

List of Tables

	2-1 Parameters or Environment Variables influencing SQL*Plus
	2-2 Profile Scripts affecting SQL*Plus User Interface Settings
	2-3 Commands in Profile scripts affecting SQL*Plus User Interface Settings
	3-1 Commands Disabled by Restriction Level
	5-1 SQL*Plus Editing Commands
	6-1 Compute Functions
	7-1 Equivalent HTML Entities
	12-1 Number Formats
	12-2 COMPUTE Functions
	12-3 Variables Predefined at SQL*Plus Installation
	12-4 SQL*Plus Error Log Column Definitions
	12-5 Exit Behavior: AUTOCOMMIT, EXITCOMMIT, EXIT
	12-6 Compatibility Matrix
	12-7 XQUERY SET commands
	A-1 SQL*Plus Limits
	D-1 Instant Client Files in the SQL*Plus Package
	D-2 Instant Client Files in the Basic OCI Package
	D-3 Instant Client Files in the Lightweight OCI Package
	D-4 Instant Client Files in the SQL*Plus Package

What's New in SQL*Plus?

This section describes new features of the SQL*Plus Release 11.2 and provides pointers to additional information.

New Features in SQL*Plus Release 11.2

SQL*Plus Release 11.2.0.2 is a superset of SQL*Plus 11.2. This section describes new features introduced in SQL*Plus Release 11.2.0.2.

	
SET XMLOPTIMIZATIONCHECK

A new SET command specifies that only fully optimized XML queries and DML operations are executed. It is only to assist in developing and debugging, not for production.

	
See Also:

Oracle Database SQL Language Reference

SET XMLOPT[IMIZATIONCHECK] [ON|OFF]

Part I

SQL*Plus Getting Started

Part 1 provides the information you need to get started with SQL*Plus. It describes the command-line user interface, provides configuration information and information you need to log in and run SQL*Plus.

Part 1 contains the following chapters:

	
SQL*Plus User Interface

	
Configuring SQL*Plus

	
Starting SQL*Plus

2 Configuring SQL*Plus

This chapter explains how to configure your SQL*Plus command-line environment. It has the following topics:

	
SQL*Plus Environment Variables

	
SQL*Plus Configuration

SQL*Plus Environment Variables

These environment variables specify the location or path of files used by SQL*Plus. For other environment variables that influence the behavior of SQL*Plus, see the Oracle Database Administrator's Reference.

Table 2-1 Parameters or Environment Variables influencing SQL*Plus

	Parameter or Variable	Description
	
LD_LIBRARY_PATH

	
Environment variable to specify the path used to search for libraries on UNIX and Linux. The environment variable may have a different name on some operating systems, such as DYLD_LIBRARY_PATH on Apple Mac OS, LIBPATH on IBM/AIX-5L, and SHLIB_PATH on HP-UX. Not applicable to Windows operating systems.

Example

$ORACLE_HOME/lib

	
LOCAL

	
Windows environment variable to specify a connection string. Performs the same function as TWO_TASK on UNIX.

	
NLS_LANG

	
Environment variable to specify globalization behavior.

Example

american_america.utf8

	
ORACLE_HOME

	
Environment variable to specify where SQL*Plus is installed. It is also used by SQL*Plus to specify where message files are located.

Examples:

d:\oracle\10g
/u01/app/oracle/product/v10g

	
ORA_EDITION

	
Environment variable to specify the database edition to use. If you specify the edition with the CONNECT or SQLPLUS command option, edition=value, it is used instead of ORA_EDITION. If no edition is specified in either the CONNECT or SQLPLUS command option, or in ORA_EDITION, SQL*Plus connects to the default edition.

	
ORA_NLS10

	
Environment variable to specify the locations of the NLS data and the user boot file in SQL*Plus 10.2. The default location is $ORACLE_HOME/nls/data. In a system with both Oracle9i and 10g, or a system under version upgrade, you should set ORA_NLS10 for Oracle 10g and set ORA_NLS33 for 9i. The default NLS location in 9i was $ORACLE_HOME/common/nls/admin/data.

	
ORACLE_PATH

	
Environment variable to specify the location of SQL scripts. If SQL*Plus cannot find the file in ORACLE_PATH, or if ORACLE_PATH is not set, it searches for the file in the current working directory.

Not applicable to Windows

	
ORACLE_SID

	
Environment variable to specify the database instance, optional

	
PATH

	
Environment variable to specify the path to search for executables, and DLLs in Windows. Typically includes ORACLE_HOME/bin

	
SQLPATH

	
Environment variable or Windows registry entry to specify the location of SQL scripts. SQL*Plus searches for SQL scripts, including login.sql, in the current directory and then in the directories specified by SQLPATH, and in the subdirectories of SQLPATH directories. SQLPATH is a colon separated list of directories. There is no default value set in UNIX installations.

In Windows, SQLPATH is defined in a registry entry during installation. For more information about the SQLPATH registry entry, see SQLPATH Registry Entry.

	
TNS_ADMIN

	
Environment variable to specify the location of the tnsnames.ora file. If not specified, $ORACLE_HOME/network/admin is used

Example

h:\network
/var/opt/oracle

	
TWO_TASK

	
UNIX environment variable to specify a connection string. Connections that do not specify a database will connect to the database specified in TWO_TASK.

Example

TWO_TASK=MYDB
export TWO_TASK
sqlplus hr

is the same as:

sqlplus hr@MYDB

SQLPATH Registry Entry

The SQLPATH registry entry specifies the location of SQL scripts. SQL*Plus searches for SQL scripts in the current directory and then in the directories specified by the SQLPATH registry entry, and in the subdirectories of SQLPATH directories.

The HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\HOME0 registry subkey (or the HOMEn directory for the associated ORACLE_HOME) contains the SQLPATH registry entry. SQLPATH is created with a default value of ORACLE_HOME\DBS. You can specify any directories on any drive as valid values for SQLPATH.

When setting the SQLPATH registry entry, you can concatenate directories with a semicolon (;). For example:

c:\oracle\ora11\database;c:\oracle\ora11\dbs

See the Registry Editor's help system for instructions on how to edit the SQLPATH registry entry.

SQL*Plus Configuration

You can set up your SQL*Plus environment to use the same settings with each session.

There are two operating system files to do this:

	
The Site Profile file, glogin.sql, for site wide settings.

	
Additionally, the User Profile, login.sql, sets user specific settings.

The exact names of these files is system dependent.

Some privileged connections may generate errors if SET SERVEROUTPUT or SET APPINFO commands are put in the Site Profile or User Profile.

The following tables show the profile scripts, and some commands and settings that affect the Command-line user interface.

Table 2-2 Profile Scripts affecting SQL*Plus User Interface Settings

	This script ...	is run in the Command-line...
	
Site Profile (glogin.sql)

Can contain any content that can be included in a SQL*Plus script, such as system variable settings or other global settings the DBA wants to implement.

	
After successful Oracle Database connection from a SQLPLUS or CONNECT command.

Where /NOLOG is specified.

	
User Profile (login.sql)

Can contain any content that can be included in a SQL*Plus script, but the settings are only applicable to the user's sessions.

	
Immediately after the Site Profile.

Table 2-3 Commands in Profile scripts affecting SQL*Plus User Interface Settings

	In a profile script, this command ...	affects the Command-line by ...
	
SET SQLPLUSCOMPAT[IBILITY] {x.y[.z]}

Also see the SQL*Plus Compatibility Matrix.

	
Setting the SQL*Plus compatibility mode to obtain the behavior the DBA wants for this site.

	
SQLPLUS command COMPATIBILITY Option

	
As for SET SQLPLUSCOMPATIBILITY but set with the SQLPLUS command COMPATIBILITY option.

	
SQLPLUS command RESTRICT Option

	
Starting SQL*Plus with the RESTRICT option set to 3 prevents the User Profile script from being read.

Site Profile

A Site Profile script is created during installation. It is used by the database administrator to configure site-wide behavior for SQL*Plus Command-line connections. The Site Profile script installed during installation is an empty script.

The Site Profile script is generally named glogin.sql. SQL*Plus executes this script whenever a user starts a SQL*Plus session and successfully establishes the Oracle Database connection.

The Site Profile enables the DBA to set up site wide SQL*Plus environment defaults for all users of a particular SQL*Plus installation

Users cannot directly access the Site Profile.

Default Site Profile Script

The Site Profile script is $ORACLE_HOME/sqlplus/admin/glogin.sql in UNIX, and ORACLE_HOME\sqlplus\admin\glogin.sql in Windows. If a Site Profile already exists at this location, it is overwritten when you install SQL*Plus. If SQL*Plus is removed, the Site Profile script is deleted.

User Profile

For SQL*Plus command-line connections, SQL*Plus also supports a User Profile script. The User Profile is executed after the Site Profile and is intended to allow users to specifically customize their session. The User Profile script is generally named login.sql. SQL*Plus searches for the User Profile in your current directory, and then the directories you specify with the SQLPATH environment variable. SQL*Plus searches this colon-separated list of directories and their subdirectories in the order they are listed.

You can add any SQL commands, PL/SQL blocks, or SQL*Plus commands to your user profile. When you start SQL*Plus, it automatically searches for your user profile and runs the commands it contains.

Modifying Your LOGIN File

You can modify your LOGIN file just as you would any other script. The following sample User Profile script shows some modifications that you could include:

-- login.sql
-- SQL*Plus user login startup file.
--
-- This script is automatically run after glogin.sql
--
-- To change the SQL*Plus prompt to display the current user,
-- connection identifier and current time.
-- First set the database date format to show the time.
ALTER SESSION SET nls_date_format = 'HH:MI:SS';

-- SET the SQLPROMPT to include the _USER, _CONNECT_IDENTIFIER
-- and _DATE variables.
SET SQLPROMPT "_USER'@'_CONNECT_IDENTIFIER _DATE> "

-- To set the number of lines to display in a report page to 24.
SET PAGESIZE 24

-- To set the number of characters to display on each report line to 78.
SET LINESIZE 78

-- To set the number format used in a report to $99,999.
SET NUMFORMAT $99,999

	
See Also:

	
SET command for more information on these and other SET command variables you may wish to set in your SQL*Plus LOGIN file.

	
Using Predefined Variables for more information about predefined variables.

Storing and Restoring SQL*Plus System Variables

From the Command-line you can store the current SQL*Plus system variables in a script with the STORE command. If you alter any variables, this script can be run to restore the original values. This is useful if you want to reset system variables after running a report that alters them. You could also include the script in your User Profile script so that these system variables are set each time you start SQL*Plus.

To store the current setting of all system variables, enter

STORE SET file_name

Enter a file name and file extension, or enter only the file name to use the default extension .SQL. You can use the SET SUF[FIX] {SQL | text} command to change the default file extension.

Restoring the System Variables

To restore the stored system variables, enter

START file_name

If the file has the default extension (as specified by the SET SUF[FIX] {SQL | text} command), you do not need to add the period and extension to the file name.

You can also use the @ (at sign) or the @@ (double at sign) commands to run the script.

Example 2-1 Storing and Restoring SQL*Plus System Variables

To store the current values of the SQL*Plus system variables in a new script "plusenv.sql":

STORE SET plusenv

	

Created file plusenv

Now the value of any system variable can be changed:

SHOW PAGESIZE

	

PAGESIZE 24

SET PAGESIZE 60
SHOW PAGESIZE

	

PAGESIZE 60

The original values of system variables can then be restored from the script:

START plusenv
SHOW PAGESIZE

	

PAGESIZE 24

Installing Command-line Help

Command-line help is usually installed during Oracle Database installation. If not, the database administrator can create the SQL*Plus command-line help tables and populate them with SQL*Plus help data by running a supplied SQL script from SQL*Plus.

The database administrator can also remove the SQL*Plus command-line help tables by running a SQL script from SQL*Plus.

Before you can install or remove SQL*Plus help, ensure that:

	
SQL*Plus is installed.

	
The ORACLE_HOME environment variable is set.

	
The SQL*Plus help script files exist:

	
HLPBLD.SQL - to drop and create new help tables.

	
HELPDROP.SQL - to drop existing help tables.

	
HELPUS.SQL - to populate the help tables with the help data.

Running the hlpbld.sql Script to Install Command-line Help

Run the provided SQL script, HLPBLD.SQL, to load command-line help.

	
Log in to SQL*Plus as the SYSTEM user with:

SQLPLUS SYSTEM

You are prompted to enter the password you have defined for the SYSTEM user.

	
In UNIX run the SQL script, HLPBLD.SQL, from SQL*Plus with:

@$ORACLE_HOME/SQLPLUS/ADMIN/HELP/HLPBLD.SQL HELPUS.SQL

In Windows run the SQL script, HLPBLD.SQL, from SQL*Plus with:

@ORACLE_HOME\SQLPLUS\ADMIN\HELP\HLPBLD.SQL HELPUS.SQL

The HLPBLD.SQL script creates and loads the help tables.

Running the helpdrop.sql Script to Remove Command-line Help

Run the provided SQL script, HELPDROP.SQL, to remove the command-line help.

	
Log in to SQL*Plus as the SYSTEM user with:

SQLPLUS SYSTEM

You are prompted to enter the password you have defined for the SYSTEM user.

	
In UNIX run the SQL script, HELPDROP.SQL, from SQL*Plus with:

@$ORACLE_HOME/SQLPLUS/ADMIN/HELP/HELPDROP.SQL

In Windows run the SQL script, HELPDROP.SQL, from SQL*Plus with:

@ORACLE_HOME\SQLPLUS\ADMIN\HELP\HELPDROP.SQL

The HELPDROP.SQL script drops the help tables, and then disconnects.

Configuring Oracle Net Services

If you plan to connect to a database other than the default, whether on the same computer or another computer, you need to ensure that Oracle Net is installed, and the database listener is configured and running. Oracle Net services are used by SQL*Plus.

Oracle Net services and the database listener are installed by default during Oracle Database installation. For further information about installing and configuring Oracle Net, see the Oracle Database documentation at http://www.oracle.com/technology/documentation.

Part II

Using SQL*Plus

Part II helps you learn how to use SQL*Plus, how to tune SQL*Plus for better performance, how to restrict access to tables and commands and provides overviews of database administration tools and globalization support.

Part II contains the following chapters:

	
SQL*Plus Basics

	
Using Scripts in SQL*Plus

	
Formatting SQL*Plus Reports

	
Generating HTML Reports from SQL*Plus

	
Tuning SQL*Plus

	
SQL*Plus Security

	
Database Administration with SQL*Plus

	
SQL*Plus Globalization Support

5 Using Scripts in SQL*Plus

This chapter helps you learn to write and edit scripts containing SQL*Plus commands, SQL commands, and PL/SQL blocks. It covers the following topics:

	
Editing Scripts

	
Editing Scripts in SQL*Plus Command-Line

	
Placing Comments in Scripts

	
Running Scripts

	
Nesting Scripts

	
Exiting from a Script with a Return Code

	
Defining Substitution Variables

	
Using Predefined Variables

	
Using Substitution Variables

	
Passing Parameters through the START Command

	
Communicating with the User

	
Using Bind Variables

	
Using REFCURSOR Bind Variables

Read this chapter while sitting at your computer and try out the examples shown. Before beginning, make sure you have access to the sample schema described in SQL*Plus Overview.

Editing Scripts

In SQL*Plus command-line, the use of an external editor in combination with the @, @@ or START commands is an effective method of creating and executing generic scripts. You can write scripts which contain SQL*Plus, SQL and PL/SQL commands, which you can retrieve and edit. This is especially useful for storing complex commands or frequently used reports.

Writing Scripts with a System Editor

Your operating system may have one or more text editors that you can use to write scripts. You can run your operating system's default text editor without leaving the SQL*Plus command-line by entering the EDIT command.

You can use the SQL*Plus DEFINE command to define the variable, _EDITOR, to hold the name of your preferred text editor. For example, to define the editor used by EDIT to be vi, enter the following command:

DEFINE _EDITOR = vi

You can include an editor definition in your user or site profile so that it is always enabled when you start SQL*Plus. See SQL*Plus Configuration, and the DEFINE and EDIT commands for more information.

To create a script with a text editor, enter EDIT followed by the name of the file to edit or create, for example:

EDIT SALES

EDIT adds the filename extension .SQL to the name unless you specify the file extension. When you save the script with the text editor, it is saved back into the same file. EDIT lets you create or modify scripts.

You must include a semicolon at the end of each SQL command and a slash (/) on a line by itself after each PL/SQL block in the file. You can include multiple SQL commands and PL/SQL blocks in a script.

Example 5-1 Using a System Editor to Write a SQL Script

Suppose you have composed a query to display a list of salespeople and their commissions. You plan to run it once a month to keep track of how well each employee is doing.

To compose and save the query using your system editor, invoke your editor and create a file to hold your script:

EDIT SALES

Enter each of the following lines in your editor. Do not forget to include the semicolon at the end of the SQL statement:

COLUMN LAST_NAME HEADING 'LAST NAME'
COLUMN SALARY HEADING 'MONTHLY SALARY' FORMAT $99,999
COLUMN COMMISSION_PCT HEADING 'COMMISSION %' FORMAT 90.90
SELECT LAST_NAME, SALARY, COMMISSION_PCT
FROM EMP_DETAILS_VIEW
WHERE JOB_ID='SA_MAN';

The format model for the column COMMISSION_PCT tells SQL*Plus to display an initial zero for decimal values, and a zero instead of a blank when the value of COMMISSION_PCT is zero for a given row. Format models and the COLUMN command are described in more detail in the COLUMN command and in the Oracle Database SQL Language Reference.

Now use your editor's save command to store your query in a file called SALES.SQL.

Editing Scripts in SQL*Plus Command-Line

You can use a number of SQL*Plus commands to edit the SQL command or PL/SQL block currently stored in the buffer.

Table 5-1, "SQL*Plus Editing Commands" lists the SQL*Plus commands that allow you to examine or change the command in the buffer without re-entering the command.

Table 5-1 SQL*Plus Editing Commands

	Command	Abbreviation	Purpose
	

APPEND text

	

A text

	
adds text at the end of the current line

	

CHANGE/old/new

	

C/old/new

	
changes old to new in the current line

	

CHANGE/text

	

C/text

	
deletes text from the current line

	

CLEAR BUFFER

	

CL BUFF

	
deletes all lines

	

DEL

	
(none)

	
deletes the current line

	

DEL n

	
(none)

	
deletes line n

	

DEL *

	
(none)

	
deletes the current line

	

DEL n *

	
(none)

	
deletes line n through the current line

	

DEL LAST

	
(none)

	
deletes the last line

	

DEL m n

	
(none)

	
deletes a range of lines (m to n)

	

DEL * n

	
(none)

	
deletes the current line through line n

	

INPUT

	

I

	
adds one or more lines

	

INPUT text

	

I text

	
adds a line consisting of text

	

LIST

	

; or L

	
lists all lines in the SQL buffer

	

LIST n

	

L n or n

	
lists line n

	

LIST *

	

L *

	
lists the current line

	

LIST n *

	

L n *

	
lists line n through the current line

	

LIST LAST

	

L LAST

	
lists the last line

	

LIST m n

	

L m n

	
lists a range of lines (m to n)

	

LIST * n

	

L * n

	
lists the current line through line n

These are useful if you want to correct or modify a command you have entered.

Listing the Buffer Contents

The SQL buffer contains the last SQL or PL/SQL command. Any editing command other than LIST and DEL affects only a single line in the buffer. This line is called the current line. It is marked with an asterisk when you list the current command or block.

Example 5-2 Listing the Buffer Contents

Suppose you want to list the current command. Use the LIST command as shown. (If you have exited SQL*Plus or entered another SQL command or PL/SQL block since following the steps in Example 4-3, "Entering a SQL Command", perform the steps in that example again before continuing.)

LIST

	

SELECT EMPLOYEE_ID, LAST_NAME, JOB_ID, SALARY
 2 FROM EMP_DETAILS_VIEW
 3* WHERE SALARY>12000

Notice that the semicolon you entered at the end of the SELECT command is not listed. This semicolon is necessary to indicate the end of the command when you enter it, but it is not part of the SQL command and SQL*Plus does not store it in the SQL buffer.

Editing the Current Line

The SQL*Plus CHANGE command enables you to edit the current line. Various actions determine which line is the current line:

	
LIST a given line to make it the current line.

	
When you LIST or RUN the command in the buffer, the last line of the command becomes the current line. (Note, that using the slash (/) command to run the command in the buffer does not affect the current line.)

	
If you get an error, the error line automatically becomes the current line.

Example 5-3 Making an Error in Command Entry

Suppose you try to select the JOB_ID column but mistakenly enter it as JO_ID. Enter the following command, purposely misspelling JOB_ID in the first line:

SELECT EMPLOYEE_ID, LAST_NAME, JO_ID, SALARY
FROM EMP_DETAILS_VIEW
WHERE JOB_ID='SA_MAN';

You see this message on your screen:

	

SELECT EMPLOYEE_ID, LAST_NAME, JO_ID, SALARY
 *
ERROR at line 1:
ORA-00904: invalid column name

Examine the error message; it indicates an invalid column name in line 1 of the query. The asterisk shows the point of error—the mis-typed column JOB_ID.

Instead of re-entering the entire command, you can correct the mistake by editing the command in the buffer. The line containing the error is now the current line. Use the CHANGE command to correct the mistake. This command has three parts, separated by slashes or any other non-alphanumeric character:

	
the word CHANGE or the letter C

	
the sequence of characters you want to change

	
the replacement sequence of characters

The CHANGE command finds the first occurrence in the current line of the character sequence to be changed and changes it to the new sequence. You do not need to use the CHANGE command to re-enter an entire line.

Example 5-4 Correcting the Error

To change JO_ID to JOB_ID, change the line with the CHANGE command:

CHANGE /JO_ID/JOB_ID

The corrected line appears on your screen:

	

1* SELECT EMPLOYEE_ID, FIRST_NAME, JOB_ID, SALARY

Now that you have corrected the error, you can use the RUN command to run the command again:

RUN

SQL*Plus correctly displays the query and its result:

	

 1 SELECT EMPLOYEE_ID, LAST_NAME, JOB_ID, SALARY
 2 FROM EMP_DETAILS_VIEW
 3* WHERE JOB_ID='SA_MAN'

EMPLOYEE_ID LAST_NAME JOB_ID MONTHLY SALARY
----------- ------------------------- ---------- --------------
 145 Russell SA_MAN $14,000
 146 Partners SA_MAN $13,500
 147 Errazuriz SA_MAN $12,000
 148 Cambrault SA_MAN $11,000
 149 Zlotkey SA_MAN $10,500

Note that the column SALARY retains the format you gave it in Example 4-4, "Entering a SQL*Plus Command". (If you have left SQL*Plus and started again since performing Example 4-4, "Entering a SQL*Plus Command" the column has reverted to its original format.)

See CHANGE for information about the significance of case in a CHANGE command and on using wildcards to specify blocks of text in a CHANGE command.

Appending Text to a Line

To add text to the end of a line in the buffer, use the APPEND command.

	
Use the LIST command (or the line number) to list the line you want to change.

	
Enter APPEND followed by the text you want to add. If the text you want to add begins with a blank, separate the word APPEND from the first character of the text by two blanks: one to separate APPEND from the text, and one to go into the buffer with the text.

Example 5-5 Appending Text to a Line

To append a space and the clause DESC to line 4 of the current query, first list line 4:

LIST 4

	

4* ORDER BY SALARY

Next, enter the following command (be sure to type two spaces between APPEND and DESC):

APPEND DESC

	

4* ORDER BY SALARY DESC

Type RUN to verify the query:

	

 1 SELECT EMPLOYEE_ID, LAST_NAME, JOB_ID, SALARY
 2 FROM EMP_DETAILS_VIEW
 3 WHERE JOB_ID='SA_MAN'
 4* ORDER BY SALARY DESC

EMPLOYEE_ID LAST_NAME JOB_ID MONTHLY SALARY
----------- ------------------------- ---------- --------------
 145 Russell SA_MAN $14,000
 146 Partners SA_MAN $13,500
 147 Errazuriz SA_MAN $12,000
 148 Cambrault SA_MAN $11,000
 149 Zlotkey SA_MAN $10,500

Adding a New Line

To insert a new line after the current line, use the INPUT command.

To insert a line before line 1, enter a zero ("0") and follow the zero with text. SQL*Plus inserts the line at the beginning of the buffer and all lines are renumbered starting at 1.

0 SELECT EMPLOYEE_ID

Example 5-6 Adding a Line

Suppose you want to add a fourth line to the SQL command you modified in Example 5-4, "Correcting the Error". Since line 3 is already the current line, enter INPUT and press Return.

INPUT

SQL*Plus prompts you for the new line:

	

4

Enter the new line. Then press Return.

4 ORDER BY SALARY

SQL*Plus prompts you again for a new line:

	

5

Press Return again to indicate that you will not enter any more lines, and then use RUN to verify and re-run the query.

	

 1 SELECT EMPLOYEE_ID, LAST_NAME, JOB_ID, SALARY
 2 FROM EMP_DETAILS_VIEW
 3 WHERE JOB_ID='SA_MAN'
 4* ORDER BY SALARY

EMPLOYEE_ID LAST_NAME JOB_ID MONTHLY SALARY
----------- ------------------------- ---------- --------------
 149 Zlotkey SA_MAN $10,500
 148 Cambrault SA_MAN $11,000
 147 Errazuriz SA_MAN $12,000
 146 Partners SA_MAN $13,500
 145 Russell SA_MAN $14,000

Deleting Lines

Use the DEL command to delete lines in the buffer. Enter DEL specifying the line numbers you want to delete.

Suppose you want to delete the current line to the last line inclusive. Use the DEL command as shown.

DEL * LAST

DEL makes the following line of the buffer (if any) the current line.

See DEL for more information.

Placing Comments in Scripts

You can enter comments in a script in three ways:

	
using the SQL*Plus REMARK command for single line comments.

	
using the SQL comment delimiters /*... */ for single or multi line comments.

	
using ANSI/ISO (American National Standards Institute/International Standards Organization) comments - - for single line comments.

Comments entered at the command-line are not stored in the SQL buffer.

Using the REMARK Command

Use the REMARK command on a line by itself in a script, followed by comments on the same line. To continue the comments on additional lines, enter additional REMARK commands. Do not place a REMARK command between different lines of a single SQL command.

REMARK Commission Report;
REMARK to be run monthly.;
COLUMN LAST_NAME HEADING 'LAST_NAME';
COLUMN SALARY HEADING 'MONTHLY SALARY' FORMAT $99,999;
COLUMN COMMISSION_PCT HEADING 'COMMISSION %' FORMAT 90.90;
REMARK Includes only salesmen;
SELECT LAST_NAME, SALARY, COMMISSION_PCT
FROM EMP_DETAILS_VIEW
WHERE JOB_ID='SA_MAN';

Using /*...*/

Enter the SQL comment delimiters, /*...*/, on separate lines in your script, on the same line as a SQL command, or on a line in a PL/SQL block.

You must enter a space after the slash-asterisk(/*) beginning a comment.

The comments can span multiple lines, but cannot be nested within one another:

/* Commission Report
 to be run monthly. */
COLUMN LAST_NAME HEADING 'LAST_NAME';
COLUMN SALARY HEADING 'MONTHLY SALARY' FORMAT $99,999;
COLUMN COMMISSION_PCT HEADING 'COMMISSION %' FORMAT 90.90;
REMARK Includes only salesmen;
SELECT LAST_NAME, SALARY, COMMISSION_PCT
FROM EMP_DETAILS_VIEW
/* Include only salesmen.*/
WHERE JOB_ID='SA_MAN';

Using - -

You can use ANSI/ISO "- -" style comments within SQL statements, PL/SQL blocks, or SQL*Plus commands. Since there is no ending delimiter, the comment cannot span multiple lines.

For PL/SQL and SQL, enter the comment after a command on a line, or on a line by itself:

-- Commissions report to be run monthly
DECLARE --block for reporting monthly sales

For SQL*Plus commands, you can only include "- -" style comments if they are on a line by themselves. For example, these comments are legal:

-- set maximum width for LONG to 777
SET LONG 777

This comment is illegal:

SET LONG 777 -- set maximum width for LONG to 777

If you enter the following SQL*Plus command, SQL*Plus interprets it as a comment and does not execute the command:

-- SET LONG 777

Notes on Placing Comments

SQL*Plus does not have a SQL or PL/SQL command parser. It scans the first few keywords of each new statement to determine the command type, SQL, PL/SQL or SQL*Plus. Comments in some locations can prevent SQL*Plus from correctly identifying the command type, giving unexpected results. The following usage notes may help you to use SQL*Plus comments more effectively:

	
Do not put comments within the first few keywords of a statement. For example:

CREATE OR REPLACE
 2 /* HELLO */
 3 PROCEDURE HELLO AS
 4 BEGIN
 5 DBMS_OUTPUT.PUT_LINE('HELLO');
 6 END;
 7 /

Warning: Procedure created with compilation errors.

The location of the comment prevents SQL*Plus from recognizing the command as a command. SQL*Plus submits the PL/SQL block to the server when it sees the slash "/" at the beginning of the comment, which it interprets as the "/" statement terminator. Move the comment to avoid this error. For example:

 CREATE OR REPLACE PROCEDURE
 2 /* HELLO */
 3 HELLO AS
 4 BEGIN
 5 DBMS_OUTPUT.PUT_LINE('HELLO');
 6 END;
 7 /

Procedure created.

	
Do not put comments after statement terminators (period, semicolon or slash). For example, if you enter:

SELECT 'Y' FROM DUAL; -- TESTING

You get the following error:

	

SELECT 'Y' FROM DUAL; -- TESTING
 *
ERROR at line 1:
ORA-00911: invalid character

SQL*Plus expects no text after a statement terminator and is unable to process the command.

	
Do not put statement termination characters at the end of a comment line or after comments in a SQL statement or a PL/SQL block. For example, if you enter:

SELECT *
-- COMMENT;

You get the following error:

	

-- COMMENT
 *
ERROR at line 2:
ORA-00923: FROM keyword not found where expected

The semicolon is interpreted as a statement terminator and SQL*Plus submits the partially formed SQL command to the server for processing, resulting in an error.

	
Do not use ampersand characters '&' in comments in a SQL statement or PL/SQL block. For example, if you enter a script such as:

SELECT REGION_NAME, CITY
/* THIS & THAT */
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000;

SQL*Plus interprets text after the ampersand character "&" as a substitution variable and prompts for the value of the variable, &that:

	

Enter value for that:
old 2: /* THIS & THAT */
new 2: /* THIS */

REGION_NAME CITY
------------------------- ------------------------------
Americas Seattle
Americas Seattle
Americas Seattle
Europe Oxford
Europe Oxford
Americas Toronto
6 rows selected.

You can SET DEFINE OFF to prevent scanning for the substitution character.

For more information on substitution and termination characters, see DEFINE, SQLTERMINATOR and SQLBLANKLINES in the SET command.

Running Scripts

The START command retrieves a script and runs the commands it contains. Use START to run a script containing SQL commands, PL/SQL blocks, and SQL*Plus commands. You can have many commands in the file. Follow the START command with the name of the file:

START file_name

SQL*Plus assumes the file has a .SQL extension by default.

Example 5-7 Running a Script

To retrieve and run the command stored in SALES.SQL, enter

START SALES

SQL*Plus runs the commands in the file SALES and displays the results of the commands on your screen, formatting the query results according to the SQL*Plus commands in the file:

	

LAST NAME MONTHLY SALARY COMMISSION %
------------------------- -------------- ------------
Russell $14,000 0.40
Partners $13,500 0.30
Errazuriz $12,000 0.30
Cambrault $11,000 0.30
Zlotkey $10,500 0.20

You can also use the @ (at sign) command to run a script:

@SALES

The @ and @@ commands list and run the commands in the specified script in the same manner as START. SET ECHO affects the @ and @@ commands in the same way as it affects the START command.

To see the commands as SQL*Plus "enters" them, you can SET ECHO ON. The ECHO system variable controls the listing of the commands in scripts run with the START, @ and @@ commands. Setting the ECHO variable OFF suppresses the listing.

START, @ and @@ leave the last SQL command or PL/SQL block of the script in the buffer.

Running a Script as You Start SQL*Plus

To run a script as you start SQL*Plus, use one of the following options:

	
Follow the SQLPLUS command with your username, a slash, a space, @, and the name of the file:

SQLPLUS HR @SALES

SQL*Plus starts, prompts for your password and runs the script.

	
Include your username as the first line of the file. Follow the SQLPLUS command with @ and the filename. SQL*Plus starts, prompts for your password and runs the file.

Nesting Scripts

To run a series of scripts in sequence, first create a script containing several START commands, each followed by the name of a script in the sequence. Then run the script containing the START commands. For example, you could include the following START commands in a script named SALESRPT:

START Q1SALES
START Q2SALES
START Q3SALES
START Q4SALES
START YRENDSLS

	
Note:

The @@ command may be useful in this example. See the @@ (double at sign) command for more information.

Exiting from a Script with a Return Code

You can include an EXIT command in a script to return a value when the script finishes. See the EXIT command for more information.

You can include a WHENEVER SQLERROR command in a script to automatically exit SQL*Plus with a return code should your script generate a SQL error. Similarly, you can include a WHENEVER OSERROR command to automatically exit should an operating system error occur. In iSQL*Plus, the script is stopped and focus is returned to the Workspace. See the WHENEVER SQLERROR command, and the WHENEVER OSERROR command for more information.

Defining Substitution Variables

You can define variables, called substitution variables, for repeated use in a single script by using the SQL*Plus DEFINE command. Note that you can also define substitution variables to use in titles and to save your keystrokes (by defining a long string as the value for a variable with a short name).

Example 5-8 Defining a Substitution Variable

To define a substitution variable L_NAME and give it the value "SMITH", enter the following command:

DEFINE L_NAME = SMITH

To confirm the variable definition, enter DEFINE followed by the variable name:

DEFINE L_NAME

	

DEFINE L_NAME = "SMITH" (CHAR)

To list all substitution variable definitions, enter DEFINE by itself. Note that any substitution variable you define explicitly through DEFINE takes only CHAR values (that is, the value you assign to the variable is always treated as a CHAR datatype). You can define a substitution variable of datatype NUMBER implicitly through the ACCEPT command. You will learn more about the ACCEPT command.

To delete a substitution variable, use the SQL*Plus command UNDEFINE followed by the variable name.

Using Predefined Variables

There are eight variables containing SQL*Plus information that are defined during SQL*Plus installation. These variables can be redefined, referenced or removed the same as any other variable. They are always available from session to session unless you explicitly remove or redefine them.

	
See Also:

Predefined Variables for a list of the predefined variables and examples of their use.

Using Substitution Variables

Suppose you want to write a query like the one in SALES (see Example 5-1, "Using a System Editor to Write a SQL Script") to list the employees with various jobs, not just those whose job is SA_MAN. You could do that by editing a different value into the WHERE clause each time you run the command, but there is an easier way.

By using a substitution variable in place of the text, SA_MAN, in the WHERE clause, you can get the same results you would get if you had written the values into the command itself.

A substitution variable is preceded by one or two ampersands (&). When SQL*Plus encounters a substitution variable in a command, SQL*Plus executes the command as though it contained the value of the substitution variable, rather than the variable itself.

For example, if the variable SORTCOL has the value JOB_ID and the variable MYTABLE has the value EMP_DETAILS_VIEW, SQL*Plus executes the commands

SELECT &SORTCOL, SALARY
FROM &MYTABLE
WHERE SALARY>12000;

as if they were

SELECT JOB_ID, SALARY
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000;

Where and How to Use Substitution Variables

You can use substitution variables anywhere in SQL and SQL*Plus commands, except as the first word entered. When SQL*Plus encounters an undefined substitution variable in a command, SQL*Plus prompts you for the value.

You can enter any string at the prompt, even one containing blanks and punctuation. If the SQL command containing the reference should have quote marks around the variable and you do not include them there, the user must include the quotes when prompted.

SQL*Plus reads your response from the keyboard, even if you have redirected terminal input or output to a file. If a terminal is not available (if, for example, you run the script in batch mode), SQL*Plus uses the redirected file.

After you enter a value at the prompt, SQL*Plus lists the line containing the substitution variable twice: once before substituting the value you enter and once after substitution. You can suppress this listing by setting the SET command variable VERIFY to OFF.

Example 5-9 Using Substitution Variables

Create a script named STATS, to be used to calculate a subgroup statistic (the maximum value) on a numeric column:

SELECT &GROUP_COL, MAX(&NUMBER_COL) MAXIMUM
FROM &TABLE
GROUP BY &GROUP_COL
.
SAVE STATS

	

Created file STATS

Now run the script STATS:

@STATS

And respond to the prompts for values as shown:

	

Enter value for group_col: JOB_ID
old 1: SELECT &GROUP_COL,
new 1: SELECT JOB_ID,
Enter value for number_col: SALARY
old 2: MAX(&NUMBER_COL) MAXIMUM
new 2: MAX(SALARY) MAXIMUM
Enter value for table: EMP_DETAILS_VIEW
old 3: FROM &TABLE
new 3: FROM EMP_DETAILS_VIEW
Enter value for group_col: JOB_ID
old 4: GROUP BY &GROUP_COL
new 4: GROUP BY JOB_ID

SQL*Plus displays the following output:

	

JOB_ID MAXIMUM
---------- ----------
AC_ACCOUNT 8300
AC_MGR 12000
AD_ASST 4400
AD_PRES 24000
AD_VP 17000
FI_ACCOUNT 9000
FI_MGR 12000
HR_REP 6500
IT_PROG 9000
MK_MAN 13000
MK_REP 6000

JOB_ID MAXIMUM
---------- ----------
PR_REP 10000
PU_CLERK 3100
PU_MAN 11000
SA_MAN 14000
SA_REP 11500
SH_CLERK 4200
ST_CLERK 3600
ST_MAN 8200

19 rows selected.

If you wish to append characters immediately after a substitution variable, use a period to separate the variable from the character. For example:

SELECT SALARY FROM EMP_DETAILS_VIEW WHERE EMPLOYEE_ID='&X.5';
Enter value for X: 20

is interpreted as

SELECT SALARY FROM EMP_DETAILS_VIEW WHERE EMPLOYEE_ID='205';

Avoiding Unnecessary Prompts for Values

Suppose you wanted to expand the file STATS to include the minimum, sum, and average of the "number" column. You may have noticed that SQL*Plus prompted you twice for the value of GROUP_COL and once for the value of NUMBER_COL in Example 5-9, "Using Substitution Variables", and that each GROUP_COL or NUMBER_COL had a single ampersand in front of it. If you were to add three more functions—using a single ampersand before each—to the script, SQL*Plus would prompt you a total of four times for the value of the number column.

You can avoid being re-prompted for the group and number columns by adding a second ampersand in front of each GROUP_COL and NUMBER_COL in STATS. SQL*Plus automatically DEFINEs any substitution variable preceded by two ampersands, but does not DEFINE those preceded by only one ampersand. When you have defined a variable, SQL*Plus will not prompt for its value in the current session.

Example 5-10 Using Double Ampersands

To expand the script STATS using double ampersands and then run the file, first suppress the display of each line before and after substitution:

SET VERIFY OFF

Now retrieve and edit STATS by entering the following commands:

GET STATS

	

SELECT &GROUP_COL,
MAX(&NUMBER_COL) MAXIMUM
FROM &TABLE
GROUP BY &GROUP_COL

2

	

2* MAX(&NUMBER_COL) MAXIMUM

APPEND ,

	

2* MAX(&NUMBER_COL) MAXIMUM,

CHANGE/&/&&

	

2* MAX(&&NUMBER_COL) MAXIMUM,

I

	

3i

MIN (&&NUMBER_COL) MINIMUM,

	

4i

SUM(&&NUMBER_COL) TOTAL,

	

5i

AVG(&&NUMBER_COL) AVERAGE

	

6i

1

	

1* SELECT &GROUP_COL,

CHANGE/&/&&

	

1* SELECT &&GROUP_COL,

7

	

7* GROUP BY &GROUP_COL

CHANGE/&/&&/

	

7* GROUP BY &&GROUP_COL

SAVE STATS2

	

Created file STATS2

Finally, run the script STATS2 and respond to the prompts as follows:

START STATS2
Enter value for group_col: JOB_ID
Enter value for number_col: SALARY
Enter value for table: EMP_DETAILS_VIEW

SQL*Plus displays the following output:

	

JOB_ID MAXIMUM MINIMUM TOTAL AVERAGE
---------- ---------- ---------- ---------- ----------
AC_ACCOUNT 8300 8300 8300 8300
AC_MGR 12000 12000 12000 12000
AD_ASST 4400 4400 4400 4400
AD_PRES 24000 24000 24000 24000
AD_VP 17000 17000 34000 17000
FI_ACCOUNT 9000 6900 39600 7920
FI_MGR 12000 12000 12000 12000
HR_REP 6500 6500 6500 6500
IT_PROG 9000 4200 28800 5760
MK_MAN 13000 13000 13000 13000
MK_REP 6000 6000 6000 6000

JOB_ID MAXIMUM MINIMUM TOTAL AVERAGE
---------- ---------- ---------- ---------- ----------
PR_REP 10000 10000 10000 10000
PU_CLERK 3100 2500 13900 2780
PU_MAN 11000 11000 11000 11000
SA_MAN 14000 10500 61000 12200
SA_REP 11500 6100 250500 8350
SH_CLERK 4200 2500 64300 3215
ST_CLERK 3600 2100 55700 2785
ST_MAN 8200 5800 36400 7280

19 rows selected.

Note that you were prompted for the values of NUMBER_COL and GROUP_COL only once. If you were to run STATS2 again during the current session, you would be prompted for TABLE (because its name has a single ampersand and the variable is therefore not DEFINEd) but not for GROUP_COL or NUMBER_COL (because their names have double ampersands and the variables are therefore DEFINEd).

Before continuing, set the system variable VERIFY back to ON:

SET VERIFY ON

Restrictions

You cannot use substitution variables in the buffer editing commands, APPEND, CHANGE, DEL, and INPUT, nor in other commands where substitution would be meaningless. The buffer editing commands, APPEND, CHANGE, and INPUT, treat text beginning with "&" or "&&" literally, like any other text string.

System Variables

The following system variables, specified with the SQL*Plus SET command, affect substitution variables:

	System Variable	Affect on Substitution Variables
	

SET CONCAT

	Defines the character that separates the name of a substitution variable or parameter from characters that immediately follow the variable or parameter—by default the period (.).
	

SET DEFINE

	Defines the substitution character (by default the ampersand "&") and turns substitution on and off.
	

SET ESCAPE

	Defines an escape character you can use before the substitution character. The escape character instructs SQL*Plus to treat the substitution character as an ordinary character rather than as a request for variable substitution. The default escape character is a backslash (\).
	

SET NUMFORMAT

	Sets the default format for displaying numbers, including numeric substitution variables.
	

SET NUMWIDTH

	Sets the default width for displaying numbers, including numeric substitution variables.
	

SET VERIFY ON

	Lists each line of the script before and after substitution.

See SET for more information about system variables.

Passing Parameters through the START Command

You can bypass the prompts for values associated with substitution variables by passing values to parameters in a script through the START command.

You do this by placing an ampersand (&) followed by a numeral in the script in place of a substitution variable. Each time you run this script, START replaces each &1 in the file with the first value (called an argument) after START filename, then replaces each &2 with the second value, and so forth.

For example, you could include the following commands in a script called MYFILE:

SELECT * FROM EMP_DETAILS_VIEW
WHERE JOB_ID='&1'
AND SALARY='&2';

In the following START command, SQL*Plus would substitute PU_CLERK for &1 and 3100 for &2 in the script MYFILE:

START MYFILE PU_CLERK 3100

When you use arguments with the START command, SQL*Plus DEFINEs each parameter in the script with the value of the appropriate argument.

Example 5-11 Passing Parameters through START

To create a new script based on SALES that takes a parameter specifying the job to be displayed, enter

GET SALES

	

1 COLUMN LAST_NAME HEADING 'LAST NAME'
2 COLUMN SALARY HEADING 'MONTHLY SALARY' FORMAT $99,999
3 COLUMN COMMISSION_PCT HEADING 'COMMISSION %' FORMAT 90.90
4 SELECT LAST_NAME, SALARY, COMMISSION_PCT
5 FROM EMP_DETAILS_VIEW
6* WHERE JOB_ID='SA_MAN'

6

	

6* WHERE JOB_ID='SA_MAN'

CHANGE /SA_MAN/&1

	

6* WHERE JOB_ID='&1'

SAVE ONEJOB

	

Created file ONEJOB

Now run the command with the parameter SA_MAN:

START ONEJOB SA_MAN

SQL*Plus lists the line of the SQL command that contains the parameter, before and after replacing the parameter with its value, and then displays the output:

	

old 3: WHERE JOB_ID='&1'
new 3: WHERE JOB_ID='SA_MAN'

LAST NAME MONTHLY SALARY COMMISSION %
------------------------- -------------- ------------
Russell $14,000 0.40
Partners $13,500 0.30
Errazuriz $12,000 0.30
Cambrault $11,000 0.30
Zlotkey $10,500 0.20

You can use many parameters in a script. Within a script, you can refer to each parameter many times, and you can include the parameters in any order.

While you cannot use parameters when you run a command with RUN or slash (/), you could use substitution variables instead.

Before continuing, return the columns to their original heading by entering the following command:

CLEAR COLUMN

Communicating with the User

Three SQL*Plus commands—PROMPT, ACCEPT, and PAUSE—help you communicate with the end user. These commands enable you to send messages to the screen and receive input from the user, including a simple Return. You can also use PROMPT and ACCEPT to customize the prompts for values SQL*Plus automatically generates for substitution variables.

Receiving a Substitution Variable Value

Through PROMPT and ACCEPT, you can send messages to the end user and receive values from end-user input. PROMPT displays a message you specify on-screen to give directions or information to the user. ACCEPT prompts the user for a value and stores it in the substitution variable you specify. Use PROMPT in conjunction with ACCEPT when a prompt spans more than one line.

Example 5-12 Prompting for and Accepting Input

To direct the user to supply a report title and to store the input in the variable MYTITLE for use in a subsequent query, first clear the buffer:

CLEAR BUFFER

Next, set up a script as shown and save this file as PROMPT1:

PROMPT Enter a title of up to 30 characters
ACCEPT MYTITLE PROMPT 'Title: '
TTITLE LEFT MYTITLE SKIP 2
SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE JOB_ID='SA_MAN'

SAVE PROMPT1

	

Created file PROMPT1.sql

The TTITLE command sets the top title for your report. See Defining Page and Report Titles and Dimensions for more information about the TTITILE command.

Finally, run the script, responding to the prompt for the title as shown:

START PROMPT1

	

Enter a title of up to 30 characters
Title: Department Report
Department ReportEMPLOYEE_ID FIRST_NAME LAST_NAME SALARY
----------- -------------------- ------------------------- ----------
 145 John Russell 14000
 146 Karen Partners 13500
 147 Alberto Errazuriz 12000
 148 Gerald Cambrault 11000
 149 Eleni Zlotkey 10500

Before continuing, turn the TTITLE command off:

TTITLE OFF

Customizing Prompts for Substitution Variable

If you want to customize the prompt for a substitution variable value, use PROMPT and ACCEPT in conjunction with the substitution variable, as shown in the following example.

Example 5-13 Using PROMPT and ACCEPT in Conjunction with Substitution Variables

As you have seen in Example 5-12, "Prompting for and Accepting Input", SQL*Plus automatically generates a prompt for a value when you use a substitution variable. You can replace this prompt by including PROMPT and ACCEPT in the script with the query that references the substitution variable. First clear the buffer with:

CLEAR BUFFER

To create such a file, enter the following:

INPUT
PROMPT Enter a valid employee ID
PROMPT For Example 145, 206
ACCEPT ENUMBER NUMBER PROMPT 'Employee ID. :'
SELECT FIRST_NAME, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE EMPLOYEE_ID=&ENUMBER;

Save this file as PROMPT2. Next, run this script. SQL*Plus prompts for the value of ENUMBER using the text you specified with PROMPT and ACCEPT:

START PROMPT2

SQL*Plus prompts you to enter an Employee ID:

	

Enter a valid employee ID
For Example 145, 206

Employee ID. :

205

	

old 3: WHERE EMPLOYEE_ID=&ENUMBER
new 3: WHERE EMPLOYEE_ID= 205

Department Report

FIRST_NAME LAST_NAME SALARY
-------------------- ------------------------- ----------
Shelley Higgins 12000

What would happen if you typed characters instead of numbers? Since you specified NUMBER after the variable name in the ACCEPT command, SQL*Plus will not accept a non-numeric value:

Try entering characters instead of numbers to the prompt for "Employee ID.", SQL*Plus will respond with an error message and prompt you again to re-enter the correct number:

START PROMPT2

When SQL*Plus prompts you to enter an Employee ID, enter the word "one" instead of a number:

	

Enter a valid employee ID
For Example 145, 206

Employee ID. :

one

	

SP2-0425: "one" is not a valid number

Sending a Message and Accepting Return as Input

If you want to display a message on the user's screen and then have the user press Return after reading the message, use the SQL*Plus command PAUSE. For example, you might include the following lines in a script:

PROMPT Before continuing, make sure you have your account card.
PAUSE Press RETURN to continue.

Clearing the Screen

If you want to clear the screen before displaying a report (or at any other time), include the SQL*Plus CLEAR command with its SCREEN clause at the appropriate point in your script, using the following format:

CLEAR SCREEN

Before continuing to the next section, reset all columns to their original formats and headings by entering the following command:

CLEAR COLUMNS

Using Bind Variables

Bind variables are variables you create in SQL*Plus and then reference in PL/SQL or SQL. If you create a bind variable in SQL*Plus, you can use the variable as you would a declared variable in your PL/SQL subprogram and then access the variable from SQL*Plus. You can use bind variables for such things as storing return codes or debugging your PL/SQL subprograms.

Because bind variables are recognized by SQL*Plus, you can display their values in SQL*Plus or reference them in PL/SQL subprograms that you run in SQL*Plus.

Creating Bind Variables

You create bind variables in SQL*Plus with the VARIABLE command. For example

VARIABLE ret_val NUMBER

This command creates a bind variable named ret_val with a datatype of NUMBER. See the VARIABLE command for more information. (To list all bind variables created in a session, type VARIABLE without any arguments.)

Referencing Bind Variables

You reference bind variables in PL/SQL by typing a colon (:) followed immediately by the name of the variable. For example

:ret_val := 1;

To change this bind variable in SQL*Plus, you must enter a PL/SQL block. For example:

BEGIN
 :ret_val:=4;
END;
/

	

PL/SQL procedure successfully completed.

This command assigns a value to the bind variable named ret_val.

Displaying Bind Variables

To display the value of a bind variable in SQL*Plus, you use the SQL*Plus PRINT command. For example:

PRINT RET_VAL

	

 RET_VAL

 4

This command displays a bind variable named ret_val. See PRINT for more information about displaying bind variables.

Using REFCURSOR Bind Variables

SQL*Plus REFCURSOR bind variables allow SQL*Plus to fetch and format the results of a SELECT statement contained in a PL/SQL block.

REFCURSOR bind variables can also be used to reference PL/SQL cursor variables in stored procedures. This enables you to store SELECT statements in the database and reference them from SQL*Plus.

A REFCURSOR bind variable can also be returned from a stored function.

Example 5-14 Creating, Referencing, and Displaying REFCURSOR Bind Variables

To create, reference and display a REFCURSOR bind variable, first declare a local bind variable of the REFCURSOR datatype

VARIABLE employee_info REFCURSOR

Next, enter a PL/SQL block that uses the bind variable in an OPEN... FOR SELECT statement. This statement opens a cursor variable and executes a query. See the Oracle Database PL/SQL Language Reference for information on the OPEN command and cursor variables.

In this example we are binding the SQL*Plus employee_info bind variable to the cursor variable.

BEGIN
OPEN :employee_info FOR SELECT EMPLOYEE_ID, SALARY
FROM EMP_DETAILS_VIEW WHERE JOB_ID='SA_MAN' ;
END;
 /

	

PL/SQL procedure successfully completed.

The results from the SELECT statement can now be displayed in SQL*Plus with the PRINT command.

PRINT employee_info

	

EMPLOYEE_ID SALARY
----------- ----------
 145 14000
 146 13500
 147 12000
 148 11000
 149 10500

The PRINT statement also closes the cursor. To reprint the results, the PL/SQL block must be executed again before using PRINT.

Example 5-15 Using REFCURSOR Variables in Stored Procedures

A REFCURSOR bind variable is passed as a parameter to a procedure. The parameter has a REF CURSOR type. First, define the type.

CREATE OR REPLACE PACKAGE EmpPack AS
 TYPE EmpInfoTyp IS REF CURSOR;
 PROCEDURE EmpInfoRpt (emp_cv IN OUT EmpInfoTyp);
END EmpPack;
/

	

Package created.

Next, create the stored procedure containing an OPEN... FOR SELECT statement.

CREATE OR REPLACE PACKAGE BODY EmpPack AS
 PROCEDURE EmpInfoRpt (emp_cv IN OUT EmpInfoTyp) AS
 BEGIN
 OPEN emp_cv FOR SELECT EMPLOYEE_ID, SALARY
 FROM EMP_DETAILS_VIEW
 WHERE JOB_ID='SA_MAN' ;
 END;
END;
 /

	

Procedure created.

Execute the procedure with a SQL*Plus bind variable as the parameter.

VARIABLE cv REFCURSOR
EXECUTE EmpPack.EmpInfoRpt(:cv)

	

PL/SQL procedure successfully completed.

Now print the bind variable.

PRINT cv

	

EMPLOYEE_ID SALARY
----------- ----------
 145 14000
 146 13500
 147 12000
 148 11000
 149 10500

The procedure can be executed multiple times using the same or a different REFCURSOR bind variable.

VARIABLE pcv REFCURSOR
EXECUTE EmpInfo_rpt(:pcv)

	

PL/SQL procedure successfully completed.

PRINT pcv

	

EMPLOYEE_ID SALARY
----------- ----------
 145 14000
 146 13500
 147 12000
 148 11000
 149 10500

Example 5-16 Using REFCURSOR Variables in Stored Functions

Create a stored function containing an OPEN... FOR SELECT statement:

CREATE OR REPLACE FUNCTION EmpInfo_fn RETURN -
cv_types.EmpInfo IS
resultset cv_types.EmpInfoTyp;
BEGIN
OPEN resultset FOR SELECT EMPLOYEE_ID, SALARY
FROM EMP_DETAILS_VIEW
WHERE JOB_ID='SA_MAN';
RETURN(resultset);
END;
/

	

Function created.

Execute the function.

VARIABLE rc REFCURSOR
EXECUTE :rc := EmpInfo_fn

	

PL/SQL procedure successfully completed.

Now print the bind variable.

PRINT rc

	

EMPLOYEE_ID SALARY
----------- ----------
 145 14000
 146 13500
 147 12000
 148 11000
 149 10500

The function can be executed multiple times using the same or a different REFCURSOR bind variable.

EXECUTE :rc := EmpInfo_fn

	

PL/SQL procedure successfully completed.

6 Formatting SQL*Plus Reports

This chapter explains how to format your query results to produce a finished report. This chapter does not discuss HTML output, but covers the following topics:

	
Formatting Columns

	
Clarifying Your Report with Spacing and Summary Lines

	
Defining Page and Report Titles and Dimensions

	
Storing and Printing Query Results

Read this chapter while sitting at your computer and try out the examples shown. Before beginning, make sure you have access to the HR sample schema described in SQL*Plus Quick Start.

Formatting Columns

Through the SQL*Plus COLUMN command, you can change the column headings and reformat the column data in your query results.

Changing Column Headings

When displaying column headings, you can either use the default heading or you can change it using the COLUMN command. The following sections describe how default headings are derived and how to alter them using the COLUMN command. See the COLUMN command for more details.

Default Headings

SQL*Plus uses column or expression names as default column headings when displaying query results. Column names are often short and cryptic, however, and expressions can be hard to understand.

Changing Default Headings

You can define a more useful column heading with the HEADING clause of the COLUMN command, in the following format:

COLUMN column_name HEADING column_heading

Example 6-1 Changing a Column Heading

To produce a report from EMP_DETAILS_VIEW with new headings specified for LAST_NAME, SALARY, and COMMISSION_PCT, enter the following commands:

COLUMN LAST_NAME HEADING 'LAST NAME'
COLUMN SALARY HEADING 'MONTHLY SALARY'
COLUMN COMMISSION_PCT HEADING COMMISSION
SELECT LAST_NAME, SALARY, COMMISSION_PCT
FROM EMP_DETAILS_VIEW
WHERE JOB_ID='SA_MAN';

	

LAST NAME MONTHLY SALARY COMMISSION
------------------------- -------------- ----------
Russell 14000 .4
Partners 13500 .3
Errazuriz 12000 .3
Cambrault 11000 .3
Zlotkey 10500 .2

	
Note:

The new headings will remain in effect until you enter different headings, reset each column's format, or exit from SQL*Plus.

To change a column heading to two or more words, enclose the new heading in single or double quotation marks when you enter the COLUMN command. To display a column heading on more than one line, use a vertical bar (|) where you want to begin a new line. (You can use a character other than a vertical bar by changing the setting of the HEADSEP variable of the SET command. See the SET command for more information.)

Example 6-2 Splitting a Column Heading

To give the columns SALARY and LAST_NAME the headings MONTHLY SALARY and LAST NAME respectively, and to split the new headings onto two lines, enter

COLUMN SALARY HEADING 'MONTHLY|SALARY'
COLUMN LAST_NAME HEADING 'LAST|NAME'

Now rerun the query with the slash (/) command:

 /

	

LAST MONTHLY
NAME SALARY COMMISSION
------------------------- ---------- ----------
Russell 14000 .4
Partners 13500 .3
Errazuriz 12000 .3
Cambrault 11000 .3
Zlotkey 10500 .2

Example 6-3 Setting the Underline Character

To change the character used to underline headings to an equal sign and rerun the query, enter the following commands:

SET UNDERLINE =
/

	

LAST MONTHLY
NAME SALARY COMMISSION
========================= ========== ==========
Russell 14000 .4
Partners 13500 .3
Errazuriz 12000 .3
Cambrault 11000 .3
Zlotkey 10500 .2

Now change the underline character back to a dash:

SET UNDERLINE '-'

	
Note:

You must enclose the dash in quotation marks; otherwise, SQL*Plus interprets the dash as a hyphen indicating that you wish to continue the command on another line.

Formatting NUMBER Columns

When displaying NUMBER columns, you can either accept the SQL*Plus default display width or you can change it using the COLUMN command. Later sections describe the default display and how you can alter it with the COLUMN command. The format model will stay in effect until you enter a new one, reset the column's format with

COLUMN column_name CLEAR

or exit from SQL*Plus.

Default Display

A NUMBER column's width equals the width of the heading or the width of the FORMAT plus one space for the sign, whichever is greater. If you do not explicitly use FORMAT, then the column's width will always be at least the value of SET NUMWIDTH.

SQL*Plus normally displays numbers with as many digits as are required for accuracy, up to a standard display width determined by the value of the NUMWIDTH variable of the SET command (normally 10). If a number is larger than the value of SET NUMWIDTH, SQL*Plus rounds the number up or down to the maximum number of characters allowed if possible, or displays hashes if the number is too large.

You can choose a different format for any NUMBER column by using a format model in a COLUMN command. A format model is a representation of the way you want the numbers in the column to appear, using 9s to represent digits.

Changing the Default Display

The COLUMN command identifies the column you want to format and the model you want to use, as shown:

COLUMN column_name FORMAT model

Use format models to add commas, dollar signs, angle brackets (around negative values), and leading zeros to numbers in a given column. You can also round the values to a given number of decimal places, display minus signs to the right of negative values (instead of to the left), and display values in exponential notation.

To use more than one format model for a single column, combine the desired models in one COLUMN command (see Example 6-4). See COLUMN for a complete list of format models and further details.

Example 6-4 Formatting a NUMBER Column

To display SALARY with a dollar sign, a comma, and the numeral zero instead of a blank for any zero values, enter the following command:

COLUMN SALARY FORMAT $99,990

Now rerun the current query:

/

	

LAST MONTHLY
NAME SALARY COMMISSION
------------------------- -------- ----------
Russell $14,000 .4
Partners $13,500 .3
Errazuriz $12,000 .3
Cambrault $11,000 .3
Zlotkey $10,500 .2

Use a zero in your format model, as shown, when you use other formats such as a dollar sign and wish to display a zero in place of a blank for zero values.

Formatting Datatypes

When displaying datatypes, you can either accept the SQL*Plus default display width or you can change it using the COLUMN command. The format model will stay in effect until you enter a new one, reset the column's format with

COLUMN column_name CLEAR

or exit from SQL*Plus. Datatypes, in this manual, include the following types:

	
CHAR

	
NCHAR

	
VARCHAR2 (VARCHAR)

	
NVARCHAR2 (NCHAR VARYING)

	
DATE

	
LONG

	
BLOB

BFILE

	
CLOB

	
NCLOB

	
XMLType

Default Display

The default width of datatype columns is the width of the column in the database. The column width of a LONG, BLOB, BFILE, CLOB, NCLOB or XMLType defaults to the value of SET LONGCHUNKSIZE or SET LONG, whichever is the smaller.

The default width and format of unformatted DATE columns in SQL*Plus is determined by the database NLS_DATE_FORMAT parameter. Otherwise, the default format width is A9. See the FORMAT clause of the COLUMN command for more information on formatting DATE columns.

Left justification is the default for datatypes.

Changing the Default Display

You can change the displayed width of a datatype or DATE, by using the COLUMN command with a format model consisting of the letter A (for alphanumeric) followed by a number representing the width of the column in characters.

Within the COLUMN command, identify the column you want to format and the model you want to use:

COLUMN column_name FORMAT model

If you specify a width shorter than the column heading, SQL*Plus truncates the heading. See the COLUMN command for more details.

Example 6-5 Formatting a Character Column

To set the width of the column LAST_NAME to four characters and rerun the current query, enter

COLUMN LAST_NAME FORMAT A4
/

	

LAST MONTHLY
NAME SALARY COMMISSION
---- -------- ----------
Russ $14,000 .4
ell

Part $13,500 .3
ners

Erra $12,000 .3
zuri
z

LAST MONTHLY
NAME SALARY COMMISSION
---- -------- ----------
Camb $11,000 .3
raul
t

Zlot $10,500 .2
key

If the WRAP variable of the SET command is set to ON (its default value), the employee names wrap to the next line after the fourth character, as shown in Example 6-5, "Formatting a Character Column". If WRAP is set to OFF, the names are truncated (cut off) after the fourth character.

The system variable WRAP controls all columns; you can override the setting of WRAP for a given column through the WRAPPED, WORD_WRAPPED, and TRUNCATED clauses of the COLUMN command. See the COLUMN command for more information on these clauses. You will use the WORD_WRAPPED clause of COLUMN later in this chapter.

NCLOB, BLOB, BFILE or multibyte CLOB columns cannot be formatted with the WORD_WRAPPED option. If you format an NCLOB, BLOB, BFILE or multibyte CLOB column with COLUMN WORD_WRAPPED, the column data behaves as though COLUMN WRAPPED was applied instead.

	
Note:

The column heading is truncated regardless of the setting of WRAP or any COLUMN command clauses.

Now return the column to its previous format:

COLUMN LAST_NAME FORMAT A10

Example 6-6 Formatting an XMLType Column

Before illustrating how to format an XMLType column, you must create a table with an XMLType column definition, and insert some data into the table. You can create an XMLType column like any other user-defined column. To create a table containing an XMLType column, enter

CREATE TABLE warehouses (
 warehouse_id NUMBER(3),
 warehouse_spec SYS.XMLTYPE,
 warehouse_name VARCHAR2 (35),
 location_id NUMBER(4));

To insert a new record containing warehouse_id and warehouse_spec values into the new warehouses table, enter

INSERT into warehouses (warehouse_id, warehouse_spec)
 VALUES (100, sys.XMLTYPE.createXML(
 '<Warehouse whNo="100">
 <Building>Owned</Building>
 </Warehouse>'));

To set the XMLType column width to 20 characters and then select the XMLType column, enter

COLUMN Building FORMAT A20
SELECT
 w.warehouse_spec.extract('/Warehouse/Building/text()').getStringVal()
 "Building"
 FROM warehouses w;

	

Building

Owned

For more information about the createXML, extract, text and getStringVal functions, and about creating and manipulating XMLType data, see Oracle Database PL/SQL Packages and Types Reference.

Copying Column Display Attributes

When you want to give more than one column the same display attributes, you can reduce the length of the commands you must enter by using the LIKE clause of the COLUMN command. The LIKE clause tells SQL*Plus to copy the display attributes of a previously defined column to the new column, except for changes made by other clauses in the same command.

Example 6-7 Copying a Column's Display Attributes

To give the column COMMISSION_PCT the same display attributes you gave to SALARY, but to specify a different heading, enter the following command:

COLUMN COMMISSION_PCT LIKE SALARY HEADING BONUS

Rerun the query:

/

	

LAST MONTHLY
NAME SALARY BONUS
---------- -------- --------
Russell $14,000 $0
Partners $13,500 $0
Errazuriz $12,000 $0
Cambrault $11,000 $0
Zlotkey $10,500 $0

Listing and Resetting Column Display Attributes

To list the current display attributes for a given column, use the COLUMN command followed by the column name only, as shown:

COLUMN column_name

To list the current display attributes for all columns, enter the COLUMN command with no column names or clauses after it:

COLUMN

To reset the display attributes for a column to their default values, use the CLEAR clause of the COLUMN command as shown:

COLUMN column_name CLEAR

Example 6-8 Resetting Column Display Attributes to their Defaults

To reset all column display attributes to their default values, enter:

CLEAR COLUMNS

	

columns cleared

Suppressing and Restoring Column Display Attributes

You can suppress and restore the display attributes you have given a specific column. To suppress a column's display attributes, enter a COLUMN command in the following form:

COLUMN column_name OFF

OFF tells SQL*Plus to use the default display attributes for the column, but does not remove the attributes you have defined through the COLUMN command. To restore the attributes you defined through COLUMN, use the ON clause:

COLUMN column_name ON

Printing a Line of Characters after Wrapped Column Values

As you have seen, by default SQL*Plus wraps column values to additional lines when the value does not fit the column width. If you want to insert a record separator (a line of characters or a blank line) after each wrapped line of output (or after every row), use the RECSEP and RECSEPCHAR variables of the SET command.

RECSEP determines when the line of characters is printed; you set RECSEP to EACH to print after every line, to WRAPPED to print after wrapped lines, and to OFF to suppress printing. The default setting of RECSEP is WRAPPED.

RECSEPCHAR sets the character printed in each line. You can set RECSEPCHAR to any character.

You may wish to wrap whole words to additional lines when a column value wraps to additional lines. To do so, use the WORD_WRAPPED clause of the COLUMN command as shown:

COLUMN column_name WORD_WRAPPED

Example 6-9 Printing a Line of Characters after Wrapped Column Values

To print a line of dashes after each wrapped column value, enter the commands:

SET RECSEP WRAPPED
SET RECSEPCHAR "-"

Finally, enter the following query:

SELECT LAST_NAME, JOB_TITLE, CITY
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000;

Now restrict the width of the column JOB_TITLE and tell SQL*Plus to wrap whole words to additional lines when necessary:

COLUMN JOB_TITLE FORMAT A20 WORD_WRAPPED

Run the query:

/

	

LAST_NAME JOB_TITLE CITY
------------------------- -------------------- --------
King President Seattle
Kochhar Administration Vice Seattle
 President

De Haan Administration Vice Seattle
 President

Russell Sales Manager Oxford
Partners Sales Manager Oxford
Hartstein Marketing Manager Toronto

6 rows selected.

If you set RECSEP to EACH, SQL*Plus prints a line of characters after every row (after every department, for the above example).

Before continuing, set RECSEP to OFF to suppress the printing of record separators:

SET RECSEP OFF

Clarifying Your Report with Spacing and Summary Lines

When you use an ORDER BY clause in your SQL SELECT command, rows with the same value in the ordered column (or expression) are displayed together in your output. You can make this output more useful to the user by using the SQL*Plus BREAK and COMPUTE commands to create subsets of records and add space or summary lines after each subset.

The column you specify in a BREAK command is called a break column. By including the break column in your ORDER BY clause, you create meaningful subsets of records in your output. You can then add formatting to the subsets within the same BREAK command, and add a summary line (containing totals, averages, and so on) by specifying the break column in a COMPUTE command.

SELECT DEPARTMENT_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE SALARY > 12000
ORDER BY DEPARTMENT_ID;

	

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 20 Hartstein 13000
 80 Russell 14000
 80 Partners 13500
 90 King 24000
 90 Kochhar 17000
 90 De Haan 17000

6 rows selected.

To make this report more useful, you would use BREAK to establish DEPARTMENT_ID as the break column. Through BREAK you could suppress duplicate values in DEPARTMENT_ID and place blank lines or begin a new page between departments. You could use BREAK in conjunction with COMPUTE to calculate and print summary lines containing the total salary for each department and for all departments. You could also print summary lines containing the average, maximum, minimum, standard deviation, variance, or row count.

Suppressing Duplicate Values in Break Columns

The BREAK command suppresses duplicate values by default in the column or expression you name. Thus, to suppress the duplicate values in a column specified in an ORDER BY clause, use the BREAK command in its simplest form:

BREAK ON break_column

	
Note:

Whenever you specify a column or expression in a BREAK command, use an ORDER BY clause specifying the same column or expression. If you do not do this, breaks occur every time the column value changes.

Example 6-10 Suppressing Duplicate Values in a Break Column

To suppress the display of duplicate department numbers in the query results shown, enter the following commands:

BREAK ON DEPARTMENT_ID;

For the following query (which is the current query stored in the buffer):

SELECT DEPARTMENT_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE SALARY > 12000
ORDER BY DEPARTMENT_ID;

	

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 20 Hartstein 13000
 80 Russell 14000
 Partners 13500
 90 King 24000
 Kochhar 17000
 De Haan 17000

6 rows selected.

Inserting Space when a Break Column's Value Changes

You can insert blank lines or begin a new page each time the value changes in the break column. To insert n blank lines, use the BREAK command in the following form:

BREAK ON break_column SKIP n

To skip a page, use the command in this form:

BREAK ON break_column SKIP PAGE

Example 6-11 Inserting Space when a Break Column's Value Changes

To place one blank line between departments, enter the following command:

BREAK ON DEPARTMENT_ID SKIP 1

Now rerun the query:

/

	

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 20 Hartstein 13000

 80 Russell 14000
 Partners 13500

 90 King 24000
 Kochhar 17000
 De Haan 17000

6 rows selected.

Inserting Space after Every Row

You may wish to insert blank lines or a blank page after every row. To skip n lines after every row, use BREAK in the following form:

BREAK ON ROW SKIP n

To skip a page after every row, use

BREAK ON ROW SKIP PAGE

	
Note:

SKIP PAGE does not cause a physical page break character to be generated unless you have also specified NEWPAGE 0.

Using Multiple Spacing Techniques

Suppose you have more than one column in your ORDER BY clause and wish to insert space when each column's value changes. Each BREAK command you enter replaces the previous one. Thus, if you want to use different spacing techniques in one report or insert space after the value changes in more than one ordered column, you must specify multiple columns and actions in a single BREAK command.

Example 6-12 Combining Spacing Techniques

Type the following:

SELECT DEPARTMENT_ID, JOB_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000
ORDER BY DEPARTMENT_ID, JOB_ID;

Now, to skip a page when the value of DEPARTMENT_ID changes and one line when the value of JOB_ID changes, enter the following command:

BREAK ON DEPARTMENT_ID SKIP PAGE ON JOB_ID SKIP 1

To show that SKIP PAGE has taken effect, create a TTITLE with a page number:

TTITLE COL 35 FORMAT 9 'Page:' SQL.PNO

Run the new query to see the results:

	

 Page: 1
DEPARTMENT_ID JOB_ID LAST_NAME SALARY
------------- ---------- ------------------------- ----------
 20 MK_MAN Hartstein 13000

 Page: 2
DEPARTMENT_ID JOB_ID LAST_NAME SALARY
------------- ---------- ------------------------- ----------
 80 SA_MAN Russell 14000
 Partners 13500

 Page: 3
DEPARTMENT_ID JOB_ID LAST_NAME SALARY
------------- ---------- ------------------------- ----------
 90 AD_PRES King 24000

 AD_VP Kochhar 17000
 De Haan 17000

6 rows selected.

Listing and Removing Break Definitions

Before continuing, turn off the top title display without changing its definition:

TTITLE OFF

You can list your current break definition by entering the BREAK command with no clauses:

BREAK

You can remove the current break definition by entering the CLEAR command with the BREAKS clause:

CLEAR BREAKS

You may wish to place the command CLEAR BREAKS at the beginning of every script to ensure that previously entered BREAK commands will not affect queries you run in a given file.

Computing Summary Lines when a Break Column's Value Changes

If you organize the rows of a report into subsets with the BREAK command, you can perform various computations on the rows in each subset. You do this with the functions of the SQL*Plus COMPUTE command. Use the BREAK and COMPUTE commands together in the following forms:

BREAK ON break_column
COMPUTE function LABEL label_name OF column column column
... ON break_column

You can include multiple break columns and actions, such as skipping lines in the BREAK command, as long as the column you name after ON in the COMPUTE command also appears after ON in the BREAK command. To include multiple break columns and actions in BREAK when using it in conjunction with COMPUTE, use these commands in the following forms:

BREAK ON break_column_1 SKIP PAGE ON break_column_2 SKIP 1
COMPUTE function LABEL label_name OF column column column
... ON break_column_2

The COMPUTE command has no effect without a corresponding BREAK command.

You can COMPUTE on NUMBER columns and, in certain cases, on all types of columns. For more information see the COMPUTE command.

The following table lists compute functions and their effects

Table 6-1 Compute Functions

	Function...	Computes the...
	

SUM

	
Sum of the values in the column.

	

MINIMUM

	
Minimum value in the column.

	

MAXIMUM

	
Maximum value in the column.

	

AVG

	
Average of the values in the column.

	

STD

	
Standard deviation of the values in the column.

	

VARIANCE

	
Variance of the values in the column.

	

COUNT

	
Number of non-null values in the column.

	

NUMBER

	
Number of rows in the column.

The function you specify in the COMPUTE command applies to all columns you enter after OF and before ON. The computed values print on a separate line when the value of the ordered column changes.

Labels for ON REPORT and ON ROW computations appear in the first column; otherwise, they appear in the column specified in the ON clause.

You can change the compute label by using COMPUTE LABEL. If you do not define a label for the computed value, SQL*Plus prints the unabbreviated function keyword.

The compute label can be suppressed by using the NOPRINT option of the COLUMN command on the break column. See the COMPUTE command for more details. If you use the NOPRINT option for the column on which the COMPUTE is being performed, the COMPUTE result is also suppressed.

Example 6-13 Computing and Printing Subtotals

To compute the total of SALARY by department, first list the current BREAK definition:

BREAK

which displays current BREAK definitions:

	

break on DEPARTMENT_ID page nodup
 on JOB_ID skip 1 nodup

Now enter the following COMPUTE command and run the current query:

COMPUTE SUM OF SALARY ON DEPARTMENT_ID
/

	

DEPARTMENT_ID JOB_ID LAST_NAME SALARY
------------- ---------- ------------------------- ----------
 20 MK_MAN Hartstein 13000
************* ********** ----------
sum 13000

DEPARTMENT_ID JOB_ID LAST_NAME SALARY
------------- ---------- ------------------------- ----------
 80 SA_MAN Russell 14000
 Partners 13500

************* ********** ----------
sum 27500

DEPARTMENT_ID JOB_ID LAST_NAME SALARY
------------- ---------- ------------------------- ----------
 90 AD_PRES King 24000

 AD_VP Kochhar 17000
 De Haan 17000

************* ********** ----------
sum 58000

6 rows selected.

To compute the sum of salaries for departments 10 and 20 without printing the compute label:

COLUMN DUMMY NOPRINT;
COMPUTE SUM OF SALARY ON DUMMY;
BREAK ON DUMMY SKIP 1;
SELECT DEPARTMENT_ID DUMMY,DEPARTMENT_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000
ORDER BY DEPARTMENT_ID;

	

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 20 Hartstein 13000

 13000

 80 Russell 14000
 80 Partners 13500

 27500

 90 King 24000
 90 Kochhar 17000
 90 De Haan 17000

 58000

6 rows selected.

To compute the salaries just at the end of the report:

COLUMN DUMMY NOPRINT;
COMPUTE SUM OF SALARY ON DUMMY;
BREAK ON DUMMY;
SELECT NULL DUMMY,DEPARTMENT_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000
ORDER BY DEPARTMENT_ID;

	

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 20 Hartstein 13000
 80 Russell 14000
 80 Partners 13500
 90 King 24000
 90 Kochhar 17000
 90 De Haan 17000

 98500

6 rows selected.

When you establish the format of a NUMBER column, you must allow for the size of the sums included in the report.

Computing Summary Lines at the End of the Report

You can calculate and print summary lines based on all values in a column by using BREAK and COMPUTE in the following forms:

BREAK ON REPORT
COMPUTE function LABEL label_name OF column column column
... ON REPORT

Example 6-14 Computing and Printing a Grand Total

To calculate and print the grand total of salaries for all sales people and change the compute label, first enter the following BREAK and COMPUTE commands:

BREAK ON REPORT
COMPUTE SUM LABEL TOTAL OF SALARY ON REPORT

Next, enter and run a new query:

SELECT LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE JOB_ID='SA_MAN';

	

LAST_NAME SALARY
------------------------- ----------
Russell 14000
Partners 13500
Errazuriz 12000
Cambrault 11000
Zlotkey 10500

TOTAL 61000

To print a grand total (or grand average, grand maximum, and so on) in addition to subtotals (or sub-averages, and so on), include a break column and an ON REPORT clause in your BREAK command. Then, enter one COMPUTE command for the break column and another to compute ON REPORT:

BREAK ON break_column ON REPORT
COMPUTE function LABEL label_name OF column ON break_column
COMPUTE function LABEL label_name OF column ON REPORT

Computing Multiple Summary Values and Lines

You can compute and print the same type of summary value on different columns. To do so, enter a separate COMPUTE command for each column.

Example 6-15 Computing the Same Type of Summary Value on Different Columns

To print the total of salaries and commissions for all sales people, first enter the following COMPUTE command:

COMPUTE SUM OF SALARY COMMISSION_PCT ON REPORT

You do not have to enter a BREAK command; the BREAK you entered in Example 6-14, "Computing and Printing a Grand Total" is still in effect. Now, change the first line of the select query to include COMMISSION_PCT:

1

	

1* SELECT LAST_NAME, SALARY

APPEND , COMMISSION_PCT;

Finally, run the revised query to see the results:

/

	

LAST_NAME SALARY COMMISSION_PCT
------------------------- ---------- --------------
Russell 14000 .4
Partners 13500 .3
Errazuriz 12000 .3
Cambrault 11000 .3
Zlotkey 10500 .2
 ---------- --------------
sum 61000 1.5

You can also print multiple summary lines on the same break column. To do so, include the function for each summary line in the COMPUTE command as follows:

COMPUTE function LABEL label_name function
 LABEL label_name function LABEL label_name ...
 OF column ON break_column

If you include multiple columns after OF and before ON, COMPUTE calculates and prints values for each column you specify.

Example 6-16 Computing Multiple Summary Lines on the Same Break Column

To compute the average and sum of salaries for the sales department, first enter the following BREAK and COMPUTE commands:

BREAK ON DEPARTMENT_ID
COMPUTE AVG SUM OF SALARY ON DEPARTMENT_ID

Now, enter and run the following query:

SELECT DEPARTMENT_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE DEPARTMENT_ID = 30
ORDER BY DEPARTMENT_ID, SALARY;

	

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 30 Colmenares 2500
 Himuro 2600
 Tobias 2800
 Baida 2900
 Khoo 3100
 Raphaely 11000
************* ----------
avg 4150
sum 24900

6 rows selected.

Listing and Removing COMPUTE Definitions

You can list your current COMPUTE definitions by entering the COMPUTE command with no clauses:

COMPUTE

Example 6-17 Removing COMPUTE Definitions

To remove all COMPUTE definitions and the accompanying BREAK definition, enter the following commands:

CLEAR BREAKS

	

breaks cleared

CLEAR COMPUTES

	

computes cleared

You may wish to place the commands CLEAR BREAKS and CLEAR COMPUTES at the beginning of every script to ensure that previously entered BREAK and COMPUTE commands will not affect queries you run in a given file.

Defining Page and Report Titles and Dimensions

The word page refers to a screen full of information on your display or a page of a spooled (printed) report. You can place top and bottom titles on each page, set the number of lines per page, and determine the width of each line.

The word report refers to the complete results of a query. You can also place headers and footers on each report and format them in the same way as top and bottom titles on pages.

Setting the Top and Bottom Titles and Headers and Footers

As you have already seen, you can set a title to display at the top of each page of a report. You can also set a title to display at the bottom of each page. The TTITLE command defines the top title; the BTITLE command defines the bottom title.

You can also set a header and footer for each report. The REPHEADER command defines the report header; the REPFOOTER command defines the report footer.

A TTITLE, BTITLE, REPHEADER or REPFOOTER command consists of the command name followed by one or more clauses specifying a position or format and a CHAR value you wish to place in that position or give that format. You can include multiple sets of clauses and CHAR values:

TTITLE position_clause(s) char_value position_clause(s) char_value ...
BTITLE position_clause(s) char_value position_clause(s) char_value ...
REPHEADER position_clause(s) char_value position_clause(s) char_value ...
REPFOOTER position_clause(s) char_value position_clause(s) char_value ...

For descriptions of all TTITLE, BTITLE, REPHEADER and REPFOOTER clauses, see the TTITLE command and the REPHEADER command.

Example 6-18 Placing a Top and Bottom Title on a Page

To put titles at the top and bottom of each page of a report, enter

TTITLE CENTER -
"ACME SALES DEPARTMENT PERSONNEL REPORT"
BTITLE CENTER "COMPANY CONFIDENTIAL"

Now run the current query:

/

	

 ACME SALES DEPARTMENT PERSONNEL REPORT
DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 30 Colmenares 2500
 30 Himuro 2600
 30 Tobias 2800
 30 Baida 2900
 30 Khoo 3100
 30 Raphaely 11000

 COMPANY CONFIDENTIAL

6 rows selected.

Example 6-19 Placing a Header on a Report

To put a report header on a separate page, and to center it, enter

REPHEADER PAGE CENTER 'PERFECT WIDGETS'

Now run the current query:

/

which displays the following two pages of output, with the new REPHEADER displayed on the first page:

	

 ACME SALES DEPARTMENT PERSONNEL REPORT
 PERFECT WIDGETS

 COMPANY CONFIDENTIAL

 ACME SALES DEPARTMENT PERSONNEL REPORT
DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 30 Colmenares 2500
 30 Himuro 2600
 30 Tobias 2800
 30 Baida 2900
 30 Khoo 3100
 30 Raphaely 11000

 COMPANY CONFIDENTIAL

6 rows selected.

To suppress the report header without changing its definition, enter

REPHEADER OFF

Positioning Title Elements

The report in the preceding exercises might look more attractive if you give the company name more emphasis and place the type of report and the department name on either end of a separate line. It may also help to reduce the line size and thus center the titles more closely around the data.

You can accomplish these changes by adding some clauses to the TTITLE command and by resetting the system variable LINESIZE, as the following example shows.

You can format report headers and footers in the same way as BTITLE and TTITLE using the REPHEADER and REPFOOTER commands.

Example 6-20 Positioning Title Elements

To redisplay the personnel report with a repositioned top title, enter the following commands:

TTITLE CENTER 'A C M E W I D G E T' SKIP 1 -
CENTER ==================== SKIP 1 LEFT 'PERSONNEL REPORT' -
RIGHT 'SALES DEPARTMENT' SKIP 2
SET LINESIZE 60
/

	

 A C M E W I D G E T
 ====================
PERSONNEL REPORT SALES DEPARTMENT

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 30 Colmenares 2500
 30 Himuro 2600
 30 Tobias 2800
 30 Baida 2900
 30 Khoo 3100
 30 Raphaely 11000
 COMPANY CONFIDENTIAL

6 rows selected.

The LEFT, RIGHT, and CENTER clauses place the following values at the beginning, end, and center of the line. The SKIP clause tells SQL*Plus to move down one or more lines.

Note that there is no longer any space between the last row of the results and the bottom title. The last line of the bottom title prints on the last line of the page. The amount of space between the last row of the report and the bottom title depends on the overall page size, the number of lines occupied by the top title, and the number of rows in a given page. In the above example, the top title occupies three more lines than the top title in the previous example. You will learn to set the number of lines per page later in this chapter.

To always print n blank lines before the bottom title, use the SKIP n clause at the beginning of the BTITLE command. For example, to skip one line before the bottom title in the example above, you could enter the following command:

BTITLE SKIP 1 CENTER 'COMPANY CONFIDENTIAL'

Indenting a Title Element

You can use the COL clause in TTITLE or BTITLE to indent the title element a specific number of spaces. For example, COL 1 places the following values in the first character position, and so is equivalent to LEFT, or an indent of zero. COL 15 places the title element in the 15th character position, indenting it 14 spaces.

Example 6-21 Indenting a Title Element

To print the company name left-aligned with the report name indented five spaces on the next line, enter

TTITLE LEFT 'ACME WIDGET' SKIP 1 -
COL 6 'SALES DEPARTMENT PERSONNEL REPORT' SKIP 2

Now rerun the current query to see the results:

/

	

ACME WIDGET
 SALES DEPARTMENT PERSONNEL REPORT

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 30 Colmenares 2500
 30 Himuro 2600
 30 Tobias 2800
 30 Baida 2900
 30 Khoo 3100
 30 Raphaely 11000

 COMPANY CONFIDENTIAL

6 rows selected.

Entering Long Titles

If you need to enter a title greater than 500 characters in length, you can use the SQL*Plus command DEFINE to place the text of each line of the title in a separate substitution variable:

DEFINE LINE1 = 'This is the first line...'
DEFINE LINE2 = 'This is the second line...'
DEFINE LINE3 = 'This is the third line...'

Then, reference the variables in your TTITLE or BTITLE command as follows:

TTITLE CENTER LINE1 SKIP 1 CENTER LINE2 SKIP 1 -
CENTER LINE3

Displaying System-Maintained Values in Titles

You can display the current page number and other system-maintained values in your title by entering a system value name as a title element, for example:

TTITLE LEFT system-maintained_value_name

There are five system-maintained values you can display in titles, the most commonly used of which is SQL.PNO (the current page number). See TTITLE for a list of system-maintained values you can display in titles.

Example 6-22 Displaying the Current Page Number in a Title

To display the current page number at the top of each page, along with the company name, enter the following command:

TTITLE LEFT 'ACME WIDGET' RIGHT 'PAGE:' SQL.PNO SKIP 2

Now rerun the current query:

/

	

ACMEWIDGET PAGE: 1

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 30 Colmenares 2500
 30 Himuro 2600
 30 Tobias 2800
 30 Baida 2900
 30 Khoo 3100
 30 Raphaely 11000

 COMPANY CONFIDENTIAL

6 rows selected.

Note that SQL.PNO has a format ten spaces wide. You can change this format with the FORMAT clause of TTITLE (or BTITLE).

Example 6-23 Formatting a System-Maintained Value in a Title

To close up the space between the word PAGE: and the page number, reenter the TTITLE command as shown:

TTITLE LEFT 'ACME WIDGET' RIGHT 'PAGE:' FORMAT 999 -
SQL.PNO SKIP 2

Now rerun the query:

/

	

ACME WIDGET 'PAGE:' 1

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 30 Colmenares 2500
 30 Himuro 2600
 30 Tobias 2800
 30 Baida 2900
 30 Khoo 3100
 30 Raphaely 11000

 COMPANY CONFIDENTIAL

6 rows selected.

Listing, Suppressing, and Restoring Page Title Definitions

To list a page title definition, enter the appropriate title command with no clauses:

TTITLE
BTITLE

To suppress a title definition, enter:

TTITLE OFF
BTITLE OFF

These commands cause SQL*Plus to cease displaying titles on reports, but do not clear the current definitions of the titles. You may restore the current definitions by entering:

TTITLE ON
BTITLE ON

Displaying Column Values in Titles

You may wish to create a master/detail report that displays a changing master column value at the top of each page with the detail query results for that value underneath. You can reference a column value in a top title by storing the desired value in a variable and referencing the variable in a TTITLE command. Use the following form of the COLUMN command to define the variable:

COLUMN column_name NEW_VALUE variable_name

You must include the master column in an ORDER BY clause and in a BREAK command using the SKIP PAGE clause.

Example 6-24 Creating a Master/Detail Report

Suppose you want to create a report that displays two different managers' employee numbers, each at the top of a separate page, and the people reporting to the manager on the same page as the manager's employee number. First create a variable, MGRVAR, to hold the value of the current manager's employee number:

COLUMN MANAGER_ID NEW_VALUE MGRVAR NOPRINT

Because you will only display the managers' employee numbers in the title, you do not want them to print as part of the detail. The NOPRINT clause you entered above tells SQL*Plus not to print the column MANAGER_ID.

Next, include a label and the value in your page title, enter the proper BREAK command, and suppress the bottom title from the last example:

TTITLE LEFT 'Manager: ' MGRVAR SKIP 2
BREAK ON MANAGER_ID SKIP PAGE
BTITLE OFF

Finally, enter and run the following query:

SELECT MANAGER_ID, DEPARTMENT_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE MANAGER_ID IN (101, 201)
ORDER BY MANAGER_ID, DEPARTMENT_ID;

	

Manager: 101

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 10 Whalen 4400
 40 Mavris 6500
 70 Baer 10000
 100 Greenberg 12000
 110 Higgins 12000

Manager: 201

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 20 Fay 6000

6 rows selected.

If you want to print the value of a column at the bottom of the page, you can use the COLUMN command in the following form:

COLUMN column_name OLD_VALUE variable_name

SQL*Plus prints the bottom title as part of the process of breaking to a new page—after finding the new value for the master column. Therefore, if you simply referenced the NEW_VALUE of the master column, you would get the value for the next set of details. OLD_VALUE remembers the value of the master column that was in effect before the page break began.

Displaying the Current Date in Titles

You can, of course, date your reports by simply typing a value in the title. This is satisfactory for ad hoc reports, but if you want to run the same report repeatedly, you would probably prefer to have the date automatically appear when the report is run. You can do this by creating a variable to hold the current date.

You can reference the predefined substitution variable _DATE to display the current date in a title as you would any other variable.

The date format model you include in your LOGIN file or in your SELECT statement determines the format in which SQL*Plus displays the date. See your Oracle Database SQL Language Reference for more information on date format models. See Modifying Your LOGIN File for more information about the LOGIN file.

You can also enter these commands interactively. See COLUMN for more information.

Setting Page Dimensions

Typically, a page of a report contains the number of blank line(s) set in the NEWPAGE variable of the SET command, a top title, column headings, your query results, and a bottom title. SQL*Plus displays a report that is too long to fit on one page on several consecutive pages, each with its own titles and column headings. The amount of data SQL*Plus displays on each page depends on the current page dimensions.

The default page dimensions used by SQL*Plus are shown underneath:

	
number of lines before the top title: 1

	
number of lines per page, from the top title to the bottom of the page: 14

	
number of characters per line: 80

You can change these settings to match the size of your computer screen or, for printing, the size of a sheet of paper.

You can change the page length with the system variable PAGESIZE. For example, you may wish to do so when you print a report.

To set the number of lines between the beginning of each page and the top title, use the NEWPAGE variable of the SET command:

SET NEWPAGE number_of_lines

If you set NEWPAGE to zero, SQL*Plus skips zero lines and displays and prints a formfeed character to begin a new page. On most types of computer screens, the formfeed character clears the screen and moves the cursor to the beginning of the first line. When you print a report, the formfeed character makes the printer move to the top of a new sheet of paper, even if the overall page length is less than that of the paper. If you set NEWPAGE to NONE, SQL*Plus does not print a blank line or formfeed between report pages.

To set the number of lines on a page, use the PAGESIZE variable of the SET command:

SET PAGESIZE number_of_lines

You may wish to reduce the line size to center a title properly over your output, or you may want to increase line size for printing on wide paper. You can change the line width using the LINESIZE variable of the SET command:

SET LINESIZE number_of_characters

Example 6-25 Setting Page Dimensions

To set the page size to 66 lines, clear the screen (or advance the printer to a new sheet of paper) at the start of each page, and set the line size to 70, enter the following commands:

SET PAGESIZE 66
SET NEWPAGE 0
SET LINESIZE 70

Now enter and run the following commands to see the results:

TTITLE CENTER 'ACME WIDGET PERSONNEL REPORT' SKIP 1 -
CENTER '01-JAN-2001' SKIP 2

Now run the following query:

COLUMN FIRST_NAME HEADING 'FIRST|NAME';
COLUMN LAST_NAME HEADING 'LAST|NAME';
COLUMN SALARY HEADING 'MONTHLY|SALARY' FORMAT $99,999;
SELECT DEPARTMENT_ID, FIRST_NAME, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000;

	

 ACME WIDGET PERSONNEL REPORT
 01-JAN-2001

 FIRST LAST MONTHLY
DEPARTMENT_ID NAME NAME SALARY
------------- -------------------- ------------------------- --------
 90 Steven King $24,000
 90 Neena Kochhar $17,000
 90 Lex De Haan $17,000
 80 John Russell $14,000
 80 Karen Partners $13,500
 20 Michael Hartstein $13,000

6 rows selected.

Now reset PAGESIZE, NEWPAGE, and LINESIZE to their default values:

SET PAGESIZE 14
SET NEWPAGE 1
SET LINESIZE 80

To list the current values of these variables, use the SHOW command:

SHOW PAGESIZE
SHOW NEWPAGE
SHOW LINESIZE

Through the SQL*Plus command SPOOL, you can store your query results in a file or print them on your computer's default printer.

Storing and Printing Query Results

Send your query results to a file when you want to edit them with a word processor before printing or include them in a letter, email, or other document.

To store the results of a query in a file—and still display them on the screen—enter the SPOOL command in the following form:

SPOOL file_name

If you do not follow the filename with a period and an extension, SPOOL adds a default file extension to the filename to identify it as an output file. The default varies with the operating system; on most hosts it is LST or LIS. The extension is not appended when you spool to system generated files such as /dev/null and /dev/stderr. See the platform-specific Oracle documentation provided for your operating system for more information.

SQL*Plus continues to spool information to the file until you turn spooling off, using the following form of SPOOL:

SPOOL OFF

Creating a Flat File

When moving data between different software products, it is sometimes necessary to use a "flat" file (an operating system file with no escape characters, headings, or extra characters embedded). For example, if you do not have Oracle Net, you need to create a flat file for use with SQL*Loader when moving data from Oracle9i to Oracle Database 10g.

To create a flat file with SQL*Plus, you first must enter the following SET commands:

SET NEWPAGE 0
SET SPACE 0
SET LINESIZE 80
SET PAGESIZE 0
SET ECHO OFF
SET FEEDBACK OFF
SET VERIFY OFF
SET HEADING OFF
SET MARKUP HTML OFF SPOOL OFF

After entering these commands, you use the SPOOL command as shown in the previous section to create the flat file.

The SET COLSEP command may be useful to delineate the columns. For more information, see the SET command.

Sending Results to a File

To store the results of a query in a file—and still display them on the screen—enter the SPOOL command in the following form:

SPOOL file_name

SQL*Plus stores all information displayed on the screen after you enter the SPOOL command in the file you specify.

Sending Results to a Printer

To print query results, spool them to a file as described in the previous section. Then, instead of using SPOOL OFF, enter the command in the following form:

SPOOL OUT

SQL*Plus stops spooling and copies the contents of the spooled file to your computer's standard (default) printer. SPOOL OUT does not delete the spool file after printing.

Example 6-26 Sending Query Results to a Printer

To generate a final report and spool and print the results, create a script named EMPRPT containing the following commands.

First, use EDIT to create the script with your operating system text editor.

EDIT EMPRPT

Next, enter the following commands into the file, using your text editor:

SPOOL TEMP
CLEAR COLUMNS
CLEAR BREAKS
CLEAR COMPUTES

COLUMN DEPARTMENT_ID HEADING DEPARTMENT
COLUMN LAST_NAME HEADING 'LAST NAME'
COLUMN SALARY HEADING 'MONTHLY SALARY' FORMAT $99,999

BREAK ON DEPARTMENT_ID SKIP 1 ON REPORT
COMPUTE SUM OF SALARY ON DEPARTMENT_ID
COMPUTE SUM OF SALARY ON REPORT

SET PAGESIZE 24
SET NEWPAGE 0
SET LINESIZE 70

TTITLE CENTER 'A C M E W I D G E T' SKIP 2 -
LEFT 'EMPLOYEE REPORT' RIGHT 'PAGE:' -
FORMAT 999 SQL.PNO SKIP 2
BTITLE CENTER 'COMPANY CONFIDENTIAL'

SELECT DEPARTMENT_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000
ORDER BY DEPARTMENT_ID;

SPOOL OFF

If you do not want to see the output on your screen, you can also add SET TERMOUT OFF to the beginning of the file and SET TERMOUT ON to the end of the file. Save and close the file in your text editor (you will automatically return to SQL*Plus). Now, run the script EMPRPT:

@EMPRPT

SQL*Plus displays the output on your screen (unless you set TERMOUT to OFF), and spools it to the file TEMP:

	

 A C M E W I D G E T

EMPLOYEE REPORT PAGE: 1

DEPARTMENT LAST NAME MONTHLY SALARY
---------- ------------------------- --------------
 20 Hartstein $13,000
********** --------------
sum $13,000

 80 Russell $14,000
 Partners $13,500
********** --------------
sum $27,500

 90 King $24,000
 Kochhar $17,000
 De Haan $17,000
********** --------------
sum $58,000

sum $98,500
 COMPANY CONFIDENTIAL

6 rows selected.

7 Generating HTML Reports from SQL*Plus

This chapter explains how to generate a HTML report containing your query results. This chapter covers the following topics:

	
Creating Reports using Command-line SQL*Plus

Creating Reports using Command-line SQL*Plus

In addition to plain text output, the SQL*Plus command-line interface enables you to generate either a complete web page, or HTML output which can be embedded in a web page. You can use SQLPLUS -MARKUP "HTML ON" or SET MARKUP HTML ON SPOOL ON to produce complete HTML pages automatically encapsulated with <HTML> and <BODY> tags.

By default, data retrieved with MARKUP HTML ON is output in HTML, though you can optionally direct output to the HTML <PRE> tag so that it displays in a web browser exactly as it appears in SQL*Plus. See the SQLPLUS MARKUP Options and the SET MARKUP command for more information about these commands.

SQLPLUS -MARKUP "HTML ON" is useful when embedding SQL*Plus in program scripts. On starting, it outputs the HTML and BODY tags before executing any commands. All subsequent output is in HTML until SQL*Plus terminates.

The -SILENT and -RESTRICT command-line options may be effectively used with -MARKUP to suppress the display of SQL*Plus prompt and banner information, and to restrict the use of some commands.

SET MARKUP HTML ON SPOOL ON generates an HTML page for each subsequently spooled file. The HTML tags in a spool file are closed when SPOOL OFF is executed or SQL*Plus exits.

You can use SET MARKUP HTML ON SPOOL OFF to generate HTML output suitable for embedding in an existing web page. HTML output generated this way has no <HTML> or <BODY> tags.

Creating Reports

During a SQL*Plus session, use the SET MARKUP command interactively to write HTML to a spool file. You can view the output in a web browser.

SET MARKUP HTML ON SPOOL ON only specifies that SQL*Plus output will be HTML encoded, it does not create or begin writing to an output file. You must use the SQL*Plus SPOOL command to start generation of a spool file. This file then has HTML tags including <HTML> and </HTML>.

When creating a HTML file, it is important and convenient to specify a .html or .htm file extension which are standard file extensions for HTML files. This enables you to easily identify the type of your output files, and also enables web browsers to identify and correctly display your HTML files. If no extension is specified, the default SQL*Plus file extension is used.

You use SPOOL OFF or EXIT to append final HTML tags to the spool file and then close it. If you enter another SPOOL filename command, the current spool file is closed as for SPOOL OFF or EXIT, and a new HTML spool file with the specified name is created.

You can use the SET MARKUP command to enable or disable HTML output as required.

Example 7-1 Creating a Report Interactively

You can create HTML output in an interactive SQL*Plus session using the SET MARKUP command. You can include an embedded style sheet, or any other valid text in the HTML <HEAD> tag. Open a SQL*Plus session and enter the following:

SET MARKUP HTML ON SPOOL ON PREFORMAT OFF ENTMAP ON -
HEAD "<TITLE>Department Report</TITLE> -
<STYLE type='text/css'> -
<!-- BODY {background: #FFFFC6} --> -
</STYLE>" -
BODY "TEXT='#FF00Ff'" -
TABLE "WIDTH='90%' BORDER='5'"

You use the COLUMN command to control column output. The following COLUMN commands create new heading names for the SQL query output. The first command also turns off entity mapping for the DEPARTMENT_NAME column to allow HTML hyperlinks to be correctly created in this column of the output data:

COLUMN DEPARTMENT_NAME HEADING 'DEPARTMENT' ENTMAP OFF
COLUMN CITY HEADING 'CITY'

SET MARKUP HTML ON SPOOL ON enables SQL*Plus to write HTML to a spool file. The following SPOOL command triggers the writing of the <HTML> and <BODY> tags to the named file:

SPOOL report.html

After the SPOOL command, anything entered or displayed on standard output is written to the spool file, report.html.

Enter a SQL query:

SELECT ''||DEPARTMENT_NAME||'' DEPARTMENT_NAME, CITY
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000;

Enter the SPOOL OFF command:

SPOOL OFF

The </BODY> and </HTML> tags are appended to the spool file, report.html, before it is closed.

The output from report.sql is a file, report.html, that can be loaded into a web browser. Open report.html in your web browser. It should appear something like the following:

[image: Description of report.gif follows]

In this example, the prompts and query text have not been suppressed. Depending on how you invoke a script, you can use SET ECHO OFF or command-line -SILENT options to do this.

The SQL*Plus commands in this example contain several items of usage worth noting:

	
The hyphen used to continue lines in long SQL*Plus commands.

	
The TABLE option to set table WIDTH and BORDER attributes.

	
The COLUMN command to set ENTMAP OFF for the DEPARTMENT_NAME column to enable the correct formation of HTML hyperlinks. This makes sure that any HTML special characters such as quotes and angle brackets are not replaced by their equivalent entities, ", &, < and >.

	
The use of quotes and concatenation characters in the SELECT statement to create hyperlinks by concatenating string and variable elements.

View the report.html source in your web browser, or in a text editor to see that the table cells for the Department column contain fully formed hyperlinks as shown:

<html>
<head>
<TITLE>Department Report</TITLE> <STYLE type="text/css">
<!-- BODY {background: #FFFFC6} --> </STYLE>
<meta name="generator" content="SQL*Plus 10.2.0.1">
</head>
<body TEXT="#FF00Ff">
SQL> SELECT '<A HREF="http://oracle.com/'
||DEPARTMENT_NAME||'.html">'||DEPARTMENT_NAME
||'' DEPARTMENT_NAME, CITY

 2 FROM EMP_DETAILS_VIEW

 3* WHERE SALARY>12000

<p>
<table WIDTH="90%" BORDER="5">
<tr><th>DEPARTMENT</th><th>CITY</th></tr>
<tr><td>Executive</td>
<td>Seattle</td></tr>
<tr><td>Executive</td>
<td>Seattle</td></tr>
<tr><td>Executive</td>
<td>Seattle</td></tr>
<tr><td>Sales</td>
<td>Oxford</td></tr>
<tr><td>Sales</td>
<td>Oxford</td></tr>
<tr><td>Marketing</td>
<td>Toronto</td></tr>
</table>
<p>

6 rows selected.

SQL> spool off

</body>
</html>

Example 7-2 Creating a Report using the SQLPLUS Command

Enter the following command at the operating system prompt:

SQLPLUS -S -M "HTML ON TABLE 'BORDER="2"'" HR@Ora10g @depart.sql>depart.html

where depart.sql contains:

SELECT DEPARTMENT_NAME, CITY
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000;
EXIT

This example starts SQL*Plus with user "HR", prompts for the HR password, sets HTML ON, sets a BORDER attribute for TABLE, and runs the script depart.sql. The output from depart.sql is a web page which, in this case, has been redirected to the file depart.html using the ">" operating system redirect command (it may be different on your operating system). It could be sent to a web browser if SQL*Plus was called in a web server CGI script. See Suppressing the Display of SQL*Plus Commands in Reports for information about calling SQL*Plus from a CGI script.

Start your web browser and enter the appropriate URL to open depart.html:

[image: Description of dept.gif follows]

The SQLPLUS command in this example contains three layers of nested quotes. From the inside out, these are:

	
"2" is a quoted HTML attribute value for BORDER.

	
'BORDER="2"' is the quoted text argument for the TABLE option.

	
"HTML ON TABLE 'BORDER="2"'" is the quoted argument for the -MARKUP option.

The nesting of quotes may be different in some operating systems or program scripting languages.

Suppressing the Display of SQL*Plus Commands in Reports

The SQLPLUS -SILENT option is particularly useful when used in combination with -MARKUP to generate embedded SQL*Plus reports using CGI scripts or operating system scripts. It suppresses the display of SQL*Plus commands and the SQL*Plus banner. The HTML output shows only the data resulting from your SQL query.

You can also use SET ECHO OFF to suppress the display of each command in a script that is executed with the START command.

HTML Entities

Certain characters, <, >, " and & have a predefined meaning in HTML. In the previous example, you may have noticed that the > character was replaced by > as soon as you entered the SET MARKUP HTML ON command. To enable these characters to be displayed in your web browser, HTML provides character entities to use instead.

Table 7-1 Equivalent HTML Entities

	Character	HTML Entity	Meaning
	
<

	
<

	
Start HTML tag label

	
>

	
>

	
End HTML tag label

	
"

	
"

	
Double quote

	
&

	
&

	
Ampersand

The web browser displays the > character, but the actual text in the HTML encoded file is the HTML entity, >. The SET MARKUP option, ENTMAP, controls the substitution of HTML entities. ENTMAP is set ON by default. It ensures that the characters <, >, " and & are always replaced by the HTML entities representing these characters. This prevents web browsers from misinterpreting these characters when they occur in your SQL*Plus commands, or in data resulting from your query.

You can set ENTMAP at a global level with SET MARKUP HTML ENTMAP ON, or at a column level with COLUMN column_name ENTMAP ON.

11 SQL*Plus Globalization Support

Globalization support enables the storing, processing and retrieval of data in native languages. The languages that can be stored in an Oracle database are encoded by Oracle Database-supported character sets. Globalization support ensures that database utilities, error messages, sort order, and date, time, monetary, numeric, and calendar conventions adjust to the native language and locale.

Topics:

	
Configuring Globalization Support in Command-line SQL*Plus

	
NLS_LANG Environment Variable

For more information on globalization support, see the Oracle Technology Network globalization notes at http://www.oracle.com/technetwork/products/globalization/

and see the Oracle Database Globalization Support Guide

Configuring Globalization Support in Command-line SQL*Plus

SQL*Plus supports multiple languages through the NLS_LANG environment variable. To display another language in SQL*Plus, before starting SQL*Plus you must configure:

	
NLS_LANG in the SQL*Plus client environment.

	
The Oracle Database during installation.

SQL*Plus Client

The SQL*Plus client environment is configured by setting the NLS_LANG environment variable which is read by SQL*Plus at startup.

Oracle Database

The Oracle Database environment is configured by creating the database with the required character set.

NLS_LANG Environment Variable

The NLS_LANG environment variable has three components, each controlling a subset of the globalization features.

Your operating system and keyboard must be able to support the character set you have chosen. You may need to install additional support software. For more information about NLS_LANG, and software support, see the Oracle Database Globalization Support Guide.

Setting up locale specific behavior on the SQL*Plus client is achieved with the use of NLS parameters. These parameters may be specified in a number of ways, including as an initialization parameter on the server. For settings that control the behavior of the server, see the Oracle Database Globalization Support Guide.

NLS_LANG has the syntax:

NLS_LANG = language_territory.charset

where language specifies the conventions to use for Oracle Database messages, sorting order, day and month names. For example, to receive messages in Japanese, set language to JAPANESE. If language is not set, it defaults to AMERICAN.

where territory specifies the convention for default dates, and for monetary, and numeric formats. For example to use the Japanese territory format, set territory to JAPAN. If territory is not set, the default value is derived from the language value, and so is set to AMERICA.

where, in SQL*Plus command-line, charset specifies the character set encoding used by SQL*Plus for data processing, and is generally suited to that of the users terminal. Illogical combinations can be set, but will not work. For example, Japanese cannot be supported using a Western European character set such as:

NLS_LANG=JAPANESE_JAPAN.WE8DEC

However, Japanese could be supported with the Unicode character set. For example:

NLS_LANG=JAPANESE_JAPAN.UTF8

Viewing NLS_LANG Settings

You can view the NLS_LANG setting by entering the SELECT command:

SELECT * FROM NLS_SESSION_PARAMETERS;

The NLS_TERRITORY and NLS_LANGUAGE values correspond to the language and territory components of the NLS_LANG variable.

You can also obtain a list of valid values for the NLS_SORT, NLS_LANGUAGE, NLS_TERRITORY and NLS_CHARACTERSET by querying the NLS dynamic performance view table V$NLS_VALID_VALUES.

Setting NLS_LANG

You can set the NLS_LANG environment variable to control globalization features.

Example 11-1 Configuring Japanese Support in SQL*Plus on Windows

	
Ensure you have exited your current SQL*Plus session.

	
Open System from Start > Settings > Control Panel.

	
Click the Advanced tab and select Environment Variables.

	
Create a new environment variable, NLS_LANG, with a value of Japanese_Japan.JA16SJIS.

	
You may need to restart Windows for this setting to take effect.

Example 11-2 Configuring Japanese Support in SQL*Plus on UNIX

	
Ensure you have exited your current SQL*Plus session.

	
Set the NLS_LANG variable using either set or setenv depending on the UNIX shell you are using. For example, in csh, you would enter:

setenv NLS_LANG Japanese_Japan.UTF8

or

setenv NLS_LANG Japanese_Japan.JA16SJIS

or

setenv NLS_LANG Japanese_Japan.JA16EUC

The locale setting of your UNIX terminal determines the exact value of the NLS_LANG parameter. For more information on the NLS_LANG setting, see the Oracle Database Globalization Support Guide.

Example 11-3 Configuring Japanese Support in Oracle Database

To store data in the Japanese character set using UTF-8 character encoding, ensure that the Oracle database has been created with the AL32UTF8 character set. See your Oracle Database Installation Guide for information about creating your database in a character set other than US7ASCII.

12 SQL*Plus Command Reference

This chapter contains descriptions of the SQL*Plus commands listed alphabetically. Each description contains the following parts:

	Section	Description
	Syntax	Shows how to enter the command and provides a brief description of the basic uses of the command.
	Terms	Describes the function of each term or clause appearing in the syntax.
	Usage	Provides additional information on uses of the command and on how the command works.
	Examples	Gives one or more examples of the command.

You can continue a long SQL*Plus command by typing a hyphen at the end of the line and pressing Return. If you wish, you can type a space before typing the hyphen. SQL*Plus displays a right angle-bracket (>) as a prompt for each additional line.

You do not need to end a SQL*Plus command with a semicolon. When you finish entering the command, you can press Return. If you wish, however, you can enter a semicolon at the end of a SQL*Plus command.

SQL*Plus Command Summary

	Command	Description
	
@ (at sign)

	Runs SQL*Plus statements in the specified script. The script can be called from the local file system or from a web server.
	
@@ (double at sign)

	Runs a script. This command is similar to the @ (at sign) command It is useful for running nested scripts because it looks for the specified script in the same path as the calling script.
	
/ (slash)

	Executes the SQL command or PL/SQL block.
	
ACCEPT

	Reads a line of input and stores it in a given substitution variable.
	
APPEND

	Adds specified text to the end of the current line in the buffer.
	
ARCHIVE LOG

	Displays information about redo log files.
	
ATTRIBUTE

	Specifies display characteristics for a given attribute of an Object Type column, and lists the current display characteristics for a single attribute or all attributes.
	
BREAK

	Specifies where and how formatting will change in a report, or lists the current break definition.
	
BTITLE

	Places and formats a specified title at the bottom of each report page, or lists the current BTITLE definition.
	
CHANGE

	Changes text on the current line in the buffer.
	
CLEAR

	Resets or erases the current clause or setting for the specified option, such as BREAKS or COLUMNS.
	
COLUMN

	Specifies display characteristics for a given column, or lists the current display characteristics for a single column or for all columns.
	
COMPUTE

	Calculates and prints summary lines, using various standard computations, on subsets of selected rows, or lists all COMPUTE definitions.
	
CONNECT

	Connects a given user to Oracle Database.
	
COPY

	Copies results from a query to a table in the same or another database.
	
DEFINE

	Specifies a substitution variable and assigns it a CHAR value, or lists the value and variable type of a single variable or all variables.
	
DEL

	Deletes one more lines of the buffer.
	
DESCRIBE

	Lists the column definitions for the specified table, view, or synonym or the specifications for the specified function procedure.
	
DISCONNECT

	Commits pending changes to the database and logs the current user off Oracle Database, but does not exit SQL*Plus.
	
EDIT

	Invokes an operating system text editor on the contents of the specified file or on the contents of the buffer.
	
EXECUTE

	Executes a single PL/SQL statement.
	
EXIT

	Terminates SQL*Plus and returns control to the operating system.
	
GET

	Loads an operating system file into the buffer.
	
HELP

	Accesses the SQL*Plus command-line help system.
	
HOST

	Executes an operating system command without leaving SQL*Plus.
	
INPUT

	Adds one or more new lines after the current line in the buffer.
	
LIST

	Lists one or more lines of the buffer.
	
PASSWORD

	Enables a password to be changed without echoing the password on an input device.
	
PAUSE

	Displays the specified text, then waits for the user to press Return.
	
PRINT

	Displays the current value of a bind variable.
	
PROMPT

	Sends the specified message to the user's screen.
	
EXIT

	Terminates SQL*Plus and returns control to the operating system QUIT is identical to EXIT.
	
RECOVER

	Performs media recovery on one or more tablespaces, one or more datafiles, or the entire database.
	
REMARK

	Begins a comment in a script.
	
REPFOOTER

	Places and formats a specified report footer at the bottom of each report, or lists the current REPFOOTER definition.
	
REPHEADER

	Places and formats a specified report header at the top of each report, or lists the current REPHEADER definition.
	
RUN

	Lists and runs the SQL command or PL/SQL block currently stored in the SQL buffer.
	
SAVE

	Saves the contents of the buffer in an operating system file (a script).
	
SET

	Sets a system variable to alter the SQL*Plus environment for your current session.
	
SHOW

	Shows the value of a SQL*Plus system variable or the current SQL*Plus environment.
	
SHUTDOWN

	Shuts down a currently running Oracle Database instance.
	
SPOOL

	Stores query results in an operating system file and, optionally, sends the file to a printer.
	
START

	Runs the SQL statements in the specified script. The script can be called from a local file system or a web server in SQL*Plus command-line.
	
STARTUP

	Starts an Oracle Database instance and optionally mounts and opens a database.
	
STORE

	Saves attributes of the current SQL*Plus environment in an operating system script.
	
TIMING

	Records timing data for an elapsed period of time, lists the current timer's title and timing data, or lists the number of active timers.
	
TTITLE

	Places and formats a specified title at the top of each report page, or lists the current TTITLE definition.
	
UNDEFINE

	Deletes one or more substitution variables that you defined either explicitly (with the DEFINE command) or implicitly (with an argument to the START command).
	
VARIABLE

	Declares a bind variable that can be referenced in PL/SQL.
	
WHENEVER OSERROR

	Exits SQL*Plus if an operating system command generates an error.
	
WHENEVER SQLERROR

	Exits SQL*Plus if a SQL command or PL/SQL block generates an error.
	
XQUERY

	Runs an XQuery 1.0 statement.

/ (slash)

Syntax

/(slash)

Executes the most recently executed SQL command or PL/SQL block which is stored in the SQL buffer.

The buffer has no command history and does not record SQL*Plus commands.

Usage

You can enter a slash (/) at the command prompt or at a line number prompt of a multi-line command.

The slash command functions similarly to RUN, but does not list the command.

Executing a SQL command or PL/SQL block using the slash command will not cause the current line number in the SQL buffer to change unless the command in the buffer contains an error. In that case, SQL*Plus changes the current line number to the number of the line containing the error.

Examples

Type the following SQL script:

SELECT CITY, COUNTRY_NAMEFROM EMP_DETAILS_VIEWWHERE SALARY=12000;

Enter a slash (/) to re-execute the command in the buffer:

/

	

CITY COUNTRY_NAME
------------------------------ --
Seattle United States of America
Oxford United Kingdom
Seattle United States of America

ACCEPT

Syntax

ACC[EPT] variable [NUM[BER] | CHAR | DATE | BINARY_FLOAT | BINARY_DOUBLE] [FOR[MAT] format] [DEF[AULT] default] [PROMPT text|NOPR[OMPT]] [HIDE]

Reads a line of input and stores it in a given substitution variable.

Terms

variable

Represents the name of the variable in which you wish to store a value. If variable does not exist, SQL*Plus creates it.

NUM[BER]

Makes the variable a NUMBER datatype. If the reply does not match the datatype, ACCEPT gives an error message and prompts again.

CHAR

Makes the variable a CHAR datatype. The maximum CHAR length is 240 bytes. If a multi-byte character set is used, one CHAR may be more than one byte in size.

DATE

Makes reply a valid DATE format. If the reply is not a valid DATE format, ACCEPT gives an error message and prompts again. The datatype is CHAR.

BINARY_FLOAT

Makes the variable a BINARY_FLOAT datatype. BINARY_FLOAT is a floating-point number that conforms substantially with the Institute for Electrical and Electronics Engineers (IEEE) Standard for Binary Floating-Point Arithmetic, IEEE Standard 754-1985.

BINARY_DOUBLE

Makes the variable a BINARY_DOUBLE datatype. BINARY_DOUBLE is a floating-point number that conforms substantially with the Institute for Electrical and Electronics Engineers (IEEE) Standard for Binary Floating-Point Arithmetic, IEEE Standard 754-1985.

FOR[MAT]

Specifies the input format for the reply. If the reply does not match the specified format, ACCEPT gives an error message and prompts again. If an attempt is made to enter more characters than are specified by the char format, an error message is given and the value must be reentered. If an attempt is made to enter a greater number precision than is specified by the number format, an error message is given and the value must be reentered. The format element must be a text constant such as A10 or 9.999. See COLUMN FORMAT for a complete list of format elements.

Oracle Database date formats such as "dd/mm/yy" are valid when the datatype is DATE. DATE without a specified format defaults to the NLS_DATE_FORMAT of the current session. See the Oracle Database Administrator's Guide and the Oracle Database SQL Language Reference for information on Oracle Database date formats.

DEF[AULT]

Sets the default value if a reply is not given. The reply must be in the specified format if defined.

PROMPT text

Displays text on-screen before accepting the value of variable from the user.

NOPR[OMPT]

Skips a line and waits for input without displaying a prompt.

HIDE

Suppresses the display as you type the reply.

To display or reference variables, use the DEFINE command. See the DEFINE command for more information.

Examples

To display the prompt "Password: ", place the reply in a CHAR variable named PSWD, and suppress the display, enter

ACCEPT pswd CHAR PROMPT 'Password: ' HIDE

To display the prompt "Enter weekly salary: " and place the reply in a NUMBER variable named SALARY with a default of 000.0, enter

ACCEPT salary NUMBER FORMAT '999.99' DEFAULT '000.0' -
PROMPT 'Enter weekly salary: '

To display the prompt "Enter date hired: " and place the reply in a DATE variable, HIRED, with the format "dd/mm/yyyy" and a default of "01/01/2003", enter

ACCEPT hired DATE FORMAT 'dd/mm/yyyy' DEFAULT '01/01/2003'-
PROMPT 'Enter date hired: '

To display the prompt "Enter employee lastname: " and place the reply in a CHAR variable named LASTNAME, enter

ACCEPT lastname CHAR FORMAT 'A20' -
PROMPT 'Enter employee lastname: '

APPEND

Syntax

A[PPEND] text

where text represents the text to append.

Adds specified text to the end of the current line in the SQL buffer. The buffer has no command history list and does not record SQL*Plus commands.

To separate text from the preceding characters with a space, enter two spaces between APPEND and text.

To APPEND text that ends with a semicolon, end the command with two semicolons (SQL*Plus interprets a single semicolon as an optional command terminator).

Examples

To append a comma delimiter, a space and the column name CITY to the first line of the buffer, make that line the current line by listing the line as follows:

1

	

1* SELECT DEPARTMENT_ID

Now enter APPEND:

APPEND , CITY
1

	

1* SELECT DEPARTMENT_ID, CITY

To append a semicolon to the line, enter

APPEND ;;

SQL*Plus appends the first semicolon to the line and interprets the second as the terminator for the APPEND command.

ARCHIVE LOG

Syntax

ARCHIVE LOG LIST

Displays information about redo log files.

Terms

LIST

Requests a display that shows the range of redo log files to be archived, the current log file group's sequence number, and the current archive destination (specified by either the optional command text or by the initialization parameter LOG_ARCHIVE_DEST).

If you are using both ARCHIVELOG mode and automatic archiving, the display might appear like:

ARCHIVE LOG LIST

Database log mode Archive Mode
Automatic archival Enabled
Archive destination /vobs/oracle/dbs/arch
Oldest online log sequence 221
Next log sequence to archive 222
Current log sequence 222

Since the log sequence number of the current log group and the next log group to archive are the same, automatic archival has archived all log groups up to the current one.

If you are using ARCHIVELOG but have disabled automatic archiving, the last three lines might look like:

Oldest online log sequence 222
Next log sequence to archive 222
Current log sequence 225

If you are using NOARCHIVELOG mode, the "next log sequence to archive" line is suppressed.

The log sequence increments every time the Log Writer begins to write to another redo log file group; it does not indicate the number of logs being used. Every time an online redo log file group is reused, the contents are assigned a new log sequence number.

Usage

You must be connected to an open Oracle database as SYSOPER, or SYSDBA. For information about connecting to the database, see the CONNECT command.

For information about specifying archive destinations, see your platform-specific Oracle Database documentation.

	
Note:

ARCHIVE LOG LIST only applies to the current instance. To START and STOP archiving, use the SQL command ALTER SYSTEM. For more information about using SQL commands, see the Oracle Database SQL Language Reference.

ATTRIBUTE

Syntax

ATTR[IBUTE] [type_name.attribute_name [option ...]]

where option represents one of the following clauses:

ALI[AS] aliasCLE[AR]FOR[MAT] formatLIKE {type_name.attribute_name | alias}ON | OFF

Specifies display characteristics for a given attribute of an Object Type column, such as the format of NUMBER data. Columns and attributes should not have the same names as they share a common namespace.

Also lists the current display characteristics for a single attribute or all attributes.

Enter ATTRIBUTE followed by type_name.attribute_name and no other clauses to list the current display characteristics for only the specified attribute. Enter ATTRIBUTE with no clauses to list all current attribute display characteristics.

Terms

type_name.attribute_name

Identifies the data item (typically the name of an attribute) within the set of attributes for a given object of Object Type, type_name.

If you select objects of the same Object Type, an ATTRIBUTE command for that type_name.attribute_name applies to all such objects you reference in that session.

ALI[AS] alias

Assigns a specified alias to a type_name.attribute_name, which can be used to refer to the type_name.attribute_name in other ATTRIBUTE commands.

CLE[AR]

Resets the display characteristics for the attribute_name. The format specification must be a text constant such as A10 or $9,999—not a variable.

FOR[MAT] format

Specifies the display format of the column. The format specification must be a text constant such as A10 or $9,999—not a variable.

LIKE {type_name.attribute_name | alias}

Copies the display characteristics of another attribute. LIKE copies only characteristics not defined by another clause in the current ATTRIBUTE command.

ON | OFF

Controls the status of display characteristics for a column. OFF disables the characteristics for an attribute without affecting the characteristics' definition. ON reinstates the characteristics.

Usage

You can enter any number of ATTRIBUTE commands for one or more attributes. All attribute characteristics set for each attribute remain in effect for the remainder of the session, until you turn the attribute OFF, or until you use the CLEAR COLUMN command. Thus, the ATTRIBUTE commands you enter can control an attribute's display characteristics for multiple SQL SELECT commands.

When you enter multiple ATTRIBUTE commands for the same attribute, SQL*Plus applies their clauses collectively. If several ATTRIBUTE commands apply the same clause to the same attribute, the last one entered will control the output.

Examples

To make the LAST_NAME attribute of the Object Type EMPLOYEE_TYPE twenty characters wide, enter

ATTRIBUTE EMPLOYEE_TYPE.LAST_NAME FORMAT A20

To format the SALARY attribute of the Object Type EMPLOYEE_TYPE so that it shows millions of dollars, rounds to cents, uses commas to separate thousands, and displays $0.00 when a value is zero, enter

ATTRIBUTE EMPLOYEE_TYPE.SALARY FORMAT $9,999,990.99

BREAK

Syntax

BRE[AK] [ON report_element [action [action]]] ...

where report_element has the syntax {column|expr|ROW|REPORT}

and action has the syntax [SKI[P] n|[SKI[P]] PAGE] [NODUP[LICATES]|DUP[LICATES]]

Specifies where changes occur in a report and the formatting action to perform, such as:

	
suppressing display of duplicate values for a given column

	
skipping a line each time a given column value changes

	
printing computed figures each time a given column value changes or at the end of the report.

See the COMPUTE command.

Enter BREAK with no clauses to list the current BREAK definition.

Terms

ON column [action [action]]

When you include actions, specifies actions for SQL*Plus to take whenever a break occurs in the specified column (called the break column). (column cannot have a table or view appended to it. To achieve this, you can alias the column in the SQL statement.) A break is one of three events, a change in the value of a column or expression, the output of a row, or the end of a report

When you omit actions, BREAK ON column suppresses printing of duplicate values in column and marks a place in the report where SQL*Plus will perform the computation you specify in a corresponding COMPUTE command.

You can specify ON column one or more times. If you specify multiple ON clauses, as in

BREAK ON DEPARTMENT_ID SKIP PAGE ON JOB_ID -
SKIP 1 ON SALARY SKIP 1

the first ON clause represents the outermost break (in this case, ON DEPARTMENT_ID) and the last ON clause represents the innermost break (in this case, ON SALARY). SQL*Plus searches each row of output for the specified breaks, starting with the outermost break and proceeding—in the order you enter the clauses—to the innermost. In the example, SQL*Plus searches for a change in the value of DEPARTMENT_ID, then JOB_ID, then SALARY.

Next, SQL*Plus executes actions beginning with the action specified for the innermost break and proceeding in reverse order toward the outermost break (in this case, from SKIP 1 for ON SALARY toward SKIP PAGE for ON DEPARTMENT_ID). SQL*Plus executes each action up to and including the action specified for the first break encountered in the initial search.

If, for example, in a given row the value of JOB_ID changes—but the values of DEPARTMENT_ID and SALARY remain the same—SQL*Plus skips two lines before printing the row (one as a result of SKIP 1 ON SALARY and one as a result of SKIP 1 ON JOB_ID).

Whenever you use ON column, you should also use an ORDER BY clause in the SQL SELECT command. Typically, the columns used in the BREAK command should appear in the same order in the ORDER BY clause (although all columns specified in the ORDER BY clause need not appear in the BREAK command). This prevents breaks from occurring at meaningless points in the report.

If the BREAK command specified earlier in this section is used, the following SELECT command produces meaningful results:

SELECT DEPARTMENT_ID, JOB_ID, SALARY, LAST_NAME
FROM EMP_DETAILS_VIEW
WHERE SALARY > 12000
ORDER BY DEPARTMENT_ID, JOB_ID, SALARY, LAST_NAME;

All rows with the same DEPARTMENT_ID print together on one page, and within that page all rows with the same JOB_ID print in groups. Within each group of jobs, those jobs with the same SALARY print in groups. Breaks in LAST_NAME cause no action because LAST_NAME does not appear in the BREAK command.

In BREAK commands, nulls are considered equal to each other, but not equal to anything else. This is different to the treatment of nulls in WHERE clauses.

ON expr [action [action]]

When you include actions, specifies actions for SQL*Plus to take when the value of the expression changes.

When you omit actions, BREAK ON expr suppresses printing of duplicate values of expr and marks where SQL*Plus will perform the computation you specify in a corresponding COMPUTE command.

You can use an expression involving one or more table columns or an alias assigned to a report column in a SQL SELECT or SQL*Plus COLUMN command. If you use an expression in a BREAK command, you must enter expr exactly as it appears in the SELECT command. If the expression in the SELECT command is a+b, for example, you cannot use b+a or (a+b) in a BREAK command to refer to the expression in the SELECT command.

The information given for ON column also applies to ON expr.

ON ROW [action [action]]

When you include actions, specifies actions for SQL*Plus to take when a SQL SELECT command returns a row. The ROW break becomes the innermost break regardless of where you specify it in the BREAK command. You should always specify an action when you BREAK on a row.

ON REPORT [action]

Marks a place in the report where SQL*Plus will perform the computation you specify in a corresponding COMPUTE command. Use BREAK ON REPORT in conjunction with COMPUTE to print grand totals or other "grand" computed values.

The REPORT break becomes the outermost break regardless of where you specify it in the BREAK command.

Note that SQL*Plus will not skip a page at the end of a report, so you cannot use BREAK ON REPORT SKIP PAGE.

SKI[P] n

Skips n lines before printing the row where the break occurred. BREAK SKIP n does not work in SET MARKUP HTML ON mode unless PREFORMAT is SET ON.

[SKI[P]] PAGE

Skips the number of lines that are defined to be a page before printing the row where the break occurred. The number of lines per page can be set with the PAGESIZE clause of the SET command. Note that PAGESIZE only changes the number of lines that SQL*Plus considers to be a page. Therefore, SKIP PAGE may not always cause a physical page break, unless you have also specified NEWPAGE 0. Note also that if there is a break after the last row of data to be printed in a report, SQL*Plus will not skip the page.

NODUP[LICATES]

Prints blanks rather than the value of a break column when the value is a duplicate of the column's value in the preceding row.

DUP[LICATES]

Prints the value of a break column in every selected row.

Enter BREAK with no clauses to list the current break definition.

Usage

Each new BREAK command you enter replaces the preceding one.

To remove the BREAK command, use CLEAR BREAKS.

Examples

To produce a report that prints duplicate job values, prints the average of SALARY, and additionally prints the sum of SALARY, you could enter the following commands. (The example selects departments 50 and 80 and the jobs of clerk and salesman only.)

BREAK ON DEPARTMENT_ID ON JOB_ID DUPLICATES
COMPUTE SUM OF SALARY ON DEPARTMENT_ID
COMPUTE AVG OF SALARY ON JOB_ID
SELECT DEPARTMENT_ID, JOB_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE JOB_ID IN ('SH_CLERK', 'SA_MAN')
AND DEPARTMENT_ID IN (50, 80)
ORDER BY DEPARTMENT_ID, JOB_ID;

	

DEPARTMENT_ID JOB_ID LAST_NAME SALARY
------------- ---------- ------------------------- ----------
 50 SH_CLERK Taylor 3200
 SH_CLERK Fleaur 3100
 .
 .
 .
 SH_CLERK Gates 2900

DEPARTMENT_ID JOB_ID LAST_NAME SALARY
------------- ---------- ------------------------- ----------
 50 SH_CLERK Perkins 2500
 SH_CLERK Bell 4000
 .
 .
 .
 SH_CLERK Grant 2600
 ********** ----------
 avg 3215

DEPARTMENT_ID JOB_ID LAST_NAME SALARY
------------- ---------- ------------------------- ----------

************* ----------
sum 64300

 80 SA_MAN Russell 14000
 SA_MAN Partners 13500
 SA_MAN Errazuriz 12000
 SA_MAN Cambrault 11000
 SA_MAN Zlotkey 10500
 ********** ----------
 avg 12200

DEPARTMENT_ID JOB_ID LAST_NAME SALARY
------------- ---------- ------------------------- ----------

************* ----------
sum 61000

25 rows selected.

CLEAR

Syntax

CL[EAR] option ...

where option represents one of the following clauses:

BRE[AKS]BUFF[ER]COL[UMNS]COMP[UTES]SCR[EEN]SQL TIMI[NG]

Resets or erases the current value or setting for the specified option.

Terms

BRE[AKS]

Removes the break definition set by the BREAK command.

BUFF[ER]

Clears text from the buffer. CLEAR BUFFER has the same effect as CLEAR SQL, unless you are using multiple buffers.

See SET BUF[FER] {buffer|SQL} (obsolete) for more information about the obsolete form of this command.

COL[UMNS]

Resets column display attributes set by the COLUMN command to default settings for all columns. To reset display attributes for a single column, use the CLEAR clause of the COLUMN command. CLEAR COLUMNS also clears the ATTRIBUTEs for that column.

COMP[UTES]

Removes all COMPUTE definitions set by the COMPUTE command.

SCR[EEN]

Clears your screen.

SQL

Clears the text from SQL buffer. CLEAR SQL has the same effect as CLEAR BUFFER, unless you are using multiple buffers.

See SET BUF[FER] {buffer|SQL} (obsolete) for more information about the obsolete form of this command.

TIMI[NG]

Deletes all timers created by the TIMING command.

Examples

To clear breaks, enter

CLEAR BREAKS

To clear column definitions, enter

CLEAR COLUMNS

CONNECT

Syntax

CONN[ECT] [{logon | / | proxy} [AS {SYSOPER | SYSDBA | SYSASM}] [edition=value]]

where logon has the syntax:

username[/password] [@connect_identifier]

where proxy has the syntax:

proxyuser[username] [/password] [@connect_identifier]

	
Note:

The brackets around username in proxy are required syntax, not an indication of an optional term. For example, to connect to scott through proxy user hr with password welcome1.
CONNECT hr[scott]/welcome1

Connects a given username to the Oracle Database. When you run a CONNECT command, the site profile, glogin.sql, and the user profile, login.sql, are executed.

CONNECT does not reprompt for username or password if the initial connection does not succeed.

	
Warning:

Including your password in plain text is a security risk. You can avoid this risk by omitting the password, and entering it only when the system prompts for it.

To connect to a database using an enterprise user proxy, you must first configure the proxy. For information about configuring an enterprise user proxy, see the Oracle Database Enterprise User Security Administrator's Guide.

Terms

username[/password]

The username and password you use to connect to Oracle Database. If you omit username and password, SQL*Plus prompts you for them. If you enter a slash (/) or enter Return or click Execute when prompted for username, SQL*Plus logs you in using a default logon. See / (slash) for more information.

If you omit only password, SQL*Plus prompts you for password. When prompting, SQL*Plus does not display password on your terminal screen.

See the PASSWORD command for information about changing your password in SQL*Plus.

connect_identifier

An Oracle Net connect identifier. The exact syntax depends on the Oracle Net configuration. For more information, refer to the Oracle Net manual or contact your DBA. SQL*Plus does not prompt for a service name, but uses your default database if you do not include a connect identifier.

edition=value

The value for the Oracle Session Edition. An edition enables two or more versions of an object in a database. It provides a staging area where changed objects can be loaded into the database, compiled, and executed during uptime. This is particularly useful to reduce downtime associated with patching an application. edition=value overrides any edition value specified in the ORA_EDITION environment variable. For more detailed information, see Oracle Database Advanced Application Developer's Guide.

/ (slash)

Represents a default logon using operating system authentication. You cannot enter a connect_identifier if you use a default logon. In a default logon, SQL*Plus typically attempts to log you in using the username OPS$name, where name is your operating system username. See the Oracle Database Administrator's Guide for information about operating system authentication.

In SQL*Plus command line, where applications use password credentials to connect to databases, it is possible to store the credentials in a client-side Oracle wallet. When you configure a client to use the Oracle wallet, applications can use the following syntax to connect to databases that use password authentication:

CONNECT /@database_alias

For information about configuring your client to use secure external password store and for information about managing credentials in it, see the Oracle Database Security Guide.

AS {SYSOPER | SYSDBA | SYSASM}

The AS clause enables privileged connections by users who have been granted SYSOPER, SYSDBA or SYSASM system privileges. You can use any one of these privileged connections with the default logon, /.

For information about system privileges, see the Oracle Database Administrator's Guide.

Usage

CONNECT commits the current transaction to the database, disconnects the current username from Oracle Database, and reconnects with the specified username.

If you log on or connect as a user whose account has expired, SQL*Plus prompts you to change your password before you can connect.

If an account is locked, a message is displayed and connection into that account (as that user) is not permitted until the account is unlocked by your DBA.

For more information about user account management, refer to the CREATE USER, ALTER USER and the CREATE PROFILE commands in the Oracle Database SQL Language Reference.

Examples

To connect across Oracle Net with username HR, to the database known by the Oracle Net alias as FLEETDB, enter

CONNECT HR@FLEETDB

For more information about setting up your password file, refer to the Oracle Database Administrator's Guide.

To connect to an instance on the current node as a privileged user named HR, enter

CONNECT HR AS SYSDBA

To connect to an instance on the current node as a privileged default user, enter

CONNECT / AS SYSDBA

In the last two examples, your default schema becomes SYS.

COPY

The COPY command is not being enhanced to handle datatypes or features introduced with, or after Oracle8i. The COPY command is likely to be made obsolete in a future release.

For COPY command details and syntax, see SQL*Plus COPY Command.

DEL

Syntax

DEL [n | n m | n * | n LAST | * | * n | * LAST | LAST]

Deletes one or more lines of the buffer.

SQL*Plus commands are not stored in the buffer. There is no history of commands previously entered in the buffer.

Terms

	Term	Description
	
n

	Deletes line n.
	
n m

	Deletes lines n through m.
	
n *

	Deletes line n through the current line.
	
n LAST

	Deletes line n through the last line.
	
*

	Deletes the current line.
	
* n

	Deletes the current line through line n.
	
* LAST

	Deletes the current line through the last line.
	
LAST

	Deletes the last line.

Enter DEL with no clauses to delete the current line of the buffer.

Usage

DEL makes the following line of the buffer (if any) the current line. You can enter DEL several times to delete several consecutive lines.

	
Note:

DEL is a SQL*Plus command and DELETE is a SQL command. For more information about the SQL DELETE command, see the Oracle Database SQL Language Reference.

Examples

Assume the SQL buffer contains the following query:

SELECT LAST_NAME, DEPARTMENT_ID
FROM EMP_DETAILS_VIEW
WHERE JOB_ID = 'SA_MAN'
ORDER BY DEPARTMENT_ID;

To make the line containing the WHERE clause the current line, you could enter

LIST 3

	

3* WHERE JOB_ID = 'SA_MAN'

followed by

DEL

The SQL buffer now contains the following lines:

SELECT LAST_NAME, DEPARTMENT_ID
FROM EMP_DETAILS_VIEW
ORDER BY DEPARTMENT_ID

To delete the third line of the buffer, enter

DEL 3

The SQL buffer now contains the following lines:

	

SELECT LAST_NAME, DEPARTMENT_ID
FROM EMP_DETAILS_VIEW

DISCONNECT

Syntax

DISC[ONNECT]

Commits pending changes to the database and logs the current username out of Oracle Database, but does not exit SQL*Plus.

Usage

Use DISCONNECT within a script to prevent user access to the database when you want to log the user out of Oracle Database but have the user remain in SQL*Plus. In SQL*Plus command-line, use EXIT or QUIT to log out of Oracle Database and return control to your computer's operating system.

Examples

Your script might begin with a CONNECT command and end with a DISCONNECT, as shown later.

CONNECT HR
SELECT LAST_NAME, DEPARTMENT_NAME FROM EMP_DETAILS_VIEW;
DISCONNECT
SET INSTANCE FIN2
CONNECT HR2

EDIT

Syntax

ED[IT] [file_name[.ext]]

where file_name[.ext] represents the file you wish to edit (typically a script).

Invokes an operating system text editor on the contents of the specified file or on the contents of the buffer. The buffer has no command history list and does not record SQL*Plus commands.

Enter EDIT with no filename to edit the contents of the SQL buffer with the operating system text editor.

Usage

If you omit the file extension, SQL*Plus assumes the default command-file extension (normally SQL). For information on changing the default extension, see the SUFFIX variable of the SET command.

If you specify a filename, SQL*Plus searches for the file in the directory set by ORACLE_PATH. If SQL*Plus cannot find the file in ORACLE_PATH, or if ORACLE_PATH is not set, it searches for the file in the current working directory. If SQL*Plus cannot find the file in either directory, it creates a file with the specified name.

The substitution variable, _EDITOR, contains the name of the text editor invoked by EDIT. You can change the text editor by changing the value of _EDITOR. For information about changing the value of a substitution variable, see DEFINE. EDIT attempts to run the default operating system editor if _EDITOR is undefined.

EDIT places the contents of the SQL buffer in a file named AFIEDT.BUF by default (in your current working directory) and runs the text editor on the contents of the file. If the file AFIEDT.BUF already exists, it is overwritten with the contents of the buffer. You can change the default filename by using the SET EDITFILE command. For more information about setting a default filename for the EDIT command, see the EDITFILE variable of the SET command.

	
Note:

The default file, AFIEDT.BUF, may have a different name on some operating systems.

If you do not specify a filename and the buffer is empty, EDIT returns an error message.

In SQL*Plus 9.0 and earlier versions on Windows, the command EDIT * opened a blank file after giving an invalid filename warning. In SQL*Plus 10 and later versions on Windows, EDIT * gives an invalid filename warning and does not open a blank file. To retain the SQL*Plus 9.0 behavior, enter the set command,

SET SQLPLUSCOMPATIBILITY 9.0

To leave the editing session and return to SQL*Plus, terminate the editing session in the way customary for the text editor. When you leave the editor, SQL*Plus loads the contents of the file into the buffer.

	
Note:

In Windows, if you use WordPad as your editor (_EDITOR=write.exe), the buffer is not reloaded when you exit WordPad. In this case, use GET to reload the buffer.

Examples

To edit the file REPORT with the extension SQL using your operating system text editor, enter

EDIT REPORT

EXIT

Syntax

{EXIT | QUIT} [SUCCESS | FAILURE | WARNING | n | variable | :BindVariable] [COMMIT | ROLLBACK]

Commits or rolls back all pending changes, logs out of Oracle Database, terminates SQL*Plus and returns control to the operating system.

Terms

{EXIT | QUIT}

Can be used interchangeably (QUIT is a synonym for EXIT).

SUCCESS

Exits normally.

FAILURE

Exits with a return code indicating failure.

WARNING

Exits with a return code indicating warning.

COMMIT

Saves pending changes to the database before exiting.

n

Represents an integer you specify as the return code.

variable

Represents a user-defined or system variable (but not a bind variable), such as SQL.SQLCODE. EXIT variable exits with the value of variable as the return code.

:BindVariable

Represents a variable created in SQL*Plus with the VARIABLE command, and then referenced in PL/SQL, or other subprograms. :BindVariable exits the subprogram and returns you to SQL*Plus.

ROLLBACK

Executes a ROLLBACK statement and abandons pending changes to the database before exiting.

EXIT with no clauses commits and exits with a value of SUCCESS.

Usage

EXIT enables you to specify an operating system return code. This enables you to run SQL*Plus scripts in batch mode and to detect programmatically the occurrence of an unexpected event. The manner of detection is operating-system specific.

The key words SUCCESS, WARNING, and FAILURE represent operating-system dependent values. On some systems, WARNING and FAILURE may be indistinguishable.

The range of operating system return codes is also restricted on some operating systems. This limits the portability of EXIT n and EXIT variable between platforms. For example, on UNIX there is only one byte of storage for return codes; therefore, the range for return codes is limited to zero to 255.

If you make a syntax error in the EXIT options or use a non-numeric variable, SQL*Plus performs an EXIT FAILURE COMMIT.

For information on exiting conditionally, see the WHENEVER SQLERROR and WHENEVER OSERROR commands.

Examples

The following example commits all uncommitted transactions and returns the error code of the last executed SQL command or PL/SQL block:

EXIT SQL.SQLCODE

GET

Syntax

GET [FILE] file_name[.ext] [LIST | NOLIST]

Loads an operating system file into the SQL buffer.

The buffer has no command history list and does not record SQL*Plus commands.

Terms

FILE

Keyword to specify that the following argument is the name of the script you want to load. This optional keyword is usually omitted.

If you want to load a script with the name file, because it is a command keyword, you need to put the name file in single quotes.

file_name[.ext]

Represents the file you wish to load (typically a script).

LIST

Lists the contents of the file after it is loaded. This is the default.

NOLIST

Suppresses the listing.

Usage

If you do not specify a file extension, SQL*Plus assumes the default command-file extension (normally SQL). For information on changing the default extension, see SET SUF[FIX] {SQL | text}.

If the filename you specify contains the word list or the word file, the name must be in double quotes. SQL*Plus searches for the file in the current working directory.

The operating system file should contain a single SQL statement or PL/SQL block. The statement should not be terminated with a semicolon. If a SQL*Plus command or more than one SQL statement or PL/SQL block is loaded into the SQL buffer from an operating system file, an error occurs when the RUN or slash (/) command is used to execute the buffer.

The GET command can be used to load files created with the SAVE command. See SAVE for more information.

Examples

To load a file called YEARENDRPT with the extension SQL into the buffer, enter

GET YEARENDRPT

HELP

Syntax

HELP | ? [topic]

where topic represents a SQL*Plus help topic, for example, COLUMN.

Accesses the SQL*Plus command-line help system. Enter HELP INDEX or ? INDEX for a list of topics. You can view SQL*Plus resources at http://www.oracle.com/technology/tech/sql_plus/ and the Oracle Database Library at http://www.oracle.com/technology/documentation/.

Enter HELP or ? without topic to get help on the help system.

Usage

You can only enter one topic after HELP. You can abbreviate the topic (for example, COL for COLUMN). However, if you enter only an abbreviated topic and the abbreviation is ambiguous, SQL*Plus displays help for all topics that match the abbreviation. For example, if you enter

HELP EX

SQL*Plus displays the syntax for the EXECUTE command followed by the syntax for the EXIT command.

If you get a response indicating that help is not available, consult your database administrator.

Examples

To see a list of SQL*Plus commands for which help is available, enter

HELP INDEX

or

? INDEX

To see a single column list of SQL*Plus commands for which help is available, enter

HELP TOPICS

HOST

Syntax

HO[ST] [command]

where command represents an operating system command.

Executes an operating system command without leaving SQL*Plus.

Enter HOST without command to display an operating system prompt. You can then enter multiple operating system commands. For information on returning to SQL*Plus, refer to the platform-specific Oracle documentation provided for your operating system.

	
Note:

Operating system commands entered from a SQL*Plus session using the HOST command do not affect the current SQL*Plus session. For example, setting an operating system environment variable only affects SQL*Plus sessions started subsequently.
You can disable HOST. For more information about disabling HOST, see SQL*Plus Security.

Usage

In some operating systems, you can use a character in place of HOST such as "$" in Windows or "!" in UNIX, or you may not have access to the HOST command. See the platform-specific Oracle documentation provided for your operating system or ask your DBA for more information.

On some platforms, an _RC substitution variable may be created with a HOST return value that is operation system dependent. It is recommended that you do not use the _RC substitution variable in scripts as it is not portable.

SQL*Plus removes the SQLTERMINATOR (a semicolon by default) before the HOST command is issued. A workaround for this is to add another SQLTERMINATOR. See SET SQLT[ERMINATOR] {; | c | ON | OFF} for more information.

Examples

To execute a UNIX operating system command, ls *.sql, enter

HOST ls *.sql

To execute a Windows operating system command, dir *.sql, enter

HOST dir *.sql

PAUSE

Syntax

PAU[SE] [text]

where text represents the text you wish to display.

Displays the specified text then waits for the user to press RETURN.

Enter PAUSE followed by no text to display two empty lines.

Usage

Because PAUSE always waits for the user's response, it is best to use a message that tells the user explicitly to press [Return].

PAUSE reads input from the terminal (if a terminal is available) even when you have designated the source of the command input as a file.

See SET PAU[SE] {ON | OFF | text} for information on pausing between pages of a report.

Examples

To print "Adjust paper and press RETURN to continue." and to have SQL*Plus wait for the user to press [Return], you might include the following PAUSE command in a script:

SET PAUSE OFF
PAUSE Adjust paper and press RETURN to continue.
SELECT ...

PROMPT

Syntax

PRO[MPT] [text]

where text represents the text of the message you want to display.

Sends the specified message or a blank line to the user's screen. If you omit text, PROMPT displays a blank line on the user's screen.

Usage

You can use this command in scripts to give information to the user.

Examples

The following example shows the use of PROMPT in conjunction with ACCEPT in a script called ASKFORDEPT.SQL. ASKFORDEPT.SQL contains the following SQL*Plus and SQL commands:

PROMPTPROMPT Please enter a valid departmentPROMPT For example: 10SELECT DEPARTMENT_NAME FROM EMP_DETAILS_VIEWWHERE DEPARTMENT_ID = &NEWDEPT

Assume you run the file using START or @:

@ASKFORDEPT.SQL VAL1
@HTTP://machine_name.domain:port/ASKFORDEPT.SQL VAL1

	

Please enter a valid department
For example: 10
Department ID?>

You can enter a department number at the prompt Department ID?>. By default, SQL*Plus lists the line containing &NEWDEPT before and after substitution, and then displays the department name corresponding to the number entered at the Department ID?> prompt. You can use SET VERIFY OFF to prevent this behavior.

RECOVER

Syntax

RECOVER {general | managed | BEGIN BACKUP | END BACKUP}

where the general clause has the following syntax:

[AUTOMATIC] [FROM location]{ {full_database_recovery | partial_database_recovery | LOGFILE filename}[{TEST | ALLOW integer CORRUPTION | parallel_clause } [TEST | ALLOW integer CORRUPTION | parallel_clause]...]| CONTINUE [DEFAULT] | CANCEL}

where the full_database_recovery clause has the following syntax:

[STANDBY] DATABASE [{UNTIL {CANCEL | TIME date | CHANGE integer} | USING BACKUP CONTROLFILE} [UNTIL {CANCEL | TIME date | CHANGE integer} | USING BACKUP CONTROLFILE]...]

where the partial_database_recovery clause has the following syntax:

{TABLESPACE tablespace [, tablespace]... | DATAFILE {filename | filenumber} [, filename | filenumber]... | STANDBY {TABLESPACE tablespace [, tablespace]... | DATAFILE {filename | filenumber} [, filename | filenumber]...} UNTIL [CONSISTENT WITH] CONTROLFILE }

where the parallel clause has the following syntax:

{ NOPARALLEL | PARALLEL [integer] }

where the managed clause has the following syntax:

MANAGED STANDBY DATABASE recover_clause | cancel_clause | finish_clause

where the recover_clause has the following syntax:

{ { DISCONNECT [FROM SESSION] | { TIMEOUT integer | NOTIMEOUT } } | { NODELAY | DEFAULT DELAY | DELAY integer } | NEXT integer | { EXPIRE integer | NO EXPIRE } | parallel_clause | USING CURRENT LOGFILE | UNTIL CHANGE integer | THROUGH { [THREAD integer] SEQUENCE integer | ALL ARCHIVELOG | { ALL | LAST | NEXT } SWITCHOVER} } [DISCONNECT [FROM SESSION] | { TIMEOUT integer | NOTIMEOUT } | { NODELAY | DEFAULT DELAY | DELAY integer } | NEXT integer | { EXPIRE integer | NO EXPIRE } | parallel_clause | USING CURRENT LOGFILE | UNTIL CHANGE integer | THROUGH { [THREAD integer] SEQUENCE integer | ALL ARCHIVELOG | { ALL | LAST | NEXT } SWITCHOVER}] ...

where the cancel_clause has the following syntax:

CANCEL [IMMEDIATE] [WAIT | NOWAIT]

where the finish_clause has the following syntax:

[DISCONNECT [FROM SESSION]] [parallel_clause]FINISH [SKIP [STANDBY LOGFILE]] [WAIT | NOWAIT]

where the parallel_clause has the following syntax:

{ NOPARALLEL | PARALLEL [integer] }

Performs media recovery on one or more tablespaces, one or more datafiles, or the entire database. For more information on the RECOVER command, see the Oracle Database Administrator's Guide, the ALTER DATABASE RECOVER command in the Oracle Database SQL Language Reference, and the Oracle Database Backup and Recovery User's Guide guide.

Terms

AUTOMATIC

Automatically generates the name of the next archived redo log file needed to continue the recovery operation. Oracle Database uses the LOG_ARCHIVE_DEST (or LOG_ARCHIVE_DEST_ 1) and LOG_ARCHIVE_FORMAT parameters (or their defaults) to generate the target redo log filename. If the file is found, the redo contained in that file is applied. If the file is not found, SQL*Plus prompts you for a filename, displaying a generated filename as a suggestion.

If you do not specify either AUTOMATIC or LOGFILE, SQL*Plus prompts you for a filename, suggesting the generated filename. You can either accept the generated filename or replace it with a fully qualified filename. You can save time by using the LOGFILE clause to specify the filename if you know the archived filename differs from the filename Oracle Database would generate.

FROM location

Specifies the location from which the archived redo log file group is read. The value of location must be a fully specified file location. If you omit this parameter, SQL*Plus assumes the archived redo log file group is in the location specified by the initialization parameter LOG_ARCHIVE_DEST or LOG_ARCHIVE_DEST_1. Do not specify FROM if you have set a file with SET LOGSOURCE.

full_database_recovery

Enables you to specify the recovery of a full database.

partial_database_recovery

Enables you to specify the recovery of individual tablespaces and datafiles.

LOGFILE

Continues media recovery by applying the specified redo log file. In interactive recovery mode (AUTORECOVERY OFF), if a bad log name is entered, errors for the bad log name are displayed and you are prompted to enter a new log name.

TEST

Specifies a trial recovery to detect possible problems. Redo is applied normally, but no changes are written to disk, and changes are rolled back at the end of the trial recovery. You can only use the TEST clause for a trial recovery if you have restored a backup. In the event of logfile corruption, specifies the number of corrupt blocks that can be tolerated while allowing recovery to proceed. During normal recovery, integer cannot exceed 1.

ALLOW integer CORRUPTION

In the event of logfile corruption, specifies the number of corrupt blocks that can be tolerated while allowing recovery to proceed.

parallel _clause

Enables you to specify the degree of parallel processing to use during the recovery operation.

CONTINUE

Continues multi-instance recovery after it has been interrupted to disable a thread.

CONTINUE DEFAULT

Continues recovery using the redo log file generated automatically by Oracle Database if no other logfile is specified. This is equivalent to specifying AUTOMATIC, except that Oracle Database does not prompt for a filename.

CANCEL

Terminates cancel-based recovery.

STANDBY DATABASE

Recovers the standby database using the control file and archived redo log files copied from the primary database. The standby database must be mounted but not open.

DATABASE

Recovers the entire database.

UNTIL CANCEL

Specifies an incomplete, cancel-based recovery. Recovery proceeds by prompting you with suggested filenames of archived redo log files, and recovery completes when you specify CANCEL instead of a filename.

UNTIL TIME

Specifies an incomplete, time-based recovery. Use single quotes, and the following format:

'YYYY-MM-DD:HH24:MI:SS'

UNTIL CHANGE

Specifies an incomplete, change-based recovery. integer is the number of the System Change Number (SCN) following the last change you wish to recover. For example, if you want to restore your database up to the transaction with an SCN of 9, you would specify UNTIL CHANGE 10.

USING BACKUP CONTROLFILE

Specifies that a backup of the control file be used instead of the current control file.

TABLESPACE

Recovers a particular tablespace. tablespace is the name of a tablespace in the current database. You may recover up to 16 tablespaces in one statement.

DATAFILE

Recovers a particular datafile. You can specify any number of datafiles.

STANDBY TABLESPACE

Reconstructs a lost or damaged tablespace in the standby database using archived redo log files copied from the primary database and a control file.

STANDBY DATAFILE

Reconstructs a lost or damaged datafile in the standby database using archived redo log files copied from the primary database and a control file.

UNTIL CONSISTENT WITH CONTROLFILE

Specifies that the recovery of an old standby datafile or tablespace uses the current standby database control file.

PARALLEL [integer]

SQL*Plus selects a degree of parallelism equal to the number of CPUs available on all participating instances times the value of the PARALLEL_THREADS_PER_CPU initialization parameter.

The PARALLEL keyword overrides the RECOVERY_PARALLELISM initialization parameter. For more information about the PARALLEL keyword see the Oracle Real Application Clusters Administration and Deployment Guide guide.

Use integer to specify the degree of parallelism, which is the number of parallel threads used in the parallel operation. Each parallel thread may use one or two parallel execution processes.

NOPARALLEL

Specifies serial recovery processing. This is the default.

MANAGED STANDBY DATABASE

Specifies sustained standby recovery mode. This mode assumes that the standby database is an active component of an overall standby database architecture. A primary database actively archives its redo log files to the standby site. As these archived redo logs arrive at the standby site, they become available for use by a managed standby recovery operation. Sustained standby recovery is restricted to media recovery.

For more information on the parameters of this clause, see the Oracle Database Backup and Recovery User's Guide.

DISCONNECT

Indicates that the managed redo process (MRP) should apply archived redo files as a detached background process. Doing so leaves the current session available.

TIMEOUT

Specifies in minutes the wait period of the sustained recovery operation. The recovery process waits for integer minutes for a requested archived log redo to be available for writing to the standby database. If the redo log file does not become available within that time, the recovery process terminates with an error message. You can then issue the statement again to return to sustained standby recovery mode.

If you do not specify this clause, or if you specify NOTIMEOUT, the database remains in sustained standby recovery mode until you reissue the statement with the RECOVER CANCEL clause or until instance shutdown or failure.

NODELAY

Applies a delayed archivelog immediately to the standby database overriding any DELAY setting in the LOG_ARCHIVE_DEST_n parameter on the primary database. If you omit this clause, application of the archivelog is delayed according to the parameter setting. If DELAY was not specified in the parameter, the archivelog is applied immediately.

DEFAULT DELAY

Waits the default number of minutes specified in the LOG_ARCHIVE_DEST_n initialization parameter before applying the archived redo logs.

DELAY integer

Waits integer minutes before applying the archived redo logs.

NEXT integer

Applies the specified number of archived redo logs as soon as possible after they have been archived. It temporarily overrides any DELAY setting in the LOG_ARCHIVE_DEST_n parameter on the primary database, and any delay values set in an earlier SQL*Plus RECOVER command or an ALTER DATABASE RECOVER command.

EXPIRE integer

Specifies the number of minutes from the current time after which managed recovery terminates automatically.

NO EXPIRE

Disables a previously specified EXPIRE integer option.

USING CURRENT LOGFILE

Recovers redo from standby online logs as they are being filled, without requiring them to be archived in the standby database first.

UNTIL CHANGE integer

Processes managed recovery up to but not including the specified system change number (SCN).

THROUGH THREAD integer SEQUENCE integer

Terminates managed recovery based on archivelog thread number and sequence number. Managed recovery terminates when the corresponding archivelog has been applied. If omitted, THREAD defaults to 1.

THROUGH ALL ARCHIVELOG

Continues managed standby until all archivelogs have been recovered. You can use this statement to override a THROUGH THREAD integer SEQUENCE integer clause issued in an earlier statement. If the THROUGH clause is omitted, this is the default.

THROUGH ALL SWITCHOVER

Keeps managed standby recovery running through all switchover operations.

THROUGH LAST SWITCHOVER

Terminates managed standby recovery after the final end-of-redo archival indicator.

THROUGH NEXT SWITCHOVER

Terminates managed standby recovery after recovering the next end-of-redo archival indicator.

CANCEL (managed clause)

Terminates managed standby recovery after applying the current archived redo file. Session control returns when the recovery process terminates.

CANCEL IMMEDIATE

Terminates managed standby recovery after applying the current archived redo file, or after the next redo log file read, whichever comes first. Session control returns when the recovery process terminates.

CANCEL IMMEDIATE WAIT

Terminates managed standby recovery after applying the current archived redo file or after the next redo log file read, whichever comes first. Session control returns when the managed standby recovery terminates.

CANCEL IMMEDIATE cannot be issued from the same session that issued the RECOVER MANAGED STANDBY DATABASE statement.

CANCEL IMMEDIATE NOWAIT

Terminates managed standby recovery after applying the current archived redo file, or after the next redo log file read, whichever comes first. Session control returns immediately.

CANCEL NOWAIT

Terminates managed standby recovery after the next redo log file read and returns session control immediately.

FINISH

Recovers the current standby online logfiles of the standby database. This clause may be useful if the primary database fails. It overrides any delays specified for archivelogs, so that logs are applied immediately.

FINISH cannot be issued if you have also specified TIMEOUT, DELAY, EXPIRE or NEXT clauses.

Usage

You must have the OSDBA role enabled. You cannot use the RECOVER command when connected through the multi-threaded server.

To perform media recovery on an entire database (all tablespaces), the database must be mounted and closed, and all tablespaces requiring recovery must be online.

To perform media recovery on a tablespace, the database must be mounted or open, and the tablespace must be offline.

To perform media recovery on a datafile, the database can remain open and mounted with the damaged datafiles offline (unless the file is part of the SYSTEM tablespace).

Before using the RECOVER command you must have restored copies of the damaged datafiles from a previous backup. Be sure you can access all archived and online redo log files dating back to when that backup was made.

When another log file is required during recovery, a prompt suggests the names of files that are needed. The name is derived from the values specified in the initialization parameters LOG_ARCHIVE_DEST and LOG_ARCHIVE_FORMAT. You should restore copies of the archived redo log files needed for recovery to the destination specified in LOG_ARCHIVE_DEST, if necessary. You can override the initialization parameters by setting the LOGSOURCE variable with the SET LOGSOURCE command.

During recovery you can accept the suggested log name by pressing return, cancel recovery by entering CANCEL instead of a log name, or enter AUTO at the prompt for automatic file selection without further prompting.

If you have enabled autorecovery (that is, SET AUTORECOVERY ON), recovery proceeds without prompting you with filenames. Status messages are displayed when each log file is applied. When normal media recovery is done, a completion status is returned.

Examples

To recover the entire database, enter

RECOVER DATABASE

To recover the database until a specified time, enter

RECOVER DATABASE UNTIL TIME 01-JAN-2001:04:32:00

To recover the two tablespaces ts_one and ts_two from the database, enter

RECOVER TABLESPACE ts_one, ts_two

To recover the datafile data1.db from the database, enter

RECOVER DATAFILE 'data1.db'

REMARK

Syntax

REM[ARK]

Begins a comment in a script. SQL*Plus does not interpret the comment as a command.

Usage

The REMARK command must appear at the beginning of a line, and the comment ends at the end of the line. A line cannot contain both a comment and a command.

A "–" at the end of a REMARK line is treated as a line continuation character.

For details on entering comments in scripts using the SQL comment delimiters, /* ... */, or the ANSI/ISO comment delimiter, - -, see Placing Comments in Scripts.

Examples

The following script contains some typical comments:

REM COMPUTE uses BREAK ON REPORT to break on end of table
BREAK ON REPORT
COMPUTE SUM OF "DEPARTMENT 10" "DEPARTMENT 20" -
"DEPARTMENT 30" "TOTAL BY JOB_ID" ON REPORT
REM Each column displays the sums of salaries by job for
REM one of the departments 10, 20, 30.
SELECT JOB_ID,
SUM(DECODE(DEPARTMENT_ID, 10, SALARY, 0)) "DEPARTMENT 10",
SUM(DECODE(DEPARTMENT_ID, 20, SALARY, 0)) "DEPARTMENT 20",
SUM(DECODE(DEPARTMENT_ID, 30, SALARY, 0)) "DEPARTMENT 30",
SUM(SALARY) "TOTAL BY JOB_ID"
FROM EMP_DETAILS_VIEW
GROUP BY JOB_ID;

REPFOOTER

Syntax

REPF[OOTER] [PAGE] [printspec [text | variable] ...] | [ON | OFF]

where printspec represents one or more of the following clauses used to place and format the text:

COL nS[KIP] [n]TAB nLE[FT]CE[NTER]R[IGHT]BOLD FORMAT text

Places and formats a specified report footer at the bottom of each report, or lists the current REPFOOTER definition.

Enter REPFOOTER with no clauses to list the current REPFOOTER definition.

Terms

See the REPHEADER command for additional information on terms and clauses in the REPFOOTER command syntax.

Usage

If you do not enter a printspec clause before the text or variables, REPFOOTER left justifies the text or variables.

You can use any number of constants and variables in a printspec. SQL*Plus displays the constants and variables in the order you specify them, positioning and formatting each constant or variable as specified by the printspec clauses that precede it.

	
Note:

If SET EMBEDDED is ON, the report footer is suppressed.

Examples

To define "END EMPLOYEE LISTING REPORT" as a report footer on a separate page and to center it, enter:

REPFOOTER PAGE CENTER 'END EMPLOYEE LISTING REPORT'
TTITLE RIGHT 'Page: ' FORMAT 999 SQL.PNO
SELECT LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE SALARY > 12000;

	

LAST_NAME SALARY
------------------------- ----------
King 24000
Kochhar 17000
De Haan 17000
Russell 14000
Partners 13500
Hartstein 13000

sum 98500

 Page: 2
 END EMPLOYEE LISTING REPORT

6 rows selected.

To suppress the report footer without changing its definition, enter

REPFOOTER OFF

REPHEADER

Syntax

REPH[EADER] [PAGE] [printspec [text | variable] ...] | [ON | OFF]

where printspec represents one or more of the following clauses used to place and format the text:

COL nS[KIP] [n]TAB nLE[FT]CE[NTER]R[IGHT]BOLD FORMAT text

Places and formats a specified report header at the top of each report, or lists the current REPHEADER definition.

Enter REPHEADER with no clauses to list the current REPHEADER definition.

Terms

These terms and clauses also apply to the REPFOOTER command.

PAGE

Begins a new page after printing the specified report header or before printing the specified report footer.

text

The report header or footer text. Enter text in single quotes if you want to place more than one word on a single line. The default is NULL.

variable

A substitution variable or any of the following system-maintained values. SQL.LNO is the current line number, SQL.PNO is the current page number, SQL.CODE is the current error code, SQL.RELEASE is the current Oracle Database release number, and SQL.USER is the current username.

To print one of these values, reference the appropriate variable in the report header or footer. You can use the FORMAT clause to format variable.

OFF

Turns the report header or footer off (suppresses its display) without affecting its definition.

COL n

Indents to column n of the current line (backward if column n has been passed). Column in this context means print position, not table column.

S[KIP] [n]

Skips to the start of a new line n times; if you omit n, one time; if you enter zero for n, backward to the start of the current line.

TAB n

Skips forward n columns (backward if you enter a negative value for n). Column in this context means print position, not table column.

LE[FT] CE[NTER] R[IGHT]

Left-align, center, and right-align data on the current line respectively. SQL*Plus aligns following data items as a group, up to the end of the printspec or the next LEFT, CENTER, RIGHT, or COL command. CENTER and RIGHT use the SET LINESIZE value to calculate the position of the data item that follows.

BOLD

Prints data in bold print. SQL*Plus represents bold print on your terminal by repeating the data on three consecutive lines. On some operating systems, SQL*Plus may instruct your printer to print bold text on three consecutive lines, instead of bold.

FORMAT text

Specifies a format model that determines the format of data items up to the next FORMAT clause or the end of the command. The format model must be a text constant such as A10 or $999. See COLUMN for more information on formatting and valid format models.

If the datatype of the format model does not match the datatype of a given data item, the FORMAT clause has no effect on that item.

If no appropriate FORMAT model precedes a given data item, SQL*Plus prints NUMBER values according to the format specified by SET NUMFORMAT or, if you have not used SET NUMFORMAT, the default format. SQL*Plus prints DATE values using the default format.

Usage

If you do not enter a printspec clause before the text or variables, REPHEADER left justifies the text or variables.

You can use any number of constants and variables in a printspec. SQL*Plus displays the constants and variables in the order you specify, positioning and formatting each constant or variable as specified by the printspec clauses that precede it.

Examples

To define "EMPLOYEE LISTING REPORT" as a report header on a separate page, and to center it, enter:

REPHEADER PAGE CENTER 'EMPLOYEE LISTING REPORT'
TTITLE RIGHT 'Page: ' FORMAT 999 SQL.PNO
SELECT LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE SALARY > 12000;

	

 Page: 1
 EMPLOYEE LISTING REPORT
 Page: 2
LAST_NAME SALARY
------------------------- ----------
King 24000
Kochhar 17000
De Haan 17000
Russell 14000
Partners 13500
Hartstein 13000

sum 98500

6 rows selected.

To suppress the report header without changing its definition, enter:

REPHEADER OFF

RUN

Syntax

R[UN]

Lists and executes the SQL command or PL/SQL block currently stored in the SQL buffer.

The buffer has no command history list and does not record SQL*Plus commands.

Usage

RUN causes the last line of the SQL buffer to become the current line.

The slash command (/) functions similarly to RUN, but does not list the command in the SQL buffer on your screen. The SQL buffer always contains the last SQL statement or PL/SQL block entered.

Examples

Assume the SQL buffer contains the following script:

SELECT DEPARTMENT_ID
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000

To RUN the script, enter

RUN

	

 1 SELECT DEPARTMENT_ID
 2 FROM EMP_DETAILS_VIEW
 3 WHERE SALARY>12000

DEPARTMENT_ID

 90
 90
 90
 80
 80
 20

6 rows selected.

SET

Sets a system variable to alter the SQL*Plus environment settings for your current session, for example, to:

	
customize HTML formatting

	
enable or disable the printing of column headings

	
set the number of lines per page

	
set the display width for data

Syntax

SET system_variable value

where system_variable and value represent one of the clauses shown in the SET System Variable Summary table following.

Usage

SQL*Plus maintains system variables (also called SET command variables) to enable you to set up a particular environment for a SQL*Plus session. You can change these system variables with the SET command and list them with the SHOW command.

SET ROLE and SET TRANSACTION are SQL commands (see the Oracle Database SQL Language Reference for more information). When not followed by the keywords TRANSACTION or ROLE, SET is assumed to be a SQL*Plus command.

SET System Variable Summary

	System Variable	Description
	
SET APPI[NFO]{ON | OFF | text}

	Sets automatic registering of scripts through the DBMS_APPLICATION_INFO package.
	
SET ARRAY[SIZE] {15 | n}

	Sets the number of rows, called a batch, that SQL*Plus will fetch from the database at one time.
	
SET AUTO[COMMIT]{ON | OFF | IMM[EDIATE] | n}

	Controls when Oracle Database commits pending changes to the database.
	
SET AUTOP[RINT] {ON | OFF}

	Sets the automatic printing of bind variables.
	
SET AUTORECOVERY [ON | OFF]

	ON sets the RECOVER command to automatically apply the default filenames of archived redo log files needed during recovery.
	
SET AUTOT[RACE] {ON | OFF | TRACE[ONLY]} [EXP[LAIN]] [STAT[ISTICS]]

	Displays a report on the execution of successful SQL DML statements (SELECT, INSERT, UPDATE, DELETE or MERGE).
	
SET BLO[CKTERMINATOR] {. | c | ON | OFF}

	Sets the non-alphanumeric character used to end PL/SQL blocks to c.
	
SET CMDS[EP] {; | c | ON | OFF}

	Sets the non-alphanumeric character used to separate multiple SQL*Plus commands entered on one line to c.
	
SET COLSEP { | text}

	Sets the text to be printed between selected columns.
	
SET CON[CAT] {. | c | ON | OFF}

	Sets the character you can use to terminate a substitution variable reference if you wish to immediately follow the variable with a character that SQL*Plus would otherwise interpret as a part of the substitution variable name.
	
SET COPYC[OMMIT] {0 | n}

	Controls the number of batches after which the COPY command commits changes to the database.
	
SET COPYTYPECHECK {ON | OFF}

	Sets the suppression of the comparison of datatypes while inserting or appending to tables with the COPY command.
	
SET DEF[INE] {& | c | ON | OFF}

	Sets the character used to prefix variables to c.
	
SET DESCRIBE [DEPTH {1 | n | ALL}] [LINENUM {ON | OFF}] [INDENT {ON | OFF}]

	Sets the depth of the level to which you can recursively describe an object.
	
SET ECHO {ON | OFF}

	Controls whether the START command lists each command in a script as the command is executed.
	
SET EDITF[ILE] file_name[.ext]

	Sets the default filename for the EDIT command.
	
SET EMB[EDDED] {ON | OFF}

	Controls where on a page each report begins.
	
SET ERRORL[OGGING] {ON | OFF} [TABLE [schema.]tablename] [TRUNCATE] [IDENTIFIER identifier]

	Enables recording of SQL, PL/SQL and SQL*Plus errors to an error log table which you can query later.
	
SET ESC[APE] {\ | c | ON | OFF}

	Defines the character you enter as the escape character.
	
SET ESCCHAR {@ | ? | % | $ | OFF}

	Specifies a special character to escape in a filename. Prevents character translation causing an error.
	
SET EXITC[OMMIT] {ON | OFF}

	Specifies whether the default EXIT behavior is COMMIT or ROLLBACK.
	
SET FEED[BACK] {6 | n | ON | OFF}

	Displays the number of records returned by a query when a query selects at least n records.
	
SET FLAGGER {OFF | ENTRY | INTERMED[IATE] | FULL}

	Checks to make sure that SQL statements conform to the ANSI/ISO SQL92 standard.
	
SET FLU[SH] {ON | OFF}

	Controls when output is sent to the user's display device.
	
SET HEA[DING] {ON | OFF}

	Controls printing of column headings in reports.
	
SET HEADS[EP] { | c | ON | OFF}

	Defines the character you enter as the heading separator character.
	
SET INSTANCE [instance_path | LOCAL]

	Changes the default instance for your session to the specified instance path.
	
SET LIN[ESIZE] {80 | n}

	Sets the total number of characters that SQL*Plus displays on one line before beginning a new line.
	
SET LOBOF[FSET] {1 | n}

	Sets the starting position from which BLOB, BFILE, CLOB and NCLOB data is retrieved and displayed.
	
SET LOGSOURCE [pathname]

	Specifies the location from which archive logs are retrieved during recovery.
	
SET LONG {80 | n}

	Sets maximum width (in bytes) for displaying LONG, BLOB, BFILE, CLOB, NCLOB and XMLType values; and for copying LONG values.
	
SET LONGC[HUNKSIZE] {80 | n}

	Sets the size (in bytes) of the increments in which SQL*Plus retrieves a LONG, BLOB, BFILE, CLOB, NCLOB or XMLType value.
	
SET MARK[UP] HTML [ON | OFF] [HEAD text] [BODY text] [TABLE text] [ENTMAP {ON | OFF}] [SPOOL {ON | OFF}] [PRE[FORMAT] {ON | OFF}]

	Outputs HTML marked up text.
	
SET NEWP[AGE] {1 | n | NONE}

	Sets the number of blank lines to be printed from the top of each page to the top title.
	
SET NULL text

	Sets the text that represents a null value in the result of a SQL SELECT command.
	
SET NUMF[ORMAT] format

	Sets the default format for displaying numbers.
	
SET NUM[WIDTH] {10 | n}

	Sets the default width for displaying numbers.
	
SET PAGES[IZE] {14 | n}

	Sets the number of lines in each page.
	
SET PAU[SE] {ON | OFF | text}

	Enables you to control scrolling of your terminal when running reports.
	
SET RECSEP {WR[APPED] | EA[CH] | OFF}

	RECSEP tells SQL*Plus where to make the record separation.
	
SET RECSEPCHAR { | c}

	Display or print record separators.
	
SET SERVEROUT[PUT] {ON | OFF} [SIZE {n | UNL[IMITED]}] [FOR[MAT] {WRA[PPED] | WOR[D_WRAPPED] | TRU[NCATED]}]

	Controls whether to display the output (that is, DBMS_OUTPUT PUT_LINE) of stored procedures or PL/SQL blocks in SQL*Plus.
	
SET SHIFT[INOUT] {VIS[IBLE] | INV[ISIBLE]}

	Enables correct alignment for terminals that display shift characters.
	
SET SHOW[MODE] {ON | OFF}

	Controls whether SQL*Plus lists the old and new settings of a SQL*Plus system variable when you change the setting with SET.
	
SET SQLBL[ANKLINES] {ON | OFF}

	Controls whether SQL*Plus puts blank lines within a SQL command or script.
	
SET SQLC[ASE] {MIX[ED] | LO[WER] | UP[PER]}

	Converts the case of SQL commands and PL/SQL blocks just prior to execution.
	
SET SQLCO[NTINUE] {> | text}

	Sets the character sequence SQL*Plus displays as a prompt after you continue a SQL*Plus command on an additional line using a hyphen (–).
	
SET SQLN[UMBER] {ON | OFF}

	Sets the prompt for the second and subsequent lines of a SQL command or PL/SQL block.
	
SET SQLPLUSCOMPAT[IBILITY] {x.y[.z]}

	Sets the behavior or output format of VARIABLE to that of the release or version specified by x.y[.z].
	
SET SQLPRE[FIX] {# | c}

	Sets the SQL*Plus prefix character.
	
SET SQLP[ROMPT] {SQL> | text}

	Sets the SQL*Plus command prompt.
	
SET SQLT[ERMINATOR] {; | c | ON | OFF}

	Sets the character used to end and execute SQL commands to c.
	
SET SUF[FIX] {SQL | text}

	Sets the default file that SQL*Plus uses in commands that refer to scripts.
	
SET TAB {ON | OFF}

	Determines how SQL*Plus formats white space in terminal output.
	
SET TERM[OUT] {ON | OFF}

	Controls the display of output generated by commands executed from a script.
	
SET TI[ME] {ON | OFF}

	Controls the display of the current time.
	
SET TIMI[NG] {ON | OFF}

	Controls the display of timing statistics.
	
SET TRIM[OUT] {ON | OFF}

	Determines whether SQL*Plus puts trailing blanks at the end of each displayed line.
	
SET TRIMS[POOL] {ON | OFF}

	Determines whether SQL*Plus puts trailing blanks at the end of each spooled line.
	
SET UND[ERLINE] {- | c | ON | OFF}

	Sets the character used to underline column headings in SQL*Plus reports to c.
	
SET VER[IFY] {ON | OFF}

	Controls whether SQL*Plus lists the text of a SQL statement or PL/SQL command before and after SQL*Plus replaces substitution variables with values.
	
SET WRA[P] {ON | OFF}

	Controls whether SQL*Plus truncates the display of a SELECTed row if it is too long for the current line width.
	
SET XMLOPT[IMIZATIONCHECK] [ON|OFF]

	Specifies that only fully optimized XML queries and DML operations are executed. Only to assist in developing and debugging, not for production.
	
SET XQUERY BASEURI {text}

	Defines the base URI to use. This is useful to change the prefix of the file to access when writing generic XQuery expressions.
	
SET XQUERY ORDERING {UNORDERED | ORDERED | DEFAULT}

	Controls the ordering of results from an XQuery.
	
SET XQUERY NODE {BYVALUE | BYREFERENCE | DEFAULT}

	Sets the preservation mode for notes created or returned.
	
SET XQUERY CONTEXT {text}

	Specifies an XQuery context item which can be either a node or a value.

SET APPI[NFO]{ON | OFF | text}

Sets automatic registering of scripts through the DBMS_APPLICATION_INFO package.

This enables the performance and resource usage of each script to be monitored by your DBA. The registered name appears in the MODULE column of the V$SESSION and V$SQLAREA virtual tables. You can also read the registered name using the DBMS_APPLICATION_INFO.READ_MODULE procedure.

ON registers scripts invoked by the @, @@ or START commands. OFF disables registering of scripts. Instead, the current value of text is registered. text specifies the text to register when no script is being run or when APPINFO is OFF, which is the default. The default for text is "SQL*Plus". If you enter multiple words for text, you must enclose them in quotes. The maximum length for text is limited by the DBMS_APPLICATION_INFO package.

The registered name has the format nn@xfilename where: nn is the depth level of script; x is '<' when the script name is truncated, otherwise, it is blank; and filename is the script name, possibly truncated to the length allowed by the DBMS_APPLICATION_INFO package interface.

For more information on the DBMS_APPLICATION_INFO package, see the Oracle Database Performance Tuning Guide.

Example

To display the value of APPINFO, as it is SET OFF by default, enter

SET APPINFO ON
SHOW APPINFO

	

APPINFO is ON and set to "SQL*Plus"

To change the default text, enter

SET APPINFO 'This is SQL*Plus'

To make sure that registration has taken place, enter

VARIABLE MOD VARCHAR2(50)
VARIABLE ACT VARCHAR2(40)
EXECUTE DBMS_APPLICATION_INFO.READ_MODULE(:MOD, :ACT);

	

PL/SQL procedure successfully completed.

PRINT MOD

	

MOD

This is SQL*Plus

To change APPINFO back to its default setting, enter

SET APPINFO OFF

SET ARRAY[SIZE] {15 | n}

Sets the number of rows that SQL*Plus will fetch from the database at one time.

Valid values are 1 to 5000. A large value increases the efficiency of queries and subqueries that fetch many rows, but requires more memory. Values over approximately 100 provide little added performance. ARRAYSIZE has no effect on the results of SQL*Plus operations other than increasing efficiency.

SET AUTO[COMMIT]{ON | OFF | IMM[EDIATE] | n}

Controls when Oracle Database commits pending changes to the database after SQL or PL/SQL commands.

ON commits pending changes to the database after Oracle Database executes each successful INSERT, UPDATE, or DELETE, or PL/SQL block. OFF suppresses automatic committing so that you must commit changes manually (for example, with the SQL command COMMIT). IMMEDIATE functions in the same manner as ON. n commits pending changes to the database after Oracle Database executes n successful SQL INSERT, UPDATE, or DELETE commands, or PL/SQL blocks. n cannot be less than zero or greater than 2,000,000,000. The statement counter is reset to zero after successful completion of n INSERT, UPDATE or DELETE commands or PL/SQL blocks, a commit, a rollback, or a SET AUTOCOMMIT command.

SET AUTOCOMMIT does not alter the commit behavior when SQL*Plus exits. Any uncommitted data is committed by default.

	
Note:

For this feature, a PL/SQL block is considered one transaction, regardless of the actual number of SQL commands contained within it.

SET AUTOP[RINT] {ON | OFF}

Sets the automatic printing of bind variables.

ON or OFF controls whether SQL*Plus automatically displays bind variables (referenced in a successful PL/SQL block or used in an EXECUTE command).

See PRINT for more information about displaying bind variables.

SET AUTORECOVERY [ON | OFF]

ON sets the RECOVER command to automatically apply the default filenames of archived redo log files needed during recovery.

No interaction is needed, provided the necessary files are in the expected locations with the expected names. The filenames used are derived from the values of the initialization parameters LOG_ARCHIVE_DEST and LOG_ARCHIVE_FORMAT.

OFF, the default option, requires that you enter the filenames manually or accept the suggested default filename given. See RECOVER for more information about database recovery.

Example

To set the recovery mode to AUTOMATIC, enter

SET AUTORECOVERY ON
RECOVER DATABASE

SET AUTOT[RACE] {ON | OFF | TRACE[ONLY]} [EXP[LAIN]] [STAT[ISTICS]]

Displays a report on the execution of successful SQL DML statements (such as SELECT, INSERT, UPDATE, DELETE or MERGE).

The report can include execution statistics and the query execution path.

SQL*Plus report output may differ for DML if dynamic sampling is in effect.

OFF does not display a trace report. ON displays a trace report. TRACEONLY displays a trace report, but does not print query data, if any. EXPLAIN shows the query execution path by performing an EXPLAIN PLAN. STATISTICS displays SQL statement statistics. Information about EXPLAIN PLAN is documented in the Oracle Database SQL Language Reference.

Using ON or TRACEONLY with no explicit options defaults to EXPLAIN STATISTICS.

The TRACEONLY option may be useful to suppress the query data of large queries. If STATISTICS is specified, SQL*Plus still fetches the query data from the server, however, the data is not displayed.

The AUTOTRACE report is printed after the statement has successfully completed.

Information about Execution Plans and the statistics is documented in the Oracle Database Performance Tuning Guide.

When SQL*Plus produces a STATISTICS report, a second connection to the database is automatically created. This connection is closed when the STATISTICS option is set to OFF, or you log out of SQL*Plus.

The formatting of your AUTOTRACE report may vary depending on the version of the server to which you are connected and the configuration of the server. The additional information and tabular output of AUTOTRACE PLAN is supported when connecting to Oracle Database 10g (Release 10.1) or later. When you connect to an earlier database, the older form or AUTOTRACE reporting is used.

AUTOTRACE is not available when FIPS flagging is enabled.

See Tracing Statements for more information on AUTOTRACE.

SET BLO[CKTERMINATOR] {. | c | ON | OFF}

Sets the character used to end PL/SQL blocks to c.

It cannot be an alphanumeric character or a whitespace. To execute the block, you must issue a RUN or / (slash) command.

OFF means that SQL*Plus recognizes no PL/SQL block terminator. ON changes the value of c back to the default period (.), not the most recently used character.

SET CMDS[EP] {; | c | ON | OFF}

Sets the non-alphanumeric character used to separate multiple SQL*Plus commands entered on one line to c.

ON or OFF controls whether you can enter multiple commands on a line. ON automatically sets the command separator character to a semicolon (;).

Example

To specify a title with TTITLE and format a column with COLUMN, both on the same line, enter

SET CMDSEP +
TTITLE LEFT 'SALARIES' + COLUMN SALARY FORMAT $99,999
SELECT LAST_NAME, SALARY FROM EMP_DETAILS_VIEW
WHERE JOB_ID = 'SH_CLERK';

	

SALARIES
LAST_NAME SALARY
------------------------- --------
Taylor $3,200
Fleaur $3,100
Sullivan $2,500
Geoni $2,800
Sarchand $4,200
Bull $4,100
Dellinger $3,400
Cabrio $3,000
Chung $3,800
Dilly $3,600
Gates $2,900
Perkins $2,500
Bell $4,000
Everett $3,900
McCain $3,200
Jones $2,800

SALARIES
LAST_NAME SALARY
------------------------- --------
Walsh $3,100
Feeney $3,000
OConnell $2,600
Grant $2,600

20 rows selected.

SET COLSEP { | text}

Sets the column separator character printed between columns in output.

If the COLSEP variable contains blanks or punctuation characters, you must enclose it with single quotes. The default value for text is a single space.

In multi-line rows, the column separator does not print between columns that begin on different lines. The column separator does not appear on blank lines produced by BREAK ... SKIP n and does not overwrite the record separator. See SET RECSEP {WR[APPED] | EA[CH] | OFF} for more information.

Example

To set the column separator to "|" enter

SET MARKUP HTML PREFORMAT ON
SET COLSEP '|'
SELECT LAST_NAME, JOB_ID, DEPARTMENT_ID
FROM EMP_DETAILS_VIEW
WHERE DEPARTMENT_ID = 20;

	

LAST_NAME	JOB_ID	DEPARTMENT_ID
Hartstein |MK_MAN | 20
Fay |MK_REP | 20

SET CON[CAT] {. | c | ON | OFF}

Sets the character used to terminate a substitution variable reference when SQL*Plus would otherwise interpret the next character as a part of the variable name.

SQL*Plus resets the value of CONCAT to a period when you switch CONCAT on.

SET COPYC[OMMIT] {0 | n}

Controls the number of rows after which the COPY command commits changes to the database.

COPY commits rows to the destination database each time it copies n row batches. Valid values are zero to 5000. You can set the size of a batch with the ARRAYSIZE variable. If you set COPYCOMMIT to zero, COPY performs a commit only at the end of a copy operation.

SET COPYTYPECHECK {ON | OFF}

Sets the suppression of the comparison of datatypes while inserting or appending to tables with the COPY command.

This is to facilitate copying to DB2, which requires that a CHAR be copied to a DB2 DATE.

SET DEF[INE] {& | c | ON | OFF}

Sets the character used to prefix substitution variables to c.

ON or OFF controls whether SQL*Plus will scan commands for substitution variables and replace them with their values. ON changes the value of c back to the default '&', not the most recently used character. The setting of DEFINE to OFF overrides the setting of the SCAN variable.

See SET SCAN {ON|OFF} (obsolete) for more information on the SCAN variable.

SET DESCRIBE [DEPTH {1 | n | ALL}] [LINENUM {ON | OFF}] [INDENT {ON | OFF}]

Sets the depth of the level to which you can recursively describe an object.

The valid range of the DEPTH clause is from 1 to 50. If you SET DESCRIBE DEPTH ALL, then the depth will be set to 50, which is the maximum level allowed. You can also display the line number and indentation of the attribute or column name when an object contains multiple object types. Use the SET LINESIZE command to control the width of the data displayed.

See DESCRIBE for more information about describing objects.

Example

To create an object type ADDRESS, enter

CREATE TYPE ADDRESS AS OBJECT
 (STREET VARCHAR2(20),
 CITY VARCHAR2(20)
);
/

	

Type created

To create the table EMPLOYEE that contains a nested object, EMPADDR, of type ADDRESS, enter

CREATE TABLE EMPLOYEE
 (LAST_NAME VARCHAR2(30),
 EMPADDR ADDRESS,
 JOB_ID VARCHAR2(20),
 SALARY NUMBER(7,2)
);
/

	

Table created

To describe the table EMPLOYEE to a depth of two levels, and to indent the output and display line numbers, enter:

SET DESCRIBE DEPTH 2 LINENUM ON INDENT ON
DESCRIBE employee

	

 Name Null? Type
 ------------------------------- -------- --------------------------
1 LAST_NAME VARCHAR2(30)
2 EMPADDR ADDRESS
3 2 STREET VARCHAR2(20)
4 2 CITY VARCHAR2(20)
5 JOB_ID VARCHAR2(20)
6 SALARY NUMBER(7,2)

SET ECHO {ON | OFF}

Controls whether or not to echo commands in a script that is executed with @, @@ or START. ON displays the commands on screen. OFF suppresses the display. ECHO does not affect the display of commands you enter interactively or redirect to SQL*Plus from the operating system.

SET EDITF[ILE] file_name[.ext]

Sets the default filename for the EDIT command. See EDIT for more information about the EDIT command. The default filename for the EDIT command is afiedt.buf which is the SQL buffer. The buffer has no command history list and does not record SQL*Plus commands.

You can include a path and/or file extension. See SET SUF[FIX] {SQL | text} for information on changing the default extension. The default filename and maximum filename length are operating system specific.

SET EMB[EDDED] {ON | OFF}

Controls where on a page each report begins.

OFF forces each report to start at the top of a new page. ON enables a report to begin anywhere on a page. Set EMBEDDED to ON when you want a report to begin printing immediately following the end of the previously run report.

SET ERRORL[OGGING] {ON | OFF} [TABLE [schema.]tablename] [TRUNCATE] [IDENTIFIER identifier]

Turns SQL*Plus error logging ON or OFF. Error logging records SQL, PL/SQL and SQL*Plus errors and associated parameters in an error log table. You can then query the log table to review errors resulting from a query. When error logging is ON, errors are recorded whether the query is run interactively or from a script. This is particularly useful for capturing errors generated from long running queries and avoids capturing all output using the SPOOL command, or having to remain present during the run.

By default, errors are written to a the table SPERRORLOG in your schema. If this table does not exist, it is created automatically. You can also use the TABLE schema.tablename option to specify other tables to use. When using a table other than SPERRORLOG, it must already exist, and you must have access to it. See Creating a User Defined Error Log Table.

If an internal error occurs, to avoid recursion errors caused by the errorlog calling itself, errorlogging is automatically set OFF.

Error logging is set OFF by default.

ON

Writes ORA, PLS and SP2 errors to the default table, SPERRORLOG.

OFF

Disables error .

TABLE [schema.]tablename

Specifies a user defined table to use instead of the default, SPERRORLOG. If you omit schema. the table is created in the current schema. The table you specify must exist, and you must have access permissions.

If the table specified does not exist, or you do not have access, an error message is displayed and the default table, SPERRORLOG, is used.

TRUNCATE

Clears all existing rows in the error log table and begins recording errors from the current session.

IDENTIFIER identifier

A user defined string to identify errors. You can use it to identify errors from a particular session or from a particular version of a query.

Creating a User Defined Error Log Table

You can create one or more error log tables to use other than the default. Before specifying a user defined error log table with the TABLE schema.tablename option, you must create it and ensure that you have permissions to access it. The error log table has the following column definitions:

Table 12-4 SQL*Plus Error Log Column Definitions

	Column	Type	Description
	
username

	
VARCHAR(256)

	
Oracle account name.

	
timestamp

	
TIMESTAMP

	
Time when the error occurred.

	
script

	
VARCHAR(1024)

	
Name of the originating script if applicable.

	
identifier

	
VARCHAR(256)

	
User defined identifier string.

	
message

	
CLOB

	
ORA, PLA or SP2 error message. No feed back messages are included. For example, "PL/SQL Block Created" is not recorded.

	
statement

	
CLOB

	
The statement causing the error.

Using User Defined Error Log Tables

To use a user defined log table, you must have permission to access the table, and you must issue the SET ERRORLOGGING command with the TABLE schema.tablename option to identify the error log table and the schema if applicable.

Querying Error Log Tables

To view the records recorded in an error log table, you query the columns you want to view as for any table. The columns available are shown in Table 12-4, "SQL*Plus Error Log Column Definitions".

Example

To use the default error log table to record query errors from a script, myfile.sql, which contains the following:

VARIABLE U REFCURSOR
BEGIN
 OPEN :U FOR SELECT * FROM DEPT;
END;
/

SHOW ERRORS PROCEDURE 'SSS'

SET GARBAGE

SELECT *
FROM
GARBAGE
;

Enter the following:

SET ERRORLOGGING ON
@myfile

which produces the following output:

	

open :u for select * from dept;
 *
ERROR at line 2:
ORA-6550: line 2, column 29:
PLS-00201: ORA-00942: table or view does not exist
ORA-6550: line 2, column 16:
PL/SQL: SQL Statement ignored

ERROR:
ORA-00907: missing right parenthesis

SP2-0158: unknown SET option "garbage"

garbage
*
ERROR at line 3:
ORA-00942: table or view does not exist

To view the errror log written to the default error log table, SPERRORLOG, enter:

SELECT TIMESTAMP, USERNAME, SCRIPT, IDENTIFIER, STATEMENT, MESSAGE
FROM SPERRORLOG;

which produces the following output:

	TIMESTAMP	USERNAME	SCRIPT	IDENTIFIER	STATEMENT	MESSAGE
	Mon May 08 21:30:03 2006	SYSTEM	d:\myfile.sql	
	open :u for select * from dept;	ORA-06550: line 2, column 27:
	Mon May 08 21:30:05 2006	SYSTEM	d:\myfile.sql	
	open :u for select * from dept;	PL/SQL: ORA-00942: table or view does not exist
	Mon May 08 21:30:05 2006	SYSTEM	d:\myfile.sql	
	open :u for select * from dept;	ORA-06550: line 2, column 13:
	Mon May 08 21:30:05 2006	SYSTEM	d:\myfile.sql	
	open :u for select * from dept;	PL/SQL: SQL Statement ignored
	Mon May 08 21:30:06 2006	SYSTEM	d:\myfile.sql	
	show errors procedure "sss"	ORA-00907: missing right parenthesis
	Mon May 08 21:30:09 2006	SYSTEM	d:\myfile.sql	
	set garbage	SP2-0158: unknown SET option "garbage"
	Mon May 08 21:30:10 2006	SYSTEM	d:\myfile.sql	
	garbage	ORA-00942: table or view does not exist

Example 2

To use a user defined error log table to record query errors from a script, myfile.sql, which contains the following:

VARIABLE U REFCURSOR
BEGIN
 OPEN :U FOR SELECT * FROM DEPT;
END;
/

SHOW ERRORS PROCEDURE 'SSS'

SET GARBAGE

SELECT *
FROM
GARBAGE
;

Enter the following:

SET ERRORLOGGING ON
@MYFILE

which produces the following output:

	

open :u for select * from dept;
 *
ERROR at line 2:
ORA-6550: line 2, column 29:
PLS-00201: ORA-00942: table or view does not exist
ORA-6550: line 2, column 16:
PL/SQL: SQL Statement ignored

ERROR:
ORA-00907: missing right parenthesis

SP2-0158: unknown SET option "garbage"

garbage
*
ERROR at line 3:
ORA-00942: table or view does not exist

To view the errror log written to the default error log table, SPERRORLOG, enter:

SELECT TIMESTAMP, USERNAME, SCRIPT, IDENTIFIER, STATEMENT, MESSAGE
FROM SPERRORLOG;

which produces the following output:

	TIMESTAMP	USERNAME	SCRIPT	IDENTIFIER	STATEMENT	MESSAGE
	Mon May 08 21:30:03 2006	SYSTEM	d:\myfile.sql	
	open :u for select * from dept;	ORA-06550: line 2, column 27:
	Mon May 08 21:30:05 2006	SYSTEM	d:\myfile.sql	
	open :u for select * from dept;	PL/SQL: ORA-00942: table or view does not exist
	Mon May 08 21:30:05 2006	SYSTEM	d:\myfile.sql	
	open :u for select * from dept;	ORA-06550: line 2, column 13:
	Mon May 08 21:30:05 2006	SYSTEM	d:\myfile.sql	
	open :u for select * from dept;	PL/SQL: SQL Statement ignored
	Mon May 08 21:30:06 2006	SYSTEM	d:\myfile.sql	
	show errors procedure "sss"	ORA-00907: missing right parenthesis
	Mon May 08 21:30:09 2006	SYSTEM	d:\myfile.sql	
	set garbage	SP2-0158: unknown SET option "garbage"
	Mon May 08 21:30:10 2006	SYSTEM	d:\myfile.sql	
	garbage	ORA-00942: table or view does not exist

Example 3

To use an error log table other than the default:

	
Create the error log table you want to use

	
Specify the table you want to use with the TABLE option of the SET ERRORLOGGING ON command.

The error log table must have the column definitions defined in Table 12-4, "SQL*Plus Error Log Column Definitions".

John wants to use an error log table named john_sperrorlog. John would run the following SQL statements to create the new error log table:

DROP TABLE john_sperrorlog;
CREATE TABLE john_sperrorlog(username VARCHAR(256),
timestamp TIMESTAMP,
script VARCHAR(1024),
identifier VARCHAR(256),
message CLOB,
statement CLOB);

John then issues the following SET command to enable error logging using the newly created error log table

SET ERRORLOGGING ON TABLE john_sperrorlog

All error logging for John is now recorded to john_sperrorlog, and not to the default error log table, SPERRORLOG.

Access privileges for the error log table are handled in the same way as for any user table. See the Oracle Database SQL Language Reference for more information about granting access to tables.

SET ESC[APE] {\ | c | ON | OFF}

Defines the character used as the escape character.

OFF undefines the escape character. ON enables the escape character. ON changes the value of c back to the default "\".

You can use the escape character before the substitution character (set through SET DEFINE) to indicate that SQL*Plus should treat the substitution character as an ordinary character rather than as a request for variable substitution.

Example

If you define the escape character as an exclamation point (!), then

SET ESCAPE !
ACCEPT v1 PROMPT 'Enter !&1:'

displays this prompt:

	

Enter &1:

To set the escape character back to the default value of \ (backslash), enter

SET ESCAPE ON

SET ESCCHAR {@ | ? | % | $ | OFF}

Specifies a character to be escaped and not interpreted when used in a file name for the SPOOL, START, @, RUN and EDIT commands. These special characters are translated to the following:

While it is not recommended that these characters are used in filenames, if you have legacy files that do use them, it might be useful to include a SET ESCCHAR command in your GLogin file to implement it across your site.

Example

If you include the character '$' in your filename, then

SET ESCCHAR $
RUN MYFILE$

behaves normally.

SET EXITC[OMMIT] {ON | OFF}

Specifies whether the default EXIT behavior is COMMIT or ROLLBACK.

The default setting is ON, which means that work is committed on exit, whether you expected it to be committed or not. Set EXITCOMMIT OFF to rollback work on exit.

Table 12-5 shows the exit action associated with combinations of SET commands (AUTOCOMMIT & EXITCOMMIT) and the EXIT command.

Table 12-5 Exit Behavior: AUTOCOMMIT, EXITCOMMIT, EXIT

	AUTOCOMMIT	EXITCOMMIT	EXIT	Exit Behavior
	
ON

	
ON

	
-

	
COMMIT

	
ON

	
OFF

	
-

	
COMMIT

	
OFF

	
ON

	
-

	
COMMIT

	
OFF

	
OFF

	
-

	
ROLLBACK

	
ON

	
ON

	
COMMIT

	
COMMIT

	
ON

	
ON

	
ROLLBACK

	
COMMIT

	
ON

	
OFF

	
COMMIT

	
COMMIT

	
ON

	
OFF

	
ROLLBACK

	
COMMIT

	
OFF

	
ON

	
COMMIT

	
COMMIT

	
OFF

	
ON

	
ROLLBACK

	
ROLLBACK

	
OFF

	
OFF

	
COMMIT

	
COMMIT

	
OFF

	
OFF

	
ROLLBACK

	
ROLLBACK

SET FEED[BACK] {6 | n | ON | OFF}

Displays the number of records returned by a script when a script selects at least n records.

ON or OFF turns this display on or off. Turning feedback ON sets n to 1. Setting feedback to zero is equivalent to turning it OFF.

SET FEEDBACK OFF also turns off the statement confirmation messages such as 'Table created' and 'PL/SQL procedure successfully completed' that are displayed after successful SQL or PL/SQL statements.

SET FLAGGER {OFF | ENTRY | INTERMED[IATE] | FULL}

Checks to make sure that SQL statements conform to the ANSI/ISO SQL92 standard.

If any non-standard constructs are found, the Oracle Database Server flags them as errors and displays the violating syntax. This is the equivalent of the SQL language ALTER SESSION SET FLAGGER command.

You may execute SET FLAGGER even if you are not connected to a database. FIPS flagging will remain in effect across SQL*Plus sessions until a SET FLAGGER OFF (or ALTER SESSION SET FLAGGER = OFF) command is successful or you exit SQL*Plus.

When FIPS flagging is enabled, SQL*Plus displays a warning for the CONNECT, DISCONNECT, and ALTER SESSION SET FLAGGER commands, even if they are successful.

SET FLU[SH] {ON | OFF}

Controls when output is sent to the user's display device. OFF enables the operating system to buffer output. ON disables buffering. FLUSH only affects display output, it does not affect spooled output.

Use OFF only when you run a script non-interactively (that is, when you do not need to see output and/or prompts until the script finishes running). The use of FLUSH OFF may improve performance by reducing the amount of program I/O.

SET HEA[DING] {ON | OFF}

Controls printing of column headings in reports.

ON prints column headings in reports; OFF suppresses column headings.

The SET HEADING OFF command does not affect the column width displayed, it only suppresses the printing of the column header itself.

Example

To suppress the display of column headings in a report, enter

SET HEADING OFF

If you then run a SQL SELECT command

SELECT LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE JOB_ID = 'AC_MGR';

the following output results:

	

Higgins 12000

To turn the display of column headings back on, enter

SET HEADING ON

SET HEADS[EP] { | c | ON | OFF}

Defines the character used as a line break in column headings.

The heading separator character cannot be alphanumeric or white space. You can use the heading separator character in the COLUMN command and in the old forms of BTITLE and TTITLE to divide a column heading or title onto more than one line. ON or OFF turns heading separation on or off. When heading separation is OFF, SQL*Plus prints a heading separator character like any other character. ON changes the value of c back to the default "|".

SET INSTANCE [instance_path | LOCAL]

Changes the default instance for your session to the specified instance path.

Using the SET INSTANCE command does not connect to a database. The default instance is used for commands when no instance is specified. Any commands preceding the first use of SET INSTANCE communicate with the default instance.

To reset the instance to the default value for your operating system, you can either enter SET INSTANCE with no instance_path or SET INSTANCE LOCAL.

Note, you can only change the instance when you are not currently connected to any instance. That is, you must first make sure that you have disconnected from the current instance, then set or change the instance, and reconnect to an instance in order for the new setting to be enabled.

This command may only be issued when Oracle Net is running. You can use any valid Oracle Net connect identifier as the specified instance path. See your operating system-specific Oracle Database documentation for a complete description of how your operating system specifies Oracle Net connect identifiers. The maximum length of the instance path is 64 characters.

Example

To set the default instance to "PROD1" enter

DISCONNECT
SET INSTANCE PROD1

To set the instance back to the default of local, enter

SET INSTANCE local

You must disconnect from any connected instances to change the instance.

SET LIN[ESIZE] {80 | n}

Sets the total number of characters that SQL*Plus displays on one line before beginning a new line.

It also controls the position of centered and right-aligned text in TTITLE, BTITLE, REPHEADER and REPFOOTER. Changing the linesize setting can affect text wrapping in output from the DESCRIBE command. DESCRIBE output columns are typically allocated a proportion of the linesize. Decreasing or increasing the linesize may give unexpected text wrapping in your display. You can define LINESIZE as a value from 1 to a maximum that is system dependent.

SET LOBOF[FSET] {1 | n}

Sets the starting position from which BLOB, BFILE, CLOB and NCLOB data is retrieved and displayed.

Example

To set the starting position from which a CLOB column's data is retrieved to the 22nd position, enter

SET LOBOFFSET 22

The CLOB data will wrap on your screen; SQL*Plus will not truncate until the 23rd character.

SET LOGSOURCE [pathname]

Specifies the location from which archive logs are retrieved during recovery.

The default value is set by the LOG_ARCHIVE_DEST initialization parameter in the Oracle Database initialization file, init.ora. Using the SET LOGSOURCE command without a pathname restores the default location.

Example

To set the default location of log files for recovery to the directory "/usr/oracle10/dbs/arch" enter

SET LOGSOURCE "/usr/oracle10/dbs/arch"
RECOVER DATABASE

SET LONG {80 | n}

Sets maximum width (in bytes) for displaying BLOB, BFILE, CLOB, LONG, NCLOB and XMLType values; and for copying LONG values.

Querying LONG columns requires enough local memory to store the amount of data specified by SET LONG, irrespective of the value of the SET LONGCHUNKSIZE command. This requirement does not apply when querying LOBs.

It is recommended that you do not create tables with LONG columns. LONG columns are supported only for backward compatibility. Use LOB columns (BLOB, BFILE, CLOB, NCLOB) instead. LOB columns have fewer restrictions than LONG columns and are still being enhanced.

The maximum value of n is 2,000,000,000 bytes. It is important to check that the memory required by your SET LONG command is available on your machine, for example:

SET LONG 2000000000

assumes that available RAM (random access memory) on the machine exceeds 2 gigabytes.

Example

To set the maximum number of bytes to fetch for displaying and copying LONG values, to 500, enter

SET LONG 500

The LONG data will wrap on your screen; SQL*Plus will not truncate until the 501st byte. The default for LONG is 80 bytes.

SET LONGC[HUNKSIZE] {80 | n}

Sets the size (in bytes) of the increments SQL*Plus uses to retrieve a BLOB, BFILE, CLOB, LONG, NCLOB or XMLType value.

LONGCHUNKSIZE is not used for object relational queries such as CLOB, or NCLOB.

Example

To set the size of the increments in which SQL*Plus retrieves LONG values to 100 bytes, enter

SET LONGCHUNKSIZE 100

The LONG data will be retrieved in increments of 100 bytes until the entire value is retrieved or the value of SET LONG is reached, whichever is the smaller.

SET MARK[UP] HTML [ON | OFF] [HEAD text] [BODY text] [TABLE text] [ENTMAP {ON | OFF}] [SPOOL {ON | OFF}] [PRE[FORMAT] {ON | OFF}]

Outputs HTML marked up text.

To be effective, SET MARKUP commands that change values in dynamic report output must occur before statements that produce query output. The first statement that produces query output triggers the output of information affected by SET MARKUP such as HEAD and TABLE settings. Subsequent SET MARKUP commands have no effect on the information already sent to the report.

SET MARKUP only specifies that SQL*Plus output will be HTML encoded. You must use SET MARKUP HTML ON SPOOL ON and the SQL*Plus SPOOL command to create and name a spool file, and to begin writing HMTL output to it. SET MARKUP has the same options and behavior as SQLPLUS -MARKUP.

See MARKUP Options for detailed information. For examples of usage, see SET MARK[UP] HTML [ON | OFF] [HEAD text] [BODY text] [TABLE text] [ENTMAP {ON | OFF}] [SPOOL {ON | OFF}] [PRE[FORMAT] {ON | OFF}], and Generating HTML Reports from SQL*Plus.

Use the SHOW MARKUP command to view the status of MARKUP options.

Example

The following is a script which uses the SET MARKUP HTML command to enable HTML marked up text to be spooled to a specified file:

	
Note:

The SET MARKUP example command is laid out for readability using line continuation characters "–" and spacing. Command options are concatenated in normal entry.

Use your favorite text editor to enter the commands necessary to set up the HTML options and the query you want for your report.

SET MARKUP HTML ON SPOOL ON HEAD "<TITLE>SQL*Plus Report</title> -
<STYLE TYPE='TEXT/CSS'><!--BODY {background: ffffc6} --></STYLE>"
SET ECHO OFF
SPOOL employee.htm
SELECT FIRST_NAME, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000;
SPOOL OFF
SET MARKUP HTML OFF
SET ECHO ON

As this script contains SQL*Plus commands, do not attempt to run it with / (slash) from the buffer because it will fail. Save the script in your text editor and use START to execute it:

START employee.sql

As well as writing the HTML spool file, employee.htm, the output is also displayed on screen because SET TERMOUT defaults to ON. You can view the spool file, employee.htm, in your web browser. It should appear something like the following:

[image: Description of markup.gif follows]

SET NEWP[AGE] {1 | n | NONE}

Sets the number of blank lines to be printed from the top of each page to the top title. A value of zero places a formfeed at the beginning of each page (including the first page) and clears the screen on most terminals. If you set NEWPAGE to NONE, SQL*Plus does not print a blank line or formfeed between the report pages.

SET NULL text

Sets the text displayed whenever a null value occurs in the result of a SQL SELECT command.

Use the NULL clause of the COLUMN command to override the setting of the NULL variable for a given column. The default output for a null is blank ("").

SET NUMF[ORMAT] format

Sets the default format for displaying numbers. See the FORMAT clause of the COLUMN command for number format descriptions. Enter a number format for format. To use the default field width and formatting model specified by SET NUMWIDTH, enter

SET NUMFORMAT ""

SET NUM[WIDTH] {10 | n}

Sets the default width for displaying numbers. See the FORMAT clause of the COLUMN command for number format descriptions.

COLUMN FORMAT settings take precedence over SET NUMFORMAT settings, which take precedence over SET NUMWIDTH settings.

SET PAGES[IZE] {14 | n}

Sets the number of lines on each page of output. You can set PAGESIZE to zero to suppress all headings, page breaks, titles, the initial blank line, and other formatting information.

SET PAU[SE] {ON | OFF | text}

Enables you to control scrolling of your terminal when running reports. You need to first, SET PAUSE text, and then SET PAUSE ON if you want text to appear each time SQL*Plus pauses.

SET PAUSE ON pauses output at the beginning of each PAGESIZE number of lines of report output. Press Return to view more output. SET PAUSE text specifies the text to be displayed each time SQL*Plus pauses. Multiple words in text must be enclosed in single quotes.

You can embed terminal-dependent escape sequences in the PAUSE command. These sequences allow you to create inverse video messages or other effects on terminals that support such characteristics.

SET RECSEP {WR[APPED] | EA[CH] | OFF}

RECSEP tells SQL*Plus where to make the record separation.

For example, if you set RECSEP to WRAPPED, SQL*Plus prints a record separator only after wrapped lines. If you set RECSEP to EACH, SQL*Plus prints a record separator following every row. If you set RECSEP to OFF, SQL*Plus does not print a record separator.

SET RECSEPCHAR { | c}

Defines the character to display or print to separate records.

A record separator consists of a single line of the RECSEPCHAR (record separating character) repeated LINESIZE times. The default is a single space.

SET SERVEROUT[PUT] {ON | OFF} [SIZE {n | UNL[IMITED]}] [FOR[MAT] {WRA[PPED] | WOR[D_WRAPPED] | TRU[NCATED]}]

Controls whether to display output (that is, DBMS_OUTPUT.PUT_LINE) of stored procedures or PL/SQL blocks in SQL*Plus. The DBMS_OUTPUT line length limit is 32767 bytes.

OFF suppresses the output of DBMS_OUTPUT.PUT_LINE. ON displays the output.

ON uses the SIZE and FORMAT of the previous SET SERVEROUTPUT ON SIZE n FORMAT f, or uses default values if no SET SERVEROUTPUT command was previously issued in the current connection.

SIZE sets the number of bytes of the output that can be buffered within the Oracle Database server. The default is UNLIMITED. n cannot be less than 2000 or greater than 1,000,000.

Resources are not pre-allocated when SERVEROUTPUT is set. As there is no performance penalty, use UNLIMITED unless you want to conserve physical memory.

Every server output line begins on a new output line.

When WRAPPED is enabled SQL*Plus wraps the server output within the line size specified by SET LINESIZE, beginning new lines when required.

When WORD_WRAPPED is enabled, each line of server output is wrapped within the line size specified by SET LINESIZE. Lines are broken on word boundaries. SQL*Plus left justifies each line, skipping all leading whitespace.

When TRUNCATED is enabled, each line of server output is truncated to the line size specified by SET LINESIZE.

For detailed information about using UTL_FILE and associated utilities, see the Oracle Database PL/SQL Packages and Types Reference .

For more information on DBMS_OUTPUT.PUT_LINE, see your Oracle Database Advanced Application Developer's Guide.

Example

To enable text display in a PL/SQL block using DBMS_OUTPUT.PUT_LINE, enter

SET SERVEROUTPUT ON

The following example shows what happens when you execute an anonymous procedure with SET SERVEROUTPUT ON:

BEGIN
 DBMS_OUTPUT.PUT_LINE('Task is complete');
END;
/

	

Task is complete.
PL/SQL procedure successfully completed.

The following example shows what happens when you create a trigger with SET SERVEROUTPUT ON:

CREATE TABLE SERVER_TAB (Letter CHAR);
CREATE TRIGGER SERVER_TRIG BEFORE INSERT OR UPDATE -
OR DELETE
ON SERVER_TAB
BEGIN
DBMS_OUTPUT.PUT_LINE('Task is complete.');
END;
/

	

Trigger Created.

INSERT INTO SERVER_TAB VALUES ('M');
DROP TABLE SERVER_TAB;
/* Remove SERVER_TAB from database */

	

Task is complete.
1 row created.

To set the output to WORD_WRAPPED, enter

SET SERVEROUTPUT ON FORMAT WORD_WRAPPED
SET LINESIZE 20
BEGIN
 DBMS_OUTPUT.PUT_LINE('If there is nothing left to do');
 DBMS_OUTPUT.PUT_LINE('shall we continue with plan B?');
END;
/

	

If there is nothing
left to do
shall we continue
with plan B?

To set the output to TRUNCATED, enter

SET SERVEROUTPUT ON FORMAT TRUNCATED
SET LINESIZE 20
BEGIN
 DBMS_OUTPUT.PUT_LINE('If there is nothing left to do');
 DBMS_OUTPUT.PUT_LINE('shall we continue with plan B?');
END;
/

	

If there is nothing
shall we continue wi

SET SHIFT[INOUT] {VIS[IBLE] | INV[ISIBLE]}

Enables correct alignment for terminals that display shift characters. The SET SHIFTINOUT command is useful for terminals which display shift characters together with data (for example, IBM 3270 terminals). You can only use this command with shift sensitive character sets (for example, JA16DBCS).

Use VISIBLE for terminals that display shift characters as a visible character (for example, a space or a colon). INVISIBLE is the opposite and does not display any shift characters.

Example

To enable the display of shift characters on a terminal that supports them, enter

SET SHIFTINOUT VISIBLE
SELECT LAST_NAME, JOB_ID FROM EMP_DETAILS_VIEW
WHERE SALARY > 12000;

	

LAST_NAME JOB_ID
---------- ----------
:JJOO: :AABBCC:
:AA:abc :DDEE:e

where ":" = visible shift character uppercase represents multibyte characters

lowercase represents singlebyte characters

SHUTDOWN

SHUTDOWN

Syntax

SHUTDOWN [ABORT | IMMEDIATE | NORMAL | TRANSACTIONAL [LOCAL]]

Shuts down a currently running Oracle Database instance, optionally closing and dismounting a database.

Shutdown commands that wait for current calls to complete or users to disconnect such as SHUTDOWN NORMAL and SHUTDOWN TRANSACTIONAL have a time limit of one hour that the SHUTDOWN command will wait. If all events blocking the shutdown have not occurred within one hour, the shutdown command cancels with the following message:

ORA-01013: user requested cancel of current operation

Terms

ABORT

Proceeds with the fastest possible shutdown of the database without waiting for calls to complete or users to disconnect.

Uncommitted transactions are not rolled back. Client SQL statements currently being processed are terminated. All users currently connected to the database are implicitly disconnected and the next database startup will require instance recovery.

You must use this option if a background process terminates abnormally.

IMMEDIATE

Does not wait for current calls to complete or users to disconnect from the database.

Further connects are prohibited. The database is closed and dismounted. The instance is shutdown and no instance recovery is required on the next database startup.

NORMAL

NORMAL is the default option which waits for users to disconnect from the database.

Further connects are prohibited. The database is closed and dismounted. The instance is shutdown and no instance recovery is required on the next database startup.

TRANSACTIONAL [LOCAL]

Performs a planned shutdown of an instance while allowing active transactions to complete first. It prevents clients from losing work without requiring all users to log off.

No client can start a new transaction on this instance. Attempting to start a new transaction results in disconnection. After completion of all transactions, any client still connected to the instance is disconnected. Now the instance shuts down just as it would if a SHUTDOWN IMMEDIATE statement was submitted. The next startup of the database will not require any instance recovery procedures.

The LOCAL mode specifies a transactional shutdown on the local instance only, so that it only waits on local transactions to complete, not all transactions. This is useful, for example, for scheduled outage maintenance.

Usage

SHUTDOWN with no arguments is equivalent to SHUTDOWN NORMAL.

You must be connected to a database as SYSOPER, or SYSDBA. You cannot connect through a multi-threaded server. See CONNECT for more information about connecting to a database.

Examples

To shutdown the database in normal mode, enter

SHUTDOWN

	

Database closed.
Database dismounted.
Oracle instance shut down.

START

START

Syntax

STA[RT] {url | file_name[.ext] } [arg...]

Runs the SQL*Plus statements in the specified script. The script can be called from the local file system or from a web server.

Terms

url

Specifies the Uniform Resource Locator of a script to run on the specified web server. SQL*Plus supports HTTP and FTP protocols, but not HTTPS. HTTP authentication in the form http://username:password@machine_name.domain... is not supported in this release.

file_name[.ext]

The script you wish to execute. The file can contain any command that you can run interactively.

If you do not specify an extension, SQL*Plus assumes the default command-file extension (normally SQL). See SET SUF[FIX] {SQL | text} for information on changing the default extension.

When you enter START file_name.ext, SQL*Plus searches for a file with the filename and extension you specify in the current default directory. If SQL*Plus does not find such a file, SQL*Plus will search a system-dependent path to find the file. Some operating systems may not support the path search. See the platform-specific Oracle documentation provided for your operating system for specific information related to your operating system environment.

arg ...

Data items you wish to pass to parameters in the script. If you enter one or more arguments, SQL*Plus substitutes the values into the parameters (&1, &2, and so forth) in the script. The first argument replaces each occurrence of &1, the second replaces each occurrence of &2, and so on.

The START command defines the parameters with the values of the arguments; if you START the script again in this session, you can enter new arguments or omit the arguments to use the old values.

See Defining Substitution Variables and Using Substitution Variables for more information on using parameters.

Usage

All previous settings like COLUMN command settings stay in effect when the script starts. If the script changes any setting, then this new value stays in effect after the script has finished

The @ (at sign) and @@ (double at sign) commands function similarly to START. Disabling the START command in the Product User Profile also disables the @ and @@ commands. See @ (at sign) and @@ (double at sign) for further information on these commands. See Disabling SQL*Plus, SQL, and PL/SQL Commands for more information.

The EXIT or QUIT command in a script terminates SQL*Plus.

Examples

A file named PROMOTE with the extension SQL, used to promote employees, might contain the following command:

SELECT FIRST_NAME, LAST_NAME, JOB_ID, SALARYFROM EMP_DETAILS_VIEWWHERE JOB_ID='&1' AND SALARY>&2;

To run this script, enter

START PROMOTE ST_MAN 7000

or if it is located on a web server, enter a command in the form:

START HTTP://machine_name.domain:port/PROMOTE.SQL ST_MAN 7000

Where machine_name.domain must be replaced by the host.domain name, and port by the port number used by the web server where the script is located.

The following command is executed:

SELECT LAST_NAME, LAST_NAME
FROM EMP_DETAILS_VIEW
WHERE JOB_ID='ST_MAN' AND SALARY>7000;

and the results displayed.

TTITLE

TTITLE

Syntax

TTI[TLE] [printspec [text | variable] ...] [ON | OFF]

where printspec represents one or more of the following clauses used to place and format the text:

BOLD

CE[NTER]

COL n

FORMAT text

LE[FT]

R[IGHT]

S[KIP] [n]

TAB n

Places and formats a specified title at the top of each report page. Enter TTITLE with no clauses to list its current definition. The old form of TTITLE is used if only a single word or string in quotes follows the TTITLE command.

See TTI[TLE] text (obsolete old form) for a description of the old form of TTITLE.

Terms

These terms and clauses also apply to the BTITLE command.

text

The title text. Enter text in single quotes if you want to place more than one word on a single line.

variable

A substitution variable or any of the following system-maintained values, SQL.LNO (the current line number), SQL.PNO (the current page number), SQL.RELEASE (the current Oracle Database release number), SQL.SQLCODE (the current error code), or SQL.USER (the current username).

To print one of these values, reference the appropriate variable in the title. You can format variable with the FORMAT clause.

SQL*Plus substitution variables (& variables) are expanded before TTITLE is executed. The resulting string is stored as the TTITLE text. During subsequent execution for each page of results, the expanded value of a variable may itself be interpreted as a substitution variable with unexpected results.

You can avoid this double substitution in a TTITLE command by not using the & prefix for variables that are to be substituted on each page of results. If you want to use a substitution variable to insert unchanging text in a TTITLE, enclose it in quotes so that it is only substituted once.

OFF

Turns the title off (suppresses its display) without affecting its definition.

ON

Turns the title on (restores its display). When you define a top title, SQL*Plus automatically sets TTITLE to ON.

COL n

Indents to column n of the current line (backward if column n has been passed). Here "column" means print position, not table column.

S[KIP] [n]

Skips to the start of a new line n times; if you omit n, one time; if you enter zero for n, backward to the start of the current line.

TAB n

Skips forward n columns (backward if you enter a negative value for n). "Column" in this context means print position, not table column.

LE[FT] | CE[NTER] | R[IGHT]

Left-align, center, and right-align data on the current line respectively. SQL*Plus aligns following data items as a group, up to the end of the printspec or the next LEFT, CENTER, RIGHT, or COL command. CENTER and RIGHT use the SET LINESIZE value to calculate the position of the data item that follows.

BOLD

Prints data in bold print. SQL*Plus represents bold print on your terminal by repeating the data on three consecutive lines. On some operating systems, SQL*Plus may instruct your printer to print bold text on three consecutive lines, instead of bold.

FORMAT text

Specifies a format model that determines the format of following data items, up to the next FORMAT clause or the end of the command. The format model must be a text constant such as A10 or $999. See the COLUMN command for more information on formatting and valid format models.

If the datatype of the format model does not match the datatype of a given data item, the FORMAT clause has no effect on that item.

If no appropriate FORMAT model precedes a given data item, SQL*Plus prints NUMBER values using the format specified by SET NUMFORMAT or, if you have not used SET NUMFORMAT, the default format. SQL*Plus prints DATE values according to the default format.

Enter TTITLE with no clauses to list the current TTITLE definition.

Usage

If you do not enter a printspec clause before the first occurrence of text, TTITLE left justifies the text. SQL*Plus interprets TTITLE in the new form if a valid printspec clause (LEFT, SKIP, COL, and so on) immediately follows the command name.

See COLUMN for information on printing column and DATE values in the top title.

You can use any number of constants and variables in a printspec. SQL*Plus displays them in the order you specify them, positioning and formatting each constant or variable as specified by the printspec clauses that precede it.

The length of the title you specify with TTITLE cannot exceed 2400 characters.

The continuation character (a hyphen) will not be recognized inside a single-quoted title text string. To be recognized, the continuation character must appear outside the quotes, as follows:

TTITLE CENTER 'Summary Report for' -
> 'the Month of May'

Examples

To define "Monthly Analysis" as the top title and to left-align it, to center the date, to right-align the page number with a three-digit format, and to display "Data in Thousands" in the center of the next line, enter

TTITLE LEFT 'Monthly Analysis' CENTER '01 Jan 2003' -
RIGHT 'Page:' FORMAT 999 SQL.PNO SKIP CENTER -
'Data in Thousands'

	

Monthly Analysis 01 Jan 2003 Page: 1
 Data in Thousands

To suppress the top title display without changing its definition, enter

TTITLE OFF

VARIABLE

VARIABLE

Syntax

VAR[IABLE] [variable [type]]

where type represents one of the following:

NUMBER

CHAR

CHAR (n [CHAR | BYTE])

NCHAR

NCHAR (n)

VARCHAR2 (n [CHAR | BYTE])

NVARCHAR2 (n)

BLOB

BFILE

CLOB

NCLOB

REFCURSOR

BINARY_FLOAT

BINARY_DOUBLE

Declares a bind variable that can be referenced in PL/SQL.

VARIABLE without arguments displays a list of all the variables declared in the session. VARIABLE followed only by a variable name lists that variable.

To free resources used by BLOB, BFILE, CLOB and NCLOB bind variables, you may need to manually free temporary LOBs with:

EXECUTE DBMS_LOB.FREETEMPORARY(:cv)

See Using Bind Variables for more information on bind variables. See your Oracle Database PL/SQL Language Reference for more information about PL/SQL.

Terms

variable

Represents the name of the bind variable you wish to create.

NUMBER

Creates a variable of type NUMBER with fixed length.

CHAR

Creates a variable of type CHAR (character) with length one.

CHAR (n[CHAR | BYTE])

Creates a variable of type CHAR with length n bytes or n characters. The maximum that n can be is 2000 bytes, and the minimum is 1 byte or 1 character. The maximum n for a CHAR variable with character semantics is determined by the number of bytes required to store each character for the chosen character set, with an upper limit of 2000 bytes. The length semantics are determined by the length qualifiers CHAR or BYTE, and if not explicitly stated, the value of the NLS_LENGTH_SEMANTICS environment variable is applied to the bind variable. Explicitly stating the length semantics at variable definition stage will always take precedence over the NLS_LENGTH_SEMANTICS setting.

NCHAR

Creates a variable of type NCHAR (national character) with length one.

NCHAR (n)

Creates a variable of type NCHAR with length n characters. The maximum that n can be is determined by the number of bytes required to store each character for the chosen national character set, with an upper limit of 2000 bytes. The only exception to this is when a SQL*Plus session is connected to a pre Oracle9i server, or the SQLPLUSCOMPATIBILITY system variable is set to a version less than 9.0.0. In this case the length n can be in bytes or characters depending on the chosen national character set, with the upper limit of 2000 bytes still retained.

VARCHAR2 (n[CHAR | BYTE])

Creates a variable of type VARCHAR2 with length of up to n bytes or n characters. The maximum that n can be is 4000 bytes, and the minimum is 1 byte or 1 character. The maximum n for a VARCHAR2 variable with character semantics is determined by the number of bytes required to store each character for the chosen character set, with an upper limit of 4000 bytes. The length semantics are determined by the length qualifiers CHAR or BYTE, and if not explicitly stated, the value of the NLS_LENGTH_SEMANTICS environment variable is applied to the bind variable. Explicitly stating the length semantics at variable definition stage will always take precedence over the NLS_LENGTH_SEMANTICS setting.

NVARCHAR2 (n)

Creates a variable of type NVARCHAR2 with length of up to n characters. The maximum that n can be is determined by the number of bytes required to store each character for the chosen national character set, with an upper limit of 4000 bytes. The only exception to this is when a SQL*Plus session is connected to a pre Oracle9i server, or the SQLPLUSCOMPATIBILITY system variable is set to a version less than 9.0.0. In this case the length n can be in bytes or characters depending on the chosen national character set, with the upper limit of 4000 bytes still retained.

BLOB

Creates a variable of type BLOB.

BFILE

Creates a variable of type BFILE.

CLOB

Creates a variable of type CLOB.

NCLOB

Creates a variable of type NCLOB.

REFCURSOR

Creates a variable of type REF CURSOR.

BINARY_FLOAT

Creates a variable of type BINARY_FLOAT. BINARY_FLOAT is a floating-point number that conforms substantially with the Institute for Electrical and Electronics Engineers (IEEE) Standard for Binary Floating-Point Arithmetic, IEEE Standard 754-1985.

BINARY_DOUBLE

Creates a variable of type BINARY_DOUBLE. BINARY_DOUBLE is a floating-point number that conforms substantially with the Institute for Electrical and Electronics Engineers (IEEE) Standard for Binary Floating-Point Arithmetic, IEEE Standard 754-1985.

Usage

Bind variables may be used as parameters to stored procedures, or may be directly referenced in anonymous PL/SQL blocks.

To display the value of a bind variable created with VARIABLE, use the PRINT command. See PRINT for more information.

To automatically display the value of a bind variable created with VARIABLE, use the SET AUTOPRINT command. See SET AUTOP[RINT] {ON | OFF} for more information.

Bind variables cannot be used in the COPY command or SQL statements, except in PL/SQL blocks. Instead, use substitution variables.

When you execute a VARIABLE ... BLOB, BFILE, CLOB or NCLOB command, SQL*Plus associates a LOB locator with the bind variable. The LOB locator is automatically populated when you execute a SELECT clob_column INTO :cv statement in a PL/SQL block. SQL*Plus closes the LOB locator when you exit SQL*Plus.

To free resources used by BLOB, BFILE, CLOB and NCLOB bind variables, you may need to manually free temporary LOBs with:

EXECUTE DBMS_LOB.FREETEMPORARY(:cv)

All temporary LOBs are freed when you exit SQL*Plus.

SQL*Plus SET commands such as SET LONG and SET LONGCHUNKSIZE and SET LOBOFFSET may be used to control the size of the buffer while PRINTing BLOB, BFILE, CLOB or NCLOB bind variables.

SQL*Plus REFCURSOR bind variables may be used to reference PL/SQL 2.3 or higher Cursor Variables, allowing PL/SQL output to be formatted by SQL*Plus. For more information on PL/SQL Cursor Variables, see your Oracle Database PL/SQL Language Reference.

When you execute a VARIABLE ... REFCURSOR command, SQL*Plus creates a cursor bind variable. The cursor is automatically opened by an OPEN ... FOR SELECT statement referencing the bind variable in a PL/SQL block. SQL*Plus closes the cursor after completing a PRINT statement for that bind variable, or on exit.

SQL*Plus formatting commands such as BREAK, COLUMN, COMPUTE and SET may be used to format the output from PRINTing a REFCURSOR.

A REFCURSOR bind variable may not be PRINTed more than once without re-executing the PL/SQL OPEN ... FOR statement.

Examples

The following example illustrates creating a bind variable, changing its value, and displaying its current value.

To create a bind variable, enter:

VARIABLE ret_val NUMBER

To change this bind variable in SQL*Plus, you must use a PL/SQL block:

BEGIN
 :ret_val:=4;
END;
/

	

PL/SQL procedure successfully completed.

To display the value of the bind variable in SQL*Plus, enter:

PRINT ret_val

	

 RET_VAL

 4

The following example illustrates creating a bind variable and then setting it to the value returned by a function:

VARIABLE id NUMBER
BEGIN
 :id := EMP_MANAGEMENT.HIRE
 ('BLAKE','MANAGER','KING',2990,'SALES');
END;
/

The value returned by the stored procedure is being placed in the bind variable, :id. It can be displayed with the PRINT command or used in subsequent PL/SQL subprograms.

The following example illustrates automatically displaying a bind variable:

SET AUTOPRINT ON
VARIABLE a REFCURSOR
BEGIN
 OPEN :a FOR SELECT LAST_NAME, CITY, DEPARTMENT_ID
 FROM EMP_DETAILS_VIEW
 WHERE SALARY > 12000
 ORDER BY DEPARTMENT_ID;
END;
/

	

PL/SQL procedure successfully completed.
LAST_NAME CITY DEPARTMENT_ID
------------------------- ------------------------------ -------------
Hartstein Toronto 20
Russell Oxford 80
Partners Oxford 80
King Seattle 90
Kochhar Seattle 90
De Haan Seattle 90

6 rows selected.

In the above example, there is no need to issue a PRINT command to display the variable.

The following example creates some variables:

VARIABLE id NUMBER
VARIABLE txt CHAR (20)
VARIABLE myvar REFCURSOR

Enter VARIABLE with no arguments to list the defined variables:

VARIABLE

	

variable id
datatype NUMBER

variable txt
datatype CHAR(20)

variable myvar
datatype REFCURSOR

The following example lists a single variable:

VARIABLE txt

	

variable txt
datatype CHAR(20)

The following example illustrates producing a report listing individual salaries and computing the departmental salary cost for employees who earn more than $12,000 per month:

VARIABLE rc REFCURSOR
BEGIN
 OPEN :rc FOR SELECT DEPARTMENT_NAME, LAST_NAME, SALARY
 FROM EMP_DETAILS_VIEW
 WHERE SALARY > 12000
 ORDER BY DEPARTMENT_NAME, LAST_NAME;
END;
/

	

PL/SQL procedure successfully completed.

SET PAGESIZE 100 FEEDBACK OFF
TTITLE LEFT '*** Departmental Salary Bill ***' SKIP 2
COLUMN SALARY FORMAT $999,990.99 HEADING 'Salary'
COLUMN DEPARTMENT_NAME HEADING 'Department'
COLUMN LAST_NAME HEADING 'Employee'
COMPUTE SUM LABEL 'Subtotal:' OF SALARY ON DEPARTMENT_NAME
COMPUTE SUM LABEL 'Total:' OF SALARY ON REPORT
BREAK ON DEPARTMENT_NAME SKIP 1 ON REPORT SKIP 1
PRINT rc

	

*** Departmental Salary Bill ***

DEPARTMENT_NAME Employee Salary
------------------------------ ------------------------- ------------
Executive De Haan $17,000.00
 King $24,000.00
 Kochhar $17,000.00
****************************** ------------
Subtotal: $58,000.00

Marketing Hartstein $13,000.00
****************************** ------------
Subtotal: $13,000.00

Sales Partners $13,500.00
 Russell $14,000.00
****************************** ------------
Subtotal: $27,500.00

Total: $98,500.00

The following example illustrates producing a report containing a CLOB column, and then displaying it with the SET LOBOFFSET command.

Assume you have already created a table named clob_tab which contains a column named clob_col of type CLOB. The clob_col contains the following data:

Remember to run the Departmental Salary Bill report each month. This report
contains confidential information.

To produce a report listing the data in the col_clob column, enter

VARIABLE T CLOB
BEGIN
 SELECT CLOB_COL INTO :T FROM CLOB_TAB;
END;
/

	

PL/SQL PROCEDURE SUCCESSFULLY COMPLETED

To print 200 characters from the column clob_col, enter

SET LINESIZE 70
SET LONG 200
PRINT T

	

T
--
Remember to run the Departmental Salary Bill report each month This r
eport contains confidential information.

To set the printing position to the 21st character, enter

SET LOBOFFSET 21
PRINT T

	

T
--
Departmental Salary Bill report each month This report contains confi
dential information.

For more information on creating CLOB columns, see your Oracle Database SQL Language Reference

WHENEVER OSERROR

WHENEVER OSERROR

Syntax

WHENEVER OSERROR {EXIT [SUCCESS | FAILURE | n | variable | :BindVariable] [COMMIT | ROLLBACK] | CONTINUE [COMMIT | ROLLBACK | NONE]}

Performs the specified action (exits SQL*Plus by default) if an operating system error occurs (such as a file writing error).

Terms

[SUCCESS | FAILURE | n | variable | :BindVariable]

Directs SQL*Plus to perform the specified action as soon as an operating system error is detected. You can also specify that SQL*Plus return a success or failure code, the operating system failure code, or a number or variable of your choice.

EXIT [SUCCESS | FAILURE | n | variable | :BindVariable]

Directs SQL*Plus to exit as soon as an operating system error is detected. You can also specify that SQL*Plus return a success or failure code, the operating system failure code, or a number or variable of your choice. See EXIT for more information.

CONTINUE

Turns off the EXIT option.

COMMIT

Directs SQL*Plus to execute a COMMIT before exiting or continuing and save pending changes to the database.

ROLLBACK

Directs SQL*Plus to execute a ROLLBACK before exiting or continuing and abandon pending changes to the database.

NONE

Directs SQL*Plus to take no action before continuing.

Usage

If you do not enter the WHENEVER OSERROR command, the default behavior of SQL*Plus is to continue and take no action when an operating system error occurs.

If you do not enter the WHENEVER SQLERROR command, the default behavior of SQL*Plus is to continue and take no action when a SQL error occurs.

Examples

If a failure occurs when reading from the output file, the commands in the following script cause SQL*Plus to exit and COMMIT any pending changes:

WHENEVER OSERROR EXIT
START no_such_file

	

OS Message: No such file or directory
Disconnected from Oracle......

SQL*Plus Error Messages

13 SQL*Plus Error Messages

This appendix lists error messages with prefixes SP2- and CPY- generated by SQL*Plus:

	
SQL*Plus Error Messages

	
COPY Command Messages

For error messages with prefixes such as ORA-, TNS- and PLS- generated by Oracle Database, see the Oracle Database Error Messages guide.

SQL*Plus Error Messages

	 SP2-0002 ACCEPT statement must specify a variable name
	
Cause: Required variable name was missing after the ACCEPT command.

	
Action: Re-enter the ACCEPT command with a variable argument to store the input value.

	SP2-0003 Ill-formed ACCEPT command starting as command_string
	
Cause: An invalid option was used in the ACCEPT command.

	
Action: Check the syntax of the ACCEPT command for the correct option.

	SP2-0004 Nothing to append
	
Cause: There was no specified text entered after the APPEND command.

	
Action: Re-enter the APPEND command with the specified text.

	SP2-0006 not enough room to format computations
	
Cause: Unable to allocate memory to format computations.

	
Action: Free up additional memory by: closing applications not required; reducing the size of the command, or statement; or by recoding the query to select fewer records.

	SP2-0015 no break(s) defined
	
Cause: There was no break defined.

	
Action: Define a break. Check the syntax of the BREAK command for the correct options.

	SP2-0016 break specification must start with ON/BY or ACROSS keyword
	
Cause: An invalid option was used in the BREAK command.

	
Action: Check the syntax of the BREAK command for the correct options.

	SP2-0017 missing column name after keyword_name keyword
	
Cause: There was no column name after the specified keyword.

	
Action: Enter a column name after the specified keyword.

	SP2-0019 invalid numeric argument to option_name option
	
Cause: An invalid numeric argument was used in the specified option.

	
Action: Correct the argument and try again.

	SP2-0020 no storage available for column_name
	
Cause: An error has occurred. SQL*Plus was unable to allocate memory for a BREAK command.

	
Action: Allocate more memory by closing some applications.

	SP2-0022 cannot allocate space to modify the buffer_name buffer variable
	
Cause: An internal error occurred.

	
Action: Free up additional memory by: closing applications not required; reducing the size of the command, or statement; or by recoding the query to select fewer records.

	SP2-0023 String not found
	
Cause: The search string specified was not found.

	
Action: Check the search string to make sure that it is valid.

	SP2-0024 Nothing to change
	
Cause: There was nothing in the SQL buffer when using the CHANGE command.

	
Action: Make sure the SQL buffer is not empty before using the CHANGE command.

	SP2-0025 Invalid change string
	
Cause: An invalid option was used in the CHANGE command.

	
Action: Check the syntax of the CHANGE command for the correct options.

	SP2-0026 No lines to delete
	
Cause: There was nothing in the SQL buffer when using the DEL command.

	
Action: Make sure the SQL buffer is not empty before using the DEL command.

	SP2-0027 Input is too long (> max_characters characters) - line ignored
	
Cause: The input value specified was too long.

	
Action: Re-enter with fewer characters.

	SP2-0029 command buffer space exhausted
	
Cause: A large SQL or PL/SQL script is being executed from SQL*Plus.

	
Action: Reduce the size of the SQL statement or PL/SQL block by one of the following:
	
Remove extra white space and comments.

	
Re-code to use fewer commands and/or shorter variable names.

	
Place sections of the block into stored (or packaged) procedures, and then call these procedures from the block.

	SP2-0030 no room for another line
	
Cause: The maximum number of lines in a SQL statement or PL/SQL block has been exceeded.

	
Action: Reduce the number of lines and try again.

	SP2-0038 Command too long. (max_characters characters)
	
Cause: The specified command entered was too long.

	
Action: Check the command syntax for the limitation.

	SP2-0039 command-line overflow while substituting into command_name
	
Cause: The maximum length of the command line has been exceeded.

	
Action: Reduce the length of the data in the substitution variables used in the command.

	SP2-0042 unknown command command_name - rest of line ignored
	
Cause: The command entered was not valid.

	
Action: Check the syntax of the command you used for the correct options.

	SP2-0044 For a list of known commands enter HELP and to leave enter EXIT
	
Cause: An unknown command was entered.

	
Action: Check the syntax of the command you used for the correct options.

	SP2-0045 no column_name defined
	
Cause: No columns have been defined.

	
Action: No action required.

	SP2-0046 column_name not defined
	
Cause: The column name specified was not defined.

	
Action: Retry with a valid column name.

	SP2-0047 Invalid number for option_name option
	
Cause: An invalid number was used for this option.

	
Action: Re-try the operation with a valid number.

	SP2-0052 like column_name, column_name not defined
	
Cause: The column which the format is based on was not defined.

	
Action: Use the COLUMN command to make sure the column the format is based on is defined first.

	SP2-0054 no room to allocate definition_name definition. Ignored
	
Cause: Unable to allocate memory to process the COLUMN command.

	
Action: Free up additional memory by: closing applications not required; reducing the size of the command, or statement; or by recoding the query to select fewer records.

	SP2-0055 out of room while allocating portion of new definition_name. Old definition (if any) retained
	
Cause: Unable to allocate memory to store the new definition.

	
Action: Free up additional memory by: closing applications not required; reducing the size of the command, or statement; or by recoding the query to select fewer records.

	SP2-0080 no COMPUTES currently defined
	
Cause: No COMPUTE definition.

	
Action: Define a COMPUTE. Check the syntax of the COMPUTE command for the correct options.

	SP2-0081 maximum of number COMPUTE functions allowed at a time
	
Cause: The maximum number of COMPUTE functions has been exceeded.

	
Action: Reduce the number of COMPUTE functions.

	SP2-0082 no COMPUTE functions requested
	
Cause: No COMPUTE functions requested.

	
Action: No action required.

	SP2-0083 warning: COMPUTE option function_name specified number times
	
Cause: A label or a function was specified more than once.

	
Action: Remove the unnecessary labels or functions.

	SP2-0084 COMPUTE ON keyword specified already
	
Cause: The ON keyword was specified more than once.

	
Action: Specify the ON keyword once in the command.

	SP2-0085 COMPUTE OF keyword specified already
	
Cause: The OF keyword was specified more than once.

	
Action: Specify the OF keyword once in the command.

	SP2-0087 no room to allocate COMPUTE control block for column_name
	
Cause: Unable to allocate memory to process the COMPUTE command.

	
Action: Free up additional memory by: closing applications not required; reducing the size of the command, or statement; or by recoding the query to select fewer records.

	SP2-0088 missing keyword_name keyword. Usage: STORE {SET} filename[.ext] [CRE[ATE]|REP[LACE]|APP[END]]
	
Cause: Missing a keyword in the statement.

	
Action: Check the syntax of the command you used for the correct options, and use the keyword in the appropriate place.

	SP2-0092 missing columns for keyword_name keyword
	
Cause: The column name was not specified for the keyword.

	
Action: Specify the column name and try again.

	SP2-0096 no more room to allocate INTO variable variable_name
	
Cause: Unable to allocate memory to process the COMPUTE command.

	
Action: Free up additional memory by: closing applications not required; reducing the size of the command, or statement; or by recoding the query to select fewer records.

	SP2-0097 no storage to allocate ON column column_name
	
Cause: Unable to allocate memory to process the COMPUTE command.

	
Action: Free up additional memory by: closing applications not required; reducing the size of the command, or statement; or by recoding the query to select fewer records.

	SP2-0098 no storage to allocate COMPUTE block for column_name
	
Cause: Unable to allocate memory to process the COMPUTE command.

	
Action: Free up additional memory by: closing applications not required; reducing the size of the command, or statement; or by recoding the query to select fewer records.

	SP2-0103 Nothing in SQL buffer to run
	
Cause: Nothing was in the SQL buffer to run.

	
Action: Enter a valid SQL command. SQL*Plus commands are not stored in the SQL buffer.

	SP2-0105 Illegal, or missing, entity name
	
Cause: File name was not specified in the GET or SAVE commands.

	
Action: Specify a file name and try again.

	SP2-0107 Nothing to save
	
Cause: Nothing in the SQL buffer when attempting to save the content to a file.

	
Action: Enter a SQL command to save. SQL*Plus commands are not stored in the SQL buffer.

	SP2-0108 The filenames CREATE, REPLACE, APPEND, FILE and abbreviations may not be used
	
Cause: An attempt was made to enter a filename using the word FILE, or one of the command keywords CREATE, REPLACE, APPEND, or one of their abbreviations. The filename specified in the command was not permitted.

	
Action: Check the following command syntax and enter a valid filename:
command filename[.ext] [CR[EATE]|REP[LACE]|AP[PEND]]

where command can be SAVE, SPOOL or STORE SET

To use the command keywords CREATE, REPLACE, APPEND or one of their abbreviations as the filename, or to use the word FILE as the filename, you must enclose it in single quotes.

	SP2-0109 Cannot append to file file_name
	
Cause: An attempt was made to append the content of the SQL buffer to a file and the file could not be written. Possible causes:
	
An error was encountered when creating the destination file.

	
A directory name specified in the SAVE statement was not found.

	
A system error made it impossible to open the file.

	
Action: Take the following actions:
	
Check that the destination is valid and that there is sufficient space on the destination device.

	
Check the statement for a typing mistake in the directory name. Then issue the statement again after correcting the directory name.

	SP2-0110 Cannot create save file file_name
	
Cause: An attempt was made to save the content of the SQL buffer to a file and the file could not be written. Possible causes:
	
An error was encountered when creating the destination file.

	
A directory name specified in the SAVE statement was not found.

	
A system error made it impossible to open the file.

	
Action: Take the following actions:
	
Check that the destination is valid and that there is sufficient space on the destination device.

	
Check the statement for a typing mistake in the directory name. Then issue the statement again after correcting the directory name.

	SP2-0111 Cannot close save file file_name
	
Cause: The file was in use.

	
Action: Release the file from the other process.

	SP2-0116 Illegal SAVE command
	
Cause: An invalid option was used in the SAVE command.

	
Action: Check the syntax of the SAVE command for the correct options.

	SP2-0134 no symbols currently defined
	
Cause: No DEFINE symbols were defined.

	
Action: No action required.

	SP2-0135 Symbol symbol_name is UNDEFINED
	
Cause: The specified symbol was undefined.

	
Action: Re-enter the DEFINE command with an assignment clause or a valid symbol or variable name.

	SP2-0136 DEFINE requires an equal sign (=)
	
Cause: Expecting an equal sign after a symbol or variable name in the DEFINE command.

	
Action: Specify an equal sign after the symbol or variable name.

	SP2-0137 DEFINE requires a value following equal sign
	
Cause: There was no value for the variable or symbol. SQL*Plus expected a value to be assigned to a symbol or variable name after the equal sign.

	
Action: Specify a value for the symbol or variable.

	SP2-0138 no room to add substitution variable variable
	
Cause: Maximum number of variables that can be defined in a SQL*Plus session was exceeded.

	
Action: UNDEFINE any unused variables to make room for this variable and re-run the command.

	SP2-0146 Unable to allocate dynamic space needed (number_of_bytes bytes) - exiting
	
Cause: An internal error occurred.

	
Action: Note the message and number, and contact the System Administrator.

	SP2-0152 ORACLE may not be functioning properly
	
Cause: Unable to initialize a session to the Oracle instance.

	
Action: Make a note of the message and the number, then contact the Database Administrator.

	SP2-0157 unable to CONNECT to ORACLE after 3 attempts, exiting SQL*Plus
	
Cause: Unable to connect to Oracle after three attempts.

	
Action: Validate login details and re-try.

	SP2-0158 unknown command_name option "option_name"
	
Cause: An invalid option was specified for the given command.

	
Action: Check the syntax of the command you used for the correct options.

	SP2-0160 Unable to open file_name
	
Cause: Possible causes:
	
The file was not found under the specified name in the specified location.

	
File lacked the necessary privileges to open the file.

	
A system error made it impossible to open the file.

	
Action: Take the following actions:
	
Make sure the file name specified is stored in the appropriate directory.

	
Make sure that the file has the privileges necessary for access. If it does not then change privileges accordingly.

	
Consult operating system documentation or contact the System Administrator.

	SP2-0161 line line_number truncated
	
Cause: The line in the file was too long.

	
Action: No action required or reduce the length of the line.

	SP2-0162 unable to close file_name
	
Cause: Unable to close the specified file as it was being used.

	
Action: Release the file from the other process.

	SP2-0171 HELP system not available
	
Cause: Command-line SQL*Plus help is not installed in this Oracle instance.

	
Action: Command-line SQL*Plus help is not installed in this Oracle instance. Use the sqlplus/admin/help/hlpbld.sql script to install HELP on this database:

sqlplus system @hlpbld.sql helpus.sql

	SP2-0172 No HELP matching this topic was found.
	
Cause: There is no help information available for the specified command.

	
Action: Enter HELP INDEX for a list of topics.

	SP2-0176 Option ? Is invalid
	
Cause: The option ? is not valid in this command.

	
Action: Check the syntax of the command you used for the correct options.

	SP2-0187 error in variable assignment
	
Cause: The assignment for the specified variable was incorrect.

	
Action: Check the syntax of the ACCEPT command for the correct options.

	SP2-0223 No lines in buffer_name buffer
	
Cause: There are no lines stored in the buffer.

	
Action: Enter SQL statements into the buffer.

	SP2-0224 invalid starting line number
	
Cause: The line number specified was incorrect.

	
Action: Check that the line number is correct and try again.

	SP2-0225 invalid ending line number
	
Cause: The line number specified was incorrect.

	
Action: Check that the line number is correct and try again.

	SP2-0226 Invalid line number current_line_number
	
Cause: Invalid line number was specified.

	
Action: Re-enter with a valid line number.

	SP2-0232 Input too long. Must be less than number_of_characters characters
	
Cause: The input value was too long.

	
Action: Reduce the size of the value and re-enter.

	SP2-0233 Unable to obtain userid after number_of_attempts attempts. Retry command
	
Cause: SQL*Plus was unable to login after three attempts.

	
Action: Make sure the userid and password is correct and try again.

	SP2-0240 Enter value for variable_name:
	
Cause: SQL*Plus was unable to find a value for a substitution variable.

	
Action: Enter a value for the substitution variable at the prompt.

	SP2-0241 No room for symbol symbol_name (not defined)
	
Cause: Unable to allocate memory for the symbol.

	
Action: Free up additional memory by: closing applications not required; reducing the size of the command, or statement; or by recoding the query to select fewer records.

	SP2-0244 Cannot issue a PRINT command within a PAGE break
	
Cause: The PRINT command is not allowed within a PAGE break.

	
Action: Check the syntax of the PRINT command for the correct options.

	SP2-0245 Unable to allocate temporary storage for printing
	
Cause: Unable to allocate temporary storage for printing.

	
Action: Free up additional memory by: closing applications not required; reducing the size of the command, or statement; or by recoding the query to select fewer records.

	SP2-0246 Illegal FORMAT string column_ format_name
	
Cause: An invalid format was specified for the column.

	
Action: Specify a valid format for the column.

	SP2-0249 variable_name not a valid variable type for printing
	
Cause: The specified variable is not valid for printing.

	
Action: Check the variable type before re-typing the command.

	SP2-0253 data item line_number (data_item_name) will not fit on line
	
Cause: The current line size setting is too small to fit the specified data item on a line.

	
Action: Increase the line size so that the item can be displayed.

	SP2-0258 could not create variable variable_name for column column_name
	
Cause: The specified variable could not be created for column – internal error or out of memory.

	
Action: Check memory usage.

	SP2-0259 could not create variable variable_name for COMPUTE INTO
	
Cause: The specified variable could not be created.

	
Action: Check the syntax of the command you used for the correct options.

	SP2-0260 computation for column column_name not uniquely qualified. could be for table table_name or table_name. computation ignored.
	
Cause: The specified column was not uniquely qualified in the statement.

	
Action: Check the syntax of the command you used for the correct options.

	SP2-0262 no room to allocate CCBDEF pointer array
	
Cause: An internal memory error occurred.

	
Action: Free up additional memory by: closing applications not required; reducing the size of the command, or statement; or by recoding the query to select fewer records.

	SP2-0263 no room to allocate COMPUTE block for column_name ON page/report/column_name
	
Cause: Insufficient memory allocated to the COMPUTE block.

	
Action: Allocate more memory by closing other applications.

	SP2-0265 option_name must be set ON or OFF
	
Cause: An invalid SET option name was specified.

	
Action: Re-enter with either ON or OFF as one of the SET options.

	SP2-0266 internal error: buffer (buffer_size) smaller than l (buffer_limit)
	
Cause: An internal error occurred.

	
Action: Free up additional memory by: closing applications not required; reducing the size of the command, or statement; or by recoding the query to select fewer records.

	SP2-0267 option_name option parameter_number out of range (lower_range through upper_range)
	
Cause: A value for a parameter was out of the specified range.

	
Action: Check the limits of the parameter and enter a value that is within the range.

	SP2-0268 option_name option not a valid number
	
Cause: Non-numeric value (integer) was entered for a parameter.

	
Action: Enter a valid numeric value (integer).

	SP2-0271 variable_name is not a buffer variable
	
Cause: The specified variable was not defined as a buffer.

	
Action: Make sure that the buffer variable name is correct and try again.

	SP2-0272 character_name character cannot be alphanumeric or white-space
	
Cause: The specified character in the SET command cannot be alphanumeric or white-space.

	
Action: Check the syntax of the command you used for the correct options.

	SP2-0277 entered_value value not valid
	
Cause: The value entered was incorrect.

	
Action: Re-enter with a valid value.

	SP2-0281 option_name missing set option Usage: SET SHIFT[INOUT] [VIS[IBLE|INV[ISIBLE]]or Usage: SET MARKUP HTML [ON|OFF] [HEAD text] [BODY text] [TABLE text] [ENTMAP [ON|OFF]] [SPOOL [ON|OFF]] [PRE[FORMAT] [ON|OFF]][-M[ARKUP] \"HTML [ON|OFF] [HEAD text] [BODY text]
	
Cause: SET option was missing in the command.

	
Action: Check the syntax of the command you used for the correct options.

	SP2-0306 Invalid option Usage: CONN[ECT] [login] [AS {SYSDBA|SYSOPER}]Where <login> ::= <username>[/<password>][@<connect_string>] | /or Usage: CONN[ECT] username/password[@connect_identifier] [AS {SYSOPER|SYSDBA}]or: CONN[ECT] /[@connect_identifier] AS {SYSOPER|SYSDBA}
	
Cause: Invalid option was specified for the command.

	
Action: Check the syntax of the command you used for the correct options.

	SP2-0308 cannot close spool file
	
Cause: The file is currently being used.

	
Action: Release the file from the other process.

	SP2-0309 SQL*Plus command procedures may only be nested to a depth of number_of_nested_procedures
	
Cause: Maximum number of nested procedures or scripts was reached.

	
Action: Reduce the number of nested procedures or scripts.

	SP2-0310 unable to open file file_name
	
Cause: Unable to open the specified file.

	
Action: Check and make sure the file name is valid.

	SP2-0311 string expected but not found
	
Cause: SQL*Plus was expecting a string at the end of the command, but could not find it.

	
Action: Retry the command with a valid string. Check the syntax of the command you used for the correct options.

	SP2-0312 missing terminating quote (quote_type)
	
Cause: The DESCRIBE command schema or object did not have a terminating quote.

	
Action: Close the opening quotation mark with the corresponding closing quotation mark.

	SP2-0317 expected symbol name is missing
	
Cause: SQL*Plus was expecting a symbol, but it was not specified.

	
Action: Check the syntax of the command you used for the correct options.

	SP2-0318 symbol name beginning variable_name.. is too long (max max_name_length) Illegal variable name variable_name
	
Cause: Specified variable name exceeded the maximum name length.

	
Action: Reduce the size of the symbol name and re-enter.

	SP2-0323 no room to add timing element - request denied
	
Cause: Unable to allocate memory while trying to run the TIMING command.

	
Action: Free up additional memory by: closing applications not required; reducing the size of the command, or statement; or by recoding the query to select fewer records.

	SP2-0324 operating system timing error error_option_number - request denied
	
Cause: The TIMING command failed to initialize due to a possible operating system error.

	
Action: Resolve the operating system error and try again.

	SP2-0325 no timing elements to option_name
	
Cause: There are no timers recorded to SHOW or STOP.

	
Action: Check that timers were created with the TIMING command.

	SP2-0328 no room to allocate title buffer
	
Cause: Unable to allocate memory while trying to run the TTITLE or BTITLE command.

	
Action: Free up additional memory by: closing applications not required; reducing the size of the command, or statement; or by recoding the query to select fewer records.

	SP2-0331 SPOOL OUT disabled
	
Cause: An attempt was made to use SPOOL OUT where it is not supported.

	
Action: No action possible. SPOOL OUT has been disabled possibly because of lack of printing support at the operating system level.

	SP2-0332 Cannot create spool file
	
Cause: Possible causes:
	
Insufficient privileges to create a file.

	
A system error made it impossible to create a file.

	
Action: Take the following actions:
	
Change privileges to allow creation of the file.

	
Consult the operating system documentation or contact the System Administrator.

	SP2-0333 Illegal spool file name: spool_name (bad character: 'character_name')
	
Cause: An invalid filename was entered in the SPOOL command.

	
Action: Correct the filename and re-enter.

	SP2-0341 line overflow during variable substitution (>number_of_characters characters at line line_number)
	
Cause: The maximum number of characters was exceeded in the SQL buffer after the substitution variable was expanded.

	
Action: Reduce the length in the substitution variable and try again.

	SP2-0357 Out of temporary storage
	
Cause: Unable to allocate memory while trying to run the command.

	
Action: Free up additional memory by: closing applications not required; reducing the size of the command, or statement; or by recoding the query to select fewer records.

	SP2-0359 memory exhausted
	
Cause: Unable to allocate memory while trying to run the command.

	
Action: Free up additional memory by: closing applications not required; reducing the size of the command, or statement; or by recoding the query to select fewer records.

	SP2-0381 command_name is not available
	
Cause: The command specified is not implemented.

	
Action: Use the appropriate SQL*Plus command. See the documentation for a list of commands and their correct syntax.

	SP2-0382 The command_name command is not available
	
Cause: The command was not recognized, or it is disabled. This occurs if it is a command that does not have any meaning in SQL*Plus (such as a SQL buffer editing command), or it is not allowed for security reasons.

	
Action: Remove the command from the script. See the documentation for a list of commands and their correct syntax.

	SP2-0392 Cannot UNDEFINE the current edit buffer
	
Cause: The current edit buffer cannot be undefined.

	
Action: No action required.

	SP2-0394 Illegal buffer name: buffer_name
	
Cause: A buffer name contained an illegal character, for example hyphen (-).

	
Action: Correct and remove the illegal character from the buffer name.

	SP2-0423 Illegal GET command
	
Cause: An invalid option was used in the GET command.

	
Action: Check the syntax of the command you used for the correct options.

	SP2-0425 value is not a valid datatype
	
Cause: The value entered in the ACCEPT command was not valid for the specified datatype.

	
Action: Enter a valid value, e.g. 123 for a NUMBER variable.

	SP2-0426 Input truncated to number_of_characters characters
	
Cause: There was no carriage return at the last line of the SQL statement.

	
Action: Insert a carriage return.

	SP2-0495 FROM and TO clauses both missing; specify at least one
	
Cause: The FROM and TO clauses were missing from the COPY statement.

	
Action: Specify at least one clause. Check the syntax of the command you used for the correct options.

	SP2-0496 Misplaced FROM clause
	
Cause: The FROM keyword was in the wrong position in the COPY command.

	
Action: Check the syntax of the COPY command for the correct options.

	SP2-0497 Misplaced TO clause
	
Cause: The TO keyword was in the wrong position in the COPY command.

	
Action: Check the syntax of the COPY command for the correct options.

	SP2-0498 Missing parenthetical column list or USING keyword
	
Cause: A parenthetical list was missing in the column list or the USING keyword is missing in the COPY command.

	
Action: Check the syntax of the COPY command for the correct options.

	SP2-0499 Misplaced APPEND keyword
	
Cause: The APPEND keyword was in the wrong position in the COPY command.

	
Action: Check the syntax of the COPY command for the correct options.

	SP2-0501 Error in SELECT statement: Oracle_database_error_message
	
Cause: Invalid SELECT statement found in the COPY command.

	
Action: Check the syntax of the COPY command for the correct options.

	SP2-0513 Misplaced CREATE keyword
	
Cause: The CREATE keyword was in the wrong position in the COPY command.

	
Action: Check the syntax of the COPY command for the correct options.

	SP2-0514 Misplaced REPLACE keyword
	
Cause: The REPLACE keyword was in the wrong position in the COPY command.

	
Action: Check the syntax of the COPY command for the correct options.

	SP2-0515 Maximum number of columns (max_num_columns) exceeded
	
Cause: The maximum number of columns was exceeded in the COPY command.

	
Action: Reduce the number of columns and try again.

	SP2-0516 Invalid command_name name NULL encountered
	
Cause: An invalid or null column name was specified in either the COLUMN or the ATTRIBUTE command.

	
Action: Retry the operation with a valid column name.

	SP2-0517 Missing comma or right parenthesis
	
Cause: A missing right parenthesis was identified in the COPY command.

	
Action: Retry the operation with a comma or right parenthesis.

	SP2-0518 Missing USING clause
	
Cause: USING keyword is missing in the USING clause of the COPY command.

	
Action: Specify the USING keyword before the USING clause of the COPY command.

	SP2-0519 FROM string missing Oracle Net @database specification
	
Cause: Missing connect string for the database that contains the data to be copied from in the COPY command.

	
Action: Include a FROM clause to specify a source database other than the default.

	SP2-0520 TO string missing Oracle Net @database specification
	
Cause: Missing connect string for the database containing the destination table in the COPY command.

	
Action: Include a TO clause to specify a source database other than the default.

	SP2-0526 Misplaced INSERT keyword
	
Cause: The INSERT keyword was misplaced in the COPY command.

	
Action: Check the syntax of the COPY command for the correct options.

	SP2-0540 File file_name already exists. Use SAVE filename[.ext] REPLACE
	
Cause: The file specified already exists.

	
Action: Use the REPLACE option to overwrite the existing file, or specify another file name.

	SP2-0544 Command command_name disabled in Product User Profile
	
Cause: An attempt was made to use a command that has been explicitly disabled for your schema in this database.

	
Action: Ask your System Administrator why the Product User Profile (PUP) table has been set to disable this command for your schema.

	SP2-0545 SET command requires an argument
	
Cause: An argument was missing in the SET command.

	
Action: Check the syntax of the SET command for the correct options.

	SP2-0546 User requested Interrupt or EOF detected
	
Cause: Either end-of-file was reached, or CTRL-C was entered to cancel the process.

	
Action: No action required.

	SP2-0547 option_name option value out of range (lower_value through upper_value)
	
Cause: The specified SET option was out of range.

	
Action: Enter a value within the SET option range and re-try the SET command.

	SP2-0548 Usage: VAR[IABLE] [<variable> [NUMBER | CHAR | CHAR (n [CHAR|BYTE]) |VARCHAR2 (n [CHAR|BYTE]) | NCHAR | NCHAR (n) |NVARCHAR2 (n) | CLOB | NCLOB | REFCURSOR |BINARY_FLOAT | BINARY_DOUBLE]]
	
Cause: Incorrect syntax for the VARIABLE command was entered.

	
Action: Check the syntax of the VARIABLE command for the correct usage.

	SP2-0549 Usage: PRINT [:<variable> ...]
	
Cause: Incorrect syntax for the PRINT command was entered.

	
Action: Check the syntax of the PRINT command for the correct usage.

	SP2-0550 Usage: SHOW ERRORS [{FUNCTION | PROCEDURE | PACKAGE | PACKAGE BODY | TRIGGER | VIEW | TYPE | TYPE BODY | DIMENSION| JAVA SOURCE | JAVA CLASS} [schema.]name]
	
Cause: Incorrect syntax for the SHOW ERRORS command was entered.

	
Action: Check the syntax of the SHOW ERRORS command for the correct options.

	SP2-0552 Bind variable variable_name not declared
	
Cause: The specified bind variable was not declared.

	
Action: Run the VARIABLE command to check that the bind variables you used in your SQL statement exist. Before running a SQL statement with bind variables, you must use the VARIABLE command to declare each variable.

	SP2-0556 Invalid file name Usage: STORE {SET} filename[.ext] [CRE[ATE]|REP[LACE]|APP[END]]or Unable to complete EDIT command
	
Cause: Missing file name or an invalid file name specified.

	
Action: Make sure that a file name was specified.

	SP2-0559 Usage: EXEC[UTE] statement
	
Cause: Incorrect syntax for the EXECUTE command was entered.

	
Action: Check the syntax of the EXECUTE command for the correct usage.

	SP2-0560 Usage: DESCRIBE [schema.]object[.subobject|@db_link] [column]
	
Cause: Incorrect syntax for the DESCRIBE command was entered.

	
Action: Check the syntax of the DESCRIBE command for the correct usage.

	SP2-0561 Object does not exist
	
Cause: The specified object you tried to DESCRIBE does not exist in the database.

	
Action: Retry the command with a valid object name.

	SP2-0562 Object does not exist in package
	
Cause: The specified object you tried to DESCRIBE does not exist in the package.

	
Action: Check and make sure that the object name is correct.

	SP2-0564 Object object_name is INVALID, it may not be described
	
Cause: The specified object you tried to DESCRIBE is invalid.

	
Action: Re-validate the object.

	SP2-0565 Illegal identifier
	
Cause: An invalid character was used in the DESCRIBE command.

	
Action: Correct the character and try again.

	SP2-0566 Illegal sub-object specification
	
Cause: Invalid sub-object specification in the DESCRIBE command.

	
Action: Correct the subject specification and try again.

	SP2-0567 Illegal column specification for PL/SQL object
	
Cause: A column was described within an object in the DESCRIBE command.

	
Action: Remove the column specification in the DESCRIBE command and try again.

	SP2-0568 No bind variables declared
	
Cause: There are no bind variables declared.

	
Action: No action required.

	SP2-0570 Usage: SET SERVEROUTPUT {ON | OFF} [SIZE {n | UNL[IMITED]}] [FOR[MAT] {WRA[PPED] | WOR[D_WRAPPED] | TRU[NCATED] }]
	
Cause: An invalid option was used in the SET SERVEROUTPUT command.

	
Action: Specify a valid option.

	SP2-0575 Use of Oracle SQL feature not in SQL92 Entry |Intermediate|Full Level
	
Cause: A SQL statement was attempted that is not FIPS compliant. May also occur if a SQL*Plus feature, for example SET AUTOTRACE, that uses Oracle-specific SQL was turned on when you are using FIPS flagging.

	
Action: Use SET FLAGGER, and turn FIPS compliance checking OFF, or rewrite the statement.

	SP2-0577 Usage: SET FLAGGER {OFF | ENTRY | INTERMEDIATE | FULL}
	
Cause: An invalid option was specified in the SET FLAGGER command.

	
Action: Specify a valid option.

	SP2-0581 Object object_name is a package; use 'DESCRIBE <package>.<procedure>'
	
Cause: A attempt was made to describe a package as stand-alone, no sub-object such as a procedure was supplied.

	
Action: Use the DESCRIBE command to describe a sub-object within a package.

	SP2-0582 Usage: {EXIT | QUIT} [SUCCESS | FAILURE | WARNING | n |<variable> | :<bindvariable>] [COMMIT | ROLLBACK]
	
Cause: An option to EXIT was invalid in SQL*Plus.

	
Action: Specify a valid option.

	SP2-0584 EXIT variable variable_name was non-numeric
	
Cause: The specified EXIT variable is non-numeric.

	
Action: Check the syntax of the EXIT command for the correct usage.

	SP2-0590 A COMPUTE function must appear before each LABEL keyword
	
Cause: The function COMPUTE must appear before each LABEL keyword.

	
Action: Check the syntax of the COMPUTE command for the correct usage.

	SP2-0591 Unable to allocate dynamic space needed (number_of_bytes bytes) Try reducing ARRAYSIZE or the number of columns selected
	
Cause: Unable to allocate memory to process the command.

	
Action: Free up additional memory by: closing applications not required; reducing the size of the command, or statement; or by recoding the query to select fewer records.

	SP2-0593 Label text must follow the LABEL keyword
	
Cause: Missing label text about the LABEL keyword in the COMPUTE command.

	
Action: Check the syntax of the COMPUTE command for the correct options.

	SP2-0594 Usage: SET COLSEP {" " | text}
	
Cause: An invalid option was used in the SET COLSEP command.

	
Action: Specify a valid option.

	SP2-0596 Usage: SET AUTO[COMMIT] {OFF | ON | IMM[EDIATE] | n}
	
Cause: An invalid option was used in the SET AUTO[COMMIT] command.

	
Action: Check the syntax of the SET AUTOCOMMIT command for the correct options.

	SP2-0597 datatype _name is not a valid datatype _name format
	
Cause: The value entered in the ACCEPT command was not in the specified datatype.

	
Action: Correct the datatype and re-enter.

	SP2-0598 value_name does not match input format "format_name"
	
Cause: The value entered in the ACCEPT command was not in the specified format.

	
Action: Correct the format and try again.

	SP2-0599 Usage: SET EDITF[ILE] filename[.ext]
	
Cause: Required filename was missing after the SET EDITFILE command.

	
Action: Check the syntax of the SET EDITFILE command for the correct options.

	SP2-0603 Usage: Illegal STORE command. Usage: STORE {SET} filename[.ext] [CRE[ATE]|REP[LACE]|APP[END]]
	
Cause: An invalid option was used in the STORE command.

	
Action: Check the syntax of the STORE command for the correct options.

	SP2-0605 File file_name already exists. Use another name or STORE {SET} filename[.ext] REPLACE
	
Cause: The file specified in the STORE command already exists.

	
Action: Use the REPLACE option to overwrite the existing file, or specify another file name.

	SP2-0606 Cannot create file_name file
	
Cause: The STORE command was unable to create the specified file. There may be insufficient disk space, too many open files, or read-only protection on the output directory.

	
Action: Check that there is sufficient disk space and that the protection on the directory enables file creation.

	SP2-0607 Cannot close file_name file
	
Cause: The STORE command was unable to close the specified file. Another resource may have locked the file.

	
Action: Check that the file is not locked before closing it.

	SP2-0608 Object object_name is a remote object, cannot further describe
	
Cause: Unable to DESCRIBE the remote object.

	
Action: No action required.

	SP2-0609 Usage: SET AUTOT[RACE] {OFF | ON | TRACE[ONLY] } [EXP[LAIN]] [STAT[ISTICS]]
	
Cause: An invalid option was used in the SET AUTOTRACE command.

	
Action: Check the syntax of the SET AUTOTRACE command for the correct options.

	SP2-0610 Error initializing feature_name
	
Cause: Not enough memory to enable this feature.

	
Action: Free up additional memory by closing applications not required, or reduce the size of the command, statement or query output.

	SP2-0612 Error generating report_name report
	
Cause: Unable to generate the report using AUTOTRACE.

	
Action: Make a note of the message and the number, then contact the Database Administrator.

	SP2-0613 Unable to verify PLAN_TABLE format or existence Error enabling autotrace_report report
	
Cause: An AUTOTRACE command was issued by a user with insufficient privileges, or who did not have a PLAN_TABLE.

	
Action: Make sure the user has been granted the PLUSTRACE role, and that a PLAN_TABLE has been created for the user.

	SP2-0614 Server version too low for this feature
	
Cause: The current version of the Oracle Server is too low for this feature.

	
Action: Use a higher version of the Oracle Server.

	SP2-0617 Cannot construct a unique STATEMENT_ID
	
Cause: Unable to construct a unique statement ID in AUTOTRACE.

	
Action: Check that AUTOTRACE is configured and that you have the PLUSTRACE role enabled.

	SP2-0618 Cannot find the Session Identifier. Check PLUSTRACE role is enabled Error enabling autotrace_report report
	
Cause: Unable to find the session identifier.

	
Action: Check that the PLUSTRACE role has been granted.

	SP2-0619 Error while connecting
	
Cause: An error occurred while AUTOTRACE attempted to make a second connection to the database instance.

	
Action: Check that the database limit on number of active sessions has not been exceeded.

	SP2-0620 Error while disconnecting
	
Cause: An error occurred while AUTOTRACE attempted to disconnect from the database instance.

	
Action: Check that the database is still available.

	SP2-0621 Error ORA -error_number while gathering statistics
	
Cause: No data was found in the PLAN_TABLE while gathering statistics using AUTOTRACE.

	
Action: Refer to the Oracle Database Error Messages for the specified ORA error message.

	SP2-0622 Starting line number must be less than ending line number
	
Cause: The starting line number specified is larger than the ending number.

	
Action: Re-enter the starting line number with a smaller line number.

	SP2-0623 Error accessing PRODUCT_USER_PROFILE. Warning: Product user profile information not loaded! You may need to run PUPBLD.SQL as SYSTEM
	
Cause: The PRODUCT_USER_PROFILE table has not been built in the SYSTEM account.

	
Action: The exact format of the file extension and location of the file are system dependent. See the SQL*Plus installation guide provided for your operating system. The script must be run as user SYSTEM.

	SP2-0625 Error printing variable variable_name
	
Cause: Error encountered while printing the specified variable.

	
Action: Check that the specified variable is correct and try again.

	SP2-0626 Error accessing package DBMS_APPLICATION_INFO You may need to install the Oracle Procedural option SET APPINFO requires Oracle Server Release 7.2 or later
	
Cause: This message is followed by a successful login to the Oracle Server. The DBMS_APPLICATION package is used to maintain on-line information about a particular application logged onto Oracle. SET APPINFO could not be initialized.

	
Action: This package is created during the running of the CATPROC.SQL and should be available on all databases from Oracle 7.2. Check that your database is correctly installed.

	SP2-0631 String beginning string_name is too long. Maximum size is 1 characteror Maximum size is string_length characters
	
Cause: The string specified was too long.

	
Action: Reduce the size of the specified string and re-try the operation.

	SP2-0640 Not connected.
	
Cause: The PASSWORD command was issued when there was no connection to the Oracle instance.

	
Action: Connect to the Oracle database before re-issuing the PASSWORD command.

	SP2-0641 command_name requires connection to server
	
Cause: SQL*Plus was unable to execute the command because there was no connection to a database.

	
Action: Connect to a database and re-try the operation.

	SP2-0642 SQL*Plus internal error state error_state context error_number. Unsafe to proceedor Unable to proceed
	
Cause: An internal error occurred.

	
Action: Make a note of the message, then contact Oracle Support Services.

	SP2-0645 Operating System error occurred Unable to complete EDIT command
	
Cause: An operating system error occurred with the EDIT command.

	
Action: Check that the file was created successfully, and verify that the device you are writing to is still available.

	SP2-0650 New passwords do not match
	
Cause: The new passwords entered did not match.

	
Action: Re-issue the PASSWORD command and make sure that the new passwords are entered correctly.

	SP2-0659 Password unchanged
	
Cause: The PASSWORD command failed to change passwords because:
	
No passwords were given.

	
The new passwords did not match.

	
Action: Re-issue the PASSWORD command and make sure that the new passwords are entered correctly.

	SP2-0666 WARNING: SHIFTINOUT only affects shift sensitive character sets
	
Cause: The NLS character set used in this session does not contain shift sensitive characters. The SET SHIFTINOUT command is unnecessary.

	
Action: No action required.

	SP2-0667 Message file facility<lang>.msb not found
	
Cause: The SP1, SP2, or CPY message file could not be found. SQL*Plus cannot run.

	
Action: Check the Oracle platform specific documentation to make sure SQL*Plus is installed correctly. This may occur because the ORACLE_HOME environment variable or registry equivalent is not set to the location of the Oracle software. Make sure this value is set correctly. Check that the SQL*Plus binary message files exist in the SQL*Plus message directory, for example $ORACLE_HOME/sqlplus/mesg. Check the value of NLS_LANG environment variable or registry equivalent is correct.

	SP2-0668 Invalid variable name
	
Cause: An invalid character was specified as part of the variable name.

	
Action: Specify the variable with valid characters.

	SP2-0669 Valid characters are alphanumerics and '_'
	
Cause: An invalid character was specified as part of the variable name.

	
Action: Specify the variable with alphanumeric characters and '_'.

	SP2-0670 Internal number conversion failed
	
Cause: A conversion request could not be performed because the string contained alphanumeric characters.

	
Action: Make sure that the string only contains numeric digits.

	SP2-0675 COPY command not available
	
Cause: The COPY command is not available in this version of SQL*Plus.

	
Action: Make a note of the message and the number, then contact Oracle Support Services.

	SP2-0676 Bind variable length cannot exceed variable_length units_of_variable
	
Cause: The length of the bind variable datatype was exceeded.

	
Action: Reduce the length of the bind variable datatype.

	SP2-0678 Column or attribute type can not be displayed by SQL*Plus
	
Cause: The type specified is not supported.

	
Action: Rewrite the query to select the data with types that SQL*Plus supports.

	SP2-0685 The date entered_variable is invalid or format mismatched format
	
Cause: An invalid date was entered or does not match the format.

	
Action: Enter a valid date or a date in the required format.

	SP2-0686 Usage: DESCRIBE [schema.]object[@db_link]
	
Cause: An invalid option was used in the DESCRIBE command.

	
Action: Check the syntax of the DESCRIBE command for the correct options.

	SP2-0692 Usage: CONN[ECT] [logon] [AS {SYSDBA|SYSOPER}]Where <logon> ::= <username>[/<password>][@<connect_string>] | /
	
Cause: An invalid option was entered for the SQL*Plus CONNECT command.

	
Action: Check the syntax for the CONNECT command for the correct usage.

	SP2-0714 Invalid combination of STARTUP options
	
Cause: The specified options of the STARTUP command cannot be used simultaneously.

	
Action: Check the syntax of the STARTUP command for the correct usage.

	SP2-0715 Invalid combination of SHUTDOWN options
	
Cause: The specified options of the SHUTDOWN command cannot be used simultaneously.

	
Action: Check the syntax of the SHUTDOWN command for the correct usage.

	SP2-0716 Invalid combination of ARCHIVE LOG options
	
Cause: The specified options of the ARCHIVE LOG command cannot be used simultaneously.

	
Action: Check the syntax of the ARCHIVE LOG command for the correct usage.

	SP2-0717 Illegal SHUTDOWN option
	
Cause: An invalid option was used in the SHUTDOWN command.

	
Action: Check the syntax of the SHUTDOWN command for the correct options.

	SP2-0718 Illegal ARCHIVE LOG option
	
Cause: An invalid option was used in the ARCHIVE LOG command.

	
Action: Check the syntax of the ARCHIVE LOG command for the correct options.

	SP2-0728 Specify log: {<RET>=suggested | filename | AUTO | CANCEL}
	
Cause: This is a RECOVER DATABASE command prompt, prompting for the redo log files to be applied.

	
Action: Enter one of the redo log file options.

	SP2-0729 Cannot SET INSTANCE while connected to a database
	
Cause: There was a problem with the connection instance while issuing the SET INSTANCE command.

	
Action: Disconnect from the instance before re-issuing the command.

	SP2-0733 Invalid connect string
	
Cause: An invalid connect string was specified.

	
Action: Check that the connect string is correct.

	SP2-0734 Unknown command beginning command_name ... - rest of line ignored
	
Cause: The command entered was invalid.

	
Action: Check the syntax of the command you used for the correct options.

	SP2-0735 Unknown command_name option beginning option_name
	
Cause: An invalid option was specified for a given command.

	
Action: Check the syntax of the command you used for the correct options.

	SP2-0736 Command line overflow while substituting into line beginning string_name
	
Cause: The maximum length of the command line was exceeded.

	
Action: Reduce the length of the data in the substitution variables used in the command.

	SP2-0737 Usage: SET DESCRIBE [DEPTH {1|n|ALL}] [LINENUM {ON|OFF}] [INDENT {ON|OFF}]
	
Cause: An invalid option was used in the SET DESCRIBE command.

	
Action: Check the syntax of the SET DESCRIBE command for the correct options.

	SP2-0738 Restricted command command_name not available
	
Cause: For security reasons, the command was restricted by the -RESTRICT command-line option.

	
Action: Ask your Database Administrator why SQL*Plus should be run with a -RESTRICT option.

	SP2-0745 Usage: SET SQLPLUSCOMPAT[IBILITY] version.release.[update]
	
Cause: An invalid option was used in the SET SQLPLUSCOMPAT[IBLITY] command.

	
Action: Check the syntax of the SET SQLPLUSCOMPATIBLITY command for the correct options.

	SP2-0746 command_option option out of range (lower through upper)
	
Cause: The specified value was not in the range.

	
Action: Specify a value in the range.

	SP2-0747 PAGESIZE must be at least max_page_size to run this query with LINESIZE line_size
	
Cause: The PAGESIZE setting was too small to display the specified LINESIZE.

	
Action: Increase the PAGESIZE to at least match the specified LINESIZE.

	SP2-0749 Cannot resolve circular path of synonym synonym_name
	
Cause: An attempt was made to use a synonym to point to an object that no longer exists where the synonym had the same name as the base object, or an attempt was made to use a synonym that has a circular path that points back to itself.

	
Action: Make sure that the last synonym in the synonym path points to an object that exists, and that it doesn't point back to itself.

	SP2-0750 ORACLE_HOME may not be set
	
Cause: SQL*Plus was unable to find a message file during program initialization, and could not display error messages or text required for normal operation. The most common cause is that ORACLE_HOME has not been set. Other possible causes are a corrupt or unreadable message file. On Windows the SQLPLUS registry entry may be invalid.
This message is hard coded (in English) in the SQL*Plus source code so it can be displayed on message file error. It could never be read from this message file because the error occurs only when the message files cannot be opened. This entry in the message file is for documentation purposes only.

	
Action: Make sure that all environment variables or registry entries needed to run SQL*Plus are set. The variables are platform specific but may include ORACLE_HOME, ORACLE_SID, NLS_LANG, and LD_LIBRARY_PATH.
On Windows if the environment variable called SQLPLUS is set, it must contain the directory name of the SQL*Plus message files, for example ORACLE_HOME\sqlplus\mesg.

Also check that the file sp1XX.msb is in the $ORACLE_HOME/sqlplus/mesg or ORACLE_HOME\sqlplus\mesg directory. The "XX" stands for the country prefix associated with your NLS_LANG environment variable. SQL*Plus reads only one of the sp1XX.msb files. For example sp1ja.msb is read if NLS_LANG is JAPANESE_JAPAN.JA16EUC. If NLS_LANG is not set, then the default (English language) sp1us.msb is used. Check that the appropriate file is of non-zero size and that the file permissions allow it to be read. Note that ".msb" files are binary. The contents may be meaningless when viewed or printed. If you are unsure which language file is being used, unset NLS_LANG and run SQL*Plus to verify it can read the sp1us.msb file.

	SP2-0751 Unable to connect to Oracle. Exiting SQL*Plus
	
Cause: No connection to an Oracle server could be made.

	
Action: Normally occurs after other errors showing that the database is not running, or that the username and password were invalid.

	SP2-0752 Usage: -C[OMPATIBILITY] version.release.[update]
	
Cause: An invalid option was used in the -C[OMPATIBILITY] command option.

	
Action: Check the syntax of the SQL*Plus executable for the correct options.

	SP2-0753 STARTUP with MIGRATE only valid with Oracle 9.2 or greater
	
Cause: STARTUP MIGRATE was used to try to startup an Oracle server for a release prior to 9.2.

	
Action: Check the platform specific environment to verify that you are connecting to an Oracle server that is at least release 9.2.

	SP2-0754 FROM clause cannot contain AS SYSDBA or AS SYSOPER
	
Cause: The COPY command does not support AS SYSDBA or AS SYSOPER connections.

	
Action: Remove AS SYSDBA or AS SYSOPER from the FROM clause.

	SP2-0755 TO clause cannot contain AS SYSDBA or AS SYSOPER
	
Cause: The COPY command does not support AS SYSDBA or AS SYSOPER connections.

	
Action: Remove AS SYSDBA or AS SYSOPER from the TO clause.

	SP2-0756 FROM clause length clause_len bytes exceeds maximum length max_len
	
Cause: The FROM clause is too long.

	
Action: Reduce the string specified in the FROM clause.

	SP2-0757 TO clause length clause_len bytes exceeds maximum length max_len
	
Cause: The TO clause is too long.

	
Action: Reduce the string specified in the TO clause.

	SP2-0758 FROM clause missing username or connection identifier
	
Cause: The COPY command FROM clause must include a username and a connection identifier.

	
Action: Specify a username and a connection identifier in the FROM clause.

	SP2-0759 TO clause missing username or connection identifier
	
Cause: The COPY command TO clause must include a username and a connection identifier.

	
Action: Specify a username and a connection identifier in the TO clause.

	SP2-0762 Mismatched quotes in SHOW ERRORS [object]
	
Cause: Invalid syntax was found in the object name submitted as an argument to SHOW ERRORS.

	
Action: If quotes are used, check that they are correctly matched. Either quote the whole argument, or quote the schema and object components separately.

	SP2-0768 Illegal SPOOL command
	
Cause: An invalid option was used in the SPOOL command.

	
Action: Check the syntax of the SPOOL command for the correct options.

	SP2-0769 Usage: SPOOL { <file> | OFF | OUT }
	
where <file> is file_name[.ext] [CRE[ATE]|REP[LACE]|APP[END]]

	
Cause: Incorrect syntax for the SPOOL command was entered.

	
Action: Check the syntax of the SPOOL command for the correct usage.

	SP2-0771 File filename already exists. Use another name or "SPOOL filename[.ext] REPLACE"
	
Cause: The file specified in the SPOOL command already exists.

	
Action: Use the REPLACE option to overwrite the existing file, or specify another file name.

	SP2-0772 Automatic Storage Manager instance started
	
Cause: Document: Feedback message

	
Action:

	SP2-0773 Automatic Storage Manager diskgroups mounted
	
Cause: Document: Feedback message

	
Action:

	SP2-0774 Automatic Storage Manager instance shutdown
	
Cause: Document: Feedback message

	
Action:

	SP2-0775 Automatic Storage Manager diskgroups dismounted
	
Cause: Document: Feedback message

	
Action:

	SP2-0776 Invalid schema and object separator in SHOW ERRORS [object]
	
Cause: Invalid syntax was found in the object name submitted as an argument to SHOW ERRORS.

	
Action: If a schema is specified, check that the schema and object names are separated by a period.

	SP2-0777 Invalid single quotes in SHOW ERRORS [object]
	
Cause: Invalid syntax was found in the object name submitted as an argument to SHOW ERRORS.

	
Action: If the SHOW ERRORs argument is quoted, check that only double quotes are used. Either quote the whole argument, or quote the schema and object components separately.

	SP2-0778 Script filename and arguments too long
	
Cause: The combined length of the script filename and script arguments is too long for SQL*Plus.

	
Action: Reduce the length of the script name and path. Reduce the number and/or size of the script arguments.

	SP2-0780 Value entered is not a valid datatype
	
Cause: The value entered in the ACCEPT command was not valid for the specified datatype.

	
Action: Enter a valid number within a valid range for the datatype.

	SP2-0781 command option option_name out of range (min through max)
	
Cause: Attempted to enter a value outside the allowed range for the command option.

	
Action: Check the limits for the command option and enter a value within the allowed range.

	SP2-0782 Prelim connection established
	
Cause: Document: Feedback message

	
Action:

	SP2-0783 Cannot SET variable while connected to a database
	
Cause: Attempted to set a system variable that cannot be set while still connected to a database instance.

	
Action: Disconnect from the database instance before attempting to set the system variable.

	SP2-0784 Invalid or incomplete character beginning byte returned
	
Cause: Attempted to return a string from the database that contained an invalid or incomplete character.

	
Action: Replace the invalid or incomplete string in the database with a valid or complete string.

	SP2-0804 Procedure created with compilation warnings
	
Cause: The PL/SQL procedure has been created, but has one or more warnings, informational messages or performance messages that may help you to improve your PL/SQL procedure.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0805 Procedure altered with compilation warnings
	
Cause: The PL/SQL procedure has been altered, but has one or more warnings, informational messages or performance messages that may help you to improve your PL/SQL procedure.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0806 Function created with compilation warnings
	
Cause: The PL/SQL function has been created, but has one or more warnings, informational messages or performance messages that may help you to improve your PL/SQL function.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0807 Function altered with compilation warnings
	
Cause: The PL/SQL function has been altered, but has one or more warnings, informational messages or performance messages that may help you to improve your PL/SQL function.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0808 Package created with compilation warnings
	
Cause: The PL/SQL package has been created, but has one or more warnings, informational messages or performance messages that may help you to improve your PL/SQL package.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0809 Package altered with compilation warnings
	
Cause: The PL/SQL package has been altered, but has one or more warnings, informational messages or performance messages that may help you to improve your PL/SQL package.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0810 Package Body created with compilation warnings
	
Cause: The PL/SQL package body has been created, but has one or more warnings, informational messages or performance messages that may help you to improve your PL/SQL package body.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0811 Package Body altered with compilation warnings
	
Cause: The PL/SQL package body has been altered, but has one or more warnings, informational messages or performance messages that may help you to improve your PL/SQL package body.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0812 View created with compilation warnings
	
Cause: The PL/SQL view has been created, but has one or more warnings, informational messages or performance messages that may help you to improve your PL/SQL view.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0813 View altered with compilation warnings
	
Cause: The PL/SQL view has been altered, but has one or more warnings, informational messages or performance messages that may help you to improve your PL/SQL view.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0814 Trigger created with compilation warnings
	
Cause: The PL/SQL trigger has been created, but has one or more warnings, informational messages or performance messages that may help you to improve your PL/SQL trigger.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0815 Trigger altered with compilation warnings
	
Cause: The PL/SQL trigger has been altered, but has one or more warnings, informational messages or performance messages that may help you to improve your PL/SQL trigger.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0816 Type created with compilation warnings
	
Cause: The PL/SQL type has been created, but has one or more warnings, informational messages or performance messages that may help you to improve your PL/SQL type.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0817 Type altered with compilation warnings
	
Cause: The PL/SQL type has been altered, but has one or more warnings, informational messages or performance messages that may help you to improve your PL/SQL type.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0818 Type Body created with compilation warnings
	
Cause: The PL/SQL type body has been created, but has one or more warnings, informational messages or performance messages that may help you to improve your PL/SQL type body.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0819 Type Body altered with compilation warnings
	
Cause: The PL/SQL type body has been altered, but has one or more warnings, informational messages or performance messages that may help you to improve your PL/SQL type body.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0820 Library created with compilation warnings
	
Cause: The PL/SQL library has been created, but has one or more warnings, informational messages or performance messages that may help you to improve your PL/SQL library.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0821 Library altered with compilation warnings
	
Cause: The PL/SQL library has been altered, but has one or more warnings, informational messages or performance messages that may help you to improve your PL/SQL library.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0822 Java created with compilation warnings
	
Cause: The PL/SQL java has been created, but has one or more warnings, informational messages or performance messages that may help you to improve your PL/SQL java.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0823 Java altered with compilation warnings
	
Cause: The PL/SQL java has been altered, but has one or more warnings, informational messages or performance messages that may help you to improve your PL/SQL java.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0824 PL/SQL compilation warnings
	
Cause: The PL/SQL block has been created, but has one or more warnings, informational messages or performance messages that may help you to improve your PL/SQL block.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0825 Dimension created with compilation warnings
	
Cause: The PL/SQL dimension has been created, but has one or more warnings, informational messages or performance messages that may help you to improve your PL/SQL dimension.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0826 Dimension altered with compilation warnings
	
Cause: The PL/SQL dimension has been altered, but has one or more warnings, informational messages or performance messages that may help you to improve your PL/SQL dimension.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0827 Procedure created with compilation errors
	
Cause: The PL/SQL procedure has been created, but has one or more error messages.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0828 Procedure altered with compilation errors
	
Cause: The PL/SQL procedure has been altered, but has one or more error messages.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0829 Function created with compilation errors
	
Cause: The PL/SQL function has been created, but has one or more error messages.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0830 Function altered with compilation errors
	
Cause: The PL/SQL function has been altered, but has one or more error messages.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0831 Package created with compilation errors
	
Cause: The PL/SQL package has been created, but has one or more error messages.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0832 Package altered with compilation errors
	
Cause: The PL/SQL package has been altered, but has one or more error messages.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0833 Package Body created with compilation errors
	
Cause: The PL/SQL package body has been created, but has one or more error messages.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0834 Package Body altered with compilation errors
	
Cause: The PL/SQL package body has been altered, but has one or more error messages.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0835 View created with compilation errors
	
Cause: The PL/SQL view has been created, but has one or more error messages.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0836 View altered with compilation errors
	
Cause: The PL/SQL view has been altered, but has one or more error messages.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0837 Trigger created with compilation errors
	
Cause: The PL/SQL trigger has been created, but has one or more error messages.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0838 Trigger altered with compilation errors
	
Cause: The PL/SQL trigger has been altered, but has one or more error messages.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0839 Type created with compilation errors
	
Cause: The PL/SQL type has been created, but has one or more error messages.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0840 Type altered with compilation errors
	
Cause: The PL/SQL type has been altered, but has one or more error messages.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0841 Type Body created with compilation errors
	
Cause: The PL/SQL type body has been created, but has one or more error messages.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0842 Type Body altered with compilation errors
	
Cause: The PL/SQL type body has been altered, but has one or more error messages.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0843 Library created with compilation errors
	
Cause: The PL/SQL library has been created, but has one or more error messages.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0844 Library altered with compilation errors
	
Cause: The PL/SQL library has been altered, but has one or more error messages.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0845 Java created with compilation error
	
Cause: The PL/SQL java has been created, but has one or more error messages.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0846 Java altered with compilation errors
	
Cause: The PL/SQL java has been altered, but has one or more error messages.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0847 PL/SQL compilation errors
	
Cause: The PL/SQL block has been created, but has one or more error messages.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0848 Dimension created with compilation errors
	
Cause: The PL/SQL dimension has been created, but has one or more error messages.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-0849 Dimension altered with compilation errors
	
Cause: The PL/SQL dimension has been altered, but has one or more error messages.

	
Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and messages.

	SP2-1500 STARTUP with UPGRADE only valid with Oracle 9.2 or greater
	
Cause: STARTUP UPGRADE was used to try to startup an Oracle server for a release prior to 9.2.

	
Action: Check the platform specific environment to verify that you are connecting to an Oracle server that is at least release 9.2.

	SP2-1501 STARTUP with DOWNGRADE only valid with Oracle 9.2 or greater
	
Cause: STARTUP DOWNGRADE was used to try to startup an Oracle server for a release prior to 9.2.

	
Action: Check the platform specific environment to verify that you are connecting to an Oracle server that is at least release 9.2.

	SP2-1502 The HTTP proxy server specified by http_proxy is not accessible
	
Cause: The HTTP proxy server used by SQL*Plus cannot be accessed. SQL*Plus will be unable to run scripts located on a web server.

	
Action: Check that the proxy setting has the correct value, or unset it if no proxy is needed. SQL*Plus may get the proxy name from the environment variable http_proxy, or the value may be set in another way on your system. Check that the given proxy server is operational. Most web browsers can be configured to use a proxy. Configure a browser to use the desired proxy and verify that web pages can still be loaded.

	SP2-1503 Unable to initialize Oracle call interface
	
Cause: Indicates a library used by SQL*Plus to communicate with the database failed to initialize correctly.

	
Action: Check that the Oracle environment or registry entries are consistent and correct. If using the SQL*Plus Instant Client make sure the SQL*Plus and Oracle libraries are from the same release. Make sure you have read access to the libraries.

	SP2-1504 Cannot print uninitialized LOB variable
	
Cause: The specified LOB variable should be initialized before printing.

	
Action: Check that the specified variable is initialized and try again.

	SP2-1505 Invalid COL or TAB position entered
	
Cause: The BTITLE, TTITLE, REPHEADER or REPFOOTER command you entered attempts to use a COL or TAB value greater than 240, or a COL or TAB value greater than LINESIZE if LINESIZE is greater than 240.

	
Action: Make sure the BTITLE, TTITLE, REPHEADER or REPFOOTER command you enter uses a COL or TAB value of 240 or less, or uses a COL or TAB value of LINESIZE or less if LINESIZE is greater than 240.

	SP2-1507 Errorlogging table, role or privilege is missing or not accessible
	
Cause: Errorlogging table/role/privilege is missing or not accessible.

	
Action: See elgsetup.txt in the sqlplus doc directory for information about how to create a non-default error log table. See the Oracle Database Administrator's Guide for information about how to grant privileges.

	SP2-1508 Invalid option for SET ERRORLOGGING OFF
	
Cause: An attempt was made to issue the SET ERRORLOGGING OFF command with additional options. SET ERRORLOGGING OFF accepts no other options.

	
Action: Reenter the SET ERRORLOGGING OFF command without any other options.

	SP2-1509 Invalid option for SET ERRORLOGGING ON
	
Cause: An attempt was made to enter an invalid option for SET ERRORLOGGING ON.

	
Action: Reenter the SET ERRORLOGGING ON command with valid options. Valid options are: TABLE, IDENTIFIER, and TRUNCATE.

	SP2-1510 Invalid option option_name for SET ERRORLOGGING ON
	
Cause: An attempt was made to enter an invalid option for SET ERRORLOGGING ON.

	
Action: Reenter the SET ERRORLOGGING ON command with valid options. Valid options are: TABLE, IDENTIFIER, and TRUNCATE.

	SP2-1511 Missing table name for SET ERRORLOGGING ON TABLE
	
Cause: Either no table name was entered, or an invalid table or schema name was entered with the SET ERRORLOGGING ON TABLE command. The table name is assumed to be in the current schema unless another schema is specified with the syntax schema.table.

	
Action: Reenter the SET ERRORLOGGING ON TABLE command with a valid table name.

	SP2-1512 Unable to set table_name as table name for SET ERRORLOGGING ON TABLE
	
Cause: Either no table name was entered, or an invalid table or schema name was entered with the SET ERRORLOGGING ON TABLE command. The table name is assumed to be in the current schema unless another schema is specified with the syntax schema.table.

	
Action: Reenter the SET ERRORLOGGING ON TABLE command with a valid table name.

	SP2-1513 Invalid file name file_name for SET ERRORLOGGING ON FILE
	
Cause: Either no file name was entered, or an invalid file name or path was entered with the SET ERRORLOGGING ON FILE command.

	
Action: Reenter the SET ERRORLOGGING ON FILE command with a valid file name and path.

	SP2-1514 Invalid identifier identifier for SET ERRORLOGGING ON IDENTIFIER
	
Cause: Either no identifier string was entered, or an invalid identifier string was entered with the SET ERRORLOGGING ON IDENTIFIER command. The identifier string cannot contain special characters.

	
Action: Reenter the SET ERRORLOGGING ON IDENTIFIER command with a valid identifier string.

	SP2-1515 Invalid identifier identifier for SET ERRORLOGGING ON IDENTIFIER
	
Cause: Either no identifier string was entered, or an invalid identifier string was entered with the SET ERRORLOGGING ON IDENTIFIER command. The identifier string cannot contain special characters.

	
Action: Reenter the SET ERRORLOGGING ON IDENTIFIER command with a valid identifier string.

	SP2-1516 Unmatched quotes in identifier identifier for SET ERRORLOGGING ON IDENTIFIER
	
Cause: An invalid string was found in the SET ERRORLOGGING ON IDENTIFIER command. The identifier string must be contained in single or double quotes.

	
Action: Check string quotes in the identifier before reentering the SET ERRORLOGGING ON IDENTIFIER command.

	SP2-1517 Unable to flush the error log table schema.table
	
Cause: User may have insufficient privileges to flush the error log table.

	
Action: Check the privileges granted to access the error log table. See the Oracle Database Administrator's Guide for information about how to grant privileges.

	SP2-1518 Errorlogging table table_name does not exist in schema schema_name
	
Cause: Attempted to write to a non-existent error log table.

	
Action: See elgsetup.txt in the sqlplus doc directory for information about how to create a non-default error log table.

	SP2-1519 Unable to write to the error log table schema.table
	
Cause: User may have insufficient privileges to write to the error log table.

	
Action: Check the privileges granted to access the error log table. See the Oracle Database Administrator's Guide for information about how to grant privileges.

	SP2-01538 Edition only valid when connected to Oracle Database
	
Cause: Attempted to connect to an Edition session when database unavailable.

	
Action: Ensure database is available before attempting to connect to an Edition session.

	SP2-01539 Edition requires Oracle Database 11g or later
	
Cause: Attempted to connect to an Edition session on Oracle Database earlier than 11g.

	
Action: Edition is only valid with Oracle Database 11g or later.

COPY Command Messages

	CPY-0002 Illegal or missing APPEND, CREATE, INSERT, or REPLACE option
	
Cause: An internal COPY function has invoked COPY with a create option (flag) value that is out of range.

	
Action: Please contact Oracle Worldwide Customer Support Services.

	CPY-0003 Internal Error: logical host number out of range
	
Cause: An internal COPY function has been invoked with a logical host number value that is out of range.

	
Action: Please contact Oracle Worldwide Customer Support Services.

	CPY-0004 Source and destination table and column names don't match
	
Cause: On an APPEND operation or an INSERT (when the table exists), at least one column name in the destination table does not match the corresponding column name in the optional column name list or in the SELECT command.

	
Action: Re-specify the COPY command, making sure that the column names and their respective order in the destination table match the column names and column order in the optional column list or in the SELECT command

	CPY-0005 Source and destination column attributes don't match
	
Cause: On an APPEND operation or an INSERT (when the table exists), at least one column in the destination table does not have the same datatype as the corresponding column in the SELECT command.

	
Action: Re-specify the COPY command, making sure that the data types for items being selected agree with the destination. Use TO_DATE, TO_CHAR, and TO_NUMBER to make conversions.

	CPY-0006 Select list has more columns than destination table
	
Cause: On an APPEND operation or an INSERT (when the table exists), the number of columns in the SELECT command is greater than the number of columns in the destination table.

	
Action: Re-specify the COPY command, making sure that the number of columns being selected agrees with the number in the destination table.

	CPY-0007 Select list has fewer columns than destination table
	
Cause: On an APPEND operation or INSERT (when the table exists), the number of columns in the SELECT command is less than the number of columns in the destination table.

	
Action: Re-specify the COPY command, making sure that the number of columns being selected agrees with the number in the destination table.

	CPY-0008 More column list names than columns in the destination table
	
Cause: On an APPEND operation or an INSERT (when the table exists), the number of columns in the column name list is greater than the number of columns in the destination table.

	
Action: Re-specify the COPY command, making sure that the number of columns in the column list agrees with the number in the destination table.

	CPY-0009 Fewer column list names than columns in the destination table
	
Cause: On an APPEND operation or an INSERT (when the table exists), the number of columns in the column name list is less than the number of columns in the destination table.

	
Action: Re-specify the COPY command, making sure that the number of columns in the column list agrees with the number in the destination table.

	CPY-0012 Datatype cannot be copied
	
Cause: An attempt was made to copy a datatype that is not supported in the COPY command. Datatypes supported by the COPY command are CHAR, DATE, LONG, NUMBER and VARCHAR2.

	
Action: Re-specify the COPY command, making sure that the unsupported datatype column is removed. For more information, see the SQL*Plus COPY Command.

SQL*Plus Appendixes

Part IV

SQL*Plus Appendixes

Part IV contains the following SQL*Plus appendixes:

	
SQL*Plus Limits

	
SQL*Plus COPY Command

	
Obsolete SQL*Plus Commands

	
SQL*Plus Instant Client

SQL*Plus Limits

A SQL*Plus Limits

The general SQL*Plus limits shown are valid for most operating systems.

Table A-1 SQL*Plus Limits

	Item	Limit
	
filename length

	
system dependent

	
username length

	
30 bytes

	
substitution variable name length

	
30 bytes

	
substitution variable value length

	
240 characters

	
command-line length

	
2500 characters

	
LONG

	
2,000,000,000 bytes

	
LINESIZE

	
system dependent

	
LONGCHUNKSIZE value

	
system dependent

	
output line size

	
system dependent

	
SQL or PL/SQL command- line size after variable substitution

	
3,000 characters (internal only)

	
number of characters in a COMPUTE command label

	
500 characters

	
number of lines per SQL command

	
500 (assuming 80 characters per line)

	
maximum PAGESIZE

	
50,000 lines

	
total row width

	
32,767 characters

	
maximum ARRAYSIZE

	
5000 rows

	
maximum number of nested scripts

	
20

	
maximum page number

	
99,999

	
maximum PL/SQL error message size

	
2K

	
maximum ACCEPT character string length

	
240 Bytes

	
maximum number of substitution variables

	
2048

Obsolete SQL*Plus Commands

C Obsolete SQL*Plus Commands

This appendix covers earlier versions of some SQL*Plus commands. While these older commands still function in SQL*Plus, they are not supported. It is recommended that you use the alternative SQL*Plus commands listed in the following table.

SQL*Plus Obsolete Command Alternatives

Obsolete commands are available in current releases of SQL*Plus. In future releases, they may only be available by setting the SQLPLUSCOMPATIBILITY variable. You should modify scripts using obsolete commands to use the alternative commands.

	Obsolete Command	Alternative Command	Description of Alternative Command
	
BTITLE (old form)

	
BTITLE

	Places and formats a title at the bottom of each report page or lists the current BTITLE definition.
	
COLUMN DEFAULT

	
COLUMN CLEAR

	Resets column display attributes to default values.
	
DOCUMENT

	
REMARK

	Places a comment which SQL*Plus does not interpret as a command.
	
NEWPAGE

	
SET NEWP[AGE] {1 | n | NONE}

	Sets the number of blank lines to be printed from the top of each page to the top title.
	
SET BUFFER

	
EDIT

	Enables the editing of the SQL*Plus command buffer, or the contents of a saved file. Use the SQL*Plus SAVE, GET, @ and START commands to create and use external files.
	
SET COMPATIBILITY

	
none

	Obsolete
	
SET CLOSECURSOR

	
none

	Obsolete
	
SET DOCUMENT

	
none

	Obsolete
	
SET MAXDATA

	
none

	Obsolete
	
SET SCAN

	
SET DEF[INE] {& | c | ON | OFF}

	Sets the character used to prefix substitution variables.
	
SET SPACE

	
SET COLSEP { | text}

	Sets the text to be printed between SELECTed columns.
	
SET TRUNCATE

	
SET WRA[P] {ON | OFF}

	Controls whether SQL*Plus truncates a SELECTed row if it is too long for the current line width.
	
SHOW LABEL

	
none

	Obsolete
	
TTITLE (old form)

	
TTITLE

	Places and formats a title at the top of each report page or lists the current TTITLE definition.

BTI[TLE] text (obsolete old form)

Displays a title at the bottom of each report page.

The old form of BTITLE offers formatting features more limited than those of the new form, but provides compatibility with UFI (a predecessor of SQL*Plus). The old form defines the bottom title as an empty line followed by a line with centered text. See TTI[TLE] text (obsolete old form) for more details.

COL[UMN] {column|expr} DEF[AULT] (obsolete)

Resets the display attributes for a given column to default values.

Has the same effect as COLUMN CLEAR.

DOC[UMENT] (obsolete)

Begins a block of documentation in a script.

For information on the current method of inserting comments in a script, see the section Placing Comments in Scripts and the REMARK command.

After you type DOCUMENT and enter [Return], SQL*Plus displays the prompt DOC> in place of SQL> until you end the documentation. The "pound" character (#) on a line by itself ends the documentation.

If you have set DOCUMENT to OFF, SQL*Plus suppresses the display of the block of documentation created by the DOCUMENT command. For more information, see SET DOC[UMENT] {ON|OFF} (obsolete).

NEWPAGE [1|n] (obsolete)

Advances spooled output n lines beyond the beginning of the next page.

See SET NEWP[AGE] {1 | n | NONE} for information on the current method for advancing spooled output.

SET BUF[FER] {buffer|SQL} (obsolete)

Makes the specified buffer the current buffer.

Initially, the SQL buffer is the current buffer. SQL*Plus does not require the use of multiple buffers; the SQL buffer alone should meet your needs.

If the buffer name you enter does not exist, SET BUFFER defines (creates and names) the buffer. SQL*Plus deletes the buffer and its contents when you exit SQL*Plus.

Running a query automatically makes the SQL buffer the current buffer. To copy text from one buffer to another, use the GET and SAVE commands. To clear text from the current buffer, use CLEAR BUFFER. To clear text from the SQL buffer while using a different buffer, use CLEAR SQL.

SET COM[PATIBILITY]{V7 | V8 | NATIVE} (obsolete)

Specifies the version of the SQL language parsing syntax to use.

Set COMPATIBILITY to V7 for Oracle7, or to V8 for Oracle8 or later. COMPATIBILITY always defaults to NATIVE. Set COMPATIBILITY for the version of Oracle Database SQL syntax you want to use on the connected database, otherwise.

The default compatibility setting, NATIVE, is the most relevant setting for modern Oracle databases.

For information about SQL*Plus version compatibility settings, see SET SQLPLUSCOMPAT[IBILITY] {x.y[.z]}.

Example

To run a script, SALARY.SQL, created with Oracle7 SQL syntax, enter

SET COMPATIBILITY V7
START SALARY

After running the file, reset compatibility to NATIVE to run scripts created for Oracle Database 10g:

SET COMPATIBILITY NATIVE

Alternatively, you can add the command SET COMPATIBILITY V7 to the beginning of the script, and reset COMPATIBILITY to NATIVE at the end of the file.

SET CLOSECUR[SOR] {ON|OFF} (obsolete)

Sets the cursor usage behavior.

On or OFF sets whether or not the cursor will close and reopen after each SQL statement. This feature may be useful in some circumstances to release resources in the database server.

SET DOC[UMENT] {ON|OFF} (obsolete)

Displays or suppresses blocks of documentation created by the DOCUMENT command.

SET DOCUMENT ON causes blocks of documentation to be echoed to the screen. Set DOCUMENT OFF suppresses the display of blocks of documentation.

See DOC[UMENT] (obsolete) for information on the DOCUMENT command.

SET MAXD[ATA] n (obsolete)

Sets the maximum total row width that SQL*Plus can process.

In SQL*Plus, the maximum row width is now unlimited. Any values you set using SET MAXDATA are ignored by SQL*Plus.

SET SCAN {ON|OFF} (obsolete)

Controls scanning for the presence of substitution variables and parameters. OFF suppresses processing of substitution variables and parameters; ON enables normal processing.

ON functions in the same manner as SET DEFINE ON.

SET SPACE {1|n} (obsolete)

Sets the number of spaces between columns in output. The maximum value of n is 10.

The SET SPACE 0 and SET COLSEP " commands have the same effect. This command is obsoleted by SET COLSEP, but you can still use it for backward compatibility. You may prefer to use COLSEP because the SHOW command recognizes COLSEP and does not recognize SPACE.

SET TRU[NCATE] {ON|OFF} (obsolete)

Controls whether SQL*Plus truncates or wraps a data item that is too long for the current line width.

ON functions in the same manner as SET WRAP OFF, and vice versa. You may prefer to use WRAP because the SHOW command recognizes WRAP and does not recognize TRUNCATE.

TTI[TLE] text (obsolete old form)

Displays a title at the top of each report page.

The old form of TTITLE offers formatting features more limited than those of the new form, but provides compatibility with UFI (a predecessor of SQL*Plus). The old form defines the top title as a line with the date left-aligned and the page number right-aligned, followed by a line with centered text and then a blank line.

The text you enter defines the title TTITLE displays.

SQL*Plus centers text based on the size of a line as determined by SET LINESIZE. A separator character (|) begins a new line; two line separator characters in a row (||) insert a blank line. You can change the line separator character with SET HEADSEP.

You can control the formatting of page numbers in the old forms of TTITLE and BTITLE by defining a variable named "_page". The default value of _page is the formatting string "page &P4". To alter the format, you can DEFINE _page with a new formatting string as follows:

SET ESCAPE / SQL> DEFINE _page = 'Page /&P2'

This formatting string will print the word "page" with an initial capital letter and format the page number to a width of two. You can substitute any text for "page" and any number for the width. You must set escape so that SQL*Plus does not interpret the ampersand (&) as a substitution variable. See SET ERRORL[OGGING] {ON | OFF} [TABLE [schema.]tablename] [TRUNCATE] [IDENTIFIER identifier] for more information on setting the escape character.

SQL*Plus interprets TTITLE in the old form if a valid new-form clause does not immediately follow the command name.

If you want to use CENTER with TTITLE and put more than one word on a line, you should use the new form of TTITLE. For more information see the TTITLE command.

Example

To use the old form of TTITLE to set a top title with a left-aligned date and right-aligned page number on one line followed by SALES DEPARTMENT on the next line and PERSONNEL REPORT on a third line, enter

TTITLE 'SALES DEPARTMENT|PERSONNEL REPORT'

Index

Index

A B C D E F G H I J L M N O P Q R S T U V W X

Symbols

	-- (comment delimiter), 5.3.3
	- (hyphen)
	
	clause, 3.5.1.1
	continuing a long SQL*Plus command, 4.6.1.1, 12

	. (period), 4.5
	/ (slash) command
	
	default logon, 3.5.2, 12
	entered at buffer line-number prompt, 4.4.1.2, 12
	entered at command prompt, 12
	executing current PL/SQL block, 4.5
	similar to RUN, 12, 12
	usage, 12

	# pound sign
	
	overflow indication, 12
	SET SQLPREFIX character, 12

	$ number format, 6.1.2.2
	~ infinity sign, 12
	-~ negative infinity sign, 12
	& (ampersand)
	
	disabling substitution variables, 5.9.4
	substitution variables, 5.9

	&&, 5.9.2
	* (asterisk)
	
	in DEL command, 5.2, 12
	in LIST command, 5.2, 12

	/*...*/ (comment delimiters), 5.3.2
	: (colon)
	
	bind variables, 5.12

	:BindVariable clause
	
	EXIT command, 12

	; (semicolon), 4.4, 5.2, 12
	@ (at sign)
	
	command, 2.2.3.1, 5.4, 12
	command arguments, 12, 12
	in CONNECT command, 12
	in COPY command, B.1, B.2.1
	in SQLPLUS command, 3.5
	passing parameters to a script, 12, 12
	script, 5.4, 12
	similar to START, 5.4, 12

	@ at sign)
	
	similar to START, 12

	@@ (double at sign) command, 2.2.3.1, 12
	
	script, 12
	similar to START, 12, 12

	_CONNECT_IDENTIFIER predefined variable, 2.2.2.1, 12, 12
	_DATE predefined variable, 12, 12
	_EDITOR predefined variable, 5.1.1, 12, 12, 12, 12
	_EDITOR substitution variable, 12
	_EDITOR, in EDIT command, 5.1.1, 12, 12
	_O_RELEASE predefined variable, 12, 12
	_O_VERSION predefined variable, 12, 12
	_PRIVILEGE predefined variable, 12, 12
	_RC predefined variable, 12
	_SQLPLUS_RELEASE predefined variable, 12, 12, 12
	_USER predefined variable, 12, 12

Numerics

	0, number format, 6.1.2.2
	9, number format, 6.1.2.2

A

	ABORT mode, 12
	abort query, 4.8
	ACCEPT command, 5.11.1, 12, 12
	
	and DEFINE command, 12
	BINARY_DOUBLE clause, 12, 12
	BINARY_FLOAT clause, 12, 12
	customizing prompts for value, 5.11.2
	DATE clause, 12
	DEFAULT clause, 12
	FORMAT clause, 12
	HIDE clause, 12
	NOPROMPT clause, 12
	NUMBER clause, 5.11.2
	PROMPT clause, 5.11.1, 12

	access, denying and granting, 9.1
	alias, 3.2.2
	ALIAS clause, 12, 12
	
	in ATTRIBUTE command, 12

	ALL clause, 12
	ALTER command
	
	disabling, 9.2

	ampersands &(amp;)
	
	in parameters, 5.10, 12, 12, 12
	substitution variables, 5.9

	ANALYZE command
	
	disabling, 9.2

	APPEND clause
	
	in COPY command, B.1.1, B.2.2
	in SAVE command, 12, 12

	APPEND command, 5.2, 5.2.3, 12
	APPINFO clause, 8.5.2, 12
	ARCHIVE LOG
	
	command, 10.3.1, 12
	mode, 10.3.1

	argument
	
	in START command, 5.10

	ARRAYSIZE variable, 8.5.3, 12, 12
	
	relationship to COPY command, B.1.2, B.2.3

	ASSOCIATE command
	
	disabling, 9.2

	ATTRIBUTE command, 12
	
	ALIAS clause, 12
	and CLEAR COLUMN command, 12
	CLEAR clause, 12
	clearing columns, 12, 12
	controlling display characteristics, 12
	display characteristics, 12
	entering multiple, 12
	FORMAT clause, 12
	LIKE clause, 12
	listing attribute display characteristics, 12, 12
	OFF clause, 12
	ON clause, 12
	restoring column display attributes, 12
	suppressing column display attributes, 12

	AUDIT command
	
	disabling, 9.2

	AUTOCOMMIT variable, 4.11, 12, 12
	AUTOMATIC clause, 12
	AUTOPRINT variable, 12, 12
	AUTORECOVERY variable, 12, 12
	autotrace report, 8.1.1
	AUTOTRACE variable, 8.1.1, 12, 12

B

	background process
	
	startup after abnormal termination, 12

	BASEURI variable, 12
	BASEURI XQUERY option, 12
	basic OCI package, D.1.1
	batch jobs, authenticating users in, 3.1.1
	batch mode, 12
	BEGIN command, 4.5
	
	disabling, 9.2

	BFILE clause
	
	VARIABLE command, 12

	BINARY_DOUBLE clause
	
	ACCEPT command, 12, 12
	VARIABLE command, 12

	BINARY_FLOAT clause
	
	ACCEPT command, 12, 12
	VARIABLE command, 12

	bind variables, 5.12
	
	creating, 12
	displaying, 12
	displaying automatically, 12, 12
	in PL/SQL blocks, 12
	in SQL statements, 12
	in the COPY command, 12

	blank line
	
	in PL/SQL blocks, 4.5
	in SQL commands, 4.4.1.2
	preserving in SQL commands, 12, 12

	BLOB
	
	column width, 6.1.3.1
	formating in reports, 6.1.3

	BLOB clause
	
	VARIABLE command, 12

	BLOB columns
	
	default format, 12
	setting maximum width, 12, 12
	setting retrieval position, 12, 12
	setting retrieval size, 8.5.7, 12, 12

	blocks, PL/SQL
	
	continuing, 4.5
	editing in buffer, 5.2
	editing with system editor, 5.1, 12
	entering and executing, 4.5
	listing current in buffer, 5.2.1
	saving current, 12
	setting character used to end, 12, 12
	stored in SQL buffer, 4.5
	timing statistics, 12
	within SQL commands, 4.5.1

	BLOCKTERMINATOR, 12, 12, 12, 12
	BODY clause, 3.5.1.6
	BODY option, 3.5.1.6
	BOLD clause, 12, 12
	break columns, 6.2, 12
	
	inserting space when value changes, 6.2.2
	specifying multiple, 6.2.4
	suppressing duplicate values in, 6.2.1

	BREAK command, 6.2, 12
	
	and SQL ORDER BY clause, 6.2, 6.2.1, 6.2.4, 12
	clearing BREAKS, 6.2.5
	displaying column values in titles, 6.3.4
	DUPLICATES clause, 12
	inserting space after every row, 6.2.3
	inserting space when break column changes, 6.2.2
	listing current break definition, 6.2.5, 12
	ON column clause, 6.2.1, 12
	ON expr clause, 12
	ON REPORT clause, 6.2.7, 12
	ON ROW clause, 6.2.3, 12
	printing grand and sub summaries, 6.2.7
	printing summary lines at ends of reports, 6.2.7
	removing definition, 12
	SKIP clause, 6.2.3, 12
	SKIP PAGE clause, 6.2.2, 6.2.2, 6.2.3, 12
	specifying multiple break columns, 6.2.4, 12
	suppressing duplicate values, 6.2.1
	used in conjunction with COMPUTE, 6.2.6
	used in conjunction with SET COLSEP, 12
	used to format a REFCURSOR variable, 12
	used with COMPUTE, 12, 12, 12, 12, 12

	break definition
	
	listing current, 6.2.5, 12
	removing current, 6.2.5, 12

	BREAKS clause, 6.2.5, 12
	browser, web, 7.1.1
	BTITLE clause, 12
	BTITLE command, 6.3.1, 12
	
	aligning title elements, 12
	BOLD clause, 12
	CENTER clause, 12
	COL clause, 12
	FORMAT clause, 12
	indenting titles, 12
	LEFT clause, 12
	OFF clause, 12
	old form, C.2
	printing blank lines before bottom title, 6.3.1.1
	referencing column value variable, 12
	RIGHT clause, 12
	SKIP clause, 12
	suppressing current definition, 12
	TAB clause, 12
	TTITLE command, 12

	buffer, 4.1.1
	
	appending text to a line in, 5.2.3, 12
	delete a single line, 5.2
	delete the current line, 5.2
	delete the last line, 5.2
	deleting a range of lines, 5.2, 12
	deleting a single line, 12
	deleting all lines, 5.2, 12, 12
	deleting lines from, 5.2.5, 12
	deleting the current line, 12
	deleting the last line, 12
	executing contents, 12, 12
	inserting new line in, 5.2.4, 12
	listing a range of lines, 5.2, 12
	listing a single line, 5.2, 12
	listing all lines, 5.2, 12
	listing contents, 5.2.1, 12
	listing the current line, 5.2, 12
	listing the last line, 5.2, 12
	loading into system editor, 12
	saving contents, 12

	BUFFER clause, 5.1.1, 5.2, 12
	BUFFER variable, C.6

C

	CALL command
	
	disabling, 9.2

	CANCEL clause, 12, 12
	Cancel key, 4.8
	cancel query, 4.8
	CENTER clause, 6.3.1.1, 12, 12
	CHANGE command, 5.2, 5.2.2, 12
	CHAR clause
	
	VARIABLE command, 12

	CHAR columns
	
	changing format, 12
	default format, 6.1.3.1
	definition from DESCRIBE, 12

	charset
	
	SQL*Plus Instant Client, D.1.2

	CLEAR clause, 6.1.5, 12
	
	in ATTRIBUTE command, 12

	CLEAR command, 12
	
	BREAKS clause, 6.2.5, 12
	BUFFER clause, 5.1.1, 5.2, 12
	COLUMNS clause, 12
	COMPUTES clause, 12
	SCREEN clause, 5.11.4, 12
	SQL clause, 12
	TIMING clause, 12

	CLOB clause
	
	VARIABLE command, 12

	CLOB columns
	
	changing format, 12
	default format, 12
	setting maximum width, 12, 12
	setting retrieval position, 12, 12
	setting retrieval size, 8.5.7, 12, 12, 12

	CLOSECURSOR variable, C.1, C.8
	CMDSEP variable, 12, 12
	COL clause, 6.3.1.2, 12, 12
	colons &(colon;)
	
	bind variables, 5.12

	COLSEP variable, 12, 12
	COLUMN command, 6.1, 12
	
	ALIAS clause, 12
	and BREAK command, 12
	and DEFINE command, 12
	CLEAR clause, 6.1.5, 12, 12
	DEFAULT clause, C.3
	displaying column values in bottom titles, 6.3.4, 12
	displaying column values in top titles, 6.3.4, 12
	entering multiple, 12
	ENTMAP clause, 12
	FOLD_AFTER clause, 12, 12, 12
	FOLD_BEFORE clause, 12, 12
	FORMAT clause, 6.1.2.2, 6.1.3.2, 12, 12
	formatting a REFCURSOR variable, 12
	formatting NUMBER columns, 6.1.2.1, 12
	HEADING clause, 6.1.1.2, 12, 12
	HEADSEP character, 12
	JUSTIFY clause, 12
	LIKE clause, 6.1.4, 12, 12
	listing column display attributes, 6.1.5, 6.1.5, 12, 12
	NEW_VALUE clause, 6.3.4, 12, 12
	NEWLINE clause, 12, 12
	NOPRINT clause, 6.3.4, 8.5.1, 12
	NULL clause, 12, 12
	OFF clause, 6.1.6, 12
	OLD_VALUE clause, 6.3.4, 12, 12
	ON clause, 6.1.6, 12
	PRINT clause, 12
	resetting a column to default display, C.1
	resetting to default display, 6.1.5, 12, C.1
	restoring column display attributes, 6.1.6, 12
	storing current date in variable for titles, 12
	suppressing column display attributes, 6.1.6, 12
	TRUNCATED clause, 6.1.3.2, 12
	WORD_WRAPPED clause, 6.1.3.2, 6.1.7, 12
	WRAPPED clause, 6.1.3.2, 12

	column headings
	
	aligning, 12
	changing, 6.1.1.1, 12
	changing character used to underline, 12, 12
	changing to two or more words, 6.1.1.2, 12
	displaying on more than one line, 6.1.1.2, 12
	suppressing printing in a report, 12, 12
	when truncated, 12
	when truncated for CHAR and LONG columns, 6.1.3.2
	when truncated for DATE columns, 6.1.3.2
	when truncated for NUMBER columns, 6.1.2.1

	column separator, 12, 12, C.1
	columns
	
	assigning aliases, 12
	computing summary lines, 6.2.6, 12
	copying display attributes, 6.1.4, 12, 12
	copying values between tables, B.1, B.2, B.3
	displaying values in bottom titles, 6.3.4, 12
	displaying values in top titles, 6.3.4, 12
	formatting CHAR, VARCHAR, LONG, and DATE, 12
	formatting in reports, 6.1, 12
	formatting MLSLABEL, RAW MLSLABEL, ROWLABEL, 12
	formatting NUMBER, 6.1.2.1, 12
	listing display attributes for all, 6.1.5, 12
	listing display attributes for one, 6.1.5, 12
	names in destination table when copying, B.1.1, B.2.1
	printing line after values that overflow, 6.1.7, 12, 12
	resetting a column to default display, 6.1.5, 12, C.1, C.1
	resetting all columns to default display, 12
	restoring display attributes, 6.1.6, 12, 12
	setting printing to off or on, 6.3.4, 8.5.1, 12
	starting new lines, 12
	storing values in variables, 6.3.4, 12
	suppressing display attributes, 6.1.6, 12, 12
	truncating display for all when value overflows, 6.1.3.2, 12
	truncating display for one when value overflows, 6.1.3.2, 12
	wrapping display for all when value overflows, 6.1.3.2, 12
	wrapping display for one when value overflows, 6.1.3.2, 12
	wrapping whole words for one, 6.1.7

	COLUMNS clause, 12
	comma, number format, 6.1.2.2
	command files
	
	aborting and exiting with a return code, 5.6, 12, 12
	creating with a system editor, 5.1.1
	creating with SAVE, 12, 12
	editing with system editor, 12
	in @ (at sign) command, 5.4, 12
	in EDIT command, 12
	in GET command, 12
	in SAVE command, 5.1.1, 12
	in SQLPLUS command, 3.5.3, 5.4.1
	in START command, 5.4, 12
	including comments in, 5.3, 12
	including more than one PL/SQL block, 5.1.1
	including more than one SQL command, 5.1.1
	nesting, 5.5
	passing parameters to, 5.10, 12, 12, 12
	registering, 12, 12
	retrieving, 12
	running, 5.4, 12, 12
	running a series in sequence, 5.5
	running as you start SQL*Plus, 3.5.3, 5.4.1
	running in batch mode, 5.6, 12
	uniform resource locator, 12, 12, 12, 12

	command prompt
	
	SET SQLPROMPT, 8.5.10, 12, 12
	SQL*Plus, 3.3.1

	command-line
	
	configuring globalization support, 11.1
	installing help, 2.2.4

	command-line interface
	
	changing face and size, 1.2

	commands
	
	collecting timing statistics on, 8.2, 12
	disabled in schema, 13.1
	disabling, 9.2
	echo on screen, 12
	host, running from SQL*Plus, 4.9, 12
	listing current in buffer, 12
	re-enabling, 9.2
	spaces, 4.1
	SQL
	
	continuing on additional lines, 4.4.1.1
	editing in buffer, 5.2
	editing with system editor, 12
	ending, 4.4.1.2
	entering and executing, 4.4
	entering without executing, 4.4.1.2
	executing current, 12, 12
	following syntax, 4.4.1
	listing current in buffer, 5.2.1
	saving current, 12
	setting character used to end and run, 12

	SQL*Plus
	
	command summary, 12
	continuing on additional lines, 4.6.1.1, 12
	ending, 4.6.1, 12
	entering and executing, 4.6
	entering during SQL command entry, 12
	obsolete command alternatives, C.1

	stopping while running, 4.8
	tabs, 4.1
	types of, 4.1
	variables that affect running, 4.7

	COMMENT command
	
	disabling, 9.2

	comments
	
	including in command files, C.1
	including in scripts, 5.3, 12, C.1
	using -- to create, 5.3.3
	using /*...*/ to create, 5.3.2
	using REMARK, C.1
	using REMARK to create, 5.3.1, 12, C.1

	COMMIT clause, 12
	
	WHENEVER OSERROR, 12
	WHENEVER SQLERROR, 12

	COMMIT command, 4.11
	
	disabling, 9.2

	communication between tiers, Preface
	COMPATIBILITY variable, C.1, C.7
	compilation errors, 4.5.1, 12, 13.1
	COMPUTE command, 6.2, 12
	
	computing a summary on different columns, 6.2.8
	LABEL clause, 6.2.6, 6.2.7, 12
	listing all definitions, 6.2.9, 12
	maximum LABEL length, 12
	OF clause, 6.2.6
	ON, 12
	ON column clause, 6.2.6, 12
	ON expr clause, 12
	ON REPORT clause, 6.2.7, 12
	printing grand and sub summaries, 6.2.7
	printing multiple summaries on same column, 6.2.8
	printing summary lines at ends of reports, 6.2.7
	printing summary lines on a break, 6.2.6
	referencing a SELECT expression in OF, 12
	referencing a SELECT expression in ON, 12
	removing definitions, 6.2.9, 12
	used to format a REFCURSOR variable, 12

	COMPUTES clause, 12
	CONCAT variable, 5.9.4, 5.9.4, 12, 12, 12, 12
	configuration
	
	globalization support

	configuring
	
	Oracle Net, 2.2.5
	SQL*Plus, 2

	CONNECT / feature, 3.1.1
	CONNECT command, 3.1, 12
	
	and @ (at sign), 12
	changing password, 12, 12, 12
	SYSDBA clause, 3.5.2, 12, 12
	SYSOPER clause, 3.5.2, 12
	username/password, 12

	connect identifier, 12
	
	in CONNECT command, 12
	in COPY command, B.1
	in DESCRIBE command, 12
	in SQLPLUS command, 3.5.2

	connection identifier, 3.2.1
	
	easy or abbreviated, 3.2.3
	full, 3.2.2
	net service name, 3.2.2

	CONTEXT variable, 12
	CONTEXT XQUERY option, 12
	CONTINUE clause
	
	WHENEVER OSERROR, 12
	WHENEVER SQLERROR, 12

	continuing a long SQL*Plus command, 4.6.1.1, 12
	COPY command, 12, B.1, B.2
	
	and @ (at sign), B.1, B.2.1
	and ARRAYSIZE variable, B.1.2, B.2.3
	and COPYCOMMIT variable, B.1.2, B.2.3
	and LONG variable, B.1.2, B.2.3
	APPEND clause, B.1.1, B.2.2
	copying data between databases, B.2
	copying data between tables on one database, B.3
	CREATE clause, B.1.1, B.2.2
	creating a table, B.1.1, B.2.2, B.2.2
	destination table, B.1.1, B.2.1
	determining actions, B.2.1
	determining source rows and columns, B.1.1, B.2.1
	error messages, 13.2
	FROM clause, B.2.1
	INSERT clause, B.1.1, B.2.2
	inserting data in a table, B.1.1, B.2.2, B.2.2
	interpreting messages, B.2.3
	mandatory connect identifier, B.1.1
	naming the source table with SELECT, B.1.1, B.2.1
	query, B.1.1, B.2.1
	referring to another user’s table, B.2.4
	REPLACE clause, B.1.1, B.2.2
	replacing data in a table, B.1.1, B.2.2
	sample command, B.2.1, B.2.1
	service name, B.2.1, B.2.2, B.3
	specifying columns for destination, B.1.1, B.2.1
	specifying the data to copy, B.1.1, B.2.1
	TO clause, B.2.1
	username/password, B.1.1, B.2.1, B.2.2, B.3
	USING clause, B.1.1, B.2.1

	COPYCOMMIT variable, 12, 12
	
	relationship to COPY command, B.1.2, B.2.3

	COPYTYPECHECK variable, 12, 12
	CREATE clause
	
	in COPY command, B.1.1, B.2.2

	CREATE command
	
	disabling, 9.2
	entering PL/SQL, 4.5.1

	creating a PLAN_TABLE, 8.1.1
	creating flat files, 6.4.1
	creating PLUSTRACE role, 8.1.1
	creating sample tables, Preface
	creating the PRODUCT_USER_PROFILE table, 9.1.1
	cursor variables, 12

D

	database
	
	administrator, 10.1
	connect identifier, 12
	mounting, 12, 12
	opening, 12, 12

	database changes, saving automatically, 12, 12
	DATABASE clause, 12
	database files
	
	recovering, 12

	database name at startup, 12
	database schema, 8.1.1
	
	default, 12
	DESCRIBE parameter, 12
	SHOW, 12, 12

	databases
	
	connecting to default, 12
	connecting to remote, 12
	copying data between, B.1, B.2
	copying data between tables on a single, B.3
	disconnecting without leaving SQL*Plus, 3.1, 12
	mounting, 10.2.1
	opening, 10.2.1
	recovering, 10.4, 12
	shutting down, 10.2, 10.2.2
	starting, 10.2

	DATAFILE clause, 12
	DATE
	
	column definition from DESCRIBE, 12

	DATE clause, 12
	DATE columns
	
	changing format, 12, 12
	default format, 6.1.3.1

	date, storing current in variable for titles, 6.3.5, 12, 12
	DB2, 12, 12
	DBA, 10.1
	
	mode, 12
	privilege, 12

	DBMS output, 8.5.9, 12
	DBMS_APPLICATION_INFO package, 8.5.2, 12, 12
	DECLARE command
	
	disabling, 9.2
	PL/SQL, 4.5

	DEFAULT clause, 12
	DEFINE command, 5.7, 12
	
	and system editor, 5.1.1, 12
	and UNDEFINE command, 5.7, 12
	CHAR values, 12
	SET DEFINE ON|OFF, 12, 12
	substitution variables, 12

	DEFINE variable
	
	See substitution variable

	DEL command, 5.2, 5.2.5, 12
	
	using an asterisk, 5.2, 12

	DELETE command
	
	disabling, 9.2

	DESCRIBE command (SQL*Plus), 4.2, 12
	
	connect_identifier, 12
	PL/SQL properties listed by, 12
	table properties listed by, 12

	DISABLED keyword, disabling commands, 9.1.3
	disabling
	
	PL/SQL commands, 9.2
	SQL commands, 9.2
	SQL*Plus commands, 9.2

	DISASSOCIATE command
	
	disabling, 9.2

	DISCONNECT command, 3.1, 12
	DOCUMENT command, C.1, C.4
	
	REMARK as newer version of, C.4, C.4

	DOCUMENT variable, C.1, C.9
	DROP command
	
	disabling, 9.2

	DUPLICATES clause, 12

E

	ECHO
	
	SET command, 12

	ECHO variable, 5.4, 12, 12
	Ed on UNIX, 12
	EDIT command, 5.1.1, 12, 12, 12
	
	creating scripts with, 5.1.1
	defining _EDITOR, 12
	modifying scripts, 12
	setting default file name, 12, 12

	EDITFILE variable, 12, 12
	edition, 3.5.2, 12
	
	in CONNECT command, 12
	in SQLPLUS command, 3.5.2, 3.5.2

	EDITOR operating system variable, 12
	EMBEDDED variable, 12, 12
	entities, HTML, 7.1.3
	ENTMAP, 3.5.1.6
	ENTMAP clause, 3.5.1.6, 7.1.3, 12
	environment variables
	
	LD_LIBRARY_PATH, 2.1
	LOCAL, 2.1
	NLS_LANG, 2.1
	ORA_EDITION, 2.1
	ORA_NLS10, 2.1
	ORACLE_HOME, 2.1
	ORACLE_PATH, 2.1
	ORACLE_SID, 2.1
	PATH, 2.1
	SQL*Plus, 2.1
	SQLPATH, 2.1
	TNS_ADMIN, 2.1
	TWO_TASK, 2.1

	error
	
	SQL*Plus Instant Client unsupported charset, D.1.2.1

	error messages
	
	COPY command, 13.2
	interpreting, 4.12
	sqlplus, 13.1

	ERRORLOGGING variable, 12
	errors
	
	compilation errors, 4.5.1, 12, 13.1
	making line containing current, 5.2.2

	escape characters, definition of, 12, 12
	ESCAPE variable, 5.9.4, 12, 12, 12, 12, 12
	ESCCHAR variable, 12
	example
	
	interactive HTML report, 7.1.1, 7.1.1

	EXECUTE command, 12
	executing
	
	a CREATE command, 4.5.1

	execution plan, 8.1.2
	execution statistics
	
	including in report, 12

	EXIT clause
	
	WHENEVER OSERROR, 12
	WHENEVER SQLERROR, 12

	EXIT command, 3.4, 12
	
	:BindVariable clause, 12
	COMMIT clause, 12
	FAILURE clause, 12
	in a script, 12
	ROLLBACK clause, 12
	use with SET MARKUP, 7.1.1
	WARNING clause, 12

	exit, conditional, 12
	EXITCOMMIT variable, 12
	EXPLAIN command
	
	disabling, 9.2

	extension, 12, 12, 12

F

	FAILURE clause, 12
	features
	
	new, Preface

	FEEDBACK variable, 12, 12
	file extensions, 2.2.3, 12, 12, 12
	file names
	
	in @ (at sign) command, 12
	in @@ (double at sign) command, 12
	in EDIT command, 12
	in GET command, 12
	in SAVE command, 12
	in SPOOL command, 6.4.2, 12
	in SQLPLUS command, 3.5.3

	files
	
	flat, 6.4.1
	required for SQL*Plus Instant Client, D.2.3

	FLAGGER variable, 12, 12
	FLASHBACK command
	
	disabling, 9.2

	flat file, 6.4.1
	FLUSH variable, 8.5.5, 12, 12
	FOLD_AFTER clause, 12
	FOLD_BEFORE clause, 12
	font
	
	changing face and size in command-line, 1.2

	footers
	
	aligning elements, 12
	displaying at bottom of page, 12
	displaying system-maintained values, 12
	formatting elements, 12
	indenting, 12
	listing current definition, 12
	setting at the end of reports, 6.3
	suppressing definition, 12

	FORCE clause, 12
	FORMAT clause, 12, 12
	
	in ATTRIBUTE command, 12
	in COLUMN command, 6.1.2.2, 6.1.3.2
	in REPHEADER and REPFOOTER commands, 12
	in TTITLE and BTITLE commands, 6.3.2, 12

	format models, number, 6.1.2.2, 12
	formfeed, to begin a new page, 6.3.6, 12
	FROM clause, 12, B.2.1

G

	GET command, 12
	
	LIST clause, 12
	NOLIST clause, 12
	retrieving scripts, 12

	globalization support
	
	Oracle10g, 11.3

	glogin
	
	profile, 12
	See also login.sql
	site profile, 2.2, 2.2.1, 2.2.2.1, 3.5.1.8, 12

	GRANT command, 9.1
	
	disabling, 9.2

H

	HEAD clause, 3.5.1.6
	HEAD option, 3.5.1.6
	headers
	
	aligning elements, 6.3.1.1
	displaying at top of page, 12
	displaying system-maintained values, 12
	setting at the start of reports, 6.3
	suppressing, 6.3.1

	HEADING clause, 6.1.1.2, 12
	HEADING variable, 12
	headings
	
	aligning elements, 12
	column headings, 12
	formatting elements, 12
	indenting, 12
	listing current definition, 12
	suppressing definition, 12

	HEADSEP variable, 12, 12
	
	use in COLUMN command, 6.1.1.2

	help
	
	installing command-line, 2.2.4
	online, 3.3.2, 12

	HELP command, ? command, 12
	HIDE clause, 12
	HOST command, 4.9, 12
	HTML, 7.1.1
	
	clause, 3.5.1.6
	entities, 7.1.3
	option, 3.5.1.6
	spooling to file, 3.5.1.6
	tag, 7.1

	hyphen
	
	continuing a long SQL*Plus command, 4.6.1.1, 12

I

	IMMEDIATE mode, 12
	infinity sign (~), 12
	initialization parameters
	
	displaying, 12, 12

	INIT.ORA file
	
	parameter file, 12

	input
	
	accepting values from the user, 5.11.1, 12

	INPUT command, 5.2, 5.2.4, 12
	
	entering several lines, 12

	INSERT clause, B.1.1, B.2.2
	INSERT command
	
	disabling, 9.2

	installation
	
	SQL*Plus Instant Client, D
	SQL*Plus Instant Client by copying, D.1
	SQL*Plus Instant Client by copying from 10g Client, D.3
	SQL*Plus Instant Client by download from OTN, D.1, D.2
	SQL*Plus Instant Client on Linux, D.2.1
	SQL*Plus Instant Client on UNIX or Windows, D.2.2
	SQL*Plus Instant Client UNIX and Linux files to copy, D.3.1
	SQL*Plus Instant Client Windows files to copy, D.3.2

	installation by copying, D.1
	installation by copying from 10g Client, D.3
	installation by download from OTN, D.1, D.2
	installation on Linux, D.2.1
	installation on UNIX or Windows, D.2.2
	installation, UNIX and Linux files to copy, D.3.1
	installation, Windows files to copy, D.3.2
	INSTANCE variable, 12, 12
	instances
	
	shutting down, 12
	starting, 12

	Instant Client
	
	SQL*Plus, D

	Instant Client packages, D.1

J

	Japanese
	JUSTIFY clause, 12, 12

L

	LABEL variable
	
	SHOW command, C.1

	labels
	
	in COMPUTE command, 6.2.6, 12

	language
	
	SQL*Plus Instant Client, D.1.2

	LD_LIBRARY_PATH
	
	environment variables, 2.1

	LEFT clause, 6.3.1.1, 12, 12
	lightweight OCI package, D.1.2
	LIKE clause, 6.1.4, 12, 12
	limits, SQL*Plus, A
	lines
	
	adding at beginning of buffer, 12
	adding at end of buffer, 12
	adding new after current, 5.2.4, 12
	appending text to, 5.2.3, 12
	changing width, 6.3.6, 8.5.6, 12, 12
	deleting all in buffer, 12
	deleting from buffer, 5.2.5, 12
	determining which is current, 5.2.2
	editing current, 5.2.2
	listing all in buffer, 5.2, 12
	removing blanks at end, 12

	LINESIZE variable, 6.3.1.1, 6.3.6, 12, 12
	Linux
	
	installing SQL*Plus Instant Client, D.2.1
	SQL*Plus Instant Client files to copy, D.3.1

	LIST clause, 12, 12
	LIST command, 5.2, 12
	
	determining current line, 5.2.2, 12
	making last line current, 5.2.2, 12
	using an asterisk, 5.2, 12

	LNO clause, 12
	LOBOFFSET variable, 12, 12
	LOCAL
	
	environment variables, 2.1

	LOCK TABLE command
	
	disabling, 9.2

	LOG_ARCHIVE_DEST parameter, 12
	LOGFILE clause, 12
	logging off
	
	conditionally, 12, 12
	Oracle Database, 3.1, 12
	SQL*Plus, 3.4, 12

	logging on
	
	Oracle Database, 12
	SQL*Plus, 3.3.1

	login
	
	user profile, 2.2.2.1

	login.sql, 2.2.2
	LONG
	
	column definition from DESCRIBE, 12

	LONG columns
	
	changing format, 12
	default format, 12
	setting maximum width, 12, 12, 12
	setting retrieval size, 8.5.7, 8.5.7, 12, 12, 12

	LONG variable, 12, 12
	
	effect on COPY command, B.1.2, B.2.3

	LONGCHUNKSIZE variable, 6.1.3.1, 12, 12, 12, 12
	LONGRAW
	
	column definition from DESCRIBE, 12

M

	-MARKUP, 3.5.1.6, 3.5.1.6, 7.1, 7.1, 12
	
	BODY clause, 3.5.1.6
	ENTMAP clause, 3.5.1.6
	HEAD clause, 3.5.1.6
	PREFORMAT clause, 3.5.1.6
	SQLPLUS command clause, 3.5.1.6
	TABLE clause, 3.5.1.6

	MAXDATA variable, C.1, C.10
	media recovery, 12
	MERGE command
	
	disabling, 9.2

	message, sending to screen, 5.11.1, 12
	MOUNT clause, 12
	mounting a database, 12

N

	national language support
	
	See also globalization support

	NCHAR clause
	
	VARIABLE command, 12

	NCHAR columns
	
	changing format, 12
	default format, 6.1.3.1, 6.1.3.1, 12

	NCLOB clause
	
	VARIABLE command, 12

	NCLOB columns
	
	changing format, 12
	default format, 12
	setting maximum width, 12, 12
	setting retrieval position, 12, 12
	setting retrieval size, 8.5.7, 12, 12, 12

	negative infinity sign (-~), 12
	net service name, 3.2.1, 3.2.2
	new features, Preface
	NEW_VALUE clause, 6.3.4, 12
	
	storing current date in variable for titles, 12

	NEWLINE clause, 12
	NEWPAGE command, C.1, C.5
	NEWPAGE variable, 6.3.6, 12, 12
	NLS
	NLS_DATE_FORMAT, 12, 12
	NLS_LANG
	
	charset parameter for Instant Client, D.1.2
	environment variables, 2.1
	language parameter for Instant Client, D.1.2
	SQL*Plus Instant Client, D.1.2
	territory parameter for Instant Client, D.1.2

	NOAUDIT command
	
	disabling, 9.2

	NODE variable, 12
	NODE XQUERY option, 12
	NOLIST clause, 12
	NOLOG, 3.2.4, 3.5.2
	NOMOUNT clause, 12
	NONE clause
	
	WHENEVER OSERROR, 12
	WHENEVER SQLERROR, 12

	NOPARALLEL clause, 12
	NOPRINT clause, 6.2.6, 6.3.4, 8.5.1, 12
	NOPROMPT clause, 12
	NORMAL mode, 12
	Notepad on Windows, 12
	NULL clause, 12
	null values
	
	setting text displayed, 12, 12, 12

	NULL variable, 12, 12
	NUMBER
	
	column definition from DESCRIBE, 12

	NUMBER clause, 5.11.2
	
	VARIABLE command, 12

	NUMBER columns
	
	changing format, 6.1.2.1, 12
	default format, 6.1.2.1, 12

	number formats
	
	$, 6.1.2.2
	0, 6.1.2.2
	9, 6.1.2.2
	comma, 6.1.2.2
	setting default, 5.9.4, 5.9.4, 12, 12

	NUMFORMAT clause
	
	in LOGIN.SQL, 2.2.2.1

	NUMFORMAT variable, 12, 12
	NUMWIDTH variable, 12, 12
	
	effect on NUMBER column format, 6.1.2.1, 12

	NVARCHAR2 columns
	
	changing format, 12
	default format, 6.1.3.1, 12

O

	objects, describing, 12
	obsolete commands
	
	BTITLE, C.2
	COLUMN command DEFAULT clause, C.3
	DOCUMENT, C.1, C.4
	NEWPAGE, C.1, C.5
	SET command BUFFER variable, C.6
	SET command CLOSECURSOR variable, C.1, C.8
	SET command COMPATIBILITY variable, C.1, C.7
	SET command DOCUMENT variable, C.1, C.9
	SET command MAXDATA variable, C.1, C.10
	SET command SCAN variable, C.1, C.11
	SET command SPACE variable, C.1, C.12
	SET command TRUNCATE variable, C.1, C.13
	SHOW command LABEL variable, C.1
	TTITLE command old form, C.14

	OCI Instant Client, D
	OCI package
	
	basic, D.1.1
	lightweight, D.1.2

	OF clause, 6.2.6
	OFF clause, 12
	
	in ATTRIBUTE command, 12
	in COLUMN command, 6.1.6, 12
	in REPFOOTER commands, 12
	in REPHEADER commands, 12
	in SPOOL command, 6.4, 12
	in TTITLE and BTITLE commands, 6.3.3, 12

	OLD_VALUE clause, 6.3.4, 12
	ON clause
	
	in ATTRIBUTE command, 12
	in COLUMN command, 6.1.6, 12
	in TTITLE and BTITLE commands, 6.3.3

	ON column clause
	
	in BREAK command, 12
	in COMPUTE command, 6.2.6, 12

	ON expr clause
	
	in BREAK command, 12
	in COMPUTE command, 12

	ON REPORT clause
	
	in BREAK command, 6.2.7, 12
	in COMPUTE command, 6.2.7, 12

	ON ROW clause
	
	in BREAK command, 6.2.3, 12
	in COMPUTE command, 12

	online help, 3.3.2, 3.3.2, 12
	OPEN clause, 12
	opening a database, 12
	operating system
	
	editor, 5.1.1, 12, 12
	file, loading into buffer, 12
	running commands from SQL*Plus, 4.9, 12
	text editor, 5.1.1

	ORA_EDITION
	
	environment variables, 2.1

	ORA_NLS10
	
	environment variables, 2.1

	Oracle Application Editions
	
	edition, 3.5.2

	Oracle Database Client, D
	Oracle Net
	
	configuring, 2.2.5
	connect identifier, 12

	Oracle Session Editions
	
	edition, 12

	ORACLE_HOME
	
	environment variables, 2.1

	ORACLE_PATH
	
	environment variables, 2.1

	ORACLE_SID
	
	environment variables, 2.1

	Oracle10g
	
	globalization support, 11.3

	ORDER BY clause
	
	displaying column values in titles, 6.3.4
	displaying values together in output, 6.2

	ORDERING variable, 12
	ORDERING XQUERY option, 12
	OUT clause, 6.4.3, 12
	output
	
	formatting white space in, 8.5.11, 12
	pausing during display, 4.10, 12

P

	packages
	
	SQL*Plus and OCI for Instant Client, D.1

	PAGE clause, 12
	page number, including in titles, 6.2.4, 6.3.2
	pages
	
	changing length, 6.3.6, 8.5.8, 12, 12
	default dimensions, 6.3.6
	matching to screen or paper size, 6.3.6
	setting dimensions, 6.3.6

	PAGESIZE clause
	
	in LOGIN.SQL, 2.2.2.1

	PAGESIZE variable, 4.4, 6.3.6, 8.5.8, 12, 12
	parameter, 5.10, 12, 12, 12
	
	SQLPATH, 2.1.1

	parameter files (INIT.ORA files)
	
	specifying alternate, 12

	PARAMETERS clause, 12, 12
	password
	
	changing with the PASSWORD command, 12
	in CONNECT command, 3.1, 12
	in COPY command, B.2.1, B.2.2, B.3
	in SQLPLUS command, 3.3.1, 3.5.2
	viewable warning, 3.5.2

	PASSWORD command, 12, 12
	PATH
	
	environment variables, 2.1

	PAUSE command, 5.11.3, 12
	PAUSE variable, 4.10, 12, 12
	performance
	
	of SQL statements, 8.1
	over dial-up lines, 12

	period (.)
	
	terminating PL/SQL blocks, 4.5, 12, 12

	PLAN_TABLE
	
	creating, 8.1.1
	table, 8.1.1

	PL/SQL, 4.5
	
	blocks, PL/SQL, 4.5
	executing, 12
	formatting output in SQL*Plus, 12
	listing definitions, 4.3
	mode in SQL*Plus, 4.5.1
	within SQL commands, 4.5.1

	PLUSTRACE
	
	creating role, 8.1.1
	role, 8.1.1

	PNO clause, 12
	pound sign (#), 12
	predefined variable
	
	_CONNECT_IDENTIFIER, 2.2.2.1, 12, 12
	_DATE, 12, 12
	_EDITOR, 5.1.1, 12, 12, 12, 12
	_O_RELEASE, 12, 12
	_O_VERSION, 12, 12
	_PRIVILEGE, 12, 12
	_RC, 12
	_SQLPLUS_RELEASE, 12, 12, 12
	_USER, 12, 12

	PREFORMAT, 3.5.1.6
	PREFORMAT clause, 3.5.1.6
	PRINT clause, 12
	PRINT command, 12
	printing
	
	bind variables automatically, 12
	REFCURSOR variables, 12
	SPOOL command, 12

	Product User Profile table, 9.1
	prompt
	
	SET SQLPROMPT, 8.5.10, 12, 12

	PROMPT clause, 5.11.1, 12
	PROMPT command, 5.11.1, 12
	
	customizing prompts for value, 5.11.2

	prompts for value
	
	bypassing with parameters, 5.10
	customizing, 5.11.2
	through ACCEPT, 5.11.1
	through substitution variables, 5.9.1

	PUPBLD.SQL, 9.1.1
	PURGE command
	
	disabling, 9.2

Q

	queries
	
	in COPY command, B.1.1, B.2.1
	show number of records retrieved, 4.4, 12, 12
	tracing, 8.3, 8.4

	query execution path
	
	including in report, 12

	query results
	
	displaying on-screen, 4.4
	sending to a printer, 6.4.3, 12
	storing in a file, 6.4.2, 12

	QUIT command, 12
	
	See also EXIT

R

	RAW
	
	column definition from DESCRIBE, 12

	record separators, printing, 6.1.7, 12, 12
	RECOVER clause, 12
	RECOVER command, 12
	
	and database recovery, 10.4
	AUTOMATIC clause, 12
	CANCEL clause, 12, 12
	CONTINUE clause, 12
	DATABASE clause, 12
	FROM clause, 12
	LOGFILE clause, 12
	NOPARALLEL clause, 12
	STANDBY DATABASE clause, 12
	STANDBY DATAFILE clause, 12
	STANDBY TABLESPACE clause, 12, 12
	UNTIL CANCEL clause, 12
	UNTIL CONTROLFILE clause, 12
	UNTIL TIME clause, 12
	USING BACKUP CONTROL FILE clause, 12

	recovery
	
	RECOVER command, 12

	RECSEP variable, 6.1.7, 12, 12
	RECSEPCHAR variable, 6.1.7, 12, 12
	REFCURSOR bind variables
	
	in a stored function, 5.13

	REFCURSOR clause
	
	VARIABLE command, 12

	registry
	
	editor, 2.1.1

	registry entry
	
	SQLPATH, 2.1, 2.1.1

	RELEASE clause, 12
	REMARK command, 5.3.1, 12
	removing sample tables, Preface
	RENAME command
	
	disabling, 9.2

	REPFOOTER clause, 12
	REPFOOTER command, 6.3.1, 12
	
	aligning footer elements, 12
	BOLD clause, 12
	CENTER clause, 12
	COL clause, 12
	FORMAT clause, 12
	indenting report footers, 12
	LEFT clause, 12
	OFF clause, 12
	RIGHT clause, 12
	SKIP clause, 12
	suppressing current definition, 12
	TAB clause, 12

	REPHEADER clause, 12
	REPHEADER command, 6.3.1, 12
	
	aligning header elements, 6.3.1.1
	aligning heading elements, 12
	BOLD clause, 12
	CENTER clause, 12
	COL clause, 12
	FORMAT clause, 12
	indenting headings, 12
	LEFT clause, 12
	OFF clause, 12
	PAGE clause, 12
	RIGHT clause, 12
	SKIP clause, 12
	suppressing current definition, 12
	TAB clause, 12

	REPLACE clause
	
	in COPY command, B.1.1, B.2.2
	in SAVE command, 12, 12

	reports
	
	autotrace, 8.1.1
	breaks, 12
	clarifying with spacing and summary lines, 6.2
	columns, 12
	creating bottom titles, 6.3, 12, C.1, C.1
	creating footers, 12
	creating headers, 12
	creating headers and footers, 6.3
	creating master/detail, 6.3.4, 12, 12
	creating top titles, 6.3, 12, C.1
	displaying, 12, 12
	formatting column headings, 6.1.1.2, 12
	formatting columns, 6.1.2.1, 6.1.3.1, 12
	interactive HTML example, 7.1.1, 7.1.1
	on the web, 7.1
	SILENT mode, 7.1.2
	starting on a new page, 12
	title, 12, C.1

	RESTRICT, 3.5.1.8, 9.4, 12
	return code, specifying, 5.6, 12, 12
	input
	
	accepting [Return], 5.11.3

	REVOKE command, 9.1
	
	disabling, 9.2

	RIGHT clause, 6.3.1.1, 12, 12
	roles, 9.3
	
	disabling, 9.3.2
	re-enabling, 9.3.2

	ROLLBACK clause, 12
	
	WHENEVER OSERROR, 12
	WHENEVER SQLERROR, 12

	ROLLBACK command
	
	disabling, 9.2

	ROWID
	
	column definition from DESCRIBE, 12

	rows
	
	performing computations on, 6.2.6, 12
	setting number retrieved at one time, 8.5.3, 12, 12
	setting the number after which COPY commits, 12

	RUN command, 12
	
	executing current PL/SQL block, 4.5
	making last line current, 5.2.2
	similar to / (slash) command, 12

S

	sample schemas, Preface, Preface, Preface, Preface, Preface
	
	see Oracle Database Sample Schemas guide, Preface
	using HR in COLUMN example, 12
	using HR in examples, 5, 6

	sample tables
	
	access to, Preface
	creating, Preface
	removing, Preface
	unlocking, Preface

	SAVE command, 12
	
	APPEND clause, 12
	CREATE clause, 12
	REPLACE clause, 12
	storing commands in scripts, 12
	using with INPUT to create scripts, 5.1.1

	SAVEPOINT command
	
	disabling, 9.2

	saving environment attributes, 12
	SCAN variable, C.1, C.11
	schemas
	
	command, 13.1
	database, 8.1.1
	database default, 12
	DESCRIBE parameter, 12
	disabled commands, 13.1
	HR sample, Preface, Preface
	installing own copy of HR, Preface
	sample, Preface
	SHOW parameter, 12, 12
	unlocking HR, Preface
	using HR in COLUMN example, 12
	using HR in examples, 5, 6

	SCREEN clause, 5.11.4, 12
	screens
	
	clearing, 5.11.4, 12

	scripts
	
	extension, 12, 12, 12
	registering, 8.5.2

	scripts, authenticating users in, 3.1.1
	security
	
	changing password, 12
	password viewable, 3.5.2
	PRODUCT_USER_PROFILE table, 9.1
	RESTRICT, 3.5.1.8, 9.4

	SELECT command
	
	and BREAK command, 6.2, 12, 12, 12
	and COLUMN command, 12
	and COMPUTE command, 6.2
	and COPY command, B.1.1, B.2.1
	and DEFINE command, 12
	and ORDER BY clause, 6.2
	disabling, 9.2
	formatting results, 5.13

	semicolon (;)
	
	in PL/SQL blocks, 4.5
	in SQL commands, 4.4, 4.4.1.2
	in SQL*Plus commands, 4.6.1, 12
	not stored in buffer, 5.2.1

	SERVEROUTPUT variable, 12
	service name
	
	in COPY command, B.2.1, B.2.2, B.3

	Session Editions, 12
	SET AUTOTRACE, 8.1.1
	SET clause, 12
	SET command, 2.2.3, 4.7, 12
	
	APPINFO variable, 8.5.2, 12
	ARRAYSIZE variable, 8.5.3, 12, 12, B.2.3
	AUTOCOMMIT variable, 12, 12
	AUTOPRINT variable, 12, 12, 12
	AUTORECOVERY variable, 12, 12
	AUTOTRACE variable, 12, 12
	BLOCKTERMINATOR variable, 12, 12
	BUFFER variable, C.6
	CLOSECURSOR variable, C.1, C.8
	CMDSEP variable, 12, 12
	COLSEP variable, 6.4.1, 12, 12
	COMPATIBILITY variable, C.1, C.7
	CONCAT variable, 5.9.4, 5.9.4, 12, 12
	COPYCOMMIT variable, 12, 12, B.2.3
	COPYTYPECHECK variable, 12, 12
	DEFINE clause, 5.9.4
	DEFINE variable, 12
	DESCRIBE variable, 12, 12
	DOCUMENT variable, C.1, C.9
	ECHO variable, 12, 12
	EDITFILE variable, 12, 12
	EMBEDDED variable, 12, 12
	ERRORLOGGING variable, 12
	ESCAPE variable, 5.9.4, 12, 12, 12, 12, 12
	ESCCHAR variable, 12
	EXITCOMMIT variable, 12
	FEEDBACK variable, 12, 12
	FLAGGER variable, 12, 12
	FLUSH variable, 8.5.5, 12, 12
	HEADING variable, 12
	HEADSEP variable, 6.1.1.2, 12, 12
	INSTANCE variable, 12, 12
	LINESIZE variable, 6.3.1.1, 6.3.6, 12, 12
	LOBOFFSET variable, 12, 12
	LOGSOURCE variable, 12, 12
	LONG variable, 12, 12, B.2.3
	LONGCHUNKSIZE variable, 12, 12
	MARKUP clause, 12
	MAXDATA variable, C.1, C.10
	NEWPAGE variable, 6.3.6, 12, 12
	NULL variable, 12, 12
	NUMFORMAT clause, 2.2.2.1
	NUMFORMAT variable, 12, 12
	NUMWIDTH variable, 6.1.2.1, 12, 12, 12
	PAGESIZE clause, 2.2.2.1
	PAGESIZE variable, 4.4, 6.3.6, 8.5.8, 12, 12
	PAUSE variable, 12, 12
	RECSEP variable, 6.1.7, 12, 12
	RECSEPCHAR variable, 6.1.7, 12, 12
	SCAN variable, C.1, C.11
	SERVEROUTPUT variable, 12
	SHIFTINOUT variable, 12, 12
	SPACE variable, C.1, C.12
	SQLBLANKLINES variable, 12
	SQLCASE variable, 12, 12
	SQLCONTINUE variable, 12, 12
	SQLNUMBER variable, 12, 12
	SQLPLUSCOMPATIBILITY variable, 12, 12
	SQLPREFIX variable, 12, 12
	SQLPROMPT variable, 8.5.10, 12, 12
	SQLTERMINATOR variable, 12, 12
	substitution variable, 12
	SUFFIX variable, 12, 12
	TAB variable, 8.5.11, 12, 12
	TERMOUT variable, 8.5.12, 12, 12
	TIME variable, 12, 12
	TIMING variable, 12, 12
	TRIMOUT variable, 12, 12
	TRIMSPOOL variable, 12, 12
	TRUNCATE variable, C.1, C.13
	UNDERLINE variable, 12, 12
	used to format a REFCURSOR variable, 12
	VERIFY clause, 5.9.1
	VERIFY variable, 5.9.4, 5.9.4, 12, 12
	WRAP variable, 6.1.3.2, 12, 12
	XMLOPTIMIZATIONCHECK variable, 12, 12
	XQUERY BASEURI variable, 12
	XQUERY CONTEXT variable, 12
	XQUERY NODE variable, 12
	XQUERY ORDERING variable, 12

	SET CONSTRAINTS command
	
	disabling, 9.2

	SET MARKUP
	
	BODY clause, 3.5.1.6
	ENTMAP clause, 3.5.1.6, 7.1.3
	HEAD clause, 3.5.1.6
	HTML, 3.5.1.6
	interactive HTML example, 7.1.1, 7.1.1
	PREFORMAT clause, 3.5.1.6
	TABLE clause, 3.5.1.6

	SET ROLE command
	
	disabling, 9.2

	SET system variable summary, 12
	SET TRANSACTION command
	
	disabling, 9.2

	SET variables, 4.7
	
	See system variables

	SET XQUERY BASEURI, 12
	SET XQUERY CONTEXT, 12
	SET XQUERY NODE, 12
	SET XQUERY ORDERING, 12
	SGA clause, 12
	SHIFTINOUT variable, 12, 12
	SHOW
	
	schema parameter, 12, 12

	SHOW clause, 12
	SHOW command, 4.7, 12
	
	ALL clause, 12
	BTITLE clause, 12
	ERRORS clause, 12
	LABEL variable, C.1
	listing current page dimensions, 6.3.6
	LNO clause, 12
	PNO clause, 12
	RELEASE clause, 12
	REPFOOTER clause, 12
	REPHEADER clause, 12
	SPOOL clause, 12
	SQLCODE clause, 12
	TTITLE clause, 12
	USER clause, 12
	XQUERY clause, 12

	SHOWMODE variable, 12, 12
	SHUTDOWN command, 12, 12
	
	ABORT, 12
	IMMEDIATE, 12
	NORMAL, 12
	TRANSACTIONAL LOCAL, 12

	-SILENT option, 3.5.1.9, 7.1.2
	site profile
	
	glogin, 2.2, 2.2.1, 2.2.2.1, 3.5.1.8, 12, 12

	SKIP clause
	
	in BREAK command, 6.2.2, 6.2.3, 12
	in REPHEADER and REPFOOTER commands, 12
	in TTITLE and BTITLE commands, 6.3.1.1, 12
	used to place blank lines before bottom title, 6.3.1.1

	SKIP PAGE clause, 6.2.2, 6.2.3, 12
	slash (/) command, 12
	
	files loaded with GET command, 12

	SPACE variable, C.1, C.12
	SPOOL clause, 3.5.1.6, 12
	SPOOL command, 6.3.6, 12
	
	APPEND clause, 12
	CREATE clause, 12
	file name, 6.4.2, 12
	OFF clause, 6.4, 12
	OUT clause, 6.4.3, 12
	REPLACE clause, 12
	to HTML file, 3.5.1.6
	turning spooling off, 6.4, 12
	use with SET MARKUP, 7.1.1

	SQL clause, 12
	SQL DML statements
	
	reporting on, 12, 12

	SQL optimizer, 8.1.2
	SQL*Plus
	
	command prompt, 3.3.1
	command summary, 12
	configuring globalization support, 11.1
	configuring Oracle Net, 2.2.5
	database administration, 10.1
	environment variables, 2.1
	error messages, 13.1
	execution plan, 8.1.2
	exiting, 3.4, 12, 12
	limits, A
	obsolete command alternatives, C.1
	setting up environment, 2.2
	starting, 3.3, 3.3.1, 3.5
	statistics, 8.1.3
	system variables affecting performance, 8.5
	tuning, 8.1
	who can use, Preface

	SQL*Plus and OCI packages, D.1
	SQL*Plus command-line vs SQL*Plus Instant Client, D
	SQL*Plus Instant Client, D, D, D.1, D.1, D.2, D.2.1, D.2.2, D.3, D.3.1, D.3.2
	
	basic, D.1.1
	installation, D
	lightweight, D.1.2
	NLS_LANG, D.1.2
	NLS_LANG charset parameter, D.1.2
	NLS_LANG language parameter, D.1.2
	NLS_LANG territory parameter, D.1.2
	required files in packages, D.2.3
	unsupported charset error, D.1.2.1

	SQLBLANKLINES variable, 12, 12
	SQLCASE variable, 12, 12
	SQLCODE clause, 12
	
	SHOW command, 12

	SQLCONTINUE variable, 12, 12
	SQL.PNO, referencing in report titles, 6.3.2
	SQL.SQLCODE
	
	using in EXIT command, 12

	SQLNUMBER variable, 12, 12, 12, 12
	SQLPATH
	
	environment variables, 2.1
	registry entry, 2.1, 2.1.1

	SQLPLUS command, 3.3.1
	
	- clause, 3.5.1.1
	-? clause, 3.5.1.2
	and @ (at sign), 3.5
	and EXIT FAILURE, 3.4
	Application Editions, 3.5.2
	BODY option, 3.5.1.6
	commands
	
	SQLPLUS, 3.5

	connect identifier, 3.5.2
	display syntax, 3.5.1.1
	edition, 3.5.2
	ENTMAP option, 3.5.1.6
	HEAD option, 3.5.1.6
	HTML option, 3.5.1.6
	-MARKUP clause, 3.5.1.6
	-MARKUP option, 3.5.1.6
	/NOLOG clause, 3.5.2
	PREFORMAT option, 3.5.1.6
	RESTRICT, 3.5.1.8, 9.4
	service name, 3.5.2
	-SILENT clause, 3.5.1.9
	-SILENT option, 3.5.1.9, 7.1.2
	SPOOL clause, 3.5.1.6
	syntax, 3.5
	SYSDBA clause, 3.5.2
	TABLE option, 3.5.1.6
	unsuccessful connection, 3.4
	username/password, 3.3.1, 3.5.2

	SQLPREFIX variable, 12, 12
	SQLPROMPT variable, 8.5.10, 12, 12
	SQLTERMINATOR variable, 12, 12, 12, 12
	STANDBY DATAFILE clause, 12
	STANDBY TABLESPACE clause, 12
	START clause, 12
	START command, 5.4, 12
	
	arguments, 5.10
	passing parameters to a script, 5.10
	script, 5.4, 12
	similar to @ (at sign) command, 5.4, 12, 12
	similar to @@ (double at sign) command, 12

	starting
	
	SQL*Plus, 1.1, 3.3, 3.3.1

	STARTUP command, 12
	
	FORCE clause, 12
	MOUNT clause, 12
	NOMOUNT clause, 12
	OPEN clause, 12
	PFILE clause, 12
	RECOVER clause, 12
	RESTRICT clause, 12
	specifying a database, 12

	statistics, 8.1.3
	
	collecting TIMING statistics, 8.2

	STOP clause, 12
	stop query, 4.8
	STORE command, 2.2.3, 12
	
	SET clause, 12

	stored functions, 5.13
	stored procedures
	
	creating, 4.5.1

	subkey, registry, 2.1.1
	substitution variables, 5.7, 5.9, 5.9.4, 12, 12
	
	_EDITOR, 12
	appending characters immediately after, 5.9.1
	avoiding unnecessary prompts for value, 5.9.2
	concatenation character, 12, 12
	DEFINE command, 12
	defining, 5.7, 5.9.2, 12
	deleting, 5.7, 12
	displaying in headers and footers, 12
	displaying in titles, 12
	in ACCEPT command, 5.11.1, 12
	listing definitions, 5.7, 5.7, 12, 12
	parsing, 8.5.4
	prefixing, 12, C.1
	related system variables, 5.9.4
	restrictions, 5.9.3
	single and double ampersands, 5.9.2
	system variables used with, 5.9.4
	undefined, 5.9.1
	where and how to use, 5.9.1

	SUFFIX variable, 12, 12
	
	used with EDIT command, 12
	used with GET command, 12
	used with SAVE command, 12
	used with START command, 12

	SUM function, 6.2.6
	summary lines
	
	computing and printing, 6.2.6, 12
	computing and printing at ends of reports, 6.2.7
	computing same type on different columns, 6.2.8
	printing grand and sub summaries (totals), 6.2.7
	printing multiple on same break column, 6.2.8

	syntax
	
	COPY command, B.2.1

	syntax rules
	
	SQL commands, 4.4.1
	SQL*Plus commands, 4.6.1

	SYSDBA clause, 12
	SYSOPER clause, 3.5.2, 12
	system variables, 4.7, 12
	
	affecting SQL*Plus performance, 8.5
	affecting substitution variables, 5.9.4
	listing current settings, 4.7, 12
	listing old and new values, 12, 12
	storing and restoring, 2.2.3
	summary of SET commands, 12

	system-maintained values
	
	displaying in headers and footers, 12
	displaying in titles, 6.3.2, 12
	formatting in titles, 6.3.2

T

	TAB clause, 12, 12
	TAB variable, 8.5.11, 12, 12
	TABLE clause, 3.5.1.6
	TABLE option, 3.5.1.6
	tables
	
	access to sample, Preface
	controlling destination when copying, B.1.1, B.2.2
	copying values between, B.2, B.3
	listing column definitions, 4.2, 12
	referring to another user’s when copying, B.2.4

	TABLESPACE clause, 12
	tablespaces, recovering, 12
	tag, HTML, 7.1
	TERMOUT variable, 8.5.12, 12, 12
	
	using with SPOOL command, 12

	territory
	
	SQL*Plus Instant Client, D.1.2

	text, 3.5.1.6, 3.5.1.6
	
	adding to current line with APPEND, 5.2.3, 12
	changing old to new with CHANGE, 5.2.2, 12
	clearing from buffer, 5.2, 12

	text editor
	
	operating system, 5.1.1, 12

	TIME variable, 12, 12
	TIMING clause, 12
	TIMING command, 8.2, 12
	
	deleting all areas created by, 12
	deleting current area, 12
	SHOW clause, 12
	START clause, 12
	STOP clause, 12

	TIMING variable, 12, 12
	titles
	
	aligning elements, 6.3.1.1, 12
	displaying at bottom of page, 6.3, 12, C.1, C.1
	displaying at top of page, 6.3, 12, C.1
	displaying column values, 6.3.4, 12, 12
	displaying current date, 6.3.5, 12, 12
	displaying page number, 6.3.2, 12
	displaying system-maintained values, 6.3.2, 12
	formatting elements, 12
	formatting system-maintained values in, 6.3.2
	indenting, 6.3.1.2, 12
	listing current definition, 6.3.3, 12, 12
	restoring definition, 6.3.3
	setting at start or end of report, 6.3
	setting lines from top of page to top title, 6.3.6, 12, 12, C.1
	setting lines from top title to end of page, 8.5.8, 12, 12
	setting top and bottom, 6.3, 12, 12, C.1, C.1, C.1
	spacing between last row and bottom title, 6.3.1.1
	suppressing definition, 6.3.3, 12

	TNS_ADMIN
	
	environment variables, 2.1

	TO clause, B.2.1
	tracing queries, 8.3, 8.4
	tracing statements
	
	for performance statistics, 8.1.3
	for query execution path, 8.1.3
	with parallel query option, 8.3

	TRIMOUT variable, 12, 12
	TRIMSPOOL variable, 12, 12
	TRUNCATE command
	
	disabling, 9.2

	TRUNCATE variable, C.1, C.13
	TRUNCATED clause, 6.1.3.2, 12
	TTITLE clause, 12
	TTITLE command, 6.3.1, 12
	
	aligning title elements, 6.3.1.1, 12
	BOLD clause, 12
	CENTER clause, 6.3.1.1, 12
	COL clause, 6.3.1.2, 12
	FORMAT clause, 6.3.2, 12
	indenting titles, 6.3.1.2, 12
	LEFT clause, 6.3.1.1, 12
	listing current definition, 6.3.3, 12
	OFF clause, 6.3.3, 12
	old form, C.14
	ON clause, 6.3.3
	referencing column value variable, 6.3.4, 12
	restoring current definition, 6.3.3
	RIGHT clause, 6.3.1.1, 12
	SKIP clause, 6.3.1.1, 12
	suppressing current definition, 6.3.3, 12
	TAB clause, 12

	tuning
	
	SET APPINFO OFF, 8.5.2
	SET ARRAYSIZE, 8.5.3
	SET DEFINE OFF, 8.5.4
	SET FLUSH OFF, 8.5.5
	SET TRIMOUT ON, 8.5.13
	SET TRIMSPOOL ON, 8.5.13
	SQL*Plus, 8.1
	system variables, 8.5

	TWO_TASK
	
	environment variables, 2.1

U

	UNDEFINE command, 5.7, 12
	
	and DEFINE command, 12

	UNDERLINE variable, 12, 12
	unicode
	UNIX
	
	ed, 12
	installing SQL*Plus Instant Client, D.2.2
	SQL*Plus Instant Client files to copy, D.3.1

	unlocking sample tables, Preface
	UNTIL CANCEL clause, 12
	UNTIL CHANGE clause, 12
	UNTIL CONTROLFILE clause, 12
	UNTIL TIME clause, 12
	UPDATE command, disabling, 9.2
	USER clause, 12
	user profile, 2.2.2
	
	glogin.sql, 2.2.2
	login.sql, 2.2.2, 2.2.2.1
	See also site profile

	user variable
	
	See substitution variable

	username, 3.1
	
	connecting under different, 3.1, 12
	in CONNECT command, 3.1, 12
	in COPY command, B.2.1, B.2.2, B.3
	in SQLPLUS command, 3.3.1, 3.5.2

	USING BACKUP CONTROL FILE clause, 12
	USING clause, B.1.1, B.2.1
	UTF-8

V

	V$SESSION virtual table, 12
	V$SQLAREA virtual table, 12
	VALIDATE command
	
	disabling, 9.2

	VARCHAR columns
	
	default format, 6.1.3.1

	VARCHAR2
	
	column definition from DESCRIBE, 12

	VARCHAR2 clause
	
	VARIABLE command, 12

	VARCHAR2 columns
	
	changing format, 12
	default format, 6.1.3.1

	VARIABLE command, 12
	
	BFILE clause, 12
	BINARY_DOUBLE clause, 12
	BINARY_FLOAT clause, 12
	BLOB clause, 12
	CHAR clause, 12
	CLOB clause, 12
	NCHAR clause, 12
	NCLOB clause, 12
	NUMBER clause, 12
	REFCURSOR clause, 12
	VARCHAR2 clause, 12
	variable clause, 12

	variables
	
	bind variables, 5.12
	substitution variables, 12
	system variables, 4.7

	VERIFY clause, 5.9.1
	VERIFY variable, 5.9.4, 5.9.4, 12, 12

W

	WARNING clause, 12
	web browser, 7.1.1
	web, outputting reports, 7.1
	WHENEVER OSERROR command, 12
	
	COMMIT clause, 12
	CONTINUE clause, 12
	EXIT clause, 12
	NONE clause, 12
	ROLLBACK clause, 12

	WHENEVER SQLERROR command, 12
	
	COMMIT clause, 12
	CONTINUE clause, 12
	EXIT clause, 12
	NONE clause, 12
	ROLLBACK clause, 12

	Windows
	
	installing SQL*Plus Instant Client, D.2.2
	notepad, 12
	SQL*Plus Instant Client files to copy, D.3.2

	WORD_WRAPPED clause, 6.1.3.2, 6.1.7, 12
	WRAP variable, 6.1.3.2, 12, 12
	WRAPPED clause, 6.1.3.2, 12, 12

X

	XMLOPTIMIZATIONCHECK variable, 12, 12
	XMLType
	
	column definition from DESCRIBE, 12
	column formatting, 6.1.3.2
	column width, 6.1.3.1
	creating, 6.1.3.2
	formatting in reports, 6.1.3
	inserting values, 6.1.3.2
	selecting data, 6.1.3.2
	setting column retrieval size, 8.5.7, 12
	setting maximum column width, 12

	XQUERY clause, 12
	XQUERY command, 12
	XQUERY options
	
	BASEURI, 12
	CONTEXT, 12
	NODE, 12
	ORDERING, 12

Oracle Legal Notices

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including