reduce the network overhead of creating separate network connections from the middle tier to the database.	
If you want to authenticate from clients through a middle tier to the database, the full authentication sequence from the client to the middle tier to the database occurs as follows:	
Example 1: If the user authenticates to the middle tier using SSL, then the middle tier can provide the DN from the X.509 certificate of the user, or the certificate itself in the session. The database uses the DN to look up the user in Oracle Internet Directory.	
Example 2: If the user is a password-authenticated enterprise user, then the middle tier must provide, as a minimum, a globally unique name for the user. The database uses this name to look up the user in Oracle Internet Directory. If the session also provides a password for the user, then the database will verify the password against Oracle Internet Directory. User roles are automatically retrieved from Oracle Internet Directory after the session is established.	
The OCISessionBegin	
call fails if the application server cannot perform a proxy authentication on behalf of the client by the administrator, or if the application server is not allowed to activate the specified roles.	
Least privilege is the principle that users should have the fewest privileges necessary to perform their duties and no more. As applied to middle tier applications, this means that the middle tier should not have more privileges than it needs. Oracle Database enables you to limit the middle tier such that it can connect only on behalf of certain database users, using only specific database roles. You can limit the privilege of the middle tier to connect on behalf of an enterprise user, stored in an LDAP directory, by granting to the middle tier the privilege to connect as the mapped database user. For instance, if the enterprise user is mapped to the APPUSER	
schema, then you must at least grant to the middle tier the ability to connect on behalf of APPUSER	
. Otherwise, attempts to create a session for the enterprise user will fail.	
However, you cannot limit the ability of the middle tier to connect on behalf of enterprise users. For example, suppose that user Sarah wants to connect to the database through a middle tier, appsrv	
(which is also a database user). Sarah has multiple roles, but it is desirable to restrict the middle tier to use only the clerk	
role on her behalf.	
An administrator could effectively grant permission for appsrv	
to initiate connections on behalf of Sarah using her clerk	
role only, using the following syntax:	
By default, the middle tier cannot create connections for any client. The permission must be granted for each user.	
To allow appsrv	
to use all of the roles granted to the client Sarah, the following statement would be used:	
Each time a middle tier initiates an OCI, JDBC/OCI, or Thin driver session for another database user, the database verifies that the middle tier is authorized to connect for that user by using the role specified.	
Note: Instead of using default roles, create your own roles and assign only necessary privileges to them. Creating your own roles enables you to control the privileges granted by them and protects you if Oracle Database changes or removes default roles. For example, theCONNECT role now has only the CREATE SESSION privilege, the one most directly needed when connecting to a database. However, See Chapter 4, "Configuring Privilege and Role Authorization," for more information about roles.	
The following statement authorizes the middle-tier server appserve	
to connect as user bill	
. It uses the WITH ROLE	
clause to specify that appserve	
activate all roles associated with bill	
, except payroll	
.	
To revoke the middle-tier server (appserve	
) authorization to connect as user bill	
, the following statement is used:	
Use the AUTHENTICATION REQURED	
clause of the ALTER USER ... GRANT CONNECT THROUGH	
statement to authorize a user to be proxied, but not authenticated, by a middle tier. Currently, PASSWORD	
is the only means supported.	
The following statement illustrates this form of authentication:	
In the preceding statement, middle-tier server midtier	
is authorized to connect as user mary	
, and midtier	
must also pass the user password to the database server for authorization.	
Administrators can specify that authentication is required by using the AUTHENTICATION REQUIRED	
proxy clause with the ALTER USER	
SQL statement. In this case, the middle tier must provide user authentication credentials.	
For example, suppose that user Sarah wants to connect to the database through a middle tier, appsrv	
. An administrator could require that appsrv	
provides authentication credentials for Sarah by using the following syntax:	
The AUTHENTICATION REQUIRED	
clause ensures that authentication credentials for the user must be presented when the user is authenticated through the specified proxy.	
Note: For backward compatibility, if you use theAUTHENTICATED USING PASSWORD proxy clause, then Oracle Database transforms it to AUTHENTICATION REQUIRED .	
When you use password-based proxy authentication, Oracle Database passes the password of the client to the middle-tier server. The middle-tier server then passes the password as an attribute to the data server for verification. The main advantage to this is that the client computer does not have to have Oracle software installed on it to perform database operations.	
To pass the password of the client, the middle-tier server calls the OCIAttrSet()	
function as follows, passing OCI_ATTR_PASSWORD	
as the type of the attribute being set.	
If the middle tier connects to the database as a client who is an enterprise user, then either the distinguished name, or the X.509 certificate containing the distinguished name is passed over instead of the database user name. If the user is a password-authenticated enterprise user, then the middle tier must provide, as a minimum, a globally unique name for the user. The database uses this name to look up the user in Oracle Internet Directory.	
To pass over the distinguished name of the client, the application server would call the Oracle Call Interface method OCIAttrSet()	
with OCI_ATTR_DISTINGUISHED_NAME	
as the attribute type, as follows:	
To pass over the entire certificate, the middle tier would call OCIAttrSet()	
with OCI_ATTR_CERTIFICATE	
as the attribute type, as follows.	
If the type is not specified, then the database uses its default certificate type of X.509.	
Note:	
If you are using proxy authentication for password-authenticated enterprise users, then use the same OCI attributes as for database users authenticated by password (OCI_ATTR_USERNAME	
). Oracle Database first checks the user name against the database. If it finds no user, then the database checks the user name in the directory. This user name must be globally unique.	
The following sections explain how to use client identifiers:	
Oracle Database provides the CLIENT_IDENTIFIER	
attribute of the built-in USERENV	
application context namespace for application users. These users are known to an application but unknown to the database. The CLIENT_IDENTIFIER	
attribute can capture any value that the application uses for identification or access control, and passes it to the database. The CLIENT_IDENTIFIER	
attribute is supported in OCI, JDBC/OCI, or Thin driver.	
Many applications use session pooling to set up several sessions to be reused by multiple application users. Users authenticate themselves to a middle-tier application, which uses a single identity to log in to the database and maintains all the user connections. In this model, application users are users who are authenticated to the middle tier of an application, but who are not known to the database. You can use a CLIENT_IDENTIFIER	
attribute, which acts like an application user proxy for these types of applications.	
In this model, the middle tier passes a client identifier to the database upon the session establishment. The client identifier could actually be anything that represents a client connecting to the middle tier, for example, a cookie or an IP address. The client identifier, representing the application user, is available in user session information and can also be accessed with an application context (by using the USERENV	
naming context). In this way, applications can set up and reuse sessions, while still being able to keep track of the application user in the session. Applications can reset the client identifier and thus reuse the session for a different user, enabling high performance.	
You can use the CLIENT_IDENTIFIER	
predefined attribute of the built-in application context namespace, USERENV	
, to capture the application user name for use with global application context. You also can use the CLIENT_IDENTIFIER	
attribute independently. When you use the CLIENT_IDENTIFIER	
attribute independently from a global application context, you can set CLIENT_IDENTIFIER	
with the DBMS_SESSION	
interface. The ability to pass a CLIENT_IDENTIFIER	
to the database is supported in Oracle Call Interface (OCI), JDBC/OCI, or Thin driver.	
When you use the CLIENT_IDENTIFIER	
attribute with global application context, it provides flexibility and high performance for building applications. For example, suppose a Web-based application that provides information to business partners has three types of users: gold partner, silver partner, and bronze partner, representing different levels of information available. Instead of each user having his or her own session set up with individual application contexts, the application could set up global application contexts for gold partners, silver partners, and bronze partners. Then, use the CLIENT_IDENTIFIER	
to point the session at the correct context to retrieve the appropriate type of data. The application need only initialize the three global contexts once and use the CLIENT_IDENTIFIER	
to access the correct application context to limit data access. This provides performance benefits through session reuse and through accessing global application contexts set up once, instead of having to initialize application contexts for each session individually.	
See Also:	
Using the CLIENT_IDENTIFIER	
attribute is especially useful for those applications in which the users are unknown to the database. In these situations, the application typically connects as a single database user and all actions are taken as that user. Because all user sessions are created as the same user, this security model makes it difficult to achieve data separation for each user. These applications can use the CLIENT_IDENTIFIER	
attribute to preserve the real application user identity through to the database.	
With this approach, sessions can be reused by multiple users by changing the value of the CLIENT_IDENTIFIER	
attribute, which captures the name of the real application user. This avoids the overhead of setting up a separate session and separate attributes for each user, and enables reuse of sessions by the application. When the CLIENT_IDENTIFIER	
attribute value changes, the change is added to the next OCI, JDBC/OCI, or Thin driver call for additional performance benefits.	
For example, the user Daniel connects to a Web Expense application. Daniel is not a database user; he is a typical Web Expense application user. The application accesses the built-in application context namespace and sets DANIEL	
as the CLIENT_IDENTIFIER	
attribute value. Daniel completes his Web Expense form and exits the application. Then, Ajit connects to the Web Expense application. Instead of setting up a new session for Ajit, the application reuses the session that currently exists for Daniel, by changing the CLIENT_IDENTIFIER	
to AJIT	
. This avoids the overhead of setting up a new connection to the database and the overhead of setting up a global application context. The CLIENT_IDENTIFIER	
attribute can be set to any value on which the application bases access control. It does not have to be the application user name.	
To set the CLIENT_IDENTIFIER	
attribute with OCI, use the OCI_ATTR_CLIENT_IDENTIFIER	
attribute in the call to OCIAttrSet()	
. Then, on the next request to the server, the information is propagated and stored in the server sessions. For example:	
For applications that use JDBC, be aware that JDBC does not set the client identifier. To set the client identifier in a connection pooling environment, use Dynamic Monitoring Service (DMS) metrics. If DMS is not available, then use the connection.setClientInfo	
method. For example:	
See Also:	
To use the DBMS_SESSION	
package to set and clear the CLIENT_IDENTIFIER	
value on the middle tier, use the following interfaces:	
SET_IDENTIFIER	
CLEAR_IDENTIFIER	
The middle tier uses SET_IDENTIFIER	
to associate the database session with a particular user or group. Then, the CLIENT_IDENTIFIER	
is an attribute of the session and can be viewed in session information.	
If you plan to use the DBMS_SESSION.SET_IDENTIFIER	
procedure, be aware that the DBMS_APPLICATION_INFO.SET_CLIENT_INFO	
procedure can overwrite the value of the client identifier. Typically, these values should be the same, so if SET_CLIENT_INFO	
is set, its value can be automatically propagated to the value set by SET_IDENTIFIER	
if the CLIENTID_OVERWRITE	
event is set to ON	
.	
To check the status of the CLIENTID_OVERWRITE	
event, log in to SQL*Plus and then enter the SHOW PARAMETER	
command. For example, assuming that CLIENTID_OVERWRITE	
is enabled:	
To enable the CLIENTID_OVERWRITE	
event system-wide, connect to SQL*Plus as SYS	
using the SYSDBA	
privilege, and then enter the following ALTER SYSTEM	
statement:	
Or, enter the following line in your init.ora	
file:	
Then restart the database. To disable the CLIENTID_OVERWRITE	
event, log in to SQL*Plus as SYS	
with the SYSDBA	
privilege, and then run the following ALTER SYSTEM	
statement:	
If you prefer to change the CLIENTID_OVERWRITE	
value for the session only, then use the ALTER SESSION	
statement.	
Afterwards, if you set the client identifier using the DBMS_APPLICATION_INFO.SET_CLIENT_INFO	
procedure, you must then run DBMS_SESSION.SET_IDENTIFIER	
so that the client identifier settings are the same.	
See Also:	
Table 3-3 lists data dictionary views that contain information about user authentication. For detailed information about these views, see Oracle Database Reference.	
Table 3-3 Data Dictionary Views That Describe User Authentication	
View	Description
---	---
Displays information about profiles, including their settings and limits.	
Displays the kind of authentication used for a database role to log in to the database, such as	
Among other user information, displays the following:	
Displays whether the user account password is a default password	
Displays users who are currently authorized to connect through a middle tier	
Displays user accounts for existing database links (
Querying the	
Authorization includes primarily two processes:	
A user privilege is the right to run a particular type of SQL statement, or the right to access an object that belongs to another user, run a PL/SQL package, and so on. The types of privileges are defined by Oracle Database.	
Roles are created by users (usually administrators) to group together privileges or other roles. They are a way to facilitate the granting of multiple privileges or roles to users.	
This section describes the following general categories:	
You grant privileges to users so they can accomplish tasks required for their jobs. You should grant a privilege only to a user who requires that privilege to accomplish the necessary work. Excessive granting of unnecessary privileges can compromise security. For example, you never should grant SYSDBA	
or SYSOPER	
administrative privilege to users who do not perform administrative tasks.	
A user can receive a privilege in two ways:	
psmith	
the privilege to insert records into the employees	
table. employees	
table to the role named clerk	
, which in turn you can grant to users psmith	
and robert	
. Because roles allow for easier and better management of privileges, you should usually grant privileges to roles and not to specific users.	
See Also:	
As with all powerful privileges, only grant the SYSDBA	
and SYSOPER	
administrative privileges to trusted users. However, be aware that there is a restriction for users whose names have non-ASCII characters (for example, the umlaut in the name HÜBER	
). You can grant administrative privileges to these users, but if the Oracle database instance is down, the authentication using the granted privilege is not supported if the user name has non-ASCII characters. If the database instance is up, then the authentication is supported.	
This section contains:	
A system privilege is the right to perform a particular action or to perform an action on any schema objects of a particular type. For example, the privileges to create tablespaces and to delete the rows of any table in a database are system privileges.	
There are over 100 distinct system privileges. Each system privilege allows a user to perform a particular database operation or class of database operations. Remember that system privileges are very powerful. Only grant them when necessary to roles and trusted users of the database. You can find a complete list of system privileges and their descriptions in Oracle Database SQL Language Reference. To find the system privileges that have been granted to a user, you can query the DBA_SYS_PRIVS	
data dictionary view.	
Because system privileges are so powerful, by default the database is configured to prevent typical (non-administrative) users from exercising the ANY	
system privileges (such as UPDATE ANY TABLE	
) on the data dictionary. See "Guidelines for Securing User Accounts and Privileges" for additional guidelines about restricting system privileges.	
To secure the data dictionary, set the O7_DICTIONARY_ACCESSIBILITY	
initialization parameter to FALSE	
, which is the default value. This feature is called the dictionary protection mechanism.	
The O7_DICTIONARY_ACCESSIBILITY	
initialization parameter controls restrictions on system privileges when you upgrade from Oracle Database release 7 to Oracle8i and later releases. If the parameter is set to TRUE	
, then access to objects in the SYS	
schema is allowed (Oracle Database release 7 behavior). Because the ANY	
privilege applies to the data dictionary, a malicious user with ANY	
privilege could access or alter data dictionary tables.	
To set the O7_DICTIONARY_ACCESSIBILTY	
initialization parameter, modify it in the init	
SID	
.ora	
file. Alternatively, you can log on to SQL*Plus as user SYS	
with the SYSDBA	
privilege and then enter an ALTER SYSTEM	
statement, assuming you have started the database using a server parameter file (SPFILE).	
Example 4-1 shows how to set the O7_DICTIONARY_ACCESSIBILTY	
initialization parameter to FALSE	
by issuing an ALTER SYSTEM	
statement in SQL*Plus.	
Example 4-1 Setting O7_DICTIONARY_ACCESSIBILITY to FALSE	
When you set O7_DICTIONARY_ACCESSIBILITY	
to FALSE	
, system privileges that enable access to objects in any schema (for example, users who have ANY	
privileges, such as CREATE ANY PROCEDURE	
) do not allow access to objects in the SYS	
schema. This means that access to the objects in the SYS	
schema (data dictionary objects) is restricted to users who connect using the SYSDBA	
privilege. Remember that the SYS	
user must log in with either the SYSDBA	
or SYSOPER	
privilege; otherwise, an ORA-28009: connection as SYS should be as SYSDBA or SYSOPER	
error is raised. If you set O7_DICTIONARY_ACCESSIBILITY	
to TRUE	
, then you would be able to log in to the database as user SYS	
without having to specify the SYSDBA	
or SYSOPER	
privilege.	
System privileges that provide access to objects in other schemas do not give other users access to objects in the SYS	
schema. For example, the SELECT ANY TABLE	
privilege allows users to access views and tables in other schemas, but does not enable them to select dictionary objects (base tables of dynamic performance views, regular views, packages, and synonyms). You can, however, grant these users explicit object privileges to access objects in the SYS	
schema.	
See Oracle Database Reference for more information about the O7_DICTIONARY_ACCESSIBILITY	
initialization parameter.	
Users with explicit object privileges or those who connect with administrative privileges (SYSDBA	
) can access objects in the SYS	
schema.	
Table 4-1 lists roles that you can grant to users who need access to objects in the SYS	
schema.	
Table 4-1 Roles to Allow Access to SYS Schema Objects	
Role	Description
---	---
Grant this role to allow users	
Grant this role to allow users	
Grant this role to allow users to delete records from the system audit tables	
Additionally, you can grant the SELECT ANY DICTIONARY	
system privilege to users who require access to tables created in the SYS	
schema. This system privilege allows query access to any object in the SYS	
schema, including tables created in that schema. It must be granted individually to each user requiring the privilege. It is not included in GRANT ALL PRIVILEGES	
, but it can be granted through a role.	
Caution: You should grant these roles and theSELECT ANY DICTIONARY system privilege with extreme care, because the integrity of your system can be compromised by their misuse.	
You can grant or revoke system privileges to users and roles. If you grant system privileges to roles, then you can use the roles to exercise system privileges. For example, roles permit privileges to be made selectively available. Ensure that you follow the separation of duty guidelines described in "Guidelines for Securing Roles".	
Use either of the following methods to grant or revoke system privileges to or from users and roles:	
GRANT	
and REVOKE	
SQL statements See Also:	
Only two types of users can grant system privileges to other users or revoke those privileges from them:	
ADMIN	
OPTION	
GRANT	
ANY	
PRIVILEGE	
For this reason, only grant these privileges to trusted users.	
System privileges that use the ANY	
keyword enable you to set privileges for an entire category of objects in the database. For example, the CREATE ANY PROCEDURE	
system privilege permits a user to create a procedure anywhere in the database. The behavior of an object created by users with the ANY	
privilege is not restricted to the schema in which it was created. For example, if user JSMITH	
has the CREATE ANY PROCEDURE	
privilege and creates a procedure in the schema JONES	
, then the procedure will run as JONES	
. However, JONES	
may not be aware that the procedure JSMITH	
created is running as him (JONES	
). If JONES	
has DBA	
privileges, letting JSMITH	
run a procedure as JONES	
could pose a security violation.	
The PUBLIC	
role is a special role that every database user account automatically has when the account is created. By default, it has no privileges granted to it, but it does have numerous grants, mostly to Java objects. You cannot drop the PUBLIC	
role, and a manual grant or revoke of this role has no meaning, because the user account will always assume this role. Because all database user accounts assume the PUBLIC	
role, it does not appear in the DBA_ROLES	
and SESSION_ROLES	
data dictionary views.	
You can grant privileges to the PUBLIC	
role, but remember that this makes the privileges available to every user in the Oracle database. For this reason, be careful about granting privileges to the PUBLIC	
role, particularly powerful privileges such as the ANY	
privileges and system privileges. For example, if JSMITH	
has the CREATE PUBLIC SYNONYM	
system privilege, he could redefine an interface that he knows everyone else uses, and then point to it with the PUBLIC SYNONYM	
that he created. Instead of accessing the correct interface, users would access the interface of JSMITH	
, which could possibly perform illegal activities such as stealing the login credentials of users.	
These types of privileges are very powerful and could pose a security risk if given to the wrong person. Be careful about granting privileges using ANY	
or PUBLIC	
. As with all privileges, you should follow the principles of "least privilege" when granting these privileges to users.	
To protect the data dictionary (the contents of the SYS	
schema) against users who have one or more of the powerful ANY	
system privileges, set the O7_DICTIONARY_ACCESSIBILITY	
initialization parameter to FALSE	
. You can set this parameter by using an ALTER SYSTEM	
statement (see Example 4-1, "Setting O7_DICTIONARY_ACCESSIBILITY to FALSE") or by modifying the init	
SID	
.ora	
file. See "Guidelines for Securing a Database Installation and Configuration" for additional guidelines.	
Managing and controlling privileges is easier when you use roles, which are named groups of related privileges that you grant as a group to users or other roles. Within a database, each role name must be unique, different from all user names and all other role names. Unlike schema objects, roles are not contained in any schema. Therefore, a user who creates a role can be dropped with no effect on the role.	
This section contains:	
Roles are useful for quickly and easily granting permissions to users. Although you can use Oracle Database-defined roles, you have more control and continuity if you create your own roles that contain only the privileges pertaining to your requirements. Oracle may change or remove the privileges in an Oracle Database-defined role, as it has with the CONNECT	
role, which now has only the CREATE SESSION	
privilege. Formerly, the CONNECT	
role had eight other privileges.	
Roles have the following functionality:	
role1	
cannot be granted to role role2	
if role role2	
has previously been granted to role role1	
. psmith	
the role1	
role. Then you grant the role2	
and role3	
roles to the role1	
role. Roles role2	
and role3	
are now under role1	
. This means psmith	
has been indirectly granted the roles role2	
and role3	
, in addition to the direct grant of role1	
. Enabling the direct role1	
for psmith	
enables the indirect roles role2	
and role3	
for this user as well. DEFAULT ROLE	
clause of the ALTER USER	
statement. Ensure that the DEFAULT ROLE	
clause refers only to roles that have been directly granted to the user. To find the directly granted roles for a user, query the DBA_ROLE_PRIVS	
data dictionary view. This view does not include the user's indirectly granted roles. To find roles that are granted to other roles, query the ROLE_ROLE_PRIVS	
view. SET ROLE	
statement. Table 4-2 describes the properties of roles that enable easier privilege management within a database.	
Table 4-2 Properties of Roles and Their Description	
Property	Description
---	---
Reduced privilege administration	Rather than granting the same set of privileges explicitly to several users, you can grant the privileges for a group of related users to a role, and then only the role must be granted to each member of the group.
Dynamic privilege management	If the privileges of a group must change, then only the privileges of the role need to be modified. The security domains of all users granted the group's role automatically reflect the changes made to the role.
Selective availability of privileges	You can selectively enable or disable the roles granted to a user. This allows specific control of a user's privileges in any given situation.
Application awareness	The data dictionary records which roles exist, so you can design applications to query the dictionary and automatically enable (or disable) selective roles when a user attempts to execute the application by way of a given user name.
Application-specific security	You can protect role use with a password. Applications can be created specifically to enable a role when supplied the correct password. Users cannot enable the role if they do not know the password.
Database administrators often create roles for a database application. You should grant a secure application role all privileges necessary to run the application. You then can grant the secure application role to other roles or users. An application can have several different roles, each granted a different set of privileges that allow for more or less data access while using the application.	
The DBA can create a role with a password to prevent unauthorized use of the privileges granted to the role. Typically, an application is designed so that when it starts, it enables the proper role. As a result, an application user does not need to know the password for an application role.	
In general, you create a role to serve one of two purposes:	
Figure 4-1 and the sections that follow describe the two uses of roles.	
Grant an application role all privileges necessary to run a given database application. Then, grant the secure application role to other roles or to specific users. An application can have several different roles, with each role assigned a different set of privileges that allow for more or less data access while using the application.	
Each role and user has its own unique security domain. The security domain of a role includes the privileges granted to the role plus those privileges granted to any roles that are granted to the role.	
The security domain of a user includes privileges on all schema objects in the corresponding schema, the privileges granted to the user, and the privileges of roles granted to the user that are currently enabled. (A role can be simultaneously enabled for one user and disabled for another.) This domain also includes the privileges and roles granted to the role PUBLIC	
. The PUBLIC	
role represents all users in the database.	
The use of roles in a PL/SQL block depends on whether it is an anonymous block or a named block (stored procedure, function, or trigger), and whether it executes with definer's rights or invoker's rights.	
All roles are disabled in any named PL/SQL block (stored procedure, function, or trigger) that executes with definer's rights. Roles are not used for privilege checking and you cannot set roles within a definer's rights procedure.	
The SESSION_ROLES	
view shows all roles that are currently enabled. If a named PL/SQL block that executes with definer's rights queries SESSION_ROLES	
, then the query does not return any rows.	
Named PL/SQL blocks that execute with invoker's rights and anonymous PL/SQL blocks are executed based on privileges granted through enabled roles. Current roles are used for privilege checking within an invoker's rights PL/SQL block. You can use dynamic SQL to set a role in the session.	
See Also:	
A user requires one or more privileges to successfully execute a DDL statement, depending on the statement. For example, to create a table, the user must have the CREATE	
TABLE	
or CREATE	
ANY	
TABLE	
system privilege. To create a view of a table that belongs to another user, the creator requires the CREATE VIEW	
or CREATE	
ANY	
VIEW	
system privilege and either the SELECT	
object	
privilege for the table or the SELECT	
ANY	
TABLE	
system privilege.	
Oracle Database avoids the dependencies on privileges received by way of roles by restricting the use of specific privileges in certain DDL statements. The following rules describe these privilege restrictions concerning DDL statements:	
CREATE	
TABLE	
, CREATE	
VIEW,	
and CREATE	
PROCEDURE	
privileges ALTER	
and INDEX	
privileges for a table You cannot use the REFERENCES	
object privilege for a table to define the foreign key of a table if the privilege is received through a role.	
CREATE VIEW	
statement is used. For example, a user who is granted the SELECT	
ANY	
TABLE	
system privilege or the SELECT	
object	
privilege for a table through a role cannot use either of these privileges to create a view on a table that belongs to another user. This is because views are definer's rights objects, so when creating them you cannot use any privileges (neither system privileges or object privileges) granted to you through a role. If the privilege is granted directly to you, then you can use the privilege. However, if the privilege is revoked at a later time, then the view definition becomes invalid ("contains errors") and must recompiled before it can be used again. The following example further clarifies the permitted and restricted uses of privileges received through roles.	
Assume that a user is:	
CREATE	
VIEW	
system privilege SELECT	
object	
privilege for the employees	
table SELECT	
object	
privilege for the departments	
table Given these directly and indirectly granted privileges:	
SELECT	
statements on both the employees	
and departments	
tables. CREATE	
VIEW	
and SELECT	
privilege for the employees	
table through a role, the user cannot create a view on the employees	
table, because the SELECT	
object	
privilege for the employees	
table was granted through a role. departments	
table, because the user has the CREATE	
VIEW	
privilege through a role and the SELECT	
privilege for the departments	
table directly. In some environments, you can administer database security using the operating system. The operating system can be used to grant and revoke database roles and to manage their password authentication. This capability is not available on all operating systems.	
See Also: Your operating system-specific Oracle Database documentation for details about managing roles through the operating system	
When you use roles in a distributed database environment, ensure that all needed roles are set as the default roles for a distributed (remote) session. These roles cannot be enabled when the user connects to a remote database from within a local database session. For example, the user cannot execute a remote procedure that attempts to enable a role at the remote site.	
Oracle Database provides a set of predefined roles to help in database administration. These roles, listed in Table 4-3, are automatically defined for Oracle databases when you run the standard scripts that are part of database creation. If you install other options or products, then other predefined roles may be created.	
Table 4-3 Oracle Database Predefined Roles	
Predefined Role	Description
---	---
Provides privileges to update table data in parallel by using the See Also: Oracle Database PL/SQL Packages and Types Reference for more information about the	
Provides privileges to administer Advanced Queuing. Includes	
Obsolete, but kept mainly for release 8.0 compatibility. Provides	
Used by the XDB protocols to define any user who has logged in to the system.	
Provides access to packages used for implementing Information Lifecycle Management (ILM) and hierarchical storage and other applications. See Also: Oracle Database SecureFiles and Large Objects Developer's Guide	
Provides the This role is provided for compatibility with previous releases of Oracle Database. You can determine the privileges encompassed by this role by querying the Note: Oracle recommends that you design your own roles for database security rather than relying on this role. This role may not be created automatically by future releases of Oracle Database. See Also: Oracle Database Reference for a description of the	
Provides user privileges to manage the Catalog Services for the Web (CSW) component of Oracle Spatial. See Also: Oracle Spatial Developer's Guide for more information	
Provides privileges to create Oracle Text indexes and index preferences, and to use PL/SQL packages. This role should be granted to Oracle Text users. See Also: Oracle Text Application Developer's Guide for more information	
Provides privileges to manage Common Warehouse Metadata (CWM), which is a repository standard used by Oracle data warehousing and decision support. See Also: Oracle Database Data Warehousing Guide for more information	
Provides privileges to export data from an Oracle database using Oracle Data Pump. Caution: This is a very powerful role because it provides a user access to any data in any schema in the database. Use caution when granting this role to users. See Also: Oracle Database Utilities for more information	
Provides privileges to import data into an Oracle database using Oracle Data Pump. Caution: This is a very powerful role because it provides a user access to any data in any schema in the database. Use caution when granting this role to users. See Also: Oracle Database Utilities for more information	
Provides all system privileges that were created with the This role is provided for compatibility with previous releases of Oracle Database. You can determine the privileges encompassed by this role by querying the Note: Oracle recommends that you design your own roles for database security rather than relying on this role. This role may not be created automatically by future releases of Oracle Database. See Also: Oracle Database Reference for a description of the	
Provides the	
Provides privileges to connect to EJBs from a Java stored procedure.	
Provides	
Provides the privileges required to perform full and incremental database exports using the Export utility (later replaced with Oracle Data Pump). It includes these privileges: This role is provided for convenience in using the export and import utilities. Caution: This is a very powerful role because it provides a user access to any data in any schema in the database. Use caution when granting this role to users. See Also: Oracle Database Utilities for more information	
Provides privileges to update system statistics, which are collected using the See Also: Oracle Database Performance Tuning Guide for more information about managing optimizer statistics	
Provides privileges to establish a connection to an LDAP server, for use with Oracle Streams AQ. See Also: Oracle Streams Advanced Queuing User's Guide for more information	
Provides the See Also: Oracle Database Heterogeneous Connectivity User's Guide for more information	
Provides privileges to both use the Heterogeneous Services (HS) PL/SQL packages and query the HS-related data dictionary views. See Also: Oracle Database Heterogeneous Connectivity User's Guide for more information	
Provides privileges to query the Heterogeneous Services data dictionary views. See Also: Oracle Database Heterogeneous Connectivity User's Guide for more information	
Provides the privileges required to perform full database imports using the Import utility (later replaced with Oracle Data Pump). Includes an extensive list of system privileges (use view This role is provided for convenience in using the export and import utilities. Caution: This is a very powerful role because it provides a user access to any data in any schema in the database. Use caution when granting this role to users.s. See Also: Oracle Database Utilities for more information	
Provides privileges to run the Oracle Database Java applications debugger. See Also: Oracle Database Java Developer's Guide for more information about managing security for Oracle Java applications	
Deprecated for this release.	
Provides major permissions to use Java2, including updating Oracle JVM-protected packages. See Also: Oracle Database Java Developer's Guide for more information about managing security for Oracle Java applications	
Provides limited permissions to use Java2. See Also: Oracle Database Java Developer's Guide for more information about managing security for Oracle Java applications	
Provides administrative permissions to update policy tables for Oracle Database Java applications. See Also: Oracle Database Java Developer's Guide for more information about managing security for Oracle Java applications	
Provides privileges to deploy See Also: Oracle Database Advanced Application Developer's Guide for more information	
Provides privileges to start and maintain a JMX agent in a database session. See Also: Oracle Database Java Developer's Guide for more information about managing Oracle Java applications	
Provides permissions to use the See Also: Oracle Label Security Administrator's Guide for more information	
Provides administrative privileges to manage the SQL Apply (logical standby database) environment. See Also: Oracle Data Guard Concepts and Administration for more information	
Grants the	
Provides privileges to create, drop, select (read), load (write), and delete a SQL tuning set through the See Also: Oracle Database Performance Tuning Guide for more information	
Provides privileges needed by the Management Agent component of Oracle Enterprise Manager to monitor and manage the database. See Also: Oracle Database Performance Tuning Guide for more information	
Provides administrative privileges to create dimensional objects in different schemas for Oracle OLAP. See Also: Oracle OLAP User's Guide for more information	
Provides application developers privileges to create dimensional objects in their own schemas for Oracle OLAP. See Also: Oracle OLAP User's Guide for more information	
Provides privileges to administer security for Oracle OLAP. See Also: Oracle OLAP User's Guide for more information	
Provides privileges to administer Oracle Multimedia DICOM.	
Provides privileges to perform standard client-related tasks for Oracle Warehouse Builder, such as creating projects, modules, tables, views, maps, and so on. Warehouse Builder automatically grants this role to all workspace owners and users. (That is, you do not need to explicitly grant it to anyone who must use Warehouse Builder.) For security reasons, the See Also: Oracle Warehouse Builder Installation and Administration Guide for more information	
Provides privileges from the database level for any registered Oracle Warehouse Builder user to query the Warehouse Builder public views, such as See Also: Oracle Warehouse Builder Installation and Administration Guide for more information	
Provides privileges to create and own an Oracle Warehouse Builder workspace. When a workspace owner registers other database users to this workspace, Oracle Database grants this role to these users. Users with this role also have access to Warehouse Builder Control Center public views and other Control Center utilities. Oracle Warehouse Builder grants this role to all Warehouse Builder users. See Also: Oracle Warehouse Builder Installation and Administration Guide for more information	
Provides privileges for owner of the recovery catalog. Includes:	
Provides the following system privileges: This role is provided for compatibility with previous releases of Oracle Database. You can determine the privileges encompassed by this role by querying the Note: Oracle recommends that you design your own roles for database security rather than relying on this role. This role may not be created automatically by future releases of Oracle Database. See Also: Oracle Database Reference for a description of the	
Allows the grantee to execute the procedures of the See Also: Oracle Database Administrator's Guide for more information about the	
Provides	
Used by the Enterprise Manager Management Agent.	
Provides administrative privileges to manage the Catalog Services for the Web (CSW) component of Oracle Spatial. See Also: Oracle Spatial Developer's Guide for more information	
Provides administrative privileges to manage the Web Feature Service (WFS) component of Oracle Spatial. See Also: Oracle Spatial Developer's Guide for more information	
Provides user privileges for the Web Feature Service (WFS) component of Oracle Spatial. See Also: Oracle Spatial Developer's Guide for more information	
Provides administrative privileges for Oracle Workspace Manage. This enables users to run any See Also: Oracle Database Workspace Manager Developer's Guide for more information	
Allows the grantee to register an XML schema globally, as opposed to registering it for use or access only by its owner. It also lets the grantee bypass access control list (ACL) checks when accessing Oracle XML DB Repository. See Also: Oracle XML DB Developer's Guide for information about XML schemas and the XML DB Repository	
Allows the grantee to define invoker's rights handlers and to create or update the resource configuration for XML repository triggers. By default, Oracle Database grants this role to the See Also: Oracle XML DB Developer's Guide for information about Oracle Database XML repository triggers	
Allows the grantee to access Oracle Database Web services over HTTPS. However, it does not provide the user access to objects in the database that are public. To allow public access, you need to grant the user the See Also: Oracle XML DB Developer's Guide for information about Oracle Database Web services	
Allows the grantee to access Oracle Database Web services over HTTP. However, it does not provide the user access to objects in the database that are public. To allow public access, you need to grant the user the See Also: Oracle XML DB Developer's Guide for information about Oracle Database Web services	
Allows the grantee access to public objects through Oracle Database Web services. See Also: Oracle XML DB Developer's Guide for information about Oracle Database Web services	
Note: Each installation should create its own roles and assign only those privileges that are needed, thus retaining detailed control of the privileges in use. This process also removes any need to adjust existing roles, privileges, or procedures whenever Oracle Database changes or removes roles that Oracle Database defines.	
You can create a role using the CREATE ROLE	
statement, but you must have the CREATE ROLE	
system privilege to do so. Typically, only security administrators have this system privilege.	
After you create a role, the role has no privileges associated with it. Your next step is to grant either privileges or other roles to the new role.	
You must give each role you create a unique name among existing user names and role names of the database. Roles are not contained in the schema of any user. In a database that uses a multibyte character set, Oracle recommends that each role name contain at least one single-byte character. If a role name contains only multibyte characters, then the encrypted role name and password combination is considerably less secure. See Guideline 1 in "Guidelines for Securing Passwords" for password guidelines.	
Example 4-2 creates the clerk	
role.	
You can use the IDENTIFIED BY	
clause to authorize the role with a password. The IDENTIFIED BY	
clause of the CREATE ROLE	
statement specifies how the user must be authorized before the role can be enabled for use by a specific user to which it has been granted. If you do not specify this clause, or if you specify NOT IDENTIFIED	
, then no authorization is required when the role is enabled. Roles can be specified to be authorized by the following:	
These authorizations are discussed in the following sections.	
As an alternative to creating password-protected roles, Oracle recommends that you use secure application roles instead. See "Securing Role Privileges by Using Secure Application Roles" for more information.	
You can set or change the authorization method for a role using the ALTER ROLE	
statement. Remember that you can only directly grant secure application roles or password-authenticated roles to a user.	
Example 4-3 shows how to alter the clerk	
role to specify that the user must have been authorized by an external source before enabling the role.	
Example 4-3 Altering a Role to be Authorized by an External Source	
To alter the authorization method for a role, you must have the ALTER ANY ROLE	
system privilege or have been granted the role with ADMIN	
option.	
See Also: Oracle Database SQL Language Reference for syntax, restrictions, and authorization information about the SQL statements used to manage roles and privileges	
The methods of authorizing roles are presented in this section. A role must be enabled for you to use it.	
This section contains:	
You can protect a role authorized by the database by assigning the role a password. If a user is granted a role protected by a password, then you can enable or disable the role by supplying the proper password for the role in the SET ROLE	
statement. You cannot authenticate a password-authenticated role on logon, even if you add it to the list of default roles. You must explicitly enable it with the SET ROLE	
statement using the required password.	
Example 4-4 shows how to set a password-authenticated role by using the SET ROLE	
statement.	
Example 4-2, "Creating a User Role Authorized by a Password" shows a CREATE ROLE	
statement that creates a role called clerk	
. When it is enabled, the password must be supplied.	
Note: In a database that uses a multibyte character set, passwords for roles must include only single-byte characters. Multibyte characters are not accepted in passwords. See Guideline 1 in "Guidelines for Securing Passwords" for password guidelines.	
An application role (secure application role) can be enabled only by applications using an authorized PL/SQL package. Application developers do not need to secure a role by embedding passwords inside applications. Instead, they can create an application role and specify which PL/SQL package is authorized to enable the role.	
To create a role enabled by an authorized PL/SQL package, use the IDENTIFIED USING	
package_name	
clause in the CREATE ROLE	
SQL statement.	
Example 4-5 indicates that the role admin_role	
is an application role and the role can only be enabled by any module defined inside the PL/SQL package hr.admin	
.	
Example 4-5 Creating a Role Authorized by a PL/SQL Package for an Application	
See the following for more information about secure application roles:	
You can define the external role locally in the database, but you cannot grant the external role to global users, to global roles, or to any other roles in the database. You can create roles that are authorized by the operating system or network clients.	
Example 4-6 creates a role named accts_rec	
and requires that the user is authorized by an external source before it can be enabled:	
Example 4-6 Creating a Role Authorized by an External Source	
Role authentication through the operating system is useful only when the operating system is able to dynamically link operating system privileges with applications. When a user starts an application, the operating system grants an operating system privilege to the user. The granted operating system privilege corresponds to the role associated with the application. At this point, the application can enable the application role. When the application is terminated, the previously granted operating system privilege is revoked from the operating system account of the user.	
If a role is authorized by the operating system, then you must configure information for each user at the operating system level. This operation is operating system dependent.	
If roles are granted by the operating system, then you do not need to have the operating system authorize them also.	
See Also: "Granting Roles Using the Operating System or Network" for more information about roles granted by the operating system	
If users connect to the database over Oracle Net, then by default, the operating system cannot authenticate their roles. This includes connections through a shared server configuration, as this connection requires Oracle Net. This restriction is the default because a remote user could impersonate another operating system user over a network connection. Oracle recommends that you set REMOTE_OS_ROLES	
to FALSE	
, which is the default.	
If you are not concerned with this security risk and want to use operating system role authentication for network clients, then set the initialization parameter REMOTE_OS_ROLES	
in the database initialization parameter file to TRUE	
. The change will take effect the next time you start the instance and mount the database.	
A role can be defined as a global role, where a (global) user can only be authorized to use the role by an enterprise directory service. You define the global role locally in the database by granting privileges and roles to it, but you cannot grant the global role itself to any user or other role in the database. When a global user attempts to connect to the database, the enterprise directory is queried to obtain any global roles associated with the user.	
Example 4-7 creates a global role.	
Global roles are one component of enterprise user security. A global role only applies to one database, but you can grant it to an enterprise role defined in the enterprise directory. An enterprise role is a directory structure that contains global roles on multiple databases and can be granted to enterprise users.	
See "Configuring Global User Authentication and Authorization" for a general discussion of global authentication and authorization of users, and its role in enterprise user management.	
See Also: Oracle Database Enterprise User Security Administrator's Guide for information about implementing enterprise user management	
This section contains:	
See Also:	
You can grant system or object privileges to a role, and any role can be granted to any database user or to another role (but not to itself). However, a role cannot be granted circularly, that is, role X	
cannot be granted to role Y	
if role Y	
has previously been granted to role X	
.	
To provide selective availability of privileges, Oracle Database permits applications and users to enable and disable roles. Each role granted to a user is, at any given time, either enabled or disabled. The security domain of a user includes the privileges of all roles currently enabled for the user and excludes the privileges of any roles currently disabled for the user.	
A role granted to a role is called an indirectly granted role. You can explicitly enable or disable it for a user. However, whenever you enable a role that contains other roles, you implicitly enable all indirectly granted roles of the directly granted role.	
You grant roles to (or revoke roles from) users or other roles by using either of the following methods:	
Privileges are granted to and revoked from roles using the same options.	
You cannot grant a secure role (that is, an IDENTIFIED BY	
role, IDENTIFIED USING	
role, or IDENTIFIED EXTERNALLY	
role) to a non-secure role. You can use the SET ROLE	
statement to enable the secure role for the session.	
Any user with the GRANT	
ANY	
ROLE	
system privilege can grant or revoke any role except a global role to or from other users or roles of the database. (A global role is managed in a directory, such as Oracle Internet Directory, but its privileges are contained within a single database.) By default, the SYS	
or SYSTEM	
user has this privilege. You should grant this system privilege conservatively because it is very powerful.	
Any user granted a role with the ADMIN	
OPTION	
can grant or revoke that role to or from other users or roles of the database. This option allows administrative powers for roles to be granted on a selective basis.	
See Also: Oracle Database Enterprise User Security Administrator's Guide for information about global roles	
In some cases, it may be appropriate to drop a role from the database. The security domains of all users and roles granted a dropped role are immediately changed to reflect the absence of the dropped role privileges. All indirectly granted roles of the dropped role are also removed from affected security domains. Dropping a role automatically removes the role from all user default role lists.	
Because the existence of objects is not dependent on the privileges received through a role, tables and other objects are not dropped when a role is dropped.	
You can drop a role using the SQL statement DROP ROLE	
. To drop a role, you must have the DROP ANY ROLE	
system privilege or have been granted the role with the ADMIN	
option.	
The following statement drops the role CLERK	
:	
This section describes features that you can use to restrict SQL*Plus users from using database roles and thus, prevent serious security problems.	
Prebuilt database applications explicitly control the potential actions of a user, including the enabling and disabling of user roles while using the application. By contrast, ad hoc query tools such as SQL*Plus, permit a user to submit any SQL statement (which may or may not succeed), including enabling and disabling a granted role.	
Potentially, an application user can exercise the privileges attached to that application to issue destructive SQL statements against database tables by using an ad hoc tool.	
For example, consider the following scenario:	
vacation	
role. vacation	
role includes the privileges to issue SELECT	
, INSERT	
, UPDATE	
, and DELETE	
statements against the emp_tab	
table. vacation	
role. Now, consider a user who has been granted the vacation	
role. Suppose that, instead of using the Vacation application, the user executes SQL*Plus. At this point, the user is restricted only by the privileges granted to him explicitly or through roles, including the vacation	
role. Because SQL*Plus is an ad hoc query tool, the user is not restricted to a set of predefined actions, as with designed database applications. The user can query or modify data in the emp_tab	
table as he or she chooses.	
You can use the PRODUCT_USER_PROFILE	
table, which is in the SYSTEM	
schema, to disable certain SQL and SQL*Plus commands in the SQL*Plus environment for each user. SQL*Plus, not the Oracle Database, enforces this security. You can even restrict access to the GRANT	
, REVOKE	
, and SET ROLE	
commands to control user ability to change their database privileges.	
The PRODUCT_USER_PROFILE	
table enables you to list roles that you do not want users to activate with an application. You can also explicitly disable the use of various commands, such as SET ROLE	
.	
For example, you could create an entry in the PRODUCT_USER_PROFILE	
table to:	
clerk	
and manager	
roles with SQL*Plus SET ROLE	
with SQL*Plus Suppose user Marla connects to the database using SQL*Plus. Marla has the clerk	
, manager	
, and analyst	
roles. As a result of the preceding entry in PRODUCT_USER_PROFILE	
, Marla is only able to exercise her analyst	
role with SQL*Plus. Also, when Ginny attempts to issue a SET ROLE	
statement, she is explicitly prevented from doing so because of the entry in the PRODUCT_USER_PROFILE	
table prohibiting use of SET ROLE	
.	
Be aware that the PRODUCT_USER_PROFILE	
table does not completely guarantee security, for multiple reasons. In the preceding example, while SET ROLE	
is disallowed with SQL*Plus, if Marla had other privileges granted to her directly, then she could exercise these using SQL*Plus.	
See Also: SQL*Plus User's Guide and Reference for more information about thePRODUCT_USER_PROFILE table	
Stored procedures encapsulate the use of privileges with business logic so that privileges are only exercised in the context of a well-formed business transaction. For example, an application developer can create a procedure to update the employee name and address in the employees	
table, which enforces that the data can only be updated in normal business hours. Also, rather than grant a human resources clerk the UPDATE	
privilege on the employees	
table, a security administrator may grant the privilege on the procedure only. Then, the human resources clerk can exercise the privilege only in the context of the procedures, and cannot update the employees	
table directly.	
A secure application role is a role that can be enabled only by an authorized PL/SQL package (or procedure). The PL/SQL package itself reflects the security policies needed to control access to the application.	
This method of role creation restricts the enabling of this type of role to the invoking application. For example, the application can perform authentication and customized authorization, such as checking whether the user has connected through a proxy.	
This type of role strengthens security because passwords are not embedded in application source code or stored in a table. This way, the actions the database performs are based on the implementation of your security policies, and these definitions are stored in one place, the database, rather than in your applications. If you need to modify the policy, you do so in one place without having to modify your applications. No matter how users connect to the database, the result is always the same, because the policy is bound to the role.	
To enable the secure application role, you must execute its underlying package by invoking it directly from the application when the user logs in, before the user exercises the privileges granted by the secure application role. You cannot use a logon trigger to enable a secure application role, nor can you have this type of role be a default role.	
When you enable the secure application role, Oracle Database verifies that the authorized PL/SQL package is on the calling stack, that is, it verifies that the authorized PL/SQL package is issuing the command to enable the role.	
You can use secure application roles to ensure the existence of a database connection. Because a secure application role is a role implemented by a package, the package can validate that users can connect to the database through a middle tier or from a specific IP address. In this way, the secure application role prevents users from accessing data outside an application. They are forced to work within the framework of the application privileges that they have been granted.	
This section contains:	
An object privilege is a right that you grant to a user on a database object. Some examples of object privileges include the right to:	
See Also: Oracle Database SQL Language Reference for a list of object privileges and the operations they authorize	
Each type of object has different privileges associated with it.	
You can specify ALL	
[PRIVILEGES	
] to grant or revoke all available object privileges for an object. ALL	
is not a privilege; rather, it is a shortcut, or a way of granting or revoking all object privileges with one GRANT	
and REVOKE	
statement. If all object privileges are granted using the ALL	
shortcut, then individual privileges can still be revoked.	
Similarly, you can revoke all individually granted privileges by specifying ALL	
. However, if you REVOKE ALL	
, and revoking causes integrity constraints to be deleted (because they depend on a REFERENCES	
privilege that you are revoking), then you must include the CASCADE CONSTRAINTS	
option in the REVOKE	
statement.	
Example 4-8 revokes all privileges on the orders table in the HR	
schema using CASCADE CONSTRAINTS	
.	
An object privilege grants permission to perform a particular action on a specific schema object.	
Different object privileges are available for different types of schema objects. The privilege to delete rows from the departments	
table is an example of an object privilege.	
Some schema objects, such as clusters, indexes, triggers, and database links, do not have associated object privileges. Their use is controlled with system privileges. For example, to alter a cluster, a user must own the cluster or have the ALTER	
ANY	
CLUSTER	
system privilege.	
The following sections discuss granting and revoking such privileges:	
The following sections discuss object privileges that apply to specific schema objects:	
Object privileges can be granted to and revoked from users and roles. If you grant object privileges to roles, then you can make the privileges selectively available.	
You can grant or revoke object privileges to or from users and roles using the following methods:	
GRANT	
and REVOKE	
SQL statements A user automatically has all object privileges for schema objects contained in his or her schema. A user with the GRANT ANY OBJECT PRIVILEGE	
can grant any specified object privilege to another user with or without the WITH GRANT OPTION	
clause of the GRANT	
statement. A user with the GRANT ANY OBJECT PRIVILEGE	
can also use that privilege to revoke any object privilege that was granted either by the object owner or by some other user with the GRANT ANY OBJECT PRIVILEGE	
privilege. Otherwise, the grantee can use the privilege, but cannot grant it to other users.	
See Also: Oracle Database SQL Language Reference for information aboutGRANT and GRANT ANY OBJECT PRIVILEGE	
You can use the CREATE SYNONYM	
statement to create synonyms for tables, views, sequences, operators, procedures, stored functions, packages, materialized views, Java class schema objects, user-defined object types, or other synonyms. If you grant users the privilege to use the synonym, then the object privileges granted on the underlying objects apply whether the user references the base object by name or by using the synonym.	
For example, suppose user OE	
creates the following synonym for the CUSTOMERS	
table:	
Then OE	
grants the SELECT	
privilege on the customer_syn	
synonym to user HR	
.	
User HR	
then tries either of the following queries:	
Both queries will yield the same result:	
Be aware that when you grant the synonym to another user, the grant applies to the underlying object that the synonym represents, not to the synonym itself. For example, if user HR	
queries the ALL_TAB_PRIVS	
data dictionary view for his privileges, he will learn the following:	
The results show that in addition to other privileges, he has the SELECT	
privilege for the underlying object of the customer_syn	
synonym, which is the OE.CUSTOMER	
table.	
At this point, if user OE	
then revokes the SELECT	
privilege on the customer_syn	
synonym from HR	
, here are the results if HR	
checks his privileges again:	
User HR	
no longer has the SELECT	
privilege for the OE.CUSTOMER	
table. If he tries to query the OE.CUSTOMERS	
table, then the following error appears:	
Object privileges for tables enable table security at the DML (data manipulation language) or DDL (data definition language) level of operation.	
The following sections discuss table privileges and DML and DDL operations:	
You can grant privileges to use the DELETE	
, INSERT	
, SELECT	
, and UPDATE	
DML operations on a table or view. Grant these privileges only to users and roles that need to query or manipulate data in a table.	
You can restrict INSERT	
and UPDATE	
privileges for a table to specific columns of the table. With a selective INSERT	
privilege, a privileged user can insert a row with values for the selected columns. All other columns receive NULL	
or the default value of the column. With a selective UPDATE	
privilege, a user can update only specific column values of a row. You can use selective INSERT	
and UPDATE	
privileges to restrict user access to sensitive data.	
For example, if you do not want data entry users to alter the salary	
column of the employees	
table, then selective INSERT	
or UPDATE	
privileges can be granted that exclude the salary	
column. Alternatively, a view that excludes the salary	
column could satisfy this need for additional security.	
The ALTER	
, INDEX	
, and REFERENCES	
privileges allow DDL operations to be performed on a table. Because these privileges allow other users to alter or create dependencies on a table, you should grant these privileges conservatively.	
A user attempting to perform a DDL operation on a table may need additional system or object privileges. For example, to create a trigger on a table, the user requires both the ALTER	
TABLE	
object privilege for the table and the CREATE	
TRIGGER	
system privilege.	
As with the INSERT	
and UPDATE	
privileges, you can grant the REFERENCES	
privilege on specific columns of a table. The REFERENCES	
privilege enables the grantee to use the table on which the grant is made as a parent key to any foreign keys that the grantee wishes to create in his or her own tables. This action is controlled with a special privilege because the presence of foreign keys restricts the data manipulation and table alterations that can be done to the parent key. A column-specific REFERENCES	
privilege restricts the grantee to using the named columns (which, of course, must include at least one primary or unique key of the parent table).	
See Also: "Data Integrity" in Oracle Database Concepts for more information about primary keys, unique keys, and integrity constraints	
This section contains:	
A view is a presentation of data selected from one or more tables, possibly including other views. A view shows the structure of the underlying tables. Its selected data can be thought of as the result of a stored query. A view contains no actual data but rather derives what it shows from the tables and views on which it is based. You can query a view, and change the data it represents. Data in a view can be updated or deleted, and new data inserted. These operations directly alter the tables on which the view is based, and are subject to the integrity constraints and triggers of the base tables.	
You can apply DML object privileges to views, similar to tables. Object privileges for a view allow various DML operations, which as noted affect the base tables from which the view is derived.	
To create a view, you must meet the following requirements:	
CREATE	
VIEW	
system privilege (to create a view in your schema) CREATE	
ANY	
VIEW	
system privilege (to create a view in the schema of another user) SELECT	
, INSERT	
, UPDATE	
, or DELETE	
object privileges on all base objects underlying the view e	
SELECT	
ANY	
TABLE	
, INSERT	
ANY	
TABLE	
, UPDATE	
ANY	
TABLE	
, or DELETE	
ANY	
TABLE	
system privileges GRANT	
OPTION	
clause or appropriate system privileges with the ADMIN	
OPTION	
clause. If you do not have these privileges, then you cannot to grant other users access to your view. If you try, an ORA-01720: grant option does not exist for	
object_name	
error is raised, with object_name	
referring to the view's underlying object for which you do not have the sufficient privilege. To use a view, the user must have the appropriate privileges but only for the view itself, not its underlying objects. However, if access privileges for the underlying objects of the view are removed, then the user no longer has access. This behavior occurs because the security domain that is used when a user queries the view is that of the definer of the view. If the privileges on the underlying objects are revoked from the view's definer, then the view becomes invalid, and no one can use the view. Therefore, even if a user has been granted access to the view, the user may not be able to use the view if the definer's rights have been revoked from the view's underlying objects.	
For example, suppose User A creates a view. User A has definer's rights on the underlying objects of the view. User A then grants the SELECT	
privilege on that view to User B so that User B can query the view. But if User A no longer has access to the underlying objects of that view, then User B no longer has access either.	
Views add two more levels of security for tables, column-level security and value-based security, as follows:	
employees	
table to show only the employee_id	
, last_name	
, and manager_id	
columns: WHERE	
clause in the definition of a view displays only selected rows of base tables. Consider the following two examples: The lowsal	
view allows access to all rows of the employees	
table that have a salary value less than 10000. Notice that all columns of the employees	
table are accessible in the lowsal	
view.	
In the own_salary	
view, only the rows with an last_name	
that matches the current user of the view are accessible. The own_salary	
view uses the user	
pseudo column, whose values always refer to the current user. This view combines both column-level security and value-based security.	
This section contains:	
The EXECUTE	
privilege is the only object privilege for procedures, including standalone procedures and functions, and for those within packages. Grant this privilege only to users who need to run a procedure or to compile another procedure that calls a desired procedure.	
A user with the EXECUTE	
object privilege for a specific procedure can execute the procedure or compile a program unit that references the procedure. Oracle Database performs a run-time privilege check when any PL/SQL unit is called. A user with the EXECUTE	
ANY	
PROCEDURE	
system privilege can execute any procedure in the database. Privileges to run procedures can be granted to a user through roles.	
See Also: Oracle Database PL/SQL Language Reference for more information about how Oracle Database checks privileges at run-time	
The owner of a procedure, called the definer, must have all the necessary object privileges for referenced objects. If the procedure owner grants to another user the right to use that procedure, then the privileges of the procedure owner (on the objects referenced by the procedure) apply to the grantee user's exercise of the procedure. The privileges of the procedure's definer must be granted directly to the user, not granted through roles. These are termed definer's rights.	
The user of a procedure who is not its owner is called the invoker. Additional privileges on referenced objects are required for invoker's rights procedures, but not for definer's rights procedures.	
A user of a definer's rights procedure requires only the privilege to execute the procedure and no privileges on the underlying objects that the procedure accesses. This is because a definer's rights procedure operates under the security domain of the user who owns the procedure, regardless of who is executing it. The owner of the procedure must have all the necessary object privileges for referenced objects. Fewer privileges have to be granted to users of a definer's rights procedure. This results in stronger control of database access.	
You can use definer's rights procedures to control access to private database objects and add a level of database security. By writing a definer's rights procedure and granting only EXECUTE	
privilege to a user, the user can be forced to access the referenced objects only through the procedure.	
At run time, Oracle Database checks whether the privileges of the owner of a definer's rights stored procedure allow access to that procedure's referenced objects, before the procedure is executed. If a necessary privilege on a referenced object was revoked from the owner of a definer's rights procedure, then the procedure cannot be run by the owner or any other user.	
Note: Trigger processing follows the same patterns as definer's rights procedures. The user runs a SQL statement, which that user is privileged to run. As a result of the SQL statement, a trigger is fired. The statements within the triggered action temporarily execute under the security domain of the user that owns the trigger. For more information, see "Overview of Triggers" in Oracle Database Concepts.	
An invoker's rights procedure executes with all of the invoker's privileges. Oracle Database enables the privileges that were granted to the invoker through any of the invoker's enabled roles to take effect, unless a definer's rights procedure calls the invoker's rights procedure directly or indirectly. A user of an invoker's rights procedure needs privileges (granted to the user either directly or through a role) on objects that the procedure accesses through external references that are resolved in the schema of the invoker.	
The invoker needs privileges at run time to access program references embedded in DML statements or dynamic SQL statements, because they are effectively recompiled at run time.	
For all other external references, such as direct PL/SQL function calls, Oracle Database checks the privileges of the owner at compile time, but does not perform a run-time check. Therefore, the user of an invoker's rights procedure does not need privileges on external references outside DML or dynamic SQL statements. Alternatively, the developer of an invoker's rights procedure must only grant privileges on the procedure itself, not on all objects directly referenced by the invoker's rights procedure.	
You can create a software bundle that consists of multiple program units, some with definer's rights and others with invoker's rights, and restrict the program entry points (controlled step-in). A user who has the privilege to run an entry-point procedure can also execute internal program units indirectly, but cannot directly call the internal programs. For very precise control over query processing, you can create a PL/SQL package specification with explicit cursors.	
See Also:	
To create or replace a procedure in your own schema, you must have the CREATE PROCEDURE	
system privilege. To create or replace a procedure in another user's schema, you must have the CREATE ANY PROCEDURE	
system privilege.	
The user who owns the procedure also must have privileges for schema objects referenced in the procedure body. To create a procedure, you need to have been explicitly granted the necessary privileges (system or object) on all objects referenced by the procedure. You cannot obtain the required privileges through roles. This includes the EXECUTE	
privilege for any procedures that are called inside the procedure being created.	
Note: Triggers require that privileges on referenced objects be granted directly to the owner of the trigger. Anonymous PL/SQL blocks can use any privilege, whether the privilege is granted explicitly or through a role.	
To compile a standalone procedure, run the ALTER PROCEDURE	
statement with the COMPILE	
clause. To compile a procedure that is part of a package, run the ALTER PACKAGE	
statement.	
Example 4-9 shows how to compile a standalone procedure.	
If the standalone or packaged procedure is in another user's schema, you must have the ALTER ANY PROCEDURE	
privilege to recompile it. You can recompile procedures in your own schema without any privileges.	
A user with the EXECUTE	
object privilege for a package can execute any public procedure or function in the package, and can access or modify the value of any public package variable. You cannot grant specific EXECUTE	
privileges for individual constructs in a package. Therefore, you may find it useful to consider two alternatives for establishing security when developing procedures, functions, and packages for a database application. The following examples describe these alternatives.	
Procedure Privileges and Packages and Package Objects: Example 1	
Example 4-10 shows four procedures created in the bodies of two packages.	
Example 4-10 Package Objects Affected by Procedure Privileges	
The following GRANT EXECUTE	
statements enable the big_bosses	
and little_bosses	
roles to run the appropriate procedures:	
Note: GrantingEXECUTE privilege for a package provides uniform access to all package objects.	
Procedure Privileges and Packages and Package Objects: Example 2	
This example shows four procedure definitions within the body of a single package. Two additional standalone procedures and a package are created specifically to provide access to the procedures defined in the main package.	
Using this method, the procedures that actually do the work (the procedures in the employee_changes	
package) are defined in a single package and can share declared global variables, cursors, on so on. By declaring top-level procedures, hire	
and fire	
, and an additional package, raise_bonus	
, you can grant selective EXECUTE	
privileges on procedures in the main package:	
The following sections describe the use of privileges for types, methods, and objects:	
Table 4-4 lists system privileges for named types (object types, VARRAY	
s, and nested tables).	
Table 4-4 System Privileges for Named Types	
Privilege	Enables you to ...
---	---
Create named types in your own schemas	
Create a named type in any schema	
Alter a named type in any schema	
Drop a named type in any schema	
Use and reference a named type in any schema	
The RESOURCE	
role includes the CREATE	
TYPE	
system privilege. The DBA	
role includes all of these privileges.	
The only object privilege that applies to named types is EXECUTE	
. If the EXECUTE	
privilege exists on a named type, then a user can use the named type to:	
The EXECUTE	
privilege permits a user to invoke the methods in the type, including the type constructor. This is similar to the EXECUTE	
privilege on a stored PL/SQL procedure.	
Method execution is the same as any other stored PL/SQL procedure.	
To create a type, you must meet the following requirements:	
CREATE	
TYPE	
system privilege to create a type in your schema or the CREATE	
ANY	
TYPE	
system privilege to create a type in the schema of another user. These privileges can be acquired explicitly or through a role. EXECUTE	
object privileges to access all other types referenced within the definition of the type, or have been granted the EXECUTE	
ANY	
TYPE	
system privilege. The owner cannot obtain the required privileges through roles. EXECUTE	
privileges to the referenced types with the GRANT	
OPTION	
or the EXECUTE	
ANY	
TYPE	
system privilege with the ADMIN	
OPTION	
. If not, then the type owner has insufficient privileges to grant access on the type to other users. To create a table using types, you must meet the requirements for creating a table and the following additional requirements:	
EXECUTE	
object privilege to access all types referenced by the table, or has been granted the EXECUTE	
ANY	
TYPE	
system privilege. The owner cannot exercise the required privileges if these privileges were granted through roles. EXECUTE	
privilege to the referenced types with the GRANT	
OPTION	
or the EXECUTE	
ANY	
TYPE	
system privilege with the ADMIN	
OPTION	
. If not, then the table owner has insufficient privileges to grant access on the table. Assume that three users exist with the CONNECT	
and RESOURCE	
roles:	
user1	
user2	
user3	
The following DDL is run in the schema of user1	
:	
The following DDL is performed in the schema of user2	
:	
The following statements succeed because user2	
has EXECUTE	
privilege on user1.type2	
with the GRANT	
OPTION:	
However, the following grant fails because user2	
does not have EXECUTE	
privilege on user1.type1	
with the GRANT	
OPTION:	
The following statements can be successfully run by user3	
:	
Note: Customers should discontinue using theCONNECT and RESOURCE roles. The CONNECT role presently retains only the CREATE SESSION privilege.	
Existing column-level and table-level privileges for DML statements apply to both column objects and row objects.	
Table 4-5 lists the privileges for object tables.	
Table 4-5 Privileges for Object Tables	
Privilege	Enables you to...
---	---
Access an object and its attributes from the table	
Modify the attributes of the objects that make up the rows in the table	
Create new objects in the table	
Delete rows	
Similar table privileges and column privileges apply to column objects. Retrieving instances does not in itself reveal type information. However, clients must access named type information to interpret the type instance images. When a client requests type information, Oracle Database checks for the EXECUTE	
privilege on the type.	
Consider the following schema:	
In addition, consider the following two queries:	
For either query, Oracle Database checks the SELECT	
privilege of the user for the emp	
table. For the first query, the user must obtain the emp_type	
type information to interpret the data. When the query accesses the emp_type	
type, Oracle Database checks the EXECUTE	
privilege of the user.	
The second query, however, does not involve named types, so Oracle Database does not check type privileges.	
In addition, by using the schema from the previous section, user3	
can perform the following queries:	
Note that in both SELECT	
statements, user3	
does not have explicit privileges on the underlying types, but the statement succeeds because the type and table owners have the necessary privileges with the GRANT	
OPTION.	
Oracle Database checks privileges on the following events, and returns an error if the client does not have the privilege for the action:	
REF	
value causes Oracle Database to check for the SELECT	
privilege on the containing object table. UPDATE	
privilege on the destination object table. INSERT	
privilege on the destination object table. DELETE	
privilege on the destination table. EXECUTE	
privilege on the object. Modifying the attributes of an object in a client third-generation language application causes Oracle Database to update the entire object. Therefore, the user needs the UPDATE	
privilege on the object table. Having the UPDATE	
privilege on only certain columns of the object table is not sufficient, even if the application only modifies attributes corresponding to those columns. Therefore, Oracle Database does not support column-level privileges for object tables.	
As with stored objects, such as procedures and tables, types being referenced by other objects are called dependencies. There are some special issues for types on which tables depend. Because a table contains data that relies on the type definition for access, any change to the type causes all stored data to become inaccessible. Changes that can cause this are when necessary privileges required to use the type are revoked, or the type or dependent types are dropped. If these actions occur, then the table becomes invalid and cannot be accessed.	
A table that is invalid because of missing privileges can automatically become valid and accessible if the required privileges are granted again. A table that is invalid because a dependent type was dropped can never be accessed again, and the only permissible action is to drop the table.	
Because of the severe effects that revoking a privilege on a type or dropping a type can cause, the SQL statements REVOKE	
and DROP	
TYPE	
, by default, implement restricted semantics. This means that if the named type in either statement has table or type dependents, then an error is received and the statement cancels. However, if the FORCE	
clause for either statement is used, then the statement always succeeds. If there are depended-upon tables, then they are invalidated.	
See Also: Oracle Database Reference for details about using theREVOKE , DROP TYPE , and FORCE clauses	
This section contains:	
It is also possible to grant roles to a user connected through a middle tier or proxy. This is discussed in "Using a Middle Tier Server for Proxy Authentication".	
You can use the GRANT	
SQL statement to grant system privileges and roles to users and roles. The following privileges are required:	
ADMIN	
option or must be granted the GRANT ANY PRIVILEGE	
system privilege. ADMIN	
option or was granted the GRANT ANY ROLE	
system privilege. Example 4-11 grants the system privilege CREATE SESSION	
and the accts_pay	
role to the user jward	
.	
Example 4-11 Granting a System Privilege and a Role to a User	
Example 4-11 grants the EXECUTE	
privilege on the exec_dir	
directory object to the user jward	
.	
Example 4-12 Granting the EXECUTE Privilege on a Directory Object	
Note: Object privileges cannot be granted along with system privileges and roles in the sameGRANT statement.	
If you specify the WITH ADMIN OPTION	
clause when you grant a privilege or role to a user or role, then the privilege grant has the following expanded capabilities:	
ADMIN	
option. Example 4-13 grants the new_dba	
role with the WITH ADMIN OPTION	
clause to user michael	
.	
User michael	
is able to not only use all of the privileges implicit in the new_dba	
role, but he can also grant, revoke, and drop the new_dba	
role as deemed necessary. Because of these powerful capabilities, use caution when granting system privileges or roles with the ADMIN	
option. These privileges are usually reserved for a security administrator, and are rarely granted to other administrators or users of the system.	
Note: When a user creates a role, the role is automatically granted to the creator with theADMIN option.	
Oracle Database enables you to create a new user with the GRANT	
statement. If you specify a password using the IDENTIFIED BY	
clause, and the user name does not exist in the database, then a new user with that user name and password is created.	
Example 4-14 creates psmith	
as a new user while granting psmith	
the CREATE SESSION	
system privilege.	
You can use the GRANT	
statement to grant object privileges to roles and users. To grant an object privilege, you must fulfill one of the following conditions:	
GRANT ANY OBJECT PRIVILEGE	
system privilege. This privilege enables you to grant and revoke privileges on behalf of the object owner. WITH GRANT OPTION	
clause was specified when you were granted the object privilege. Note: System privileges and roles cannot be granted along with object privileges in the sameGRANT statement.	
Example 4-15 grants the SELECT	
, INSERT	
, and DELETE	
object privileges for all columns of the emp	
table to the users jfee	
and tsmith	
.	
Example 4-15 Granting Object Privileges to Users	
To grant all object privileges on the salary	
view to user jfee	
, use the ALL	
keyword as shown in the following example:	
Note: A grantee cannot regrant access to objects unless the original grant included theGRANT OPTION . Thus in the example just given, jfee cannot use the GRANT statement to grant object privileges to anyone else.	
Specify the WITH GRANT OPTION	
clause with the GRANT	
statement to enable the grantee to grant the object privileges to other users. The user whose schema contains an object is automatically granted all associated object privileges with the GRANT OPTION	
. This special privilege allows the grantee several expanded privileges:	
GRANT OPTION	
, and to any role in the database. GRANT OPTION	
. CREATE VIEW	
or CREATE ANY VIEW	
system privilege. The GRANT ANY OBJECT PRIVILEGE	
system privilege enables users to grant and revoke any object privilege on behalf of the object owner. This privilege provides a convenient means for database and application administrators to grant access to objects in any schema without requiring that they connect to the schema. Login credentials do not need to be maintained for schema owners who have this privilege, which reduces the number of connections required during configuration.	
This system privilege is part of the Oracle Database supplied DBA	
role and is thus granted (with the ADMIN option	
) to any user connecting AS SYSDBA	
(user SYS	
). As with other system privileges, the GRANT ANY OBJECT PRIVILEGE	
system privilege can only be granted by a user who possesses the ADMIN option	
.	
The recorded grantor of access rights to an object is either the object owner or the person exercising the GRANT ANY OBJECT PRIVILEGE	
system privilege. If the grantor with GRANT ANY OBJECT PRIVILEGE	
does not have the object privilege with the GRANT OPTION	
, then the object owner is shown as the grantor. Otherwise, when that grantor has the object privilege with the GRANT OPTION	
, then that grantor is recorded as the grantor of the grant.	
Note: The audit record generated by theGRANT statement always shows the actual user who performed the grant.	
For example, consider the following scenario. User adams	
possesses the GRANT ANY OBJECT PRIVILEGE	
system privilege. He does not possess any other grant privileges. He issues the following statement:	
If you examine the DBA_TAB_PRIVS	
view, then you will see that hr	
is shown as the grantor of the privilege:	
Now assume that user blake	
also has the GRANT ANY OBJECT PRIVILEGE	
system. He issues the following statement:	
In this case, when you query the DBA_TAB_PRIVS	
view again, you see that blake	
is shown as being the grantor of the privilege:	
This occurs because blake	
already possesses the SELECT	
privilege on HR.EMPLOYEES	
with the GRANT OPTION	
.	
You can grant INSERT	
, UPDATE	
, or REFERENCES	
privileges on individual columns in a table.	
Caution: Before granting a column-specificINSERT privilege, determine if the table contains any columns on which NOT NULL constraints are defined. Granting selective insert capability without including the NOT NULL columns prevents the user from inserting any rows into the table. To avoid this situation, ensure that each NOT NULL column can either be inserted into or has a non-NULL default value. Otherwise, the grantee will not be able to insert rows into the table and will receive an error.	
The following statement grants the INSERT	
privilege on the acct_no	
column of the accounts	
table to user psmith	
:	
In the following example, object privilege for the ename	
and job	
columns of the emp	
table are granted to the users jfee	
and tsmith	
:	
This section contains:	
You can revoke system privileges and roles using the SQL statement REVOKE	
. Any user with the ADMIN	
option for a system privilege or role can revoke the privilege or role from any other database user or role. The revoker does not have to be the user that originally granted the privilege or role. Users with GRANT ANY ROLE	
can revoke any role.	
The following statement revokes the CREATE TABLE	
system privilege and the accts_rec	
role from user psmith	
:	
To revoke an object privilege, you must fulfill one of the following conditions:	
GRANT ANY OBJECT PRIVILEGE	
system privilege that enables you to grant and revoke privileges on behalf of the object owner. You can only revoke the privileges that you, the person who granted the privilege, directly authorized. You cannot revoke grants that were made by other users to whom you granted the GRANT OPTION	
. However, there is a cascading effect. If the object privileges of the user who granted the privilege are revoked, then the object privilege grants that were propagated using the GRANT OPTION	
are revoked as well.	
Assuming you are the original grantor of the privilege, the following statement revokes the SELECT	
and INSERT	
privileges on the emp	
table from users jfee	
and psmith	
:	
The following statement revokes all object privileges for the dept	
table that you originally granted to the human_resource	
role:	
Note: TheGRANT OPTION for an object privilege cannot be selectively revoked. Instead, revoke the object privilege and then grant it again but without the GRANT OPTION . Users cannot revoke object privileges from themselves.	
The GRANT ANY OBJECT PRIVILEGE	
system privilege enables you to revoke any specified object privilege where the object owner is the grantor. This occurs when the object privilege is granted by the object owner, or on behalf of the owner by any user holding the GRANT ANY OBJECT PRIVILEGE	
system privilege.	
In a situation where the object privilege was granted by both the owner of the object and the user executing the REVOKE	
statement (who has both the specific object privilege and the GRANT ANY OBJECT PRIVILEGE	
system privilege), Oracle Database only revokes the object privilege granted by the user issuing the REVOKE	
statement. This can be illustrated by continuing the example started in "Granting Object Privileges on Behalf of the Object Owner".	
At this point, user blake	
granted the SELECT	
privilege on HR.EMPLOYEES	
to clark	
. Even though blake	
possesses the GRANT ANY OBJECT PRIVILEGE	
system privilege, he also holds the specific object privilege, thus this grant is attributed to him. Assume that user HR	
also grants the SELECT	
privilege on HR.EMPLOYEES	
to user clark	
. A query of the DBA_TAB_PRIVS	
view shows that the following grants are in effect for the HR.EMPLOYEES	
table:	
User blake	
now issues the following REVOKE	
statement:	
Only the object privilege for user clark	
granted by user blake	
is removed. The grant by the object owner, HR	
, remains.	
If blake	
issues the REVOKE	
statement again, then this time the effect is to remove the object privilege granted by adams	
(on behalf of HR	
), using the GRANT ANY OBEJCT PRIVILEGE	
system privilege.	
Although users can grant column-specific INSERT	
, UPDATE	
, and REFERENCES	
privileges for tables and views, they cannot selectively revoke column-specific privileges with a similar REVOKE	
statement. Instead, the grantor must first revoke the object privilege for all columns of a table or view, and then selectively repeat the grant of the column-specific privileges that the grantor intends to keep in effect.	
For example, assume that role human_resources	
was granted the UPDATE	
privilege on the deptno	
and dname	
columns of the table dept	
. To revoke the UPDATE	
privilege on just the deptno	
column, issue the following two statements:	
The REVOKE	
statement revokes the UPDATE	
privilege on all columns of the dept	
table from the role human_resources	
. The GRANT	
statement then repeats, restores, or reissues the grant of the UPDATE	
privilege on the dname	
column to the role human_resources	
.	
If the grantee of the REFERENCES	
object privilege has used the privilege to create a foreign key constraint (that currently exists), then the grantor can revoke the privilege only by specifying the CASCADE CONSTRAINTS	
option in the REVOKE	
statement:	
Any foreign key constraints currently defined that use the revoked REFERENCES	
privilege are dropped when the CASCADE CONSTRAINTS	
clause is specified.	
Depending on the type of privilege, there may be cascading effects when a privilege is revoked. This is discussed in the following sections:	
There are no cascading effects when revoking a system privilege related to DDL operations, regardless of whether the privilege was granted with or without the ADMIN	
option. For example, assume the following:	
CREATE TABLE	
system privilege to user jfee	
with the ADMIN option	
. jfee	
creates a table. jfee	
grants the CREATE TABLE	
system privilege to user tsmith	
. tsmith	
creates a table. CREATE TABLE	
system privilege from user jfee	
. jfee	
continues to exist. User tsmith	
still has the table and the CREATE TABLE	
system privilege. You can observe cascading effects when you revoke a system privilege related to a DML operation. If the SELECT ANY TABLE	
privilege is revoked from a user, then all procedures contained in the user's schema relying on this privilege can no longer be executed successfully until the privilege is reauthorized.	
Revoking an object privilege can have cascading effects. Remember the following:	
test	
procedure includes a SQL statement that queries data from the emp	
table. If the SELECT	
privilege on the emp	
table is revoked from the owner of the test	
procedure, then the procedure can no longer be executed successfully. jward	
is granted the REFERENCES	
privilege for the deptno	
column of the dept	
table. This user now creates a foreign key on the deptno	
column in the emp	
table that references the deptno	
column of the dept	
table. If the REFERENCES	
privilege on the deptno	
column of the dept	
table is revoked, then the foreign key constraint on the deptno	
column of the emp	
table is dropped in the same operation. user1	
is granted the SELECT	
object privilege on the emp	
table with the GRANT OPTION	
, and grants the SELECT	
privilege on emp	
to user2	
. Subsequently, the SELECT	
privilege is revoked from user1	
. This REVOKE	
statement is also cascaded to user2	
. Any objects that depend on the revoked SELECT	
privilege of user1	
and user2	
can also be affected, as described earlier. Object definitions that require the ALTER	
and INDEX DDL	
object privileges are not affected if the ALTER	
or INDEX	
object privilege is revoked. For example, if the INDEX	
privilege is revoked from a user that created an index on a table that belongs to another user, then the index continues to exist after the privilege is revoked.	
You can grant and revoke privileges and roles from the role PUBLIC	
. Because PUBLIC	
is accessible to every database user, all privileges and roles granted to PUBLIC	
are accessible to every database user.	
Security administrators and database users should grant a privilege or role to PUBLIC	
only if every database user requires the privilege or role. This recommendation reinforces the general rule that, at any given time, each database user should have only the privileges required to accomplish the current group tasks successfully.	
Revoking a privilege from PUBLIC	
can cause significant cascading effects. If any privilege related to a DML operation is revoked from PUBLIC	
(for example, SELECT ANY TABLE	
or UPDATE ON	
emp	
), then all procedures in the database, including functions and packages, must be reauthorized before they can be used again. Therefore, be careful when you grant and revoke DML-related privileges to or from PUBLIC	
.	
See Also:	
This section contains:
Instead of a security administrator explicitly granting and revoking database roles to and from users using GRANT
and REVOKE
statements, the operating system on which Oracle Database runs can grant roles to users at connect time. Roles can be administered using the operating system and passed to Oracle Database when a user creates a session. As part of this mechanism, the default roles of a user and the roles granted to a user with the ADMIN
option can be identified. If the operating system is used to authorize users for roles, then all roles must be created in the database and privileges assigned to the role with GRANT
statements.
Roles can also be granted through a network service.
The advantage of using the operating system to identify the database roles of a user is that privilege management for an Oracle database can be externalized. The security facilities offered by the operating system control user privileges. This option may offer advantages of centralizing security for several system activities, such as the following situation:
The main disadvantage of using the operating system to identify the database roles of a user is that privilege management can only be performed at the role level. Individual privileges cannot be granted using the operating system, but they can still be granted inside the database using GRANT
statements.
A second disadvantage of using this feature is that, by default, users cannot connect to the database through the shared server or any other network connection if the operating system is managing roles. However, you can change this default as described in "Using Network Connections with Operating System Role Management".
Note: The features described in this section are available only on some operating systems. See your operating system-specific Oracle Database documentation to determine if you can use these features. |
To cause a database to use the operating system to identify the database roles of each user when a session is created, set the initialization parameter OS_ROLES
to TRUE
(and restart the instance, if it is currently running). When a user tries to create a session with the database, Oracle Database initializes the user security domain using the database roles identified by the operating system.
To identify database roles for a user, the operating system account for each Oracle Database user must have operating system identifiers (these may be called groups, rights identifiers, or other similar names) that indicate which database roles are to be available for the user. Role specification can also indicate which roles are the default roles of a user and which roles are available with the ADMIN
option. No matter which operating system is used, the role specification at the operating system level follows the format:
In this specification:
ID
has a definition that varies on different operating systems. For example, on VMS, ID
is the instance identifier of the database; on VMS, it is the computer type; and on UNIX, it is the system ID
. Note: ID is case-sensitive to match your ORACLE_SID . ROLE is not case-sensitive. |
ROLE
is the name of the database role. d
is an optional character that indicates this role is to be a default role of the database user. a
is an optional character that indicates this role is to be granted to the user with the ADMIN
option. This allows the user to grant the role to other roles only. Roles cannot be granted to users if the operating system is used to manage roles. Note: If either thed or a character is specified, then precede that character by an underscore (_). |
For example, an operating system account might have the following roles identified in its profile:
When the corresponding user connects to the payroll
instance of Oracle Database, role3
and role4
are defaults, while role2
and role4
are available with the ADMIN
option.
When you use operating system-managed roles, remember that database roles are being granted to an operating system user. Any database user to which the operating system user is able to connect will have the authorized database roles enabled. For this reason, you should consider defining all Oracle Database users as IDENTIFIED EXTERNALLY
if you are using OS_ROLES = TRUE
, so that the database accounts are tied to the operating system account that was granted privileges.
If the OS_ROLES
parameter is set to TRUE
, then the operating system completely manages the granting and revoking of roles to users. Any previous granting of roles to users using GRANT
statements do not apply. However, they are still listed in the data dictionary. Only the role grants to users made at the operating system level apply. Users can still grant privileges to roles and users.
Note: If the operating system grants a role to a user with theADMIN option, then the user can grant the role only to other roles. |
If the OS_ROLES
initialization parameter is set to TRUE
, then any role granted by the operating system can be dynamically enabled using the SET ROLE
statement. This still applies, even if the role was defined to require a password or operating system authorization. However, any role not identified in the operating system account of a user cannot be specified in a SET ROLE
statement, even if a role was granted using a GRANT
statement when OS_ROLES = FALSE
. (If you specify such a role, then Oracle Database ignores it.)
When OS_ROLES
is set to TRUE
, then the user can enable up to 148 roles. Remember that this number includes other roles that may have been granted to the role.
If you have the operating system manage roles, then, by default, users cannot connect to the database through the shared server. This restriction is the default because a remote user could impersonate another operating system user over an unsecure connection.
If you are not concerned with this security risk and want to use operating system role management with the shared server, or any other network connection, then set the initialization parameter REMOTE_OS_ROLES
to TRUE
. The change takes effect the next time you start the instance and mount the database. The default setting of this parameter is FALSE
.
Depending on what is granted or revoked, a grant or revoke takes effect at different times:
PUBLIC
) take immediate effect. PUBLIC
) take effect only when a current user session issues a SET ROLE
statement to reenable the role after the grant and revoke, or when a new user session is created after the grant or revoke. You can see which roles are currently enabled by examining the SESSION_ROLES
data dictionary view.
During the user session, the user or an application can use the SET ROLE
statement any number of times to change the roles currently enabled for the session. The user must already be granted the roles that are named in the SET ROLE
statement.
Example 4-16 enables the role clerk
, which you have already been granted, and specifies the password.
Example 4-16 Using SET ROLE to Grant a Role and Specify a Password
Replace password
with a password that is secure. "Minimum Requirements for Passwords" describes the minimum requirements for passwords.
Example 4-17 shows how to use SET ROLE
to disable all roles.
When a user logs on, Oracle Database enables all privileges granted explicitly to the user and all privileges in the default roles of the user.
You can set and alter a list of default roles for a user by using the ALTER USER
SQL statement. The ALTER USER
statement specifies roles that are to be enabled when a user connects to the database. The user must have been directly granted the roles with a GRANT
statement, or the roles must have been created by the user with the CREATE ROLE
privilege. For information about the restrictions of the DEFAULT ROLE
clause of the ALTER USER
statement, see Oracle Database SQL Language Reference.
Example 4-18 sets the default roles payclerk
and pettycash
for user jane
:
Example 4-18 Using ALTER USER to Set Default Roles
You cannot set default roles for a user in the CREATE USER
statement. When you first create a user, the default user role setting is ALL
, which causes all roles subsequently granted to the user to be default roles. Use the ALTER USER
statement to limit the default user roles.
A user can enable no more than 148 roles.You can grant a user as many roles as you want, but you should restrict the number of roles granted to a user to the minimum roles the user needs. See "Guidelines for Securing Roles" for additional guidelines on granting roles to users.
You can configure user access control to external network services and wallets through the UTL_TCP
, UTL_SMTP
, UTL_MAIL
, UTL_HTTP
, and UTL_INADDR
PL/SQL packages, the DBMS_LDAP
PL/SQL package, and the HttpUriType
type.
UTL_HTTP
package. For example, you can configure applications to use the credentials stored in the wallets instead of hard-coding the credentials in the applications. For more information about how you can use wallets to store passwords and credentials, see Oracle Database Advanced Security Administrator's Guide. This section contains:
To configure fine-grained access control to external network services, you create an access control list (ACL), which is stored in Oracle XML DB. You can create the access control list by using Oracle XML DB itself, or by using the DBMS_NETWORK_ACL_ADMIN
and DBMS_NETWORK_ACL_UTILITY
PL/SQL packages. This guide explains how to use these packages to create and manage the access control list. To create an access control list by using Oracle XML DB and for general conceptual information about access control lists, see Oracle XML DB Developer's Guide.
This feature enhances security for network connections because it restricts the external network hosts that a database user can connect to using the PL/SQL network utility packages UTL_TCP
, UTL_SMTP
, UTL_MAIL
, UTL_HTTP
, and UTL_INADDR
, the DBMS_LDAP
PL/SQL package, and the HttpUriType
type. Otherwise, an intruder who gained access to the database could maliciously attack the network, because, by default, the PL/SQL utility packages are created with the EXECUTE
privilege granted to PUBLIC
users. These PL/SQL network utility packages, and the DBMS_NETWORK_ACL_ADMIN
and DBMS_NETWORK_ACL_UTILITY
packages, support both IP Version 4 (IPv4) and IP Version 6 (IPv6) addresses. This guide explains how to manage access control to both versions. For detailed information about how the IPv4 and IPv6 notation works with Oracle Database, see Oracle Database Net Services Administrator's Guide.
See Also: "Tutorial: Adding an Email Alert to a Fine-Grained Audit Policy" for an example of configuring access control to external network services for email alerts |
When a user accesses Web pages that are protected by a remote Web server, the user can authenticate himself or herself by supplying the passwords and client certificates that are stored in an Oracle wallet. The Oracle wallet provides secure storage of user passwords and client certificates.
To configure access control to a wallet, you need the following components:
mkstore
utility or Oracle Wallet Manager. The HTTP request will use the external password store or the client certificate in the wallet to authenticate the user DBMS_NETWORK_ACL_ADMIN
PL/SQL package. DBMS_NETWORK_ACL_ADMIN
PL/SQL package. The use of wallets is beneficial because it provides secure storage of passwords and client certificates necessary to access protected Web pages.
If you have upgraded from a release before Oracle Database 11g Release 1 (11.1), and your applications depend on PL/SQL network utility packages UTL_TCP
, UTL_SMTP
, UTL_MAIL
, UTL_HTTP
, and UTL_INADDR
, the DBMS_LDAP
PL/SQL package, or the HttpUriType
type, then the following error may occur when you try to run the application:
Use the procedures in this section to reconfigure the network access for the application. See also Oracle Database Upgrade Guide for compatibility issues for applications that depend on the PL/SQL network utility packages. For detailed information about the network utility packages, see Oracle Database PL/SQL Packages and Types Reference.
When you create access control lists for network connections, you should create one access control list dedicated to a group of common users, for example, users who need access to a particular application that resides on a specific host computer. For ease of administration and for good system performance, do not create too many access control lists. Network hosts accessible to the same group of users should share the same access control list.
To create the access control list by using the DBMS_NETWORK_ACL_ADMIN
package, follow these steps:
Use the DBMS_NETWORK_ACL_ADMIN.CREATE_ACL
procedure to create the content of the access control list. It contains a name of the access control list, a brief description, and privilege settings for one user or role that you want to associate with the access control list. In an access control list, privileges for each user or role are grouped together as an access control entry (ACE). An access control list must have the privilege settings for at least one user or role.
Note: You cannot import or export the access control list settings by using the Oracle Database import or export utilities such as Oracle Data Pump. |
In this specification:
acl
: Enter a name for the access control list XML file. Oracle Database creates this file relative to the /sys/acls
directory in the XML DB Repository in the database. Include the .xml
extension. For example: description
: Enter a brief description of the purpose of this file. For example: principal
: Enter the first user account or role being granted or denied permissions. For example: Enter the name of the user account or role in case sensitive characters. For example, if the database stores the role name ACCT_MGR
in all capital letters, entering it in mixed or lower case will not work. You can find the user accounts and roles in the current database instance by querying the DBA_USERS
and DBA_ROLES
data dictionary views. Typically, user names and roles are stored in upper-case letters.
If you want to enter multiple users or grant additional privileges to this user or role, use the DBMS_NETWORK_ACL.ADD_PRIVILEGE
procedure (described next) after you have created this access control list XML file.
is_grant
: Enter either TRUE
or FALSE
, to indicate whether the privilege is to be granted or denied. For example: privilege
: Enter either connect
or resolve
. This setting is case sensitive, so always enter it in lowercase. For example: The connect
privilege grants the user permission to connect to a network service at an external host. The resolve
privilege grants the user permission to resolve a network host name or an IP address.
A database user needs the connect
privilege to an external network host computer if he or she is connecting using the UTL_TCP
, UTL_SMTP
, UTL_MAIL
, UTL_HTTP
, the DBMS_LDAP
package, and the HttpUriType
type. To resolve the host name that was given a host IP address, or the IP address that was given a host name, with the UTL_INADDR
package, grant the database user the resolve
privilege instead.
You can use the data dictionary views described in "Finding Information About Access Control Lists Configured for User Access" to find more information about existing privileges and network connections.
start_date
: (Optional) Enter the start date for the access control entry (ACE), in TIMESTAMP WITH TIME ZONE
format (YYYY-MM-DD HH:MI:SS.FF TZR). When specified, the access control entry will be valid only on or after the specified date. The default is null
. For example, to set a start date of February 28, 2008, at 6:30 a.m. in San Francisco, California, U.S., which is in the Pacific time zone: The NLS_TIMESTAMP_FORMAT
initialization parameter sets the default timestamp format. See Oracle Database Reference for more information.
end_date
: (Optional) Enter the end date for the access control entry (ACE), in TIMESTAMP WITH TIME ZONE
format (YYYY-MM-DD HH:MI:SS.FF TZR). When specified, the access control entry expires after the specified date. The end_date
setting must be greater than or equal to the start_date
setting. The default is null
. For example, to set an end date of December 10, 2008, at 11:59 p.m. in San Francisco, California, U.S., which is in the Pacific time zone:
To add more users or roles to the access control list, or grant additional privileges to one user or role, use the DBMS_NETWORK_ACL.ADD_PRIVILEGE
procedure. The syntax is as follows:
As you can see, the parameters to add the privilege are the similar to those in the CREATE_ACL
procedure, except that description
is not included and the position
parameter, which sets the order of precedence for multiple users or roles, was added. Because you now are adding more than one user or role, you may want to consider setting their precedence. "Setting the Precedence of Multiple Users and Roles in One Access Control List" provides more information.
Other DBMS_NETWORK_ACL_ADMIN
procedures that are available for this step are DELETE_PRIVILEGE
and DROP_ACL
.
At this stage, you have created an access control list that defines the privileges needed to connect to a network host. However, the access control list has no effect until you complete Step 2: Assign the Access Control List to One or More Network Hosts.
After you create the access control list, then you are ready to assign it to one or more network host computers. You can use the DBMS_NETWORK_ACL_ADMIN.ASSIGN_ACL
procedure to do so.
For example:
In this specification:
acl
: Enter the name of the access control list XML file (from Step 1: Create the Access Control List and Its Privilege Definitions) to assign to the network host. Oracle Database creates this file relative to the /sys/acls
directory in the XML DB Repository in the database. Include the .xml
extension. For example: host
: Enter the network host to which this access control list will be assigned. This setting can be a name or IP address of the network host. Host names are case insensitive. For example: If you specify localhost
, and if the host name has not been specified with the UTL_INADDR
and UTL_HTTP
PL/SQL packages in situations in which the local host is assumed, then these packages will search for and use the ACL that has been assigned localhost
for the host
setting.
See the following sections for more information about how network host computers in access control list assignments work:
lower_port
: (Optional) For TCP connections, enter the lower boundary of the port range. Use this setting for the connect
privilege only; omit it for the resolve
privilege. The default is null
, which means that there is no port restriction (that is, the ACL applies to all ports). The range of port numbers is between 1 and 65535. For example:
upper_port
: (Optional) For TCP connections, enter the upper boundary of the port range. Use this setting for connect
privileges only; omit it for resolve
privileges. The default is null
, which means that there is no port restriction (that is, the ACL applies to all ports). The range of port numbers is between 1 and 65535 For example:
If you enter a value for the lower_port
and leave the upper_port
at null
(or just omit it), Oracle Database assumes the upper_port
setting is the same as the lower_port
. For example, if you set lower_port
to 80
and omit upper_port
, the upper_port
setting is assumed to be 80
.
The resolve
privilege in the access control list takes no effect when a port range is specified in the access control list assignment.
Only one access control list can be assigned to any host computer, domain, or IP subnet, and if specified, the TCP port range. When you assign a new access control list to a network target, Oracle Database unassigns the previous access control list that was assigned to the same target. However, Oracle Database does not drop the access control list. You can drop the access control list by using the DROP_ACL
procedure. To remove an access control list assignment, use the UNASSIGN_ACL
procedure.
Depending on how you create and maintain the access control list, the two steps may overlap. For example, you can create an access control list that has privileges for five users in it, and then apply it to two host computers. Later on, you can modify this access control list to have different or additional users and privileges, and assign it to different or additional host computers.
All access control list changes, including the assignment to network hosts, are transactional. They do not take effect until the transaction is committed.
You can find information about existing privileges and network connections by using the data dictionary views described in Table 4-6, "Data Dictionary Views That Display Information about Access Control Lists".
For information about using the DBMS_NETWORK_ACL_ADMIN
package, see Oracle Database PL/SQL Packages and Types Reference.
This method lets you grant access to the passwords and client certificates that are stored in an Oracle wallet to users to authenticate themselves to an external Web server. This enables the user to retrieve protected Web pages from the Web server.
This section contains:
To create the wallet, you can use either the mkstore
command-line utility or the Oracle Wallet Manager user interface. To store passwords in the wallet, you must use mkstore
. You can use both standard and PKCS11 wallet types, and the wallet can be an auto-login wallet if you want. For detailed information about creating wallets, see Oracle Database Advanced Security Administrator's Guide.
When you create the wallet, do the following:
After you have created the wallet, you are ready to create the access control list that will assign the password or client certificate privilege the user needs to use password credentials in the wallet for HTTP authentication.
For example:
In this specification:
acl
: Enter a name for the ACL, and make a note of this name. You will need this name in Step 3: Assign the Access Control List to the Wallet, next. Oracle Database creates this file relative to the /sys/acls
directory in the XML DB Repository in the database. Include the .xml
extension. For example: description
: Enter a brief description of the purpose of this file. For example: principal
: Enter the user account or role being granted or denied privileges. For example: Enter this name using case sensitive characters. For example, if the database stores the role name HR_CLERK
in all capital letters, entering it in mixed or lower-case letters will not work. You can find the user accounts and roles in the current database instance by querying the DBA_USERS
and DBA_ROLES
data dictionary views. Typically, user names and roles are stored in upper-case letters.
If you want to add multiple users, or if you want to grant this user an additional privilege, you can use the DBMS_NETWORK_ACL.ADD_PRIVILEGE
procedure after you have created this access control list XML file.
is_grant
: Enter either TRUE
or FALSE
, to indicate whether the privilege is to be granted or denied. For example: privilege
: Enter one of the following settings using lowercase letters and hyphens. Remember that the privilege name is case-sensitive. use-passwords
to give the user permission to use passwords in the wallet use-client-certificates
to authenticate the user with a client certificate in the wallet For example:
In this step, you assign this access control list to the wallet you created earlier. Afterward, you can check your settings by querying the DBA_WALLET_ACLS
data dictionary view.
For example:
In this specification:
acl
: Enter the name that you created for this wallet in Step 2: Create an Access Control List that Grants the Wallet Privileges, in the previous section. For example: wallet_path
: Enter the path to the directory that contains the wallet. When you specify the wallet path, you must use an absolute path and include file:
before this directory path. Do not use environment variables, such as $ORACLE_HOME
, nor insert a space after file:
and before the path name. For example: In this step, you use the UTL_HTTP
PL/SQL package to create a request context object that is used privately with the HTTP request and its response. For detailed information about the UTL_HTTP
package, see Oracle Database PL/SQL Packages and Types Reference.
For example:
In this specification:
req_context
: Use the UTL_HTTP.CREATE_REQUEST_CONTEXT_KEY
datatype to create the request context object. This object stores a randomly-generated numeric key that Oracle Database uses to identify the request context. The UTL_HTTP.CREATE_REQUEST_CONTEXT
function creates the request context itself. req
: Use the UTL_HTTP.REQ
datatype to create the object that will be used to begin the HTTP request. You will refer to this object later on, when you set the user name and password from the wallet to access a password-protected Web page. wallet_path
: Enter the path to the directory that contains the wallet. Ensure that this path is the same path you specified when you created access control list in Step 3: Assign the Access Control List to the Wallet in the previous section.You must include file:
before the directory path. Do not use environment variables, such as $ORACLE_HOME
. For example:
wallet_password
: Enter the password used to open the wallet. The default is NULL
, which is used for auto-login wallets. For example: url
: Enter the URL to the application that uses the wallet. For example:
request_context
: Enter the name of the request context object that you created earlier in this section. This object prevents the wallet from being shared with other applications in the same database session. For example:
Using a Request Context to Hold the Wallet When Sharing the Session with Other Applications
You should use a request context to hold the wallet when the database session is shared with other applications. If your application has exclusive use of the database session, you can hold the wallet in the database session by using the SET_WALLET
procedure instead.
For example:
If the protected URL being requested requires the user name and password to authenticate, then use the SET_AUTHENTICATION_FROM_WALLET
procedure to set the user name and password from the wallet to authenticate.
Using Only a Client Certificate to Authenticate
If the protected URL being requested requires only the client certificate to authenticate, the BEGIN_REQUEST
function sends the necessary client certificate from the wallet. assuming the user has been granted the use-client-certificates
privilege in the ACL assigned to the wallet. The authentication should succeed at the remote Web server and the user can proceed to retrieve the HTTP response by using the GET_RESPONSE
function.
Using the Password to Authenticate
If the protected URL being requested requires the username and password to authenticate, you should use the SET_AUTHENTICATION_FROM_WALLET
procedure to set the username and password from the wallet to authenticate.
For example:
In this specification:
r
: Enter the HTTP request defined in the UTL_HTTP.BEGIN_REQUEST
procedure that you created above, in the previous section. For example: alias
: Enter the alias used to identify and retrieve the user name and password credential stored in the Oracle wallet. For example, assuming the alias used to identify this user name and password credential is hr_access
. scheme
: Enter one of the following: AWS
: Specifies the Amazon Simple Storage Service (S3) scheme. Use this scheme only if you are configuring access to the Amazon.com Web site. (Contact Amazon for more information about this setting.) Basic
: Specifies HTTP basic authentication. The default is Basic
. For example:
for_proxy
: Specify whether the HTTP authentication information is for access to the HTTP proxy server instead of the Web server. The default is FALSE
. For example:
The use of the user name and password in the wallet requires the use-passwords
privilege to be granted to the user in the ACL assigned to the wallet.
The following examples demonstrate how to create access control lists.
See Also: Oracle Database Vault Administrator's Guide for a tutorial that demonstrates how to use an access control list when an administrator must use theUTL_MAIL PL/SQL package to configure an email alert |
Example 4-19 shows how you would create an access control list called us-example-com-permissions.xml
to grant users who have the ACCT_MGR
role access to network services that run on the host us.example.com
.
Example 4-19 Creating an Access Control List for a Single Role and Network Connection
This example creates the us-example-com-permissions.xml
file in the /sys/acls
directory, which is the default location. The XML file appears as follows:
The xmlns
and xsi
elements are fixed and should not be modified, for example, in a text editor.
You can check the contents of the access control list in SQL*Plus. See Oracle XML DB Developer's Guide for examples.
Example 4-20 shows how to create a slightly more complex version of the us-example-com-permissions.xml
access control list. In this example, you specify multiple role privileges and their precedence position, and assigned to multiple host computers.
See"Specifying a Group of Network Host Computers" and "Precedence Order for a Host Computer in Multiple Access Control List Assignments" for more information about host names. See also "Setting the Precedence of Multiple Users and Roles in One Access Control List" to determine the order of multiple ACE
elements in the access control list XML file.
Example 4-20 Creating an Access Control List for Multiple Roles and Network Connections
The us-example-com-permissions.xml
appears as follows:
Example 4-21 shows how the DBA_NETWORK_ACL_PRIVILEGES
data dictionary view displays the privilege granted in the previous access control list.
Example 4-21 Using the DBA_NETWORK_ACL_PRIVILEGES View to Show Granted Privileges
Example 4-22 shows how the DBA_NETWORK_ACLS
data dictionary view displays the host assignment of the access control list.
Example 4-22 Using the DBA_NETWORK_ACLS View to Show Host Assignments
In these examples, the ACCT_MGR
role has the resolve
privilege to the first host, and the ACCT_CLERK
role has the connect privilege to the first and second target hosts. The ACCT_MGR
role does not have the resolve
privilege to the second host because a port range is specified in the assignment to the second host.
To check the contents of the access control list in SQL*Plus, see Oracle XML DB Developer's Guide for examples.
Example 4-23 configures wallet access for two Human Resources department roles, hr_clerk
and hr_manager
. These roles use the use-passwords
privilege to access passwords stored in the wallet. In this example, the wallet will not be shared with other applications within the same database session.
Example 4-23 Configuring ACL Access Using Passwords in a Non-Shared Wallet
Example 4-24 is almost the same as Example 4-23, except that it configures the wallet to be used for a shared database session; that is, all applications within the current database session will have access to this wallet.
Example 4-24 Configuring ACL Access for a Wallet in a Shared Database Session
If you want to assign an access control list to a group of network host computers, you can use the asterisk (*) wildcard character. For example, enter *.example.com
for host computers that belong to a domain or 192.0.2.*
for IPv4 addresses that belong to an IP subnet. The asterisk wildcard must be at the beginning, before a period (.) in a domain, or at the end, after a period (.), in an IP subnet. For example, *.example.com
is valid, but *example.com
and *.example.*
are not. Be aware that the use of wildcard characters affects the order of precedence for multiple access control lists that are assigned to the same host computer. You cannot use wildcard characters for IPv6 addresses.
The Classless Inter-Domain Routing (CIDR) notation defines how IPv4 and IPv6 addresses are categorized for routing IP packets on the internet. The DBMS_NETWORK_ACL_ADMIN
package supports CIDR notation for both IPv4 and IPv6 addresses. This package considers an IPv4-mapped IPv6 address or subnet equivalent to the IPv4-native address or subnet it represents. For example, ::ffff:192.0.2.1
is equivalent to 192.0.2.1
, and ::ffff:192.0.2.1/120
is equivalent to 192.0.2.*
.
For multiple access control lists that are assigned to the host computer and its domains, the access control list that is assigned to the host computer takes precedence over those assigned to the domains. The access control list assigned to a domain has a lower precedence than those assigned to the subdomains.
For example, Oracle Database first selects the access control list assigned to the host server.us.example.com
, ahead of other access control lists assigned to its domains. If additional access control lists were assigned to the sub domains, their order of precedence is as follows:
server.us.example.com
*.us.example.com
*.example.com
*.com
*
Similarly, for multiple access control lists that are assigned to the IP address (both IPv4 and IPv6) and the subnets it belongs to, the access control list that is assigned to the IP address takes precedence over those assigned to the subnets. The access control list assigned to a subnet has a lower precedence than those assigned to the smaller subnets it contains.
For example, Oracle Database first selects the access control list assigned to the IP address 192.0.2.3
, ahead of other access control lists assigned to the subnets it belongs to. If additional access control lists were assigned to the subnets, their order of precedence is as follows:
192.0.2.3
(or ::ffff:192.0.2.3
) 192.0.2.3/31
(or ::ffff:192.0.2.3/127
) 192.0.2.3/30
(or ::ffff:192.0.2.3/126
) 192.0.2.3/29
(or ::ffff:192.0.2.3/125
) 192.0.2.3/24
(or ::ffff:192.0.2.3/120
or 192.0.2.*
) ...
192.0.2.3/16
(or ::ffff:192.0.2.3/112
or 192.0.*
) 192.0.2.3/8
(or ::ffff:192.0.2.3/104
or 192.*
) ::ffff:192.0.2.3/95
::ffff:192.0.2.3/94
*
When an access control list is assigned to a host computer, a domain, or an IP subnet with a port range, it takes precedence over the access control list assigned to the same host, domain, or IP subnet without a port range.
For example, for TCP connections to any port between port 80 and 99 at server.us.example.com
, Oracle Database first selects the access control list assigned to port 80 through 99 at server.us.example.com
, ahead of the other access control list assigned to server.us.example.com
that is without a port range.
Database administrators can use the DBA_NETWORK_ACL_PRIVILEGES
data dictionary view to query network privileges that have been granted to or denied from database users and roles in the access control lists, and whether those privileges take effect during certain times only. Using the information provided by the view, you may need to combine the data to determine if a user is granted the privilege at the current time, the roles the user has, the order of the access control entries, and so on. To simplify this privilege evaluation, you can use the following DBMS_NETWORK_ACL_ADMIN
functions to check the privilege granted to a user in an access control list:
CHECK_PRIVILEGE
: Checks if the specified privilege is granted to or denied from the specified user in an access control list. This procedure identifies the access control list by its path in the XML DB Repository. Use CHECK_PRIVILEGE
if you want to evaluate a single access control list with a known path. CHECK_PRIVILEGE_ACLID
: Similar to the CHECK_PRIVILEGE
procedure, except that it enables you to specify the object ID of the access control list. Use CHECK_PRIVILEGE_ACLID
if you need to evaluate multiple access control lists, when you query the DBA_NETWORK_ACLS
data dictionary view. For better performance, call CHECK_PRIVILEGE_ACLID
on multiple access control lists rather than using CHECK_PRIVILEGE
on each one individually. Users without database administrator privileges do not have the privilege to access the access control lists or to invoke those DBMS_NETWORK_ACL_ADMIN
functions. However, they can query the USER_NETWORK_ACL_PRIVILEGES
data dictionary view to check their privileges instead.
Database administrators and users can use the following DBMS_NETWORK_ACL_UTILITY
functions to determine if two hosts, domains, or subnets are equivalent, or if a host, domain, or subnet is equal to or contained in another host, domain, or subnet:
EQUALS_HOST
: Returns a value to indicate if two hosts, domains, or subnets are equivalent CONTAINS_HOST
: Returns a value to indicate if a host, domain, or subnet is equal to or contained in another host, domain, or subnet, and the relative order of precedence of the containing domain or subnet for its ACL assignments If you do not use IPv6 addresses, database administrators and users can use the following DBMS_NETWORK_ACL_UTILITY
functions to generate the list of domains or IPv4 subnet a host belongs to and to sort the access control lists by their order of precedence according to their host assignments:
DOMAINS
: Returns a list of the domains or IP subnets whose access control lists may affect permissions to a specified network host, subdomain, or IP subnet DOMAIN_LEVEL
: Returns the domain level of a given host The following sections explain how database administrators and users can check permissions for the user to connect to a network host or to perform domain name resolutions:
A database administrator can query the DBA_NETWORK_ACLS
view to determine which access control lists are present for a specified host computer. This view shows the access control lists that determine the access to the network connection or domain, and then determines if each access control list grants (GRANTED
), denies (DENIED
), or does not apply (NULL
) to the access privilege of the user. Only the database administrator can query this view.
The following sections provide examples that demonstrate how the database administrator can check user privileges for network connections and domain name resolution.
Database Administrator Checking User Connection Privileges
Example 4-25 shows how a database administrator can check the privileges for user preston
to connect to www.us.example.com
. Remember that the user name you enter for the user
parameter in the CHECK_PRIVILEGE_ACLID
procedure is case sensitive. In this example, entering the user name preston
is correct, but entering Preston
or preston
is incorrect.
You can find the users in the current database instance by querying the DBA_USERS
data dictionary view, for example:
Example 4-25 Administrator Checking User Permissions for Network Host Connections
In this example, user preston
was granted privileges for all the network host connections found for www.us.example.com
. However, suppose preston
had been granted access to a host connection on port 80, but then denied access to the host connections on ports 3000–3999. In this case, you need to create one access control list for the host connection on port 80, and a separate access control list for the host connection on ports 3000–3999.
Database Administrator Checking User Privileges for Domain Name Resolution
Example 4-26 shows how a database administrator can check the privileges of user preston
to perform domain name resolution for the host www.us.example.com
. In this example, only the access control lists assigned to hosts without a port range because the resolve
privilege has no effect to those with a port range. (Remember that the user name you enter for the user
parameter in CHECK_PRIVILEGE_ACLID
is case sensitive.)
Example 4-26 Administrator Checking Permissions for Domain Name Resolution
Users can query the USER_NETWORK_ACL_PRIVILEGES
view to check their network and domain permissions. The USER_NETWORK_ACL_PRIVILEGES
view is PUBLIC
, so all users can select from it.
This view hides the access control lists from the user. It evaluates the permission status for the user (GRANTED
or DENIED
) and filters out the NULL
case because the user does not need to know when the access control lists do not apply to him or her. In other words, Oracle Database only shows the user on the network hosts that explicitly grant or deny access to him or her. Therefore, the output does not display the *.example.com
and *
that appear in the output from the database administrator-specific DBA_NETWORK_ACLS
view.
The following sections provide examples that demonstrate how a database administrator can check user permissions for network connections and domain name resolution.
User Checking His or Her Network Connection Privileges
Example 4-27 shows how user preston
can check her privileges to connect to www.us.example.com
.
Example 4-27 User Checking Permissions for Network Host Connections
User Checking Own Privileges for Domain Name Resolution
Example 4-26 shows how the user preston
can check her privileges to perform domain name resolution for www.us.example.com
:
Example 4-28 User Checking Privileges for Domain Name Resolution
By default, Oracle Database grants or denies privileges to users and roles based on their physical position in the access control list. The first user or role listed is granted or denied privileges first, followed the second user or role, and so on. For instance, suppose the code in Example 4-20 defined one role, ACCT_MGR
, and two users, sebastian
and preston
, and the access control list XML file ordered these three as follows:
ACCT_MGR
is granted permissions first, followed by permission denials for sebastian
and then preston
. However, if sebastian
and preston
have been granted the ACCT_MGR
role, they still could log in, because the ACCT_MGR
role appears first in the list.
Even though these two users were granted the acct_mgr
role, their specific jobs do not require them to have access to the www.example.com
host. If the positions were reversed—the acct_mgr
role listed after sebastian
and preston
—they would be denied the privilege of connecting to the network. To set the order of precedence of the ACE
elements irrespective of their physical location in the CREATE_ACL
and ADD_PRIVILEGE
statements, you can use the position
attribute.
For example, the following statements set the ACE
elements in the resultant XML file in this order:
ACE
element for sebastian
appears first. ACE
element for preston
appears second. acct_mgr
role appears last. In this case, neither of these users will be able to connect, because their grant privileges, which are set to FALSE
, are evaluated before the acct_mgr
role.
Table 4-6 lists data dictionary views that you can use to find information about existing access control lists. See Oracle Database Reference for more information about these views.
Table 4-6 Data Dictionary Views That Display Information about Access Control Lists
View	Description
Shows the access control list assignments to the network hosts. The	
Shows the network privileges defined in all access control lists that are currently assigned to network hosts. The	
Lists wallets that have been assigned access control lists.	
Shows the status of the network privileges for the current user to access network hosts. The	
Table 4-7 lists data dictionary views that you can query to access information about grants of privileges and roles. See Oracle Database Reference for detailed information about these views.	
Table 4-7 Data Dictionary Views That Display Information about Privileges and Roles	
This section provides some examples of using these views. For these examples, assume the following statements were issued:	
The following query returns all system privilege grants made to roles and users:	
See Oracle Database Reference for detailed information about the DBA_SYS_PRIVS	
view.	
The following query returns all the roles granted to users and other roles:	
See Oracle Database Reference for detailed information about the DBA_ROLE_PRIVS	
view.	
The following query returns all object privileges (not including column-specific privileges) granted to the specified user:	
To list all the column-specific privileges that have been granted, use the following query:	
See Oracle Database Reference for detailed information about the DBA_TAB_PRIVS	
view.	
The following query lists all roles currently enabled for the issuer:	
If user swilliams	
has the security_admin	
role enabled and issues the previous query, then Oracle Database returns the following information:	
The following query lists all system privileges currently available in the security domain of the issuer, both from explicit privilege grants and from enabled roles:	
If user swilliams	
has the security_admin	
role enabled and issues the previous query, then Oracle Database returns the following results:	
If the security_admin	
role is disabled for user swilliams	
, then the first query would return no rows, while the second query would only return a row for the CREATE SESSION	
privilege grant.	
See Oracle Database Reference for detailed information about the SESSION_ROLES	
view.	
You can use the DBA_ROLES	
data dictionary view to list all roles of a database and the authentication used for each role. For example, the following query lists all the roles in the database:	
See Oracle Database Reference for detailed information about the DBA_ROLES	
view.	
The ROLE_ROLE_PRIVS	
, ROLE_SYS_PRIVS	
, and ROLE_TAB_PRIVS	
data dictionary views contain information about the privilege domains of roles. For example, the following query lists all the roles granted to the system_admin	
role:	
The following query lists all the system privileges granted to the security_admin	
role:	
The following query lists all the object privileges granted to the security_admin	
role:	
See Oracle Database Reference for detailed information about the ROLE_ROLE_PRIVS	
, ROLE_SYS_PRIVS	
, and ROLE_TAB_PRIVS	
views.	
This chapter contains:	
Creating an application security policy is the first step to create a secure database application. An application security policy is a list of application security requirements and rules that regulate user access to database objects.	
You should draft security policies for each database application. For example, each database application should have one or more database roles that provide different levels of security when executing the application. You then can grant the database roles to other roles or directly to specific users.	
Applications that can potentially allow unrestricted SQL statement processing (through tools such as SQL*Plus or SQL Developer) also need security policies that prevent malicious access to confidential or important schema objects. In particular, you must ensure that your applications handle passwords in a secure manner.	
The following sections describe aspects of application security and the Oracle Database features that you can use to plan and develop secure database applications.	
Two main questions to consider when you formulate and implement application security are covered in the following sections:	
Where possible, you should build applications in which application users are database users. In this way, you can leverage the intrinsic security mechanisms of the database.	
For many commercial packaged applications, application users are not database users. For these applications, multiple users authenticate themselves to the application, and the application then connects to the database as a single, highly-privileged user. This is called the One Big Application User model.	
Applications built in this way generally cannot use many of the intrinsic security features of the database, because the identity of the user is not known to the database.	
Table 5-1 describes how the One Big Application User model affects various Oracle Database security features:	
Table 5-1 Features Affected by the One Big Application User Model	
Applications, whose users are also database users, can either build security into the application, or rely on intrinsic database security mechanisms such as granular privileges, virtual private databases (fine-grained access control with application context), roles, stored procedures, and auditing (including fine-grained auditing). Oracle recommends that applications use the security enforcement mechanisms of the database as much as possible.	
When security is enforced in the database itself, rather than in the application, it cannot be bypassed. The main shortcoming of application-based security is that security is bypassed if the user bypasses the application to access data. For example, a user who has SQL*Plus access to the database can execute queries without going through the Human Resources application. The user, therefore, bypasses all of the security measures in the application.	
Applications that use the One Big Application User model must build security enforcement into the application rather than use database security mechanisms. Because it is the application, and not the database, that recognizes users; the application itself must enforce security measures for each user.	
This approach means that each application that accesses data must reimplement security. Security becomes expensive, because organizations must implement the same security policies in multiple applications, and each new application requires an expensive reimplementation.	
This section provides strategies for securely invoking password-protected services from a batch job, script, installation file, or application. In addition to password protection, most of these strategies can be applied to other sensitive data, such as cryptographic keys.	
This section contains:	
See Also:	
These guidelines are in the following categories:	
Be aware of the following potential security threats, which may not be obvious:	
CONNECT SYSTEM/	
password	
notation in SQL*Plus, exit, and then press the Up arrow to repeat the CONNECT	
command, the command recall feature reveals the connect string and displays the password. In addition, do not assume that non-Microsoft Windows platforms are safe from this threat. Check the APIs for the programming language you use to design applications for the best way to handle passwords from users. For an example of Java code that handles this functionality, see "Example of Reading Passwords in Java".	
WHERE	
clause to TRUE	
. To address the problem of SQL injection attacks, use bind variable arguments or create validation checks. If you cannot use bind variables, then consider using the DBMS_ASSERT	
PL/SQL package to validate the properties of input values. Oracle Database PL/SQL Packages and Types Reference describes the DBMS_ASSERT	
package in detail. You also should review any grants to roles such as PUBLIC	
.	
See Oracle Database PL/SQL Language Reference for more information about preventing SQL injection.	
psmith	
is not necessarily the same person as remote user psmith	
. Follow these guidelines:	
Follow these guidelines:	
The following examples are secure because passwords are not exposed on the command line. Oracle Database also automatically encrypts these passwords over the network.	
The following example exposes the password to other operating system users:	
The next example poses two security risks. First, it exposes the password to other users who may be watching over your shoulder. Second, on some platforms, such as Microsoft Windows, it makes the password vulnerable to a command line recall attack.	
A good practice is to ensure that the script makes the purpose of the value clear. For example, it should be clear whether or not the value will establish a new value, such as an account or a certificate, or if the value will authenticate, such as logging in to an existing account.	
The following example is secure because it prevents users from invoking the script in a manner that poses security risks: It does not echo the password; it does not record the password in a spool file.	
1 2 3 4	SET VERIFY OFF ACCEPT user CHAR PROMPT ’Enter user to connect to: ’ ACCEPT password CHAR PROMPT ’Enter the password for that user: ' HIDE CONNECT &user/&password
In this example:	
SET VERIFY	
lists each line of the script before and after substitution.) Combining the SET VERIFY OFF	
command with the HIDE	
command (in Line 3) is a useful technique for hiding passwords and other sensitive input data. HIDE	
option for the ACCEPT password	
prompt, which prevents the input password from being echoed. The next example, which uses positional parameters, poses security risks because a user may invoke the script by passing the password on the command line. If the user does not enter a password and instead is prompted, the danger lies in that whatever the user types is echoed to the screen and to a spool file if spooling is enabled.	
The following example of altering a password is secure because the password is not exposed:	
This example poses a security risk because the password is exposed both at the command line and on the network:	
You can store password credentials for connecting to a database by using a client-side Oracle wallet. An Oracle wallet is a secure software container that stores the authentication and signing credentials needed for a user to log in.	
See "Managing the Secure External Password Store for Password Credentials" for more information about the secure external password store. See also Oracle Database Advanced Security Administrator's Guide for information about using Oracle Wallet Manager to configure Oracle wallets.	
You can create a password file for users who need to connect to an application using the SYSDBA	
or SYSOPER	
privileges over a network. To create the password file, use the ORAPWD	
utility. See Oracle Database Administrator's Guide for more information about creating and maintaining a password file.	
Example 5-1 demonstrates how to create a Java package that can be used to read passwords.	
Example 5-1 Java Code for Reading Passwords	
Most database applications involve different privileges on different schema objects. Keeping track of the privileges that are required for each application can be complex. In addition, authorizing users to run an application can involve many GRANT	
operations.	
To simplify application privilege management, you can create a role for each application and grant that role all the privileges a user must run the application. In fact, an application can have several roles, each granted a specific subset of privileges that allow greater or lesser capabilities while running the application.	
For example, suppose every administrative assistant uses the Vacation application to record the vacation taken by members of the department. To best manage this application, you should:	
VACATION	
role. VACATION	
role. VACATION	
role to all administrative assistants. Better yet, create a role that defines the privileges the administrative assistants have, and then grant the VACATION	
role to that role. Grouping application privileges in a role aids privilege management. Consider the following administrative options:	
ROLE_TAB_PRIVS	
and ROLE_SYS_PRIVS	
data dictionary views. DBA_ROLE_PRIVS	
data dictionary view. See Also:	
As explained in "Securing Role Privileges by Using Secure Application Roles", a secure application role is a role that is only enabled through its associated PL/SQL package or procedure. This package defines the policy needed to control access to an application.	
This section contains:	
See Also: Oracle Database 2 Day + Security Guide for a tutorial on creating a secure application role	
You create a secure application role by using the SQL statement CREATE	
ROLE	
with the IDENTIFIED USING	
clause. You must have the CREATE	
ROLE	
system privilege to execute this statement.	
For example, to create a secure application role called hr_admin	
that is associated with the sec_mgr.hr_admin	
package, follow these steps:	
This statement indicates the following:	
hr_admin	
to be created is a secure application role. sec_mgr	
.hr_admin_role_check	
. At this stage, this procedure does not need to exist; "Step 2: Create a PL/SQL Package to Define the Access Policy for the Application" explains how to create the package or procedure. For example, to grant the hr_admin	
role SELECT	
, INSERT	
, UPDATE	
, and DELETE	
privileges on the HR.EMPLOYEES	
table, you enter the following statement:	
Do not grant the role directly to the user. The PL/SQL procedure or package does that for you, assuming the user passes its security policies.	
To enable or disable the secure application role, you create the security policies of the role within a PL/SQL package. You also can create an individual procedure to do this, but a package lets you group a set of procedures together. This lets you group a set of policies that, used together, present a solid security strategy to protect your applications. For users (or potential intruders) who fail the security policies, you can add auditing checks to the package to record the failure. Typically, you create this package in the schema of the security administrator.	
The package or procedure must accomplish the following:	
AUTHID	
property to CURRENT_USER	
. You cannot create the package by using definer's rights. For more information about invoker's rights and definer's rights, see Oracle Database PL/SQL Language Reference.	
SYS_CONTEXT	
SQL function. See Oracle Database SQL Language Reference for more information about SYS_CONTEXT	
. To find session information for a user, you can use SYS_CONTEXT	
with an application context. See Chapter 6, "Using Application Contexts to Retrieve User Information," for details. SET ROLE	
SQL statement or the DBMS_SESSION.SET_ROLE	
procedure. (However, you cannot use the SET ROLE ALL	
statement for this type of role enablement.) The PL/SQL embedded SQL syntax does not support the SET ROLE	
statement, but you can invoke SET ROLE	
by using dynamic SQL (for example, with EXECUTE IMMEDIATE	
). For more information about EXECUTE IMMEDIATE	
, see Oracle Database PL/SQL Language Reference.	
Because of the way that you must create this package or procedure, you cannot use a logon trigger to enable or disable a secure application role. Instead, invoke the package directly from the application when the user logs in, before the user must use the privileges granted by the secure application role.	
For example, suppose you wanted to restrict anyone using the hr_admin	
role to employees who are on site (that is, using certain terminals) and between the hours of 8 a.m. and 5 p.m. As the system or security administrator, follow these steps. (You can copy and paste this text by positioning the cursor at the start of CREATE OR REPLACE	
in the first line.)	
1 2 3 4 5 6 7 8 9 10 11 12 13	CREATE OR REPLACE PROCEDURE hr_admin_role_check AUTHID CURRENT_USER AS BEGIN IF (SYS_CONTEXT ('userenv','ip_address') BETWEEN '192.0.2.10' and '192.0.2.20' AND TO_CHAR (SYSDATE, 'HH24') BETWEEN 8 AND 17) THEN EXECUTE IMMEDIATE 'SET ROLE hr_admin'; END IF; END; /
In this example:	
AUTHID	
property to CURRENT_USER	
so that invoker's rights can be used. SYS_CONTEXT	
SQL function to retrieve the user session information. hr_admin	
role is granted. SET ROLE	
statement using the EXECUTE IMMEDIATE	
command. EXECUTE	
permissions for the hr_admin_role_check	
procedure to any user who was assigned it. For example:	
To test the secure application role, log in to SQL*Plus as the user, try to enable the role, and then try to perform an action that requires the privileges the role grants.	
For example:	
Ensure that users have only the privileges associated with the current database role.	
This section contains:	
A single user can use many applications and associated roles. However, you should ensure that the user has only the privileges associated with the current database role. Consider the following scenario:	
ORDER	
role (for an application called Order) contains the UPDATE	
privilege for the INVENTORY	
table. INVENTORY	
role (for an application called Inventory) contains the SELECT	
privilege for the INVENTORY	
table. ORDER	
and INVENTORY	
roles. In this scenario, an order entry clerk who was granted both roles can use the privileges of the ORDER	
role when running the INVENTORY	
application to update the INVENTORY	
table. The problem is that updating the INVENTORY	
table is not an authorized action for the INVENTORY	
application. It is an authorized action for the ORDER	
application. To avoid this problem, use the SET	
ROLE	
statement as explained in the following section.	
Use a SET	
ROLE	
statement at the beginning of each application to automatically enable its associated role and to disable all others. This way, each application dynamically enables particular privileges for a user only when required.	
The SET	
ROLE	
statement simplifies privilege management. You control what information users can access and when they can access it. The SET	
ROLE	
statement also keeps users operating in a well-defined privilege domain. If a user obtains privileges only from roles, then the user cannot combine these privileges to perform unauthorized operations.	
See Also:	
A schema is a security domain that can contain database objects. The privileges granted to each user or role control access to these database objects.	
This section contains:	
You can think of most schemas as user names: the accounts that enable users to connect to a database and access the database objects. However, a unique schema does not allow connections to the database, but is used to contain a related set of objects. Schemas of this sort are created as typical users, and yet are not granted the CREATE	
SESSION	
system privilege (either explicitly or through a role). However, you must temporarily grant the CREATE	
SESSION	
and RESOURCE	
privilege to a unique schema if you want to use the CREATE	
SCHEMA	
statement to create multiple tables and views in a single transaction.	
For example, a given schema might own the schema objects for a specific application. If application users have the privileges to do so, then they can connect to the database using typical database user names and use the application and the corresponding objects. However, no user can connect to the database using the schema set up for the application. This configuration prevents access to the associated objects through the schema, and provides another layer of protection for schema objects. In this case, the application could issue an ALTER SESSION SET CURRENT_SCHEMA	
statement to connect the user to the correct application schema.	
For many applications, users do not need their own accounts or schemas in a database. These users only need to access an application schema. For example, users John, Firuzeh, and Jane are all users of the Payroll application, and they need access to the payroll	
schema on the finance	
database. None of them need to create their own objects in the database. They need to only access the payroll	
objects. To address this issue, Oracle Advanced Security provides the enterprise users, which are schema-independent users.	
Enterprise users, users managed in a directory service, do not need to be created as database users because they use a shared database schema. To reduce administration costs, you can create an enterprise user once in the directory, and point the user at a shared schema that many other enterprise users can also access.	
For more information about managing enterprise users, see Oracle Database Enterprise User Security Administrator's Guide.	
As part of designing your application, you need to determine the types of users who will be working with the application and the level of access that they need to accomplish their designated tasks. You must categorize these users into role groups, and then determine the privileges that must be granted to each role.	
This section contains:	
End users are typically granted object privileges. An object privilege allows a user to perform a particular action on a specific table, view, sequence, procedure, function, or package.	
Table 5-2 summarizes the object privileges available for each type of object.	
Table 5-2 How Privileges Relate to Schema Objects	
Object Privilege	Applies to Table?
---	---
Yes	No
Yes	Yes
No	No
YesFoot 2	No
Yes	Yes
YesFootref 2	No
Yes	YesFoot 3
Yes	Yes
Footnote 1 Standalone stored procedures, functions, and public package constructs	
Footnote 2 Privilege that cannot be granted to a role	
Footnote 3 Can also be granted for snapshots	
See also "Auditing Schema Objects" for detailed information about how schema objects can be audited.	
As you implement and test your application, you should create each necessary role. Test the usage scenario for each role to ensure that the users of your application will have proper access to the database. After completing your tests, coordinate with the administrator of the application to ensure that each user is assigned the proper roles.	
Table 5-3 lists the SQL statements permitted by the object privileges shown in Table 5-2.	
Table 5-3 SQL Statements Permitted by Database Object Privileges	
Object Privilege	SQL Statements Permitted
---	---
References to public package variables	
SQL statements using a sequence	
See "About Privileges and Roles" for a discussion of object privileges. See also "Auditing SQL Statements" for detailed information about how SQL statements can be audited.	
Database administrators can manage security for their applications by following the procedures in this section.	
Networking communication utilities such as Oracle Call Interface (OCI) or Two-Task Common (TTC) can generate a large disk file containing the stack trace and heap dump when the server receives a bad packet, out-of-sequence packet, or a private or an unused remote procedure call. Typically, this disk file can grow quite large. An intruder can potentially cripple a system by repeatedly sending bad packets to the server, which can result in disk flooding and denial of service. An unauthenticated client can also mount this type of attack.	
You can prevent these attacks by setting the SEC_PROTOCOL_ERROR_TRACE_ACTION	
initialization parameter to one of the following values:	
None	
: Configures the server to ignore the bad packets and does not generate any trace files or log messages. Use this setting if the server availability is overwhelmingly more important than knowing that bad packets are being received. For example:	
Trace	
(default setting): Creates the trace files, but it is useful for debugging purposes, for example, when a network client is sending bad packets as a result of a bug. For example:	
Log	
: Writes a short, one-line message to the server trace file. This choice balances some level of auditing with system availability. For example:	
Alert	
: Sends an alert message to a database administrator or monitoring console. For example:	
After Oracle Database detects a client or server protocol error, it must continue execution. However, this could subject the server to further bad packets, which could lead to disk flooding or denial-of-service attacks.	
You can control the further execution of a server process when it is receiving bad packets from a potentially malicious client by setting the SEC_PROTOCOL_ERROR_FURTHER_ACTION	
initialization parameter to one of the following values:	
Continue	
(default setting): Continues the server execution. However, be aware that the server may be subject to further attacks. For example:	
Delay,	
m	
: Delays the client m	
seconds before the server can accept the next request from the same client connection. This setting prevents malicious clients from excessively using server resources while legitimate clients experience a degradation in performance but can continue to function. For example:	
Drop,	
n	
: Forcefully terminates the client connection after n	
bad packets. This setting enables the server to protect itself at the expense of the client, for example, loss of a transaction. However, the client can still reconnect, and attempt the same operation again. For example:	
With Oracle Database, a server process is first started, and then the client authenticates with this server process. An intruder could start a server process first, and then issue an unlimited number of authenticated requests with different user names and passwords in an attempt to gain access to the database.	
You can limit the number of failed login attempts for application connections by setting the SEC_MAX_FAILED_LOGIN_ATTEMPTS	
initialization parameter to restrict the number of authentication attempts on a connection. After the specified number of authentication attempts fail, the database process drops the connection. By default, SEC_MAX_FAILED_LOGIN_ATTEMPTS	
is set to 10.	
Remember that the SEC_MAX_FAILED_LOGIN_ATTEMPTS	
initialization parameter is designed to prevent potential intruders from attacking your applications; it does not apply to valid users. The sqlnet.ora	
INBOUND_CONNECT_TIMEOUT	
parameter and the FAILED_LOGIN_ATTEMPTS	
initialization parameter also restrict failed logins, but the difference is that these two parameters only apply to valid user accounts.	
For example, to limit the maximum attempts to 5, set SEC_MAX_FAILED_LOGIN_ATTEMPTS	
as follows in the init	
sid	
.ora	
initialization parameter file:	
Detailed product version information should not be accessible before a client connection (including an Oracle Call Interface client) is authenticated. An intruder could use the database version to find information about security vulnerabilities that may be present in the database software.	
You can restrict the display of the database version banner to unauthenticated clients by setting the SEC_RETURN_SERVER_RELEASE_BANNER	
initialization parameter in the init	
sid	
.ora	
initialization parameter file to either TRUE	
or FALSE	
. By default, SEC_RETURN_SERVER_RELEASE_BANNER	
is set to FALSE	
.	
For example, if you set it to TRUE	
, the Oracle Database displays the full correct database version:	
In the future, if you install Oracle Database 11.2.0.2, for example, it will display the following banner:	
However, if in that same release, you set it to FALSE	
, then Oracle Database restricts the banner to display the following fixed text starting with Release 11.2:	
You should create and configure banners to warn users against unauthorized access and possible auditing of user actions. The notices are available to the client application when it logs into the database.	
To configure these banners to display, set the following sqlnet.ora	
parameters on the database server side to point to a text file that contains the banner information:	
SEC_USER_UNAUTHORIZED_ACCESS_BANNER	
. For example: SEC_USER_AUDIT_ACTION_BANNER	
. For example: By default, these parameters are not set. In addition, be aware that there is a 512-byte limitation for the number of characters used for the banner text.	
After you set these parameters, the Oracle Call Interface application must use the appropriate OCI APIs to retrieve these banners and present them to the end user.	
This chapter contains:	
This section contains:	
An application context is a set of name-value pairs that Oracle Database stores in memory. The application context has a label called a namespace (for example, empno_ctx	
for an application context that retrieves employee IDs). Inside the context are the name-value pairs (an associative array): the name points to a location in memory that holds the value. An application can use the application context to access session information about a user, such as the user ID or other user-specific information, or a client ID, and then securely pass this data to the database. You can then use this information to either permit or prevent the user from accessing data through the application. You can use application contexts to authenticate both database and nondatabase users.	
The components of the name-value pair are as follows:	
empno_ctx	
application context retrieves an employee ID from the HR.EMPLOYEES	
table, it could have a name such as employee_id	
. empno_ctx	
application context, if you wanted to retrieve an employee ID from the HR.EMPLOYEES	
table, you could create a value called emp_id	
that sets the value for this ID. Think of an application context as a global variable that holds information that is accessed during a database session. To set the values for a secure application context, you must create a PL/SQL package procedure that uses the DBMS_SESSION.SET_CONTEXT	
procedure. In fact, this is the only way that you can set application context values if the context is not marked INITIALIZED EXTERNALLY	
or INITIALIZED GLOBALLY	
. You can assign the values to the application context attributes at run time, not when you create the application context. Because the trusted procedure, and not the user, assigns the values, it is a called secure application context. For client-session based application contexts, another way to set the application context is to use Oracle Call Interface (OCI) calls.	
Oracle Database stores the application context values in a secure data cache available in the User Global Area (UGA) or the System (sometimes called "Shared") Global Area (SGA). This way, the application context values are retrieved during the session. Because the application context stores the values in this data cache, it increases performance for your applications. You can use an application context by itself, with Oracle Virtual Private Databases policies, or with other fine-grained access control policies. See "Using Oracle Virtual Private Database with an Application Context" if you are interested in using application contexts with Virtual Private Database policies.	
Most applications contain the kind of information that can be used for application contexts. For example, in an order entry application that uses a table containing the columns ORDER_NUMBER	
and CUSTOMER_NUMBER	
, you can use the values in these columns as security attributes to restrict access by a customer to his or her own orders, based on the ID of that customer.	
Application contexts are useful for the following purposes:	
This cache saves the repeated overhead of querying the database each time these attributes are needed. Because the application context stores session data in cache rather than forcing your applications to retrieve this data repeatedly from a table, it greatly improves the performance of your applications.	
Oracle Database sets the application context in all editions that are affected by the application context package. The values the application context sets are visible in all editions the application context affects.	
See Also: Oracle Database Advanced Application Developer's Guide for detailed information about editions	
There are three general categories of application contexts:	
"Using Database Session-Based Application Contexts" describes this type of application context.	
"Using Global Application Contexts" describes this type.	
"Using Client Session-Based Application Contexts" describes this type.	
Table 6-1 summarizes the different types of application contexts.	
Table 6-1 Types of Application Contexts	
Application Context Type	Stored in UGA
---	---
Database session-based application context initialized locally	Yes
Database session-based application context initialized externally	Yes
Database session-based application context initialized globally	Yes
Global application context	No
Client session-based application context	Yes
If you must retrieve session information for database users, then use a database session-based application context. This type of application context uses a PL/SQL procedure within Oracle Database to retrieve, set, and secure the data it manages.	
Note: If your users are application users, that is, users who are not in your database, consider using a global application context instead. See "Using Global Application Contexts" for more information.	
The database session-based application context is managed entirely within Oracle Database. Oracle Database sets the values, and then when the user exits the session, automatically clears the application context values stored in cache. If the user connection ends abnormally, for example, during a power failure, then the PMON background process cleans up the application context data.You do not need to explicitly clear the application context from cache.	
The advantage of having Oracle Database manage the application context is that you can centralize the application context management. Any application that accesses this database will need to use this application context to permit or prevent user access to that application. This provides benefits both in improved performance and stronger security.	
You use the following components to create and use a database session-based application context:	
CREATE CONTEXT	
SQL statement to create an application context. This statement names the application context (namespace) and associates it with a PL/SQL procedure that is designed to retrieve session data and set the application context. "Tutorial: Creating and Using a Database Session-Based Application Context" shows how to create and use a database session-based application context that is initialized locally.	
You can also initialize session-based application contexts either externally or globally. Either method stores the context information in the user session.	
To create a database session-based application context, you use the CREATE	
CONTEXT	
SQL statement. Here, you create a namespace for the application context and then associate it with a PL/SQL package that manages the name-value pair that holds the session information of the user. You must have the CREATE ANY CONTEXT	
system privilege to run this statement, and the DROP ANY CONTEXT	
privilege to use the DROP CONTEXT	
statement if you drop the application context. In a database session-based application context, data is stored in the database user session (UGA) in a namespace that you create with the CREATE CONTEXT	
SQL statement.	
Each application context must have a unique attribute and belong to a namespace. That is, context names must be unique within the database, not just within a schema.	
The ownership of the application context is as follows: Even though a user who has been granted the CREATE ANY CONTEXT	
and DROP ANY CONTEXT	
privileges can create and drop the application context, it is owned by the SYS	
schema. Oracle Database associates the context with the schema account that created it, but if you drop this user, the context still exists in the SYS	
schema. As user SYS	
, you can drop the application context.	
Example 6-1 shows how to use CREATE CONTEXT	
to create a database session-based application context:	
Example 6-1 Creating a Database Session-Based Application Context	
Here, empno_ctx	
is the context namespace and set_empno_ctx_pkg	
is the package that sets attributes for the empno_ctx	
namespace. When you create the application context, the PL/SQL package does not need to exist, but it must exist at run time. "Step 3: Create a Package to Retrieve Session Data and Set the Application Context" shows an example of how to create a package that can be used with this application context.	
Notice that when you create the context, you do not set its name-value attributes in the CREATE CONTEXT	
statement. Instead, you set these in the package that you associate with the application context. The reason you do this is to prevent a malicious user from changing the context attributes without proper attribute validation.	
Note: You cannot create a context calledCLIENTCONTEXT . This word is reserved for use with client session-based application contexts. See "Using Client Session-Based Application Contexts" for more information about this type of application context.	
For each application, you can create an application context that has its own attributes. Suppose, for example, you have three applications: General Ledger, Order Entry, and Human Resources. You can specify different attributes for each application:	
CUSTOMER_NUMBER.	
SET_OF_BOOKS	
and TITLE.	
ORGANIZATION_ID	
, POSITION	
, and COUNTRY	
. The data the attributes access is stored in the tables behind the applications. For example, the order entry application uses a table called OE.CUSTOMERS	
, which contains the CUSTOMER_NUMBER	
column, which provides data for the CUSTOMER_NUMBER	
attribute. In each case, you can adapt the application context to your precise security needs.	
The PL/SQL package, usually created in the schema of the security administrator, defines procedures that manage the session data represented by the application context. It must perform the following tasks:	
SYS_CONTEXT	
SQL function. The SYS_CONTEXT	
function returns the value of the parameter associated with the context namespace. You can use this function in both SQL and PL/SQL statements. Typically, you will use the built-in USERENV	
namespace to retrieve the session information of a user. (For detailed information about the SYS_CONTEXT	
function, see Oracle Database SQL Language Reference.) DBMS_SESSION.SET_CONTEXT	
procedure to set the name-value attributes of the application context. The name-value attributes can hold information such as the user ID, IP address, authentication mode, the name of the application, and so on. The values of the attributes you set remain either until you reset them, or until the user ends the session. Note the following: SET_CONTEXT	
overwrites this value. SYS_CONTEXT	
function will return the most recent value. It is important to remember that the procedure is a trusted procedure: It is designed to prevent the user from setting his or her own application context attribute values. The user runs the procedure, but the procedure sets the application context values, not the user.	
"Tutorial: Creating and Using a Database Session-Based Application Context" shows how to create a database session-based application context.	
The syntax for the PL/SQL function SYS_CONTEXT	
is as follows:	
In this specification:	
namespace	
: The name of the application context. You can specify either a string or an expression that evaluates to a string. The SYS_CONTEXT	
function returns the value of parameter associated with the context namespace at the current instant. If the value of the parameter in the namespace already has been set, then SET_CONTEXT	
overwrites this value. parameter	
: A parameter within the namespace	
application context. This value can be a string or an expression. length	
: Optional. The default maximum size of the return type is 256 bytes, but you can override the length by specifying a value up to 4000 bytes. Enter a value that is a NUMBER	
data type, or a value that can be can be implicitly converted to NUMBER	
. The data type of the SYS_CONTEXT	
return type is a VARCHAR2	
. The SYS_CONTEXT	
function provides a default namespace, USERENV	
, which describes the current session of the user logged on. You can use SYS_CONTEXT	
to retrieve different types of session-based information about a user, such as the user host computer ID, host IP address, operating system user name, and so on. Remember that you only use USERENV	
to retrieve session data, not set it. The predefined attributes are listed in the description for the PL/SQL function in the Oracle Database SQL Language Reference.	
For example, to retrieve the name of the host computer to which a client is connected, you can use the HOST	
parameter of USERENV	
as follows:	
You can check the SYS_CONTEXT	
settings by issuing a SELECT	
SQL statement on the DUAL	
table. The DUAL	
table is a small table in the data dictionary that Oracle Database and user-written programs can reference to guarantee a known result. This table has one column called DUMMY	
and one row that contains the value X	
.	
Example 6-2 demonstrates how to find the host computer on which you are logged, assuming that you are logged on to the SHOBEEN_PC	
host computer under EMP_USERS	
.	
During a session in which you expect a change in policy between executions of a given query, the query must use dynamic SQL. You must use dynamic SQL because static SQL and dynamic SQL parse statements differently:	
Consider a situation in which Policy A is in force when you compile a SQL statement, and then you switch to Policy B and run the statement. With static SQL, Policy A remains in force. Oracle Database parses the statement at compile time, but does not parse it again upon execution. With dynamic SQL, Oracle Database parses the statement upon execution, then the switch to Policy B takes effect.	
For example, consider the following policy:	
The policy EMPLOYEE_NAME	
matches the database user name. It is represented in the form of a SQL predicate in Oracle Virtual Private Database: the predicate is considered a policy. If the predicate changes, then the statement must be parsed again to produce the correct result.	
If you use SYS_CONTEXT	
inside a SQL function that is embedded in a parallel query, then the function includes the application context.	
Consider a user-defined function within a SQL statement, which sets the user ID to 5:	
Now consider the following statement:	
When this statement is run as a parallel query, the user session, which contains the application context information, is propagated to the parallel execution servers (query child processes).	
When SQL statements within a user session involve database links, then Oracle Database runs the SYS_CONTEXT	
SQL function at the host computer of the database link, and then captures the context information there (at the host computer).	
If remote PL/SQL procedure calls are run on a database link, then Oracle Database runs any SYS_CONTEXT	
function inside such a procedure at the destination database of the link. In this case, only externally initialized application contexts are available at the database link destination site. For security reasons, Oracle Database propagates only the externally initialized application context information to the destination site from the initiating database link site.	
After you have used the SYS_CONTEXT	
function to retrieve the session data of a user, you are ready to set the application context values from the session of this user. To do so, use the DBMS_SESSION.SET_CONTEXT	
procedure. (Ensure that you have the EXECUTE	
privilege for the DBMS_SESSION	
PL/SQL package.)	
Its syntax is as follows:	
In this specification:	
namespace	
: The namespace of the application context to be set, limited to 30 bytes. For example, if you were using a namespace called custno_ctx	
, you would specify it as follows: attribute	
: The attribute of the application context to be set, limited to 30 bytes. For example, to create the ctx_attrib	
attribute for the custno_ctx	
namespace: value	
: The value of the application context to be set, limited to 4000 bytes. Typically, this is the value retrieved by the SYS_CONTEXT	
function and stored in a variable. For example: username	
: Optional. The database user name attribute of the application context. The default is NULL	
, which permits any user to access the session. For database session-based application contexts, omit this setting so that it uses the NULL	
default. The username	
and client_id	
parameters are used for globally accessed application contexts. See "Setting the DBMS_SESSION.SET_CONTEXT username and client_id Parameters" for more information.	
client_id	
: Optional. The application-specific client_id	
attribute of the application context (64-byte maximum). The default is NULL	
, which means that no client ID is specified. For database session-based application contexts, omit this setting so that it uses the NULL	
default. See Oracle Database PL/SQL Packages and Types Reference for detailed information about the DBMS_SESSION	
package.	
For example, remember the application context created in Example 6-1:	
Example 6-3 shows how to create a simple procedure that creates an attribute for the empno_ctx	
application context.	
Example 6-3 Simple Procedure to Create an Application Context Value	
1 2 3 4 5 6 7	CREATE OR REPLACE PROCEDURE set_empno_ctx_proc(emp_value IN VARCHAR2) IS BEGIN DBMS_SESSION.SET_CONTEXT('empno_ctx', 'empno_attrib', emp_value); END; /
In this example:	
emp_value	
as the input parameter. This parameter specifies the value associated with the application context attribute empno_attrib	
. Its limit is 4000 bytes. DBMS_SESSION.SET_CONTEXT	
procedure: 'empno_ctx'	
: Refers to the application context namespace. Enclose its name in single quotation marks. 'empno_attrib'	
: Creates the attribute associated with the application context namespace. emp_value	
: Specifies the value for the empno_attrib	
attribute. Here, it refers to the emp_value	
parameter defined in Line 2. At this stage, you can run the set_empno_ctx_proc	
procedure to set the application context:	
(In a real world scenario, you would set the application context values in the procedure itself, so that it becomes a trusted procedure. This example is only used to show how data can be set for demonstration purposes.)	
To check the application context setting, run the following SELECT	
statement:	
You can also query the SESSION_CONTEXT	
data dictionary view to find all the application context settings in the current session of the database instance. For example:	
See Also:	
After you create the application context and its associated package, the user must run the package procedure when he or she logs on. You can create a logon trigger that handles this automatically. You do not need to grant the user EXECUTE	
permissions to run the package.	
Example 6-4 shows a simple logon trigger that executes a PL/SQL procedure.	
Example 6-4 Creating a Simple Logon Trigger	
Example 6-5 shows how to create a logon trigger that uses a WHEN OTHERS	
exception. Otherwise, if there is an error in the PL/SQL logic that creates an unhandled exception, then all connections to the database are blocked. This example shows a WHEN OTHERS	
exception that writes errors to a table in the security administrator's schema. In a production environment, this is safer than sending the output to the user session, where it could be vulnerable to security attacks.	
Example 6-5 Creating a Logon Trigger for a Production Environment	
Example 6-6 shows how to create the same logon trigger for a development environment, in which you may want to output errors the user session for debugging purposes.	
Example 6-6 Creating a Logon Trigger for a Development Environment	
Note the following:	
This section contains:	
This tutorial shows how to create an application context that checks the employee ID of any database user who tries to log in to the database.	
SYS	
and connect using the AS SYSDBA	
privilege. sysadmin_ctx	
account, who will administer the database session-based application context. Replace password	
with a password that is secure. See "Minimum Requirements for Passwords" for more information.	
lozer	
for her email account in the HR.EMPLOYEES	
table. Replace password	
with a password that is secure. See "Minimum Requirements for Passwords" for more information.	
SCOTT	
will also be used in this tutorial, so query the DBA_USERS	
data dictionary view to ensure that SCOTT	
is not locked or expired. If the DBA_USERS	
view lists user SCOTT	
as locked and expired, then enter the following statement to unlock the SCOTT	
account and create a new password for him:	
Enter a password that is secure. For greater security, do not give the SCOTT	
account the same password from previous releases of Oracle Database. See "Minimum Requirements for Passwords" for the minimum requirements for creating passwords.	
sysadmin_ctx	
. Remember that even though user sysadmin_ctx	
has created this application context, the SYS	
schema owns the context.	
Example 6-7 shows how to create the package you need to retrieve the session data and set the application context. Before creating the package, ensure that you are still logged on as user sysadmin_ctx	
. (You can copy and paste this text by positioning the cursor at the start of CREATE OR REPLACE	
in the first line.)	
Example 6-7 Package to Retrieve Session Data and Set a Database Session Context	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	CREATE OR REPLACE PACKAGE set_empno_ctx_pkg IS PROCEDURE set_empno; END; / CREATE OR REPLACE PACKAGE BODY set_empno_ctx_pkg IS PROCEDURE set_empno IS emp_id HR.EMPLOYEES.EMPLOYEE_ID%TYPE; BEGIN SELECT EMPLOYEE_ID INTO emp_id FROM HR.EMPLOYEES WHERE email = SYS_CONTEXT('USERENV', 'SESSION_USER'); DBMS_SESSION.SET_CONTEXT('empno_ctx', 'employee_id', emp_id); EXCEPTION WHEN NO_DATA_FOUND THEN NULL; END; END; /
This package creates a procedure called set_empno	
that performs the following actions:	
emp_id	
, to store the employee ID for the user who logs on. It uses the same data type as the EMPLOYEE_ID	
column in HR.EMPLOYEES	
. SELECT	
statement to copy the employee ID that is stored in the employee_id	
column data from the HR.EMPLOYEES	
table into the emp_id	
variable. WHERE	
clause to find all employee IDs that match the email account for the session user. The SYS_CONTEXT	
function uses the predefined USERENV	
context to retrieve the user session ID, which is the same as the email	
column data. For example, the user ID and email address for Lisa Ozer are both the same: lozer	
. DBMS_SESSION.SET_CONTEXT	
procedure to set the application context: 'empno_ctx'	
: Calls the application context empno_ctx	
. Enclose empno_ctx	
in single quotes. 'employee_id'	
: Creates the attribute value of the empno_ctx	
application context name-value pair, by naming it employee_id	
. Enclose employee_id	
in single quotes. emp_id	
: Sets the value for the employee_id	
attribute to the value stored in the emp_id	
variable. The emp_id	
variable was created in Line 8 and the employee ID was retrieved in Lines 10–11. To summarize, the set_empno_ctx_pkg.set_empno	
procedure says, "Get the session ID of the user and then match it with the employee ID and email address of any user listed in the HR.EMPLOYEES	
table."	
WHEN NO_DATA_FOUND	
system exception to catch any no data found	
errors that may result from the SELECT	
statement in Lines 10–11. Without this exception, the package and logon trigger will work fine and set the application context as needed, but then any non-system administrator users other than the users listed in the HR.EMPLOYEES	
table will not be able to log in to the database. Other users should be able to log in to the database, assuming they are valid database users. Once the application context information is set, then you can use this session information as a way to control user access to a particular application. As user sysadmin_ctx	
, create the following trigger:	
lozer	
. When user lozer	
logs on, the empno_ctx	
application context collects her employee ID. You can check it as follows:	
The following output should appear:	
SCOTT	
. User SCOTT	
is not listed as an employee in the HR.EMPLOYEES	
table, so the empno_ctx	
application context cannot collect an employee ID for him.	
The following output should appear:	
From here, the application can use the user session information to determine how much access the user can have in the database. You can use Oracle Virtual Private Database to accomplish this. See Chapter 7, "Using Oracle Virtual Private Database to Control Data Access," for more information.	
SYS	
and connect using AS SYSDBA	
. sysadmin_ctx	
and lozer	
: Remember that even though sysadmin_ctx	
created the application context, it is owned by the SYS	
schema.	
SCOTT	
, unless other users want to use this account: When you initialize a database session-based application context externally, you specify a special type of namespace that accepts the initialization of attribute values from external resources and then stores them in the local user session. Initializing an application context externally enhances performance because it is stored in the UGA and enables the automatic propagation of attributes from one session to another. Connected user database links are supported only by application contexts initialized from OCI-based external sources.	
This section contains:	
Sometimes you need the default values from users. Initially, these default values may be hints or preferences, and then after validation, they become trusted contexts. Similarly, it may be more convenient for clients to initialize some default values, and then rely on a login event trigger or applications to validate the values.	
For job queues, the job submission routine records the context being set at the time the job is submitted, and restores it when executing the batched job. To maintain the integrity of the context, job queues cannot bypass the designated PL/SQL package to set the context. Rather, the externally initialized application context accepts initialization of context values from the job queue process.	
Automatic propagation of context to a remote session may create security problems. Developers or administrators can effectively handle the context that takes default values from resources other than the designated PL/SQL procedure by using logon triggers to reset the context when users log in.	
You can create an application context that accepts the initialization of attributes and values through external resources. Examples include an OCI interface, a job queue process, or a database link.	
Externally initialized application contexts provide the following features:	
Although any client program that is using Oracle Call Interface can initialize this type of namespace, you can use login event triggers to verify the values. It is up to the application to interpret and trust the values of the attributes.	
Example 6-8 shows how to create a database session-based application context that obtains values from an external source.	
Middle-tier servers can initialize application context values on behalf of database users. Context attributes are propagated for the remote session at initialization time, and the remote database accepts the values if the namespace is externally initialized.	
For example, a three-tier application creating lightweight user sessions through OCI or JDBC/OCI can access the PROXY_USER	
attribute in USERENV	
. This attribute enables you to determine if the user session was created by a middle-tier application. You could allow a user to access data only for connections where the user is proxied. If users connect directly to the database, then they would not be able to access any data.	
You can use the PROXY_USER	
attribute from the USERENV	
namespace within Oracle Virtual Private Database to ensure that users only access data through a particular middle-tier application. For a different approach, you can develop a secure application role to enforce your policy that users access the database only through a specific proxy.	
See Also:	
This section contains:	
You can use a centralized location to store the database session-based application context of the user. This enables applications to set up a user context during initialization based upon user identity. In particular, this feature supports Oracle Label Security labels and privileges. Initializing an application context globally makes it easier to manage contexts for large numbers of users and databases.	
For example, many organizations want to manage user information centrally, in an LDAP-based directory. Enterprise User Security, a feature of Oracle Advanced Security, supports centralized user and authorization management in Oracle Internet Directory. However, there may be additional attributes an application must retrieve from Lightweight Directory Access Protocol (LDAP) to use for Oracle Virtual Private Database enforcement, such as the user title, organization, or physical location. Initializing an application context globally enables you to retrieve these types of attributes.	
An application context that is initialized globally uses LDAP, a standard, extensible, and efficient directory access protocol. The LDAP directory stores a list of users to which this application is assigned. Oracle Database uses a directory service, typically Oracle Internet Directory, to authenticate and authorize enterprise users.	
Note:	
The orclDBApplicationContext	
LDAP object (a subclass of groupOfUniqueNames	
) stores the application context values in the directory. The location of the application context object is described in Figure 6-1, which is based on the Human Resources example.	
On the LDAP side, an internal C function is required to retrieve the orclDBApplicationContext	
value, which returns a list of application context values to the database. In this example, HR	
is the namespace; Title and Project are the attributes; and Manager and Promotion are the values.	
To use a globally initialized secure application, you need to first configure Enterprise User Security, a feature of Oracle Advanced Security. Then, you set up the application context values for the user in the database and the directory.	
When a global user (enterprise user) connects to the database, Enterprise User Security verifies the identity of the user connecting to the database. After authentication, the global user roles and application context are retrieved from the directory. When the user logs on to the database, the global roles and initial application context are already set.	
See Also: Oracle Database Enterprise User Security Administrator's Guide for information about configuring Enterprise User Security	
You can configure and store the initial application context for a user, such as the department name and title, in the LDAP directory. The values are retrieved during user login so that the context is set properly. In addition, any information related to the user is retrieved and stored in the SYS_USER_DEFAULTS	
application context namespace. The following procedure shows how this is accomplished:	
An example of the entries added to the LDAP directory follows. These entries create an attribute named Title	
with the attribute value Manager	
for the application (namespace) HR	
, and assign user names user1	
and user2	
. In the following, cn=example	
refers to the name of the domain.	
inetOrgPerson	
object entry exists for the user, then the connection retrieves the attributes from inetOrgPerson	
, and assigns them to the namespace SYS_LDAP_USER_DEFAULT	
. The following is an example of an inetOrgPerson	
entry: When user1	
connects to a database that belongs to the example	
domain, user1	
will have his Title	
set to Manager	
. Any information related to user1	
will be retrieved from the LDAP directory. The value can be obtained using the following syntax:	
For example:	
The output of this example is:	
Many applications store attributes used for fine-grained access control within a database metadata table. For example, an employees	
table could include cost center, title, signing authority, and other information useful for fine-grained access control. Organizations also centralize user information for user management and access control in LDAP-based directories, such as Oracle Internet Directory. Application context attributes can be stored in Oracle Internet Directory, and assigned to one or more enterprise users. They can also be retrieved automatically upon login for an enterprise user, and then used to initialize an application context.	
Note: Enterprise User Security is a feature of Oracle Advanced Security.	
See Also:	
This section contains:	
A global application context enables application context values to be accessible across database sessions, including Oracle RAC instances.Oracle Database stores the global application context information in the System (sometimes called "Shared") Global Area (SGA) so that it can be used for applications that use a sessionless model, such as middle-tier applications in a three-tiered architecture. These applications cannot use a session-based application context because users authenticate to the application, and then it typically connects to the database as a single identity. Oracle Database initializes the global application context once, rather than for each user session. This improves performance, because connections are reused from a connection pool.	
There are three general uses for global application contexts:	
A global application context has the following components:	
CREATE CONTEXT	
SQL statement to create the global application context, and include the ACCESSED GLOBALLY	
clause in the statement. This statement names the application context and associates it with a PL/SQL procedure that is designed to set the application data context data. The global application context is created and stored in the database schema of the security administrator who creates it. DBMS_SESSION.SET_CONTEXT	
procedure to set the global application context. The SET_CONTEXT	
procedure provides parameters that enable you to create a global application context that fits any of the three user situations described in this section. You create, store, and run the PL/SQL package on the database server. Typically, it belongs in the schema of the security administrator who created it. DBMS_SESSION.SET_IDENTIFIER	
procedure to set the client session ID. An advantage of creating a client session ID to store the nondatabase user's name is that you can query the CLIENT_ID	
column of DBA_AUDIT_TRAIL	
, DBA_FGA_AUDIT_TRAIL	
, and DBA_COMMON_AUDIT_TRAIL	
data dictionary views to audit this user's activity. Note: Be aware that theDBMS_APPLICATION_INFO.SET_CLIENT_INFO setting can overwrite the value. See "Using the DBMS_SESSION PL/SQL Package to Set and Clear the Client Identifier" for more information.	
In an Oracle RAC environment, whenever a global application context is loaded or changed, it is visible only to the existing active instances. Be aware that setting a global application context value in an Oracle RAC environment has performance overhead of propagating the context value consistently to all Oracle RAC instances.	
To create a global application context, use the CREATE CONTEXT	
SQL statement to create the application context and include the ACCESSED GLOBALLY	
clause in the statement. You must have the CREATE ANY CONTEXT	
system privilege before you can use the CREATE CONTEXT	
statement, and the DROP ANY CONTEXT	
privilege before you can drop the context with the DROP CONTEXT	
statement. As with local application contexts, the global application context is created and stored in the database schema of a security administrator.	
The ownership of the global application context is as follows: Even though a user who has been granted the CREATE ANY CONTEXT	
and DROP ANY CONTEXT	
privileges can create and drop the global application context, it is owned by the SYS	
schema. Oracle Database associates the context with the schema account that created it, but if you drop this user, the context still exists in the SYS	
schema. As user SYS	
, you can drop the application context.	
Example 6-9 shows how to create the global application context global_hr_ctx	
, which is set by the hr_ctx_pkg	
package.	
For detailed information about the DBMS_SESSION	
package, see Oracle Database PL/SQL Packages and Types Reference.	
The task of the PL/SQL package that you associate with a global application context is to use the DBMS_SESSION	
package to set and clear the global application context values. You must have the EXECUTE	
privilege for the DBMS_SESSION	
package before you use its procedures. Typically, you create and store this package in the database schema of a security administrator. The SYS	
schema owns the DBMS_SESSION	
package.	
Unlike PL/SQL packages used to set a local application context, you do not include a SYS_CONTEXT	
function to get the user session data. You do not need to include this function because the owner of the session, recorded in the USERENV	
context, is the same for every user who is connecting.	
You can run the procedures within the PL/SQL package for a global application context at any time. You do not need to create logon and logoff triggers to execute the package procedures associated with the global application context. A common practice is to run the package procedures from within the database application. Additionally, for nondatabase users, you use middle-tier applications to get and set client session IDs.	
You can control the behavior of a global application context package—and for packages used for Oracle Virtual Private Database and fine-grained audit policies, as well—across multiple editions, as follows:	
DBA_USERS	
and USER_USERS	
data dictionary views. Remember that SYS	
, SYSTEM	
, and other default Oracle Database administrative accounts that are listed in the DBA_REGISTRY	
data dictionary view are not and cannot be editions enabled. For PL/SQL packages that set a global application context, use a single getter function to wrap the primitive SYS_CONTEXT	
calls that will read the key-value application context pairs. You can put this getter function in the same package as the application context setter procedure. This approach lets you tag the value for the application context key to reflect a relevant concept. For example, the tag can be the edition in which the setter function is actual. Or, it can be the current edition of the session that set the context, which you can find by using SYS_CONTEXT('USERENV', 'CURRENT_EDITION_NAME')	
. This tag can be any specific notion to which the setter function applies.	
See Also: Oracle Database Advanced Application Developer's Guide for detailed information about editions	
In addition to the namespace	
, attribute	
, and value	
parameters, the DBMS_SESSION.SYS_CONTEXT	
procedure provides the client_id	
and username	
parameters. Use these settings for global application contexts. Table 6-2 explains how the combination of these settings controls the type of global application context you can create.	
Table 6-2 Setting the DBMS_SESSION.SET_CONTEXT username and client_id Parameters	
Combination Settings	Result
---	---
This combination enables all users to access the application context. See "Sharing Global Application Context Values for All Database Users" for more information. These settings are also used for database session-based application contexts. See "Using Database Session-Based Application Contexts" for more information.	
This combination enables an application context to be accessed by multiple sessions, as long as the	
This combination enables an application to be accessed by multiple user sessions, as long as the	
This combination enables the following two scenarios:	
Setting the See "Setting a Global Application Context for Nondatabase Users" for more information.	
To share global application values for all database users, set the namespace	
, attribute	
, and value	
parameters in the SET_CONTEXT	
procedure. In this scenario, all users who have database accounts will potentially have access to data in the database.	
Example 6-10 shows how to create a package that sets and clears this type of global application context.	
Example 6-10 Package to Manage Global Application Values for All Database Users	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	CREATE OR REPLACE PACKAGE hr_ctx_pkg AS PROCEDURE set_hr_ctx(sec_level IN VARCHAR2); PROCEDURE clear_hr_context; END; / CREATE OR REPLACE PACKAGE BODY hr_ctx_pkg AS PROCEDURE set_hr_ctx(sec_level IN VARCHAR2) AS BEGIN DBMS_SESSION.SET_CONTEXT(namespace => 'global_hr_ctx', attribute => 'job_role', value => sec_level); END set_hr_ctx; PROCEDURE clear_hr_context AS BEGIN DBMS_SESSION.CLEAR_CONTEXT('global_hr_ctx', 'job_role'); END clear_context; END; /
In this example:	
DBMS_SESSION.SET_CONTEXT	
procedure to set values for the namespace	
, attribute	
, and value	
parameters. The sec_level	
value is specified when the database application runs the hr_ctx_pkg.set_hr_ctx	
procedure. The username	
and client_id	
values are not set, hence, they are NULL	
. This enables all users (database users) to have access to the values, which is appropriate for server-wide settings.	
SET_CONTEXT	
procedure, sets the namespace	
to global_hr_ctx	
. job_role	
attribute. job_role	
attribute to sec_level	
. clear_hr_context	
procedure to clear the context values. See "Clearing Session Data When the Session Closes" for more information. Typically, you execute this procedure within a database application. For example, if all users logging in are clerks, and you want to use "clerk" as a security level, you would embed a call within a database application similar to the following:	
If the procedure successfully completes, you can check the application context setting as follows:	
To clear this application context, enter the following:	
To check that it is really cleared, the following SELECT	
statement should return no values:	
Note: If Oracle Database returns error messages saying that you have insufficient privileges, ensure that you have correctly created the global application context. You should also query theDBA_CONTEXT database view to ensure that your settings are correct, for example, that you are calling the procedure from the schema in which you created it. If EXEC DBMS_SESSION.CLEAR_IDENTIFIER;	
To set a global application context for database users who move from one application to another, particularly when the applications have different access requirements, include the username	
parameter in the SET_CONTEXT	
procedure. This parameter specifies that the same schema be used for all sessions.	
Use the following SET_CONTEXT	
parameters:	
namespace	
attribute	
value	
username	
Oracle Database matches the username	
value so that the other application can recognize the application context. This enables the user to move between applications.	
By omitting the client_id	
setting, its value is NULL	
, the default. This means that values can be seen by multiple sessions if the username	
setting is the same for a database user who maintains the same context in different applications. For example, you can have a suite of applications that control user access with Oracle Virtual Private Database policies, with each user restricted to a job role.	
Example 6-11 demonstrates how to set the username	
parameter so that a specific user can move between applications. This example is similar to the package that was created in Example 6-10. The use of the username	
parameter is indicated in bold typeface.	
Example 6-11 Package to Manage Global Application Context Values for a User Moving Between Applications	
Typically, you execute this procedure within a database application by embedding a call similar to the following example. Ensure that the value for the user_name	
parameter (scott	
in this case) is a valid database user name.	
A secure way to manage this type of global application context is within your applications, embed code to grant a secure application role to the user. This code should include EXECUTE	
permissions on the trusted PL/SQL package that sets the application context. In other words, the application, not the user, will set the context for the user.	
When a nondatabase user, that is, a user who is not known to the database (such as a Web application user), starts a client session, the application server generates a client session ID. Once this ID is set on the application server, it must be passed to the database server side. You do this by using the DBMS_SESSION.SET_IDENTIFIER	
procedure to set the client session ID. To set the context, you set the client_id	
parameter in the DBMS_SESSION.SET_CONTEXT	
procedure, in a PL/SQL procedure on the server side. This enables you to manage the application context globally, yet each client sees only his or her assigned application context.	
The client_id	
value is the key here to getting and setting the correct attributes for the global application context. Remember that the client identifier is controlled by the middle-tier application, and once set, it remains open until it is cleared.	
A typical way to manage this type of application context is to place the session_id	
value (client_identifier	
) in a cookie, and send it to the end user's HTML page so that is returned on the next request. A lookup table in the application should also keep client identifiers so that they are prevented from being reused for other users and to implement an end-user session time out.	
For nondatabase users, configure the following SET_CONTEXT	
parameters:	
namespace	
attribute	
value	
username	
client_id	
Example 6-12 shows how to create a package that manages this type of global application context.	
Example 6-12 Package to Manage Global Application Context Values for Nondatabase Users	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	CREATE OR REPLACE PACKAGE hr_ctx_pkg AS PROCEDURE set_session_id(session_id_p IN NUMBER); PROCEDURE set_hr_ctx(sec_level_attr IN VARCHAR2, sec_level_val IN VARCHAR2); PROCEDURE clear_hr_session(session_id_p IN NUMBER); PROCEDURE clear_hr_context; END; / CREATE OR REPLACE PACKAGE BODY hr_ctx_pkg AS session_id_global NUMBER; PROCEDURE set_session_id(session_id_p IN NUMBER) AS BEGIN session_id_global := session_id_p; DBMS_SESSION.SET_IDENTIFIER(session_id_p); END set_session_id; PROCEDURE set_hr_ctx(sec_level_attr IN VARCHAR2, sec_level_val IN VARCHAR2) AS BEGIN DBMS_SESSION.SET_CONTEXT(namespace => 'global_hr_ctx', attribute => sec_level_attr, value => sec_level_val, username => USER, client_id => session_id_global); END set_hr_ctx; PROCEDURE clear_hr_session(session_id_p IN NUMBER) AS BEGIN DBMS_SESSION.SET_IDENTIFIER(session_id_p); DBMS_SESSION.CLEAR_IDENTIFIER; END clear_hr_session; PROCEDURE clear_hr_context AS BEGIN DBMS_SESSION.CLEAR_CONTEXT('global_hr_ctx', session_id_global); END clear_hr_context; END; /
In this example:	
session_id_global	
variable, which will hold the client session ID. The session_id_global	
variable is referenced throughout the package definition, including the procedure that creates the global application context attributes and assigns them values. This means that the global application context values will always be associated with this particular session ID. set_session_id	
procedure, which writes the client session ID to the session_id_global	
variable. set_hr_ctx	
procedure, which creates global application context attributes and enables you to assign values to these attributes. Within this procedure: username	
value. This example sets it by calling the Oracle Database-supplied USER	
function, which adds the session owner from the context retrieval process. The USER	
function ensures that only the user who set the application context can access the context. See Oracle Database SQL Language Reference for more information about the USER	
function. If you had specified NULL	
(the default for the username	
parameter), then any user can access the context.	
Setting both the username	
and client_id	
values enables two scenarios. For lightweight users, set the username	
parameter to a connection pool owner (for example, APPS_USER	
), and then set client_id	
to the client session ID. If you want to use a stateless Web session, set the user_name	
parameter to the same database user who has logged in, and ensure that this user keeps the same client session ID. See "Setting the DBMS_SESSION.SET_CONTEXT username and client_id Parameters" for an explanation of how different username	
and client_id	
settings work.	
client_id	
value. This example sets it to the session_id_global	
variable. This associates the context settings defined here with a specific client session ID, that is, the one that is set when you run the set_session_id	
procedure. If you specify the client_id	
parameter default, NULL	
, then the global application context settings could be used by any session. clear_hr_session	
procedure to clear the client session identifier. Line 33 sets it to ensure that you are clearing the correct session ID, that is, the one stored in variable session_id_p defined in Line 10. clear_hr_context	
procedure, so that you can clear the context settings for the current user session, which were defined by the global_hr_ctx	
variable. See "Clearing Session Data When the Session Closes" for more information. See Also:	
The application context exists entirely within memory. When the user exits a session, you need to clear the context for the client_identifier	
value. This releases memory and prevents other users from accidentally using any left over values.	
To clear session data when a user exits a session, use either of the following methods in the server-side PL/SQL package:	
DBMS_SESSION.CLEAR_IDENTIFIER	
procedure. For example: DBMS_SESSION.CLEAR_CONTEXT	
or the DBMS_SESSION.CLEAR_ALL_CONTEXT	
procedure. For example: The CLEAR_CONTEXT	
procedure clears the context for the current user. To clear the context values for all users, for example, when you need to shut down the application server, use the CLEAR_ALL_CONTEXT	
procedure.	
Global application context values are available until they are cleared, so you should use CLEAR_CONTEXT	
or CLEAR_ALL_CONTEXT	
to ensure that other sessions do not have access to these values. Be aware that any changes in the context value are reflected immediately and subsequent calls to access the value through the SYS_CONTEXT	
function will return the most recent value.	
This section contains:	
The application server generates the client session ID. From a middle-tier application, you can get, set, and clear the client session IDs. To do so, embed either Oracle Call Interface (OCI) calls or DBMS_SESSION	
PL/SQL package procedures into the middle-tier application code.	
The application authenticates the user, sets the client identifier, and sets it in the current session. The PL/SQL package SET_CONTEXT	
sets the client_identifier	
value in the application context. See "Setting a Global Application Context for Nondatabase Users" for more information.	
When a user starts a client session, the application server generates a client session ID. To retrieve this client ID, you can use the OCIStmtExecute	
call with any of the following statements:	
Example 6-13 shows how to use the OCIStmtExecute	
call to retrieve a client session ID value.	
Example 6-13 Using OCIStmtExecute to Retrieve a Client Session ID Value	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	oratext clientid[31]; OCIDefine *defnp1 = (OCIDefine *) 0; OCIStmt *statementhndle; oratext *selcid = (oratext *)"SELECT SYS_CONTEXT('userenv', 'client_identifier') FROM DUAL"; OCIStmtPrepare(statementhndle, errhp, selcid, (ub4) strlen((char *) selcid), (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT); OCIDefineByPos(statementhndle, &defnp1, errhp, 1, (dvoid *)clientid, 31, SQLT_STR, (dvoid *) 0, (ub2 *) 0, (ub2 *) 0, OCI_DEFAULT); OCIStmtExecute(servhndle, statementhndle, errhp, (ub4) 1, (ub4) 0, (CONST OCISnapshot *) NULL, (OCISnapshot *) NULL, OCI_DEFAULT); printf("CLIENT_IDENTIFIER = %s \n", clientid);
In this example:	
OCIDefine	
, the statement handle, and the SELECT	
statement to use. selcid	
for execution. clientid	
for client session ID. selcid	
variable. After you use the OCIStmtExecute	
call to retrieve the client session ID, you are ready to set this ID. The DBMS_SESSION.SET_CONTEXT	
procedure in the server-side PL/SQL package then sets this session ID and optionally, overwrites the application context values.	
Ensure that the middle-tier application code checks that the client session ID value (for example, the value written to user_id	
in the previous examples) matches the client_id	
setting defined in the server-side DBMS_SESSION.SET_CONTEXT	
procedure. The sequence of calls on the application server side should be as follows:	
You can use the following methods to set the client session ID on the application server side:	
OCI_ATTR_CLIENT_IDENTIFIER	
attribute in an OCIAttrSet	
OCI call. This attribute sets the client identifier in the session handle to track the end user identity. The following example shows how to use OCIAttrSet	
with the ATTR_CLIENT_IDENTIFIER	
parameter. The user_id	
setting refers to a variable that stores the ID of the user who is logging on.	
DBMS_SESSION.SET_IDENTIFIER	
procedure to set the client identifier for the global application context. For example, assuming you are storing the ID of the user logging on in a variable called user_id	
, you would enter the following line into the middle-tier application code: Note: When the application generates a session ID for use as aCLIENT_IDENTIFIER , then the session ID must be suitably random and protected over the network by encryption. If the session ID is not random, then a malicious user could guess the session ID and access the data of another user. If the session ID is not encrypted over the network, then a malicious user could retrieve the session ID and access the connection. You can encrypt the session ID by using Oracle Advanced Security. See Oracle Database Advanced Security Administrator's Guide for more information. To learn more about encrypting data over a network, see Oracle Database 2 Day + Security Guide.	
For both OCIAttrSet	
and DBMS_SESSION.SET_IDENTIFIER	
, you can check the value of this identifier as follows:	
Another way to check this value is to query the V$SESSION	
view:	
The application context exists entirely within memory. When the user exits a session, you need to clear the context for the client_identifier	
value. This releases memory and prevents other users from accidentally using any left over values	
To clear session data when a user exits a session, use either of the following methods in the middle-tier application code:	
DBMS_SESSION.CLEAR_IDENTIFIER	
procedure. For example: DBMS_SESSION.CLEAR_CONTEXT	
or the DBMS_SESSION.CLEAR_ALL_CONTEXT	
procedure. For example: The CLEAR_CONTEXT	
procedure clears the context for the current user. To clear the context values for all users, for example, when you need to shut down the application server, use the CLEAR_ALL_CONTEXT	
procedure.	
Global application context values are available until they are cleared, so you should use CLEAR_CONTEXT	
or CLEAR_ALL_CONTEXT	
to ensure that other sessions do not have access to these values.	
This section contains:	
This tutorial shows how to create a global application context that uses a client session ID for a lightweight user application. It demonstrates how to control nondatabase user access by using a connection pool.	
You must create two users for this example: a security administrator who will manage the application context and its package, and a user account that owns the connection pool.	
In this tutorial:	
SYS	
and connect using AS SYSDBA	
. sysadmin_ctx	
account, who will administer the global application context. Replace password	
with a password that is secure. See "Minimum Requirements for Passwords" for more information.	
apps_user	
, who will own the connection pool. Replace password	
with a password that is secure. See "Minimum Requirements for Passwords" for more information.	
sysadmin_ctx	
. cust_ctx	
global application context. The cust_ctx	
context is created and associated with the schema of the security administrator sysadmin_ctx	
. However, the SYS	
schema owns the application context.	
sysadmin_ctx	
, create the following PL/SQL package: For a detailed explanation of how this type of package works, see Example 6-12.	
EXECUTE	
privileges on the cust_ctx_pkg	
package to the connection pool owner, apps_user	
. At this stage, you are ready to explore how this global application context and session ID settings work.	
apps_user	
. When the connection pool user logs on, the application sets the client session identifier as follows:	
You can test and check the value of the client session identifier as follows:	
apps_user	
. The following output should appear:	
apps_user	
, set the global application context as follows: (In a real-world scenario, the middle-tier application would set the global application context values, similar to how the client session identifier was set in Step 2.)	
Enter the following SELECT SYS_CONTEXT	
statement to check that the settings were successful:	
The following output should appear:	
What apps_user	
has done here, within the client session 34256, is set a global application context on behalf of a nondatabase user. This context sets the Category	
and Benefit Level	
DBMS_SESSION.SET_CONTEXT attributes	
to be Gold Partner	
and Highest	
, respectively. The context exists only for user apps_user	
with client ID 34256. When a nondatabase user logs in, behind the scenes, he or she is really logging on as the connection pool user apps_user	
. Hence, the Gold Partner	
and Highest	
context values are available to the nondatabase user.	
Suppose the user had been a database user and could log in without using the intended application. (For example, the user logs in using SQL*Plus.) Because the user has not logged in through the connection pool user apps_user	
, the global application context appears empty to our errant user. This is because the context was created and set under the apps_user	
session. If the user runs the SELECT SYS_CONTEXT	
statement, the following output appears:	
Next, try the following test:	
apps_user	
, clear the session ID. Because apps_user	
has cleared the session ID, the global application context settings are no longer available.	
The following output should appear:	
As you can see, resetting the session ID to 34256 brings the application context values back again. To summarize, the global application context must be set only once for this user, but the client session ID must be set each time the user logs on.	
The following output should appear:	
At this stage, the client session ID, 34256 is still in place, but the application context settings no longer exist. This enables you to continue the session for this user but without using the previously set application context values.	
SYS	
and connect using AS SYSDBA	
. Remember that even though sysadmin_ctx	
created the global application context, it is owned by the SYS	
schema.	
This section contains:	
Consider the application server, AppSvr	
, that has assigned the client identifier 12345	
to client SCOTT	
. The AppSvr	
application uses the SCOTT	
user to create a session (that is, it is not a connection pool.) The value assigned to the context attribute can come from anywhere, for example, from running a SELECT	
statement on a table that holds the responsibility codes for users. When the application context is populated, it is stored in memory. As a result, any action that needs the responsibility code can access it quickly with SYS_CONTEXT	
call, without the overhead of accessing a table. The only advantage of a global context over a local context in this case is if SCOTT	
were changing applications frequently and used the same context in each application.	
The following steps show how the global application context process sets the client identifier for SCOTT	
:	
hr_ctx	
application context to indicate that, for this client identifier, there is an application context called responsibility	
with a value of 13	
in the HR	
namespace.: This PL/SQL procedure is stored in the HR	
database schema, but typically it is stored in the schema of the security administrator.	
scott	
uses AppSvr	
to connect to the database: SYS_CONTEXT('hr_ctx','responsibility')	
call within the database session, the database matches the client identifier, 12345	
, to the global context, and then returns the value 13	
. AppSvr	
clears the client identifier by issuing the following procedure: AppSvr	
issues the following procedure: CLEAR_CONTEXT	
is needed when the user session is no longer active, either on an explicit logout, timeout, or other conditions determined by the AppSvr	
application.	
Note: After a client identifier in a session is cleared, it becomes aNULL value. This implies that subsequent SYS_CONTEXT calls only retrieve application contexts with NULL client identifiers, until the client identifier is set again using the SET_IDENTIFIER interface.	
The following steps show the global application context process for a lightweight user application. The lightweight user, robert	
, is not known to the database through the application.	
HR	
application server, AppSvr	
, starts and then establishes multiple connections to the HR	
database as the appsmgr	
user. robert	
logs in to the HR	
application server. AppSvr	
authenticates robert	
to the application. AppSvr	
assigns a temporary session ID (or uses the application user ID), 12345	
, for this connection. robert	
as part of a cookie or is maintained by AppSvr	
. AppSvr	
initializes the application context for this client by calling the hr.init	
package, which issues the following statements: AppSvr	
assigns a database connection to this session and initializes the session by issuing the following statement: SYS_CONTEXT	
calls within this database session return application context values that belong only to the client session. For example, SYS_CONTEXT('hr','id')	
returns the value robert	
.	
AppSvr	
issues the following statement to clean up the client identity: Even if another user logged in to the database, this user cannot access the global context set by AppSvr	
, because AppSvr	
specified that only the application with user APPSMGR	
logged in can see it. If AppSvr	
used the following, then any user session with client ID set to 12345	
can see the global context:	
Setting USERNAME	
to NULL	
enables different users to share the same context.	
Note: Be aware of the security implication of different settings of the global context.NULL in the user name means that any user can access the global context. A NULL client ID in the global context means that a session with an uninitialized client ID can access the global context. To ensure that only the user who has logged on can access the session, specify USER instead of NULL .	
You can query the client identifier set in the session as follows:	
The following output should appear:	
A security administrator can see which sessions have the client identifier set by querying the V$SESSION	
view for the CLIENT_IDENTIFIER	
and USERNAME	
, for example:	
The following output should appear:	
To check the amount of global context area (in bytes) being used, use the following query:	
The following output should appear:	
See Also: For more information about using theCLIENT_IDENTIFIER predefined attribute of the USERENV application context:	
This section contains:	
In a client session-based application context, you use Oracle Call Interface (OCI) functions to set and clear user session information, which is then stored in the User Global Area (UGA).	
The advantage of this type of application context is that an individual application can check for specific nondatabase user session data, rather than having the database perform this task. Another advantage is that the calls to set the application context value are included in the next call to the server, which improves performance.	
However, be aware that application context security is compromised with a client session-based application context: any application user can set the client application context, and no check is performed in the database.	
You configure the client session-based application context for the client application only. You do not configure any settings on the database server to which the client connects. Any application context settings in the database server do not affect the client session-based application context.	
To configure a client session-based application context, use the OCIAppCtxSet	
OCI function. A client session-based application context uses the CLIENTCONTEXT	
namespace, updatable by any OCI client or by the existing DBMS_SESSION	
package for application context. Oracle Database performs no privilege or package security checks for this type.	
The CLIENTCONTEXT	
namespace enables a single application transaction to both change the user context information and use the same user session handle to service the new user request. You can set or clear individual values for attributes in the CLIENTCONTEXT	
namespace, or clear all their values.	
OCIAppCtx	
function to set variable length data for the namespace, called OCISessionHandle	
. The OCI network single, round-trip transport sends all the information to the server in one round-trip. On the server side, you can query the application context information by using the SYS_CONTEXT	
SQL function on the namespace. For example: oracle.jdbc.internal.OracleConnection	
function to achieve the same purposes. Any user can set, clear, or collect the information in the CLIENTCONTEXT	
namespace, because it is not protected by package-based security.	
See Also: Oracle Call Interface Programmer's Guide for more information about client application contexts	
For Oracle Call Interface, to set a value in the CLIENTCONTEXT	
namespace, use a command in the following syntax:	
In this specification:	
session_handle	
: Represents the OCISessionHandle	
namespace. attribute_name	
: Name of attribute. For example, responsibility	
, with a length of 14	
. attribute_value	
: Value of attribute. For example, manager	
, with a length of 7	
. See Also: "Managing Scalable Platforms" in Oracle Call Interface Programmer's Guide for details about theOCIAppCtx function	
To retrieve the CLIENTCONTEXT	
namespace, you can use the Oracle Call Interface OCIStmtExecute	
call with either of the following statements:	
The Attribute-1	
value can be any attribute value that has already been set in the CLIENTCONTEXT	
namespace. Oracle Database only retrieves the set attribute; otherwise, it returns NULL	
. Typically, you set the attribute by using the OCIAppCtxSet	
call. In addition, you can embed a DBMS_SESSION.SET_CONTEXT	
call in the OCI code to set the attribute value.	
Example 6-13 shows how to use the OCIStmtExecute	
call to retrieve a client session ID value.	
Example 6-14 Retrieving a Client Session ID Value for Client Session-Based Contexts	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	oratext clientid[31]; OCIDefine *defnp1 = (OCIDefine *) 0; OCIStmt *statementhndle; oratext *selcid = (oratext *)"SELECT SYS_CONTEXT('CLIENTCONTEXT', attribute) FROM DUAL"; OCIStmtPrepare(statementhndle, errhp, selcid, (ub4) strlen((char *) selcid), (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT); OCIDefineByPos(statementhndle, &defnp1, errhp, 1, (dvoid *)clientid, 31, SQLT_STR, (dvoid *) 0, (ub2 *) 0, (ub2 *) 0, OCI_DEFAULT); OCIStmtExecute(servhndle, statementhndle, errhp, (ub4) 1, (ub4) 0, (CONST OCISnapshot *) NULL, (OCISnapshot *) NULL, OCI_DEFAULT); printf("CLIENT_IDENTIFIER = %s \n", clientid);
In this example:	
OCIDefine	
, the statement handle, and the SELECT	
statement to use. selcid	
for execution. clientid	
for client session ID. selcid	
variable. For Oracle Call Interface, to clear a setting in CLIENTCONTEXT	
, set the value to NULL	
or to an empty string by using one of the following commands:	
or	
For Oracle Call Interface (OCI), use a command of the following form:	
Table 6-3 lists data dictionary views that you can query to find information about application contexts. For detailed information about these views, see Oracle Database Reference.	
Table 6-3 Data Dictionary Views That Display Information about Application Contexts	
Tip: In addition to these views, check the database trace file if you find errors when running applications that use application contexts. See Oracle Database Performance Tuning Guide for more information about trace files. TheUSER_DUMP_DEST initialization parameter sets the directory location of the trace files. You can find the value of this parameter by issuing SHOW PARAMETER USER_DUMP_DEST in SQL*Plus.	
This chapter contains:	
This section contains:	
Oracle Virtual Private Database (VPD) enables you to create security policies to control database access at the row and column level. Essentially, Oracle Virtual Private Database adds a dynamic WHERE	
clause to a SQL statement that is issued against the table, view, or synonym to which an Oracle Virtual Private Database security policy was applied.	
Oracle Virtual Private Database enforces security, to a fine level of granularity, directly on database tables, views, or synonyms. Because you attach security policies directly to these database objects, and the policies are automatically applied whenever a user accesses data, there is no way to bypass security.	
When a user directly or indirectly accesses a table, view, or synonym that is protected with an Oracle Virtual Private Database policy, Oracle Database dynamically modifies the SQL statement of the user. This modification creates a WHERE	
condition (called a predicate) returned by a function implementing the security policy. Oracle Database modifies the statement dynamically, transparently to the user, using any condition that can be expressed in or returned by a function. You can apply Oracle Virtual Private Database policies to SELECT	
, INSERT	
, UPDATE	
, INDEX	
, and DELETE	
statements.	
For example, suppose a user performs the following query:	
The Oracle Virtual Private Database policy dynamically appends the statement with a WHERE	
clause. For example:	
In this example, the user can only view orders by Sales Representative 159.	
If you want to filter the user based on the session information of that user, such as the ID of the user, then you can create the WHERE	
clause to use an application context. For example:	
Note: Oracle Virtual Private Database does not support filtering for DDLs, such asTRUNCATE or ALTER TABLE statements.	
Oracle Virtual Private Database policies provide the following benefits:	
Attaching Oracle Virtual Private Database security policies to database tables, views, or synonyms, rather than implementing access controls in all your applications, provides the following benefits:	
SELECT	
statements, another for INSERT	
statements, and still others for UPDATE	
and DELETE	
statements. For example, you might want to enable Human Resources clerks to have SELECT	
privileges for all employee records in their division, but to update only salaries for those employees in their division whose last names begin with A	
through F	
. Furthermore, you can create multiple policies for each table, view, or synonym. Running policy functions multiple times can affect performance. You can control the performance of policy functions by configuring how Oracle Database caches the Oracle Virtual Private Database predicates. The following options are available:	
See "Optimizing Performance by Using Oracle Virtual Private Database Policy Types" for information configuring these policy types.	
For greater security, the Oracle Virtual Private Database policy function runs as if it had been declared with definer's rights. Do not declare it as invoker's rights because this can confuse yourself and other users who maintain the code.	
You can use application contexts with Oracle Virtual Private Database policies. When you create an application context, it securely caches user information. Only the designated application package can set the cached environment. It cannot be changed by the user or outside the package. In addition, because the data is cached, performance is increased. Chapter 6, "Using Application Contexts to Retrieve User Information," describes application contexts in detail.	
For example, suppose you want to base access to the ORDERS_TAB	
table on the customer ID number. Rather than querying the customer ID number for a logged-in user each time you need it, you could store the number in the application context. Then, the customer number is available in the session when you need it.	
Application contexts are especially helpful if your security policy is based on multiple security attributes. For example, if a policy function bases a WHERE	
predicate on four attributes (such as employee number, cost center, position, spending limit), then multiple subqueries must execute to retrieve this information. Instead, if this data is available through an application context, then performance is much faster.	
You can use an application context to return the correct security policy, enforced through a predicate. For example, consider an order entry application that enforces the following rules: customers only see their own orders, and clerks see all orders for all customers. These are two different policies. You could define an application context with a position	
attribute, and this attribute could be accessed within the policy function to return the correct predicate, depending on the value of the attribute. Thus, you can enable a user in the clerk	
position to retrieve all orders, but a user in the customer	
position can see only those records associated with that particular user.	
To design a fine-grained access control policy that returns a specific predicate for an attribute, you need to access the application context within the function that implements the policy. For example, suppose you want to limit customers to seeing only their own records. The user performs the following query:	
Fine-grained access control dynamically modifies this query to include the following WHERE	
predicate:	
Continuing with the preceding example, suppose you have 50,000 customers, and you do not want to have a different predicate returned for each customer. Customers all share the same WHERE	
predicate, which prescribes that they can only see their own orders. It is merely their customer numbers that are different.	
Using application context, you can return one WHERE	
predicate within a policy function that applies to 50,000 customers. As a result, there is one shared cursor that executes differently for each customer, because the customer number is evaluated at execution time. This value is different for every customer. Use of application context in this case provides optimum performance, and at row-level security.	
The SYS_CONTEXT	
function works much like a bind variable; only the SYS_CONTEXT	
arguments are constants.	
To implement Oracle Virtual Private Database, you must create a function to generate the dynamic WHERE	
clause, and a policy to attach this function to the objects that you want to protect.	
To generate the dynamic WHERE	
clause (predicate), you must create a function (not a procedure) that defines the restrictions that you want to enforce. Usually, the security administrator creates this function in his or her own schema. For more complex behavior, such as including calls to other functions or adding checks to track failed logon attempts, create these functions within a package.	
The function must have the following behavior:	
DBMS_RLS	
package (described in "Creating a Policy to Attach the Function to the Objects You Want to Protect") provides the names of the schema, and object to which the policy will apply. You must create the parameter for the schema first, followed by the parameter for the object. WHERE	
clause is always a VARCHAR2	
data type. WHERE	
clause is the same for all users who log on. But in most cases, you may want to design the WHERE	
clause to be different for each user, each group of users, or each application that accesses the objects you want to protect. For example, if a manager logs in, the WHERE	
clause can be specific to the rights of that particular manager. You can do this by incorporating an application context, which accesses user session information, into the WHERE	
clause generation code. "Tutorial: Implementing a Policy with a Database Session-Based Application Context" demonstrates how to create an Oracle Virtual Private Database policy that uses an application context.	
You can create Oracle Virtual Private Database functions that do not use an application context, but an application context creates a much stronger Oracle Virtual Private Database policy, by securely basing user access on the session attributes of that user, such as the user ID. Chapter 6, "Using Application Contexts to Retrieve User Information," discusses different types of application contexts in detail.	
In addition, you can embed C or Java calls to access operating system information or to return WHERE	
clauses from an operating system file or other source.	
Note: If you plan to run the function across different editions, you can control the results of the function: whether the results are uniform across all editions, or specific to the edition in which the function is run. See "How Editions Affects the Results of a Global Application Context PL/SQL Package" for more information.	
After you create the function, you need to create an Oracle Virtual Private Database policy that associates the function with a table, view, or synonym. You create the policy by using the DBMS_RLS	
package. If you are not SYS	
, then you must be granted EXECUTE	
privileges to use the DBMS_RLS	
package. This package contains procedures that enable you to manage the policy and set fine-grained access control. For example, to attach the policy to a table, you use the DBMS_RLS.ADD_POLICY	
procedure. Within this setting, you set fine-grained access control, such as setting the policy to go into effect when a user issues a SELECT	
or UPDATE	
statement on the table or view.	
The combination of creating the function and then applying it to a table or view is referred to as creating the Oracle Virtual Private Database policy.	
"Tutorials: Creating Oracle Virtual Private Database Policies" provides examples of how to create Virtual Private Database policies. See "Configuring an Oracle Virtual Private Database Policy" for detailed information.	
After you create a function that defines the actions of the Oracle Virtual Private Database WHERE	
clause, you need to associate this function with the database table to which the VPD action applies. You can do this by configuring an Oracle Virtual Private Database policy. The policy itself is a mechanism for managing the Virtual Private Database function. The policy also enables you to add fine-grained access control, such as specifying the types of SQL statements or particular table columns the policy affects. When a user tries to access the data in this database object, the policy goes into effect automatically.	
This section describes commonly used ways of attaching policies to tables, views, and synonyms. To manage an Oracle Virtual Private Database policy, you use the DBMS_RLS	
package, which is described in detail in Oracle Database PL/SQL Packages and Types Reference.	
Table 7-1 lists the procedures in the DBMS_RLS	
package.	
Table 7-1 DBMS_RLS Procedures	
Procedure	Description
---	---
For Handling Individual Policies	
Adds a policy to a table, view, or synonym	
Enables (or disables) a policy you previously added to a table, view, or synonym	
Invalidates cursors associated with nonstatic policies	
To drop a policy from a table, view, or synonym	
For Handling Grouped Policies	
Creates a policy group	
Drops a policy group	
Adds a policy to the specified policy group	
Enables a policy within a group	
Parses again the SQL statements associated with a refreshed policy	
Disables a policy within a group	
Drops a policy that is a member of the specified group	
For Handling Application Contexts	
Adds the context for the active application	
Drops the context for the application	
See Also:	
To attach a policy to a table, view, or synonym, you use the DBMS_RLS.ADD_POLICY	
procedure. You need to specify the table, view, or synonym to which you are adding a policy, and a name for the policy. You can also specify other information, such as the types of statements the policy controls (SELECT	
, INSERT	
, UPDATE	
, DELETE	
, CREATE INDEX	
, or ALTER INDEX	
).	
Example 7-1 shows how to use DBMS_RLS.ADD_POLICY	
to attach an Oracle Virtual Private Database policy called secure_update	
to the HR.EMPLOYEES	
table. The function attached to the policy is check_updates	
.	
Example 7-1 Attaching a Simple Oracle Virtual Private Database Policy to a Table	
If the function was created inside a package, include the package name. For example:	
Note: Although you can define a policy against a table, you cannot select that table from within the policy that was defined against the table.	
You can enforce Oracle Virtual Private Database policies for SELECT	
, INSERT	
, UPDATE	
, INDEX	
, and DELETE	
statements. If you do not specify a statement type, by default, Oracle Database specifies SELECT	
, INSERT	
, UPDATE	
, and DELETE	
, but not INDEX	
. Enter any combination of these statement types by using the statement_types	
parameter in the DBMS_RLS.ADD_POLICY	
procedure. Enclose the list in a pair of single quotation marks.	
Example 7-2 shows an how to use the statement_types	
parameter to specify the SELECT	
and INDEX	
statements for a policy.	
Example 7-2 Specifying SQL Statement Types with DBMS_RLS.ADD_POLICY	
When you specify the statement_types	
parameter, be aware of the following functionality:	
statement_types	
parameter includes all three of the INSERT	
, UPDATE	
, and DELETE	
statements for the policy to succeed. Alternatively, you can omit the statement_types	
parameter. (This functionality is available with Oracle Database 11g Release 2 (11.2.0.2).) INDEX	
with the statement_types	
parameter. You can create policies that enforce row-level security when a security-relevant column is referenced in a query.	
Column-level policies enforce row-level security when a query references a security-relevant column. You can apply a column-level Oracle Virtual Private Database policy to tables and views, but not to synonyms.	
To apply the policy to a column, specify the security-relevant column by using the SEC_RELEVANT_COLS	
parameter of the DBMS_RLS.ADD_POLICY	
procedure. This parameter applies the security policy whenever the column is referenced, explicitly or implicitly, in a query.	
For example, users who are not in a Human Resources department typically are allowed to view only their own Social Security numbers. A sales clerk initiates the following query:	
The function implementing the security policy returns the predicate ssn='my_ssn	
'. Oracle Database rewrites the query and executes the following:	
Example 7-3 shows a Oracle Virtual Private Database policy in which sales department users cannot see the salaries of people outside the department (department number 30) of the sales department users. The relevant columns for this policy are sal	
and comm	
. First, the Oracle Virtual Private Database policy function is created, and then it is added by using the DBMS_RLS	
PL/SQL package.	
Example 7-3 Creating a Column-Level Oracle Virtual Private Database Policy	
Then you configure the policy with the DBMS_RLS.ADD_POLICY	
procedure as follows:	
The default behavior for column-level Oracle Virtual Private Database is to restrict the number of rows returned for a query that references columns containing sensitive information. You specify these security-relevant columns by using the SEC_RELEVANT_COLUMNS	
parameter of the DBMS_RLS.ADD_POLICY	
procedure, as shown in Example 7-3.	
For example, consider sales department users with the SELECT	
privilege on the emp	
table, which is protected with the column-level Oracle Virtual Private Database policy created in Example 7-3. The user (for example, user SCOTT	
) runs the following query:	
The database returns the following rows:	
The only rows that are displayed are those that the user has privileges to access all columns in the row.	
If a query references a sensitive column, then the default action of column-level Oracle Virtual Private Database restricts the number of rows returned. With column-masking behavior, all rows display, even those that reference sensitive columns. However, the sensitive columns display as NULL	
values. To enable column-masking, set the SEC_RELEVANT_COLS_opt	
parameter of the DBMS_RLS.ADD_POLICY	
procedure.	
For example, consider the results of the sales clerk query, described in the previous example. If column-masking is used, then instead of seeing only the row containing the details and Social Security number of the sales clerk, the clerk would see all rows from the emp	
table, but the ssn	
column values would be returned as NULL	
. Note that this behavior is fundamentally different from all other types of Oracle Virtual Private Database policies, which return only a subset of rows.	
In contrast to the default action of column-level Oracle Virtual Private Database, column-masking displays all rows, but returns sensitive column values as NULL	
. To include column-masking in your policy, set the SEC_RELEVANT_COLS_OPT	
parameter of the DBMS_RLS.ADD_POLICY	
procedure to DBMS_RLS.ALL_ROWS	
.	
Example 7-4 shows column-level Oracle Virtual Private Database column-masking. It uses the same VPD policy as Example 7-3, but with sec_relevant_cols_opt	
specified as DBMS_RLS.ALL_ROWS	
.	
Example 7-4 Adding a Column Masking to an Oracle Virtual Private Database Policy	
Assume that a sales department user with SELECT	
privilege on the emp	
table (such as user SCOTT	
) runs the following query:	
The database returns all rows specified in the query, but with certain values masked because of the Oracle Virtual Private Database policy:	
The column-masking returned all rows requested by the sales user query, but made the sal	
and comm	
columns NULL	
for employees outside the sales department.	
SELECT	
statements. NULL	
values, use standard column-level Oracle Virtual Private Database, specifying SEC_RELEVANT_COLS	
rather than the SEC_RELEVANT_COLS_OPT	
column-masking option. XMLtype	
) in the sec_relevant_cols	
setting. This column type is not supported for the sec_relevant_cols	
setting. UPDATE AS SELECT	
updates only the columns that users are allowed to see. Because the column-masking option was set, this query may not return rows if the salary	
column returns a NULL	
value.	
This section contains:	
You can group multiple security policies together, and apply them to an application. A policy group is a set of security policies that belong to an application. You can designate an application context (known as a driving context or policy context) to indicate the policy group in effect. Then, when a user accesses the table, view, or synonym column, Oracle Database looks up the driving context to determine the policy group in effect. It enforces all the associated policies that belong to the policy group.	
Policy groups are useful for situations where multiple applications with multiple security policies share the same table, view, or synonym. This enables you to identify those policies that should be in effect when the table, view, or synonym is accessed.	
For example, in a hosting environment, Company A can host the BENEFIT	
table for Company B and Company C. The table is accessed by two different applications, Human Resources and Finance, with two different security policies. The Human Resources application authorizes users based on ranking in the company, and the Finance application authorizes users based on department. Integrating these two policies into the BENEFIT	
table requires joint development of policies between the two companies, which is not a feasible option. By defining an application context to drive the enforcement of a particular set of policies to the base objects, each application can implement a private set of security policies.	
To do this, you organize security policies into groups. By referring to the application context, Oracle Database determines which group of policies should be in effect at run time. The server enforces all the policies that belong to that policy group.	
To add a policy to a table, view, or synonym, use the DBMS_RLS.ADD_GROUPED_POLICY	
procedure to specify the group to which the policy belongs. To specify which policies will be effective, you can add a driving context using the DBMS_RLS.ADD_POLICY_CONTEXT	
procedure. If the driving context returns an unknown policy group, then an error is returned.	
If the driving context is not defined, then Oracle Database runs all policies. Likewise, if the driving context is NULL	
, then policies from all policy groups are enforced. An application accessing the data cannot bypass the security setup module (which sets up application context) to avoid any applicable policies.	
You can apply multiple driving contexts to the same table, view, or synonym, and each of them will be processed individually. This enables you to configure multiple active sets of policies to be enforced.	
Consider, for example, a hosting company that hosts Benefits and Financial applications, which share some database objects. Both applications are striped for hosting using a SUBSCRIBER	
policy in the SYS_DEFAULT	
policy group. Data access is partitioned first by subscriber ID, then by whether the user is accessing the Benefits or Financial applications (determined by a driving context). Suppose that Company A, which uses the hosting services, wants to apply a custom policy that relates only to its own data access. You could add an additional driving context (such as COMPANY A SPECIAL	
) to ensure that the additional, special policy group is applied for data access for Company A only. You would not apply this under the SUBSCRIBER	
policy, because the policy relates only to Company A, and it is more efficient to segregate the basic hosting policy from other policies.	
Within a group of security policies, you can designate one security policy to be the default security policy. This is useful in situations where you partition security policies by application, so that they will be always be in effect. Default security policies allow developers to base security enforcement under all conditions, while partitioning security policies by application (using security groups) enables layering of additional, application-specific security on top of default security policies. To implement default security policies, you add the policy to the SYS_DEFAULT	
policy group.	
Policies defined in this group for a particular table, view, or synonym are run with with the policy group specified by the driving context. As described earlier, a driving context is an application context that indicates the policy group in effect. The SYS_DEFAULT	
policy group may or may not contain policies. You cannot to drop the SYS_DEFAULT	
policy group. If you do, then Oracle Database displays an error.	
If, to the SYS_DEFAULT	
policy group, you add policies associated with two or more objects, then each object will have a separate SYS_DEFAULT	
policy group associated with it. For example, the emp	
table in the scott	
schema has one SYS_DEFAULT	
policy group, and the dept	
table in the scott	
schema has a different SYS_DEFAULT	
policy group associated with it. Think of them as being organized in the tree structure as follows:	
You can create policy groups with identical names. When you select a particular policy group, its associated schema and object name are displayed in the property sheet on the right side of the screen.	
You can establish several policies for the same table, view, or synonym. Suppose, for example, you have a base application for Order Entry, and each division of your company has its own rules for data access. You can add a division-specific policy function to a table without having to rewrite the policy function of the base application.	
All policies applied to a table are enforced with AND	
syntax. If you have three policies applied to the CUSTOMERS	
table, then each policy is applied to the table. You can use policy groups and an application context to partition fine-grained access control enforcement so that different policies apply, depending upon which application is accessing data. This eliminates the requirement for development groups to collaborate on policies, and simplifies application development. You can also have a default policy group that is always applicable (for example, to enforce data separated by subscriber in a hosting environment).	
The package implementing the driving context must correctly validate the application that is being used to connect to the database. Although Oracle Database checks the call stack to ensure that the package implementing the driving context sets context attributes, inadequate validation can still occur within the package.	
For example, in applications where database users or enterprise users are known to the database, the user needs the EXECUTE	
privilege on the package that sets the driving context. Consider a user who knows that:	
BENEFITS	
application enables more liberal access than the HR	
application. setctx	
procedure (which sets the correct policy group within the driving context) does not perform any validation to determine which application is actually connecting. That is, the procedure does not check either the IP address of the incoming connection (for a three-tier system) or the proxy_user	
attribute of the user session. This user could pass to the driving context package an argument setting the context to the more liberal BENEFITS	
policy group, and then access the HR	
application instead. Because the setctx	
does no further validation of the application, this user bypasses the more restrictive HR security policy.	
By contrast, if you implement proxy authentication with Oracle Virtual Private Database, then you can determine the identity of the middle tier (and the application) that is connecting to the database on behalf of a user. The correct policy will be applied for each application to mediate data access.	
For example, a developer using the proxy authentication feature could determine that the application (the middle tier) connecting to the database is HRAPPSERVER	
. The package that implements the driving context can thus verify whether the proxy_user	
in the user session is HRAPPSERVER	
. If so, then it can set the driving context to use the HR	
policy group. If proxy_user	
is not HRAPPSERVER	
, then it can deny access.	
In this case, the following query is executed:	
Oracle Database picks up policies from the default policy group (SYS_DEFAULT	
) and active namespace HR	
. The query is internally rewritten as follows:	
This section contains:	
You can optimize performance each time a policy runs by specifying a policy type for your policies. Policy types control how Oracle Database caches Oracle Virtual Private Database policy predicates. Consider setting a policy type for your policies, because the execution of policy functions can use a significant amount of system resources. Minimizing the number of times that a policy function can run optimizes database performance.	
You can choose from five policy types: DYNAMIC	
, STATIC	
, SHARED_STATIC	
, CONTEXT_SENSITIVE	
, and SHARED_CONTEXT_SENSITIVE	
. These enable you to precisely specify how often a policy predicate should change. To specify the policy type, set the policy_type	
parameter of the DBMS_RLS.ADD POLICY	
procedure.	
The DYNAMIC	
policy type runs the policy function each time a user accesses the Virtual Private Database-protected database objects. If you do not specify a policy type in the DBMS_RLS.ADD_POLICY	
procedure, then, by default, your policy will be dynamic. You can specifically configure a policy to be dynamic by setting the policy_type	
parameter of the DBMS_RLS.ADD_POLICY	
procedure to DYNAMIC	
.	
This policy type does not optimize database performance as the static and context sensitive policy types do. However, Oracle recommends that before you set policies as either static or context-sensitive, you should first test them as DYNAMIC	
policy types, which run every time. Testing policy functions as DYNAMIC	
policies first enables you to observe how the policy function affects each query, because nothing is cached. This ensures that the functions work properly before you enable them as static or context-sensitive policy types to optimize performance.	
You can use the DBMS_UTILITY.GET_TIME	
procedure to measure the start and end times for a statement to execute. For example:	
Example 7-5 shows how to create the DYNAMIC	
policy type.	
Example 7-5 Creating a DYNAMIC Policy with DBMS_RLS.ADD_POLICY	
See Also: "About Auditing Functions, Procedures, Packages, and Triggers" for information about how Oracle Database audits the underlying policy function for dynamic policies	
The static policy type enforces the same predicate for all users in the instance. Oracle Database stores static policy predicates in SGA, so policy functions do not rerun for each query. This results in faster performance.	
You can enable static policies by setting the policy_type	
parameter of the DBMS_RLS.ADD_POLICY	
procedure to either STATIC	
or SHARED_STATIC	
, depending on whether or not you want the policy to be shared across multiple objects.	
Example 7-6 shows how to create the STATIC	
policy type.	
Example 7-6 Creating a STATIC Policy with DBMS_RLS.ADD_POLICY	
Each execution of the same cursor could produce a different row set for the same predicate, because the predicate may filter the data differently based on attributes such as SYS_CONTEXT	
or SYSDATE	
.	
For example, suppose you enable a policy as either a STATIC	
or SHARED_STATIC	
policy type, which appends the following predicate to all queries made against policy protected database objects:	
Although the predicate does not change for each query, it applies to the query based on session attributes of the SYS_CONTEXT	
. In the case of the preceding example, the predicate returns only those rows where the department number matches the deptno	
attribute of the SYS_CONTEXT	
, which is the department number of the user who is querying the policy-protected database object.	
Note: When using shared static policies, ensure that the policy predicate does not contain attributes that are specific to a particular database object, such as a column name.	
See Also: "About Auditing Functions, Procedures, Packages, and Triggers" for information about how Oracle Database audits the underlying policy function for static policies	
If, for example, you wanted to apply the policy in Example 7-6 to a second table in the HR	
schema that may contain financial data that you want to side, you would use the SHARED_STATIC	
setting for both tables.	
Example 7-7 shows how to set the SHARED_STATIC	
policy type for two tables that share the same policy.	
Example 7-7 Creating a SHARED_STATIC Policy with DBMS_RLS.ADD_POLICY	
Static policies are ideal for environments where every query requires the same predicate and fast performance is essential, such as hosting environments. For these situations when the policy function appends the same predicate to every query, rerunning the policy function each time adds unnecessary overhead to the system. For example, consider a data warehouse that contains market research data for customer organizations that are competitors. The warehouse must enforce the policy that each organization can see only their own market research, which is expressed by the following predicate:	
Using SYS_CONTEXT	
for the application context enables the database to dynamically change the rows that are returned. You do not need to rerun the function, so the predicate can be cached in the SGA, thus conserving system resources and improving performance.	
In contrast to static policies, context-sensitive policies do not always cache the predicate. With context-sensitive policies, the database assumes that the predicate will change after statement parse time. But if there is no change in local application context, Oracle Database does not rerun the policy function within the user session. If there was a change in context, then the database reruns the policy function to ensure that it captures any changes to the predicate since the initial parsing.	
You can enable context-sensitive policies by setting the policy_type	
parameter of the DBMS_RLS.ADD_POLICY	
procedure to either CONTEXT_SENSITIVE	
or SHARED_CONTEXT_SENSITIVE	
.	
Example 7-8 shows how to create the CONTEXT_SENSITIVE	
policy type.	
Example 7-8 Creating a CONTEXT_SENSITIVE Policy with DBMS_RLS.ADD_POLICY	
Context-sensitive policies are useful when different predicates should apply depending on which user is executing the query. For example, consider the case where managers should have the predicate WHERE group	
set to managers	
, and employees should have the predicate WHERE empno	
set to emp_id	
.	
Shared context-sensitive policies operate in the same way as regular context-sensitive policies, except they can be shared across multiple database objects. For this policy type, all objects can share the policy function from the UGA, where the predicate is cached until the local session context changes.	
Note: When using shared context-sensitive policies, ensure that the policy predicate does not contain attributes that are specific to a particular database object, such as a column name.	
See Also: "About Auditing Functions, Procedures, Packages, and Triggers" for information about how Oracle Database audits the underlying policy function for dynamic policies	
Example 7-9 Ishows how to create two shared context sensitive policies that share a policy with multiple tables.	
Example 7-9 Creating a SHARED_CONTEXT_SENSITIVE Policy with DBMS_RLS.ADD_POLICY	
Context-sensitive policies are useful when a predicate does not need to change for a user session, but the policy must enforce two or more different predicates for different users or groups. For example, consider a sales_history	
table with a single policy. This policy states that analysts can see only their own products and regional employees can see only their own region. In this case, the database must rerun the policy function each time the type of user changes. The performance gain is realized when a user can log in and issue several DML statements against the protected object without causing the server to rerun the policy function.	
Note: For session pooling where multiple clients share a database session, the middle tier must reset the context during client switches.	
Table 7-2 summarizes the types of policy types available.	
Table 7-2 DBMS_RLS.ADD_POLICY Policy Types	
Policy Types	When the Policy Function Executes
---	---
Policy function re-executes every time a policy-protected database object is accessed.	Applications where policy predicates must be generated for each query, such as time-dependent policies where users are denied access to database objects at certain times during the day
Once, then the predicate is cached in the SGAFoot 1	View replacement
Same as	Hosting environments, such as data warehouses where the same predicate must be applied to multiple database objects
Three-tier, session pooling applications where policies enforce two or more predicates for different users or groups	No
First time the object is reference in a database session. Predicates are cached in the private session memory UGA so policy functions can be shared among objects.	Same as
Footnote 1 Each execution of the same cursor could produce a different row set for the same predicate because the predicate may filter the data differently based on attributes such as SYS_CONTEXT	
or SYSDATE	
.	
This section contains:	
This section contains:	
Suppose you wanted to create a simple Oracle Virtual Private Database policy that limits access to all orders in the OE.ORDERS	
table that were created by Sales Representative 159. In essence, the policy translates the following statement:	
To the following statement:	
SYSTEM	
with the SYSDBA	
privilege. SELECT	
statement on the DBA_USERS	
data dictionary view: If the DBA_USERS	
view lists user OE	
as locked and expired, then enter the following statement to unlock the OE	
account and create a new password:	
Replace password	
with a password that is secure. For greater security, do not reuse the same password that was used in previous releases of Oracle Database. See "Minimum Requirements for Passwords" for more information.	
Create the following function, which will append the WHERE SALES_REP_ID = 159	
clause to any SELECT	
statement on the OE.ORDERS	
table. (You can copy and paste this text by positioning the cursor at the start of CREATE OR REPLACE	
in the first line.)	
1 2 3 4 5 6 7 8 9 10 11 12	CREATE OR REPLACE FUNCTION auth_orders(schema_var IN VARCHAR2, table_var IN VARCHAR2) RETURN VARCHAR2 IS return_val VARCHAR2 (400); BEGIN return_val := 'SALES_REP_ID = 159'; RETURN return_val; END auth_orders; /
In this example:	
OE	
, and table name, ORDERS	
. First, define the parameter for the schema, and then define the parameter for the object, in this case, a table. Always create them in this order. The Virtual Private Database policy you create will need these parameters to specify the OE.ORDERS	
table. WHERE	
predicate clause. Remember that return value is always a VARCHAR2	
data type. WHERE SALES_REP_ID = 159	
predicate. Next, create the following policy by using the ADD_POLICY	
procedure in the DBMS_RLS	
package. (You can copy and paste this text by positioning the cursor at the start of BEGIN	
in the first line.)	
1 2 3 4 5 6 7 8 9 10 11	BEGIN DBMS_RLS.ADD_POLICY (object_schema => 'oe', object_name => 'orders', policy_name => 'orders_policy', function_schema => 'sys', policy_function => 'auth_orders', statement_types => 'select, insert, update, delete'); END; /
In this example:	
OE	
. ORDERS	
table. orders_policy	
. auth_orders	
function was created. In this example, auth_orders	
was created in the SYS	
schema. But typically, it should be created in the schema of a security administrator. auth_orders	
function that you created in Step 2: Create a Policy Function. SELECT	
, INSERT	
, UPDATE	
, and DELETE	
statements the user may perform. After you create the Oracle Virtual Private Database policy, it goes into effect immediately. The next time a user, including the owner of the schema, performs a SELECT	
on OE.ORDERS	
, only the orders by Sales Representative 159 will be accessed.	
OE	
. SELECT	
statement: The following output should appear:	
The policy is in effect for user OE	
: As you can see, only 7 of the 105 rows in the orders table are returned.	
But users with administrative privileges still have access to all the rows in the table.	
SYS	
. SELECT	
statement: The following output should appear:	
SYS	
, remove the function and policy as follows: OE	
account, then enter the following statement: This section contains:	
This tutorial shows how you can use a database session-based application context to implement a policy in which customers can see only their own orders. You create the following layers of security:	
The following SQL statements create this user and then grant the user the necessary privileges for completing this tutorial.	
Replace password	
with a password that is secure. See "Minimum Requirements for Passwords" for more information.	
Replace password	
with a password that is secure. See "Minimum Requirements for Passwords" for more information.	
SCOTT	
, who you will use for this tutorial: If the DBA_USERS	
view lists user SCOTT	
as locked and expired, then enter the following statement to unlock the SCOTT	
account and create a new password for him:	
Replace password	
with a password that is secure. For greater security, do not reuse the same password that was used in previous releases of Oracle Database. See "Minimum Requirements for Passwords" for more information.	
SCOTT	
, and then create and populate the customers	
table. When you enter the user email addresses, enter them in upper-case letters. Later on, when you create the application context PL/SQL package, the SESSION_USER	
parameter of the SYS_CONTEXT	
function expects the user names to be in upper case. Otherwise, you will be unable to set the application context for the user.	
sysadmin_vpd	
will need SELECT	
privileges for the customers table, so as user SCOTT	
, grant him this privilege. orders_tab	
table. tbrooke	
and owoods	
need to query the orders_tab	
table, so grant them the SELECT	
privilege. At this stage, the two sample customers, tbrooke	
and owoods	
, have a record of purchases in the orders_tab	
order entry table, and if they tried right now, they can see all the orders in this table.	
sysadmin_vpd	
. This statement creates the orders_ctx	
application context. Remember that even though user sysadmin_vpd	
has created this context and it is associated with the sysadmin_vpd	
schema, the SYS	
schema owns the application context.	
As user sysadmin_vpd	
, create the following PL/SQL package, which will set the database session-based application context when the customers tbrooke	
and owoods	
log onto their accounts. (You can copy and paste this text by positioning the cursor at the start of CREATE OR REPLACE	
in the first line.)	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	CREATE OR REPLACE PACKAGE orders_ctx_pkg IS PROCEDURE set_custnum; END; / CREATE OR REPLACE PACKAGE BODY orders_ctx_pkg IS PROCEDURE set_custnum AS custnum NUMBER; BEGIN SELECT cust_no INTO custnum FROM SCOTT.CUSTOMERS WHERE cust_email = SYS_CONTEXT('USERENV', 'SESSION_USER'); DBMS_SESSION.SET_CONTEXT('orders_ctx', 'cust_no', custnum); EXCEPTION WHEN NO_DATA_FOUND THEN NULL; END set_custnum; END; /
In this example:	
custnum	
variable, which will hold the customer ID. SELECT	
statement to copy the customer ID that is stored in the cust_no	
column data from the scott.customers	
table into the custnum	
variable. WHERE	
clause to find all the customer IDs that match the user name of the user who is logging on. orders_ctx	
application context values by creating the cust_no	
attribute and then setting it to the value stored in the custnum	
variable. WHEN NO_DATA_FOUND	
system exception to catch any no data found	
errors that may result from the SELECT	
statement in Lines 10–11. To summarize, the sysadmin_vpd.set_cust_num	
procedure identifies whether or not the session user is a registered customer by attempting to select the user's customer ID into the custnum	
variable. If the user is a registered customer, then Oracle Database sets an application context value for this user. As you will see in Step 5: Create a PL/SQL Policy Function to Limit User Access to Their Orders, the policy function uses the context value to control the access a user has to data in the orders_tab	
table.	
The logon trigger runs the procedure in the PL/SQL package that you created in Step 3: Create a PL/SQL Package to Set the Application Context the next time a user logs on, so that the application context can be set.	
As user sysadmin_vpd	
, create the following trigger:	
At this stage, if you log on as either tbrooke	
or owoods	
, the logon trigger should set the application context for the user when it fires the sysadmin_vpd.orders_ctx_pkg.set_custnum	
procedure. You can test it as follows:	
The following output should appear:	
The next step is to create a PL/SQL function that, when the user who has logged in performs a SELECT * FROM scott.orders_tab	
query, displays only the orders of that user.	
As user sysadmin_vpd	
, create the following function:	
This function creates and returns a WHERE	
predicate that translates to "where the orders displayed belong to the user who has logged in." It then appends this WHERE	
predicate to any queries this user may run against the scott.orders_tab	
table. Next, you are ready to create an Oracle Virtual Private Database policy that applies this function to the orders_tab	
table.	
As user sysadmin_vpd	
, create the policy as follows:	
This statement creates a policy named orders_policy	
and applies it to the orders_tab	
table, which customers will query for their orders, in the SCOTT	
schema. The get_user_orders	
function implements the policy, which is stored in the sysadmin_vpd	
schema. The policy further restricts users to issuing SELECT	
statements only.	
tbrooke	
. User tbrooke	
can log on because he has passed the requirements you defined in the application context.	
tbrooke	
, access your purchases. The following output should appear:	
User tbrooke	
has passed the second test. He can access his own orders in the scott.orders_tab	
table.	
owoods	
, and then access your purchases. The following output should appear:	
As with user tbrooke	
, user owoods	
can log on and see a listing of his own orders.	
Note the following:	
custnum_sec	
function to return different predicates based on the user position context value. This is fully parsed and optimized, but the evaluation of the cust_num	
attribute value of the user for the order_entry	
context takes place at run-time. This means that you get the benefit of an optimized statement that executes differently for each user who issues the statement.	
Compare and contrast this tutorial, which uses an application context within the dynamically generated predicate, with "About Oracle Virtual Private Database Policies", which uses a subquery in the predicate.	
OE	
and remove the orders_tab	
and customers	
tables. SYS	
, connecting with AS SYSDBA	
. This section contains:	
"Working with Oracle Virtual Private Database Policy Groups" describes how you can group a set of policies for use in an application. When a nondatabase user logs onto the application, Oracle Database grants the user access based on the policies defined within the appropriate policy group.	
For column-level access control, every column or set of hidden columns is controlled by one policy. In this tutorial, you must hide two sets of columns. So, you need to create two policies, one for each set of columns that you want to hide. You only want one policy for each user; the driving application context separates the policies for you.	
SYS	
with the SYSDBA	
privilege. Replace password	
with a password that is secure. See "Minimum Requirements for Passwords" for more information.	
sysadmin_pg	
: OE	
. If the OE	
account is locked and expired, then reconnect as user SYS	
with the SYSDBA	
privilege and enter the following statement to unlock the account and give it s new password:	
Replace password	
with a password that is secure. For greater security, do not reuse the same password that was used in previous releases of Oracle Database. See "Minimum Requirements for Passwords" for more information.	
product_code_names	
table: product_code_names	
table: apps_user	
user SELECT	
privileges on the product_code_names	
table. Next, you must create a policy group for each of the two nondatabase users, provider_a	
and provider_b	
.	
sysadmin_pg	
. provider_a_group	
policy group, to be used by user provider_a	
: provider_b_group	
policy group, to be used by user provider_b	
: Each of the policy groups that you created in Step 2: Create the Two Policy Groups must have a function that defines how the application can control data access for users provider_a	
and provider_b	
.	
vpd_function_provider_a	
function, which restricts the data accessed by user provider_a	
. CREATE OR REPLACE FUNCTION	
vpd_function_provider_a This function checks that the user logging in is really user provider_a	
. If this is true, then only the data in the product_code_names	
table columns group_a	
and year_a	
will be visible to provider_a	
. Data in columns group_b	
and year_b	
will not appear for provider_a	
. This works as follows: Setting predicate := '1=2'	
hides the relevant columns. In Step 4: Add the PL/SQL Functions to the Policy Groups, you specify these columns in the SEC_RELEVANT_COLS	
parameter.	
See "Creating a Function to Generate the Dynamic WHERE Clause" for detailed information on the components of this type of function.	
vpd_function_provider_b	
, function, which restricts the data accessed by user provider_a	
. CREATE OR REPLACE FUNCTION	
vpd_function_provider_b Similar to the vpd_function_provider_a	
function, this function checks that the user logging in is really user provider_b	
. If this is true, then only the data in the columns group_b	
and year_b	
will be visible to provider_b	
, with data in the group_a	
and year_a	
not appearing for provider_b	
. Similar to the vpd_function_provider_a	
function, predicate := '1=2'	
hides the relevant columns specified Step 4: Add the PL/SQL Functions to the Policy Groups in the SEC_RELEVANT_COLS	
parameter.	
Now that you have created the necessary functions, you are ready to associate them with their appropriate policy groups.	
vpd_function_provider_a	
function to the provider_a_group	
policy group. The group_b	
and year_b	
columns specified in the sec_relevant_cols	
parameter are hidden from user provider_a	
.	
vpd_function_provider_b	
function to the provider_b_group	
policy group. The group_a	
and year_a	
columns specified in the sec_relevant_cols	
parameter are hidden from user provider_b	
.	
The application context determines which policy the nondatabase user who is the logging on should use.	
sysadmin_pg	
, create the driving application context as follows: provider_package	
package for the application context. provider_ctx	
application context with the product_code_names	
table, and then provide a name. apps_user	
account the EXECUTE	
privilege for the provider_package	
package. Now you are ready to test the two policy groups.	
apps_user	
and then enter the following statements to ensure that the output you will create later on is nicely formatted. provider_a	
. Here, the application sets the identifier. Setting the identifier to provider_a	
sets the apps_user	
user to a user who should only see the products available to products in the provider_a_group	
policy group.	
provider_package	
to set the policy group based on the context. At this stage, you can check the application context was set, as follows:	
The following output should appear:	
SELECT	
statement: The following output should appear:	
provider_b	
and then enter the following statements: The following output should appear:	
OE	
and drop the product_code_names	
table. SYS	
and drop the application context and users for this tutorial. This section contains:	
If you are preparing an application for edition-based redefinition, and you cover each table that the application uses with an editioning view, then you must move the Virtual Private Database polices that protect these tables to the editioning view.	
When an editioned object has a Virtual Private Database t policy, then it applies in all editions in which the object is visible. When an editioned object is actualized, any VPD policies that are attached to it are newly attached to the new actual occurrence. When you newly apply a VPD policy to an inherited editioned object, this action will actualize it.	
See Also: Oracle Database Advanced Application Developer's Guide for detailed information about editions	
As a general rule, users should not include the FOR UPDATE	
clause when querying Virtual Private Database-protected tables. The Virtual Private Database technology depends on rewriting the user's query against an inline view that includes the VPD predicate generated by the VPD policy function. Because of this, the same limitations on views also apply to VPD-protected tables. If a user's query against a VPD-protected table includes the FOR UPDATE	
clause in a SELECT	
statement, in most cases, the query may not work. However, the user's query may work in some situations if the inline view generated by VPD is sufficiently simple.	
See Also: Oracle Database SQL Language Reference for more information about the restrictions of theFOR UPDATE clause in the SELECT statement	
Oracle Virtual Private Database rewrites SQL by using dynamic views. For SQL that contains outer join or ANSI operations, some views may not merge and some indexes may not be used. This problem is a known optimization limitation. To remedy this problem, rewrite the SQL to not use outer joins or ANSI operations.	
An Oracle Virtual Private Database security policy is applied within the database itself, rather than within an application. Hence, a user trying to access data by using a different application cannot bypass the Oracle Virtual Private Database security policy. Another advantage of creating the security policy in the database is that you maintain it in one central place, rather than maintaining individual security policies in multiple applications. Oracle Virtual Private Database provides stronger security than application-based security, at a lower cost of ownership.	
You may want to enforce different security policies depending on the application that is accessing data. Consider a situation in which two applications, Order Entry and Inventory, both access the orders	
table. You may want to have the Inventory application use a policy that limits access based on type of product. At the same time, you may want to have the Order Entry application use a policy that limits access based on customer number.	
In this case, you must partition the use of fine-grained access by application. Otherwise, both policies would be automatically concatenated together, which may not be the result that you want. You can specify two or more policy groups, and a driving application context that determines which policy group is in effect for a given transaction. You can also designate default policies that always apply to data access. In a hosted application, for example, data access should be limited by subscriber ID. See "Tutorial: Implementing an Oracle Virtual Private Database Policy Group" for an example of how you can create policy groups that use an application context to determine which group should be used.	
By default, queries against objects enabled with fine-grained access control run the policy function to ensure that the most current predicate is used for each policy. For example, in the case of a time-based policy function, in which queries are only allowed between 8:00 a.m. and 5:00 p.m., a cursor execution parsed at noon runs the policy function at that time, ensuring that the policy is consulted again for the query. Even if the curser was parsed at 9 a.m., when it runs later on (for example, at noon), then the Virtual Private Database policy function runs again to ensure that the execution of the cursor is still permitted at the current time (noon). This ensures that the security check it must perform is the most recent.	
Automatic re-execution of the Virtual Private Database policy function does not occur when you set the DBMS_RLS.ADD_POLICY	
setting STATIC_POLICY	
to TRUE	
while adding the policy. This setting causes the policy function to return the same predicate.	
By default, operations on the database use the most recently committed data available. The flashback query feature enables you to query the database at some point in the past. To write an application that uses flashback query, you can use the AS OF	
clause in SQL queries to specify either a time or a system change number (SCN), and then query against the committed data from the specified time. You can also use the DBMS_FLASHBACK	
PL/SQL package, which requires more code, but enables you to perform multiple operations, all of which refer to the same point in time.	
However, if you use flashback query against a database object that is protected with Oracle Virtual Private Database policies, then the current policies are applied to the old data. Applying the current Oracle Virtual Private Database policies to flashback query data is more secure because it reflects the most current business policy.	
See Also:	
This section contains:	
You can use Oracle Virtual Private Database policies to provide column or row-level access control based on Oracle Label Security user authorizations. In general, you need to perform the following steps:	
SA_SYSDBA.CREATE_POLICY	
procedure, set the default_options	
parameter to NO_CONTROL	
. Create the Oracle Label Security label components and authorize users as you normally would.	
DOMINATES	
function to compare the authorization of the user with the label that you created in Step 2. (See Oracle Label Security Administrator's Guide for more information about the dominance functions.) The DOMINATES	
function determines if the user authorization is equal to, or if it is more sensitive than, the label used in the comparison. If the user authorization passes, then the user is granted access to the column. Otherwise, the user is denied access. DBMS_RLS.ADD_POLICY	
procedure, use the sensitive column (SEC_RELEVANT_COLS	
parameter) and column masking (SEC_RELEVANT_COLS_OPT	
parameter) functionality to show or hide columns based on Oracle Label Security user authorizations. For an example of how to accomplish this, visit the following Oracle Technology Network site:	
http://www.oracle.com/technetwork/database/focus-areas/security/ols-cs1-099558.html	
Be aware of the following exceptions when you use Oracle Virtual Private Database and Oracle Label Security:	
SYS	
user and users making a DBA-privileged connection to the database (for example, CONNECT/AS SYSDBA	
) do not have Oracle Virtual Private Database or Oracle Label Security policies applied to their actions. The database user SYS	
is thus always exempt from Oracle Virtual Private Database or Oracle Label Security enforcement, regardless of the export mode, application, or utility used to extract data from the database. However, you can audit SYSDBA	
actions by enabling auditing upon installation and specifying that this audit trail be stored in a secure location in the operating system. See "Auditing SYS Administrative Users" for more information. You can also closely monitor the SYS	
user by using Oracle Database Vault.	
EXEMPT ACCESS POLICY	
allows a user to be exempted from all fine-grained access control policies on any SELECT	
or DML operation (INSERT	
, UPDATE	
, and DELETE	
). This provides ease of use for administrative activities, such as installation and import and export of the database, through a non-SYS	
schema. However, the following policy enforcement options remain in effect even when EXEMPT ACCESS POLICY	
is granted:	
INSERT_CONTROL	
, UPDATE_CONTROL	
, DELETE_CONTROL	
, WRITE_CONTROL	
, LABEL_UPDATE	
, and LABEL_DEFAULT	
ALL_CONTROL	
option, then all enforcement controls are applied except READ_CONTROL	
and CHECK_CONTROL	
. Because EXEMPT ACCESS POLICY	
negates the effect of fine-grained access control, you should only grant this privilege to users who have legitimate reasons for bypassing fine-grained access control enforcement. Do not grant this privilege using the WITH ADMIN OPTION	
. If you do, users could pass the EXEMPT ACCESS POLICY	
privilege to other users, and thus propagate the ability to bypass fine-grained access control.	
Note:	
If you try to use the Oracle Data Pump Export (EXPDP	
) utility with the access_method	
parameter set to direct_path	
to export data from a schema which contains an object that has a Virtual Private Database policy defined on it, then the following error message may appear and the export operation will fail:	
This problem only occurs when you perform a schema-level export as a user who has not been granted the EXP_FULL_DATABASE	
role. It does not occur during a full database export, which requires the EXP_FULL_DATABASE	
role. The EXP_FULL_DATABASE	
role includes the EXEMPT ACCESS POLICY	
system privilege, which bypasses Virtual Private Database policies.	
To find the underlying problem, try the EXPDP	
invocation again, but do not set the access_method	
parameter to direct_path	
. Instead, use either automatic	
or external_table	
. The underlying problem could be a permissions problem, for example:	
You can use Oracle Virtual Private Database in the following types of user models:	
USERENV	
application context namespace, which provides many parameters for retrieve different types of user session data.) As each session is initiated under a different user name, it can enforce different fine-grained access control conditions for each user. REALUSER	
). Although all database sessions and audit records are created for One Big Application User, the attributes for each session can vary, depending on who the end user is. This model works best for applications with a limited number of users and no reuse of sessions. The scope of roles and database auditing is diminished because each session is created as the same database user. For more information about global application contexts, see "Using Global Application Contexts". Oracle Virtual Private Database helps with connection pooling by allowing multiple connections to access more than one global application context. This ability makes it unnecessary to establish a separate application context for each distinct user session.	
Table 7-3 summarizes how Oracle Virtual Private Database applies to user models.	
Table 7-3 Oracle Virtual Private Database in Different User Models	
User Model Scenario	Individual Database Connection
---	---
Application users are also database users	Yes
Proxy authentication using OCI or JDBC/OCI	Yes
Proxy authentication integrated with Enterprise User SecurityFoot 1	No
One Big Application User	No
Web-based applications	No
Footnote 1 User roles and other attributes, including globally initialized application context, can be retrieved from Oracle Internet Directory to enforce Oracle Virtual Private Database.	
Footnote 2 Application developers can create a global application context attribute representing individual application users (for example, REALUSER)	
, which can then be used for controlling each session attributes, or for auditing.	
Table 7-4 lists data dictionary views that you can use to find information about Oracle Virtual Private Database policies. See Oracle Database Reference for more information about these views.	
Table 7-4 Data Dictionary Views That Display Information about VPD Policies	
View	Description
---	---
Describes all Oracle Virtual Private Database security policies for objects accessible to the current user.	
Describes the driving contexts defined for the synonyms, tables, and views accessible to the current user. A driving context is an application context used in an Oracle Virtual Private Database policy.	
Describes the Oracle Virtual Private Database policy groups defined for the synonyms, tables, and views accessible to the current user	
Describes the security relevant columns of the security policies for the tables and views accessible to the current user	
Describes all Oracle Virtual Private Database security policies in the database.	
Describes all policy groups in the database.	
Describes all driving contexts in the database. Its columns are the same as those in	
Describes the security relevant columns of all security policies in the database	
Describes all Oracle Virtual Private Database security policies associated with objects owned by the current user. This view does not display the	
Describes the driving contexts defined for the synonyms, tables, and views owned by the current user. Its columns (except for	
Describes the security relevant columns of the security policies for the tables and views owned by the current user. Its columns (except for	
Describes the policy groups defined for the synonyms, tables, and views owned by the current user. This view does not display the	
Displays all the fine-grained security policies and predicates associated with the cursors currently in the library cache. This view is useful for finding the policies that were applied to a SQL statement.	
Tip: In addition to these views, check the database trace file if you find errors in application that use Virtual Private Database policies. See Oracle Database Performance Tuning Guide for more information about trace files. TheUSER_DUMP_DEST initialization parameter specifies the current location of the trace files. You can find the value of this parameter by issuing SHOW PARAMETER USER_DUMP_DEST in SQL*Plus.	
This chapter contains:	
See Also:	
While there are many good reasons to encrypt data, there are many reasons not to encrypt data. Encryption does not solve all security problems, and may make some problems worse. The following sections describe some misconceptions about encryption of stored data:	
Most organizations need to limit data access to users who need to see this data. For example, a human resources system may limit employees to viewing only their own employment records, while allowing managers of employees to see the employment records of subordinates. Human resource specialists may also need to see employee records for multiple employees.	
Typically, you can use access control mechanisms to address security policies that limit data access to those with a need to see it. Oracle Database has provided strong, independently evaluated access control mechanisms for many years. It enables access control enforcement to a fine level of granularity through Virtual Private Database.	
Because human resource records are considered sensitive information, it is tempting to think that all information should be encrypted for better security. However, encryption cannot enforce granular access control, and it may hinder data access. For example, an employee, his manager, and a human resources clerk may all need to access an employee record. If all employee data is encrypted, then all three must be able to access the data in unencrypted form. Therefore, the employee, the manager and the human resources clerk would have to share the same encryption key to decrypt the data. Encryption would, therefore, not provide any additional security in the sense of better access control, and the encryption might hinder the proper or efficient functioning of the application. An additional issue is that it is difficult to securely transmit and share encryption keys among multiple users of a system.	
A basic principle behind encrypting stored data is that it must not interfere with access control. For example, a user who has the SELECT	
privilege on emp	
should not be limited by the encryption mechanism from seeing all the data he is otherwise allowed to see. Similarly, there is little benefit to encrypting part of a table with one key and part of a table with another key if users need to see all encrypted data in the table. In this case, encryption adds to the overhead of decrypting the data before users can read it. If access controls are implemented well, then encryption adds little additional security within the database itself. A user who has privileges to access data within the database has no more nor any less privileges as a result of encryption. Therefore, you should never use encryption to solve access control problems.	
Some organizations, concerned that a malicious user might gain elevated (database administrator) privileges by guessing a password, like the idea of encrypting stored data to protect against this threat. However, the correct solution to this problem is to protect the database administrator account, and to change default passwords for other privileged accounts. The easiest way to break into a database is by using a default password for a privileged account that an administrator allowed to remain unchanged. One example is SYS	
/CHANGE_ON_INSTALL	
.	
While there are many destructive things a malicious user can do to a database after gaining the DBA	
privilege, encryption will not protect against many of them. Examples include corrupting or deleting data, exporting user data to the file system to email the data back to himself to run a password cracker on it, and so on.	
Some organizations are concerned that database administrators, typically having all privileges, are able to see all data in the database. These organizations feel that the database administrators should administer the database, but should not be able to see the data that the database contains. Some organizations are also concerned about concentrating so much privilege in one person, and would prefer to partition the DBA function, or enforce two-person access rules.	
It is tempting to think that encrypting all data (or significant amounts of data) will solve these problems, but there are better ways to protect against these threats. For example, Oracle Database supports limited partitioning of DBA	
privileges. Oracle Database provides native support for SYSDBA	
and SYSOPER	
users. SYSDBA	
has all privileges, but SYSOPER	
has a limited privilege set (such as startup and shutdown of the database).	
Furthermore, you can create smaller roles encompassing several system privileges. A jr_dba	
role might not include all system privileges, but only those appropriate to a junior database administrator (such as CREATE TABLE	
, CREATE USER	
, and so on).	
Oracle Database also enables auditing the actions taken by SYS	
(or SYS	
-privileged users) and storing that audit trail in a secure operating system location. Using this model, a separate auditor who has root privileges on the operating system can audit all actions by SYS	
, enabling the auditor to hold all database administrators accountable for their actions.	
See "Auditing SYS Administrative Users" for information about ways to audit database administrators.	
You can also fine-tune the access and control that database administrators have by using Oracle Database Vault. See Oracle Database Vault Administrator's Guide for more information.	
The database administrator function is a trusted position. Even organizations with the most sensitive data, such as intelligence agencies, do not typically partition the database administrator function. Instead, they manage their database administrators strongly, because it is a position of trust. Periodic auditing can help to uncover inappropriate activities.	
Encryption of stored data must not interfere with the administration of the database, because otherwise, larger security issues can result. For example, if by encrypting data you corrupt the data, then you create a security problem, the data itself cannot be interpreted, and it may not be recoverable.	
You can use encryption to limit the ability of a database administrator or other privileged user to see data in the database. However, it is not a substitute for managing the database administrator privileges properly, or for controlling the use of powerful system privileges. If untrustworthy users have significant privileges, then they can pose multiple threats to an organization, some of them far more significant than viewing unencrypted credit card numbers.	
A common error is to think that if encrypting some data strengthens security, then encrypting everything makes all data secure.	
As the discussion of the previous two principles illustrates, encryption does not address access control issues well, and it is important that encryption not interfere with normal access controls. Furthermore, encrypting an entire production database means that all data must be decrypted to be read, updated, or deleted. Encryption is inherently a performance-intensive operation; encrypting all data will significantly affect performance.	
Availability is a key aspect of security. If encrypting data makes data unavailable, or adversely affects availability by reducing performance, then encrypting everything will create a new security problem. Availability is also adversely affected by the database being inaccessible when encryption keys are changed, as good security practices require on a regular basis. When the keys are to be changed, the database is inaccessible while data is decrypted and reencrypted with a new key or keys.	
There may be advantages to encrypting data stored off-line. For example, an organization may store backups for a period of 6 months to a year off-line, in a remote location. Of course, the first line of protection is to secure the facility storing the data, by establishing physical access controls. Encrypting this data before it is stored may provide additional benefits. Because it is not being accessed on-line, performance need not be a consideration. While an Oracle database does not provide this capability, there are vendors who provide encryption services. Before embarking on large-scale encryption of backup data, organizations considering this approach should thoroughly test the process. It is essential to verify that data encrypted before off-line storage can be decrypted and re-imported successfully.	
In cases where encryption can provide additional security, there are some associated technical challenges, as described in the following sections:	
Special difficulties arise when encrypted data is indexed. For example, suppose a company uses a national identity number, such as the U.S. Social Security number (SSN), as the employee number for its employees. The company considers employee numbers to be sensitive data, and, therefore, wants to encrypt data in the employee_number	
column of the employees	
table. Because employee_number	
contains unique values, the database designers want to have an index on it for better performance.	
However, if DBMS_CRYPTO	
or the DBMS_OBFUSCATION_TOOLKIT	
(or another mechanism) is used to encrypt data in a column, then an index on that column will also contain encrypted values. Although an index can be used for equality checking (for example, SELECT * FROM emp WHERE employee_number = '987654321'	
), if the index on that column contains encrypted values, then the index is essentially unusable for any other purpose. You should not encrypt indexed data.	
Oracle recommends that you do not use national identity numbers as unique IDs. Instead, use the CREATE SEQUENCE	
statement to generate unique identity numbers. Reasons to avoid using national identity numbers are as follows:	
Encrypted data is only as secure as the key used for encrypting it. An encryption key must be securely generated using secure cryptographic key generation. Oracle Database provides support for secure random number generation, with the RANDOMBYTES	
function of DBMS_CRYPTO	
. (This function replaces the capabilities provided by the GetKey	
procedure of the earlier DBMS_OBFUSCATION_TOOLKIT	
.) DBMS_CRYPTO	
calls the secure random number generator (RNG) previously certified by RSA Security.	
Note: Do not use theDBMS_RANDOM package. The DBMS_RANDOM package generates pseudo-random numbers, which, as Randomness Recommendations for Security (RFC-1750) states that using pseudo-random processes to generate secret quantities can result in pseudo-security.	
Be sure to provide the correct number of bytes when you encrypt a key value. For example, you must provide a 16-byte key for the ENCRYPT_AES128	
encryption algorithm.	
If the encryption key is to be passed by the application to the database, then you must encrypt it. Otherwise, an intruder could get access to the key as it is being transmitted. Network encryption, such as that provided by Oracle Advanced Security, protects all data in transit from modification or interception, including cryptographic keys.	
Storing encryption keys is one of the most important, yet difficult, aspects of encryption. To recover data encrypted with a symmetric key, the key must be accessible to an authorized application or user seeking to decrypt the data. At the same time, the key must be inaccessible to someone who is maliciously trying to access encrypted data that he is not supposed to see.	
The options available to a developer are:	
Storing the keys in the database cannot always provide infallible security if you are trying to protect against the database administrator accessing encrypted data. An all-privileged database administrator could still access tables containing encryption keys. However, it can often provide good security against the casual curious user or against someone compromising the database file on the operating system.	
As a trivial example, suppose you create a table (EMP	
) that contains employee data. You want to encrypt the employee Social Security number (SSN) stored in one of the columns. You could encrypt employee SSN using a key that is stored in a separate column. However, anyone with SELECT	
access on the entire table could retrieve the encryption key and decrypt the matching SSN.	
While this encryption scheme seems easily defeated, with a little more effort you can create a solution that is much harder to break. For example, you could encrypt the SSN using a technique that performs some additional data transformation on the employee_number	
before using it to encrypt the SSN. This technique might be as simple as using an XOR	
operation on the employee_number	
and the birth date of the employee to determine the validity of the values.	
As additional protection, PL/SQL source code performing encryption can be wrapped, (using the WRAP	
utility) which obfuscates (scrambles) the code. The WRAP	
utility processes an input SQL file and obfuscates the PL/SQL units in it. For example, the following command uses the keymanage.sql	
file as the input:	
A developer can subsequently have a function in the package call the DBMS_OBFUSCATION_TOOLKIT	
with the key contained in the wrapped package.	
Oracle Database enables you to obfuscate dynamically generated PL/SQL code. The DBMS_DDL	
package contains two subprograms that allow you to obfuscate dynamically generated PL/SQL program units. For example, the following block uses the DBMS_DDL.CREATE_WRAPPED	
procedure to wrap dynamically generated PL/SQL code.	
While wrapping is not unbreakable, it makes it harder for an intruder to get access to the encryption key. Even in cases where a different key is supplied for each encrypted data value, you should not embed the key value within a package. Instead, wrap the package that performs the key management (that is, data transformation or padding).	
See Also: Oracle Database PL/SQL Language Reference for additional information about theWRAP command line utility and the DBMS_DDL subprograms for dynamic wrapping	
An alternative to wrapping the data is to have a separate table in which to store the encryption key and to envelope the call to the keys table with a procedure. The key table can be joined to the data table using a primary key to foreign key relationship. For example, employee_number	
is the primary key in the employees	
table that stores employee information and the encrypted SSN. The employee_number	
column is a foreign key to the ssn_keys	
table that stores the encryption keys for the employee SSN. The key stored in the ssn_keys	
table can also be transformed before use (by using an XOR	
operation), so the key itself is not stored unencrypted. If you wrap the procedure, then that can hide the way in which the keys are transformed before use.	
The strengths of this approach are:	
SELECT	
access to both the data table and the keys table does not guarantee that the user with this access can decrypt the data, because the key is transformed before use. The weakness to this approach is that a user who has SELECT	
access to both the key table and the data table, and who can derive the key transformation algorithm, can break the encryption scheme.	
The preceding approach is not infallible, but it is adequate to protect against easy retrieval of sensitive information stored in clear text.	
Storing keys in a flat file in the operating system is another option. Oracle Database enables you to make callouts from PL/SQL, which you could use to retrieve encryption keys. However, if you store keys in the operating system and make callouts to it, then your data is only as secure as the protection on the operating system. If your primary security concern is that the database can be broken into from the operating system, then storing the keys in the operating system makes it easier for an intruder to retrieve encrypted data than storing the keys in the database itself.	
Having the user supply the key assumes the user will be responsible with the key. Considering that 40 percent of help desk calls are from users who have forgotten their passwords, you can see the risks of having users manage encryption keys. In all likelihood, users will either forget an encryption key, or write the key down, which then creates a security weakness. If a user forgets an encryption key or leaves the company, then your data is not recoverable.	
If you do decide to have user-supplied or user-managed keys, then you need to ensure you are using network encryption so that the key is not passed from the client to the server in the clear. You also must develop key archive mechanisms, which is also a difficult security problem. Key archives and backdoors create the security weaknesses that encryption is attempting to solve.	
Transparent database encryption and tablespace encryption provide secure encryption with automatic key management for the encrypted tables and tablespaces. If the application requires protection of sensitive column data stored on the media, then these two types of encryption are a simple and fast way of achieving this.	
See Also: Oracle Database Advanced Security Administrator's Guide for more information about transparent data encryption	
Prudent security practice dictates that you periodically change encryption keys. For stored data, this requires periodically unencrypting the data, and reencrypting it with another well-chosen key. You would most likely change the encryption key while the data is not being accessed, which creates another challenge. This is especially true for a Web-based application encrypting credit card numbers, because you do not want to shut down the entire application while you switch encryption keys.	
Certain data types require more work to encrypt. For example, Oracle Database supports storage of binary large objects (BLOBs), which stores very large objects (for example, multiple gigabytes) in the database. A BLOB can be either stored internally as a column, or stored in an external file.	
For an example of using DBMS_CRYPTO	
on BLOB data, see "Example of Encryption and Decryption Procedures for BLOB Data".	
The DBMS_CRYPTO	
package provides several ways to address the security issues that were discussed. (For backward compatibility, DBMS_OBFUSCATION_TOOLKIT	
is also provided.)	
While encryption is not the ideal solution for addressing several security threats, it is clear that selectively encrypting sensitive data before storage in the database does improve security. Examples of such data could include:	
Oracle Database provides the PL/SQL package DBMS_CRYPTO	
to encrypt and decrypt stored data. This package supports several industry-standard encryption and hashing algorithms, including the Advanced Encryption Standard (AES) encryption algorithm. AES was approved by the National Institute of Standards and Technology (NIST) to replace the Data Encryption Standard (DES).	
The DBMS_CRYPTO	
package enables encryption and decryption for common Oracle Database data types, including RAW	
and large objects (LOBs), such as images and sound. Specifically, it supports BLOBs and CLOBs. In addition, it provides Globalization Support for encrypting data across different database character sets.	
The following cryptographic algorithms are supported:	
Block cipher modifiers are also provided with DBMS_CRYPTO	
. You can choose from several padding options, including Public Key Cryptographic Standard (PKCS) #5, and from four block cipher chaining modes, including Cipher Block Chaining (CBC). Padding must be done in multiples of eight bytes.	
Note:	
Table 8-1 compares the DBMS_CRYPTO	
package features to the other PL/SQL encryption package, the DBMS_OBFUSCATION_TOOLKIT	
.	
Table 8-1 DBMS_CRYPTO and DBMS_OBFUSCATION_TOOLKIT Feature Comparison	
Package Feature	DBMS_CRYPTO
---	---
Cryptographic algorithms	DES, 3DES, AES, RC4, 3DES_2KEY
Padding forms	PKCS5, zeroes
Block cipher chaining modes	CBC, CFB, ECB, OFB
Cryptographic hash algorithms	SHA-1, MD4, MD5
Keyed hash (MAC) algorithms	HMAC_MD5, HMAC_SH1
Cryptographic pseudo-random number generator	
Database types	
DBMS_CRYPTO	
is intended to replace the OBFUSCATION_TOOLKIT	
package, because it is easier to use and supports a range of algorithms that accommodate both new and existing systems. Although 3DES_2KEY and MD4 are provided for backward compatibility, you achieve better security using 3DES, AES, or SHA-1. Therefore, 3DES_2KEY is not recommended.	
The DBMS_CRYPTO	
package includes cryptographic checksum capabilities (MD5), which are useful for comparisons, and the ability to generate a secure random number (the RANDOMBYTES	
function). Secure random number generation is an important part of cryptography; predictable keys are easily guessed keys; and easily guessed keys may lead to easy decryption of data. Most cryptanalysis is done by finding weak keys or poorly stored keys, rather than through brute force analysis (cycling through all possible keys).	
Key management is programmatic. That is, the application (or caller of the function) must supply the encryption key. This means that the application developer must find a way of storing and retrieving keys securely. The relative strengths and weaknesses of various key management techniques are discussed in the sections that follow. The DBMS_OBFUSCATION_TOOLKIT	
package, which can handle both string and raw data, requires the submission of a 64-bit key. The DES algorithm itself has an effective key length of 56-bits.	
Note: TheDBMS_OBFUSCATION_TOOLKIT is granted to PUBLIC by default. Oracle recommends that you revoke this grant. While the To convert between	
See Also:	
This section contains:	
The following sample PL/SQL program (dbms_crypto.sql	
) shows how to encrypt data. This example code performs the following actions:	
VARCHAR2	
type) using DES after first converting it into the RAW	
data type. This step is necessary because encrypt and decrypt functions and procedures in DBMS_CRYPTO	
package work on the RAW	
data type only, unlike functions and packages in the DBMS_OBFUSCATION_TOOLKIT	
package.	
The dbms_crypto.sql	
procedure follows:	
The following PL/SQL block shows how to encrypt and decrypt a predefined variable named input_string	
using the AES 256-bit algorithm with Cipher Block Chaining and PKCS #5 padding.	
The following sample PL/SQL program (blob_test.sql	
) shows how to encrypt and decrypt BLOB data. This example code does the following, and prints out its progress (or problems) at each step:	
The blob_test.sql	
procedure follows:	
Table 8-2 lists data dictionary views that you can query to access information about encrypted data. See Oracle Database Reference for detailed information about these views.	
Table 8-2 Data Dictionary Views That Display Information about Encrypted Data	
View	Description
---	---
Describes encryption algorithm information for all encrypted columns in all tables accessible to the user	
Describes encryption algorithm information for all encrypted columns in the database	
Describes encryption algorithm information for all encrypted columns in all tables in the schema of the user	
Displays information about the tablespaces that are encrypted	
Displays information on the status of the wallet and the wallet location for transparent data encryption	
Displays supported encryption algorithms.	
This chapter contains:	
This section contains:	
See Also: Oracle Audit Vault Administrator's Guide for information about Oracle Audit Vault, which provides advanced auditing features	
Auditing is the monitoring and recording of selected user database actions, from both database users and nondatabase usersFoot 1 . You can base auditing on individual actions, such as the type of SQL statement executed, or on combinations of data that can include the user name, application, time, and so on. You can audit both successful and failed activities. To use auditing, you enable it, and then configure what must be audited. The actions that you audit are recorded in either data dictionary tables or in operating system files.	
Oracle recommends that you enable and configure auditing. Auditing is an effective method of enforcing strong internal controls so that your site can meet its regulatory compliance requirements, as defined in the Sarbanes-Oxley Act. This enables you to monitor business operations, and find any activities that may deviate from company policy. Doing so translates into tightly controlled access to your database and the application software, ensuring that patches are applied on schedule and preventing ad hoc changes. By enabling auditing by default, you can generate an audit record for audit and compliance personnel. Be selective with auditing and ensure that it meets your business compliance needs.	
You typically use auditing to perform the following activities:	
When auditing for suspicious database activity, you should protect the integrity of the audit trail records to guarantee the accuracy and completeness of the auditing information.	
Oracle Database writes the database audit trail to the SYS.AUD	
$ and SYS.FGA_LOG$	
tables. Audit records generated as a result of object audit options set for the SYS.AUD	
$ and SYS.FGA_LOG$	
tables can only be deleted from the audit trail by someone who has connected with administrator privileges. Remember that administrators are also audited for unauthorized use. See "Auditing SYS Administrative Users" for more information.	
Other ways to protect the database audit trail are as follows:	
SYSDBA	
privilege can perform DML actions on the audit data in the SYS.AUD$	
and SYS.FGA_LOG$	
tables. In a default installation, O7_DICTIONARY_ACCESSIBILITY	
is set to FALSE	
. AUD$	
table is in the SYSTEM	
schema. (The synonym SYS.AUD$	
refers to the SYSTEM.AUD$	
table.) See Oracle Database Vault Administrator's Guide for more information about realms in Oracle Database Vault. When standard auditing is enabled (that is, you set AUDIT_TRAIL	
to DB	
or DB,EXTENDED	
), Oracle Database audits all data manipulation language (DML) operations, such as INSERT	
, UPDATE	
, MERGE	
, and DELETE	
on the SYS.AUD$	
and SYS.FGA_LOG$	
tables by non-SYS	
users. (It performs this audit even if you have not set audit options for the AUD$	
and FGA_LOGS$	
tables.) Typically, non-SYS	
users do not have access to these tables, except if they have been explicitly granted access. If a non-SYS	
user tampers with the data in the SYS.FGA_LOG$	
and SYS.AUD$	
tables, then Oracle Database writes an audit record for each action.	
Oracle Database audits SYS	
user's DELETE	
, INSERT	
, UPDATE	
, and MERGE	
operations on the SYS.FGA_LOG$	
and SYS.AUD$	
tables if you have set the AUDIT_SYS_OPERATIONS	
initialization parameter to TRUE	
. In this case the audit records of all SYS	
operations are written to whatever directory the AUDIT_FILE_DEST	
initialization parameter points to. If AUDIT_FILE_DEST	
is not set, then it writes the records to an operating system-dependent location.	
Oracle Database always audits certain database-related operations and writes them to the operating system audit files. It includes the actions of any user who is logged in with the SYSDBA	
or SYSOPER	
privilege. This is called mandatory auditing. Even if you have enabled the database audit trail (that is, setting the AUDIT_TRAIL	
parameter to DB	
), Oracle Database still writes mandatory records to operating system files.	
By default, the operating system files are in the $ORACLE_BASE	
/admin/$ORACLE_SID/adump	
directory for both UNIX and Windows systems. On Windows systems, Oracle Database also writes this information to the Windows Event Viewer. You can change the location of this directory by setting the AUDIT_FILE_DEST	
initialization parameter, which is described in "Specifying a Directory for the Operating System Audit Trail".	
Mandatory auditing includes the following operations:	
SYSDBA	
and SYSOPER	
connections. Note: If you set theAUDIT_SYSLOG_LEVEL initialization parameter, mandatory actions are written the to the UNIX syslog. See "Using the Syslog Audit Trail on UNIX Systems" for more information about the syslog audit trail. See also your operating system-specific Oracle Database documentation for more information about the operating system and syslog audit trail.	
Auditing is site autonomous. An instance audits only the statements issued by directly connected users. A local Oracle Database node cannot audit actions that take place in a remote database.	
Follow these best practices guidelines:	
Table 9-1 provides a roadmap for selecting and using the different audit options available.	
Table 9-1 Selecting an Auditing Type	
What Do You Want to Audit?	About This Type of Auditing
---	---
General activities	You can audit SQL statements, privileges, schema objects, functions, procedures, packages, triggers, and network activity. For example, you can audit each time a particular user performs an Location of audit records: Oracle Database writes these audit records to the location based on the General steps:
Default, security-relevant SQL statements and privileges	Oracle Database provides a set of default audit settings that you can enable for commonly used security-relevant SQL statements and privileges. Location of audit records: Oracle Database writes these audit records to the location based on the General steps:
Specific, fine-grained activities	You can audit at the most granular level, data access, and actions based on content, using Boolean measures, such as Location of audit records: You can write the audit records to either the database audit trail or an operating system audit trail in XML format. See also "About Audit Records". General steps:
You can audit the top-level SQL statements issued by users who have connected using the Location of audit records: Oracle Database writes these audit records to an operating system audit trail only. On Windows, Oracle Database writes the General steps:	
This section contains:	
See Also:	
This section contains:	
In standard auditing, you audit SQL statements, privileges, schema objects, and network activity. You configure standard auditing by using the AUDIT	
SQL statement and NOAUDIT	
to remove this configuration. You can write the audit records to either the database audit trail or to operating system audit files.	
Any user can configure auditing for the objects in his or her own schema, by using the AUDIT	
statement. To undo the audit configuration for this object, the user can use the NOAUDIT	
statement. No additional privileges are needed to perform this task. Users can run AUDIT	
statements to set auditing options regardless of the AUDIT_TRAIL	
parameter setting. If auditing has been disabled, the next time it is enabled, Oracle Database will record the auditing activities set by the AUDIT	
statements. "Enabling or Disabling the Standard Audit Trail" explains how to enable standard auditing.	
Note the following:	
AUDIT ANY	
system privilege. AUDIT SYSTEM	
privilege. O7_DICTIONARY_ACCESSIBILITY	
initialization parameter has been set to FALSE	
(the default), then only users who have the SYSDBA	
privilege can perform DML actions on the audit data in the SYS.AUD$	
and SYS.FGA_LOG$	
tables. For greater security, set the O7_DICTIONARY_ACCESSIBILITY	
parameter to FALSE	
so that non-SYSDBA	
users cannot audit SYS	
objects. You, as the security administrator, enable or disable standard auditing for the entire database. If it is disabled, then no audit records are created. Configuring audit options is described in the previous section, "Who Can Perform Standard Auditing?"	
When auditing is enabled in the database and an action configured to be audited occurs, Oracle Database generates an audit record during or after the execution phase of the SQL statement. Oracle Database individually audits SQL statements inside PL/SQL program units, as necessary, when the program unit is run.	
The generation and insertion of an audit trail record is independent of a user transaction being committed. That is, even if a user transaction is rolled back, the audit trail record remains committed.	
Statement and privilege audit options in effect at the time a database user connects to the database remain in effect for the duration of the session. When the session is already active, setting or changing statement or privilege audit options does not take effect in that session. The modified statement or privilege audit options take effect only when the current session ends and a new session is created.	
In contrast, changes to schema object audit options become immediately effective for current sessions.	
See Also: Oracle Database Concepts for information about the different phases of SQL statement processing and shared SQL	
This section contains:	
You enable the standard audit trail by setting the AUDIT_TRAIL	
initialization parameter. This setting determines whether to create the audit trail in the database audit trail, write the audit activities to an operating system file, or to disable auditing.	
To enable or disable the standard audit trail, log in to SQL*Plus with administrative privileges, and use the ALTER SYSTEM	
statement. Afterwards, you need to restart the database instance.	
To check the current value of the AUDIT_TRAIL	
parameter, use the SHOW PARAMETER	
command in SQL*Plus.	
Example 9-1 shows how to check the AUDIT_TRAIL	
parameter setting.	
Example 9-1 Checking the Current Value of the AUDIT_TRAIL Initialization Parameter	
Example 9-2 shows how to log onto SQL*Plus, enable the standard audit trail, and then restart the database instance.	
Example 9-2 Enabling the Standard Audit Trail	
This example uses the SCOPE	
clause because the database instance had been started using a server parameter file (SPFILE	
). Starting the database with a server parameter file is the preferred way of starting a database instance. See Oracle Database Administrator's Guide for information about creating configuring server parameter files.	
Table 9-2 lists the settings you can use for the AUDIT_TRAIL	
initialization parameter.	
Table 9-2 AUDIT_TRAIL Initialization Parameter Settings	
AUDIT_TRAIL Value	Description
---	---
Directs audit records to the database audit trail (the If the database was started in read-only mode with See also "Managing the Database Audit Trail".	
Behaves the same as	
If the database was started in read-only mode with You can specify ALTER SYSTEM SET AUDIT_TRAIL=DB,EXTENDED SCOPE=SPFILE; ALTER SYSTEM SET AUDIT_TRAIL=DB, EXTENDED SCOPE=SPFILE; ALTER SYSTEM SET AUDIT_TRAIL='DB','EXTENDED' SCOPE=SPFILE; ALTER SYSTEM SET AUDIT_TRAIL=EXTENDED,DB SCOPE=SPFILE; ALTER SYSTEM SET AUDIT_TRAIL=EXTENDED, DB SCOPE=SPFILE; However, do not enclose ALTER SYSTEM SET AUDIT_TRAIL='DB, EXTENDED' SCOPE=SPFILE; In previous releases, the setting was	
Directs all audit records to an operating system file. Oracle recommends that you use the If you set	
Writes to the operating system audit record file in XML format. Records all elements of the See also "Advantages of the Operating System Audit Trail" and Example 9-4, "XML File Operating System Audit Trail". If you set the The You can control the output for	
Behaves the same as You can specify ALTER SYSTEM SET AUDIT_TRAIL=XML, EXTENDED SCOPE=SPFILE; ALTER SYSTEM SET AUDIT_TRAIL='XML','EXTENDED' SCOPE=SPFILE; However, do not enclose ALTER SYSTEM SET AUDIT_TRAIL='XML, EXTENDED' SCOPE=SPFILE; See also the following sections:	
Note the following:	
AUDIT_TRAIL	
initialization parameter. SYS	
auditing, set the AUDIT_SYS_OPERATIONS	
parameter to TRUE	
. The operating system and database audit trails both capture many of the same types of actions. Table 9-3 lists the operating system audit trail records. Most map to equivalent columns in the DBA_AUDIT_TRAIL	
view. For a description of these columns, see Oracle Database Reference.	
Table 9-3 Common Audited Actions in the Operating System and Database Audit Trails	
Footnote 1 For example, if the ACTION	
value is 104	
(for AUDIT	
) or 105	
(for NOAUDIT	
), then the SYS$OPTIONS	
number represents an audit option listed in the STMT_AUDIT_OPTION_MAP	
table. If the ACTION	
value is 108	
(for GRANT	
) or 109	
(for REVOKE	
), then the number represents a privilege listed in the SYSTEM_PRIVILEGE_MAP	
table.	
This section contains:	
As an alternative to creating standard audit records in the DBA_AUDIT_TRAIL	
(SYS.AUD$	
table), you can create standard audit records in operating system files. The operating system file that contains the audit trail can include any of the following data:	
SYS	
) You can write the operating system audit records to either a text file or an XML file.	
The operating system audit trail files are in either text or XML file format. Be aware that the contents of the text and XML operating system files have some differences, and that the formats may change across different releases. With each release of Oracle Database, new enhancements, such as the audit type, have been made to the XML file, but not the text file. The text operating system file has a different presentation for the timestamp, for example:	
However, this timestamp does not appear in the event log or syslog, which have their own format for timestamps. The timestamp string only appears in the text operating system audit files.	
Example 9-3 shows a typical text operating system audit trail for a logon operation on an Oracle database that is installed on Microsoft Windows. (The text in the actual record wraps around, but for this manual, each item is separated onto its own line for easier readability.)	
Example 9-3 Text File Operating System Audit Trail	
In this example:	
LENGTH	
refers to the total number of bytes used in this audit record. This number includes the trailing newline bytes (\n	
), if any, at the end of the audit record. []	
brackets indicate the length of each value for each audit entry. For example, the USERID	
entry, DBSNMP	
, is 6 bytes long. SESSIONID	
indicates the audit session ID number. You can also find the session ID by querying the AUDSID	
column in the V$SESSION	
data dictionary view. ENTRYID	
indicates the current audit entry number, assigned to each audit trail record. The audit ENTRYID	
sequence number is shared between fine-grained audit records and regular audit records. STATEMENT	
is a numeric ID assigned to the statement the user runs. It appears for each statement issued during the user session, because a statement can result in multiple audit records. ACTION	
is a numeric value representing the action the user performed. The corresponding name of the action type is in the AUDIT_ACTIONS	
table. For example, action 100	
refers to LOGON	
. RETURNCODE	
indicates if the audited action was successful. 0 indicates success. If the action fails, the return code lists the Oracle Database error number. For example, if you try to drop a non-existent table, the error number is ORA-00903 invalid table name	
, which in turn translates to 903	
in the RETURNCODE	
setting. COMMENT$TEXT	
indicates additional comments about the audit record. For example, for LOGON	
audit records, it can indicate the authentication method.It corresponds to the COMENT_TEXT	
column of the DBA_COMMON_AUDIT_TRAIL	
data dictionary view. DBID	
is a database identifier calculated when the database is created. It corresponds to the DBID	
column of the V$DATABASE	
data dictionary view. ECONTEXT_ID	
indicates the application execution context identifier. PRIVS$USED	
refers to the privilege that was used to perform an action. To find the privilege, query the SYSTEM_PRIVILEGE_MAP	
table. For example, privilege 5	
refers to -5	
in this table, which means CREATE SESSION	
. PRIVS$USED	
corresponds to the PRIV_USED	
column in the DBA_COMMON_AUDIT_TRAIL	
, which lists the privilege by name. Other possible values are as follows:	
SCN	
(for example, SCN:8934328925	
) indicates the System Change Number (SCN). Use this value if you want to perform a flashback query to find the value of a setting (for example, a column) at a time in the past. For example, to find the value of the ORDER_TOTAL	
column of the OE.ORDERS	
table based on the SCN number, use the following SELECT	
statement: SES_ACTIONS	
indicates the actions that took place during the session. This field is present only if the event was audited with the BY SESSION	
clause. Because this field does not explain in detail the actions that occurred during the session, you should configure the audit event with the BY ACCESS	
clause. The SES_ACTIONS	
field contains 16 characters. Positions 14, 15, and 16 are reserved for future use. In the first 12 characters, each position indicates the result of an action. They are: ALTER	
, AUDIT	
, COMMENT	
, DELETE	
, GRANT	
, INDEX	
, INSERT	
, LOCK	
, RENAME	
, SELECT	
, UPDATE	
, and FLASHBACK	
. For example, if the user had successfully run the ALTER	
statement, the SES_ACTIONS	
setting is as follows:	
The S	
, in the first position (for ALTER	
), indicates success. Had the ALTER	
statement failed, the letter F	
would have appeared in its place. If the action resulted in both a success and failure, then the letter is B	
.	
SES$TID	
indicates the ID of the object affected by the audited action. SPARE2	
indicates whether the user modified SYS.AUD$	
table. 0	
means the user modified SYS.AUD$	
; otherwise, the value is NULL	
. Similarly, Example 9-4 shows how an XML audit trail record appears. The text wraps around in the actual record, but for this manual, each element appears on its own line for easier readability. To find all the tags that appear in the XML audit file, you can view its schema in a Web browser at	
http://www.oracle.com/technology/oracleas/schema/dbserver_audittrail-11_2.xsd	
Example 9-4 XML File Operating System Audit Trail	
In this example:	
AuditRecord	
element contains the entire audit record. (See Example 9-3 for more information about the elements within the Audit_Record	
element.) Audit_Type	
indicates the type of audit trail. Possible values are as follows: SYS	
audit record This field only appears in the XML audit files, not the OS text audit files.	
Extended_Timestamp	
indicates the time of the audited operation (timestamp of user login for entries created by AUDIT SESSION	
), in Coordinated Universal Time (UTC) or Greenwich Mean Time (GMT). This field only appears in the XML audit files, not the OS text audit files. Instance_Number	
indicates the instance number to which the user is connected, for an Oracle Real Application Clusters environment. In this example, the number is 0	
, which is used for single-instance database installations. The INSTANCE_NUMBER	
initialization parameter specifies this number. The following values can appear if you set the AUDIT_TRAIL	
parameter to XML, EXTENDED	
. Both are listed in the DBA_COMMON_AUDIT_TRAIL	
data dictionary view.	
Sql_Bind	
(for example, <Sql_Bind>#1(5):89</Sql_Bind>	
) shows the value of the bind variable. The syntax is as follows: The example #1(5):89	
indicates that there is 1 bind variable; its value is 5 characters long; and the value of the bind variable is 89	
.	
Sql_Text	
(for example, <Sql_Text>begin procedure_one(:num); end; </Sql_Text>	
) appears if you have set the AUDIT_TRAIL	
parameter to XML, EXTENDED	
. It shows the SQL text that the user entered. Using the operating system audit trail offers these advantages:	
OS	
, XML	
, or XML, EXTENDED	
setting. Otherwise, a database administrator can view and modify any auditing information that is stored in the database. AUDIT_TRAIL	
initialization parameter is set to XML	
(or XML, EXTENDED	
), then Oracle Database writes audit records to the operating system as XML files. You can use the V$XML_AUDIT_TRAIL	
view to make XML audit records available to database administrators through a SQL query, providing enhanced usability. DBA_COMMON_AUDIT_TRAIL	
view includes the standard and fine grained audit trails written to database tables, XML-format audit trail records, and the contents of the V$XML_AUDIT_TRAIL	
dynamic view (standard, fine grained, SYS	
and mandatory). The operating system audit trail writes the audit data to an operating system file. You can enable this feature by setting the AUDIT_TRAIL	
initialization parameter to one of the following values:	
OS	
: Writes the audit trail records to a text operating system file on UNIX systems and to the applications Event Viewer on Microsoft Windows. XML	
: Writes the audit trail records to an XML file. XML, EXTENDED	
: Writes the audit trail records to an XML file and includes SQL text and SQL bind information in the operating system XML audit files. The AUDIT_FILE_DEST	
initialization parameter sets the location of the operating system audit file. If you want to audit top-level statements issued by users who log in to the database with the SYSDBA	
or SYSOPER	
privilege, then set the AUDIT_SYS_OPERATIONS	
parameter to TRUE	
. See Table 9-2, "AUDIT_TRAIL Initialization Parameter Settings" for more information about these settings.	
The records that are written to an operating system file are not recorded to the SYS.AUD$	
and SYS.FGA_LOG$	
tables. You can still view the contents of the XML operating system audit files by querying the DBA_COMMON_AUDIT_TRAIL	
data dictionary views. Querying this view parses all XML files (all files with an .xml	
extension) in the AUDIT_FILE_DEST	
directory, and then presents them in relational table format. Because XML is a standard document format, many utilities are available to parse and analyze XML data. Consult the operating system-specific Oracle Database documentation to find if this feature has been implemented on your operating system.	
Use the AUDIT_FILE_DEST	
initialization parameter to specify an operating system directory into which the audit trail is written, when the AUDIT_TRAIL	
initialization parameter is set to OS	
, XML	
, or XML, EXTENDED	
. You must set AUDIT_FILE_DEST	
to a valid directory with permissions restricted to the owner of the Oracle software and the DBA	
group. Mandatory auditing information also goes into that directory, as do audit records for user SYS	
if the AUDIT_SYS_OPERATIONS	
initialization parameter is specified. You can change the AUDIT_FILE_DEST	
parameter by using the following ALTER SYSTEM	
statement, which enables the new destination to be effective for all subsequent sessions.	
To find the current setting of the AUDIT_FILE_DEST	
parameter, issue the following command:	
The location of the operating system files depends on the following:	
AUDIT_FILE_DEST	
parameter, then the operating system files are placed in the first default location $ORACLE_BASE/admin/$ORACLE_SID/adump	
directory. $ORACLE_BASE/admin/$ORACLE_SID/adump	
directory, is inaccessible or cannot be written to, or the Oracle process cannot identify the environment variables, then the second default location, $ORACLE_HOME/rdbms/audit	
is used. init	
SID	
.ora	
) for the database instance, the value of AUDIT_FILE_DEST	
parameter is used as the operating system audit file directory. Notes: For platforms other than UNIX, Solaris, and Windows, check the platform documentation to learn the correct target directory for operating system files.	
On UNIX systems, you can audit the activities of users, including privileged users, and record these activities in a syslog file by creating a syslog audit trail.	
This section contains:	
A potential security vulnerability for the operating system audit trail is that a privileged user, such as a database administrator, can modify or delete database audit records. To minimize this risk, you can use a syslog audit trail. Syslog is a standard protocol on UNIX-based systems for logging information from different components of a network. Applications call the syslog()	
function to log information to the syslog daemon, which then determines where to log the information. You can configure syslog to log information to a file or to a dedicated host by editing the syslog.conf	
file. You can also configure syslog to alert a specified set of users when information is logged.	
Because applications, such as an Oracle process, use the syslog()	
function to log information to the syslog daemon, a privileged user would not have permissions to the file system where syslog messages are logged. For this reason, audit records stored using a syslog audit trail can be more secure than audit records stored using an operating system audit trail. In addition to restricting permissions to a file system for a privileged user, for a syslog audit trail to be secure, neither privileged users nor the Oracle process should have root	
access to the system where the audit records are written.	
Caution: You should have a strong understanding of how to work withsyslog before enabling syslog auditing. See the following references for more information about syslog:	
Similar to the operating system audit trail records, Oracle Database encodes the syslog records to ensure greater security. If you have Oracle Audit Vault installed, you can use its Syslog Collector to extract and transfer syslog audit records to centralized Oracle Audit Vault server.	
Example 9-5 shows how the syslog audit trail can appear. (For this example, the text has been reformatted for easier readability. In reality, the text is all on one line.) As with other Oracle Database audit trails, the brackets indicate the length of the value that was audited. For syslog audit trails, the text from (and including) LENGTH:	
is Oracle Database audit record. The prepended text (the date and Oracle Audit [10085]	
line) is added by the syslog utility.	
To enable syslog auditing, follow these steps:	
OS	
to the AUDIT_TRAIL	
initialization parameter, as described in "Enabling or Disabling the Standard Audit Trail". For example:	
AUDIT_SYSLOG_LEVEL	
parameter to the initialization parameter file, init	
sid	
.ora	
. Set the AUDIT_SYSLOG_LEVEL	
parameter to specify a facility and priority in the format AUDIT_SYSLOG_LEVEL	
=facility.priority	
.	
facility	
: Describes the part of the operating system that is logging the message. Accepted values are user	
, local0	
–local7	
, syslog	
, daemon	
, kern	
, mail	
, auth	
, lpr	
, news	
, uucp	
, and cron	
. The local0	
–local7	
values are predefined tags that enable you to sort the syslog message into categories. These categories can be log files or other destinations that the syslog utility can access. To find more information about these types of tags, refer to the syslog	
utility MAN	
page.	
priority	
: Defines the severity of the message. Accepted values are notice	
, info	
, debug	
, warning	
, err	
, crit	
, alert	
, and emerg	
. The syslog daemon compares the value assigned to the facility argument of the AUDIT_SYSLOG_LEVEL	
parameter with the syslog.conf	
file to determine where to log information.	
For example, the following statement identifies the facility as local1	
with a priority level of warning	
:	
See Oracle Database Reference for more information about AUDIT_SYSLOG_LEVEL	
.	
/etc/syslog.conf	
, with the superuser (root) privilege. syslog	
configuration file syslog.conf	
. For example, assuming you had set the AUDIT_SYSLOG_LEVEL	
to local1.warning	
, enter the following:	
This setting logs all warning messages to the /var/log/audit.log	
file.	
Now, all audit records will be captured in the file /var/log/audit.log	
through the syslog daemon.	
To configure the standard auditing option, use the AUDIT	
SQL statement.	
Table 9-4 lists the categories in which you can use the AUDIT	
statement.	
Table 9-4 Standard Auditing Levels and Their Effects	
Level	Effect
---	---
Statement	Audits specific SQL statements or groups of statements that affect a particular type of database object. For example,
Privilege	Audits SQL statements that are authorized by the specified system privilege. For example,
Object	Audits specific statements on specific objects, such as
Network	Audits unexpected errors in network protocol or internal errors in the network layer.
For statement, privilege, and schema object auditing, Oracle Database permits the selective auditing of successful executions of statements, unsuccessful attempts to execute statements, or both. This enables you to monitor actions even if the audited statements do not complete successfully. Monitoring unsuccessful SQL statement can expose users who are snooping or acting maliciously, though most unsuccessful SQL statements are neither.	
This method of auditing is also useful in that it reduces the audit trail, helping you to focus on specific actions. This can aid in maintaining good database performance.	
The options are as follows:	
Auditing an unsuccessful statement execution generates an audit report only if a valid SQL statement is issued but fails, because it lacks proper authorization or references a nonexistent schema object. Statements that fail to execute because they were not valid cannot be audited.	
For example, an enabled privilege auditing option set to audit unsuccessful statement executions audits statements that use the target system privilege but failed for other reasons. One example is when a CREATE TABLE	
auditing condition is set, but some CREATE	
TABLE	
statements fail due to insufficient quota for the specified tablespace.	
For example:	
Oracle Database generates an audit record for each execution of an audited statement or operation, as follows:	
For each execution of an auditable operation within a cursor, Oracle Database inserts one audit record into the audit trail. Events that cause cursors to be reused include the following:	
Auditing is not affected by whether or not a cursor is shared. Each user creates her or his own audit trail records on first execution of the cursor.	
By default, Oracle Database writes a new audit record for every audited event, using the BY ACCESS	
clause functionality. To use this functionality, either include BY ACCESS	
in the AUDIT	
statement, or if you want, you can omit it because it is the default. (As of Oracle Database 11g Release 2 (11.2.0.2), the BY ACCESS	
clause is the default setting.)	
Oracle recommends that you audit BY ACCESS	
and not BY SESSION	
in your AUDIT	
statements. The benefits of using the BY ACCESS	
clause in the AUDIT	
statement are as follows:	
BY ACCESS	
audit option have more information, such as execution status (return code), date and time of execution, the privileges used, the objects accessed, the SQL text itself and its bind values. In addition, the BY ACCESS	
audit option captures the SCN for each execution and this can help flashback queries. BY ACCESS	
audit records have separate LOGON	
and LOGOFF	
entries, each with fine-grained timestamps. For example:	
In this scenario:	
jward	
connects to the database and issues five SELECT	
statements against the table named departments	
and then disconnects from the database. swilliams	
connects to the database and issues three SELECT	
statements against the departments	
table and then disconnects from the database. The audit trail contains eight records, one recorded for each SELECT	
statement.	
Statement and privilege audit options can audit statements issued by any user or statements issued by a specific list of users. By focusing on specific users, you can minimize the number of audit records generated.	
Example 9-6 shows how to audit statements by users scott	
and blake	
when they query or update a table or view.	
Example 9-6 Using AUDIT to Audit User Actions	
See Oracle Database SQL Language Reference for additional information about auditing by user.	
The NOAUDIT	
statement removes the audit option. Use it to reset statement and privilege audit options, and object audit options. A NOAUDIT	
statement that sets statement and privilege audit options can include the BY	
user	
clause to specify a list of users to limit the scope of the statement and privilege audit options.	
You can use the NOAUDIT	
statement to disable an audit option selectively using the WHENEVER	
clause. If the clause is not specified, then the auditing option is disabled entirely, for both successful and unsuccessful cases.	
The NOAUDIT	
statement does not support the BY ACCESS	
clause. You can remove audit options, no matter how they were turned on, by using an appropriate NOAUDIT	
statement.	
This section contains:	
SQL statement auditing is the selective auditing of related groups of SQL statements regarding a particular type of database structure or schema object, but not a specifically named structure or schema object.	
The statements that you can audit are in the following categories:	
AUDIT	
TABLE	
audits all CREATE	
and DROP	
TABLE	
statements AUDIT	
SELECT	
TABLE	
audits all SELECT	
... FROM	
TABLE/VIEW	
statements, regardless of the table or view Statement auditing can be broad or focused, for example, by auditing the activities of all database users or of only a select list of activities.	
Use the AUDIT	
statement to configure SQL statement auditing. You must have the AUDIT SYSTEM	
system privilege before you can enable auditing. Typically, only the security administrator is granted this system privilege.	
Example 9-7 shows how to audit the SELECT TABLE	
SQL statement.	
Example 9-8 shows how to audit all unsuccessful SELECT	
, INSERT	
, and DELETE	
statements on all tables by all database users, and by individual audited statement.	
Example 9-8 Auditing Unsuccessful Statements	
If you plan to audit all SQL statements, individual user connections, or references to non-existent objects, follow these guidelines:	
ALL STATEMENTS	
clause to audit only the top-level SQL statements. The behavior of this audit option is different from other statement audit options. If the SQL statement is issued from inside a PL/SQL procedure, then the ALL STATEMENTS	
audit option does not audit it. This audit option does not affect any other AUDIT	
options that you may have already set. For example, to audit all successful statements issued by users jward	
and jsmith	
, enter the following:	
ALL	
clause to audit all the SQL statement shortcuts listed in Table 13-1 and Table 13-2 in Oracle Database SQL Language Reference. For example:	
IN SESSION CURRENT	
clause for ALL STATEMENTS	
audit option to audit top-level SQL statements in the lifetime of the user session. You cannot use the IN SESSION CURRENT	
clause for a specific user. You cannot use the NOAUDIT	
statement to cancel it, but the auditing lasts only as long as the user session lasts. When the user ends the session, the auditing ends. For example, to audit all unsuccessful statements in any current user session:	
You can use the AUDIT ALL STATEMENTS	
audit option with the IN SESSION CURRENT	
clause in a database logon trigger. The database logon trigger can use SYS_CONTEXT	
function to configure this auditing only under certain conditions, such as the time a user logs in between 6:30 p.m. to 9:00 a.m. This would enable you to capture SQL statements performed by users who log in to the database during non-work hours.	
This type of auditing is useful to increase the collection of audit activity when you suspect this connection may not be secure or could pose an internal threat. For example, by using a database logon trigger, you can query contents of the connection context using the SYS_CONTEXT	
function.	
The logon trigger functionality can establish that this connection should be audited more fully. Issue the following SQL command:	
This type of auditing remains in effect until this session is terminated.	
AUDIT SESSION	
statement generates an independent audit record for every login and logoff event. This enables you to audit all successful and unsuccessful connections to and disconnections from the database, regardless of user. For example:	
You can set this option selectively for individual users also, as in the following example:	
NOT EXISTS	
option of the AUDIT	
statement specifies auditing of all SQL statements that fail because the target object does not exist. For example:	
See Oracle Database SQL Language Reference for detailed information about the AUDIT	
SQL statement.	
To remove SQL statement auditing, use the use the NOAUDIT	
SQL statement. (Privilege auditing will still be enabled.) You must have the AUDIT SYSTEM	
system privilege before you can remove SQL statement auditing. If you have configured the AUDIT ALL STATEMENTS	
option, then issuing the NOAUDIT AUDIT STATEMENTS	
statement does not affect other audit options you may have set. If you included the IN SESSION CURRENT	
clause in the AUDIT	
statement, you cannot remove this AUDIT	
statement using the NOAUDIT	
statement. (The audit setting discontinues when the user's session ends.)	
Example 9-9 shows examples of using the NOAUDIT	
statement to remove auditing.	
Example 9-9 Using NOAUDIT to Remove Session and SQL Statement Auditing	
Example 9-10 shows how to remove all statement auditing by using the NOAUDIT	
statement.	
See Oracle Database SQL Language Reference for detailed information about the NOAUDIT	
statement.	
This section contains:	
Privilege auditing audits statements that use a system privilege, such as SELECT	
ANY	
TABLE.	
In this kind of auditing, SQL statements that require the audited privilege to succeed are recorded.	
You can audit the use of any system privilege. Similar to statement auditing, privilege auditing audits the activities of all database users or only a specified list.	
If you set similar audit options for both statement and privilege auditing, then only a single audit record is generated. For example, if the statement clause TABLE	
and the system privilege CREATE	
TABLE	
are both audited, then only a single audit record is generated each time a table is created.	
Privilege auditing does not occur if the action is already permitted by the existing owner and object privileges. Privilege auditing is triggered only if the privileges are insufficient, that is, only if what makes the action possible is a system privilege. For example, suppose that user SCOTT	
has been granted the SELECT ANY TABLE	
privilege and the SELECT ANY TABLE	
is being audited. If SCOTT	
selects his own table (for example, SCOTT.EMP	
), then the SELECT ANY TABLE	
privilege is not used. Because he performed the SELECT	
statement within his own schema, no audit record is generated. On the other hand, if SCOTT	
selects from another schema (for example, the HR.EMPLOYEES	
table), then an audit record is generated. Because SCOTT	
selected a table outside his own schema, he needed to use the SELECT ANY TABLE	
privilege.	
Privilege auditing is more focused than statement auditing, because each privilege auditing option audits only specific types of statements, not a related list of statements. For example, the statement auditing clause, TABLE	
, audits CREATE	
TABLE	
, ALTER	
TABLE	
, and DROP	
TABLE	
statements. However, the privilege auditing option, CREATE TABLE	
, audits only CREATE TABLE	
statements, because only the CREATE TABLE	
statement requires the CREATE	
TABLE	
privilege.	
See the listing of system privileges in the GRANT	
SQL statement section of Oracle Database SQL Language Reference.	
Privilege audit options are the same as their corresponding system privileges. For example, the option to audit use of the DELETE ANY TABLE	
privilege is DELETE ANY TABLE	
.	
Example 9-11 shows how to audit the DELETE ANY TABLE	
privilege.	
To audit all successful and unsuccessful uses of the DELETE ANY TABLE	
system privilege, enter the following statement:	
The following statement removes all privilege audit options:	
This example disables the audit settings from Example 9-11:	
To disable privilege auditing options, you must have the AUDIT SYSTEM	
system privilege. Usually, only the security administrator is granted this system privilege.	
You can use the AUDIT	
statement to audit the activities of a client in a multitier environment. In a multitier environment, Oracle Database preserves the identity of a client through all tiers. Thus, you can audit actions taken on behalf of the client by a middle-tier application, by using the BY	
user	
clause in your AUDIT	
statement. The audit applies to all user sessions, including proxy sessions.	
The middle tier can also set the user client identity in a database session, enabling the auditing of end-user actions through the middle-tier application. The end-user client identity then shows up in the audit trail.	
Example 9-12 shows how to audit SELECT TABLE	
statements issued by the user jackson	
.	
You can audit user activity in a multitier environment. Once audited, you can verify these activities by querying the DBA_AUDIT_TRAIL	
data dictionary view.	
Figure 9-1 illustrates how you can audit proxy users by querying the COMMENT_TEXT	
, PROXY_SESSIONID	
, ACTION_NAME	
, and SESSION_ID	
columns of the DBA_AUDIT_TRAIL	
view. In this scenario, both the database user and proxy user accounts are known to the database. Session pooling can be used.	
Figure 9-2 illustrates how you can audit client identifier information across multiple database sessions by querying the CLIENT_ID	
column of the DBA_AUDIT_TRAIL	
data dictionary view. In this scenario, the client identifier has been set to CLIENT_A	
. As with the proxy user-database user scenario described in Figure 9-1, session pooling can be used.	
See Also: "Preserving User Identity in Multitiered Environments" for more information about user authentication in a multitiered environment	
This section contains:	
Schema object auditing monitors actions performed on the audited schema objects, such as tables or views. Object auditing applies to all users but is limited to the audited object only. Users can use the AUDIT	
and NOAUDIT	
statements on objects in their own schemas.	
You can audit statements that refer to tables, views, sequences, standalone stored procedures or functions, and packages, but not individual procedures within packages. (See "Auditing Functions, Procedures, Packages, and Triggers" for more information about auditing these types of objects.)	
You cannot directly audit statements that reference clusters, database links, indexes, or synonyms. However, you can indirectly audit access to these schema objects, by auditing the operations that affect the base table.	
When you audit a schema object, the auditing applies to all users of the database. You cannot set these options for a specific list of users. You can set default schema object audit options for all auditable schema objects.	
When an editioned object has an audit policy, then it applies in all editions in which the object is visible. When an editioned object is actualized, any audit policies that are attached to it are newly attached to the new actual occurrence. When you newly apply an audit policy to an inherited editioned object, this action will actualize it.	
You can find the editions in which audited objects appear by querying the OBJECT_NAME	
and OBJ_EDITION_NAME	
columns in the DBA_COMMON_AUDIT_TRAIL	
and V$XML_AUDIT_TRAIL	
data dictionary views.	
See Also: Oracle Database Advanced Application Developer's Guide for detailed information about editions	
The definitions for views and procedures (including stored functions, packages, and triggers) reference underlying schema objects. Because of this dependency, some unique characteristics apply to auditing views and procedures, such as the likelihood of generating multiple audit records.	
Views and procedures are subject to the enabled audit options on the base schema objects, including the default audit options. These options also apply to the resulting SQL statements.	
Consider the following series of SQL statements:	
As a result of the query on the employees_departments	
view, two audit records are generated: one for the query on the employees_departments	
view and one for the query on the base table employees	
(indirectly through the employees_departments	
view). The query on the base table departments	
does not generate an audit record because the SELECT	
audit option for this table is not enabled. All audit records pertain to the user that queried the employees_departments	
view.	
In the given example, if the AUDIT SELECT ON HR.EMPLOYEES;	
statement is omitted, then using the employees_departments	
view does not generate an audit record for the EMPLOYEES	
table.	
You can use the AUDIT	
statement to configure object auditing in the current edition. Oracle Database SQL Language Reference lists valid object audit options for AUDIT	
and the schema object types for which each option is available.	
A user can set any object audit option for the objects contained in his or her schema. The AUDIT ANY	
system privilege is required to set an object audit option for an object contained in another user schema or to set the default object auditing option. Usually, only the security administrator is granted the AUDIT ANY	
privilege.	
Figure 9-2 shows how to audit all successful and unsuccessful DELETE	
statements on the laurel.emp	
table.	
Example 9-14 shows how to audit all successful SELECT	
, INSERT	
, and DELETE	
statements on the dept	
table owned by user jward	
.	
Example 9-14 Auditing Successful Statements on a Schema Table	
Example 9-15 shows how you can use the ON DEFAULT	
clause to apply to any new objects (tables, views, and sequences) that are created after you set the AUDIT	
statement. In this example, new objects that are created in the future will be audited for all unsuccessful SELECT	
statements:	
Example 9-15 Configuring Auditing for Any New Objects Using the DEFAULT Clause	
Example 9-16 shows how to audit the execution of PL/SQL procedure or function.	
Use the NOAUDIT	
statement to remove object auditing. The following statements turn off the corresponding auditing options:	
To remove all object audit options on the emp	
table, enter the following statement:	
To remove all default object audit options, enter the following statement:	
All schema objects that are created before this NOAUDIT	
statement is issued continue to use the default object audit options in effect at the time of their creation, unless overridden by an explicit NOAUDIT	
statement after their creation.	
To remove object audit options for a specific object, you must be the owner of the schema object. To remove the object audit options of an object in the schema of another user or to remove default object audit options, you must have the AUDIT ANY	
system privilege. A user with privileges to remove object audit options of an object can override the options set by any user.	
You can create audit settings for objects that do not exist yet, such as the insertion and deletion of tables to be created. There are two approaches that you can take. One approach is to use the statement audit options in the AUDIT	
statement. For example, to audit all inserts on future tables, enter the following SQL statement:	
The second approach is to invoke the AUDIT	
statement using the ON DEFAULT	
clause. For example:	
This statement audits by default all subsequent object creation statements. The ON	
keyword specifies object auditing. The ON DEFAULT	
clause configures auditing for subsequently created objects that are affected by the following statements:	
ALTER	EXECUTE
AUDIT	GRANT
COMMENT	FLASHBACK
DELETE	INDEX
To restrict ON DEFAULT	
to a specific action, enter a statement similar to the following:	
For more information about the audit options and the ON DEFAULT	
clause of the AUDIT	
SQL statement, see Oracle Database SQL Language Reference. To find objects audited by default, query the ALL_DEF_AUDIT_OPTS	
data dictionary view.	
This section contains:	
You can audit directory objects. For example, suppose you create a directory object that contains a preprocessor program that the ORACLE_LOADER	
access driver will use. You can audit anyone who runs this program within this directory object.	
Use the AUDIT	
statement to enable object auditing. Example 9-17 shows how to audit the EXECUTE	
privilege on the directory object my_exec	
.	
This section contains:	
You can audit functions, procedures, PL/SQL packages, and triggers. The areas that you can audit are as follows:	
If you want to audit functions that are associated with Oracle Virtual Private database policies, note the following:	
Example 9-18 shows how to audit the execution of any function, procedure, package, or trigger, by any user in the database.	
Example 9-18 Auditing All Functions, Procedures, Packages, and Triggers	
Example 9-19 shows how to audit user psmith	
's successful and unsuccessful executions of functions, procedures, packages, and triggers.	
Example 9-19 Auditing a User's Execution of Functions, Procedures, Packages, and Triggers	
Example 9-20 shows how to audit a standalone procedure entitled check_work	
that is in the sales_data	
schema. This idea applies to standalone functions as well.	
Use the NOAUDIT	
statement to remove the auditing of functions, procedures, and triggers. For example:	
This section contains:	
You can use the AUDIT	
statement to audit unexpected errors in network protocol or internal errors in the network layer. Network auditing captures errors that occur during communication with the client on the network. These are errors thrown by the SQL*Net driver. There can be several causes of network errors. For example, an internal event set by a database engineer for testing purposes can cause a network error. Other causes include conflicting configuration settings for encryption, such as the network not finding the information required to create or process expected encryption. The errors that network auditing uncovers (such as ACTION 122 Network Error	
) are not connection failures: network auditing is only concerned with data as it travels across the network.	
The audit record for network auditing lists the authentication type and SQL*Net address of the client (if available) in the COMMENT_TEXT	
field of the audit record, using the following format:	
The Client Address:	
SQLNetAddress_of_client	
portion only appears if this information is available.	
Table 9-5 shows how to remedy four common error conditions.	
Table 9-5 Auditable Network Error Conditions	
Error	Cause
---	---
After picking an algorithm, the server was unable to find an index for it in its table of algorithms. This should be impossible because the algorithm was chosen (indirectly) from that list.	Turn on tracing for further details, and then rerun the operation. (Note that this error is not normally visible to the user.) If the error persists, then contact Oracle Support Services.
An Oracle Advanced Security list-of-algorithms parameter was empty.	Change the list to contain the name of at least one installed algorithm, or remove the list entirely if every installed algorithm is not acceptable.
An Oracle Advanced Security list-of-algorithms parameter included an algorithm name that was not recognized.	Remove that algorithm name, correct it if it was misspelled, or install the driver for the missing algorithm.
The client and server have no algorithm in common for either encryption or data integrity or both.	Choose sets of algorithms that overlap. In other words, add one of the client algorithm choices to the server list, or add one of the server list choices to the client algorithm.
To configure network auditing, use the AUDIT	
statement. For example:	
This section contains:	
When you use Database Configuration Assistant (DBCA) to create a new database, Oracle Database configures the database to audit the most commonly used security-relevant SQL statements and privileges. It also sets the AUDIT_TRAIL	
initialization parameter to DB	
. If you decide to use a different audit trail type (for example, OS	
if you want to write the audit trail records to operating system files), then you can do that: Oracle Database continues to audit the privileges that are audited by default. If you disable auditing by setting the AUDIT_TRAIL	
parameter to NONE	
, then no auditing takes place.	
If you manually create a database, then you should run the secconf.sql	
script to apply the default audit settings to your database. See "Disabling and Enabling Default Audit Settings" for more information.	
To individually control the auditing of SQL statements and privileges, use the AUDIT	
and NOAUDIT	
statements. For more information, see "Auditing SQL Statements" and "Auditing Privileges".	
Oracle Database audits the following privileges by default:	
ALTER ANY PROCEDURE	CREATE ANY LIBRARY
ALTER ANY TABLE	CREATE ANY PROCEDURE
ALTER DATABASE	CREATE ANY TABLE
ALTER PROFILE	CREATE EXTERNAL JOB
ALTER SYSTEM	CREATE PUBLIC DATABASE LINK
ALTER USER	CREATE SESSION
AUDIT SYSTEM	CREATE USER
CREATE ANY JOB	DROP ANY PROCEDURE
Oracle Database audits the following SQL shortcuts by default:	
ROLE	SYSTEM AUDIT
DATABASE LINK	PROFILE
See Also:	
If your applications use the default audit settings from Oracle Database 10g Release 2 (10.2), then you can revert to these audit settings until you modify the applications to use the Release 11g audit settings. To do so, run the undoaud.sql	
script.	
After you have modified your applications to conform to the Release 11g audit settings, then you can manually update your database to use the audit configuration that suits your business needs, or you can run the secconf.sql	
script to apply the Release 11g default audit settings. You can customize this script to have different security settings if you like, but remember that the settings listed in the original script are Oracle-recommended settings.	
If you created your database manually, then you should run the secconf.sql	
script to apply the Release 11g default audit settings to the database. Databases that have been created with Database Configuration Assistant will have these settings, but manually created databases do not.	
The undoaud.sql	
and secconf.sql	
scripts are in the $ORACLE_HOME/rdbms/admin	
directory. The undoaud.sql	
script affects audit settings only, and the secconf.sql	
script affects both audit and password settings. They have no effect on other security settings.	
This section contains:	
Fine-grained auditing enables you to create policies that define specific conditions that must take place for the audit to occur. This enables you to monitor data access based on content. It provides granular auditing of queries, and INSERT	
, UPDATE	
, and DELETE	
operations. For example, a central tax authority must track access to tax returns to guard against employee snooping, with enough detail to determine what data was accessed. It is not enough to know that SELECT	
privilege was used by a specific user on a particular table. Fine-grained auditing provides this deeper functionality.	
In general, fine-grained audit policies are based on simple, user-defined SQL predicates on table objects as conditions for selective auditing. During fetching, whenever policy conditions are met for a row, the query is audited.	
You can use fine-grained auditing to audit the following types of actions:	
Fine-grained audit records are stored in the SYS.FGA_LOG$	
table. To find the records have been generated for the audit policies that are in effect, you can query the DBA_FGA_AUDIT_TRAIL	
data dictionary view. The DBA_COMMON_AUDIT_TRAIL	
data dictionary view combines both standard and fine-grained audit log records. In addition, you can query the V$XML_AUDIT_TRAIL	
view to find fine-grained audit records that were written in XML formatted files. For detailed information about these views, see Oracle Database Reference.	
Oracle Database always audits DELETE	
, INSERT	
, UPDATE	
, and MERGE	
operations on the SYS.FGA_LOG$	
(and SYS.AUD$	
) tables to the SYS.AUD$	
table. It does not allow the audit records to be deleted, unless user SYS	
performs these operations. If you have set the AUDIT_SYS_OPERATIONS	
initialization parameter to TRUE	
, then user SYS	
's operations are audited. In this case the audit records of all SYS	
operations are written to whatever directory the AUDIT_FILE_DEST	
initialization parameter points to. If AUDIT_FILE_DEST	
is not set, then it writes the records to an operating system-dependent location.	
Fine-grained auditing creates a more meaningful audit trail, one that includes only very specific actions that you want to audit. It excludes unnecessary information that occurs if each table access was recorded. Fine-grained auditing has the following advantages over standard auditing:	
If :1	
is of integer type and the value for SSN	
is 987654321, then the audit trail can capture this information. However, the audit trail cannot capture this information if :1	
is a BLOB, CLOB, object, or user-defined type.	
This feature is available if you create the fine grained audit policy with the audit_trail	
parameter of the DBMS_FGA.ADD_POLICY	
PL/SQL procedure to DB+EXTENDED	
or XML+EXTENDED	
.	
AUDIT_TRAIL	
, you use the DBMS_FGA PL/SQL	
package to add and remove fine-grained auditing policies as necessary applying them to the specific operations or objects you want to monitor. To create a fine-grained audit policy, you must have EXECUTE	
privileges on the DBMS_FGA	
PL/SQL package. The package is owned by the SYS	
user.	
The SYS.AUD$	
table records all data manipulation language (DML) statements, such as INSERT	
, UPDATE	
, MERGE	
, and DELETE	
, that are performed on the SYS.FGA_LOG$	
table by non-SYS	
users. Oracle Database performs the audit even if auditing has not been configured for the SYS.FGA_LOG$	
table, which is the table in which these activities occur. You can check these activities by querying the DBA_FGA_AUDIT_TRAIL	
and DBA_COMMON_AUDIT_TRAIL	
views. See also "Activities That Are Always Written to the Standard and Fine-Grained Audit Records".	
If you are preparing an application for edition-based redefinition, and you cover each table that the application uses with an editioning view, then you must move the fine-grained audit polices that protect these tables to the editioning view.	
You designate the audit trail format for fine-grained auditing by setting the audit_trail parameter for the DBMS_FGA.ADD_POLICY	
policy (not to be confused with the AUDIT_TRAIL	
initialization parameter) when you create the audit policy. Setting this parameter to XML	
or XML+EXTENDED	
writes the records to the operating system files in XML format. If you prefer to write the fine-grained audit records to the SYS.FGA_LOG$	
table, then set the audit_trail	
parameter for the DBMS_FGA.ADD_POLICY	
parameter to DB	
or DB+EXTENDED	
. For a list of reasons why writing audit records to operating system files is beneficial, see "Advantages of the Operating System Audit Trail".	
You can use the V$XML_AUDIT_TRAIL	
data dictionary view to make audit records from XML files available to DBAs through a SQL query, providing enhanced usability. Querying this view causes all XML files (all files with an .xml	
extension) in the AUDIT_FILE_DEST	
directory to be parsed and presented in relational table format.	
The DBA_COMMON_AUDIT_TRAIL	
view includes the contents of the V$XML_AUDIT_TRAIL	
dynamic view for standard and fine-grained audit records.	
Because the audit XML files are stored in files with the .xml	
extension on all platforms, the dynamic view presents audit information similarly on all platforms. See Oracle Database Reference for detailed information about the V$XML_AUDIT_TRAIL	
view contents.	
Note: If you audit tables that have sensitive data, remember thatDB+EXTENDED and XML+EXTENDED settings for the DBMS_FGA.ADD_POLICY audit_trail parameter will capture this data. See "Auditing Sensitive Information" for ways to handle this scenario.	
The fine-grained audit trail captures an audit record for each reference of a table or a view within a SQL statement. For example, if you run a UNION	
statement that references the HR.EMPLOYEES	
table twice, then an audit policy for statement generates two audit records, one for each access of the HR.EMPLOYEES	
table.	
This section contains:	
To manage a fine-grained audit policy, you use the DBMS_FGA	
PL/SQL package. This package enables you to add all combinations of SELECT	
, INSERT	
, UPDATE	
, and DELETE	
statements to one policy. You also can audit MERGE	
statements, by auditing the underlying actions of INSERT	
and UPDATE	
. To audit MERGE	
statements, configure fine-grained access on the INSERT	
and UPDATE	
statements. Only one record is generated for each policy for successful MERGE	
operations. To administer fine-grained audit policies, you must have the EXECUTE	
privilege on the DBMS_FGA	
package.	
The audit policy is bound to the table for which you created it. This simplifies the management of audit policies because the policy only must be changed once in the database, not in each application. In addition, no matter how a user connects to the database—from an application, a Web interface, or through SQL*Plus or Oracle SQL Developer—Oracle Database records any actions that affect the policy.	
If any rows returned from a query match the audit condition that you define, then Oracle Database inserts an audit entry into the fine-grained audit trail. This entry excludes all the information that is reported in the regular audit trail. In other words, only one row of audit information is inserted into the audit trail for every fine-grained audit policy that evaluates to true.	
For detailed information about the syntax of the DBMS_FGA	
package, see Oracle Database PL/SQL Packages and Types Reference. See also Oracle Database Advanced Application Developer's Guide.	
Note: If you plan to use theDBMS_FGA package policy across different editions, then you can control the results of the policy: whether the results are uniform across all editions, or specific to the edition in which the policy is used. See "How Editions Affects the Results of a Global Application Context PL/SQL Package" for more information.	
To create a fine-grained audit policy, use the DBMS_FGA.ADD_POLICY	
procedure. This procedure creates an audit policy using the supplied predicate as the audit condition. Oracle Database executes the policy predicate with the privileges of the user who created the policy. The maximum number of fine-grained policies on any table or view object is 256. Oracle Database stores the policy in the data dictionary table, but you can create the policy on any table or view that is not in the SYS	
schema.	
After you create the fine-grained audit policy, it does not reside in any specific schema, although the definition for the policy is stored in the SYS.FGA$	
data dictionary table.	
You cannot modify a fine-grained audit policy after you have created it. If you need to modify the policy, drop it and then recreate it.	
Be aware that if a table column has a fine-grained audit policy, you cannot encrypt or decrypt this column (by using the UPDATE	
statement). To do so raises an ORA-28133: full table access is restricted by fine-grained security	
error. If you want to update the column, first temporarily disable the fine-grained audit policy and then encrypt or decrypt the column. Afterwards, re-enable the fine-grained audit policy. See "Disabling and Enabling a Fine-Grained Audit Policy" for more information.	
The syntax for the ADD_POLICY	
procedure is:	
In this specification:	
object_schema	
: Specifies the schema of the object to be audited. (If NULL, the current log-on user schema is assumed.) object_name	
: Specifies the name of the object to be audited. policy_name	
: Specifies the name of the policy to be created. Ensure that this name is unique. audit_condition	
: Specifies a Boolean condition in a row. NULL	
is allowed and acts as TRUE	
. See "Auditing Specific Columns and Rows" for more information. If you specify NULL	
or no audit condition, then any action on a table with that policy creates an audit record, whether or not rows are returned. Follow these guidelines:	
audit_condition	
setting. For example, suppose you create a function that executes an INSERT	
statement on the HR.EMPLOYEES	
table. The policy's audit_condition	
contains this function and it is for INSERT	
statements (as set by statement_types	
). When the policy is used, the function executes recursively until the system has run out of memory. This can raise the error ORA-1000: maximum open cursors exceeded	
or ORA-00036: maximum number of recursive SQL levels (50) exceeded	
. DBMS_FGA.ENABLE_POLICY	
or DBMS_FGA.DISABLE_POLICY	
statement from a function in a policy's condition. audit_column	
: Specifies one or more columns to audit, including hidden columns. If set to NULL	
or omitted, all columns are audited. These can include Oracle Label Security hidden columns or object type columns. The default, NULL, causes audit if any column is accessed or affected. handler_schema	
: If an alert is used to trigger a response when the policy is violated, specifies the name of the schema that contains the event handler. The default, NULL	
, uses the current schema. See also "Tutorial: Adding an Email Alert to a Fine-Grained Audit Policy". handler_module	
: Specifies the name of the event handler. Include the package the event handler is in. This function is invoked only after the first row that matches the audit condition in the query is processed. Follow these guidelines:	
INSERT	
statement on the HR.EMPLOYEES	
table. The policy that is associated with this handler is for INSERT	
statements (as set by the statement_types	
parameter). When the policy is used, the handler executes recursively until the system has run out of memory. This can raise the error ORA-1000: maximum open cursors exceeded	
or ORA-00036: maximum number of recursive SQL levels (50) exceeded	
. DBMS_FGA.ENABLE_POLICY	
or DBMS_FGA.DISABLE_POLICY	
statement from a policy handler. Doing so can raise the ORA-28144: Failed to execute fine-grained audit handler	
error. enable	
: Enables or disables the policy using true or false. If omitted, the policy is enabled. The default is TRUE	
. statement_types	
: Specifies the SQL statements to be audited: INSERT	
, UPDATE	
, DELETE	
, or SELECT	
only. The default is SELECT	
. audit_trail	
: Specifies the destination (DB	
or XML	
) of fine-grained audit records. Also specifies whether to populate LSQLTEXT	
and LSQLBIND	
in FGA_LOG$	
. However, be aware that sensitive data, such as credit card information, can be recorded in clear text. See "Auditing Sensitive Information" for how you can handle this scenario. If you set the audit_trail	
parameter to XML	
, then the XML files are written to the directory specified by the AUDIT_FILE_DEST	
initialization parameter.	
For read-only databases, Oracle Database writes the fine-grained audit trail to XML files, regardless of the audit_trail	
setting.	
audit_column_opts	
: If you specify more than one column in the audit_column	
parameter, then this parameter determines whether to audit all or specific columns. See "Auditing Specific Columns and Rows" for more information. See Oracle Database PL/SQL Packages and Types Reference for additional details about the ADD_POLICY	
syntax.	
Example 9-21 shows how to audit statements INSERT	
, UPDATE	
, DELETE	
, and SELECT	
on table HR.EMPLOYEES	
. Note that this example omits the audit_column_opts	
parameter, because it is not a mandatory parameter.	
Example 9-21 Using DBMS_FGA.ADD_POLICY to Create a Fine-Grained Audit Policy	
At this point, if you query the DBA_AUDIT_POLICIES	
view, you will find the new policy listed:	
Afterwards, any of the following SQL statements log an audit event record.	
Auditing Specific Columns and Rows	
You can fine-tune the audit behavior by targeting a specific column, referred to as a relevant column, to be audited if a condition is met. To accomplish this, you use the audit_column	
parameter to specify one or more sensitive columns. In addition, you can audit data in specific rows by using the audit_condition	
parameter to define a Boolean condition.	
Example 9-21 performs an audit if anyone in Department 50 tries to access the salary	
and commission_pct	
columns.	
As you can see, this feature is enormously beneficial. It not only enables you to pinpoint particularly important types of data to audit, but it provides increased protection for columns that contain sensitive data, such as Social Security numbers, salaries, patient diagnoses, and so on.	
If the audit_column	
lists more than one column, you can use the audit_column_opts	
parameter to specify whether a statement is audited when the query references any column specified in the audit_column	
parameter or only when all columns are referenced. For example:	
If you do not specify a relevant column, then auditing applies to all columns.	
For more information about the audit_condition	
, audit_column	
, and audit_column_opts	
parameters in the DBMS_FGA.ADD_POLICY	
procedure, see Oracle Database PL/SQL Packages and Types Reference. See also the usage notes for the ADD_POLICY	
procedure in that section.	
You can disable a fine-grained audit policy by using the DBMS_FGA.DISABLE_POLICY	
procedure. The syntax for DISABLE_POLICY	
is:	
Example 9-22 shows how to disable the fine-grained audit policy created in Example 9-21.	
Example 9-22 Disabling a Fine-Grained Audit Policy	
For detailed information about the DISABLE_POLICY	
syntax, see Oracle Database PL/SQL Packages and Types Reference.	
Example 9-23 show how to reenable the chk_hr_emp	
policy by using the DBMS_FGA.ENABLE_POLICY	
procedure:	
Example 9-23 Enabling a Fine-Grained Audit Policy	
For detailed information about the ENABLE_POLICY	
syntax, see Oracle Database PL/SQL Packages and Types Reference.	
Oracle Database automatically drops the audit policy if you remove the object specified in the object_name	
parameter of the DBMS_FGA.ADD_POLICY	
procedure, or if you drop the user who created the audit policy.	
Example 9-24 shows how to drop a fine-grained audit policy manually by using the DBMS_FGA.DROP_POLICY	
procedure.	
Example 9-24 Dropping a Fine-Grained Audit Policy	
See Oracle Database PL/SQL Packages and Types Reference for detailed information about the DROP_POLICY	
syntax.	
This section contains:	
You can add an email alert to a fine-grained audit policy that goes into effect when a user (or an intruder) violates the policy. To accomplish this, you first must create a procedure that generates the alert, and then use the following DBMS_FGA.ADD_POLICY	
parameters to call this function when someone violates this policy:	
handler_schema	
: The schema in which the handler event is stored handler_module	
: The name of the event handler The alert can come in any form that best suits your environment: an email or pager notification, updates to a particular file or table, and so on. Creating alerts also helps to meet certain compliance regulations, such as California Senate Bill 1386. In this tutorial, you will create an email alert.	
In this tutorial, you create an email alert that notifies a security administrator that a Human Resources representative is trying to select or modify salary information in the HR.EMPLOYEES	
table. The representative is permitted to make changes to this table, but to meet compliance regulations, we want to create a record of all salary selections and modifications to the table.	
SYS	
with the SYSDBA	
privilege. UTL_MAIL	
package. The UTL_MAIL	
package enables you to manage email. See Oracle Database PL/SQL Packages and Types Reference for more information about UTL_MAIL	
.	
Be aware that currently, the UTL_MAIL	
PL/SQL package does not support SSL servers.	
Check the current value of the SMTP_OUT_SERVER	
initialization parameter, and make a note of this value so that you can restore it when you complete this tutorial.	
For example:	
If the SMTP_OUT_SERVER	
parameter has already been set, then output similar to the following appears:	
Issue the following ALTER SYSTEM	
statement:	
Replace imap_mail_server	
with the name of your SMTP server, which you can find in the account settings in your email tool. Enclose these settings in quotation marks. For example:	
SYS	
using the SYSOPER	
privilege and then restart the database. SMTP_OUT_SERVER	
parameter setting is correct. Output similar to the following appears:	
SYS	
using the SYSDBA	
privilege, and then create the sysadmin_fga	
account, who will create the fine-grained audit policy. For example:	
Replace password	
with a password that is secure. See "Minimum Requirements for Passwords" for more information.	
The UTL_TCP	
, UTL_SMTP	
, UTL_MAIL	
, and DBMS_NETWORK_ACL_ADMIN	
PL/SQL packages are used by the email security alert that you create.	
SYSTEM	
. HR	
schema account is unlocked and has a password. If necessary, unlock HR	
and grant this user a password. If the DBA_USERS	
view lists user HR	
as locked and expired, then enter the following statement to unlock the HR	
account and create a new password:	
Enter a password that is secure. For greater security, do not give the HR	
account the same password from previous releases of Oracle Database. "Minimum Requirements for Passwords" for the minimum requirements for creating passwords.	
HR.EMPLOYEES	
table. Before you can use PL/SQL network utility packages such as UTL_MAIL	
, you must configure an access control list (ACL) file that enables fine-grained access to external network services. For detailed information about this topic, see "Managing Fine-Grained Access in PL/SQL Packages and Types".	
To configure an access control list for the email alert:	
sysadmin_fga	
. Ensure that you enter your exact user name for the principal setting, in upper-case letters. For this tutorial, enter SYSADMIN_FGA	
for the name of the principal.	
In this example:	
SMTP_OUT_SERVER_setting	
: Enter the SMTP_OUT_SERVER	
setting that you set for the SMTP_OUT_SERVER	
parameter in "Step 1: Install and Configure the UTL_MAIL PL/SQL Package". This setting should match exactly the setting that your email tool specifies for its outgoing server. port	
: Enter the port number that your email tool specifies for its outgoing server. Typically, this setting is 25. Enter this value for the lower_port	
setting. (Currently, the UTL_MAIL	
package does not support SSL. If your email server is an SSL server, then enter 25 for the port number, even if the email server uses a different port number.) As user sysadmin_fga	
, create the following procedure. (You can copy and paste this text by positioning the cursor at the start of CREATE OR REPLACE	
in the first line.)	
1 2 3 4 5 6 7 8 9 10 11 12	CREATE OR REPLACE PROCEDURE email_alert (sch varchar2, tab varchar2, pol varchar2) AS msg varchar2(20000) := 'HR.EMPLOYEES table violation. The time is: '; BEGIN msg := msg
In this example:	
CREATE PROCEDURE	
statement, you must include a signature that describes the schema name (sch	
), table name (tab	
), and the name of the audit procedure (pol	
) that you will define in audit policy in the next step. youremail@example.com	
with your email address, and recipientemail@example.com	
with the email address of the person you want to receive the notification. sysadmin_fga	
, create the chk_hr_emp	
policy fine-grained audit policy as follows. SQL*Plus should display a PL/SQL procedure successfully completed	
message, and in a moment, depending on the speed of your email server, you should receive the email alert.	
If you receive an ORA-24247: network access denied by access control list (ACL)	
error followed by ORA-06512: at	
string	
line	
string	
errors, then check the settings in the access control list file.	
smavris	
, check your salary, and give yourself a nice raise. SALARY	
in the HR.EMPLOYEES	
table. The following output should appear:	
By now, depending on the speed of you email server, you (or your recipient) should have received an email with the subject header Table modification on HR.EMPLOYEES	
notifying you of the tampering of the HR.EMPLOYEES	
table.	
sysadmin_fga	
, query the DBA_FGA_AUDIT_TRAIL	
data dictionary view, which contains the Susan Mavris's audited activities. Output similar to the following appears:	
The audit trail captures the two SQL statements that Susan Mavris ran that affected the SALARY	
column in the HR.EMPLOYEES	
table. The third statement she ran, in which she asked about Den Raphaely, was not recorded because it was not affected by the audit policy. This is because Oracle Database executes the audit function as an autonomous transaction, committing only the actions of the handler_module	
setting and not any user transaction. The function has no effect on any user SQL transaction.	
SYSTEM	
privilege, and then drop users sysadmin_fga	
(including the objects in the sysadmin_fga	
schema) and smavris	
. HR	
and remove the loftiness of Susan Mavris's salary. HR	
, unless other users want to use this account: SYS	
with the SYSDBA	
privilege, and drop the email_server_permissions.xml	
access control list. Access control lists reside in the SYS	
schema, not the schema of the user who created them.	
ALTER SYSTEM	
statement to restore the SMTP_OUT_SERVER	
parameter to the previous value, from Step 4 under "Step 1: Install and Configure the UTL_MAIL PL/SQL Package": Enclose this setting in quotation marks. For example:	
This section contains:	
This tutorial shows how to create a fine-grained audit policy that audits a nondatabase user's actions, based on the identity set in the client identifier.	
SYS	
with the SYSDBA	
privilege. sysadmin_fga	
account, who will create the fine-grained audit policy. Replace password	
with a password that is secure. See "Minimum Requirements for Passwords" for more information.	
OE	
will also be used in this tutorial, so query the DBA_USERS	
data dictionary view to ensure that OE	
is not locked or expired. If the DBA_USERS	
view lists user OE	
as locked and expired, log in as user SYSTEM	
and then enter the following statement to unlock the OE	
account and create a new password:	
Enter a password that is secure. For greater security, do not give the OE	
account the same password from previous releases of Oracle Database. "Minimum Requirements for Passwords" for the minimum requirements for creating passwords.	
sysadmin_fga	
. In this example, the AUDIT_CONDITION	
parameter assumes the nondatabase user is named Robert. The policy will monitor any INSERT	
, UPDATE	
, DELETE	
, and SELECT	
statements Robert will attempt.	
OE	
and select from the OE.ORDERS	
table. The following output appears:	
sysadmin_fga	
and then check if any audit records were generated. The following output appears:	
Because no nondatabase users were logged in to query the OE.ORDERS	
table, the audit trail is empty.	
OE	
, set the client identifier to Robert	
, and then reselect from the OE.ORDERS	
table. The following output should appear:	
sysadmin_fga	
and then check the audit trail again. This time, because Robert	
has made his appearance and queried the OE.ORDERS	
table, the audit trail captures his actions:	
SYSTEM	
, and then drop user sysadmin_fga	
(including the objects in the sysadmin_fga	
schema). OE	
, unless other users want to use this account: This section contains:	
You can audit the SYSTEM	
user by using all the standard and fine-grained audit features. Insofar as auditing is concerned, user SYSTEM	
is a typical database user (such as HR	
or OE	
) and requires no special configuration to be audited.	
Example 9-25 shows how to audit any table insert operations issued by user SYSTEM	
.	
You can fully audit sessions for users who connect as SYS	
, including all users connecting using the SYSDBA	
or SYSOPER	
privileges. This enables you to write the actions of administrative users to an operating system file, even if the AUDIT_TRAIL	
parameter is set to NONE	
, DB	
, or DB, EXTENDED	
. Writing the actions of administrator users to an operating system audit file is safer than writing to the SYS.AUD$	
table, because administrative users can remove rows from this table that indicate their bad behavior.	
To configure audit settings for SYSDBA	
and SYSOPER	
users:	
AUDIT_SYS_OPERATIONS	
initialization parameter to TRUE	
. This setting records the top-level operations directly issued by users who have connected to the database using the SYSDBA	
or SYSOPER	
privilege. It writes the audit records to the operation system audit trail. The SQL text of every statement is written to the ACTION	
field in the operating system audit trail record.	
AUDIT_TRAIL	
initialization parameter to either XML	
or XML, EXTENDED	
. For example:	
In all operating systems, if you set AUDIT_TRAIL	
to either XML	
or XML,EXTENDED	
, then audit records are written as XML files in the directory specified by the AUDIT_FILE_DEST	
initialization parameter. By default, Oracle Database writes the audit records to operating system files.	
See Table 9-2, "AUDIT_TRAIL Initialization Parameter Settings" for more information about these settings. See also "Enabling or Disabling the Standard Audit Trail".	
After you restart the database, Oracle Database audits all successful actions performed by SYSDBA	
and SYSOPER	
users, and writes these audit records to the operating system audit trail, and not to the SYS.AUD$	
table.	
In Windows, if you have set the AUDIT_TRAIL	
initialization parameter OS	
, then Oracle Database writes audit records as events to the Event Viewer log file.	
If you do not specify the AUDIT_FILE_DEST	
initialization parameter, then the default location is $ORACLE_BASE/admin/$ORACLE_SID/adump	
in Linux and Solaris, and %ORACLE_BASE%\admin\%ORACLE_SID%\adump	
for Microsoft Windows. For other operating systems, refer to their audit trail documentation.	
Oracle Database audits all SYS	
-issued SQL statements indiscriminately and regardless of the setting of the AUDIT_TRAIL	
initialization parameter.	
Consider the following SYS	
session:	
When SYS	
auditing is enabled, both the ALTER SYSTEM	
and UPDATE	
statements are displayed in the operating system audit file, similar to the following output. (Be aware that this format may change in different Oracle Database releases.)	
The brackets indicate the length of the value. For example, PRIVILEGE	
is set to SYSDBA	
, which uses 6 characters. In addition, the values are in single quotes for SYS	
and mandatory audit records.	
Because of the superuser privileges available to users who connect as SYSDBA	
, Oracle recommends that database administrators rarely use this connection and only when necessary. Database administrators can usually perform normal day-to-day maintenance activity. These database administrators are typical database users with the DBA	
role, or have been granted privileges that are the equivalent of a DBA	
role (for example, mydba	
or jr_dba	
) that your organization customizes.	
You can use triggers to supplement the built-in auditing features of Oracle Database. The trigger that you create records user actions to a separate database table. When an activity fires the trigger, the trigger records the action in this table. Triggers are useful when you want to record customized information such as before-and-after changes to a table. For detailed information about creating triggers, see Oracle Database PL/SQL Language Reference.	
You do not need to have auditing enabled for the trigger to work, nor does it matter what type of auditing you do have enabled. The trigger works outside of the database audit functionality.	
Follow these guidelines if you want to create audit triggers:	
SYS.AUD$	
table contents. If you try to write values to SYS.AUD$	
and the trigger does not work as expected, then it could adversely affect standard auditing. The SYS.AUD$	
table is an Oracle Database-owned table, and only Oracle Database should write to it. AFTER	
trigger does not fire, and audit processing is not carried out unnecessarily. AFTER	
row and AFTER	
statement triggers depends on the information being audited. For example, row triggers provide value-based auditing for each table row. Triggers can also require you to supply a reason code for issuing the audited SQL statement, which can be useful in both row and statement-level auditing situations. Table 9-6 provides a comparison of trigger-based auditing and the built-in database auditing features.	
Table 9-6 Comparison of Built-in Auditing and Trigger-Based Auditing	
Audit Feature	Description
---	---
DML and DDL auditing	Standard auditing options permit auditing of DML and DDL statements regarding all types of schema objects and structures. Comparatively, triggers permit auditing of DML statements entered against tables, and DDL auditing at
Centralized audit trail	All database audit information is recorded centrally and automatically using the auditing features of the database.
Declarative method	Auditing features enabled using the standard database features are easier to declare and maintain, and less prone to errors, when compared to auditing functions defined by triggers.
Auditing options can be audited	Any changes to existing auditing options can also be audited to guard against malicious database activity.
Session and execution time auditing	Using the database auditing features, records are generated once every time an audited statement is entered. With triggers, an audit record is generated each time a trigger-audited table is referenced.
Auditing of unsuccessful data access	Database auditing can be set to audit when unsuccessful data access occurs. However, unless autonomous transactions are used, any audit information generated by a trigger is rolled back if the triggering statement is rolled back. For more information about autonomous transactions, see Oracle Database Concepts.
Sessions can be audited	Connections, disconnections, and session activity (physical I/Os, logical I/Os, deadlocks, and so on) can be recorded using standard database auditing.
In Example 9-26, a trigger audits modifications to the emp_tab	
table for specific rows. The trigger writes the old and new values to the emp_audit_tab	
table, including the user who performed the update and the time the update took place.	
Example 9-26 Audit Trigger to Record Before and After Changes to a Table	
To test this trigger, add a row to the emp_tab	
table, and then change the value the ename	
, job	
, or sal	
column in the emp_tab	
table. Then query the emp_audit_tab	
table to find the audit data.	
This section contains:	
Audit records include information about the operation that was audited, the user who performed the operationFoot 2 , and the date and time of the operation. Depending on the type of auditing you choose, you can write audit records to data dictionary tables, called the database audit trail, or in operating system files, called the operating system audit trail.	
If you choose to write audit records to the database audit trail, Oracle Database writes the audit records to the SYS.AUD$	
table for default and standard auditing, and to the SYS.FGA_LOG$	
table for fine-grained auditing. Both of these tables reside in the SYSTEM	
tablespace and are owned by the SYS	
schema. You can check the contents of these tables by querying the following data dictionary views:	
DBA_AUDIT_TRAIL	
for the SYS.AUD$	
contents DBA_FGA_AUDIT_TRAIL	
for the SYS.FGA_LOG$	
contents DBA_COMMON_AUDIT_TRAIL	
for both SYS.AUD$	
and SYS.FGA_LOG$	
contents "Finding Information About Audited Activities" describes more data dictionary views that you can use to view to contents of the SYS.AUD$	
and SYS.FGA_LOG$	
tables.	
If you choose to write audit records to an operating system file, you can write them to either a text file or to an XML file. You can check the contents of the audit XML files by querying the V$XML_AUDIT_TRAIL	
data dictionary view.	
This section contains:	
The database audit trail is a pair of tables, AUD$	
(for standard auditing) and FGA_LOG$	
(for fine-grained auditing), in the SYS	
schema of each Oracle Database data dictionary. It records both standard and fine-grained audit activities. Several data dictionary views can help you use the information in this table. "Finding Information About Audited Activities" lists all the auditing-related views.	
The database audit trail record contains different types of information, depending on the events audited and the auditing options set. For example, if you have set the AUDIT_TRAIL	
initialization parameter to DB,	
EXTENDED	
or XML, EXTENDED	
, then the SQL_BIND	
and SQL_TEXT	
columns show any SQL bind variables used for a SQL statement and SQL text that triggered the audit, respectively. For full details about the contents of these views, refer to Oracle Database Reference. However, be aware that the format and columns of the DBA_AUDIT_TRAIL	
view may change across Oracle Database releases.	
Note: If theAUDIT_TRAIL initialization parameter is set to XML or XML, EXTENDED , then Oracle Database sends standard audit records to operating system files in XML format. Because XML is a standard document format, many utilities are available to parse and analyze XML data.	
If the database destination for audit records becomes full or unavailable, and, therefore, unable to accept new records, then an audited action cannot complete. Instead, Oracle Database generates an error message and does not audit the action. You can control the size of the audit trail to make it more manageable. (In fact, Oracle strongly recommends that you do so.) See "Controlling the Size of the Database Audit Trail" for more information. See also "Keeping Audited Information Manageable".	
The audit trail does not store information about any data values that might be involved in the audited statement. For example, old and new data values of updated rows are not stored when an UPDATE	
statement is audited. However, you can perform this specialized type of auditing by using fine-grained auditing methods.	
You can use the Flashback Query feature to show the old and new values of the updated rows, subject to any auditing policy presently in force. The current policies are enforced even if the flashback is to an old query that was originally subject to a different policy. Current business access rules always apply.	
See Also:	
If the database audit trail is full and no more audit records can be inserted, then underlying statement cannot complete successfully until you purge the audit trail. Oracle Database issues errors to all users who issue statements that cause the audit. Therefore, you must control the growth and size of the audit trail.	
When auditing is enabled and audit records are being generated, the audit trail increases according to two factors:	
To control the growth of the audit trail, you can use the following methods:	
AUDIT ANY	
system privilege to any other user. Alternatively, all schema objects can belong to a schema for which the corresponding user does not have CREATE SESSION	
privilege. CREATE SESSION	
privilege is not granted to the corresponding user). The security administrator is the only user granted the AUDIT ANY	
system privilege. In both scenarios, a security administrator controls entirely object auditing.	
The maximum size of the database audit trail tables (AUD$	
and FGA_LOG$	
) is determined by the default storage parameters of the SYSTEM	
tablespace, in which it is stored by default. If you are concerned that a too-large database audit trail will affect the SYSTEM	
table performance, then consider moving the database audit trail tables to a different tablespace.	
See Also: Operating system-specific Oracle Database documentation for more information about managing the operating system audit trail when directing audit records to that location	
By default, the SYSTEM	
tablespace stores the database audit trail SYS.AUD$	
and SYS.FGA_LOG$	
tables. You can change this default location to another tablespace, such as the SYSAUX	
tablespace or a user-created tablespace. You may want to move the database audit trail tables to a different tablespace if the SYSTEM	
tablespace is too busy. Another reason for moving these audit trail tables to a different tablespace is if you plan to purge them by using the DBMS_AUDIT_MGMT	
PL/SQL package procedures.	
Be aware that moving the database audit trail tables to a different tablespace can take a long time, depending on the amount of audit data in the audit tables, so you may want to do this during a time when database activity is slow.	
To move the database audit trail from SYSTEM	
to a different tablespace:	
EXECUTE	
privilege on the DBMS_AUDIT_MGMT	
PL/SQL package. For more information about the DBMS_AUDIT_MGMT	
PL/SQL package, see Oracle Database PL/SQL Packages and Types Reference.	
You may need to optimize and allocate more space to this tablespace, including the SYSAUX	
auxiliary tablespace. For more information, see Oracle Database Performance Tuning Guide.	
DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_LOCATION	
PL/SQL procedure to specify the name of the destination tablespace. For example:	
In this example:	
AUDIT_TRAIL_TYPE	
: Refers to the database audit trail type. Enter one of the following values: DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD	
: Standard audit trail table, AUD$	
. DBMS_AUDIT_MGMT.AUDIT_TRAIL_FGA_STD	
: Fine-grained audit trail table, FGA_LOG$	
. DBMS_AUDIT_MGMT.AUDIT_TRAIL_DB_STD	
: Both standard and fine-grained audit trail tables. AUDIT_TRAIL_LOCATION_VALUE	
: Specifies the destination tablespace. This example specifies a tablespace named AUD_AUX	
. At times an application must give the SYS.AUD$	
system table access to regular users (non-SYSDBA	
users). For example, an audit report generator needs access to AUD$	
table to generate daily reports on possible violations. Also, many installations have a distinct auditor role to achieve separation of duty.	
In this case, be aware that DML statements such as INSERT	
, UPDATE	
, MERGE	
, and DELETE	
are always audited and recorded in the SYS.AUD$	
table. You can check these activities by querying the DBA_AUDIT_TRAIL	
and DBA_COMMON_AUDIT_TRAIL	
views.	
If a user has SELECT	
, UPDATE	
, INSERT	
, and DELETE	
privileges on SYS.AUD$	
and executes a SELECT	
operation, then the audit trail will have a record of that operation. That is, SYS.AUD$	
will have a row identifying the SELECT	
action on itself, as for example row 1.	
If a user later tries to delete this row from SYS.AUD$	
, then the DELETE	
operation succeeds, because the user has the privilege to perform this action. However, this DELETE	
action on SYS.AUD$	
is also recorded in the audit trail. Setting up this type of auditing acts as a safety feature, potentially revealing unusual or unauthorized actions.	
Note: DELETE , INSERT , UPDATE , and MERGE operations on the SYS.AUD$ and SYS.FGA_LOG$ tables are always audited. These audit records are not allowed to be deleted.	
You should periodically archive and then purge the audit trail to prevent it from growing too large. Archiving and purging both frees audit trail space and facilitates the purging of the database audit trail. See "Purging Audit Trail Records" for different ways of purging the audit trail records.	
You can create an archive of the database audit trail by using one of the following methods:	
After you complete the archive, you can purge the database audit trail contents. See "Purging Audit Trail Records" for more information.	
To archive standard and fine-grained audit records, you can copy the relevant records to a normal database table. For example:	
See Also: The following sections for information about different ways of purging the database audit trail	
Be aware that an operating system audit trail or file system, including the Windows Event Log, can become full, and therefore, unable to accept new records, including audit records from Oracle Database. In this case, Oracle Database cancels and rolls back the operation being performed, including operations that normally are always audited. (See "Activities That Are Always Audited for All Platforms".) If the operating system audit trail becomes full, then set the AUDIT_TRAIL	
parameter to use database audit trail (such as DB	
or DB, EXTENDED	
). This prevents the audited actions from completing if their audit records cannot be stored. You should periodically archive and purge the operating system audit file to prevent these types of failures.	
If you plan to use operating system auditing, then ensure that the operating system audit trail or the file system does not fill completely. Most operating systems provide administrators with sufficient information and warning to ensure this does not occur. If you configure auditing to use the database audit trail, you can prevent this potential loss of audit information. Oracle Database prevents audited events from occurring if the audit trail is unable to accept the database audit record for the statement.	
Periodically archive and then purge the operating system audit trail. See "Archiving the Operating System Audit Trail" and "Purging Audit Trail Records"for more information.	
To control the size of the operating system audit trail, set the DBMS_AUDIT_MGMT.OS_FILE_MAX_SIZE	
property by using the DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_PROPERTY	
PL/SQL procedure. Remember that you must have the EXECUTE	
privilege for the DBMS_AUDIT_MGMT	
PL/SQL package before you can use it. When the operating system file meets the size limitation you set, Oracle Database stops adding records to the current file and then creates a new operating system file for the subsequent records. For more information about the DBMS_AUDIT_MGMT	
PL/SQL package, see Oracle Database PL/SQL Packages and Types Reference.	
If you set both the DBMS_AUDIT_MGMT.OS_FILE_MAX_SIZE	
and the DBMS_AUDIT_MGMT.OS_FILE_MAX_AGE	
(described in "Setting the Age of the Operating System Audit Trail") properties, then Oracle Database performs the action based the property value limit that is met first.	
For example:	
In this example:	
AUDIT_TRAIL_TYPE	
: Specifies the operating system audit trail. Enter one of the following values: DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS	
: Operating system audit trail files with the .aud	
extension. (This setting does not apply to Windows Event Log entries. Nor does it apply to syslog audit records, when the AUDIT_SYSLOG_LEVEL	
initialization parameter is set.) DBMS_AUDIT_MGMT.AUDIT_TRAIL_XML	
: XML audit trail files. DBMS_AUDIT_MGMT.AUDIT_TRAIL_FILES	
: Both operating system and XML audit trail files. AUDIT_TRAIL_PROPERTY	
: Specifies the DBMS_AUDIT_MGMT.OS_FILE_MAX_SIZE	
property, which sets the maximum size. To find the status of the current property settings, query the PARAMETER_NAME	
and PARAMETER_VALUE	
columns of the DBA_AUDIT_MGMT_CONFIG_PARAMS	
data dictionary view. AUDIT_TRAIL_PROPERTY_VALUE	
: Sets the maximum size to 10240 kilobytes, that is, 10 megabytes. The default setting is 10,000 kilobytes (approximately 10 megabytes). Do not exceed 2 gigabytes. Clearing the DBMS_AUDIT_MGMT.OS_FILE_MAX_SIZE Setting	
To clear the maximum file size setting, use the DBMS_AUDIT_MGMT.CLEAR_AUDIT_TRAIL_PROPERTY	
procedure.	
For example:	
In this example:	
AUDIT_TRAIL_TYPE	
: Specifies the operating system audit trail. Enter one of the AUDIT_TRAIL_TYPE	
values described in "Setting the Size of the Operating System Audit Trail". AUDIT_TRAIL_PROPERTY	
: Specifies the DBMS_AUDIT_MGMT.OS_FILE_MAX_SIZE	
property. You can query the DBA_AUDIT_MGMT_CONFIG_PARAMS	
data dictionary view to find the current status of this property. USE_DEFAULT_VALUES	
: Enter one of the following values: TRUE	
: Clears the current value and uses the default value, 10,000 kilobytes, instead. FALSE	
: Oracle Database does not use a default maximum size for the operating system or XML file growth. The files will continue to grow without limitation unless you configure the DBMS_AUDIT_MGMT.OS_FILE_MAX_AGE	
property. The default setting is FALSE	
. To control the age of the operating system audit trail, use the DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_PROPERTY	
PL/SQL procedure. Remember that you must have the EXECUTE	
privilege for the DBMS_AUDIT_MGMT	
PL/SQL package before you can use it. When the operating system file meets the age limitation you set, Oracle Database stops adding records to the current file and then creates a new operating system file for the subsequent records. For more information about the DBMS_AUDIT_MGMT	
PL/SQL package, see Oracle Database PL/SQL Packages and Types Reference.	
If you set both the DBMS_AUDIT_MGMT.OS_FILE_MAX_AGE	
and the DBMS_AUDIT_MGMT.OS_FILE_MAX_SIZE	
(described in "Setting the Size of the Operating System Audit Trail") properties, then Oracle Database controls the growth of the Audit file based on the property value limit that is met first.	
For example:	
In this example:	
AUDIT_TRAIL_TYPE	
: Specifies the operating system audit trail. Enter one of the following values: DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS	
: Operating system audit trail files with the .aud	
extension. (This setting does not apply to Windows Event Log entries. Nor does it apply to syslog audit records, when the AUDIT_SYSLOG_LEVEL	
initialization parameter is set.) DBMS_AUDIT_MGMT.AUDIT_TRAIL_XML	
: XML audit trail files. DBMS_AUDIT_MGMT.AUDIT_TRAIL_FILES	
: Both operating system and XML audit trail files. AUDIT_TRAIL_PROPERTY	
: Specifies the DBMS_AUDIT_MGMT.OS_FILE_MAX_AGE	
property to set the maximum age. To find the status of the current property setting, query the DBA_AUDIT_MGMT_CONFIG_PARAMS	
data dictionary view. AUDIT_TRAIL_PROPERTY_VALUE	
: Sets the maximum age to 10 days. Enter a value between 1 and 495. The default age is 5 days. Clearing the DBMS_AUDIT_MGMT.OS_FILE_MAX_AGE Setting	
To clear the maximum file age setting, use the DBMS_AUDIT_MGMT.CLEAR_AUDIT_TRAIL_PROPERTY	
procedure.	
For example:	
In this example:	
AUDIT_TRAIL_TYPE	
: Specifies operating system audit trail. Enter one of the AUDIT_TRAIL_TYPE	
values listed in "Setting the Age of the Operating System Audit Trail". AUDIT_TRAIL_PROPERTY	
: Specifies the DBMS_AUDIT_MGMT.OS_FILE_MAX_AGE	
property. Query the PARAMETER_NAME	
and PARAMETER_VALUE	
columns of the DBA_AUDIT_MGMT_CONFIG_PARAMS	
data dictionary view to find the current status of this property. USE_DEFAULT_VALUES	
: Specify one of the following values: TRUE	
: Clears the current value and uses the default value, 5 days, instead. FALSE	
: Oracle Database does not use a default maximum age for the operating system or XML file growth. In this case, the files will continue to age without limitation unless you configure the DBMS_AUDIT_MGMT.OS_FILE_MAX_SIZE	
property. The default setting is FALSE	
. You should periodically archive the operating system audit trail. Use your platform-specific operating system tools to create an archive of the operating system audit files.	
Use the following methods to archive the operating system audit files:	
Afterwards, you should purge (delete) the operating system audit records both to free audit trail space and to facilitate audit trail management. See "Purging Audit Trail Records" for different ways that you can use to purge the operating system audit trail records.	
This section contains:	
You should periodically archive and then delete (purge) audit trail records, because the audit trail cannot accept new records if it grows too large. This section describes a variety of ways that you can use to purge both the database and operating system audit trail records. You can purge a subset of database audit trail records. For both database and operating system audit trail types, you can manually purge the records or create a purge job that performs at a specified time interval. In that case, the purge operation either purges the audit trail records that were created before the archive timestamp, or it purges all audit trail records.	
To perform the audit trail purge tasks, in most cases, you use the DBMS_AUDIT_MGMT	
PL/SQL package. You must have the EXECUTE	
privilege for DBMS_AUDIT_MGMT	
before you can use it.	
If you have Oracle Audit Vault installed, the audit trail purge process differs from the procedures described in this manual. For example, Oracle Audit Vault archives the audit trail for you. See Oracle Audit Vault Administrator's Guide.	
Note: Oracle Database audits all deletions from the audit trail, without exception. See "Auditing the Database Audit Trail" and "Auditing SYS Administrative Users".	
See Also:	
Table 9-7 provides a roadmap for selecting an audit trail purge method.	
Table 9-7 Selecting an Audit Trail Purge Method	
What Do You Want to Purge?	About This Type of Purge Method
---	---
All audit records, or audit records created before a specified timestamp, on a regularly scheduled basis	You can schedule a purge operation to occur an specific times. For example, you can schedule it for every Saturday at 2 a.m. General steps:
See "Scheduling an Automatic Purge Job for the Audit Trail" for more information.	
All audit records, or records that were created before a specified timestamp, when you want	You can manually purge the audit records right away in a one-time operation, rather than creating a purge schedule. General steps:
See "Manually Purging the Audit Trail" for more information.	
Just a subset of the audit records from the database audit trail	You can manually purge just a subset of the audit records. For example, you can delete all audit records that were created between May 14, 2010 and June 14, 2010. General steps:
See "Purging a Subset of Records from the Database Audit Trail" for more information.	
You can purge the entire audit trail, or only a portion of the audit trail that was created before a timestamp. For the database audit trail, the individual audit records created before the timestamp can be purged. For the operating system audit trail, you purge audit files that were created before the timestamp.	
Be aware that purging the audit trail, particularly a large one, can take a while to complete. Consider scheduling the purge job so that it runs during a time when the database is not busy.	
You can create multiple purge jobs for different audit trail types, so long as they do not conflict. For example, you can create a purge job for the standard audit trail table and then the fine-grained audit trail table. However, you cannot then create a purge job for both or all types, that is, by using the DBMS_AUDIT_MGMT.AUDIT_TRAIL_DB_STD	
or DBMS_AUDIT_MGMT.AUDIT_TRAIL_ALL	
property.	
To create and schedule an automatic purge job:	
The purge process may generate additional redo logs. Before you run this process, you may need to tune online and archive redo log sizes to accommodate the additional records generated during the audit table purge process. For more information about tuning log files, see Oracle Database Performance Tuning Guide and Oracle Database Administrator's Guide.	
You must record the timestamp of the database and operating system audit records before you can archive them. You can check the timestamp date by querying the DBA_AUDIT_MGMT_LAST_ARCH_TS	
data dictionary view. Later on, when the purge takes place, Oracle Database purges only the audit trail records that were created before the date of this timestamp. See "Step 4: Optionally, Set an Archive Timestamp for Audit Records" for more information.	
After you have timestamped the records, you are ready to archive them. See the following sections for more information:	
Before you can purge the audit trail by using the DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL	
PL/SQL procedure, you must initialize the audit trail for the cleanup operation. For the database audit trail, if you have not moved the database audit trail tables (SYS.AUD$	
and SYS.FGA_LOG$	
) from the SYSTEM	
tablespace to another tablespace, this process moves these tables to the SYSAUX	
tablespace or to the tablespace that you specified in "Moving the Database Audit Trail to a Different Tablespace". Be aware that moving these tables takes a while, so you may want to schedule the initialization process during time when the database is not busy.	
To initialize the audit trail cleanup operation:	
EXECUTE	
privilege on the DBMS_AUDIT_MGMT	
PL/SQL package. DBMS_AUDIT_MGMT.INIT_CLEANUP	
procedure. (You only need to perform this step once. You can check if the audit trail has been initialized for cleanup by running the DBMS_AUDIT_MGMT.IS_CLEANUP_INITIALIZED	
function. See "Verifying That the Audit Trail Is Initialized for Cleanup".)	
For example:	
In this specification:	
AUDIT_TRAIL_TYPE	
: Enter one of the following values: DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD	
: Standard audit trail table, AUD$	
. DBMS_AUDIT_MGMT.AUDIT_TRAIL_FGA_STD	
: Fine-grained audit trail table, FGA_LOG$	
. DBMS_AUDIT_MGMT.AUDIT_TRAIL_DB_STD	
: Both standard and fine-grained audit trail tables. DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS	
: Operating system audit trail files with the .aud	
extension. (This setting does not apply to Windows Event Log entries.) DBMS_AUDIT_MGMT.AUDIT_TRAIL_XML	
: XML Operating system audit trail files. DBMS_AUDIT_MGMT.AUDIT_TRAIL_FILES	
: Both operating system and XML audit trail files. DBMS_AUDIT_MGMT.AUDIT_TRAIL_ALL	
: All audit trail records, that is, both database audit trail and operating system audit trail types. DEFAULT_CLEANUP_INTERVAL	
: Specify the desired default hourly purge interval (for example, 12	
for every 12 hours). The DBMS_AUDIT_MGMT	
procedures use this value to determine how to purge audit records. The timing begins when you run the DBMS_AUDIT_MGMT.INIT_CLEANUP	
procedure. To update this value later, set the DBMS_AUDIT_MGMT.CLEAN_UP_INTERVAL	
property of the DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_PROPERTY	
procedure. The DEFAULT_CLEANUP_INTERVAL	
setting must indicate the frequency in which DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL	
is called. If you are uncertain about the frequency, set it to an approximate value. You can change this value later on by using the DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_PROPERTY	
procedure.	
If you want to delete all of the audit trail, you can bypass this step.	
You can set a timestamp when the last audit record was archived. Setting an archive timestamp provides a hint to the cleanup infrastructure that the cleanup operation will be invoked every 6 hours.	
For the database audit trail, you must set the timestamp after you have initialized the audit trail cleanup operation. To find the last archive timestamps for the audit trail, you can query the DBA_AUDIT_MGMT_LAST_ARCH_TS	
data dictionary view. After you set the timestamp, all audit records in the audit trail that indicate a time earlier than that timestamp are purged when you run the DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL	
PL/SQL procedure. If you want to clear the archive timestamp setting, see "Clearing the Archive Timestamp Setting".	
For the operating system audit trail, remember that you cannot delete individual audit records in the operating system (including XML) audit files. Instead, Oracle Database removes the entire file that contains the timestamped records.	
If you are using Oracle Real Application Clusters (Oracle RAC), then use Network Time Protocol (NTP) to synchronize the time on each computer where you have installed an Oracle Database instance. For example, suppose you set the time for one Oracle RAC instance node at 11:00:00 a.m. and then set the next Oracle RAC instance node at 11:00:05. As a result, the two nodes have inconsistent times. You can use Network Time Protocol (NTP) to synchronize the times for these Oracle RAC instance nodes.	
To set the timestamp, use the DBMS_AUDIT_MGMT.SET_LAST_ARCHIVE_TIMESTAMP	
PL/SQL procedure.	
For example:	
In this example:	
AUDIT_TRAIL_TYPE	
: Enter one of the following settings: DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD	
: Specified the standard audit trail table, AUD$	
. DBMS_AUDIT_MGMT.AUDIT_TRAIL_FGA_STD	
: Specifies the fine-grained audit trail table, FGA_LOG$	
. DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS	
: Operating system audit trail files with the .aud	
extension. (This setting does not apply to Windows Event Log entries.) DBMS_AUDIT_MGMT.AUDIT_TRAIL_XML	
: Specifies XML audit trail files. LAST_ARCHIVE_TIME	
: Enter the timestamp in YYYY-MM-DD HH:MI:SS.FF	
UTC (Coordinated Universal Time) format for AUDIT_TRAIL_DB_AUD	
and AUDIT_TRAIL_FGA_STD	
(standard and fine-grained audit trails), and in the Local Time Zone for AUDIT_TRAIL_OS	
and AUDIT_TRAIL_XML	
(operating system and XML audit trails). RAC_INSTANCE_NUMBER	
: Specifies the instance number for an Oracle RAC installation. If you specified the DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD	
or DBMS_AUDIT_MGMT.AUDIT_TRAIL_FGA_STD	
audit trail types, you can omit the RAC_INSTANCE_NUMBER	
argument. This is because there is only one AUD$	
and FGA_LOG$	
table, even for an Oracle RAC installation. The default is 0	
, which is used for single-instance database installations. Typically, after you set the timestamp, you can use the DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL	
PL/SQL procedure to remove the audit records that were created before the timestamp date.	
Create and schedule the purge job by running the DBMS_AUDIT_MGMT.CREATE_PURGE_JOB	
PL/SQL procedure.	
For example:	
AUDIT_TRAIL_TYPE	
=> DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD, USE_LAST_ARCH_TIMESTAMP	
=> TRUE);In this example:	
AUDIT_TRAIL_TYPE	
: Enter one of the following values: DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD	
: Standard audit trail table, AUD$	
DBMS_AUDIT_MGMT.AUDIT_TRAIL_FGA_STD	
: Fine-grained audit trail table, FGA_LOG$	
DBMS_AUDIT_MGMT.AUDIT_TRAIL_DB_STD	
: Both standard and fine-grained audit trail tables DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS	
: Operating system audit trail files with the .aud	
extension. (This setting does not apply to Windows Event Log entries.) DBMS_AUDIT_MGMT.AUDIT_TRAIL_XML	
: XML audit trail files DBMS_AUDIT_MGMT.AUDIT_TRAIL_FILES	
: Both operating system and XML audit trail files DBMS_AUDIT_MGMT.AUDIT_TRAIL_ALL	
: All audit trail records, that is, both database audit trail and operating system audit trail types AUDIT_TRAIL_PURGE_INTERVAL	
: Specify the hourly interval for this purge job to run. The timing begins when you run the DBMS_AUDIT_MGMT.CREATE_PURGE_JOB	
procedure, in this case, 12 hours after you run this procedure. Later on, if you want to update this value, run the DBMS_AUDIT_MGMT.SET_PURGE_JOB_INTERVAL	
procedure. USE_LAST_ARCH_TIMESTAMP	
: Enter either of the following settings: TRUE	
: Deletes audit records created before the last archive timestamp. To check the last recorded timestamp, query the LAST_ARCHIVE_TS	
column of the DBA_AUDIT_MGMT_LAST_ARCH_TS	
data dictionary view. The default value is TRUE	
. Oracle recommends that you set USE_LAST_ARCH_TIMESTAMP	
to TRUE	
. FALSE	
: Deletes all audit records without considering last archive timestamp. Be careful about using this setting, in case you inadvertently delete audit records that should have been deleted. By default, the DBMS_AUDIT_MGMT	
package procedures delete the database and operating system audit trail records in batches of 10000 database audit records, or 1000 operating system audit files. You can set this batch size to a different value if you want. Later on, when Oracle Database runs the purge job, it deletes each batch, rather than all records together. If the audit trail is very large (and they can grow quite large), deleting the records in batches facilitates the purge operation.	
To find the current batch setting, you can query the PARAMETER_NAME	
and PARAMETER_VALUE	
columns of the DBA_AUDIT_MGMT_CONFIG_PARAMS	
data dictionary view. To set the batch size, use the DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_PROPERTY	
procedure. If you later want to clear this setting, see "Clearing the Database Audit Trail Batch Size".	
For example:	
In this example:	
AUDIT_TRAIL_TYPE	
: Specifies the audit trail type, which in this case is the database system audit trail. Enter one of the following values: DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD	
: Standard audit trail table, AUD$	
. DBMS_AUDIT_MGMT.AUDIT_TRAIL_FGA_STD	
: Fine-grained audit trail table, FGA_LOG$	
. DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS	
: Operating system audit files. DBMS_AUDIT_MGMT.AUDIT_TRAIL_XML	
: XML audit files. AUDIT_TRAIL_PROPERTY	
: Uses the DBMS_AUDIT_MGMT.DB_DELETE_BATCH_SIZE	
property to indicate the database audit trail batch size setting. If you want to batch the operating system audit trail, then use the FILE_DELETE_BATCH_SIZE	
property. AUDIT_TRAIL_PROPERTY_VALUE	
: Sets the number of audit record files to be 100,000 for each batch. Enter a value between 100	
and 1000000	
. To determine this number, consider the total number of records being purged, and the time interval in which the purge operation is performed. The default is 10000	
for the database audit trail and 1000 for the operating system audit trail records. You can manually purge the audit trail right away, without scheduling a purge job. Similar to a purge job, you can purge audit trail records that were created before an archive timestamp date or all the records in the audit trail.	
Note the following about the DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL	
PL/SQL procedure:	
DBMS_AUDIT_MGMT	
package does not support cleanup of Windows Event Viewer, setting the AUDIT_TRAIL_TYPE	
property to DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS	
has no effect. This is because operating system audit records on Windows are written to Windows Event Viewer. The DBMS_AUDIT_MGMT	
package does not support this type of cleanup operation. AUDIT_SYSLOG_LEVEL	
initialization parameter to a valid value as listed in Oracle Database Reference, then Oracle Database writes the operating system log files to syslog files. If you set the AUDIT_TRAIL_TYPE	
property to DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS	
, then the procedure only removes .aud	
files under audit directory (This directory is specified by the AUDIT_FILE_DEST	
initialization parameter). AUDIT_TRAIL_TYPE	
parameter is set to DBMS_AUDIT_MGMT.AUDIT_TRAIL_XML	
, this procedure only cleans up XML audit files (.xml	
) in the current audit directory. Oracle Database maintains an index file, called adx_	
$ORACLE_SID	
.txt	
, which lists the XML files that were generated by the XML auditing. The cleanup procedure does not remove this file. For database audit trails, you must initialize the cleanup infrastructure by running the DBMS_AUDIT_MGMT.INIT_CLEANUP	
procedure, and then purging the database audit trail by using the method described in "Purging a Subset of Records from the Database Audit Trail".	
To manually purge the audit trail:	
DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL	
PL/SQL procedure. For example:	
In this example:	
AUDIT_TRAIL_TYPE	
: Enter one of the following values: DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD	
: Standard audit trail table, AUD$	
DBMS_AUDIT_MGMT.AUDIT_TRAIL_FGA_STD	
: Fine-grained audit trail table, FGA_LOG$	
DBMS_AUDIT_MGMT.AUDIT_TRAIL_DB_STD	
: Both standard and fine-grained audit trail tables DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS	
: Operating system audit trail files with the .aud	
extension. (This setting does not apply to Windows Event Log entries.) DBMS_AUDIT_MGMT.AUDIT_TRAIL_XML	
: XML audit trail files DBMS_AUDIT_MGMT.AUDIT_TRAIL_FILES	
: Both operating system and XML audit trail files DBMS_AUDIT_MGMT.AUDIT_TRAIL_ALL	
: All audit trail records, that is, both database audit trail and operating system audit trail types USE_LAST_ARCH_TIMESTAMP	
: Enter either of the following settings: TRUE	
: Deletes audit records created before the last archive timestamp. To set the archive timestamp, see "Step 4: Optionally, Set an Archive Timestamp for Audit Records". The default (and recommended) value is TRUE	
. Oracle recommends that you set USE_LAST_ARCH_TIMESTAMP	
to TRUE	
. FALSE	
: Deletes all audit records without considering last archive timestamp. Be careful about using this setting, in case you inadvertently delete audit records that should have been deleted. You can manually remove records from the database audit trail tables. This method can be useful if you want to remove a specific subset of records. You can use this method if the database audit trail table is in any tablespace, including the SYSTEM	
tablespace.	
For example, to delete audit records that were created later than the evening of February 28, 2009 but before March 28, 2009, enter the following statement:	
Alternatively, to delete all audit records from the audit trail, enter the following statement:	
Only the user SYS	
or a user to whom SYS	
granted the DELETE	
privilege on SYS.AUD$	
can delete records from the database audit trail.	
Note: If the audit trail is full and connections are being audited (that is, if theAUDIT SESSION statement is set), then typical users cannot connect to the database because the associated audit record for the connection cannot be inserted into the audit trail. In this case, connect as SYS with the SYSDBA privilege, and make space available in the audit trail. Remember that operations by SYS are not recorded in the standard audit trail, but they are audited if you set the AUDIT_SYS_OPERATIONS parameter to TRUE .	
After you delete the rows from the database audit trail table, the freed space is available for reuse by that table. (The SYS.AUD$	
table is allocated only as many extents as are necessary to maintain current audit trail records.) You do not need to do anything to make this space available to the table for reuse. If you want to use this space for another table, then follow these steps:	
AUD$	
table to an auto segment space managed tablespace. For example:	
AUD$	
table back to the SYSTEM	
tablespace, then run the following statement: If you want to both delete all the rows from the database audit trail table and free the used space for other tablespace objects, use the TRUNCATE TABLE	
statement. For example:	
Note: SYS.AUD$ and SYS.FGA_LOG$ are the only SYS objects that can ever be directly modified.	
This section contains:	
You can check if the audit trail has been initialized for cleanup by running the DBMS_AUDIT_MGMT.IS_CLEANUP_INITIALIZED	
function. If the audit trail has been initialized, then this function returns TRUE	
. If it is not, it returns FALSE	
.	
For example:	
This example verifies that the database standard audit trail has been initialized and returns a message indicating its status. To select a setting for a different audit trail, choose from the AUDIT_TRAIL_TYPE	
settings described in "Step 3: Initialize the Audit Trail Cleanup Operation".	
You can set a default purge operation interval, in hours, that must pass before the next purge operation takes place for a specified audit trail type.	
For example:	
In this example:	
AUDIT_TRAIL_TYPE	
: Specifies the audit trail type, which in this case is the database standard audit trail. Choose from the following settings: DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD	
: Standard audit trail table, AUD$	
DBMS_AUDIT_MGMT.AUDIT_TRAIL_FGA_STD	
: Fine-grained audit trail table, FGA_LOG$	
DBMS_AUDIT_MGMT.AUDIT_TRAIL_DB_STD	
: Both standard and fine-grained audit trail tables DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS	
: Operating system audit trail files with the .aud	
extension. (This setting does not apply to Windows Event Log entries.) DBMS_AUDIT_MGMT.AUDIT_TRAIL_XML	
: XML Operating system audit trail files DBMS_AUDIT_MGMT.AUDIT_TRAIL_FILES	
: Both operating system and XML audit trail files DBMS_AUDIT_MGMT.AUDIT_TRAIL_ALL	
: All audit trail records, that is, both database audit trail and operating system audit trail types You can set a default interval for multiple audit trail types, so long as they do not conflict. For example, you can set individual intervals for the DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD	
and DBMS_AUDIT_MGMT.AUDIT_TRAIL_FGA_STD	
properties, but not for the DBMS_AUDIT_MGMT.AUDIT_TRAIL_DB_STD	
property.	
AUDIT_TRAIL_PROPERTY	
: Sets the DBMS_AUDIT_MGMT.CLEAN_UP_INTERVAL	
property to indicate the purge operation interval setting. To find the current property settings, query the PARAMETER_NAME	
and PARAMETER_VALUE	
columns of the DBA_AUDIT_MGMT_CONFIG_PARAMS	
data dictionary view. The timing begins when you set the DBMS_AUDIT_MGMT.CLEAN_UP_INTERVAL	
property. AUDIT_TRAIL_PROPERTY_VALUE	
: Updates the default hourly interval set by the DBMS_AUDIT_MGMT.INIT_CLEANUP	
procedure. Enter a value between 1 and 999. You can cancel the DBMS_AUDIT_MGMT.INIT_CLEANUP	
settings, that is, the default cleanup interval, by invoking the DBMS_AUDIT_MGMT.DEINIT_CLEANUP	
procedure.	
For example, to cancel all purge settings for the standard audit trail:	
In this example:	
AUDIT_TRAIL_TYPE	
: Enter one of the AUDIT_TRAIL_TYPE	
settings listed in "Step 3: Initialize the Audit Trail Cleanup Operation". To enable or disable an audit trail purge job, use the DBMS_AUDIT_MGMT.SET_PURGE_JOB_STATUS	
PL/SQL procedure.	
For example:	
In this example:	
AUDIT_TRAIL_PURGE_NAME	
: Specifies a purge job called OS_Audit_Trail_PJ	
. To find existing purge jobs, query the JOB_NAME	
and JOB_STATUS	
columns of the DBA_AUDIT_MGMT_CLEANUP_JOBS	
data dictionary view. AUDIT_TRAIL_STATUS_VALUE	
: Enter one of the following properties: DBMS_AUDIT_MGMT.PURGE_JOB_ENABLE	
: Enables the specified purge job. DBMS_AUDIT_MGMT.PURGE_JOB_DISABLE	
: Disables the specified purge job. You can set a default purge operation interval, in hours, that must pass before the next purge job operation takes place. The interval setting that is used in the DBMS_AUDIT_MGMT.CREATE_PURGE_JOB	
procedure takes precedence over this setting.	
For example:	
In this example:	
AUDIT_TRAIL_PURGE_NAME	
: Specifies the name of the audit trail purge job. To find a list of existing purge jobs, query the JOB_NAME	
and JOB_STATUS	
columns of the DBA_AUDIT_MGMT_CLEANUP_JOBS	
data dictionary view. AUDIT_TRAIL_INTERVAL_VALUE	
: Updates the default hourly interval set by the DBMS_AUDIT_MGMT.CREATE_PURGE_JOB	
procedure. Enter a value between 1	
and 999	
. The timing begins when you run the purge job. To delete an audit trail purge job, use the DBMS_AUDIT_MGMT.DROP_PURGE_JOB	
PL/SQL procedure. To find existing purge jobs, query the JOB_NAME	
and JOB_STATUS	
columns of the DBA_AUDIT_MGMT_CLEANUP_JOBS	
data dictionary view.	
For example:	
In this example:	
AUDIT_TRAIL_PURGE_NAME	
: Specifies a purge job called FGA_Audit_Trail_PJ	
. To clear the archive timestamp setting, use the DBMS_AUDIT_MGMT.CLEAR_LAST_ARCHIVE_TIMESTAMP	
PL/SQL procedure.	
For example:	
In this example:	
RAC_INSTANCE_NUMBER	
: If the AUDIT_TRAIL_TYPE	
property is set to DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS	
or DBMS_AUDIT_MGMT.AUDIT_TRAIL_XML	
, then you cannot set RAC_INSTANCE_NUMBER	
to 0	
. You can omit this setting or specify 1	
to indicate an instance number. You can omit the RAC_INSTANCE_NUMBER	
setting when AUDIT_TRAIL_TYPE	
is DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD	
or DBMS_AUDIT_MGMT.AUDIT_TRAIL_FGA_STD	
, or if the database is not an Oracle RAC database. Otherwise, specify the correct instance number. You can find the instance number by issuing the SHOW PARAMETER INSTANCE_NUMBER	
command in SQL*Plus.	
To clear the batch size setting, use the DBMS_AUDIT_MGMT.CLEAR_AUDIT_TRAIL_PROPERTY	
procedure.	
For example:	
In this example:	
AUDIT_TRAIL_TYPE	
: Specifies the audit trail type, which in this case is the database system audit trail. Enter one of the AUDIT_TRAIL_TYPE	
values listed in "Step 6: Optionally, Configure the Audit Trail Records to be Deleted in Batches". AUDIT_TRAIL_PROPERTY	
: Specifies the DB_DELETE_BATCH_SIZE	
property. Query the DBA_AUDIT_MGMT_CONFIG_PARAMS	
data dictionary view to find the current status of this property. USE_DEFAULT_VALUES	
: Is set to TRUE	
, which clears the current audit record batch size and uses the default value, 10000	
, instead. The pseudo code in Example 9-27 creates a database audit trail purge operation that the user calls by invoking the DBMS_ADUIT.CLEAN_AUDIT_TRAIL	
procedure. The purge operation deletes records that were created before the last archived timestamp by using a loop. The loop archives the audit records, calculates which audit records were archived and uses the SetCleanUpAuditTrail	
call to set the last archive timestamp, and then calls the CLEAN_AUDIT_TRAIL	
procedure. It deletes the database audit trail records in batches of 100,000 records each. In this example, major steps are in bold typeface.	
Example 9-27 Directly Calling a Database Audit Trail Purge Operation	
This section contains:	
Table 9-8 lists data dictionary views that provide auditing information. For detailed information about these views, see Oracle Database Reference.	
Table 9-8 Data Dictionary Views That Display Information about the Database Audit Trail	
View	Description
---	---
Describes the fine-grained auditing policies on the tables and views accessible to the current user	
Describes the fine-grained auditing policy columns on the tables and views accessible to the current user.	
ALL_DEF_AUDIT_OPTS	Lists default object-auditing options that are to be applied when objects are created
AUDIT_ACTIONS	Describes audit trail action type codes
DBA_AUDIT_EXISTS	Lists audit trail entries produced
Displays the history of purge events. Periodically, as user DELETE FROM DBA_AUDIT_MGMT_CLEAN_EVENTS;	
Displays the currently configured audit trail purge jobs	
Displays the currently configured audit trail properties that are used by the	
Displays the last archive timestamps that have set for audit trail purges.	
DBA_AUDIT_OBJECT	Lists audit trail records for all objects in the system
Lists all the fine-grained auditing policies on the system	
DBA_AUDIT_SESSION	Lists all audit trail records concerning
Describes the fine-grained auditing policy columns on the tables and views throughout the database.	
Lists audit trail records concerning	
Lists all standard audit trail entries in the	
Combines standard and fine-grained audit log records, and includes	
Lists audit trail records for fine-grained auditing.	
Displays the objects on which auditing options have been enabled	
DBA_PRIV_AUDIT_OPTS	Describes current system privileges being audited across the system and by user
DBA_STMT_AUDIT_OPTS	Describes current statement auditing options across the system and by user
Lists audit trail records for statements concerning objects that are accessible to the current user	
Describes the fine-grained auditing policy columns on the tables and views accessible to the current user.	
Lists all audit trail records concerning connections and disconnections for the current user	
USER_AUDIT_STATEMENT	Lists audit trail records concerning
USER_AUDIT_TRAIL	Lists all standard audit trail entries in the
USER_OBJ_AUDIT_OPTS	Describes auditing options on all objects owned by the current user
Contains log history information. To query this view, you must have the	
Shows standard, fine-grained,	
This section provides examples that demonstrate how to examine and interpret the information in the audit trail. Suppose you want to audit the database for the following suspicious activities:
emp
table in laurel
's schema. You suspect the users jward
and swilliams
of several of these detrimental actions.
To investigate, you issue the following statements (in the order specified):
The following statements are subsequently issued by the user jward
:
The following statements are subsequently issued by the user swilliams
:
The following sections display the information relevant to your investigation that can be viewed using the audit trail views in the data dictionary:
The following query returns all the statement audit options that are set:
Output similar to the following appears:
The following query returns all the privilege audit options that are set:
Output similar to the following appears:
The following query returns all audit options set for any objects with names that start with the characters emp
and that are contained in the schema of laurel
:
Output similar to the following appears:
The view returns information about all the audit options for the specified object. The information in the view is interpreted as follows:
-
) indicates that the audit option is not set. S
character indicates that the audit option is set BY SESSION
. A
character indicates that the audit option is set BY ACCESS
. WHENEVER SUCCESSFUL
and WHENEVER NOT SUCCESSFUL
, separated by a slash (/
). For example, the DELETE
audit option for laurel.emp
is set BY ACCESS
for successful DELETE
statements and not set at all for unsuccessful DELETE
statements. The following query returns all default object audit options:
Output similar to the following appears:
Notice that the view returns information similar to the USER_OBJ_AUDIT_OPTS
and DBA_OBJ_AUDIT_OPTS
views (refer to previous example).
The following query lists audit records generated for all objects in the database:
The following query lists audit information corresponding to the AUDIT SESSION
statement audit option:
Output similar to the following appears:
Footnote Legend
Footnote 1: "Nondatabase users" refers to application users who are recognized in the database using theCLIENT_IDENTIFIER
attribute. To audit this type of user, you can use a fine-grained audit policy. See "Auditing Specific Activities with Fine-Grained Auditing" for more information.SYS.AUD$
and SYS.FGA_LOG$
tables. The CLIENTID
column in these tables records the name of the nondatabase user. The USERID
column in the SYS.AUD$
table and the DBUID
column of the SYS.FGA_LOG$
store the database user account. For nondatabase users, the USERID
and DBUID
columns store the database user account that was created to enable the nondatabase user access to the database. The DBA_AUDIT_TRAIL
, DBA_FGA_AUDIT_TRAIL
, and DBA_COMMON_AUDIT_TRAIL
views store this information in the CLIENT_ID
, USERNAME
, and DB_USER
columns.This chapter contains:
This chapter provides a set of guidelines to keep your Oracle database secure. Information security, and privacy and protection of corporate assets and data are critical in any business. Oracle Database comprehensively addresses the need for information security by providing cutting-edge security features such as deep data protection, auditing, scalable security, secure hosting, and data exchange.
Oracle Database leads the industry in security. To maximize the security features offered by Oracle Database in any business environment, it is imperative that the database itself be well protected.
Security guidelines provide advice about how to configure Oracle Database to be secure by adhering to and recommending industry-standard and advisable security practices for operational database deployments. Many of the guidelines described in this section address common regulatory requirements such as those described in the Sarbanes-Oxley Act. For more information about how Oracle Database addresses regulatory compliance, protection of personally identifiable information, and internal threats, visit:
http://www.oracle.com/technetwork/topics/security/whatsnew/index.html
This section contains:
Always apply all relevant security patches for both the operating system on which Oracle Database resides and Oracle Database itself, and for all installed Oracle Database options and components.
Periodically check the security site on Oracle Technology Network for details about security alerts released by Oracle at
http://www.oracle.com/technetwork/topics/security/alerts-086861.html
Also check the Oracle Worldwide Support Service site, My Oracle Support, for details about available and upcoming security-related patches at
If you are an Oracle customer or an Oracle partner, use My Oracle Support to submit a Service Request on any potential Oracle product security vulnerability. Otherwise, send an email to secalert_us@oracle.com
with a complete description of the problem, including product version and platform, together with any scripts and examples. Oracle encourages those who want to contact Oracle Security to employ email encryption, using our encryption key.
Follow these guidelines to secure user accounts and privileges:
Practice the principle of least privilege.
Oracle recommends the following guidelines:
Do not provide database users or roles more privileges than are necessary. (If possible, grant privileges to roles, not users.) In other words, the principle of least privilege is that users be given only those privileges that are actually required to efficiently perform their jobs.
To implement this principle, restrict the following as much as possible:
SYSTEM
and OBJECT
privileges granted to database users. SYS
-privileged connections to the database. ANY
privileges, such as the DROP ANY TABLE
privilege. For example, there is generally no need to grant CREATE ANY TABLE
privileges to a non-DBA-privileged user. TRUNCATE TABLE
, DELETE TABLE
, DROP TABLE
statements, and so on. To maintain additional versions of objects, editions can increase resource and disk space consumption in the database. Only grant the CREATE ANY EDITION
and DROP ANY EDITION
privileges to trusted users who are responsible for performing upgrades.
These are powerful security-related privileges. Only grant these privileges to users who need them.
The CREATE LIBRARY
, CREATE ANY LIBRARY
, ALTER ANY LIBRARY
, and EXECUTE ANY LIBRARY
privileges, and grants of EXECUTE ON
library_name
convey a great deal of power to users. If you plan to create PL/SQL interfaces to libraries, only grant the EXECUTE
privilege to the PL/SQL interface. Do not grant EXECUTE
on the underlying library. You must have the EXECUTE
privilege on a library to create the PL/SQL interface to it. However, users have this privilege implicitly on libraries that they create in their own schemas. Explicit grants of EXECUTE ON
library_name
are rarely required. Only make an explicit grant of these privileges to trusted users, and never to the PUBLIC
role.
The CREATE PUBLIC SYNONYM
and DROP PUBLIC SYNONYM
system privileges convey a great deal of power to these users. Do not grant these privileges to users, unless they are trusted.
Do not allow users to alter table rows or schema objects in the SYS
schema, because doing so can compromise data integrity. Limit the use of statements such as DROP TABLE
, TRUNCATE TABLE
, DELETE
, INSERT
, or similar object-modification statements on SYS
objects only to highly privileged administrative users.
The SYS
schema owns the data dictionary. You can protect the data dictionary by setting the O7_DICTIONARY_ACCESSIBILITY
parameter to FALSE
. See Guideline 1 under "Guidelines for Securing Data" for more information.
The EXECUTE
privilege on the DBMS_RANDOM
package could permit users who normally should have only minimal access to execute the functions associated with this package.
Many Oracle Database products use run-time facilities, such as Oracle Java Virtual Machine (OJVM). Do not assign all permissions to a database run-time facility. Instead, grant specific permissions to the explicit document root file paths for facilities that might run files and packages outside the database.
Here is an example of a vulnerable run-time call, which individual files are specified:
Here is an example of a better (more secure) run-time call, which specifies a directory path instead:
Lock and expire default (predefined) user accounts.
Oracle Database installs with several default database user accounts. Upon successful installation of the database, the Database Configuration Assistant automatically locks and expires most default database user accounts.
If you perform a manual (without using Database Configuration Assistant) installation of Oracle Database, then no default database users are locked upon successful installation of the database server. Or, if you have upgraded from a previous release of Oracle Database, you may have default accounts from earlier releases. Left open in their default states, these user accounts can be exploited, to gain unauthorized access to data or disrupt database operations.
You should lock and expire all default database user accounts. Oracle Database provides SQL statements to perform these operations. For example:
See Oracle Database SQL Language Reference for more information about the ALTER USER
statement.
Installing additional products and components after the initial installation also results in creating more default database accounts. Database Configuration Assistant automatically locks and expires all additionally created database user accounts. Unlock only those accounts that need to be accessed on a regular basis and assign a strong, meaningful password to each of these unlocked accounts. Oracle provides SQL and password management to perform these operations.
If any default database user account other than the ones left open is required for any reason, then a database administrator (DBA) must unlock and activate that account with a new, secure password.
See Oracle Database 2 Day + Security Guide for a description of the predefined user accounts that are created when you install Oracle Database.
If a default database user account, other than the ones left open, is required for any reason, then a database administrator (DBA) can unlock and activate that account with a new, secure password.
Oracle Enterprise Manager Accounts
If you install Oracle Enterprise Manager, the SYSMAN
and DBSNMP
accounts are open, unless you configure Oracle Enterprise Manager for central administration. In this case, the SYSMAN
account (if present) will be locked.
If you do not install Oracle Enterprise Manager, then only the SYS
and SYSTEM
accounts are open. Database Configuration Assistant locks and expires all other accounts (including SYSMAN
and DBSNMP
).
Use the following data dictionary views to find information about user access to the database.
DBA_
* DBA_ROLES
DBA_SYS_PRIVS
DBA_ROLE_PRIVS
DBA_TAB_PRIVS
DBA_AUDIT_TRAIL
(if standard auditing is enabled) DBA_FGA_AUDIT_TRAIL
(if fine-grained auditing is enabled) Monitor the granting of the following privileges only to users and roles who need these privileges.
By default, Oracle Database audits the following privileges:
ALTER SYSTEM
AUDIT SYSTEM
CREATE EXTERNAL JOB
Oracle recommends that you also audit the following privileges:
ALL PRIVILEGES
(which includes privileges such as BECOME USER
, CREATE LIBRARY
, and CREATE PROCEDURE
) DBMS_BACKUP_RESTORE
package EXECUTE
to DBMS_SYS_SQL
SELECT ANY TABLE
SELECT
on PERFSTAT.STATS$SQLTEXT
SELECT
on PERFSTAT.STATS$SQL_SUMMARY
SELECT
on SYS.SOURCE$
WITH ADMIN
clause WITH GRANT
clause CREATE
keyword Revoke access to the following:
SYS.USER_HISTORY$
table from all users except SYS
and DBA
accounts RESOURCE
role from typical application accounts CONNECT
role from typical application accounts DBA
role from users who do not need this role Grant privileges only to roles.
Granting privileges to roles and not individual users makes the management and tracking of privileges much easier.
Limit the proxy account (for proxy authorization) privileges to CREATE SESSION only.
Use secure application roles to protect roles that are enabled by application code.
Secure application roles allow you to define a set of conditions, within a PL/SQL package, that determine whether or not a user can log on to an application. Users do not need to use a password with secure application roles.
Another approach to protecting roles from being enabled or disabled in an application is the use of role passwords. This approach prevents a user from directly accessing the database in SQL (rather than the application) to enable the privileges associated with the role. However, Oracle recommends that you use secure application roles instead, to avoid having to manage another set of passwords.
Discourage users from using the NOLOGGING clause in SQL statements.
In some SQL statements, the user has the option of specifying the NOLOGGING
clause, which indicates that the database operation is not logged in the online redo log file. Even though the user specifies the clause, a redo record is still written to the online redo log file. However, there is no data associated with this record. Because of this, using NOLOGGING
has the potential for malicious code to be entered can be accomplished without an audit trail.
Follow these guidelines when managing roles:
Roles (groups of privileges) are useful for quickly and easily granting permissions to users. Although you can use Oracle-defined roles, you have more control and continuity if you create your own roles containing only the privileges pertaining to your requirements. Oracle may change or remove the privileges in an Oracle Database-defined role, as it has with the CONNECT
role, which now has only the CREATE SESSION
privilege. Formerly, this role had eight other privileges.
Ensure that the roles you define contain only the privileges that reflect job responsibility. If your application users do not need all the privileges encompassed by an existing role, then apply a different set of roles that supply just the correct privileges. Alternatively, create and assign a more restricted role.
For example, it is imperative to strictly limit the privileges of user SCOTT
, because this is a well known account that may be vulnerable to intruders. Because the CREATE DBLINK
privilege allows access from one database to another, drop its privilege for SCOTT
. Then, drop the entire role for the user, because privileges acquired by means of a role cannot be dropped individually. Re-create your own role with only the privileges needed, and grant that new role to that user. Similarly, for better security, drop the CREATE DBLINK
privilege from all users who do not require it.
Roles are not meant to be used by application developers, because the privileges to access schema objects within stored programmatic constructs need to be granted directly. Remember that roles are not enabled within stored procedures except for invoker's right procedures. See "How Roles Work in PL/SQL Blocks" for information about this topic.
This principle enables the organization to retain detailed control of its roles and privileges. This also avoids the necessity to adjust if Oracle Database changes or removes Oracle Database-defined roles, as it has with CONNECT
, which now has only the CREATE SESSION
privilege. Formerly, it also had eight other privileges.
Global roles are managed by an enterprise directory service, such as Oracle Internet Directory. See the following sections for more information about global roles:
When you create a user account, Oracle Database assigns a default password policy for that user. The password policy defines rules for how the password should be created, such as a minimum number of characters, when it expires, and so on. You can strengthen passwords by using password policies. See also "Configuring Password Protection" for additional ways to protect passwords.
Follow these guidelines to further strengthen passwords:
Choose passwords carefully.
"Minimum Requirements for Passwords" describes the minimum requirements for passwords. Follow these additional guidelines when you create or change passwords:
"123abc"
"#abc"
"123dc$"
"abc>"
"abc@",
" "
abc123
ab23a
ab$#_
Iuwu6aedotw
. welcome1
and binky
into WelBinkyCome1
. fussy2all
are as follows: fussy2all34hj2
WelBinkyCome1fussy2all
fusfussy2all
welcome13
can become wwellCcooMmee13
. Oracle Database provides a password complexity verification routine, the PL/SQL script UTLPWDMG.SQL
, that you can run to check whether or not passwords are sufficiently complex. Ideally, edit the UTLPWDMG.SQL
script to provide stronger password protections. See also "Enforcing Password Complexity Verification" for a sample routine that you can use to check passwords.
Change default user passwords.
Oracle Database installs with a set of predefined, default user accounts. Security is most easily broken when a default database user account still has a default password even after installation. This is particularly true for the user account SCOTT
, which is a well known account that may be vulnerable to intruders. In Oracle Database 11g Release 2 (11.2), default accounts are installed locked with the passwords expired, but if you have upgraded from a previous release, you may still have accounts that use default passwords.
To find user accounts that have default passwords, query the DBA_USERS_WITH_DEFPWD
data dictionary view. See "Finding User Accounts That Have Default Passwords" for more information.
Change default passwords of administrative users.
You can use the same or different passwords for the SYS
, SYSTEM
, SYSMAN
, and DBSNMP
administrative accounts. Oracle recommends that you use different passwords for each. In any Oracle environment (production or test), assign strong, secure, and distinct passwords to these administrative accounts. If you use Database Configuration Assistant to create a new database, then it requires you to enter passwords for the SYS
and SYSTEM
accounts, disallowing the default passwords CHANGE_ON_INSTALL
and MANAGER
.
Similarly, for production environments, do not use default passwords for administrative accounts, including SYSMAN
and DBSNMP
.
See Oracle Database 2 Day + Security Guide for information about changing a default password.
Apply basic password management rules (such as password length, history, complexity, and so forth) to all user passwords. Oracle Database has password policies enabled for the default profile. Guideline 1 in this section lists these password policies. Oracle Database 2 Day + Security Guide lists initialization parameters that you can use to further secure user passwords.
You can find information about user accounts by querying the DBA_USERS
view. The PASSWORD
column of the DBA_USERS
view indicates whether the password is global, external, or null. The DBA_USERS
view provides useful information such as the user account status, whether the account is locked, and password versions.
Oracle also recommends, if possible, using Oracle Advanced Security (an option to Oracle Database Enterprise Edition) with network authentication services (such as Kerberos), token cards, smart cards, or X.509 certificates. These services provide strong authentication of users, and provide protection against unauthorized access to Oracle Database.
For better security, do not store passwords in clear text (that is, human readable) in Oracle tables. You can correct this problem by encrypting the table column that contains the password. See Oracle Database 2 Day + Security Guide for information about how to use transparent data encryption to encrypt a table column.
When you create or modify a password for a user account, Oracle Database automatically encrypts it. If you query the DBA_USERS
view to find information about a user account, the data in the PASSWORD
column indicates if the user password is global, external, or null.
Follow these guidelines to secure data on your system:
Enable data dictionary protection.
Oracle recommends that you protect the data dictionary to prevent users that have the ANY
system privilege from using those privileges on the data dictionary. Altering or manipulating the data in data dictionary tables can permanently and detrimentally affect the operation of a database.
To enable data dictionary protection, set the following initialization parameter to FALSE
(which is the default) in the init
sid
.ora
control file:
You can set the O7_DICTIONARY_ACCESSIBILITY
parameter in a server parameter file. For more information about server parameter files, see Oracle Database Administrator's Guide.
After you set O7_DICTIONARY_ACCESSIBILTY
to FALSE
, only users who have the SELECT ANY DICTIONARY
privilege and those authorized users making DBA-privileged (for example CONNECT / AS SYSDBA
) connections can use the ANY
system privilege on the data dictionary. If O7_DICTIONARY_ACCESSIBILITY
parameter is not set to FALSE
, then any user with the DROP ANY TABLE
(for example) system privilege will be able to drop parts of the data dictionary. However, if a user needs view access to the data dictionary, then you can grant that user the SELECT ANY DICTIONARY
system privilege.
Note:
|
Follow these guidelines:
This recommendation applies to all types of files: data files, log files, trace files, external tables, BFILE data types, and so on.
According to common regulatory compliance requirements, you must encrypt sensitive data such as credit card numbers and passwords. When you delete sensitive data from the database, encrypted data does not linger in data blocks, operating system files, or sectors on disk.
In most cases, you may want to use transparent data encryption to encrypt your sensitive data. See Oracle Database Advanced Security Administrator's Guide for more information. See also "Security Problems That Encryption Does Not Solve" for when you should not encrypt data.
If you use different operating system users and groups for Oracle Database installations, then you can configure Oracle ASM File Access Control to restrict the access to files in Oracle ASM disk groups to only authorized users. For example, a database administrator would only be able to access the data files for the databases that he or she manages. This administrator would not be able to see or overwrite the data files belonging (or used by) other databases.
For more information about managing Oracle ASM File Access Control for disk groups, see Oracle Automatic Storage Management Administrator's Guide. For information about the various privileges required for multiple software owners on Linux systems, see also Oracle Automatic Storage Management Administrator's Guide.
Follow these guidelines to secure the ORACLE_LOADER
access driver:
WRITE
access by operating system users other than the user responsible for managing the preprocessor program. WRITE
privilege on the directory object. Never grant users both the EXECUTE
and WRITE
privilege for directory objects. Create a separate operating system directory and directory object for any data files that are required for external tables. Ensure that these are separate from the directory and directory object used by the access directory preprocessor.
Work with the operating system manager to ensure that only the appropriate operating system users have access to this directory. Grant the ORACLE
operating system user READ
access to any directory that has a directory object with READ
privileges granted to database users. Similarly, grant the ORACLE
operating system user WRITE
access to any directory that has the WRITE
privilege granted to database users.
DBA
role have full access to all directory objects. For this release, changes were made to the default configuration of Oracle Database to make it more secure. The recommendations in this section augment the new, secure default configuration.
Follow these guidelines to secure the database installation and configuration:
See Oracle Database Administrator's Reference for Linux and UNIX-Based Operating Systems for more information about managing Oracle Database on Linux and UNIX systems.
Options and Products: The Oracle Database CD pack contains products and options in addition to the database. Install additional products and options only as necessary. Use the Custom Installation feature to avoid installing unnecessary products, or perform a typical installation, and then deinstall options and products that are not required. There is no need to maintain additional products and options if they are not being used. They can always be properly installed, as required.
Sample Schemas: Oracle Database provides sample schemas to provide a common platform for examples. If your database will be used in a production environment, then do not install the sample schema. If you have installed the sample schema on a test database, then before going to production, remove or relock the sample schema accounts. See Oracle Database Sample Schemas for more information about the sample schemas.
Follow Guidelines 1, 4, and 5 in "Guidelines for Securing Passwords".
See Guideline 2 in "Guidelines for Securing User Accounts and Privileges".
Security for network communications is improved by using client, listener, and network guidelines to ensure thorough protection. Using SSL is an essential element in these lists, enabling top security for authentication and communications.
These guidelines are as follows:
Because authenticating client computers is problematic, typically, user authentication is performed instead. This approach avoids client system issues that include falsified IP addresses, hacked operating systems or applications, and falsified or stolen client system identities. Nevertheless, the following guidelines improve the security of client connections:
By default, Oracle allows operating system-authenticated logins only over secure connections, which precludes using Oracle Net and a shared server configuration. This default restriction prevents a remote user from impersonating another operating system user over a network connection.
Setting the initialization parameter REMOTE_OS_AUTHENT
to TRUE
forces the database to accept the client operating system user name received over an unsecure connection and use it for account access. Because clients, such as PCs, are not trusted to perform operating system authentication properly, it is poor security practice to use this feature.
The default setting, REMOTE_OS_AUTHENT = FALSE
, creates a more secure configuration that enforces proper, server-based authentication of clients connecting to an Oracle database. Be aware that the REMOTE_OS_AUTHENT
was deprecated in Oracle Database Release 11g (11.1) and is retained only for backward compatibility.
You should not alter the default setting of the REMOTE_OS_AUTHENT
initialization parameter, which is FALSE
.
Setting this parameter to FALSE
does not mean that users cannot connect remotely. It means that the database will not trust that the client has already authenticated, and will therefore apply its standard authentication processes.
Be aware that the REMOTE_OS_AUTHENT
parameter was deprecated in Oracle Database 11g Release 1 (11.1), and is retained only for backward compatibility.
Oracle network encryption makes eavesdropping difficult. To learn how to configure encryption, see Oracle Database Advanced Security Administrator's Guide.
See Oracle Database Advanced Security Administrator's Guide for more information about using Kerberos and public key infrastructure (PKI).
Protecting the network and its traffic from inappropriate access or modification is the essence of network security. You should consider all paths the data travels, and assess the threats on each path and node. Then, take steps to lessen or eliminate those threats and the consequences of a security breach. In addition, monitor and audit to detect either increased threat levels or penetration attempts.
To manage network connections, you can use Oracle Net Manager. For an introduction to using Oracle Net Manager, see Oracle Database 2 Day DBA. See also Oracle Database Net Services Administrator's Guide.
The following practices improve network security:
See "Securing a Secure Sockets Layer Connection" for more information.
You can monitor listener activity by using Enterprise Manager Database Control. In the Database Control home page, under General, click the link for your listener. The Listener page appears. This page provides detailed information, such as the category of alert generated, alert messages, when the alert was triggered, and so on. This page provides other information as well, such as performance statistics for the listener.
listener.ora
file: RELOAD
to reload the configuration. To administer the listener remotely, you define the listener in the listener.ora
file on the client computer. For example, to access listener USER281 remotely, use the following configuration:
For more information about the parameters in listener.ora
, see Oracle Database Net Services Reference.
Ensure that the password has not been set in the listener.ora
file. The local operating system authentication will secure the listener administration. The remote listener administration is disabled when the password has not been set. This prevents brute force attacks of the listener password.
The listener password has been deprecated in this release. It will not be supported in the next release of Oracle Database.
This allows the listener to listen on all the IP addresses. You can restrict the listener to listen on a specific IP address. Oracle recommends that you specify the specific IP addresses on these types of computers, rather than allowing the listener to listen on all IP addresses. Restricting the listener to specific IP addresses helps to prevent an intruder from stealing a TCP end point from under the listener process.
This restriction prevents external procedure agents spawned by the listener (or procedures executed by an agent) from inheriting the ability to perform read or write operations. The owner of this separate listener process should not be the owner that installed Oracle Database or executes the Oracle Database instance (such as ORACLE
, the default owner).
For more information about configuring external procedures in the listener, see Oracle Database Net Services Administrator's Guide.
See Oracle Database 2 Day + Security Guide and Oracle Database Advanced Security Administrator's Guide for more information about network data encryption.
Appropriately placed and configured firewalls can prevent outside access to your databases.
For more information about the listener, see Oracle Database Net Services Administrator's Guide.
Use the Oracle Net valid node checking security feature to allow or deny access to Oracle server processes from network clients with specified IP addresses. To use this feature, set the following sqlnet.ora
configuration file parameters:
The tcp.validnode_checking
parameter enables the feature. The tcp.excluded_nodes
and tcp.invited_nodes
parameters deny and enable specific client IP addresses from making connections to the Oracle listener. This helps to prevent potential Denial of Service attacks.
You can use Oracle Net Manager to configure these parameters. See Oracle Database Net Services Administrator's Guide for more information.
If possible, use Oracle Advanced Security to encrypt network traffic among clients, databases, and application servers. Oracle Database 2 Day + Security Guide provides an introduction to network encryption. For detailed information about network encryption, see Oracle Database Advanced Security Administrator's Guide.
Secure the host operating system by disabling all unnecessary operating system services. Both UNIX and Windows provide a variety of operating system services, most of which are not necessary for typical deployments. These services include FTP, TFTP, TELNET, and so forth. Be sure to close both the UDP and TCP ports for each service that is being disabled. Disabling one type of port and not the other does not make the operating system more secure.
Secure Sockets Layer (SSL) is the Internet standard protocol for secure communication, providing mechanisms for data integrity and data encryption. These mechanisms can protect the messages sent and received by you or by applications and servers, supporting secure authentication, authorization, and messaging through certificates and, if necessary, encryption. Good security practices maximize protection and minimize gaps or disclosures that threaten security. The following guidelines show the cautious attention to detail necessary for the successful use of SSL. For detailed information about Oracle SSL configuration, see Oracle Database Advanced Security Administrator's Guide.
You can run HTTPS on any port, but the standards specify port 443, where any HTTPS-compliant browser looks by default. The port can also be specified in the URL, for example:
If a firewall is in use, then it too must use the same ports for secure (SSL) communication.
An identical specification must appear in the listener.ora
file (typically in the $ORACLE_HOME/network/admin
directory).
The mode can specify either client or server authentication (one-way), both client and server authentication (two-way), or no authentication.
This setting ensures that the server identity is correct by matching its global database name against the DN from the server certificate.
You can enable DN matching in the tnsnames.ora
file. For example:
Otherwise, a client application would not check the server certificate, which could allow the server to falsify its identity.
Note: A server without SSL does not require a pass phrase. |
If you decide your server is secure enough, you could remove the encryption from the RSA private key while preserving the original file. This enables system boot scripts to start the database server, because no pass phrase is needed. Ideally, restrict permissions to the root user only, and have the Web server start as root
, but then log on as another user. Otherwise, anyone who gets this key can impersonate you on the Internet, or decrypt the data that was sent to the server.
See Also:
|
Be aware that sensitive data, such as credit card numbers, appear in the fine-grained audit trail if you collect SQL text. For standard auditing, setting the AUDIT_TRAIL
initialization parameter to DB, EXTENDED
or XML, EXTENDED
enables the collection of SQL text. For fine-grained auditing, you would set the audit_trail
parameter of the DBMS_FGA
PL/SQL package to DBMS_FGA.DB + DBMS_FGA.EXTENDED
or DBMS_FGA.XML + DBMS_FGA.EXTENDED
.
If you have sensitive data that is being audited, consider using either of the following solutions:
AUDIT_TRAIL
initialization parameter to DB
, OS
, or XML
. See "Configuring Standard Auditing with the AUDIT_TRAIL Initialization Parameter". DBMS_FGA.ADD_POLICY
audit_trail
parameter to DBMS_FGA.DB
or DBMS_FGA.XML
. See "Creating a Fine-Grained Audit Policy". Although auditing is relatively inexpensive, limit the number of audited events as much as possible. This minimizes the performance impact on the execution of audited statements and the size of the audit trail, making it easier to analyze and understand.
Follow these guidelines when devising an auditing strategy:
After you have a clear understanding of the reasons for auditing, you can devise an appropriate auditing strategy and avoid unnecessary auditing.
For example, suppose you are auditing to investigate suspicious database activity. This information by itself is not specific enough. What types of suspicious database activity do you suspect or have you noticed? A more focused auditing strategy might be to audit unauthorized deletions from arbitrary tables in the database. This purpose narrows the type of action being audited and the type of object being affected by the suspicious activity.
Audit the minimum number of statements, users, or objects required to get the targeted information. This prevents unnecessary audit information from cluttering the meaningful information and using valuable space in the SYSTEM
tablespace. Balance your need to gather sufficient security information with your ability to store and process it.
For example, if you are auditing to gather information about database activity, then determine exactly what types of activities you want to track, audit only the activities of interest, and audit only for the amount of time necessary to gather the information that you want. As another example, do not audit objects if you are only interested in logical I/O information for each session.
You should have the legal department of your organization review your audit strategy. Because your auditing will monitor other users in your organization, you must ensure that you are correctly following the compliance and corporate policy of your site.
When your purpose for auditing is to gather historical information about particular database activities, use the following guidelines:
At a minimum, audit user access, the use of system privileges, and changes to the database schema structure. To avoid cluttering meaningful information with useless audit records and reduce the amount of audit trail administration, only audit the targeted database activities. Remember also that auditing too much can affect database performance.
For example, auditing changes to all tables in a database produces far too many audit trail records and can slow down database performance. However, auditing changes to critical tables, such as salaries in a Human Resources table, is useful.
You can audit specific actions by using fine-grained auditing, which is described in "Auditing Specific Activities with Fine-Grained Auditing".
After you collect the required information, archive the audit records of interest and then purge the audit trail of this information. See the following sections:
Privacy regulations often lead to additional business privacy policies. Most privacy laws require businesses to monitor access to personally identifiable information (PII), and monitoring is implemented by auditing. A business-level privacy policy should address all relevant aspects of data access and user accountability, including technical, legal, and company policy concerns.
The log files generated by Oracle Database contain useful information that you can use when auditing a database. For example, an Oracle database creates an alert file to record STARTUP
and SHUTDOWN
operations, and structural changes such as adding data files to the database.
For example, if you want to audit committed or rolled back transactions, you can use the redo log files.
When you audit to monitor suspicious database activity, use the following guidelines:
When you start to audit for suspicious database activity, often not much information is available to target specific users or schema objects. Therefore, set audit options more generally at first, that is, by using the standard audit options described in Chapter 9, "Verifying Security Access with Auditing," explains how you can use the standard audit options to audit SQL statements, schema objects, privileges, and so on.
After you have recorded and analyzed the preliminary audit information, disable general auditing, and then audit specific actions. You can use fine-grained auditing, which is described in "Auditing Specific Activities with Fine-Grained Auditing", to audit specific actions. Continue this process until you have gathered enough evidence to draw conclusions about the origin of the suspicious database activity.
Common suspicious activities are as follows:
In addition, monitor users who share accounts or multiple users who are logging in from the same IP address. You can query the DBA_AUDIT_SESSION
data dictionary view to find this kind of activity. For a very granular approach, create fine-grained audit policies.
When auditing for suspicious database activity, protect the audit trail so that audit information cannot be added, changed, or deleted without being audited. You can audit the standard audit trail by using the AUDIT
SQL statement.
For example:
See also "Auditing the Database Audit Trail".
To audit the fine-grained audit trail, as user SYS
, you would enter the following statement:
If you have Oracle Database Vault enabled, you can further protect the SYS.AUDIT$
, SYSTEM.AUD$
, SYS.FGA$
, and SYS.FGA_LOG$
tables by enclosing them in a realm. (In an Oracle Database Vault environment, the AUD$
table is moved to the SYSTEM
schema when Oracle Label Security is enabled. SYS.AUD$
becomes a synonym for the SYSTEM.AUD$
table.) See Oracle Database Vault Administrator's Guide for more information.
Database schema or structure changes. Use the following AUDIT
statement settings:
AUDIT ALTER ANY PROCEDURE BY ACCESS;
AUDIT ALTER ANY TABLE BY ACCESS;
AUDIT ALTER DATABASE BY ACCESS;
AUDIT ALTER SYSTEM BY ACCESS;
AUDIT CREATE ANY EDITION;
AUDIT CREATE ANY JOB BY ACCESS;
AUDIT CREATE ANY LIBRARY BY ACCESS;
AUDIT CREATE ANY PROCEDURE BY ACCESS;
AUDIT CREATE ANY TABLE BY ACCESS;
AUDIT CREATE EXTERNAL JOB BY ACCESS;
AUDIT DROP ANY EDITION;
AUDIT DROP ANY PROCEDURE BY ACCESS;
AUDIT DROP ANY TABLE BY ACCESS;
Database access and privileges. Use these AUDIT
statement settings:
AUDIT ALTER PROFILE BY ACCESS;
AUDIT ALTER USER BY ACCESS;
AUDIT AUDIT SYSTEM BY ACCESS;
AUDIT CREATE PUBLIC DATABASE LINK BY ACCESS;
AUDIT CREATE SESSION BY ACCESS;
AUDIT CREATE USER BY ACCESS;
AUDIT DROP PROFILE BY ACCESS;
AUDIT DROP USER BY ACCESS;
AUDIT EXEMPT ACCESS POLICY BY ACCESS;
AUDIT GRANT ANY OBJECT PRIVILEGE BY ACCESS;
AUDIT GRANT ANY PRIVILEGE BY ACCESS;
AUDIT GRANT ANY ROLE BY ACCESS;
AUDIT ROLE BY ACCESS;
The CONNECT
role was introduced with Oracle Database version 7, which added new and robust support for database roles. The CONNECT
role is used in sample code, applications, documentation, and technical papers. In Oracle Database 10g Release 2 (10.2), the CONNECT
role was changed. If you are upgrading from a release earlier than Oracle Database 10.2 to the current release, then read this section.
This section contains:
The CONNECT
role was originally established with the following privileges:
ALTER SESSION | CREATE SESSION |
CREATE CLUSTER | CREATE SYNONYM |
CREATE DATABASE LINK | CREATE TABLE |
CREATE SEQUENCE | CREATE VIEW |
Beginning in Oracle Database 10g Release 2, the CONNECT
role has only the CREATE SESSION
privilege, all other privileges are removed.
Although the CONNECT
role was frequently used to provision new accounts in Oracle Database, connecting to the database does not require all those privileges. Making this change enables you to enforce good security practices more easily.
Each user should have only the privileges needed to perform his or her tasks, an idea called the principle of least privilege. Least privilege mitigates risk by limiting privileges, so that it remains easy to do what is needed while concurrently reducing the ability to do inappropriate things, either inadvertently or maliciously.
The effects of the changes to the CONNECT
role can be seen in database upgrades, account provisioning, and installation of applications using new databases.
Upgrading your existing Oracle database to Oracle Database 10g Release 2 (10.2) automatically changes the CONNECT
role to have only the CREATE SESSION
privilege. Most applications are not affected because the applications objects already exist: no new tables, views, sequences, synonyms, clusters, or database links need to be created.
Applications that create tables, views, sequences, synonyms, clusters, or database links, or that use the ALTER SESSION
command dynamically, may fail due to insufficient privileges.
If your application or DBA grants the CONNECT
role as part of the account provisioning process, then only CREATE SESSION
privileges are included. Any additional privileges must be granted either directly or through another role.
This issue can be addressed by creating a new customized database role.
New databases created using the Oracle Database 10g Release 2 (10.2) Utility (DBCA), or using database creation templates generated from DBCA, define the CONNECT
role with only the CREATE SESSION
privilege. Installing an application to use a new database may fail if the database schema used for the application is granted privileges solely through the CONNECT
role.
The change to the CONNECT
role affects three classes of users differently: general users, application developers, and client/server applications.
The new CONNECT
role supplies only the CREATE SESSION
privilege. Users who connect to the database to use an application are not affected, because the CONNECT
role still has the CREATE SESSION
privilege.
However, appropriate privileges will not be present for a certain set of users if they are provisioned solely with the CONNECT
role. These are users who create tables, views, sequences, synonyms, clusters, or database links, or use the ALTER SESSION
command. The privileges they need are no longer provided with the CONNECT
role. To authorize the additional privileges needed, the database administrator must create and apply additional roles for the appropriate privileges, or grant them directly to the users who need them.
Note that the ALTER SESSION
privilege is required for setting events. Few database users should require the ALTER SESSION
privilege.
The alter session privilege is not required for other alter session commands.
Application developers provisioned solely with the CONNECT
role do not have appropriate privileges to create tables, views, sequences, synonyms, clusters, or database links, nor to use the ALTER SESSION
statement. The database administrator must either create and apply additional roles for the appropriate privileges, or grant them directly to the application developers who need them.
Most client/server applications that use dedicated user accounts will not be affected by this change. However, applications that create private synonyms or temporary tables using dynamic SQL in the user schema during account provisioning or run-time operations will be affected. They will require additional roles or grants to acquire the system privileges appropriate to their activities.
Oracle recommends the following three approaches to address the impact of this change.
The privileges removed from the CONNECT
role can be managed by creating a new database role.
First, connect to the upgraded Oracle database and create a new database role. The following example uses a role called my_app_developer
.
Second, determine which users or database roles have the CONNECT
role, and grant the new role to these users or roles.
You can determine the privileges that users require by using Oracle Auditing. The audit information can then be analyzed and used to create additional database roles with finer granularity.
Privileges not used can then be revoked for specific users. Note that before auditing, the database initialization parameter AUDIT_TRAIL
must be initialized and the database restarted.
Database privilege usage can now be monitored periodically.
Starting with Oracle Database 10g Release 2 (10.2), Oracle provided a script called rstrconn.sql
in the $ORACLE_HOME/rdbms/admin
directory. After a database upgrade or new database creation, this script can be used to grant the privileges that were removed from the CONNECT
role in Oracle Database 10g Release 2 (10.2).
If this approach is used, then privileges that are not used should be revoked from users who do not need them. To identify such privileges and users, the database must be restarted with the database initialization parameter AUDIT_TRAIL
initialized, for example, AUDIT_TRAIL=DB
. Oracle Database auditing should then be turned on to monitor what privileges are used, as follows:
Database privilege usage can also be monitored periodically.
A new view enables administrators who continue using the old CONNECT
role to see quickly which users have that role.
Table 10-1 shows the columns in the new DBA_CONNECT_ROLE_GRANTEES
view.
Oracle partners and application providers should use this approach to deliver more secure products to the Oracle customer base. The principle of least privilege mitigates risk by limiting privileges to the minimum set required to perform a given function.
For each class of users that the analysis shows need the same set of privileges, create a role with only those privileges. Remove all other privileges from those users, and assign that role to those users. As needs change, you can grant additional privileges, either directly or through these new roles, or create new roles to meet new needs. This approach helps to ensure that inappropriate privileges have been limited, thereby reducing the risk of inadvertent or malicious harm.
application context
A name-value pair that enables an application to access session information about a user, such as the user ID or other user-specific information, and then securely pass this data to the database.
See also global application context.
application role
A database role that is granted to application users and that is secured by embedding passwords inside the application.
See also secure application role.
certificate
An ITU x.509 v3 standard data structure that securely binds an identify to a public key.
A certificate is created when an entity's public key is signed by a trusted identity, a certificate authority. The certificate ensures that the entity's information is correct, and that the public key belongs to that entity.
A certificate contains the entity's name, identifying information, and public key. It is also likely to contain a serial number, expiration date, and information about the rights, uses, and privileges associated with the certificate. Finally, it contains information about the certificate authority that issued it.
certificate revocation list (CRL)
See CRL.
Classless Inter-Domain Routing
See CIDR .
cleartext
Unencrypted plain text.
CIDR
The standard notation used for IP addresses. In CIDR notation, an IPv6 subnet is denoted by the subnet prefix and the size in bits of the prefix (in decimal), separated by the slash (/) character. For example, fe80:0000:0217:f2ff::/64
denotes a subnet with addresses fe80:0000:0217:f2ff:0000:0000:0000:0000
through fe80:0000:0217:f2ff:ffff:ffff:ffff:ffff
. The CIDR notation includes support for IPv4 addresses. For example, 192.0.2.1/24
denotes the subnet with addresses 192.0.2.1
through 192.0.2.255
.
CRL
A set of signed data structures that contain a list of revoked certificates. The authenticity and integrity of the CRL is provided by a digital signature appended to it. Usually, the CRL signer is the same entity that signed the issued certificate.
definer's rights procedure
A procedure (or program unit) that executes with the privileges of its owner, not its current user. Definer's rights subprograms are bound to the schema in which they are located.
For example, assume that user blake
and user scott
each have a table called dept
in their respective user schemas. If user blake
calls a definer's rights procedure, which is owned by user scott
, to update the dept
table, then this procedure will update the dept
table in the scott
schema. This is because the procedure executes with the privileges of the user who owns (defined) the procedure (that is, scott
).
See also invoker's rights procedure.
decryption
Decoding an encyrpted message so that it is readable.
denial-of-service (DoS) attack
An attack that renders a Web site inaccessible or unusable. The denial-of-service attack can occur in many different ways but frequently includes attacks that cause the site to crash, reject connections, or perform too slowly to be usable. DoS attacks come in two forms:
directly granted role
A role that has been granted directly to the user, as opposed to an indirectly granted role.
encryption
Disguising a message, rendering it unreadable to all but the intended recipient.
forced cleanup
The ability to forcibly cleanup (that is, remove) all audit records from the database. To accomplish this, you set the USE_LAST_ARCH_TIMESTAMP
argument of the DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL
procedure to FALSE
.
See also purge job.
Forwardable Ticket Granting Ticket
A special Kerberos ticket that can be forwarded to proxies, permitting the proxy to obtain additional Kerberos tickets on behalf of the client for proxy authentication.
See also Kerberos ticket.
global application context
A name-value pair that enables application context values to be accessible across database sessions.
See also application context.
indirectly granted role
A role granted to a user through another role that has already been granted to this user. Then you grant the role2
and role3
roles to the role1
role. Roles role2
and role3
are now under role1
. This means psmith
has been indirectly granted the roles role2
and role3
, in addition to the direct grant of role1
. Enabling the direct role1 for psmith enables the indirect roles role2 and role3 for this user as well.
integrity
A guarantee that the contents of a message received were not altered from the contents of the original message sent.
invoker's rights procedure
A procedure (or program unit) that executes with the privileges of the current user, that is, the user who invokes the procedure. These procedures are not bound to a particular schema. They can be run by a variety of users and allow multiple users to manage their own data by using centralized application logic. Invoker's rights procedures are created with the AUTHID
clause in the declaration section of the procedure code.
For example, assume that user blake
and user scott
each have a table called dept
in their respective user schemas. If user blake
calls an invoker's rights procedure, which is owned by user scott
, to update the dept
table, then this procedure will update the dept
table in the blake
schema. This is because the procedure executes with the privileges of the user who invoked the procedure (that is, blake
.).
See also definer's rights procedure.
Kerberos ticket
A temporary set of electronic credentials that verify the identity of a client for a particular service. Also referred to as a service ticket.
Key Distribution Center (KDC)
See KDC.
last archive timestamp
A timestamp that indicates the timestamp of the last archived audit record. For the database audit trail, this timestamp indicates the last audit record archived. For operating system audit files, it indicates the highest last modified timestamp property of the audit file that was archived. To set this timestamp, you use the DBMS_AUDIT_MGMT.SET_LAST_ARCHIVE_TIMESTAMP
PL/SQL procedure.
See also purge job.
lightweight user session
A user session that contains only information pertinent to the application that the user is logging onto. The lightweight user session does not hold its own database resources, such as transactions and cursors; hence it is considered "lightweight." Lightweight user sessions consume far less system resources than traditional database session. Because lightweight user sessions consume much fewer server resources, a lightweight user session can be dedicated to each end user and can persist for as long as the application deems necessary.
mandatory auditing
Activities that are audited by default, regardless of whether or not auditing was enabled. These activities include connections to the instance with administrator privileges, database startups, and database shutdowns. Oracle Database writes these activities to the operating system audit trail.
namespace
In Oracle Database security, the name of an application context. You create this name in a CREATE CONTEXT
statement.
Oracle Virtual Private Database
A set of features that enables you to create security policies to control database access at the row and column level. Essentially, Oracle Virtual Private Database adds a dynamic WHERE
clause to a SQL statement that is issued against the table, view, or synonym to which an Oracle Virtual Private Database security policy was applied.
PUBLIC role
A special role that every database account automatically has. By default, it has no privileges assigned to it, but it does have grants to many Java objects. You cannot drop the PUBLIC
role, and a manual grant or revoke of this role has no meaning, because the user account will always assume this role. Because all database user accounts assume the PUBLIC
role, it does not appear in the DBA_ROLES
and SESSION_ROLES
data dictionary views.
purge job
A database job created by the DBMS_AUDIT_MGMT.CREATE_PURGE_JOB
procedure, which manages the deletion of the audit trail. A database administrator schedules, enables, and disables the purge job. When the purge job becomes active, it deletes audit records from the database audit tables, or it deletes Oracle Database operating system audit files.
See also forced cleanup, last archive timestamp.
role
A named group of related privileges that you grant as a group to users or other roles.
See also indirectly granted role.
salt
In cryptography, a way to strengthen the security of encrypted data. Salt is a random string that is added to the data before it is encrypted, making it more difficult for attackers to steal the data by matching patterns of ciphertext to known ciphertext samples. Salt is often also added to passwords, before the passwords are encrypted, to avoid dictionary attacks, a method that unethical hackers (attackers) use to steal passwords. The encrypted salted values make it difficult for attackers to match the hash value of encrypted passwords (sometimes called verifiers) with their dictionary lists of common password hash values.
secure application role
A database role that is granted to application users, but secured by using an invoker's right stored procedure to retrieve the role password from a database table. A secure application role password is not embedded in the application.
See also application role.
separation of duty
Restricting activities only to those users who must perform them. For example, you should not grant the SYSDBA
privilege to any user. Only grant this privilege to administrative users. Separation of duty is required by many compliance policies. See "Guidelines for Securing User Accounts and Privileges" for guidelines on granting privileges to the correct users.
service ticket
See Kerberos ticket.
wallet
A data structure used to store and manage security credentials for an individual entity.
Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.