
Oracle® Database

Security Guide

11g Release 2 (11.2)

E36292-09

January 2017

Oracle Database Security Guide 11g Release 2 (11.2)

E36292-09

Copyright © 2006, 2017, Oracle and/or its affiliates. All rights reserved.

Primary Author: Patricia Huey

Contributors: Tammy Bednar, Naveen Gopal, Don Gosselin, Sumit Jeloka, Peter Knaggs, Sergei Kucherov, Nina Lewis, Bryn Llewellyn, Rahil Mir, Narendra Manappa, Gopal Mulagund, Janaki Narasinghanallur, Paul Needham, Deb Owens, Robert Pang, Preetam Ramakrishna, Vipin Samar, Digvijay Sirmukaddam, Richard Smith, Sachin Sonawane, James Spiller, Ashwini Surpur, Srividya Tata, Kamal Tbeileh, Rodney Ward, Daniel Wong

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

3 Configuring Authentication

This chapter contains:

	
About Authentication

	
Configuring Password Protection

	
Authenticating Database Administrators

	
Using the Database to Authenticate Users

	
Using the Operating System to Authenticate Users

	
Using the Network to Authenticate Users

	
Configuring Global User Authentication and Authorization

	
Configuring an External Service to Authenticate Users and Passwords

	
Using Multitier Authentication and Authorization

	
Preserving User Identity in Multitiered Environments

	
Finding Information About User Authentication

About Authentication

Authentication means verifying the identity of someone (a user, device, or other entity) who wants to use data, resources, or applications. Validating that identity establishes a trust relationship for further interactions. Authentication also enables accountability by making it possible to link access and actions to specific identities. After authentication, authorization processes can allow or limit the levels of access and action permitted to that entity.

You can authenticate both database and nondatabase users for an Oracle database. For simplicity, the same authentication method is generally used for all database users, but Oracle Database allows a single database instance to use any or all methods. Oracle Database requires special authentication procedures for database administrators, because they perform special database operations. Oracle Database also encrypts passwords during transmission to ensure the security of network authentication.

After authentication, authorization processes can allow or limit the levels of access and action permitted to that entity. Authorization is described in Chapter 4, "Configuring Privilege and Role Authorization".

Configuring Password Protection

This section contains:

	
What Are the Oracle Database Built-in Password Protections?

	
Minimum Requirements for Passwords

	
Using a Password Management Policy

	
Ensuring Against Password Security Threats by Using the SHA-1 Hashing Algorithm

	
Managing the Secure External Password Store for Password Credentials

See also "Guidelines for Securing Passwords" for advice on securing passwords. If you want to configure Oracle XML DB to authenticate users by encrypting their passwords but you do not need to encrypt other data (for example, an Intranet email), see Oracle XML DB Developer's Guide for more information.

What Are the Oracle Database Built-in Password Protections?

Oracle Database provides a set of built-in password protections designed to protect your users' passwords. These password protections are as follows:

	
Password encryption. Oracle Database automatically and transparently encrypts passwords during network (client-to-server and server-to-server) connections, using Advanced Encryption Standard (AES) before sending them across the network.

	
Password complexity checking. In a default installation, Oracle Database provides the verify_function_11g password verification function to ensure that new or changed passwords are sufficiently complex to prevent intruders who try to break into the system by guessing passwords. You must manually enable password complexity checking. You can further customize the complexity of your users' passwords. See "Enforcing Password Complexity Verification" for more information.

	
Preventing passwords from being broken. If a user tries to log in to Oracle Database multiple times using an incorrect password, Oracle Database delays each login. This protection applies for attempts made from different IP addresses or multiple client connections. Afterwards, it gradually increases the time before the user can try another password, up to a maximum of about 10 seconds. If the user enters the correct password, he or she is able to log in successfully without any delay.

This feature significantly decreases the number of passwords that an intruder would be able to try within a fixed time period when attempting to log in. The failed logon delay slows down each failed logon attempt, increasing the overall time that is required to perform a password-guessing attack, because such attacks usually require a very large number of failed logon attempts.

	
Enforced case sensitivity for passwords. Passwords are case sensitive. For example, the password hPP5620qr fails if it is entered as hpp5620QR or hPp5620Qr. In previous releases, passwords were not case sensitive. See "Enabling or Disabling Password Case Sensitivity" for information about how case sensitivity works, and how it affects password files and database links.

	
Passwords hashed using the Secure Hash Algorithm (SHA) cryptographic hash function SHA-1. Oracle Database uses the SHA-1 verifier is to authenticate the user password and establish the session of the user. In addition, it enforces case sensitivity and restricts passwords to 160 bits. The advantage of using the SHA-1 verifier is that it is commonly used by Oracle Database customers and provides much better security without forcing a network upgrade. It also adheres to compliance regulations that mandate the use of strong passwords being protected by a suitably strong password hashing algorithm. See "Ensuring Against Password Security Threats by Using the SHA-1 Hashing Algorithm" for more information.

Minimum Requirements for Passwords

Passwords must not exceed 30 characters or 30 bytes. For greater security, however, follow the additional guidelines described in "Guidelines for Securing Passwords".

To create passwords for users, you can use the CREATE USER or ALTER USER SQL statements. SQL statements that accept the IDENTIFIED BY clause also enable you to create passwords. Example 3-1 shows several SQL statements that create passwords with the IDENTIFIED BY clause.

Example 3-1 Password Creation SQL Statements

CREATE USER psmith IDENTIFIED BY password;
GRANT CREATE SESSION TO psmith IDENTIFIED BY password;
ALTER USER psmith IDENTIFIED BY password;
CREATE DATABASE LINK AUTHENTICATED BY psmith IDENTIFIED BY password;

	
See Also:

	
"Enforcing Password Complexity Verification" for ways that you can ensure that passwords are sufficiently complex for your site

	
"Guidelines for Securing Passwords" for more ways to secure passwords

	
"Securing Passwords in Application Design" for password protection guidelines application developers should follow

	
Oracle Database SQL Language Reference for more information about the CREATE USER, ALTER USER, GRANT, and CREATE DATABASE LINK SQL statements

Using a Password Management Policy

This section contains:

	
About Managing Passwords

	
Finding User Accounts That Have Default Passwords

	
Configuring Password Settings in the Default Profile

	
Disabling and Enabling the Default Password Security Settings

	
Automatically Locking a User Account After a Failed Login

	
Controlling Password Aging and Expiration

	
Password Change Life Cycle

	
Setting the PASSWORD_LIFE_TIME Profile Parameter to a Low Value

	
Controlling User Ability to Reuse Previous Passwords

	
Enforcing Password Complexity Verification

	
Enabling or Disabling Password Case Sensitivity

	
See Also:

	
"Managing Resources with Profiles"

	
Oracle Database SQL Language Reference for syntax and specific information about SQL statements discussed in this section

About Managing Passwords

Database security systems that depend on passwords require that passwords be kept secret at all times. Because passwords are vulnerable to theft and misuse, Oracle Database uses a password management policy. Database administrators and security officers control this policy through user profiles, enabling greater control of database security.

Use the CREATE PROFILE statement to create a user profile. The profile is assigned to a user with the CREATE USER or ALTER USER statement. Details of creating and altering database users are not discussed in this section. This section describes password parameters that can be specified using the CREATE PROFILE (or ALTER PROFILE) statement.

Finding User Accounts That Have Default Passwords

When you create a database in Oracle Database 11g Release 2 (11.2), most of its default accounts are locked with the passwords expired. If you have upgraded from an earlier release of Oracle Database, you may have user accounts that have default passwords. These are default accounts that are created when you create a database, such as the HR, OE, and SCOTT accounts.

For greater security, change the passwords for these accounts. Using a default password that is commonly known can make your database vulnerable to attacks by intruders. To find both locked and unlocked accounts that use default passwords, log onto SQL*Plus using the SYSDBA privilege and then query the DBA_USERS_WITH_DEFPWD data dictionary view.

For example, to find both the names of accounts that have default passwords and the status of the account:

SELECT d.username, u.account_status
FROM DBA_USERS_WITH_DEFPWD d, DBA_USERS u
WHERE d.username = u.username
ORDER BY 2,1;

USERNAME ACCOUNT_STATUS
--------- ---------------------------
SCOTT EXPIRED & LOCKED

Then change the passwords for any accounts that the DBA_USERS_WITH_DEFPWD view lists. Oracle recommends that you do not assign these accounts passwords that they may have had in previous releases of Oracle Database.

ALTER USER SCOTT ACCOUNT UNLOCK IDENTIFIED BY password;

Replace password with a password that is secure. "Minimum Requirements for Passwords" describes the minimum requirements for passwords.

Configuring Password Settings in the Default Profile

A profile is a collection of parameters that sets limits on database resources. If you assign the profile to a user, then that user cannot exceed these limits. You can use profiles to configure database settings such as sessions per user, logging and tracing features, and so on. Profiles can also control user passwords. To find information about the current password settings in the profile, you can query the DBA_PROFILES data dictionary view.

Table 3-1 lists the password-specific parameter settings in the default profile.

Table 3-1 Password-Specific Settings in the Default Profile

	Parameter	Default Setting	Description
	
FAILED_LOGIN_ATTEMPTS

	
10

	
Sets the maximum times a user try to log in and to fail before locking the account.

Notes:

	
When you set this parameter, take into consideration users who may log in using the CONNECT THROUGH privilege.

	
You can set limits on the number of times an unauthorized user (possibly an intruder) attempts to log in to Oracle Call Interface (OCI) applications by using the SEC_MAX_FAILED_LOGIN_ATTEMPTS initialization parameter. See "Configuring the Maximum Number of Authentication Attempts" for more information about this parameter.

See also "Automatically Locking a User Account After a Failed Login" for more information.

	
PASSWORD_GRACE_TIME

	
7

	
Sets the number of days that a user has to change his or her password before it expires.

See "Controlling Password Aging and Expiration" for more information.

	
PASSWORD_LIFE_TIME

	
180

	
Sets the number of days the user can use his or her current password.

See "Controlling Password Aging and Expiration" for more information.

	
PASSWORD_LOCK_TIME

	
1

	
Sets the number of days an account will be locked after the specified number of consecutive failed login attempts. After the time passes, then the account becomes unlocked. This user's profile parameter is useful to help prevent brute force attacks on user passwords but not to increase the maintenance burden on administrators.

See "Automatically Locking a User Account After a Failed Login" for more information.

	
PASSWORD_REUSE_MAX

	
UNLIMITED

	
Sets the number of password changes required before the current password can be reused.

See "Controlling User Ability to Reuse Previous Passwords" for more information.

	
PASSWORD_REUSE_TIME

	
UNLIMITED

	
Sets the number of days before which a password cannot be reused.

See "Controlling User Ability to Reuse Previous Passwords" for more information.

For greater security, use the default settings described in Table 3-1, based on your needs. You can create or modify the password-specific parameters individually by using the CREATE PROFILE or ALTER PROFILE statement. For example:

ALTER PROFILE prof LIMIT
 FAILED_LOGIN_ATTEMPTS 9
 PASSWORD_LOCK_TIME 10;

See Oracle Database SQL Language Reference for more information about CREATE PROFILE, ALTER PROFILE, and the password-related parameters described in this section.

Disabling and Enabling the Default Password Security Settings

If your applications use the default password security settings from Oracle Database 10g Release 2 (10.2), then you can revert to these settings until you modify the applications to use the Release 11g password security settings. To do so, run the undopwd.sql script.

After you have modified your applications to conform to the Release 11g password security settings, you can manually update your database to use the password security configuration that suits your business needs, or you can run the secconf.sql script to apply the Release 11g default password settings. You can customize this script to have different security settings if you like, but remember that the settings listed in the original script are Oracle-recommended settings.

If you created your database manually, then you should run the secconf.sql script to apply the Release 11g default password settings to the database. Databases that have been created with Database Configuration Assistant (DBCA) will have these settings, but manually created databases do not.

The undopwd.sql and secconf.sql scripts are in the $ORACLE_HOME/rdbms/admin directory. The undopwd.sql script affects password settings only, and the secconf.sql script affects both password and audit settings. They have no effect on other security settings.

Automatically Locking a User Account After a Failed Login

Oracle Database can lock a user's account after a specified number of consecutive failed log-in attempts. You can set the PASSWORD_LOCK_TIME user's profile parameter to configure the account to unlock automatically after a specified time interval or to require database administrator intervention to be unlocked. The database administrator also can lock accounts manually, so that they must be unlocked explicitly by the database administrator.

You can specify the permissible number of failed login attempts by using the CREATE PROFILE statement. You can also specify the amount of time accounts remain locked.

Example 3-2 sets the maximum number of failed login attempts for the user johndoe to 10 (the default), and the amount of time the account locked to 30 days. The account will unlock automatically after 30 days.

Example 3-2 Locking an Account with the CREATE PROFILE Statement

CREATE PROFILE prof LIMIT
 FAILED_LOGIN_ATTEMPTS 10
 PASSWORD_LOCK_TIME 30;
ALTER USER johndoe PROFILE prof;

Each time the user unsuccessfully logs in, Oracle Database increases the delay exponentially with each login failure.

If you do not specify a time interval for unlocking the account, then PASSWORD_LOCK_TIME assumes the value specified in a default profile. (The recommended value is 1 day.) If you specify PASSWORD_LOCK_TIME as UNLIMITED, then you must explicitly unlock the account by using an ALTER USER statement. For example, assuming that PASSWORD_LOCK_TIME UNLIMITED is specified for johndoe, then you use the following statement to unlock the johndoe account:

ALTER USER johndoe ACCOUNT UNLOCK;

After a user successfully logs into an account, Oracle Database resets the unsuccessful login attempt count for the user, if it is non-zero, to zero.

The security officer can also explicitly lock user accounts. When this occurs, the account cannot be unlocked automatically, and only the security officer should unlock the account. The CREATE USER or ALTER USER statements explicitly lock or unlock user accounts. For example, the following statement locks the user account, susan:

ALTER USER susan ACCOUNT LOCK;

Controlling User Ability to Reuse Previous Passwords

You can ensure that users do not reuse their previous passwords for a specified amount of time or for a specified number of password changes. To do so, configure the rules for password reuse with CREATE PROFILE or ALTER PROFILE statements. For the complete syntax of these statements, see the Oracle Database SQL Language Reference.

Table 3-2 lists the CREATE PROFILE and ALTER PROFILE parameters that control ability of a user to reuse a previous password.

Table 3-2 Parameters Controlling Reuse of a Previous Password

	Parameter Name	Description and Use
	
PASSWORD_REUSE_TIME

	
Requires either of the following:

	
A number specifying how many days (or a fraction of a day) between the earlier use of a password and its next use

	
The word UNLIMITED

	
PASSWORD_REUSE_MAX

	
Requires either of the following:

	
An integer to specify the number of password changes required before a password can be reused

	
The word UNLIMITED

If you do not specify a parameter, then the user can reuse passwords at any time, which is not a good security practice.

If neither parameter is UNLIMITED, then password reuse is allowed, but only after meeting both conditions. The user must have changed the password the specified number of times, and the specified number of days must have passed since the previous password was last used.

For example, suppose that the profile of user A had PASSWORD_REUSE_MAX set to 10 and PASSWORD_REUSE_TIME set to 30. User A cannot reuse a password until he or she has reset the password 10 times, and until 30 days had passed since the password was last used.

If either parameter is specified as UNLIMITED, then the user can never reuse a password.

If you set both parameters to UNLIMITED, then Oracle Database ignores both, and the user can reuse any password at any time.

	
Note:

If you specify DEFAULT for either parameter, then Oracle Database uses the value defined in the DEFAULT profile, which sets all parameters to UNLIMITED. Oracle Database thus uses UNLIMITED for any parameter specified as DEFAULT, unless you change the setting for that parameter in the DEFAULT profile.

Controlling Password Aging and Expiration

You can specify a password lifetime, after which the password expires. This means that the next time the user logs in with the current, correct password, he or she is prompted to change the password. By default, there are no complexity or password history checks, so users can still reuse any previous or weak passwords. You can control these factors by setting the PASSWORD_REUSE_TIME, PASSWORD_REUSE_MAX, and PASSWORD_VERIFY_FUNCTION parameters. (See "Controlling User Ability to Reuse Previous Passwords" and "Enforcing Password Complexity Verification" for more information.)

In addition, you can set a grace period, during which each attempt to log in to the database account receives a warning message to change the password. If the user does not change it by the end of that period, then Oracle Database expires the account.

As a database administrator, you can manually set the password state to be expired, which sets the account status to EXPIRED. The user must then follow the prompts to change the password before the logon can proceed.

For example, in SQL*Plus, suppose user SCOTT tries to log in with the correct credentials, but his password has expired. User SCOTT will then see the ORA-28001: The password has expired error and be prompted to change his password, as follows:

Changing password for scott
New password: new_password
Retype new password: new_password
Password changed.

Use the CREATE PROFILE or ALTER PROFILE statement to specify a lifetime for passwords. To understand the life cycle of passwords, see "Password Change Life Cycle".

Example 3-3 demonstrates how to create and assign a profile to user johndoe, and the PASSWORD_LIFE_TIME parameter specifies that johndoe can use the same password for 180 days before it expires.

Example 3-3 Setting Password Aging and Expiration with CREATE PROFILE

CREATE PROFILE prof LIMIT
 FAILED_LOGIN_ATTEMPTS 4
 PASSWORD_LOCK_TIME 30
 PASSWORD_LIFE_TIME 180;
ALTER USER johndoe PROFILE prof;

You can check the status of any account, whether it is open, in grace, or expired, by running the following query:

SELECT ACCOUNT_STATUS FROM DBA_USERS WHERE USERNAME = 'username';

Password Change Life Cycle

Figure 3-1 shows the lifecycle of the password lifetime and grace period.

	
Phase 1: After the user account is created, or the password of an existing account is changed, the password lifetime period begins.

	
Phase 2: This phase represents the period of time after the password lifetime ends but before the user logs in again with the correct password. The correct credentials are needed for Oracle Database to update the account status. Otherwise, the account status will remain unchanged. Oracle Database does not have any background process to update the account status. All changes to the account status are driven by the Oracle Database server process on behalf of authenticated users.

	
Phase 3: When the user finally does log in, the grace period begins. Oracle Database then updates the DBA_USERS.EXPIRY_DATE column to a new value using the current time plus the value of the PASSWORD_GRACE_TIME setting from the account's password profile. At this point, the user receives an ORA-28002 warning message about the password expiring in the near future (for example, ORA-28002 The password will expire within 7 days if PASSWORD_GRACE_TIME is set to 7 days), but the user can still log in without changing the password. The DBA_USERS.EXPIRY_DATE column shows the time in the future when the user will be prompted to change their password.

	
Phase 4: After the grace period (Phase 3) ends, the ORA-28001: The password has expired error appears, and the user is prompted to change the password after entering the current, correct password before the authentication can proceed. If the user has an Oracle Active Data Guard configuration, where there is a primary and a stand-by database, and the authentication attempt is made on the standby database (which is a read-only database), then the ORA-28032: Your password has expired and the database is set to read-only error appears. The user should log into the primary database and change the password there.

During any of these four phases, you can query the DBA_USERS data dictionary view to find the user's account status in the DBA_USERS.ACCOUNT_STATUS column.

Figure 3-1 Chronology of Password Lifetime and Grace Period

[image: Description of Figure 3-1 follows]

In the following example, the profile assigned to johndoe includes the specification of a grace period: PASSWORD_GRACE_TIME = 3 (the recommended value). The first time johndoe tries to log in to the database after 90 days (this can be any day after the 90th day, that is, the 91st day, 100th day, or another day), he receives a warning message that his password will expire in 3 days. If 3 days pass, and if he does not change his password, then the password expires. After this, he receives a prompt to change his password on any attempt to log in.

CREATE PROFILE prof LIMIT
 FAILED_LOGIN_ATTEMPTS 4
 PASSWORD_LIFE_TIME 90
 PASSWORD_GRACE_TIME 3;

ALTER USER johndoe PROFILE prof;

A database administrator or a user who has the ALTER USER system privilege can explicitly expire a password by using the CREATE USER and ALTER USER statements. The following statement creates a user with an expired password. This setting forces the user to change the password before the user can log in to the database.

CREATE USER jbrown
 IDENTIFIED BY password
 ...
 PASSWORD EXPIRE;

There is no "password unexpire" clause for the CREATE USER statement, but an account can be "unexpired" by changing the password on the account.

Setting the PASSWORD_LIFE_TIME Profile Parameter to a Low Value

Be careful if you plan to set the PASSWORD_LIFE_TIME parameter of CREATE PROFILE or ALTER PROFILE to a low value (for example, 1 day). The PASSWORD_LIFE_TIME limit of a profile is measured from the last time that an account's password is changed, or the account creation time if the password has never been changed. These dates are recorded in the PTIME (password change time) and CTIME (account creation time) columns of the SYS.USER$ system table. The PASSWORD_LIFE_TIME limit is not measured starting from the timestamp of the last change to the PASSWORD_LIFE_TIME profile parameter, as may be initially thought. Therefore, any accounts affected by the changed profile whose last password change time was more than PASSWORD_LIFE_TIME days ago immediately expire and enter their grace period on their next connection, issuing the ORA-28002: The password will expire within n days warning.

As a database administrator, you can find an account's last password change time as follows:

ALTER SESSION SET NLS_DATE_FORMAT='DD-MON-YYYY HH24:MI:SS';
SELECT PTIME FROM SYS.USER$ WHERE NAME = 'user_name'; -- Password change time

To find when the account was created and the password expiration date, issue the following query:

SELECT CREATED, EXPIRY_DATE FROM DBA_USERS WHERE USERNAME = 'user_name';

If the user who is assigned this profile is currently logged in when you set the PASSWORD_LIFE_TIME parameter and remains logged in, then Oracle Database does not change the user's account status from OPEN to EXPIRED(GRACE) when the currently listed expiration date passes. The timing begins only when the user logs into the database.

When making changes to a password profile, a database administrator must be aware that if some of the users who are subject to this profile are currently logged in to the Oracle database while their password profile is being updated by the administrator, then those users could potentially remain logged in to the system even beyond the expiration date of their password. You can find the currently logged in users by querying the USERNAME column of the V$SESSION view.

This is because the expiration date of a user's password is based on the timestamp of the last password change on their account plus the value of the PASSWORD_LIFE_TIME password profile parameter set by the administrator. It is not based on the timestamp of the last change to the password profile itself.

Note the following:

	
If the user is not logged in when you set PASSWORD_LIFE_TIME to a low value, then the user's account status does not change until the user logs in.

	
You can set the PASSWORD_LIFE_TIME parameter to UNLIMITED, but this only affects accounts that have not entered their grace period. After the grace period expires, the user must change the password.

Enforcing Password Complexity Verification

Complexity verification checks that each password is complex enough to provide reasonable protection against intruders who try to break into the system by guessing passwords. This forces users to create strong, secure passwords for database user accounts. You need to ensure that the passwords for your users are complex enough to provide reasonable protection against intruders who try to break into the system by guessing passwords.

How Oracle Database Checks the Complexity of Passwords

Oracle Database provides a sample password verification function entitled verify_function_11G in the PL/SQL script utlpwdmg.sql (located in $ORACLE_HOME/rdbms/admin) that, when enabled, checks whether users are correctly creating or modifying their passwords. The utlpwdmg.sql script provides two password verification functions: one for previous releases of Oracle Database and an updated version for Oracle Database Release 11g.

For better security of passwords, Oracle recommends that you associate the verify_function_11G function with the default profile. "Customizing Password Complexity Verification" provides an example of how to accomplish this.

The utlpwdmg.sql script checks for the following requirements when users create or modify passwords:

	
The password contains no fewer than 8 characters and does not exceed 30 characters.

	
The password is not the same as the user name, nor is it the user name spelled backward or with the numbers 1–100 appended.

	
The password is not the same as the server name or the server name with the numbers 1–100 appended.

	
The password is not too simple, for example, welcome1, database1, account1, user1234, password1, oracle, oracle123, computer1, abcdefg1, or change_on_install.

	
The password is not oracle or oracle with the numbers 1–100 appended.

	
The password includes at least 1 numeric and 1 alphabetic character.

	
The password differs from the previous password by at least 3 letters.

Who Can Use the Password Complexity Functions?

Before you can use the password complexity verification functions in the CREATE PROFILE or ALTER PROFILE statement, you must be granted the EXECUTE privilege on them. The password verification functions are located in the SYS schema.

Customizing Password Complexity Verification

You can create your own password complexity verification function by backing up and customizing the verify_function_11G function in the utlpwdmg.sql script. In fact, Oracle recommends that you do so to further secure your site's passwords. See also Guideline 1 in "Guidelines for Securing Passwords" for general advice on creating passwords. However, be aware that the password complexity checking is not enforced for user SYS.

By default, password complexity verification is not enabled. To enable the password complexity verification:

	
Log in to SQL*Plus with administrative privileges.

For example:

CONNECT SYS AS SYSDBA
Enter password: password

	
Run the utlpwdmg.sql script (or your modified version of this script) to create the password complexity functions in the SYS schema.

@$ORACLE_HOME/RDBMS/ADMIN/utlpwdmg.sql

	
Grant any users who must use this function the EXECUTE privilege on it.

For example:

GRANT pmsith EXECUTE ON verify_function_11G;

	
In the default profile or the user profile, set the PASSWORD_VERIFY_FUNCTION setting to either the sample password complexity function in the utlpwdmg.sql script, or to your customized function. Use one of the following methods:

	
Log in to SQL*Plus with administrator privileges and use the CREATE PROFILE or ALTER PROFILE statement to enable the function. For example, to update the default profile to use the verify_function_11G function:

ALTER PROFILE default LIMIT
 PASSWORD_VERIFY_FUNCTION verify_function_11G;

	
In Oracle Enterprise Manager, go to the Edit Profiles page and then under Complexity, select the name of the password complexity function from the Complexity function list.

After you have enabled password complexity verification, it takes effect immediately.

	
Note:

The ALTER USER statement has a REPLACE clause. With this clause, users can change their own unexpired passwords by supplying the previous password to authenticate themselves.
If the password has expired, then the user cannot log in to SQL to issue the ALTER USER command. Instead, the OCIPasswordChange() function must be used, which also requires the previous password.

A database administrator with ALTER ANY USER privilege can change any user password (force a new password) without supplying the old one.

Enabling or Disabling Password Case Sensitivity

This section contains:

	
About Enabling or Disabling Password Case Sensitivity

	
Procedure for Enabling Password Case Sensitivity

	
Finding the Password Versions of User Accounts

	
How Case Sensitivity Affects Password Files

	
How Case Sensitivity Affects Accounts Created for Database Link Connections

About Enabling or Disabling Password Case Sensitivity

When you create or modify user accounts, by default, passwords are case sensitive. To control the use of case sensitivity in passwords, set the SEC_CASE_SENSITIVE_LOGON initialization parameter. Only users who have the ALTER SYSTEM privilege can set the SEC_CASE_SENSITIVE_LOGON parameter. Set it to TRUE to enable case sensitivity or FALSE to disable case sensitivity.

For greater security, Oracle recommends that you enable case sensitivity in passwords. However, if you have compatibility issues with your applications, you can use this parameter to disable password case sensitivity. Examples of application compatibility issues are passwords for your applications being hard-coded to be case insensitive, or different application modules being inconsistent about case sensitivity when sending credentials to start a database session.

Do not set the SEC_CASE_SENSITIVE_LOGON parameter to FALSE when exclusive mode is enabled (the SQLNET.ALLOWED_LOGON_VERSION parameter is set to 11), because the more secure verifiers used in exclusive mode only support case-sensitive password checking. For compatibility reasons, Oracle Database does not prevent the use of the FALSE setting for SEC_CASE_SENSITIVE_LOGON when the SQLNET.ALLOWED_LOGON_VERSION parameter is set to 11. This can result in accounts becoming inaccessible if these settings are in effect when users change their passwords or you create new user accounts.

Procedure for Enabling Password Case Sensitivity

To enable case sensitivity in passwords:

	
If you are using a password file, ensure that it was created with the IGNORECASE parameter set to N.

The IGNORECASE parameter overrides the SEC_CASE_SENSITIVE_LOGON parameter. By default, IGNORECASE is set to Y, which means that passwords are treated as case-insensitive. For more information about password files, see Oracle Database Administrator's Guide.

	
Enter the following ALTER SYSTEM statement:

ALTER SYSTEM SET SEC_CASE_SENSITIVE_LOGON = TRUE

Finding the Password Versions of User Accounts

In previous releases of Oracle Database, passwords were not case sensitive. If you import user accounts from a previous release, for example, Release 10g, into the current database release, the case-insensitive passwords in these accounts remain case insensitive until the user changes his or her password. If the account was granted SYSDBA or SYSOPER privilege, it is imported to the password file. (See "How Case Sensitivity Affects Password Files" for more information.) When a password from a user account from the previous release is changed, it then becomes case sensitive.

You can find users who have case sensitive or case insensitive passwords by querying the DBA_USERS view. The PASSWORD_VERSIONS column in this view indicates the release in which the password was created. For example:

SELECT USERNAME,PASSWORD_VERSIONS FROM DBA_USERS;

USERNAME PASSWORD_VERSIONS
------------------------------ -----------------
JONES 10G 11G
ADAMS 10G 11G
CLARK 10G 11G
PRESTON 11G
BLAKE 10G

The passwords for accounts jones, adams, and clark were originally created in Release 10g and then reset in Release 11g. Their passwords, assuming case sensitivity has been enabled, are now case sensitive, as is the password for preston. However, the account for blake is still using the Release 10g standard, so it is case insensitive. Ask him to reset his password so that it will be case sensitive, and therefore more secure.

See Oracle Database Reference for more information about the DBA_USERS view.

How Case Sensitivity Affects Password Files

You can enable or disable case sensitivity for password files by using the ignorecase argument in the ORAPWD command line utility. The default value for ignorecase is n (no), which enforces case sensitivity.

Example 3-4 shows how to enable case sensitivity in password files.

Example 3-4 Enabling Password Case Sensitivity

orapwd file=orapw entries=100 ignorecase=n
Enter password for SYS: password

This creates a password file called orapwd. Because ignorecase is set to n (no), the password entered for the password parameter will be case sensitive. Afterwards, if you connect using this password, it succeeds—as long as you enter it using the exact case sensitivity in which it was created. If you enter the same password but with different case sensitivity, it will fail.

If you set ignorecase to y, then the passwords in the password file are case insensitive, which means that you can enter the password using any capitalization that you want.

If you imported user accounts from a previous release and these accounts were created with SYSDBA or SYSOPER privileges, then they will be included in the password file. The passwords for these accounts are case insensitive. The next time these users change their passwords, and assuming case sensitivity is enabled, the passwords become case sensitive. For greater security, have these users change their passwords.

See Oracle Database Administrator's Guide for more information about password files.

How Case Sensitivity Affects Accounts Created for Database Link Connections

When you create a database link connection, you must define a user name and password for the connection. When you create the database link connection, the password is case sensitive. How this user enters his or her password for connections depends on the release in which the database link was created:

	
Users can connect from a pre-Release 11g database to a Release 11g database. If case sensitivity is disabled in the Release 11g database, then the user can enter the password using any case. If case sensitivity is enabled, however, then the user must enter the password using the case in which the password was created in the Release 11g database.

	
If the user connecting from a Release 11g database to a pre-Release 11g database, he or she can enter his or her password using any case, because the password is still case insensitive.

You can find the user accounts for existing database links by running the V$DBLINK view. For example:

SELECT DB_LINK, OWNER_ID FROM V$DBLINK;

See Oracle Database Reference for more information about the V$DBLINK view.

Ensuring Against Password Security Threats by Using the SHA-1 Hashing Algorithm

The SHA-1 cryptographic hashing algorithm protects against password-based security threats by including support for mixed case characters, special characters, and multibyte characters in passwords. In addition, the SHA-1 hashing algorithm adds a salt to the password when it is hashed, which provides additional protection. This enables your users to create far more complex passwords, and therefore, makes it more difficult for an intruder to gain access to these passwords. Oracle recommends that you use the SHA-1 hashing algorithm.

The password versions (also known as password hash values) are considered to be extremely sensitive, because they are used as a "shared secret" between the server and person who is logging in. If an intruder learns this secret, then the protection of the authentication is immediately and severely compromised. Remember that administrative users who have account management privileges, administrative users who have the SYSDBA system privilege, or even users who have the EXP_FULL_DATABASE role can immediately access the password hash values. Therefore, this type of administrative user must be trustworthy if the integrity of the database password-based authentication is to be preserved. If you cannot trust these administrators, then it is better to deploy a directory server (such as Oracle Database Enterprise User Security) so that the password versions remain within the Enterprise User Security directory and are never accessible to anyone except the Enterprise User Security administrator.

You optionally can configure Oracle Database to run in exclusive mode for Release 11 or later. When you enable exclusive mode, then Oracle Database uses the SHA-1 hashing algorithm exclusively. Oracle Database 11g exclusive mode is compatible with Oracle Database 10g and later products that use OCI-based drivers, including SQL*Plus, ODBC, Oracle .NET, Oracle Forms, and various third-party Oracle Database adapters. However, be aware that exclusive mode for Release 11g is not compatible with JDBC type-4 (thin) versions earlier than Oracle Database 11g or Oracle Database Client interface (OCI)-based drivers earlier than Oracle Database 10g. After you configure exclusive mode, Oracle recommends that you remove the previous password hash values from the data dictionary.

Follow these steps:

	
Enable exclusive mode.

	
Create a back up copy of the sqlnet.ora parameter file, by default located in the $ORACLE_HOME/network/admin directory on UNIX operating systems and the %ORACLE_HOME%\network\admin directory on Microsoft Windows operating systems.

	
Ensure that the sqlnet.ora file has the following line:

SQLNET.ALLOWED_LOGON_VERSION=12

If you have applied the October 2012 CPU or if you are using Oracle Database Release 11.2.0.3, then ensure that you set SQLNET.ALLOWED_LOGON_VERSION to 12, not 11.

	
Save and exit the sqlnet.ora file.

	
Verify that the passwords in test scripts or batch jobs are consistent in their use of mixed case and special characters.

	
Change all passwords to include mixed case and special characters.

Oracle recommends that you use random passwords with a length of at least twelve characters. See Guideline 1 under "Guidelines for Securing Passwords" for additional guidelines for creating passwords, and techniques for creating complex but easy to remember passwords.

	
See Also:

"Downloading Security Patches and Contacting Oracle Regarding Vulnerabilities"

Managing the Secure External Password Store for Password Credentials

This section contains:

	
About the Secure External Password Store

	
How Does the External Password Store Work?

	
Configuring Clients to Use the External Password Store

	
Managing External Password Store Credentials

About the Secure External Password Store

You can store password credentials for connecting to databases by using a client-side Oracle wallet. An Oracle wallet is a secure software container that stores authentication and signing credentials.

This wallet usage can simplify large-scale deployments that rely on password credentials for connecting to databases. When this feature is configured, application code, batch jobs, and scripts no longer need embedded user names and passwords. This reduces risk because the passwords are no longer exposed, and password management policies are more easily enforced without changing application code whenever user names or passwords change.

	
See Also:

	
"Using Proxy Authentication with the Secure External Password Store"

	
Oracle Database Advanced Security Administrator's Guide for general information about Oracle wallets

	
Note:

The external password store of the wallet is separate from the area where public key infrastructure (PKI) credentials are stored. Consequently, you cannot use Oracle Wallet Manager to manage credentials in the external password store of the wallet. Instead, use the command-line utility mkstore to manage these credentials.

How Does the External Password Store Work?

Typically, users (and as applications, batch jobs, and scripts) connect to databases by using a standard CONNECT statement that specifies a database connection string. This string can include a user name and password, and an Oracle Net service name identifying the database on an Oracle Database network. If the password is omitted, the connection prompts the user for the password.

For example, the service name could be the URL that identifies that database, or a TNS alias you entered in the tnsnames.ora file in the database. Another possibility is a host:port:sid string.

The following examples are standard CONNECT statements that could be used for a client that is not configured to use the external password store:

CONNECT salesapp@sales_db.us.example.com
Enter password: password

CONNECT salesapp@orasales
Enter password: password

CONNECT salesapp@ourhost37:1527:DB17
Enter password: password

In these examples, salesapp is the user name, with the unique connection string for the database shown as specified in three different ways. You could use its URL sales_db.us.example.com, or its TNS alias orasales from the tnsnames.ora file, or its host:port:sid string.

However, when clients are configured to use the secure external password store, applications can connect to a database with the following CONNECT statement syntax, without specifying database login credentials:

CONNECT /@db_connect_string

CONNECT /@db_connect_string AS SYSDBA

CONNECT /@db_connect_string AS SYSOPER

In this specification, db_connect_string is a valid connection string to access the intended database, such as the service name, URL, or alias as shown in the earlier examples. Each user account must have its own unique connection string; you cannot create one connection string for multiple users.

In this case, the database credentials, user name and password, are securely stored in an Oracle wallet created for this purpose. The autologin feature of this wallet is turned on, so the system does not need a password to open the wallet. From the wallet, it gets the credentials to access the database for the user they represent.

	
See Also:

Oracle Database Advanced Security Administrator's Guide for information about autologin wallets

Configuring Clients to Use the External Password Store

If your client is already configured to use external authentication, such as Windows native authentication or Secure Sockets Layer (SSL), then Oracle Database uses that authentication method. The same credentials used for this type of authentication are typically also used to log in to the database.

For clients not using such authentication methods or wanting to override them for database authentication, you can set the SQLNET.WALLET_OVERRIDE parameter in sqlnet.ora to TRUE. The default value for SQLNET.WALLET_OVERRIDE is FALSE, allowing standard use of authentication credentials as before.

If you want a client to use the secure external password store feature, then perform the following configuration task:

	
Create a wallet on the client by using the following syntax at the command line:

mkstore -wrl wallet_location -create

For example:

mkstore -wrl c:\oracle\product\11.2.0\db_1\wallets -create
Enter password: password

wallet_location is the path to the directory where you want to create and store the wallet. This command creates an Oracle wallet with the autologin feature enabled at the location you specify. The autologin feature enables the client to access the wallet contents without supplying a password. See Oracle Database Advanced Security Administrator's Guide for information about autologin wallets.

The mkstore utility -create option uses password complexity verification. See "Enforcing Password Complexity Verification" for more information.

	
Create database connection credentials in the wallet by using the following syntax at the command line:

mkstore -wrl wallet_location -createCredential db_connect_string username
Enter password: password

For example:

mkstore -wrl c:\oracle\product\11.2.0\db_1\wallets -createCredential orcl system
Enter password: password

In this specification:

	
wallet_location is the path to the directory where you created the wallet in Step 1.

	
db_connect_string is the TNS alias you use to specify the database in the tnsnames.ora file or any service name you use to identify the database on an Oracle network. By default, tnsnames.ora is located in the $ORACLE_HOME/network/admin directory on UNIX systems and in ORACLE_HOME\network\admin on Windows.

	
username is the database login credential. When prompted, enter the password for this user.

Repeat this step for each database you want accessible using the CONNECT /@db_connect_string syntax.

	
Note:

The db_connect_string used in the CONNECT /@db_connect_string statement must be identical to the db_connect_string specified in the -createCredential command.

	
In the client sqlnet.ora file, enter the WALLET_LOCATION parameter and set it to the directory location of the wallet you created in Step 1.

For example, if you created the wallet in $ORACLE_HOME/network/admin and your Oracle home is set to /private/ora11, then you need to enter the following into your client sqlnet.ora file:

WALLET_LOCATION =
 (SOURCE =
 (METHOD = FILE)
 (METHOD_DATA =
 (DIRECTORY = /private/ora11/network/admin)
)
)

	
In the client sqlnet.ora file, enter the SQLNET.WALLET_OVERRIDE parameter and set it to TRUE as follows:

SQLNET.WALLET_OVERRIDE = TRUE

This setting causes all CONNECT /@db_connect_string statements to use the information in the wallet at the specified location to authenticate to databases.

When external authentication is in use, an authenticated user with such a wallet can use the CONNECT /@db_connect_string syntax to access the previously specified databases without providing a user name and password. However, if a user fails that external authentication, then these connect statements also fail.

	
Note:

If an application uses SSL for encryption, then the sqlnet.ora parameter, SQLNET.AUTHENTICATION_SERVICES, specifies SSL and an SSL wallet is created. If this application wants to use secret store credentials to authenticate to databases (instead of the SSL certificate), then those credentials must be stored in the SSL wallet. After SSL authentication, if SQLNET.WALLET_OVERRIDE = TRUE, then the user names and passwords from the wallet are used to authenticate to databases. If SQLNET.WALLET_OVERRIDE = FALSE, then the SSL certificate is used.

Example 3-5 shows a sample sqlnet.ora file with the WALLET_LOCATION and the SQLNET.WALLET_OVERRIDE parameters set as described in Steps 3 and 4.

Example 3-5 Sample SQLNET.ORA File with Wallet Parameters Set

WALLET_LOCATION =
 (SOURCE =
 (METHOD = FILE)
 (METHOD_DATA =
 (DIRECTORY = /private/ora11/network/admin)
)
)

SQLNET.WALLET_OVERRIDE = TRUE
SSL_CLIENT_AUTHENTICATION = FALSE
SSL_VERSION = 0

Managing External Password Store Credentials

This section summarizes the following tasks you can perform to manage credentials in the external password store by using the mkstore command-line utility:

	
Listing External Password Store Contents

	
Adding Credentials to an External Password Store

	
Modifying Credentials in an External Password Store

	
Deleting Credentials from an External Password Store

Listing External Password Store Contents

Periodically, you may want to view all contents of a client wallet external password store, or you may need to check specific credentials by viewing them. Listing the external password store contents provides information you can use to decide whether to add or delete credentials from the store.

To list the contents of the external password store, enter the following command at the command line:

mkstore -wrl wallet_location -listCredential

For example:

mkstore -wrl c:\oracle\product\11.2.0\db_1\wallets -listCredential

wallet_location specifies the path to the directory where the wallet, whose external password store contents you want to view, is located. This command lists all of the credential database service names (aliases) and the corresponding user name (schema) for that database. Passwords are not listed.

Adding Credentials to an External Password Store

You can store multiple credentials in one client wallet. For example, if a client batch job connects to hr_database and a script connects to sales_database, then you can store the login credentials in the same client wallet. You cannot, however, store multiple credentials (for logging in to multiple schemas) for the same database in the same wallet. If you have multiple login credentials for the same database, then they must be stored in separate wallets.

To add database login credentials to an existing client wallet, enter the following command at the command line:

mkstore -wrl wallet_location -createCredential db_alias username

For example:

mkstore -wrl c:\oracle\product\11.2.0\db_1\wallets -createCredential orcl system
Enter password: password

In this specification:

	
wallet_location is the path to the directory where the client wallet to which you want to add credentials is stored.

	
db_alias can be the TNS alias you use to specify the database in the tnsnames.ora file or any service name you use to identify the database on an Oracle network.

	
username is the database login credential for the schema to which your application connects. When prompted, enter the password for this user.

Modifying Credentials in an External Password Store

If the database connection strings change, then you can modify the database login credentials that are stored in the wallet.

To modify database login credentials in a wallet, enter the following command at the command line:

mkstore -wrl wallet_location -modifyCredential dbase_alias username

For example:

mkstore -wrl c:\oracle\product\11.2.0\db_1\wallets -modifyCredential sales_db
Enter password: password

In this specification:

	
wallet_location is the path to the directory where the wallet is located.

	
db_alias is a new or different alias you want to use to identify the database. It can be a TNS alias you use to specify the database in the tnsnames.ora file or any service name you use to identify the database on an Oracle network.

	
username is the new or different database login credential. When prompted, enter the password for this user.

Deleting Credentials from an External Password Store

If a database no longer exists or if you want to disable connections to a specific database, then you can delete all login credentials for that database from the wallet.

To delete database login credentials from a wallet, enter the following command at the command line:

mkstore -wrl wallet_location -deleteCredential db_alias

For example:

mkstore -wrl c:\oracle\product\11.2.0\db_1\wallets -deleteCredential orcl

In this specification:

	
wallet_location is the path to the directory where the wallet is located.

	
db_alias is the TNS alias you use to specify the database in the tnsnames.ora file, or any service name you use to identify the database on an Oracle Database network.

Authenticating Database Administrators

Database administrators perform special operations, such as shutting down or starting up a database, that should not be performed by non-administrative database users. Oracle Database provides the following methods to secure the authentication of database administrators who have either SYSDBA or SYSOPER privileges:

	
Strong Authentication and Centralized Management for Database Administrators

	
Authenticating Database Administrators by Using the Operating System

	
Authenticating Database Administrators by Using Their Passwords

Strong Authentication and Centralized Management for Database Administrators

Strong authentication lets you centrally control SYSDBA and SYSOPER access to multiple databases. Consider using this type of authentication for database administration for the following situations:

	
You have concerns about password file vulnerability.

	
Your site has very strict security requirements.

	
You want to separate the identity management from your database. By using a directory server such as Oracle Internet Directory (OID), for example, you can maintain, secure, and administer that server separately.

To enable the Oracle Internet Directory server to authorize SYSDBA and SYSOPER connections, use one of the following methods, depending on your environment:

	
Configuring Directory Authentication for Administrative Users

	
Configuring Kerberos Authentication for Administrative Users

	
Configuring Secure Sockets Layer Authentication for Administrative Users

Configuring Directory Authentication for Administrative Users

To configure directory authentication for administrative users:

	
Configure the administrative user by using the same procedures you would use to configure a typical user.

	
In Oracle Internet Directory, grant the SYSDBA or SYSOPER privilege to the user for the database that this user will administer.

Grant SYSDBA or SYSOPER only to trusted users. See "Guidelines for Securing User Accounts and Privileges" for advice on this topic.

	
Set the LDAP_DIRECTORY_SYSAUTH initialization parameter to YES:

ALTER SYSTEM SET LDAP_DIRECTORY_SYSAUTH = YES;

When set to YES, the LDAP_DIRECTORY_SYSAUTH parameter enables SYSDBA and SYSOPER users to authenticate to the database by using a strong authentication method.

See Oracle Database Reference for more information about LDAP_DIRECTORY_SYSAUTH.

	
Set the LDAP_DIRECTORY_ACCESS parameter to either PASSWORD or SSL. For example:

ALTER SYSTEM SET LDAP_DIRECTORY_ACCESS = PASSWORD;

Ensure that the LDAP_DIRECTORY_ACCESS initialization parameter is not set to NONE. Setting this parameter to PASSWORD or SSL ensures that users can be authenticated using the SYSDBA or SYSOPER privileges through Oracle Internet Directory. See Oracle Database Reference for more information about LDAP_DIRECTORY_ACCESS.

Afterward, this user can log in by including the net service name in the CONNECT statement in SQL*Plus. For example, to log on as SYSDBA if the net service name is orcl:

CONNECT SOMEUSER@ORCL AS SYSDBA
Enter password: password

If the database is configured to use a password file for remote authentication, Oracle Database checks the password file first.

Configuring Kerberos Authentication for Administrative Users

To configure Kerberos authentication for administrative users:

	
Configure the administrative user by using the same procedures you would use to configure a typical user.

See Oracle Database Advanced Security Administrator's Guide for more information.

	
Configure Oracle Internet Directory for Kerberos authentication.

See Oracle Database Enterprise User Security Administrator's Guide for more information.

	
In Oracle Internet Directory, grant the SYSDBA or SYSOPER privilege to the user for the database that this user will administer.

Grant SYSDBA or SYSOPER only to trusted users. See "Guidelines for Securing User Accounts and Privileges" for advice on this topic.

	
Set the LDAP_DIRECTORY_SYSAUTH initialization parameter to YES:

ALTER SYSTEM SET LDAP_DIRECTORY_SYSAUTH = YES;

When set to YES, the LDAP_DIRECTORY_SYSAUTH parameter enables SYSDBA and SYSOPER users to authenticate to the database by using strong authentication methods. See Oracle Database Reference for more information about LDAP_DIRECTORY_SYSAUTH.

	
Set the LDAP_DIRECTORY_ACCESS parameter to either PASSWORD or SSL. For example:

ALTER SYSTEM SET LDAP_DIRECTORY_ACCESS = SSL;

Ensure that the LDAP_DIRECTORY_ACCESS initialization parameter is not set to NONE. Setting this parameter to PASSWORD or SSL ensures that users can be authenticated using SYSDBA or SYSOPER through Oracle Internet Directory. See Oracle Database Reference for more information about LDAP_DIRECTORY_ACCESS.

Afterward, this user can log in by including the net service name in the CONNECT statement in SQL*Plus. For example, to log on as SYSDBA if the net service name is orcl:

CONNECT /@orcl AS SYSDBA

Configuring Secure Sockets Layer Authentication for Administrative Users

To configure Secure Sockets Layer (SSL) authentication for administrative users:

	
Configure the client to use SSL:

	
Configure the client wallet and user certificate. Update the wallet location in the sqlnet.ora configuration file.

You can use Wallet Manager to configure the client wallet and user certificate. See Oracle Database Advanced Security Administrator's Guide for more information.

	
Configure the Oracle net service name to include server DNs and use TCP/IP with SSL in tnsnames.ora.

	
Configure TCP/IP with SSL in listener.ora.

	
Set the client SSL cipher suites and the required SSL version, and then set SSL as an authentication service in sqlnet.ora.

	
Configure the server to use SSL:

	
Enable SSL for your database listener on TCPS and provide a corresponding TNS name. You can use Net Configuration Assistant to configure the TNS name.

	
Store the database PKI credentials in the database wallet. You can use Wallet Manager do this.

	
Set the LDAP_DIRECTORY_ACCESS initialization parameter to SSL:

ALTER SYSTEM SET LDAP_DIRECTORY_ACCESS = SSL;

See Oracle Database Reference for more information about LDAP_DIRECTORY_ACCESS.

	
Configure Oracle Internet Directory for SSL user authentications.

See Oracle Database Enterprise User Security Administrator's Guide for information on configuring enterprise user security SSL authentication.

	
In Oracle Internet Directory, grant the SYSDBA or SYSOPER privilege to the user for the database that the user will administer.

	
On the server computer, set the LDAP_DIRECTORY_SYSAUTH initialization parameter to YES.

ALTER SYSTEM SET LDAP_DIRECTORY_SYSAUTH = YES;

When set to YES, the LDAP_DIRECTORY_SYSAUTH parameter enables SYSDBA and SYSOPER users to authenticate to the database by using a strong authentication method. See Oracle Database Reference for more information about LDAP_DIRECTORY_SYSAUTH.

Afterward, this user can log in by including the net service name in the CONNECT statement in SQL*Plus. For example, to log on as SYSDBA if the net service name is orcl:

CONNECT /@orcl AS SYSDBA

Authenticating Database Administrators by Using the Operating System

Operating system authentication for a database administrator typically involves establishing a group on the operating system, granting DBA privileges to that group, and then adding the names of persons who should have those privileges to that group. (On UNIX systems, the group is the dba group.)

On Microsoft Windows systems, users who connect with the SYSDBA privilege can take advantage of the Windows native authentication. If these users work with Oracle Database using their domain accounts, then you must explicitly grant them local administrative privileges and ORA_DBA membership.

	
See Also:

Your Oracle Database operating system-specific documentation for information about configuring operating system authentication of database administrators

Authenticating Database Administrators by Using Their Passwords

Oracle Database uses database-specific password files to keep track of database user names that have been granted the SYSDBA and SYSOPER privileges. These privileges enable the following activities:

	
The SYSOPER system privilege lets database administrators perform STARTUP, SHUTDOWN, ALTER DATABASE OPEN/MOUNT, ALTER DATABASE BACKUP, ARCHIVE LOG, and RECOVER operations. SYSOPER also includes the RESTRICTED SESSION privilege.

	
The SYSDBA system privilege has all system privileges with ADMIN OPTION, including the SYSOPER system privilege, and permits CREATE DATABASE and time-based recovery.

	
A password file containing users with SYSDBA or SYSOPER privileges can be shared between different databases. You can have a shared password file that contains users in addition to the SYS user. To share a password file among different databases, set the REMOTE_LOGIN_PASSWORDFILE parameter in the init.ora file to SHARED.

If you set the REMOTE_LOGIN_PASSWORDFILE initialization parameter to EXCLUSIVE or SHARED from NONE, then ensure that the password file is in sync with the dictionary passwords. See Oracle Database Administrator's Guide for more information.

	
Password file-based authentication is enabled by default. This means that the database is ready to use a password file for authenticating users that have SYSDBA or SYSOPER system privileges. Password file based authentication is activated as soon as you create a password file using the ORAPWD utility.

Anyone who has EXECUTE privileges and write privileges to the $ORACLE_HOME/dbs directory can run the ORAPWD utility.

However, be aware that using password files may pose security risks. For this reason, consider using the authentication methods described in "Strong Authentication and Centralized Management for Database Administrators". Examples of password security risks are as follows:

	
An intruder could steal or attack the password file.

	
Many users do not change the default password.

	
The password could be easily guessed.

	
The password is vulnerable if it can be found in a dictionary.

	
Passwords that are too short, chosen perhaps for ease of typing, are vulnerable if an intruder obtains the cryptographic hash of the password.

	
Note:

Connections requested AS SYSDBA or AS SYSOPER must use these phrases; without them, the connection fails. The Oracle Database parameter O7_DICTIONARY_ACCESSIBILITY is set to FALSE by default, to limit sensitive data dictionary access only to those authorized. The parameter also enforces the required AS SYSDBA or AS SYSOPER syntax.

	
See Also:

Oracle Database Administrator's Guide for information about creating and maintaining password files

Using the Database to Authenticate Users

This section contains:

	
About Database Authentication

	
Advantages of Database Authentication

	
Creating a User Who Is Authenticated by the Database

About Database Authentication

Oracle Database can authenticate users attempting to connect to a database by using information stored in that database itself. To configure Oracle Database to use database authentication, you must create each user with an associated password. User names can be multibyte, but each password must be composed of single-byte characters, even if your database uses a multibyte character set. The user must provide this user name and password when attempting to establish a connection. Oracle Database stores user passwords in the data dictionary in an encrypted format.

To identify the authentication protocols that are allowed by a client or a database, a database administrator can explicitly set the SQLNET.ALLOWED_LOGON_VERSION parameter in the server sqlnet.ora file. Each connection attempt is tested, and if the client or server does not meet the minimum version specified by its partner, authentication fails with an ORA-28040 No matching authentication protocol error. The parameter can take the values 11, 10, 9, or 8. The default value is 8. These values represent database server versions. Oracle recommends the value 11 for the strongest protection. However, be aware that if you set SQLNET.ALLOWED_LOGON_VERSION to 11, then pre-Oracle Database Release 11.1 client applications or JDBC thin clients cannot authenticate to the Oracle database using password-based authentication.

To enhance security when using database authentication, Oracle recommends that you use password management, including account locking, password aging and expiration, password history, and password complexity verification. See "Using a Password Management Policy" for more information about password management.

Advantages of Database Authentication

The advantages of database authentication are as follows:

	
User accounts and all authentication are controlled by the database. There is no reliance on anything outside of the database.

	
Oracle Database provides strong password management features to enhance security when using database authentication.

	
It is easier to administer when there are small user communities.

Creating a User Who Is Authenticated by the Database

The following SQL statement creates a user who is identified and authenticated by Oracle Database. User sebastian must specify the assigned password whenever he connects to Oracle Database.

CREATE USER sebastian IDENTIFIED BY password;

Using the Operating System to Authenticate Users

Some operating systems permit Oracle Database to use information they maintain to authenticate users. This has the following benefits:

	
Once authenticated by the operating system, users can connect to Oracle Database more conveniently, without specifying a user name or password. For example, an operating system-authenticated user can invoke SQL*Plus and omit the user name and password prompts by entering the following command at the command line:

SQLPLUS /

Within SQL*Plus, you enter:

CONNECT /

	
With control over user authentication centralized in the operating system, Oracle Database need not store or manage user passwords, although it still maintains user names in the database.

	
Audit trails in the database and operating system can use the same user names.

	
You can authenticate both operating system and non-operating system users in the same system. For example:

	
Authenticate users by the operating system. You create the user account using the IDENTIFIED EXTERNALLY clause of the CREATE USER statement, and then you set the OS_AUTHENT_PREFIX initialization parameter to specify a prefix that Oracle Database uses to authenticate users attempting to connect to the server.

	
Authenticate non-operating system users. These are users who are assigned passwords and authenticated by the database.

	
Authenticate Oracle Database Enterprise User Security users. These user accounts where created using the IDENTIFIED GLOBALLY clause of the CREATE USER statement, and then authenticated by Oracle Internet Directory (OID) currently in the same database.

However, you should be aware of the following drawbacks to using the operating system to authenticate users:

	
A user must have an operating system account on the computer that must be accessed. Not all users have operating system accounts, particularly non-administrative users.

	
If a user has logged in using this method and steps away from the terminal, another user could easily log in because this user does not need any passwords or credentials. This could pose a serious security problem.

	
When an operating system is used to authenticate database users, managing distributed database environments and database links requires special care. Operating system-authenticated database links can pose a security weakness. For this reason, Oracle recommends that you do not use them.

	
See Also:

	
Oracle Database Administrator's Guide for more information about authentication, operating systems, distributed database concepts, and distributed data management

	
Operating system-specific documentation by Oracle Database for more information about authenticating by using your operating system

Using the Network to Authenticate Users

You can authenticate users over a network by using Secure Sockets Layer with third-party services.

	
Authentication Using Secure Sockets Layer

	
Authentication Using Third-Party Services

Authentication Using Secure Sockets Layer

The Secure Sockets Layer (SSL) protocol is an application layer protocol. You can use it for user authentication to a database, and it is independent of global user management in Oracle Internet Directory. That is, users can use SSL to authenticate to the database without a directory server in place.

See Oracle Database Advanced Security Administrator's Guide for instructions about configuring SSL.

Authentication Using Third-Party Services

You need to use third-party network authentication services if you want to authenticate Oracle Database users over a network. Prominent examples include Kerberos, PKI (public key infrastructure), the RADIUS (Remote Authentication Dial-In User Service), and directory-based services, as described in the following sections.

If network authentication services are available to you, then Oracle Database can accept authentication from the network service. If you use a network authentication service, then some special considerations arise for network roles and database links.

	
Note:

To use a network authentication service with Oracle Database, you need Oracle Database Enterprise Edition with the Oracle Database Advanced Security option.

	
See Also:

Oracle Database Advanced Security Administrator's Guide for information about Oracle Enterprise Edition with the Oracle Database Advanced Security option

Authenticating Using Kerberos

Kerberos is a trusted third-party authentication system that relies on shared secrets. It presumes that the third party is secure, and provides single sign-on capabilities, centralized password storage, database link authentication, and enhanced PC security. It does this through a Kerberos authentication server, or through Cybersafe Active Trust, a commercial Kerberos-based authentication server.

	
See Also:

Oracle Database Advanced Security Administrator's Guide for more information about Kerberos

Authenticating Using RADIUS

Oracle Database supports remote authentication of users through the Remote Authentication Dial-In User Service (RADIUS), a standard lightweight protocol used for user authentication, authorization, and accounting. This feature also enables users to use the RSA One-Time Password Specifications (OTPS) to authenticate to the Oracle database.

	
See Also:

	
Oracle Database Advanced Security Administrator's Guide for information about configuring RADIUS

	
RSA documentation about OTPS

Authenticating Using Directory-Based Services

Using a central directory can make authentication and its administration efficient. Directory-based services include the following:

	
Oracle Internet Directory, which uses the Lightweight Directory Access Protocol (LDAP), uses a central repository to store and manage information about users (called enterprise users) whose accounts were created in a distributed environment. Although database users must be created (with passwords) in each database that they need to access, enterprise user information is accessible centrally in the Oracle Internet Directory. You can also integrate this directory with Microsoft Active Directory and SunOne.

For more information about Oracle Internet Directory, see Oracle Internet Directory Administrator's Guide.

	
Oracle Enterprise Security Manager lets you store and retrieve roles from Oracle Internet Directory, which provides centralized privilege management to make administration easier and increase security levels. For more information about Oracle Enterprise Security Manager, see Oracle Enterprise Manager Advanced Configuration.

Authenticating Using Public Key Infrastructure

Authentication systems based on public key infrastructure (PKI) issue digital certificates to user clients, which use them to authenticate directly to servers in the enterprise without directly involving an authentication server. Oracle Database provides a PKI for using public keys and certificates, consisting of the following components:

	
Authentication and secure session key management using SSL. See "Authentication Using Secure Sockets Layer" for more information.

	
Trusted certificates. These are used to identify third-party entities that are trusted as signers of user certificates when an identity is being validated. When the user certificate is being validated, the signer is checked by using trust points or a trusted certificate chain of certificate authorities stored in the validating system. If there are several levels of trusted certificates in this chain, then a trusted certificate at a lower level is simply trusted without needing to have all its higher-level certificates reverified. For more information about trusted certificates, see Oracle Database Advanced Security Administrator's Guide.

	
OracleAS Certificate Authority. This is a component of the Oracle Identity Management infrastructure, which provides an integrated solution for provisioning X.509 version 3 certificates for individuals, applications, and servers that require certificates for PKI-based operations such as authentication, SSL, S/MIME, and so on. For more information about OracleAS Certificate Authority, see Oracle Application Server Certificate Authority Administrator's Guide.

	
Oracle Wallet Manager. An Oracle wallet is a data structure that contains the private key of a user, a user certificate, and the set of trust points of a user (trusted certificate authorities). See Oracle Database Advanced Security Administrator's Guide for information about managing Oracle wallets.

You can use Oracle Wallet Manager to manage Oracle wallets. This is a standalone Java application used to manage and edit the security credentials in Oracle wallets. It performs the following operations:

	
Generates a public-private key pair and creates a certificate request for submission to a certificate authority, and creates wallets

	
Installs a certificate for the entity

	
Manages X.509 version 3 certificates on Oracle Database clients and servers

	
Configures trusted certificates for the entity

	
Opens a wallet to enable access to PKI-based services

	
X.509 version 3 certificates obtained from (and signed by) a trusted entity, a certificate authority. Because the certificate authority is trusted, these certificates verify that the requesting entity's information is correct and that the public key on the certificate belongs to the identified entity. The certificate is loaded into an Oracle wallet to enable future authentication.

Configuring Global User Authentication and Authorization

You can use Oracle Advanced Security to centralize the management of user-related information, including authorizations, in an LDAP-based directory service. This allows users and administrators to be identified in the database as global users, meaning that they are authenticated by SSL and that the management of these users is handled outside of the database by the centralized directory service. Global roles are defined in a database and are known only to that database, but the directory service handles authorizations for global roles.

	
Note:

You can also have users authenticated by SSL, whose authorizations are not managed in a directory, that is, they have local database roles only. See Oracle Database Advanced Security Administrator's Guide for details.

This centralized management enables the creation of enterprise users and enterprise roles. Enterprise users are defined and managed in the directory. They have unique identities across the enterprise and can be assigned enterprise roles that determine their access privileges across multiple databases. An enterprise role consists of one or more global roles, and might be thought of as a container for global roles.

	
See Also:

"Strong Authentication and Centralized Management for Database Administrators" if you want to centralize the management of SYSDBA or SYSOPER access

Creating a User Who Is Authorized by a Directory Service

You have the following options to specify users who are authorized by a directory service:

	
Creating a Global User Who Has a Private Schema

	
Creating Multiple Enterprise Users Who Share Schemas

Creating a Global User Who Has a Private Schema

The following statement shows the creation of a global user with a private schema, authenticated by SSL, and authorized by the enterprise directory service:

CREATE USER psmith IDENTIFIED GLOBALLY AS 'CN=psmith,OU=division1,O=oracle,C=US';

The string provided in the AS clause provides an identifier (distinguished name, or DN) meaningful to the enterprise directory.

In this case, psmith is a global user. But, the disadvantage here is that user psmith must then be created in every database that he must access, plus the directory.

Creating Multiple Enterprise Users Who Share Schemas

Multiple enterprise users can share a single schema in the database. These users are authorized by the enterprise directory service but do not own individual private schemas in the database. These users are not individually created in the database. They connect to a shared schema in the database.

To create a schema-independent user:

	
Create a shared schema in the database using the following example:

CREATE USER appschema IDENTIFIED GLOBALLY AS '';

	
In the directory, create multiple enterprise users and a mapping object.

The mapping object tells the database how you want to map the DNs for the users to the shared schema. You can either create a full DN mapping (one directory entry for each unique DN), or you can map, for each user, multiple DN components to one schema. For example:

OU=division,O=Oracle,C=US

	
See Also:

Oracle Database Enterprise User Security Administrator's Guide for an explanation of these mappings

Most users do not need their own schemas, and implementing schema-independent users separates users from databases. You create multiple users who share the same schema in a database, and as enterprise users, they can also access shared schemas in other databases.

Advantages of Global Authentication and Global Authorization

Some advantages of global user authentication and authorization are as follows:

	
Provides strong authentication using SSL, Kerberos, or Windows native authentication.

	
Enables centralized management of users and privileges across the enterprise.

	
Is easy to administer: You do not have to create a schema for every user in every database in the enterprise.

	
Facilitates single sign-on: Users need to sign on once to only access multiple databases and services. Further, users using passwords can have a single password to access multiple databases accepting password-authenticated enterprise users.

	
Because global user authentication and authorization provide password-based access, you can migrate previously defined password-authenticated database users to the directory (using the User Migration Utility) to be centrally administered. This makes global authentication and authorization available for earlier Oracle Database release clients that are still supported.

	
CURRENT_USER database links connect as a global user. A local user can connect as a global user in the context of a stored procedure, that is, without storing the global user password in a link definition.

	
See Also:

The following manuals for additional information about global authentication and authorization and enterprise users and roles:
	
Oracle Database Advanced Security Administrator's Guide

	
Oracle Database Enterprise User Security Administrator's Guide

Configuring an External Service to Authenticate Users and Passwords

This section contains:

	
About External Authentication

	
Advantages of External Authentication

	
Creating a User Who Is Authenticated Externally

	
Authenticating User Logins Using the Operating System

	
Authentication User Logins Using Network Authentication

About External Authentication

When you use external authentication for user accounts, Oracle Database maintains the user account, but an external service performs the password administration and user authentication. This external service can be the operating system or a network service, such as Oracle Net.

With external authentication, your database relies on the underlying operating system or network authentication service to restrict access to database accounts. A database password is not used for this type of login. If your operating system or network service permits, then it can authenticate users before they can log in to the database. To enable this feature, set the initialization parameter OS_AUTHENT_PREFIX, and use this prefix in Oracle Database user names. The OS_AUTHENT_PREFIX parameter defines a prefix that Oracle Database adds to the beginning of the operating system account name of every user. Oracle Database compares the prefixed user name with the Oracle Database user names in the database when a user attempts to connect.

You should set OS_AUTHENT_PREFIX to a null string (an empty set of double quotation marks: ""). Using a null string eliminates the addition of any prefix to operating system account names, so that Oracle Database user names exactly match operating system user names.

OS_AUTHENT_PREFIX=" "

After you set OS_AUTHENT_PREFIX, it should remain the same for the life of a database. If you change the prefix, then any database user name that includes the old prefix cannot be used to establish a connection, unless you alter the user name to have it use password authentication.

The default value of this parameter is OPS$ for backward compatibility with previous versions of Oracle Database. For example, assume that you set OS_AUTHENT_PREFIX as follows:

OS_AUTHENT_PREFIX=OPS$

	
Note:

The text of the OS_AUTHENT_PREFIX initialization parameter is case-sensitive on some operating systems. See your operating system-specific Oracle Database documentation for more information about this initialization parameter.

If a user with an operating system account named tsmith is to connect to an Oracle database installation and be authenticated by the operating system, then Oracle Database checks that there is a corresponding database user OPS$tsmith and, if so, lets the user connect. All references to a user authenticated by the operating system must include the prefix, OPS$, as seen in OPS$tsmith.

Advantages of External Authentication

The advantages of external authentication are as follows:

	
More choices of authentication mechanisms are available, such as smart cards, fingerprints, Kerberos, or the operating system.

	
Many network authentication services, such as Kerberos support single sign-on, enabling users to have fewer passwords to remember.

	
If you are already using an external mechanism for authentication, such as one of those listed earlier, then there may be less administrative overhead to use that mechanism with the database.

Creating a User Who Is Authenticated Externally

The following statement creates a user who is identified by Oracle Database and authenticated by the operating system or a network service. This example assumes that the OS_AUTHENT_PREFIX parameter has been set to a blank space (" ").

CREATE USER psmith IDENTIFIED EXTERNALLY;

Using the CREATE USER ... IDENTIFIED EXTERNALLY statement, you create database accounts that must be authenticated by the operating system or network service. Oracle Database then relies on this external login authentication when it provides that specific operating system user with access to the database resources of a specific user.

	
See Also:

Oracle Database Advanced Security Administrator's Guide for more information about external authentication

Authenticating User Logins Using the Operating System

By default, Oracle Database allows operating system-authenticated logins only over secure connections, which precludes using Oracle Net and a shared server configuration. This restriction prevents a remote user from impersonating another operating system user over a network connection.

Setting the REMOTE_OS_AUTHENT parameter to TRUE in the database initialization parameter file forces the database to accept the client operating system user name received over an unsecure connection and use it for account access. Because clients, in general, such as PCs, are not trusted to perform operating system authentication properly, it is very poor security practice to turn on this feature.

The default setting, REMOTE_OS_AUTHENT = FALSE, creates a more secure configuration that enforces proper, server-based authentication of clients connecting to an Oracle database.

Any change to this parameter takes effect the next time you start the instance and mount the database. Generally, user authentication through the host operating system offers faster and more convenient connection to Oracle Database without specifying a separate database user name or password. Also, user entries correspond in the database and operating system audit trails.

Be aware that the REMOTE_OS_AUTHENT parameter was deprecated in Oracle Database 11g Release 1 (11.1), and is retained only for backward compatibility.

Authentication User Logins Using Network Authentication

Oracle Advanced Security performs network authentication, which you can configure to use a third-party service such as Kerberos. If you are using Oracle Advanced Security as your only external authentication service, then the REMOTE_OS_AUTHENT parameter setting is irrelevant, because Oracle Advanced Security allows only secure connections.

Using Multitier Authentication and Authorization

In a multitier environment, Oracle Database controls the security of middle-tier applications by limiting their privileges, preserving client identities through all tiers, and auditing actions taken on behalf of clients. In applications that use a very busy middle tier, such as a transaction processing monitor, the identity of the clients connecting to the middle tier must be preserved. One advantage of using a middle tier is connection pooling, which allows multiple users to access a data server without each of them needing a separate connection. In such environments, you need to be able to set up and break down connections very quickly.

For these environments, you can use the Oracle Call Interface to create lightweight sessions, which enable database password authentication for each user. This method preserves the identity of the real user through the middle tier without the overhead of a separate database connection for each user.

You can create lightweight sessions with or without passwords. However, if a middle tier is outside of or on a firewall, then security is better when each lightweight session has its own password. For an internal application server, lightweight sessions without passwords might be appropriate.

Administration and Security in Clients, Application Servers, and Database Servers

In a multitier environment, an application server provides data for clients and serves as an interface from them to one or more database servers. The application server can validate the credentials of a client, such as a Web browser, and the database server can audit operations performed by the application server. These auditable operations include actions performed by the application server on behalf of clients, such as requests that information be displayed on the client. A request to connect to the database server is an example of an application server operation not related to a specific client.

Authentication in a multitier environment is based on trust regions. Client authentication is the domain of the application server. The application server itself is authenticated by the database server. The following operations are performed:

	
The end user provides proof of authenticity to the application server, typically, by using a password or an X.509 certificate.

	
The application server authenticates the end user and then authenticates itself to the database server.

	
The database server authenticates the application server, verifies that the end user exists, and verifies that the application server has the privilege to connect for the end user.

Application servers can also enable roles for an end user on whose behalf they connect. The application server can obtain these roles from a directory, which serves as an authorization repository. The application server can only request that these roles be enabled. The database verifies the following requirements:

	
That the client has these roles by checking its internal role repository

	
That the application server has the privilege to connect on behalf of the user and thus to use these roles as the user could

Figure 3-2 shows an example of multitier authentication.

Figure 3-2 Multitier Authentication

[image: Description of Figure 3-2 follows]

The following actions take place:

	
The user logs on using a password or Secure Sockets Layer. The authentication information is passed through Oracle Application Server.

	
Oracle Internet Directory authenticates the user, gets the roles associated with that user from the wallet, and then passes this information back to Oracle Application Server.

	
Oracle Application Server checks the identity of the user in Oracle Database, which contains a wallet that stores this information, and then sets the role for that user.

Security for middle-tier applications must address the following key issues:

	
Accountability. The database server must be able to distinguish between the actions of the application and the actions an application takes on behalf of a client. It must be possible to audit both kinds of actions.

	
Least privilege. Users and middle tiers should be given the fewest privileges necessary to perform their actions, to reduce the danger of inadvertent or malicious unauthorized activities.

Preserving User Identity in Multitiered Environments

Many organizations want to know who the user is through all tiers of an application without sacrificing the benefits of a middle tier. Oracle Database supports the following ways to preserve user identity through the middle tier of an application:

	
Using a Middle Tier Server for Proxy Authentication

	
Using Client Identifiers to Identify Application Users Not Known to the Database

	
See Also:

"Auditing SQL Statements and Privileges in a Multitier Environment"

Using a Middle Tier Server for Proxy Authentication

The following sections explain how to use proxy authentication:

	
About Proxy Authentication

	
Advantages of Proxy Authentication

	
Who Can Create Proxy User Accounts?

	
Creating Proxy User Accounts and Authorizing Users to Connect Through Them

	
Using Proxy Authentication with the Secure External Password Store

	
Passing Through the Identity of the Real User by Using Proxy Authentication

	
Limiting the Privilege of the Middle Tier

	
Authorizing a Middle Tier to Proxy and Authenticate a User

	
Authorizing a Middle Tier to Proxy a User Authenticated by Other Means

	
Reauthenticating the User Through the Middle Tier to the Database

About Proxy Authentication

Oracle Database provides proxy authentication in Oracle Call Interface (OCI), JDBC/OCI, or JDBC Thin Driver for database users or enterprise users. Enterprise users are those who are managed in Oracle Internet Directory and who access a shared schema in the database.

You can design a middle-tier server to authenticate clients in a secure fashion by using the following three forms of proxy authentication:

	
The middle-tier server authenticates itself with the database server and a client, in this case an application user or another application, authenticates itself with the middle-tier server. Client identities can be maintained all the way through to the database.

	
The client, in this case a database user, is not authenticated by the middle-tier server. The clients identity and database password are passed through the middle-tier server to the database server for authentication.

	
The client, in this case a global user, is authenticated by the middle-tier server, and passes one of the following through the middle tier for retrieving the client's user name.

	
Distinguished name (DN)

	
Certificate

	
Note:

The use of certificates for proxy authentication may not be supported in future Oracle Database releases.

In all cases, an administrator must authorize the middle-tier server to act on behalf of the client.

	
See Also:

Oracle Call Interface Programmer's Guide and Oracle Database Advanced Application Developer's Guide or details about designing a middle-tier server to proxy users

Advantages of Proxy Authentication

In multitier environments, proxy authentication controls the security of middle-tier applications by preserving client identities and privileges through all tiers and by auditing actions taken on behalf of clients. For example, this feature allows the identity of a user using a Web application (which acts as a proxy) to be passed through the application to the database server.

Three-tier systems provide the following benefits to organizations:

	
Organizations can separate application logic from data storage, partitioning the former in application servers and the latter in databases.

	
Application servers and Web servers enable users to access data stored in databases.

	
Users like using a familiar, easy-to-use browser interface.

	
Organizations can also lower their cost of computing by replacing many thick clients with numerous thin clients and an application server.

In addition, Oracle Database proxy authentication provides the following security benefits:

	
A limited trust model, by controlling the users on whose behalf middle tiers can connect and the roles that the middle tiers can assume for the user

	
Scalability, by supporting user sessions through OCI, JDBC/OCI, or JDBC Thin driver and eliminating the overhead of reauthenticating clients

	
Accountability, by preserving the identity of the real user through to the database, and enabling auditing of actions taken on behalf of the real user

	
Flexibility, by supporting environments in which users are known to the database, and in which users are merely application users of which the database has no awareness

	
Note:

Oracle Database supports this proxy authentication functionality in three tiers only. It does not support it across multiple middle tiers.

Who Can Create Proxy User Accounts?

To create proxy user accounts, users must have the following minimum privileges:

	
The CREATE USER system privilege to create a database user account that will be used as a proxy user account

	
The DV_ACCTMGR role if Oracle Database Vault is enabled, to create the proxy user account

	
The ability to grant the CREATE SESSION system privilege to the proxy user account

	
The ALTER USER system privilege to enable existing user accounts to connect to the database through the proxy account

Follow these guidelines when you create proxy user accounts:

	
For better security and to adhere to the principle of least privilege, only grant the proxy user account the CREATE SESSION privilege. Do not grant this user any other privileges. The proxy user account is designed to only enable another user to connect using the proxy account. Any privileges that must be exercised during the connection should belong to the connecting user, not to the proxy account.

	
As with all passwords, ensure that the password you create for the proxy user is strong and not easily guessed. Remember that multiple users will be connecting as the proxy user, so it is especially important that this password be strong. See "Guidelines for Securing Passwords" for advice about creating strong passwords.

	
Consider using the Advanced Security option network connection features, to prevent network eavesdropping.

	
For further fine-tuning of the amount of control that the connecting user has, consider restricting the roles used by the connecting user when he or she is connected through the proxy account. The ALTER USER statement enables you to configure the user to connect using specified roles, any role except a specified role, or with no roles at all.

Creating Proxy User Accounts and Authorizing Users to Connect Through Them

The CREATE USER statement enables you to create the following types of user accounts, all of which can be used as proxy accounts:

	
Database user accounts, which are authenticated by passwords

	
External user accounts, which are authenticated by external sources, such as Secure Socket Layer (SSL) or Kerberos

	
Global user accounts, which are authenticated by an enterprise directory service (Oracle Internet Directory).

To create a proxy user account and authorize users to connect through it:

	
Use the CREATE USER statement to create the proxy user account.

For example:

CREATE USER appuser IDENTIFIED BY password;

	
Use the GRANT CONNECT THROUGH clause of the ALTER USER statement to enable an existing user to connect through the proxy user account.

For example:

ALTER USER preston GRANT CONNECT THROUGH appuser;

Suppose user preston has a large number of roles, but you only want her to use one role (for example, the appuser_role) when she is connected to the database through the appuser proxy account. You can use the following ALTER USER statement:

ALTER USER preston GRANT CONNECT THROUGH appuser WITH ROLE appuser_role;

Any other roles that user preston will not be available to her as long as she is connecting as the appuser proxy.

After you complete these steps, user preston can connect using the appuser proxy user as follows:

CONNECT appuser[preston]
Enter password: appuser_password

Note the following:

	
The proxy user can only perform activities that user preston has privileges to perform. Remember that the proxy user itself, appuser, only has the minimum privileges (CREATE SESSION).

	
Using roles with middle-tier clients. You can also specify roles that the middle tier is permitted to activate when connecting as the client. Operations performed on behalf of a client by a middle-tier server can be audited.

	
Finding proxy users. To find the users who are currently authorized to connect through a middle tier, query the PROXY_USERS data dictionary view, for example:

SELECT * FROM PROXY_USERS;

	
Removing proxy connections. Use the REVOKE CONNECT THROUGH clause of ALTER USER to disallow a proxy connection. For example, to revoke user preston from connecting through the proxy user appuser, enter the following statement:

ALTER USER preston REVOKE CONNECT THROUGH appuser

	
Password expiration and proxy connections. Middle-tier use of password expiration does not apply to accounts that are authenticated through a proxy. Instead, lock the account rather than expire the password.

	
See Also:

	
Oracle Database SQL Language Reference for detailed information about the CREATE USER statement

	
Oracle Database SQL Language Reference for detailed information about the ALTER USER statement

	
Oracle Database Enterprise User Security Administrator's Guide for information about managing proxy users in an enterprise user environment

	
Oracle Database Advanced Security Administrator's Guide for more information about using network encryption and strong authentication

	
"Auditing SQL Statements and Privileges in a Multitier Environment" for details about auditing operations done on behalf of a user by a middle tier

Using Proxy Authentication with the Secure External Password Store

If you are concerned about the password used in proxy authentication being obtained by a malicious user, then you can use the secure external password store with the proxy authentication to store the password credentials in a wallet. Connecting to Oracle Database using proxy authentication and the secure external password store is ideal for situations such as running batch files. When a proxy user connects to the database and authenticates using a secure external password, the password is not exposed in the event that a malicious user tries to obtain the password.

To use proxy authentication with the secure external password store:

	
Configure the proxy authentication account, as shown in the procedure under "Creating Proxy User Accounts and Authorizing Users to Connect Through Them".

	
Configure the secure external password store. See "Configuring Clients to Use the External Password Store" for more information.

Afterward, the user can connect using the proxy but without having to specify a password. For example:

sqlplus [preston]/@db_alias

When you use the secure external password store, the user logging in does not need to supply the user name and password. Only the SERVICE_NAME value (that is, db_alias) from the tnsnames.ora file must be specified.

Passing Through the Identity of the Real User by Using Proxy Authentication

For enterprise users or database users, Oracle Call Interface, JDBC/OCI, or Thin driver enables a middle tier to set up several user sessions within a single database connection, each of which uniquely identifies a connected user (connection pooling). These sessions reduce the network overhead of creating separate network connections from the middle tier to the database.

If you want to authenticate from clients through a middle tier to the database, the full authentication sequence from the client to the middle tier to the database occurs as follows:

	
The client authenticates to the middle tier, using whatever form of authentication the middle tier will accept. For example, the client could authenticate to the middle tier by using a user name and password or an X.509 certificate by means of SSL.

	
The middle tier authenticates itself to the database by using whatever form of authentication the database accepts. This could be a password or an authentication mechanism supported by Oracle Advanced Security, such as a Kerberos ticket or an X.509 certificate (SSL).

	
The middle tier then creates one or more sessions for users using OCI, JDBC/OCI, or Thin driver.

	
If the user is a database user, then the session must, as a minimum, include the database user name. If the database requires it, then the session can include a password (which the database verifies against the password store in the database). The session can also include a list of database roles for the user.

	
If the user is an enterprise user, then the session may provide different information depending on how the user is authenticated.

Example 1: If the user authenticates to the middle tier using SSL, then the middle tier can provide the DN from the X.509 certificate of the user, or the certificate itself in the session. The database uses the DN to look up the user in Oracle Internet Directory.

Example 2: If the user is a password-authenticated enterprise user, then the middle tier must provide, as a minimum, a globally unique name for the user. The database uses this name to look up the user in Oracle Internet Directory. If the session also provides a password for the user, then the database will verify the password against Oracle Internet Directory. User roles are automatically retrieved from Oracle Internet Directory after the session is established.

	
The middle tier may optionally provide a list of database roles for the client. These roles are enabled if the proxy is authorized to use the roles on behalf of the client.

	
The database verifies that the middle tier has the privilege to create sessions on behalf of the user.

The OCISessionBegin call fails if the application server cannot perform a proxy authentication on behalf of the client by the administrator, or if the application server is not allowed to activate the specified roles.

Limiting the Privilege of the Middle Tier

Least privilege is the principle that users should have the fewest privileges necessary to perform their duties and no more. As applied to middle tier applications, this means that the middle tier should not have more privileges than it needs. Oracle Database enables you to limit the middle tier such that it can connect only on behalf of certain database users, using only specific database roles. You can limit the privilege of the middle tier to connect on behalf of an enterprise user, stored in an LDAP directory, by granting to the middle tier the privilege to connect as the mapped database user. For instance, if the enterprise user is mapped to the APPUSER schema, then you must at least grant to the middle tier the ability to connect on behalf of APPUSER. Otherwise, attempts to create a session for the enterprise user will fail.

However, you cannot limit the ability of the middle tier to connect on behalf of enterprise users. For example, suppose that user Sarah wants to connect to the database through a middle tier, appsrv (which is also a database user). Sarah has multiple roles, but it is desirable to restrict the middle tier to use only the clerk role on her behalf.

An administrator could effectively grant permission for appsrv to initiate connections on behalf of Sarah using her clerk role only, using the following syntax:

ALTER USER sarah GRANT CONNECT THROUGH appsrv WITH ROLE clerk;

By default, the middle tier cannot create connections for any client. The permission must be granted for each user.

To allow appsrv to use all of the roles granted to the client Sarah, the following statement would be used:

ALTER USER sarah GRANT CONNECT THROUGH appsrv;

Each time a middle tier initiates an OCI, JDBC/OCI, or Thin driver session for another database user, the database verifies that the middle tier is authorized to connect for that user by using the role specified.

	
Note:

Instead of using default roles, create your own roles and assign only necessary privileges to them. Creating your own roles enables you to control the privileges granted by them and protects you if Oracle Database changes or removes default roles. For example, the CONNECT role now has only the CREATE SESSION privilege, the one most directly needed when connecting to a database.
However, CONNECT formerly provided several additional privileges, often not needed or appropriate for most users. Extra privileges can endanger the security of your database and applications. These have now been removed from CONNECT.

See Chapter 4, "Configuring Privilege and Role Authorization" for more information about roles.

Authorizing a Middle Tier to Proxy and Authenticate a User

The following statement authorizes the middle-tier server appserve to connect as user bill. It uses the WITH ROLE clause to specify that appserve activate all roles associated with bill, except payroll.

ALTER USER bill
 GRANT CONNECT THROUGH appserve
 WITH ROLE ALL EXCEPT payroll;

To revoke the middle-tier server (appserve) authorization to connect as user bill, the following statement is used:

ALTER USER bill REVOKE CONNECT THROUGH appserve;

Authorizing a Middle Tier to Proxy a User Authenticated by Other Means

Use the AUTHENTICATION REQURED clause of the ALTER USER ... GRANT CONNECT THROUGH statement to authorize a user to be proxied, but not authenticated, by a middle tier. Currently, PASSWORD is the only means supported.

The following statement illustrates this form of authentication:

ALTER USER mary
 GRANT CONNECT THROUGH midtier
 AUTHENTICATION REQUIRED;

In the preceding statement, middle-tier server midtier is authorized to connect as user mary, and midtier must also pass the user password to the database server for authorization.

Reauthenticating the User Through the Middle Tier to the Database

Administrators can specify that authentication is required by using the AUTHENTICATION REQUIRED proxy clause with the ALTER USER SQL statement. In this case, the middle tier must provide user authentication credentials.

For example, suppose that user Sarah wants to connect to the database through a middle tier, appsrv. An administrator could require that appsrv provides authentication credentials for Sarah by using the following syntax:

ALTER USER sarah GRANT CONNECT THROUGH appsrv AUTHENTICATION REQUIRED;

The AUTHENTICATION REQUIRED clause ensures that authentication credentials for the user must be presented when the user is authenticated through the specified proxy.

	
Note:

For backward compatibility, if you use the AUTHENTICATED USING PASSWORD proxy clause, then Oracle Database transforms it to AUTHENTICATION REQUIRED.

Using Password-Based Proxy Authentication

When you use password-based proxy authentication, Oracle Database passes the password of the client to the middle-tier server. The middle-tier server then passes the password as an attribute to the data server for verification. The main advantage to this is that the client computer does not have to have Oracle software installed on it to perform database operations.

To pass the password of the client, the middle-tier server calls the OCIAttrSet() function as follows, passing OCI_ATTR_PASSWORD as the type of the attribute being set.

OCIAttrSet(
 session_handle, /* Pointer to a handle whose attribute gets modified. */
 OCI_HTYPE_SESSION, /* Handle type: OCI user session handle. */
 password_ptr, /* Pointer to the value of the password attribute. */
 0, /* The size of the password attribute value is already
 known by the OCI library. */
 OCI_ATTR_PASSWORD, /* The attribute type. */
 error_handle); /* An error handle used to retrieve diagnostic
 information in the event of an error. */

Using Proxy Authentication with Enterprise Users

If the middle tier connects to the database as a client who is an enterprise user, then either the distinguished name, or the X.509 certificate containing the distinguished name is passed over instead of the database user name. If the user is a password-authenticated enterprise user, then the middle tier must provide, as a minimum, a globally unique name for the user. The database uses this name to look up the user in Oracle Internet Directory.

To pass over the distinguished name of the client, the application server would call the Oracle Call Interface method OCIAttrSet() with OCI_ATTR_DISTINGUISHED_NAME as the attribute type, as follows:

OCIAttrSet(session_handle,
 OCI_HTYPE_SESSION,
 distinguished_name,
 0,
 OCI_ATTR_DISTINGUISHED_NAME,
 error_handle);

To pass over the entire certificate, the middle tier would call OCIAttrSet() with OCI_ATTR_CERTIFICATE as the attribute type, as follows.

OCIAttrSet(session_handle,
 OCI_HTYPE_SESSION,
 certificate,
 certificate_length,
 OCI_ATTR_CERTIFICATE,
 error_handle);

If the type is not specified, then the database uses its default certificate type of X.509.

	
Note:

	
OCI_ATTR_CERTIFICATE is Distinguished Encoding Rules (DER) encoded.

	
Certificate based proxy authentication using OCI_ATTR_CERTIFICATE will not be supported in future Oracle Database releases. Use the OCI_ATTR_DISTINGUISHED_NAME or OCI_ATTR_USERNAME attribute instead

If you are using proxy authentication for password-authenticated enterprise users, then use the same OCI attributes as for database users authenticated by password (OCI_ATTR_USERNAME). Oracle Database first checks the user name against the database. If it finds no user, then the database checks the user name in the directory. This user name must be globally unique.

Using Client Identifiers to Identify Application Users Not Known to the Database

The following sections explain how to use client identifiers:

	
About Client Identifiers

	
How Client Identifiers Work in Middle Tier Systems

	
Using the CLIENT_IDENTIFIER Attribute to Preserve User Identity

	
Using CLIENT_IDENTIFIER Independent of Global Application Context

	
Using the DBMS_SESSION PL/SQL Package to Set and Clear the Client Identifier

About Client Identifiers

Oracle Database provides the CLIENT_IDENTIFIER attribute of the built-in USERENV application context namespace for application users. These users are known to an application but unknown to the database. The CLIENT_IDENTIFIER attribute can capture any value that the application uses for identification or access control, and passes it to the database. The CLIENT_IDENTIFIER attribute is supported in OCI, JDBC/OCI, or Thin driver.

How Client Identifiers Work in Middle Tier Systems

Many applications use session pooling to set up several sessions to be reused by multiple application users. Users authenticate themselves to a middle-tier application, which uses a single identity to log in to the database and maintains all the user connections. In this model, application users are users who are authenticated to the middle tier of an application, but who are not known to the database. You can use a CLIENT_IDENTIFIER attribute, which acts like an application user proxy for these types of applications.

In this model, the middle tier passes a client identifier to the database upon the session establishment. The client identifier could actually be anything that represents a client connecting to the middle tier, for example, a cookie or an IP address. The client identifier, representing the application user, is available in user session information and can also be accessed with an application context (by using the USERENV naming context). In this way, applications can set up and reuse sessions, while still being able to keep track of the application user in the session. Applications can reset the client identifier and thus reuse the session for a different user, enabling high performance.

Using the CLIENT_IDENTIFIER Attribute to Preserve User Identity

You can use the CLIENT_IDENTIFIER predefined attribute of the built-in application context namespace, USERENV, to capture the application user name for use with global application context. You also can use the CLIENT_IDENTIFIER attribute independently. When you use the CLIENT_IDENTIFIER attribute independently from a global application context, you can set CLIENT_IDENTIFIER with the DBMS_SESSION interface. The ability to pass a CLIENT_IDENTIFIER to the database is supported in Oracle Call Interface (OCI), JDBC/OCI, or Thin driver.

When you use the CLIENT_IDENTIFIER attribute with global application context, it provides flexibility and high performance for building applications. For example, suppose a Web-based application that provides information to business partners has three types of users: gold partner, silver partner, and bronze partner, representing different levels of information available. Instead of each user having his or her own session set up with individual application contexts, the application could set up global application contexts for gold partners, silver partners, and bronze partners. Then, use the CLIENT_IDENTIFIER to point the session at the correct context to retrieve the appropriate type of data. The application need only initialize the three global contexts once and use the CLIENT_IDENTIFIER to access the correct application context to limit data access. This provides performance benefits through session reuse and through accessing global application contexts set up once, instead of having to initialize application contexts for each session individually.

	
See Also:

	
"Using Global Application Contexts" for how to implement global application contexts

	
"Tutorial: Creating a Global Application Context That Uses a Client Session ID"

Using CLIENT_IDENTIFIER Independent of Global Application Context

Using the CLIENT_IDENTIFIER attribute is especially useful for those applications in which the users are unknown to the database. In these situations, the application typically connects as a single database user and all actions are taken as that user. Because all user sessions are created as the same user, this security model makes it difficult to achieve data separation for each user. These applications can use the CLIENT_IDENTIFIER attribute to preserve the real application user identity through to the database.

With this approach, sessions can be reused by multiple users by changing the value of the CLIENT_IDENTIFIER attribute, which captures the name of the real application user. This avoids the overhead of setting up a separate session and separate attributes for each user, and enables reuse of sessions by the application. When the CLIENT_IDENTIFIER attribute value changes, the change is added to the next OCI, JDBC/OCI, or Thin driver call for additional performance benefits.

For example, the user Daniel connects to a Web Expense application. Daniel is not a database user; he is a typical Web Expense application user. The application accesses the built-in application context namespace and sets DANIEL as the CLIENT_IDENTIFIER attribute value. Daniel completes his Web Expense form and exits the application. Then, Ajit connects to the Web Expense application. Instead of setting up a new session for Ajit, the application reuses the session that currently exists for Daniel, by changing the CLIENT_IDENTIFIER to AJIT. This avoids the overhead of setting up a new connection to the database and the overhead of setting up a global application context. The CLIENT_IDENTIFIER attribute can be set to any value on which the application bases access control. It does not have to be the application user name.

To set the CLIENT_IDENTIFIER attribute with OCI, use the OCI_ATTR_CLIENT_IDENTIFIER attribute in the call to OCIAttrSet(). Then, on the next request to the server, the information is propagated and stored in the server sessions. For example:

OCIAttrSet (session,

OCI_HTYPE_SESSION,
(dvoid *) "appuser1",
(ub4)strlen("appuser1"),
OCI_ATTR_CLIENT_IDENTIFIER,
*error_handle);

For applications that use JDBC, be aware that JDBC does not set the client identifier. To set the client identifier in a connection pooling environment, use Dynamic Monitoring Service (DMS) metrics. If DMS is not available, then use the connection.setClientInfo method. For example:

connection.setClientInfo("E2E_CONTEXT.CLIENT_IDENTIFIER", "appuser");

	
See Also:

	
Oracle Call Interface Programmer's Guide about how the OCI_ATTR_CLIENT_IDENTIFIER user session handle attribute is used in middle-tier applications

	
Oracle Database JDBC Developer's Guide for more information about configuring client connections using JDBC

Using the DBMS_SESSION PL/SQL Package to Set and Clear the Client Identifier

To use the DBMS_SESSION package to set and clear the CLIENT_IDENTIFIER value on the middle tier, use the following interfaces:

	
SET_IDENTIFIER

	
CLEAR_IDENTIFIER

The middle tier uses SET_IDENTIFIER to associate the database session with a particular user or group. Then, the CLIENT_IDENTIFIER is an attribute of the session and can be viewed in session information.

If you plan to use the DBMS_SESSION.SET_IDENTIFIER procedure, be aware that the DBMS_APPLICATION_INFO.SET_CLIENT_INFO procedure can overwrite the value of the client identifier. Typically, these values should be the same, so if SET_CLIENT_INFO is set, its value can be automatically propagated to the value set by SET_IDENTIFIER if the CLIENTID_OVERWRITE event is set to ON.

To check the status of the CLIENTID_OVERWRITE event, log in to SQL*Plus and then enter the SHOW PARAMETER command. For example, assuming that CLIENTID_OVERWRITE is enabled:

SHOW PARAMETER EVENT

NAME TYPE VALUE
------------------------------ ------------------ ------------------
event string clientid_overwrite

To enable the CLIENTID_OVERWRITE event system-wide, connect to SQL*Plus as SYS using the SYSDBA privilege, and then enter the following ALTER SYSTEM statement:

ALTER SYSTEM SET EVENTS 'CLIENTID_OVERWRITE';

Or, enter the following line in your init.ora file:

event="clientid_overwrite"

Then restart the database. To disable the CLIENTID_OVERWRITE event, log in to SQL*Plus as SYS with the SYSDBA privilege, and then run the following ALTER SYSTEM statement:

ALTER SYSTEM SET EVENTS 'CLIENTID_OVERWRITE OFF';

If you prefer to change the CLIENTID_OVERWRITE value for the session only, then use the ALTER SESSION statement.

Afterwards, if you set the client identifier using the DBMS_APPLICATION_INFO.SET_CLIENT_INFO procedure, you must then run DBMS_SESSION.SET_IDENTIFIER so that the client identifier settings are the same.

	
See Also:

	
"Using Global Application Contexts" for information about using client identifiers in a global application context

	
Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_SESSION package

Finding Information About User Authentication

Table 3-3 lists data dictionary views that contain information about user authentication. For detailed information about these views, see Oracle Database Reference.

Table 3-3 Data Dictionary Views That Describe User Authentication

	View	Description
	
DBA_PROFILES

	
Displays information about profiles, including their settings and limits.

	
DBA_ROLES

	
Displays the kind of authentication used for a database role to log in to the database, such as NONE or GLOBAL (query the AUTHENTICATION_TYPE column)

	
DBA_USERS

	
Among other user information, displays the following:

	
The kind of authentication the user used to log in to the database, such as PASSWORD or EXTERNAL (AUTHENTICATION_TYPE column)

	
The release in which the user created his or her password (PASSWORD_VERSIONS column)

	
DBA_USERS_WITH_DEFPWD

	
Displays whether the user account password is a default password

	
PROXY_USERS

	
Displays users who are currently authorized to connect through a middle tier

	
V$DBLINK

	
Displays user accounts for existing database links (DB_LINK, OWNER_ID columns)

	
V$SESSION

	
Querying the USERNAME column displays the concurrently logged in users

4 Configuring Privilege and Role Authorization

This chapter contains:

	
About Privileges and Roles

	
Who Should Be Granted Privileges?

	
Granting the SYSDBA and SYSOPER Administrative Privileges to Users

	
Managing System Privileges

	
Managing User Roles

	
Managing Object Privileges

	
Granting a User Privileges and Roles

	
Revoking Privileges and Roles from a User

	
Granting to and Revoking from the PUBLIC Role

	
Granting Roles Using the Operating System or Network

	
When Do Grants and Revokes Take Effect?

	
Managing Fine-Grained Access in PL/SQL Packages and Types

	
Finding Information About User Privileges and Roles

About Privileges and Roles

Authorization includes primarily two processes:

	
Permitting only certain users to access, process, or alter data.

	
Applying varying limitations on user access or actions. The limitations placed on (or removed from) users can apply to objects such as schemas, tables, or rows or to resources such as time (CPU, connect, or idle times).

A user privilege is the right to run a particular type of SQL statement, or the right to access an object that belongs to another user, run a PL/SQL package, and so on. The types of privileges are defined by Oracle Database.

Roles are created by users (usually administrators) to group together privileges or other roles. They are a way to facilitate the granting of multiple privileges or roles to users.

This section describes the following general categories:

	
System privileges. These privileges allow the grantee to perform standard administrator tasks in the database. Restrict them only to trusted users. "Managing System Privileges" describes system privileges in detail.

	
User roles. A role groups several privileges and roles, so that they can be granted to and revoked from users simultaneously. You must enable the role for a user before the user can use it. See "Managing User Roles" for more information.

	
Object privileges. Each type of object has privileges associated with it. "Managing Object Privileges" describes how to manage privileges for different types of objects.

Who Should Be Granted Privileges?

You grant privileges to users so they can accomplish tasks required for their jobs. You should grant a privilege only to a user who requires that privilege to accomplish the necessary work. Excessive granting of unnecessary privileges can compromise security. For example, you never should grant SYSDBA or SYSOPER administrative privilege to users who do not perform administrative tasks.

A user can receive a privilege in two ways:

	
You can grant privileges to users explicitly. For example, you can explicitly grant to user psmith the privilege to insert records into the employees table.

	
You can grant privileges to a role (a named group of privileges), and then grant the role to one or more users. For example, you can grant the privileges to select, insert, update, and delete records from the employees table to the role named clerk, which in turn you can grant to users psmith and robert.

Because roles allow for easier and better management of privileges, you should usually grant privileges to roles and not to specific users.

	
See Also:

	
"Guidelines for Securing User Accounts and Privileges" for best practices to follow when granting privileges

	
Oracle Database SQL Language Reference for the complete list of system privileges and their descriptions

Granting the SYSDBA and SYSOPER Administrative Privileges to Users

As with all powerful privileges, only grant the SYSDBA and SYSOPER administrative privileges to trusted users. However, be aware that there is a restriction for users whose names have non-ASCII characters (for example, the umlaut in the name HÜBER). You can grant administrative privileges to these users, but if the Oracle database instance is down, the authentication using the granted privilege is not supported if the user name has non-ASCII characters. If the database instance is up, then the authentication is supported.

Managing System Privileges

This section contains:

	
About System Privileges

	
Why Is It Important to Restrict System Privileges?

	
Granting and Revoking System Privileges

	
Who Can Grant or Revoke System Privileges?

	
About ANY Privileges and the PUBLIC Role

About System Privileges

A system privilege is the right to perform a particular action or to perform an action on any schema objects of a particular type. For example, the privileges to create tablespaces and to delete the rows of any table in a database are system privileges.

There are over 100 distinct system privileges. Each system privilege allows a user to perform a particular database operation or class of database operations. Remember that system privileges are very powerful. Only grant them when necessary to roles and trusted users of the database. You can find a complete list of system privileges and their descriptions in Oracle Database SQL Language Reference. To find the system privileges that have been granted to a user, you can query the DBA_SYS_PRIVS data dictionary view.

Why Is It Important to Restrict System Privileges?

Because system privileges are so powerful, by default the database is configured to prevent typical (non-administrative) users from exercising the ANY system privileges (such as UPDATE ANY TABLE) on the data dictionary. See "Guidelines for Securing User Accounts and Privileges" for additional guidelines about restricting system privileges.

	
Restricting System Privileges by Securing the Data Dictionary

	
Allowing Access to Objects in the SYS Schema

Restricting System Privileges by Securing the Data Dictionary

To secure the data dictionary, set the O7_DICTIONARY_ACCESSIBILITY initialization parameter to FALSE, which is the default value. This feature is called the dictionary protection mechanism.

The O7_DICTIONARY_ACCESSIBILITY initialization parameter controls restrictions on system privileges when you upgrade from Oracle Database release 7 to Oracle8i and later releases. If the parameter is set to TRUE, then access to objects in the SYS schema is allowed (Oracle Database release 7 behavior). Because the ANY privilege applies to the data dictionary, a malicious user with ANY privilege could access or alter data dictionary tables.

To set the O7_DICTIONARY_ACCESSIBILTY initialization parameter, modify it in the initSID.ora file. Alternatively, you can log on to SQL*Plus as user SYS with the SYSDBA privilege and then enter an ALTER SYSTEM statement, assuming you have started the database using a server parameter file (SPFILE).

Example 4-1 shows how to set the O7_DICTIONARY_ACCESSIBILTY initialization parameter to FALSE by issuing an ALTER SYSTEM statement in SQL*Plus.

Example 4-1 Setting O7_DICTIONARY_ACCESSIBILITY to FALSE

ALTER SYSTEM SET O7_DICTIONARY_ACCESSIBILITY=FALSE SCOPE=SPFILE;

When you set O7_DICTIONARY_ACCESSIBILITY to FALSE, system privileges that enable access to objects in any schema (for example, users who have ANY privileges, such as CREATE ANY PROCEDURE) do not allow access to objects in the SYS schema. This means that access to the objects in the SYS schema (data dictionary objects) is restricted to users who connect using the SYSDBA privilege. Remember that the SYS user must log in with either the SYSDBA or SYSOPER privilege; otherwise, an ORA-28009: connection as SYS should be as SYSDBA or SYSOPER error is raised. If you set O7_DICTIONARY_ACCESSIBILITY to TRUE, then you would be able to log in to the database as user SYS without having to specify the SYSDBA or SYSOPER privilege.

System privileges that provide access to objects in other schemas do not give other users access to objects in the SYS schema. For example, the SELECT ANY TABLE privilege allows users to access views and tables in other schemas, but does not enable them to select dictionary objects (base tables of dynamic performance views, regular views, packages, and synonyms). You can, however, grant these users explicit object privileges to access objects in the SYS schema.

See Oracle Database Reference for more information about the O7_DICTIONARY_ACCESSIBILITY initialization parameter.

Allowing Access to Objects in the SYS Schema

Users with explicit object privileges or those who connect with administrative privileges (SYSDBA) can access objects in the SYS schema.

Table 4-1 lists roles that you can grant to users who need access to objects in the SYS schema.

Table 4-1 Roles to Allow Access to SYS Schema Objects

	Role	Description
	
SELECT_CATALOG_ROLE

	
Grant this role to allow users SELECT privileges on data dictionary views.

	
EXECUTE_CATALOG_ROLE

	
Grant this role to allow users EXECUTE privileges for packages and procedures in the data dictionary.

	
DELETE_CATALOG_ROLE

	
Grant this role to allow users to delete records from the system audit tables SYS.AUD$ and SYS.FGA_LOG$.

Additionally, you can grant the SELECT ANY DICTIONARY system privilege to users who require access to tables created in the SYS schema. This system privilege allows query access to any object in the SYS schema, including tables created in that schema. It must be granted individually to each user requiring the privilege. It is not included in GRANT ALL PRIVILEGES, but it can be granted through a role.

	
Caution:

You should grant these roles and the SELECT ANY DICTIONARY system privilege with extreme care, because the integrity of your system can be compromised by their misuse.

Granting and Revoking System Privileges

You can grant or revoke system privileges to users and roles. If you grant system privileges to roles, then you can use the roles to exercise system privileges. For example, roles permit privileges to be made selectively available. Ensure that you follow the separation of duty guidelines described in "Guidelines for Securing Roles".

Use either of the following methods to grant or revoke system privileges to or from users and roles:

	
GRANT and REVOKE SQL statements

	
Oracle Enterprise Manager Database Control

	
See Also:

	
"Granting a User Privileges and Roles"

	
"Revoking Privileges and Roles from a User"

	
"When Do Grants and Revokes Take Effect?"

	
"Finding Information About User Privileges and Roles"

	
Oracle Database 2 Day DBA for more information about Database Control

Who Can Grant or Revoke System Privileges?

Only two types of users can grant system privileges to other users or revoke those privileges from them:

	
Users who were granted a specific system privilege with the ADMIN OPTION

	
Users with the system privilege GRANT ANY PRIVILEGE

For this reason, only grant these privileges to trusted users.

About ANY Privileges and the PUBLIC Role

System privileges that use the ANY keyword enable you to set privileges for an entire category of objects in the database. For example, the CREATE ANY PROCEDURE system privilege permits a user to create a procedure anywhere in the database. The behavior of an object created by users with the ANY privilege is not restricted to the schema in which it was created. For example, if user JSMITH has the CREATE ANY PROCEDURE privilege and creates a procedure in the schema JONES, then the procedure will run as JONES. However, JONES may not be aware that the procedure JSMITH created is running as him (JONES). If JONES has DBA privileges, letting JSMITH run a procedure as JONES could pose a security violation.

The PUBLIC role is a special role that every database user account automatically has when the account is created. By default, it has no privileges granted to it, but it does have numerous grants, mostly to Java objects. You cannot drop the PUBLIC role, and a manual grant or revoke of this role has no meaning, because the user account will always assume this role. Because all database user accounts assume the PUBLIC role, it does not appear in the DBA_ROLES and SESSION_ROLES data dictionary views.

You can grant privileges to the PUBLIC role, but remember that this makes the privileges available to every user in the Oracle database. For this reason, be careful about granting privileges to the PUBLIC role, particularly powerful privileges such as the ANY privileges and system privileges. For example, if JSMITH has the CREATE PUBLIC SYNONYM system privilege, he could redefine an interface that he knows everyone else uses, and then point to it with the PUBLIC SYNONYM that he created. Instead of accessing the correct interface, users would access the interface of JSMITH, which could possibly perform illegal activities such as stealing the login credentials of users.

These types of privileges are very powerful and could pose a security risk if given to the wrong person. Be careful about granting privileges using ANY or PUBLIC. As with all privileges, you should follow the principles of "least privilege" when granting these privileges to users.

To protect the data dictionary (the contents of the SYS schema) against users who have one or more of the powerful ANY system privileges, set the O7_DICTIONARY_ACCESSIBILITY initialization parameter to FALSE. You can set this parameter by using an ALTER SYSTEM statement (see Example 4-1, "Setting O7_DICTIONARY_ACCESSIBILITY to FALSE") or by modifying the initSID.ora file. See "Guidelines for Securing a Database Installation and Configuration" for additional guidelines.

Managing User Roles

This section contains:

	
About User Roles

	
Predefined Roles in an Oracle Database Installation

	
Creating a Role

	
Specifying the Type of Role Authorization

	
Dropping Roles

	
Restricting SQL*Plus Users from Using Database Roles

	
Securing Role Privileges by Using Secure Application Roles

About User Roles

Managing and controlling privileges is easier when you use roles, which are named groups of related privileges that you grant as a group to users or other roles. Within a database, each role name must be unique, different from all user names and all other role names. Unlike schema objects, roles are not contained in any schema. Therefore, a user who creates a role can be dropped with no effect on the role.

This section contains:

	
The Functionality of Roles

	
Properties of Roles and Why They Are Advantageous

	
Common Uses of Roles

	
How Roles Affect the Scope of a User's Privileges

	
How Roles Work in PL/SQL Blocks

	
How Roles Aid or Restrict DDL Usage

	
How Operating Systems Can Aid Roles

	
How Roles Work in a Distributed Environment

The Functionality of Roles

Roles are useful for quickly and easily granting permissions to users. Although you can use Oracle Database-defined roles, you have more control and continuity if you create your own roles that contain only the privileges pertaining to your requirements. Oracle may change or remove the privileges in an Oracle Database-defined role, as it has with the CONNECT role, which now has only the CREATE SESSION privilege. Formerly, the CONNECT role had eight other privileges.

Roles have the following functionality:

	
A role can be granted system or object privileges.

	
Any role can be granted to any database user.

	
Each role granted to a user is, at a given time, either enabled or disabled. A user's security domain includes the privileges of all roles currently enabled for the user and excludes the privileges of any roles currently disabled for the user. Oracle Database allows database applications and users to enable and disable roles to provide selective availability of privileges.

	
A role can be granted to other roles. However, a role cannot be granted to itself and cannot be granted circularly. For example, role role1 cannot be granted to role role2 if role role2 has previously been granted to role role1.

	
If a role is not password authenticated or a secure application role, then you can grant the role indirectly to the user. An indirectly granted role is a role granted to the user through another role that has already been granted to this user. For example, suppose you grant user psmith the role1 role. Then you grant the role2 and role3 roles to the role1 role. Roles role2 and role3 are now under role1. This means psmith has been indirectly granted the roles role2 and role3, in addition to the direct grant of role1. Enabling the direct role1 for psmith enables the indirect roles role2 and role3 for this user as well.

	
Optionally, you can make a directly granted role a default role. You enable or disable the default role status of a directly granted role by using the DEFAULT ROLE clause of the ALTER USER statement. Ensure that the DEFAULT ROLE clause refers only to roles that have been directly granted to the user. To find the directly granted roles for a user, query the DBA_ROLE_PRIVS data dictionary view. This view does not include the user's indirectly granted roles. To find roles that are granted to other roles, query the ROLE_ROLE_PRIVS view.

	
If the role is password authenticated or a secure application role, then you cannot grant it indirectly to the user, nor can you make it a default role. You only can grant this type of role directly to the user. Typically, you enable password authenticated or secure application roles by using the SET ROLE statement.

Properties of Roles and Why They Are Advantageous

Table 4-2 describes the properties of roles that enable easier privilege management within a database.

Table 4-2 Properties of Roles and Their Description

	Property	Description
	
Reduced privilege administration

	
Rather than granting the same set of privileges explicitly to several users, you can grant the privileges for a group of related users to a role, and then only the role must be granted to each member of the group.

	
Dynamic privilege management

	
If the privileges of a group must change, then only the privileges of the role need to be modified. The security domains of all users granted the group's role automatically reflect the changes made to the role.

	
Selective availability of privileges

	
You can selectively enable or disable the roles granted to a user. This allows specific control of a user's privileges in any given situation.

	
Application awareness

	
The data dictionary records which roles exist, so you can design applications to query the dictionary and automatically enable (or disable) selective roles when a user attempts to execute the application by way of a given user name.

	
Application-specific security

	
You can protect role use with a password. Applications can be created specifically to enable a role when supplied the correct password. Users cannot enable the role if they do not know the password.

Database administrators often create roles for a database application. You should grant a secure application role all privileges necessary to run the application. You then can grant the secure application role to other roles or users. An application can have several different roles, each granted a different set of privileges that allow for more or less data access while using the application.

The DBA can create a role with a password to prevent unauthorized use of the privileges granted to the role. Typically, an application is designed so that when it starts, it enables the proper role. As a result, an application user does not need to know the password for an application role.

	
See Also:

"How Roles Aid or Restrict DDL Usage" for information about restrictions for procedures

Common Uses of Roles

In general, you create a role to serve one of two purposes:

	
To manage the privileges for a database application (see "Common Uses of Application Roles")

	
To manage the privileges for a user group (see "Common Uses of User Roles")

Figure 4-1 and the sections that follow describe the two uses of roles.

Figure 4-1 Common Uses for Roles

[image: Description of Figure 4-1 follows]

Common Uses of Application Roles

Grant an application role all privileges necessary to run a given database application. Then, grant the secure application role to other roles or to specific users. An application can have several different roles, with each role assigned a different set of privileges that allow for more or less data access while using the application.

Common Uses of User Roles

Create a user role for a group of database users with common privilege requirements. You can manage user privileges by granting secure application roles and privileges to the user role and then granting the user role to appropriate users.

How Roles Affect the Scope of a User's Privileges

Each role and user has its own unique security domain. The security domain of a role includes the privileges granted to the role plus those privileges granted to any roles that are granted to the role.

The security domain of a user includes privileges on all schema objects in the corresponding schema, the privileges granted to the user, and the privileges of roles granted to the user that are currently enabled. (A role can be simultaneously enabled for one user and disabled for another.) This domain also includes the privileges and roles granted to the role PUBLIC. The PUBLIC role represents all users in the database.

How Roles Work in PL/SQL Blocks

The use of roles in a PL/SQL block depends on whether it is an anonymous block or a named block (stored procedure, function, or trigger), and whether it executes with definer's rights or invoker's rights.

Roles Used in Named Blocks with Definer's Rights

All roles are disabled in any named PL/SQL block (stored procedure, function, or trigger) that executes with definer's rights. Roles are not used for privilege checking and you cannot set roles within a definer's rights procedure.

The SESSION_ROLES view shows all roles that are currently enabled. If a named PL/SQL block that executes with definer's rights queries SESSION_ROLES, then the query does not return any rows.

	
See Also:

Oracle Database Reference

Roles Used in Named Blocks with Invoker's Rights and Anonymous PL/SQL Blocks

Named PL/SQL blocks that execute with invoker's rights and anonymous PL/SQL blocks are executed based on privileges granted through enabled roles. Current roles are used for privilege checking within an invoker's rights PL/SQL block. You can use dynamic SQL to set a role in the session.

	
See Also:

	
Oracle Database PL/SQL Language Reference for an explanation of how invoker's and definer's rights can be used for name resolution and privilege checking

	
Oracle Database PL/SQL Language Reference for information about dynamic SQL in PL/SQL

How Roles Aid or Restrict DDL Usage

A user requires one or more privileges to successfully execute a DDL statement, depending on the statement. For example, to create a table, the user must have the CREATE TABLE or CREATE ANY TABLE system privilege. To create a view of a table that belongs to another user, the creator requires the CREATE VIEW or CREATE ANY VIEW system privilege and either the SELECT object privilege for the table or the SELECT ANY TABLE system privilege.

Oracle Database avoids the dependencies on privileges received by way of roles by restricting the use of specific privileges in certain DDL statements. The following rules describe these privilege restrictions concerning DDL statements:

	
All system privileges and object privileges that permit a user to perform a DDL operation are usable when received through a role. For example:

	
System privileges: CREATE TABLE, CREATE VIEW, and CREATE PROCEDURE privileges

	
Object privileges: ALTER and INDEX privileges for a table

You cannot use the REFERENCES object privilege for a table to define the foreign key of a table if the privilege is received through a role.

	
All system privileges and object privileges that allow a user to perform a DML operation that is required to issue a DDL statement are not usable when received through a role. The security domain does not contain roles when a CREATE VIEW statement is used. For example, a user who is granted the SELECT ANY TABLE system privilege or the SELECT object privilege for a table through a role cannot use either of these privileges to create a view on a table that belongs to another user. This is because views are definer's rights objects, so when creating them you cannot use any privileges (neither system privileges or object privileges) granted to you through a role. If the privilege is granted directly to you, then you can use the privilege. However, if the privilege is revoked at a later time, then the view definition becomes invalid ("contains errors") and must recompiled before it can be used again.

The following example further clarifies the permitted and restricted uses of privileges received through roles.

Assume that a user is:

	
Granted a role that has the CREATE VIEW system privilege

	
Directly granted a role that has the SELECT object privilege for the employees table

	
Directly granted the SELECT object privilege for the departments table

Given these directly and indirectly granted privileges:

	
The user can issue SELECT statements on both the employees and departments tables.

	
Although the user has both the CREATE VIEW and SELECT privilege for the employees table through a role, the user cannot create a view on the employees table, because the SELECT object privilege for the employees table was granted through a role.

	
The user can create a view on the departments table, because the user has the CREATE VIEW privilege through a role and the SELECT privilege for the departments table directly.

How Operating Systems Can Aid Roles

In some environments, you can administer database security using the operating system. The operating system can be used to grant and revoke database roles and to manage their password authentication. This capability is not available on all operating systems.

	
See Also:

Your operating system-specific Oracle Database documentation for details about managing roles through the operating system

How Roles Work in a Distributed Environment

When you use roles in a distributed database environment, ensure that all needed roles are set as the default roles for a distributed (remote) session. These roles cannot be enabled when the user connects to a remote database from within a local database session. For example, the user cannot execute a remote procedure that attempts to enable a role at the remote site.

	
See Also:

Oracle Database Heterogeneous Connectivity User's Guide

Predefined Roles in an Oracle Database Installation

Oracle Database provides a set of predefined roles to help in database administration. These roles, listed in Table 4-3, are automatically defined for Oracle databases when you run the standard scripts that are part of database creation. If you install other options or products, then other predefined roles may be created.

Table 4-3 Oracle Database Predefined Roles

	Predefined Role	Description
	
ADM_PARALLEL_EXECUTE_TASK

	
Provides privileges to update table data in parallel by using the DBMS_PARALLEL_EXECUTE PL/SQL package.

See Also: Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_PARALLEL_EXECUTE PL/SQL package.

	
AQ_ADMINISTRATOR_ROLE

	
Provides privileges to administer Advanced Queuing. Includes ENQUEUE ANY QUEUE, DEQUEUE ANY QUEUE, and MANAGE ANY QUEUE, SELECT privileges on Advanced Queuing tables and EXECUTE privileges on Advanced Queuing packages.

	
AQ_USER_ROLE

	
Obsolete, but kept mainly for release 8.0 compatibility. Provides EXECUTE privileges on the DBMS_AQ and DBMS_AQIN packages.

	
AUTHENTICATEDUSER

	
Used by the XDB protocols to define any user who has logged in to the system.

	
CAPI_USER_ROLE

	
Provides access to packages used for implementing Information Lifecycle Management (ILM) and hierarchical storage and other applications.

See Also: Oracle Database SecureFiles and Large Objects Developer's Guide

	
CONNECT

	
Provides the CREATE SESSION system privilege.

This role is provided for compatibility with previous releases of Oracle Database. You can determine the privileges encompassed by this role by querying the DBA_SYS_PRIVS data dictionary view.

Note: Oracle recommends that you design your own roles for database security rather than relying on this role. This role may not be created automatically by future releases of Oracle Database.

See Also: Oracle Database Reference for a description of the DBA_SYS_PRIVS view

	
CSW_USR_ROLE

	
Provides user privileges to manage the Catalog Services for the Web (CSW) component of Oracle Spatial.

See Also: Oracle Spatial Developer's Guide for more information

	
CTXAPP

	
Provides privileges to create Oracle Text indexes and index preferences, and to use PL/SQL packages. This role should be granted to Oracle Text users.

See Also: Oracle Text Application Developer's Guide for more information

	
CWM_USER

	
Provides privileges to manage Common Warehouse Metadata (CWM), which is a repository standard used by Oracle data warehousing and decision support.

See Also: Oracle Database Data Warehousing Guide for more information

	
DATAPUMP_EXP_FULL_DATABASE

	
Provides privileges to export data from an Oracle database using Oracle Data Pump.

Caution: This is a very powerful role because it provides a user access to any data in any schema in the database. Use caution when granting this role to users.

See Also: Oracle Database Utilities for more information

	
DATAPUMP_IMP_FULL_DATABASE

	
Provides privileges to import data into an Oracle database using Oracle Data Pump.

Caution: This is a very powerful role because it provides a user access to any data in any schema in the database. Use caution when granting this role to users.

See Also: Oracle Database Utilities for more information

	
DBA

	
Provides all system privileges that were created with the ADMIN option.

This role is provided for compatibility with previous releases of Oracle Database. You can determine the privileges encompassed by this role by querying the DBA_SYS_PRIVS data dictionary view.

Note: Oracle recommends that you design your own roles for database security rather than relying on this role. This role may not be created automatically by future releases of Oracle Database.

See Also: Oracle Database Reference for a description of the DBA_SYS_PRIVS view

	
DBFS_ROLE

	
Provides access to the DBFS (the Database Filesystem) packages and objects.

See Also: Oracle Database SecureFiles and Large Objects Developer's Guide

	
DELETE_CATALOG_ROLE

	
Provides the DELETE privilege on the system audit table (AUD$).

	
EJBCLIENT

	
Provides privileges to connect to EJBs from a Java stored procedure.

	
EXECUTE_CATALOG_ROLE

	
Provides EXECUTE privileges on objects in the data dictionary.

	
EXP_FULL_DATABASE

	
Provides the privileges required to perform full and incremental database exports using the Export utility (later replaced with Oracle Data Pump). It includes these privileges: SELECT ANY TABLE, BACKUP ANY TABLE, EXECUTE ANY PROCEDURE, EXECUTE ANY TYPE, ADMINISTER RESOURCE MANAGER, and INSERT, DELETE, and UPDATE on the tables SYS.INCVID, SYS.INCFIL, and SYS.INCEXP. Also the following roles: EXECUTE_CATALOG_ROLE and SELECT_CATALOG_ROLE.

This role is provided for convenience in using the export and import utilities.

Caution: This is a very powerful role because it provides a user access to any data in any schema in the database. Use caution when granting this role to users.

See Also: Oracle Database Utilities for more information

	
GATHER_SYSTEM_STATISTICS

	
Provides privileges to update system statistics, which are collected using the DBMS_STATS.GATHER_SYSTEM_STATISTICS procedure

See Also: Oracle Database Performance Tuning Guide for more information about managing optimizer statistics

	
GLOBAL_AQ_USER_ROLE

	
Provides privileges to establish a connection to an LDAP server, for use with Oracle Streams AQ.

See Also: Oracle Streams Advanced Queuing User's Guide for more information

	
HS_ADMIN_EXECUTE_ROLE

	
Provides the EXECUTE privilege for users who want to use the Heterogeneous Services (HS) PL/SQL packages.

See Also: Oracle Database Heterogeneous Connectivity User's Guide for more information

	
HS_ADMIN_ROLE

	
Provides privileges to both use the Heterogeneous Services (HS) PL/SQL packages and query the HS-related data dictionary views.

See Also: Oracle Database Heterogeneous Connectivity User's Guide for more information

	
HS_ADMIN_SELECT_ROLE

	
Provides privileges to query the Heterogeneous Services data dictionary views.

See Also: Oracle Database Heterogeneous Connectivity User's Guide for more information

	
IMP_FULL_DATABASE

	
Provides the privileges required to perform full database imports using the Import utility (later replaced with Oracle Data Pump). Includes an extensive list of system privileges (use view DBA_SYS_PRIVS to view privileges) and the following roles: EXECUTE_CATALOG_ROLE and SELECT_CATALOG_ROLE.

This role is provided for convenience in using the export and import utilities.

Caution: This is a very powerful role because it provides a user access to any data in any schema in the database. Use caution when granting this role to users.s.

See Also: Oracle Database Utilities for more information

	
JAVADEBUGPRIV

	
Provides privileges to run the Oracle Database Java applications debugger.

See Also: Oracle Database Java Developer's Guide for more information about managing security for Oracle Java applications

	
JAVAIDPRIV

	
Deprecated for this release.

	
JAVASYSPRIV

	
Provides major permissions to use Java2, including updating Oracle JVM-protected packages.

See Also: Oracle Database Java Developer's Guide for more information about managing security for Oracle Java applications

	
JAVAUSERPRIV

	
Provides limited permissions to use Java2.

See Also: Oracle Database Java Developer's Guide for more information about managing security for Oracle Java applications

	
JAVA_ADMIN

	
Provides administrative permissions to update policy tables for Oracle Database Java applications.

See Also: Oracle Database Java Developer's Guide for more information about managing security for Oracle Java applications

	
JAVA_DEPLOY

	
Provides privileges to deploy ncomp DLLs into the javavm/admin directory using the ncomp and deployns utilities. Without this role, the javavm/deploy and javavm/admin directories can be accessible.

See Also: Oracle Database Advanced Application Developer's Guide for more information

	
JMXSERVER

	
Provides privileges to start and maintain a JMX agent in a database session.

See Also: Oracle Database Java Developer's Guide for more information about managing Oracle Java applications

	
LBAC_DBA

	
Provides permissions to use the SA_SYSDBA PL/SQL package.

See Also: Oracle Label Security Administrator's Guide for more information

	
LOGSTDBY_ADMINISTRATOR

	
Provides administrative privileges to manage the SQL Apply (logical standby database) environment.

See Also: Oracle Data Guard Concepts and Administration for more information

	
MGMT_USER

	
Grants the SELECT privilege on the different views used for the SYSMAN schema.

	
OEM_ADVISOR

	
Provides privileges to create, drop, select (read), load (write), and delete a SQL tuning set through the DBMS_SQLTUNE PL/SQL package, and to access to the Advisor framework using the ADVISOR PL/SQL package.

See Also: Oracle Database Performance Tuning Guide for more information

	
OEM_MONITOR

	
Provides privileges needed by the Management Agent component of Oracle Enterprise Manager to monitor and manage the database.

See Also: Oracle Database Performance Tuning Guide for more information

	
OLAP_DBA

	
Provides administrative privileges to create dimensional objects in different schemas for Oracle OLAP.

See Also: Oracle OLAP User's Guide for more information

	
OLAP_USER

	
Provides application developers privileges to create dimensional objects in their own schemas for Oracle OLAP.

See Also: Oracle OLAP User's Guide for more information

	
OLAP_XS_ADMIN

	
Provides privileges to administer security for Oracle OLAP.

See Also: Oracle OLAP User's Guide for more information

	
ORDADMIN

	
Provides privileges to administer Oracle Multimedia DICOM.

See Also: Oracle Multimedia DICOM Developer's Guide

	
OWB$CLIENT

	
Provides privileges to perform standard client-related tasks for Oracle Warehouse Builder, such as creating projects, modules, tables, views, maps, and so on. Warehouse Builder automatically grants this role to all workspace owners and users. (That is, you do not need to explicitly grant it to anyone who must use Warehouse Builder.) For security reasons, the OWB$CLIENT role is not a default role for Warehouse Builder users: Oracle Warehouse Builder enables this role only when it is needed.

See Also: Oracle Warehouse Builder Installation and Administration Guide for more information

	
OWB_DESIGNCENTER_VIEW

	
Provides privileges from the database level for any registered Oracle Warehouse Builder user to query the Warehouse Builder public views, such as ALL_IV_PROJECTS. A Warehouse Builder administrator can use the ACCESS_PUBLICVIEW_BROWSER system privilege from the Warehouse Builder security level to control an Warehouse Builder user's access to those public views.

See Also: Oracle Warehouse Builder Installation and Administration Guide for more information

	
OWB_USER

	
Provides privileges to create and own an Oracle Warehouse Builder workspace. When a workspace owner registers other database users to this workspace, Oracle Database grants this role to these users. Users with this role also have access to Warehouse Builder Control Center public views and other Control Center utilities. Oracle Warehouse Builder grants this role to all Warehouse Builder users.

See Also: Oracle Warehouse Builder Installation and Administration Guide for more information

	
RECOVERY_CATALOG_OWNER

	
Provides privileges for owner of the recovery catalog. Includes: CREATE SESSION, ALTER SESSION, CREATE SYNONYM, CREATE VIEW, CREATE DATABASE LINK, CREATE TABLE, CREATE CLUSTER, CREATE SEQUENCE, CREATE TRIGGER, and CREATE PROCEDURE

	
RESOURCE

	
Provides the following system privileges: CREATE CLUSTER, CREATE INDEXTYPE, CREATE OPERATOR, CREATE PROCEDURE, CREATE SEQUENCE, CREATE TABLE, CREATE TRIGGER, CREATE TYPE.

This role is provided for compatibility with previous releases of Oracle Database. You can determine the privileges encompassed by this role by querying the DBA_SYS_PRIVS data dictionary view.

Note: Oracle recommends that you design your own roles for database security rather than relying on this role. This role may not be created automatically by future releases of Oracle Database.

See Also: Oracle Database Reference for a description of the DBA_SYS_PRIVS view

	
SCHEDULER_ADMIN

	
Allows the grantee to execute the procedures of the DBMS_SCHEDULER package. It includes all of the job scheduler system privileges and is included in the DBA role.

See Also: Oracle Database Administrator's Guide for more information about the DBMS_SCHEDULER package

	
SELECT_CATALOG_ROLE

	
Provides SELECT privilege on objects in the data dictionary.

	
SNMPAGENT

	
Used by the Enterprise Manager Management Agent.

	
SPATIAL_CSW_ADMIN

	
Provides administrative privileges to manage the Catalog Services for the Web (CSW) component of Oracle Spatial.

See Also: Oracle Spatial Developer's Guide for more information

	
SPATIAL_WFS_ADMIN

	
Provides administrative privileges to manage the Web Feature Service (WFS) component of Oracle Spatial.

See Also: Oracle Spatial Developer's Guide for more information

	
WFS_USR_ROLE

	
Provides user privileges for the Web Feature Service (WFS) component of Oracle Spatial.

See Also: Oracle Spatial Developer's Guide for more information

	
WM_ADMIN_ROLE

	
Provides administrative privileges for Oracle Workspace Manage. This enables users to run any DBMS_WM procedures on all version enabled tables, workspaces, and savepoints regardless of their owner. It also enables the user to modify the system parameters specific to Workspace Manager.

See Also: Oracle Database Workspace Manager Developer's Guide for more information

	
XDBADMIN

	
Allows the grantee to register an XML schema globally, as opposed to registering it for use or access only by its owner. It also lets the grantee bypass access control list (ACL) checks when accessing Oracle XML DB Repository.

See Also: Oracle XML DB Developer's Guide for information about XML schemas and the XML DB Repository

	
XDB_SET_INVOKER

	
Allows the grantee to define invoker's rights handlers and to create or update the resource configuration for XML repository triggers. By default, Oracle Database grants this role to the DBA role but not to the XDBADMIN role.

See Also: Oracle XML DB Developer's Guide for information about Oracle Database XML repository triggers

	
XDB_WEBSERVICES

	
Allows the grantee to access Oracle Database Web services over HTTPS. However, it does not provide the user access to objects in the database that are public. To allow public access, you need to grant the user the XDB_WEBSERVICES_WITH_PUBLIC role. For a user to use these Web services, SYS must enable the Web service servlets.

See Also: Oracle XML DB Developer's Guide for information about Oracle Database Web services

	
XDB_WEBSERVICES_OVER_HTTP

	
Allows the grantee to access Oracle Database Web services over HTTP. However, it does not provide the user access to objects in the database that are public. To allow public access, you need to grant the user the XDB_WEBSERVICES_WITH_PUBLIC role.

See Also: Oracle XML DB Developer's Guide for information about Oracle Database Web services

	
XDB_WEBSERVICES_WITH_PUBLIC

	
Allows the grantee access to public objects through Oracle Database Web services.

See Also: Oracle XML DB Developer's Guide for information about Oracle Database Web services

	
Note:

Each installation should create its own roles and assign only those privileges that are needed, thus retaining detailed control of the privileges in use. This process also removes any need to adjust existing roles, privileges, or procedures whenever Oracle Database changes or removes roles that Oracle Database defines.

Creating a Role

You can create a role using the CREATE ROLE statement, but you must have the CREATE ROLE system privilege to do so. Typically, only security administrators have this system privilege.

After you create a role, the role has no privileges associated with it. Your next step is to grant either privileges or other roles to the new role.

You must give each role you create a unique name among existing user names and role names of the database. Roles are not contained in the schema of any user. In a database that uses a multibyte character set, Oracle recommends that each role name contain at least one single-byte character. If a role name contains only multibyte characters, then the encrypted role name and password combination is considerably less secure. See Guideline 1 in "Guidelines for Securing Passwords" for password guidelines.

Example 4-2 creates the clerk role.

Example 4-2 Creating a User Role Authorized by a Password

CREATE ROLE clerk IDENTIFIED BY password;

You can use the IDENTIFIED BY clause to authorize the role with a password. The IDENTIFIED BY clause of the CREATE ROLE statement specifies how the user must be authorized before the role can be enabled for use by a specific user to which it has been granted. If you do not specify this clause, or if you specify NOT IDENTIFIED, then no authorization is required when the role is enabled. Roles can be specified to be authorized by the following:

	
The database using a password

	
An application using a specified package

	
Externally by the operating system, network, or other external source

	
Globally by an enterprise directory service

These authorizations are discussed in the following sections.

As an alternative to creating password-protected roles, Oracle recommends that you use secure application roles instead. See "Securing Role Privileges by Using Secure Application Roles" for more information.

You can set or change the authorization method for a role using the ALTER ROLE statement. Remember that you can only directly grant secure application roles or password-authenticated roles to a user.

Example 4-3 shows how to alter the clerk role to specify that the user must have been authorized by an external source before enabling the role.

Example 4-3 Altering a Role to be Authorized by an External Source

ALTER ROLE clerk IDENTIFIED EXTERNALLY;

To alter the authorization method for a role, you must have the ALTER ANY ROLE system privilege or have been granted the role with ADMIN option.

	
See Also:

Oracle Database SQL Language Reference for syntax, restrictions, and authorization information about the SQL statements used to manage roles and privileges

Specifying the Type of Role Authorization

The methods of authorizing roles are presented in this section. A role must be enabled for you to use it.

This section contains:

	
Authorizing a Role by Using the Database

	
Authorizing a Role by Using an Application

	
Authorizing a Role by Using an External Source

	
See Also:

"When Do Grants and Revokes Take Effect?" for a discussion about enabling roles

Authorizing a Role by Using the Database

You can protect a role authorized by the database by assigning the role a password. If a user is granted a role protected by a password, then you can enable or disable the role by supplying the proper password for the role in the SET ROLE statement. You cannot authenticate a password-authenticated role on logon, even if you add it to the list of default roles. You must explicitly enable it with the SET ROLE statement using the required password.

Example 4-4 shows how to set a password-authenticated role by using the SET ROLE statement.

Example 4-4 Using SET ROLE for a Password-Authenticated Role

SET ROLE clerk IDENTIFIED BY password;

Example 4-2, "Creating a User Role Authorized by a Password" shows a CREATE ROLE statement that creates a role called clerk. When it is enabled, the password must be supplied.

	
Note:

In a database that uses a multibyte character set, passwords for roles must include only single-byte characters. Multibyte characters are not accepted in passwords. See Guideline 1 in "Guidelines for Securing Passwords" for password guidelines.

Authorizing a Role by Using an Application

An application role (secure application role) can be enabled only by applications using an authorized PL/SQL package. Application developers do not need to secure a role by embedding passwords inside applications. Instead, they can create an application role and specify which PL/SQL package is authorized to enable the role.

To create a role enabled by an authorized PL/SQL package, use the IDENTIFIED USING package_name clause in the CREATE ROLE SQL statement.

Example 4-5 indicates that the role admin_role is an application role and the role can only be enabled by any module defined inside the PL/SQL package hr.admin.

Example 4-5 Creating a Role Authorized by a PL/SQL Package for an Application

CREATE ROLE admin_role IDENTIFIED USING hr.admin;

See the following for more information about secure application roles:

	
"Securing Role Privileges by Using Secure Application Roles"

	
"Creating Secure Application Roles to Control Access to Applications"

	
Oracle Database 2 Day + Security Guide

Authorizing a Role by Using an External Source

You can define the external role locally in the database, but you cannot grant the external role to global users, to global roles, or to any other roles in the database. You can create roles that are authorized by the operating system or network clients.

Example 4-6 creates a role named accts_rec and requires that the user is authorized by an external source before it can be enabled:

Example 4-6 Creating a Role Authorized by an External Source

CREATE ROLE accts_rec IDENTIFIED EXTERNALLY;

Authorizing a Role by Using the Operating System

Role authentication through the operating system is useful only when the operating system is able to dynamically link operating system privileges with applications. When a user starts an application, the operating system grants an operating system privilege to the user. The granted operating system privilege corresponds to the role associated with the application. At this point, the application can enable the application role. When the application is terminated, the previously granted operating system privilege is revoked from the operating system account of the user.

If a role is authorized by the operating system, then you must configure information for each user at the operating system level. This operation is operating system dependent.

If roles are granted by the operating system, then you do not need to have the operating system authorize them also.

	
See Also:

"Granting Roles Using the Operating System or Network" for more information about roles granted by the operating system

Authorizing a Role by Using a Network Client

If users connect to the database over Oracle Net, then by default, the operating system cannot authenticate their roles. This includes connections through a shared server configuration, as this connection requires Oracle Net. This restriction is the default because a remote user could impersonate another operating system user over a network connection. Oracle recommends that you set REMOTE_OS_ROLES to FALSE, which is the default.

If you are not concerned with this security risk and want to use operating system role authentication for network clients, then set the initialization parameter REMOTE_OS_ROLES in the database initialization parameter file to TRUE. The change will take effect the next time you start the instance and mount the database.

Global Role Authorization by an Enterprise Directory Service

A role can be defined as a global role, where a (global) user can only be authorized to use the role by an enterprise directory service. You define the global role locally in the database by granting privileges and roles to it, but you cannot grant the global role itself to any user or other role in the database. When a global user attempts to connect to the database, the enterprise directory is queried to obtain any global roles associated with the user.

Example 4-7 creates a global role.

Example 4-7 Creating a Global Role

CREATE ROLE supervisor IDENTIFIED GLOBALLY;

Global roles are one component of enterprise user security. A global role only applies to one database, but you can grant it to an enterprise role defined in the enterprise directory. An enterprise role is a directory structure that contains global roles on multiple databases and can be granted to enterprise users.

See "Configuring Global User Authentication and Authorization" for a general discussion of global authentication and authorization of users, and its role in enterprise user management.

	
See Also:

Oracle Database Enterprise User Security Administrator's Guide for information about implementing enterprise user management

Granting and Revoking Roles

This section contains:

	
About Granting and Revoking Roles

	
Who Can Grant or Revoke Roles?

	
See Also:

	
"Granting a User Privileges and Roles"

	
"Revoking Privileges and Roles from a User"

	
"When Do Grants and Revokes Take Effect?"

	
"Finding Information About User Privileges and Roles"

	
Oracle Database 2 Day DBA for more information about Database Control

About Granting and Revoking Roles

You can grant system or object privileges to a role, and any role can be granted to any database user or to another role (but not to itself). However, a role cannot be granted circularly, that is, role X cannot be granted to role Y if role Y has previously been granted to role X.

To provide selective availability of privileges, Oracle Database permits applications and users to enable and disable roles. Each role granted to a user is, at any given time, either enabled or disabled. The security domain of a user includes the privileges of all roles currently enabled for the user and excludes the privileges of any roles currently disabled for the user.

A role granted to a role is called an indirectly granted role. You can explicitly enable or disable it for a user. However, whenever you enable a role that contains other roles, you implicitly enable all indirectly granted roles of the directly granted role.

You grant roles to (or revoke roles from) users or other roles by using either of the following methods:

	
Oracle Enterprise Manager Database Control

	
The GRANT and REVOKE SQL statements

Privileges are granted to and revoked from roles using the same options.

You cannot grant a secure role (that is, an IDENTIFIED BY role, IDENTIFIED USING role, or IDENTIFIED EXTERNALLY role) to a non-secure role. You can use the SET ROLE statement to enable the secure role for the session.

Who Can Grant or Revoke Roles?

Any user with the GRANT ANY ROLE system privilege can grant or revoke any role except a global role to or from other users or roles of the database. (A global role is managed in a directory, such as Oracle Internet Directory, but its privileges are contained within a single database.) By default, the SYS or SYSTEM user has this privilege. You should grant this system privilege conservatively because it is very powerful.

Any user granted a role with the ADMIN OPTION can grant or revoke that role to or from other users or roles of the database. This option allows administrative powers for roles to be granted on a selective basis.

	
See Also:

Oracle Database Enterprise User Security Administrator's Guide for information about global roles

Dropping Roles

In some cases, it may be appropriate to drop a role from the database. The security domains of all users and roles granted a dropped role are immediately changed to reflect the absence of the dropped role privileges. All indirectly granted roles of the dropped role are also removed from affected security domains. Dropping a role automatically removes the role from all user default role lists.

Because the existence of objects is not dependent on the privileges received through a role, tables and other objects are not dropped when a role is dropped.

You can drop a role using the SQL statement DROP ROLE. To drop a role, you must have the DROP ANY ROLE system privilege or have been granted the role with the ADMIN option.

The following statement drops the role CLERK:

DROP ROLE clerk;

Restricting SQL*Plus Users from Using Database Roles

This section describes features that you can use to restrict SQL*Plus users from using database roles and thus, prevent serious security problems.

	
Potential Security Problems of Using Ad Hoc Tools

	
Limiting Roles Through the PRODUCT_USER_PROFILE Table

	
Using Stored Procedures to Encapsulate Business Logic

Potential Security Problems of Using Ad Hoc Tools

Prebuilt database applications explicitly control the potential actions of a user, including the enabling and disabling of user roles while using the application. By contrast, ad hoc query tools such as SQL*Plus, permit a user to submit any SQL statement (which may or may not succeed), including enabling and disabling a granted role.

Potentially, an application user can exercise the privileges attached to that application to issue destructive SQL statements against database tables by using an ad hoc tool.

For example, consider the following scenario:

	
The Vacation application has a corresponding vacation role.

	
The vacation role includes the privileges to issue SELECT, INSERT, UPDATE, and DELETE statements against the emp_tab table.

	
The Vacation application controls the use of privileges obtained through the vacation role.

Now, consider a user who has been granted the vacation role. Suppose that, instead of using the Vacation application, the user executes SQL*Plus. At this point, the user is restricted only by the privileges granted to him explicitly or through roles, including the vacation role. Because SQL*Plus is an ad hoc query tool, the user is not restricted to a set of predefined actions, as with designed database applications. The user can query or modify data in the emp_tab table as he or she chooses.

Limiting Roles Through the PRODUCT_USER_PROFILE Table

You can use the PRODUCT_USER_PROFILE table, which is in the SYSTEM schema, to disable certain SQL and SQL*Plus commands in the SQL*Plus environment for each user. SQL*Plus, not the Oracle Database, enforces this security. You can even restrict access to the GRANT, REVOKE, and SET ROLE commands to control user ability to change their database privileges.

The PRODUCT_USER_PROFILE table enables you to list roles that you do not want users to activate with an application. You can also explicitly disable the use of various commands, such as SET ROLE.

For example, you could create an entry in the PRODUCT_USER_PROFILE table to:

	
Disallow the use of the clerk and manager roles with SQL*Plus

	
Disallow the use of SET ROLE with SQL*Plus

Suppose user Marla connects to the database using SQL*Plus. Marla has the clerk, manager, and analyst roles. As a result of the preceding entry in PRODUCT_USER_PROFILE, Marla is only able to exercise her analyst role with SQL*Plus. Also, when Ginny attempts to issue a SET ROLE statement, she is explicitly prevented from doing so because of the entry in the PRODUCT_USER_PROFILE table prohibiting use of SET ROLE.

Be aware that the PRODUCT_USER_PROFILE table does not completely guarantee security, for multiple reasons. In the preceding example, while SET ROLE is disallowed with SQL*Plus, if Marla had other privileges granted to her directly, then she could exercise these using SQL*Plus.

	
See Also:

SQL*Plus User's Guide and Reference for more information about the PRODUCT_USER_PROFILE table

Using Stored Procedures to Encapsulate Business Logic

Stored procedures encapsulate the use of privileges with business logic so that privileges are only exercised in the context of a well-formed business transaction. For example, an application developer can create a procedure to update the employee name and address in the employees table, which enforces that the data can only be updated in normal business hours. Also, rather than grant a human resources clerk the UPDATE privilege on the employees table, a security administrator may grant the privilege on the procedure only. Then, the human resources clerk can exercise the privilege only in the context of the procedures, and cannot update the employees table directly.

Securing Role Privileges by Using Secure Application Roles

A secure application role is a role that can be enabled only by an authorized PL/SQL package (or procedure). The PL/SQL package itself reflects the security policies needed to control access to the application.

This method of role creation restricts the enabling of this type of role to the invoking application. For example, the application can perform authentication and customized authorization, such as checking whether the user has connected through a proxy.

This type of role strengthens security because passwords are not embedded in application source code or stored in a table. This way, the actions the database performs are based on the implementation of your security policies, and these definitions are stored in one place, the database, rather than in your applications. If you need to modify the policy, you do so in one place without having to modify your applications. No matter how users connect to the database, the result is always the same, because the policy is bound to the role.

To enable the secure application role, you must execute its underlying package by invoking it directly from the application when the user logs in, before the user exercises the privileges granted by the secure application role. You cannot use a logon trigger to enable a secure application role, nor can you have this type of role be a default role.

When you enable the secure application role, Oracle Database verifies that the authorized PL/SQL package is on the calling stack, that is, it verifies that the authorized PL/SQL package is issuing the command to enable the role.

You can use secure application roles to ensure the existence of a database connection. Because a secure application role is a role implemented by a package, the package can validate that users can connect to the database through a middle tier or from a specific IP address. In this way, the secure application role prevents users from accessing data outside an application. They are forced to work within the framework of the application privileges that they have been granted.

	
See Also:

	
"Creating Secure Application Roles to Control Access to Applications"

	
Oracle Database 2 Day + Security Guide

Managing Object Privileges

This section contains:

	
About Object Privileges

	
Granting or Revoking Object Privileges

	
Managing Object Privileges

	
Managing Table Privileges

	
Managing View Privileges

	
Managing Procedure Privileges

	
Managing Type Privileges

About Object Privileges

An object privilege is a right that you grant to a user on a database object. Some examples of object privileges include the right to:

	
Use an edition

	
Update a table

	
Select rows from another user's table

	
Execute a stored procedure of another user

	
See Also:

Oracle Database SQL Language Reference for a list of object privileges and the operations they authorize

Granting or Revoking Object Privileges

Each type of object has different privileges associated with it.

You can specify ALL [PRIVILEGES] to grant or revoke all available object privileges for an object. ALL is not a privilege; rather, it is a shortcut, or a way of granting or revoking all object privileges with one GRANT and REVOKE statement. If all object privileges are granted using the ALL shortcut, then individual privileges can still be revoked.

Similarly, you can revoke all individually granted privileges by specifying ALL. However, if you REVOKE ALL, and revoking causes integrity constraints to be deleted (because they depend on a REFERENCES privilege that you are revoking), then you must include the CASCADE CONSTRAINTS option in the REVOKE statement.

Example 4-8 revokes all privileges on the orders table in the HR schema using CASCADE CONSTRAINTS.

Example 4-8 Revoking All Object Privileges Using CASCADE CONSTRAINTS

REVOKE ALL
 ON orders FROM hr
 CASCADE CONSTRAINTS;

Managing Object Privileges

An object privilege grants permission to perform a particular action on a specific schema object.

Different object privileges are available for different types of schema objects. The privilege to delete rows from the departments table is an example of an object privilege.

Some schema objects, such as clusters, indexes, triggers, and database links, do not have associated object privileges. Their use is controlled with system privileges. For example, to alter a cluster, a user must own the cluster or have the ALTER ANY CLUSTER system privilege.

The following sections discuss granting and revoking such privileges:

	
"Granting and Revoking Object Privileges"

	
"Who Can Grant Object Privileges?"

	
"Using Object Privileges with Synonyms"

The following sections discuss object privileges that apply to specific schema objects:

	
"Managing Table Privileges"

	
"Managing View Privileges"

	
Sequences (see Oracle Database Administrator's Guide for information about managing sequences)

	
"Managing Procedure Privileges"

	
Functions and Packages(Oracle Database Administrator's Guide for information about managing object dependencies)

	
"Managing Type Privileges"

Granting and Revoking Object Privileges

Object privileges can be granted to and revoked from users and roles. If you grant object privileges to roles, then you can make the privileges selectively available.

You can grant or revoke object privileges to or from users and roles using the following methods:

	
The GRANT and REVOKE SQL statements

	
Oracle Enterprise Manager Database Control

	
See Also:

Oracle Database 2 Day DBA for more information about Database Control

Who Can Grant Object Privileges?

A user automatically has all object privileges for schema objects contained in his or her schema. A user with the GRANT ANY OBJECT PRIVILEGE can grant any specified object privilege to another user with or without the WITH GRANT OPTION clause of the GRANT statement. A user with the GRANT ANY OBJECT PRIVILEGE can also use that privilege to revoke any object privilege that was granted either by the object owner or by some other user with the GRANT ANY OBJECT PRIVILEGE privilege. Otherwise, the grantee can use the privilege, but cannot grant it to other users.

	
See Also:

Oracle Database SQL Language Reference for information about GRANT and GRANT ANY OBJECT PRIVILEGE

Using Object Privileges with Synonyms

You can use the CREATE SYNONYM statement to create synonyms for tables, views, sequences, operators, procedures, stored functions, packages, materialized views, Java class schema objects, user-defined object types, or other synonyms. If you grant users the privilege to use the synonym, then the object privileges granted on the underlying objects apply whether the user references the base object by name or by using the synonym.

For example, suppose user OE creates the following synonym for the CUSTOMERS table:

CREATE SYNONYM customer_syn FOR CUSTOMERS;

Then OE grants the SELECT privilege on the customer_syn synonym to user HR.

GRANT SELECT ON customer_syn TO HR;

User HR then tries either of the following queries:

SELECT COUNT(*) FROM OE.customer_syn;

SELECT COUNT(*) FROM OE.CUSTOMERS;

Both queries will yield the same result:

 COUNT(*)

 319

Be aware that when you grant the synonym to another user, the grant applies to the underlying object that the synonym represents, not to the synonym itself. For example, if user HR queries the ALL_TAB_PRIVS data dictionary view for his privileges, he will learn the following:

SELECT TABLE_SCHEMA, TABLE_NAME, PRIVILEGE
FROM ALL_TAB_PRIVS
WHERE TABLE_SCHEMA = 'OE';

TABLE_SCHEMA TABLE_NAME PRIVILEGE
------------ ---------- ----------
OE CUSTOMER SELECT
OE ORDERS UPDATE

The results show that in addition to other privileges, he has the SELECT privilege for the underlying object of the customer_syn synonym, which is the OE.CUSTOMER table.

At this point, if user OE then revokes the SELECT privilege on the customer_syn synonym from HR, here are the results if HR checks his privileges again:

TABLE_SCHEMA TABLE_NAME PRIVILEGE
------------ ---------- ---------
OE ORDERS UPDATE

User HR no longer has the SELECT privilege for the OE.CUSTOMER table. If he tries to query the OE.CUSTOMERS table, then the following error appears:

SELECT COUNT(*) FROM OE.CUSTOMERS;

ERROR at line 1:
ORA-00942: table or view does not exist

Managing Table Privileges

Object privileges for tables enable table security at the DML (data manipulation language) or DDL (data definition language) level of operation.

The following sections discuss table privileges and DML and DDL operations:

	
How Table Privileges Affect Data Manipulation Language Operations

	
How Table Privileges Affect Data Definition Language Operations

How Table Privileges Affect Data Manipulation Language Operations

You can grant privileges to use the DELETE, INSERT, SELECT, and UPDATE DML operations on a table or view. Grant these privileges only to users and roles that need to query or manipulate data in a table.

You can restrict INSERT and UPDATE privileges for a table to specific columns of the table. With a selective INSERT privilege, a privileged user can insert a row with values for the selected columns. All other columns receive NULL or the default value of the column. With a selective UPDATE privilege, a user can update only specific column values of a row. You can use selective INSERT and UPDATE privileges to restrict user access to sensitive data.

For example, if you do not want data entry users to alter the salary column of the employees table, then selective INSERT or UPDATE privileges can be granted that exclude the salary column. Alternatively, a view that excludes the salary column could satisfy this need for additional security.

	
See Also:

Oracle Database SQL Language Reference for more information about DML operations

How Table Privileges Affect Data Definition Language Operations

The ALTER, INDEX, and REFERENCES privileges allow DDL operations to be performed on a table. Because these privileges allow other users to alter or create dependencies on a table, you should grant these privileges conservatively.

A user attempting to perform a DDL operation on a table may need additional system or object privileges. For example, to create a trigger on a table, the user requires both the ALTER TABLE object privilege for the table and the CREATE TRIGGER system privilege.

As with the INSERT and UPDATE privileges, you can grant the REFERENCES privilege on specific columns of a table. The REFERENCES privilege enables the grantee to use the table on which the grant is made as a parent key to any foreign keys that the grantee wishes to create in his or her own tables. This action is controlled with a special privilege because the presence of foreign keys restricts the data manipulation and table alterations that can be done to the parent key. A column-specific REFERENCES privilege restricts the grantee to using the named columns (which, of course, must include at least one primary or unique key of the parent table).

	
See Also:

"Data Integrity" in Oracle Database Concepts for more information about primary keys, unique keys, and integrity constraints

Managing View Privileges

This section contains:

	
About View Privileges

	
Privileges Required to Create Views

	
Increasing Table Security with Views

About View Privileges

A view is a presentation of data selected from one or more tables, possibly including other views. A view shows the structure of the underlying tables. Its selected data can be thought of as the result of a stored query. A view contains no actual data but rather derives what it shows from the tables and views on which it is based. You can query a view, and change the data it represents. Data in a view can be updated or deleted, and new data inserted. These operations directly alter the tables on which the view is based, and are subject to the integrity constraints and triggers of the base tables.

You can apply DML object privileges to views, similar to tables. Object privileges for a view allow various DML operations, which as noted affect the base tables from which the view is derived.

Privileges Required to Create Views

To create a view, you must meet the following requirements:

	
You must have been granted one of the following system privileges, either explicitly or through a role:

	
The CREATE VIEW system privilege (to create a view in your schema)

	
The CREATE ANY VIEW system privilege (to create a view in the schema of another user)

	
You must have been explicitly granted one of the following privileges:

	
The SELECT, INSERT, UPDATE, or DELETE object privileges on all base objects underlying the view

	
The SELECT ANY TABLE, INSERT ANY TABLE, UPDATE ANY TABLE, or DELETE ANY TABLE system privileges

	
In addition, before you can grant other users access to you view, you must have object privileges to the base objects with the GRANT OPTION clause or appropriate system privileges with the ADMIN OPTION clause. If you do not have these privileges, then you cannot to grant other users access to your view. If you try, an ORA-01720: grant option does not exist for object_name error is raised, with object_name referring to the view's underlying object for which you do not have the sufficient privilege.

	
See Also:

Oracle Database SQL Language Reference

Increasing Table Security with Views

To use a view, the user must have the appropriate privileges but only for the view itself, not its underlying objects. However, if access privileges for the underlying objects of the view are removed, then the user no longer has access. This behavior occurs because the security domain that is used when a user queries the view is that of the definer of the view. If the privileges on the underlying objects are revoked from the view's definer, then the view becomes invalid, and no one can use the view. Therefore, even if a user has been granted access to the view, the user may not be able to use the view if the definer's rights have been revoked from the view's underlying objects.

For example, suppose User A creates a view. User A has definer's rights on the underlying objects of the view. User A then grants the SELECT privilege on that view to User B so that User B can query the view. But if User A no longer has access to the underlying objects of that view, then User B no longer has access either.

Views add two more levels of security for tables, column-level security and value-based security, as follows:

	
A view can provide access to selected columns of base tables. For example, you can define a view on the employees table to show only the employee_id, last_name, and manager_id columns:

CREATE VIEW employees_manager AS
 SELECT last_name, employee_id, manager_id FROM employees;

	
A view can provide value-based security for the information in a table. A WHERE clause in the definition of a view displays only selected rows of base tables. Consider the following two examples:

CREATE VIEW lowsal AS
 SELECT * FROM employees
 WHERE salary < 10000;

The lowsal view allows access to all rows of the employees table that have a salary value less than 10000. Notice that all columns of the employees table are accessible in the lowsal view.

CREATE VIEW own_salary AS
 SELECT last_name, salary
 FROM employees
 WHERE last_name = USER;

In the own_salary view, only the rows with an last_name that matches the current user of the view are accessible. The own_salary view uses the user pseudo column, whose values always refer to the current user. This view combines both column-level security and value-based security.

Managing Procedure Privileges

This section contains:

	
Using the EXECUTE Privilege for Procedure Privileges

	
Procedure Execution and Security Domains

	
How Procedure Privileges Affect Definer's Rights

	
How Procedure Privileges Affect Invoker's Rights

	
System Privileges Required to Create or Replace a Procedure

	
System Privileges Required to Compile a Procedure

	
How Procedure Privileges Affect Packages and Package Objects

Using the EXECUTE Privilege for Procedure Privileges

The EXECUTE privilege is the only object privilege for procedures, including standalone procedures and functions, and for those within packages. Grant this privilege only to users who need to run a procedure or to compile another procedure that calls a desired procedure.

Procedure Execution and Security Domains

A user with the EXECUTE object privilege for a specific procedure can execute the procedure or compile a program unit that references the procedure. Oracle Database performs a run-time privilege check when any PL/SQL unit is called. A user with the EXECUTE ANY PROCEDURE system privilege can execute any procedure in the database. Privileges to run procedures can be granted to a user through roles.

	
See Also:

Oracle Database PL/SQL Language Reference for more information about how Oracle Database checks privileges at run-time

How Procedure Privileges Affect Definer's Rights

The owner of a procedure, called the definer, must have all the necessary object privileges for referenced objects. If the procedure owner grants to another user the right to use that procedure, then the privileges of the procedure owner (on the objects referenced by the procedure) apply to the grantee user's exercise of the procedure. The privileges of the procedure's definer must be granted directly to the user, not granted through roles. These are termed definer's rights.

The user of a procedure who is not its owner is called the invoker. Additional privileges on referenced objects are required for invoker's rights procedures, but not for definer's rights procedures.

	
See Also:

"How Roles Work in PL/SQL Blocks"

A user of a definer's rights procedure requires only the privilege to execute the procedure and no privileges on the underlying objects that the procedure accesses. This is because a definer's rights procedure operates under the security domain of the user who owns the procedure, regardless of who is executing it. The owner of the procedure must have all the necessary object privileges for referenced objects. Fewer privileges have to be granted to users of a definer's rights procedure. This results in stronger control of database access.

You can use definer's rights procedures to control access to private database objects and add a level of database security. By writing a definer's rights procedure and granting only EXECUTE privilege to a user, the user can be forced to access the referenced objects only through the procedure.

At run time, Oracle Database checks whether the privileges of the owner of a definer's rights stored procedure allow access to that procedure's referenced objects, before the procedure is executed. If a necessary privilege on a referenced object was revoked from the owner of a definer's rights procedure, then the procedure cannot be run by the owner or any other user.

	
Note:

Trigger processing follows the same patterns as definer's rights procedures. The user runs a SQL statement, which that user is privileged to run. As a result of the SQL statement, a trigger is fired. The statements within the triggered action temporarily execute under the security domain of the user that owns the trigger. For more information, see "Overview of Triggers" in Oracle Database Concepts.

How Procedure Privileges Affect Invoker's Rights

An invoker's rights procedure executes with all of the invoker's privileges. Oracle Database enables the privileges that were granted to the invoker through any of the invoker's enabled roles to take effect, unless a definer's rights procedure calls the invoker's rights procedure directly or indirectly. A user of an invoker's rights procedure needs privileges (granted to the user either directly or through a role) on objects that the procedure accesses through external references that are resolved in the schema of the invoker.

The invoker needs privileges at run time to access program references embedded in DML statements or dynamic SQL statements, because they are effectively recompiled at run time.

For all other external references, such as direct PL/SQL function calls, Oracle Database checks the privileges of the owner at compile time, but does not perform a run-time check. Therefore, the user of an invoker's rights procedure does not need privileges on external references outside DML or dynamic SQL statements. Alternatively, the developer of an invoker's rights procedure must only grant privileges on the procedure itself, not on all objects directly referenced by the invoker's rights procedure.

You can create a software bundle that consists of multiple program units, some with definer's rights and others with invoker's rights, and restrict the program entry points (controlled step-in). A user who has the privilege to run an entry-point procedure can also execute internal program units indirectly, but cannot directly call the internal programs. For very precise control over query processing, you can create a PL/SQL package specification with explicit cursors.

	
See Also:

	
"Configuring an Oracle Virtual Private Database Policy"

	
Oracle Database PL/SQL Language Reference for information about how Oracle Database handles name resolution and privilege checking at runtime using invoker's and definer's rights

	
Oracle Database PL/SQL Language Reference for information about defining explicit cursors in the CREATE PACKAGE statement

System Privileges Required to Create or Replace a Procedure

To create or replace a procedure in your own schema, you must have the CREATE PROCEDURE system privilege. To create or replace a procedure in another user's schema, you must have the CREATE ANY PROCEDURE system privilege.

The user who owns the procedure also must have privileges for schema objects referenced in the procedure body. To create a procedure, you need to have been explicitly granted the necessary privileges (system or object) on all objects referenced by the procedure. You cannot obtain the required privileges through roles. This includes the EXECUTE privilege for any procedures that are called inside the procedure being created.

	
Note:

Triggers require that privileges on referenced objects be granted directly to the owner of the trigger. Anonymous PL/SQL blocks can use any privilege, whether the privilege is granted explicitly or through a role.

System Privileges Required to Compile a Procedure

To compile a standalone procedure, run the ALTER PROCEDURE statement with the COMPILE clause. To compile a procedure that is part of a package, run the ALTER PACKAGE statement.

Example 4-9 shows how to compile a standalone procedure.

Example 4-9 Compiling a Procedure

ALTER PROCEDURE psmith.remove_emp COMPILE;

If the standalone or packaged procedure is in another user's schema, you must have the ALTER ANY PROCEDURE privilege to recompile it. You can recompile procedures in your own schema without any privileges.

How Procedure Privileges Affect Packages and Package Objects

A user with the EXECUTE object privilege for a package can execute any public procedure or function in the package, and can access or modify the value of any public package variable. You cannot grant specific EXECUTE privileges for individual constructs in a package. Therefore, you may find it useful to consider two alternatives for establishing security when developing procedures, functions, and packages for a database application. The following examples describe these alternatives.

Procedure Privileges and Packages and Package Objects: Example 1

Example 4-10 shows four procedures created in the bodies of two packages.

Example 4-10 Package Objects Affected by Procedure Privileges

CREATE PACKAGE BODY hire_fire AS
 PROCEDURE hire(...) IS
 BEGIN
 INSERT INTO employees . . .
 END hire;
 PROCEDURE fire(...) IS
 BEGIN
 DELETE FROM employees . . .
 END fire;
END hire_fire;

CREATE PACKAGE BODY raise_bonus AS
 PROCEDURE give_raise(...) IS
 BEGIN
 UPDATE employees SET salary = . . .
 END give_raise;
 PROCEDURE give_bonus(...) IS
 BEGIN
 UPDATE employees SET bonus = . . .
 END give_bonus;
END raise_bonus;

The following GRANT EXECUTE statements enable the big_bosses and little_bosses roles to run the appropriate procedures:

GRANT EXECUTE ON hire_fire TO big_bosses;
GRANT EXECUTE ON raise_bonus TO little_bosses;

	
Note:

Granting EXECUTE privilege for a package provides uniform access to all package objects.

Procedure Privileges and Packages and Package Objects: Example 2

This example shows four procedure definitions within the body of a single package. Two additional standalone procedures and a package are created specifically to provide access to the procedures defined in the main package.

CREATE PACKAGE BODY employee_changes AS
 PROCEDURE change_salary(...) IS BEGIN ... END;
 PROCEDURE change_bonus(...) IS BEGIN ... END;
 PROCEDURE insert_employee(...) IS BEGIN ... END;
 PROCEDURE delete_employee(...) IS BEGIN ... END;
END employee_changes;

CREATE PROCEDURE hire
 BEGIN
 employee_changes.insert_employee(...)
 END hire;

CREATE PROCEDURE fire
 BEGIN
 employee_changes.delete_employee(...)
 END fire;

PACKAGE raise_bonus IS
 PROCEDURE give_raise(...) AS
 BEGIN
 employee_changes.change_salary(...)
 END give_raise;

 PROCEDURE give_bonus(...)
 BEGIN
 employee_changes.change_bonus(...)
 END give_bonus;

Using this method, the procedures that actually do the work (the procedures in the employee_changes package) are defined in a single package and can share declared global variables, cursors, on so on. By declaring top-level procedures, hire and fire, and an additional package, raise_bonus, you can grant selective EXECUTE privileges on procedures in the main package:

GRANT EXECUTE ON hire, fire TO big_bosses;
GRANT EXECUTE ON raise_bonus TO little_bosses;

Managing Type Privileges

The following sections describe the use of privileges for types, methods, and objects:

	
System Privileges for Named Types

	
Object Privileges

	
Method Execution Model

	
Privileges Required to Create Types and Tables Using Types

	
Example of Privileges for Creating Types and Tables Using Types

	
Privileges on Type Access and Object Access

	
Type Dependencies

System Privileges for Named Types

Table 4-4 lists system privileges for named types (object types, VARRAYs, and nested tables).

Table 4-4 System Privileges for Named Types

	Privilege	Enables you to ...
	
CREATE TYPE

	
Create named types in your own schemas

	
CREATE ANY TYPE

	
Create a named type in any schema

	
ALTER ANY TYPE

	
Alter a named type in any schema

	
DROP ANY TYPE

	
Drop a named type in any schema

	
EXECUTE ANY TYPE

	
Use and reference a named type in any schema

The RESOURCE role includes the CREATE TYPE system privilege. The DBA role includes all of these privileges.

Object Privileges

The only object privilege that applies to named types is EXECUTE. If the EXECUTE privilege exists on a named type, then a user can use the named type to:

	
Define a table

	
Define a column in a relational table

	
Declare a variable or parameter of the named type

The EXECUTE privilege permits a user to invoke the methods in the type, including the type constructor. This is similar to the EXECUTE privilege on a stored PL/SQL procedure.

Method Execution Model

Method execution is the same as any other stored PL/SQL procedure.

	
See Also:

"Managing Procedure Privileges"

Privileges Required to Create Types and Tables Using Types

To create a type, you must meet the following requirements:

	
You must have the CREATE TYPE system privilege to create a type in your schema or the CREATE ANY TYPE system privilege to create a type in the schema of another user. These privileges can be acquired explicitly or through a role.

	
The owner of the type must be explicitly granted the EXECUTE object privileges to access all other types referenced within the definition of the type, or have been granted the EXECUTE ANY TYPE system privilege. The owner cannot obtain the required privileges through roles.

	
If the type owner intends to grant access to the type to other users, then the owner must receive the EXECUTE privileges to the referenced types with the GRANT OPTION or the EXECUTE ANY TYPE system privilege with the ADMIN OPTION. If not, then the type owner has insufficient privileges to grant access on the type to other users.

To create a table using types, you must meet the requirements for creating a table and the following additional requirements:

	
The owner of the table must have been directly granted the EXECUTE object privilege to access all types referenced by the table, or has been granted the EXECUTE ANY TYPE system privilege. The owner cannot exercise the required privileges if these privileges were granted through roles.

	
If the table owner intends to grant access to the table to other users, then the owner must have the EXECUTE privilege to the referenced types with the GRANT OPTION or the EXECUTE ANY TYPE system privilege with the ADMIN OPTION. If not, then the table owner has insufficient privileges to grant access on the table.

	
See Also:

"Managing Table Privileges" for the requirements for creating a table

Example of Privileges for Creating Types and Tables Using Types

Assume that three users exist with the CONNECT and RESOURCE roles:

	
user1

	
user2

	
user3

The following DDL is run in the schema of user1:

CREATE TYPE type1 AS OBJECT (
 attr1 NUMBER);

CREATE TYPE type2 AS OBJECT (
 attr2 NUMBER);

GRANT EXECUTE ON type1 TO user2;
GRANT EXECUTE ON type2 TO user2 WITH GRANT OPTION;

The following DDL is performed in the schema of user2:

CREATE TABLE tab1 OF user1.type1;
CREATE TYPE type3 AS OBJECT (
 attr3 user1.type2);
CREATE TABLE tab2 (
 col1 user1.type2);

The following statements succeed because user2 has EXECUTE privilege on user1.type2 with the GRANT OPTION:

GRANT EXECUTE ON type3 TO user3;
GRANT SELECT on tab2 TO user3;

However, the following grant fails because user2 does not have EXECUTE privilege on user1.type1 with the GRANT OPTION:

GRANT SELECT ON tab1 TO user3;

The following statements can be successfully run by user3:

CREATE TYPE type4 AS OBJECT (
 attr4 user2.type3);
CREATE TABLE tab3 OF type4;

	
Note:

Customers should discontinue using the CONNECT and RESOURCE roles. The CONNECT role presently retains only the CREATE SESSION privilege.

Privileges on Type Access and Object Access

Existing column-level and table-level privileges for DML statements apply to both column objects and row objects.

Table 4-5 lists the privileges for object tables.

Table 4-5 Privileges for Object Tables

	Privilege	Enables you to...
	
SELECT

	
Access an object and its attributes from the table

	
UPDATE

	
Modify the attributes of the objects that make up the rows in the table

	
INSERT

	
Create new objects in the table

	
DELETE

	
Delete rows

Similar table privileges and column privileges apply to column objects. Retrieving instances does not in itself reveal type information. However, clients must access named type information to interpret the type instance images. When a client requests type information, Oracle Database checks for the EXECUTE privilege on the type.

Consider the following schema:

CREATE TYPE emp_type (
 eno NUMBER, ename CHAR(31), eaddr addr_t);
CREATE TABLE emp OF emp_t;

In addition, consider the following two queries:

SELECT VALUE(emp) FROM emp;
SELECT eno, ename FROM emp;

For either query, Oracle Database checks the SELECT privilege of the user for the emp table. For the first query, the user must obtain the emp_type type information to interpret the data. When the query accesses the emp_type type, Oracle Database checks the EXECUTE privilege of the user.

The second query, however, does not involve named types, so Oracle Database does not check type privileges.

In addition, by using the schema from the previous section, user3 can perform the following queries:

SELECT tab1.col1.attr2 FROM user2.tab1 tab1;
SELECT attr4.attr3.attr2 FROM tab3;

Note that in both SELECT statements, user3 does not have explicit privileges on the underlying types, but the statement succeeds because the type and table owners have the necessary privileges with the GRANT OPTION.

Oracle Database checks privileges on the following events, and returns an error if the client does not have the privilege for the action:

	
Pinning an object in the object cache using its REF value causes Oracle Database to check for the SELECT privilege on the containing object table.

	
Modifying an existing object or flushing an object from the object cache causes Oracle Database to check for the UPDATE privilege on the destination object table.

	
Flushing a new object causes Oracle Database to check for the INSERT privilege on the destination object table.

	
Deleting an object causes Oracle Database to check for the DELETE privilege on the destination table.

	
Pinning an object of a named type causes Oracle Database to check EXECUTE privilege on the object.

Modifying the attributes of an object in a client third-generation language application causes Oracle Database to update the entire object. Therefore, the user needs the UPDATE privilege on the object table. Having the UPDATE privilege on only certain columns of the object table is not sufficient, even if the application only modifies attributes corresponding to those columns. Therefore, Oracle Database does not support column-level privileges for object tables.

Type Dependencies

As with stored objects, such as procedures and tables, types being referenced by other objects are called dependencies. There are some special issues for types on which tables depend. Because a table contains data that relies on the type definition for access, any change to the type causes all stored data to become inaccessible. Changes that can cause this are when necessary privileges required to use the type are revoked, or the type or dependent types are dropped. If these actions occur, then the table becomes invalid and cannot be accessed.

A table that is invalid because of missing privileges can automatically become valid and accessible if the required privileges are granted again. A table that is invalid because a dependent type was dropped can never be accessed again, and the only permissible action is to drop the table.

Because of the severe effects that revoking a privilege on a type or dropping a type can cause, the SQL statements REVOKE and DROP TYPE, by default, implement restricted semantics. This means that if the named type in either statement has table or type dependents, then an error is received and the statement cancels. However, if the FORCE clause for either statement is used, then the statement always succeeds. If there are depended-upon tables, then they are invalidated.

	
See Also:

Oracle Database Reference for details about using the REVOKE, DROP TYPE, and FORCE clauses

Granting a User Privileges and Roles

This section contains:

	
Granting System Privileges and Roles

	
Granting Object Privileges

	
Granting Privileges on Columns

It is also possible to grant roles to a user connected through a middle tier or proxy. This is discussed in "Using a Middle Tier Server for Proxy Authentication".

Granting System Privileges and Roles

You can use the GRANT SQL statement to grant system privileges and roles to users and roles. The following privileges are required:

	
To grant a system privilege, a user must be granted the system privilege with the ADMIN option or must be granted the GRANT ANY PRIVILEGE system privilege.

	
To grant a role, a user must be granted the role with the ADMIN option or was granted the GRANT ANY ROLE system privilege.

Example 4-11 grants the system privilege CREATE SESSION and the accts_pay role to the user jward.

Example 4-11 Granting a System Privilege and a Role to a User

GRANT CREATE SESSION, accts_pay TO jward;

Example 4-11 grants the EXECUTE privilege on the exec_dir directory object to the user jward.

Example 4-12 Granting the EXECUTE Privilege on a Directory Object

GRANT EXECUTE ON DIRECTORY exec_dir TO jward;

	
Note:

Object privileges cannot be granted along with system privileges and roles in the same GRANT statement.

Granting the ADMIN Option

If you specify the WITH ADMIN OPTION clause when you grant a privilege or role to a user or role, then the privilege grant has the following expanded capabilities:

	
The grantee can grant or revoke the system privilege or role to or from any other user or role in the database. Users cannot revoke a role from themselves.

	
The grantee can grant the system privilege or role with the ADMIN option.

	
The grantee of a role can alter or drop the role.

Example 4-13 grants the new_dba role with the WITH ADMIN OPTION clause to user michael.

Example 4-13 Granting the ADMIN Option

GRANT new_dba TO michael WITH ADMIN OPTION;

User michael is able to not only use all of the privileges implicit in the new_dba role, but he can also grant, revoke, and drop the new_dba role as deemed necessary. Because of these powerful capabilities, use caution when granting system privileges or roles with the ADMIN option. These privileges are usually reserved for a security administrator, and are rarely granted to other administrators or users of the system.

	
Note:

When a user creates a role, the role is automatically granted to the creator with the ADMIN option.

Creating a New User with the GRANT Statement

Oracle Database enables you to create a new user with the GRANT statement. If you specify a password using the IDENTIFIED BY clause, and the user name does not exist in the database, then a new user with that user name and password is created.

Example 4-14 creates psmith as a new user while granting psmith the CREATE SESSION system privilege.

Example 4-14 Creating a New User with the GRANT Statement

GRANT CREATE SESSION TO psmith IDENTIFIED BY password;

	
See Also:

	
"Creating User Accounts"

	
"Minimum Requirements for Passwords"

Granting Object Privileges

You can use the GRANT statement to grant object privileges to roles and users. To grant an object privilege, you must fulfill one of the following conditions:

	
You own the object specified.

	
You have been granted the GRANT ANY OBJECT PRIVILEGE system privilege. This privilege enables you to grant and revoke privileges on behalf of the object owner.

	
The WITH GRANT OPTION clause was specified when you were granted the object privilege.

	
Note:

System privileges and roles cannot be granted along with object privileges in the same GRANT statement.

Example 4-15 grants the SELECT, INSERT, and DELETE object privileges for all columns of the emp table to the users jfee and tsmith.

Example 4-15 Granting Object Privileges to Users

GRANT SELECT, INSERT, DELETE ON emp TO jfee, tsmith;

To grant all object privileges on the salary view to user jfee, use the ALL keyword as shown in the following example:

GRANT ALL ON salary TO jfee;

	
Note:

A grantee cannot regrant access to objects unless the original grant included the GRANT OPTION. Thus in the example just given, jfee cannot use the GRANT statement to grant object privileges to anyone else.

Specifying the GRANT OPTION Clause

Specify the WITH GRANT OPTION clause with the GRANT statement to enable the grantee to grant the object privileges to other users. The user whose schema contains an object is automatically granted all associated object privileges with the GRANT OPTION. This special privilege allows the grantee several expanded privileges:

	
The grantee can grant the object privilege to any user in the database, with or without the GRANT OPTION, and to any role in the database.

	
If both of the following conditions are true, then the grantee can create views on the table, and grant the corresponding privileges on the views to any user or role in the database:

	
The grantee receives object privileges for the table with the GRANT OPTION.

	
The grantee has the CREATE VIEW or CREATE ANY VIEW system privilege.

	
Note:

The GRANT OPTION is not valid when granting an object privilege to a role. Oracle Database prevents the propagation of object privileges through roles so that grantees of a role cannot propagate object privileges received by means of roles.

Granting Object Privileges on Behalf of the Object Owner

The GRANT ANY OBJECT PRIVILEGE system privilege enables users to grant and revoke any object privilege on behalf of the object owner. This privilege provides a convenient means for database and application administrators to grant access to objects in any schema without requiring that they connect to the schema. Login credentials do not need to be maintained for schema owners who have this privilege, which reduces the number of connections required during configuration.

This system privilege is part of the Oracle Database supplied DBA role and is thus granted (with the ADMIN option) to any user connecting AS SYSDBA (user SYS). As with other system privileges, the GRANT ANY OBJECT PRIVILEGE system privilege can only be granted by a user who possesses the ADMIN option.

The recorded grantor of access rights to an object is either the object owner or the person exercising the GRANT ANY OBJECT PRIVILEGE system privilege. If the grantor with GRANT ANY OBJECT PRIVILEGE does not have the object privilege with the GRANT OPTION, then the object owner is shown as the grantor. Otherwise, when that grantor has the object privilege with the GRANT OPTION, then that grantor is recorded as the grantor of the grant.

	
Note:

The audit record generated by the GRANT statement always shows the actual user who performed the grant.

For example, consider the following scenario. User adams possesses the GRANT ANY OBJECT PRIVILEGE system privilege. He does not possess any other grant privileges. He issues the following statement:

GRANT SELECT ON HR.EMPLOYEES TO blake WITH GRANT OPTION;

If you examine the DBA_TAB_PRIVS view, then you will see that hr is shown as the grantor of the privilege:

SELECT GRANTEE, GRANTOR, PRIVILEGE, GRANTABLE
 FROM DBA_TAB_PRIVS
 WHERE TABLE_NAME = 'EMPLOYEES' and OWNER = 'HR';

GRANTEE GRANTOR PRIVILEGE GRANTABLE
-------- ------- ----------- ----------
BLAKE HR SELECT YES

Now assume that user blake also has the GRANT ANY OBJECT PRIVILEGE system. He issues the following statement:

GRANT SELECT ON HR.EMPLOYEES TO clark;

In this case, when you query the DBA_TAB_PRIVS view again, you see that blake is shown as being the grantor of the privilege:

GRANTEE GRANTOR PRIVILEGE GRANTABLE
-------- -------- --------- ----------
BLAKE HR SELECT YES
CLARK BLAKE SELECT NO

This occurs because blake already possesses the SELECT privilege on HR.EMPLOYEES with the GRANT OPTION.

	
See Also:

"Revoking Object Privileges on Behalf of the Object Owner"

Granting Privileges on Columns

You can grant INSERT, UPDATE, or REFERENCES privileges on individual columns in a table.

	
Caution:

Before granting a column-specific INSERT privilege, determine if the table contains any columns on which NOT NULL constraints are defined. Granting selective insert capability without including the NOT NULL columns prevents the user from inserting any rows into the table. To avoid this situation, ensure that each NOT NULL column can either be inserted into or has a non-NULL default value. Otherwise, the grantee will not be able to insert rows into the table and will receive an error.

The following statement grants the INSERT privilege on the acct_no column of the accounts table to user psmith:

GRANT INSERT (acct_no) ON accounts TO psmith;

In the following example, object privilege for the ename and job columns of the emp table are granted to the users jfee and tsmith:

GRANT INSERT(ename, job) ON emp TO jfee, tsmith;

Row-Level Access Control

You can also provide access control at the row level, that is, within objects, using Virtual Private Database (VPD) or Oracle Label Security (OLS).

	
See Also:

	
Chapter 7, "Using Oracle Virtual Private Database to Control Data Access"

	
"Adding Policies for Column-Level Oracle Virtual Private Database"

	
Oracle Label Security Administrator's Guide

Revoking Privileges and Roles from a User

This section contains:

	
Revoking System Privileges and Roles

	
Revoking Object Privileges

	
Cascading Effects of Revoking Privileges

Revoking System Privileges and Roles

You can revoke system privileges and roles using the SQL statement REVOKE. Any user with the ADMIN option for a system privilege or role can revoke the privilege or role from any other database user or role. The revoker does not have to be the user that originally granted the privilege or role. Users with GRANT ANY ROLE can revoke any role.

The following statement revokes the CREATE TABLE system privilege and the accts_rec role from user psmith:

REVOKE CREATE TABLE, accts_rec FROM psmith;

	
Note:

The ADMIN option for a system privilege or role cannot be selectively revoked. Instead, revoke the privilege or role, and then grant the privilege or role again but without the ADMIN option.

Revoking Object Privileges

To revoke an object privilege, you must fulfill one of the following conditions:

	
You previously granted the object privilege to the user or role.

	
You possess the GRANT ANY OBJECT PRIVILEGE system privilege that enables you to grant and revoke privileges on behalf of the object owner.

You can only revoke the privileges that you, the person who granted the privilege, directly authorized. You cannot revoke grants that were made by other users to whom you granted the GRANT OPTION. However, there is a cascading effect. If the object privileges of the user who granted the privilege are revoked, then the object privilege grants that were propagated using the GRANT OPTION are revoked as well.

Assuming you are the original grantor of the privilege, the following statement revokes the SELECT and INSERT privileges on the emp table from users jfee and psmith:

REVOKE SELECT, INSERT ON emp FROM jfee, psmith;

The following statement revokes all object privileges for the dept table that you originally granted to the human_resource role:

REVOKE ALL ON dept FROM human_resources;

	
Note:

The GRANT OPTION for an object privilege cannot be selectively revoked. Instead, revoke the object privilege and then grant it again but without the GRANT OPTION. Users cannot revoke object privileges from themselves.

Revoking Object Privileges on Behalf of the Object Owner

The GRANT ANY OBJECT PRIVILEGE system privilege enables you to revoke any specified object privilege where the object owner is the grantor. This occurs when the object privilege is granted by the object owner, or on behalf of the owner by any user holding the GRANT ANY OBJECT PRIVILEGE system privilege.

In a situation where the object privilege was granted by both the owner of the object and the user executing the REVOKE statement (who has both the specific object privilege and the GRANT ANY OBJECT PRIVILEGE system privilege), Oracle Database only revokes the object privilege granted by the user issuing the REVOKE statement. This can be illustrated by continuing the example started in "Granting Object