

22 Monitoring an Oracle Streams Environment

This chapter lists the static data dictionary views and dynamic performance views related to Oracle Streams. You can use these views to monitor your Oracle Streams environment.

The following sections contain data dictionary views for monitoring an Oracle Streams environment:

	
Summary of Oracle Streams Static Data Dictionary Views

	
Summary of Oracle Streams Dynamic Performance Views

	
Note:

The Oracle Streams tool in Oracle Enterprise Manager is also an excellent way to monitor an Oracle Streams environment. See Oracle Database 2 Day + Data Replication and Integration Guide and the online Help for the Oracle Streams tool for more information.

	
See Also:

Oracle Database Reference for information about the data dictionary views described in this chapter

Summary of Oracle Streams Static Data Dictionary Views

Table 22-1 lists the Oracle Streams static data dictionary views.

Table 22-1 Oracle Streams Static Data Dictionary Views

	ALL_ Views	DBA_ Views	USER_ Views
	
ALL_APPLY

	
DBA_APPLY

	
N/A

	
ALL_APPLY_CHANGE_HANDLERS

	
DBA_APPLY_CHANGE_HANDLERS

	
N/A

	
ALL_APPLY_CONFLICT_COLUMNS

	
DBA_APPLY_CONFLICT_COLUMNS

	
N/A

	
ALL_APPLY_DML_HANDLERS

	
DBA_APPLY_DML_HANDLERS

	
N/A

	
ALL_APPLY_ENQUEUE

	
DBA_APPLY_ENQUEUE

	
N/A

	
ALL_APPLY_ERROR

	
DBA_APPLY_ERROR

	
N/A

	
ALL_APPLY_EXECUTE

	
DBA_APPLY_EXECUTE

	
N/A

	
N/A

	
DBA_APPLY_INSTANTIATED_GLOBAL

	
N/A

	
N/A

	
DBA_APPLY_INSTANTIATED_OBJECTS

	
N/A

	
N/A

	
DBA_APPLY_INSTANTIATED_SCHEMAS

	
N/A

	
ALL_APPLY_KEY_COLUMNS

	
DBA_APPLY_KEY_COLUMNS

	
N/A

	
N/A

	
DBA_APPLY_OBJECT_DEPENDENCIES

	
N/A

	
ALL_APPLY_PARAMETERS

	
DBA_APPLY_PARAMETERS

	
N/A

	
ALL_APPLY_PROGRESS

	
DBA_APPLY_PROGRESS

	
N/A

	
N/A

	
DBA_APPLY_SPILL_TXN

	
N/A

	
ALL_APPLY_TABLE_COLUMNS

	
DBA_APPLY_TABLE_COLUMNS

	
N/A

	
N/A

	
DBA_APPLY_VALUE_DEPENDENCIES

	
N/A

	
ALL_CAPTURE

	
DBA_CAPTURE

	
N/A

	
ALL_CAPTURE_EXTRA_ATTRIBUTES

	
DBA_CAPTURE_EXTRA_ATTRIBUTES

	
N/A

	
ALL_CAPTURE_PARAMETERS

	
DBA_CAPTURE_PARAMETERS

	
N/A

	
ALL_CAPTURE_PREPARED_DATABASE

	
DBA_CAPTURE_PREPARED_DATABASE

	
N/A

	
ALL_CAPTURE_PREPARED_SCHEMAS

	
DBA_CAPTURE_PREPARED_SCHEMAS

	
N/A

	
ALL_CAPTURE_PREPARED_TABLES

	
DBA_CAPTURE_PREPARED_TABLES

	
N/A

	
N/A

	
DBA_COMPARISON

	
USER_COMPARISON

	
N/A

	
DBA_COMPARISON_COLUMNS

	
USER_COMPARISON_COLUMNS

	
N/A

	
DBA_COMPARISON_ROW_DIF

	
USER_COMPARISON_ROW_DIF

	
N/A

	
DBA_COMPARISON_SCAN

	
USER_COMPARISON_SCAN

	
N/A

	
DBA_COMPARISON_SCAN_VALUES

	
USER_COMPARISON_SCAN_VALUES

	
ALL_EVALUATION_CONTEXT_TABLES

	
DBA_EVALUATION_CONTEXT_TABLES

	
USER_EVALUATION_CONTEXT_TABLES

	
ALL_EVALUATION_CONTEXT_VARS

	
DBA_EVALUATION_CONTEXT_VARS

	
USER_EVALUATION_CONTEXT_VARS

	
ALL_EVALUATION_CONTEXTS

	
DBA_EVALUATION_CONTEXTS

	
USER_EVALUATION_CONTEXTS

	
ALL_FILE_GROUP_EXPORT_INFO

	
DBA_FILE_GROUP_EXPORT_INFO

	
USER_FILE_GROUP_EXPORT_INFO

	
ALL_FILE_GROUP_FILES

	
DBA_FILE_GROUP_FILES

	
USER_FILE_GROUP_FILES

	
ALL_FILE_GROUP_TABLES

	
DBA_FILE_GROUP_TABLES

	
USER_FILE_GROUP_TABLES

	
ALL_FILE_GROUP_TABLESPACES

	
DBA_FILE_GROUP_TABLESPACES

	
USER_FILE_GROUP_TABLESPACES

	
ALL_FILE_GROUP_VERSIONS

	
DBA_FILE_GROUP_VERSIONS

	
USER_FILE_GROUP_VERSIONS

	
ALL_FILE_GROUPS

	
DBA_FILE_GROUPS

	
USER_FILE_GROUPS

	
N/A

	
DBA_HIST_STREAMS_APPLY_SUM

	
N/A

	
N/A

	
DBA_HIST_STREAMS_CAPTURE

	
N/A

	
N/A

	
DBA_HIST_STREAMS_POOL_ADVICE

	
N/A

	
ALL_PROPAGATION

	
DBA_PROPAGATION

	
N/A

	
N/A

	
DBA_RECOVERABLE_SCRIPT

	
N/A

	
N/A

	
DBA_RECOVERABLE_SCRIPT_BLOCKS

	
N/A

	
N/A

	
DBA_RECOVERABLE_SCRIPT_ERRORS

	
N/A

	
N/A

	
DBA_RECOVERABLE_SCRIPT_HIST

	
N/A

	
N/A

	
DBA_RECOVERABLE_SCRIPT_PARAM

	
N/A

	
N/A

	
DBA_REGISTERED_ARCHIVED_LOG

	
N/A

	
ALL_RULE_SET_RULES

	
DBA_RULE_SET_RULES

	
USER_RULE_SET_RULES

	
ALL_RULE_SETS

	
DBA_RULE_SETS

	
USER_RULE_SETS

	
ALL_RULES

	
DBA_RULES

	
USER_RULES

	
N/A

	
DBA_STREAMS_ADD_COLUMN

	
N/A

	
N/A

	
DBA_STREAMS_ADMINISTRATOR

	
N/A

	
ALL_STREAMS_COLUMNS

	
DBA_STREAMS_COLUMNS

	
N/A

	
N/A

	
DBA_STREAMS_DELETE_COLUMN

	
N/A

	
ALL_STREAMS_GLOBAL_RULES

	
DBA_STREAMS_GLOBAL_RULES

	
N/A

	
N/A

	
DBA_STREAMS_KEEP_COLUMNS

	
N/A

	
ALL_STREAMS_MESSAGE_CONSUMERS

	
DBA_STREAMS_MESSAGE_CONSUMERS

	
N/A

	
ALL_STREAMS_MESSAGE_RULES

	
DBA_STREAMS_MESSAGE_RULES

	
N/A

	
ALL_STREAMS_NEWLY_SUPPORTED

	
DBA_STREAMS_NEWLY_SUPPORTED

	
N/A

	
N/A

	
DBA_STREAMS_RENAME_COLUMN

	
N/A

	
N/A

	
DBA_STREAMS_RENAME_SCHEMA

	
N/A

	
N/A

	
DBA_STREAMS_RENAME_TABLE

	
N/A

	
ALL_STREAMS_RULES

	
DBA_STREAMS_RULES

	
N/A

	
ALL_STREAMS_SCHEMA_RULES

	
DBA_STREAMS_SCHEMA_RULES

	
N/A

	
N/A

	
DBA_STREAMS_SPLIT_MERGE

	
N/A

	
N/A

	
DBA_STREAMS_SPLIT_MERGE_HIST

	
N/A

	
N/A

	
DBA_STREAMS_STMT_HANDLERS

	
N/A

	
N/A

	
DBA_STREAMS_STMTS

	
N/A

	
ALL_STREAMS_TABLE_RULES

	
DBA_STREAMS_TABLE_RULES

	
N/A

	
N/A

	
DBA_STREAMS_TRANSFORMATIONS

	
N/A

	
ALL_STREAMS_TRANSFORM_FUNCTION

	
DBA_STREAMS_TRANSFORM_FUNCTION

	
N/A

	
N/A

	
DBA_STREAMS_TP_COMPONENT

	
N/A

	
N/A

	
DBA_STREAMS_TP_COMPONENT_LINK

	
N/A

	
N/A

	
DBA_STREAMS_TP_COMPONENT_STAT

	
N/A

	
N/A

	
DBA_STREAMS_TP_DATABASE

	
N/A

	
N/A

	
DBA_STREAMS_TP_PATH_BOTTLENECK

	
N/A

	
N/A

	
DBA_STREAMS_TP_PATH_STAT

	
N/A

	
ALL_STREAMS_UNSUPPORTED

	
DBA_STREAMS_UNSUPPORTED

	
N/A

	
ALL_SYNC_CAPTURE

	
DBA_SYNC_CAPTURE

	
N/A

	
ALL_SYNC_CAPTURE_PREPARED_TABS

	
DBA_SYNC_CAPTURE_PREPARED_TABS

	
N/A

	
N/A

	
DBA_SYNC_CAPTURE_TABLES

	
N/A

Summary of Oracle Streams Dynamic Performance Views

The Oracle Streams dynamic performance views are:

	
V$BUFFERED_PUBLISHERS

	
V$BUFFERED_QUEUES

	
V$BUFFERED_SUBSCRIBERS

	
V$PROPAGATION_RECEIVER

	
V$PROPAGATION_SENDER

	
V$RULE

	
V$RULE_SET

	
V$RULE_SET_AGGREGATE_STATS

	
V$STREAMS_APPLY_COORDINATOR

	
V$STREAMS_APPLY_READER

	
V$STREAMS_APPLY_SERVER

	
V$STREAMS_CAPTURE

	
V$STREAMS_POOL_ADVICE

	
V$STREAMS_POOL_STATISTICS

	
V$STREAMS_TRANSACTION

	
Note:

	
When monitoring an Oracle Real Application Clusters (Oracle RAC) database, use the GV$ versions of the dynamic performance views.

	
To collect elapsed time statistics in these dynamic performance views, set the TIMED_STATISTICS initialization parameter to TRUE.

33 Troubleshooting Apply

The following topics describe identifying and resolving common apply process problems in an Oracle Streams environment:

	
Is the Apply Process Enabled?

	
Is the Apply Process Current?

	
Does the Apply Process Apply Captured LCRs?

	
Is the Apply Process's Queue Receiving the Messages to be Applied?

	
Is a Custom Apply Handler Specified?

	
Is the AQ_TM_PROCESSES Initialization Parameter Set to Zero?

	
Does the Apply User Have the Required Privileges?

	
Is the Apply Process Encountering Contention?

	
Is the Apply Process Waiting for a Dependent Transaction?

	
Is an Apply Server Performing Poorly for Certain Transactions?

	
Are There Any Apply Errors in the Error Queue?

	
See Also:

	
"Implicit Consumption with an Apply Process"

	
Oracle Streams Replication Administrator's Guide for information about configuring apply

	
Chapter 17, "Managing Oracle Streams Information Consumption"

	
Chapter 26, "Monitoring Oracle Streams Apply Processes"

Is the Apply Process Enabled?

An apply process applies changes only when it is enabled.

You can check whether an apply process is enabled, disabled, or aborted by querying the DBA_APPLY data dictionary view. For example, to check whether an apply process named apply is enabled, run the following query:

SELECT STATUS FROM DBA_APPLY WHERE APPLY_NAME = 'APPLY';

If the apply process is disabled, then your output looks similar to the following:

STATUS

DISABLED

If the apply process is disabled, then try restarting it. If the apply process is aborted, then you might need to correct an error before you can restart it successfully. If the apply process did not shut down cleanly, then it might not restart. In this case, it returns the following error:

ORA-26666 cannot alter STREAMS process

If this happens then, then run the STOP_APPLY procedure in the DBMS_APPLY_ADM package with the force parameter set to TRUE. Next, restart the apply process.

To determine why an apply process aborted, query the DBA_APPLY data dictionary view or check the trace files for the apply process. The following query shows when the apply process aborted and the error that caused it to abort:

COLUMN APPLY_NAME HEADING 'APPLY|Process|Name' FORMAT A10
COLUMN STATUS_CHANGE_TIME HEADING 'Abort Time'
COLUMN ERROR_NUMBER HEADING 'Error Number' FORMAT 99999999
COLUMN ERROR_MESSAGE HEADING 'Error Message' FORMAT A40

SELECT APPLY_NAME, STATUS_CHANGE_TIME, ERROR_NUMBER, ERROR_MESSAGE
 FROM DBA_APPLY WHERE STATUS='ABORTED';

	
See Also:

	
"Starting an Apply Process"

	
"Displaying Detailed Information About Apply Errors"

	
"Checking the Trace Files and Alert Log for Problems"

	
"Apply Processes and Oracle Real Application Clusters" for information about restarting an apply process in an Oracle Real Application Clusters (Oracle RAC) environment

Is the Apply Process Current?

If an apply process has not applied recent changes, then the problem might be that the apply process has fallen behind. If apply process latency is high, then you might be able to improve performance by adjusting the setting of the parallelism apply process parameter.

You can check apply process latency by querying the V$STREAMS_APPLY_COORDINATOR dynamic performance view.

	
See Also:

	
"Determining the Capture to Apply Latency for a Message for Each Apply Process"

	
"Apply Process Parameters"

	
"Setting an Apply Process Parameter"

	
Oracle Database 2 Day + Data Replication and Integration Guide

	
The DBMS_APPLY_ADM.SET_PARAMETER procedure in the Oracle Database PL/SQL Packages and Types Reference for detailed information about the apply process parameters

Does the Apply Process Apply Captured LCRs?

An apply process can apply either captured LCRs from its buffered queue, or it can apply messages from its persistent queue, but not both types of messages. Messages in a persistent queue can be persistent LCRs and persistent user messages. An apply process might not be applying messages of a one type because it was configured to apply the other type of messages.

You can check the type of messages applied by an apply process by querying the DBA_APPLY data dictionary view. For example, to check whether an apply process named apply applies captured LCRs or not, run the following query:

COLUMN APPLY_CAPTURED HEADING 'Type of Messages Applied' FORMAT A25

SELECT DECODE(APPLY_CAPTURED,
 'YES', 'Captured',
 'NO', 'Messages from Persistent Queue') APPLY_CAPTURED
 FROM DBA_APPLY
 WHERE APPLY_NAME = 'APPLY';

If the apply process applies captured LCRs, then your output looks similar to the following:

Type of Messages Applied

Captured

If an apply process is not applying the expected type of messages, then you might need to create an apply process to apply these messages.

	
See Also:

	
"Ways to Consume Information with Oracle Streams"

	
Oracle Streams Replication Administrator's Guide for information about configuring Oracle Streams replication

Is the Apply Process's Queue Receiving the Messages to be Applied?

An apply process must receive messages in its queue before it can apply these messages. Therefore, if an apply process is applying messages captured by a capture process or a synchronous capture, then the capture process or synchronous capture that captures these messages must be configured properly. If it is a capture process, then it must also be enabled. Similarly, if messages are propagated from one or more databases before reaching the apply process, then each propagation must be enabled and must be configured properly. If a capture process, a synchronous capture, or a propagation on which the apply process depends is not enabled or is not configured properly, then the messages might never reach the apply process's queue.

The rule sets used by all Oracle Streams clients, including capture processes, synchronous captures, and propagations, determine the behavior of these Oracle Streams clients. Therefore, ensure that the rule sets for any capture processes, synchronous capture, or propagations on which an apply process depends contain the correct rules. If the rules for these Oracle Streams clients are not configured properly, then the apply process's queue might never receive the appropriate messages. Also, a message traveling through a stream is the composition of all of the transformations done along the path. For example, if a capture process uses subset rules and performs row migration during capture of a message, and a propagation uses a rule-based transformation on the message to change the table name, then, when the message reaches an apply process, the apply process rules must account for these transformations.

In an environment where a capture process or synchronous capture captures changes that are propagated and applied at multiple databases, you can use the following guidelines to determine whether a problem is caused by a capture process, a synchronous capture, or a propagation on which an apply process depends or by the apply process itself:

	
If no other destination databases of a capture process or synchronous capture are applying the changes, then the problem is most likely caused by the capture process or synchronous capture, or by a propagation near the capture process. In this case, first ensure that the capture process or synchronous capture is configured properly, and then ensure that the propagations nearest the capture process or synchronous capture are enabled and configured properly. For a capture process, also ensure that the capture process is enabled.

	
If other destination databases of a capture process or synchronous capture are applying the changes, then the problem is most likely caused by the apply process itself or a propagation near the apply process. In this case, first ensure that the apply process is enabled and configured properly, and then ensure that the propagations nearest the apply process are enabled and configured properly.

	
See Also:

	
"Troubleshooting Capture Process Problems"

	
Chapter 32, "Troubleshooting Propagation"

	
Chapter 34, "Troubleshooting Rules and Rule-Based Transformations"

Is a Custom Apply Handler Specified?

You can use apply handlers to handle messages dequeued by an apply process in a customized way. These handlers include statement DML handlers, procedure DML handlers, DDL handlers, precommit handlers, and message handlers. If an apply process is not behaving as expected, then check the handlers used by the apply process, and correct any flaws. You might need to modify a SQL statement in a statement DML handler to correct an apply problem. You also might need to modify a PL/SQL procedure or remove it to correct an apply problem.

You can find the names of these procedures by querying the DBA_APPLY_DML_HANDLERS and DBA_APPLY data dictionary views.

	
See Also:

	
"Message Processing Options for an Apply Process"

	
Chapter 17, "Managing Oracle Streams Information Consumption"

	
"Displaying Information About Apply Handlers"

Is the AQ_TM_PROCESSES Initialization Parameter Set to Zero?

The AQ_TM_PROCESSES initialization parameter controls time monitoring on queue messages and controls processing of messages with delay and expiration properties specified. In Oracle Database 10g or later, the database automatically controls these activities when the AQ_TM_PROCESSES initialization parameter is not set.

If an apply process is not applying messages, but there are messages that satisfy the apply process rule sets in the apply process's queue, then ensure that the AQ_TM_PROCESSES initialization parameter is not set to zero at the destination database. If this parameter is set to zero, then unset this parameter or set it to a nonzero value and monitor the apply process to see if it begins to apply messages.

To determine whether there are messages in a buffered queue, you can query the V$BUFFERED_QUEUES and V$BUFFERED_SUBSCRIBERS dynamic performance views. To determine whether there are messages in a persistent queue, you can query the queue table for the queue.

	
See Also:

	
"Viewing the Contents of Messages in a Persistent Queue"

	
"Monitoring Buffered Queues"

	
Oracle Streams Advanced Queuing User's Guide for information about the AQ_TM_PROCESSES initialization parameter

Does the Apply User Have the Required Privileges?

If the apply user does not have explicit EXECUTE privilege on an apply handler procedure or custom rule-based transformation function, then an ORA-26808 error might result when the apply user tries to run the procedure or function. Typically, this error is causes the apply process to abort without adding errors to the DBA_APPLY_ERROR view. However, the trace file for the apply coordinator reports the error. Specifically, an error similar to the following appears in the trace file:

ORA-26808: Apply process AP01 died unexpectedly

Typically, error messages surround this message, and one or more of these messages contain the name of the procedure or function. To correct the problem, grant the required EXECUTE privilege to the apply user.

	
See Also:

	
"Apply User"

	
Chapter 17, "Managing Oracle Streams Information Consumption"

	
"Does an Apply Process Trace File Contain Messages About Apply Problems?"

Is the Apply Process Encountering Contention?

An apply server is a component of an apply process. Apply servers apply DML and DDL changes to database objects at a destination database. An apply process can use one or more apply servers, and the parallelism apply process parameter specifies the number of apply servers that can concurrently apply transactions. For example, if parallelism is set to 5, then an apply process uses a total of five apply servers.

An apply server encounters contention when the apply server must wait for a resource that is being used by another session. Contention can result from logical dependencies. For example, when an apply server tries to apply a change to a row that a user has locked, then the apply server must wait for the user. Contention can also result from physical dependencies. For example, interested transaction list (ITL) contention results when two transactions that are being applied, which might not be logically dependent, are trying to lock the same block on disk. In this case, one apply server locks rows in the block, and the other apply server must wait for access to the block, even though the second apply server is trying to lock different rows. See "Is the Apply Process Waiting for a Dependent Transaction?" for detailed information about ITL contention.

When an apply server encounters contention that does not involve another apply server in the same apply process, it waits until the contention clears. When an apply server encounters contention that involves another apply server in the same apply process, one of the two apply servers is rolled back. An apply process that is using multiple apply servers might be applying multiple transactions at the same time. The apply process tracks the state of the apply server that is applying the transaction with the lowest commit SCN. If there is a dependency between two transactions, then an apply process always applies the transaction with the lowest commit SCN first. The transaction with the higher commit SCN waits for the other transaction to commit. Therefore, if the apply server with the lowest commit SCN transaction is encountering contention, then the contention results from something other than a dependent transaction. In this case, you can monitor the apply server with the lowest commit SCN transaction to determine the cause of the contention.

The following four wait states are possible for an apply server:

	
Not waiting: The apply server is not encountering contention and is not waiting. No action is necessary in this case.

	
Waiting for an event that is not related to another session: An example of an event that is not related to another session is a log file sync event, where redo data must be flushed because of a commit or rollback. In these cases, Oracle Database writes nothing to the log initially because such waits are common and are usually transient. If the apply server is waiting for the same event after a certain interval of time, then the apply server writes a message to the alert log and apply process trace file. For example, an apply server AS01 might write a message similar to the following:

AS01: warning -- apply server 1, sid 26 waiting for event:
AS01: [log file sync] ...

Oracle Database writes this output to the alert log at intervals until the problem is rectified.

	
Waiting for an event that is related to a non apply server session: The apply server writes a message to the alert log and apply process trace file immediately. For example, an apply server AS01 might write a message similar to the following:

AS01: warning -- apply server 1, sid 10 waiting on user sid 36 for event:
AS01: [enq: TM - contention] name|mode=544d0003, object #=a078,
 table/partition=0

Oracle Database writes this output to the alert log at intervals until the problem is rectified.

	
Waiting for another apply server session: This state can be caused by interested transaction list (ITL) contention, but it can also be caused by more serious issues, such as an apply handler that obtains conflicting locks. In this case, the apply server that is blocked by another apply server prints only once to the alert log and the trace file for the apply process, and the blocked apply server issues a rollback to the blocking apply server. When the blocking apply server rolls back, another message indicating that the apply server has been rolled back is printed to the log files, and the rolled back transaction is reassigned by the coordinator process for the apply process.

For example, if apply server 1 of apply process AP01 is blocked by apply server 2 of the same apply process (AP01), then the apply process writes the following messages to the log files:

AP01: apply server 1 blocked on server 2
AP01: [enq: TX - row lock contention] name|mode=54580006, usn<<16 |
 slot=1000e, sequence=1853
AP01: apply server 2 rolled back

You can determine the total number of times an apply server was rolled back since the apply process last started by querying the TOTAL_ROLLBACKS column in the V$STREAMS_APPLY_COORDINATOR dynamic performance view.

	
See Also:

	
Oracle Database Performance Tuning Guide for more information about contention and about resolving different types of contention

	
"Checking the Trace Files and Alert Log for Problems"

Is the Apply Process Waiting for a Dependent Transaction?

If you set the parallelism parameter for an apply process to a value greater than 1, and you set the commit_serialization parameter of the apply process to FULL, then the apply process can detect interested transaction list (ITL) contention if there is a transaction that is dependent on another transaction with a higher SCN. ITL contention occurs if the session that created the transaction waited for an ITL slot in a block. This happens when the session wants to lock a row in the block, but one or more other sessions have rows locked in the same block, and there is no free ITL slot in the block.

ITL contention also is possible if the session is waiting due to a shared bitmap index fragment. Bitmap indexes index key values and a range of rowids. Each entry in a bitmap index can cover many rows in the actual table. If two sessions want to update rows covered by the same bitmap index fragment, then the second session waits for the first transaction to either COMMIT or ROLLBACK.

When an apply process detects such a dependency, it resolves the ITL contention automatically and records information about it in the alert log and apply process trace file for the database. ITL contention can negatively affect the performance of an apply process because there might not be any progress while it is detecting the deadlock.

To avoid the problem in the future, perform one of the following actions:

	
Increase the number of ITLs available. You can do so by changing the INITRANS setting for the table using the ALTER TABLE statement.

	
Set the commit_serialization parameter to DEPENDENT_TRANSACTIONS for the apply process.

	
Set the parallelism apply process parameter to 1 for the apply process.

	
See Also:

	
"Checking the Trace Files and Alert Log for Problems"

	
Oracle Database PL/SQL Packages and Types Reference for information about apply process parameters

	
Oracle Database Administrator's Guide and Oracle Database SQL Language Reference for more information about INITRANS

Is an Apply Server Performing Poorly for Certain Transactions?

If an apply process is not performing well, then the reason might be that one or more apply servers used by the apply process are taking an inordinate amount of time to apply certain transactions. The following query displays information about the transactions being applied by each apply server used by an apply process named strm01_apply:

COLUMN SERVER_ID HEADING 'Apply Server ID' FORMAT 99999999
COLUMN STATE HEADING 'Apply Server State' FORMAT A20
COLUMN APPLIED_MESSAGE_NUMBER HEADING 'Applied Message|Number' FORMAT 99999999
COLUMN MESSAGE_SEQUENCE HEADING 'Message Sequence|Number' FORMAT 99999999

SELECT SERVER_ID, STATE, APPLIED_MESSAGE_NUMBER, MESSAGE_SEQUENCE
 FROM V$STREAMS_APPLY_SERVER
 WHERE APPLY_NAME = 'STRM01_APPLY'
 ORDER BY SERVER_ID;

If you run this query repeatedly, then over time the apply server state, applied message number, and message sequence number should continue to change for each apply server as it applies transactions. If these values do not change for one or more apply servers, then the apply server might not be performing well. In this case, you should ensure that, for each table to which the apply process applies changes, every key column has an index.

If you have many such tables, then you might need to determine the specific table and DML or DDL operation that is causing an apply server to perform poorly. To do so, run the following query when an apply server is taking an inordinately long time to apply a transaction. In this example, assume that the name of the apply process is strm01_apply and that apply server number two is performing poorly:

COLUMN OPERATION HEADING 'Operation' FORMAT A20
COLUMN OPTIONS HEADING 'Options' FORMAT A20
COLUMN OBJECT_OWNER HEADING 'Object|Owner' FORMAT A10
COLUMN OBJECT_NAME HEADING 'Object|Name' FORMAT A10
COLUMN COST HEADING 'Cost' FORMAT 99999999

SELECT p.OPERATION, p.OPTIONS, p.OBJECT_OWNER, p.OBJECT_NAME, p.COST
 FROM V$SQL_PLAN p, V$SESSION s, V$STREAMS_APPLY_SERVER a
 WHERE a.APPLY_NAME = 'STRM01_APPLY' AND a.SERVER_ID = 2
 AND s.SID = a.SID
 AND p.HASH_VALUE = s.SQL_HASH_VALUE;

This query returns the operation being performed currently by the specified apply server. The query also returns the owner and name of the table on which the operation is being performed and the cost of the operation. Ensure that each key column in this table has an index. If the results show FULL for the COST column, then the operation is causing full table scans, and indexing the table's key columns might solve the problem.

In addition, you can run the following query to determine the specific DML or DDL SQL statement that is causing an apply server to perform poorly, assuming that the name of the apply process is strm01_apply and that apply server number two is performing poorly:

SELECT t.SQL_TEXT
 FROM V$SESSION s, V$SQLTEXT t, V$STREAMS_APPLY_SERVER a
 WHERE a.APPLY_NAME = 'STRM01_APPLY' AND a.SERVER_ID = 2
 AND s.SID = a.SID
 AND s.SQL_ADDRESS = t.ADDRESS
 AND s.SQL_HASH_VALUE = t.HASH_VALUE
 ORDER BY PIECE;

This query returns the SQL statement being run currently by the specified apply server. The statement includes the name of the table to which the transaction is being applied. Ensure that each key column in this table has an index.

If the SQL statement returned by the previous query is less than one thousand characters long, then you can run the following simplified query instead:

SELECT t.SQL_TEXT
 FROM V$SESSION s, V$SQLAREA t, V$STREAMS_APPLY_SERVER a
 WHERE a.APPLY_NAME = 'STRM01_APPLY' AND a.SERVER_ID = 2
 AND s.SID = a.SID
 AND s.SQL_ADDRESS = t.ADDRESS
 AND s.SQL_HASH_VALUE = t.HASH_VALUE;

	
See Also:

Oracle Database Performance Tuning Guide and Oracle Database Reference for more information about the V$SQL_PLAN dynamic performance view

Are There Any Apply Errors in the Error Queue?

When an apply process cannot apply a message, it moves the message and all of the other messages in the same transaction into the error queue. You should check for apply errors periodically to see if there are any transactions that could not be applied.

	
See Also:

	
"Checking for Apply Errors"

	
"Displaying Detailed Information About Apply Errors"

Using a DML Handler to Correct Error Transactions

When an apply process moves a transaction to the error queue, you can examine the transaction to analyze the feasibility reexecuting the transaction successfully. If an abnormality is found in the transaction, then you might be able to configure a statement DML handler or a procedure DML handler to correct the problem. In this case, configure the DML handler to run when you reexecute the error transaction.

When a DML handler is used to correct a problem in an error transaction, the apply process that uses the DML handler should be stopped to prevent the DML handler from acting on LCRs that are not involved with the error transaction. After successful reexecution, if the DML handler is no longer needed, then remove it. Also, correct the problem that caused the transaction to moved to the error queue to prevent future error transactions.

	
See Also:

"Managing a DML Handler"

Troubleshooting Specific Apply Errors

You might encounter the following types of apply process errors for LCRs:

	
ORA-01031 Insufficient Privileges

	
ORA-01403 No Data Found

	
ORA-23605 Invalid Value for Oracle Streams Parameter*

	
ORA-23607 Invalid Column*

	
ORA-24031 Invalid Value, parameter_name Should Be Non-NULL*

	
ORA-26687 Instantiation SCN Not Set

	
ORA-26688 Missing Key in LCR

	
ORA-26689 Column Type Mismatch*

	
ORA-26786 A row with key exists but has conflicting column(s) in table

	
ORA-26787 The row with key column_value does not exist in table table_name

The errors marked with an asterisk (*) in the previous list often result from a problem with an apply handler or a rule-based transformation.

	
See Also:

	
"Checking for Apply Errors"

	
"Managing Apply Errors"

	
"The Error Queue"

ORA-01031 Insufficient Privileges

An ORA-01031 error occurs when the user designated as the apply user does not have the necessary privileges to perform SQL operations on the replicated objects. The apply user privileges can be granted directly or through a role.

Specifically, the following privileges are required:

	
For table level DML changes, the INSERT, UPDATE, DELETE, and SELECT privileges must be granted.

	
For table level DDL changes, the ALTER TABLE privilege must be granted.

	
For schema level changes, the CREATE ANY TABLE, CREATE ANY INDEX, CREATE ANY PROCEDURE, ALTER ANY TABLE, and ALTER ANY PROCEDURE privileges must be granted.

	
For global level changes, ALL PRIVILEGES must be granted to the apply user.

To correct this error, complete the following steps:

	
Connect as the apply user on the destination database.

	
Query the SESSION_PRIVS data dictionary view to determine which required privileges are not granted to the apply user.

	
Connect as an administrative user who can grant privileges.

	
Grant the necessary privileges to the apply user.

	
Reexecute the error transactions in the error queue for the apply process.

	
See Also:

	
"Apply User"

	
"Retrying Apply Error Transactions"

ORA-01403 No Data Found

Typically, an ORA-01403 error occurs when an apply process tries to update an existing row and the OLD_VALUES in the row LCR do not match the current values at the destination database.

Typically, one of the following conditions causes this error:

	
Supplemental logging is not specified for columns that require supplemental logging at the source database. In this case, LCRs from the source database might not contain values for key columns. You can use a procedure DML handler to modify the LCR so that it contains the necessary supplemental data. See "Using a DML Handler to Correct Error Transactions". Also, specify the necessary supplemental logging at the source database to prevent future errors.

	
There is a problem with the primary key in the table for which an LCR is applying a change. In this case, ensure that the primary key is enabled by querying the DBA_CONSTRAINTS data dictionary view. If no primary key exists for the table, or if the target table has a different primary key than the source table, then specify substitute key columns using the SET_KEY_COLUMNS procedure in the DBMS_APPLY_ADM package. You also might encounter error ORA-23416 if a table being applied does not have a primary key. After you make these changes, you can reexecute the error transaction.

	
The transaction being applied depends on another transaction which has not yet executed. For example, if a transaction tries to update an employee with an employee_id of 300, but the row for this employee has not yet been inserted into the employees table, then the update fails. In this case, execute the transaction on which the error transaction depends. Then, reexecute the error transaction.

	
See Also:

	
"Supplemental Logging in an Oracle Streams Environment"

	
"Considerations for Applying DML Changes to Tables" for information about possible causes of apply errors

	
"Displaying Detailed Information About Apply Errors"

	
"Managing Apply Errors"

	
Oracle Streams Replication Administrator's Guide for more information about Oracle Streams tags

ORA-23605 Invalid Value for Oracle Streams Parameter

When calling row LCR (SYS.LCR$_ROW_RECORD type) member subprograms, an ORA-23605 error might be raised if the values of the parameters passed by the member subprogram do not match the row LCR. For example, an error results if a member subprogram tries to add an old column value to an insert row LCR, or if a member subprogram tries to set the value of a LOB column to a number.

Row LCRs should contain the following old and new values, depending on the operation:

	
A row LCR for an INSERT operation should contain new values but no old values.

	
A row LCR for an UPDATE operation can contain both new values and old values.

	
A row LCR for a DELETE operation should contain old values but no new values.

Verify that the correct parameter type (OLD, or NEW, or both) is specified for the row LCR operation (INSERT, UPDATE, or DELETE). For example, if a procedure DML handler or custom rule-based transformation changes an UPDATE row LCR into an INSERT row LCR, then the handler or transformation should remove the old values in the row LCR.

If an apply handler caused the error, then correct the apply handler and reexecute the error transaction. If a custom rule-based transformation caused the error, then you might be able to create a DML handler to correct the problem. See "Using a DML Handler to Correct Error Transactions". Also, correct the rule-based transformation to avoid future errors.

	
See Also:

Chapter 6, "Rule-Based Transformations"

ORA-23607 Invalid Column

An ORA-23607 error is raised by a row LCR (SYS.LCR$_ROW_RECORD type) member subprogram, when the value of the column_name parameter in the member subprogram does not match the name of any of the columns in the row LCR. Check the column names in the row LCR.

If an apply handler caused the error, then correct the apply handler and reexecute the error transaction. If a custom rule-based transformation caused the error, then you might be able to create a DML handler to correct the problem. See "Using a DML Handler to Correct Error Transactions". Also, correct the rule-based transformation to avoid future errors.

An apply handler or custom rule-based transformation can cause this error by using one of the following row LCR member procedures:

	
DELETE_COLUMN, if this procedure tries to delete a column from a row LCR that does not exist in the row LCR

	
RENAME_COLUMN, if this procedure tries to rename a column that does not exist in the row LCR

In this case, to avoid similar errors in the future, perform one of the following actions:

	
Instead of using an apply handler or custom rule-based transformation to delete or rename a column in row LCRs, use a declarative rule-based transformation. If a declarative rule-based transformation tries to delete or rename a column that does not exist, then the declarative rule-based transformation does not raise an error. You can specify a declarative rule-based transformation that deletes a column using the DBMS_STREAMS_ADM.DELETE_COLUMN procedure and a declarative rule-based transformation that renames a column using the DBMS_STREAMS_ADM.RENAME_COLUMN procedure. You can use a declarative rule-based transformation in combination with apply handlers and custom rule-based transformations.

	
If you want to continue to use an apply handler or custom rule-based transformation to delete or rename a column in row LCRs, then modify the handler or transformation to prevent future errors. For example, modify the handler or transformation to verify that a column exists before trying to rename or delete the column.

	
See Also:

	
Chapter 6, "Rule-Based Transformations"

	
Oracle Database PL/SQL Packages and Types Reference for more information about the DELETE_COLUMN and RENAME_COLUMN member procedures for row LCRs

ORA-24031 Invalid Value, parameter_name Should Be Non-NULL

An ORA-24031 error can occur when an apply handler or a custom rule-based transformation passes a NULL value to an LCR member subprogram instead of an ANYDATA value that contains a NULL.

For example, the following call to the ADD_COLUMN member procedure for row LCRs can result in this error:

new_lcr.ADD_COLUMN('OLD','LANGUAGE',NULL);

The following example shows the correct way to call the ADD_COLUMN member procedure for row LCRs:

new_lcr.ADD_COLUMN('OLD','LANGUAGE',ANYDATA.ConvertVarchar2(NULL));

If an apply handler caused the error, then correct the apply handler and reexecute the error transaction. If a custom rule-based transformation caused the error, then you might be able to create a DML handler to correct the problem. See "Using a DML Handler to Correct Error Transactions". Also, correct the rule-based transformation to avoid future errors.

	
See Also:

Chapter 6, "Rule-Based Transformations"

ORA-26687 Instantiation SCN Not Set

Typically, an ORA-26687 error occurs because the instantiation SCN is not set on an object for which an apply process is attempting to apply changes. You can query the DBA_APPLY_INSTANTIATED_OBJECTS data dictionary view to list the objects that have an instantiation SCN.

You can set an instantiation SCN for one or more objects by exporting the objects at the source database, and then importing them at the destination database. You can use Data Pump export/import. If you do not want to use export/import, then you can run one or more of the following procedures in the DBMS_APPLY_ADM package:

	
SET_TABLE_INSTANTIATION_SCN

	
SET_SCHEMA_INSTANTIATION_SCN

	
SET_GLOBAL_INSTANTIATION_SCN

Some of the common reasons why an instantiation SCN is not set for an object at a destination database include the following:

	
You used export/import for instantiation, and you exported the objects from the source database before preparing the objects for instantiation. You can prepare objects for instantiation either by creating Oracle Streams rules for the objects with the DBMS_STREAMS_ADM package or by running a procedure or function in the DBMS_CAPTURE_ADM package. If the objects were not prepared for instantiation before the export, then the instantiation SCN information will not be available in the export file, and the instantiation SCNs will not be set.

In this case, prepare the database objects for instantiation at the source database. Next, set the instantiation SCN for the database objects at the destination database.

	
Instead of using export/import for instantiation, you set the instantiation SCN explicitly with the appropriate procedure in the DBMS_APPLY_ADM package. When the instantiation SCN is set explicitly by the database administrator, responsibility for the correctness of the data is assumed by the administrator.

In this case, set the instantiation SCN for the database objects explicitly. Alternatively, you can choose to perform a metadata-only export/import to set the instantiation SCNs.

	
You want to apply DDL changes, but you did not set the instantiation SCN at the schema or global level.

In this case, set the instantiation SCN for the appropriate schemas by running the SET_SCHEMA_INSTANTIATION_SCN procedure, or set the instantiation SCN for the source database by running the SET_GLOBAL_INSTANTIATION_SCN procedure. Both of these procedures are in the DBMS_APPLY_ADM package.

After you correct the condition that caused the error, whether you should reexecute the error transaction or delete it depends on whether the changes included in the transaction were executed at the destination database when you corrected the error condition. Follow these guidelines when you decide whether you should reexecute the transaction in the error queue or delete it:

	
If you performed a new export/import, and the new export includes the transaction in the error queue, then delete the transaction in the error queue.

	
If you set instantiation SCNs explicitly or reimported an existing export dump file, then reexecute the transaction in the error queue.

	
See Also:

	
Oracle Streams Replication Administrator's Guide for more information about instantiation

	
"Retrying Apply Error Transactions"

ORA-26688 Missing Key in LCR

Typically, an ORA-26688 error occurs because of one of the following conditions:

	
At least one LCR in a transaction does not contain enough information for the apply process to apply it. For dependency computation, an apply process always needs values for the defined primary key column(s) at the destination database. Also, if the parallelism of any apply process that will apply the changes is greater than 1, then the apply process needs values for any indexed column at a destination database, which includes unique or non unique index columns, foreign key columns, and bitmap index columns.

If an apply process needs values for a column, and the column exists at the source database, then this error results when supplemental logging is not specified for one or more of these columns at the source database. In this case, specify the necessary supplemental logging at the source database to prevent apply errors.

However, the definition of the source database table might be different than the definition of the corresponding destination database table. If an apply process needs values for a column, and the column exists at the destination database but does not exist at the source database, then you can configure a rule-based transformation to add the required values to the LCRs from the source database to prevent apply errors.

To correct a transaction placed in the error queue because of this error, you can use a procedure DML handler to modify the LCRs so that they contain the necessary supplemental data. See "Using a DML Handler to Correct Error Transactions".

	
There is a problem with the primary key in the table for which an LCR is applying a change. In this case, ensure that the primary key is enabled by querying the DBA_CONSTRAINTS data dictionary view. If no primary key exists for the table, or if the destination table has a different primary key than the source table, then specify substitute key columns using the SET_KEY_COLUMNS procedure in the DBMS_APPLY_ADM package. You can also encounter error ORA-23416 if a table does not have a primary key. After you make these changes, you can reexecute the error transaction.

	
See Also:

	
"Supplemental Logging in an Oracle Streams Environment"

	
"Substitute Key Columns"

	
Chapter 6, "Rule-Based Transformations"

ORA-26689 Column Type Mismatch

Typically, an ORA-26689 error occurs because one or more columns at a table in the source database do not match the corresponding columns at the destination database. The LCRs from the source database might contain more columns than the table at the destination database, or there might be a column name or column type mismatch for one or more columns. If the columns differ at the databases, then you can use rule-based transformations to avoid future errors.

If you use an apply handler or a custom rule-based transformation, then ensure that any ANYDATA conversion functions match the data type in the LCR that is being converted. For example, if the column is specified as VARCHAR2, then use ANYDATA.CONVERTVARCHAR2 function to convert the data from type ANY to VARCHAR2.

Also, ensure that you use the correct character case in rule conditions, apply handlers, and rule-based transformations. For example, if a column name has all uppercase characters in the data dictionary, then you should specify the column name with all uppercase characters in rule conditions, apply handlers, and rule-based transformations

This error can also occur because supplemental logging is not specified where it is required for nonkey columns at the source database. In this case, LCRs from the source database might not contain needed values for these nonkey columns.

You might be able to configure a DML handler to apply the error transaction. See "Using a DML Handler to Correct Error Transactions".

	
See Also:

	
"Considerations for Applying DML Changes to Tables" for information about possible causes of apply errors

	
"Supplemental Logging in an Oracle Streams Environment"

	
Chapter 6, "Rule-Based Transformations"

ORA-26786 A row with key exists but has conflicting column(s) in table

An ORA-26786 error occurs when the values of some columns in the destination table row do not match the old values of the corresponding columns in the row LCR.

To avoid future apply errors, you can either configure a conflict handler, a DML handler, or an error handler. The handler should resolve the mismatched column in a way that is appropriate for your replication environment.

In addition, you might be able to configure a DML handler to apply existing error transactions that resulted from this error. See "Using a DML Handler to Correct Error Transactions".

Alternatively, you can update the current values in the row so that the row LCR can be applied successfully. If changes to the row are captured by a capture process or synchronous capture at the destination database, then you probably do not want to replicate this manual change to other destination databases. In this case, complete the following steps:

	
Set a tag in the session that corrects the row. Ensure that you set the tag to a value that prevents the manual change from being replicated. For example, the tag can prevent the change from being captured by a capture process or synchronous capture.

EXEC DBMS_STREAMS.SET_TAG(tag => HEXTORAW('17'));

In some environments, you might need to set the tag to a different value.

	
Update the row in the table so that the data matches the old values in the LCR.

	
Reexecute the error or reexecute all errors. To reexecute an error, run the EXECUTE_ERROR procedure in the DBMS_APPLY_ADM package, and specify the transaction identifier for the transaction that caused the error. For example:

EXEC DBMS_APPLY_ADM.EXECUTE_ERROR(local_transaction_id => '5.4.312');

Or, execute all errors for the apply process by running the EXECUTE_ALL_ERRORS procedure:

EXEC DBMS_APPLY_ADM.EXECUTE_ALL_ERRORS(apply_name => 'APPLY');

	
If you are going to make other changes in the current session that you want to replicate destination databases, then reset the tag for the session to an appropriate value, as in the following example:

EXEC DBMS_STREAMS.SET_TAG(tag => NULL);

In some environments, you might need to set the tag to a value other than NULL.

	
See Also:

	
Oracle Streams Replication Administrator's Guide for information about conflict resolution

	
"Managing a DML Handler"

ORA-26787 The row with key column_value does not exist in table table_name

An ORA-26787 error occurs when the row that a row LCR is trying to update or delete does not exist in the destination table.

To avoid future apply errors, you can either configure a conflict handler, a DML handler, or an error handler. The handler should resolve row LCRs that do not have corresponding table rows in a way that is appropriate for your replication environment.

In addition, you might be able to configure a DML handler to apply existing error transactions that resulted from this error. See "Using a DML Handler to Correct Error Transactions".

Alternatively, you can update the current values in the row so that the row LCR can be applied successfully. See "ORA-26786 A row with key exists but has conflicting column(s) in table" for instructions.

	
See Also:

	
Oracle Streams Replication Administrator's Guide for information about conflict resolution

	
"Managing a DML Handler"

35 Information Provisioning Concepts

Information provisioning makes information available when and where it is needed. Information provisioning is part of Oracle grid computing, which pools large numbers of servers, storage areas, and networks into a flexible, on-demand computing resource for enterprise computing needs. Information provisioning uses many of the features that also are used for information integration.

The following topics contain information about information provisioning:

	
Overview of Information Provisioning

	
Bulk Provisioning of Large Amounts of Information

	
Incremental Information Provisioning with Oracle Streams

	
On-Demand Information Access

	
See Also:

	
Chapter 36, "Using Information Provisioning"

	
Oracle Database Concepts for more information about information integration

Overview of Information Provisioning

Oracle grid computing enables resource provisioning with features such as Oracle Real Application Clusters (Oracle RAC), Oracle Scheduler, and Database Resource Manager. Oracle RAC enables you to provision hardware resources by running a single Oracle database server on a cluster of physical servers. Oracle Scheduler enables you to provision database workload over time for more efficient use of resources. Database Resource Manager provisions resources to database users, applications, or services within an Oracle database.

In addition to resource provisioning, Oracle grid computing also enables information provisioning. Information provisioning delivers information when and where it is needed, regardless of where the information currently resides on the grid. In a grid environment with distributed systems, the grid must move or copy information efficiently to make it available where it is needed.

Information provisioning can take the following forms:

	
Bulk Provisioning of Large Amounts of Information: Data Pump export/import, transportable tablespaces, the DBMS_STREAMS_TABLESPACE_ADM package, and the DBMS_FILE_TRANSFER package all are ways to provide large amounts of information. Data Pump export/import enables you to move or copy information at the database, tablespace, schema, or table level. Transportable tablespaces enables you to move or copy tablespaces from one database to another efficiently. The procedures in the DBMS_STREAMS_TABLESPACE_ADM package enable you to clone, detach, and attach tablespaces. In addition, some procedures in this package enable you to store tablespaces in a tablespace repository that provides versioning of tablespaces. When tablespaces are needed, they can be pulled from the tablespace repository and plugged into a database. The procedures in the DBMS_FILE_TRANSFER package enable you to copy a binary file within a database or between databases.

	
Incremental Information Provisioning with Oracle Streams: Some data must be shared as it is created or changed, rather than occasionally shared in bulk. Oracle Streams can stream data between databases, nodes, or blade farms in a grid and can keep two or more copies synchronized as updates are made.

	
On-Demand Information Access: You can make information available without moving or copying it to a new location. Oracle Distributed SQL allows grid users to access and integrate data stored in multiple Oracle databases and, through gateways, non-Oracle databases.

These information provisioning capabilities can be used individually or in combination to provide a full information provisioning solution in your environment. The remaining sections in this chapter discuss the ways to provision information in more detail.

	
See Also:

	
Oracle Real Application Clusters Administration and Deployment Guide for more information about Oracle RAC

	
Oracle Database Administrator's Guide for information about Oracle Scheduler and Database Resource Manager

Bulk Provisioning of Large Amounts of Information

Oracle provides several ways to move or copy large amounts of information from database to database efficiently. Data Pump can export and import at the database, tablespace, schema, or table level. There are several ways to move or copy a tablespace set from one Oracle database to another. Transportable tablespaces can move or copy a subset of an Oracle database and "plug" it in to another Oracle database. Transportable tablespace from backup with RMAN enables you to move or copy a tablespace set while the tablespaces remain online. The procedures in the DBMS_STREAMS_TABLESPACE_ADM package combine several steps that are required to move or copy a tablespace set into one procedure call.

Each method for moving or copying a tablespace set requires that the tablespace set is self-contained. A self-contained tablespace has no references from the tablespace pointing outside of the tablespace. For example, if an index in the tablespace is for a table in a different tablespace, then the tablespace is not self-contained. A self-contained tablespace set has no references from inside the set of tablespaces pointing outside of the set of tablespaces. For example, if a partitioned table is partially contained in the set of tablespaces, then the set of tablespaces is not self-contained. To determine whether a set of tablespaces is self-contained, use the TRANSPORT_SET_CHECK procedure in the Oracle supplied package DBMS_TTS.

The following sections describe the options for moving or copying large amounts of information and when to use each option:

	
Data Pump Export/Import

	
Transportable Tablespace from Backup with RMAN

	
DBMS_STREAMS_TABLESPACE_ADM Procedures

	
Options for Bulk Information Provisioning

Data Pump Export/Import

Data Pump export/import can move or copy data efficiently between databases. Data Pump can export/import a full database, tablespaces, schemas, or tables to provision large or small amounts of data for a particular requirement. Data Pump exports and imports can be performed using command line clients (expdp and impdp) or the DBMS_DATAPUMP package.

A transportable tablespaces export/import is specified using the TRANSPORT_TABLESPACES parameter. Transportable tablespaces enables you to unplug a set of tablespaces from a database, move or copy them to another location, and then plug them into another database. The transport is quick because the process transfers metadata and files. It does not unload and load the data. In transportable tablespaces mode, only the metadata for the tables (and their dependent objects) within a specified set of tablespaces are unloaded at the source and loaded at the target. This allows the tablespace data files to be copied to the target Oracle database and incorporated efficiently.

The tablespaces being transported can be either dictionary managed or locally managed. Moving or copying tablespaces using transportable tablespaces is faster than performing either an export/import or unload/load of the same data. To use transportable tablespaces, you must have the EXP_FULL_DATABASE and IMP_FULL_DATABASE role. The tablespaces being transported must be read-only during export, and the export cannot have a degree of parallelism greater than 1.

	
See Also:

	
Oracle Database Utilities for more information about Data Pump

	
Oracle Database Administrator's Guide for more information about using Data Pump with the TRANSPORT_TABLESPACES option

Transportable Tablespace from Backup with RMAN

The Recovery Manager (RMAN) TRANSPORT TABLESPACE command copies tablespaces without requiring that the tablespaces be in read-only mode during the transport process. Appropriate database backups must be available to perform RMAN transportable tablespace from backup.

	
See Also:

	
Oracle Database Backup and Recovery Reference

	
Oracle Database Backup and Recovery User's Guide

DBMS_STREAMS_TABLESPACE_ADM Procedures

The following procedures in the DBMS_STREAMS_TABLESPACE_ADM package can move or copy tablespaces:

	
ATTACH_TABLESPACES: Uses Data Pump to import a self-contained tablespace set previously exported using the DBMS_STREAMS_TABLESPACE_ADM package, Data Pump export, or the RMAN TRANSPORT TABLESPACE command.

	
CLONE_TABLESPACES: Uses Data Pump export to clone a set of self-contained tablespaces. The tablespace set can be attached to a database after it is cloned. The tablespace set remains in the database from which it was cloned.

	
DETACH_TABLESPACES: Uses Data Pump export to detach a set of self-contained tablespaces. The tablespace set can be attached to a database after it is detached. The tablespace set is dropped from the database from which it was detached.

	
PULL_TABLESPACES: Uses Data Pump export/import to copy a set of self-contained tablespaces from a remote database and attach the tablespace set to the current database.

In addition, the DBMS_STREAMS_TABLESPACE_ADM package also contains the following procedures: ATTACH_SIMPLE_TABLESPACE, CLONE_SIMPLE_TABLESPACE, DETACH_SIMPLE_TABLESPACE, and PULL_SIMPLE_TABLESPACE. These procedures operate on a single tablespace that uses only one data file instead of a tablespace set.

File Group Repository

In the context of a file group, a file is a reference to a file stored on hard disk. A file is composed of a file name, a directory object, and a file type. The directory object references the directory in which the file is stored on hard disk. A version is a collection of related files, and a file group is a collection of versions.

A file group repository is a collection of all of the file groups in a database. A file group repository can contain multiple file groups and multiple versions of a particular file group.

For example, a file group named reports can store versions of sales reports. The reports can be generated on a regular schedule, and each version can contain the report files. The file group repository can version the file group under names such as sales_reports_v1, sales_reports_v2, and so on.

File group repositories can contain all types of files. You can create and manage file group repositories using the DBMS_FILE_GROUP package.

	
See Also:

	
"Using a File Group Repository"

	
Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_FILE_GROUP package

Tablespace Repository

A tablespace repository is a collection of tablespace sets in a file group repository. Tablespace repositories are built on file group repositories, but tablespace repositories only contain the files required to move or copy tablespaces between databases. A file group repository can store versioned sets of files, including, but not restricted to, tablespace sets.

Different tablespace sets can be stored in a tablespace repository, and different versions of a particular tablespace set can also be stored. A version of a tablespace set in a tablespace repository consists of the following files:

	
The Data Pump export dump file for the tablespace set

	
The Data Pump log file for the export

	
The data files that comprise the tablespace set

All of the files in a version can reside in a single directory, or they can reside in different directories. The following procedures can move or copy tablespaces with or without using a tablespace repository:

	
ATTACH_TABLESPACES

	
CLONE_TABLESPACES

	
DETACH_TABLESPACES

If one of these procedures is run without using a tablespace repository, then a tablespace set is moved or copied, but it is not placed in or copied from a tablespace repository. If the CLONE_TABLESPACES or DETACH_TABLESPACES procedure is run using a tablespace repository, then the procedure places a tablespace set in the repository as a version of the tablespace set. If the ATTACH_TABLESPACES procedure is run using a tablespace repository, then the procedure copies a particular version of a tablespace set from the repository and attaches it to a database.

When to Use a Tablespace Repository

A tablespace repository is useful when you must store different versions of one or more tablespace sets. For example, a tablespace repository can accomplish the following goals:

	
You want to run quarterly reports on a tablespace set. You can clone the tablespace set quarterly for storage in a versioned tablespace repository, and a specific version of the tablespace set can be requested from the repository and attached to another database to run the reports.

	
You want applications to be able to attach required tablespace sets on demand in a grid environment. You can store multiple versions of several different tablespace sets in the tablespace repository. Each tablespace set can be used for a different purpose by the application. When the application needs a particular version of a particular tablespace set, the application can scan the tablespace repository and attach the correct tablespace set to a database.

Differences Between the Tablespace Repository Procedures

The procedures that include the file_group_name parameter in the DBMS_STREAMS_TABLESPACE_ADM package behave differently for the tablespace set, the data files in the tablespace set, and the export dump file. Table 35-1 describes these differences.

Table 35-1 Tablespace Repository Procedures

	Procedure	Tablespace Set	Data Files	Export Dump File
	
ATTACH_TABLESPACES

	
The tablespace set is added to the local database.

	
If the datafiles_directory_object parameter is non-NULL, then the data files are copied from their current location(s) for the version in the tablespace repository to the directory object specified in the datafiles_directory_object parameter. The attached tablespace set uses the data files that were copied.

If the datafiles_directory_object parameter is NULL, then the data files are not moved or copied. The data files remain in the directory object(s) for the version in the tablespace repository, and the attached tablespace set uses these data files.

	
If the datafiles_directory_object parameter is non-NULL, then the export dump file is copied from its directory object for the version in the tablespace repository to the directory object specified in the datafiles_directory_object parameter.

If the datafiles_directory_object parameter is NULL, then the export dump file is not moved or copied.

	
CLONE_TABLESPACES

	
The tablespace set is retained in the local database.

	
The data files are copied from their current location(s) to the directory object specified in the tablespace_directory_object parameter or in the default directory for the version or file group. This parameter specifies where the version of the tablespace set is stored in the tablespace repository. The current location of the data files can be determined by querying the DBA_DATA_FILES data dictionary view. A directory object must exist, and must be accessible to the user who runs the procedure, for each data file location.

	
The export dump file is placed in the directory object specified in the tablespace_directory_object parameter or in the default directory for the version or file group.

	
DETACH_TABLESPACES

	
The tablespace set is dropped from the local database.

	
The data files are not moved or copied. The data files remain in their current location(s). A directory object must exist, and must be accessible to the user who runs the procedure, for each data file location. These data files are included in the version of the tablespace set stored in the tablespace repository.

	
The export dump file is placed in the directory object specified in the export_directory_object parameter or in the default directory for the version or file group.

Remote Access to a Tablespace Repository

A tablespace repository can reside in the database that uses the tablespaces, or it can reside in a remote database. If it resides in a remote database, then a database link must be specified in the repository_db_link parameter when you run one of the procedures, and the database link must be accessible to the user who runs the procedure.

Only One Tablespace Version Can Be Online in a Database

A version of a tablespace set in a tablespace repository can be either online or offline in a database. A tablespace set version is online in a database when it is attached to the database using the ATTACH_TABLESPACES procedure. Only a single version of a tablespace set can be online in a database at a particular time. However, the same version or different versions of a tablespace set can be online in different databases at the same time. In this case, it might be necessary to ensure that only one database can make changes to the tablespace set.

Tablespace Repository Procedures Use the DBMS_FILE_GROUP Package Automatically

Although tablespace repositories are built on file group repositories, it is not necessary to use the DBMS_FILE_GROUP package to create a file group repository before using one of the procedures in the DBMS_STREAMS_TABLESPACE_ADM package. If you run the CLONE_TABLESPACES or DETACH_TABLESPACES procedure and specify a file group that does not exist, then the procedure creates the file group automatically.

A Tablespace Repository Provides Versioning but Not Source Control

A tablespace repository provides versioning of tablespace sets, but it does not provide source control. If two or more versions of a tablespace set are changed at the same time and placed in a tablespace repository, then these changes are not merged.

Read-Only Tablespaces Requirement During Export

The procedures in the DBMS_STREAMS_TABLESPACE_ADM package that perform a Data Pump export make any read/write tablespace being exported read-only. After the export is complete, if a procedure in the DBMS_STREAMS_TABLESPACE_ADM package made a tablespace read-only, then the procedure makes the tablespace read/write.

Automatic Platform Conversion for Tablespaces

When one of the procedures in the DBMS_STREAMS_TABLESPACE_ADM package moves or copies tablespaces to a database that is running on a different platform, the procedure can convert the data files to the appropriate platform if the conversion is supported. The V$TRANSPORTABLE_PLATFORM dynamic performance view lists all platforms that support cross-platform transportable tablespaces.

When a tablespace repository is used, the platform conversion is automatic if it is supported. When a tablespace repository is not used, you must specify the platform to which or from which the tablespace is being converted.

	
See Also:

	
Chapter 36, "Using Information Provisioning" for information about using the procedures in the DBMS_STREAMS_TABLESPACE_ADM package, including usage scenarios

	
Oracle Database PL/SQL Packages and Types Reference for reference information about the DBMS_STREAMS_TABLESPACE_ADM package and the DBMS_FILE_GROUP package

Options for Bulk Information Provisioning

Table 35-2 describes when to use each option for bulk information provisioning.

Table 35-2 Options for Moving or Copying Tablespaces

	Option	Use this Option Under these Conditions
	
Data Pump export/import

	
	
You want to move or copy data at the database, tablespace, schema, or table level.

	
You want to perform each step required to complete the Data Pump export/import.

	
Data Pump export/import with the TRANSPORT_TABLESPACES option

	
	
The tablespaces being moved or copied can be read-only during the operation.

	
You want to perform each step required to complete the Data Pump export/import.

	
Transportable tablespace from backup with the RMAN TRANSPORT TABLESPACE command

	
The tablespaces being moved or copied must remain online (writeable) during the operation.

	
DBMS_STREAMS_TABLESPACE_ADM procedures without a tablespace repository

	
	
The tablespaces being moved or copied can be read-only during the operation.

	
You want to combine multiple steps in the Data Pump export/import into one procedure call.

	
You do not want to use a tablespace repository for the tablespaces being moved or copied.

	
DBMS_STREAMS_TABLESPACE_ADM procedures with a tablespace repository

	
	
The tablespaces being moved or copied can be read-only during the operation.

	
You want to combine multiple steps in the Data Pump export/import into one procedure call.

	
You want to use a tablespace repository for the tablespaces being moved or copied.

	
You want platform conversion to be automatic.

Incremental Information Provisioning with Oracle Streams

Oracle Streams can share and maintain database objects in different databases at each of the following levels:

	
Database

	
Schema

	
Table

	
Table subset

Oracle Streams can keep shared database objects synchronized at two or more databases. Specifically, an Oracle Streams capture process or synchronous capture captures changes to a shared database object in a source database, one or more propagations propagate the changes to another database, and an Oracle Streams apply process applies the changes to the shared database object. If database objects are not identical at different databases, then Oracle Streams can transform them at any point in the process. That is, a change can be transformed during capture, propagation, or apply. In addition, Oracle Streams provides custom processing of changes during apply with apply handlers. Database objects can be shared between Oracle databases, or they can be shared between Oracle and non-Oracle databases with an Oracle Database Gateway. In addition to data replication, Oracle Streams provides messaging, event management and notification, and data warehouse loading.

A combination of Oracle Streams and bulk provisioning enables you to copy and maintain a large amount of data by running a single procedure. The following procedures in the DBMS_STREAMS_ADM package use Data Pump to copy data between databases and configure Oracle Streams to maintain the copied data incrementally:

	
MAINTAIN_GLOBAL configures an Oracle Streams environment that replicates changes at the database level between two databases.

	
MAINTAIN_SCHEMAS configures an Oracle Streams environment that replicates changes to specified schemas between two databases.

	
MAINTAIN_SIMPLE_TTS clones a simple tablespace from a source database to a destination database and uses Oracle Streams to maintain this tablespace at both databases.

	
MAINTAIN_TABLES configures an Oracle Streams environment that replicates changes to specified tables between two databases.

	
MAINTAIN_TTS uses transportable tablespaces with Data Pump to clone a set of tablespaces from a source database to a destination database and uses Oracle Streams to maintain these tablespaces at both databases.

In addition, the PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures configure an Oracle Streams environment that replicates changes either at the database level or to specified tablespaces between two databases. These procedures must be used together, and instantiation actions must be performed manually, to complete the Oracle Streams replication configuration.

Using these procedures, you can export data from one database, ship it to another database, reformat the data if the second database is on a different platform, import the data into the second database, and start syncing the data with the changes happening in the first database. If the second database is on a grid, then you have just migrated your application to a grid with one command.

These procedures can configure Oracle Streams clients to maintain changes originating at the source database in a single-source replication environment, or they can configure Oracle Streams clients to maintain changes originating at both databases in a bidirectional replication environment. By maintaining changes to the data, it can be kept synchronized at both databases. These procedures can either perform these actions directly, or they can generate one or more scripts that performs these actions.

	
See Also:

	
Chapter 1, "Introduction to Oracle Streams"

	
Oracle Database PL/SQL Packages and Types Reference for reference information about the DBMS_STREAMS_ADM package

	
Oracle Streams Replication Administrator's Guide for information about using the DBMS_STREAMS_ADM package

On-Demand Information Access

Users and applications can access information without moving or copying it to a new location. Distributed SQL allows grid users to access and integrate data stored in multiple Oracle and, through Oracle Database Gateway, non-Oracle databases. Transparent remote data access with distributed SQL allows grid users to run their applications against any other database without making any code change to the applications. While integrating data and managing transactions across multiple data stores, the Oracle database optimizes the execution plans to access data in the most efficient manner.

	
See Also:

	
Oracle Database Administrator's Guide for information about distributed SQL

	
Oracle Database Heterogeneous Connectivity User's Guide for more information about Oracle Database Gateway

E Online Upgrade of a 10.1 or Earlier Database with Oracle Streams

This appendix describes how to perform a database upgrade from one of the following Oracle Database releases with Oracle Streams:

	
Oracle Database 10g Release 1 (10.1)

	
Oracle9i Database Release 2 (9.2)

The database upgrade operation described in this appendix uses the features of Oracle Streams to achieve little or no database down time.

The following topics describe performing an online database upgrade with Oracle Streams:

	
Overview of Using Oracle Streams in the Database Upgrade Process

	
Preparing for a Database Upgrade Using Oracle Streams

	
Performing a Database Upgrade Using Oracle Streams

	
See Also:

Appendix D, "Online Database Upgrade and Maintenance with Oracle Streams" for information about upgrading from Oracle Database 10g Release 2 (10.2) or later and for information about performing other database maintenance operations with Oracle Streams

Overview of Using Oracle Streams in the Database Upgrade Process

An Oracle database upgrade is the process of transforming an existing, prior release of an Oracle database into the current release. A database upgrade typically requires substantial database down time, but you can perform a database upgrade with little or no down time by using the features of Oracle Streams. To do so, you use Oracle Streams to configure a replication environment with the following databases:

	
Source Database: The original database that is being upgraded.

	
Capture Database: The database where a capture process captures changes made to the source database during the upgrade.

	
Destination Database: The copy of the source database where an apply process applies changes made to the source database during the upgrade process.

Specifically, you can use the following general steps to perform a database upgrade while the database is online:

	
Create an empty destination database.

	
Configure an Oracle Streams replication environment where the original database is the source database and a copy of the database is the destination database for the changes made at the source.

	
Perform the database upgrade on the destination database. During this time the original source database is available online.

	
Use Oracle Streams to apply the changes made at the source database to the destination database.

	
When the destination database has caught up with the changes made at the source database, take the source database offline and make the destination database available for applications and users.

Figure E-1 provides an overview of this process.

Figure E-1 Online Database Upgrade with Oracle Streams

[image: Description of Figure E-1 follows]

Description of "Figure E-1 Online Database Upgrade with Oracle Streams"

The Capture Database During the Upgrade Process

During the upgrade process, the capture database is the database where the capture process is created. Downstream capture was introduced in Oracle Database 10g Release 1 (10.1). If you are upgrading a database from Oracle Database 10g Release 1, then you have the following options:

	
A local capture process can be created at the source database during the upgrade process.

	
A downstream capture process can be created at the destination database. If the destination database is the capture database, then a propagation from the capture database to the destination database is not needed.

	
A third database can be the capture database. In this case, the third database can be an Oracle Database 10g Release 1 or later database.

However, if you are upgrading a database from Oracle9i Database Release 2 (9.2) to Oracle Database 11g Release 2, then downstream capture is not supported, and a local capture process must be created at the source database.

A downstream capture process reduces the resources required at the source database during the upgrade process, but a local capture process is easier to configure. Table E-1 describes which database can be the capture database during the upgrade process.

Table E-1 Supported Capture Database During Upgrade

	Existing Database Release	Capture Database Can Be Source Database?	Capture Database Can Be Destination Database?	Capture Database Can Be Third Database?
	
9.2

	
Yes

	
No

	
No

	
10.1

	
Yes

	
Yes

	
Yes

	
Note:

If you are upgrading from Oracle Database 10g Release 1 (10.1), then, before you begin the upgrade, decide which database will be the capture database.

	
See Also:

"Local Capture and Downstream Capture"

Assumptions for the Database Being Upgraded

The instructions in this appendix assume that all of the following statements are true for the database being upgraded:

	
The database is not part of an existing Oracle Streams environment.

	
The database is not part of an existing logical standby environment.

	
The database is not part of an existing Advanced Replication environment.

	
No tables at the database are master tables for materialized views in other databases.

	
No messages are enqueued into user-created queues during the upgrade process.

Considerations for Job Queue Processes and PL/SQL Package Subprograms

If possible, ensure that no job queue processes are created, modified, or deleted during the upgrade process, and that no Oracle-supplied PL/SQL package subprograms are invoked during the upgrade process that modify both user data and dictionary metadata at the same time. The following packages contain subprograms that modify both user data and dictionary metadata at the same time: DBMS_RLS, DBMS_STATS, and DBMS_JOB.

It might be possible to perform such actions on the database if you ensure that the same actions are performed on the source database and destination database in Steps 13 and 14 in "Task 5: Finishing the Upgrade and Removing Oracle Streams". For example, if a PL/SQL procedure gathers statistics on the source database during the upgrade process, then the same PL/SQL procedure should be invoked at the destination database in Step 14.

Preparing for a Database Upgrade Using Oracle Streams

The following sections describe tasks to complete before starting the database upgrade with Oracle Streams:

	
Preparing to Upgrade a Database with User-Defined Types

	
Deciding Which Utility to Use for Instantiation

Preparing to Upgrade a Database with User-Defined Types

User-defined types include object types, REF values, varrays, and nested tables. Currently, Oracle Streams capture processes and apply processes do not support user-defined types. This section discusses using Oracle Streams to perform a database upgrade on a database that has user-defined types.

One option is to ensure that no data manipulation language (DML) or data definition language (DDL) changes are made to the tables that contain user-defined types during the database upgrade. In this case, these tables are instantiated at the destination database, and no changes are made to these tables during the entire operation. After the upgrade is complete, make the tables that contain user-defined types read/write at the destination database.

If tables that contain user-defined types must remain open during the upgrade, then use the following general steps to retain changes to these tables during the upgrade:

	
Before you begin the upgrade process described in "Performing a Database Upgrade Using Oracle Streams", create one or more logging tables to store row changes to tables at the source database that include user-defined types. Each column in the logging table must use a data type that is supported by Oracle Streams in the source database release.

	
Before you begin the upgrade process described in "Performing a Database Upgrade Using Oracle Streams", create a DML trigger at the source database that fires on the tables that contain the user-defined data types. The trigger converts each row change into relational equivalents and logs the modified row in a logging table created in Step 1.

	
When the instructions in "Performing a Database Upgrade Using Oracle Streams" say to configure a capture process and propagation, configure the capture process and propagation to capture changes to the logging table and propagate these changes to the destination database. Changes to tables that contain user-defined types must not be captured or propagated.

	
When the instructions in "Performing a Database Upgrade Using Oracle Streams" say to configure a an apply process on the destination database, configure the apply process to use a procedure DML handler that processes the changes to the logging tables. The procedure DML handler reconstructs the user-defined types from the relational equivalents and applies the modified changes to the tables that contain user-defined types.

For instructions, go to the My Oracle Support (formerly OracleMetaLink) Web site using a Web browser:

http://support.oracle.com/

Database bulletin 556742.1 describes extended data type support for Oracle Streams.

	
See Also:

	
Oracle Database PL/SQL Language Reference for more information about creating triggers

	
"Managing a DML Handler"

Deciding Which Utility to Use for Instantiation

Before you begin the database upgrade, decide whether you want to use the Export/Import utilities (Data Pump or original) or the Recovery Manager (RMAN) utility to instantiate the destination database during the operation. The destination database will replace the existing database that is being upgraded.

Consider the following factors when you make this decision:

	
If you use original Export/Import or Data Pump Export/Import, then you can make the destination database an Oracle Database 11g Release 2 (11.2) database at the beginning of the operation. Therefore, you do not need to upgrade the destination database after the instantiation.

If you use Export/Import for instantiation, and Data Pump is supported, then Oracle recommends using Data Pump. Data Pump can perform the instantiation faster than original Export/Import.

	
If you use the RMAN DUPLICATE command, then the instantiation might be faster than with Export/Import, especially if the database is large, but the database release must be the same for RMAN instantiation. Therefore, the following conditions must be met:

	
If the database is an Oracle9i Database Release 2 (9.2) database, then the destination database is an Oracle9i Database Release 2 database when it is instantiated.

	
If the database is an Oracle Database 10g Release 1 (10.1) database, then the destination database is an Oracle Database 10g Release 1 database when it is instantiated.

After the instantiation, you must upgrade the destination database.

Also, Oracle recommends that you do not use RMAN for instantiation in an environment where distributed transactions are possible. Doing so might cause in-doubt transactions that must be corrected manually.

Table E-2 describes whether each instantiation method is supported based on the release being upgraded, whether the platform at the source and destination databases are different, and whether the character set at the source and destination databases are different. Each instantiation method is supported when the platform and character set are the same at the source and destination databases.

Table E-2 Instantiation Methods for Database Upgrade with Oracle Streams

	Instantiation Method	Supported When Upgrading From	Different Platforms Supported?	Different Character Sets Supported?
	
Original Export/Import

	
9.2 or 10.1

	
Yes

	
Yes

	
Data Pump Export/Import

	
10.1

	
Yes

	
Yes

	
RMAN DUPLICATE

	
9.2 or 10.1

	
No

	
No

Performing a Database Upgrade Using Oracle Streams

This section contains instructions for performing a database upgrade using Oracle Streams. These instructions describe using Oracle Streams to upgrade one of the following Oracle Database releases: Oracle9i Database Release 2 (9.2) or Oracle Database 10g Release 1 (10.1).

Complete the following tasks to upgrade a database using Oracle Streams:

	
Task 1: Beginning the Upgrade

	
Task 2: Setting Up Oracle Streams Before Instantiation

	
Task 3: Instantiating the Database

	
Task 4: Setting Up Oracle Streams After Instantiation

	
Task 5: Finishing the Upgrade and Removing Oracle Streams

Task 1: Beginning the Upgrade

Complete the following steps to begin the upgrade using Oracle Streams:

	
Create an empty destination database. Ensure that this database has a different global name than the source database. This example assumes that the global name of the source database is orcl.example.com and the global name of the destination database during the upgrade is updb.example.com. The global name of the destination database is changed when the destination database replaces the source database at the end of the upgrade process.

The release of the empty database you create depends on the instantiation method you decided to use in "Deciding Which Utility to Use for Instantiation":

	
If you decided to use export/import for instantiation, then create an empty Oracle Database 11g Release 2 database. This database will be the destination database during the upgrade process.

See the Oracle Database installation guide for your operating system if you must install Oracle Database, and see the Oracle Database Administrator's Guide for information about creating a database.

	
If you decided to use RMAN for instantiation, then create an empty Oracle database that is the same release as the database you are upgrading.

Specifically, if you are upgrading an Oracle9i Database Release 2 (9.2) database, then create an Oracle9i Release 2 database. Alternatively, if you are upgrading an Oracle Database 10g Release 1 (10.1) database, then create an Oracle Database 10g Release 1 database.

This database will be the destination database during the upgrade process. Both the source database that is being upgraded and the destination database must be the same release of Oracle when you start the upgrade process.

See the Oracle installation guide for your operating system if you must install Oracle, and see the Oracle Database Administrator's Guide for the release for information about creating a database.

	
Ensure that the source database is running in ARCHIVELOG mode. See the Oracle Database Administrator's Guide for the source database release for information about running a database in ARCHIVELOG mode.

	
Ensure that the initialization parameters are set properly at each database to support an Oracle Streams environment. For the source database, see the Oracle Streams documentation for the source database release. For the destination database, see Oracle Streams Replication Administrator's Guide for information about setting initialization parameters that are relevant to Oracle Streams. If the capture database is a third database, then see the Oracle Streams documentation for the capture database release.

	
At the source database, ensure that no changes are made during the upgrade process to any database objects that were not supported by Oracle Streams in the release you are upgrading:

	
If you are upgrading an Oracle9i Database Release 2 (9.2) database, then tables with columns of the following data types are not supported: NCLOB, LONG, LONG RAW, BFILE, ROWID, and UROWID, and user-defined types (including object types, REFs, varrays, and nested tables). In addition, the following types of tables are not supported: temporary tables, index-organized tables, and object tables. See Oracle9i Streams for complete information about unsupported database objects.

	
If you are upgrading an Oracle Database 10g Release 1 (10.1) database, then query the DBA_STREAMS_UNSUPPORTED data dictionary view to list the database objects that are not supported by Oracle Streams. Ensure that no changes are made to these database objects during the upgrade process.

"Preparing to Upgrade a Database with User-Defined Types" discusses a method for retaining changes to tables that contain user-defined types during the upgrade. If you are using this method, then tables that contain user-defined types can remain open during the upgrade.

	
At the source database, configure an Oracle Streams administrator:

	
If you are upgrading an Oracle9i Database Release 2 (9.2) database, then see Oracle9i Streams for instructions.

	
If you are upgrading an Oracle Database 10g Release 1 database, then see Oracle Streams Concepts and Administration for that release for instructions.

These instructions assume that the name of the Oracle Streams administrator at the source database is strmadmin. This Oracle Streams administrator will be copied automatically to the destination database during instantiation.

	
In SQL*Plus, connect to the source database orcl.example.com as an administrative user.

See the Oracle Database Administrator's Guide for the source database release for information about connecting to a database in SQL*Plus.

	
Specify database supplemental logging of primary keys, unique keys, and foreign keys for all updates. For example:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA
 (PRIMARY KEY, UNIQUE, FOREIGN KEY) COLUMNS;

Task 2: Setting Up Oracle Streams Before Instantiation

The specific instructions for setting up Oracle Streams before instantiation depend on which database is the capture database. Follow the instructions in the appropriate section:

	
The Source Database Is the Capture Database

	
The Destination Database Is the Capture Database

	
A Third Database Is the Capture Database

	
See Also:

"Overview of Using Oracle Streams in the Database Upgrade Process" for information about the capture database

The Source Database Is the Capture Database

Complete the following steps to set up Oracle Streams before instantiation when the source database is the capture database:

	
Configure your network and Oracle Net so that the source database can communicate with the destination database. See Oracle Database Net Services Administrator's Guide for instructions.

	
In SQL*Plus, connect to the source database orcl.example.com as the Oracle Streams administrator.

Seethe Oracle Database Administrator's Guide for the source database release for information about connecting to a database in SQL*Plus.

	
Create an ANYDATA queue that will stage changes made to the source database during the upgrade process. For example:

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'strmadmin.capture_queue_table',
 queue_name => 'strmadmin.capture_queue');
END;
/

	
Configure a capture process that will capture all supported changes made to the source database and stage these changes in the queue created in Step 3. Do not start the capture process. For example:

BEGIN
 DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
 streams_type => 'capture',
 streams_name => 'capture_upgrade',
 queue_name => 'strmadmin.capture_queue',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => FALSE,
 source_database => 'orcl.example.com',
 inclusion_rule => TRUE);
END;
/

"Preparing to Upgrade a Database with User-Defined Types" discusses a method for retaining changes to tables that contain user-defined types during the maintenance operation. If you are using this method, then ensure that the capture process does not attempt to capture changes to tables with user-defined types. See the Oracle Streams documentation for the source database release for information about excluding database objects from an Oracle Streams configuration with rules.

	
Proceed to "Task 3: Instantiating the Database".

The Destination Database Is the Capture Database

The database being upgraded must be an Oracle Database 10g Release 1 (10.1) database to use this option. Complete the following steps to set up Oracle Streams before instantiation when the destination database is the capture database:

	
Configure your network and Oracle Net so that the source database and destination database can communicate with each other. See Oracle Database Net Services Administrator's Guide for instructions.

	
Follow the instructions in the appropriate section based on the method you are using for instantiation:

	
Export/Import

	
RMAN

Export/Import

Complete the following steps if you are using export/import for instantiation:

	
In SQL*Plus, connect to the destination database updb.example.com as the Oracle Streams administrator.

See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.

	
Create an ANYDATA queue that will stage changes made to the source database during the upgrade process. For example:

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'strmadmin.destination_queue_table',
 queue_name => 'strmadmin.destination_queue');
END;
/

	
Configure a downstream capture process that will capture all supported changes made to the source database and stage these changes in the queue created in Step b. Ensure that the capture process uses a database link to the source database. The capture process can be a real-time downstream capture process or an archived-log downstream capture process. See Oracle Streams Replication Administrator's Guide for instructions. Do not start the capture process.

"Preparing to Upgrade a Database with User-Defined Types" discusses a method for retaining changes to tables that contain user-defined types during the maintenance operation. If you are using this method, then ensure that the capture process does not attempt to capture changes to tables with user-defined types. See the Oracle Streams documentation for the source database for information about excluding database objects from an Oracle Streams configuration with rules.

RMAN

Complete the following steps if you are using RMAN for instantiation:

	
In SQL*Plus, connect to the source database orcl.example.com as the Oracle Streams administrator.

See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.

	
Perform a build of the data dictionary in the redo log:

SET SERVEROUTPUT ON
DECLARE
 scn NUMBER;
BEGIN
 DBMS_CAPTURE_ADM.BUILD(
 first_scn => scn);
 DBMS_OUTPUT.PUT_LINE('First SCN Value = ' || scn);
END;
/
First SCN Value = 1122610

This procedure displays the valid first SCN value for the capture process that will be created at the destination database. Make a note of the SCN value returned because you will use it when you create the capture process at the destination database.

	
Prepare the source database for instantiation:

exec DBMS_CAPTURE_ADM.PREPARE_GLOBAL_INSTANTIATION();

	
Proceed to "Task 3: Instantiating the Database".

A Third Database Is the Capture Database

To use this option, meet the following requirements:

	
The database being upgraded must be an Oracle Database 10g Release 1 (10.1) database.

	
The third database must be an Oracle Database 10g Release 1 or later database.

This example assumes that the global name of the third database is thrd.example.com. Complete the following steps to set up Oracle Streams before instantiation when a third database is the capture database:

	
Configure your network and Oracle Net so that the source database, destination database, and third database can communicate with each other. See Oracle Database Net Services Administrator's Guide for instructions.

	
In SQL*Plus, connect to the third database thrd.example.com as an administrative user.

See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.

	
Create an Oracle Streams administrator:

	
If the third database is an Oracle Database 10g database or an Oracle Database 11g Release 1 database, then see the Oracle Streams Concepts and Administration book for that release for instructions.

	
If the third database is an Oracle Database 11g Release 2 database, then see Oracle Streams Replication Administrator's Guide for instructions.

These instructions assume that the name of the Oracle Streams administrator at the third database is strmadmin.

	
While still connected to the third database as the Oracle Streams administrator, create an ANYDATA queue that will stage changes made to the source database during the upgrade process. For example:

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'strmadmin.capture_queue_table',
 queue_name => 'strmadmin.capture_queue');
END;
/

	
Configure a downstream capture process that will capture all supported changes made to the source database and stage these changes in the queue created in Step 4. Ensure that the capture process uses a database link to the source database. Do not start the capture process.

See the following documentation for instructions:

	
If the capture database is an Oracle Database 10g database or an Oracle Database 11g Release 1 database, then see the Oracle Streams Concepts and Administration book for that release for instructions.

	
If the capture database is an Oracle Database 11g Release 2 database, then see Oracle Streams Replication Administrator's Guide.

The capture process can be a real-time downstream capture process or an archived-log downstream capture process.

"Preparing to Upgrade a Database with User-Defined Types" discusses a method for retaining changes to tables that contain user-defined types during the upgrade operation. If you are using this method, then ensure that the capture process does not attempt to capture changes to tables with user-defined types. See the Oracle Streams documentation for the source database for information about excluding database objects from an Oracle Streams configuration with rules.

	
Proceed to "Task 3: Instantiating the Database".

Task 3: Instantiating the Database

"Deciding Which Utility to Use for Instantiation" discusses different options for instantiating an entire database. Complete the steps in the appropriate section based on the instantiation option you are using:

	
Instantiating the Database Using Export/Import

	
Instantiating the Database Using RMAN

Instantiating the Database Using Export/Import

Complete the following steps to instantiate the destination database using export/import:

	
Instantiate the destination database using Export/Import. See Oracle Streams Replication Administrator's Guide for more information about performing instantiations, and see Oracle Database Utilities for information about performing an export/import using the Export and Import utilities.

If you use Oracle Data Pump or original Export/Import to instantiate the destination database, then ensure that the following parameters are set to the appropriate values:

	
Set the STREAMS_CONFIGURATION import parameter to n.

	
If you use original Export/Import, then set the CONSISTENT export parameter to y. This parameter does not apply to Data Pump exports.

	
If you use original Export/Import, then set the STREAMS_INSTANTIATION import parameter to y. This parameter does not apply to Data Pump imports.

If you are upgrading an Oracle9i Database Release 2 (9.2) database, then you must use original Export/Import.

	
At the destination database, disable any imported jobs that modify data that will be replicated from the source database. Query the DBA_JOBS data dictionary view to list the jobs.

	
Proceed to "Task 4: Setting Up Oracle Streams After Instantiation".

Instantiating the Database Using RMAN

Complete the following steps to instantiate the destination database using the RMAN DUPLICATE command:

	
Note:

These steps provide a general outline for using RMAN to duplicate a database. If you are upgrading an Oracle9i Release 2 database, then see the Oracle9i Recovery Manager User's Guide for detailed information about using RMAN in that release. If you upgrading an Oracle Database 10g Release 1 (10.1) database, then see the Oracle Database Backup and Recovery Advanced User's Guide for that release.

	
Create a backup of the source database if one does not exist. RMAN requires a valid backup for duplication. In this example, create a backup of orcl.example.com if one does not exist.

	
In SQL*Plus, connect to the source database orcl.example.com as an administrative user.

Seethe Oracle Database Administrator's Guide for the source database release for information about connecting to a database in SQL*Plus.

	
Determine the until SCN for the RMAN DUPLICATE command. For example:

SET SERVEROUTPUT ON SIZE 1000000
DECLARE
 until_scn NUMBER;
BEGIN
 until_scn:= DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER;
 DBMS_OUTPUT.PUT_LINE('Until SCN: ' || until_scn);
END;
/

Make a note of the until SCN value. This example assumes that the until SCN value is 439882. You will set the UNTIL SCN option to this value when you use RMAN to duplicate the database in Step 7.

	
While still connected as an administrative user in SQL*Plus to the source database, archive the current online redo log. For example:

ALTER SYSTEM ARCHIVE LOG CURRENT;

	
Prepare your environment for database duplication, which includes preparing the destination database as an auxiliary instance for duplication. See the documentation for the release from which you are upgrading for instructions. Specifically, see the "Duplicating a Database with Recovery Manager" chapter in the Oracle9i Recovery Manager User's Guide or Oracle Database Backup and Recovery Advanced User's Guide (10g) for instructions.

	
Start the RMAN client, and connect to the database orcl.example.com as TARGET and to the updb.example.com database as AUXILIARY. Connect to each database as an administrative user.

See the RMAN documentation for your Oracle Database release for more information about the RMAN CONNECT command.

	
Use the RMAN DUPLICATE command with the OPEN RESTRICTED option to instantiate the source database at the destination database. The OPEN RESTRICTED option is required. This option enables a restricted session in the duplicate database by issuing the following SQL statement: ALTER SYSTEM ENABLE RESTRICTED SESSION. RMAN issues this statement immediately before the duplicate database is opened.

You can use the UNTIL SCN clause to specify an SCN for the duplication. Use the until SCN determined in Step 3 for this clause. Archived redo logs must be available for the until SCN specified and for higher SCN values. Therefore, Step 4 archived the redo log containing the until SCN.

Ensure that you use TO database_name in the DUPLICATE command to specify the database name of the duplicate database. In this example, the database name of the duplicate database is updb. Therefore, the DUPLICATE command for this example includes TO updb.

The following is an example of an RMAN DUPLICATE command:

RMAN> RUN
 {
 SET UNTIL SCN 439882;
 ALLOCATE AUXILIARY CHANNEL updb DEVICE TYPE sbt;
 DUPLICATE TARGET DATABASE TO updb
 NOFILENAMECHECK
 OPEN RESTRICTED;
 }

	
In SQL*Plus, connect to the destination database as an administrative user.

	
Use the ALTER SYSTEM statement to disable the RESTRICTED SESSION:

ALTER SYSTEM DISABLE RESTRICTED SESSION;

	
While still connected as an administrative user in SQL*Plus to the destination database, rename the database global name. After the RMAN DUPLICATE command, the destination database has the same global name as the source database, but the destination database must have its original name until the end of the upgrade. For example:

ALTER DATABASE RENAME GLOBAL_NAME TO updb.example.com;

	
At the destination database, disable any jobs that modify data that will be replicated from the source database. Query the DBA_JOBS data dictionary view to list the jobs.

	
Upgrade the destination database to Oracle Database 11g Release 2. See the Oracle Database Upgrade Guide for instructions.

	
If you have not done so already, configure your network and Oracle Net so that the source database and destination database can communicate with each other. See Oracle Database Net Services Administrator's Guide for instructions.

	
Connect to the destination database as the Oracle Streams administrator in SQL*Plus. In this example, the destination database is updb.example.com.

	
Create a database link to the source database. For example:

CREATE DATABASE LINK orcl.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'orcl.example.com';

	
Set the instantiation SCN for the entire database and all of the database objects. The RMAN DUPLICATE command duplicates the database up to one less than the SCN value specified in the UNTIL SCN clause. Therefore, you should subtract one from the until SCN value that you specified when you ran the DUPLICATE command in Step 7. In this example, the until SCN was set to 439882. Therefore, the instantiation SCN should be set to 439882 - 1, or 439881.

BEGIN
 DBMS_APPLY_ADM.SET_GLOBAL_INSTANTIATION_SCN(
 source_database_name => 'orcl.example.com',
 instantiation_scn => 439881,
 recursive => TRUE);
END;
/

	
Proceed to "Task 4: Setting Up Oracle Streams After Instantiation".

Task 4: Setting Up Oracle Streams After Instantiation

The specific instructions for setting up Oracle Streams after instantiation depend on which database is the capture database. Follow the instructions in the appropriate section:

	
The Source Database Is the Capture Database

	
The Destination Database Is the Capture Database

	
A Third Database Is the Capture Database

	
See Also:

"Overview of Using Oracle Streams in the Database Upgrade Process" for information about the capture database

The Source Database Is the Capture Database

Complete the following steps to set up Oracle Streams after instantiation when the source database is the capture database:

	
In SQL*Plus, connect to the destination database as the Oracle Streams administrator. In this example, the destination database is updb.example.com.

See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.

	
Remove the Oracle Streams components that were cloned from the source database during instantiation:

	
If export/import was used for instantiation, then remove the ANYDATA queue that was cloned from the source database.

	
If RMAN was used for instantiation, then remove the ANYDATA queue and the capture process that were cloned from the source database.

To remove the queue that was cloned from the source database, run the REMOVE_QUEUE procedure in the DBMS_STREAMS_ADM package. For example:

BEGIN
 DBMS_STREAMS_ADM.REMOVE_QUEUE(
 queue_name => 'strmadmin.capture_queue',
 cascade => FALSE,
 drop_unused_queue_table => TRUE);
END;
/

To remove the capture process that was cloned from the source database, run the DROP_CAPTURE procedure in the DBMS_CAPTURE_ADM package. For example:

BEGIN
 DBMS_CAPTURE_ADM.DROP_CAPTURE(
 capture_name => 'capture_upgrade',
 drop_unused_rule_sets => TRUE);
END;
/

	
Create an ANYDATA queue. This queue will stage changes propagated from the source database. For example:

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'strmadmin.destination_queue_table',
 queue_name => 'strmadmin.destination_queue');
END;
/

	
Connect to the source database as the Oracle Streams administrator. In this example, the source database is orcl.example.com.

	
Create a database link to the destination database. For example:

CREATE DATABASE LINK updb.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'updb.example.com';

	
Create a propagation that propagates all changes from the source queue to the destination database created in Step 3. For example:

BEGIN
 DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES(
 streams_name => 'to_updb',
 source_queue_name => 'strmadmin.capture_queue',
 destination_queue_name => 'strmadmin.destination_queue@updb.example.com',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => TRUE,
 source_database => 'orcl.example.com');
END;
/

	
Connect to the destination database as the Oracle Streams administrator.

	
Create an apply process that applies all changes in the queue created in Step 3. For example:

BEGIN
 DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
 streams_type => 'apply',
 streams_name => 'apply_upgrade',
 queue_name => 'strmadmin.destination_queue',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => TRUE,
 source_database => 'orcl.example.com');
END;
/

	
Proceed to "Task 5: Finishing the Upgrade and Removing Oracle Streams".

The Destination Database Is the Capture Database

Complete the following steps to set up Oracle Streams after instantiation when the destination database is the capture database:

	
Complete the following steps if you used RMAN for instantiation. If you used export/import for instantiation, then proceed to Step 2.

	
In SQL*Plus, connect to the destination database as the Oracle Streams administrator. In this example, the destination database is updb.example.com.

See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.

	
Create an ANYDATA queue that will stage changes made to the source database during the upgrade process. For example:

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'strmadmin.destination_queue_table',
 queue_name => 'strmadmin.destination_queue');
END;
/

	
Configure a downstream capture process that will capture all supported changes made to the source database and stage these changes in the queue created in Step b.

Ensure that you set the first_scn parameter in the CREATE_CAPTURE procedure to the value obtained for the data dictionary build in Step 2b in "The Destination Database Is the Capture Database". In this example, the first_scn parameter should be set to 1122610.

The capture process can be a real-time downstream capture process or an archived-log downstream capture process. See Oracle Streams Replication Administrator's Guide for instructions. Do not start the capture process.

"Preparing to Upgrade a Database with User-Defined Types" discusses a method for retaining changes to tables that contain user-defined types during the maintenance operation. If you are using this method, then ensure that the capture process does not attempt to capture changes to tables with user-defined types. See the Oracle Streams documentation for the source database for information about excluding database objects from an Oracle Streams configuration with rules.

	
Create an apply process that applies all changes in the queue used by the downstream capture process. For example:

BEGIN
 DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
 streams_type => 'apply',
 streams_name => 'apply_upgrade',
 queue_name => 'strmadmin.destination_queue',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => TRUE,
 source_database => 'orcl.example.com');
END;
/

	
Proceed to "Task 5: Finishing the Upgrade and Removing Oracle Streams".

A Third Database Is the Capture Database

This example assumes that the global name of the third database is thrd.example.com. Complete the following steps to set up Oracle Streams after instantiation when a third database is the capture database:

	
In SQL*Plus, connect to the destination database as the Oracle Streams administrator. In this example, the destination database is updb.example.com.

See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.

	
Create an ANYDATA queue. This queue will stage changes propagated from the capture database. For example:

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'strmadmin.destination_queue_table',
 queue_name => 'strmadmin.destination_queue');
END;
/

	
Connect to the capture database as the Oracle Streams administrator. In this example, the capture database is thrd.example.com.

	
Create a database link to the destination database. For example:

CREATE DATABASE LINK updb.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'updb.example.com';

	
Create a propagation that propagates all changes from the source queue at the capture database to the destination queue created in Step 2. For example:

BEGIN
 DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES(
 streams_name => 'to_updb',
 source_queue_name => 'strmadmin.capture_queue',
 destination_queue_name => 'strmadmin.destination_queue@updb.example.com',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => TRUE,
 source_database => 'orcl.example.com');
END;
/

	
Connect to the destination database as the Oracle Streams administrator. In this example, the destination database is updb.example.com.

	
Create an apply process that applies all changes in the queue created in Step 2. For example:

BEGIN
 DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
 streams_type => 'apply',
 streams_name => 'apply_upgrade',
 queue_name => 'strmadmin.destination_queue',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => TRUE,
 source_database => 'orcl.example.com');
END;
/

	
Complete the steps in "Task 5: Finishing the Upgrade and Removing Oracle Streams".

Task 5: Finishing the Upgrade and Removing Oracle Streams

Complete the following steps to finish the upgrade operation using Oracle Streams and remove Oracle Streams components:

	
Connect to the destination database as the Oracle Streams administrator. In this example, the destination database is updb.example.com.

See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.

	
Start the apply process. For example:

BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply_upgrade');
END;
/

	
Connect to the capture database as the Oracle Streams administrator.

	
Start the capture process. For example:

BEGIN
 DBMS_CAPTURE_ADM.START_CAPTURE(
 capture_name => 'capture_upgrade');
END;
/

This step begins the process of replicating changes that were made to the source database during instantiation of the destination database.

	
While still connected as the Oracle Streams administrator in SQL*Plus to the capture database, monitor the Oracle Streams environment until the apply process at the destination database has applied most of the changes from the source database.

To determine whether the apply process at the destination database has applied most of the changes from the source database, complete the following steps:

	
Query the enqueue message number of the capture process and the message number with the oldest system change number (SCN) for the apply process to see if they are nearly equal.

For example, if the name of the capture process is capture_upgrade, and the name of the apply process is apply_upgrade, then run the following query at the capture database:

COLUMN ENQUEUE_MESSAGE_NUMBER HEADING 'Captured SCN' FORMAT 99999999999
COLUMN OLDEST_SCN_NUM HEADING 'Oldest Applied SCN' FORMAT 99999999999

SELECT c.ENQUEUE_MESSAGE_NUMBER, a.OLDEST_SCN_NUM
 FROM V$STREAMS_CAPTURE c, V$STREAMS_APPLY_READER@updb.example.com a
 WHERE c.CAPTURE_NAME = 'CAPTURE_UPGRADE'
 AND a.APPLY_NAME = 'APPLY_UPGRADE';

When the two values returned by this query are nearly equal, most of the changes from the source database have been applied at the destination database, and you can proceed to the next step. At this point in the process, the values returned by this query might never be equal because the source database still allows changes.

If this query returns no results, then ensure that the Oracle Streams clients in the environment are enabled by querying the STATUS column in the DBA_CAPTURE view at the capture database and the DBA_APPLY view at the destination database. If a propagation is used, you can check the status of the propagation by running the query in "Displaying Information About the Schedules for Propagation Jobs".

If an Oracle Streams client is disabled, then try restarting it. If an Oracle Streams client will not restart, then troubleshoot the environment using the information in Chapter 30, "Identifying Problems in an Oracle Streams Environment".

	
Query the state of the apply process apply servers at the destination database to determine whether they have finished applying changes.

For example, if the name of the apply process is apply_upgrade, then run the following query at the capture database:

COLUMN STATE HEADING 'Apply Server State' FORMAT A20

SELECT STATE
 FROM V$STREAMS_APPLY_SERVER@updb.example.com
 WHERE APPLY_NAME = 'APPLY_UPGRADE';

When the state for all apply servers is IDLE, you can proceed to the next step.

	
Connect to the destination database as the Oracle Streams administrator. In this example, the destination database is updb.example.com.

	
Ensure that there are no apply errors by running the following query:

SELECT COUNT(*) FROM DBA_APPLY_ERROR;

If this query returns zero, then proceed to the next step. If this query shows errors in the error queue, then resolve these errors before continuing. See "Managing Apply Errors" for instructions.

	
Disconnect all applications and users from the source database.

	
Connect as an administrative user to the source database. In this example, the source database is orcl.example.com.

	
Restrict access to the database. For example:

ALTER SYSTEM ENABLE RESTRICTED SESSION;

	
Connect as an administrative user in SQL*Plus to the capture database, and repeat the query you ran in Step 5a. When the two values returned by the query are equal, all of the changes from the source database have been applied at the destination database, and you can proceed to the next step.

	
Connect as the Oracle Streams administrator in SQL*Plus to the destination database, and repeat the query you ran in Step 7. If this query returns zero, then move on to the next step. If this query shows errors in the error queue, then resolve these errors before continuing. See "Managing Apply Errors" for instructions.

	
If you performed any actions that created, modified, or deleted job queue processes at the source database during the upgrade process, then perform the same actions at the destination database. See "Considerations for Job Queue Processes and PL/SQL Package Subprograms" for more information.

	
If you invoked any Oracle-supplied PL/SQL package subprograms at the source database during the upgrade process that modified both user data and dictionary metadata at the same time, then invoke the same subprograms at the destination database. See "Considerations for Job Queue Processes and PL/SQL Package Subprograms" for more information.

	
Shut down the source database. This database should not be opened again.

	
Connect to the destination database as an administrative user.

	
Change the global name of the database to match the source database. For example:

ALTER DATABASE RENAME GLOBAL_NAME TO orcl.example.com;

	
At the destination database, enable any jobs that you disabled earlier.

	
Make the destination database available for applications and users. Redirect any applications and users that were connecting to the source database to the destination database. If necessary, reconfigure your network and Oracle Net so that systems that communicated with the source database now communicate with the destination database. See Oracle Database Net Services Administrator's Guide for instructions.

	
At the destination database, remove the Oracle Streams components that are no longer needed. Connect as an administrative user to the destination database, and run the following procedure:

	
Note:

Running this procedure is dangerous. It removes the local Oracle Streams configuration. Ensure that you are ready to remove the Oracle Streams configuration at the destination database before running this procedure.

EXEC DBMS_STREAMS_ADM.REMOVE_STREAMS_CONFIGURATION();

If you no longer need database supplemental logging at the destination database, then run the following statement to drop it:

ALTER DATABASE DROP SUPPLEMENTAL LOG DATA
 (PRIMARY KEY, UNIQUE, FOREIGN KEY) COLUMNS;

If you no longer need the Oracle Streams administrator at the destination database, then run the following statement:

DROP USER strmadmin CASCADE;

	
If the capture database was a third database, then, at the third database, remove the Oracle Streams components that are no longer needed. Connect as an administrative user to the third database, and run the following procedure:

	
Note:

Running this procedure is dangerous. It removes the local Oracle Streams configuration. Ensure that you are ready to remove the Oracle Streams configuration at the third database before running this procedure.

EXEC DBMS_STREAMS_ADM.REMOVE_STREAMS_CONFIGURATION();

If you no longer need database supplemental logging at the third database, then run the following statement to drop it:

ALTER DATABASE DROP SUPPLEMENTAL LOG DATA
 (PRIMARY KEY, UNIQUE, FOREIGN KEY) COLUMNS;

If you no longer need the Oracle Streams administrator at the destination database, then run the following statement:

DROP USER strmadmin CASCADE;

The database upgrade is complete.

[image: Oracle Corporation]

What's New in Oracle Streams?

This section describes new features of Oracle Streams for Oracle Database 11g and provides pointers to additional information.

This section contains these topics:

	
Oracle Database 11g Release 2 (11.2) New Features in Oracle Streams

	
Oracle Database 11g Release 1 (11.1) New Features in Oracle Streams

Oracle Database 11g Release 2 (11.2) New Features in Oracle Streams

The following Oracle Streams features are new in Oracle Database 11g Release 2 (11.2):

	
XStream

	
Statement DML Handlers

	
Record Table Changes With Oracle Streams

	
SQL Generation

	
Oracle Streams Supports Compressed Tables

	
Capture Processes and Apply Processes Support SecureFile LOBs

	
New Keep Columns Declarative Rule-Based Transformation

	
Automatic Split and Merge

	
New Apply Process Parameter: txn_age_spill_threshold

	
Monitoring Jobs

	
New DBA_RECOVERABLE_SCRIPT_HIST View

XStream

XStream provides application programming interfaces (APIs) that enable information sharing between Oracle databases and between Oracle databases and other systems. The other systems include Oracle systems, such as Oracle Times Ten, non-Oracle databases, non-RDBMS Oracle products, file systems, third party software applications, and so on.

	
See Also:

Oracle Database XStream Guide

Statement DML Handlers

A new type of apply handler called a statement DML handler can process row LCRs in a customized way using a collection of SQL statements. Statement DML handlers typically perform better than procedure DML handlers because statement DML handlers require no PL/SQL processing.

	
See Also:

	
"Statement DML Handlers"

	
"Managing a Statement DML Handler"

	
"Displaying Information About Statement DML Handlers"

Record Table Changes With Oracle Streams

The new MAINTAIN_CHANGE_TABLE procedure in the DBMS_STREAMS_ADM package makes it easy to configure an Oracle Streams environment that records the changes made to a table.

	
See Also:

	
Chapter 20, "Using Oracle Streams to Record Table Changes"

	
Oracle Database PL/SQL Packages and Types Reference

SQL Generation

SQL generation is the ability to generate the SQL statement required to perform the change encapsulated in a row logical change record (row LCR).

	
See Also:

	
"SQL Generation"

	
"Creating a Procedure DML Handler" for an example of a procedure DML handler that uses SQL generation

	
Oracle Database PL/SQL Packages and Types Reference for information about the GET_ROW_TEXT row LCR member function

Oracle Streams Supports Compressed Tables

In prior releases of Oracle Database, Oracle Streams did not support the capture of changes to compressed tables. In Oracle Database 11g Release 2 (11.2) and later, Oracle Streams capture processes and synchronous captures can capture changes made to tables compressed using either basic table compression or OLTP table compression. In addition, apply processes can apply changes to compressed tables.

	
Note:

Capture processes can capture changes to compressed tables only if the compatibility level is set to 11.2.0 or higher at the source database. In a downstream capture configuration, the compatibility level must be set to 11.2.0 or higher at the database running the capture process also. Synchronous captures can capture changes to compressed tables only if the compatibility level is set to 11.2.0 or higher at the database.

	
See Also:

	
Oracle Database Concepts

	
Oracle Database Administrator's Guide

	
Oracle Database SQL Language Reference

Capture Processes and Apply Processes Support SecureFile LOBs

In prior releases of Oracle Database, Oracle Streams did not support SecureFile LOBs. In Oracle Database 11g Release 2 (11.2) and later, Oracle Streams capture processes can capture changes made to SecureFile CLOB, NCLOB, and BLOB columns, and Oracle Streams apply processes can apply changes to SecureFile CLOB, NCLOB, and BLOB columns.

	
See Also:

	
"Data Types Captured by Capture Processes"

	
"Data Types Applied"

New Keep Columns Declarative Rule-Based Transformation

The keep columns declarative rule-based transformation keeps a list of columns in a row logical change record (LCR) that satisfies the specified rule. The transformation deletes columns that are not in the list from the row LCR. You specify a keep columns declarative rule-based transformation using the KEEP_COLUMNS procedure in the DBMS_STREAMS_ADM package.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference

Automatic Split and Merge

Two new capture process parameters can enable automatic split and merge: split_threshold and merge_theshold. When these parameters are set to specify automatic split and merge, Oracle Scheduler jobs monitor the streams flowing from a capture process. When an Oracle Scheduler job identifies a problem with a stream, the job submits a new Oracle Scheduler job to split the problem stream off from the other streams flowing from the capture process. Other Oracle Scheduler jobs continue to monitor the stream, and, when the problem is corrected, an Oracle Scheduler job merges the stream back with the other streams.

	
See Also:

	
Oracle Streams Replication Administrator's Guide

	
Oracle Database PL/SQL Packages and Types Reference

New Apply Process Parameter: txn_age_spill_threshold

The apply process begins to spill messages from memory to hard disk for a particular transaction when the amount of time that any message in the transaction has been in memory exceeds the specified number of seconds in the txn_age_spill_threshold parameter.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference

Monitoring Jobs

The new START_MONITORING procedure in the UTL_SPADV package can create a monitoring job that monitors Oracle Streams performance continually at specified intervals. Other new procedures in this package enable you to manage monitoring jobs.

	
See Also:

	
"Using the UTL_SPADV Package"

	
Oracle Database PL/SQL Packages and Types Reference

New DBA_RECOVERABLE_SCRIPT_HIST View

The new DBA_RECOVERABLE_SCRIPT_HIST view stores the results of recovery operations that were performed by the RECOVER_OPERATION procedure in the DBMS_STREAMS_ADM package.

	
See Also:

	
Oracle Streams Replication Administrator's Guide

	
Oracle Database Reference

Oracle Database 11g Release 1 (11.1) New Features in Oracle Streams

The following Oracle Streams features are new in Oracle Database 11g Release 1 (11.1):

	
Oracle Streams Topology and Oracle Streams Performance Advisor

	
Automatic Data Type Conversion During Apply

	
Simplified Way to Restore Default Values for Parameters

	
Oracle Streams Supports Tables in a Flashback Data Archive

	
Oracle Streams Supports Virtual Columns

	
New Capture Process Parameter: skip_autofiltered_table_ddl

	
New Apply Process Parameter: rtrim_on_implicit_conversion

	
Synchronous Capture

	
Oracle Streams Support for XMLType Columns

	
Oracle Streams Support for Transparent Data Encryption

	
Split and Merge of a Stream Destination

	
Track LCRs Through a Stream

	
Compare and Converge Shared Database Objects

	
Automated Alerts for Oracle Streams Clients and Thresholds

	
Oracle Streams Jobs Use Oracle Scheduler

	
Notification Improvements

	
New Error Messages for Easier Error Handling

	
Combined Capture and Apply

Oracle Streams Topology and Oracle Streams Performance Advisor

The Oracle Streams topology identifies individual streams of messages and the Oracle Streams components configured in each stream. An Oracle Streams environment typically covers multiple databases, and the Oracle Streams topology provides a comprehensive view of the entire Oracle Streams environment.

The Oracle Streams Performance Advisor reports performance measurements for an Oracle Streams topology, including throughput and latency measurements. The Oracle Streams Performance Advisor also identifies bottlenecks in an Oracle Streams topology so that they can be corrected. In addition, the Oracle Streams Performance advisor examines the Oracle Streams components in an Oracle Streams topology and recommends ways to improve their performance.

	
See Also:

Chapter 23, "Monitoring the Oracle Streams Topology and Performance"

Automatic Data Type Conversion During Apply

During apply, an apply process automatically converts certain data types when there is a mismatch between the data type of a column in the row logical change record (row LCR) and the data type of the corresponding column in a table.

	
See Also:

"Automatic Data Type Conversion During Apply"

Simplified Way to Restore Default Values for Parameters

You can set a capture process parameter to its default value by specifying NULL for the value of the parameter in the DBMS_CAPTURE_ADM.SET_PARAMETER procedure. Similarly, you can set an apply process parameter to its default value by specifying NULL for the value of the parameter in the DBMS_APPLY_ADM.SET_PARAMETER procedure.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference

Oracle Streams Supports Tables in a Flashback Data Archive

In prior releases of Oracle Database, Oracle Streams did not support the replication of changes to tables in a flashback data archive. In Oracle Database 11g Release 1 (11.1) and later, Oracle Streams supports tables in a flashback data archive.

	
See Also:

"Oracle Streams and Flashback Data Archive"

Oracle Streams Supports Virtual Columns

In prior releases of Oracle Database, Oracle Streams did not support the replication of changes to tables with virtual columns. In Oracle Database 11g Release 1 (11.1) and later, Oracle Streams supports tables with virtual columns.

New Capture Process Parameter: skip_autofiltered_table_ddl

A new capture process parameter named skip_autofiltered_table_ddl enables you to capture data definition language (DDL) changes to database objects for which data manipulation language (DML) changes are automatically filtered.

	
See Also:

	
Oracle Database PL/SQL Packages and Types Reference for more information about this capture process parameter

	
"Listing the Database Objects That Are Not Compatible with Capture Processes"

	
"Setting a Capture Process Parameter"

New Apply Process Parameter: rtrim_on_implicit_conversion

A new apply process parameter named rtrim_on_implicit_conversion determines whether the apply process trims character data during automatic data type conversion.

	
See Also:

	
Oracle Database PL/SQL Packages and Types Reference for more information about this apply process parameter

	
"Automatic Data Type Conversion During Apply"

	
"Setting an Apply Process Parameter"

Synchronous Capture

Synchronous capture is a new Oracle Streams client that captures data manipulation language (DML) changes made to tables immediately after the changes are committed.

	
See Also:

"Implicit Capture with Synchronous Capture"

Oracle Streams Support for XMLType Columns

XMLType is an Oracle-supplied type that you can use to store and query XML data in the database. Oracle Streams can capture, propagate, and apply changes to XMLType data.

Capture processes can capture changes to XMLType columns stored as CLOB columns, but capture processes cannot capture changes to XMLType columns stored object relationally or as binary XML. Apply processes can apply changes to XMLType columns stored as CLOB columns, stored object relationally, or stored as binary XML.

	
See Also:

	
"Data Types Captured by Capture Processes"

	
"Data Types Applied"

Oracle Streams Support for Transparent Data Encryption

Oracle Streams supports capturing, propagation, and applying changes to columns that have been encrypted using transparent data encryption. Oracle Streams supports columns that were encrypted at the column level or through tablespace encryption. Tablespace encryption enables you to encrypt an entire tablespace. All objects created in the encrypted tablespace are automatically encrypted, including all columns in the database objects in the tablespace. Once a column is encrypted, whether it is due to column encryption or tablespace encryption, Oracle Streams components handle the column data in the same way.

	
See Also:

	
"Capture Processes and Transparent Data Encryption"

	
"Synchronous Capture and Transparent Data Encryption"

	
"Propagations and Transparent Data Encryption"

	
"Apply Processes and Transparent Data Encryption"

Split and Merge of a Stream Destination

You can easily split off an unavailable replica from a Streams replication configuration. Splitting the stream minimizes the time needed for the replica to "catch up" when it becomes available again. When the replica is caught up, it can be merged back into the original configuration. This feature uses three new procedures in the DBMS_STREAMS_ADM package: SPLIT_STREAMS, MERGE_STREAMS_JOB, and MERGE_STREAMS.

	
See Also:

Oracle Streams Replication Administrator's Guide

Track LCRs Through a Stream

The new SET_MESSAGE_TRACKING procedure in the DBMS_STREAMS_ADM package lets you specify a tracking label for logical change records (LCRs) generated by a database session. You can query the new V$STREAMS_MESSAGE_TRACKING view to track the LCRs through the stream and see how they were processed by each Oracle Streams client.

LCR tracking is useful if LCRs are not being applied as expected by one or more apply processes. When this happens, you can use LCR tracking to determine where the LCRs are stopping in the stream and address the problem at that location.

Also, the new message_tracking_frequency capture process parameter enables you to track LCRs automatically.

	
See Also:

	
Oracle Streams Replication Administrator's Guide

	
Oracle Database PL/SQL Packages and Types Reference for information about the message_tracking_frequency capture process parameter

Compare and Converge Shared Database Objects

A new Oracle-supplied package called DBMS_COMPARISON enables you to compare the rows in a shared database object, such as a table, at two different databases. If differences are found in the database object, then this package can converge the database objects so that they are consistent.

	
See Also:

	
Oracle Database 2 Day + Data Replication and Integration Guide

	
Oracle Streams Replication Administrator's Guide

	
Oracle Database PL/SQL Packages and Types Reference

Automated Alerts for Oracle Streams Clients and Thresholds

Enterprise Manager automatically alerts you when an Oracle Streams client becomes disabled or when Oracle Streams-related threshold that you have defined is crossed.

	
See Also:

"Viewing Oracle Streams Alerts"

Oracle Streams Jobs Use Oracle Scheduler

In past releases, Oracle Streams used jobs created by the DBMS_JOB package to perform jobs such as propagation and event notification, and the JOB_QUEUE_PROCESSES initialization parameter controlled the number of slave processes that were created.

In Oracle Database 11g Release 1 (11.1) and later, Oracle Streams uses Oracle Scheduler to perform these jobs. Oracle Scheduler automatically tunes the number of slave processes for these jobs based on the load on the computer system, and the JOB_QUEUE_PROCESSES initialization parameter is only used to specify the maximum number of slave processes. Therefore, the JOB_QUEUE_PROCESSES initialization parameter does not need to be set, unless you want to limit the number of slaves that can be created.

	
See Also:

"Propagation Jobs"

Notification Improvements

This release introduces the following notification improvements:

	
Notification grouping by time

	
Better scaling to enable a large number of notifications to be sent simultaneously

	
Improved diagnosability of notifications using registration statistics

	
See Also:

Oracle Streams Advanced Queuing User's Guide

New Error Messages for Easier Error Handling

The following apply error messages are new in Oracle Database 11g Release 1 (11.1):

	
An ORA-26787 error is raised if the row to be updated or deleted does not exist in the target table.

	
An ORA-26786 error is raised when the row exists in the target table, but the values of some columns do not match those of the row logical change record (row LCR).

In past releases, an ORA-01403 error was returned in these situations. These new error messages make it easier to handle apply errors in DML handlers and error handlers. If you have existing procedure handlers and error handlers, then they you might need to modify them for the current release.

	
See Also:

"Are There Any Apply Errors in the Error Queue?"

Combined Capture and Apply

Oracle Streams can improve propagation efficiency under certain conditions.

	
See Also:

Chapter 12, "Combined Capture and Apply Optimization"

24 Monitoring Oracle Streams Implicit Capture

Both capture processes and synchronous captures perform implicit capture.

The following topics describe monitoring Oracle Streams implicit capture:

	
Monitoring a Capture Process

	
Monitoring a Synchronous Capture

	
Viewing the Extra Attributes Captured by Implicit Capture

	
Note:

The Oracle Streams tool in Oracle Enterprise Manager is also an excellent way to monitor an Oracle Streams environment. See Oracle Database 2 Day + Data Replication and Integration Guide and the online Help for the Oracle Streams tool for more information.

	
See Also:

	
Chapter 2, "Oracle Streams Information Capture"

	
Chapter 15, "Managing Oracle Streams Implicit Capture"

	
Chapter 31, "Troubleshooting Implicit Capture"

	
Oracle Database Reference for information about the data dictionary views described in this chapter

Monitoring a Capture Process

This section provides sample queries that you can use to monitor Oracle Streams capture processes.

This section contains these topics:

	
Displaying the Queue, Rule Sets, and Status of Each Capture Process

	
Displaying Session Information About Each Capture Process

	
Displaying Change Capture Information About Each Capture Process

	
Displaying State Change and Message Creation Time for Each Capture Process

	
Displaying Elapsed Time Performing Capture Operations for Each Capture Process

	
Displaying Information About Each Downstream Capture Process

	
Displaying the Registered Redo Log Files for Each Capture Process

	
Displaying the Redo Log Files that Are Required by Each Capture Process

	
Displaying SCN Values for Each Redo Log File Used by Each Capture Process

	
Displaying the Last Archived Redo Entry Available to Each Capture Process

	
Listing the Parameter Settings for Each Capture Process

	
Determining the Applied SCN for All Capture Processes in a Database

	
Determining Redo Log Scanning Latency for Each Capture Process

	
Determining Message Enqueuing Latency for Each Capture Process

	
Displaying Information About Rule Evaluations for Each Capture Process

	
Determining Which Capture Processes Use Combined Capture and Apply

	
Displaying Information About Split and Merge Operations

	
Monitoring Supplemental Logging

Displaying the Queue, Rule Sets, and Status of Each Capture Process

You can display the following information about each capture process in a database by running the query in this section:

	
The capture process name

	
The name of the queue used by the capture process

	
The name of the positive rule set used by the capture process

	
The name of the negative rule set used by the capture process

	
The status of the capture process, which can be ENABLED, DISABLED, or ABORTED

To display this general information about each capture process in a database, run the following query:

COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A15
COLUMN QUEUE_NAME HEADING 'Capture|Process|Queue' FORMAT A15
COLUMN RULE_SET_NAME HEADING 'Positive|Rule Set' FORMAT A15
COLUMN NEGATIVE_RULE_SET_NAME HEADING 'Negative|Rule Set' FORMAT A15
COLUMN STATUS HEADING 'Capture|Process|Status' FORMAT A15

SELECT CAPTURE_NAME, QUEUE_NAME, RULE_SET_NAME, NEGATIVE_RULE_SET_NAME, STATUS
 FROM DBA_CAPTURE;

Your output looks similar to the following:

Capture Capture Capture
Process Process Positive Negative Process
Name Queue Rule Set Rule Set Status
--------------- --------------- --------------- --------------- ---------------
STRM01_CAPTURE STREAMS_QUEUE RULESET$_25 RULESET$_36 ENABLED

If the status of a capture process is ABORTED, then you can query the ERROR_NUMBER and ERROR_MESSAGE columns in the DBA_CAPTURE data dictionary view to determine the error.

	
See Also:

"Is the Capture Process Enabled?" for an example query that shows the error number and error message if a capture process is aborted

Displaying Session Information About Each Capture Process

The query in this section displays the following session information about each session associated with a capture process in a database:

	
The capture process component

	
The session identifier

	
The serial number

	
The operating system process identification number

	
The process name of the capture process in the form CPnn, where nn can include letters and numbers

To display this information for each capture process in a database, run the following query:

COLUMN ACTION HEADING 'Capture Process Component' FORMAT A25
COLUMN SID HEADING 'Session ID' FORMAT 99999
COLUMN SERIAL# HEADING 'Session|Serial|Number' FORMAT 99999999
COLUMN PROCESS HEADING 'Operating System|Process Number' FORMAT A20
COLUMN PROCESS_NAME HEADING 'Process|Name' FORMAT A7

SELECT /*+PARAM('_module_action_old_length',0)*/ ACTION,
 SID,
 SERIAL#,
 PROCESS,
 SUBSTR(PROGRAM,INSTR(PROGRAM,'(')+1,4) PROCESS_NAME
 FROM V$SESSION
 WHERE MODULE ='Streams' AND
 ACTION LIKE '%Capture%';

Your output looks similar to the following:

 Session
 Serial Operating System Process
Capture Process Component Session ID Number Process Number Name
------------------------- ---------- --------- -------------------- -------
EMDBA$CAP - Capture 74 9 10019 CP01

	
See Also:

"Capture Process Subcomponents" for information about capture process parallelism

Displaying Change Capture Information About Each Capture Process

The query in this section displays the following information about each capture process in a database:

	
The name of the capture process.

	
The process number CPnn, where nn can include letters and numbers

	
The session identifier.

	
The serial number of the session.

	
The current state of the capture process

See "Capture Process States".

	
The total number of redo entries passed by LogMiner to the capture process for detailed rule evaluation. A capture process converts a redo entry into a message and performs detailed rule evaluation on the message when capture process prefiltering cannot discard the change.

	
The total number LCRs enqueued since the capture process was last started.

To display this information for each capture process in a database, run the following query:

COLUMN CAPTURE_NAME HEADING 'Capture|Name' FORMAT A7
COLUMN PROCESS_NAME HEADING 'Capture|Process|Number' FORMAT A7
COLUMN SID HEADING 'Session|ID' FORMAT 9999
COLUMN SERIAL# HEADING 'Session|Serial|Number' FORMAT 9999
COLUMN STATE HEADING 'State' FORMAT A20
COLUMN TOTAL_MESSAGES_CAPTURED HEADING 'Redo|Entries|Evaluated|In Detail' FORMAT 9999999
COLUMN TOTAL_MESSAGES_ENQUEUED HEADING 'Total|LCRs|Enqueued' FORMAT 9999999999

SELECT c.CAPTURE_NAME,
 SUBSTR(s.PROGRAM,INSTR(s.PROGRAM,'(')+1,4) PROCESS_NAME,
 c.SID,
 c.SERIAL#,
 c.STATE,
 c.TOTAL_MESSAGES_CAPTURED,
 c.TOTAL_MESSAGES_ENQUEUED
 FROM V$STREAMS_CAPTURE c, V$SESSION s
 WHERE c.SID = s.SID AND
 c.SERIAL# = s.SERIAL#;

Your output looks similar to the following:

 Redo
 Capture Session Entries Total
Capture Process Session Serial Evaluated LCRs
Name Number ID Number State In Detail Enqueued
------- ------- ------- ------- -------------------- --------- -----------
CAPTURE CP01 954 3 CAPTURING CHANGES 3719085 3389713
_HNS

The number of redo entries scanned can be higher than the number of DML and DDL redo entries captured by a capture process. Only DML and DDL redo entries that satisfy the rule sets of a capture process are captured and enqueued into the capture process queue. Also, the total LCRs enqueued includes LCRs that contain transaction control statements. These row LCRs contain directives such as COMMIT and ROLLBACK. Therefore, the total LCRs enqueued is a number higher than the number of row changes and DDL changes enqueued by a capture process.

	
See Also:

"Row LCRs" for more information about transaction control statements

Displaying State Change and Message Creation Time for Each Capture Process

The query in this section displays the following information for each capture process in a database:

	
The name of the capture process

	
The current state of the capture process

See "Capture Process States".

	
The date and time when the capture process state last changed

	
The date and time when the capture process last created an LCR

To display this information for each capture process in a database, run the following query:

COLUMN CAPTURE_NAME HEADING 'Capture|Name' FORMAT A15
COLUMN STATE HEADING 'State' FORMAT A27
COLUMN STATE_CHANGED HEADING 'State|Change Time'
COLUMN CREATE_MESSAGE HEADING 'Last Message|Create Time'

SELECT CAPTURE_NAME,
 STATE,
 TO_CHAR(STATE_CHANGED_TIME, 'HH24:MI:SS MM/DD/YY') STATE_CHANGED,
 TO_CHAR(CAPTURE_MESSAGE_CREATE_TIME, 'HH24:MI:SS MM/DD/YY') CREATE_MESSAGE
 FROM V$STREAMS_CAPTURE;

Your output looks similar to the following:

Capture State Last Message
Name State Change Time Create Time
--------------- --------------------------- ----------------- -----------------
CAPTURE_SIMP CAPTURING CHANGES 13:24:42 11/08/04 13:24:41 11/08/04

Displaying Elapsed Time Performing Capture Operations for Each Capture Process

The query in this section displays the following information for each capture process in a database:

	
The name of the capture process

	
The elapsed capture time, which is the amount of time (in seconds) spent scanning for changes in the redo log since the capture process was last started

	
The elapsed rule evaluation time, which is the amount of time (in seconds) spent evaluating rules since the capture process was last started

	
The elapsed enqueue time, which is the amount of time (in seconds) spent enqueuing messages since the capture process was last started

	
The elapsed LCR creation time, which is the amount of time (in seconds) spent creating logical change records (LCRs) since the capture process was last started

	
The elapsed pause time, which is the amount of time (in seconds) spent paused for flow control since the capture process was last started

	
Note:

All times for this query are displayed in seconds. The V$STREAMS_CAPTURE view displays elapsed time in centiseconds by default. A centisecond is one-hundredth of a second. The query in this section divides each elapsed time by one hundred to display the elapsed time in seconds.

To display this information for each capture process in a database, run the following query:

COLUMN CAPTURE_NAME HEADING 'Capture|Name' FORMAT A15
COLUMN ELAPSED_CAPTURE_TIME HEADING 'Elapsed|Capture|Time' FORMAT 99999999.99
COLUMN ELAPSED_RULE_TIME HEADING 'Elapsed|Rule|Evaluation|Time' FORMAT 99999999.99
COLUMN ELAPSED_ENQUEUE_TIME HEADING 'Elapsed|Enqueue|Time' FORMAT 99999999.99
COLUMN ELAPSED_LCR_TIME HEADING 'Elapsed|LCR|Creation|Time' FORMAT 99999999.99
COLUMN ELAPSED_PAUSE_TIME HEADING 'Elapsed|Pause|Time' FORMAT 99999999.99

SELECT CAPTURE_NAME,
 (ELAPSED_CAPTURE_TIME/100) ELAPSED_CAPTURE_TIME,
 (ELAPSED_RULE_TIME/100) ELAPSED_RULE_TIME,
 (ELAPSED_ENQUEUE_TIME/100) ELAPSED_ENQUEUE_TIME,
 (ELAPSED_LCR_TIME/100) ELAPSED_LCR_TIME,
 (ELAPSED_PAUSE_TIME/100) ELAPSED_PAUSE_TIME
 FROM V$STREAMS_CAPTURE;

Your output looks similar to the following:

 Elapsed Elapsed
 Elapsed Rule Elapsed LCR Elapsed
Capture Capture Evaluation Enqueue Creation Pause
Name Time Time Time Time Time
--------------- ------------ ------------ ------------ ------------ ------------
STM1$CAP 1213.92 .04 33.84 185.25 600.60

Displaying Information About Each Downstream Capture Process

A downstream capture is a capture process that runs on a database other than the source database. You can display the following information about each downstream capture process in a database by running the query in this section:

	
The capture process name

	
The source database of the changes captured by the capture process

	
The name of the queue used by the capture process

	
The status of the capture process, which can be ENABLED, DISABLED, or ABORTED

	
Whether the downstream capture process uses a database link to the source database for administrative actions

To display this information about each downstream capture process in a database, run the following query:

COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A15
COLUMN SOURCE_DATABASE HEADING 'Source|Database' FORMAT A15
COLUMN QUEUE_NAME HEADING 'Capture|Process|Queue' FORMAT A15
COLUMN STATUS HEADING 'Capture|Process|Status' FORMAT A15
COLUMN USE_DATABASE_LINK HEADING 'Uses|Database|Link?' FORMAT A8

SELECT CAPTURE_NAME,
 SOURCE_DATABASE,
 QUEUE_NAME,
 STATUS,
 USE_DATABASE_LINK
 FROM DBA_CAPTURE
 WHERE CAPTURE_TYPE = 'DOWNSTREAM';

Your output looks similar to the following:

Capture Capture Capture Uses
Process Source Process Process Database
Name Database Queue Status Link?
--------------- -------------------- --------------- --------------- --------
STRM03_CAPTURE DBS1.EXAMPLE.COM STRM03_QUEUE ENABLED YES

In this case, the source database for the capture process is dbs1.example.com, but the local database running the capture process is not dbs1.example.com. Also, the capture process returned by this query uses a database link to the source database to perform administrative actions. The database link name is the same as the global name of the source database, which is dbs1.example.com in this case.

If the status of a capture process is ABORTED, then you can query the ERROR_NUMBER and ERROR_MESSAGE columns in the DBA_CAPTURE data dictionary view to determine the error.

	
Note:

At the source database for an Oracle Streams downstream capture process, you can query the V$ARCHIVE_DEST_STATUS view to display information about the downstream database. The following columns in the view relate to the downstream database:
	
The TYPE column shows DOWNSTREAM if redo log information is being shipped to a downstream capture database.

	
The DESTINATION column shows the name of the downstream capture database.

	
See Also:

	
"Local Capture and Downstream Capture"

	
Oracle Streams Replication Administrator's Guide for information about creating a capture process

	
"Is the Capture Process Enabled?" for an example query that shows the error number and error message if a capture process is aborted

Displaying the Registered Redo Log Files for Each Capture Process

You can display information about the archived redo log files that are registered for each capture process in a database by running the query in this section. This query displays information about these files for both local capture processes and downstream capture processes.

The query displays the following information for each registered archived redo log file:

	
The name of a capture process that uses the file

	
The source database of the file

	
The sequence number of the file

	
The name and location of the file at the local site

	
Whether the file contains the beginning of a data dictionary build

	
Whether the file contains the end of a data dictionary build

To display this information about each registered archive redo log file in a database, run the following query:

COLUMN CONSUMER_NAME HEADING 'Capture|Process|Name' FORMAT A15
COLUMN SOURCE_DATABASE HEADING 'Source|Database' FORMAT A10
COLUMN SEQUENCE# HEADING 'Sequence|Number' FORMAT 99999
COLUMN NAME HEADING 'Archived Redo Log|File Name' FORMAT A20
COLUMN DICTIONARY_BEGIN HEADING 'Dictionary|Build|Begin' FORMAT A10
COLUMN DICTIONARY_END HEADING 'Dictionary|Build|End' FORMAT A10

SELECT r.CONSUMER_NAME,
 r.SOURCE_DATABASE,
 r.SEQUENCE#,
 r.NAME,
 r.DICTIONARY_BEGIN,
 r.DICTIONARY_END
 FROM DBA_REGISTERED_ARCHIVED_LOG r, DBA_CAPTURE c
 WHERE r.CONSUMER_NAME = c.CAPTURE_NAME;

Your output looks similar to the following:

Capture Dictionary Dictionary
Process Source Sequence Archived Redo Log Build Build
Name Database Number File Name Begin End
--------------- ---------- -------- -------------------- ---------- ----------
STRM02_CAPTURE DBS2.EXAMP 15 /orc/dbs/log/arch2_1 NO NO
 LE.COM _15_478347508.arc
STRM02_CAPTURE DBS2.EXAMP 16 /orc/dbs/log/arch2_1 NO NO
 LE.COM _16_478347508.arc
STRM03_CAPTURE DBS1.EXAMP 45 /remote_logs/arch1_1 YES YES
 LE.COM _45_478347335.arc
STRM03_CAPTURE DBS1.EXAMP 46 /remote_logs/arch1_1 NO NO
 LE.COM _46_478347335.arc
STRM03_CAPTURE DBS1.EXAMP 47 /remote_logs/arch1_1 NO NO
 LE.COM _47_478347335.arc

Assume that this query was run at the dbs2.example.com database, and that strm02_capture is a local capture process, and strm03_capture is a downstream capture process. The source database for the strm03_capture downstream capture process is dbs1.example.com. This query shows that there are two registered archived redo log files for strm02_capture and three registered archived redo log files for strm03_capture. This query shows the name and location of each of these files in the local file system.

	
See Also:

	
"The LogMiner Data Dictionary for a Capture Process" for more information about data dictionary builds

	
"Local Capture and Downstream Capture"

	
Oracle Streams Replication Administrator's Guide for information about configuring a capture process

	
"ARCHIVELOG Mode and a Capture Process"

Displaying the Redo Log Files that Are Required by Each Capture Process

A capture process needs the redo log file that includes the required checkpoint SCN, and all subsequent redo log files. You can query the REQUIRED_CHECKPOINT_SCN column in the DBA_CAPTURE data dictionary view to determine the required checkpoint SCN for a capture process. Redo log files before the redo log file that contains the required checkpoint SCN are no longer needed by the capture process. These redo log files can be stored offline if they are no longer needed for any other purpose. If you reset the start SCN for a capture process to a lower value in the future, then these redo log files might be needed.

The query displays the following information for each required archived redo log file:

	
The name of a capture process that uses the file

	
The source database of the file

	
The sequence number of the file

	
The name and location of the required redo log file at the local site

To display this information about each required archive redo log file in a database, run the following query:

COLUMN CONSUMER_NAME HEADING 'Capture|Process|Name' FORMAT A15
COLUMN SOURCE_DATABASE HEADING 'Source|Database' FORMAT A10
COLUMN SEQUENCE# HEADING 'Sequence|Number' FORMAT 99999
COLUMN NAME HEADING 'Required|Archived Redo Log|File Name' FORMAT A40

SELECT r.CONSUMER_NAME,
 r.SOURCE_DATABASE,
 r.SEQUENCE#,
 r.NAME
 FROM DBA_REGISTERED_ARCHIVED_LOG r, DBA_CAPTURE c
 WHERE r.CONSUMER_NAME = c.CAPTURE_NAME AND
 r.NEXT_SCN >= c.REQUIRED_CHECKPOINT_SCN;

Your output looks similar to the following:

Capture Required
Process Source Sequence Archived Redo Log
Name Database Number File Name
--------------- ---------- -------- --
STRM02_CAPTURE DBS2.EXAMP 16 /orc/dbs/log/arch2_1_16_478347508.arc
 LE.COM
STRM03_CAPTURE DBS1.EXAMP 47 /remote_logs/arch1_1_47_478347335.arc
 LE.COM

	
See Also:

"Required Checkpoint SCN"

Displaying SCN Values for Each Redo Log File Used by Each Capture Process

You can display information about the SCN values for archived redo log files that are registered for each capture process in a database by running the query in this section. This query displays information the SCN values for these files for both local capture processes and downstream capture processes. This query also identifies redo log files that are no longer needed by any capture process at the local database.

The query displays the following information for each registered archived redo log file:

	
The capture process name of a capture process that uses the file

	
The name and location of the file at the local site

	
The lowest SCN value for the information contained in the redo log file

	
The lowest SCN value for the next redo log file in the sequence

	
Whether the redo log file is purgeable

To display this information about each registered archive redo log file in a database, run the following query:

COLUMN CONSUMER_NAME HEADING 'Capture|Process|Name' FORMAT A15
COLUMN NAME HEADING 'Archived Redo Log|File Name' FORMAT A25
COLUMN FIRST_SCN HEADING 'First SCN' FORMAT 99999999999
COLUMN NEXT_SCN HEADING 'Next SCN' FORMAT 99999999999
COLUMN PURGEABLE HEADING 'Purgeable?' FORMAT A10

SELECT r.CONSUMER_NAME,
 r.NAME,
 r.FIRST_SCN,
 r.NEXT_SCN,
 r.PURGEABLE
 FROM DBA_REGISTERED_ARCHIVED_LOG r, DBA_CAPTURE c
 WHERE r.CONSUMER_NAME = c.CAPTURE_NAME;

Your output looks similar to the following:

Capture
Process Archived Redo Log
Name File Name First SCN Next SCN Purgeable?
--------------- ------------------------- ------------ ------------ ----------
CAPTURE_SIMP /private1/ARCHIVE_LOGS/1_ 509686 549100 YES
 3_502628294.dbf

CAPTURE_SIMP /private1/ARCHIVE_LOGS/1_ 549100 587296 YES
 4_502628294.dbf

CAPTURE_SIMP /private1/ARCHIVE_LOGS/1_ 587296 623107 NO
 5_502628294.dbf

The redo log files with YES for Purgeable? for all capture processes will never be needed by any capture process at the local database. These redo log files can be removed without affecting any existing capture process at the local database. The redo log files with NO for Purgeable? for one or more capture processes must be retained.

	
See Also:

"ARCHIVELOG Mode and a Capture Process"

Displaying the Last Archived Redo Entry Available to Each Capture Process

For a local capture process, the last archived redo entry available is the last entry from the online redo log flushed to an archived log file. For a downstream capture process, the last archived redo entry available is the redo entry with the most recent system change number (SCN) in the last archived log file added to the LogMiner session used by the capture process.

You can display the following information about the last redo entry that was made available to each capture process by running the query in this section:

	
The name of the capture process

	
The identification number of the LogMiner session used by the capture process

	
The highest SCN available for the capture process

For local capture, this SCN is the last redo SCN flushed to the log files. For downstream capture, this SCN is the last SCN added to LogMiner through the archive logs.

	
The timestamp of the highest SCN available for the capture process

For local capture, this timestamp is the time the SCN was written to the log file. For downstream capture, this timestamp is the time of the most recent archive log (containing the most recent SCN) available to LogMiner.

The information displayed by this query is valid only for an enabled capture process.

Run the following query to display this information for each capture process:

COLUMN CAPTURE_NAME HEADING 'Capture|Name' FORMAT A20
COLUMN LOGMINER_ID HEADING 'LogMiner ID' FORMAT 9999
COLUMN AVAILABLE_MESSAGE_NUMBER HEADING 'Highest|Available SCN' FORMAT 9999999999
COLUMN AVAILABLE_MESSAGE_CREATE_TIME HEADING 'Time of|Highest|Available SCN'

SELECT CAPTURE_NAME,
 LOGMINER_ID,
 AVAILABLE_MESSAGE_NUMBER,
 TO_CHAR(AVAILABLE_MESSAGE_CREATE_TIME, 'HH24:MI:SS MM/DD/YY')
 AVAILABLE_MESSAGE_CREATE_TIME
 FROM V$STREAMS_CAPTURE;

Your output looks similar to the following:

 Time of
Capture Highest Highest
Name LogMiner ID Available SCN Available SCN
-------------------- ----------- ------------- -----------------
DB1$CAP 1 1506751 09:46:11 06/29/09

Listing the Parameter Settings for Each Capture Process

The following query displays the current setting for each capture process parameter for each capture process in a database:

COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A25
COLUMN PARAMETER HEADING 'Parameter' FORMAT A30
COLUMN VALUE HEADING 'Value' FORMAT A10
COLUMN SET_BY_USER HEADING 'Set by|User?' FORMAT A10

SELECT CAPTURE_NAME,
 PARAMETER,
 VALUE,
 SET_BY_USER
 FROM DBA_CAPTURE_PARAMETERS;

Your output looks similar to the following:

Capture
Process Set by
Name Parameter Value User?
------------------------- ------------------------------ ---------- ----------
DA$CAP CAPTURE_IDKEY_OBJECTS N NO
DA$CAP CAPTURE_SEQUENCE_NEXTVAL N NO
DA$CAP DISABLE_ON_LIMIT N NO
DA$CAP DOWNSTREAM_REAL_TIME_MINE Y NO
DA$CAP EXCLUDETRANS NO
DA$CAP EXCLUDEUSER NO
DA$CAP EXCLUDEUSERID NO
DA$CAP GETAPPLOPS Y NO
DA$CAP GETREPLICATES N NO
DA$CAP IGNORE_TRANSACTION NO
DA$CAP IGNORE_UNSUPPORTED_TABLE * NO
DA$CAP MAXIMUM_SCN INFINITE NO
DA$CAP MAX_SGA_SIZE INFINITE NO
DA$CAP MERGE_THRESHOLD 60 NO
DA$CAP MESSAGE_LIMIT INFINITE NO
DA$CAP MESSAGE_TRACKING_FREQUENCY 2000000 NO
DA$CAP PARALLELISM 1 NO
DA$CAP SKIP_AUTOFILTERED_TABLE_DDL Y NO
DA$CAP SPLIT_THRESHOLD 1800 NO
DA$CAP STARTUP_SECONDS 0 NO
DA$CAP TIME_LIMIT INFINITE NO
DA$CAP TRACE_LEVEL 0 NO
DA$CAP WRITE_ALERT_LOG Y NO
DA$CAP XOUT_CLIENT_EXISTS N NO

	
Note:

If the Set by User? column is NO for a parameter, then the parameter is set to its default value. If the Set by User? column is YES for a parameter, then the parameter was set by a user and might or might not be set to its default value.

	
See Also:

	
"Capture Process Subcomponents"

	
"Setting a Capture Process Parameter"

Determining the Applied SCN for All Capture Processes in a Database

The applied system change number (SCN) for a capture process is the SCN of the most recent message dequeued by the relevant apply processes. All changes below this applied SCN have been dequeued by all apply processes that apply changes captured by the capture process.

To display the applied SCN for all of the capture processes in a database, run the following query:

COLUMN CAPTURE_NAME HEADING 'Capture Process Name' FORMAT A30
COLUMN APPLIED_SCN HEADING 'Applied SCN' FORMAT 99999999999

SELECT CAPTURE_NAME, APPLIED_SCN FROM DBA_CAPTURE;

Your output looks similar to the following:

Capture Process Name Applied SCN
------------------------------ -----------
CAPTURE_EMP 177154

Determining Redo Log Scanning Latency for Each Capture Process

You can find the following information about each capture process by running the query in this section:

	
The redo log scanning latency, which specifies the number of seconds between the creation time of the most recent redo log entry scanned by a capture process and the current time. This number might be relatively large immediately after you start a capture process.

	
The seconds since last recorded status, which is the number of seconds since a capture process last recorded its status.

	
The current capture process time, which is the latest time when the capture process recorded its status.

	
The message creation time, which is the time when the data manipulation language (DML) or data definition language (DDL) change generated the redo data at the source database for the most recently captured LCR.

The information displayed by this query is valid only for an enabled capture process.

Run the following query to determine the redo scanning latency for each capture process:

COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A10
COLUMN LATENCY_SECONDS HEADING 'Latency|in|Seconds' FORMAT 999999
COLUMN LAST_STATUS HEADING 'Seconds Since|Last Status' FORMAT 999999
COLUMN CAPTURE_TIME HEADING 'Current|Process|Time'
COLUMN CREATE_TIME HEADING 'Message|Creation Time' FORMAT 999999

SELECT CAPTURE_NAME,
 ((SYSDATE - CAPTURE_MESSAGE_CREATE_TIME)*86400) LATENCY_SECONDS,
 ((SYSDATE - CAPTURE_TIME)*86400) LAST_STATUS,
 TO_CHAR(CAPTURE_TIME, 'HH24:MI:SS MM/DD/YY') CAPTURE_TIME,
 TO_CHAR(CAPTURE_MESSAGE_CREATE_TIME, 'HH24:MI:SS MM/DD/YY') CREATE_TIME
 FROM V$STREAMS_CAPTURE;

Your output looks similar to the following:

Capture Latency Current
Process in Seconds Since Process Message
Name Seconds Last Status Time Creation Time
---------- ------- ------------- ----------------- -----------------
DA$CAP 1 1 12:33:39 07/14/10 12:33:39 07/14/10

The "Latency in Seconds" returned by this query is the difference between the current time (SYSDATE) and the "Message Creation Time." The "Seconds Since Last Status" returned by this query is the difference between the current time (SYSDATE) and the "Current Process Time."

Determining Message Enqueuing Latency for Each Capture Process

You can find the following information about each capture process by running the query in this section:

	
The message enqueuing latency, which specifies the number of seconds between when an entry was recorded in the redo log at the source database and when the message was enqueued by the capture process

	
The message creation time, which is the time when the data manipulation language (DML) or data definition language (DDL) change generated the redo data at the source database for the most recently enqueued message

	
The enqueue time, which is when the capture process enqueued the message into its queue

	
The message number of the enqueued message

The information displayed by this query is valid only for an enabled capture process.

Run the following query to determine the message capturing latency for each capture process:

COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A10
COLUMN LATENCY_SECONDS HEADING 'Latency|in|Seconds' FORMAT 999999
COLUMN CREATE_TIME HEADING 'Message Creation|Time' FORMAT A20
COLUMN ENQUEUE_TIME HEADING 'Enqueue Time' FORMAT A20
COLUMN ENQUEUE_MESSAGE_NUMBER HEADING 'Message|Number' FORMAT 9999999999

SELECT CAPTURE_NAME,
 (ENQUEUE_TIME-ENQUEUE_MESSAGE_CREATE_TIME)*86400 LATENCY_SECONDS,
 TO_CHAR(ENQUEUE_MESSAGE_CREATE_TIME, 'HH24:MI:SS MM/DD/YY') CREATE_TIME,
 TO_CHAR(ENQUEUE_TIME, 'HH24:MI:SS MM/DD/YY') ENQUEUE_TIME,
 ENQUEUE_MESSAGE_NUMBER
 FROM V$STREAMS_CAPTURE;

Your output looks similar to the following:

Capture Latency
Process in Message Creation Message
Name Seconds Time Enqueue Time Number
---------- ------- -------------------- -------------------- -------
CAPTURE 0 10:56:51 03/01/02 10:56:51 03/01/02 253962

The "Latency in Seconds" returned by this query is the difference between the "Enqueue Time" and the "Message Creation Time."

Displaying Information About Rule Evaluations for Each Capture Process

You can display the following information about rule evaluation for each capture process by running the query in this section:

	
The name of the capture process.

	
The number of changes discarded during prefiltering since the capture process was last started. The capture process determined that these changes definitely did not satisfy the capture process rule sets during prefiltering.

	
The number of changes kept during prefiltering since the capture process was last started. The capture process determined that these changes definitely satisfied the capture process rule sets during prefiltering. Such changes are converted into LCRs and enqueued into the capture process queue.

	
The total number of prefilter evaluations since the capture process was last started.

	
The number of undecided changes after prefiltering since the capture process was last started. These changes might or might not satisfy the capture process rule sets. Some of these changes might be filtered out after prefiltering without requiring full evaluation. Other changes require full evaluation to determine whether they satisfy the capture process rule sets.

	
The number of full evaluations since the capture process was last started. Full evaluations can be expensive. Therefore, capture process performance is best when this number is relatively low.

The information displayed by this query is valid only for an enabled capture process.

Run the following query to display this information for each capture process:

COLUMN CAPTURE_NAME HEADING 'Capture|Name' FORMAT A15
COLUMN TOTAL_PREFILTER_DISCARDED HEADING 'Prefilter|Changes|Discarded'
 FORMAT 9999999999
COLUMN TOTAL_PREFILTER_KEPT HEADING 'Prefilter|Changes|Kept' FORMAT 9999999999
COLUMN TOTAL_PREFILTER_EVALUATIONS HEADING 'Prefilter|Evaluations'
 FORMAT 9999999999
COLUMN UNDECIDED HEADING 'Undecided|After|Prefilter' FORMAT 9999999999
COLUMN TOTAL_FULL_EVALUATIONS HEADING 'Full|Evaluations' FORMAT 9999999999

SELECT CAPTURE_NAME,
 TOTAL_PREFILTER_DISCARDED,
 TOTAL_PREFILTER_KEPT,
 TOTAL_PREFILTER_EVALUATIONS,
 (TOTAL_PREFILTER_EVALUATIONS -
 (TOTAL_PREFILTER_KEPT + TOTAL_PREFILTER_DISCARDED)) UNDECIDED,
 TOTAL_FULL_EVALUATIONS
 FROM V$STREAMS_CAPTURE;

Your output looks similar to the following:

 Prefilter Prefilter Undecided
Capture Changes Changes Prefilter After Full
Name Discarded Kept Evaluations Prefilter Evaluations
--------------- ---------- ----------- ----------- ----------- -----------
CAPTURE_HNS 927409 3271491 4198900 0 9

The total number of prefilter evaluations equals the sum of the prefilter changes discarded, the prefilter changes kept, and the undecided changes.

	
See Also:

"Capture Process Rule Evaluation"

Determining Which Capture Processes Use Combined Capture and Apply

A combined capture and apply environment is efficient because the capture process acts as the propagation sender, and the buffered queue is optimized to make replication of changes more efficient.

When a capture process uses combined capture and apply, the OPTIMIZATION column in the V$STREAMS_CAPTURE data dictionary view is greater than zero. When a capture process does not use combined capture and apply, the OPTIMIZATION column is 0 (zero).

To determine whether a capture process uses combined capture and apply, run the following query:

COLUMN CAPTURE_NAME HEADING 'Capture Name' FORMAT A30
COLUMN OPTIMIZATION HEADING 'Optimized?' FORMAT A10

SELECT CAPTURE_NAME,
 DECODE(OPTIMIZATION,
 0, 'No',
 'Yes') OPTIMIZATION
 FROM V$STREAMS_CAPTURE;

Your output looks similar to the following:

Capture Name Optimized?
------------------------------ ----------
CAPTURE_HNS Yes

This output indicates that the capture_hns capture process uses combined capture and apply.

	
See Also:

Chapter 12, "Combined Capture and Apply Optimization"

Displaying Information About Split and Merge Operations

Splitting and merging an Oracle Streams destination is useful under the following conditions:

	
A single capture process captures changes that are sent to two or more apply processes.

	
An apply process stops accepting changes captured by the capture process. The apply process might stop accepting changes if, for example, the apply process is disabled, the database that contains the apply process goes down, there is a network problem, the computer system running the database that contains the apply process goes down, or for some other reason.

When these conditions are met, it is best to split the problem destination stream off from the other destination streams to avoid degraded performance. When the problem is corrected, the destination stream that was split off can be merged back into the other destination streams for the capture process.

By default, split and merge operations are performed automatically when Oracle Streams detects a problem destination. Two capture process parameters, split_threshold and merge_threshold, control automatic split and merge operations.

The following sections contain queries that you can run to monitor current and past automatic split and merge operations:

	
Displaying the Names of the Original and Cloned Oracle Streams Components

	
Displaying the Actions and Thresholds for Split and Merge Operations

	
Displaying the Lag Time of the Cloned Capture Process

	
Displaying Information About the Split and Merge Jobs

	
Displaying Information About Past Split and Merge Operations

	
Note:

The queries in these sections only show information about automatic split and merge operations. These queries do not show information about operations that split streams manually using the SPLIT_STREAMS procedure in the DBMS_STREAMS_ADM package.

	
See Also:

	
Oracle Streams Replication Administrator's Guide for more information about split and merge operations

	
Oracle Database PL/SQL Packages and Types Reference for more information about capture process parameters

Displaying the Names of the Original and Cloned Oracle Streams Components

The query in this section shows the following information about the Oracle Streams components that are involved in a split and merge operation:

	
The name of the original capture process from which a destination stream was split off

	
The name of the cloned capture process that captures changes for the problem destination

	
The name of the original propagation or apply process that was part of the stream that was split off

In a multiple-database configuration, a propagation sends changes from the capture process's queue to the apply process's queue, and a propagation is shown in this query. In a single-database configuration, an apply process dequeues changes from the queue that is used by the capture process, and an apply process is shown in this query.

	
The name of the cloned propagation or apply process that processes changes for the problem destination

	
The type of the Oracle Streams component that receives changes from the capture process, either PROPAGATION or APPLY

Run the following query to display this information:

COLUMN ORIGINAL_CAPTURE_NAME HEADING 'Original|Capture|Process' FORMAT A15
COLUMN CLONED_CAPTURE_NAME HEADING 'Cloned|Capture|Process' FORMAT A15
COLUMN ORIGINAL_STREAMS_NAME HEADING 'Original|Streams|Name' FORMAT A15
COLUMN CLONED_STREAMS_NAME HEADING 'Cloned|Streams|Name' FORMAT A15
COLUMN STREAMS_TYPE HEADING 'Streams|Type' FORMAT A11

SELECT ORIGINAL_CAPTURE_NAME,
 CLONED_CAPTURE_NAME,
 ORIGINAL_STREAMS_NAME,
 CLONED_STREAMS_NAME,
 STREAMS_TYPE
 FROM DBA_STREAMS_SPLIT_MERGE;

Your output looks similar to the following:

Original Cloned Original Cloned
Capture Capture Streams Streams Streams
Process Process Name Name Type
--------------- --------------- --------------- --------------- -----------
DB$CAP CLONED$_DB$CAP_ PROPAGATION$_17 CLONED$_PROPAGA PROPAGATION
 1 TION$_17_2

	
See Also:

Oracle Streams Replication Administrator's Guide for more information about split and merge operations

Displaying the Actions and Thresholds for Split and Merge Operations

The query in this section shows the following information about the actions performed by the split and merge operation and the thresholds that were set for splitting and merging a problem destination:

	
The name of the original capture process from which a destination stream was split off

	
The script status of the split or merge job, either GENERATING, NOT EXECUTED, EXECUTING, EXECUTED, or ERROR

	
The type of action performed by the job, either SPLIT, MERGE, or MONITOR

When a SPLIT job determines that a split must be performed, a row with SPLIT action type is inserted into the DBA_STREAMS_SPLIT_MERGE view.

When the split operation is complete, the SPLIT action type row is copied to the DBA_STREAMS_SPLIT_MERGE_HIST view, and a MERGE job is created. A row with MERGE action type is inserted into the DBA_STREAMS_SPLIT_MERGE view. When merge operation is complete, the MERGE action type row is moved to the DBA_STREAMS_SPLIT_MERGE_HIST view, and the SPLIT action type row is deleted from the DBA_STREAMS_SPLIT_MERGE view. The SPLIT action type row was previously copied to the DBA_STREAMS_SPLIT_MERGE_HIST view.

Each original capture process has a SPLIT job that monitors all of its destinations. This type of job displays the MONITOR action type in rows in the DBA_STREAMS_SPLIT_MERGE view. MONITOR action type rows are moved to the DBA_STREAMS_SPLIT_MERGE_HIST view only if the SPLIT job is disabled. A SPLIT job can be disabled either by setting the split_threshold capture process parameter to INFINITE or by dropping the capture process.

	
The capture process parameter threshold set for the operation, in seconds

For SPLIT jobs, the threshold is set by the split_threshold capture process parameter. For MERGE jobs, the threshold is set by the merge_threshold capture process parameter.

	
The status of the action

For SPLIT actions, the status can be SPLITTING, SPLIT DONE, or ERROR. The SPLITTING status indicates that the split operation is being performed. The SPLIT DONE status indicates that the split operation is complete. The ERROR status indicates that an error was returned during the split operation.

For MERGE actions, the status can be NOTHING TO MERGE, MERGING, MERGE DONE, or ERROR. The NOTHING TO MERGE status indicates that a split was performed but the split stream is not yet ready to merge. The MERGING status indicates that the merge operation is being performed. The MERGE DONE status indicates that the merge operation is complete. The ERROR status indicates that an error was returned during the merge operation.

For MONITOR actions, the status can be any of the SPLIT and MERGE status values. In addition, a MONITOR action can show NOTHING TO SPLIT or NONSPLITTABLE for its status. The NOTHING TO SPLIT status indicates that the streams flowing from the capture process are being processed at all destinations, and no stream should be split. The NONSPLITTABLE status indicates that it is not possible to split the stream for the capture process. A NONSPLITTABLE status is possible in the following cases:

	
The capture process is disabled or aborted.

	
The capture process's queue has at least one publisher in addition to the capture process. The additional publisher can be another capture process or a propagation that sends messages to the queue.

	
The capture process has only one destination. Split and merge operations are possible only when there are two or more destinations for the changes captured by the capture process.

	
The date and time when the job status was last updated

Run the following query to display this information:

COLUMN ORIGINAL_CAPTURE_NAME HEADING 'Original|Capture|Process' FORMAT A10
COLUMN SCRIPT_STATUS HEADING 'Script|Status' FORMAT A12
COLUMN ACTION_TYPE HEADING 'Action|Type' FORMAT A7
COLUMN ACTION_THRESHOLD HEADING 'Action|Threshold' FORMAT A15
COLUMN STATUS HEADING 'Status' FORMAT A16
COLUMN STATUS_UPDATE_TIME HEADING 'Status|Update|Time' FORMAT A15

SELECT ORIGINAL_CAPTURE_NAME,
 SCRIPT_STATUS,
 ACTION_TYPE,
 ACTION_THRESHOLD,
 STATUS,
 STATUS_UPDATE_TIME
 FROM DBA_STREAMS_SPLIT_MERGE
 ORDER BY STATUS_UPDATE_TIME DESC;

Your output looks similar to the following:

Original Status
Capture Script Action Action Update
Process Status Type Threshold Status Time
---------- ------------ ------- --------------- ---------------- ---------------
DB$CAP EXECUTED SPLIT 1800 SPLIT DONE 31-MAR-09 01.31
 .37.133788 PM

	
See Also:

	
Oracle Streams Replication Administrator's Guide for more information about split and merge operations

	
Oracle Database PL/SQL Packages and Types Reference for more information about capture process parameters

Displaying the Lag Time of the Cloned Capture Process

After a stream is split off from a capture process for a problem destination, you must correct the problem at the destination and ensure that the cloned capture process is enabled. When the cloned capture process is sending changes to the problem destination, and the apply process at the problem destination is applying these changes, an Oracle Scheduler job runs the MERGE_STREAMS_JOB procedure according to its schedule.

The MERGE_STREAMS_JOB procedure queries the CAPTURE_MESSAGE_CREATE_TIME in the GV$STREAMS_CAPTURE view. When the difference between CAPTURE_MESSAGE_CREATE_TIME of the cloned capture process and the original capture process is less than or equal to the value of the merge_threshold capture process parameter, the MERGE_STREAMS_JOB procedure determines that the streams are ready to merge. The MERGE_STREAMS_JOB procedure runs the MERGE_STREAMS procedure automatically to merge the streams.

The LAG column in the DBA_STREAMS_SPLIT_MERGE view tracks the time in seconds that the cloned capture process lags behind the original capture process. The following query displays the lag time:

COLUMN ORIGINAL_CAPTURE_NAME HEADING 'Original Capture Process' FORMAT A25
COLUMN CLONED_CAPTURE_NAME HEADING 'Cloned Capture Process' FORMAT A25
COLUMN LAG HEADING 'Lag' FORMAT 999999999999999

SELECT ORIGINAL_CAPTURE_NAME,
 CLONED_CAPTURE_NAME,
 LAG
 FROM DBA_STREAMS_SPLIT_MERGE;

Your output looks similar to the following:

Original Capture Process Cloned Capture Process Lag
------------------------- ------------------------- ----------------
DB$CAP CLONED$_DB$CAP_1 526

When the MERGE_STREAMS_JOB runs and the lag time is less than or equal to the value of the merge_threshold capture process parameter, the merge operation begins.

	
See Also:

Oracle Streams Replication Administrator's Guide for more information about split and merge operations

Displaying Information About the Split and Merge Jobs

The query in this section shows the following information about split and merge jobs:

	
The name of the original capture process from which a destination stream was split off

	
The owner of the job

	
The name of the job

	
The current state of the job, either DISABLED, RETRY SCHEDULED, SCHEDULED, RUNNING, COMPLETED, BROKEN, FAILED, REMOTE, SUCCEEDED, or CHAIN_STALLED

See Oracle Database Administrator's Guide for information about these job states.

	
The date and time when the job will run next

Run the following query to display this information:

COLUMN ORIGINAL_CAPTURE_NAME HEADING 'Original|Capture|Process' FORMAT A10
COLUMN JOB_OWNER HEADING 'Job Owner' FORMAT A10
COLUMN JOB_NAME HEADING 'Job Name' FORMAT A15
COLUMN JOB_STATE HEADING 'Job State' FORMAT A15
COLUMN JOB_NEXT_RUN_DATE HEADING 'Job Next|Run Date' FORMAT A20

SELECT ORIGINAL_CAPTURE_NAME,
 JOB_OWNER,
 JOB_NAME,
 JOB_STATE,
 JOB_NEXT_RUN_DATE
 FROM DBA_STREAMS_SPLIT_MERGE;

Your output looks similar to the following:

Original
Capture Job Next
Process Job Owner Job Name Job State Run Date
---------- ---------- --------------- --------------- --------------------
DB$CAP SYS STREAMS_SPLITJO SCHEDULED 01-APR-09 01.14.55.0
 B$_3 00000 PM -07:00
DB$CAP SYS STREAMS_MERGEJO SCHEDULED 01-APR-09 01.17.08.0
 B$_6 00000 PM -07:00

	
See Also:

Oracle Streams Replication Administrator's Guide for more information about split and merge operations

Displaying Information About Past Split and Merge Operations

The query in this section shows the following historical information about split and merge operations that were performed in the past:

	
The name of the original capture process from which a destination stream was split off

	
The script status of split or merge job

	
The type of action performed by the job, either SPLIT or MERGE

	
The status of the action performed by the job

See "Displaying the Actions and Thresholds for Split and Merge Operations" for information about the status values.

	
The owner of the job

	
The name of the job

	
The recoverable script ID

Run the following query to display this information:

COLUMN ORIGINAL_CAPTURE_NAME HEADING 'Original|Capture|Process' FORMAT A8
COLUMN SCRIPT_STATUS HEADING 'Script|Status' FORMAT A12
COLUMN ACTION_TYPE HEADING 'Action|Type' FORMAT A8
COLUMN STATUS HEADING 'Status' FORMAT A10
COLUMN JOB_OWNER HEADING 'Job Owner' FORMAT A10
COLUMN JOB_NAME HEADING 'Job Name' FORMAT A10
COLUMN RECOVERABLE_SCRIPT_ID HEADING 'Recoverable|Script ID' FORMAT A15

SELECT ORIGINAL_CAPTURE_NAME,
 SCRIPT_STATUS,
 ACTION_TYPE,
 STATUS,
 JOB_OWNER,
 JOB_NAME,
 RECOVERABLE_SCRIPT_ID
 FROM DBA_STREAMS_SPLIT_MERGE_HIST;

Your output looks similar to the following:

Original
Capture Script Action Recoverable
Process Status Type Status Job Owner Job Name Script ID
-------- ------------ -------- ---------- ---------- ---------- ---------------
DB1$CAP EXECUTED SPLIT SPLIT DONE SYS STREAMS_SP 6E5C6C49CDB5798
 LITJOB$_9 3E040578C891704
 87

DB1$CAP EXECUTED MERGE MERGE DONE SYS STREAMS_ME 6E5BA57554F1C4C
 RGEJOB$_12 3E040578C89170A
 1F

	
See Also:

Oracle Streams Replication Administrator's Guide for more information about split and merge operations

Monitoring Supplemental Logging

The following sections contain queries that you can run to monitor supplemental logging at a source database:

	
Displaying Supplemental Log Groups at a Source Database

	
Displaying Database Supplemental Logging Specifications

	
Displaying Supplemental Logging Specified During Preparation for Instantiation

The total supplemental logging at a database is determined by the results shown in all three of the queries in these sections combined. For example, supplemental logging can be enabled for columns in a table even if no results for the table are returned by the query in the "Displaying Supplemental Log Groups at a Source Database" section. That is, supplemental logging can be enabled for the table if database supplemental logging is enabled or if the table is in a schema for which supplemental logging was enabled during preparation for instantiation.

Supplemental logging places additional column data into a redo log when an operation is performed. A capture process captures this additional information and places it in LCRs. An apply process that applies these captured LCRs might need this additional information to schedule or apply changes correctly.

	
See Also:

	
"Supplemental Logging in an Oracle Streams Environment"

	
Oracle Streams Replication Administrator's Guide

Displaying Supplemental Log Groups at a Source Database

To check whether one or more log groups are specified for the table at the source database, run the following query:

COLUMN LOG_GROUP_NAME HEADING 'Log Group' FORMAT A20
COLUMN TABLE_NAME HEADING 'Table' FORMAT A15
COLUMN ALWAYS HEADING 'Conditional or|Unconditional' FORMAT A14
COLUMN LOG_GROUP_TYPE HEADING 'Type of Log Group' FORMAT A20

SELECT
 LOG_GROUP_NAME,
 TABLE_NAME,
 DECODE(ALWAYS,
 'ALWAYS', 'Unconditional',
 'CONDITIONAL', 'Conditional') ALWAYS,
 LOG_GROUP_TYPE
 FROM DBA_LOG_GROUPS;

Your output looks similar to the following:

 Conditional or
Log Group Table Unconditional Type of Log Group
-------------------- --------------- -------------- --------------------
LOG_GROUP_DEP_PK DEPARTMENTS Unconditional USER LOG GROUP
SYS_C002105 REGIONS Unconditional PRIMARY KEY LOGGING
SYS_C002106 REGIONS Conditional FOREIGN KEY LOGGING
SYS_C002110 LOCATIONS Unonditional ALL COLUMN LOGGING
SYS_C002111 COUNTRIES Conditional ALL COLUMN LOGGING
LOG_GROUP_JOBS_CR JOBS Conditional USER LOG GROUP

If the output for the type of log group shows how the log group was created:

	
If the output is USER LOG GROUP, then the log group was created using the ADD SUPPLEMENTAL LOG GROUP clause of the ALTER TABLE statement.

	
Otherwise, the log group was created using the ADD SUPPLEMENTAL LOG DATA clause of the ALTER TABLE statement.

If the type of log group is USER LOG GROUP, then you can list the columns in the log group by querying the DBA_LOG_GROUP_COLUMNS data dictionary view.

	
Note:

If the type of log group is not USER LOG GROUP, then the DBA_LOG_GROUP_COLUMNS data dictionary view does not contain information about the columns in the log group. Instead, Oracle supplementally logs the correct columns when an operation is performed on the table. For example, if the type of log group is PRIMARY KEY LOGGING, then Oracle logs the current primary key column(s) when a change is performed on the table.

Displaying Database Supplemental Logging Specifications

To display the database supplemental logging specifications, query the V$DATABASE dynamic performance view, as in the following example:

COLUMN log_min HEADING 'Minimum|Supplemental|Logging?' FORMAT A12
COLUMN log_pk HEADING 'Primary Key|Supplemental|Logging?' FORMAT A12
COLUMN log_fk HEADING 'Foreign Key|Supplemental|Logging?' FORMAT A12
COLUMN log_ui HEADING 'Unique|Supplemental|Logging?' FORMAT A12
COLUMN log_all HEADING 'All Columns|Supplemental|Logging?' FORMAT A12

SELECT SUPPLEMENTAL_LOG_DATA_MIN log_min,
 SUPPLEMENTAL_LOG_DATA_PK log_pk,
 SUPPLEMENTAL_LOG_DATA_FK log_fk,
 SUPPLEMENTAL_LOG_DATA_UI log_ui,
 SUPPLEMENTAL_LOG_DATA_ALL log_all
 FROM V$DATABASE;

Your output looks similar to the following:

Minimum Primary Key Foreign Key Unique All Columns
Supplemental Supplemental Supplemental Supplemental Supplemental
Logging? Logging? Logging? Logging? Logging?
------------ ------------ ------------ ------------- ------------
YES YES YES YES NO

These results show that minimum, primary key, foreign key, and unique key columns are being supplementally logged for all of the tables in the database. Because unique key columns are supplementally logged, bitmap index columns also are supplementally logged. However, all columns are not being supplementally logged.

Displaying Supplemental Logging Specified During Preparation for Instantiation

Supplemental logging can be enabled when database objects are prepared for instantiation using one of the three procedures in the DBMS_CAPTURE_ADM package. A data dictionary view displays the supplemental logging enabled by each of these procedures: PREPARE_TABLE_INSTANTIATION, PREPARE_SCHEMA_INSTANTIATION, and PREPARE_GLOBAL_INSTANTIATION.

	
The DBA_CAPTURE_PREPARED_TABLES view displays the supplemental logging enabled by the PREPARE_TABLE_INSTANTIATION procedure.

	
The DBA_CAPTURE_PREPARED_SCHEMAS view displays the supplemental logging enabled by the PREPARE_SCHEMA_INSTANTIATION procedure.

	
The DBA_CAPTURE_PREPARED_DATABASE view displays the supplemental logging enabled by the PREPARE_GLOBAL_INSTANTIATION procedure.

Each of these views has the following columns:

	
SUPPLEMENTAL_LOG_DATA_PK shows whether primary key supplemental logging was enabled by a procedure.

	
SUPPLEMENTAL_LOG_DATA_UI shows whether unique key and bitmap index supplemental logging was enabled by a procedure.

	
SUPPLEMENTAL_LOG_DATA_FK shows whether foreign key supplemental logging was enabled by a procedure.

	
SUPPLEMENTAL_LOG_DATA_ALL shows whether supplemental logging for all columns was enabled by a procedure.

Each of these columns can display one of the following values:

	
IMPLICIT means that the relevant procedure enabled supplemental logging for the columns.

	
EXPLICIT means that supplemental logging was enabled for the columns manually using an ALTER TABLE or ALTER DATABASE statement with an ADD SUPPLEMENTAL LOG DATA clause.

	
NO means that supplemental logging was not enabled for the columns using a prepare procedure or an ALTER TABLE or ALTER DATABASE statement with an ADD SUPPLEMENTAL LOG DATA clause. Supplemental logging might not be enabled for the columns. However, supplemental logging might be enabled for the columns at another level (table, schema, or database), or it might have been enabled using an ALTER TABLE statement with an ADD SUPPLEMENTAL LOG GROUP clause.

The following sections contain queries that display the supplemental logging enabled by these procedures:

	
Displaying Supplemental Logging Enabled by PREPARE_TABLE_INSTANTIATION

	
Displaying Supplemental Logging Enabled by PREPARE_SCHEMA_INSTANTIATION

	
Displaying Supplemental Logging Enabled by PREPARE_GLOBAL_INSTANTIATION

Displaying Supplemental Logging Enabled by PREPARE_TABLE_INSTANTIATION

The following query displays the supplemental logging enabled by the PREPARE_TABLE_INSTANTIATION procedure for the tables in the hr schema:

COLUMN TABLE_NAME HEADING 'Table Name' FORMAT A15
COLUMN log_pk HEADING 'Primary Key|Supplemental|Logging' FORMAT A12
COLUMN log_fk HEADING 'Foreign Key|Supplemental|Logging' FORMAT A12
COLUMN log_ui HEADING 'Unique|Supplemental|Logging' FORMAT A12
COLUMN log_all HEADING 'All Columns|Supplemental|Logging' FORMAT A12

SELECT TABLE_NAME,
 SUPPLEMENTAL_LOG_DATA_PK log_pk,
 SUPPLEMENTAL_LOG_DATA_FK log_fk,
 SUPPLEMENTAL_LOG_DATA_UI log_ui,
 SUPPLEMENTAL_LOG_DATA_ALL log_all
 FROM DBA_CAPTURE_PREPARED_TABLES
 WHERE TABLE_OWNER = 'HR';

Your output looks similar to the following:

 Primary Key Foreign Key Unique All Columns
 Supplemental Supplemental Supplemental Supplemental
Table Name Logging Logging Logging Logging
--------------- ------------ ------------ -------------- ------------
COUNTRIES NO NO NO NO
REGIONS IMPLICIT IMPLICIT IMPLICIT NO
DEPARTMENTS IMPLICIT IMPLICIT IMPLICIT NO
LOCATIONS EXPLICIT NO NO NO
EMPLOYEES NO NO NO IMPLICIT
JOB_HISTORY NO NO NO NO
JOBS NO NO NO NO

These results show the following:

	
The PREPARE_TABLE_INSTANTIATION procedure enabled supplemental logging for the primary key, unique key, bitmap index, and foreign key columns in the hr.regions and hr.departments tables.

	
The PREPARE_TABLE_INSTANTIATION procedure enabled supplemental logging for all columns in the hr.employees table.

	
An ALTER TABLE statement with an ADD SUPPLEMENTAL LOG DATA clause enabled primary key supplemental logging for the hr.locations table.

	
Note:

Omit the WHERE clause in the query to list the information for all of the tables in the database.

Displaying Supplemental Logging Enabled by PREPARE_SCHEMA_INSTANTIATION

The following query displays the supplemental logging enabled by the PREPARE_SCHEMA_INSTANTIATION procedure:

COLUMN SCHEMA_NAME HEADING 'Schema Name' FORMAT A20
COLUMN log_pk HEADING 'Primary Key|Supplemental|Logging' FORMAT A12
COLUMN log_fk HEADING 'Foreign Key|Supplemental|Logging' FORMAT A12
COLUMN log_ui HEADING 'Unique|Supplemental|Logging' FORMAT A12
COLUMN log_all HEADING 'All Columns|Supplemental|Logging' FORMAT A12

SELECT SCHEMA_NAME,
 SUPPLEMENTAL_LOG_DATA_PK log_pk,
 SUPPLEMENTAL_LOG_DATA_FK log_fk,
 SUPPLEMENTAL_LOG_DATA_UI log_ui,
 SUPPLEMENTAL_LOG_DATA_ALL log_all
 FROM DBA_CAPTURE_PREPARED_SCHEMAS;

Your output looks similar to the following:

 Primary Key Foreign Key Unique All Columns
 Supplemental Supplemental Supplemental Supplemental
Schema Name Logging Logging Logging Logging
-------------------- ------------ ------------ -------------- ------------
HR NO NO NO IMPLICIT
OE IMPLICIT IMPLICIT IMPLICIT NO

These results show the following:

	
The PREPARE_SCHEMA_INSTANTIATION procedure enabled supplemental logging for all columns in tables in the hr schema.

	
The PREPARE_SCHEMA_INSTANTIATION procedure enabled supplemental logging for the primary key, unique key, bitmap index, and foreign key columns in the tables in the oe schema.

Displaying Supplemental Logging Enabled by PREPARE_GLOBAL_INSTANTIATION

The following query displays the supplemental logging enabled by the PREPARE_GLOBAL_INSTANTIATION procedure:

COLUMN log_pk HEADING 'Primary Key|Supplemental|Logging' FORMAT A12
COLUMN log_fk HEADING 'Foreign Key|Supplemental|Logging' FORMAT A12
COLUMN log_ui HEADING 'Unique|Supplemental|Logging' FORMAT A12
COLUMN log_all HEADING 'All Columns|Supplemental|Logging' FORMAT A12

SELECT SUPPLEMENTAL_LOG_DATA_PK log_pk,
 SUPPLEMENTAL_LOG_DATA_FK log_fk,
 SUPPLEMENTAL_LOG_DATA_UI log_ui,
 SUPPLEMENTAL_LOG_DATA_ALL log_all
 FROM DBA_CAPTURE_PREPARED_DATABASE;

Your output looks similar to the following:

Primary Key Foreign Key Unique All Columns
Supplemental Supplemental Supplemental Supplemental
Logging Logging Logging Logging
------------ ------------ -------------- ------------
IMPLICIT IMPLICIT IMPLICIT NO

These results show that the PREPARE_GLOBAL_INSTANTIATION procedure enabled supplemental logging for the primary key, unique key, bitmap index, and foreign key columns in all of the tables in the database.

Monitoring a Synchronous Capture

This section provides sample queries that you can use to monitor Oracle Streams synchronous captures.

This section contains these topics:

	
Displaying the Queue and Rule Set of Each Synchronous Capture

	
Displaying the Tables For Which Synchronous Capture Captures Changes

	
See Also:

	
"Implicit Capture with Synchronous Capture"

	
Oracle Streams Replication Administrator's Guide for information about configuring synchronous capture

	
"Managing a Synchronous Capture"

	
Oracle Database 2 Day + Data Replication and Integration Guide for an example that configures a replication environment that uses synchronous capture

Displaying the Queue and Rule Set of Each Synchronous Capture

You can display the following information about each synchronous capture in a database by running the query in this section:

	
The synchronous capture name

	
The name of the queue used by the synchronous capture

	
The name of the positive rule set used by the synchronous capture

	
The capture user for the synchronous capture

To display this general information about each synchronous capture in a database, run the following query:

COLUMN CAPTURE_NAME HEADING 'Synchronous|Capture Name' FORMAT A20
COLUMN QUEUE_NAME HEADING 'Synchronous|Capture Queue' FORMAT A20
COLUMN RULE_SET_NAME HEADING 'Positive Rule Set' FORMAT A20
COLUMN CAPTURE_USER HEADING 'Capture User' FORMAT A15

SELECT CAPTURE_NAME, QUEUE_NAME, RULE_SET_NAME, CAPTURE_USER
 FROM DBA_SYNC_CAPTURE;

Your output looks similar to the following:

Synchronous Synchronous
Capture Name Capture Queue Positive Rule Set Capture User
-------------------- -------------------- -------------------- ---------------
SYNC01_CAPTURE STRM01_QUEUE RULESET$_21 STRMADMIN
SYNC02_CAPTURE STRM02_QUEUE SYNC02_RULE_SET HR

Displaying the Tables For Which Synchronous Capture Captures Changes

The DBA_SYNC_CAPTURE_TABLES view displays the tables whose DML changes are captured by any synchronous capture in the local database. The DBA_STREAMS_TABLE_RULES view has information about each synchronous capture name and the rules used by each synchronous capture. You can display the following information by running the query in this section:

	
The name of each synchronous capture

	
The name of each rule used by the synchronous capture

	
If the rule is a subset rule, then the type of subsetting operation covered by the rule

	
The owner of each table specified in each rule

	
The name of each table specified in each rule

	
Whether synchronous capture is enabled or disabled for the table. If the synchronous capture is enabled for a table, then it captures DML changes made to the table. If synchronous capture is not enabled for a table, then it does not capture DML changes made to the table.

To display this information, run the following query:

COLUMN STREAMS_NAME HEADING 'Synchronous|Capture Name' FORMAT A15
COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A15
COLUMN SUBSETTING_OPERATION HEADING 'Subsetting|Operation' FORMAT A10
COLUMN TABLE_OWNER HEADING 'Table|Owner' FORMAT A10
COLUMN TABLE_NAME HEADING 'Table Name' FORMAT A15
COLUMN ENABLED HEADING 'Enabled?' FORMAT A8

SELECT r.STREAMS_NAME,
 r.RULE_NAME,
 r.SUBSETTING_OPERATION,
 t.TABLE_OWNER,
 t.TABLE_NAME,
 t.ENABLED
 FROM DBA_STREAMS_TABLE_RULES r,
 DBA_SYNC_CAPTURE_TABLES t
 WHERE r.STREAMS_TYPE = 'SYNC_CAPTURE' AND
 r.TABLE_OWNER = t.TABLE_OWNER AND
 r.TABLE_NAME = t.TABLE_NAME;

Your output looks similar to the following:

Synchronous Subsetting Table
Capture Name Rule Name Operation Owner Table Name Enabled?
--------------- --------------- ---------- ---------- --------------- --------
SYNC01_CAPTURE EMPLOYEES20 HR EMPLOYEES YES
SYNC02_CAPTURE DEPARTMENTS24 DELETE HR DEPARTMENTS YES
SYNC02_CAPTURE DEPARTMENTS23 UPDATE HR DEPARTMENTS YES
SYNC02_CAPTURE DEPARTMENTS22 INSERT HR DEPARTMENTS YES

This output indicates that synchronous capture sync01_capture captures DML changes made to the hr.employees table. This output also indicates that synchronous capture sync02_capture captures a subset of the changes to the hr.departments table.

If the ENABLED column shows NO for a table, then synchronous capture does not capture changes to the table. The ENABLED column shows NO when a table rule is added to a synchronous capture rule set by a procedure other than ADD_TABLE_RULES or ADD_SUBSET_RULES in the DBMS_STREAMS_ADM package. For example, if the ADD_RULE procedure in the DBMS_RULE_ADM package adds a table rule to a synchronous capture rule set, then the table appears when you query the DBA_SYNC_CAPTURE_TABLES view, but synchronous capture does not capture DML changes to the table. No results appear in the DBA_SYNC_CAPTURE_TABLES view for schema and global rules.

Viewing the Extra Attributes Captured by Implicit Capture

You can use the INCLUDE_EXTRA_ATTRIBUTE procedure in the DBMS_CAPTURE_ADM package to instruct a capture process or synchronous capture to capture one or more extra attributes and include the extra attributes in LCRs. The following query displays the extra attributes included in the LCRs captured by each capture process and synchronous capture in the local database:

COLUMN CAPTURE_NAME HEADING 'Capture Process or|Synchronous Capture' FORMAT A20
COLUMN ATTRIBUTE_NAME HEADING 'Attribute Name' FORMAT A15
COLUMN INCLUDE HEADING 'Include Attribute in LCRs?' FORMAT A30

SELECT CAPTURE_NAME, ATTRIBUTE_NAME, INCLUDE
 FROM DBA_CAPTURE_EXTRA_ATTRIBUTES
 ORDER BY CAPTURE_NAME;

Your output looks similar to the following:

Capture Process or Attribute Name Include Attribute in LCRs?
Synchronous Capture
-------------------- --------------- ------------------------------
SYNC_CAPTURE ROW_ID NO
SYNC_CAPTURE SERIAL# NO
SYNC_CAPTURE SESSION# NO
SYNC_CAPTURE THREAD# NO
SYNC_CAPTURE TX_NAME YES
SYNC_CAPTURE USERNAME NO

Based on this output, the capture process or synchronous capture named sync_capture includes the transaction name (tx_name) in the LCRs that it captures, but this capture process or synchronous capture does not include any other extra attributes in the LCRs that it captures. To determine whether name returned by the CAPTURE_NAME column is a capture process or a synchronous capture, query the DBA_CAPTURE and DBA_SYNC_CAPTURE views.

	
See Also:

	
"Extra Information in LCRs"

	
"Managing Extra Attributes in Captured LCRs"

	
Oracle Database PL/SQL Packages and Types Reference for more information about the INCLUDE_EXTRA_ATTRIBUTE procedure

23 Monitoring the Oracle Streams Topology and Performance

The Oracle Streams Performance Advisor consists of the DBMS_STREAMS_ADVISOR_ADM PL/SQL package and a collection of data dictionary views. The Oracle Streams Performance Advisor enables you to monitor the topology and performance of an Oracle Streams environment. The Oracle Streams topology includes information about the components in an Oracle Streams environment, the links between the components, and the way information flows from capture to consumption. The Oracle Streams Performance Advisor also provides information about how Oracle Streams components are performing.

The following topics contain information about the Oracle Streams Performance Advisor:

	
About the Oracle Streams Topology

	
About the Oracle Streams Performance Advisor

	
About Stream Paths in an Oracle Streams Topology

	
About the Information Gathered by the Oracle Streams Performance Advisor

	
Gathering Information About the Oracle Streams Topology and Performance

	
Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance

	
Using the UTL_SPADV Package

About the Oracle Streams Topology

Oracle Streams enables you to send messages between multiple databases. An Oracle Streams environment can send the following types of messages:

	
Logical change records (LCRs) that contain database changes

	
User messages that contain custom information based on user-defined types

The Oracle Streams topology is a representation of the databases in an Oracle Streams environment, the Oracle Streams components configured in these databases, and the flow of messages between these components.

The messages in the environment flow in separate stream paths. A stream path begins where a capture process, a synchronous capture, or an application generates messages and enqueues them. The messages can flow through one or more propagations and queues in its stream path. The stream path ends where the messages are dequeued by an apply process, a messaging client, or an application.

Currently, the Oracle Streams topology only gathers information about a stream path if the stream path ends with an apply process. The Oracle Streams topology does not track stream paths that end when a messaging client or an application dequeues messages.

	
See Also:

	
"Implicit Capture with an Oracle Streams Capture Process"

	
"Message Propagation Between Queues"

	
"Implicit Consumption with an Apply Process"

	
"Queues"

	
"Types of Information Captured with Oracle Streams"

About the Oracle Streams Performance Advisor

The Oracle Streams Performance Advisor consists of the DBMS_STREAMS_ADVISOR_ADM PL/SQL package and a collection of data dictionary views. You can use the ANALYZE_CURRENT_PERFORMANCE procedure in the DBMS_STREAMS_ADVISOR_ADM package to gather information about the Oracle Streams topology and about the performance of the Oracle Streams components in the topology.

This section contains the following topics:

	
Oracle Streams Performance Advisor Data Dictionary Views

	
Oracle Streams Components and Statistics

Oracle Streams Performance Advisor Data Dictionary Views

After information is gathered by the Oracle Streams Performance Advisor, you can view it by querying the following data dictionary views:

	
DBA_STREAMS_TP_COMPONENT contains information about each Oracle Streams component at each database.

	
DBA_STREAMS_TP_COMPONENT_LINK contains information about how messages flow between Oracle Streams components.

	
DBA_STREAMS_TP_COMPONENT_STAT contains temporary performance statistics and session statistics about each Oracle Streams component.

	
DBA_STREAMS_TP_DATABASE contains information about each database that contains Oracle Streams components.

	
DBA_STREAMS_TP_PATH_BOTTLENECK contains temporary information about Oracle Streams components that might be slowing down the flow of messages in a stream path.

	
DBA_STREAMS_TP_PATH_STAT contains temporary performance statistics about each stream path that exists in the Oracle Streams topology.

The topology information is stored permanently in the following data dictionary views: DBA_STREAMS_TP_DATABASE, DBA_STREAMS_TP_COMPONENT, and DBA_STREAMS_TP_COMPONENT_LINK.

The following views contain temporary information: DBA_STREAMS_TP_COMPONENT_STAT, DBA_STREAMS_TP_PATH_BOTTLENECK, and DBA_STREAMS_TP_PATH_STAT. Some of the data in these views is retained only for the user session that runs the ANALYZE_CURRENT_PERFORMANCE procedure. When this user session ends, this temporary information is purged.

	
See Also:

"Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance"

Oracle Streams Components and Statistics

The DBMS_STREAMS_ADVISOR_ADM package gathers information about the following Oracle Streams components:

	
A QUEUE stores messages. The package gathers the following component-level statistics for queues:

	
ENQUEUE RATE

	
SPILL RATE

	
CURRENT QUEUE SIZE

	
A CAPTURE is a capture process. A capture process captures database changes in the redo log and enqueues the changes as logical change records (LCRs). Each capture process has the following subcomponents:

	
LOGMINER BUILDER is a builder server.

	
LOGMINER PREPARER is a preparer server.

	
LOGMINER READER is a reader server.

	
CAPTURE SESSION is the capture process session.

The package gathers the following component-level statistics for each capture process (CAPTURE):

	
CAPTURE RATE

	
ENQUEUE RATE

	
LATENCY

The package also gathers session-level statistics for capture process subcomponents.

	
A PROPAGATION SENDER sends messages from a source queue to a destination queue. The package gathers the following component-level statistics for propagation senders:

	
SEND RATE

	
BANDWIDTH

	
LATENCY

The package also gathers session-level statistics for propagation senders.

	
A PROPAGATION RECEIVER enqueues messages sent by propagation senders into a destination queue. The package gathers session-level statistics for propagation receivers.

	
An APPLY is an apply process. These components either apply messages directly or send messages to apply handlers. This type of component has the following subcomponents:

	
APPLY READER is a reader server.

	
APPLY COORDINATOR is a coordinator process.

	
APPLY SERVER is an apply server.

The package gathers the following component-level statistics for this component (APPLY):

	
MESSAGE APPLY RATE

	
TRANSACTION APPLY RATE

	
LATENCY

The package also gathers session-level statistics for the subcomponents.

When the package gathers session-level statistics for a component or subcomponent, the session-level statistics include the following:

	
IDLE percentage

	
FLOW CONTROL percentage

	
EVENT percentage for wait events

	
Note:

Currently, the DBMS_STREAMS_ADVISOR_ADM package does not gather information about synchronous captures or messaging clients.

	
See Also:

	
"Viewing Component-Level Statistics" for detailed information about component-level statistics

	
"Viewing Session-Level Statistics" for detailed information about session-level statistics

About Stream Paths in an Oracle Streams Topology

In the Oracle Streams topology, a stream path is a flow of messages from a source to a destination. A stream path begins where a capture process, synchronous capture, or application enqueues messages into a queue. A stream path ends where an apply process dequeues the messages. The stream path might flow through multiple queues and propagations before it reaches an apply process. Therefore, a single stream path can consist of multiple source/destination component pairs before it reaches last component.

The Oracle Streams topology assigns a number to each stream path so that you can monitor each one easily. The Oracle Streams topology also assigns a number to each link between two components in a stream path. The number specifies the position of the link in the overall stream path.

Table 23-1 shows the position of each link in a sample stream path.

Table 23-1 Position of Each Link in a Sample Stream Path

	Start Component	End Component	Position
	
Capture process

	
Queue

	
1

	
Queue

	
Propagation sender

	
2

	
Propagation sender

	
Propagation receiver

	
3

	
Propagation receiver

	
Queue

	
4

	
Queue

	
Apply process

	
5

When the Oracle Streams Performance Advisor gathers information about an Oracle Streams environment, it tracks stream paths by starting with each apply process and working backward to its source. When a capture process is the source, the Oracle Streams Performance Advisor tracks the path from the apply process back to the capture process. When a synchronous capture or an application that enqueues messages is the source, the Oracle Streams Performance Advisor tracks the path from the apply process back to the queue into which the messages are enqueued.

The following sections describe sample replication environments and the stream paths in each one:

	
Separate Stream Paths in an Oracle Streams Environment

	
Shared Stream Paths in an Oracle Streams Replication Environment

	
See Also:

Oracle Streams Replication Administrator's Guide for information about best practices for Oracle Streams replication environments

Separate Stream Paths in an Oracle Streams Environment

Consider an Oracle Streams environment with two databases. Each database captures changes made to the replicated database objects with a capture process and sends the changes to the other database, where they are applied by an apply process. The stream paths in this environment are completely separate.

Figure 23-1 shows an example of this type of Oracle Streams replication environment.

Figure 23-1 Oracle Streams Topology with Two Separate Stream Paths

[image: Description of Figure 23-1 follows]

Description of "Figure 23-1 Oracle Streams Topology with Two Separate Stream Paths"

Notice that the Oracle Streams Performance Advisor assigns a component ID to each Oracle Streams component and a path ID to each path. The Oracle Streams topology in Figure 23-1 shows the following information:

	
There are twelve Oracle Streams components in the Oracle Streams environment.

	
There are two stream paths in the Oracle Streams environment.

	
Stream path 1 starts with component 1 and ends with component 6.

	
Stream path 2 starts with component 7 and ends with component 12.

Shared Stream Paths in an Oracle Streams Replication Environment

When there are multiple apply processes that apply changes generated by a single source, a stream path splits into multiple stream paths. In this case, part of a stream path is shared, but the path splits into two or more distinct stream paths.

Figure 23-2 shows this type of Oracle Streams environment.

Figure 23-2 Oracle Streams Topology with Multiple Apply Processes for a Single Source

[image: Description of Figure 23-2 follows]

Description of "Figure 23-2 Oracle Streams Topology with Multiple Apply Processes for a Single Source"

The Oracle Streams topology in Figure 23-2 shows the following information:

	
There are ten Oracle Streams components in the Oracle Streams environment.

	
There are two stream paths in the Oracle Streams environment.

	
Stream path 1 starts with component 1 and ends with component 7.

	
Stream path 2 starts with component 1 and ends with component 10.

	
The messages flowing between component 1 and component 2 are in both path 1 and path2.

	
See Also:

"Message Propagation Between Queues"

About the Information Gathered by the Oracle Streams Performance Advisor

The ANALYZE_CURRENT_PERFORMANCE procedure in the DBMS_STREAMS_ADVISOR_ADM package gathers information about the Oracle Streams topology and the performance of Oracle Streams components. The procedure stores the information in a collection of data dictionary views. To use the Oracle Streams Performance Advisor effectively, it is important to understand how the procedure gathers information and calculates statistics.

The procedure takes snapshots of the Oracle Streams environment to gather information and calculate statistics. For some statistics, the information in a single snapshot is sufficient. For example, only one snapshot is needed to determine the current number of messages in a queue. However, to calculate other statistics, the procedure must compare two snapshots. These statistics include the rate, bandwidth, event, and flow control statistics. The first time the procedure is run in a user session, it takes two snapshots to calculate these statistics. In each subsequent run in the same user session, the procedure takes one snapshot and compares it with the snapshot taken during the previous run.

Table 23-2 illustrates how the procedure gathers information in each advisor run in a single user session.

Table 23-2 How the Oracle Streams Performance Advisor Gathers Information in a Session

	Advisor Run	Information Gathered
	
1

	
	
Take snapshot of statistics.

	
Wait at least five seconds.

	
Take another snapshot of statistics.

	
Compare data from the first snapshot with data from the second snapshot to calculate performance statistics.

	
2

	
	
Take snapshot of statistics.

	
Compare data from the last snapshot in advisor run 1 with the snapshot taken in advisor run 2 to calculate performance statistics.

	
3

	
	
Take snapshot of statistics.

	
Compare data from the snapshot in advisor run 2 with the snapshot taken in advisor run 3 to calculate performance statistics.

For the best results in an advisor run, meet the following criteria:

	
Ensure that as many Oracle Streams components as possible are enabled during the time period between the two snapshots used in the advisor run. Specifically, capture processes, propagations, apply processes should be enabled, queues should be started, and database links should be active.

	
If data is replicated in the Oracle Streams environment, then ensure that the replicated database objects are experiencing an average, or near average, number of changes during the time period between the two snapshots used in the advisor run. The Oracle Streams Performance Advisor gathers more accurate statistics if it is run when the Oracle Streams replication environment is experiencing typical replication activity.

	
If messages are sent by applications in the Oracle Streams environment, then ensure that the applications are sending an average, or near average, number of messages during the time period between the two snapshots used in the advisor run. The Oracle Streams Performance Advisor gathers more accurate statistics if it is run when the Oracle Streams messaging environment is sending a typical number of messages.

Gathering Information About the Oracle Streams Topology and Performance

To gather information about the Oracle Streams topology and Oracle Streams performance, complete the following steps:

	
Identify the database that you will use to gather the information. An administrative user at this database must meet the following requirements:

	
The user must have access to a database link to each database that contains Oracle Streams components.

	
The user must have been granted privileges using the DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE procedure, and each database link must connect to a user at the remote database that has been granted privileges using the DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE procedure.

If you configure an Oracle Streams administrator at each database with Oracle Streams components, then the Oracle Streams administrator has the necessary privileges. See Oracle Streams Replication Administrator's Guide for information about creating an Oracle Streams administrator.

If no database in your environment meets these requirements, then choose a database, configure the necessary database links, and grant the necessary privileges to the users before proceeding.

The Oracle Streams Performance Advisor running on an Oracle Database 11g Release 2 (11.2) database can monitor Oracle Database 10g Release 2 (10.2) and later databases. It cannot monitor databases before release 10.2.

	
In SQL*Plus, connect to the database you identified in Step 1 as a user that meets the requirements listed in Step 1.

For example, connect to the hub.example.com database as the Oracle Streams administrator.

See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.

	
Run the ANALYZE_CURRENT_PERFORMANCE procedure in the DBMS_STREAMS_ADVISOR_ADM package:

exec DBMS_STREAMS_ADVISOR_ADM.ANALYZE_CURRENT_PERFORMANCE;

	
Optionally, rerun the ANALYZE_CURRENT_PERFORMANCE procedure one or more times in same session that ran the procedure in Step 3:

exec DBMS_STREAMS_ADVISOR_ADM.ANALYZE_CURRENT_PERFORMANCE;

	
Run the following query to identify the advisor run ID for the information gathered in Step 4:

SELECT DISTINCT ADVISOR_RUN_ID FROM DBA_STREAMS_TP_COMPONENT_STAT
 ORDER BY ADVISOR_RUN_ID;

Your output is similar to the following:

ADVISOR_RUN_ID

 1
 2

The Oracle Streams Performance Advisor assigns an advisor run ID to the statistics for each run. Use the last value in the output for the advisor run ID in the queries in "Viewing Performance Statistics for Oracle Streams Components". In this example, use 2 for the advisor run ID in the queries.

Remember that the Oracle Streams Performance Advisor purges some of the performance statistics that it gathered when a user session ends. Therefore, run the performance statistics queries in the same session that ran the ANALYZE_CURRENT_PERFORMANCE procedure.

Complete these steps whenever you want to monitor the current performance of your Oracle Streams environment.

You should also run the ANALYZE_CURRENT_PERFORMANCE procedure when new Oracle Streams components are added to any database in the Oracle Streams environment. Running the procedure updates the Oracle Streams topology with information about any new components.

	
See Also:

	
Oracle Database PL/SQL Packages and Types Reference for information about the DBMS_STREAMS_ADVISOR_ADM package

	
"About the Oracle Streams Topology"

Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance

This section contains several queries that you can use to view your Oracle Streams topology and monitor the performance of your Oracle Streams components. The queries specify the views described in "About the Oracle Streams Topology".

The queries in this section can be run in any Oracle Stream environment. However, the output shown for these queries is based on the sample Oracle Streams replication environment shown in Figure 23-3.

Figure 23-3 Sample Oracle Streams Replication Environment

[image: Description of Figure 23-3 follows]

Description of "Figure 23-3 Sample Oracle Streams Replication Environment"

The Oracle Database 2 Day + Data Replication and Integration Guide contains instructions for configuring the Oracle Streams replication environment shown in Figure 23-3. This environment contains both of the following types of stream paths:

	
Separate stream paths flow from the spoke1.example.com database to the hub.example.com database and from the spoke2.example.com database to the hub.example.com database. This type of stream path is described in "Separate Stream Paths in an Oracle Streams Environment".

	
Two stream paths that share a portion of the path flow from the hub.example.com database to the spoke1.example.com and spoke2.example.com databases. This type of stream path is described in "Shared Stream Paths in an Oracle Streams Replication Environment".

This section contains the following topics:

	
Viewing the Oracle Streams Topology

	
Viewing Performance Statistics for Oracle Streams Components

Viewing the Oracle Streams Topology

To view the Oracle Streams topology, you must first gather information about the Oracle Streams environment using the DBMS_STREAMS_ADVISOR_ADM package. See "Gathering Information About the Oracle Streams Topology and Performance".

The following sections explain how to view different types of information in an Oracle Streams topology:

	
Viewing the Databases in the Oracle Streams Environment

	
Viewing the Oracle Streams Components at Each Database

	
Viewing Each Stream Path in an Oracle Streams Topology

Viewing the Databases in the Oracle Streams Environment

You can view the following information about the databases in an Oracle Streams environment:

	
The global name of each database

	
The last time the Oracle Streams Performance Advisor was run at each database

	
The version number of each database

	
The compatibility level of each database

	
Whether each database has access to the Oracle Diagnostics Pack and Oracle Tuning Pack

To display this information, run the following query:

COLUMN GLOBAL_NAME HEADING 'Global Name' FORMAT A15
COLUMN LAST_QUERIED HEADING 'Last|Queried'
COLUMN VERSION HEADING 'Version' FORMAT A15
COLUMN COMPATIBILITY HEADING 'Compatibility' FORMAT A15
COLUMN MANAGEMENT_PACK_ACCESS HEADING 'Management Pack' FORMAT A20

SELECT GLOBAL_NAME, LAST_QUERIED, VERSION, COMPATIBILITY, MANAGEMENT_PACK_ACCESS
 FROM DBA_STREAMS_TP_DATABASE;

The following output shows the databases in the Oracle Streams replication environment described in "Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance":

 Last
Global Name Queried Version Compatibility Management Pack
--------------- --------- --------------- --------------- --------------------
HUB.EXAMPLE.COM 08-APR-08 11.1.0.7.0 11.1.0 DIAGNOSTIC+TUNING
SPOKE1.EXAMPLE. 08-APR-08 11.1.0.7.0 11.1.0 DIAGNOSTIC+TUNING
COM
SPOKE2.EXAMPLE. 08-APR-08 11.1.0.7.0 11.1.0 DIAGNOSTIC+TUNING
COM

This output shows the following information about the databases in the Oracle Streams environment:

	
The Global Name column shows that the global names of the databases are hub.example.com, spoke1.example.com, and spoke2.example.com.

	
The Last Queried column shows that the Oracle Streams Performance Advisor was last run on April 8, 2008 at each database.

	
The Version column shows that version of each database is 11.1.0.7.0.

	
The Compatibility column shows that the compatibility level of each database is 11.1.0.

	
The Management Pack column shows that each database has access to the Oracle Diagnostics Pack and Oracle Tuning Pack.

	
See Also:

Oracle Database Upgrade Guide for information about database compatibility

Viewing the Oracle Streams Components at Each Database

You can view the following information about the components in an Oracle Streams environment:

	
The component ID for each Oracle Streams component. The Oracle Streams topology assigns an ID number to each component and uses the number to track information about the component and about the stream path that flows through the component.

	
The name of the Oracle Streams component. For capture processes and apply processes, the query lists the name of each process. For queues, the query lists the name of each queue. For propagations, two Oracle Streams components are tracked in the Oracle Streams topology:

	
The name of a propagation sender is the source queue of the propagation and the destination queue and database to which the propagation sends messages. For example, a propagation sender with the strmadmin.source_hns source queue that sends messages to the strmadmin.destination_spoke1 destination queue at the spoke1.example.com database is shown in the following way:

"STRMADMIN"."SOURCE_HNS"=>"STRMADMIN"."DESTINATION_SPOKE1"
 @SPOKE1.EXAMPLE.COM

	
The name of a propagation receiver is the source queue and database from which the messages are sent and the destination queue for the propagation. For example, a propagation receiver that gets messages from the strmadmin.source_hns source queue at the hub.example.com database and enqueues them into the strmadmin.destination_spoke1 destination queue is shown in the following way:

"STRMADMIN"."SOURCE_HNS"@HUB.EXAMPLE.COM=>"STRMADMIN".
 "DESTINATION_SPOKE1"

	
The type of the Oracle Streams component. The following types are possible:

	
CAPTURE for capture processes

	
QUEUE for queues

	
PROPAGATION SENDER for propagation senders

	
PROPAGATION RECEIVER for propagation receivers

	
APPLY for apply processes

	
The database that contains the component

To display this information, run the following query:

COLUMN COMPONENT_ID HEADING 'ID' FORMAT 999
COLUMN COMPONENT_NAME HEADING 'Name' FORMAT A43
COLUMN COMPONENT_TYPE HEADING 'Type' FORMAT A20
COLUMN COMPONENT_DB HEADING 'Database' FORMAT A10

SELECT COMPONENT_ID, COMPONENT_NAME, COMPONENT_TYPE, COMPONENT_DB
 FROM DBA_STREAMS_TP_COMPONENT
 ORDER BY COMPONENT_ID;

The following output shows the components in the Oracle Streams replication environment described in "Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance":

 ID Name Type Database
---- --- -------------------- ----------
 1 "STRMADMIN"."DESTINATION_SPOKE1" QUEUE HUB.EXAMPL
 E.COM
 2 "STRMADMIN"."DESTINATION_SPOKE2" QUEUE HUB.EXAMPL
 E.COM
 3 "STRMADMIN"."SOURCE_HNS" QUEUE HUB.EXAMPL
 E.COM
 4 "STRMADMIN"."SOURCE_HNS"=>"STRMADMIN"."DEST PROPAGATION SENDER HUB.EXAMPL
 INATION_SPOKE1"@SPOKE1.EXAMPLE.COM E.COM
 5 "STRMADMIN"."SOURCE_HNS"=>"STRMADMIN"."DEST PROPAGATION SENDER HUB.EXAMPL
 INATION_SPOKE2"@SPOKE2.EXAMPLE.COM E.COM
 6 "STRMADMIN"."SOURCE_HNS"@SPOKE1.EXAMPLE.COM PROPAGATION RECEIVER HUB.EXAMPL
 =>"STRMADMIN"."DESTINATION_SPOKE1" E.COM
 7 "STRMADMIN"."SOURCE_HNS"@SPOKE2.EXAMPLE.COM PROPAGATION RECEIVER HUB.EXAMPL
 =>"STRMADMIN"."DESTINATION_SPOKE2" E.COM
 8 APPLY_SPOKE1 APPLY HUB.EXAMPL
 E.COM
 9 APPLY_SPOKE2 APPLY HUB.EXAMPL
 E.COM
 10 CAPTURE_HNS CAPTURE HUB.EXAMPL
 E.COM
 11 "STRMADMIN"."DESTINATION_SPOKE1" QUEUE SPOKE1.EXA
 MPLE.COM
 12 "STRMADMIN"."SOURCE_HNS" QUEUE SPOKE1.EXA
 MPLE.COM
 13 "STRMADMIN"."SOURCE_HNS"=>"STRMADMIN"."DEST PROPAGATION SENDER SPOKE1.EXA
 INATION_SPOKE1"@HUB.EXAMPLE.COM MPLE.COM
 14 "STRMADMIN"."SOURCE_HNS"@HUB.EXAMPLE.COM=>" PROPAGATION RECEIVER SPOKE1.EXA
 STRMADMIN"."DESTINATION_SPOKE1" MPLE.COM
 15 APPLY_SPOKE1 APPLY SPOKE1.EXA
 MPLE.COM
 16 CAPTURE_HNS CAPTURE SPOKE1.EXA
 MPLE.COM
 17 "STRMADMIN"."DESTINATION_SPOKE2" QUEUE SPOKE2.EXA
 MPLE.COM
 18 "STRMADMIN"."SOURCE_HNS" QUEUE SPOKE2.EXA
 MPLE.COM
 19 "STRMADMIN"."SOURCE_HNS"=>"STRMADMIN"."DEST PROPAGATION SENDER SPOKE2.EXA
 INATION_SPOKE2"@HUB.EXAMPLE.COM MPLE.COM
 20 "STRMADMIN"."SOURCE_HNS"@HUB.EXAMPLE.COM=>" PROPAGATION RECEIVER SPOKE2.EXA
 STRMADMIN"."DESTINATION_SPOKE2" MPLE.COM
 21 APPLY_SPOKE2 APPLY SPOKE2.EXA
 MPLE.COM
 22 CAPTURE_HNS CAPTURE SPOKE2.EXA
 MPLE.COM

	
See Also:

	
"About the Oracle Streams Topology"

	
"Viewing Component-Level Statistics" for a query that shows performance statistics for each Oracle Streams component

	
Oracle Streams Extended Examples for information about the n-way replication environment shown in the output

Viewing Each Stream Path in an Oracle Streams Topology

You can view the following information about the stream paths in an Oracle Streams topology:

	
The path ID. The Oracle Streams topology assigns an ID number to each stream path it identifies. The path ID is associated with each link in the path. For example, a single path ID can be associated with the following component links:

	
Capture process to queue

	
Queue to propagation sender

	
Propagation sender to propagation receiver

	
Propagation receiver to queue

	
Queue to apply process

	
The source component ID. A source component is a component from which messages flow to another component.

	
The name of the source component. See "Viewing the Oracle Streams Components at Each Database" for information about how components are named in the query output.

	
The destination component ID. A destination component receives messages from another component.

	
The name of the destination component.

	
The position in the stream path shows the location of a particular link in a path. For example, a position might be the first link in a path, the second link in a path, and so on.

To display this information, run the following query:

COLUMN PATH_ID HEADING 'Path|ID' FORMAT 9999
COLUMN SOURCE_COMPONENT_ID HEADING 'Source|Component|ID' FORMAT 9999
COLUMN SOURCE_COMPONENT_NAME HEADING 'Source|Component|Name' FORMAT A20
COLUMN DESTINATION_COMPONENT_ID HEADING 'Dest|Component|ID' FORMAT 9999
COLUMN DESTINATION_COMPONENT_NAME HEADING 'Dest|Component|Name' FORMAT A15
COLUMN POSITION HEADING 'Position' FORMAT 9999

SELECT PATH_ID,
 SOURCE_COMPONENT_ID,
 SOURCE_COMPONENT_NAME,
 DESTINATION_COMPONENT_ID,
 DESTINATION_COMPONENT_NAME,
 POSITION
 FROM DBA_STREAMS_TP_COMPONENT_LINK
 ORDER BY PATH_ID, POSITION;

The following output shows the paths in the Oracle Streams topology for the components listed in "Viewing the Oracle Streams Components at Each Database":

 Source Source Dest Dest
 Path Component Component Component Component
 ID ID Name ID Name Position
----- --------- -------------------- --------- --------------- --------
 1 16 CAPTURE_HNS 12 "STRMADMIN"."SO 1
 URCE_HNS"
 1 12 "STRMADMIN"."SOURCE_ 13 "STRMADMIN"."SO 2
 HNS" URCE_HNS"=>"STR
 MADMIN"."DESTIN
 ATION_SPOKE1"@H
 UB.EXAMPLE.COM
 1 13 "STRMADMIN"."SOURCE_ 6 "STRMADMIN"."SO 3
 HNS"=>"STRMADMIN"."D URCE_HNS"@SPOKE
 ESTINATION_SPOKE1"@H 1.EXAMPLE.COM=>
 UB.EXAMPLE.COM "STRMADMIN"."DES
 TINATION_SPOKE1"
 1 6 "STRMADMIN"."SOURCE_ 1 "STRMADMIN"."DE 4
 HNS"@SPOKE1.EXAMPLE. STINATION_SPOKE
 COM=>"STRMADMIN"."DE 1"
 STINATION_SPOKE1"
 1 1 "STRMADMIN"."DESTINA 8 APPLY_SPOKE1 5
 TION_SPOKE1"
 2 22 CAPTURE_HNS 18 "STRMADMIN"."SO 1
 URCE_HNS"
 2 18 "STRMADMIN"."SOURCE_ 19 "STRMADMIN"."SO 2
 HNS" URCE_HNS"=>"STR
 MADMIN"."DESTIN
 ATION_SPOKE2"@H
 UB.EXAMPLE.COM
 2 19 "STRMADMIN"."SOURCE_ 7 "STRMADMIN"."SO 3
 HNS"=>"STRMADMIN"."D URCE_HNS"@SPOKE
 ESTINATION_SPOKE2"@H 2.EXAMPLE.COM=>
 UB.EXAMPLE.COM "STRMADMIN"."DES
 TINATION_SPOKE2"
 2 7 "STRMADMIN"."SOURCE_ 2 "STRMADMIN"."DE 4
 HNS"@SPOKE2.EXAMPLE. STINATION_SPOKE
 COM=>"STRMADMIN"."DE 2"
 STINATION_SPOKE2"
 2 2 "STRMADMIN"."DESTINA 9 APPLY_SPOKE2 5
 TION_SPOKE2"
 3 10 CAPTURE_HNS 3 "STRMADMIN"."SO 1
 URCE_HNS"
 3 3 "STRMADMIN"."SOURCE_ 4 "STRMADMIN"."SO 2
 HNS" URCE_HNS"=>"STR
 MADMIN"."DESTIN
 ATION_SPOKE1"@S
 POKE1.EXAMPLE.CO
 M
 3 4 "STRMADMIN"."SOURCE_ 14 "STRMADMIN"."SO 3
 HNS"=>"STRMADMIN"."D URCE_HNS"@HUB.N
 ESTINATION_SPOKE1"@S ET=>"STRMADMIN"
 POKE1.EXAMPLE.COM ."DESTINATION_S
 POKE1"
 3 14 "STRMADMIN"."SOURCE_ 11 "STRMADMIN"."DE 4
 HNS"@HUB.EXAMPLE.COM STINATION_SPOKE
 =>"STRMADMIN"."DESTI 1"
 NATION_SPOKE1"
 3 11 "STRMADMIN"."DESTINA 15 APPLY_SPOKE1 5
 TION_SPOKE1"
 4 10 CAPTURE_HNS 3 "STRMADMIN"."SO 1
 URCE_HNS"
 4 3 "STRMADMIN"."SOURCE_ 5 "STRMADMIN"."SO 2
 HNS" URCE_HNS"=>"STR
 MADMIN"."DESTIN
 ATION_SPOKE2"@S
 POKE2.EXAMPLE.C
 OM
 4 5 "STRMADMIN"."SOURCE_ 20 "STRMADMIN"."SO 3
 HNS"=>"STRMADMIN"."D URCE_HNS"@HUB.N
 ESTINATION_SPOKE2"@S ET=>"STRMADMIN"
 POKE2.EXAMPLE.COM ."DESTINATION_S
 POKE2"
 4 20 "STRMADMIN"."SOURCE_ 17 "STRMADMIN"."DE 4
 HNS"@HUB.EXAMPLE.COM STINATION_SPOKE
 =>"STRMADMIN"."DESTI 2"
 NATION_SPOKE2"
 4 17 "STRMADMIN"."DESTINA 21 APPLY_SPOKE2 5
 TION_SPOKE2"

	
See Also:

	
"About Stream Paths in an Oracle Streams Topology"

	
"Viewing Statistics for the Stream Paths in an Oracle Streams Environment"

Viewing Performance Statistics for Oracle Streams Components

The DBMS_STREAMS_ADVISOR_ADM package and the Oracle Streams topology views comprise the Oracle Streams Performance Advisor. The Oracle Streams topology views enable you to display and analyze performance statistics for the Oracle Streams components in your environment.

To view performance statistics for Oracle Streams components, you must first gather information about the Oracle Streams environment using the DBMS_STREAMS_ADVISOR_ADM package. See "Gathering Information About the Oracle Streams Topology and Performance".

The following sections explain how to view performance statistics for Oracle Streams components:

	
Checking for Bottleneck Components in the Oracle Streams Topology

	
Viewing Component-Level Statistics

	
Viewing Session-Level Statistics

	
Viewing Statistics for the Stream Paths in an Oracle Streams Environment

	
Note:

The performance of Oracle Streams components depends on several factors, including the computer equipment used in the environment and the speed of the network.

Checking for Bottleneck Components in the Oracle Streams Topology

A bottleneck component is the busiest component or the component with the least amount of idle time. You can view the following information about the bottleneck components in an Oracle Streams environment:

	
The path ID of the path that includes the component.

	
The component ID for each Oracle Streams component. The Oracle Streams topology assigns an ID number to each component and uses the number to track information about the component and about the stream path that flows through the component.

	
The name of the Oracle Streams component. See "Viewing the Oracle Streams Components at Each Database" for information about how components are named in the query output.

	
The type of the Oracle Streams component. The following types are possible:

	
CAPTURE for capture processes

	
QUEUE for queues

	
PROPAGATION SENDER for propagation senders

	
PROPAGATION RECEIVER for propagation receivers

	
APPLY for apply processes

	
The database that contains the component

Run the following query to check for bottleneck components in your Oracle Streams environment:

COLUMN PATH_ID HEADING 'Path ID' FORMAT 999
COLUMN COMPONENT_ID HEADING 'Component ID' FORMAT 999
COLUMN COMPONENT_NAME HEADING 'Name' FORMAT A20
COLUMN COMPONENT_TYPE HEADING 'Type' FORMAT A20
COLUMN COMPONENT_DB HEADING 'Database' FORMAT A15

SELECT PATH_ID,
 COMPONENT_ID,
 COMPONENT_NAME,
 COMPONENT_TYPE,
 COMPONENT_DB
 FROM DBA_STREAMS_TP_PATH_BOTTLENECK
 WHERE BOTTLENECK_IDENTIFIED='YES' AND
 ADVISOR_RUN_ID=2
 ORDER BY PATH_ID, COMPONENT_ID;

This example uses 2 for the ADVISOR_RUN_ID in the WHERE clause. Substitute the advisor run ID for the advisor run you want to query. See "Gathering Information About the Oracle Streams Topology and Performance" for information about determining the ADVISOR_RUN_ID.

The following output shows the bottleneck components for the components listed in "Viewing the Oracle Streams Components at Each Database":

Path ID Component ID Name Type Database
------- ------------ -------------------- -------------------- ---------------
 1 6 "STRMADMIN"."SOURCE_ PROPAGATION RECEIVER HUB.EXAMPLE.COM
 HNS"@SPOKE1.EXAMPLE.
 COM=>"STRMADMIN"."DE
 STINATION_SPOKE1"
 3 10 CAPTURE_HNS CAPTURE HUB.EXAMPLE.COM
 4 10 CAPTURE_HNS CAPTURE HUB.EXAMPLE.COM

If this query returns no results, then the Oracle Streams Performance Advisor did not identify any bottleneck components in your environment. However, if this query returns one or more bottleneck components, then check the status of these components. If they are disabled, then you can enable them. If the components are enabled, then you can examine the components to see if they can be modified to perform better.

In some cases, the Oracle Streams Performance Advisor cannot determine whether a component is a bottleneck component. To view these components, set BOTTLENECK_IDENTIFIED to 'NO' when you query the DBA_STREAMS_TP_PATH_BOTTLENECK view. The output for the ADVISOR_RUN_REASON column shows why the Oracle Streams Performance Advisor could not determine whether the component is a bottleneck component. The following reasons can be specified in the ADVISOR_RUN_REASON column output:

	
PRE-11.1 DATABASE EXISTS means that the component is in a stream path that includes a database before Oracle Database 11g Release 1. Bottleneck analysis is not performed on these components.

	
DIAGNOSTIC PACK REQUIRED means that the component is in a stream path that includes a database that does not have the Oracle Diagnostics Pack. Bottleneck analysis is not performed on these components.

	
NO BOTTLENECK IDENTIFIED means that either no bottleneck was identified in a stream path or that there might be more than one bottleneck component in the stream path.

	
See Also:

Chapter 30, "Identifying Problems in an Oracle Streams Environment"

Viewing Component-Level Statistics

You can view statistics for the Oracle Streams components in the Oracle Streams topology. The query in this section displays the following information for each component:

	
The ID of the path to which the component belongs

	
The name of the Oracle Streams component

	
The type of the Oracle Streams component. The following types are possible:

	
CAPTURE for capture processes

	
QUEUE for queues

	
PROPAGATION SENDER for propagation senders

	
PROPAGATION RECEIVER for propagation receivers

	
APPLY for apply processes

	
The statistic that was gathered for the component

	
The value and unit of the statistic. For example, a LATENCY statistic shows a number for the value and SECONDS for the unit. A TRANSACTION APPLY RATE statistic shows a number for the value and TRANSACTIONS PER SECOND for the unit.

The ANALYZE_CURRENT_PERFORMANCE procedure in the DBMS_STREAMS_ADVISOR_ADM package gathers the statistics returned by the query in this section. Therefore, the statistics returned by the query were the current statistics when the procedure was run. The statistics are not updated automatically.

Table 23-3 describes each of the statistics that can be returned by the query in this section:

Table 23-3 Component-Level Statistics for Oracle Streams Components

	Component Type	Statistic	Unit	Description
	
CAPTURE

	
CAPTURE RATE

	
MESSAGES PER SECOND

	
The average number of database changes in the redo log scanned by the capture process each second.

A capture process captures and enqueues the scanned changes that satisfy its rule sets.

	
CAPTURE

	
ENQUEUE RATE

	
MESSAGES PER SECOND

	
The average number of logical change records (LCRs) enqueued by the capture process each second.

	
CAPTURE

	
LATENCY

	
SECONDS

	
The amount of time between when the last redo entry became available for the capture process and the time when the last redo entry scanned by the capture process was recorded in the redo log.

The purpose of the statistic is to show the amount of time between when a change is recorded in the redo log and when the redo record is scanned by the capture process.

The capture process might or might not enqueue a scanned change. A capture process only enqueues a change if the change satisfies its rule sets.

	
PROPAGATION SENDER

	
SEND RATE

	
MESSAGES PER SECOND

	
The average number of messages sent each second by the propagation sender.

	
PROPAGATION SENDER

	
BANDWIDTH

	
BYTES PER SECOND

	
The average number of bytes sent each second by the propagation sender.

	
PROPAGATION SENDER

	
LATENCY

	
SECONDS

	
The amount of time between when a message was created at the source database and when the message was sent to the destination queue by the propagation sender.

The value shown is for a single message that was sent from the source queue to the destination queue by the propagation sender. This message was the last message sent by the propagation sender when the ANALYZE_CURRENT_PERFORMANCE procedure was run.

Depending on the type of message sent by the propagation, message creation time is one of the following:

	
For captured LCRs, the time when the redo entry for the database change was recorded

	
For persistent LCRs, the time when the LCR was constructed

	
For persistent user messages, the time when the message was enqueued

	
APPLY

	
MESSAGE APPLY RATE

	
MESSAGES PER SECOND

	
The average number of messages applied each second by the apply process.

A captured LCR or persistent LCR can be applied in one of the following ways:

	
The apply process makes the change encapsulated in the LCR to a database object.

	
The apply process passes the LCR to an apply handler.

	
If the LCR raises an error, then the apply process sends the LCR to the error queue.

A persistent user message can be applied in one of the following ways:

	
The apply process sends the message to a message handler.

	
If the LCR raises an error, then the apply process sends the message to the error queue.

	
APPLY

	
TRANSACTION APPLY RATE

	
TRANSACTIONS PER SECOND

	
The average number of transactions applied by the apply process each second. Transactions typically include multiple messages.

A transaction that includes captured LCRs or persistent LCRs can be applied in one of the following ways:

	
The apply process makes all of the changes in the transaction and commits the transaction.

	
The apply process passes all of the LCRs in the transaction to an apply handler.

	
If the LCR raises an error, then the apply process sends the transaction and all of the LCRs in the transaction to the error queue.

A transaction that includes persistent user messages can be applied in one of the following ways:

	
The apply process passes all of the messages in the transaction to a message handler.

	
If the LCR raises an error, then the apply process sends all of the messages in the transaction to the error queue.

	
APPLY

	
LATENCY

	
SECONDS

	
For apply processes, the amount of time between when the message was created at a source database and when the message was applied by the apply process at the destination database.

The value shown is for a single message that was applied by the apply process. This message was the last message applied when the ANALYZE_CURRENT_PERFORMANCE procedure was run.

Depending on the type of message applied, message creation time is one of the following:

	
For captured LCRs, the time when the redo entry for the database change was recorded

	
For persistent LCRs, the time when the LCR was constructed

	
For user messages, the time when the message was enqueued

	
QUEUE

	
ENQUEUE RATE

	
MESSAGES PER SECOND

	
The average number of messages enqueued into the queue each second.

	
QUEUE

	
SPILL RATE

	
MESSAGES PER SECOND

	
The average number of messages that spilled from the buffered queue to the queue table each second.

	
QUEUE

	
CURRENT QUEUE SIZE

	
NUMBER OF MESSAGES

	
The number of messages in the queue when the ANALYZE_CURRENT_PERFORMANCE procedure was run.

	
CAPTURE, PROPAGATION SENDER, PROPAGATION RECEIVER, and APPLY

	
EVENT (Top wait event)

	
PERCENT

	
The percentage of time that the Oracle Streams component spent waiting because of a wait event.

The Oracle Streams Performance Advisor only gathers information about the top three events for each component.

For example, a capture process might wait for a redo log file to become available.

The following are general considerations for these performance statistics:

	
Regarding rate, bandwidth, and event statistics, the time period is calculated as the time difference between the two snapshots used by the ANALYZE_CURRENT_PERFORMANCE procedure in the same user session. See "About the Information Gathered by the Oracle Streams Performance Advisor" for information about the snapshots. When a user session ends, the rate, bandwidth, and event statistics are purged.

	
When a latency statistic is -1 seconds, the ANALYZE_CURRENT_PERFORMANCE procedure could not gather statistics for the component when it was run. In most cases, this result indicates that the component was disabled when the procedure was run. For example, if the LATENCY statistic for an apply process is -1, then the component was probably disabled when the ANALYZE_CURRENT_PERFORMANCE procedure was run.

To display performance statistics for the components in an Oracle Streams topology, run the following query:

COLUMN PATH_ID HEADING 'Path|ID' FORMAT 999
COLUMN COMPONENT_ID HEADING 'Component|ID' FORMAT 999
COLUMN COMPONENT_NAME HEADING 'Name' FORMAT A20
COLUMN COMPONENT_TYPE HEADING 'Type' FORMAT A12
COLUMN STATISTIC_NAME HEADING 'Statistic' FORMAT A15
COLUMN STATISTIC_VALUE HEADING 'Value' FORMAT 99999999999.99
COLUMN STATISTIC_UNIT HEADING 'Unit' FORMAT A15

SELECT DISTINCT
 cp.PATH_ID,
 cs.COMPONENT_ID,
 cs.COMPONENT_NAME,
 cs.COMPONENT_TYPE,
 cs.STATISTIC_NAME,
 cs.STATISTIC_VALUE,
 cs.STATISTIC_UNIT
 FROM DBA_STREAMS_TP_COMPONENT_STAT cs,
 (SELECT PATH_ID, SOURCE_COMPONENT_ID AS COMPONENT_ID
 FROM DBA_STREAMS_TP_COMPONENT_LINK
 UNION
 SELECT PATH_ID, DESTINATION_COMPONENT_ID AS COMPONENT_ID
 FROM DBA_STREAMS_TP_COMPONENT_LINK) cp
 WHERE cs.ADVISOR_RUN_ID = 2 AND
 cs.SESSION_ID IS NULL AND
 cs.SESSION_SERIAL# IS NULL AND
 cs.COMPONENT_ID = cp.COMPONENT_ID
 ORDER BY PATH_ID, COMPONENT_ID, COMPONENT_NAME, COMPONENT_TYPE, STATISTIC_NAME;

This example uses 2 for the ADVISOR_RUN_ID in the WHERE clause. Substitute the advisor run ID for the advisor run you want to query. See "Gathering Information About the Oracle Streams Topology and Performance" for information about determining the ADVISOR_RUN_ID.

The following output shows a partial list of the performance statistics for the components listed in "Viewing the Oracle Streams Components at Each Database". Specifically, the following output shows performance statistics for the components in stream path 1 and stream path 3:

Path Component
 ID ID Name Type Statistic Value Unit
---- ---------- -------------------- ------------ --------------- --------------- ---------------
 1 1 "STRMADMIN"."DESTINA QUEUE CURRENT QUEUE S .00 NUMBER OF MESSA
 TION_SPOKE1" IZE GES
 1 1 "STRMADMIN"."DESTINA QUEUE ENQUEUE RATE 2573.21 MESSAGES PER SE
 TION_SPOKE1" COND
 1 1 "STRMADMIN"."DESTINA QUEUE SPILL RATE .00 MESSAGES PER SE
 TION_SPOKE1" COND
 1 6 "STRMADMIN"."SOURCE_ PROPAGATION EVENT: CPU + Wa 32.55 PERCENT
 HNS"@SPOKE1.EXAMPLE. RECEIVER it for CPU
 COM=>"STRMADMIN"."DE
 STINATION_SPOKE1"
 1 6 "STRMADMIN"."SOURCE_ PROPAGATION EVENT: SQL*Net 23.62 PERCENT
 HNS"@SPOKE1.EXAMPLE. RECEIVER more data from
 COM=>"STRMADMIN"."DE client
 STINATION_SPOKE1"
 1 6 "STRMADMIN"."SOURCE_ PROPAGATION EVENT: latch: r 2.10 PERCENT
 HNS"@SPOKE1.EXAMPLE. RECEIVER ow cache object
 COM=>"STRMADMIN"."DE s
 STINATION_SPOKE1"
 1 8 APPLY_SPOKE1 APPLY EVENT: CPU + Wa 23.10 PERCENT
 it for CPU
 1 8 APPLY_SPOKE1 APPLY EVENT: latch: r 1.31 PERCENT
 ow cache object
 s
 1 8 APPLY_SPOKE1 APPLY EVENT: latch: s 1.57 PERCENT
 hared pool
 1 8 APPLY_SPOKE1 APPLY LATENCY 2.13 SECONDS
 1 8 APPLY_SPOKE1 APPLY MESSAGE APPLY R 10004.00 MESSAGES PER SE
 ATE COND
 1 8 APPLY_SPOKE1 APPLY TRANSACTION APP 100.00 TRANSACTIONS PE
 LY RATE R SECOND
 1 12 "STRMADMIN"."SOURCE_ QUEUE CURRENT QUEUE S .00 NUMBER OF MESSA
 HNS" IZE GES
 1 12 "STRMADMIN"."SOURCE_ QUEUE ENQUEUE RATE 9932.00 MESSAGES PER SE
 HNS" COND

 1 12 "STRMADMIN"."SOURCE_ QUEUE SPILL RATE .00 MESSAGES PER SE
 HNS" COND
 1 13 "STRMADMIN"."SOURCE_ PROPAGATION BANDWIDTH 32992.96 BYTES PER SECON
 HNS"=>"STRMADMIN"."D SENDER D
 ESTINATION_SPOKE1"@H
 UB.EXAMPLE.COM
 1 13 "STRMADMIN"."SOURCE_ PROPAGATION EVENT: CPU + Wa 35.96 PERCENT
 HNS"=>"STRMADMIN"."D SENDER it for CPU
 ESTINATION_SPOKE1"@H
 UB.EXAMPLE.COM
 1 13 "STRMADMIN"."SOURCE_ PROPAGATION EVENT: SQL*Net .26 PERCENT
 HNS"=>"STRMADMIN"."D SENDER message to dbli
 ESTINATION_SPOKE1"@H nk
 UB.EXAMPLE.COM
 1 13 "STRMADMIN"."SOURCE_ PROPAGATION EVENT: latch: r .26 PERCENT
 HNS"=>"STRMADMIN"."D SENDER ow cache object
 ESTINATION_SPOKE1"@H s
 UB.EXAMPLE.COM
 1 13 "STRMADMIN"."SOURCE_ PROPAGATION LATENCY 4.00 SECONDS
 HNS"=>"STRMADMIN"."D SENDER
 ESTINATION_SPOKE1"@H
 UB.EXAMPLE.COM
 1 13 "STRMADMIN"."SOURCE_ PROPAGATION SEND RATE 2568.00 MESSAGES PER SE
 HNS"=>"STRMADMIN"."D SENDER COND
 ESTINATION_SPOKE1"@H
 UB.EXAMPLE.COM
 1 16 CAPTURE_HNS CAPTURE CAPTURE RATE 10464.00 MESSAGES PER SE
 COND
 1 16 CAPTURE_HNS CAPTURE ENQUEUE RATE 10002.00 MESSAGES PER SE
 COND
 1 16 CAPTURE_HNS CAPTURE EVENT: CPU + Wa 11.02 PERCENT
 it for CPU
 1 16 CAPTURE_HNS CAPTURE EVENT: CPU + Wa 35.96 PERCENT
 it for CPU
 1 16 CAPTURE_HNS CAPTURE EVENT: SQL*Net 5.51 PERCENT
 message from db
 link
 1 16 CAPTURE_HNS CAPTURE LATENCY 2.65 SECONDS
.
.
.

	
Note:

This output is for illustrative purposes only. Actual performance characteristics vary depending on individual configurations and conditions.

You can analyze this output along with the output for the queries in "Viewing the Oracle Streams Components at Each Database" and "Viewing Each Stream Path in an Oracle Streams Topology".

	
See Also:

	
"About the Oracle Streams Topology"

	
"Gathering Information About the Oracle Streams Topology and Performance" for information about running the ANALYZE_CURRENT_PERFORMANCE procedure to gather statistics

	
"Message Processing Options for an Apply Process" for information about apply handlers

	
"The Error Queue"

Viewing Session-Level Statistics

You can view session-level statistics for the Oracle Streams components. The query in this section displays the following information for each session-level statistic:

	
The name of the Oracle Streams component

	
The type of the Oracle Streams component. The following types are possible:

	
CAPTURE for capture processes

	
PROPAGATION SENDER for propagation senders

	
PROPAGATION RECEIVER for propagation receivers

	
APPLY for apply processes

	
The type of the subcomponent. Only capture processes, apply processes have subcomponents.

The following subcomponent types are possible for capture processes:

	
LOGMINER READER for a builder server of a capture process

	
LOGMINER PREPARER for a preparer server of a capture process

	
LOGMINER BUILDER for a reader server of a capture process

	
CAPTURE SESSION for a capture process session

The following subcomponent types are possible for apply processes:

	
PROPAGATION SENDER+RECEIVER for sending LCRs from a capture process directly to an apply process in a combined capture and apply optimization

	
APPLY READER for a reader server

	
APPLY COORDINATOR for a coordinator process

	
APPLY SERVER for a reader server

	
The statistic that was gathered for the component

	
The value and unit of the statistic. Session-level statistics show PERCENT for the unit. The value is the percentage of time spent either IDLE, paused for FLOW CONTROL, or waiting for an EVENT.

The ANALYZE_CURRENT_PERFORMANCE procedure in the DBMS_STREAMS_ADVISOR_ADM package gathers the statistics returned by the query in this section. Therefore, the statistics returned by the query were the current statistics when the procedure was run. The statistics are not updated automatically.

Table 23-4 describes each of the statistics that can be returned by the query in this section:

Table 23-4 Session-Level Statistics for Oracle Streams Components

	Statistic	Unit	Description
	
IDLE

	
PERCENT

	
The percentage of time that the session spent idle. When a session is idle, it is not performing any work.

	
FLOW CONTROL

	
PERCENT

	
The percentage of time that the session was paused for flow control. See "Capture Process States" for information about flow control.

	
EVENT (Top wait event)

	
PERCENT

	
The percentage of time that the session spent waiting because of a wait event.

The Oracle Streams Performance Advisor only gathers information about the top three events for each session.

For example, an apply server might wait for a dependent transaction to be applied before applying its transaction.

Regarding flow control and event statistics, the time period is calculated as the time difference between the two snapshots used by the ANALYZE_CURRENT_PERFORMANCE procedure in the same user session. See "About the Information Gathered by the Oracle Streams Performance Advisor" for information about the snapshots. When a user session ends, the flow control and event statistics are purged.

To display session-level performance statistics for the components in an Oracle Streams topology, run the following query:

COLUMN PATH_ID HEADING 'Path|ID' FORMAT 999
COLUMN COMPONENT_ID HEADING 'Component|ID' FORMAT 999
COLUMN COMPONENT_NAME HEADING 'Component|Name' FORMAT A20
COLUMN COMPONENT_TYPE HEADING 'Component|Type' FORMAT A10
COLUMN SUB_COMPONENT_TYPE HEADING 'Subcomponent|Type' FORMAT A17
COLUMN STATISTIC_NAME HEADING 'Statistic' FORMAT A15
COLUMN STATISTIC_VALUE HEADING 'Value' FORMAT 999.99
COLUMN STATISTIC_UNIT HEADING 'Unit' FORMAT A7

SELECT DISTINCT
 cp.PATH_ID,
 cs.COMPONENT_ID,
 cs.COMPONENT_NAME,
 cs.COMPONENT_TYPE,
 cs.SUB_COMPONENT_TYPE,
 cs.STATISTIC_NAME,
 cs.STATISTIC_VALUE,
 cs.STATISTIC_UNIT
 FROM DBA_STREAMS_TP_COMPONENT_STAT cs,
 (SELECT PATH_ID, SOURCE_COMPONENT_ID AS COMPONENT_ID
 FROM DBA_STREAMS_TP_COMPONENT_LINK
 UNION
 SELECT PATH_ID, DESTINATION_COMPONENT_ID AS COMPONENT_ID
 FROM DBA_STREAMS_TP_COMPONENT_LINK) cp
 WHERE cs.ADVISOR_RUN_ID=2 AND
 cs.SESSION_ID IS NOT NULL AND
 cs.SESSION_SERIAL# IS NOT NULL AND
 cs.COMPONENT_ID = cp.COMPONENT_ID
 ORDER BY PATH_ID, COMPONENT_ID, COMPONENT_NAME, COMPONENT_TYPE, STATISTIC_NAME;

This example uses 2 for the ADVISOR_RUN_ID in the WHERE clause. Substitute the advisor run ID for the advisor run you want to query. See "Gathering Information About the Oracle Streams Topology and Performance" for information about determining the ADVISOR_RUN_ID.

The following output shows a partial list of the session-level performance statistics for the components listed in "Viewing the Oracle Streams Components at Each Database". Specifically, the following output shows session-level performance statistics for the components in stream path 1 and stream path 3:

Path Component Component Component Subcomponent
 ID ID Name Type Type Statistic Value Unit
---- --------- -------------------- ---------- ----------------- --------------- ------- -------
 1 6 "STRMADMIN"."SOURCE_ PROPAGATIO EVENT: CPU + Wa 32.55 PERCENT
 HNS"@SPOKE1.EXAMPLE. N RECEIVER it for CPU
 COM=>"STRMADMIN"."DE
 STINATIO N_SPOKE1"
 1 6 "STRMADMIN"."SOURCE_ PROPAGATIO EVENT: SQL*Net 23.62 PERCENT
 HNS"@SPOKE1.EXAMPLE. N RECEIVER more data from
 COM=>"STRMADMIN"."DE client
 STINATION_SPOKE1"
 1 6 "STRMADMIN"."SOURCE_ PROPAGATIO EVENT: latch: r 2.10 PERCENT
 HNS"@SPOKE1.EXAMPLE. N RECEIVER ow cache object
 COM=>"STRMADMIN"."DE s
 STINATION_SPOKE1"
 1 6 "STRMADMIN"."SOURCE_ PROPAGATIO FLOW CONTROL .89 PERCENT
 HNS"@SPOKE1.EXAMPLE. N RECEIVER
 COM=>"STRMADMIN"."DE
 STINATION_SPOKE1"
 1 6 "STRMADMIN"."SOURCE_ PROPAGATIO IDLE 36.61 PERCENT
 HNS"@SPOKE1.EXAMPLE. N RECEIVER
 COM=>"STRMADMIN"."DE
 STINATION_SPOKE1"
 1 8 APPLY_SPOKE1 APPLY APPLY READER EVENT: CPU + Wa .26 PERCENT
 it for CPU
 1 8 APPLY_SPOKE1 APPLY APPLY SERVER EVENT: CPU + Wa 23.10 PERCENT
 it for CPU
 1 8 APPLY_SPOKE1 APPLY APPLY SERVER EVENT: latch: r 1.31 PERCENT
 ow cache object
 s
 1 8 APPLY_SPOKE1 APPLY APPLY READER EVENT: latch: s .26 PERCENT
 hared pool
 1 8 APPLY_SPOKE1 APPLY APPLY SERVER EVENT: latch: s 1.57 PERCENT
 hared pool
 1 8 APPLY_SPOKE1 APPLY APPLY COORDINATOR FLOW CONTROL .00 PERCENT
 1 8 APPLY_SPOKE1 APPLY APPLY READER FLOW CONTROL 10.76 PERCENT
 1 8 APPLY_SPOKE1 APPLY APPLY SERVER FLOW CONTROL .00 PERCENT
 1 8 APPLY_SPOKE1 APPLY APPLY COORDINATOR IDLE 6.21 PERCENT
 1 8 APPLY_SPOKE1 APPLY APPLY READER IDLE 9.24 PERCENT
 1 8 APPLY_SPOKE1 APPLY APPLY SERVER IDLE 8.53 PERCENT
 1 13 "STRMADMIN"."SOURCE_ PROPAGATIO EVENT: CPU + Wa 21.65 PERCENT
 HNS"=>"STRMADMIN"."D N SENDER it for CPU
 ESTINATION_SPOKE1"@H
 UB.EXAMPLE.COM
 1 13 "STRMADMIN"."SOURCE_ PROPAGATIO EVENT: SQL*Net .26 PERCENT
 HNS"=>"STRMADMIN"."D N SENDER message to dbli
 ESTINATION_SPOKE1"@H nk
 UB.EXAMPLE.COM
 1 13 "STRMADMIN"."SOURCE_ PROPAGATIO EVENT: latch: r .26 PERCENT
 HNS"=>"STRMADMIN"."D N SENDER ow cache object
 ESTINATION_SPOKE1"@H s
 UB.EXAMPLE.COM
 1 13 "STRMADMIN"."SOURCE_ PROPAGATIO EVENT: latch: s .26 PERCENT
 HNS"=>"STRMADMIN"."D N SENDER hared pool
 ESTINATION_SPOKE1"@H
 UB.EXAMPLE.COM
 1 13 "STRMADMIN"."SOURCE_ PROPAGATIO FLOW CONTROL 7.37 PERCENT
 HNS"=>"STRMADMIN"."D N SENDER
 ESTINATION_SPOKE1"@H
 UB.EXAMPLE.COM
 1 13 "STRMADMIN"."SOURCE_ PROPAGATIO IDLE 67.41 PERCENT
 HNS"=>"STRMADMIN"."D N SENDER
 ESTINATION_SPOKE1"@H
 UB.EXAMPLE.COM
 1 16 CAPTURE_HNS CAPTURE LOGMINER READER EVENT: ARCH wai .26 PERCENT
 t on c/f tx acq
 uire 2
 1 16 CAPTURE_HNS CAPTURE CAPTURE SESSION EVENT: CPU + Wa 35.96 PERCENT
 it for CPU
 1 16 CAPTURE_HNS CAPTURE LOGMINER BUILDER EVENT: CPU + Wa .26 PERCENT
 it for CPU
 1 16 CAPTURE_HNS CAPTURE LOGMINER PREPARER EVENT: CPU + Wa 11.02 PERCENT
 it for CPU
 1 16 CAPTURE_HNS CAPTURE LOGMINER READER EVENT: CPU + Wa .26 PERCENT
 it for CPU
 1 16 CAPTURE_HNS CAPTURE CAPTURE SESSION EVENT: SQL*Net 5.51 PERCENT
 message from db
 link
 1 16 CAPTURE_HNS CAPTURE CAPTURE SESSION EVENT: SQL*Net .26 PERCENT
 message to dbli
 nk
 1 16 CAPTURE_HNS CAPTURE CAPTURE SESSION EVENT: latch: r .26 PERCENT
 ow cache object
 s
 1 16 CAPTURE_HNS CAPTURE LOGMINER BUILDER EVENT: latch: r 1.84 PERCENT
 ow cache object
 s
 1 16 CAPTURE_HNS CAPTURE LOGMINER PREPARER EVENT: latch: r .79 PERCENT
 ow cache object
 s
 1 16 CAPTURE_HNS CAPTURE CAPTURE SESSION EVENT: latch: s .26 PERCENT
 hared pool
 1 16 CAPTURE_HNS CAPTURE LOGMINER READER EVENT: latch: s .79 PERCENT
 hared pool
 1 16 CAPTURE_HNS CAPTURE CAPTURE SESSION FLOW CONTROL 16.27 PERCENT
 1 16 CAPTURE_HNS CAPTURE LOGMINER BUILDER FLOW CONTROL .00 PERCENT
 1 16 CAPTURE_HNS CAPTURE LOGMINER PREPARER FLOW CONTROL .00 PERCENT
 1 16 CAPTURE_HNS CAPTURE LOGMINER READER FLOW CONTROL .00 PERCENT
 1 16 CAPTURE_HNS CAPTURE CAPTURE SESSION IDLE 41.47 PERCENT
 1 16 CAPTURE_HNS CAPTURE LOGMINER BUILDER IDLE 97.90 PERCENT
 1 16 CAPTURE_HNS CAPTURE LOGMINER PREPARER IDLE 88.19 PERCENT
 1 16 CAPTURE_HNS CAPTURE LOGMINER READER IDLE 98.69 PERCENT
.
.
.
 3 4 "STRMADMIN"."SOURCE_ PROPAGATIO FLOW CONTROL 6.50 PERCENT
 HNS"=>"STRMADMIN"."D N SENDER
 ESTINATION_SPOKE1"@S
 POKE1.EXAMPLE.COM
 3 4 "STRMADMIN"."SOURCE_ PROPAGATIO IDLE 70.50 PERCENT
 HNS"=>"STRMADMIN"."D N SENDER
 ESTINATION_SPOKE1"@S
 POKE1.EXAMPLE.COM
 3 10 CAPTURE_HNS CAPTURE CAPTURE SESSION EVENT: ARCH wai 52.23 PERCENT
 t for archivelo
 g lock
 3 10 CAPTURE_HNS CAPTURE CAPTURE SESSION EVENT: CPU + Wa 7.35 PERCENT
 it for CPU
 3 10 CAPTURE_HNS CAPTURE CAPTURE SESSION EVENT: control .52 PERCENT
 file sequential
 read
 3 10 CAPTURE_HNS CAPTURE CAPTURE SESSION FLOW CONTROL 4.24 PERCENT
 3 10 CAPTURE_HNS CAPTURE CAPTURE SESSION IDLE 2.23 PERCENT
 3 14 "STRMADMIN"."SOURCE_ PROPAGATIO EVENT: CPU + Wa 6.92 PERCENT
 HNS"@HUB.EXAMPLE.COM N RECEIVER it for CPU
 =>"STRMADMIN"."DESTI
 NATION_SPOKE1"
 3 14 "STRMADMIN"."SOURCE_ PROPAGATIO EVENT: latch: r 2.23 PERCENT
 HNS"@HUB.EXAMPLE.COM N RECEIVER ow cache object
 =>"STRMADMIN"."DESTI s
 NATION_SPOKE1"
 3 14 "STRMADMIN"."SOURCE_ PROPAGATIO EVENT: library 3.79 PERCENT
 HNS"@HUB.EXAMPLE.COM N RECEIVER cache: mutex X
 =>"STRMADMIN"."DESTI
 NATION_SPOKE1"
 3 14 "STRMADMIN"."SOURCE_ PROPAGATIO FLOW CONTROL .67 PERCENT
 HNS"@HUB.EXAMPLE.COM N RECEIVER
 =>"STRMADMIN"."DESTI
 NATION_SPOKE1"
 3 14 "STRMADMIN"."SOURCE_ PROPAGATIO IDLE 85.04 PERCENT
 HNS"@HUB.EXAMPLE.COM N RECEIVER
 =>"STRMADMIN"."DESTI
 NATION_SPOKE1"
 3 15 APPLY_SPOKE1 APPLY APPLY COORDINATOR EVENT: latch: r 4.20 PERCENT
 ow cache object
 s
 3 15 APPLY_SPOKE1 APPLY APPLY COORDINATOR EVENT: latch: s .52 PERCENT
 hared pool
 3 15 APPLY_SPOKE1 APPLY APPLY READER EVENT: latch: s .26 PERCENT
 hared pool
 3 15 APPLY_SPOKE1 APPLY APPLY COORDINATOR FLOW CONTROL .00 PERCENT
 3 15 APPLY_SPOKE1 APPLY APPLY READER FLOW CONTROL 1.56 PERCENT
 3 15 APPLY_SPOKE1 APPLY APPLY SERVER FLOW CONTROL .00 PERCENT
 3 15 APPLY_SPOKE1 APPLY APPLY COORDINATOR IDLE 87.28 PERCENT
 3 15 APPLY_SPOKE1 APPLY APPLY READER IDLE 96.88 PERCENT
 3 15 APPLY_SPOKE1 APPLY APPLY SERVER IDLE 91.29 PERCENT

	
Note:

	
This output is for illustrative purposes only. Actual performance characteristics vary depending on individual configurations and conditions.

	
You can view the session ID and serial number for each session by adding the SESSION_ID and SESSION_SERIAL# columns to the query on the DBA_STREAMS_TP_COMPONENT_STAT view.

	
See Also:

	
"Capture Process Subcomponents" for more information about capture process subcomponents

	
"Apply Process Subcomponents" for more information about apply process subcomponents

	
Chapter 12, "Combined Capture and Apply Optimization"

Viewing Statistics for the Stream Paths in an Oracle Streams Environment

The query in this section shows the following information for each stream path in the Oracle Streams topology:

	
Whether optimization mode for Oracle Streams is used for the path. When the OPTIMIZATION_MODE statistic is greater than 0 (zero) for a path, the path uses the combined capture and apply optimization. When the OPTIMIZATION_MODE statistic is 0 (zero) for a path, the path does not use the combined capture and apply optimization.

	
The MESSAGE RATE value is the average number of messages sent each second from the start of the path to the end of the path.

	
The TRANSACTION RATE value is the average number of transactions sent each second from the start of the path to the end of the path.

The time period for these statistics is calculated as the time difference between the two snapshots used by the ANALYZE_CURRENT_PERFORMANCE procedure in the same user session. See "About the Information Gathered by the Oracle Streams Performance Advisor" for information about the snapshots. When a user session ends, these statistics are purged.

To display this information, run the following query:

COLUMN PATH_ID HEADING 'Path ID' FORMAT 999
COLUMN STATISTIC_NAME HEADING 'Statistic' FORMAT A25
COLUMN STATISTIC_VALUE HEADING 'Value' FORMAT 99999999.99
COLUMN STATISTIC_UNIT HEADING 'Unit' FORMAT A25

SELECT PATH_ID,
 STATISTIC_NAME,
 STATISTIC_VALUE,
 STATISTIC_UNIT
 FROM DBA_STREAMS_TP_PATH_STAT
 WHERE ADVISOR_RUN_ID=2
 ORDER BY PATH_ID, STATISTIC_NAME;

This example uses 2 for the ADVISOR_RUN_ID in the WHERE clause. Substitute the advisor run ID for the advisor run you want to query. See "Gathering Information About the Oracle Streams Topology and Performance" for information about determining the ADVISOR_RUN_ID.

The following output shows the path statistics for the stream paths listed in "Viewing Each Stream Path in an Oracle Streams Topology":

Path ID Statistic Value Unit
------- ------------------------- ------------ -------------------------
 1 OPTIMIZATION_MODE 1.00 NUMBER
 1 MESSAGE RATE 10004.00 MESSAGES PER SECOND
 1 TRANSACTION RATE 100.00 TRANSACTIONS PER SECOND
 2 OPTIMIZATION_MODE 1.00 NUMBER
 2 MESSAGE RATE 10028.25 MESSAGES PER SECOND
 2 TRANSACTION RATE 100.37 TRANSACTIONS PER SECOND
 3 OPTIMIZATION_MODE 1.00 NUMBER
 3 MESSAGE RATE 9623.20 MESSAGES PER SECOND
 3 TRANSACTION RATE 97.10 TRANSACTIONS PER SECOND
 4 OPTIMIZATION_MODE 1.00 NUMBER
 4 MESSAGE RATE 10180.05 MESSAGES PER SECOND
 4 TRANSACTION RATE 102.68 TRANSACTIONS PER SECOND

	
Note:

This output is for illustrative purposes only. Actual performance characteristics vary depending on individual configurations and conditions.

	
See Also:

	
"About Stream Paths in an Oracle Streams Topology"

	
Chapter 12, "Combined Capture and Apply Optimization"

Using the UTL_SPADV Package

The UTL_SPADV package provides subprograms to collect and analyze statistics for the Oracle Streams components in a distributed database environment. The package uses the Oracle Streams Performance Advisor to gather statistics.

The COLLECT_STATS and START_MONITORING procedures use the Oracle Streams Performance Advisor to gather statistics about the Oracle Streams components and subcomponents in a distributed database environment. The SHOW_STATS procedure generates output that includes the statistics. The output is formatted so that it can be imported into a spreadsheet easily and analyzed.

You can use the COLLECT_STATS procedure to collect statistics each time the procedure is called. The comp_stat_table and path_stat_table parameters specify the tables that store the performance statistics. By default, these tables are STREAMS$_ADVISOR_COMP_STAT and STREAMS$_ADVISOR_PATH_STAT, respectively.

You can also use the START_MONITORING procedure to create a monitoring job that monitors Oracle Streams performance continually at specified intervals. The monitoring job uses the COLLECT_STATS procedure to collect statistics. The START_MONITORING procedure populates the STREAMS$_PA_MONITORING table, and the SHOW_STATS_TABLE column in this table specifies the table that contains the performance statistics. You can use the ALTER_MONITORING procedure to modify a monitoring job, and you can use the STOP_MONITORING procedure to stop a monitoring job.

These procedures collect the same statistics as the Oracle Streams Performance Advisor. These statistics are described in Table 23-3, "Component-Level Statistics for Oracle Streams Components" and Table 23-4, "Session-Level Statistics for Oracle Streams Components".

This section contains these topics:

	
Collecting Oracle Streams Statistics Using the UTL_SPADV Package

	
Checking Whether an Oracle Streams Monitoring Job Is Currently Running

	
Altering an Oracle Streams Monitoring Job

	
Stopping an Oracle Streams Monitoring Job

	
Showing Oracle Streams Statistics Using the UTL_SPADV Package

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about the UTL_SPADV package

Collecting Oracle Streams Statistics Using the UTL_SPADV Package

To collect statistics using the UTL_SPADV package, complete the following steps:

	
Identify the database that you will use to gather the information. An administrative user at this database must meet the following requirements:

	
The user must have access to a database link to each database that contains Oracle Streams components to monitor.

	
The user must have been granted privileges using the DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE procedure, and each database link must connect to a user at the remote database that has been granted privileges using the DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE procedure.

If you configure an Oracle Streams administrator at each database with Oracle Streams components, then the Oracle Streams administrator has the necessary privileges. See Oracle Streams Replication Administrator's Guide for information about creating an Oracle Streams administrator.

If no database in your environment meets these requirements, then choose a database, configure the necessary database links, and grant the necessary privileges to the users before proceeding.

	
In SQL*Plus, connect to the database you identified in Step 1 as a user that meets the requirements listed in Step 1.

See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.

	
Run the utlspadv.sql script in the rdbms/admin directory in ORACLE_HOME to load the UTL_SPADV package. For example:

@utlspadv.sql

	
Either collect the current Oracle Streams performance statistics once, or create a job that continually monitors Oracle Streams performance:

	
To collect the current Oracle Streams performance statistics once, run the COLLECT_STATS procedure:

exec UTL_SPADV.COLLECT_STATS

This example uses the default values for the parameters in the COLLECT_STATS procedure. Therefore, this example runs the Performance Advisor 10 times with 60 seconds between each run. These values correspond with the default values for the num_runs and interval parameters, respectively, in the COLLECT_STATS procedure.

	
To create a job that continually monitors Oracle Streams performance:

exec UTL_SPADV.START_MONITORING

This example creates a monitoring job, and the monitoring job gathers performance statistics continually at set intervals. This example uses the default values for the parameters in the START_MONITORING procedure. Therefore, this example runs the Performance Advisor every 60 seconds. This value corresponds with the default value for the interval parameter in the START_MONITORING procedure. If an interval is specified in the START_MONITORING procedure, then the specified interval is used for the interval parameter in the COLLECT_STATS procedure.

These procedures include several parameters that you can use to adjust the way performance statistics are gathered. See Oracle Database PL/SQL Packages and Types Reference for more information.

You can show the statistics by running the SHOW_STATS procedure. See "Showing Oracle Streams Statistics Using the UTL_SPADV Package".

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about the UTL_SPADV package

Checking Whether an Oracle Streams Monitoring Job Is Currently Running

To check whether a monitoring job is running using the UTL_SPADV package, complete the following steps:

	
Connect to the database as the user who submitted the monitoring job.

	
Run the IS_MONITORING function. For example, to determine whether a monitoring job submitted by the current user with the full monitoring job name of STREAM$_MONITORING_JOB is running, enter the following:

SET SERVEROUTPUT ON
DECLARE
 is_mon BOOLEAN;
BEGIN
 is_mon := UTL_SPADV.IS_MONITORING(
 job_name => 'STREAMS$_MONITORING_JOB',
 client_name => NULL);
 IF is_mon=TRUE THEN
 DBMS_OUTPUT.PUT_LINE('The monitoring job is running.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('No monitoring job was found.');
 END IF;
END;
/

The output displays the following text if a monitoring job with the specified full monitoring job name is currently running:

The monitoring job is running.

The output displays the following text if no monitoring job with the specified full monitoring job name is currently running:

No monitoring job was found.

	
Note:

When you submit a monitoring job, the client name and job name are concatenated to form the full monitoring job name. The client name for a monitoring job submitted by Oracle Enterprise Manager is always EM.

Altering an Oracle Streams Monitoring Job

To alter a monitoring job using the UTL_SPADV package, complete the following steps:

	
Create a monitoring job if you have not done so already by completing the steps described in "Collecting Oracle Streams Statistics Using the UTL_SPADV Package". Ensure that you run the START_MONITORING procedure in Step 4.

	
Connect to the database as the user who submitted the monitoring job. Only the user who submitted a monitoring job can alter the monitoring job, and each user can submit only one monitoring job at a time.

	
Run the ALTER_MONITORING procedure. The following example sets the interval for the monitoring job to 120 seconds:

BEGIN
 UTL_SPADV.ALTER_MONITORING(
 interval => 120);
END;
/

After running this procedure, the monitoring job gathers statistics every 120 seconds.

Stopping an Oracle Streams Monitoring Job

To stop a monitoring job using the UTL_SPADV package, complete the following steps:

	
Connect to the database as the user who submitted the monitoring job. Only the user who submitted a monitoring job can stop the monitoring job, and each user can submit only one monitoring job at a time.

	
Run the STOP_MONITORING procedure:

exec UTL_SPADV.STOP_MONITORING

The STOP_MONITORING procedure includes a purge parameter that you can use to purge the statistics gathered by the monitoring job from the result tables. By default, the purge parameter is set to FALSE, and the results are retained. Set the purge parameter to TRUE to purge the results.

	
See Also:

See Oracle Database PL/SQL Packages and Types Reference for more information.

Showing Oracle Streams Statistics Using the UTL_SPADV Package

The SHOW_STATS procedure displays the statistics that the Performance Advisor gathered and stored. Use the path_stat_table parameter to specify the table that contains the statistics.

When you gather statistics using the COLLECT_STATS procedure, this table is specified in the path_stat_table parameter in the COLLECT_STATS procedure. By default, the table name is STREAMS$_ADVISOR_PATH_STAT.

When you gather statistics using the START_MONITORING procedure, you can determine the name for this table by querying the SHOW_STATS_TABLE column in the STREAMS$_PA_MONITORING view. The default table for a monitoring job is STREAMS$_PA_SHOW_PATH_STAT.

To show statistics collected using the UTL_SPADV package and stored in the STREAMS$_ADVISOR_PATH_STAT table, complete the following steps:

	
Collect statistics by completing the steps described in "Collecting Oracle Streams Statistics Using the UTL_SPADV Package".

	
Connect to the database as the user who collected the statistics.

	
If you are using a monitoring job, then query the SHOW_STATS_TABLE column in the STREAMS$_PA_MONITORING view to determine the name of this table that stores the statistics:

SELECT SHOW_STATS_TABLE FROM STREAMS$_PA_MONITORING;

	
Run the SHOW_STATS procedure.

For example, if you are using a monitoring job and the default storage table, then run the following procedure:

SET SERVEROUTPUT ON SIZE 50000
BEGIN
 UTL_SPADV.SHOW_STATS(
 path_stat_table => 'STREAMS$_PA_SHOW_PATH_STAT');
END;
/

The output includes the following legend:

LEGEND
<statistics>= <capture> [<queue> <psender> <preceiver> <queue>] <apply>
<bottleneck>
<capture> = '|<C>' <name> <msgs captured/sec> <msgs enqueued/sec> <latency>
 'LMR' <idl%> <flwctrl%> <topevt%> <topevt>
 'LMP' (<parallelism>) <idl%> <flwctrl%> <topevt%> <topevt>
 'LMB' <idl%> <flwctrl%> <topevt%> <topevt>
 'CAP' <idl%> <flwctrl%> <topevt%> <topevt>
 'CAP+PS' <msgs sent/sec> <bytes sent/sec> <latency> <idl%>
<flwctrl%> <topevt%> <topevt>
<apply> = '|<A>' <name> <msgs applied/sec> <txns applied/sec> <latency>
 'PS+PR' <idl%> <flwctrl%> <topevt%> <topevt>
 'APR' <idl%> <flwctrl%> <topevt%> <topevt>
 'APC' <idl%> <flwctrl%> <topevt%> <topevt>
 'APS' (<parallelism>) <idl%> <flwctrl%> <topevt%> <topevt>
<queue> = '|<Q>' <name> <msgs enqueued/sec> <msgs spilled/sec> <msgs in
queue>
<psender> = '|<PS>' <name> <msgs sent/sec> <bytes sent/sec> <latency> <idl%>
<flwctrl%> <topevt%> <topevt>
<preceiver> = '|<PR>' <name> <idl%> <flwctrl%> <topevt%> <topevt>
<bottleneck>= '|' <name> <sub_name> <sessionid> <serial#> <topevt%> <topevt>

The following table describes the abbreviations used in the legend:

	Abbreviation	Description
	A	Apply process
	APC	Coordinator process used by an apply process
	APR	Reader server used by an apply process
	APS	Apply server used by an apply process
	B	Bottleneck
	C or CAP	Capture process
	CAP+PS	Capture process session and propagation sender in a combined capture and apply optimization
	CCA	Combined capture and apply (Y indicates that it is used for the path; N indicates that it is not used for the path.)
	flwctrl	Flow control
	idl	Idle
	LMB	Builder server used by a capture process (LogMiner builder)
	LMP	Preparer server used by a capture process (LogMiner preparer)
	LMR	Reader server used by a capture process (LogMiner reader)
	msgs	Messages
	preceiver or PR	Propagation receiver
	psender or PS	Propagation sender
	PS+PR	Propagation sender and propagation receiver in a combined capture and apply optimization in which the capture process and apply process are running on the same database instance
	Q	Queue
	serial#	Session serial number
	sec	Second
	sid	Session identifier
	sub_name	Subcomponent name
	topevt	Top event

The following is sample output for when an apply process is the last component in a path:

OUTPUT
PATH 1 RUN_ID 3 RUN_TIME 2009-JUL-02 05:59:38 CCA Y
|<C> DB2$CAP 10267 10040 3 LMR 95% 0% 3.3% "" LMP (1) 86.7% 0% 11.7% "" LMB 86.7% 0% 11.7% ""
CAP 71.7% 16.7% 11.7% "" |<Q> "STRMADMIN"."DB2$CAPQ" 2540.45 0 30 |<PS>
=>DB1.EXAMPLE.COM 2152.03 32992.96 4 59.2% 9.8% 0% "" |<PR> DB2.EXAMPLE.COM=> 98.5%
0% 0.6% "" |<Q> "STRMADMIN"."DB2$APPQ" 3657.03 0.01 460 |<A> APPLY$_DB2_2 10042 100 4
APR 93.3% 0% 6.7% "" APC 98.1% 0% 1.8% "" APS (4) 370% 0% 6.1% "" | NO BOTTLENECK
IDENTIFIED

PATH 1 RUN_ID 4 RUN_TIME 2009-JUL-02 06:01:39 CCA Y
|<C> DB2$CAP 10464 10002 3 LMR 95% 0% 1.7% "" LMP (1) 83.3% 0% 16.7% "" LMB 85% 0% 15% ""
CAP 62.9% 0% 35.7% "" |<Q> "STRMADMIN"."DB2$CAPQ" 2677.03 0.01 45 |<PS>
=>DB1.EXAMPLE.COM 2491.08 47883.46 4 65.5% 10.7% 0% "" |<PR> DB2.EXAMPLE.COM=> 0% 83.3%
13.3% "" |<Q> "STRMADMIN"."DB2$APPQ" 2444.03 0.01 0 |<A> APPLY$_DB2_2 10004 100 3
APR 42.9% 57.1% 0% "" APC 90% 0% 10% "" APS (4) 346% 0% 10.3% "" | NO BOTTLENECK
IDENTIFIED
.
.
.

	
Note:

This output is for illustrative purposes only. Actual performance characteristics vary depending on individual configurations and conditions.

Use the legend and the abbreviations to determine the statistics in the output. For example, the following output is for the db2$cap capture process in path 1, run ID 3:

|<C> DB2$CAP 10267 10040 3 LMR 95% 0% 3.3% "" LMP (1) 86.7% 0% 11.7% "" LMB 86.7% 0% 11.7% ""
CAP 71.7% 16.7% 11.7% ""

This output shows the following statistics:

	
The capture process captured an average of 10267 database changes each second.

	
The capture process enqueued an average of 10040 messages each second.

	
The capture process latency was 3 seconds.

	
The reader server (LMR) used by the capture process spent 95% of its time idle.

	
The reader server used by the capture process spent 0% of its time in flow control mode.

	
The reader server used by the capture process spent 3.3% of its time on the top wait event.

	
The preparer server (LMP) parallelism was 1.

	
The preparer server used by the capture process spent 86.7% of its time idle.

	
The preparer server used by the capture process spent 0% of its time in flow control mode.

	
The preparer server used by the capture process spent 11.7% of its time on the top wait event.

	
The builder server (LMB) used by the capture process spent 86.7% of its time idle.

	
The builder server used by the capture process spent 0% of its time in flow control mode.

	
The builder server used by the capture process spent 11.7% of its time on the top wait event.

	
The capture process session spent 71.7% of its time idle.

	
The capture process session spent 16.7% of its time in flow control mode.

	
The capture process session spent 11.7% of its time on the top wait event.

	
See Also:

Chapter 12, "Combined Capture and Apply Optimization"

Oracle® Streams

Concepts and Administration

11g Release 2 (11.2)

E17069-07

August 2011

Oracle Streams Concepts and Administration, 11g Release 2 (11.2)

E17069-07

Copyright © 2002, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Randy Urbano

Contributors: Sundeep Abraham, Geeta Arora, Nimar Arora, Lance Ashdown, Ram Avudaiappan, Neerja Bhatt, Ragamayi Bhyravabhotla, Chipper Brown, Jack Chung, Alan Downing, Jacco Draaijer, Curt Elsbernd, Yong Feng, Jairaj Galagali, Lei Gao, Connie Green, Richard Huang, Thuvan Hoang, Lewis Kaplan, Joydip Kundu, Tianshu Li, Jing Liu, Edwina Lu, Raghu Mani, Rui Mao, Pat McElroy, Shailendra Mishra, Valarie Moore, Bhagat Nainani, Srikanth Nalla, Maria Pratt, Arvind Rajaram, Ashish Ray, Abhishek Saxena, Viv Schupmann, Vipul Shah, Neeraj Shodhan, Wayne Smith, Jim Stamos, Janet Stern, Mahesh Subramaniam, Bob Thome, Byron Wang, Wei Wang, James M. Wilson, Lik Wong, Jingwei Wu, Haobo Xu, Jun Yuan, David Zhang, Ying Zhang

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

37 Monitoring File Group and Tablespace Repositories

A file group repository can contain multiple file groups and multiple versions of a particular file group. A tablespace repository is a collection of tablespace sets in a file group repository. Tablespace repositories are built on file group repositories, but tablespace repositories only contain the files required to move or copy tablespaces between databases. This chapter provides sample queries that you can use to monitor file group repositories and tablespace repositories.

The following topics describe monitoring file group and tablespace repositories:

	
Monitoring a File Group Repository

	
Monitoring a Tablespace Repository

	
Note:

The Oracle Streams tool in Oracle Enterprise Manager is also an excellent way to monitor an Oracle Streams environment. See the online Help for the Oracle Streams tool for more information.

	
See Also:

	
Chapter 35, "Information Provisioning Concepts"

	
Chapter 36, "Using Information Provisioning"

	
Oracle Database Reference for information about the data dictionary views described in this chapter

Monitoring a File Group Repository

The queries in the following sections provide examples for monitoring a file group repository:

	
Displaying General Information About the File Groups in a Database

	
Displaying Information About File Group Versions

	
Displaying Information About File Group Files

	
See Also:

	
"File Group Repository"

	
"Using a File Group Repository"

Displaying General Information About the File Groups in a Database

The query in this section displays the following information for each file group in the local database:

	
The file group owner

	
The file group name

	
Whether the files in a version of the file group are kept on disk if the version is purged

	
The minimum number of versions of the file group allowed

	
The maximum number of versions of the file group allowed

	
The number of days to retain a file group version after it is created

Run the following query to display this information for the local database:

COLUMN FILE_GROUP_OWNER HEADING 'File Group|Owner' FORMAT A10
COLUMN FILE_GROUP_NAME HEADING 'File Group|Name' FORMAT A10
COLUMN KEEP_FILES HEADING 'Keep|Files?' FORMAT A10
COLUMN MIN_VERSIONS HEADING 'Minimum|Number|of Versions' FORMAT 9999
COLUMN MAX_VERSIONS HEADING 'Maximum|Number|of Versions' FORMAT 9999999999
COLUMN RETENTION_DAYS HEADING 'Days to|Retain|a Version' FORMAT 9999999999.99

SELECT FILE_GROUP_OWNER,
 FILE_GROUP_NAME,
 KEEP_FILES,
 MIN_VERSIONS,
 MAX_VERSIONS,
 RETENTION_DAYS
 FROM DBA_FILE_GROUPS;

Your output looks similar to the following:

 Minimum Maximum Days to
File Group File Group Keep Number Number Retain
Owner Name Files? of Versions of Versions a Version
---------- ---------- ---------- ----------- ----------- --------------
STRMADMIN REPORTS Y 2 4294967295 4294967295.00

This output shows that the database has one file group with the following characteristics:

	
The file group owner is strmadmin.

	
The file group name is reports.

	
The files in a version are kept on disk if a version is purged because the "Keep Files?" is "Y" for the file group.

	
The minimum number of versions allowed is 2. If the file group automatically purges versions, then it will not purge a version if the purge would cause the total number of versions to drop below 2.

	
The file group allows an infinite number of versions. The number 4294967295 means an infinite number of versions.

	
The file group retains a version of an infinite number of days. The number 4294967295 means an infinite number of days.

Displaying Information About File Group Versions

The query in this section displays the following information for each file group version in the local database:

	
The owner of the file group that contains the version

	
The name of the file group that contains the version

	
The version name

	
The version number

	
The name of the user who created the version

	
Comments for the version

Run the following query to display this information for the local database:

COLUMN FILE_GROUP_OWNER HEADING 'File Group|Owner' FORMAT A10
COLUMN FILE_GROUP_NAME HEADING 'File Group|Name' FORMAT A10
COLUMN VERSION_NAME HEADING 'Version Name' FORMAT A20
COLUMN VERSION HEADING 'Version|Number' FORMAT 99999999
COLUMN CREATOR HEADING 'Creator' FORMAT A10
COLUMN COMMENTS HEADING 'Comments' FORMAT A14

SELECT FILE_GROUP_OWNER,
 FILE_GROUP_NAME,
 VERSION_NAME,
 VERSION,
 CREATOR,
 COMMENTS
 FROM DBA_FILE_GROUP_VERSIONS;

Your output looks similar to the following:

File Group File Group Version
Owner Name Version Name Number Creator Comments
---------- ---------- -------------------- --------- ---------- --------------
STRMADMIN REPORTS SALES_REPORTS_V1 1 STRMADMIN Sales reports
 for week of 06
 -FEB-2005

STRMADMIN REPORTS SALES_REPORTS_V2 2 STRMADMIN Sales reports
 for week of 13
 -FEB-2005

Displaying Information About File Group Files

The query in this section displays the following information about each file in a file group version in the local database:

	
The owner of the file group that contains the file

	
The name of the file group that contains the file

	
The name of the version in the file group that contains the file

	
The file name

	
The directory object that contains the file

COLUMN FILE_GROUP_OWNER HEADING 'File Group|Owner' FORMAT A10
COLUMN FILE_GROUP_NAME HEADING 'File Group|Name' FORMAT A10
COLUMN VERSION_NAME HEADING 'Version Name' FORMAT A20
COLUMN FILE_NAME HEADING 'File Name' FORMAT A15
COLUMN FILE_DIRECTORY HEADING 'File Directory|Object' FORMAT A15

SELECT FILE_GROUP_OWNER,
 FILE_GROUP_NAME,
 VERSION_NAME,
 FILE_NAME,
 FILE_DIRECTORY
 FROM DBA_FILE_GROUP_FILES;

Your output looks similar to the following:

File Group File Group File Directory
Owner Name Version Name File Name Object
---------- ---------- -------------------- --------------- ---------------
STRMADMIN REPORTS SALES_REPORTS_V1 book_sales.htm SALES_REPORTS1
STRMADMIN REPORTS SALES_REPORTS_V1 music_sales.htm SALES_REPORTS1
STRMADMIN REPORTS SALES_REPORTS_V2 book_sales.htm SALES_REPORTS2
STRMADMIN REPORTS SALES_REPORTS_V2 music_sales.htm SALES_REPORTS2

Query the DBA_DIRECTORIES data dictionary view to determine the corresponding file system directory for a directory object.

Monitoring a Tablespace Repository

The queries in the following sections provide examples for monitoring a tablespace repository:

	
Displaying Information About the Tablespaces in a Tablespace Repository

	
Displaying Information About the Tables in a Tablespace Repository

	
Displaying Export Information About Versions in a Tablespace Repository

	
See Also:

	
"Tablespace Repository"

	
"Using a Tablespace Repository"

Displaying Information About the Tablespaces in a Tablespace Repository

The query in this section displays the following information about each tablespace in the tablespace repository in the local database:

	
The owner of the file group that contains the tablespace in the tablespace repository

	
The name of the file group that contains the tablespace in the tablespace repository

	
The name of the version that contains the tablespace

	
The tablespace name

COLUMN FILE_GROUP_OWNER HEADING 'File Group|Owner' FORMAT A15
COLUMN FILE_GROUP_NAME HEADING 'File Group|Name' FORMAT A15
COLUMN VERSION_NAME HEADING 'Version Name' FORMAT A15
COLUMN VERSION HEADING 'Version|Number' FORMAT 99999999
COLUMN TABLESPACE_NAME HEADING 'Tablespace Name' FORMAT A15

SELECT FILE_GROUP_OWNER,
 FILE_GROUP_NAME,
 VERSION_NAME,
 VERSION,
 TABLESPACE_NAME
 FROM DBA_FILE_GROUP_TABLESPACES;

Your output looks similar to the following:

File Group File Group Version
Owner Name Version Name Number Tablespace Name
--------------- --------------- --------------- --------- ---------------
STRMADMIN SALES V_Q1FY2005 1 SALES_TBS1
STRMADMIN SALES V_Q1FY2005 1 SALES_TBS2
STRMADMIN SALES V_Q2FY2005 3 SALES_TBS1
STRMADMIN SALES V_Q2FY2005 3 SALES_TBS2
STRMADMIN SALES V_Q1FY2005_R 4 SALES_TBS1
STRMADMIN SALES V_Q1FY2005_R 4 SALES_TBS2
STRMADMIN SALES V_Q2FY2005_R 5 SALES_TBS1
STRMADMIN SALES V_Q2FY2005_R 5 SALES_TBS2

Displaying Information About the Tables in a Tablespace Repository

The query in this section displays the following information about each table in the tablespace repository in the local database:

	
The owner of the file group that contains the table in the tablespace repository

	
The name of the file group that contains the table in the tablespace repository

	
The name of the version that contains the table

	
The table owner

	
The table name

	
The tablespace that contains the table

COLUMN FILE_GROUP_OWNER HEADING 'File Group|Owner' FORMAT A10
COLUMN FILE_GROUP_NAME HEADING 'File Group|Name' FORMAT A10
COLUMN VERSION_NAME HEADING 'Version Name' FORMAT A15
COLUMN OWNER HEADING 'Table|Owner' FORMAT A10
COLUMN TABLE_NAME HEADING 'Table Name' FORMAT A15
COLUMN TABLESPACE_NAME HEADING 'Tablespace Name' FORMAT A15

SELECT FILE_GROUP_OWNER,
 FILE_GROUP_NAME,
 VERSION_NAME,
 OWNER,
 TABLE_NAME,
 TABLESPACE_NAME
 FROM DBA_FILE_GROUP_TABLES;

Your output looks similar to the following:

File Group File Group Table
Owner Name Version Name Owner Table Name Tablespace Name
---------- ---------- --------------- ---------- --------------- ---------------
STRMADMIN SALES V_Q1FY2005 SL ORDERS SALES_TBS1
STRMADMIN SALES V_Q1FY2005 SL ORDER_ITEMS SALES_TBS1
STRMADMIN SALES V_Q1FY2005 SL CUSTOMERS SALES_TBS2
STRMADMIN SALES V_Q2FY2005 SL ORDERS SALES_TBS1
STRMADMIN SALES V_Q2FY2005 SL ORDER_ITEMS SALES_TBS1
STRMADMIN SALES V_Q2FY2005 SL CUSTOMERS SALES_TBS2
STRMADMIN SALES V_Q1FY2005_R SL ORDERS SALES_TBS1
STRMADMIN SALES V_Q1FY2005_R SL ORDER_ITEMS SALES_TBS1
STRMADMIN SALES V_Q1FY2005_R SL CUSTOMERS SALES_TBS2
STRMADMIN SALES V_Q2FY2005_R SL ORDERS SALES_TBS1
STRMADMIN SALES V_Q2FY2005_R SL ORDER_ITEMS SALES_TBS1
STRMADMIN SALES V_Q2FY2005_R SL CUSTOMERS SALES_TBS2

Displaying Export Information About Versions in a Tablespace Repository

To display export information about the versions in the tablespace repository in the local database, query the DBA_FILE_GROUP_EXPORT_INFO data dictionary view. This view only displays information for versions that contain a valid Data Pump export dump file. The query in this section displays the following export information about each version in the local database:

	
The name of the file group that contains the version

	
The name of the version

	
The export version of the export dump file. The export version corresponds to the version of Data Pump that performed the export.

	
The platform on which the export was performed

	
The date and time of the export

	
The global name of the exporting database

COLUMN FILE_GROUP_NAME HEADING 'File Group|Name' FORMAT A10
COLUMN VERSION_NAME HEADING 'Version Name' FORMAT A13
COLUMN EXPORT_VERSION HEADING 'Export|Version' FORMAT A7
COLUMN PLATFORM_NAME HEADING 'Export Platform' FORMAT A17
COLUMN EXPORT_TIME HEADING 'Export Time' FORMAT A17
COLUMN SOURCE_GLOBAL_NAME HEADING 'Export|Database' FORMAT A10

SELECT FILE_GROUP_NAME,
 VERSION_NAME,
 EXPORT_VERSION,
 PLATFORM_NAME,
 TO_CHAR(EXPORT_TIME, 'HH24:MI:SS MM/DD/YY') EXPORT_TIME,
 SOURCE_GLOBAL_NAME
 FROM DBA_FILE_GROUP_EXPORT_INFO;

Your output looks similar to the following:

File Group Export Export
Name Version Name Version Export Platform Export Time Database
---------- ------------- ------- ----------------- ----------------- ----------
SALES V_Q1FY2005 10.2.0 Linux IA (32-bit) 12:23:52 03/08/05 INST1.EXAM
 PLE.COM
SALES V_Q2FY2005 10.2.0 Linux IA (32-bit) 12:27:37 03/08/05 INST1.EXAM
 PLE.COM
SALES V_Q1FY2005_R 10.2.0 Linux IA (32-bit) 12:39:50 03/08/05 INST2.EXAM
 PLE.COM
SALES V_Q2FY2005_R 10.2.0 Linux IA (32-bit) 12:46:04 03/08/05 INST2.EXAM
 PLE.COM

36 Using Information Provisioning

This chapter describes how to use information provisioning. This chapter includes an example that creates a tablespace repository, examples that transfer tablespaces between databases, and an example that uses a file group repository to store different versions of files.

The following topics describe using information provisioning:

	
Using a Tablespace Repository

	
Using a File Group Repository

	
See Also:

Chapter 35, "Information Provisioning Concepts"

Using a Tablespace Repository

The following procedures in the DBMS_STREAMS_TABLESPACE_ADM package can create a tablespace repository, add versioned tablespace sets to a tablespace repository, and copy versioned tablespace sets from a tablespace repository:

	
ATTACH_TABLESPACES: This procedure copies a version of a tablespace set from a tablespace repository and attaches the tablespaces to a database.

	
CLONE_TABLESPACES: This procedure adds a new version of a tablespace set to a tablespace repository by copying the tablespace set from a database. The tablespaces in the tablespace set remain part of the database from which they were copied.

	
DETACH_TABLESPACES: This procedure adds a new version of a tablespace set to a tablespace repository by moving the tablespace set from a database to the repository. The tablespaces in the tablespace set are dropped from the database from which they were copied.

This section illustrates how to use a tablespace repository with an example scenario. In the scenario, the goal is to run quarterly reports on the sales tablespaces (sales_tbs1 and sales_tbs2). Sales are recorded in these tablespaces in the inst1.example.com database. The example clones the tablespaces quarterly and stores a new version of the tablespaces in the tablespace repository. The tablespace repository also resides in the inst1.example.com database. When a specific version of the tablespace set is required to run reports at a reporting database, it is copied from the tablespace repository and attached to the reporting database.

In this example scenario, the following databases are the reporting databases:

	
The reporting database inst2.example.com shares a file system with the inst1.example.com database. Also, the reports that are run on inst2.example.com might make changes to the tablespace. Therefore, the tablespaces are made read/write at inst2.example.com, and, when the reports are complete, a new version of the tablespace files is stored in a separate directory from the original version of the tablespace files.

	
The reporting system inst3.example.com does not share a file system with the inst1.example.com database. The reports that are run on inst3.example.com do not make any changes to the tablespace. Therefore, the tablespaces remain read-only at inst3.example.com, and, when the reports are complete, the original version of the tablespace files remains in a single directory.

The following sections describe how to create and populate the tablespace repository and how to use the tablespace repository to run reports at the other databases:

	
Creating and Populating a Tablespace Repository

	
Using a Tablespace Repository for Remote Reporting with a Shared File System

	
Using a Tablespace Repository for Remote Reporting without a Shared File System

These examples must be run by an administrative user with the necessary privileges to run the procedures listed previously.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about these procedures and the privileges required to run them

Creating and Populating a Tablespace Repository

This example creates a tablespaces repository and adds a new version of a tablespace set to the repository after each quarter. The tablespace set consists of the sales tablespaces for a business: sales_tbs1 and sales_tbs2.

Figure 36-1 provides an overview of the tablespace repository created in this example:

Figure 36-1 Example Tablespace Repository

[image: Description of Figure 36-1 follows]

Description of "Figure 36-1 Example Tablespace Repository"

The following table shows the tablespace set versions created in this example, their directory objects, and the corresponding file system directory for each directory object.

	Version	Directory Object	Corresponding File System Directory
	v_q1fy2005	q1fy2005	/home/sales/q1fy2005
	v_q2fy2005	q2fy2005	/home/sales/q2fy2005

This example makes the following assumptions:

	
The inst1.example.com database exists.

	
The sales_tbs1 and sales_tbs2 tablespaces exist in the inst1.example.com database.

The following steps create and populate a tablespace repository:

	
Connect as an administrative user to the database where the sales tablespaces are modified with new sales data. In this example, connect to the inst1.example.com database.

The administrative user must have the necessary privileges to run the procedures in the DBMS_STREAMS_TABLESPACE_ADM package and must have the necessary privileges to create directory objects.

See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.

	
Create a directory object for the first quarter in fiscal year 2005 on inst1.example.com:

CREATE OR REPLACE DIRECTORY q1fy2005 AS '/home/sales/q1fy2005';

The specified file system directory must exist when you create the directory object.

	
Create a directory object that corresponds to the directory that contains the data files for the tablespaces in the inst1.example.com database. For example, if the data files for the tablespaces are in the /orc/inst1/dbs directory, then create a directory object that corresponds to this directory:

CREATE OR REPLACE DIRECTORY dbfiles_inst1 AS '/orc/inst1/dbs';

	
Clone the tablespace set and add the first version of the tablespace set to the tablespace repository:

DECLARE
 tbs_set DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 tbs_set(1) := 'sales_tbs1';
 tbs_set(2) := 'sales_tbs2';
 DBMS_STREAMS_TABLESPACE_ADM.CLONE_TABLESPACES(
 tablespace_names => tbs_set,
 tablespace_directory_object => 'q1fy2005',
 file_group_name => 'strmadmin.sales',
 version_name => 'v_q1fy2005');
END;
/

The sales file group is created automatically if it does not exist.

	
When the second quarter in fiscal year 2005 is complete, create a directory object for the second quarter in fiscal year 2005:

CREATE OR REPLACE DIRECTORY q2fy2005 AS '/home/sales/q2fy2005';

The specified file system directory must exist when you create the directory object.

	
Clone the tablespace set and add the next version of the tablespace set to the tablespace repository at the inst1.example.com database:

DECLARE
 tbs_set DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 tbs_set(1) := 'sales_tbs1';
 tbs_set(2) := 'sales_tbs2';
 DBMS_STREAMS_TABLESPACE_ADM.CLONE_TABLESPACES(
 tablespace_names => tbs_set,
 tablespace_directory_object => 'q2fy2005',
 file_group_name => 'strmadmin.sales',
 version_name => 'v_q2fy2005');
END;
/

Steps 5 and 6 can be repeated whenever a quarter ends to store a version of the tablespace set for each quarter. Each time, create a directory object to store the tablespace files for the quarter, and specify a unique version name for the quarter.

Using a Tablespace Repository for Remote Reporting with a Shared File System

This example runs reports at inst2.example.com on specific versions of the sales tablespaces stored in a tablespace repository at inst1.example.com. These two databases share a file system, and the reports that are run on inst2.example.com might make changes to the tablespace. Therefore, the tablespaces are made read/write at inst2.example.com. When the reports are complete, a new version of the tablespace files is stored in a separate directory from the original version of the tablespace files.

Figure 36-2 provides an overview of how tablespaces in a tablespace repository are attached to a different database in this example:

Figure 36-2 Attaching Tablespaces with a Shared File System

[image: Description of Figure 36-2 follows]

Description of "Figure 36-2 Attaching Tablespaces with a Shared File System"

Figure 36-3 provides an overview of how tablespaces are detached and placed in a tablespace repository in this example:

Figure 36-3 Detaching Tablespaces with a Shared File System

[image: Description of Figure 36-3 follows]

Description of "Figure 36-3 Detaching Tablespaces with a Shared File System"

The following table shows the tablespace set versions in the tablespace repository when this example is complete. It shows the directory object for each version and the corresponding file system directory for each directory object. The versions that are new are created in this example. The versions that existed before this example were created in "Creating and Populating a Tablespace Repository".

	Version	Directory Object	Corresponding File System Directory	New?
	v_q1fy2005	q1fy2005	/home/sales/q1fy2005	No
	v_q1fy2005_r	q1fy2005_r	/home/sales/q1fy2005_r	Yes
	v_q2fy2005	q2fy2005	/home/sales/q2fy2005	No
	v_q2fy2005_r	q2fy2005_r	/home/sales/q2fy2005_r	Yes

This example makes the following assumptions:

	
The inst1.example.com and inst2.example.com databases exist.

	
The inst1.example.com and inst2.example.com databases can access a shared file system.

	
Networking is configured between the databases so that these databases can communicate with each other.

	
A tablespace repository that contains a version of the sales tablespaces (sales_tbs1 and sales_tbs2) for various quarters exists in the inst1.example.com database. This tablespace repository was created and populated in the example "Creating and Populating a Tablespace Repository".

Complete the following steps:

	
In SQL*Plus, connect to inst1.example.com as an administrative user.

The administrative user must have the necessary privileges to create directory objects.

See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.

	
Create a directory object that will store the tablespace files for the first quarter in fiscal year 2005 on inst1.example.com after the inst2.example.com database has completed reporting on this quarter:

CREATE OR REPLACE DIRECTORY q1fy2005_r AS '/home/sales/q1fy2005_r';

The specified file system directory must exist when you create the directory objects.

	
Connect to the inst2.example.com database as an administrative user.

The administrative user must have the necessary privileges to run the procedures in the DBMS_STREAMS_TABLESPACE_ADM package, create directory objects, and create database links.

	
Create two directory objects for the first quarter in fiscal year 2005 on inst2.example.com. These directory objects must have the same names and correspond to the same directories on the shared file system as the directory objects used by the tablespace repository in the inst1.example.com database for the first quarter:

CREATE OR REPLACE DIRECTORY q1fy2005 AS '/home/sales/q1fy2005';

CREATE OR REPLACE DIRECTORY q1fy2005_r AS '/home/sales/q1fy2005_r';

	
Create a database link from inst2.example.com to the inst1.example.com database. For example:

CREATE DATABASE LINK inst1.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'inst1.example.com';

	
Attach the tablespace set to the inst2.example.com database from the strmadmin.sales file group in the inst1.example.com database:

DECLARE
 tbs_set DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 DBMS_STREAMS_TABLESPACE_ADM.ATTACH_TABLESPACES(
 file_group_name => 'strmadmin.sales',
 version_name => 'v_q1fy2005',
 datafiles_directory_object => 'q1fy2005_r',
 repository_db_link => 'inst1.example.com',
 tablespace_names => tbs_set);
END;
/

Notice that q1fy2005_r is specified for the datafiles_directory_object parameter. Therefore, the data files for the tablespaces and the export dump file are copied from the /home/sales/q1fy2005 location to the /home/sales/q1fy2005_r location by the procedure. The attached tablespaces in the inst2.example.com database use the data files in the /home/sales/q1fy2005_r location. The Data Pump import log file also is placed in this directory.

The attached tablespaces use the data files in the /home/sales/q1fy2005_r location. However, the v_q1fy2005 version of the tablespaces in the tablespace repository consists of the files in the original /home/sales/q1fy2005 location.

	
Make the tablespaces read/write at inst2.example.com:

ALTER TABLESPACE sales_tbs1 READ WRITE;

ALTER TABLESPACE sales_tbs2 READ WRITE;

	
Run the reports on the data in the sales tablespaces at the inst2.example.com database. The reports make changes to the tablespaces.

	
Detach the version of the tablespace set for the first quarter of 2005 from the inst2.example.com database:

DECLARE
 tbs_set DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 tbs_set(1) := 'sales_tbs1';
 tbs_set(2) := 'sales_tbs2';
 DBMS_STREAMS_TABLESPACE_ADM.DETACH_TABLESPACES(
 tablespace_names => tbs_set,
 export_directory_object => 'q1fy2005_r',
 file_group_name => 'strmadmin.sales',
 version_name => 'v_q1fy2005_r',
 repository_db_link => 'inst1.example.com');
END;
/

Only one version of a tablespace set can be attached to a database at a time. Therefore, the version of the sales tablespaces for the first quarter of 2005 must be detached from inst2.example.com before the version of this tablespace set for the second quarter of 2005 can be attached.

Also, notice that the specified export_directory_object is q1fy2005_r, and that the version_name is v_q1fy2005_r. After the detach operation, there are two versions of the tablespace files for the first quarter of 2005 stored in the tablespace repository on inst1.example.com: one version of the tablespace before reporting and one version after reporting. These two versions have different version names and are stored in different directory objects.

	
Connect to the inst1.example.com database as an administrative user.

	
Create a directory object that will store the tablespace files for the second quarter in fiscal year 2005 on inst1.example.com after the inst2.example.com database has completed reporting on this quarter:

CREATE OR REPLACE DIRECTORY q2fy2005_r AS '/home/sales/q2fy2005_r';

The specified file system directory must exist when you create the directory object.

	
Connect to the inst2.example.com database as an administrative user.

	
Create two directory objects for the second quarter in fiscal year 2005 at inst2.example.com. These directory objects must have the same names and correspond to the same directories on the shared file system as the directory objects used by the tablespace repository in the inst1.example.com database for the second quarter:

CREATE OR REPLACE DIRECTORY q2fy2005 AS '/home/sales/q2fy2005';

CREATE OR REPLACE DIRECTORY q2fy2005_r AS '/home/sales/q2fy2005_r';

	
Attach the tablespace set for the second quarter of 2005 to the inst2.example.com database from the sales file group in the inst1.example.com database:

DECLARE
 tbs_set DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 DBMS_STREAMS_TABLESPACE_ADM.ATTACH_TABLESPACES(
 file_group_name => 'strmadmin.sales',
 version_name => 'v_q2fy2005',
 datafiles_directory_object => 'q2fy2005_r',
 repository_db_link => 'inst1.example.com',
 tablespace_names => tbs_set);
END;
/

	
Make the tablespaces read/write at inst2.example.com:

ALTER TABLESPACE sales_tbs1 READ WRITE;

ALTER TABLESPACE sales_tbs2 READ WRITE;

	
Run the reports on the data in the sales tablespaces at the inst2.example.com database. The reports make changes to the tablespace.

	
Detach the version of the tablespace set for the second quarter of 2005 from inst2.example.com:

DECLARE
 tbs_set DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 tbs_set(1) := 'sales_tbs1';
 tbs_set(2) := 'sales_tbs2';
 DBMS_STREAMS_TABLESPACE_ADM.DETACH_TABLESPACES(
 tablespace_names => tbs_set,
 export_directory_object => 'q2fy2005_r',
 file_group_name => 'strmadmin.sales',
 version_name => 'v_q2fy2005_r',
 repository_db_link => 'inst1.example.com');
END;
/

Steps 11-17 can be repeated whenever a quarter ends to run reports on each quarter.

Using a Tablespace Repository for Remote Reporting without a Shared File System

This example runs reports at inst3.example.com on specific versions of the sales tablespaces stored in a tablespace repository at inst1.example.com. These two databases do not share a file system, and the reports that are run on inst3.example.com do not make any changes to the tablespace. Therefore, the tablespaces remain read-only at inst3.example.com, and, when the reports are complete, there is no need for a new version of the tablespace files in the tablespace repository on inst1.example.com.

Figure 36-4 provides an overview of how tablespaces in a tablespace repository are attached to a different database in this example:

Figure 36-4 Attaching Tablespaces without a Shared File System

[image: Description of Figure 36-4 follows]

Description of "Figure 36-4 Attaching Tablespaces without a Shared File System"

The following table shows the directory objects used in this example. It shows the existing directory objects that are associated with tablespace repository versions on the inst1.example.com database, and it shows the new directory objects created on the inst3.example.com database in this example. The directory objects that existed before this example were created in "Creating and Populating a Tablespace Repository".

	Directory Object	Database	Version	Corresponding File System Directory	New?
	q1fy2005	inst1.example.com	v_q1fy2005	/home/sales/q1fy2005	No
	q2fy2005	inst1.example.com	v_q2fy2005	/home/sales/q2fy2005	No
	q1fy2005	inst3.example.com	Not associated with a tablespace repository version	/usr/sales_data/fy2005q1	Yes
	q2fy2005	inst3.example.com	Not associated with a tablespace repository version	/usr/sales_data/fy2005q2	Yes

This example makes the following assumptions:

	
The inst1.example.com and inst3.example.com databases exist.

	
The inst1.example.com and inst3.example.com databases do not share a file system.

	
Networking is configured between the databases so that they can communicate with each other.

	
The sales tablespaces (sales_tbs1 and sales_tbs2) exist in the inst1.example.com database.

Complete the following steps:

	
In SQL*Plus, connect to the inst3.example.com database as an administrative user.

The administrative user must have the necessary privileges to run the procedures in the DBMS_STREAMS_TABLESPACE_ADM package, create directory objects, and create database links.

See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.

	
Create a database link from inst3.example.com to the inst1.example.com database. For example:

CREATE DATABASE LINK inst1.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'inst1.example.com';

	
Create a directory object for the first quarter in fiscal year 2005 on inst3.example.com. Although inst3.example.com is a remote database that does not share a file system with inst1.example.com, the directory object must have the same name as the directory object used by the tablespace repository in the inst1.example.com database for the first quarter. However, the directory paths of the directory objects on inst1.example.com and inst3.example.com do not need to match.

CREATE OR REPLACE DIRECTORY q1fy2005 AS '/usr/sales_data/fy2005q1';

The specified file system directory must exist when you create the directory object.

	
Connect to the inst1.example.com database as an administrative user.

The administrative user must have the necessary privileges to run the procedures in the DBMS_FILE_TRANSFER package and create database links. This example uses the DBMS_FILE_TRANSFER package to copy the tablespace files from inst1.example.com to inst3.example.com. If some other method is used to transfer the files, then the privileges to run the procedures in the DBMS_FILE_TRANSFER package are not required.

	
Create a database link from inst1.example.com to the inst3.example.com database. For example:

CREATE DATABASE LINK inst3.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'inst3.example.com';

This database link will be used to transfer files to the inst3.example.com database in Step 6.

	
Copy the data file for each tablespace and the export dump file for the first quarter to the inst3.example.com database:

BEGIN
 DBMS_FILE_TRANSFER.PUT_FILE(
 source_directory_object => 'q1fy2005',
 source_file_name => 'sales_tbs1.dbf',
 destination_directory_object => 'q1fy2005',
 destination_file_name => 'sales_tbs1.dbf',
 destination_database => 'inst3.example.com');
 DBMS_FILE_TRANSFER.PUT_FILE(
 source_directory_object => 'q1fy2005',
 source_file_name => 'sales_tbs2.dbf',
 destination_directory_object => 'q1fy2005',
 destination_file_name => 'sales_tbs2.dbf',
 destination_database => 'inst3.example.com');
 DBMS_FILE_TRANSFER.PUT_FILE(
 source_directory_object => 'q1fy2005',
 source_file_name => 'expdat16.dmp',
 destination_directory_object => 'q1fy2005',
 destination_file_name => 'expdat16.dmp',
 destination_database => 'inst3.example.com');
END;
/

Before you run the PUT_FILE procedure for the export dump file, you can query the DBA_FILE_GROUP_FILES data dictionary view to determine the name and directory object of the export dump file. For example, run the following query to list this information for the export dump file in the v_q1fy2005 version:

COLUMN FILE_NAME HEADING 'Export Dump|File Name' FORMAT A35
COLUMN FILE_DIRECTORY HEADING 'Directory Object' FORMAT A35

SELECT FILE_NAME, FILE_DIRECTORY FROM DBA_FILE_GROUP_FILES
 where FILE_GROUP_NAME = 'SALES' AND
 VERSION_NAME = 'V_Q1FY2005';

	
Connect to the inst3.example.com database as an administrative user.

	
Attach the tablespace set for the first quarter of 2005 to the inst3.example.com database from the sales file group in the inst1.example.com database:

DECLARE
 tbs_set DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 DBMS_STREAMS_TABLESPACE_ADM.ATTACH_TABLESPACES(
 file_group_name => 'strmadmin.sales',
 version_name => 'v_q1fy2005',
 datafiles_directory_object => 'q1fy2005',
 repository_db_link => 'inst1.example.com',
 tablespace_names => tbs_set);
END;
/

The tablespaces are read-only when they are attached. Because the reports on inst3.example.com do not change the tablespaces, the tablespaces can remain read-only.

	
Run the reports on the data in the sales tablespaces at the inst3.example.com database.

	
Drop the tablespaces and their contents at inst3.example.com:

DROP TABLESPACE sales_tbs1 INCLUDING CONTENTS;

DROP TABLESPACE sales_tbs2 INCLUDING CONTENTS;

The tablespaces are dropped from the inst3.example.com database, but the tablespace files remain in the directory object.

	
Create a directory object for the second quarter in fiscal year 2005 on inst3.example.com. The directory object must have the same name as the directory object used by the tablespace repository in the inst1.example.com database for the second quarter. However, the directory paths of the directory objects on inst1.example.com and inst3.example.com do not need to match.

CREATE OR REPLACE DIRECTORY q2fy2005 AS '/usr/sales_data/fy2005q2';

The specified file system directory must exist when you create the directory object.

	
Connect to the inst1.example.com database as an administrative user.

	
Copy the data file and the export dump file for the second quarter to the inst3.example.com database:

BEGIN
 DBMS_FILE_TRANSFER.PUT_FILE(
 source_directory_object => 'q2fy2005',
 source_file_name => 'sales_tbs1.dbf',
 destination_directory_object => 'q2fy2005',
 destination_file_name => 'sales_tbs1.dbf',
 destination_database => 'inst3.example.com');
 DBMS_FILE_TRANSFER.PUT_FILE(
 source_directory_object => 'q2fy2005',
 source_file_name => 'sales_tbs2.dbf',
 destination_directory_object => 'q2fy2005',
 destination_file_name => 'sales_tbs2.dbf',
 destination_database => 'inst3.example.com');
 DBMS_FILE_TRANSFER.PUT_FILE(
 source_directory_object => 'q2fy2005',
 source_file_name => 'expdat18.dmp',
 destination_directory_object => 'q2fy2005',
 destination_file_name => 'expdat18.dmp',
 destination_database => 'inst3.example.com');
END;
/

Before you run the PUT_FILE procedure for the export dump file, you can query the DBA_FILE_GROUP_FILES data dictionary view to determine the name and directory object of the export dump file. For example, run the following query to list this information for the export dump file in the v_q2fy2005 version:

COLUMN FILE_NAME HEADING 'Export Dump|File Name' FORMAT A35
COLUMN FILE_DIRECTORY HEADING 'Directory Object' FORMAT A35

SELECT FILE_NAME, FILE_DIRECTORY FROM DBA_FILE_GROUP_FILES
 where FILE_GROUP_NAME = 'SALES' AND
 VERSION_NAME = 'V_Q2FY2005';

	
Connect to the inst3.example.com database as an administrative user.

	
Attach the tablespace set for the second quarter of 2005 to the inst3.example.com database from the sales file group in the inst1.example.com database:

DECLARE
 tbs_set DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 DBMS_STREAMS_TABLESPACE_ADM.ATTACH_TABLESPACES(
 file_group_name => 'strmadmin.sales',
 version_name => 'v_q2fy2005',
 datafiles_directory_object => 'q2fy2005',
 repository_db_link => 'inst1.example.com',
 tablespace_names => tbs_set);
END;
/

The tablespaces are read-only when they are attached. Because the reports on inst3.example.com do not change the tablespace, the tablespaces can remain read-only.

	
Run the reports on the data in the sales tablespaces at the inst3.example.com database.

	
Drop the tablespaces and their contents:

DROP TABLESPACE sales_tbs1 INCLUDING CONTENTS;

DROP TABLESPACE sales_tbs2 INCLUDING CONTENTS;

The tablespaces are dropped from the inst3.example.com database, but the tablespace files remain in the directory object.

Steps 11-17 can be repeated whenever a quarter ends to run reports on each quarter.

Using a File Group Repository

The DBMS_FILE_GROUP package can create a file group repository, add versioned file groups to the repository, and copy versioned file groups from the repository. This section illustrates how to use a file group repository with a scenario that stores reports in the repository.

In this scenario, a business sells books and music over the internet. The business runs weekly reports on the sales data in the inst1.example.com database and stores these reports in two HTML files on a computer file system. The book_sales.htm file contains the report for book sales, and the music_sales.htm file contains the report for music sales. The business wants to store these weekly reports in a file group repository at the inst2.example.com remote database. Every week, the two reports are generated on the inst1.example.com database, transferred to the computer system running the inst2.example.com database, and added to the repository as a file group version. The file group repository stores all of the file group versions that contain the reports for each week.

Figure 36-5 provides an overview of the file group repository created in this example:

Figure 36-5 Example File Group Repository

[image: Description of Figure 36-5 follows]

Description of "Figure 36-5 Example File Group Repository"

The benefits of the file group repository are that it stores metadata about each file group version in the data dictionary and provides a standard interface for managing the file group versions. For example, when the business must view a specific sales report, it can query the data dictionary in the inst2.example.com database to determine the location of the report on the computer file system.

The following table shows the directory objects created in this example. It shows the directory object created on the inst1.example.com database to store new reports, and it shows the directory objects that are associated with file group repository versions on the inst2.example.com database.

	Directory Object	Database	Version	Corresponding File System Directory
	sales_reports	inst1.example.com	Not associated with a file group repository version	/home/sales_reports
	sales_reports1	inst2.example.com	sales_reports_v1	/home/sales_reports/fg1
	sales_reports2	inst2.example.com	sales_reports_v1	/home/sales_reports/fg2

This example makes the following assumptions:

	
The inst1.example.com and inst2.example.com databases exist.

	
The inst1.example.com and inst2.example.com databases do not share a file system.

	
Networking is configured between the databases so that they can communicate with each other.

	
The inst1.example.com database runs reports on the books and music sales data in the database and stores the reports as HTML files on the computer file system.

The following steps configure and populate a file group repository at a remote database:

	
Connect as an administrative user to the remote database that will contain the file group repository. In this example, connect to the inst2.example.com database.

The administrative user must have the necessary privileges to create directory objects and run the procedures in the DBMS_FILE_GROUP package.

See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.

	
Create a directory object to hold the first version of the file group:

CREATE OR REPLACE DIRECTORY sales_reports1 AS '/home/sales_reports/fg1';

The specified file system directory must exist when you create the directory object.

	
Connect as an administrative user to the database that runs the reports. In this example, connect to the inst1.example.com database.

The administrative user must have the necessary privileges to create directory objects.

	
Create a directory object to hold the latest reports:

CREATE OR REPLACE DIRECTORY sales_reports AS '/home/sales_reports';

The specified file system directory must exist when you create the directory object.

	
Create a database link to the inst2.example.com database:

CREATE DATABASE LINK inst2.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'inst2.example.com';

	
Run the reports on the inst1.example.com database. Running the reports should place the book_sales.htm and music_sales.htm files in the directory specified in Step 4.

	
Transfer the report files from the computer system running the inst1.example.com database to the computer system running the inst2.example.com database using file transfer protocol (FTP) or some other method. Ensure that the files are copied to the directory that corresponds to the directory object created in Step 2.

	
Connect as an administrative user to the remote database that will contain the file group repository. In this example, connect to the inst2.example.com database.

	
Create the file group repository that will contain the reports:

BEGIN
 DBMS_FILE_GROUP.CREATE_FILE_GROUP(
 file_group_name => 'strmadmin.reports');
END;
/

The reports file group repository is created with the following default properties:

	
The minimum number of versions in the repository is 2. When the file group is purged, the number of versions cannot drop below 2.

	
The maximum number of versions is infinite. A file group version is not purged because of the number of versions in the file group in the repository.

	
The retention days is infinite. A file group version is not purged because of the amount of time it has been in the repository.

	
Create the first version of the file group:

BEGIN
 DBMS_FILE_GROUP.CREATE_VERSION(
 file_group_name => 'strmadmin.reports',
 version_name => 'sales_reports_v1',
 comments => 'Sales reports for week of 06-FEB-2005');
END;
/

	
Add the report files to the file group version:

BEGIN
 DBMS_FILE_GROUP.ADD_FILE(
 file_group_name => 'strmadmin.reports',
 file_name => 'book_sales.htm',
 file_type => 'HTML',
 file_directory => 'sales_reports1',
 version_name => 'sales_reports_v1');
 DBMS_FILE_GROUP.ADD_FILE(
 file_group_name => 'strmadmin.reports',
 file_name => 'music_sales.htm',
 file_type => 'HTML',
 file_directory => 'sales_reports1',
 version_name => 'sales_reports_v1');
END;
/

	
Create a directory object on inst2.example.com to hold the next version of the file group:

CREATE OR REPLACE DIRECTORY sales_reports2 AS '/home/sales_reports/fg2';

The specified file system directory must exist when you create the directory object.

	
At the end of the next week, run the reports on the inst1.example.com database. Running the reports should place new book_sales.htm and music_sales.htm files in the directory specified in Step 4. If necessary, remove the old files from this directory before running the reports.

	
Transfer the report files from the computer system running the inst1.example.com database to the computer system running the inst2.example.com database using file transfer protocol (FTP) or some other method. Ensure that the files are copied to the directory that corresponds to the directory object created in Step 12.

	
In SQL*Plus, connect to the inst2.example.com database as an administrative user.

	
Create the next version of the file group:

BEGIN
 DBMS_FILE_GROUP.CREATE_VERSION(
 file_group_name => 'strmadmin.reports',
 version_name => 'sales_reports_v2',
 comments => 'Sales reports for week of 13-FEB-2005');
END;
/

	
Add the report files to the file group version:

BEGIN
 DBMS_FILE_GROUP.ADD_FILE(
 file_group_name => 'strmadmin.reports',
 file_name => 'book_sales.htm',
 file_type => 'HTML',
 file_directory => 'sales_reports2',
 version_name => 'sales_reports_v2');
 DBMS_FILE_GROUP.ADD_FILE(
 file_group_name => 'strmadmin.reports',
 file_name => 'music_sales.htm',
 file_type => 'HTML',
 file_directory => 'sales_reports2',
 version_name => 'sales_reports_v2');
END;
/

The file group repository now contains two versions of the file group that contains the sales report files. Repeat steps 12-17 to add new versions of the file group to the repository.

	
See Also:

	
"File Group Repository"

	
Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_FILE_GROUP package

D Online Database Upgrade and Maintenance with Oracle Streams

This appendix describes how to use Oracle Streams to perform a database upgrade to the current release of Oracle Database from one of the following releases:

	
Oracle Database 10g Release 2 (10.2)

	
Oracle Database 11g Release 1 (11.1)

This appendix also describes how to perform some maintenance operations with Oracle Streams on an Oracle Database 11g Release 2 (11.2) database. These maintenance operations include migrating an Oracle database to a different platform or character set, upgrading user-created applications, and applying Oracle Database patches or patch sets.

The upgrade and maintenance operations described in this appendix use the features of Oracle Streams to achieve little or no database down time.

The following topics describe performing online database maintenance with Oracle Streams:

	
Overview of Using Oracle Streams for Upgrade and Maintenance Operations

	
Preparing for a Database Upgrade or Maintenance Operation

	
Performing a Database Upgrade or Maintenance Operation Using Oracle Streams

	
See Also:

Appendix E, "Online Upgrade of a 10.1 or Earlier Database with Oracle Streams" for instructions on performing an upgrade of a release before Oracle Database 10g Release 2 (10.2)

Overview of Using Oracle Streams for Upgrade and Maintenance Operations

Database upgrades can require substantial database down time. The following maintenance operations also typically require substantial database down time:

	
Migrating a database to a different platform

	
Migrating a database to a different character set

	
Modifying database schema objects to support upgrades to user-created applications

	
Applying an Oracle Database software patch or patch set

You can achieve these upgrade and maintenance operations with little or no down time by using the features of Oracle Streams. To do so, you use Oracle Streams to configure a replication environment with the following databases:

	
Source Database: The original database that is being maintained.

	
Capture Database: The database where a capture process captures changes made to the source database during the maintenance operation.

	
Destination Database: The copy of the source database where an apply process applies changes made to the source database during the maintenance operation.

Specifically, you can use the following general steps to perform the upgrade or maintenance operation while the database is online:

	
Create an empty destination database.

	
Configure an Oracle Streams replication environment where the original database is the source database and a copy of the database is the destination database. The PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures in the DBMS_STREAMS_ADM package configure the Oracle Streams replication environment.

	
Perform the upgrade or maintenance operation on the destination database. During this time the original source database is available online, and changes to the original source database are being captured by a capture process.

	
Use Oracle Streams to apply the changes made to the source database at the destination database.

	
When the destination database has caught up with the changes made at the source database, take the source database offline and make the destination database available for applications and users.

Figure D-1 provides an overview of this process.

Figure D-1 Online Database Upgrade and Maintenance with Oracle Streams

[image: Description of Figure D-1 follows]

Description of "Figure D-1 Online Database Upgrade and Maintenance with Oracle Streams"

The Capture Database During the Upgrade or Maintenance Operation

During the upgrade or maintenance operation, the capture database is the database where the capture process is created. A local capture process can be created at the source database during the maintenance operation, or a downstream capture process can be created at the destination database or at a third database. If the destination database is the capture database, then a propagation from the capture database to the destination database is not needed. A downstream capture process reduces the resources required at the source database during the maintenance operation.

	
Note:

	
Before you begin the database upgrade or maintenance operation with Oracle Streams, decide which database will be the capture database.

	
If the RMAN DUPLICATE or CONVERT DATABASE command is used for database instantiation, then the destination database cannot be the capture database.

	
See Also:

	
"Local Capture and Downstream Capture"

	
"Deciding Which Utility to Use for Instantiation"

Assumptions for the Database Being Upgraded or Maintained

The instructions in this appendix assume that all of the following statements are true for the database being upgraded or maintained:

	
The database is not part of an existing Oracle Streams environment.

	
The database is not part of an existing logical standby environment.

	
The database is not part of an existing Advanced Replication environment.

	
No tables at the database are master tables for materialized views in other databases.

	
No messages are enqueued into user-created queues during the upgrade or maintenance operation.

Considerations for Job Slaves and PL/SQL Package Subprograms

If possible, ensure that no job slaves are created, modified, or deleted during the upgrade or maintenance operation, and that no Oracle-supplied PL/SQL package subprograms are invoked during the operation that modify both user data and data dictionary metadata at the same time. The following packages contain subprograms that modify both user data and data dictionary metadata at the same time: DBMS_RLS, DBMS_STATS, and DBMS_JOB.

It might be possible to perform such actions on the database if you ensure that the same actions are performed on the source database and destination database in Steps 19 and 20 in "Performing a Database Upgrade or Maintenance Operation Using Oracle Streams". For example, if a PL/SQL procedure gathers statistics on the source database during the maintenance operation, then the same PL/SQL procedure should be invoked at the destination database in Step 20.

Unsupported Database Objects Are Excluded

The PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures in the DBMS_STREAMS_ADM package include the following parameters:

	
exclude_schemas

	
exclude_flags

These parameters specify which database objects to exclude from the Oracle Streams configuration. The examples in this appendix set these parameters to the following values:

exclude_schemas => '*',
exclude_flags => DBMS_STREAMS_ADM.EXCLUDE_FLAGS_UNSUPPORTED +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DML +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DDL);

These values exclude any database objects that are not supported by Oracle Streams. The asterisk (*) specified for exclude_schemas indicates that some database objects in every schema in the database might be excluded from the replication environment. The value specified for the exclude_flags parameter indicates that DML and DDL changes for all unsupported database objects are excluded from the replication environment. Rules are placed in the negative rule sets for the capture processes to exclude these database objects.

To list unsupported database objects, query the DBA_STREAMS_UNSUPPORTED data dictionary view at the source database. If you use these parameter settings, then changes to the database objects listed in this view are not maintained by Oracle Streams during the maintenance operation. Therefore, Step 7 in "Task 1: Beginning the Operation" instructs you to ensure that no changes are made to these database objects during the database upgrade or maintenance operation.

	
Note:

"Preparing for Upgrade or Maintenance of a Database with User-Defined Types" discusses a method for retaining changes to tables that contain user-defined types during the maintenance operation. If you are using this method, then tables that contain user-defined types can remain open during the maintenance operation.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about the exclude_schemas and exclude_flags parameters

Preparing for a Database Upgrade or Maintenance Operation

The following sections describe tasks to complete before starting the database upgrade or maintenance operation with Oracle Streams:

	
Preparing for Downstream Capture

	
Preparing for Upgrade or Maintenance of a Database with User-Defined Types

	
Preparing for Upgrades to User-Created Applications

	
Deciding Whether to Configure Oracle Streams Directly or Generate a Script

	
Deciding Which Utility to Use for Instantiation

Preparing for Downstream Capture

If you decided that the destination database or a third database will be the capture database, then you must prepare for downstream capture by configuring log file copying from the source database to the capture database. If you decided that the source database will be the capture database, then log file copying is not required. See "The Capture Database During the Upgrade or Maintenance Operation" for information about the decision.

Complete the following steps to prepare the source database to copy its redo log files to the capture database, and to prepare the capture database to accept these redo log files:

	
Configure Oracle Net so that the source database can communicate with the capture database.

	
See Also:

Oracle Database Net Services Administrator's Guide

	
Configure authentication at both databases to support the transfer of redo data.

Redo transport sessions are authenticated using either the Secure Sockets Layer (SSL) protocol or a remote login password file. If the source database has a remote login password file, then copy it to the appropriate directory on the downstream capture database system. The password file must be the same at the source database and the downstream capture database.

	
See Also:

Oracle Data Guard Concepts and Administration for detailed information about authentication requirements for redo transport

	
At the source database, set the following initialization parameters to configure redo transport services to transmit redo data from the source database to the downstream database:

	
LOG_ARCHIVE_DEST_n - Configure at least one LOG_ARCHIVE_DEST_n initialization parameter to transmit redo data to the downstream database. To do this, set the following attributes of this parameter:

	
SERVICE - Specify the network service name of the downstream database.

	
ASYNC or SYNC - Specify a redo transport mode.

The advantage of specifying ASYNC is that it results in little or no effect on the performance of the source database. ASYNC is recommended to avoid affecting source database performance if the downstream database or network is performing poorly.

The advantage of specifying SYNC is that redo data is sent to the downstream database faster then when ASYNC is specified. Also, specifying SYNC AFFIRM results in behavior that is similar to MAXIMUM AVAILABILITY standby protection mode. Note that specifying an ALTER DATABASE STANDBY DATABASE TO MAXIMIZE AVAILABILITY SQL statement has no effect on an Oracle Streams capture process.

	
NOREGISTER - Specify this attribute so that the location of the archived redo log files is not recorded in the downstream database control file.

	
VALID_FOR - Specify either (ONLINE_LOGFILE,PRIMARY_ROLE) or (ONLINE_LOGFILE,ALL_ROLES).

	
TEMPLATE - Specify a directory and format template for archived redo logs at the downstream database. The TEMPLATE attribute overrides the LOG_ARCHIVE_FORMAT initialization parameter settings at the downstream database. The TEMPLATE attribute is valid only with remote destinations. Ensure that the format uses all of the following variables at each source database: %t, %s, and %r.

	
DB_UNIQUE_NAME - The unique name of the downstream database. Use the name specified for the DB_UNIQUE_NAME initialization parameter at the downstream database.

The following example is a LOG_ARCHIVE_DEST_n setting that specifies a capture database (DBS2.EXAMPLE.COM):

LOG_ARCHIVE_DEST_2='SERVICE=DBS2.EXAMPLE.COM ASYNC NOREGISTER
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 TEMPLATE=/usr/oracle/log_for_dbs1/dbs1_arch_%t_%s_%r.log
 DB_UNIQUE_NAME=dbs2'

	
Tip:

Specify a value for the TEMPLATE attribute that keeps log files from a remote source database separate from local database log files. In addition, if the downstream database contains log files from multiple source databases, then the log files from each source database should be kept separate from each other.

	
LOG_ARCHIVE_DEST_STATE_n - Set this initialization parameter that corresponds with the LOG_ARCHIVE_DEST_n parameter for the downstream database to ENABLE.

For example, if the LOG_ARCHIVE_DEST_2 initialization parameter is set for the downstream database, then set the LOG_ARCHIVE_DEST_STATE_2 parameter in the following way:

LOG_ARCHIVE_DEST_STATE_2=ENABLE

	
LOG_ARCHIVE_CONFIG - Set the DB_CONFIG attribute in this initialization parameter to include the DB_UNIQUE_NAME of the source database and the downstream database.

For example, if the DB_UNIQUE_NAME of the source database is dbs1, and the DB_UNIQUE_NAME of the downstream database is dbs2, then specify the following parameter:

LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbs1,dbs2)'

By default, the LOG_ARCHIVE_CONFIG parameter enables a database to both send and receive redo.

	
See Also:

Oracle Database Reference and Oracle Data Guard Concepts and Administration for more information about these initialization parameters

	
At the downstream database, set the DB_CONFIG attribute in the LOG_ARCHIVE_CONFIG initialization parameter to include the DB_UNIQUE_NAME of the source database and the downstream database.

For example, if the DB_UNIQUE_NAME of the source database is dbs1, and the DB_UNIQUE_NAME of the downstream database is dbs2, then specify the following parameter:

LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbs1,dbs2)'

By default, the LOG_ARCHIVE_CONFIG parameter enables a database to both send and receive redo.

	
If you reset any initialization parameters while the instance is running at a database in Step 3 or Step 4, then you might want to reset them in the initialization parameter file as well, so that the new values are retained when the database is restarted.

If you did not reset the initialization parameters while the instance was running, but instead reset them in the initialization parameter file in Step 3 or Step 4, then restart the database. The source database must be open when it sends redo log files to the capture database because the global name of the source database is sent to the capture database only if the source database is open.

	
See Also:

"Overview of Using Oracle Streams for Upgrade and Maintenance Operations" for more information about the capture database

Preparing for Upgrade or Maintenance of a Database with User-Defined Types

User-defined types include object types, REF values, varrays, and nested tables. Currently, Oracle Streams capture processes and apply processes do not support user-defined types. This section discusses using Oracle Streams to perform an upgrade or maintenance operation on a database that has user-defined types.

One option is to ensure that no data manipulation language (DML) or data definition language (DDL) changes are made to the tables that contain user-defined types during the operation. In this case, these tables are instantiated at the destination database, and no changes are made to these tables during the entire operation. After the operation is complete, make the tables that contain user-defined types read/write at the destination database.

However, if tables that contain user-defined types must remain open during the operation, then use the following general steps to retain changes to these types during the operation:

	
At the source database, create one or more logging tables to store row changes to tables that include user-defined types. Each column in the logging table must use a data type that is supported by Oracle Streams.

	
At the source database, create a DML trigger that fires on the tables that contain the user-defined data types. The trigger converts each row change into relational equivalents and logs the modified row in a logging table created in Step 1.

	
Ensure that the capture process and propagation are configured to capture and, if necessary, propagate changes made to the logging table to the destination database. Changes to tables that contain user-defined types should not be captured or propagated. Therefore, ensure that the PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures include the logging tables and exclude the tables that contain user-defined types.

	
At the destination database, configure the apply process to use a DML handler that processes the changes to the logging tables. The DML handler reconstructs the user-defined types from the relational equivalents and applies the modified changes to the tables that contain user-defined types.

For instructions, go to the My Oracle Support (formerly OracleMetaLink) Web site using a Web browser:

http://support.oracle.com/

Database bulletin 556742.1 describes extended data type support for Oracle Streams.

	
See Also:

	
Oracle Database PL/SQL Language Reference for more information about creating triggers

	
"Managing a DML Handler"

Preparing for Upgrades to User-Created Applications

This section is relevant only if the operation entails upgrading user-created applications. During an upgrade of user-created applications, schema objects can be modified, and there might be logical dependencies that cannot be detected by the database alone. The following sections describe handling these issues during an application upgrade:

	
Handling Modifications to Schema Objects

	
Handling Logical Dependencies

Handling Modifications to Schema Objects

If you are upgrading user-created applications, then, typically, schema objects in the database change to support the upgraded applications. In Oracle Streams, row logical change records (LCRs) contain information about row changes that result from DML statements. A declarative rule-based transformation or DML handler can modify row LCRs captured from the source database redo log so that the row LCRs can be applied to the altered tables at the destination database.

A rule-based transformation is any modification to a message that results when a rule in a positive rule set evaluates to TRUE. Declarative rule-based transformations cover a common set of transformation scenarios for row LCRs. Declarative rule-based transformations are run internally without using PL/SQL. You specify such a transformation using a procedure in the DBMS_STREAMS_ADM package. A declarative rule-based transformation can modify row LCRs during capture, propagation, or apply.

A DML handler is either a collection of SQL statements or a user procedure that processes row LCRs resulting from DML statements at a source database. An Oracle Streams apply process at a destination database can pass row LCRs to a DML handler, and the DML handler can modify the row LCRs.

The process for upgrading user-created applications using Oracle Streams can involve modifying and creating the schema objects at the destination database after instantiation. You can use one or more declarative rule-based transformations and DML handlers at the destination database to process changes from the source database so that they apply to the modified schema objects correctly. Declarative rule-based transformations and DML handlers can be used during application upgrade to account for differences between the source database and destination database.

In general, declarative rule-based transformations are easier to use than DML handlers. Therefore, when modifications to row LCRs are required, try to configure a declarative rule-based transformation first. If a declarative rule-based transformation is not sufficient, then use a DML handler. If row LCRs for tables that contain one or more LOB columns must be modified, then you should use a procedure DML handler and LOB assembly.

Before you begin the database upgrade or maintenance operation, you should complete the following tasks to prepare your declarative rule-based transformations or DML handlers:

	
Learn about declarative rule-based transformations. See "Declarative Rule-Based Transformations".

	
Learn about DML handlers. See "Message Processing Options for an Apply Process".

	
Determine the declarative rule-based transformations and DML handlers you will need at your destination database. Your determination depends on the modifications to the schema objects required by your upgraded applications.

	
Create the SQL statements or the PL/SQL procedures that you will use for any DML handlers during the database maintenance operation. See "Managing a DML Handler" for information about creating the PL/SQL procedures.

	
If row LCRs for tables that contain one or more LOB columns must be modified, then learn about using LOB assembly. See Oracle Streams Replication Administrator's Guide.

	
Note:

Custom rule-based transformation can also be used to modify row LCRs during application upgrade. However, these modifications can be accomplished using DML handlers, and DML handlers are more efficient than custom rule-based transformations.

Handling Logical Dependencies

In some cases, an apply process requires additional information to detect dependencies in row LCRs that are being applied in parallel. During application upgrades, an apply process might require additional information to detect dependencies in the following situations:

	
The application, rather than the database, enforces logical dependencies.

	
Schema objects have been modified to support the application upgrade, and a DML handler will modify row LCRs to account for differences between the source database and destination database.

A virtual dependency definition is a description of a dependency that is used by an apply process to detect dependencies between transactions at a destination database. A virtual dependency definition is not described as a constraint in the destination database data dictionary. Instead, it is specified using procedures in the DBMS_APPLY_ADM package. Virtual dependency definitions enable an apply process to detect dependencies that it would not be able to detect by using only the constraint information in the data dictionary. After dependencies are detected, an apply process schedules LCRs and transactions in the correct order for apply.

If virtual dependency definitions are required for your application upgrade, then learn about virtual dependency definitions and plan to configure them during the application upgrade.

	
See Also:

"Apply Processes and Dependencies" for more information about virtual dependency definitions

Deciding Whether to Configure Oracle Streams Directly or Generate a Script

The PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures in the DBMS_STREAMS_ADM package configure the Oracle Streams replication environment during the upgrade or maintenance operation. These procedures can configure the Oracle Streams replication environment directly, or they can generate a script that configures the environment.

Using a procedure to configure replication directly is simpler than running a script, and the environment is configured immediately. However, you might choose to generate a script for the following reasons:

	
You want to review the actions performed by the procedure before configuring the environment.

	
You want to modify the script to customize the configuration.

To configure Oracle Streams directly when you run one of these procedures, set the perform_actions parameter to TRUE. The examples in this appendix assume that the procedures will configure Oracle Streams directly.

To generate a configuration script when you run one of these procedures, complete the following steps when you are instructed to run a procedure in this appendix:

	
In SQL*Plus, connect as the Oracle Streams administrator to database where you will run the procedure.

See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.

	
Create a directory object to store the script that will be generated by the procedure. For example:

CREATE DIRECTORY scripts_dir AS '/usr/scripts';

	
Run the procedure. Ensure that the following parameters are set to generate a script:

	
Set the perform_actions parameter to FALSE.

	
Set the script_name parameter to the name of the script you want to generate.

	
Set the script_directory_object parameter to the directory object into which you want to place the script. This directory object was created in Step 2.

	
Review or modify the script, if necessary.

	
In SQL*Plus, connect as the Oracle Streams administrator to database where you will run the procedure.

	
Run the generated script. For example:

@/usr/scripts/pre_instantiation.sql;

Deciding Which Utility to Use for Instantiation

Before you begin the database upgrade or maintenance operation, decide whether you want to use Export/Import utilities (Data Pump or original) or the Recovery Manager (RMAN) utility to instantiate the destination database during the operation. Consider the following factors when you make this decision:

	
If you are migrating the database to a different platform, then you can use either Export/Import or the RMAN CONVERT DATABASE command. The RMAN DUPLICATE command does not support migrating a database to a different platform.

	
If you are migrating the database to a different character set, then you must use Export/Import, and the new character set must be a superset of the old character set. The RMAN DUPLICATE and CONVERT DATABASE commands do not support migrating a database to a different character set.

	
If you are upgrading from a prior release of Oracle Database to Oracle Database 11g Release 2 (11.2), then consider these additional factors:

	
If RMAN is supported for the operation, then using RMAN for the instantiation might be faster than using Export/Import, especially if the database is large.

	
Oracle recommends that you do not use RMAN for instantiation in an environment where distributed transactions are possible. Doing so might cause in-doubt transactions that must be corrected manually.

	
If the RMAN DUPLICATE or CONVERT DATABASE command is used for database instantiation, then the destination database cannot be the capture database.

	
If you are upgrading from a prior release of Oracle Database to Oracle Database 11g Release 2 (11.2), then consider these additional factors:

	
If you use Export/Import, then you can make the destination database an Oracle Database 11g Release 2 (11.2) database at the beginning of the operation. Therefore, you do not need to upgrade the destination database after the instantiation.

	
If you use the RMAN DUPLICATE, then the database release of the destination database must be the same as the source database.

	
If you use the RMAN CONVERT DATABASE, then the database release of the destination database must be the equal to or later than the source database.

Table D-1 describes when each instantiation method is supported based on whether the platform at the source and destination databases are the same or different, and whether the character set at the source and destination databases are the same or different.

Table D-1 Instantiation Methods for Database Maintenance with Oracle Streams

	Instantiation Method	Same Platform Supported?	Different Platforms Supported?	Same Character Set Supported?	Different Character Sets Supported?
	
Data Pump Export/Import

	
Yes

	
Yes

	
Yes

	
Yes

	
RMAN DUPLICATE

	
Yes

	
No

	
Yes

	
No

	
RMAN CONVERT DATABASE

	
No

	
Maybe

	
Yes

	
No

Only some platform combinations are supported by the RMAN CONVERT DATABASE command. You can use the DBMS_TDB package to determine whether a platform combination is supported.

	
See Also:

	
Oracle Streams Replication Administrator's Guide for more information about Oracle Streams instantiations

	
Oracle Database Backup and Recovery User's Guide for instructions on using the RMAN DUPLICATE and CONVERT DATABASE commands

	
Oracle Database Backup and Recovery Reference for more information about the RMAN DUPLICATE and CONVERT DATABASE commands

	
Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_TDB package

	
Oracle Database Globalization Support Guide for more information about character set conversion and Export/Import

Performing a Database Upgrade or Maintenance Operation Using Oracle Streams

This section describes performing one of the following operations on an Oracle database:

	
Upgrading to the current release of Oracle Database from Oracle Database 10g Release 2 (10.2) or Oracle Database 11g Release 1 (11.1)

	
Migrating the database to a different platform

	
Migrating the database to a different character set

	
Modifying database schema objects to support upgrades to user-created applications

	
Applying an Oracle Database software patch or patch set

You can use Oracle Streams to achieve little or no downtime during these operations. During the operation, the source database is the existing database on which you are performing the database operation. The capture database is the database on which the Oracle Streams capture process runs. The destination database is the database that will replace the source database at the end of the operation.

Complete the following tasks to perform a database maintenance operation using Oracle Streams:

	
Task 1: Beginning the Operation

	
Task 2: Setting Up Oracle Streams Before Instantiation

	
Task 3: Instantiating the Database

	
Task 4: Setting Up Oracle Streams After Instantiation

	
Task 5: Finishing the Upgrade or Maintenance Operation and Removing Oracle Streams

Task 1: Beginning the Operation

Complete the following steps to begin the upgrade or maintenance operation using Oracle Streams:

	
Create an empty destination database. If you are migrating the database to a different platform, then create the database on a computer system that uses the new platform. If you are migrating the database to a different character set, then create a database that uses the new character set.

Ensure that the destination database has a different global name than the source database. This example assumes that the global name of the source database is orcl.example.com and the global name of the destination database during the database maintenance operation is stms.example.com. The global name of the destination database is changed when the destination database replaces the source database at the end of the maintenance operation.

If you are not upgrading from a prior release of Oracle Database, then create an Oracle Database 11g Release 2 (11.2) database. See the Oracle installation guide for your operating system if you must install Oracle, and see the Oracle Database Administrator's Guide for information about creating a database.

If you are upgrading from a prior release of Oracle Database, then the release of the empty database you create depends on the instantiation method you decided to use in "Deciding Which Utility to Use for Instantiation":

	
If you decided to use export/import for instantiation, then create an empty Oracle Database 11g Release 2 database. This database will be the destination database during the upgrade process.

See the Oracle Database installation guide for your operating system if you must install Oracle Database, and see the Oracle Database Administrator's Guide for information about creating a database.

	
If you decided to use RMAN DUPLICATE for instantiation, then create an empty Oracle database that is the same release as the database you are upgrading.

Specifically, if you are upgrading an Oracle Database 10g Release 2 (10.2) database, then create an Oracle Database 10g Release 2 database. Alternatively, if you are upgrading an Oracle Database 11g Release 1 (11.1) database, then create an Oracle Database 11g Release 1 database.

This database will be the destination database during the upgrade process. Both the source database that is being upgraded and the destination database must be the same release of Oracle when you start the upgrade process.

See the Oracle installation guide for your operating system if you must install Oracle, and see the Oracle Database Administrator's Guide for the release for information about creating a database.

	
If you decided to use RMAN CONVERT DATABASE for instantiation, then create an empty Oracle database that is a release equal to or later than the database you are upgrading.

Specifically, if you are upgrading an Oracle Database 10g Release 2 (10.2) database, then create an Oracle Database 10g Release 2 database, an Oracle Database 11g Release 1 database, or an Oracle Database 11g Release 2 database. Alternatively, if you are upgrading an Oracle Database 11g Release 1 (11.1) database, then create an Oracle Database 11g Release 1 database or an Oracle Database 11g Release 2 database.

This database will be the destination database during the upgrade process.

See the Oracle installation guide for your operating system if you must install Oracle, and see the Oracle Database Administrator's Guide for the release for information about creating a database.

	
Ensure that the source database is running in ARCHIVELOG mode. See Oracle Database Administrator's Guide for information about running a database in ARCHIVELOG mode.

	
Create an undo tablespace at the capture database if one does not exist. For example, run the following statement while logged into the capture database as an administrative user:

CREATE UNDO TABLESPACE undotbs_02
 DATAFILE '/u01/oracle/rbdb1/undo0201.dbf' SIZE 2M REUSE AUTOEXTEND ON;

The capture process at the capture database uses the undo tablespace.

See "The Capture Database During the Upgrade or Maintenance Operation" for more information about the capture database.

See Oracle Database Administrator's Guide for more information about creating an undo tablespace.

	
Ensure that the initialization parameters are set properly at both databases to support an Oracle Streams environment.

For Oracle Database 11g Release 2 (11.2) databases, see Oracle Streams Replication Administrator's Guide for information about setting initialization parameters that are relevant to Oracle Streams.

If you are upgrading from a prior release of Oracle Database, then for the source database, see the Oracle Streams documentation for the source database release.

	
Configure an Oracle Streams administrator at each database, including the source database, destination database, and capture database (if the capture database is a third database). This example assumes that the name of the Oracle Streams administrator is strmadmin at each database.

For Oracle Database 11g Release 2 (11.2) databases, see Oracle Streams Replication Administrator's Guide for instructions.

If you are upgrading from a prior release of Oracle Database, then for the source database, see the Oracle Streams documentation for the source database release.

	
If you are upgrading user-created applications, then supplementally log any columns at the source database that will be involved in a rule-based transformation, procedure DML handler, or value dependency. These columns must be unconditionally logged at the source database. See Oracle Streams Replication Administrator's Guide for information about specifying unconditional supplemental log groups for these columns.

	
At the source database, ensure that no changes are made to the database objects that are not supported by Oracle Streams during the upgrade or maintenance operation. To list unsupported database objects, query the DBA_STREAMS_UNSUPPORTED data dictionary view.

"Preparing for Upgrade or Maintenance of a Database with User-Defined Types" discusses a method for retaining changes to tables that contain user-defined types during the maintenance operation. If you are using this method, then tables that contain user-defined types can remain open during the operation.

	
Tip:

In Oracle Database 11g Release 1 (11.1) and later databases, you can use the ALTER TABLE statement with the READ ONLY clause to make a table read-only.

Task 2: Setting Up Oracle Streams Before Instantiation

The specific instructions for setting up Oracle Streams before instantiation depend on which database is the capture database. The PRE_INSTANTIATION_SETUP procedure always configures the capture process on the database where it is run. Therefore, this procedure must be run at the capture database.

When you run this procedure, you can specify that the procedure performs the configuration directly, or that the procedure generates a script that contains the configuration actions. See "Deciding Whether to Configure Oracle Streams Directly or Generate a Script". The examples in this section specify that the procedure performs the configuration directly.

Follow the instructions in the appropriate section:

	
The Source Database Is the Capture Database

	
The Destination Database Is the Capture Database

	
A Third Database Is the Capture Database

	
Note:

When the PRE_INSTANTIATION_SETUP procedure is running with the perform_actions parameter set to TRUE, metadata about its configuration actions is recorded in the following data dictionary views: DBA_RECOVERABLE_SCRIPT, DBA_RECOVERABLE_SCRIPT_PARAMS, DBA_RECOVERABLE_SCRIPT_BLOCKS, and DBA_RECOVERABLE_SCRIPT_ERRORS. If the procedure stops because it encounters an error, then you can use the RECOVER_OPERATION procedure in the DBMS_STREAMS_ADM package to complete the configuration after you correct the conditions that caused the error. These views are not populated if a script is used to configure the replication environment.

	
See Also:

	
"Overview of Using Oracle Streams for Upgrade and Maintenance Operations" for information about the capture database

	
Oracle Database PL/SQL Packages and Types Reference for more information about the RECOVER_OPERATION procedure

The Source Database Is the Capture Database

Complete the following steps to set up Oracle Streams before instantiation when the source database is the capture database:

	
Configure your network and Oracle Net so that the source database can communicate with the destination database. See Oracle Database Net Services Administrator's Guide for instructions.

	
In SQL*Plus, connect to the source database as the Oracle Streams administrator. In this example, the source database is orcl.example.com.

See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.

	
Create a database link to the destination database. For example:

CREATE DATABASE LINK stms.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'stms.example.com';

	
Run the PRE_INSTANTIATION_SETUP procedure:

DECLARE
 empty_tbs DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 DBMS_STREAMS_ADM.PRE_INSTANTIATION_SETUP(
 maintain_mode => 'GLOBAL',
 tablespace_names => empty_tbs,
 source_database => 'orcl.example.com',
 destination_database => 'stms.example.com',
 perform_actions => TRUE,
 script_name => NULL,
 script_directory_object => NULL,
 capture_name => 'capture_maint',
 capture_queue_table => 'strmadmin.capture_q_table',
 capture_queue_name => 'strmadmin.capture_q',
 propagation_name => 'prop_maint',
 apply_name => 'apply_maint',
 apply_queue_table => 'strmadmin.apply_q',
 apply_queue_name => 'strmadmin.apply_q_table',
 bi_directional => FALSE,
 include_ddl => TRUE,
 start_processes => FALSE,
 exclude_schemas => '*',
 exclude_flags => DBMS_STREAMS_ADM.EXCLUDE_FLAGS_UNSUPPORTED +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DML +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DDL);
END;
/

	
Proceed to "Task 3: Instantiating the Database".

The Destination Database Is the Capture Database

Complete the following steps to set up Oracle Streams before instantiation when the destination database is the capture database:

	
Configure your network and Oracle Net so that the source database and destination database can communicate with each other. See Oracle Database Net Services Administrator's Guide for instructions.

	
Ensure that log file shipping from the source database to the destination database is configured. See "Preparing for Downstream Capture" for instructions.

	
In SQL*Plus, connect to the destination database as the Oracle Streams administrator. In this example, the destination database is stms.example.com.

See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.

	
Create a database link to the source database. For example:

CREATE DATABASE LINK orcl.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'orcl.example.com';

	
Run the PRE_INSTANTIATION_SETUP procedure:

DECLARE
 empty_tbs DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 DBMS_STREAMS_ADM.PRE_INSTANTIATION_SETUP(
 maintain_mode => 'GLOBAL',
 tablespace_names => empty_tbs,
 source_database => 'orcl.example.com',
 destination_database => 'stms.example.com',
 perform_actions => TRUE,
 script_name => NULL,
 script_directory_object => NULL,
 capture_name => 'capture_maint',
 capture_queue_table => 'strmadmin.streams_q_table',
 capture_queue_name => 'strmadmin.streams_q',
 apply_name => 'apply_maint',
 apply_queue_table => 'strmadmin.streams_q',
 apply_queue_name => 'strmadmin.streams_q_table',
 bi_directional => FALSE,
 include_ddl => TRUE,
 start_processes => FALSE,
 exclude_schemas => '*',
 exclude_flags => DBMS_STREAMS_ADM.EXCLUDE_FLAGS_UNSUPPORTED +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DML +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DDL);
END;
/

Notice that the propagation_name parameter is omitted because a propagation is not necessary when the destination database is the capture database and the downstream capture process and apply process use the same queue at the destination database.

Also, notice that the capture process and apply process will share a queue named streams_q at the destination database.

	
Proceed to "Task 3: Instantiating the Database".

A Third Database Is the Capture Database

This example assumes that the global name of the third database is thrd.example.com. Complete the following steps to set up Oracle Streams before instantiation when a third database is the capture database:

	
Configure your network and Oracle Net so that the source database, destination database, and third database can communicate with each other. See Oracle Database Net Services Administrator's Guide for instructions.

	
Ensure that log file shipping from the source database to the third database is configured. See "Preparing for Downstream Capture" for instructions.

	
In SQL*Plus, connect to the third database as the Oracle Streams administrator. In this example, the third database is thrd.example.com.

See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.

	
Create a database link to the source database. For example:

CREATE DATABASE LINK orcl.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'orcl.example.com';

	
Create a database link to the destination database. For example:

CREATE DATABASE LINK stms.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'stms.example.com';

	
Run the PRE_INSTANTIATION_SETUP procedure:

DECLARE
 empty_tbs DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 DBMS_STREAMS_ADM.PRE_INSTANTIATION_SETUP(
 maintain_mode => 'GLOBAL',
 tablespace_names => empty_tbs,
 source_database => 'orcl.example.com',
 destination_database => 'stms.example.com',
 perform_actions => TRUE,
 script_name => NULL,
 script_directory_object => NULL,
 capture_name => 'capture_maint',
 capture_queue_table => 'strmadmin.capture_q_table',
 capture_queue_name => 'strmadmin.capture_q',
 propagation_name => 'prop_maint',
 apply_name => 'apply_maint',
 apply_queue_table => 'strmadmin.apply_q',
 apply_queue_name => 'strmadmin.apply_q_table',
 bi_directional => FALSE,
 include_ddl => TRUE,
 start_processes => FALSE,
 exclude_schemas => '*',
 exclude_flags => DBMS_STREAMS_ADM.EXCLUDE_FLAGS_UNSUPPORTED +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DML +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DDL);
END;
/

	
Proceed to "Task 3: Instantiating the Database".

Task 3: Instantiating the Database

"Deciding Which Utility to Use for Instantiation" discusses different options for instantiating an entire database. Complete the steps in the appropriate section based on the instantiation option you are using:

	
Instantiating the Database Using Export/Import

	
Instantiating the Database Using the RMAN DUPLICATE Command

	
Instantiating the Database Using the RMAN CONVERT DATABASE Command

	
See Also:

Oracle Streams Replication Administrator's Guide for more information about performing instantiations

Instantiating the Database Using Export/Import

Complete the following steps to instantiate an entire database with Data Pump:

	
In SQL*Plus, connect to the source database as the Oracle Streams administrator.

See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.

	
Create a directory object to hold the export dump file and export log file. For example:

CREATE DIRECTORY dpump_dir AS '/usr/dpump_dir';

	
While connected to the source database as the Oracle Streams administrator, determine the current system change number (SCN) of the source database:

SET SERVEROUTPUT ON SIZE 1000000
DECLARE
 current_scn NUMBER;
BEGIN
 current_scn:= DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER;
 DBMS_OUTPUT.PUT_LINE('Current SCN: ' || current_scn);
END;
/

The returned SCN value is specified for the FLASHBACK_SCN Data Pump export parameter in Step 4. Specifying the FLASHBACK_SCN export parameter, or a similar export parameter, ensures that the export is consistent to a single SCN. In this example, assume that the query returned 876606.

After you perform this query, ensure that no DDL changes are made to the objects being exported until after the export is complete.

	
On a command line, use Data Pump to export the source database.

Perform the export by connecting as an administrative user who is granted EXP_FULL_DATABASE role. This user also must have READ and WRITE privilege on the directory object created in Step 2. This example connects as the Oracle Streams administrator strmadmin.

The following example is a Data Pump export command:

expdp strmadmin FULL DIRECTORY=DPUMP_DIR DUMPFILE=orc1.dmp FLASHBACK_SCN=876606

	
See Also:

Oracle Database Utilities for information about performing a Data Pump export

	
In SQL*Plus, connect to the destination database as the Oracle Streams administrator.

	
Create a directory object to hold the import dump file and import log file. For example:

CREATE DIRECTORY dpump_dir AS '/usr/dpump_dir';

	
Transfer the Data Pump export dump file orc1.dmp to the destination database. You can use the DBMS_FILE_TRANSFER package, binary FTP, or some other method to transfer the file to the destination database. After the file transfer, the export dump file should reside in the directory that corresponds to the directory object created in Step 6.

	
On a command line at the destination database, use Data Pump to import the export dump file orc1.dmp. Ensure that no changes are made to the database tables until the import is complete. Performing the import automatically sets the instantiation SCN for the destination database and all of its objects.

Perform the import by connecting as an administrative user who is granted IMP_FULL_DATABASE role. This user also must have READ and WRITE privilege on the directory object created in Step 6. This example connects as the Oracle Streams administrator strmadmin.

Ensure that you set the STREAMS_CONFIGURATION import parameter to n.

The following example is an import command:

impdp strmadmin FULL DIRECTORY=DPUMP_DIR DUMPFILE=orc1.dmp STREAMS_CONFIGURATION=n

	
See Also:

Oracle Database Utilities for information about performing a Data Pump import

Instantiating the Database Using the RMAN DUPLICATE Command

If you use the RMAN DUPLICATE command for instantiation on the same platform, then complete the following steps:

	
Create a backup of the source database if one does not exist. RMAN requires a valid backup for duplication. In this example, create a backup of orcl.example.com if one does not exist.

	
Note:

A backup of the source database is not necessary if you use the FROM ACTIVE DATABASE option when you run the RMAN DUPLICATE command. For large databases, the FROM ACTIVE DATABASE option requires significant network resources. This example does not use this option.

	
In SQL*Plus, connect as an administrative user to the source database. In this example, the source database is orcl.example.com.

See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.

	
Determine the until SCN for the RMAN DUPLICATE command. For example:

SET SERVEROUTPUT ON SIZE 1000000
DECLARE
 until_scn NUMBER;
BEGIN
 until_scn:= DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER;
 DBMS_OUTPUT.PUT_LINE('Until SCN: ' || until_scn);
END;
/

Make a note of the until SCN value. This example assumes that the until SCN value is 748045. You will set the UNTIL SCN option to this value when you use RMAN to duplicate the database in Step 7 and as the instantiation SCN in "Task 4: Setting Up Oracle Streams After Instantiation".

	
Archive the current online redo log. For example:

ALTER SYSTEM ARCHIVE LOG CURRENT;

	
Prepare your environment for database duplication, which includes preparing the destination database as an auxiliary instance for duplication. See the Oracle Database Backup and Recovery User's Guide for instructions.

	
Start the RMAN client, and connect to the database orcl.example.com as TARGET and to the stms.example.com database as AUXILIARY. Connect to each database as an administrative user.

See Oracle Database Backup and Recovery Reference for more information about the RMAN CONNECT command.

	
Use the RMAN DUPLICATE command with the OPEN RESTRICTED option to instantiate the source database at the destination database. The OPEN RESTRICTED option is required. This option enables a restricted session in the duplicate database by issuing the following SQL statement: ALTER SYSTEM ENABLE RESTRICTED SESSION. RMAN issues this statement immediately before the duplicate database is opened.

You can use the UNTIL SCN clause to specify an SCN for the duplication. Use the until SCN determined in Step 3 for this clause. Archived redo logs must be available for the until SCN specified and for higher SCN values. Therefore, Step 4 archived the redo log containing the until SCN.

Ensure that you use TO database_name in the DUPLICATE command to specify the database name of the duplicate database. In this example, the database name of the duplicate database is stms. Therefore, the DUPLICATE command for this example includes TO stms.

The following example is an RMAN DUPLICATE command:

RMAN> RUN
 {
 SET UNTIL SCN 748045;
 ALLOCATE AUXILIARY CHANNEL stms DEVICE TYPE sbt;
 DUPLICATE TARGET DATABASE TO stms
 NOFILENAMECHECK
 OPEN RESTRICTED;
 }

	
In SQL*Plus, connect to the destination database as a system administrator. In this example, the destination database is stms.example.com.

	
Rename the global name. After an RMAN database instantiation, the destination database has the same global name as the source database, but the destination database must have its original name until the end of the operation. Rename the global name of the destination database back to its original name with the following statement:

ALTER DATABASE RENAME GLOBAL_NAME TO stms.example.com;

	
If you are upgrading the database from a prior release to Oracle Database 11g Release 2, then upgrade the destination database. See the Oracle Database Upgrade Guide for instructions. If you are not upgrading the database, then skip this step and proceed to the next step.

	
In SQL*Plus, connect to the destination database as the Oracle Streams administrator.

	
Create a database link to the source database. For example:

CREATE DATABASE LINK orcl.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'orcl.example.com';

This database link is required because the POST_INSTANTIATION_SETUP procedure runs the SET_GLOBAL_INSTANTIATION_SCN procedure in the DBMS_APPLY_ADM package at the destination database, and the SET_GLOBAL_INSTANTIATION_SCN procedure requires the database link.

	
If the source database and the capture database are the same database, then while still connected as the Oracle Streams administrator in SQL*Plus to the destination database, drop the database link from the source database to the destination database that was cloned from the source database:

DROP DATABASE LINK stms.example.com;

	
See Also:

Oracle Database Backup and Recovery Reference for more information about the RMAN DUPLICATE command

Instantiating the Database Using the RMAN CONVERT DATABASE Command

If you use the RMAN CONVERT DATABASE command for instantiation to migrate the database to a different platform, then complete the following steps:

	
Create a backup of the source database if one does not exist. RMAN requires a valid backup. In this example, create a backup of orcl.example.com if one does not exist.

	
In SQL*Plus, connect to the source database as an administrative user.

See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.

	
Archive the current online redo log. For example:

ALTER SYSTEM ARCHIVE LOG CURRENT;

	
Prepare your environment for database conversion, which includes opening the source database in read-only mode. Complete the following steps:

	
If the source database is open, then shut it down and start it in read-only mode.

	
Run the CHECK_DB and CHECK_EXTERNAL functions in the DBMS_TDB package. Check the results to ensure that the conversion is supported by the RMAN CONVERT DATABASE command.

	
See Also:

Oracle Database Backup and Recovery User's Guide for more information about these steps

	
Determine the current SCN of the source database:

SET SERVEROUTPUT ON SIZE 1000000
DECLARE
 current_scn NUMBER;
BEGIN
 current_scn:= DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER;
 DBMS_OUTPUT.PUT_LINE('Current SCN: ' || current_scn);
END;
/

Make a note of the SCN value returned. You will use this number for the instantiation SCN in "Task 4: Setting Up Oracle Streams After Instantiation". For this example, assume that the returned value is 748044.

	
Start the RMAN client, and connect to the source database orcl.example.com as TARGET as an administrative user.

See Oracle Database Backup and Recovery Reference for more information about the RMAN CONNECT command.

	
Run the CONVERT DATABASE command.

Ensure that you use NEW DATABASE database_name in the CONVERT DATABASE command to specify the database name of the destination database. In this example, the database name of the destination database is stms. Therefore, the CONVERT DATABASE command for this example includes NEW DATABASE stms.

The following example is an RMAN CONVERT DATABASE command for a destination database that is running on the Linux IA (64-bit) platform:

CONVERT DATABASE NEW DATABASE 'stms'
 TRANSPORT SCRIPT '/tmp/convertdb/transportscript.sql'
 TO PLATFORM 'Linux IA (64-bit)'
 DB_FILE_NAME_CONVERT = ('/home/oracle/dbs','/tmp/convertdb');

	
Transfer the data files, PFILE, and SQL script produced by the RMAN CONVERT DATABASE command to the computer system that is running the destination database.

	
On the computer system that is running the destination database, modify the SQL script so that the destination database always opens with restricted session enabled.

An example script follows with the necessary modifications in bold font:

-- The following commands will create a control file and use it
-- to open the database.
-- Data used by Recovery Manager will be lost.
-- The contents of online logs will be lost and all backups will
-- be invalidated. Use this only if online logs are damaged.

-- After mounting the created controlfile, the following SQL
-- statement will place the database in the appropriate
-- protection mode:
-- ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE PERFORMANCE

STARTUP NOMOUNT PFILE='init_00gd2lak_1_0.ora'
CREATE CONTROLFILE REUSE SET DATABASE "STMS" RESETLOGS NOARCHIVELOG
 MAXLOGFILES 32
 MAXLOGMEMBERS 2
 MAXDATAFILES 32
 MAXINSTANCES 1
 MAXLOGHISTORY 226
LOGFILE
 GROUP 1 '/tmp/convertdb/archlog1' SIZE 25M,
 GROUP 2 '/tmp/convertdb/archlog2' SIZE 25M
DATAFILE
 '/tmp/convertdb/systemdf',
 '/tmp/convertdb/sysauxdf',
 '/tmp/convertdb/datafile1',
 '/tmp/convertdb/datafile2',
 '/tmp/convertdb/datafile3'
CHARACTER SET WE8DEC
;

-- NOTE: This ALTER SYSTEM statement is added to enable restricted session.

ALTER SYSTEM ENABLE RESTRICTED SESSION;

-- Database can now be opened zeroing the online logs.
ALTER DATABASE OPEN RESETLOGS;

-- No tempfile entries found to add.
--

set echo off
prompt ~~~
prompt * Your database has been created successfully!
prompt * There are many things to think about for the new database. Here
prompt * is a checklist to help you stay on track:
prompt * 1. You may want to redefine the location of the directory objects.
prompt * 2. You may want to change the internal database identifier (DBID)
prompt * or the global database name for this database. Use the
prompt * NEWDBID Utility (nid).
prompt ~~~

SHUTDOWN IMMEDIATE
-- NOTE: This startup has the UPGRADE parameter.
-- The startup already has restricted session enabled, so no change is needed.
STARTUP UPGRADE PFILE='init_00gd2lak_1_0.ora'
@@ ?/rdbms/admin/utlirp.sql
SHUTDOWN IMMEDIATE
-- NOTE: The startup below is generated without the RESTRICT clause.
-- Add the RESTRICT clause.
STARTUP RESTRICT PFILE='init_00gd2lak_1_0.ora'
-- The following step will recompile all PL/SQL modules.
-- It may take serveral hours to complete.
@@ ?/rdbms/admin/utlrp.sql
set feedback 6;

Other changes to the script might be necessary. For example, the data file locations and PFILE location might need to be changed to point to the correct locations on the destination database computer system.

	
In SQL*Plus, connect to the destination database as a system administrator.

	
Rename the global name. After an RMAN database instantiation, the destination database has the same global name as the source database, but the destination database must have its original name until the end of the maintenance operation. Rename the global name of the destination database back to its original name with the following statement:

ALTER DATABASE RENAME GLOBAL_NAME TO stms.example.com;

	
If you are upgrading the database from a prior release to Oracle Database 11g Release 2, then upgrade the destination database. See the Oracle Database Upgrade Guide for instructions. If you are not upgrading the database, then skip this step and proceed to the next step.

	
Connect to the destination database as the Oracle Streams administrator using the new global name.

	
Create a database link to the source database. For example:

CREATE DATABASE LINK orcl.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'orcl.example.com';

This database link is required because the POST_INSTANTIATION_SETUP procedure runs the SET_GLOBAL_INSTANTIATION_SCN procedure in the DBMS_APPLY_ADM package at the destination database, and the SET_GLOBAL_INSTANTIATION_SCN procedure requires the database link.

	
If the source database and the capture database are the same database, then while still connected as the Oracle Streams administrator in SQL*Plus to the destination database, drop the database link from the source database to the destination database that was cloned from the source database:

DROP DATABASE LINK stms.example.com;

Task 4: Setting Up Oracle Streams After Instantiation

To set up Oracle Streams after instantiation, run the POST_INSTANTIATION_SETUP procedure. The POST_INSTANTIATION_SETUP procedure must be run at the database where the PRE_INSTANTIATION_SETUP procedure was run in "Task 2: Setting Up Oracle Streams Before Instantiation".

When you run the POST_INSTANTIATION_SETUP procedure, you can specify that the procedure performs the configuration directly, or that the procedure generates a script that contains the configuration actions. See "Deciding Whether to Configure Oracle Streams Directly or Generate a Script". The examples in this section specify that the procedure performs the configuration directly.

The parameter values specified in the PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures must match, except for the values of the following parameters: perform_actions, script_name, script_directory_object, and start_processes. In this example, all of the parameter values match in the two procedures.

It is important to set the instantiation_scn parameter in the POST_INSTANTIATION_SETUP procedure correctly. Follow these instructions when you set this parameter:

	
If RMAN was used for instantiation, then set the instantiation_scn parameter to the value determined during instantiation. This value was determined when you completed the instantiation in "Instantiating the Database Using the RMAN DUPLICATE Command" or "Instantiating the Database Using the RMAN CONVERT DATABASE Command".

The source database and third database examples in this section set the instantiation_scn parameter to 748044 for the following reasons:

	
If the RMAN DUPLICATE command was used for instantiation, then the command duplicates the database up to one less than the SCN value specified in the UNTIL SCN clause. Therefore, you should subtract one from the until SCN value that you specified when you ran the DUPLICATE command in Step 7 in "Instantiating the Database Using the RMAN DUPLICATE Command". In this example, the until SCN was set to 748045. Therefore, the instantiation_scn parameter should be set to 748045 - 1, or 748044.

	
If the RMAN CONVERT DATABASE command was used for instantiation, then the instantiation_scn parameter should be set to the SCN value determined immediately before running the CONVERT DATABASE command. This value was determined in Step 5 in "Instantiating the Database Using the RMAN CONVERT DATABASE Command".

	
If Export/Import was used for instantiation, then the instantiation SCN was set during import, and the instantiation_scn parameter must be set to NULL. The destination database example in this section sets the instantiation_scn to NULL because RMAN cannot be used for database instantiation when the destination database is the capture database.

The specific instructions for setting up Oracle Streams after instantiation depend on which database is the capture database. Follow the instructions in the appropriate section:

	
The Source Database Is the Capture Database

	
The Destination Database Is the Capture Database

	
A Third Database Is the Capture Database

	
Note:

When the POST_INSTANTIATION_SETUP procedure is running with the perform_actions parameter set to TRUE, metadata about its configuration actions is recorded in the following data dictionary views: DBA_RECOVERABLE_SCRIPT, DBA_RECOVERABLE_SCRIPT_PARAMS, DBA_RECOVERABLE_SCRIPT_BLOCKS, and DBA_RECOVERABLE_SCRIPT_ERRORS. If the procedure stops because it encounters an error, then you can use the RECOVER_OPERATION procedure in the DBMS_STREAMS_ADM package to complete the configuration after you correct the conditions that caused the error. These views are not populated if a script is used to configure the replication environment.

	
See Also:

	
"Overview of Using Oracle Streams for Upgrade and Maintenance Operations" for information about the capture database

	
Oracle Database PL/SQL Packages and Types Reference for more information about the RECOVER_OPERATION procedure

The Source Database Is the Capture Database

Complete the following steps to set up Oracle Streams after instantiation when the source database is the capture database:

	
In SQL*Plus, connect to the source database as the Oracle Streams administrator. In this example, the source database is orcl.example.com.

See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.

	
Run the POST_INSTANTIATION_SETUP procedure:

DECLARE
 empty_tbs DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 DBMS_STREAMS_ADM.POST_INSTANTIATION_SETUP(
 maintain_mode => 'GLOBAL',
 tablespace_names => empty_tbs,
 source_database => 'orcl.example.com',
 destination_database => 'stms.example.com',
 perform_actions => TRUE,
 script_name => NULL,
 script_directory_object => NULL,
 capture_name => 'capture_maint',
 capture_queue_table => 'strmadmin.capture_q_table',
 capture_queue_name => 'strmadmin.capture_q',
 propagation_name => 'prop_maint',
 apply_name => 'apply_maint',
 apply_queue_table => 'strmadmin.apply_q',
 apply_queue_name => 'strmadmin.apply_q_table',
 bi_directional => FALSE,
 include_ddl => TRUE,
 start_processes => FALSE,
 instantiation_scn => 748044, -- NULL if Export/Import instantiation
 exclude_schemas => '*',
 exclude_flags => DBMS_STREAMS_ADM.EXCLUDE_FLAGS_UNSUPPORTED +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DML +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DDL);
END;
/

Ensure that the instantiation_scn parameter is set to NULL if export/import was used for instantiation instead of RMAN.

	
Proceed to "Task 5: Finishing the Upgrade or Maintenance Operation and Removing Oracle Streams".

The Destination Database Is the Capture Database

Complete the following steps to set up Oracle Streams after instantiation when the destination database is the capture database:

	
In SQL*Plus, connect to the destination database as the Oracle Streams administrator. In this example, the destination database is stms.example.com.

See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.

	
Run the POST_INSTANTIATION_SETUP procedure:

DECLARE
 empty_tbs DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 DBMS_STREAMS_ADM.POST_INSTANTIATION_SETUP(
 maintain_mode => 'GLOBAL',
 tablespace_names => empty_tbs,
 source_database => 'orcl.example.com',
 destination_database => 'stms.example.com',
 perform_actions => TRUE,
 script_name => NULL,
 script_directory_object => NULL,
 capture_name => 'capture_maint',
 capture_queue_table => 'strmadmin.streams_q_table',
 capture_queue_name => 'strmadmin.streams_q',
 apply_name => 'apply_maint',
 apply_queue_table => 'strmadmin.streams_q',
 apply_queue_name => 'strmadmin.streams_q_table',
 bi_directional => FALSE,
 include_ddl => TRUE,
 start_processes => FALSE,
 instantiation_scn => NULL,
 exclude_schemas => '*',
 exclude_flags => DBMS_STREAMS_ADM.EXCLUDE_FLAGS_UNSUPPORTED +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DML +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DDL);
END;
/

Notice that the propagation_name parameter is omitted because a propagation is not necessary when the destination database is the capture database.

	
Proceed to "Task 5: Finishing the Upgrade or Maintenance Operation and Removing Oracle Streams".

A Third Database Is the Capture Database

This example assumes that the global name of the third database is thrd.example.com. Complete the following steps to set up Oracle Streams after instantiation when a third database is the capture database:

	
In SQL*Plus, connect to the third database as the Oracle Streams administrator. In this example, the third database is thrd.example.com.

See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.

	
Run the POST_INSTANTIATION_SETUP procedure:

DECLARE
 empty_tbs DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 DBMS_STREAMS_ADM.POST_INSTANTIATION_SETUP(
 maintain_mode => 'GLOBAL',
 tablespace_names => empty_tbs,
 source_database => 'orcl.example.com',
 destination_database => 'stms.example.com',
 perform_actions => TRUE,
 script_name => NULL,
 script_directory_object => NULL,
 capture_name => 'capture_maint',
 capture_queue_table => 'strmadmin.capture_q_table',
 capture_queue_name => 'strmadmin.capture_q',
 propagation_name => 'prop_maint',
 apply_name => 'apply_maint',
 apply_queue_table => 'strmadmin.apply_q',
 apply_queue_name => 'strmadmin.apply_q_table',
 bi_directional => FALSE,
 include_ddl => TRUE,
 start_processes => FALSE,
 instantiation_scn => 748044, -- NULL if Export/Import instantiation
 exclude_schemas => '*',
 exclude_flags => DBMS_STREAMS_ADM.EXCLUDE_FLAGS_UNSUPPORTED +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DML +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DDL);
END;
/

Ensure that the instantiation_scn parameter is set to NULL if export/import was used for instantiation instead of RMAN.

	
Proceed to "Task 5: Finishing the Upgrade or Maintenance Operation and Removing Oracle Streams".

Task 5: Finishing the Upgrade or Maintenance Operation and Removing Oracle Streams

Complete the following steps to finish the upgrade or maintenance operation and remove Oracle Streams components:

	
At the destination database, disable any imported jobs that modify data that will be replicated from the source database. Query the DBA_JOBS data dictionary view to list the jobs.

	
If you are applying a patch or patch set, then apply the patch or patch set to the destination database. Follow the instructions included with the patch or patch set. If you are not applying a patch or patch set, then skip this step and proceed to the next step.

	
If you are upgrading user-created applications, then, at the destination database, you might need to complete the following steps:

	
Modify the schema objects in the database to support the upgraded user-created applications.

	
Configure one or more declarative rule-based transformations and procedure DML handlers that modify row LCRs from the source database so that the apply process applies these row LCRs to the modified schema objects correctly. For example, if a column name was changed to support the upgraded user-created applications, then a declarative rule-based transformation should rename the column in a row LCR that involves the column.

See "Handling Modifications to Schema Objects".

	
Configure one or more virtual dependency definitions if row LCRs might contain logical dependencies that cannot be detected by the apply process alone.

See "Handling Logical Dependencies".

	
In SQL*Plus, connect to the destination database as an administrative user.

See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.

	
Use the ALTER SYSTEM statement to disable the RESTRICTED SESSION:

ALTER SYSTEM DISABLE RESTRICTED SESSION;

	
In SQL*Plus, connect to the destination database as the Oracle Streams administrator.

	
Start the apply process. For example:

BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply_maint');
END;
/

	
In SQL*Plus, connect to the capture database as the Oracle Streams administrator.

	
Start the capture process. For example:

BEGIN
 DBMS_CAPTURE_ADM.START_CAPTURE(
 capture_name => 'capture_maint');
END;
/

This step begins the process of replicating changes that were made to the source database during instantiation of the destination database.

	
Monitor the Oracle Streams environment until the apply process at the destination database has applied most of the changes from the source database.

To determine whether the apply process at the destination database has applied most of the changes from the source database, complete the following steps:

	
Query the enqueue message number of the capture process and the message with the oldest system change number (SCN) for the apply process to see if they are nearly equal.

For example, if the name of the capture process is capture_maint, and the name of the apply process is apply_maint, then run the following query at the capture database:

COLUMN ENQUEUE_MESSAGE_NUMBER HEADING 'Captured SCN' FORMAT 99999999999
COLUMN OLDEST_SCN_NUM HEADING 'Oldest Applied SCN' FORMAT 99999999999

SELECT c.ENQUEUE_MESSAGE_NUMBER, a.OLDEST_SCN_NUM
 FROM V$STREAMS_CAPTURE c, V$STREAMS_APPLY_READER@stms.example.com a
 WHERE c.CAPTURE_NAME = 'CAPTURE_MAINT'
 AND a.APPLY_NAME = 'APPLY_MAINT';

When the two values returned by this query are nearly equal, most of the changes from the source database have been applied at the destination database, and you can proceed to the next step. At this point in the process, the values returned by this query might never be equal because the source database still allows changes.

If this query returns no results, then ensure that the Oracle Streams clients in the environment are enabled by querying the STATUS column in the DBA_CAPTURE view at the capture database and the DBA_APPLY view at the destination database. If a propagation is used, you can check the status of the propagation by running the query in "Displaying Information About the Schedules for Propagation Jobs".

If an Oracle Streams client is disabled, then try restarting it. If an Oracle Streams client will not restart, then troubleshoot the environment using the information in Chapter 30, "Identifying Problems in an Oracle Streams Environment".

	
Query the state of the apply process apply servers at the destination database to determine whether they have finished applying changes.

For example, if the name of the apply process is apply_maint, then run the following query at the source database:

COLUMN STATE HEADING 'Apply Server State' FORMAT A20

SELECT STATE
 FROM V$STREAMS_APPLY_SERVER@stms.example.com
 WHERE APPLY_NAME = 'APPLY_MAINT';

When the state for all apply servers is IDLE, you can proceed to the next step.

	
Connect to the destination database as the Oracle Streams administrator.

	
Ensure that there are no apply errors by running the following query:

SELECT COUNT(*) FROM DBA_APPLY_ERROR;

If this query returns zero, then move on to the next step. If this query shows errors in the error queue, then resolve these errors before continuing. See "Managing Apply Errors" for instructions.

	
Disconnect all applications and users from the source database.

	
Connect to the source database as an administrative user.

	
Restrict access to the database. For example:

ALTER SYSTEM ENABLE RESTRICTED SESSION;

	
While connected as an administrative user in SQL*Plus to the source database, repeat the query you ran in Step 10a. When the two values returned by the query are equal, all of the changes from the source database have been applied at the destination database, and you can move on to the next step.

	
Connect to the destination database as the Oracle Streams administrator.

	
Repeat the query you ran in Step 12. If this query returns zero, then move on to the next step. If this query shows errors in the error queue, then resolve these errors before continuing. See "Managing Apply Errors" for instructions.

	
If you performed any actions that created, modified, or deleted job slaves at the source database during the upgrade or maintenance operation, then perform the same actions at the destination database. See "Considerations for Job Slaves and PL/SQL Package Subprograms" for more information.

	
If you invoked any Oracle-supplied PL/SQL package subprograms at the source database during the upgrade or maintenance operation that modified both user data and dictionary metadata at the same time, then invoke the same subprograms at the destination database. See "Considerations for Job Slaves and PL/SQL Package Subprograms" for more information.

	
Remove the Oracle Streams components that are no longer needed from both databases, including the ANYDATA queues, supplemental logging specifications, the capture process, the propagation if one exists, and the apply process. Connect as the Oracle Streams administrator in SQL*Plus to the capture database, and run the CLEANUP_INSTANTIATION_SETUP procedure to remove the Oracle Streams components at both databases.

If the capture database is the source database or a third database, then run the following procedure:

DECLARE
 empty_tbs DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 DBMS_STREAMS_ADM.CLEANUP_INSTANTIATION_SETUP(
 maintain_mode => 'GLOBAL',
 tablespace_names => empty_tbs,
 source_database => 'orcl.example.com',
 destination_database => 'stms.example.com',
 perform_actions => TRUE,
 script_name => NULL,
 script_directory_object => NULL,
 capture_name => 'capture_maint',
 capture_queue_table => 'strmadmin.capture_q_table',
 capture_queue_name => 'strmadmin.capture_q',
 propagation_name => 'prop_maint',
 apply_name => 'apply_maint',
 apply_queue_table => 'strmadmin.apply_q',
 apply_queue_name => 'strmadmin.apply_q_table',
 bi_directional => FALSE,
 change_global_name => TRUE);
END;
/

If the capture database is the destination database, then run the following procedure:

DECLARE
 empty_tbs DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 DBMS_STREAMS_ADM.CLEANUP_INSTANTIATION_SETUP(
 maintain_mode => 'GLOBAL',
 tablespace_names => empty_tbs,
 source_database => 'orcl.example.com',
 destination_database => 'stms.example.com',
 perform_actions => TRUE,
 script_name => NULL,
 script_directory_object => NULL,
 capture_name => 'capture_maint',
 capture_queue_table => 'strmadmin.streams_q_table',
 capture_queue_name => 'strmadmin.streams_q',
 apply_name => 'apply_maint',
 apply_queue_table => 'strmadmin.streams_q',
 apply_queue_name => 'strmadmin.streams_q_table',
 bi_directional => FALSE,
 change_global_name => TRUE);
END;
/

Notice that the propagation_name parameter is omitted because a propagation is not necessary when the destination database is the capture database.

Both sample procedures in this step rename the global name of the destination database to orc1.example.com because the change_global_name parameter is set to TRUE.

	
Shut down the source database. This database should not be opened again.

	
At the destination database, enable any jobs that you disabled earlier.

	
Make the destination database available for applications and users. Redirect any applications and users that were connecting to the source database to the destination database. If necessary, reconfigure your network and Oracle Net so that systems that communicated with the source database now communicate with the destination database. See Oracle Database Net Services Administrator's Guide for instructions.

	
If you no longer need the Oracle Streams administrator at the destination database, then connect as an administrative user in SQL*Plus to the destination database, and run the following statement:

DROP USER strmadmin CASCADE;

The upgrade or maintenance operation is complete.

A How Oracle Streams Works with Other Database Components

This appendix describes how Oracle Streams works with other Oracle Database components.

This appendix includes these topics:

	
Oracle Streams and Oracle Real Application Clusters

	
Oracle Streams and Transparent Data Encryption

	
Oracle Streams and Flashback Data Archive

	
Oracle Streams and Recovery Manager (RMAN)

	
Oracle Streams and Distributed Transactions

	
Oracle Streams and Oracle Data Vault

Oracle Streams and Oracle Real Application Clusters

The following topics describe how Oracle Streams works with Oracle Real Application Clusters (Oracle RAC):

	
Capture Processes and Oracle Real Application Clusters

	
Synchronous Capture and Oracle Real Application Clusters

	
Combined Capture and Apply and Oracle Real Application Clusters

	
Queues and Oracle Real Application Clusters

	
Propagations and Oracle Real Application Clusters

	
Apply Processes and Oracle Real Application Clusters

	
See Also:

Oracle Streams Replication Administrator's Guide for information about best practices for Oracle Streams in an Oracle RAC environment

Capture Processes and Oracle Real Application Clusters

A capture process can capture changes in an Oracle Real Application Clusters (Oracle RAC) environment. If you use one or more capture processes and Oracle RAC in the same environment, then all archived logs that contain changes to be captured by a capture process must be available for all instances in the Oracle RAC environment. In an Oracle RAC environment, a capture process reads changes made by all instances. Any processes used by a single capture process run on a single instance in an Oracle RAC environment.

Each capture process is started and stopped on the owner instance for its ANYDATA queue, even if the start or stop procedure is run on a different instance. Also, a capture process follows its queue to a different instance if the current owner instance becomes unavailable. The queue itself follows the rules for primary instance and secondary instance ownership.

If the owner instance for a queue table containing a queue used by a capture process becomes unavailable, then queue ownership is transferred automatically to another instance in the cluster. In addition, if the capture process was enabled when the owner instance became unavailable, then the capture process is restarted automatically on the new owner instance. If the capture process was disabled when the owner instance became unavailable, then the capture process remains disabled on the new owner instance.

LogMiner supports the LOG_ARCHIVE_DEST_n initialization parameter, and Oracle Streams capture processes use LogMiner to capture changes from the redo log. If an archived log file is inaccessible from one destination, then a local capture process can read it from another accessible destination. On an Oracle RAC database, this ability also enables you to use cross instance archival (CIA) such that each instance archives its files to all other instances. This solution cannot detect or resolve gaps caused by missing archived log files. Hence, it can be used only to complement an existing solution to have the archived files shared between all instances.

In a downstream capture process environment, the source database can be a single instance database or a multi-instance Oracle RAC database. The downstream database can be a single instance database or a multi-instance Oracle RAC database, regardless of whether the source database is single instance or multi-instance.

	
See Also:

	
"Implicit Capture with an Oracle Streams Capture Process"

	
Oracle Database Reference for more information about the DBA_QUEUE_TABLES data dictionary view

	
Oracle Real Application Clusters Administration and Deployment Guide for more information about configuring archived logs to be shared between instances

Synchronous Capture and Oracle Real Application Clusters

A synchronous capture can capture changes in an Oracle Real Application Clusters (Oracle RAC) environment. In an Oracle RAC environment, synchronous capture reads changes made by all instances.

For the best performance with synchronous capture in an Oracle RAC environment, changes to independent sets of tables should be captured by separate synchronous captures. For example, if different applications use different sets of database objects in the database, then configure a separate synchronous capture to capture changes to the database objects for each application. In this case, each synchronous capture should use a different queue and queue table.

	
See Also:

"Implicit Capture with Synchronous Capture"

Combined Capture and Apply and Oracle Real Application Clusters

Combined capture and apply can be used in an Oracle Real Application Clusters (Oracle RAC) environment. In an Oracle RAC environment, the capture process and apply process can be on the same instance, on different instances in a single Oracle RAC database, or on different databases. When the capture process and apply process are on different instances in the same database or on different databases, you must configure a propagation between the capture process's queue and the apply process's queue for combined capture and apply to be used.

	
See Also:

Chapter 12, "Combined Capture and Apply Optimization"

Queues and Oracle Real Application Clusters

You can configure a queue to stage LCRs and user messages in an Oracle Real Application Clusters (Oracle RAC) environment. In an Oracle RAC environment, only the owner instance can have a buffer for a queue, but different instances can have buffers for different queues. A buffered queue is System Global Area (SGA) memory associated with a queue.

Oracle Streams processes and jobs support primary instance and secondary instance specifications for queue tables. If you use these specifications, then the secondary instance assumes ownership of a queue table when the primary instance becomes unavailable, and ownership is transferred back to the primary instance when it becomes available again.

You can set primary and secondary instance specifications using the ALTER_QUEUE_TABLE procedure in the DBMS_AQADM package. The DBA_QUEUE_TABLES data dictionary view contains information about the owner instance for a queue table. A queue table can contain multiple queues. In this case, each queue in a queue table has the same owner instance as the queue table.

	
See Also:

	
"Queues"

	
Oracle Database Reference for more information about the DBA_QUEUE_TABLES data dictionary view

	
Oracle Streams Advanced Queuing User's Guide for more information about queues and Oracle RAC

	
Oracle Database PL/SQL Packages and Types Reference for more information about the ALTER_QUEUE_TABLE procedure

Propagations and Oracle Real Application Clusters

A propagation can propagate messages from one queue to another in an Oracle Real Application Clusters (Oracle RAC) environment. A propagation job running on an instance propagates logical change records (LCRs) from any queue owned by that instance to destination queues.

Any propagation to an Oracle RAC database is made over database links. The database links must be configured to connect to the destination instance that owns the queue that will receive the messages.

If the owner instance for a queue table containing a destination queue for a propagation becomes unavailable, then queue ownership is transferred automatically to another instance in the cluster. If both the primary and secondary instance for a queue table containing a destination queue become unavailable, then queue ownership is transferred automatically to another instance in the cluster. In this case, if the primary or secondary instance becomes available again, then ownership is transferred back to one of them accordingly.

A queue-to-queue propagation to a buffered destination queue uses a service to provide transparent failover in an Oracle RAC environment. That is, a propagation job for a queue-to-queue propagation automatically connects to the instance that owns the destination queue. The service used by a queue-to-queue propagation always runs on the owner instance of the destination queue. This service is created only for buffered queues in an Oracle RAC database. If you plan to use buffered messaging with an Oracle RAC database, then messages can be enqueued into a buffered queue on any instance. If messages are enqueued on an instance that does not own the queue, then the messages are sent to the correct instance, but it is more efficient to enqueue messages on the instance that owns the queue. You can use the service to connect to the owner instance of the queue before enqueuing messages into a buffered queue.

Because the queue service always runs on the owner instance of the queue, transparent failover can occur when Oracle RAC instances fail. When multiple queue-to-queue propagations use a single database link, the connect description for each queue-to-queue propagation changes automatically to propagate messages to the correct destination queue.

In contrast, queue-to-dblink propagations do not use services. Queue-to-dblink propagations require you to repoint your database links if the owner instance in an Oracle RAC database that contains the destination queue for the propagation fails. To make the propagation job connect to the correct instance on the destination database, manually reconfigure the database link from the source database to connect to the instance that owns the destination queue. You do not need to modify a propagation that uses a re-created database link.

The NAME column in the DBA_SERVICES data dictionary view contains the service name for a queue. The NETWORK_NAME column in the DBA_QUEUES data dictionary view contains the network name for a queue. Do not manage the services for queue-to-queue propagations in any way. Oracle manages them automatically. For queue-to-dblink propagations, use the network name as the service name in the connect string of the database link to connect to the correct instance.

	
Note:

If a queue contains or will contain captured LCRs in an Oracle RAC environment, then use queue-to-queue propagations to propagate messages to an Oracle RAC destination database. If a queue-to-dblink propagation propagates captured LCRs to an Oracle RAC destination database, then this propagation must use an instance-specific database link that refers to the owner instance of the destination queue. If such a propagation connects to any other instance, then the propagation raises an error.

	
See Also:

"Message Propagation Between Queues"

Apply Processes and Oracle Real Application Clusters

You can configure an Oracle Streams apply process to apply changes in an Oracle Real Application Clusters (Oracle RAC) environment. Each apply process is started and stopped on the owner instance for its ANYDATA queue, even if the start or stop procedure is run on a different instance. An apply coordinator process, its corresponding apply reader server, and all of its apply servers run on a single instance.

If the owner instance for a queue table containing a queue used by an apply process becomes unavailable, then queue ownership is transferred automatically to another instance in the cluster. Also, an apply process will follow its queue to a different instance if the current owner instance becomes unavailable. The queue itself follows the rules for primary instance and secondary instance ownership. In addition, if the apply process was enabled when the owner instance became unavailable, then the apply process is restarted automatically on the new owner instance. If the apply process was disabled when the owner instance became unavailable, then the apply process remains disabled on the new owner instance.

	
See Also:

	
"Implicit Consumption with an Apply Process"

	
Oracle Database Reference for more information about the DBA_QUEUE_TABLES data dictionary view

Oracle Streams and Transparent Data Encryption

The following topics describe how Oracle Streams works with Transparent Data Encryption:

	
Capture Processes and Transparent Data Encryption

	
Synchronous Capture and Transparent Data Encryption

	
Explicit Capture and Transparent Data Encryption

	
Queues and Transparent Data Encryption

	
Propagations and Transparent Data Encryption

	
Apply Processes and Transparent Data Encryption

	
Messaging Clients and Transparent Data Encryption

	
Manual Dequeue and Transparent Data Encryption

	
See Also:

Oracle Database Advanced Security Administrator's Guide for information about transparent data encryption

Capture Processes and Transparent Data Encryption

A local capture process can capture changes to columns that have been encrypted using transparent data encryption. A downstream capture process can capture changes to columns that have been encrypted only if the downstream database shares a wallet with the source database. A wallet can be shared through a network file system (NFS), or it can be copied from one computer system to another manually. When a wallet is shared with a downstream database, ensure that the ENCRYPTION_WALLET_LOCATION parameter in the sqlnet.ora file at the downstream database specifies the wallet location.

If you copy a wallet to a downstream database, then ensure that you copy the wallet from the source database to the downstream database whenever the wallet at the source database changes. Do not perform any operations on the wallet at the downstream database, such as changing the encryption key for a replicated table.

Encrypted columns in row logical change records (row LCRs) captured by a local or downstream capture process are decrypted when the row LCRs are staged in a buffered queue. If row LCRs spill to disk in a database with transparent data encryption enabled, then Oracle Streams transparently encrypts any encrypted columns while the row LCRs are stored on disk.

	
Note:

A capture process only supports encrypted columns if the redo logs used by the capture process were generated by a database with a compatibility level of 11.0.0 or higher. The compatibility level is controlled by the COMPATIBLE initialization parameter.

	
See Also:

	
"Implicit Capture with an Oracle Streams Capture Process"

	
"Persistent Queues and Buffered Queues"

Synchronous Capture and Transparent Data Encryption

A synchronous capture can capture changes to columns that have been encrypted using transparent data encryption. Encrypted columns in row logical change records (row LCRs) captured by a synchronous capture remain encrypted when the row LCRs are staged in a persistent queue.

	
See Also:

"Implicit Capture with Synchronous Capture"

Explicit Capture and Transparent Data Encryption

You can use explicit capture to construct and enqueue row logical change records (row LCRs) for columns that are encrypted in database tables. However, you cannot specify that columns are encrypted when you construct the row LCRs. Therefore, when explicitly captured row LCRs are staged in a queue, all of the columns in the row LCRs are decrypted.

	
See Also:

"Explicit Capture by Applications"

Queues and Transparent Data Encryption

A persistent queue can store row logical change records (row LCRs) captured by a synchronous capture, and these row LCRs can contain changes to columns that were encrypted using transparent data encryption. The row LCRs remain encrypted while they are stored in the persistent queue. Explicitly captured row LCRs cannot contain encrypted columns.

A buffered queue can store row LCRs that contain changes captured by a capture process, and these row LCRs can contain changes to columns that were encrypted using transparent data encryption. When row LCRs with encrypted columns are stored in buffered queues, the columns are decrypted. When row LCRs spill to disk, Oracle Streams transparently encrypts any encrypted columns while the row LCRs are stored on disk.

	
Note:

For Oracle Streams to encrypt columns transparently, the encryption master key must be stored in the wallet on the local database, and the wallet must be open. The following statements set the master key and open the wallet:

ALTER SYSTEM SET ENCRYPTION KEY IDENTIFIED BY key-password;

ALTER SYSTEM SET ENCRYPTION WALLET OPEN IDENTIFIED BY key-password;

	
See Also:

	
"Queues"

	
"Ways to Capture Information with Oracle Streams"

Propagations and Transparent Data Encryption

A propagation can propagate row logical change records (row LCRs) that contain changes to columns that were encrypted using transparent data encryption. When a propagation propagates row LCRs with encrypted columns, the encrypted columns are decrypted while the row LCRs are transferred over the network. You can use the features of Oracle Advanced Security to encrypt data transfers over the network if necessary.

	
See Also:

	
Oracle Database Advanced Security Administrator's Guide for information about configuring network data encryption

	
"Message Propagation Between Queues"

Apply Processes and Transparent Data Encryption

An apply process can dequeue and process implicitly captured row logical change records (row LCRs) that contain columns encrypted using transparent data encryption. When row LCRs with encrypted columns are dequeued by an apply process, the encrypted columns are decrypted. These row LCRs with decrypted columns can be sent to an apply handler for custom processing, or they can be applied directly. When row LCRs are applied, and the modified table contains encrypted columns, any changes to encrypted columns are encrypted when they are applied.

When row LCRs contain encrypted columns, but the corresponding columns at the destination database are not encrypted, then the preserve_encryption apply process parameter controls apply process behavior:

	
If the preserve_encryption parameter is set to Y, then the apply process raises an error when row LCRs contain encrypted columns, but the corresponding columns at the destination database are not encrypted. When an error is raised, the row LCR is not applied, and all of the row LCRs in the transaction are moved to the error queue.

	
If the preserve_encryption parameter is set to N, then the apply process applies the row changes when row LCRs contain encrypted columns, but the corresponding columns at the destination database are not encrypted.

When an apply process moves implicitly captured row LCRs with encrypted columns to the error queue, the encrypted columns are encrypted when the row LCRs are in the error queue. Row LCRs are implicitly captured using capture processes and synchronous captures.

	
See Also:

"Implicit Consumption with an Apply Process"

Messaging Clients and Transparent Data Encryption

A messaging client can dequeue implicitly captured row LCRs that contain columns encrypted using transparent data encryption. When row LCRs with encrypted columns are dequeued by a messaging client, the encrypted columns are decrypted.

	
See Also:

"Explicit Consumption with a Messaging Client"

Manual Dequeue and Transparent Data Encryption

A user or application can dequeue implicitly captured row LCRs that contain columns encrypted using transparent data encryption. When row LCRs with encrypted columns are dequeued, the encrypted columns are decrypted.

	
See Also:

"Explicit Consumption with Manual Dequeue"

Oracle Streams and Flashback Data Archive

Oracle Streams supports tables in a flashback data archive. Capture processes can capture data manipulation language (DML) and data definition language (DDL) changes made to these tables. Synchronous captures can capture DML changes made to these tables. Apply processes can apply changes encapsulated in logical change records (LCRs) to these tables.

Oracle Streams capture processes and apply processes also support the following DDL statements:

	
CREATE FLASHBACK ARCHIVE

	
ALTER FLASHBACK ARCHIVE

	
DROP FLASHBACK ARCHIVE

	
CREATE TABLE with a FLASHBACK ARCHIVE clause

	
ALTER TABLE with a FLASHBACK ARCHIVE clause

	
Note:

Oracle Streams does not capture or apply changes made to internal tables used by a flashback data archive.

	
See Also:

	
Oracle Database Advanced Application Developer's Guide for information about flashback data archive

	
Chapter 2, "Implicit Capture with an Oracle Streams Capture Process"

	
Chapter 2, "Implicit Capture with Synchronous Capture"

	
Chapter 4, "Implicit Consumption with an Apply Process"

Oracle Streams and Recovery Manager (RMAN)

The following topics describe how Oracle Streams works with Recovery Manager (RMAN):

	
RMAN and Instantiation

	
RMAN and Archived Redo Log Files Required by a Capture Process

	
The Recovery Catalog and Oracle Streams

	
See Also:

Oracle Database Backup and Recovery User's Guide

RMAN and Instantiation

You can use RMAN to instantiate database objects during the configuration of an Oracle Streams replication environment. The RMAN DUPLICATE and CONVERT DATABASE commands can instantiate an entire database, and the RMAN TRANSPORT TABLESPACE command can instantiate a tablespace or set of tablespaces.

	
See Also:

Oracle Streams Replication Administrator's Guide for information about using RMAN for instantiation

RMAN and Archived Redo Log Files Required by a Capture Process

Some Recovery Manager (RMAN) deletion policies and commands delete archived redo log files. If one of these RMAN policies or commands is used on a database that generates redo log files for one or more capture processes, then ensure that the RMAN commands do not delete archived redo log files that are required by a capture process.

The following sections describe the behavior of RMAN deletion policies and commands for local capture processes and downstream capture processes

	
RMAN and Local Capture Processes

	
RMAN and Downstream Capture Processes

	
See Also:

	
"ARCHIVELOG Mode and a Capture Process"

	
"Are Required Redo Log Files Missing?" for information about determining whether a capture process is missing required archived redo log files and for information correcting this problem. This section also contains information about fast recovery area and local capture processes.

	
"Checking the Trace Files and Alert Log for Problems"

	
Oracle Database Backup and Recovery User's Guide and Oracle Database Backup and Recovery Reference for more information about RMAN

RMAN and Local Capture Processes

When a local capture process is configured, RMAN does not delete archived redo log files that are required by the local capture process unless there is space pressure in the fast recovery area. Specifically, RMAN does not delete archived redo log files that contain changes with system change number (SCN) values that are equal to or greater than the required checkpoint SCN for the local capture process. This is the default RMAN behavior for all RMAN deletion policies and DELETE commands, including DELETE ARCHIVELOG and DELETE OBSOLETE.

When there is not enough space in the fast recovery area to write a new log file, RMAN automatically deletes one or more archived redo log files. Oracle Database writes warnings to the alert log when RMAN automatically deletes an archived redo log file that is required by a local capture process.

When backups of the archived redo log files are taken on the local capture process database, Oracle recommends the following RMAN deletion policy:

CONFIGURE ARCHIVELOG DELETION POLICY TO BACKED UP integer TIMES
 TO DEVICE TYPE deviceSpecifier;

This deletion policy requires that a log file be backed up integer times before it is considered for deletion.

When no backups of the archived redo log files are taken on the local capture process database, no specific deletion policy is recommended. By default, RMAN does not delete archived redo log files that are required by a local capture process.

RMAN and Downstream Capture Processes

When a downstream capture process captures database changes made at a source database, ensure that no RMAN deletion policy or command deletes an archived redo log file until after it is transferred from the source database to the downstream capture process database.

The following are considerations for specific RMAN deletion policies and commands that delete archived redo log files:

	
The RMAN command CONFIGURE ARCHIVELOG DELETION POLICY sets a deletion policy that determines when archived redo log files in the fast recovery area are eligible for deletion. The deletion policy also applies to all RMAN DELETE commands, including DELETE ARCHIVELOG and DELETE OBSOLETE.

The following settings determine the behavior at the source database:

	
A deletion policy set TO SHIPPED TO STANDBY does not delete a log file until after it is transferred to a downstream capture process database that requires the file. These log files might or might not have been processed by the downstream capture process. Automatic deletion occurs when there is not enough space in the fast recovery area to write a new log file.

	
A deletion policy set TO APPLIED ON STANDBY does not delete a log file until after it is transferred to a downstream capture process database that requires the file and the source database marks the log file as applied. The source database marks a log file as applied when the minimum required checkpoint SCN of all of the downstream capture processes for the source database is greater than the highest SCN in the log file.

	
A deletion policy set to BACKED UP integer TIMES TO DEVICE TYPE requires that a log file be backed up integer times before it is considered for deletion. A log file can be deleted even if the log file has not been processed by a downstream capture process that requires it.

	
A deletion policy set TO NONE means that a log file can be deleted when there is space pressure on the fast recovery area, even if the log file has not been processed by a downstream capture process that requires it.

	
The RMAN command DELETE ARCHIVELOG deletes archived redo log files that meet all of the following conditions:

	
The log files satisfy the condition specified in the DELETE ARCHIVELOG command.

	
The log files can be deleted according to the CONFIGURE ARCHIVELOG DELETION POLICY. For example, if the policy is set TO SHIPPED TO STANDBY, then this command does not delete a log file until after it is transferred to any downstream capture process database that requires it.

This behavior applies when the database is mounted or open.

If archived redo log files are not deleted because they contain changes required by a downstream capture process, then RMAN displays a warning message about skipping the delete operation for these files.

	
The RMAN command DELETE OBSOLETE permanently purges the archived redo log files that meet all of the following conditions:

	
The log files are obsolete according to the retention policy.

	
The log files can be deleted according to the CONFIGURE ARCHIVELOG DELETION POLICY. For example, if the policy is set TO SHIPPED TO STANDBY, then this command does not delete a log file until after it is transferred to any downstream capture process database that requires it.

This behavior applies when the database is mounted or open.

	
The RMAN command BACKUP ARCHIVELOG ALL DELETE INPUT copies the archived redo log files and deletes the original files after completing the backup. This command does not delete the log file until after it is transferred to a downstream capture process database when the following conditions are met:

	
The database is mounted or open.

	
The log file is required by a downstream capture process.

	
The deletion policy is set TO SHIPPED TO STANDBY.

If archived redo log files are not deleted because they contain changes required by a downstream capture process, then RMAN displays a warning message about skipping the delete operation for these files.

Oracle recommends one of the following RMAN deletion policies at the source database for a downstream capture process:

	
When backups of the archived redo log files are taken on the source database, set the deletion policy to the following:

CONFIGURE ARCHIVELOG DELETION POLICY TO SHIPPED TO STANDBY
 BACKED UP integer TIMES TO DEVICE TYPE deviceSpecifier;

	
When no backups of the archived redo log files are taken on the source database, set the deletion policy to the following:

CONFIGURE ARCHIVELOG DELETION POLICY TO SHIPPED TO STANDBY;

	
Note:

At a downstream capture process database, archived redo log files transferred from a source database are not managed by RMAN.

The Recovery Catalog and Oracle Streams

Oracle Streams supports replicating a recovery catalog in a one-way replication environment. Bi-directional replication of a recovery catalog is not supported.

	
See Also:

	
Oracle Database 2 Day + Data Replication and Integration Guide for information about one-way and bi-directional replication

	
Oracle Database Backup and Recovery User's Guide for information about the recovery catalog

Oracle Streams and Distributed Transactions

You can perform distributed transactions using either of the following methods:

	
Modify tables in multiple databases in a coordinated manner using database links.

	
Use the XA interface, as exposed by the DBMS_XA supplied PL/SQL package or by the OCI or JDBC libraries. The XA interface implements X/Open Distributed Transaction Processing (DTP) architecture.

Oracle Streams replicates changes made to the source database during a distributed transaction using either of these two methods to the destination database. An apply process at the destination database applies the changes in a transaction after the transaction has committed.

However, the distributed transaction state is not replicated or sent. The destination database or client application does not inherit the in-doubt or prepared state of such a transaction. Also, Oracle Streams does not replicate or send the changes using the same global transaction identifier used at the source database for XA transactions.

XA transactions can be performed in two ways:

	
Tightly coupled, where different XA branches share locks

	
Loosely coupled, where different XA branches do not share locks

Oracle Streams supports replication of changes made by loosely coupled XA branches regardless of the COMPATIBLE initialization parameter value. Oracle Streams supports replication of changes made by tightly coupled branches on an Oracle RAC source database only if the COMPATIBLE initialization parameter set to 11.2.0 or higher.

	
See Also:

	
Oracle Database Administrator's Guide for more information about distributed transactions

	
Oracle Database Advanced Application Developer's Guide for more information about Oracle XA

Oracle Streams and Oracle Data Vault

Oracle Database Vault restricts access to specific areas in an Oracle database from any user, including users who have administrative access. If you are using Oracle Streams in an Oracle Data Vault environment, then the following privileges and roles are required:

	
The Streams administrator must be granted the DV_STREAMS_ADMIN role to perform the following tasks: create a capture process, create an apply process, and modify the capture user for a capture process. When the Streams administrator is not performing these tasks, you can revoke the DV_STREAMS_ADMIN role from the Streams administrator.

	
The apply user for an apply process must be authorized to apply changes to realms that include replicated database objects. The replicated database objects are the objects to which the apply process applies changes.

To authorize an apply user for a realm, run the DBMS_MACADM.ADD_AUTH_TO_REALM procedure and specify the realm and the apply user. For example, to authorize apply user strmadmin for the sales realm, run the following procedure:

 BEGIN
 DBMS_MACADM.ADD_AUTH_TO_REALM(
 realm_name => 'sales',
 grantee => 'strmadmin');
 END;
 /

In addition, the user who performs the following actions must be granted the BECOME USER system privilege:

	
Creates or alters a capture process

	
Creates or alters an outbound server

	
Creates or alters an inbound server

Granting the BECOME USER system privilege to the user who performs these actions is not required if Oracle Database Vault is not installed. You can revoke the BECOME USER system privilege from the user after the completing one of these actions, if necessary.

See Oracle Database Vault Administrator's Guide.

27 Monitoring Rules

The following topics describe monitoring rules, rule sets, and evaluation contexts:

	
Displaying All Rules Used by All Oracle Streams Clients

	
Displaying the Oracle Streams Rules Used by a Specific Oracle Streams Client

	
Displaying the Current Condition for a Rule

	
Displaying Modified Rule Conditions for Oracle Streams Rules

	
Displaying the Evaluation Context for Each Rule Set

	
Displaying Information About the Tables Used by an Evaluation Context

	
Displaying Information About the Variables Used in an Evaluation Context

	
Displaying All of the Rules in a Rule Set

	
Displaying the Condition for Each Rule in a Rule Set

	
Listing Each Rule that Contains a Specified Pattern in Its Condition

	
Displaying Aggregate Statistics for All Rule Set Evaluations

	
Displaying Information About Evaluations for Each Rule Set

	
Determining the Resources Used by Evaluation of Each Rule Set

	
Displaying Evaluation Statistics for a Rule

	
Note:

The Oracle Streams tool in Oracle Enterprise Manager is also an excellent way to monitor an Oracle Streams environment. See the online Help for the Oracle Streams tool for more information.

	
See Also:

	
Chapter 5, "How Rules Are Used in Oracle Streams"

	
Chapter 11, "Advanced Rule Concepts"

	
Chapter 18, "Managing Rules"

	
Chapter 34, "Troubleshooting Rules and Rule-Based Transformations"

	
"Modifying a Name-Value Pair in a Rule Action Context" for information about viewing a rule action context

	
Oracle Database Reference for information about the data dictionary views described in this chapter

Displaying All Rules Used by All Oracle Streams Clients

Oracle Streams rules are created using the DBMS_STREAMS_ADM package or the Oracle Streams tool in Oracle Enterprise Manager. Oracle Streams rules in the rule sets for an Oracle Streams client determine the behavior of the Oracle Streams client. Oracle Streams clients include capture processes, propagations, apply processes, and messaging clients. The rule sets for an Oracle Streams client can also contain rules created using the DBMS_RULE_ADM package, and these rules also determine the behavior of the Oracle Streams client.

For example, if a rule in the positive rule set for a capture process evaluates to TRUE for DML changes to the hr.employees table, then the capture process captures DML changes to this table. However, if a rule in the negative rule set for a capture process evaluates to TRUE for DML changes to the hr.employees table, then the capture process discards DML changes to this table.

You query the following data dictionary views to display all rules in the rule sets for Oracle Streams clients, including Oracle Streams rules and rules created using the DBMS_RULE_ADM package:

	
ALL_STREAMS_RULES

	
DBA_STREAMS_RULES

In addition, these two views display the current rule condition for each rule and whether the rule condition has been modified.

The query in this section displays the following information about all of the rules used by Oracle Streams clients in a database:

	
The name of each Oracle Streams client that uses the rule

	
The type of each Oracle Streams client that uses the rule, either CAPTURE for a capture process, SYNCHRONOUS CAPTURE for a synchronous capture, PROPAGATION for a propagation, APPLY for an apply process, or DEQUEUE for a messaging client

	
The name of the rule

	
The type of rule set that contains the rule for the Oracle Streams client, either POSITIVE or NEGATIVE

	
For Oracle Streams rules, the Oracle Streams rule level, either GLOBAL, SCHEMA, or TABLE

	
For Oracle Streams rules, the name of the schema for schema rules and table rules

	
For Oracle Streams rules, the name of the table for table rules

	
For Oracle Streams rules, the rule type, either DML or DDL

Run the following query to display this information:

COLUMN STREAMS_NAME HEADING 'Oracle|Streams|Name' FORMAT A14
COLUMN STREAMS_TYPE HEADING 'Oracle|Streams|Type' FORMAT A11
COLUMN RULE_NAME HEADING 'Rule|Name' FORMAT A12
COLUMN RULE_SET_TYPE HEADING 'Rule Set|Type' FORMAT A8
COLUMN STREAMS_RULE_TYPE HEADING 'Oracle|Streams|Rule|Level' FORMAT A7
COLUMN SCHEMA_NAME HEADING 'Schema|Name' FORMAT A6
COLUMN OBJECT_NAME HEADING 'Object|Name' FORMAT A11
COLUMN RULE_TYPE HEADING 'Rule|Type' FORMAT A4

SELECT STREAMS_NAME,
 STREAMS_TYPE,
 RULE_NAME,
 RULE_SET_TYPE,
 STREAMS_RULE_TYPE,
 SCHEMA_NAME,
 OBJECT_NAME,
 RULE_TYPE
 FROM DBA_STREAMS_RULES;

Your output looks similar to the following:

 Oracle
Oracle Oracle Streams
Streams Streams Rule Rule Set Rule Schema Object Rule
Name Type Name Type Level Name Name Type
-------------- ----------- ------------ -------- ------- ------ ----------- ----
STRM01_CAPTURE CAPTURE JOBS4 POSITIVE TABLE HR JOBS DML
STRM01_CAPTURE CAPTURE JOBS5 POSITIVE TABLE HR JOBS DDL
DBS1_TO_DBS2 PROPAGATION HR18 POSITIVE SCHEMA HR DDL
DBS1_TO_DBS2 PROPAGATION HR17 POSITIVE SCHEMA HR DML
APPLY APPLY HR20 POSITIVE SCHEMA HR DML
APPLY APPLY JOB_HISTORY2 NEGATIVE TABLE HR JOB_HISTORY DML
OE DEQUEUE RULE$_28 POSITIVE

This output provides the following information about the rules used by Oracle Streams clients in the database:

	
The DML rule jobs4 and the DDL rule jobs5 are both table rules for the hr.jobs table in the positive rule set for the capture process strm01_capture.

	
The DML rule hr17 and the DDL rule hr18 are both schema rules for the hr schema in the positive rule set for the propagation dbs1_to_dbs2.

	
The DML rule hr20 is a schema rule for the hr schema in the positive rule set for the apply process apply.

	
The DML rule job_history2 is a table rule for the hr schema in the negative rule set for the apply process apply.

	
The rule rule$_28 is a messaging rule in the positive rule set for the messaging client oe.

The ALL_STREAMS_RULES and DBA_STREAMS_RULES views also contain information about the rule sets used by an Oracle Streams client, the current and original rule condition for Oracle Streams rules, whether the rule condition has been changed, the subsetting operation and DML condition for each Oracle Streams subset rule, the source database specified for each Oracle Streams rule, and information about the message type and message variable for Oracle Streams messaging rules.

The following data dictionary views also display Oracle Streams rules:

	
ALL_STREAMS_GLOBAL_RULES

	
DBA_STREAMS_GLOBAL_RULES

	
ALL_STREAMS_MESSAGE_RULES

	
DBA_STREAMS_MESSAGE_RULES

	
ALL_STREAMS_SCHEMA_RULES

	
DBA_STREAMS_SCHEMA_RULES

	
ALL_STREAMS_TABLE_RULES

	
DBA_STREAMS_TABLE_RULES

These views display Oracle Streams rules only. They do not display any manual modifications to these rules made by the DBMS_RULE_ADM package, and they do not display rules created using the DBMS_RULE_ADM package. These views can display the original rule condition for each rule only. They do not display the current rule condition for a rule if the rule condition was modified after the rule was created.

Displaying the Oracle Streams Rules Used by a Specific Oracle Streams Client

To determine which rules are in a rule set used by a particular Oracle Streams client, you can query the DBA_STREAMS_RULES data dictionary view. For example, suppose a database is running an apply process named strm01_apply. The following sections describe how to determine the rules in the positive rule set and negative rule set for this apply process.

The following sections describe how to determine which rules are in a rule set used by a particular Oracle Streams client:

	
Displaying the Rules in the Positive Rule Set for an Oracle Streams Client

	
Displaying the Rules in the Negative Rule Set for an Oracle Streams Client

	
See Also:

	
"System-Created Rules"

Displaying the Rules in the Positive Rule Set for an Oracle Streams Client

The following query displays all of the rules in the positive rule set for an apply processs named strm01_apply:

COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A10
COLUMN RULE_NAME HEADING 'Rule|Name' FORMAT A12
COLUMN STREAMS_RULE_TYPE HEADING 'Oracle Streams|Rule|Level' FORMAT A7
COLUMN SCHEMA_NAME HEADING 'Schema|Name' FORMAT A6
COLUMN OBJECT_NAME HEADING 'Object|Name' FORMAT A11
COLUMN RULE_TYPE HEADING 'Rule|Type' FORMAT A4
COLUMN SOURCE_DATABASE HEADING 'Source' FORMAT A10
COLUMN INCLUDE_TAGGED_LCR HEADING 'Apply|Tagged|LCRs?' FORMAT A9

SELECT RULE_OWNER,
 RULE_NAME,
 STREAMS_RULE_TYPE,
 SCHEMA_NAME,
 OBJECT_NAME,
 RULE_TYPE,
 SOURCE_DATABASE,
 INCLUDE_TAGGED_LCR
 FROM DBA_STREAMS_RULES
 WHERE STREAMS_NAME = 'STRM01_APPLY' AND
 RULE_SET_TYPE = 'POSITIVE';

If this query returns any rows, then the apply process applies LCRs containing changes that evaluate to TRUE for the rules.

Your output looks similar to the following:

 Oracle Streams Apply
 Rule Rule Schema Object Rule Tagged
Rule Owner Name Level Name Name Type Source LCRs?
---------- --------------- ------- ------ ----------- ---- ---------- ---------
STRMADMIN HR20 SCHEMA HR DML DBS1.EXAM NO
 PLE.COM
STRMADMIN HR21 SCHEMA HR DDL DBS1.EXAM NO
 PLE.COM

Assuming the rule conditions for the Oracle Streams rules returned by this query have not been modified, these results show that the apply process applies LCRs containing DML changes and DDL changes to the hr schema and that the LCRs originated at the dbs1.example.com database. The rules in the positive rule set that instruct the apply process to apply these LCRs are owned by the strmadmin user and are named hr20 and hr21. Also, the apply process applies an LCR that satisfies one of these rules only if the tag in the LCR is NULL.

If the rule condition for an Oracle Streams rule has been modified, then you must check the current rule condition to determine the effect of the rule on an Oracle Streams client. Oracle Streams rules whose rule condition has been modified have NO for the SAME_RULE_CONDITION column.

	
See Also:

	
"Displaying Modified Rule Conditions for Oracle Streams Rules"

Displaying the Rules in the Negative Rule Set for an Oracle Streams Client

The following query displays all of the rules in the negative rule set for an apply process named strm01_apply:

COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A10
COLUMN RULE_NAME HEADING 'Rule|Name' FORMAT A15
COLUMN STREAMS_RULE_TYPE HEADING 'Oracle Streams|Rule|Level' FORMAT A7
COLUMN SCHEMA_NAME HEADING 'Schema|Name' FORMAT A6
COLUMN OBJECT_NAME HEADING 'Object|Name' FORMAT A11
COLUMN RULE_TYPE HEADING 'Rule|Type' FORMAT A4
COLUMN SOURCE_DATABASE HEADING 'Source' FORMAT A10
COLUMN INCLUDE_TAGGED_LCR HEADING 'Apply|Tagged|LCRs?' FORMAT A9

SELECT RULE_OWNER,
 RULE_NAME,
 STREAMS_RULE_TYPE,
 SCHEMA_NAME,
 OBJECT_NAME,
 RULE_TYPE,
 SOURCE_DATABASE,
 INCLUDE_TAGGED_LCR
 FROM DBA_STREAMS_RULES
 WHERE STREAMS_NAME = 'APPLY' AND
 RULE_SET_TYPE = 'NEGATIVE';

If this query returns any rows, then the apply process discards LCRs containing changes that evaluate to TRUE for the rules.

Your output looks similar to the following:

 Oracle Streams Apply
 Rule Rule Schema Object Rule Tagged
Rule Owner Name Level Name Name Type Source LCRs?
---------- --------------- ------- ------ ----------- ---- ---------- ---------
STRMADMIN JOB_HISTORY22 TABLE HR JOB_HISTORY DML DBS1.EXAMP YES
 LE.COM
STRMADMIN JOB_HISTORY23 TABLE HR JOB_HISTORY DDL DBS1.EXAMP YES
 LE.COM

Assuming the rule conditions for the Oracle Streams rules returned by this query have not been modified, these results show that the apply process discards LCRs containing DML changes and DDL changes to the hr.job_history table and that the LCRs originated at the dbs1.example.com database. The rules in the negative rule set that instruct the apply process to discard these LCRs are owned by the strmadmin user and are named job_history22 and job_history23. Also, the apply process discards an LCR that satisfies one of these rules regardless of the value of the tag in the LCR.

If the rule condition for an Oracle Streams rule has been modified, then you must check the current rule condition to determine the effect of the rule on an Oracle Streams client. Oracle Streams rules whose rule condition has been modified have NO for the SAME_RULE_CONDITION column.

	
See Also:

	
"Displaying Modified Rule Conditions for Oracle Streams Rules"

Displaying the Current Condition for a Rule

If you know the name of a rule, then you can display its rule condition. For example, consider the rule returned by the query in "Displaying the Oracle Streams Rules Used by a Specific Oracle Streams Client". The name of the rule is hr1, and you can display its condition by running the following query:

SET LONG 8000
SET PAGES 8000
SELECT RULE_CONDITION "Current Rule Condition"
 FROM DBA_STREAMS_RULES
 WHERE RULE_NAME = 'HR1' AND
 RULE_OWNER = 'STRMADMIN';

Your output looks similar to the following:

Current Rule Condition
--
((((:dml.get_object_owner() = 'HR') and :dml.get_source_database_name() = 'DA.EX
AMPLE.COM')) and (:dml.get_compatible() <= dbms_streams.compatible_11_2))

	
See Also:

	
"Rule Condition"

	
"System-Created Rules"

Displaying Modified Rule Conditions for Oracle Streams Rules

It is possible to modify the rule condition of an Oracle Streams rule. These modifications can change the behavior of the Oracle Streams clients using the Oracle Streams rule. In addition, some modifications can degrade rule evaluation performance.

The following query displays the rule name, the original rule condition, and the current rule condition for each Oracle Streams rule whose condition has been modified:

COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A12
COLUMN ORIGINAL_RULE_CONDITION HEADING 'Original Rule Condition' FORMAT A33
COLUMN RULE_CONDITION HEADING 'Current Rule Condition' FORMAT A33

SET LONG 8000
SET PAGES 8000
SELECT RULE_NAME, ORIGINAL_RULE_CONDITION, RULE_CONDITION
 FROM DBA_STREAMS_RULES
 WHERE SAME_RULE_CONDITION = 'NO';

Your output looks similar to the following:

Rule Name Original Rule Condition Current Rule Condition
------------ --------------------------------- ---------------------------------
HR20 ((:dml.get_object_owner() = 'HR') ((:dml.get_object_owner() = 'HR')
 and :dml.is_null_tag() = 'Y') and :dml.is_null_tag() = 'Y' and
 :dml.get_object_name() != 'JOB_H
 ISTORY')

In this example, the output shows that the condition of the hr20 rule has been modified. Originally, this schema rule evaluated to TRUE for all changes to the hr schema. The current modified condition for this rule evaluates to TRUE for all changes to the hr schema, except for DML changes to the hr.job_history table.

	
Note:

The query in this section applies only to Oracle Streams rules. It does not apply to rules created using the DBMS_RULE_ADM package because these rules always show NULL for the ORIGINAL_RULE_CONDITION column and NULL for the SAME_RULE_CONDITION column.

	
See Also:

	
"Rule Condition"

	
"System-Created Rules"

Displaying the Evaluation Context for Each Rule Set

The following query displays the default evaluation context for each rule set in a database:

COLUMN RULE_SET_OWNER HEADING 'Rule Set|Owner' FORMAT A10
COLUMN RULE_SET_NAME HEADING 'Rule Set Name' FORMAT A20
COLUMN RULE_SET_EVAL_CONTEXT_OWNER HEADING 'Eval Context|Owner' FORMAT A12
COLUMN RULE_SET_EVAL_CONTEXT_NAME HEADING 'Eval Context Name' FORMAT A30

SELECT RULE_SET_OWNER,
 RULE_SET_NAME,
 RULE_SET_EVAL_CONTEXT_OWNER,
 RULE_SET_EVAL_CONTEXT_NAME
 FROM DBA_RULE_SETS;

Your output looks similar to the following:

Rule Set Eval Context
Owner Rule Set Name Owner Eval Context Name
---------- -------------------- ------------ ------------------------------
STRMADMIN RULESET$_2 SYS STREAMS$_EVALUATION_CONTEXT
STRMADMIN STRM02_QUEUE_R STRMADMIN AQ$_STRM02_QUEUE_TABLE_V
STRMADMIN APPLY_OE_RS STRMADMIN OE_EVAL_CONTEXT
STRMADMIN OE_QUEUE_R STRMADMIN AQ$_OE_QUEUE_TABLE_V
STRMADMIN AQ$_1_RE STRMADMIN AQ$_OE_QUEUE_TABLE_V
SUPPORT RS SUPPORT EVALCTX
OE NOTIFICATION_QUEUE_R OE AQ$_NOTIFICATION_QUEUE_TABLE_V

	
See Also:

	
"Rule Evaluation Context"

	
"Evaluation Contexts Used in Oracle Streams"

Displaying Information About the Tables Used by an Evaluation Context

The following query displays information about the tables used by an evaluation context named evalctx, which is owned by the support user:

COLUMN TABLE_ALIAS HEADING 'Table Alias' FORMAT A20
COLUMN TABLE_NAME HEADING 'Table Name' FORMAT A40

SELECT TABLE_ALIAS,
 TABLE_NAME
 FROM DBA_EVALUATION_CONTEXT_TABLES
 WHERE EVALUATION_CONTEXT_OWNER = 'SUPPORT' AND
 EVALUATION_CONTEXT_NAME = 'EVALCTX';

Your output looks similar to the following:

Table Alias Table Name
-------------------- --
PROB problems

	
See Also:

"Rule Evaluation Context"

Displaying Information About the Variables Used in an Evaluation Context

The following query displays information about the variables used by an evaluation context named evalctx, which is owned by the support user:

COLUMN VARIABLE_NAME HEADING 'Variable Name' FORMAT A15
COLUMN VARIABLE_TYPE HEADING 'Variable Type' FORMAT A15
COLUMN VARIABLE_VALUE_FUNCTION HEADING 'Variable Value|Function' FORMAT A20
COLUMN VARIABLE_METHOD_FUNCTION HEADING 'Variable Method|Function' FORMAT A20

SELECT VARIABLE_NAME,
 VARIABLE_TYPE,
 VARIABLE_VALUE_FUNCTION,
 VARIABLE_METHOD_FUNCTION
 FROM DBA_EVALUATION_CONTEXT_VARS
 WHERE EVALUATION_CONTEXT_OWNER = 'SUPPORT' AND
 EVALUATION_CONTEXT_NAME = 'EVALCTX';

Your output looks similar to the following:

 Variable Value Variable Method
Variable Name Variable Type Function Function
--------------- --------------- -------------------- --------------------
CURRENT_TIME DATE timefunc

	
See Also:

"Rule Evaluation Context"

Displaying All of the Rules in a Rule Set

The query in this section displays the following information about all of the rules in a rule set:

	
The owner of the rule.

	
The name of the rule.

	
The evaluation context for the rule, if any. If a rule does not have an evaluation context, and no evaluation context is specified in the ADD_RULE procedure when the rule is added to a rule set, then it inherits the evaluation context of the rule set.

	
The evaluation context owner, if the rule has an evaluation context.

For example, to display this information for each rule in a rule set named oe_queue_r that is owned by the user strmadmin, run the following query:

COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A10
COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A20
COLUMN RULE_EVALUATION_CONTEXT_NAME HEADING 'Eval Context Name' FORMAT A27
COLUMN RULE_EVALUATION_CONTEXT_OWNER HEADING 'Eval Context|Owner' FORMAT A11

SELECT R.RULE_OWNER,
 R.RULE_NAME,
 R.RULE_EVALUATION_CONTEXT_NAME,
 R.RULE_EVALUATION_CONTEXT_OWNER
 FROM DBA_RULES R, DBA_RULE_SET_RULES RS
 WHERE RS.RULE_SET_OWNER = 'STRMADMIN' AND
 RS.RULE_SET_NAME = 'OE_QUEUE_R' AND
 RS.RULE_NAME = R.RULE_NAME AND
 RS.RULE_OWNER = R.RULE_OWNER;

Your output looks similar to the following:

 Eval Contex
Rule Owner Rule Name Eval Context Name Owner
---------- -------------------- --------------------------- -----------
STRMADMIN HR1 STREAMS$_EVALUATION_CONTEXT SYS
STRMADMIN APPLY_LCRS STREAMS$_EVALUATION_CONTEXT SYS
STRMADMIN OE_QUEUE$3
STRMADMIN APPLY_ACTION

Displaying the Condition for Each Rule in a Rule Set

The following query displays the condition for each rule in a rule set named hr_queue_r that is owned by the user strmadmin:

SET LONGCHUNKSIZE 4000
SET LONG 4000
COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A15
COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A15
COLUMN RULE_CONDITION HEADING 'Rule Condition' FORMAT A45

SELECT R.RULE_OWNER,
 R.RULE_NAME,
 R.RULE_CONDITION
 FROM DBA_RULES R, DBA_RULE_SET_RULES RS
 WHERE RS.RULE_SET_OWNER = 'STRMADMIN' AND
 RS.RULE_SET_NAME = 'HR_QUEUE_R' AND
 RS.RULE_NAME = R.RULE_NAME AND
 RS.RULE_OWNER = R.RULE_OWNER;

Your output looks similar to the following:

Rule Owner Rule Name Rule Condition
--------------- --------------- ---
STRMADMIN APPLY_ACTION hr.get_hr_action(tab.user_data) = 'APPLY'
STRMADMIN APPLY_LCRS :dml.get_object_owner() = 'HR' AND (:dml.get
 _object_name() = 'DEPARTMENTS' OR
 :dml.get_object_name() = 'EMPLOYEES')

STRMADMIN HR_QUEUE$3 hr.get_hr_action(tab.user_data) != 'APPLY'

	
See Also:

	
"Rule Condition"

	
"System-Created Rules"

Listing Each Rule that Contains a Specified Pattern in Its Condition

To list each rule in a database that contains a specified pattern in its condition, you can query the DBMS_RULES data dictionary view and use the DBMS_LOB.INSTR function to search for the pattern in the rule conditions. For example, the following query lists each rule that contains the pattern 'HR' in its condition:

COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A30
COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A30

SELECT RULE_OWNER, RULE_NAME FROM DBA_RULES
 WHERE DBMS_LOB.INSTR(RULE_CONDITION, 'HR', 1, 1) > 0;

Your output looks similar to the following:

Rule Owner Rule Name
------------------------------ ------------------------------
STRMADMIN DEPARTMENTS4
STRMADMIN DEPARTMENTS5
STRMADMIN DEPARTMENTS6

Displaying Aggregate Statistics for All Rule Set Evaluations

You can query the V$RULE_SET_AGGREGATE_STATS dynamic performance view to display statistics for all rule set evaluations since the database instance last started.

The query in this section contains the following information about rule set evaluations:

	
The number of rule set evaluations.

	
The number of rule set evaluations that were instructed to stop on the first hit.

	
The number of rule set evaluations that were instructed to evaluate only simple rules.

	
The number of times a rule set was evaluated without issuing any SQL. Generally, issuing SQL to evaluate rules is more expensive than evaluating rules without issuing SQL.

	
The number of centiseconds of CPU time used for rule set evaluation.

	
The number of centiseconds spent on rule set evaluation.

	
The number of SQL executions issued to evaluate a rule in a rule set.

	
The number of rule conditions processed during rule set evaluation.

	
The number of TRUE rules returned to the rules engine clients.

	
The number of MAYBE rules returned to the rules engine clients.

	
The number of times the following types of functions were called during rule set evaluation: variable value function, variable method function, and evaluation function.

Run the following query to display this information:

COLUMN NAME HEADING 'Name of Statistic' FORMAT A55
COLUMN VALUE HEADING 'Value' FORMAT 999999999

SELECT NAME, VALUE FROM V$RULE_SET_AGGREGATE_STATS;

Your output looks similar to the following:

Name of Statistic Value
--- ----------
rule set evaluations (all) 5584
rule set evaluations (first_hit) 5584
rule set evaluations (simple_rules_only) 3675
rule set evaluations (SQL free) 5584
rule set evaluation time (CPU) 179
rule set evaluation time (elapsed) 1053
rule set SQL executions 0
rule set conditions processed 11551
rule set true rules 10
rule set maybe rules 328
rule set user function calls (variable value function) 182
rule set user function calls (variable method function) 12794
rule set user function calls (evaluation function) 3857

	
Note:

A centisecond is one-hundredth of a second. So, for example, this output shows 1.79 seconds of CPU time and 10.53 seconds of elapsed time.

Displaying Information About Evaluations for Each Rule Set

You can query the V$RULE_SET dynamic performance view to display information about evaluations for each rule set since the database instance last started. The query in this section contains the following information about each rule set in a database:

	
The owner of the rule set.

	
The name of the rule set.

	
The total number of evaluations of the rule set since the database instance last started.

	
The total number of times SQL was executed to evaluate rules since the database instance last started. Generally, issuing SQL to evaluate rules is more expensive than evaluating rules without issuing SQL.

	
The total number of evaluations on the rule set that did not issue SQL to evaluate rules since the database instance last started.

	
The total number of TRUE rules returned to the rules engine clients using the rule set since the database instance last started.

	
The total number of MAYBE rules returned to the rules engine clients using the rule set since the database instance last started.

Run the following query to display this information for each rule set in the database:

COLUMN OWNER HEADING 'Rule Set|Owner' FORMAT A9
COLUMN NAME HEADING 'Rule Set|Name' FORMAT A11
COLUMN EVALUATIONS HEADING 'Total|Evaluations' FORMAT 99999999
COLUMN SQL_EXECUTIONS HEADING 'SQL|Executions' FORMAT 99999999
COLUMN SQL_FREE_EVALUATIONS HEADING 'SQL Free|Evaluations' FORMAT 99999999
COLUMN TRUE_RULES HEADING 'True|Rules' FORMAT 999999999
COLUMN MAYBE_RULES HEADING 'Maybe|Rules' FORMAT 99999999

SELECT OWNER,
 NAME,
 EVALUATIONS,
 SQL_EXECUTIONS,
 SQL_FREE_EVALUATIONS,
 TRUE_RULES,
 MAYBE_RULES
 FROM V$RULE_SET;

Your output looks similar to the following:

Rule Set Rule Set Total SQL SQL Free True Maybe
Owner Name Evaluations Executions Evaluations Rules Rules
--------- ----------- ----------- ---------- ----------- ---------- ---------
SYS ALERT_QUE_R 3 0 0 2 0
STRMADMIN RULESET$_4 86 0 0 43 1
STRMADMIN RULESET$_11 458 0 0 11 0
STRMADMIN RULESET$_9 87 0 0 1 42
STRMADMIN RULESET$_7 87 0 0 44 1

	
Note:

Querying the V$RULE_SET view can have a negative impact on performance if a database has a large library cache.

Determining the Resources Used by Evaluation of Each Rule Set

You can query the V$RULE_SET dynamic performance view to determine the resources used by evaluation of a rule set since the database instance last started. If a rule set was evaluated more than one time since the database instance last started, then some statistics are cumulative, including statistics for the amount of CPU time, evaluation time, and shared memory bytes used.

The query in this section contains the following information about each rule set in a database:

	
The owner of the rule set

	
The name of the rule set

	
The total number of seconds of CPU time used to evaluate the rule set since the database instance last started

	
The total number of seconds used to evaluate the rule set since the database instance last started

	
The total number of shared memory bytes used to evaluate the rule set since the database instance last started

Run the following query to display this information for each rule set in the database:

COLUMN OWNER HEADING 'Rule Set|Owner' FORMAT A15
COLUMN NAME HEADING 'Rule Set Name' FORMAT A15
COLUMN CPU_SECONDS HEADING 'Seconds|of CPU|Time' FORMAT 999999.999
COLUMN ELAPSED_SECONDS HEADING 'Seconds of|Evaluation|Time' FORMAT 999999.999
COLUMN SHARABLE_MEM HEADING 'Bytes|of Shared|Memory' FORMAT 999999999

SELECT OWNER,
 NAME,
 (CPU_TIME/100) CPU_SECONDS,
 (ELAPSED_TIME/100) ELAPSED_SECONDS,
 SHARABLE_MEM
 FROM V$RULE_SET;

Your output looks similar to the following:

 Seconds Seconds of Bytes
Rule Set of CPU Evaluation of Shared
Owner Rule Set Name Time Time Memory
--------------- --------------- ----------- ----------- ----------
SYS ALERT_QUE_R .230 .490 25120
STRMADMIN RULESET$_4 .060 .970 25097
STRMADMIN RULESET$_11 .040 .030 25098
STRMADMIN RULESET$_9 .220 3.040 25505
STRMADMIN RULESET$_7 .040 .380 21313

	
Note:

Querying the V$RULE_SET view can have a negative impact on performance if a database has a large library cache.

Displaying Evaluation Statistics for a Rule

You can query the V$RULE dynamic performance view to display evaluation statistics for a particular rule since the database instance last started. The query in this section contains the following information about each rule set in a database:

	
The total number of times the rule evaluated to TRUE since the database instance last started.

	
The total number of times the rule evaluated to MAYBE since the database instance last started.

	
The total number of evaluations on the rule that issued SQL since the database instance last started. Generally, issuing SQL to evaluate a rule is more expensive than evaluating the rule without issuing SQL.

For example, run the following query to display this information for the locations25 rule in the strmadmin schema:

COLUMN TRUE_HITS HEADING 'True Evaluations' FORMAT 99999999999
COLUMN MAYBE_HITS HEADING 'Maybe Evaluations' FORMAT 99999999999
COLUMN SQL_EVALUATIONS HEADING 'SQL Evaluations' FORMAT 99999999999

SELECT TRUE_HITS, MAYBE_HITS, SQL_EVALUATIONS
 FROM V$RULE
 WHERE RULE_OWNER = 'STRMADMIN' AND
 RULE_NAME = 'LOCATIONS25';

Your output looks similar to the following:

True Evaluations Maybe Evaluations SQL Evaluations
---------------- ----------------- ---------------
 1518 154 0

25 Monitoring Oracle Streams Queues and Propagations

The following topics describe monitoring Oracle Streams queues and propagations:

	
Monitoring Queues and Messaging

	
Monitoring Buffered Queues

	
Monitoring Oracle Streams Propagations and Propagation Jobs

	
Note:

The Oracle Streams tool in Oracle Enterprise Manager is also an excellent way to monitor an Oracle Streams environment. See Oracle Database 2 Day + Data Replication and Integration Guide and the online Help for the Oracle Streams tool for more information.

	
See Also:

	
Chapter 3, "Oracle Streams Staging and Propagation"

	
Chapter 16, "Managing Staging and Propagation"

	
Oracle Database Reference for information about the data dictionary views described in this chapter

Monitoring Queues and Messaging

The following topics describe displaying information about queues and messaging:

	
Displaying the ANYDATA Queues in a Database

	
Viewing the Messaging Clients in a Database

	
Viewing Message Notifications

	
Determining the Consumer of Each Message in a Persistent Queue

	
Viewing the Contents of Messages in a Persistent Queue

	
See Also:

	
Chapter 3, "Oracle Streams Staging and Propagation"

	
Chapter 16, "Managing Staging and Propagation"

Displaying the ANYDATA Queues in a Database

To display all of the ANYDATA queues in a database, run the following query:

COLUMN OWNER HEADING 'Owner' FORMAT A10
COLUMN NAME HEADING 'Queue Name' FORMAT A28
COLUMN QUEUE_TABLE HEADING 'Queue Table' FORMAT A22
COLUMN USER_COMMENT HEADING 'Comment' FORMAT A15

SELECT q.OWNER, q.NAME, t.QUEUE_TABLE, q.USER_COMMENT
 FROM DBA_QUEUES q, DBA_QUEUE_TABLES t
 WHERE t.OBJECT_TYPE = 'SYS.ANYDATA' AND
 q.QUEUE_TABLE = t.QUEUE_TABLE AND
 q.OWNER = t.OWNER;

Your output looks similar to the following:

Owner Queue Name Queue Table Comment
---------- ---------------------------- ---------------------- ---------------
STRMADMIN DB$APPQ DB$APPQT
STRMADMIN AQ$_DB$APPQT_E DB$APPQT exception queue
STRMADMIN DA$CAPQ DA$CAPQT
STRMADMIN AQ$_DA$CAPQT_E DA$CAPQT exception queue
IX STREAMS_QUEUE STREAMS_QUEUE_TABLE
IX AQ$_STREAMS_QUEUE_TABLE_E STREAMS_QUEUE_TABLE exception queue

An exception queue is created automatically when you create an ANYDATA queue.

	
See Also:

"Managing Queues"

Viewing the Messaging Clients in a Database

You can view the messaging clients in a database by querying the DBA_STREAMS_MESSAGE_CONSUMERS data dictionary view. The query in this section displays the following information about each messaging client:

	
The name of the messaging client

	
The queue used by the messaging client

	
The positive rule set used by the messaging client

	
The negative rule set used by the messaging client

Run the following query to view this information about messaging clients:

COLUMN STREAMS_NAME HEADING 'Messaging|Client' FORMAT A25
COLUMN QUEUE_OWNER HEADING 'Queue|Owner' FORMAT A10
COLUMN QUEUE_NAME HEADING 'Queue Name' FORMAT A18
COLUMN RULE_SET_NAME HEADING 'Positive|Rule Set' FORMAT A11
COLUMN NEGATIVE_RULE_SET_NAME HEADING 'Negative|Rule Set' FORMAT A11

SELECT STREAMS_NAME,
 QUEUE_OWNER,
 QUEUE_NAME,
 RULE_SET_NAME,
 NEGATIVE_RULE_SET_NAME
 FROM DBA_STREAMS_MESSAGE_CONSUMERS;

Your output looks similar to the following:

Messaging Queue Positive Negative
Client Owner Queue Name Rule Set Rule Set
------------------------- ---------- ------------------ ----------- -----------
SCHEDULER_PICKUP SYS SCHEDULER$_JOBQ RULESET$_8
SCHEDULER_COORDINATOR SYS SCHEDULER$_JOBQ RULESET$_4
HR STRMADMIN STREAMS_QUEUE RULESET$_15

	
See Also:

Chapter 3, "Oracle Streams Staging and Propagation" for more information about messaging clients

Viewing Message Notifications

You can configure a message notification to send a notification when a message that can be dequeued by a messaging client is enqueued into a queue. The notification can be sent to an e-mail address, to an HTTP URL, or to a PL/SQL procedure. Run the following query to view the message notifications configured in a database:

COLUMN STREAMS_NAME HEADING 'Messaging|Client' FORMAT A10
COLUMN QUEUE_OWNER HEADING 'Queue|Owner' FORMAT A5
COLUMN QUEUE_NAME HEADING 'Queue Name' FORMAT A20
COLUMN NOTIFICATION_TYPE HEADING 'Notification|Type' FORMAT A15
COLUMN NOTIFICATION_ACTION HEADING 'Notification|Action' FORMAT A25

SELECT STREAMS_NAME,
 QUEUE_OWNER,
 QUEUE_NAME,
 NOTIFICATION_TYPE,
 NOTIFICATION_ACTION
 FROM DBA_STREAMS_MESSAGE_CONSUMERS
 WHERE NOTIFICATION_TYPE IS NOT NULL;

Your output looks similar to the following:

Messaging Queue Notification Notification
Client Owner Queue Name Type Action
---------- ----- -------------------- --------------- -------------------------
OE OE NOTIFICATION_QUEUE MAIL mary.smith@example.com

	
See Also:

	
Oracle Database 2 Day + Data Replication and Integration Guide contains basic information about message notifications

	
Oracle Streams Advanced Queuing User's Guide for detailed information about message notifications

Determining the Consumer of Each Message in a Persistent Queue

To determine the consumer for each message in a persistent queue, query AQ$queue_table_name in the queue owner's schema, where queue_table_name is the name of the queue table. For example, to find the consumers of the messages in the oe_q_table_any queue table, run the following query:

COLUMN MSG_ID HEADING 'Message ID' FORMAT 9999
COLUMN MSG_STATE HEADING 'Message State' FORMAT A13
COLUMN CONSUMER_NAME HEADING 'Consumer' FORMAT A30

SELECT MSG_ID, MSG_STATE, CONSUMER_NAME FROM AQ$OE_Q_TABLE_ANY;

Your output looks similar to the following:

Message ID Message State Consumer
-------------------------------- ------------- ------------------------------
B79AC412AE6E08CAE034080020AE3E0A PROCESSED OE
B79AC412AE6F08CAE034080020AE3E0A PROCESSED OE
B79AC412AE7008CAE034080020AE3E0A PROCESSED OE

	
Note:

This query lists only messages in a persistent queue, not captured LCRs or other messages in a buffered queue.

	
See Also:

Oracle Streams Advanced Queuing User's Guide for an example that enqueues messages into an ANYDATA queue

Viewing the Contents of Messages in a Persistent Queue

In an ANYDATA queue, to view the contents of a payload that is encapsulated within an ANYDATA payload, you query the queue table using the Accessdata_type static functions of the ANYDATA type, where data_type is the type of payload to view.

	
See Also:

Oracle Streams Advanced Queuing User's Guide for an example that enqueues the messages shown in the queries in this section into an ANYDATA queue

For example, to view the contents of payload of type NUMBER in a queue with a queue table named oe_queue_table, run the following query as the queue owner:

SELECT qt.user_data.AccessNumber() "Numbers in Queue"
 FROM strmadmin.oe_q_table_any qt;

Your output looks similar to the following:

Numbers in Queue

 16

Similarly, to view the contents of a payload of type VARCHAR2 in a queue with a queue table named oe_q_table_any, run the following query:

SELECT qt.user_data.AccessVarchar2() "Varchar2s in Queue"
 FROM strmadmin.oe_q_table_any qt;

Your output looks similar to the following:

Varchar2s in Queue
--
Chemicals - SW

To view the contents of a user-defined data type, you query the queue table using a custom function that you create. For example, to view the contents of a payload of oe.cust_address_typ, create a function similar to the following:

CREATE OR REPLACE FUNCTION oe.view_cust_address_typ(
in_any IN ANYDATA)
RETURN oe.cust_address_typ
IS
 address oe.cust_address_typ;
 num_var NUMBER;
BEGIN
 IF (in_any.GetTypeName() = 'OE.CUST_ADDRESS_TYP') THEN
 num_var := in_any.GetObject(address);
 RETURN address;
 ELSE RETURN NULL;
 END IF;
END;
/

GRANT EXECUTE ON oe.view_cust_address_typ TO strmadmin;

GRANT EXECUTE ON oe.cust_address_typ TO strmadmin;

Query the queue table using the function, as in the following example:

SELECT oe.view_cust_address_typ(qt.user_data) "Customer Addresses"
 FROM strmadmin.oe_q_table_any qt
 WHERE qt.user_data.GetTypeName() = 'OE.CUST_ADDRESS_TYP';

Your output looks similar to the following:

Customer Addresses(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID
--
CUST_ADDRESS_TYP('1646 Brazil Blvd', '361168', 'Chennai', 'Tam', 'IN')

Monitoring Buffered Queues

A buffered queue includes the following storage areas:

	
System Global Area (SGA) memory associated with a queue

	
Part of the queue table for a queue that stores messages that have spilled from memory

Buffered queues are stored in the Oracle Streams pool, and the Oracle Streams pool is a portion of memory in the SGA that is used by Oracle Streams. In an Oracle Streams environment, LCRs captured by a capture process always are stored in the buffered queue of an ANYDATA queue. Users and application can also enqueue messages into buffered queues, and these buffered queues be part of ANYDATA queues or part of typed queues.

Buffered queues enable Oracle databases to optimize messages by storing them in the SGA instead of always storing them in a queue table. Captured LCRs always are stored in buffered queues, but other types of messages can be stored in buffered queues or persistently in queue tables. Messages in a buffered queue can spill from memory if they have been staged in the buffered queue for a period of time without being dequeued, or if there is not enough space in memory to hold all of the messages. Messages that spill from memory are stored in the appropriate queue table.

The following sections describe queries that monitor buffered queues:

	
Determining the Number of Messages in Each Buffered Queue

	
Viewing the Capture Processes for the LCRs in Each Buffered Queue

	
Displaying Information About Propagations that Send Buffered Messages

	
Displaying the Number of Messages and Bytes Sent By Propagations

	
Displaying Performance Statistics for Propagations that Send Buffered Messages

	
Viewing the Propagations Dequeuing Messages from Each Buffered Queue

	
Displaying Performance Statistics for Propagations That Receive Buffered Messages

	
Viewing the Apply Processes Dequeuing Messages from Each Buffered Queue

Determining the Number of Messages in Each Buffered Queue

The V$BUFFERED_QUEUES dynamic performance view contains information about the number of messages in a buffered queue. The messages can be captured LCRs, buffered LCRs, or buffered user messages.

You can determine the following information about each buffered queue in a database by running the query in this section:

	
The queue owner

	
The queue name

	
The number of messages currently in memory

	
The number of messages that have spilled from memory into the queue table

	
The total number of messages in the buffered queue, which includes the messages in memory and the messages spilled to the queue table

To display this information, run the following query:

COLUMN QUEUE_SCHEMA HEADING 'Queue Owner' FORMAT A15
COLUMN QUEUE_NAME HEADING 'Queue Name' FORMAT A15
COLUMN MEM_MSG HEADING 'Messages|in Memory' FORMAT 99999999
COLUMN SPILL_MSGS HEADING 'Messages|Spilled' FORMAT 99999999
COLUMN NUM_MSGS HEADING 'Total Messages|in Buffered Queue' FORMAT 99999999

SELECT QUEUE_SCHEMA,
 QUEUE_NAME,
 (NUM_MSGS - SPILL_MSGS) MEM_MSG,
 SPILL_MSGS,
 NUM_MSGS
 FROM V$BUFFERED_QUEUES;

Your output looks similar to the following:

 Messages Messages Total Messages
Queue Owner Queue Name in Memory Spilled in Buffered Queue
--------------- --------------- ------------- ------------- -------------------
STRMADMIN STREAMS_QUEUE 534 21 555

Viewing the Capture Processes for the LCRs in Each Buffered Queue

A capture process is a queue publisher that enqueues captured LCRs into a buffered queue. These LCRs can be propagated to other queues subsequently. By querying the V$BUFFERED_PUBLISHERS dynamic performance view, you can display each capture process that captured the LCRs in the buffered queue. These LCRs might have been captured at the local database, or they might have been captured at a remote database and propagated to the queue specified in the query.

The query in this section assumes that the buffered queues in the local database only store captured LCRs, not buffered LCRs or buffered user messages. The query displays the following information about each capture process:

	
The name of a capture process that captured the LCRs in the buffered queue

	
If the capture process is running on a remote database, and the captured LCRs have been propagated to the local queue, then the name of the queue and database from which the captured LCRs were last propagated

	
The name of the local queue staging the captured LCRs

	
The total number of LCRs captured by a capture process that have been staged in the buffered queue since the database instance was last started

	
The message number of the LCR last enqueued into the buffered queue from the sender

	
The percentage of the Streams pool used at the capture process database

	
The state of the publisher. The capture process is the publisher, and the following states are possible:

	
PUBLISHING MESSAGES

	
IN FLOW CONTROL: TOO MANY UNBROWSED MESSAGES

	
IN FLOW CONTROL: OVERSPILLED MESSAGES

	
IN FLOW CONTROL: INSUFFICIENT MEMORY AND UNBROWSED MESSAGES

To display this information, run the following query:

COLUMN SENDER_NAME HEADING 'Capture|Process' FORMAT A10
COLUMN SENDER_ADDRESS HEADING 'Sender Queue' FORMAT A15
COLUMN QUEUE_NAME HEADING 'Queue Name' FORMAT A10
COLUMN CNUM_MSGS HEADING 'Number|of LCRs|Enqueued' FORMAT 99999999
COLUMN LAST_ENQUEUED_MSG HEADING 'Last|Enqueued|LCR' FORMAT 9999999999
COLUMN MEMORY_USAGE HEADING 'Percent|Streams|Pool|Used' FORMAT 999
COLUMN PUBLISHER_STATE HEADING 'Publisher|State' FORMAT A10

SELECT SENDER_NAME,
 SENDER_ADDRESS,
 QUEUE_NAME,
 CNUM_MSGS,
 LAST_ENQUEUED_MSG,
 MEMORY_USAGE,
 PUBLISHER_STATE
 FROM V$BUFFERED_PUBLISHERS;

Your output looks similar to the following:

 Percent
 Number Last Streams
Capture of LCRs Enqueued Pool Publisher
Process Sender Queue Queue Name Enqueued LCR Used State
---------- --------------- ---------- --------- ----------- ------- ----------
DB1$CAP DB1$CAPQ 3670 1002253 21 PUBLISHING
 MESSAGES

DB2$CAP "STRMADMIN"."DB DB2$APPQ 3427 981066 21 PUBLISHING
 2$CAPQ"@DB2.EXA MESSAGES
 MPLE.COM

This output shows following:

	
3670 LCRs from the local db1$cap capture process were enqueued into the local queue named db1$capq. The capture process is local because the Sender Queue column is NULL. The message number of the last enqueued LCR from this capture process was 1002253. 21% of the Streams pool is used at the capture process database, and the capture process is publishing messages normally.

	
3427 LCRs from the db2$cap capture process running on a remote database were propagated from a queue named db2$capq on database db2.example.com to the local queue named db2$appq. The message number of the last enqueued LCR from this sender was 961066. 21% of the Streams pool is used at the remote capture process database, and the capture process is publishing messages normally.

Displaying Information About Propagations that Send Buffered Messages

The query in this section displays the following information about each propagation that sends buffered messages from a buffered queue in the local database:

	
The name of the propagation

	
The queue owner

	
The queue name

	
The name of the database link used by the propagation

	
The status of the propagation schedule

To display this information, run the following query:

COLUMN PROPAGATION_NAME HEADING 'Propagation' FORMAT A15
COLUMN QUEUE_SCHEMA HEADING 'Queue|Owner' FORMAT A10
COLUMN QUEUE_NAME HEADING 'Queue|Name' FORMAT A15
COLUMN DBLINK HEADING 'Database|Link' FORMAT A10
COLUMN SCHEDULE_STATUS HEADING 'Schedule Status' FORMAT A20

SELECT p.PROPAGATION_NAME,
 s.QUEUE_SCHEMA,
 s.QUEUE_NAME,
 s.DBLINK,
 s.SCHEDULE_STATUS
 FROM DBA_PROPAGATION p, V$PROPAGATION_SENDER s
 WHERE p.SOURCE_QUEUE_OWNER = s.QUEUE_SCHEMA AND
 p.SOURCE_QUEUE_NAME = s.QUEUE_NAME AND
 p.DESTINATION_QUEUE_OWNER = s.DST_QUEUE_SCHEMA AND
 p.DESTINATION_QUEUE_NAME = s.DST_QUEUE_NAME;

Your output looks similar to the following:

 Queue Queue Database
Propagation Owner Name Link Schedule Status
--------------- ---------- --------------- ---------- --------------------
PROPAGATION$_6 STRMADMIN DB1$CAPQ "STRMADMIN SCHEDULE OPTIMIZED
 "."DB1$APP
 Q"@DB2.EXA
 MPLE.COM

When the SCHEDULE_STATUS column in the V$PROPAGATION_SENDER view shows SCHEDULE OPTIMIZED for a propagation, it means that the propagation is part of a combined capture and apply optimization.

	
See Also:

Chapter 12, "Combined Capture and Apply Optimization"

Displaying the Number of Messages and Bytes Sent By Propagations

The query in this section displays the number of messages and the number of bytes sent by each propagation that sends buffered messages from a buffered queue in the local database:

	
The name of the propagation

	
The queue name

	
The name of the database link used by the propagation

	
The total number of messages sent since the database instance was last started

	
The total number of bytes sent since the database instance was last started

To display this information, run the following query:

COLUMN PROPAGATION_NAME HEADING 'Propagation' FORMAT A15
COLUMN QUEUE_NAME HEADING 'Queue|Name' FORMAT A15
COLUMN DBLINK HEADING 'Database|Link' FORMAT A20
COLUMN TOTAL_MSGS HEADING 'Total|Messages' FORMAT 99999999
COLUMN TOTAL_BYTES HEADING 'Total|Bytes' FORMAT 999999999999

SELECT p.PROPAGATION_NAME,
 s.QUEUE_NAME,
 s.DBLINK,
 s.TOTAL_MSGS,
 s.TOTAL_BYTES
 FROM DBA_PROPAGATION p, V$PROPAGATION_SENDER s
 WHERE p.SOURCE_QUEUE_OWNER = s.QUEUE_SCHEMA AND
 p.SOURCE_QUEUE_NAME = s.QUEUE_NAME AND
 p.DESTINATION_QUEUE_OWNER = s.DST_QUEUE_SCHEMA AND
 p.DESTINATION_QUEUE_NAME = s.DST_QUEUE_NAME;

Your output looks similar to the following:

 Queue Database Total Total
Propagation Name Link Messages Bytes
--------------- --------------- -------------------- --------- ---------
MULT1_TO_MULT3 STREAMS_QUEUE MULT3.EXAMPLE.COM 79 71467
MULT1_TO_MULT2 STREAMS_QUEUE MULT2.EXAMPLE.COM 79 71467

Displaying Performance Statistics for Propagations that Send Buffered Messages

The query in this section displays the amount of time that a propagation sending buffered messages spends performing various tasks. Each propagation sends messages from the source queue to the destination queue. Specifically, the query displays the following information:

	
The name of the propagation

	
The queue name

	
The name of the database link used by the propagation

	
The amount of time spent dequeuing messages from the queue since the database instance was last started, in seconds

	
The amount of time spent pickling messages since the database instance was last started, in seconds. Pickling involves changing a message in memory into a series of bytes that can be sent over a network.

	
The amount of time spent propagating messages since the database instance was last started, in seconds

To display this information, run the following query:

COLUMN PROPAGATION_NAME HEADING 'Propagation' FORMAT A15
COLUMN QUEUE_NAME HEADING 'Queue|Name' FORMAT A13
COLUMN DBLINK HEADING 'Database|Link' FORMAT A9
COLUMN ELAPSED_DEQUEUE_TIME HEADING 'Dequeue|Time' FORMAT 99999999.99
COLUMN ELAPSED_PICKLE_TIME HEADING 'Pickle|Time' FORMAT 99999999.99
COLUMN ELAPSED_PROPAGATION_TIME HEADING 'Propagation|Time' FORMAT 99999999.99

SELECT p.PROPAGATION_NAME,
 s.QUEUE_NAME,
 s.DBLINK,
 (s.ELAPSED_DEQUEUE_TIME / 100) ELAPSED_DEQUEUE_TIME,
 (s.ELAPSED_PICKLE_TIME / 100) ELAPSED_PICKLE_TIME,
 (s.ELAPSED_PROPAGATION_TIME / 100) ELAPSED_PROPAGATION_TIME
 FROM DBA_PROPAGATION p, V$PROPAGATION_SENDER s
 WHERE p.SOURCE_QUEUE_OWNER = s.QUEUE_SCHEMA AND
 p.SOURCE_QUEUE_NAME = s.QUEUE_NAME AND
 p.DESTINATION_QUEUE_OWNER = s.DST_QUEUE_SCHEMA AND
 p.DESTINATION_QUEUE_NAME = s.DST_QUEUE_NAME;

Your output looks similar to the following:

 Queue Database Dequeue Pickle Propagation
Propagation Name Link Time Time Time
--------------- ------------- --------- ------------ ------------ ------------
MULT1_TO_MULT2 STREAMS_QUEUE MULT2.EXA 30.65 45.10 10.91
 MPLE.COM
MULT1_TO_MULT3 STREAMS_QUEUE MULT3.EXA 25.36 37.07 8.35
 MPLE.COM

Viewing the Propagations Dequeuing Messages from Each Buffered Queue

Propagations are queue subscribers that can dequeue messages. By querying the V$BUFFERED_SUBSCRIBERS dynamic performance view, you can display all the propagations that can dequeue buffered messages.

Apply processes also are queue subscribers. This query joins with the DBA_PROPAGATION and V$BUFFERED_QUEUES views to limit the output to propagations only and to show the propagation name of each propagation.

The query in this section displays the following information about each propagation that can dequeue messages from queues:

	
The name of the propagation.

	
The owner and name of the queue to which the propagation subscribes

This queue is the source queue for the propagation.

	
The subscriber address

For a propagation, the subscriber address is the propagation's destination queue and destination database

	
The time when the propagation last started

	
The cumulative number of messages dequeued by the propagation since the database last started

	
The total number of messages dequeued by the propagation since the propagation last started

	
The message number of the message most recently dequeued by the propagation

To display this information, run the following query:

COLUMN PROPAGATION_NAME HEADING 'Propagation' FORMAT A11
COLUMN QUEUE_SCHEMA HEADING 'Queue|Owner' FORMAT A5
COLUMN QUEUE_NAME HEADING 'Queue|Name' FORMAT A5
COLUMN SUBSCRIBER_ADDRESS HEADING 'Subscriber|Address' FORMAT A15
COLUMN STARTUP_TIME HEADING 'Startup|Time' FORMAT A9
COLUMN CNUM_MSGS HEADING 'Cumulative|Messages' FORMAT 99999999
COLUMN TOTAL_DEQUEUED_MSG HEADING 'Total|Messages' FORMAT 99999999
COLUMN LAST_DEQUEUED_NUM HEADING 'Last|Dequeued|Message|Number' FORMAT 99999999

SELECT p.PROPAGATION_NAME,
 s.QUEUE_SCHEMA,
 s.QUEUE_NAME,
 s.SUBSCRIBER_ADDRESS,
 s.STARTUP_TIME,
 s.CNUM_MSGS,
 s.TOTAL_DEQUEUED_MSG,
 s.LAST_DEQUEUED_NUM
FROM DBA_PROPAGATION p, V$BUFFERED_SUBSCRIBERS s
WHERE p.SOURCE_QUEUE_OWNER = s.QUEUE_SCHEMA AND
 p.SOURCE_QUEUE_NAME = s.QUEUE_NAME AND
 p.PROPAGATION_NAME = s.SUBSCRIBER_NAME AND
 s.SUBSCRIBER_ADDRESS LIKE '%' || p.DESTINATION_DBLINK;

Your output looks similar to the following:

 Last
 Dequeued
 Queue Queue Subscriber Startup Cumulative Total Message
Propagation Owner Name Address Time Messages Messages Number
----------- ----- ----- --------------- --------- ---------- --------- ---------
PROPAGATION STRMA DB1$C "STRMADMIN"."DB 25-JUN-09 11079 11079 1525762
$_5 DMIN APQ 1$APPQ"@DB2.EXA
 MPLE.COM

	
Note:

If there are multiple propagations using the same database link but propagating messages to different queues at the destination database, then the statistics returned by this query are approximate rather than accurate.

Displaying Performance Statistics for Propagations That Receive Buffered Messages

The query in this section displays the amount of time that each propagation receiving buffered messages spends performing various tasks. Each propagation receives the messages and enqueues them into the destination queue for the propagation. Specifically, the query displays the following information:

	
The name of the source queue from which messages are propagated.

	
The name of the source database.

	
The amount of time spent unpickling messages since the database instance was last started, in seconds. Unpickling involves changing a series of bytes that can be sent over a network back into a buffered message in memory.

	
The amount of time spent evaluating rules for propagated messages since the database instance was last started, in seconds.

	
The amount of time spent enqueuing messages into the destination queue for the propagation since the database instance was last started, in seconds.

To display this information, run the following query:

COLUMN SRC_QUEUE_NAME HEADING 'Source|Queue|Name' FORMAT A20
COLUMN SRC_DBNAME HEADING 'Source|Database' FORMAT A20
COLUMN ELAPSED_UNPICKLE_TIME HEADING 'Unpickle|Time' FORMAT 99999999.99
COLUMN ELAPSED_RULE_TIME HEADING 'Rule|Evaluation|Time' FORMAT 99999999.99
COLUMN ELAPSED_ENQUEUE_TIME HEADING 'Enqueue|Time' FORMAT 99999999.99

SELECT SRC_QUEUE_NAME,
 SRC_DBNAME,
 (ELAPSED_UNPICKLE_TIME / 100) ELAPSED_UNPICKLE_TIME,
 (ELAPSED_RULE_TIME / 100) ELAPSED_RULE_TIME,
 (ELAPSED_ENQUEUE_TIME / 100) ELAPSED_ENQUEUE_TIME
 FROM V$PROPAGATION_RECEIVER;

Your output looks similar to the following:

Source Rule
Queue Source Unpickle Evaluation Enqueue
Name Database Time Time Time
-------------------- -------------------- ------------ ------------ ------------
STREAMS_QUEUE MULT2.EXAMPLE.COM 45.65 5.44 45.85
STREAMS_QUEUE MULT3.EXAMPLE.COM 53.35 8.01 50.41

Viewing the Apply Processes Dequeuing Messages from Each Buffered Queue

Apply processes are queue subscribers that can dequeue messages. By querying the V$BUFFERED_SUBSCRIBERS dynamic performance view, you can display all the apply processes that can dequeue messages.

This query joins with the V$BUFFERED_QUEUES views to show the name of the queue. In addition, propagations also are queue subscribers, and this query limits the output to subscribers where the SUBSCRIBER_ADDRESS is NULL to return only apply processes.

The query in this section displays the following information about the apply processes that can dequeue messages from queues:

	
The name of the apply process

	
The queue owner

	
The queue name

	
The time when the apply process last started

	
The cumulative number of messages dequeued by the apply process since the database last started

	
The total number of messages dequeued by the apply process since the apply process last started

	
The message number of the message most recently dequeued by the apply process

To display this information, run the following query:

COLUMN SUBSCRIBER_NAME HEADING 'Apply Process' FORMAT A16
COLUMN QUEUE_SCHEMA HEADING 'Queue|Owner' FORMAT A5
COLUMN QUEUE_NAME HEADING 'Queue|Name' FORMAT A5
COLUMN STARTUP_TIME HEADING 'Startup|Time' FORMAT A9
COLUMN CNUM_MSGS HEADING 'Cumulative|Messages' FORMAT 99999999
COLUMN TOTAL_DEQUEUED_MSG HEADING 'Number of|Dequeued|Messages'
 FORMAT 99999999
COLUMN LAST_DEQUEUED_NUM HEADING 'Last|Dequeued|Message|Number' FORMAT 99999999

SELECT s.SUBSCRIBER_NAME,
 q.QUEUE_SCHEMA,
 q.QUEUE_NAME,
 s.STARTUP_TIME,
 s.CNUM_MSGS,
 s.TOTAL_DEQUEUED_MSG,
 s.LAST_DEQUEUED_NUM
FROM V$BUFFERED_QUEUES q, V$BUFFERED_SUBSCRIBERS s, DBA_APPLY a
WHERE q.QUEUE_ID = s.QUEUE_ID AND
 s.SUBSCRIBER_ADDRESS IS NULL AND
 s.SUBSCRIBER_NAME = a.APPLY_NAME;

Your output looks similar to the following:

 Last
 Number of Dequeued
 Queue Queue Startup Cumulative Dequeued Message
Apply Process Owner Name Time Messages Messages Number
---------------- ----- ----- --------- ---------- ---------- ---------
APPLY$_DB2_2 STRMA DB2$A 25-JUN-09 11039 11039 1509859
 DMIN PPQ

Monitoring Oracle Streams Propagations and Propagation Jobs

The following topics describe monitoring propagations and propagation jobs:

	
Displaying the Queues and Database Link for Each Propagation

	
Determining the Source Queue and Destination Queue for Each Propagation

	
Determining the Rule Sets for Each Propagation

	
Displaying Information About the Schedules for Propagation Jobs

	
Determining the Total Number of Messages and Bytes Propagated

	
Displaying Information About Propagation Senders

	
Displaying Information About Propagation Receivers

	
Displaying Session Information About Each Propagation

	
See Also:

	
Chapter 3, "Oracle Streams Staging and Propagation"

	
"Managing Oracle Streams Propagations and Propagation Jobs"

	
Chapter 32, "Troubleshooting Propagation"

Displaying the Queues and Database Link for Each Propagation

You can display information about each propagation by querying the DBA_PROPAGATION data dictionary view. This view contains information about each propagation with a source queue is at the local database.

The query in this section displays the following information about each propagation:

	
The propagation name

	
The source queue name

	
The database link used by the propagation

	
The destination queue name

	
The status of the propagation, either ENABLED, DISABLED, or ABORTED

	
Whether the propagation is a queue-to-queue propagation

To display this information about each propagation in a database, run the following query:

COLUMN PROPAGATION_NAME HEADING 'Propagation|Name' FORMAT A19
COLUMN SOURCE_QUEUE_NAME HEADING 'Source|Queue|Name' FORMAT A17
COLUMN DESTINATION_DBLINK HEADING 'Database|Link' FORMAT A9
COLUMN DESTINATION_QUEUE_NAME HEADING 'Dest|Queue|Name' FORMAT A15
COLUMN STATUS HEADING 'Status' FORMAT A8
COLUMN QUEUE_TO_QUEUE HEADING 'Queue-|to-|Queue?' FORMAT A6

SELECT PROPAGATION_NAME,
 SOURCE_QUEUE_NAME,
 DESTINATION_DBLINK,
 DESTINATION_QUEUE_NAME,
 STATUS,
 QUEUE_TO_QUEUE
 FROM DBA_PROPAGATION;

Your output looks similar to the following:

 Source Dest Queue-
Propagation Queue Database Queue to-
Name Name Link Name Status Queue?
------------------- ----------------- --------- --------------- -------- ------
PROPAGATION$_6 DA$CAPQ DB.EXAMPL DA$APPQ ENABLED TRUE
 E.COM

Determining the Source Queue and Destination Queue for Each Propagation

You can determine the source queue and destination queue for each propagation by querying the DBA_PROPAGATION data dictionary view.

The query in this section displays the following information about each propagation:

	
The propagation name

	
The source queue owner

	
The source queue name

	
The database that contains the source queue

	
The destination queue owner

	
The destination queue name

	
The database that contains the destination queue

To display this information about each propagation in a database, run the following query:

COLUMN PROPAGATION_NAME HEADING 'Propagation|Name' FORMAT A20
COLUMN SOURCE_QUEUE_OWNER HEADING 'Source|Queue|Owner' FORMAT A10
COLUMN 'Source Queue' HEADING 'Source|Queue' FORMAT A15
COLUMN DESTINATION_QUEUE_OWNER HEADING 'Dest|Queue|Owner' FORMAT A10
COLUMN 'Destination Queue' HEADING 'Destination|Queue' FORMAT A15

SELECT p.PROPAGATION_NAME,
 p.SOURCE_QUEUE_OWNER,
 p.SOURCE_QUEUE_NAME ||'@'||
 g.GLOBAL_NAME "Source Queue",
 p.DESTINATION_QUEUE_OWNER,
 p.DESTINATION_QUEUE_NAME ||'@'||
 p.DESTINATION_DBLINK "Destination Queue"
 FROM DBA_PROPAGATION p, GLOBAL_NAME g;

Your output looks similar to the following:

 Source Dest
Propagation Queue Source Queue Destination
Name Owner Queue Owner Queue
-------------------- ---------- --------------- ---------- ---------------
PROPAGATION$_6 STRMADMIN DA$CAPQ@DA.EXAM STRMADMIN DA$APPQ@DB.EXAM
 PLE.COM PLE.COM

Determining the Rule Sets for Each Propagation

The query in this section displays the following information for each propagation:

	
The propagation name

	
The owner of the positive rule set for the propagation

	
The name of the positive rule set used by the propagation

	
The owner of the negative rule set used by the propagation

	
The name of the negative rule set used by the propagation

To display this general information about each propagation in a database, run the following query:

COLUMN PROPAGATION_NAME HEADING 'Propagation|Name' FORMAT A20
COLUMN RULE_SET_OWNER HEADING 'Positive|Rule Set|Owner' FORMAT A10
COLUMN RULE_SET_NAME HEADING 'Positive Rule|Set Name' FORMAT A15
COLUMN NEGATIVE_RULE_SET_OWNER HEADING 'Negative|Rule Set|Owner' FORMAT A10
COLUMN NEGATIVE_RULE_SET_NAME HEADING 'Negative Rule|Set Name' FORMAT A15

SELECT PROPAGATION_NAME,
 RULE_SET_OWNER,
 RULE_SET_NAME,
 NEGATIVE_RULE_SET_OWNER,
 NEGATIVE_RULE_SET_NAME
 FROM DBA_PROPAGATION;

Your output looks similar to the following:

 Positive Negative
Propagation Rule Set Positive Rule Rule Set Negative Rule
Name Owner Set Name Owner Set Name
-------------------- ---------- --------------- ---------- ---------------
PROPAGATION$_6 STRMADMIN RULESET$_7 STRMADMIN RULESET$_9

Displaying Information About the Schedules for Propagation Jobs

The query in this section displays the following information about the propagation schedules for each propagation job used by a propagation in the database:

	
The name of the propagation

	
The latency of the propagation job, which is the maximum wait time to propagate a new message during the duration, when all other messages in the queue to the relevant destination have been propagated

	
Whether the propagation job is enabled

	
The name of the process that most recently executed the schedule

	
The number of consecutive times schedule execution has failed, if any

After 16 consecutive failures, a propagation job is aborted automatically.

	
Whether the propagation is queue-to-queue or queue-to-dblink

	
The error message text of the last unsuccessful propagation execution

Run this query at the database that contains the source queue:

COLUMN PROPAGATION_NAME HEADING 'Propagation' FORMAT A15
COLUMN LATENCY HEADING 'Latency|in Seconds' FORMAT 99999
COLUMN SCHEDULE_DISABLED HEADING 'Status' FORMAT A8
COLUMN PROCESS_NAME HEADING 'Process' FORMAT A8
COLUMN FAILURES HEADING 'Failures' FORMAT 999
COLUMN QUEUE_TO_QUEUE HEADING 'Queue|to|Queue'
COLUMN LAST_ERROR_MSG HEADING 'Last Error|Message' FORMAT A15

SELECT p.PROPAGATION_NAME,
 s.LATENCY,
 DECODE(s.SCHEDULE_DISABLED,
 'Y', 'Disabled',
 'N', 'Enabled') SCHEDULE_DISABLED,
 s.PROCESS_NAME,
 s.FAILURES,
 p.QUEUE_TO_QUEUE,
 s.LAST_ERROR_MSG
 FROM DBA_QUEUE_SCHEDULES s, DBA_PROPAGATION p
 WHERE s.MESSAGE_DELIVERY_MODE = 'BUFFERED'
 AND s.DESTINATION LIKE '%' || p.DESTINATION_DBLINK
 AND s.SCHEMA = p.SOURCE_QUEUE_OWNER
 AND s.QNAME = p.SOURCE_QUEUE_NAME
 ORDER BY PROPAGATION_NAME;

Your output looks similar to the following:

 Queue
 Latency to Last Error
Propagation in Seconds Status Process Failures Queue Message
--------------- ---------- -------- -------- -------- ------ ---------------
PROPAGATION$_6 19 Enabled CS00 0 TRUE

	
See Also:

	
"Propagation Scheduling and Oracle Streams Propagations" for more information about the default propagation schedule for an Oracle Streams propagation job

	
"Queue-to-Queue Propagations"

	
"Is the Propagation Enabled?" if the propagation job is disabled

	
Oracle Streams Advanced Queuing User's Guide and Oracle Database Reference for more information about the DBA_QUEUE_SCHEDULES data dictionary view

Determining the Total Number of Messages and Bytes Propagated

A propagation can be queue-to-queue or queue-to-database link (queue-to-dblink). A queue-to-queue propagation always has its own exclusive propagation job to propagate messages from the source queue to the destination queue. Because each propagation job has its own propagation schedule, the propagation schedule of each queue-to-queue propagation can be managed separately. All queue-to-dblink propagations that share the same database link have a single propagation schedule.

The query in this section displays the following information for each propagation:

	
The name of the propagation

	
The total time spent by the system executing the propagation schedule

	
The total number of messages propagated by the propagation schedule

	
The total number of bytes propagated by the propagation schedule

Run the following query to display this information for each propagation with a source queue at the local database:

COLUMN PROPAGATION_NAME HEADING 'Propagation|Name' FORMAT A20
COLUMN TOTAL_TIME HEADING 'Total Time|Executing|in Seconds' FORMAT 999999
COLUMN TOTAL_NUMBER HEADING 'Total Messages|Propagated' FORMAT 999999999
COLUMN TOTAL_BYTES HEADING 'Total Bytes|Propagated' FORMAT 9999999999999

SELECT p.PROPAGATION_NAME, s.TOTAL_TIME, s.TOTAL_NUMBER, s.TOTAL_BYTES
 FROM DBA_QUEUE_SCHEDULES s, DBA_PROPAGATION p
 WHERE s.DESTINATION LIKE '%' || p.DESTINATION_DBLINK
 AND s.SCHEMA = p.SOURCE_QUEUE_OWNER
 AND s.QNAME = p.SOURCE_QUEUE_NAME
 AND s.MESSAGE_DELIVERY_MODE = 'BUFFERED';

Your output looks similar to the following:

 Total Time
Propagation Executing Total Messages Total Bytes
Name in Seconds Propagated Propagated
-------------------- ---------- -------------- --------------
PROPAGATION$_6 0 432615 94751013

	
See Also:

Oracle Streams Advanced Queuing User's Guide and Oracle Database Reference for more information about the DBA_QUEUE_SCHEDULES data dictionary view

Displaying Information About Propagation Senders

A propagation sender sends messages from a source queue to a destination queue.

The query in this section displays the following information about each propagation sender in a database:

	
The name of the propagation

	
The session identifier of the propagation sender

	
The session serial number of the propagation sender

	
The operating system process identification number of the propagation sender

	
The state of the propagation sender

In a combined capture and apply optimization, the capture process acts as the propagation sender and transmits messages directly to the propagation receiver. When a propagation is part of a combined capture and apply optimization, this query shows the capture process session ID, session serial number, operating system process ID, and state.

When a propagation is not part of a combined capture and apply optimization, this query shows the propagation job session ID, session serial number, operating system process ID, and state.

To view this information, run the following query:

COLUMN PROPAGATION_NAME HEADING 'Propagation|Name' FORMAT A11
COLUMN SESSION_ID HEADING 'Session ID' FORMAT 9999
COLUMN SERIAL# HEADING 'Session|Serial Number' FORMAT 9999
COLUMN SPID HEADING 'Operating System|Process ID' FORMAT A24
COLUMN STATE HEADING 'State' FORMAT A16

SELECT p.PROPAGATION_NAME,
 s.SESSION_ID,
 s.SERIAL#,
 s.SPID,
 s.STATE
 FROM DBA_PROPAGATION p, V$PROPAGATION_SENDER s
 WHERE p.SOURCE_QUEUE_OWNER = s.QUEUE_SCHEMA AND
 p.SOURCE_QUEUE_NAME = s.QUEUE_NAME AND
 p.DESTINATION_QUEUE_OWNER = s.DST_QUEUE_SCHEMA AND
 p.DESTINATION_QUEUE_NAME = s.DST_QUEUE_NAME;

Your output looks similar to the following:

Propagation Session Operating System
Name Session ID Serial Number Process ID State
----------- ---------- ------------- ------------------------ ----------------
PROPAGATION 61 17 21145 Waiting on empty
$_6 queue

	
Note:

When column SCHEDULE_STATUS in the V$PROPAGATION_SENDER view shows SCHEDULE OPTIMIZED, it means that the propagation is part of a combined capture and apply optimization.

	
See Also:

Chapter 12, "Combined Capture and Apply Optimization"

Displaying Information About Propagation Receivers

A propagation receiver enqueues messages sent by propagation senders into a destination queue. The query in this section displays the following information about each propagation receiver in a database:

	
The name of the propagation

	
The session ID of the propagation receiver

	
The session serial number propagation receiver

	
The operating system process identification number of the propagation receiver

	
The state of the propagation receiver

To view this information, run the following query:

COLUMN PROPAGATION_NAME HEADING 'Propagation|Name' FORMAT A15
COLUMN SESSION_ID HEADING 'Session ID' FORMAT 999999
COLUMN SERIAL# HEADING 'Session|Serial|Number' FORMAT 999999
COLUMN SPID HEADING 'Operating|System|Process ID' FORMAT 999999
COLUMN STATE HEADING 'State' FORMAT A16

SELECT PROPAGATION_NAME,
 SESSION_ID,
 SERIAL#,
 SPID,
 STATE
 FROM V$PROPAGATION_RECEIVER;

Your output looks similar to the following:

 Session Operating
Propagation Serial System
Name Session ID Number Process ID State
--------------- ---------- ------- ------------------------ ----------------
PROPAGATION$_5 60 5 21050 Waiting for mess
 age from propaga
 tion sender

Displaying Session Information About Each Propagation

The query in this section displays the following session information about each session associated with a propagation in a database:

	
The Oracle Streams component

	
The session identifier

	
The serial number

	
The operating system process identification number

	
The process names of the propagation sender and propagation receiver processes

To display this information for each propagation in a database, run the following query:

COLUMN ACTION HEADING 'Streams Component' FORMAT A28
COLUMN SID HEADING 'Session ID' FORMAT 99999
COLUMN SERIAL# HEADING 'Session|Serial|Number' FORMAT 9999999
COLUMN PROCESS HEADING 'Operating System|Process Number' FORMAT A20
COLUMN PROCESS_NAME HEADING 'Process|Names' FORMAT A7

SELECT /*+PARAM('_module_action_old_length',0)*/ ACTION,
 SID,
 SERIAL#,
 PROCESS,
 SUBSTR(PROGRAM,INSTR(PROGRAM,'(')+1,4) PROCESS_NAME
 FROM V$SESSION
 WHERE MODULE ='Streams' AND
 ACTION LIKE '%Propagation%';

Your output looks similar to the following:

 Session
 Serial Operating System Process
Streams Component Session ID Number Process Number Names
---------------------------- ---------- -------- -------------------- -------
APPLY$_DB_3 - Propagation Re 60 5 21048 TNS
ceiver CCA

PROPAGATION$_6 - Propagation 61 17 21145 CS00
Sender CCA

The CCA in the Streams component sample output indicates that the propagation is part of a combined capture and apply optimization. The TNS process name indicates that the propagation receiver was initiated remotely by a capture process.

	
See Also:

Chapter 12, "Combined Capture and Apply Optimization"

12 Combined Capture and Apply Optimization

The following topics contain information about the combined capture and apply optimization:

	
Combined Capture and Apply Requirements

	
How to Use Combined Capture and Apply

	
How to Determine Whether Combined Capture and Apply Is Being Used

	
Combined Capture and Apply and Point-in-Time Recovery

About Combined Capture and Apply Optimization

For improved efficiency, a capture process can create a propagation sender to transmit logical change records (LCRs) directly to a propagation receiver under specific conditions. The propagation receiver enqueues the LCRs into the buffered queue portion of the destination queue, and an apply process dequeues the LCRs. This optimization is called combined capture and apply.

Combined Capture and Apply Requirements

Combined capture and apply can be used when the capture process and apply process run on the same database instance or on different databases.

When the capture process and apply process run on the same database instance, combined capture and apply is possible only if all of the following conditions are met:

	
The capture process and apply process must use the same queue.

	
The queue must have a single publisher, and it must be the capture process.

When the capture process and apply process run on different databases, or on different instances in the same database, combined capture and apply is possible only if all of the following conditions are met:

	
The capture process's queue must have a single publisher, and it must be the capture process.

	
A propagation must be configured between the capture process's queue and the apply process's queue. There can be no intermediate queues (no directed network).

	
Each apply process that applies changes from the same source database must use a different queue.

	
Note:

	
Combined capture and apply is not possible with synchronous capture.

	
Combined capture and apply is not possible when an Oracle Database 10g or earlier database is part of the configuration.

	
The combined capture and apply requirements are different in Oracle Database 11g Release 2 (11.2) and Oracle Database 11g Release 1 (11.1). If a database in a combined capture and apply optimization is an 11.1 database, then the 11.1 requirements must be met. See Oracle Streams Concepts and Administration for the 11.1 release for information about these requirements.

	
See Also:

	
"Implicit Capture with an Oracle Streams Capture Process"

	
"Persistent Queues and Buffered Queues"

	
"Directed Networks"

	
"Implicit Consumption with an Apply Process"

How to Use Combined Capture and Apply

After you meet the requirements for combined capture and apply, you do not need to perform any other configuration tasks to use it. The capture process automatically detects that combined capture and apply is possible when it is started. After it creates a propagation sender to establish a connection with the propagation receiver, the propagation sender sends captured LCRs directly to the propagation receiver.

If combined capture and apply is used, and you change the configuration so that it no longer meets the requirements of combined capture and apply, then the capture process detects this change and restarts. After the capture process restarts, it no longer uses combined capture and apply.

If combined capture and apply is not used, and you change the configuration so that it meets the requirements of combined capture and apply, then combined capture and apply is used automatically when the capture process is restarted. In this case, you must restart the capture process manually. It is not restarted automatically.

	
See Also:

"Combined Capture and Apply Requirements"

How to Determine Whether Combined Capture and Apply Is Being Used

Check the following dynamic performance views to determine whether combined capture and apply is used:

	
For the capture process, combined capture and apply is used when the OPTIMIZATION column is greater than zero in the V$STREAMS_CAPTURE view.

	
For the apply process, combined capture and apply is used when the PROXY_SID column is not NULL in the V$STREAMS_APPLY_READER view.

	
See Also:

	
"Determining Which Capture Processes Use Combined Capture and Apply"

	
"Determining Which Apply Processes Use Combined Capture and Apply"

	
"Capture Process States"

	
Oracle Database Reference for information about data dictionary views

Combined Capture and Apply and Point-in-Time Recovery

When you use combined capture and apply in a single-source replication environment, the Oracle Streams clients handle point-in-time recovery of the destination database automatically. The Oracle Streams client include the capture process, propagation, and apply process that form the combined capture and apply optimization.

In a single-source replication environment that uses combined capture and apply, complete these general steps to perform point-in-time recovery on the destination database:

	
Stop the capture process and apply process, and disable the propagation.

	
Perform the point-in-time recovery on the destination database.

	
Ensure that the capture process has access to the archived redo log files for the previous point in time.

	
Start the apply process.

	
Enable the propagation.

	
Start the capture process.

When you follow these steps, the capture process determines its start SCN automatically, and no other steps are required.

	
See Also:

Oracle Streams Replication Administrator's Guide for more information about performing point-in-time recovery in an Oracle Streams replication environment

15 Managing Oracle Streams Implicit Capture

Both capture processes and synchronous captures perform implicit capture. This chapter contains instructions for managing implicit capture.

The following topics describe managing Oracle Streams implicit capture:

	
Managing a Capture Process

	
Managing a Synchronous Capture

	
Managing Extra Attributes in Captured LCRs

	
Switching From a Capture Process to a Synchronous Capture

	
Switching from a Synchronous Capture to a Capture Process

Each task described in this chapter should be completed by an Oracle Streams administrator that has been granted the appropriate privileges, unless specified otherwise.

	
See Also:

	
Chapter 2, "Oracle Streams Information Capture"

	
Oracle Streams Replication Administrator's Guide for information about creating an Oracle Streams administrator

	
"Monitoring Oracle Streams Implicit Capture"

	
Chapter 31, "Troubleshooting Implicit Capture"

Managing a Capture Process

A capture process captures changes in a redo log, reformats each captured change into a logical change record (LCR), and enqueues the LCR into an ANYDATA queue.

The following topics describe managing a capture process:

	
Starting a Capture Process

	
Stopping a Capture Process

	
Managing the Rule Set for a Capture Process

	
Setting a Capture Process Parameter

	
Setting the Capture User for a Capture Process

	
Managing the Checkpoint Retention Time for a Capture Process

	
Adding an Archived Redo Log File to a Capture Process Explicitly

	
Setting the First SCN for an Existing Capture Process

	
Setting the Start SCN for an Existing Capture Process

	
Specifying Whether Downstream Capture Uses a Database Link

	
Dropping a Capture Process

	
See Also:

	
"Implicit Capture with an Oracle Streams Capture Process"

	
Oracle Streams Replication Administrator's Guide for information about configuring a capture process

	
Oracle Database 2 Day + Data Replication and Integration Guide and the Enterprise Manager online Help for instructions on managing a capture process with Enterprise Manager

Starting a Capture Process

You run the START_CAPTURE procedure in the DBMS_CAPTURE_ADM package to start an existing capture process. For example, the following procedure starts a capture process named strm01_capture:

BEGIN
 DBMS_CAPTURE_ADM.START_CAPTURE(
 capture_name => 'strm01_capture');
END;
/

	
Note:

If a new capture process will use a new LogMiner data dictionary, then, when you first start the new capture process, some time might be required to populate the new LogMiner data dictionary. A new LogMiner data dictionary is created if a non-NULL first SCN value was specified when the capture process was created.

	
See Also:

Oracle Database 2 Day + Data Replication and Integration Guide for instructions about starting a capture process with Oracle Enterprise Manager

Stopping a Capture Process

You run the STOP_CAPTURE procedure in the DBMS_CAPTURE_ADM package to stop an existing capture process. For example, the following procedure stops a capture process named strm01_capture:

BEGIN
 DBMS_CAPTURE_ADM.STOP_CAPTURE(
 capture_name => 'strm01_capture');
END;
/

	
See Also:

Oracle Database 2 Day + Data Replication and Integration Guide for instructions about stopping a capture process with Oracle Enterprise Manager

Managing the Rule Set for a Capture Process

This section contains instructions for completing the following tasks:

	
Specifying a Rule Set for a Capture Process

	
Adding Rules to a Rule Set for a Capture Process

	
Removing a Rule from a Rule Set for a Capture Process

	
Removing a Rule Set for a Capture Process

	
See Also:

	
Chapter 5, "How Rules Are Used in Oracle Streams"

	
Chapter 11, "Advanced Rule Concepts"

Specifying a Rule Set for a Capture Process

You can specify one positive rule set and one negative rule set for a capture process. The capture process captures a change if it evaluates to TRUE for at least one rule in the positive rule set and evaluates to FALSE for all the rules in the negative rule set. The negative rule set is evaluated before the positive rule set.

Specifying a Positive Rule Set for a Capture Process

You specify an existing rule set as the positive rule set for an existing capture process using the rule_set_name parameter in the ALTER_CAPTURE procedure. This procedure is in the DBMS_CAPTURE_ADM package.

For example, the following procedure sets the positive rule set for a capture process named strm01_capture to strm02_rule_set.

BEGIN
 DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name => 'strm01_capture',
 rule_set_name => 'strmadmin.strm02_rule_set');
END;
/

Specifying a Negative Rule Set for a Capture Process

You specify an existing rule set as the negative rule set for an existing capture process using the negative_rule_set_name parameter in the ALTER_CAPTURE procedure. This procedure is in the DBMS_CAPTURE_ADM package.

For example, the following procedure sets the negative rule set for a capture process named strm01_capture to strm03_rule_set.

BEGIN
 DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name => 'strm01_capture',
 negative_rule_set_name => 'strmadmin.strm03_rule_set');
END;
/

Adding Rules to a Rule Set for a Capture Process

To add rules to a rule set for an existing capture process, you can run one of the following procedures in the DBMS_STREAMS_ADM package and specify the existing capture process:

	
ADD_TABLE_RULES

	
ADD_SUBSET_RULES

	
ADD_SCHEMA_RULES

	
ADD_GLOBAL_RULES

Excluding the ADD_SUBSET_RULES procedure, these procedures can add rules to the positive rule set or negative rule set for a capture process. The ADD_SUBSET_RULES procedure can add rules only to the positive rule set for a capture process.

	
See Also:

"System-Created Rules"

Adding Rules to the Positive Rule Set for a Capture Process

The following example runs the ADD_TABLE_RULES procedure in the DBMS_STREAMS_ADM package to add rules to the positive rule set of a capture process named strm01_capture:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.departments',
 streams_type => 'capture',
 streams_name => 'strm01_capture',
 queue_name => 'strmadmin.streams_queue',
 include_dml => TRUE,
 include_ddl => TRUE,
 inclusion_rule => TRUE);
END;
/

Running this procedure performs the following actions:

	
Creates two rules. One rule evaluates to TRUE for DML changes to the hr.departments table, and the other rule evaluates to TRUE for DDL changes to the hr.departments table. The rule names are system generated.

	
Adds the two rules to the positive rule set associated with the capture process because the inclusion_rule parameter is set to TRUE.

	
Prepares the hr.departments table for instantiation by running the PREPARE_TABLE_INSTANTIATION procedure in the DBMS_CAPTURE_ADM package.

	
Enables supplemental logging for any primary key, unique key, bitmap index, and foreign key columns in the hr.departments table. When the PREPARE_TABLE_INSTANTIATION procedure is run, the default value (keys) is specified for the supplemental_logging parameter.

If the capture process is performing downstream capture, then the table is prepared for instantiation and supplemental logging is enabled for key columns only if the downstream capture process uses a database link to the source database. If a downstream capture process does not use a database link to the source database, then the table must be prepared for instantiation manually and supplemental logging must be enabled manually.

Adding Rules to the Negative Rule Set for a Capture Process

The following example runs the ADD_TABLE_RULES procedure in the DBMS_STREAMS_ADM package to add rules to the negative rule set of a capture process named strm01_capture:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.job_history',
 streams_type => 'capture',
 streams_name => 'strm01_capture',
 queue_name => 'strmadmin.streams_queue',
 include_dml => TRUE,
 include_ddl => TRUE,
 inclusion_rule => FALSE);
END;
/

Running this procedure performs the following actions:

	
Creates two rules. One rule evaluates to TRUE for DML changes to the hr.job_history table, and the other rule evaluates to TRUE for DDL changes to the hr.job_history table. The rule names are system generated.

	
Adds the two rules to the negative rule set associated with the capture process, because the inclusion_rule parameter is set to FALSE.

Removing a Rule from a Rule Set for a Capture Process

You remove a rule from the rule set for a capture process if you no longer want the capture process to capture the changes specified in the rule. For example, assume that the departments3 rule specifies that DML changes to the hr.departments table be captured. If you no longer want a capture process to capture changes to the hr.departments table, then remove the departments3 rule from its rule set.

You remove a rule from a rule set for an existing capture process by running the REMOVE_RULE procedure in the DBMS_STREAMS_ADM package. For example, the following procedure removes a rule named departments3 from the positive rule set of a capture process named strm01_capture.

BEGIN
 DBMS_STREAMS_ADM.REMOVE_RULE(
 rule_name => 'departments3',
 streams_type => 'capture',
 streams_name => 'strm01_capture',
 drop_unused_rule => TRUE,
 inclusion_rule => TRUE);
END;
/

In this example, the drop_unused_rule parameter in the REMOVE_RULE procedure is set to TRUE, which is the default setting. Therefore, if the rule being removed is not in any other rule set, then it will be dropped from the database. If the drop_unused_rule parameter is set to FALSE, then the rule is removed from the rule set, but it is not dropped from the database.

If the inclusion_rule parameter is set to FALSE, then the REMOVE_RULE procedure removes the rule from the negative rule set for the capture process, not the positive rule set.

To remove all of the rules in a rule set for the capture process, specify NULL for the rule_name parameter when you run the REMOVE_RULE procedure.

	
See Also:

"Oracle Streams Client with One or More Empty Rule Sets"

Removing a Rule Set for a Capture Process

You remove a rule set from an existing capture process using the ALTER_CAPTURE procedure in the DBMS_CAPTURE_ADM package. This procedure can remove the positive rule set, negative rule set, or both. Specify TRUE for the remove_rule_set parameter to remove the positive rule set for the capture process. Specify TRUE for the remove_negative_rule_set parameter to remove the negative rule set for the capture process.

For example, the following procedure removes both the positive and negative rule set from a capture process named strm01_capture.

BEGIN
 DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name => 'strm01_capture',
 remove_rule_set => TRUE,
 remove_negative_rule_set => TRUE);
END;
/

	
Note:

If a capture process does not have a positive or negative rule set, then the capture process captures all supported changes to all objects in the database, excluding database objects in the SYS, SYSTEM, and CTXSYS schemas.

Setting a Capture Process Parameter

Set a capture process parameter using the SET_PARAMETER procedure in the DBMS_CAPTURE_ADM package. Capture process parameters control the way a capture process operates.

For example, the following procedure sets the parallelism parameter for a capture process named strm01_capture to 4.

BEGIN
 DBMS_CAPTURE_ADM.SET_PARAMETER(
 capture_name => 'strm01_capture',
 parameter => 'parallelism',
 value => '4');
END;
/

	
Note:

	
Setting the parallelism parameter automatically stops and restarts a capture process.

	
The value parameter is always entered as a VARCHAR2 value, even if the parameter value is a number.

	
If the value parameter is set to NULL or is not specified, then the parameter is set to its default value.

	
See Also:

	
Oracle Database 2 Day + Data Replication and Integration Guide for instructions about setting capture process parameters with Oracle Enterprise Manager

	
"Capture Process Subcomponents"

	
The DBMS_CAPTURE_ADM.SET_PARAMETER procedure in the Oracle Database PL/SQL Packages and Types Reference for detailed information about the capture process parameters

Setting the Capture User for a Capture Process

The capture user is the user who captures all DML changes and DDL changes that satisfy the capture process rule sets. Set the capture user for a capture process using the capture_user parameter in the ALTER_CAPTURE procedure in the DBMS_CAPTURE_ADM package.

To change the capture user, the user who invokes the ALTER_CAPTURE procedure must be granted DBA role. Only the SYS user can set the capture_user to SYS.

For example, the following procedure sets the capture user for a capture process named strm01_capture to hr.

BEGIN
 DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name => 'strm01_capture',
 capture_user => 'hr');
END;
/

Running this procedure grants the new capture user enqueue privilege on the queue used by the capture process and configures the user as a secure queue user of the queue. In addition, ensure that the capture user has the following privileges:

	
EXECUTE privilege on the rule sets used by the capture process

	
EXECUTE privilege on all custom rule-based transformation functions used in the rule set

These privileges can be granted to the capture user directly or through roles.

In addition, the capture user must be granted EXECUTE privilege on all packages, including Oracle-supplied packages, that are invoked in rule-based transformations run by the capture process. These privileges must be granted directly to the capture user. They cannot be granted through roles.

	
Note:

If Oracle Database Vault is installed, follow the steps outlined in "Oracle Streams and Oracle Data Vault" to ensure the correct privileges and roles have been granted.

Managing the Checkpoint Retention Time for a Capture Process

The checkpoint retention time is the amount of time that a capture process retains checkpoints before purging them automatically.

Set the checkpoint retention time for a capture process using checkpoint_retention_time parameter in the ALTER_CAPTURE procedure of the DBMS_CAPTURE_ADM package.

This section contains these topics:

	
Setting the Checkpoint Retention Time for a Capture Process to a New Value

	
Setting the Checkpoint Retention Time for a Capture Process to Infinite

	
See Also:

	
"Capture Process Checkpoints"

Setting the Checkpoint Retention Time for a Capture Process to a New Value

When you set the checkpoint retention time, you can specify partial days with decimal values. For example, run the following procedure to specify that a capture process named strm01_capture should purge checkpoints automatically every ten days and twelve hours:

BEGIN
 DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name => 'strm01_capture',
 checkpoint_retention_time => 10.5);
END;
/

Setting the Checkpoint Retention Time for a Capture Process to Infinite

To specify that a capture process should not purge checkpoints automatically, set the checkpoint retention time to DBMS_CAPTURE_ADM.INFINITE. For example, the following procedure sets the checkpoint retention time for a name strm01_capture to infinite:

BEGIN
 DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name => 'strm01_capture',
 checkpoint_retention_time => DBMS_CAPTURE_ADM.INFINITE);
END;
/

Adding an Archived Redo Log File to a Capture Process Explicitly

You can add an archived redo log file to a capture process manually using the following statement:

ALTER DATABASE REGISTER LOGICAL LOGFILE
 file_name FOR capture_process;

Here, file_name is the name of the archived redo log file being added, and capture_process is the name of the capture process that will use the redo log file at the downstream database. The capture_process is equivalent to the logminer_session_name and must be specified. The redo log file must be present at the site running capture process.

For example, to add the /usr/log_files/1_3_486574859.dbf archived redo log file to a capture process named strm03_capture, issue the following statement:

ALTER DATABASE REGISTER LOGICAL LOGFILE '/usr/log_files/1_3_486574859.dbf'
 FOR 'strm03_capture';

	
See Also:

Oracle Database SQL Language Reference for more information about the ALTER DATABASE statement and Oracle Data Guard Concepts and Administration for more information registering redo log files

Setting the First SCN for an Existing Capture Process

You can set the first SCN for an existing capture process.

The specified first SCN must meet the following requirements:

	
It must be greater than the current first SCN for the capture process.

	
It must be less than or equal to the current applied SCN for the capture process. However, this requirement does not apply if the current applied SCN for the capture process is zero.

	
It must be less than or equal to the required checkpoint SCN for the capture process.

You can determine the current first SCN, applied SCN, and required checkpoint SCN for each capture process in a database using the following query:

SELECT CAPTURE_NAME, FIRST_SCN, APPLIED_SCN, REQUIRED_CHECKPOINT_SCN
 FROM DBA_CAPTURE;

When you reset a first SCN for a capture process, information below the new first SCN setting is purged from the LogMiner data dictionary for the capture process automatically. Therefore, after the first SCN is reset for a capture process, the start SCN for the capture process cannot be set lower than the new first SCN. Also, redo log files that contain information before the new first SCN setting will never be needed by the capture process.

For example, the following procedure sets the first SCN for a capture process named strm01_capture to 351232 using the ALTER_CAPTURE procedure in the DBMS_CAPTURE_ADM package:

BEGIN
 DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name => 'strm01_capture',
 first_scn => 351232);
END;
/

	
Note:

	
If the specified first SCN is higher than the current start SCN for the capture process, then the start SCN is set automatically to the new value of the first SCN.

	
If you must capture changes in the redo log from a point in time in the past, then you can create a capture process and specify a first SCN that corresponds to a previous data dictionary build in the redo log. The BUILD procedure in the DBMS_CAPTURE_ADM package performs a data dictionary build in the redo log.

	
You can query the DBA_LOGMNR_PURGED_LOG data dictionary view to determine which redo log files will never be needed by any capture process.

	
See Also:

	
"SCN Values Related to a Capture Process"

	
"The LogMiner Data Dictionary for a Capture Process"

	
"Displaying SCN Values for Each Redo Log File Used by Each Capture Process" for a query that determines which redo log files are no longer needed

Setting the Start SCN for an Existing Capture Process

You can set the start SCN for an existing capture process. Typically, you reset the start SCN for a capture process if point-in-time recovery must be performed on one of the destination databases that receive changes from the capture process.

The specified start SCN must be greater than or equal to the first SCN for the capture process. When you reset a start SCN for a capture process, ensure that the required redo log files are available to the capture process.

You can determine the first SCN for each capture process in a database using the following query:

SELECT CAPTURE_NAME, FIRST_SCN FROM DBA_CAPTURE;

For example, to set the start SCN for a capture process named strm01_capture to 750338, complete the following steps:

	
Stop the capture process. See "Stopping a Capture Process" for instructions.

	
Run the ALTER_CAPTURE procedure to set the start SCN:

BEGIN
 DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name => 'strm01_capture',
 start_scn => 750338);
END;
/

	
Start the capture process. See "Starting a Capture Process" for instructions.

	
See Also:

	
"SCN Values Related to a Capture Process"

	
Oracle Streams Replication Administrator's Guide for information about performing database point-in-time recovery on a destination database in an Oracle Streams environment

Specifying Whether Downstream Capture Uses a Database Link

You specify whether an existing downstream capture process uses a database link to the source database for administrative purposes using the ALTER_CAPTURE procedure in the DBMS_CAPTURE_ADM package. Set the use_database_link parameter to TRUE to specify that the downstream capture process uses a database link, or you set the use_database_link parameter to FALSE to specify that the downstream capture process does not use a database link.

If you want a capture process that is not using a database link currently to begin using a database link, then specify TRUE for the use_database_link parameter. In this case, a database link with the same name as the global name as the source database must exist at the downstream database.

If you want a capture process that is using a database link currently to stop using a database link, then specify FALSE for the use_database_link parameter. In this case, some administration must be performed manually after you alter the capture process. For example, if you add new capture process rules using the DBMS_STREAMS_ADM package, then you must prepare the objects relating to the rules for instantiation manually at the source database.

If you specify NULL for the use_database_link parameter, then the current value of this parameter for the capture process is not changed.

To create a database link to the source database dbs1.example.com and specify that this capture process uses the database link, complete the following steps:

	
In SQL*Plus, connect to the downstream database as the Oracle Streams administrator.

See Oracle Database Administrator's Guide for information about connecting to a database in SQL*Plus.

	
Create the database link to the source database. Ensure that the database link connects to the Oracle Streams administrator at the source database. For example:

CREATE DATABASE LINK dbs1.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'dbs1.example.com';

	
Alter the capture process to use the database link. For example:

BEGIN
 DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name => 'strm05_capture',
 use_database_link => TRUE);
END;
/

	
See Also:

"Local Capture and Downstream Capture"

Dropping a Capture Process

You run the DROP_CAPTURE procedure in the DBMS_CAPTURE_ADM package to drop an existing capture process. For example, the following procedure drops a capture process named strm02_capture:

BEGIN
 DBMS_CAPTURE_ADM.DROP_CAPTURE(
 capture_name => 'strm02_capture',
 drop_unused_rule_sets => TRUE);
END;
/

Because the drop_unused_rule_sets parameter is set to TRUE, this procedure also drops any rule sets used by the strm02_capture capture process, unless a rule set is used by another Oracle Streams client. If the drop_unused_rule_sets parameter is set to TRUE, then both the positive rule set and negative rule set for the capture process might be dropped. If this procedure drops a rule set, then it also drops any rules in the rule set that are not in another rule set.

	
Note:

The status of a capture process must be DISABLED or ABORTED before it can be dropped. You cannot drop an ENABLED capture process.

Managing a Synchronous Capture

A synchronous capture uses an internal mechanism to capture data manipulation language (DML) changes made to tables. A synchronous capture reformats each captured change into a logical change record (LCR), and enqueues the LCR into an ANYDATA queue.

This section contains these topics:

	
Managing the Rule Set for a Synchronous Capture

	
Setting the Capture User for a Synchronous Capture

	
Dropping a Synchronous Capture

	
See Also:

	
"Implicit Capture with Synchronous Capture"

	
Oracle Streams Replication Administrator's Guide for information about configuring synchronous capture

	
"Monitoring a Synchronous Capture"

	
Oracle Database 2 Day + Data Replication and Integration Guide for an example that configures a replication environment that uses synchronous capture

Managing the Rule Set for a Synchronous Capture

This section contains instructions for completing the following tasks:

	
Specifying a Rule Set for a Synchronous Capture

	
Adding Rules to a Rule Set for a Synchronous Capture

	
Removing a Rule from a Rule Set for a Synchronous Capture

	
See Also:

	
Chapter 5, "How Rules Are Used in Oracle Streams"

	
Chapter 11, "Advanced Rule Concepts"

Specifying a Rule Set for a Synchronous Capture

You can specify one positive rule set for a synchronous capture. The synchronous capture captures a change if it evaluates to TRUE for at least one rule in the positive rule set.

You specify an existing rule set as the positive rule set for an existing synchronous capture using the rule_set_name parameter in the ALTER_SYNC_CAPTURE procedure. This procedure is in the DBMS_CAPTURE_ADM package.

For example, the following procedure sets the positive rule set for a synchronous capture named sync_capture to sync_rule_set.

BEGIN
 DBMS_CAPTURE_ADM.ALTER_SYNC_CAPTURE(
 capture_name => 'sync_capture',
 rule_set_name => 'strmadmin.sync_rule_set');
END;
/

	
Note:

You cannot remove the rule set for a synchronous capture.

Adding Rules to a Rule Set for a Synchronous Capture

To add rules to a rule set for an existing synchronous capture, you can run one of the following procedures in the DBMS_STREAMS_ADM package and specify the existing synchronous capture:

	
ADD_TABLE_RULES

	
ADD_SUBSET_RULES

	
See Also:

"System-Created Rules"

The following example runs the ADD_TABLE_RULES procedure in the DBMS_STREAMS_ADM package to add rules to the positive rule set of a synchronous capture named sync_capture:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.departments',
 streams_type => 'sync_capture',
 streams_name => 'sync_capture',
 queue_name => 'strmadmin.streams_queue',
 include_dml => TRUE);
END;
/

Running this procedure performs the following actions:

	
Creates one rule which evaluates to TRUE for DML changes to the hr.departments table. The rule name is system generated.

	
Adds the rule to the positive rule set associated with the synchronous capture.

	
Prepares the hr.departments table for instantiation by running the PREPARE_SYNC_INSTANTIATION function in the DBMS_CAPTURE_ADM package.

	
Note:

	
A synchronous capture captures changes to a table only if the ADD_TABLE_RULES or ADD_SUBSET_RULES procedure was used to add the rule or rules for the table to the synchronous capture rule set. Synchronous capture does not capture changes to a table if a table or subset rule is added to its rule set using the ADD_RULE procedure in the DBMS_RULE_ADM package. In addition, a synchronous capture ignores all non-table and non-subset rules in its rule set, including global and schema rules.

	
When the ADD_TABLE_RULES or the ADD_SUBSET_RULES procedure adds rules to a synchronous capture rule set, the procedure must obtain an exclusive lock on the specified table. If there are outstanding transactions on the specified table, then the procedure waits until it can obtain a lock.

Removing a Rule from a Rule Set for a Synchronous Capture

You remove a rule from the rule set for a synchronous capture if you no longer want the synchronous capture to capture the changes specified in the rule. For example, assume that the departments3 rule specifies that DML changes to the hr.departments table be captured. If you no longer want a synchronous capture to capture changes to the hr.departments table, then remove the departments3 rule from its rule set.

You remove a rule from a rule set for an existing synchronous capture by running the REMOVE_RULE procedure in the DBMS_STREAMS_ADM package. For example, the following procedure removes a rule named departments3 from the positive rule set of a synchronous capture named sync_capture.

BEGIN
 DBMS_STREAMS_ADM.REMOVE_RULE(
 rule_name => 'departments3',
 streams_type => 'sync_capture',
 streams_name => 'sync_capture',
 drop_unused_rule => TRUE);
END;
/

In this example, the drop_unused_rule parameter in the REMOVE_RULE procedure is set to TRUE, which is the default setting. Therefore, if the rule being removed is not in any other rule set, then it will be dropped from the database. If the drop_unused_rule parameter is set to FALSE, then the rule is removed from the rule set, but it is not dropped from the database.

To remove all of the rules in a rule set for the synchronous capture, specify NULL for the rule_name parameter when you run the REMOVE_RULE procedure.

	
See Also:

"Oracle Streams Client with One or More Empty Rule Sets"

Setting the Capture User for a Synchronous Capture

The capture user is the user who captures all DML changes that satisfy the synchronous capture rule set. Set the capture user for a synchronous capture using the capture_user parameter in the ALTER_SYNC_CAPTURE procedure in the DBMS_CAPTURE_ADM package.

To change the capture user, the user who invokes the ALTER_SYNC_CAPTURE procedure must be granted DBA role. Only the SYS user can set the capture_user to SYS.

For example, the following procedure sets the capture user for a synchronous capture named sync_capture to hr.

BEGIN
 DBMS_CAPTURE_ADM.ALTER_SYNC_CAPTURE(
 capture_name => 'sync_capture',
 capture_user => 'hr');
END;
/

Running this procedure grants the new capture user enqueue privilege on the queue used by the synchronous capture and configures the user as a secure queue user of the queue. In addition, ensure that the capture user has the following privileges:

	
EXECUTE privilege on the rule set used by the synchronous capture

	
EXECUTE privilege on all custom rule-based transformation functions used in the rule set

These privileges can be granted to the capture user directly or through roles.

In addition, the capture user must be granted EXECUTE privilege on all packages, including Oracle-supplied packages, that are invoked in rule-based transformations run by the synchronous capture. These privileges must be granted directly to the capture user. They cannot be granted through roles.

	
Note:

If Oracle Database Vault is installed, follow the steps outlined in "Oracle Streams and Oracle Data Vault" to ensure the correct privileges and roles have been granted.

Dropping a Synchronous Capture

You run the DROP_CAPTURE procedure in the DBMS_CAPTURE_ADM package to drop an existing synchronous capture. For example, the following procedure drops a synchronous capture named sync_capture:

BEGIN
 DBMS_CAPTURE_ADM.DROP_CAPTURE(
 capture_name => 'sync_capture',
 drop_unused_rule_sets => TRUE);
END;
/

Because the drop_unused_rule_sets parameter is set to TRUE, this procedure also drops any rule sets used by the sync_capture synchronous capture, unless a rule set is used by another Oracle Streams client. If the drop_unused_rule_sets parameter is set to TRUE, then the rule set for the synchronous capture might be dropped. If this procedure drops a rule set, then it also drops any rules in the rule set that are not in another rule set.

Managing Extra Attributes in Captured LCRs

You can use the INCLUDE_EXTRA_ATTRIBUTE procedure in the DBMS_CAPTURE_ADM package to instruct a capture process or a synchronous capture to capture one or more extra attributes. You can also use this procedure to instruct a capture process or synchronous capture to exclude an extra attribute that it is capturing currently.

The extra attributes are the following:

	
row_id (row LCRs only)

	
serial#

	
session#

	
thread#

	
tx_name

	
username

This section contains instructions for completing the following tasks:

	
Including Extra Attributes in Implicitly Captured LCRs

	
Excluding Extra Attributes from Implicitly Captured LCRs

	
See Also:

	
"Extra Information in LCRs"

	
"Viewing the Extra Attributes Captured by Implicit Capture"

	
Oracle Database PL/SQL Packages and Types Reference for more information about the INCLUDE_EXTRA_ATTRIBUTE procedure

Including Extra Attributes in Implicitly Captured LCRs

To include an extra attribute in the LCRs captured by a capture process or synchronous capture, run the INCLUDE_EXTRA_ATTRIBUTES procedure, and set the include parameter to TRUE. For example, to instruct a capture process or synchronous capture named strm01_capture to include the transaction name in each LCR that it captures, run the following procedure:

BEGIN
 DBMS_CAPTURE_ADM.INCLUDE_EXTRA_ATTRIBUTE(
 capture_name => 'strm01_capture',
 attribute_name => 'tx_name',
 include => TRUE);
END;
/

Excluding Extra Attributes from Implicitly Captured LCRs

To exclude an extra attribute from the LCRs captured by a capture process or synchronous capture, run the INCLUDE_EXTRA_ATTRIBUTES procedure, and set the include parameter to FALSE. For example, to instruct a capture process or synchronous capture named strm01_capture to exclude the transaction name from each LCR that it captures, run the following procedure:

BEGIN
 DBMS_CAPTURE_ADM.INCLUDE_EXTRA_ATTRIBUTE(
 capture_name => 'strm01_capture',
 attribute_name => 'tx_name',
 include => FALSE);
END;
/

Switching From a Capture Process to a Synchronous Capture

This section describes how to switch from a capture process to a synchronous capture. Typically, a synchronous capture is used to capture data manipulation language (DML) changes to a relatively small number of tables. You might decide to make this switch if you are currently capturing changes to a small number of tables with a capture process instead of a synchronous capture.

You should not switch from a capture process to a synchronous capture if any of the following conditions are true:

	
Instead of capturing the changes made to a small number of tables, the capture process is capturing changes made to an entire database, one or more schemas, or a large number of tables, and you want to continue to capture these changes.

	
The capture process is capturing data definition language (DDL) changes, and you want to continue to capture DDL changes. A synchronous capture cannot capture DDL changes.

	
The capture process uses a negative rule set, and you want to continue to use a negative rule set. A synchronous capture cannot use negative rule set.

	
The capture process is a downstream capture process. Downstream capture is not possible with a synchronous capture.

This section uses an example to describe how to switch from a capture process to a synchronous capture. Table 15-1 shows the Oracle Streams components in the sample environment before the switch and after the switch.

Table 15-1 Sample Switch From a Capture Process to a Synchronous Capture

	Oracle Streams Component	Before Switch	After Switch
	
Capture Process

	
cap_proc

	
None

	
Capture Process Rule Set

	
cap_rules

	
None

	
Synchronous Capture

	
None

	
sync_cap

	
Synchronous Capture Rule Set

	
None

	
cap_rules

	
Propagation

	
cap_proc_prop

	
sync_cap_prop

	
Propagation Rule Set

	
prop_rules

	
prop_rules

	
Source Queue

	
cap_proc_source

	
sync_cap_source

	
Destination Queue

	
cap_proc_dest

	
sync_cap_dest

	
Apply Process

	
apply_cap_proc

	
apply_sync_cap

	
Apply Process Rule Set

	
apply_rules

	
apply_rules

In Table 15-1, notice that the Oracle Streams environment uses the same rule sets before the switch and after the switch. Also, for the example in this section, assume that the source database is db1.example.com and the destination database is db2.example.com.

	
Note:

The example in this section assumes that the Oracle Streams environment only involves two databases. If you are using a directed network to send changes through multiple databases, then you might need to configure additional propagations and queues for the new synchronous capture stream of changes, and you might need to drop additional propagations and queues that were used by the capture process stream.

To switch from a capture process to a synchronous capture, complete the following steps:

	
In SQL*Plus, log in to the source database as the Oracle Streams administrator.

This example assumes that the Oracle Streams administrator is strmadmin at each database. See Oracle Streams Replication Administrator's Guide for information about creating an Oracle Streams administrator.

	
Stop the capture process.

In this example, run the following procedure:

BEGIN
 DBMS_CAPTURE_ADM.STOP_CAPTURE(
 capture_name => 'cap_proc');
END;
/

	
In SQL*Plus, log in to the destination database as the Oracle Streams administrator.

	
Create a commit-time queue for the apply process that will apply the changes that were captured by the synchronous capture.

In this example, run the following procedure:

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'strmadmin.sync_cap_dest_qt',
 queue_name => 'strmadmin.sync_cap_dest');
END;
/

	
Create an apply process that applies the changes in the queue created in Step 4. Ensure that the apply_captured parameter is set to FALSE. Also, ensure that the rule_set_name parameter specifies the rule set used by the existing apply process.

In this example, run the following procedure:

BEGIN
 DBMS_APPLY_ADM.CREATE_APPLY(
 queue_name => 'strmadmin.sync_cap_dest',
 apply_name => 'apply_sync_cap',
 rule_set_name => 'strmadmin.apply_rules',
 apply_captured => FALSE);
END;
/

Ensure that the apply process is configured properly for your environment. Specifically, ensure that the new apply process is configured properly regarding the following items:

	
Apply user

	
Apply handlers

	
Apply tag

If appropriate, then ensure that the new apply process is configured in the same way as the existing apply process regarding these items.

See Oracle Streams Replication Administrator's Guide for information about creating an apply process.

	
In SQL*Plus, log in to the source database as the Oracle Streams administrator.

	
Create a commit-time queue for the synchronous capture.

In this example, run the following procedure:

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'strmadmin.sync_cap_source_qt',
 queue_name => 'strmadmin.sync_cap_source');
END;
/

See Oracle Streams Replication Administrator's Guide for information about configuring queues.

	
Create a propagation that sends changes from the queue created in Step 7 to the queue created in Step 4. Ensure that the rule_set_name parameter specifies the rule set used by the existing propagation.

In this example, run the following procedure:

BEGIN
 DBMS_PROPAGATION_ADM.CREATE_PROPAGATION(
 propagation_name => 'sync_cap_prop',
 source_queue => 'strmadmin.sync_cap_source',
 destination_queue => 'strmadmin.sync_cap_dest',
 destination_dblink => 'db2.example.com',
 rule_set_name => 'strmadmin.prop_rules');
END;
/

See Oracle Streams Replication Administrator's Guide for information about creating propagations.

	
Create a synchronous capture. Ensure that the queue_name parameter specifies the queue created in Step 7. Also, ensure that the rule_set_name parameter specifies the rule set used by the existing capture process.

In this example, run the following procedure:

BEGIN
 DBMS_CAPTURE_ADM.CREATE_SYNC_CAPTURE(
 queue_name => 'strmadmin.sync_cap_source',
 capture_name => 'sync_cap',
 rule_set_name => 'strmadmin.capture_rules');
END;
/

The specified rule set must only contain rules that were created using the ADD_TABLE_RULES and ADD_SUBSET_RULES procedures in the DBMS_STREAMS_ADM package. If the current capture process rule set contains other types of rules, then create a rule set for the synchronous capture and use the ADD_TABLE_RULES and ADD_SUBSET_RULES procedures to add rules to the new rule set.

In addition, a synchronous capture cannot have a negative rule set. If the current capture process has a negative rule set, and you want the synchronous capture to behave the same as the capture process, then add rules to the positive synchronous capture rule set that result in the same behavior.

If the existing capture process uses a capture user that is not the Oracle Streams administrator, then ensure that you use the capture_user parameter in the CREATE_SYNC_CAPTURE procedure to specify the correct capture user for the new synchronous capture.

See Oracle Streams Replication Administrator's Guide for information about configuring synchronous capture.

	
Verify that the tables that are configured for synchronous capture are the same as the ones configured for the existing capture process by running the following query:

SELECT * FROM DBA_SYNC_CAPTURE_TABLES ORDER BY TABLE_OWNER, TABLE_NAME;

If any table is missing or not enabled, then use the ADD_TABLE_RULES or ADD_SUBSET_RULES procedure to add the table.

	
Prepare the replicated tables for instantiation. The replicated tables are the tables for which the synchronous capture captures changes.

For example, if the synchronous capture captures changes to the hr.employees and hr.departments tables, then run the following function:

SET SERVEROUTPUT ON
DECLARE
 tables DBMS_UTILITY.UNCL_ARRAY;
 prepare_scn NUMBER;
 BEGIN
 tables(1) := 'hr.departments';
 tables(2) := 'hr.employees';
 prepare_scn := DBMS_CAPTURE_ADM.PREPARE_SYNC_INSTANTIATION(
 table_names => tables);
 DBMS_OUTPUT.PUT_LINE('Prepare SCN = ' || prepare_scn);
END;
/

The returned prepare system change number (SCN) is used in Steps 13, 17, and 18. This example assumes that the prepare SCN is 2700000.

All of the replicated tables must be included in one call to the PREPARE_SYNC_INSTANTIATION function.

See Oracle Streams Replication Administrator's Guide for more information about preparing database objects for instantiation.

	
In SQL*Plus, log in to the destination database as the Oracle Streams administrator.

	
Set the apply process that applies changes from the capture process to stop applying changes when it reaches the SCN returned in Step 11 plus 1.

For example, if the prepare SCN is 2700000, then run the following procedure to set the maximum_scn parameter to 2700001 (2700000 + 1).:

BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'apply_cap_proc',
 parameter => 'maximum_scn',
 value => '2700001');
END;
/

	
In SQL*Plus, log in to the source database as the Oracle Streams administrator.

	
Start the capture process that you stopped in Step 2.

In this example, run the following procedure:

BEGIN
 DBMS_CAPTURE_ADM.START_CAPTURE(
 capture_name => 'cap_proc');
END;
/

	
In SQL*Plus, log in to the destination database as the Oracle Streams administrator.

	
Wait until the apply process that applies changes that were captured by the capture process has reached the SCN specified in Step 13. When this event occurs, the apply process is automatically disabled with error ORA-26717 to indicate the SCN limit has reached.

To determine if the apply process has reached this point, query the DBA_APPLY view. In this example, run the following query:

SELECT 1 FROM DBA_APPLY
 WHERE STATUS = 'DISABLED' AND
 ERROR_NUMBER = 26717 AND
 APPLY_NAME = 'APPLY_CAP_PROC';

Do not proceed to the next step until this query returns a row.

	
Set the instantiation SCN for the replicated tables to the SCN value the SCN returned in Step 11.

In this example, run the following procedures:

BEGIN
 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN(
 source_object_name => 'hr.employees',
 source_database_name => 'db1.example.com',
 instantiation_scn => 2700000);
END;
/

BEGIN
 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN(
 source_object_name => 'hr.departments',
 source_database_name => 'db1.example.com',
 instantiation_scn => 2700000);
END;
/

See Oracle Streams Replication Administrator's Guide for more information about setting the instantiation SCN.

	
Start the apply process that you created in Step 5.

In this example, run the following procedure:

BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply_sync_cap');
END;
/

	
Drop the apply process that applied changes that were captured by the capture process.

In this example, run the following procedure:

BEGIN
 DBMS_APPLY_ADM.DROP_APPLY(
 apply_name => 'apply_cap_proc');
END;
/

	
If it is no longer needed, then drop the queue that was used by the apply process that you dropped in Step 20.

In this example, run the following procedure:

BEGIN
 DBMS_STREAMS_ADM.REMOVE_QUEUE(
 queue_name => 'strmadmin.cap_proc_dest',
 drop_unused_queue_table => TRUE);
END;
/

	
In SQL*Plus, log in to the source database as the Oracle Streams administrator.

	
Stop the capture process.

In this example, run the following procedure:

BEGIN
 DBMS_CAPTURE_ADM.STOP_CAPTURE(
 capture_name => 'cap_proc');
END;
/

	
Drop the capture process.

In this example, run the following procedure:

BEGIN
 DBMS_CAPTURE_ADM.DROP_CAPTURE(
 capture_name => 'cap_proc');
END;
/

	
Drop the propagation that sent changes that were captured by the capture process.

In this example, run the following procedure:

BEGIN
 DBMS_PROPAGATION_ADM.DROP_PROPAGATION(
 propagation_name => 'cap_proc_prop');
END;
/

	
If it is no longer needed, then drop the queue that was used by the capture process and propagation that you dropped in Steps 24 and 25.

In this example, run the following procedure:

BEGIN
 DBMS_STREAMS_ADM.REMOVE_QUEUE(
 queue_name => 'strmadmin.cap_proc_source',
 drop_unused_queue_table => TRUE);
END;
/

If you have a bi-directional replication environment, then you can perform these steps independently to switch from a capture process to synchronous capture in both directions.

	
See Also:

	
Chapter 2, "Oracle Streams Information Capture"

	
Chapter 5, "How Rules Are Used in Oracle Streams"

Switching from a Synchronous Capture to a Capture Process

This section describes how to switch from a synchronous capture to a capture process. You might decide to make this switch for one or more of the following reasons:

	
You are currently capturing changes to a small number of tables but want to expand your environment to capture changes to a large number of tables, one or more schemas, or an entire database.

	
You want to use a negative rule set during change capture.

	
You want to capture data definition language (DDL) changes to database objects.

This section uses an example to describe how to switch from a synchronous capture to a capture process. Table 15-2 shows the Oracle Streams components in the sample environment before the switch and after the switch.

Table 15-2 Sample Switch From a Synchronous Capture to a Capture Process

	Oracle Streams Component	Before Switch	After Switch
	
Synchronous Capture

	
sync_proc

	
None

	
Synchronous Capture Rule Set

	
cap_rules

	
None

	
Capture Process

	
None

	
cap_proc

	
Capture Process Rule Set

	
None

	
cap_rules

	
Propagation

	
sync_cap_prop

	
cap_proc_prop

	
Propagation Rule Set

	
prop_rules

	
prop_rules

	
Source Queue

	
sync_cap_source

	
cap_proc_source

	
Destination Queue

	
sync_cap_dest

	
cap_proc_dest

	
Apply Process

	
apply_sync_cap

	
apply_cap_proc

	
Apply Process Rule Set

	
apply_rules

	
apply_rules

In Table 15-2, notice that the Oracle Streams environment uses the same rule sets before the switch and after the switch. Also, for the example in this section, assume that the source database is db1.example.com and the destination database is db2.example.com.

	
Note:

The example in this section assumes that the Oracle Streams environment only involves two databases. If you are using a directed network to send changes through multiple databases, then you might need to configure additional propagations and queues for the new capture process stream of changes, and you might need to drop additional propagations and queues that were used by the synchronous cap